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Part I
Methodologies



Object Segmentation and Markov
Random Fields

Y Boykov

Abstract This chapter discusses relationships between graph cut approach to
object delineation and other standard techniques optimizing segmentation bound-
aries. Graph cut method is presented in the context of globally optimal labeling
of binary Markov Random Fields (MRFs). We review algorithms details and show
several 2D and 3D examples.

1 Overview of object segmentation methods

In the last 20 years the computer vision and medical imaging communities have
produced a number of useful algorithms for localizing object boundaries in images.
The most basic methods like thresholding and region growing are simple heuristics
that work well only for a fairly limited class of problems: either there should be
100 % consistent intensity edges on the object boundary, or there should be 0 %
overlap between the object and background intensity histograms. In practice, there
are relatively few applications where object appearance satisfies such assumptions
(one good example is [24]). More robust segmentation techniques are needed in
most applications that do not support such strong assumptions.

More advanced segmentation methods typically compute optimal con-
tours/surfaces for specific energy functionals combining different boundary and/or
region-based cues for an object of interest. Examples of such energy-based object
extraction methods are snakes [36], balloons [18], other active contour models [30],
geometric methods [14, 68], “shortest path” techniques [21, 50], ratio cycles [33],
ratio cuts [65], random walker [27], graph cuts [4, 8, 9, 37, 41], continuous max-
flow [2], total variation (TV) [15], and TV-based convex relaxation methods [16].
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contour/surface
representation

local
optimization

global
optimization

snake/balloon [36, 18]
DP snake (2D) [1]
spline snake [30]

optimal path (2D) [50, 21]
ratio cut/cycle (2D) [33, 65]
graph cut on complex [37]

explicit

implicit
(region-based)

level set [14, 17, 52]
PDE cuts [11]

graph cut [8, 9, 4, 39]
continuous max-flow [2]

TV convex relaxation [16]

Fig. 1 Object extraction methods using contour/surface energy functionals. Only a few represen-
tative references are shown for each method

There are many different ways to formulate object segmentation as an optimiza-
tion problem. Yet, there are more similarities between existing methods than it
may seem. While the primary focus of this chapter is graph cut approach to object
extraction and its relation to binary MRF estimation, this section reviews connec-
tions between graph cuts and other segmentation methods optimizing boundary cost
functionals (see Fig. 1).

Note that graph cut methods for object extraction, e.g. [4, 8, 9, 39], were
preceded by a number of graph-based methods for image “clustering” that use
either combinatorial optimization algorithms [22, 32, 63, 67] or spectral analysis
techniques, e.g. normalized cuts [60]. Typically, the goal of these methods is to
automatically divide an image into a number of “blobs” or “clusters” using only
generic cues of coherence or affinity between pixels.1 We focus on a fairly different
group of image segmentation methods shown in Fig. 1 that integrate model-specific
visual cues and contextual information to accurately delineate particular object of
interest.

1.1 Implicit representation of contours/surfaces

To solve an image segmentation problem, one should first decide how to numerically
represent contours or surfaces. Many existing segmentation methods (Fig. 1) use
explicit representation of contours/surfaces based on meshes or splines defined by a
set of moving or “active” control points forming a chain [1, 18, 25, 30, 36]. A 2D

1 Impossibility theorem in [38] shows that no clustering algorithm can simultaneously satisfy three
basic axioms on scale-invariance, richness, and consistency. Thus, any clustering method has some
bias.
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contour can be explicitly represented by a set of adjacent edges connecting nodes
on a graph [21, 33, 50]. Both contours in 2D and surfaces in 3D can be explicitly
represented by a set of adjacent facets on a complex [37].

Many recent segmentation methods use implicit surface representation, see
Fig. 1. Implicit object representation is frequently referred to as region-based
representation. Such methods store a mask describing object’s interior. Such a mask
is a 2D (or 3D) array over pixels (or voxels) assigning different values to interior and
exterior regions. For example, standard level-sets methods, e.g. [52, 58], maintain
a real valued mask with negative values for interior pixels and positive values for
exterior pixels (or vice versa). The object’s boundary is implicit, it is a zero-level
set of this real-valued mask. Many level-sets techniques use a mask that closely
approximates a signed distance map of the object’s boundary. Real-value precision
of the mask also helps to reconstruct the boundary with sub-pixel accuracy, if
needed.

Some other implicit techniques, e.g. [2, 15, 16, 27], use a regional mask storing
real-values in some bounded interval, e.g. [0, 1]. While each method may provide
a different interpretation for mask values, a surface is typically extracted as a 1

2 -
level set of the mask. If necessary, sub-pixel accuracy can be obtained using bilinear
interpolation. Notably, [2] and [16] prove that (in a theoretical case of continuous-
resolution) their masks should converge to binary (1/0) values. In particular, this
shows that specific choice of a threshold is not essential in [2, 16].

Graph cut [4, 8, 9, 39] is another implicit approach to representing object
boundaries. Graph cut methods compute a binary-valued mask assigning 1 to
interior and 0 to exterior pixels. In this case, object boundary cannot be uniquely
identified with sub-pixel accuracy since any curve/surface in a narrow space
between 1-0 valued points inRn (pixels/voxels) is consistent with the corresponding
binary mask. If necessary, one simple way to output a boundary explicitly is to draw
a surface following pixels borders. This may work sufficiently well if pixels/voxels
are small enough.2 However, even tiny “pixalization” of the surface causes visually
noticeable shading artifacts in applications using 3D surface rendering. Thus, fitting
a smooth surface in a narrow band between 1 and 0 labeled points in Rn could be a
better solution in case of 3D rendering, e.g. [46, 66].

1.2 Local vs. Global optimization

Each surface representation approach may have some advantages and disad-
vantages. For example, methods using control points may suffer from mesh
irregularities and from rigid topological structure of surfaces they represent. Dis-
crete approaches based on graphs/trees and dynamic programming must address
potential geometric metrication artifacts. Some types of representation are specific

2If necessary, one can build a graph with resolution finer than the pixel grid.
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to contours in 2D (see Fig. 1) and do not generalize to surfaces in 3D. Moreover,
each surface representation approach is typically tied with certain types of energy
functionals and optimization algorithms.

The underlying optimization technique significantly affects numerical robustness,
convergence, speed, and memory efficiency of the segmentation method. Moreover,
it also determines quality guarantees for the solution. For example, some algorithms
can find only a local minima near some provided initial guess, while others can
compute a globally optimal solution in the whole domain of interest (e.g. image or
volume).

The majority of existing techniques with explicit representation of surfaces
via control points (meshes, splines) use either variational methods [18, 30, 36]
or dynamic programming [1] to find a local optima positions for these control
points near some initial guess. Dynamic programming can also be used for global
minimization in some 2D segmentation problems. For example, segmentation
methods using explicit representation of contours as “edge-paths” on graphs use
variations of dynamic programming (e.g. Dijkstra/Viterbi algorithms, ratio cycles,
ratio cuts) to obtain globally optimal solutions in 2D applications [21, 33, 50, 65].
Unfortunately, there are no straightforward generalizations of DP-based methods to
surfaces in 3D. However, a dual approach explicitly representing contours/surfaces
as a set of adjacent facets on complexes allows global optimization via combinatorial
graph cut algorithms in either 2D or 3D cases [37].

Many segmentation methods using implicit representation of surfaces via level
sets [14, 17, 52] obtain only local minima solutions since they apply gradient
descent to non-convex spaces (e.g. of characteristic set functions). More recently,
continuous max-flow/min-cut ideas developed by Strang [61] in the early eighties
inspired convex relaxation techniques computing globally optimal surfaces [2, 16]
using implicit surface representations.

Graph cuts methods for object segmentation [8, 9, 4, 39] represent object bound-
aries implicitly via binary pixel labeling. Globally optimal labeling is produced by
combinatorial algorithms for discrete max-flow/min-cut problems on graphs known
since the early sixties [23]. Interestingly, continuous versions of max-flow/min-cut
problems formulated by Strang [61] were inspired by the corresponding discrete
problems.

First application of combinatorial graph cut algorithms to image analysis dates
back to the late eighties [28] (binary image restoration). But graph cuts have become
popular in vision only 10 years later when high-quality globally optimal solutions
made breakthroughs in stereo [13, 31, 44, 56] and multi-view reconstruction [45, 64,
47]. Before combinatorial graph cut approach to object extraction was first presented
in [8], globally optimal object segmentation was possible only in 2D using dynamic
programming.

Global optimization and numerically stable fast algorithms (e.g. [10]) are the
key strengths of the graph cut framework. In general, global solutions are attractive
due to potentially better robustness and predictability. For example, imperfections
in a globally optimal solution directly relate to the cost functional rather than to
numerical problems during minimization or bad initialization. Yet, global minima
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could be unacceptable. For example, the trivial null solution is a global minima
in some segmentation problems since length/area of the segmentation boundary is
a typical regularizing component in most energy functionals. Some methods add
a ballooning term to their energy or constrain solution space to avoid trivial/null
solutions. Computing local minima could be another reasonable and efficient
alternative if good initial solution is available. Interestingly, graph cut approach
can also be used for local optimization when the search space is appropriately
constrained near given initial solution [11].

1.3 Continuous vs. Discrete Optimization

Energy-based object segmentation methods can be also distinguished by the type
of energy functional they use. The majority of methods optimizing segmentation
boundary cost can be divided into two groups:

(A) Optimization of a functional defined on continuous contour/surface
(B) Optimization of an energy defined on a finite set of discrete variables

The standard methods in group (A) normally formulate segmentation as an opti-
mization problem in an infinite-dimensional space R1 (of continuous contours
or functions). Most methods in this group rely on a variational approach and
gradient descent. In contrast, segmentation methods from group (B) formulate some
integer optimization problem in finite dimensional space Z n and use combinatorial
optimization algorithms. Note that discrete energy functionals in group (B) are fre-
quently designed to approximate some continuous optimization problem. Figure 1
contains examples of methods from both groups (A) and (B).

The methods in group (A) include snakes [36, 18], region competition [69],
geodesic active contours [14], other methods based on level-sets [52, 59], and more
recent global optimization methods using convex relaxation [2, 16].

Optimization methods in group (B) minimize an energy defined over a finite set
of integer-valued variables. Such variables are usually associated with graph nodes
corresponding to image pixels, super pixels, cells, or control points. Many methods
in group (B) use discrete variables representing “direction” of a path along some
graph relying on various versions of dynamic programming to compute optimal
paths or cycles [1, 21, 33, 50, 65]. Graph cut methods also belong to group (B). Both
implicit [4, 8, 9, 39] and explicit [37] techniques use binary variables representing
(object/background) labels for either pixels, voxels, or complex cells. Numerically,
graph cut methods rely on combinatorial max-flow/min-cut algorithms [10, 23, 26].
Once appropriate (submodular) discrete energy is formulated [6, 29, 53], these
algorithms compute an exact global minima.

Continuous methods in (A) inherently rely on approximating numerical schemes
(e.g. finite differences or finite elements) that must be carefully designed to insure
robustness and stability. Convergence of such numerical methods is an important
and non-trivial issue that has to be addressed. Segmentation results generated by two
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variational techniques using the same energy may depend on their implementation
details.

Discrete optimization methods in (B) are numerically robust and “repeatable”.
For example, assuming the same energy function, one would always get identical
segments even though one can choose from a number of different combina-
torial min-cut/max-flow algorithms for computing minimum s-t cuts on graphs
[10, 23, 26].

[10, 20, 35] studied practical efficiency of combinatorial min-cut/max-flow
algorithms on applications in computer vision. It was shown that some max-flow
techniques could solve 2D and 3D segmentation problems in close to real-time using
regular PCs. Graph cut methods allow a user to change hard and soft constraints on-
a-fly [4, 7, 8] enabling fast interactive editing of the segments. Significant speed-ups
were demonstrated for dynamic segmentation problems using flow-recycling [39]
and cut-recycling [34]. While straightforward implementation of graph cuts may
require a lot of memory in 3D applications, [46, 49] showed that multi-level and
adaptive banded techniques can alleviate the problem. Recent region-push-relabel
algorithm [20]3 demonstrated good scalability to large 3D volumes under limited
memory resources and significant speed-ups for multi-processor PCs.

1.4 Integrating Boundary and Regions

Continuous surface functionals in group (A) can incorporate various regional
and boundary properties of segments motivated by ideas from geometry [14,
62] or physics [36]. It is more straightforward to incorporate regional properties
of segments into implicit surface representation techniques like level-sets, which
typically optimize geometric surface functionals related to continuous Mumford-
Shah model [51].

All discrete path-based methods in group (B) can easily encode boundary-based
segmentation cues. [33, 65] combine them with regional properties of segments
using algorithms for optimizing some ratios of regional and boundary terms.
Unfortunately, path-based methods are limited to 2D images since object boundaries
in 3D cannot be represented by a path.

Graph cuts techniques in group (B) can optimize discrete energies that combine
boundary regularization with regional consistency of segments in either 2D or 3D
applications. The corresponding energies are consistent with the weak membrane
model proposed by Blake and Zisserman [3, 5], which is a discrete counterpart of
continuous Mumford-Shah functional [51]. As shown in [9, 40], graph cut methods
can approximate the same geometric surface functionals that are widely used by
level-set methods. This further bridges the gap between the weak membrane and
Mumford-Shah models. Recently, [41] proposed parametric max-flow algorithm for

3[20] can be seen as a hierarchical version of standard push-relabel method [26].
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optimizing ratios of some geometric functionals, extending some earlier ratio-based
segmentation methods [33, 65] to applications in 3D.

1.5 Topological Constraints

Most segmentation methods using explicit boundary representation compute seg-
mentation with fixed topological structure4, e.g. a single closed contour. Such
methods typically have higher sensitivity to local minima. Moreover, object’s
topology may not be known a priori. In contrast, most implicit representation
methods produce segments with flexible topological structure. Object segment may
have multiple isolated blobs with holes. Sometimes, however, it may help to impose
topological constraints reflecting certain high-level contextual information about the
object of interest.

Region-based topological constraints naturally fit into implicit methods (graph
cuts, level-sets). These constraints correspond to an infinite cost regional bias
that enforces certain pixels to belong to object’s interior or exterior. Similar
ideas can also constrain the region of interest containing the object’s boundary.
Typically, optimal segmentation can be efficiently recomputed if some regional
constraints (seeds) are added or removed. [12] discusses some non-regional topo-
logical constraints that potentially could be used in the graph cut algorithms for
object extraction. It is also possible to simultaneously segment multiple surfaces
topologically coupled to each other, e.g. when distance between them is constrained
to be in some interval [48]. This approach can be extended to elastic interaction
between coupled surfaces using results in [31].

Note that intelligent scissors [50] and live wire [21] use boundary-based hard
constraints where the user can indicate certain pixels where the segmentation
boundary should pass. In contrast, regional hard constraints used for graph cuts do
not have to be precisely positioned. Moving the seeds around the object of interest
(within some limits) does not normally change the segmentation results.

2 Related work on Markov Random Fields

In this sections we review relationship between graph cut methods for object
extraction and estimation of Markov Random Fields. Greig et al. [28] were
first to recognize that powerful max-flow/min-cut algorithms from combinatorial
optimization can be applied to problems in computer vision. In particular, they

4[37] is a notable exception.
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showed that graph cuts can be used for restoration of binary images.5 This problem
can be formulated as Maximum A Posterior estimation of a Markov Random Field
(MAP-MRF) that required minimization of posterior energy

E.I / D –�
X

p2P
In Pr

�
Ip jI �C

X

fp;qg2N
ıIp¤Iq (1.1)

where

ıIp ¤ Iq D
�
1 if Ip ¤ Iq
0 if Ip D Iq:

is a Kronecker delta representing interaction potential, I D fIp jp 2 Pg is an
unknown vector of original binary intensities Ip 2 f0, 1g of image pixels P , vector
I o represents observed binary intensities corrupted by noise, and N is a set of all
pairs of neighboring pixels.

Greig et al. [28] recognized that if Ip 2 f0, 1g for all P then posterior energy (1.1)
is a typical example of energy of binary variables from pseudo-boolean optimization
literature [29, 53]. In particular, [29, 53] show that minimization of such energies
can be done by combinatorial algorithms for optimal graph partitioning. They show
construction of a two terminal graph where the minimum cost cut divides the nodes
(variables) into two disjoint sets corresponding to the globally optimal labeling of
binary variables Ip.

Greig et al. [28] were first to compute globally optimal results for MAP-MRF
estimation on 2D images. Previously, energies like (1.1) were approached with
iterative sampling algorithms like simulated annealing. In fact, Greig et al. mainly
used their results to show that in practice simulated annealing reaches solutions very
far from the global minimum even in very simple binary image restoration examples.

Unfortunately, the graph cut approach to MAP-MRF estimation in [28] remained
unnoticed for almost 10 years mainly because binary image restoration looked
very limited as an application. In the late 90’s new computer vision techniques
appeared that showed how to use graph cut algorithms for more interesting non-
binary problems. [57] was the first to use graph cuts to compute multi-camera
stereo. Later, [31] showed that with the right edge weights on a graph similar
to [57] one can globally minimize a non-binary case of (1.1) with any convex
pairwise interaction terms, e.g. L1 or L2 metrics on the space of labels. Other
algorithms for convex or even more general class of (multi-label) submodular
interactions were also discovered. A different case of multi-label energies where
the interaction penalty (metric) is not-necessarily convex was studied in [13]. In
general, this is an NP-hard problem. The ˛-expansion algorithm proposed in [13]
finds provably good approximate solutions by iteratively running min-cut/max-flow

5A typed or hand-written letter is an example of a binary image. Restoration of such an image may
involve removal of a salt and pepper noise.
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algorithms on appropriate graphs. The general case of metric includes “truncated”
interaction potentials, also known as discontinuity preserving, which is practically
very important for solving image analysis problems, e.g. [3, 5]). Later, it was shown
that iterative ˛-expansion technique can be also used for non-metric interactions
[55, 43] while further weakening optimality guarantees.

One of the insights in [8, 7] was that the problem of segmenting an object
of interest from its background can be formulated as a binary image labeling
problem and that an energy similar to (1.1) can be useful for object extraction.
For example, binary image restoration energy (1.1) contains two terms representing
“regional” and “boundary” properties. Such a combination looks appropriate for
object segmentation. Moreover, this energy can be globally minimized in N-D
images/volumes using combinatorial graph cut algorithms as suggested in pseudo-
boolean optimization literature. [8, 7] showed how to integrate various basic cues
and constraints in order to extract objects of interest.

3 Optimal object segmentation via graph cuts

This section describe basic MRF object segmentation framework in more detail.
First, consider some terminology. A graph G D hV ; E i is defined as a set of nodes
or vertices V and a set of edges E connecting “neighboring” nodes. For simplicity,
we mainly concentrate on undirected graphs where each pair of connected nodes is
described by a single edge e D fp; qg 2 E 6. A simple 2D example of an undirected
graph that can be used for image segmentation is shown in Fig. 2(b).

The nodes of our graphs represent image pixels or voxels. There are also two
specially designated terminal nodes S (source) and T (sink) that represent “object”
and “background” labels. Typically, neighboring pixels are interconnected by edges
in a regular grid-like fashion. Edges between pixels are called n-links where n stands
for “neighbor”. Note that a neighborhood system can be arbitrary and may include
diagonal or any other kind of n-links. Another type of edges, called t-links, are used
to connect pixels to terminals. All graph edges e 2 E including n-links and t-links
are assigned some nonnegative weight (cost) we . In Fig. 2(b) edge costs are shown
by the thickness of edges.

An s-t cut is a subset of edges C � E such that the terminals S and T become
completely separated on the induced graph G .C / D hV ; E nC i. Note that a cut
(see Fig. 2(c)) divides the nodes between the terminals. As illustrated in Fig. 2
(c-d), any cut corresponds to some binary partitioning of an underlying image
into “object” and “background” segments. Note that in the simplistic example of
Fig. 2 the image is divided into one “object” and one “background” regions. In
general, cuts can generate binary segmentation with arbitrary topological properties.

6Each pair of connected nodes on a directed graph is linked by two distinct (directed) edges (p, q)
and (q, p). Directed edges can be useful in applications (see Sect. 3.3).
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Fig. 2 A simple 2D segmentation example for a 3 X 3 image. The seeds are O D fvg and B D
fpg. The cost of each edge is reflected by the edge’s thickness. The boundary term (1.4)
defines the costs of n-links while the regional term (1.3) defines the costs of t-links. Inexpensive
edges are attractive choices for the minimum cost cut. Hard constraints (seeds) (1.8,1.9) are
implemented via infinity cost t-links. A globally optimal segmentation satisfying hard constraints
can be computed efficiently in low-order polynomial time using max-flow /min-cut algorithms on
graphs [23, 26, 19]

Examples in Sect. 4 illustrate that object and background segments may consist of
several isolated connected blobs that also may have holes.

The goal is to compute the best cut that would give an “optimal” segmentation.
In combinatorial optimization the cost of a cut is defined as the sum of the costs of
edges that it severs

jC j D
X

e2C
we

Note that severed n-links are located at the segmentation boundary. Thus, their
total cost represents the cost of segmentation boundary. On the other hand, severed
t-links can represent the regional properties of segments. Thus, a minimum cost cut
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may correspond to a segmentation with a desirable balance of boundary and regional
properties. Section 3.1 formulates a precise segmentation energy function that can
be encoded via n-links and t-links. Note that infinity cost t-links can impose hard
constraints on segments.

Globally minimum s-t cut can be computed efficiently in low-order polynomial
time [23, 26, 10]. The corresponding algorithms work on any graphs. Therefore,
graph cut segmentation method is not restricted to 2D images and computes globally
optimal segmentation on volumes of any dimensions. Section 4 shows a number of
3D examples.

3.1 Segmentation energy

Consider an arbitrary set of data elements (pixels or voxels) P and some neighbor-
hood system represented by a set N of all (unordered) pairs fp, qg of neighboring
elements in P . For example, P can contain pixels (or voxels) in a 2D (or 3D)
grid and N can contain all unordered pairs of neighboring pixels (voxels) under
a standard 8 (or 26-) neighborhood system. Let A D .A1; : : : ; Ap; : : : ; AjPj/ be a
binary vector whose components Ap specify assignments to pixels p in P . Each Ap

can be either “obj” or “bkg” (abbreviations of “object” and “background”). Vector A
defines a segmentation. Then, the soft constraints that we impose on boundary and
region properties of A are described by the cost function

E.A/ D � �R.A/C B.A/ (1.2)

where

R.A/ D
X

p2P

Rp
�
Ap
�

.regional term/ (1.3)

B.A/ D
X

fp;qg2N
Bp;q � ıAp¤Aq .boundary term/ (1.4)

and

ıAp¤Aq D
�
1 if Ap ¤ Aq
0 if Ap D Aq:

The coefficient � � 0 in (1.2) specifies a relative importance of the region
properties term R(A) versus the boundary properties term B(A). The regional term
R(A) assumes that the individual penalties for assigning pixel p to “object” and
“background”, correspondingly R p (“obj”) and R p (“bkg”), are given. For example,

http://dx.doi.org/10.1007/978-0-387-09749-7_3#Sec6
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Fig. 3 Synthetic Gestalt example. The optimal object segment (red area in (c)) finds a balance
between “region” and “boundary” terms in (1.2). The solution is computed using graph cuts. Some
ruggedness of the segmentation boundary is due to metrication artifacts that can be realized by
graph cuts in textureless regions. Such artifacts can be minimized [9]

R p(�) may reflect on how the intensity of pixel p fits into given intensity models (e.g.
histograms) of the object and background

Rp.“obj”/ D �ln Pr.Ip j“obj”/ (1.5)

Rp.“bkg”/ D �ln Pr.Ip j“bkg”/ (1.6)

This use of negative log-likelihoods is motivated by the MAP-MRF formulations
in [13, 28].

The term B(A) comprises the “boundary” properties of segmentation A. Coeffi-
cient Bp,q � 0 should be interpreted as a penalty for a discontinuity between p and q.
Normally, Bp,q is large when pixels p and q are similar (e.g. in their intensity) and
Bp,q is close to zero when the two are very different. The penalty B p,q can also
decrease as a function of distance between p and q. Costs Bp,q may be based on
local intensity gradient, Laplacian zero-crossing, gradient direction, geometric [9,
40] or other criteria. Often, it is sufficient to set the boundary penalties from a simple
function like

Bp;q / exp

 
�
�
Ip � Iq

�2

2�2

!
� 1

dist .p; q/
: (1.7)

This function penalizes a lot for discontinuities between pixels of similar intensities
when jIp � Iqj < � . However, if pixels are very different, jIp � Iqj > � , then the
penalty is small. Intuitively, this function corresponds to the distribution of noise
among neighboring pixels of an image. Thus, � can be estimated as “camera noise”.

A simple example of Fig. 3 illustrates some interesting properties of our cost
function (1.2). The object of interest is a cluster of black dots in Fig. 3(a) that we
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would like to segment as one blob. We combine boundary and region terms (1.3,1.4)
taking � � 0 in (1.2). The penalty for discontinuity in the boundary cost is

Bp;q D
�
1 if Ip ¤ Iq

0:2 if Ip D Iq:

To describe regional properties of segments we use a priori known intensity
histograms (Fig. 3(b)). Note that the background histogram concentrates exclusively
on bright values while the object allows dark intensities observed in the dots. If these
histograms are used in (1.5,1.6) then we get the following regional penalties Rp (Ap)
for pixels of different intensities.

Ip Rp (“obj”) Rp (“bkg”)

dark 2.3 C1
bright 0.1 0

The optimal segmentation in Fig. 3(c) finds a balance between the regional and
the boundary term of energy (1.2). Individually, bright pixels slightly prefer to stay
with the background (see table above). However, spatial coherence term (1.4) forces
some of them to agree with nearby dark dots which have a strong bias towards the
object label (see Table).

3.2 Hard constraints and initialization

In the simple example of Fig. 3 the regional properties of the object of interest
are distinct enough to segment it from the background. In real examples, however,
objects may not have sufficiently distinct regional properties. In such cases it
becomes necessary to further constraint the search space of possible solutions before
computing an optimal one.

Assume that O and B denote the subsets of pixels a priori known to be a part
of “object” and “background”, correspondingly. Naturally, the subsets O � P and
B � P are such that O \ B D Ø. For example, consider sets O (red pixels) and
B (blue pixels) in Fig. 4(b). Our goal is to compute the global minimum of (1.2)
among all segmentations A satisfying hard constraints

8p 2 O W Ap D “obj” (1.8)

8p 2 B W Ap D “bkg” (1.9)
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Fig. 4 Automatic segmentation of cardiac MR data. Initialization in (b) is based on hard
constraints that can be placed automatically using simple template matching. Then, graph cuts
accurately localize object boundaries in (c)

Figure 4(c) shows an example of an optimal segmentation satisfying the hard
constraints in (b). Throughout this paper we use red tint to display object segments
and blue tint for background.

Ability to incorporate hard constraints (1.8,1.9) is an interesting feature of graph
cut methods. There is a lot of flexibility in how these hard constraints can be used
to adjust the algorithm for different tasks. The hard constraints can be used to
initialize the algorithm and to edit the results. The hard constraints can be set either
automatically or manually depending on an application.

For example, consider example in Fig. 4(a). A simple template matching can
roughly localize the left ventricle in the image, e.g. using its known circular shape.
The hard constraints in Fig. 4(b) can be set automatically as soon as a rough position
of the blood pool is known. Then, our graph cut technique can accurately localize
the boundary of the blood pool in Fig. 4(c).

The band in Fig. 4 also restricts the area where the actual computation takes place.
It is enough to build a graph only in the area of the band since max-flow/min-cut
algorithms would not access any other nodes.

Note that it is possible to make a double use of the seeds. First of all, they can
constrain the search space as discussed above. In addition, we can use intensities
of pixels (voxels) marked as seeds to learn the histograms for “object” and
“background” intensity distributions: Pr(Ij“obj”) and Pr(Ij“bkg”) in (1.5,1.6). Other
ideas for initializing intensity distributions are studies in [4, 54].



Object Segmentation and Markov Random Fields 17

source

sink

cut

qp

s

t

directed graph image undir. result dir. result

a

b c d

Fig. 5 Segmentation via cuts on a directed graph. Compare the results on an undirected graph (c)
with the results on a directed graph in (d)

3.3 Using directed edges

For simplicity, we previously concentrated on the case of undirected graphs as in
Fig. 2. In fact, the majority of s-t cut algorithms from combinatorial optimization
work for directed graphs as well. Figure 5(a) gives one example of such a graph
where each pair of neighboring nodes is connected by two directed edges (p, q) and
(q, p) with distinct weights w(p,q) and w(q,p) . If a cut separates two neighboring nodes
p and q so that p is connected to the source while q is connected to the sink then the
cost of the cut includes w(p,q) while w(q,p) is ignored. Vise versa, if q is connected to
the source and p to the sink then the cost of the cut includes only w(q,p).

In certain cases one can take advantage of such directed costs to obtain more
accurate object boundaries. For example, compare two segmentations in Fig. 5(c,d)
obtained on a medical image in (b) using the same set of constraints. A relatively
bright object of interest on the right (liver) is separated from a small bright blob
on the left (bone) by a thin layer of a relatively dark muscle tissue. The contrast
between the bone and the muscle is much better then the contrast between the
muscle and the liver. Thus, according to (1.7) the standard “undirected” cost of
edges between the bone and the muscle is much cheaper than the cost of edges
between the muscle and the liver. Consequently, an optimal cut on an undirected
graph produces segmentation in Fig. 5(c) that sticks to the bone instead of following
the actual liver boundary.

Directed graphs can automatically distinguish between the incorrect boundary
in Fig. 5(c) and the desirable one in (d). The key observation is that the weights
of directed edges (p, q) can depend on a sign of intensity difference (Iq –Iq). In
contrast, weights of undirected edges should be symmetric with respect to its end
points and could depend only on the absolute value jIp�Iqj as in (1.7). Note that the
object boundary that stuck to the bone in (c) separates darker tissue (muscle) in the
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Fig. 6 Segmentation of bones in a CT volume [256x256x119]

object segment from brighter tissue (bone) in the background. On the other hand,
the correct object boundary in (d) goes from brighter tissue (liver) in the object to
darker tissue (muscle) in the background. Note that directed edge weights

w.p;q/ D
8
<

:

1 if Ip � Iq

exp

�
� .Ip�Iq/2

2�2

�
if Ip > Iq

would specifically encourage cuts from brighter tissue in the object to darker tissue
in the background. The results in Fig. 5(d) show optimal segmentation on a directed
graph using such edge weights.

4 Some examples

We demonstrate a few examples of original image data and segments gener ated by
graph cuts for a given set of hard constraints. User can enter hard constraints (seeds)
via mouse operated brush of red (for object) or blue (for background) color. We used
simple 4-neighborhood systems in 2D examples and 26-neighborhood system in 3D
examples. All running times are given for 1.4GHz Pentium III. Our implementation
is based on “max-flow” algorithm from [10].

Figures 6, and 7 show segmentation results that we obtained on a 3D medical
volumes. Each object was segmented in 10 to 30 seconds. In the examples of Fig. 6
and 7 the objects were extracted from 3D volumes after entering seeds in only one
slice shown in (a).
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Fig. 7 Segmentation of lung lobes in a CT volume [205x165x253]

Fig. 8 Kidney in a 3D MRI angio data [55x80x32] segmented into cortex, medulla, and collecting
system
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We did not use regional term (1.3) for the experiments in Figs. 6, and 7.
In some applications, however, the regional term may significantly simplify, if
not completely automate, the segmentation process. In Fig. 8 we demonstrate
segmentation on 3D kidney MR data that benefited from regional term (1.3).
We segmented out cortex, medulla, and collecting system of a kidney in three
consecutive steps. First, the whole kidney is separated from the background and
the latter is cropped. The remaining pixels belong to three distinct types of kidney
tissue (cortex, medulla, or collecting system) with identifiable regional properties.
At this point it becomes useful to engage the regional term (1.3) of energy.

The results in Fig. 8 are shown without seeds since the process involved three
different segmentations. Using regional bias allows to get 3D segmentation results
by entering only a few seeds in one slice. Initial optimal segments are computed
in 1-10 seconds and minor correction can be incor porated in less then a second.
This example also demonstrates unrestricted topological properties of our segments.
Fully automatic segmentation of kidney might be possible with more sophisticated
models for regional.
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Fuzzy methods in medical imaging

I. Bloch

Abstract Fuzzy sets theory is of great interest in medical image processing, for
dealing with imprecise information and knowledge. It provides a consistent mathe-
matical framework for knowledge representation, information modeling at different
levels, fusion of heterogeneous information, reasoning and decision making. In this
chapter, we provide an overview of the potential of this theory in medical imaging,
in particular for classification, segmentation and recognition of anatomical and
pathological structures.

1 Introduction

Imprecision is often inherent to images, and its causes can be found at several levels:
observed phenomenon (imprecise limits between structures or objects), acquisition
process (limited resolution, numerical reconstruction methods), image processing
steps (imprecision induced by a filtering for instance). Fuzzy sets have several
advantages for representing such imprecision. First, they are able to represent
several types of imprecision in images, as for instance imprecision in spatial location
of objects, or imprecision in membership of an object to a class. For instance,
partial volume effect, which occurs frequently in medical imaging, finds a consistent
representation in fuzzy sets (membership degrees of a voxel to tissues or classes
directly represent partial membership to the different tissues mixed up in this voxel,
leading to a consistent modeling with respect to reality). Second, image information
can be represented at different levels with fuzzy sets (local, regional, or global), as
well as under different forms (numerical, or symbolic). For instance, classification
based only on grey levels involves very local information (at the pixel level);
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introducing spatial coherence in the classification or relations between features
involves regional information; and introducing relations between objects or regions
for scene interpretation involves more global information and is related to the field
of spatial reasoning. Third, the fuzzy set framework allows for the representation
of very heterogeneous information, and is able to deal with information extracted
directly from the images, as well as with information derived from some external
knowledge, such as expert knowledge. This is exploited in particular in model-based
pattern recognition, where fuzzy information extracted from the images is compared
and matched to a model representing knowledge expressed in fuzzy terms.

Fuzzy set theory is of great interest to provide a consistent mathematical
framework for all these aspects. It allows representing imprecision of objects,
relations, knowledge and aims, at different levels of representation. It constitutes
an unified framework for representing and processing both numerical and symbolic
information, as well as structural information (constituted mainly by spatial rela-
tions in image processing). Therefore this theory can achieve tasks at several levels,
from low level (e.g. grey-level based classification) to high level (e.g. model based
structural recognition and scene interpretation). It provides a flexible framework for
information fusion as well as powerful tools for reasoning and decision making.

In this chapter, we provide an overview of the potential of this theory in medical
imaging, in particular for classification, segmentation and recognition of anatomical
and pathological structures. The chapter is organized according to the level of
information and processing. We assume that the basics of fuzzy sets theory are
known (details can be found e.g. in [30]).

2 Low-level processing

The use of fuzzy sets in medical imaging at low level concerns mainly classification,
often based on grey levels.

2.1 Representation

We denote by S the spatial domain (Rn in the continuous case or Zn in the discrete
case). Fuzzy sets can be considered from two points of view. In the first one, a
membership function is a function � from the space S on which the image is
defined into Œ0; 1�. The value �.x/ is the membership degree of x (x 2 S ) to
a spatial fuzzy object. In the second one, a membership function is defined as
a function �0 from a space of attributes A into Œ0; 1�. At numerical level, such
attributes are typically the grey levels. The value �0.g/ represents the degree to
which a grey level g supports the membership to an object or a class. There is an
obvious relation between� and�0 in grey level based processing:�.x/ D �0Œg.x/�,
where g.x/ denotes the grey level of x in the considered image.
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Fig. 1 MR image of the brain (left) (courtesy Prof. C. Adamsbaum, Saint-Vincent de Paul
Hospital, Paris), and estimation of the partial membership to the pathology (right) in the
pathological area (white means that there is only pathological tissue in the considering voxel,
black means no pathological tissue, and intermediate values represent the partial volume effect,
i.e. voxels that have also a non zero membership value to the white matter class)

Such models explicitly represent imprecision in the information provided by the
images, as well as possible ambiguity between classes. For instance the problem
of partial volume effect finds a consistent representation in this model. A pixel or
voxel suffering from partial volume effect is characterized by its partial belonging
to two (or more) different tissues or classes, i.e. by non zero membership values
to several classes. Figure 1 shows an example of an MR image of the brain of a
patient suffering from adrenoleukodystrophy, and where the slice thickness induces
a high partial volume effect. The grey levels on the right figure represent the
membership values to the pathology. The pathology is then considered as a fuzzy
object, represented by a membership function defined on the spatial domain.

More generally, a spatial fuzzy object may represent different types of impreci-
sion, either on the boundary of the objects (due for instance to partial volume effect,
or to the spatial resolution), or on the individual variability of these structures, etc.

There is no definite answer to the question of how defining the membership
functions. As mentioned above, they can be directly derived from the grey levels,
but other characteristics can be used as well. For instance the contours of an object
can be defined as a fuzzy set with a membership function depending on the gradient
intensity. Based on a detection operator of some specific objects, the membership
functions can be derived from the magnitude of the answer provided by this operator.
Imprecision can also be introduced from a first crisp estimation of the objects,
typically at their boundary as a function of the distance to the crisp object, to
account for imprecision in this estimation. Finally, several approaches rely on fuzzy
classification methods to derive membership functions.
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class 1 class 2

m2m1

Fig. 2 Membership values in
a fuzzy C-means
classification as a function of
x in the case of 2 classes,
with centroids in positions
x D 1 and x D 2. In this
example m D 2

2.2 Fuzzy classification

Learning of membership functions is a difficult task that still does not have a definite
answer. Several methods have been proposed in the literature, often based on the
minimization of some criteria. Among these methods, the most used is the fuzzy
C-means algorithm (FCM) [5]. The idea is to define a membership function of a
point to each class (which is then a fuzzy set), instead of deriving crisp assignments.

The FCM algorithm iteratively modifies a fuzzy partition so as to minimize an
objective function defined as: Jm D PC

jD1
PN

i �
m
ij jjxi �mj jj2, under the constraint

that 8i;PC
jD1 �ij D 1, where C denotes the number of class, N the number

of points to be classified, �ij the membership function of point i to class j , and
m is a parameter belonging to �1;C1Œ called fuzzy factor, which controls the
amount of “fuzziness” of the classification. The membership function is deduced
from the cluster center position as: �ij D 1

PC
jD1Œ

jjxi�mi jj

jjxi�mj jj/
�

2
m�1

, and the cluster center

position is obtained by: mj D
P
i �

m
ij xiP

i �
m
ij

. From an initialization of cluster centers,

the membership values and cluster centers are alternatively updated using these
two equations, until convergence. Convergence towards a local minimum of the
objective function has been proved. An example is provided in Fig. 2, in the case
of a 1-dimensional 2-class problem. It also illustrates one of the main drawbacks
of this approach: the membership functions are not decreasing with respect to the
distance to the cluster center. This is due to the normalization constraint, and this
phenomenon gets even worse with more classes.
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An alternative solution to fuzzy C-means classification, which avoids the
normalization drawbacks, is given by possibilistic C-means (PCM) [40]. The
objective functional is defined as: J D PC

jD1
PN

iD1 �mij :jjxi � mj jj2 C PC
jD1 �jPN

iD1.1 � �ij /
m:jjxi � mj jj2 and the obtained membership function is:

�ij D 1

1C jjxi�mj jj2

�j

1
m�1

. Now the membership functions are decreasing with respect

to the distance to the class centers. However this algorithm is very sensitive to
initialization and sometimes coincident clusters may occur.

To address the problems of FCM and PCM a new fuzzy possibilistic C-mean
(FPCM) algorithm was proposed in [49] by combining these two algorithms. The
objective function involves both membership and typicality. FPCM solves the noise
sensitivity defect of FCM and overcomes the problem of coincident clusters of
PCM. Although FPCM is less prone to the problems of FCM and PCM, in the
case of a large data set this algorithm does not work properly since the typicality
values are very small in such cases, again due to a normalization constraint. This
constraint has been suppressed in possibilistic fuzzy c-mean (PFCM) [50]. Recently,
approaches have been proposed by modifying the objective function to increase the
robustness of FCM to noise [1,33,44,45,59,64]. They also try to incorporate spatial
information, by defining membership functions that depend on a local neighborhood
around each point.

Another class of methods relies on probability-possibility transformations [29,
31,39]. Other methods based on statistical information have been proposed, also by
minimizing some criteria (e.g. [23, 25]). However, most criteria provide a function
that depends on the shape of the histogram. Accounting for frequent situations
where a pixel may belong completely and without any ambiguity to a class while
having a grey-level with low occurrence frequency thus becomes difficult.

In [13] an original approach was proposed to obtain membership values from
grey-level histogram. Two types of criteria are used simultaneously. The first type is
based on a “resemblance” between the grey-level histogram and the membership
function in the form of a distance between the two distributions. This type is
very close to existing methods. The second type accounts for prior information
on the expected shape of the membership function, in order to deal with problems
mentioned above concerning low occurrence frequencies. This calls for a parametric
representation of the functions. The combination of these two types of criteria leads
to a simpler interpretation of the obtained functions that fits better the intuitive
notion of membership. Membership functions are chosen as simple trapezoidal
functions, whose parameters are estimated (simultaneously for all class membership
functions) using simulated annealing in order to optimize the two criteria. The
results obtained on a MR brain image are illustrated in Fig. 3. This method has
been applied successfully to several problems like multi-image classification or
segmentation of internal brain structures.

Finally, other types of classification methods, such as k-nearest neighbors, have
also been extended to the fuzzy case.
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mu1

mu2

mu3histogram

Fig. 3 MR image of the brain, showing three main classes: brain, ventricles and pathology (the
white area on the left image), and result of the estimation of the three classes

Despite their drawbacks, these methods are quite widely used, mostly as an
initialization for further more sophisticated processing. For instance, an adaptive
C-means algorithm was used in [69] in order to take the partial volume effect into
account in a deformable model approach. An original fuzzy classification method
taking spatial context into account was also used as the initialization of a deformable
model in [38] for segmenting brain tumors of different types, shapes and locations
in 3D MRI. Some results are shown in Sect. 6.

2.3 Local operations for filtering or edge detection

In this section, we summarize the main techniques for local filtering in a broad sense,
aiming at enhancing the contrast of an image, at suppressing noise, at extracting
contours, etc. Note that these aims are different and often contradicting each other.
However, the principles of the techniques are similar, and they can be grouped into
two classes: techniques based on functional optimization on the one hand, and rule
based techniques on the other hand. These aspects have been largely developed in
the literature (see e.g. [2, 6, 42, 67]), and we provide here just the main lines.

Functional approaches consist in minimizing or maximizing a functional, which
can be interpreted as an analytical representation of some objective. For instance,
enhancing the contrast of an image according to this technique amounts to reduce
the fuzziness of the image. This can be performed by a simple modification of
membership functions (for instance using intensification operators), by minimizing
a fuzziness index such as entropy, or even by determining an optimal threshold value
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(for instance optimal in the sense of minimizing a fuzziness index) which provides
an extreme enhancement (until binarization) [51, 52].

Other methods consist in modifying classical filters (median filter for instance)
by incorporating fuzzy weighting functions [43].

Rule based techniques rely on ideal models (of filters, contours, etc.). These
ideal cases being rare, variations and differences with respect to these models are
permitted through fuzzy representations of the models, as fuzzy rules. For instance,
a smoothing operator can be expressed by [62, 63]:

IF a pixel is darker than its neighbors
THEN increase its grey level
ELSE IF the pixel is lighter than its neighbors
THEN decrease its grey level
OTHERWISE keep it unchanged

In this representation, the emphasized terms are defined by fuzzy sets or fuzzy oper-
ations. Typically, the grey level characteristics are defined by linguistic variables,
the semantics of which are provided by fuzzy sets on the grey level interval. Actions
are fuzzy functions applied on grey levels and on pixels. The implementation of
these fuzzy rules follows the general principles of fuzzy logic [30].

More complex rules can be found, for instance in [41, 56], where a contour
detector is expressed by a set of rules involving the gradient, the symmetry and
the stiffness of the contour. Fuzzy rule based systems have also been proposed for
contour linking, based on proximity and alignment criteria.

Note that rules are sometimes but a different representation of functional
approaches. Their main advantage is that they are easy to design (in particular for
adaptive operators) and to interpret, and they facilitate the communication with the
user.

3 Intermediate level

Several operations have been defined in the literature on fuzzy objects, in particular
spatial fuzzy objects, since the early works of Zadeh [71] on set operations, and of
Rosenfeld on geometrical operations [60].

Typical examples of geometrical operations are area and perimeter of a fuzzy
object. They can be defined as crisp numbers, where the computation involves each
point up to its degree of membership. But since objects are not well defined, it can
also be convenient to consider that measures performed on them are imprecise too.
This point of view leads to definitions as fuzzy numbers [30].

Such geometrical measures can typically be used in shape recognition, where
geometrical attributes of the objects are taken into account.

As an example, fuzzy measures have been used in [58] for detecting masses in
digital breast tomosynthesis. The measures are performed on detected fuzzy regions,
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Fig. 4 Fuzzy particle (black
lines represent the contours of
the ˛-cuts of the fuzzy object)
extracted from a digital
mammography. Computing
fuzzy attributes on this fuzzy
object leads to a decision
concerning this region.
(From [57])

that are considered as candidate particles (Fig. 4). A decision concerning their
recognition is performed by combining fuzzy attributes. Fuzzy decision trees can
be used to this aim [20, 53].

It has been shown in [65, 66] that using fuzzy representations of digital objects
allow deriving more robust measures than using crisp representations, and in
particular dealing properly with the imprecision induced by the digitization process.

Such measures can also be used as descriptors for indexation and data mining
applications.

Let us now consider topological features and the example of fuzzy connectivity.
The degree of connectivity between two points x and y in a fuzzy object � in a
finite discrete space is defined as [60]: c�.x; y/ D maxLxy minti2Lxy �.ti /, where
Lxy is any path from x to y. This definition was exploited in fuzzy connectedness
notions [68], now widely used in medical image segmentation and incorporated in
freely available softwares such as ITK1.

Morphological operations have also been defined on fuzzy objects (see e.g. [17]).
We give here general definitions, for fuzzy erosion and dilation, from which several
other morphological operations can be derived:

8x 2 S ; E�.�/.x/ D inf
y2S T Œc.�.y � x//; �.y/�; (1)

8x 2 S ; D�.�/.x/ D sup
y2S

t Œ�.x � y/; �.y/�: (2)

In these equations, � denotes the fuzzy set to be dilated or eroded, � the fuzzy
structuring element, t a conorm (fuzzy intersection), T the t-conorm (fuzzy union)
associated to t with respect to the complementation c.

1http://www.itk.org/

http://www.itk.org/
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Fig. 5 Fuzzy median sets
between the 18 instances of
the IBSR database for four
internal brain structures
(thalamus and putamen in
both hemispheres)

Such fuzzy morphological operations have been used in medical imaging for
instance for taking into account the spatial imprecision on the location of vessel
walls for 3D reconstruction of blood vessels by fusing angiographic and ultrasonic
acquisitions [19]. They also constitute a good formal framework for defining fuzzy
spatial relations, as will be seen in Sect. 4. Another application of fuzzy morphology
is for defining median fuzzy sets and series of interpolating fuzzy sets [12], which
can typically be used for representing variability based on several instances of an
anatomical structures or for atlas construction. An example is illustrated in Fig. 5.

Some approaches using fuzzy rules can also be found at intermediate level. Let us
just mention two examples. The first one [28] deals with the segmentation of osseous
surface in ultrasound images. It uses fuzzy representations of image intensity and
gradient, as well as their fusion, in rules that mimic the reasoning process of a
medical expert and that include knowledge about the physics of ultrasound imaging.
This approach was successfully tested on a large image data set.

The second example is completely different and fuzzy rules are used in [24] to
tune the parameters of a deformable model for segmenting internal structures of
the brain. This approach elegantly solves the difficult problem of parameter tuning
in such segmentation methods, and proved to provide very good results on normal
cases.

4 Higher level

The main information contained in the images consists of properties of the objects
and of relations between objects, both being used for pattern recognition and
scene interpretation purposes. Relations between objects are particularly important
since they carry structural information about the scene, by specifying the spatial
arrangements between objects. These relations highly support structural recognition
based on models. This models can be of iconic type, as an anatomical atlas, or
of symbolic type, as linguistic descriptions or ontologies. Although the use of
iconic representations for normal structure recognition is well acknowledged, they
remain difficult to exploit in pathological cases. Anatomical knowledge is also
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available in textbooks or dedicated web sites, and is expressed mainly in linguistic
form. These models involve concepts that correspond to anatomical objects, their
characteristics, or the spatial relations between them. Human experts use intensively
such concepts and knowledge to recognize visually anatomical structures in images.
This motivates their use in computer aided image interpretation. Some attempts to
formalize this knowledge has been recently performed, in particular in the form of
ontologies (e.g. the Foundational Model of Anatomy [61]).

In our work, we concentrate mainly on spatial relations, which are strongly
involved in linguistic descriptions. They constitute a very important information
to guide the recognition of structures embedded in a complex environment, and
are more stable and less prone to variability (even in pathological cases) than
object characteristics such as shape or size. We proposed mathematical models
of several spatial relations (adjacency, distances, directional relations, symmetry,
between...) [8, 9, 10, 15, 18, 27], in the framework of fuzzy sets theory, which
proved useful to recognize thoracic and brain structures [14, 16, 26]. These fuzzy
representations can enrich anatomical ontologies and contribute to fill the semantic
gap between symbolic concepts, as expressed in the ontology, and visual percepts, as
extracted from the images. These ideas were used in particular in our segmentation
and recognition methods [3, 36]: a concept of the ontology is used for guiding the
recognition by expressing its semantics as a fuzzy set, for instance in the image
domain or in an attribute domain, which can therefore be directly linked to image
information.

The methods we develop in our group for segmentation and recognition of 3D
structures in medical images can be seen as spatial reasoning processes. Two main
components of this domain are spatial knowledge representation and reasoning. In
particular spatial relations constitute an important part of the knowledge we have
to handle, as explained before. Imprecision is often attached to spatial reasoning in
images, and can occur at different levels, from knowledge to the type of question we
want to answer. The reasoning component includes fusion of heterogeneous spatial
knowledge, decision making, inference, recognition. Two types of questions are
raised when dealing with spatial relations:

1. given two objects (possibly fuzzy), assess the degree to which a relation is
satisfied;

2. given one reference object, define the area of space in which a relation to this
reference is satisfied (to some degree).

In order to answer these questions and address both representation and reasoning
issues, we rely on three different frameworks and their combination: (i) mathemat-
ical morphology, which is an algebraic theory that has extensions to fuzzy sets and
to logical formulas, and can elegantly unify the representation of several types of
relations; (ii) fuzzy set theory, which has powerful features to represent imprecision
at different levels, to combine heterogeneous information and to make decisions;
(iii) formal logics and the attached reasoning and inference power. The association
of these three frameworks for spatial reasoning is an original contribution of our
work [11].
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Fig. 6 Fuzzy region between the lungs, segmentation of the lungs and the heart on an axial slice
and a coronal one

An example of using the second type of question was used for segmenting the
heart in low resolution CT images [46], relying on the anatomical knowledge “the
heart is between the lungs”. The translation of this knowledge uses an original
definition of the concept “between” [15], that defines a fuzzy region of interest in
which the heart can then be segmented using a deformable model integrating the
spatial relation contraints, as in [26]. An example is shown in Fig. 6.

Further examples in brain imaging will be illustrated in Sect. 6.

5 Fusion

As seen in the previous sections, a lot of approaches, whatever their level, involve
fusion steps.

Information fusion becomes increasingly important in medical imaging due to
the multiplication of imaging techniques. The information to be combined can be
issued from several images (like multi-echo MR images for instance), or from one
image only, using for instance combination of several relations between objects or
several features of the objects, or from images and a model, like an anatomical atlas,
or knowledge expressed in linguistic form or as ontologies.

The advantages of fuzzy sets and possibilities rely in the variety of combination
operators, offering a lot of flexibility in their choice, and which may deal with
heterogeneous information [32, 70]. We proposed a classification of these operators
with respect to their behavior (in terms of conjunctive, disjunctive, compromise
[32]), the possible control of this behavior, their properties and their decisiveness,
which proved to be useful for several applications in image processing [7]. It is
of particular interest to note that, unlike other data fusion theories (like Bayesian or
Dempster-Shafer combination), fuzzy sets provide a great flexibility in the choice of
the operator, that can be adapted to any situation at hand. Indeed, image fusion has
often to deal with situations where an image is reliable only for some classes, or does
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Fig. 7 Dual echo MR image of the brain, showing three main classes: brain, ventricles and
pathology (the white area on the middle image). Right: final decision after fuzzy combination
(note that the decision is taken at each pixel individually, without spatial regularization)

not provide any information about some class, or is not able to discriminate between
two classes while another does. In this context, some operators are particularly
powerful, like operators that behave differently depending on whether the values
to be combined are of the same order of magnitude or not, whether they are small or
high, and operators that depend on some global knowledge about source reliability
about classes, or conflict between images (global or related to one particular class).
The combination process can be done at several levels of information representation,
from pixel level to higher level. A noticeable advantage of this approach is that it is
able to combine heterogeneous information, like it is usually the case in multi-image
fusion.

At a numerical level, the typical application is multi-source classification. We
show an example of image fusion problem in brain imaging, where we combine
dual-echo brain MR images in order to provide a classification of the brain into
three classes: brain, ventricles and CSF, and pathology. These images are shown
in Fig. 7. The membership functions for these classes have been estimated in a
completely unsupervised way on both images, as described before. We then use
these membership functions in a fuzzy fusion scheme [13]. Since both images
provide similar information about the ventricles, we use a mean operator to
combine the membership functions obtained in both images for this class. Brain
and pathology cannot be distinguished in the first echo and we obtain only one class
for this image, denoted by �1c . In the second image, we obtain two classes denoted
by �2c and �2path respectively. We combine �1c and �2c using an arithmetical mean

again. As for the pathology, we combine �1c and �2path using a symmetrical sum

defined as: ab
1�a�bC2ab . This guarantees that no pathology is detected in the areas

where �2path D 0, and this reinforces the membership to that class otherwise, in
order to include the partial volume effect areas in the pathology (this corresponds to
what radiologists do). After the combination, the decision is made according to the
maximum of membership values. The result is shown in Fig. 7 (right).
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At a structural level, the operations defined on fuzzy objects as well as the
relations between fuzzy objects can serve as a basis for structural recognition. An
example will be provided in the next section.

A noticeable advantage of fuzzy fusion is that it is able to combine heterogeneous
information, like is the case when dealing with higher level approaches, where
several types of knowledge and information with different semantics have to be
combined, and to avoid to define a more or less arbitrary and questionable metric
between pieces of information.

Let us give a few examples. If we have different constraints about an object (for
instance concerning the relations it should have with respect to another object)
which have all to be satisfied, these constraints can be combined using a t-norm
(a conjunction). If one object has to satisfy one relation or another one then a
disjunction represented by a t-conorm has to be used. This occurs for instance
when two symmetrical structures with respect to the reference object can be
found (this situation often occurs in medical imaging). Mean operators can be
used to combine several estimations and try to find a compromise between them.
Associative symmetrical sums can be used for reinforcing the dynamics between
high and low membership degrees. Importance of a constraint or reliabilities can be
easily introduced in adaptive operators, and so on.

6 An application to the recognition of brain structures based
on anatomical knowledge representation

Let us now illustrate how fuzzy spatial relations can be used for recognizing struc-
tures in a scene based on a model. The chosen example concerns the recognition of
internal brain structures (ventricular system and grey nuclei) in 3D MRI. Two types
of approaches have been developed, that correspond to the two types of questions
raised in Sect. 4.

6.1 Global approach

In the first approach, which relies on the first type of question, spatial relations
evaluated between spatial entities (typically objects or regions) are considered as
attributes in a graph. The model is a graph derived from an anatomical atlas.
Each node represents an anatomical structure, and edges represent spatial relations
between these structures. A data graph is constructed from the MRI image where
recognition has to be performed. Each node represents a region obtained from a
segmentation method. Since it is difficult to segment directly the objects, usually
the graph is based on an over-segmentation of the image, for instance based on
watersheds. Attributes are computed as for the model. The use of fuzzy relations is
particularly useful in order to be less sensitive to the segmentation step.
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Fig. 8 Two regions of a 3D
MR image, selected from an
over-segmentation of the
image as the ones having the
best matching degree to the
caudate nucleus in the atlas
(only one slice is shown)

One important problem to be solved then is graph matching. Because of the
schematic aspect of the model and the difficulty to segment the image into mean-
ingful entities, no isomorphism can be expected between both graphs. In particular,
several regions of the image can be assigned to the same node of the model graph.
Such problems call for inexact graph matching. In general, it consists in finding a
morphism, which furthermore optimizes an objective function based on similarities
between attributes. Here the fusion applies not directly on the relations but on the
similarities between them (see Sect. 5). A weighted mean operator allows us to
give more importance to the edges, which show less variability between subjects
and therefore constitute stronger anchors for guiding recognition. The morphism
aims at preserving the graph structure, while the objective function privileges
the association between nodes, respectively between edges, with similar attribute
values. This approach can benefit from the huge literature on fuzzy comparison
tools (see e.g. [21]) and from recent developments on fuzzy morphisms [54]. The
optimization is not an easy task since the problem is NP-hard. Genetic algorithms,
estimation of distribution algorithms and tree search methods have been developed
towards this aim [4, 22, 55]. An example of recognition of the caudate nucleus is
shown in Fig. 8.

Another approach consists in representing all knowledge on spatial relations
between structures in a graph and expressing the joint segmentation and recognition
problem as a constraint satisfaction problem [47, 48]. Propagators are defined for
each spatial relation, and applied sequentially in order to progressively reduce the
domain of each anatomical structure.

6.2 Sequential approach

In the second type of approach, relying on the second type of question, we use
spatial representations of spatial knowledge [16, 26]. It consists in first recognizing
simple structures (typically brain and lateral ventricles), and then progressively
more and more difficult structures, based on relations between these structures and
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previously recognized ones. The order in which structures can be recognized can be
provided by the user, or estimated as suggested in [34,35]. Each relation describing
the structure to be recognized is translated into a spatial fuzzy set representing
the area satisfying this relation, to some degree. The fuzzy sets representing all
relations involved in the recognition process are combined using a numerical fusion
operator. While we first used an atlas in [16], this constraint has been relaxed in our
recent work [26,35]. This presents two main advantages: the high computation time
associated with the computation of a deformation field between the atlas and the
image is left aside and the procedure is potentially more robust because it uses only
knowledge expressed in symbolic form, which is generic instead of being built from
a single individual as in the iconic atlas.

Finally, a refinement stage is introduced using a deformable model. This stage
uses an initial classification (using a low level approach based on grey levels) as a
starting point and has the potential to correct possible imperfections of the previous
stage together with regularizing the contours of structures. This deformable model
makes use of a fusion of heterogeneous knowledge: edge information derived from
the image, regularization constraints and spatial relations contained in the linguistic
description. All pieces of information are combined in the energy of a parametric
deformable model. For instance the caudate nucleus can be recognized based on
its grey level (roughly known depending on the type of acquisition), and, more
importantly, on its relations to the lateral ventricles (exterior and close to them).
Here, the primary role of spatial relations is to prevent the deformable model from
progressing beyond the limit of structures with weak boundaries.

Figure 9 shows 3D views of some cerebral objects recognized in an MR image
with our method. In particular, the importance of spatial relations is illustrated in
the case of the caudate nucleus. The lower part of this structure has a very weakly
defined boundary and the use of a spatial relation is essential to achieve a good
segmentation.

One of the advantages of this approach is that it can be extended to pathological
cases, since spatial relations remain quite stable in the presence of pathologies,
unlike shapes and absolute locations. Moreover, it is possible to learn the parameters
of the relations, and their stability according to the type of pathology [3, 37]. Two
examples of segmentation and recognition results in pathological cases are shown in
Fig. 10, based on a segmentation of the tumor (based on fuzzy classification) [38].

7 Conclusion

In this chapter, several examples illustrating the potential of fuzzy methods for
medical imaging have been described. While low level methods are still the most
widely used, recently several higher level approaches were developed, based on
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Fig. 9 Segmentation and
recognition results obtained
for the lateral ventricles, third
ventricle, caudate nuclei and
thalami by integrating spatial
relations in 3D deformable
models. Illustration of the
importance of spatial
relations in the deformable
model: in the case of caudate
nucleus, the force derived
from spatial relations
prevents the model to grow
below the lower limit of the
structure (left: result obtained
without this force, right: with
this force)

caudate nucleus (3)

tumor (1)

lateral ventricles (2)

putamen (3)

tumor (1)

thalamus (2)

Fig. 10 Examples of segmentation and recognition in pathological cases

a rigorous and powerful mathematical basis. The association of a mathematical
framework for modeling imprecision at different levels and of artificial intelligence
methods for representing concepts and knowledge and for reasoning on them seems
to be a very interesting current trend, where promising results are expected in a near
future.
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Curve Propagation, Level Set Methods
and Grouping

N. Paragios

Abstract Image segmentation and object extraction are among the most
well addressed topics in computational vision. In this chapter we present a
comprehensive tutorial of level sets towards a flexible frame partition paradigm that
could integrate edge-drive, regional-based and prior knowledge to object extraction.
The central idea behind such an approach is to perform image partition through the
propagation planar curves/surfaces. To this end, an objective function that aims to
account for the expected visual properties of the object, impose certain smoothness
constraints and encode prior knowledge on the geometric form of the object to be
recovered is presented. Promising experimental results demonstrate the potential of
such a method.

1 Introduction

Image segmentation has been a long term research initiative in computational vision.
Extraction of prominent edges [14] and discontinuities between in-homogeneous
image regions was the first attempt to address segmentation. Statistical methods
that aim to separate regions according to their visual characteristics was an attempt
to better address the problem [11], while the snake/active contour model [16] was a
breakthrough in the the domain.

Objects are represented using parametric curves and segmentation is obtained
through the deformation of such a curve towards the lowest potential of an objective
function. Data-driven as well as internal smoothness terms were the components of
such a function. Such a model refers to certain limitations like, the initial conditions,
the parameterisation of the curve, the ability to cope with structures with multiple
components, and the estimation of curve geometric properties.
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Balloon models [8] where a first attempt to make the snake independent with
respect to the initial conditions, while the use of regional terms forcing visual
homogeneity [45] was a step further towards this direction. Prior knowledge was
also introduced at some later point [37] through a learning stage of the snake
coefficients. Geometric alternatives to snakes [3] like the geodesic active contour
model [4] were an attempt to eliminate the parameterisation issue.

Curves are represented in an implicit manner through the level set method [24].
Such an approach can handle changes of topology and provide sufficient support to
the estimation of the interface geometric properties. Furthermore, the use of such
a space as an optimisation framework [44], and the integration of visual cues of
different nature [25] made these approaches quite attractive to numerous domains
[23]. One can also point recent successful attempts to introduce prior knowledge
[19, 32] within the level set framework leading to efficient object extraction and
tracking methods [33].

To conclude, curve propagation is an established technique to perform object
extraction and image segmentation. Level set methods refer to a geometric
alternative of curve propagation and have proven to be a quite efficient optimisation
space to address numerous problems of computational vision. In this chapter, first
we present the notion of curve optimisation in computer vision, then establishes
a connection with the level set method and conclude with the introduction of
ways to perform segmentation using edge-driven, statistical clustering and prior
knowledge terms.

2 On the Propagation of Curves

Let us consider a planar curve � : [0, 1] ! R � R defined at a plane 	. The most
general form of the snake model consists of:

E.�/ D
1

s
0

.˛Eint .�.p//C ˇEimg.I .�.p///C 
Eext .�.p///dp (1)

where I is the input image, Eint [Dw1j� 0j C w2j� 00j] imposes smoothness con-
straints (smooth derivatives), Eimg [D � jrI j] makes the curve to be attracted
from the image features (strong edges), Eext encodes either user interaction or prior
knowledge and ˛, ˇ, 
 are coefficients that balance the importance of these terms.

The calculus of variations can be used to optimise such a cost function. To this
end, a certain number of control points are selected along the curve, and the their
positions are updated according to the partial differential equation that is recovered
through the derivation of E(�) at a given control point of � . In the most general case
a flow of the following nature is recovered:

�.pI �/ D .˛Fgm.�/C ˇFimg.I /C 
Fpr.�//N„ ƒ‚ …
F

(2)
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Fig. 1 Level set method and
tracking moving interfaces;
the construction of the
(implicit) � function [figure is
courtesy of S. Osher]

where N is the inward normal and Fgm depends on the spatial derivatives of the
curve, the curvature, etc. On the other hand, Fimg is the force that connects the
propagation with the image domain and Fpr(�) is a speed term that compares the
evolving curve with a prior and enforces similarity with such a prior. The tangential
component of this flow has been omitted since it affects the internal position of the
control points and doesn’t change the form of the curve itself.

Such an approach refers to numerous limitations. The number and the sampling
rule used to determined the position of the control points can affect the final
segmentation result. The estimation of the internal geometric properties of the
curve is also problematic and depends on the sampling rule. Control points move
according to different speed functions and therefore a frequent re-parameterisation
of the contour is required. Last, but no least the evolving contour cannot change the
topology and one cannot have objects that consist of multiple components that are
not connected.

2.1 Level Set Method

The level set method was first introduced in [10] and re-invented in [24] to
track moving interfaces in the community of fluid dynamics and then emerged in
computer vision [3, 21]. The central idea behind these methods is to represent the
(closed) evolving curve � with an implicit function � that has been constructed as
follows:

�.s/ D
8
<

:

0; s 2 �
� –; s 2 �in
C –; s 2 �out

where epsilon is a positive constant, � in the area inside the curve and �out the area
outside the curve as shown in [Fig. (1)]. Given the partial differential equation that
dictates the deformation of � one now can derive the one for � using the chain rule
according to the following manner:
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Fig. 2 Demonstration of curve propagation with the level set method; handling of topological
changes is clearly illustrated through various initialization configurations (a,b,c)

@

@�
� .� .pI �// D � .� .pI �//

@�

@� .pI �/
�

@�„ ƒ‚ …
FN

C @�

@�
D F .r� � N /C �� D 0 (3)

Let us consider the arc-length parameterisation of the curve �(c). The values of
� along the curve are 0 and therefore taking the derivative of � along the curve �
will lead to the following conditions:

@� .�.c//

@c
D 0 ! @�

@�
.�.c// � @�

@c
D 0 ! r�.c/ � T .c/ D 0 (4)
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where T (c) is the tangential vector to the contour. Therefore one can conclude that
r� is orthogonal to the contour and can be used (upon normalisation) to replace the

inward normal
h
N D � r�

jr�j
i

leading to the following condition on the deformation

of �:

�F j�j C �� D 0 ! �� D F j�j (5)

Such a flow establishes a connection between the family of curves � that have
been propagated according to the original flow and the ones recovered through the
propagation of the implicit function �. The resulting flow is parameter free, intrinsic,
implicit and can change the topology of the evolving curve under certain smoothness
assumptions on the speed function F. Last, but not least, the geometric properties of
the curve like its normal and the curvature can also be determined from the level set
function [24]. One can see a demonstration of such a flow in [Fig. (2)].

In practice, given a flow and an initial curve the level set function is constructed
and updated according to the corresponding motion equation in all pixels of the
image domain. In order to recover the actual position of the curve, the marching
cubes algorithm [20] can be used that is seeking for zero-crossings. One should pay
attention on the numerical implementation of such a method, in particular on the
estimation of the first and second order derivatives of �, where the ENO schema
[24] is the one to be considered. One can refer to [36] for a comprehensive survey
of the numerical approximation techniques.

In order to decrease computational complexity that is inherited through the
deformation of the level set function in the image domain, the narrow band
algorithm [7] was proposed. The central idea is update the level set function only
within the evolving vicinity of the actual position of the curve. The fast marching
algorithm [35, 40] is an alternative technique that can be used to evolve curves
in one direction with known speed function. One can refer to earlier contribution
in this book [Chap. 7] for a comprehensive presentation of this algorithm and its
applications. Last, but not least semi-implicit formulations of the flow that guides
the evolution of � were proposed [12, 42] namely the additive operator splitting.
Such an approach refers to a stable and fast evolution using a notable time step
under certain conditions.

2.2 Optimisation and Level Set Methods

The implementation of curve propagation flows was the first attempt to use the level
set method in computer vision. Geometric flows or flows recovered through the
optimisation of snake-driven objective functions were considered in their implicit
nature. Despite the numerous advantages of the level set variant of these flows,
their added value can be seen as a better numerical implementation tool since the
definition of the cost function or the original geometric flow is the core part of the

http://dx.doi.org/10.1007/978-0-387-09749-7_7
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solution. If such a flow or function does not address the desired properties of the
problem to be solved, its level set variant will fail. Therefore, a natural step forward
for these methods was their consideration in the form of an optimisation space.

Such a framework was derived through the definition of simple indicator func-
tions as proposed in [44] with the following behaviour

ı .�/ D
�
0; � ¤ 0

1; � D 0
; H .�/ D

8
<

:

1; � > 0

0; � D 0

0; � < 0

(6)

Once such indicator functions have been defined, an evolving interface � can be
considered directly on the level set space as

� D fs 2 	 W ı .�/ D 1g (7)

while one can define a dual image partition using the H indicator functions as:

�in D fs 2 	 W H .��/ D 1g
�out D fs 2 	 W H .��/ D 0g ; �in [ �out D 	

(8)

Towards continuous behaviour of the indicator function [H ] , as well as well-
defined derivatives [ı] in the entire domain a more appropriate selection was
proposed in [44], namely the DIRAC and the HEAVISIDE distribution:

ı˛ .�/ D
(
0 ; j�j > ˛
1
2˛

�
1C cos

�
 �

˛

��
; j�j < ˛ (9)
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1
2

�
1C �
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sin
�
 �

˛

��
; j�j < ˛

Such an indicator function has smooth, continuous derivatives and the following
nice property:

@

@�
H˛ .�/ D ı˛ .�/

Last, but not least one consider the implicit function � to be a signed distance
transform D(s, �),

�.s/ D
8
<

:

0; s 2 �
D .s; �/ ; s 2 �in
�D .s; �/ ; s 2 	 � �in D �out

(10)
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Such a selection is continuous and supports gradient descent minimisation tech-
niques. On the other hand it has to be maintained, and therefore frequent re-
initialisations using either the fast marching method [35] or PDE-based approaches
[38] were considered. In [13] the problem was studied from a different perspective.
The central idea was to derive the same speed function for all level lines - the one of
the zero level set - an approach that will preserve the distance function constraint.

3 Data-driven Segmentation

The first attempt to address such task was made in [21] where a geometric flow
was proposed to image segmentation. Such a flow was implemented in the level set
space and aimed to evolve an initial curve towards strong edges constrained by the
curvature effect. Within the last decade numerous advanced techniques have taken
advantage of the level set method for object extraction.

3.1 Boundary-based Segmentation

The geodesic active contour model [4, 17] - a notable scientific contribution in the
domain - consists of

E .�/ D
Z 1

0

g .jrI� .�.p//j /
ˇ̌
� 0.p/

ˇ̌
dp (11)

where I� is the output of a convolution between the input image and a Gaussian
kernel and g is a decreasing function of monotonic nature. Such a cost function
seeks a minimal length geodesic curve that is attracted to the desired image features,
and is equivalent with the original snake model once the second order smoothness
component was removed. In [4] a gradient descent method was used to evolve
an initial curve towards the lowest potential of this cost function and then was
implemented using the level set method.

A more elegant approach is to consider the level set variant objective function of
the geodesic active contour;

E .�/ D
“

	

ı˛ .� .!// g .jrI� .!/j/ jr� .!/j d! (12)

where � is now represented in an implicit fashion with the zero-level set of �. One
can take take the derivative of such a cost function according to �:

�� D ı˛.�/ div

�
g.I / r�

jr�j
�

(13)
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where ! and jr I � (!)j were omitted from the notation. Such a flow aims to shrink
an initial curve towards strong edges. While the strength of image gradient is a solid
indicator of object boundaries, initial conditions on the position of the curve can
be issue. Knowing the direction of the propagation is a first drawback (the curve
has either to shrink or expand), while having the initial curve either interior to the
objects or exterior is the second limitation. Numerous provisions were proposed to
address these limitations, some of them aimed to modify the boundary attraction
term [29], while most of them on introducing global regional terms [45].

3.2 Region-based Segmentation

In [26] the first attempt to integrate edge-driven and region-based partition com-
ponents in a level set approach was reported, namely the geodesic active region
model. Within such an approach, the assumption of knowing the expected intensity
properties (supervised segmentation) of the image classes was considered. Without
loss of generality, let us assume an image partition in two classes, and let rin(I ),
rout(I ) be regional descriptors that measure the fit between an observed intensity
I and the class interior [rin(I )] and exterior to [rout(I )] the curve. Under such an
assumption one can derive a cost function that separates the image domain into two
regions:

• according to a minimal length geodesic curve attracted by the regions boundaries,
• according to an optimal fit between the observed image and the expected

properties of each class,

E .�/ D w
“

	

ı˛ .� .!// g .jrI� .!/j/ jr� .!/j d!

C
“

	

H˛ .�� .!// rin .I / d! C
“

	

.1 � H˛ .�� .!/// rout .I / d!

(14)

where w is a constant balancing the contributions of the two terms. One can see this
framework as an integration of the geodesic active contour model [4] and the region-
based growing segmentation approach proposed in [45]. The objective is to recover
a minimal length geodesic curve positioned at the object boundaries that creates
an image partition that is optimal according to some image descriptors. Taking the
partial derivatives with respect to �, one can recover the flow that is to be used
towards such an optimal partition:

�
�

D ı˛.�/.rin.I /� .rout .I //C !ı˛.�/ div

�
g.I / r�

jr�j
�

(15)



Curve Propagation, Level Set Methods and Grouping 53

Fig. 3 Multi-class image segmentation [27] through integration of edge-driven and region-based
image metrics; The propagation with respect to the four different image classes as well as the final
presentation result is presented

where the term ı˛(��) was replaced with ı˛(�) since it has a symmetric behaviour.
In [26] such descriptor function was considered to be the -log of the intensity
conditional density [pin (I ), pin (I )] for each class

rin .I / D � log .pin .I // ; rout .I / D � log .pout .I //

In [34] the case of supervised image segmentation for more than two classes
was considered using the frame partition concept introduced in [44]. One can also
refer to other similar techniques [1]. Promising results were reported from such
an approach for the case of image in [27] [Figure (3)] and for supervised texture
segmentation in [28].

However, segmentation often refers to unconstrained domains of computational
vision and therefore the assumption of known appearance properties for the objects
to be recovered can be unrealistic. Several attempts were made to address this
limitation. To this end, in [5, 43] an un-supervised region based segmentation
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approach based on the Mumford-Shah [22] was proposed. The central idea behind
these approaches of bi-modal [5] and tri-modal [43] segmentation was that image
regions are piece-wise constant intensity-wise.

The level set variant of the Mumford-Shah [22] framework consists of minimising

E .�;�in; �out / D
w
“

	

ı˛ .� .!// jr� .!/j d! C
“

	

H˛ .�� .!// .I .!/ � �in/
2d!

C
“

	

�
1 � H˛ .�� .!// .I .!/ � �out /

2d!

(16)

where both the image partition [�] and the region descriptors [�in,�out] for the inner
and the outer region are to be recovered. The calculus of variations with respect to
the curve position and the piece-wise constants can be consider to recover the lowest
potential of such a function,

�in D

“

	

H .��/I .!/d!
“

	

H .��/d!
; �out D

“

	

.1 � H .��//I .!/d!
“

	

.1 � H .��// d!
;

�� D ı˛ .�/
h
..I .!/� �in//

2 � .I .!/� �out /
2 //C w div

� r�
jr�j

�i

(17)

Such a framework was the basis to numerous image segmentation level set
approaches, while certain provisions were made to improve its performance. In [18]
the simplistic Gaussian assumption of the image reconstruction term (piece-wise
constant) was replaced with a non-parametric approximation density function while
in [31] a vectorial unsupervised image/texture segmentation approach was proposed.

Last, but not least in [41] the same framework was extended to deal with multi-
class segmentation. The most notable contribution of this approach is the significant
reduction of the computational cost and the natural handling (opposite to [44]) of
not forming neither vacuums nor overlapping regions. Such an approach can address
the N -class partition problem, using log2(N)

level set functions.

4 Prior Knowledge

Computational vision tasks including image segmentation often refer to constrained
environments. Medical imaging is an example where prior knowledge exists on the
structure and the form of the objects to be recovered. One can claim that the level
set method is among the most promising framework to model-free segmentation.
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Introducing prior knowledge within such a framework is a natural extension that
could make such level sets an adequate selection to numerous applications like
object extraction, recognition, medical image segmentation, tracking, etc. In [19]
a first attempt to perform knowledge-based segmentation was reported, while later
numerous authors have proposed various alternatives [6, 9, 32, 39].

4.1 Average Models

Statistical representation of shapes is the first step of such an approach. Given a set
of training examples, one would like to recover a representation of minimal length
that can be used to reproduce the training set. To this end, all shapes of the training
set should be registered to the same pose. Numerous methods can be found in the
literature for shape registration, an adequate selection for building shape models in
the space of implicit functions is the approach proposed in [15] where registration is
addressed on this space. Without loss of generality we can assume that registration
problem has been solved.

Let SA D f�1, � 2, : : : , �ng be the implicit representations of n training samples
according to a signed Euclidean distance transform. Simple averaging of the shape
belonging to the training set can be used to determine a mean model

�M D 1

n

nX

iD1
�i (18)

that was considered in [9, 19, 39]. Such a model is a not an signed Euclidean implicit
function, an important limitation. However, one can recover a mean model in the
form of a planar curve �M through the marching cubes algorithm [20]. Once such
a model has been determined, one can impose shape prior knowledge through the
constraint that the object to be recovered at the image plane � that is a clone of the
average shape �M according to some transformation:

� D A .�M / (19)

where A can be a linear or non-linear transformation. In [6] prior knowledge has
been considered in the form of a mean represented with a signed distance function.
Once such a model was recovered, it was used [6] within the geodesic active contour
model [4] to impose prior knowledge in the level set space:

E .�;A / D
“

	

ı˛ .�/
�
g .jrI j/ jr�j C ��2M .A .!// d! (20)

where A D (s, � , (T x, T y)) is a similarity transformation that consists of a scale
factor [s], a rotation component [�] and a translation vector (T x, T y). �M is an
implicit representation of the mean model according to a distance function and �
is a constant that determines the importance of the prior term. Such an objective
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function aims at finding a minimal length geodesic curve that is attracted to the
object boundaries and is not far from being a similarity transformation of the prior
model:

�M .A .�M / ! 0

Such an approach can be very efficient when modelling shapes of limited variation.
On the other hand, one can claim that for shapes with important deviation from
the mean model the method could fail. Furthermore, given the small number of
constraints when determining the transformation between the image and the model
space the estimation [A ] could become a quite unstable task.

Towards a more stable approach to determine the optimal transformation between
the evolving contour and the average model, in [32] a direct comparison between the
contour implicit function and the model distance transform was used to enforce prior
knowledge:

� .!/ D �M .A .!//

Despite the fact that distance transforms are robust to local deformations, invariant
to translation and rotation, they are not invariant to scale variations. Slight modifi-
cation of the above condition [30] could also lead to scale invariant term:

s� .!/ D �M .A .!//

The minimisation of the SSD between the implicit representations of the evolving
contour and the distance transform of the average prior model can be considered to
impose prior knowledge, or

E .�;A / D
“

	

ı˛ .�/ .s� .!/ � �M .A .!///2d! (21)

a term that is evaluated within the vicinity of the zero level-set contour (modulo
the selection of ˛). The calculus of variations within a gradient descent method can
provide the lowest potential of the cost function. Two unknown variables are to be
recovered, the object position (form of function �),

d

d�
� D �

	
@

@�
ı˛ .�/



.. s� � �M .A /2

„ ƒ‚ …
area force

� 2ı˛ .�/ s .s� � �M .A //„ ƒ‚ …
shape consistency force

(22)

This flow consists of two terms: (i) a shape consistency force that updates the
interface towards a better local much with the prior and (ii) a force that aims at
updating the level set values such that the region on which the objective functions is
evaluated (�˛, ˛) becomes smaller and smaller in the image plane. In order to better
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understand the influence of this force, one can consider a negative � value, within
the range of (�˛, ˛); Such a term does not change the position of the interface and
therefore it could be omitted:

d

d�
� D �2ı˛ .�/ s .s� � �M .A // (23)

Towards recovering the transformation parameters [A ] between the evolving
contour and the average model, a gradient descent approach could be considered
in parallel: A
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One can refer to very promising results - as shown in [Fig. (4)] - on objects that
refer to limited shape variability using such a method [32]. However, often the object
under consideration presents important shape variations that cannot be accounted for
with simple average models. Decomposition and representation of the training set
through linear shape spaces is the most common method to address such a limitation.

4.2 Prior Knowledge through Linear Shape Spaces

In [19] a principal component analysis on the registered set of the space of distance
functions (training examples) was considered to recover a model that can account for
important shape variations. Similar approach was consider in [2, 33, 39]. Principal
component analysis refers to a linear transformation of variables that retains - for
a given number n of operators - the largest amount of variation within the training
data.

Let � iD1 : : : n be a column vector representation of the training set of n implicit
function elements registered to the same pose. We assume that the dimensionality
of this vector is d. Using the technique introduced in [32] one can estimate a mean
vector �M that is part of the space of implicit functions and subtract it from the
input to obtain zero mean vectors f Q�i D � i – �M g.

Given the set of training examples and the mean vector, one can define the d � d
covariance matrix:

X
Q� D E

˚ Q�i Q��i
�

(25)

It is well known that the principal orthogonal directions of maximum variation
are the eigenvectors of

P
Q� .
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Fig. 4 Level set methods, prior knowledge, average models and similarity invariant object
extraction [32] in various pose conditions (i,ii, iii)

One can approximate
P

Q� with the sample covariance matrix that is given by� Q�N Q��N


where Q�N is the matrix formed by concatenating the set of implicit
functions

˚ Q�i
�
iD1:::n: Then, the eigenvectors of

P
Q� can be computed through the

singular value decomposition (SVD) of Q�N :

Q�N D UDUT (26)

The eigenvectors of the covariance matrix
P

Q� are the columns of the matrix U
(referred to as the basis vectors henceforth) while the elements of the diagonal
matrix D are the square root of the corresponding eigenvalues and refer to the
variance of the data in the direction of the basis vectors. Such information can
be used to determine the number of basis vectors (m) required to retain a certain
percentage of the variance in the data.

Then, one can consider a linear shape space that consists of the (m) basis vectors
required to retain a certain percentage of the training set:

� D �M C
mX

jD1
�jUj (27)
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Fig. 5 Level set methods, prior knowledge, linear shape spaces and Object Extraction [33];
segmentation of lateral brain ventricles (Top Left) surface evolution, (Top Right) projected surface
in the learning space and ground-truth surface (from the training set), (Bottom) surface cut and its
projection in the learning space during surface evolution

Such linear space can now be used as prior model that refers to a global transfor-
mation A of the average model �M and its local deformation � D (�1 , . . . , �m)
through a linear combination of the the basis vectors Uj. Then, object extraction is
equivalent with finding a shape for which there exists such a transformation that
will map each value of current representation to the “best” level set representation
belonging to the class of the training shapes:
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1

A

1

A
2

d	 (28)

where the rotation factor Uj (A ) has to be accounted for when applying the principal
modes of variations to deform the average shape.

In order to minimise the above functional with respect to the evolving level set
representation, the global linear transformation A and the modes weights �j, we
use the calculus of variations. The deformation of � is guided by a flow similar to
(1.22) that is also the case with respect to the pose parameters A as shown in ().
Last, but not least he differentiation with respect to the coefficients � D (�1, . . . ,
�m) leads to a linear system that has a closed form solution V � D b with:

�
V .i; j / D R

	
ı– .�/Ui .A /Uj .A /

b.i/ D R
	ı– .�/ .s� � �M .A //Ui .A /

(29)

where V is a m � m positive definite matrix. Such an approach as shown
in [Fig. (5)] - can cope with important shape variations under the assumption that
the distribution of the training set is Gaussian and therefore its PCA is valid.
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5 Discussion

In this chapter, we have presented an approach to object extraction through the
level set method that is implicit, intrinsic, parameter free and can account for
topological changes. First, we have introduced a connection between the active
contours, propagation of curves and their level set implementation. Then, we have
considered the notion of implicit functions to represent shapes and define objective
functions in such spaces to perform object extraction and segmentation. Edge-
driven as well as global statistical-based region-defined segmentation criteria were
presented. In the last part of the chapter we have presented prominent techniques to
account for prior knowledge on the object to be recovered. To this end, we have
introduced constraints of increasing complexity proportional to the spectrum of
expected shape deformations that constraints the evolving interface according to
the prior knowledge. Therefore one can conclude that the level set method is an
efficient technique to address object extraction, is able to deal with important shape
deformations, topological changes, can integrate visual cues of different nature and
can account for corrupted, incomplete and occluded data.

References

1. O. Amadieu, E. Debreuve, M. Barlaud, and G. Aubert. Inward and Outward Curve Evolution
Using Level Set Method. In IEEE International Conference on Image Processing, volume III,
pages 188–192, 1999.

2. X. Bresson, P. Vandergheynst, and J. Thiran. A Priori Information in Image Segmentation:
Energy Functional based on Shape Statistical Model and Image Information. In IEEE
International Conference on Image Processing, volume 3, pages 428–428, Barcelona, Spain,
2003.

3. V. Caselles, F. Catté, B. Coll, and F. Dibos. A geometric model for active contours in image
processing. Numerische Mathematik, 66(1):1–31, 1993.

4. V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. In IEEE International
Conference in Computer Vision, pages 694–699, 1995.

5. T. Chan and L. Vese. An Active Contour Model without Edges. In International Conference
on Scale-Space Theories in Computer Vision, pages 141–151, 1999.

6. Y. Chen, H. Thiruvenkadam, H. Tagare, F. Huang, and D. Wilson. On the Incorporation of
Shape Priors int Geometric Active Contours. In IEEE Workshop in Variational and Level Set
Methods, pages 145–152, 2001.

7. D. Chopp. Computing Minimal Surfaces via Level Set Curvature Flow. Journal of Computa-
tional Physics, 106:77–91, 1993.

8. L. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 53:211–218,
1991.

9. D. Cremers, N. Sochen, and C. Schnorr. Multiphase Dynamic Labeling for Variational
Recognition-driven Image Segmentation. In European Conference on Computer Vision, pages
74–86, Prague, Chech Republic, 2004.

10. A. Dervieux and F. Thomasset. A finite element method for the simulation of rayleigh-taylor
instability. Lecture Notes in Mathematics,771:145–159, 1979.

11. S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.



Curve Propagation, Level Set Methods and Grouping 61

12. R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky. Fast Geodesic Active Contours. IEEE
Transactions on Image Processing, 10:1467–1475, 2001.

13. J. Gomes and O. Faugeras. Reconciling distance functions and level sets. Journal of Visual
Communication and Image Representation, 11:209–223, 2000.

14. R. Haralick. Digital step edges from zero crossing of second directional derivatives. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6:58–68, 1984.

15. X. Huang, N. Paragios, and D. Metaxas. Registration of Structures in Arbitrary Dimensions:
Implicit Representations, Mutual Information & Free-Form Deformations. Technical Report
DCS-TR-0520, Division of Computer & Information Science, Rutgers University, 2003.

16. M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. In IEEE Interna-
tional Conference in Computer Vision, pages 261–268, 1987.

17. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi. Gradient flows and
geometric active contour models. In IEEE International Conference in Computer Vision, pages
810–815, 1995.

18. J. Kim, J. Fisher, A. Yezzi, M. Cetin, and A. Willsky. Non-Parametric Methods for Image Seg-
mentation using Information Theory and Curve Evolution. In IEEE International Conference
on Image Processing, 2002.

19. M. Leventon, E. Grimson, and O. Faugeras. Statistical Shape Influence in Geodesic Active
Controus. In IEEE Conference on Computer Vision and Pattern Recognition, pages I:316–322,
2000.

20. W. Lorensen and H. Cline. Marching cubes: a high resolution 3D surface construction
algorithm. In ACM SIGGRAPH, volume 21, pages 163–170, 1987.

21. R. Malladi, J. Sethian, and B. Vemuri. Evolutionary fronts for topology independent shape
modeling and recovery. In European Conference on Computer Vision, pages 1–13, 1994.

22. D. Mumford and J. Shah. Boundary detection by minimizing functionals. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 22–26, 1985.

23. S. Osher and N. Paragios. Geometric Level Set Methods in Imaging, Vision and Graphics.
Springer Verlag, 2003.

24. S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed : Algorithms based
on the Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12–49, 1988.

25. N. Paragios. Geodesic Active Regions and Level Set Methods: Contributions and Applications
in Artificial Vision. PhD thesis, I.N.R.I.A./ University of Nice-Sophia Antipolis, 2000. http://
www.inria.fr/RRRT/TU-0636.html.

26. N. Paragios and R. Deriche. A PDE-based Level Set approach for Detection and Tracking
of moving objects. In IEEE International Conference in Computer Vision, pages 1139–1145,
1998.

27. N. Paragios and R. Deriche. Geodesic Active Contours and Level Sets for the Detection and
Tracking of Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22:266–280, 2000.

28. N. Paragios and R. Deriche. Geodesic Active Regions: A New Framework to Deal with
Frame Partition Problems in Computer Vision. Journal of Visual Communication and Image
Representation, 13:249–268, 2002.

29. N. Paragios, O. Mellina-Gottardo, and V. Ramesh. Gradient Vector Flow Fast Geodesic Active
Contours. In IEEE International Conference in Computer Vision, pages I:67–73, 2001.

30. N. Paragios, M. Rousson, and V. Ramesh. Non-Rigid Registration Using Distance Functions.
Computer Vision and Image Understanding, 2003. to appear.

31. M. Rousson and R. Deriche. A Variational Framework for Active and Adaptative Segmentation
of Vector Valued Images. Technical Report 4515, INRIA, France, 2002.

32. M. Rousson and N. Paragios. Shape Priors for Level Set Representations. In European
Conference on Computer Vision, pages II:78–93, Copenhangen, Denmark, 2002.

33. M. Rousson, N. Paragios, and R. Deriche. Implicit Active Shape Models for 3D Segmentation
in MR Imaging. In Medical Imaging Copmuting and Computer-Assisted Intervention, 2004.

34. C. Samson, L. Blanc-Feraud, G. Aubert, and J. Zerubia. A Level Set Model for Image
Classification. International Journal of Computer Vision, 40:187–197, 2000.

http://www.inria.fr/RRRT/TU-0636.html
http://www.inria.fr/RRRT/TU-0636.html


62 N. Paragios

35. J. Sethian. A Review of the Theory, Algorithms, and Applications of Level Set Methods for
Propagating Interfaces. Cambridge University Press, pages 487–499, 1995.

36. J. Sethian. Level Set Methods. Cambridge University Press, 1996.
37. L. Staib and S. Duncan. Boundary finding with parametrically deformable models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14:1061–1075, 1992.
38. M. Sussman, P. Smereka, and S. Osher. A Level Set Method for Computing Solutions to

Incomprenissible Two-Phase Flow. Journal of Computational Physics, 114:146–159, 1994.
39. A. Tsai, A. Yezzi, W. Wells, C. Tempany, D. Tucker, A. Fan, A. Grimson, and A. Willsky.

Model-based Curve Evolution Technique for Image Segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition, volume I, pages 463–468, 2001.

40. J. Tsitsiklis. Efficient Algorithms for Globally Optimal Trajectories. In 33rdConference on
Decision and Control, pages 1368–1373, 1994.

41. L. Vese and T. Chan. A Multiphase Level Set Framework for Image Segmentation Using the
Mumford and Shah Model. International Journal of Computer Vision, 50:271–293, 2002.

42. J. Weickert and G. Kuhne. Fast Methods for Implicit Active Contours. In S. Osher and
n. Paragios, editors, Geometric Level Set Methods in Imaging, Vision and Graphics, pages
43–58. Springer, 2003.

43. A. Yezzi, A. Tsai, and A. Willsky. A Statistical Approach to Snakes for Bimodal and Trimodal
Imagery. In IEEE International Conference in Computer Vision, pages 898–903, 1999.

44. H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational Level Set Approach to
Multiphase Motion. Journal of Computational Physics, 127:179–195, 1996.

45. S. Zhu and A. Yuille. Region Competition: Unifying Snakes, Region Growing, and
Bayes/MDL for Multiband Image Segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18:884–900, 1996.



Kernel Methods in Medical Imaging

G. Charpiat, M. Hofmann, and B. Schölkopf

Abstract We introduce machine learning techniques, more specifically kernel
methods, and show how they can be used for medical imaging. After a tutorial
presentation of machine learning concepts and tools, including Support Vector
Machine (SVM), kernel ridge regression and kernel PCA, we present an application
of these tools to the prediction of Computed Tomography (CT) images based on
Magnetic Resonance (MR) images.

1 Introduction

Machine learning has shown dramatic progress over the last decades, creating tools
like the well-known Support Vector Machine (SVM), which have been intensively
applied to many different fields and have proved their efficiency. Learning tools
have often changed the whole perspective of the issues they have been applied
to. For example, in computer vision, the detection of objects in images, and the
automatic classification of images into categories (landscape, car, etc.) rely now
most often on intensive patch-based learning, whereas it was previously commonly
thought that a complete image segmentation would be required. The results of this
machine learning approach are often surprisingly good, showing that under certain
conditions, many tasks are much easier to solve by incorporating prior knowledge
retrieved from a set of examples.
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In medical imaging, approaches are often example-based, in the sense that the aim
often consists in the automatization of a task already performed by hand by medical
people on a few examples, such as segmentation, registration, detection (of tumors,
of organs) or classification. As medical imaging deals with images, there is also
much inspiration to get from what has already been achieved in computer vision, in
object detection [9] as well in shape priors [5].

We start here with a tutorial on machine learning techniques. We present basic
concepts, and then focus on kernel methods. We introduce standard tools like kernel
ridge regression, SVM and kernel PCA. Then we apply some of these tools to the
case of medical image prediction, when the Magnetic Resonance scan of a patient is
known and we would like to guess what the corresponding Computed Tomography
scan would look like.

2 Machine learning with kernels

This section describes the central ideas of kernel methods in a nutshell by providing
an overview of the basic concepts. We first state mathematically the problems of
classification and regression. Then we introduce the concept of kernel and explain
the kernel trick which leads to kernel PCA as well as kernel ridge regression. The
last concept introduced is the support vector (SV), which is the basis of the SVM.
We have tried to keep this tutorial as basic as possible and refer to [11] for further
details.

2.1 Basics

Classification and Regression

Suppose we are given a set of m objects .xi /16i6m 2 X m with labels .yi /16i6m 2
Y m. If the number of possible labels is finite and small, then we can be interested
in classification, i.e. in finding the label to assign to a new object based on the given
examples. Otherwise, if the labels are values in a vector space, we can be interested
in regression, i.e. in extrapolating previously observed values to any new object.
Thus classification and regression tasks can be embedded in a similar framework,
one aiming to predict discrete labels and the other one to continuous values.

The objects .xi /16i6m are often named patterns, or cases, inputs, instances, or
observations. The .yi /16i6m are called labels, or targets, outputs or sometimes also
observations. The set of all correspondences .xi ; yi /16i6m given as examples is
called the training set, whereas we name test set the set of new objects for which
we would like to guess the label by extracting knowledge from the examples in the
training set.

In both cases, classification or regression, we aim to generalize the correspon-
dences .xi ; yi / to a function f defined on the set X of all possible objects and with
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values in the set Y of all possible labels. The label predicted for a new test object x
would then be f .x/. Here we have no particular assumption on the spaces X and
Y except that Y should be a vector space if we are interested in regression (in order
to extrapolate continuously between any two values). But we have a strong intuitive
assumption on f : it should generalize as well as possible the given examples, i.e.
if x is close to an already observed input xi , its output f .x/ should be close to the
already observed output yi . The whole difficulty consists in defining precisely what
we mean by “close” in the spaces X and Y . More precisely, we need to quantify
the similarity of inputs in X and the cost of assigning wrong outputs in Y .

Loss function

Generally, expressing a distance or similarity measure in Y is easy. In the case
of regression, the Euclidean distance in Y is often a simple, convenient choice.
However we can consider other functions than distances, provided they express
the cost of assigning a wrong label. We call the loss function the sum of the costs
(or losses) of all mistakes made when we consider a particular possible solution f
and apply it to all known examples. For instance we can choose:

L.f; .xi ; yi /16i6m/ D
mX

iD1
kf .xi /� yikY

Duality between features and similarity measures

On the other hand, expressing a similarity measure in X is much more difficult and
lies at the core of machine learning. Either the space X has been carefully chosen
so that the representation of the observed objects xi are meaningful, in the sense that
their “natural” distance in X (say the Euclidean distance if X is a vector space) is
meaningful, in which case learning will be easy; either X is non-trivial and we need
to choose a set of N sensible features (seen as a functionˆ from X to H D R

N ),
so that if we compute these features ˆ.xi / for each xi , we can consider a more
natural distance in the feature space H . From a certain point of view, choosing a
sensible feature mapˆ or choosing a sensible distance in X (or in the feature space
H ) are equivalent problems, and hence equivalently hard in the general case.

Optimization problem over functions

The problem of classification or regression can be written as an optimization
problem over all possible functions f : find the best function f from X to Y such
that it minimizes

L.f; .xi ; yi /16i6m/CR.f /
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where R.f / is a regularizer constraining f to be smooth in some way with respect
to the similarity measure chosen in X . Note that we could also have restricted f
to be a member of a small function space F . There are very nice theoretical results
concerning the function space in the kernel case (see for example Sect. 2.3 about
ridge regression).

2.2 Kernels

This section aims to define kernels and to explain all facets of the concept. It
is a preliminary step to the following sections dedicated to kernel algorithms
themselves.

A kernel is any symmetric similarity measure on X

k W X � X ! R

.x; x0/ 7! k.x; x0/;

that is, a symmetric function that, given two inputs x and x0, returns a real number
characterizing their similarity (cf. [1, 3, 4, 7, 10]).

Kernels as inner products in the feature space

In the general case, either X is not a vector space, or the natural Euclidean inner
product in X is not particularly relevant as a similarity measure. Most often, a set of
possibly-meaningful features is available, and we can consequently use the feature
map

ˆ W X ! H

x 7! x WD ˆ.x/:

ˆ will typically be a nonlinear map with values in a vector space. It could for
example compute products of components of the input x. We have used a bold face
x to denote the vectorial representation of x in the feature space H . We will follow
this convention throughout the chapter.

We can use the non-linear embedding of the data into the linear space H via ˆ
to define a similarity measure from the dot product in H ,

k.x; x0/ WD ˝
x; x0˛

H
D ˝
ˆ.x/;ˆ.x0/

˛
H
: (1)

The freedom to choose the mapping ˆ will enable us to design a large variety
of similarity measures and learning algorithms. The transformation of xi into
ˆ.xi / D xi can be seen as a change of the inputs, i.e. as a new model of the
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initial problem. However, we will see later that, in some cases, we won’t need to
do this transformation explicitly, which is very convenient if the number of features
considered (or the dimension of H ) is high.

Geometrical interpretation and kernel trick

Through the definition of k, we can provide geometric interpretation of the input
data:

kxkH D kˆ.x/kH D phˆ.x/;ˆ.x/iH D
p
k.x; x/

is the length (or norm) of x in the feature space. Similarly, k.x; x0/ computes the
cosine of the angle between the vectors x and x0, provided they are normalized to
length 1. Likewise, the distance between two vectors is computed as the length of
the difference vector:

kx � x0k2H D kxk2 C kx0k2 � 2 ˝ˆ.x/;ˆ.x0/
˛ D k.x; x/C k.x0; x0/� 2k.x; x0/:

The interesting point is that we could consider any such similarity measure k and
forget about the associated ˆ: we would still be able to compute lengths, distances
and angles with the only knowledge of k thanks to these formulas. This framework
allows us to deal with the patterns geometrically through a understated non-linear
embedding, and thus lets us study learning algorithms using linear algebra and
analytic geometry. This is known as the kernel trick: any algorithm dedicated to
Euclidean geometry involving only distances, lengths and angles can be kernelized
by replacing all occurrences of these geometric quantities by their expressions as a
function of k. Next section is dedicated to such kernelizations.

Examples of kernels

Let us introduce the most-commonly used kernels. They are namely: the polynomial
kernel

k.x; x0/ D ˝
x; x0˛d ;

and the Gaussian

k.x; x0/ D exp

�
�kx � x0k2

2 �2

�

for suitable choices of d and � . Let us focus on the Gaussian case: the similarity
measure k.x; x0/ between x and x0 is always positive, and is maximal when x D x0.
All points x have the same unit norm (since k.x; x/ D 1 8x) and consequently the
images of all points x in the associated feature space H lie on the unit sphere.
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Reproducing kernels as feature maps

One could wonder what is the feature map ˆ which was used to build the Gaussian
kernel. In fact kernel theory goes far beyond the way we introduced kernels. Let us
consider any symmetric function k, not necessarily related to a feature map. Let us
suppose also that k, seen as an operator, is positive definite, that is to say that for
any non-zero L2 function ˛ W X ! R:

Z

X �X
˛.x/k.x; x0/˛.x0/ dx dx0 > 0:

Note that to be able to integrate over x 2 X , we need a measure on X . This
measure is often thought of as a probability measure over X , giving more weight
to objects that are more likely to appear.

Then we can define from this kernel k an associated feature map by:

ˆ W X ! F .X /

x 7! x WD k.x; �/: (2)

This image of any input x by ˆ is the function

k.x; �/ W X ! R

x0 7! k.x; x0/: (3)

ˆ has now values in the space F .X / of functions over X instead of having values
in just a finite dimensioned vector space like R

N .
The magic comes from Moore-Aronszajn theorem [2] which states that it

is always possible, for any symmetric positive definite function k, to build a
reproducing kernel Hilbert space (RKHS) H � F .X / so that

8x; x0 2 X ; k.x; x0/ D ˝
k.x; �/; k.x0; �/˛

H
D ˝
ˆ.x/;ˆ.x0/

˛
H
: (4)

Because of such a property, symmetric positive definite kernels are also called
reproducing kernels. This theorem highlights the duality between reproducing
kernels k and feature maps ˆ: choosing the feature space or choosing the kernel
is equivalent, since one determines the other.

The Gaussian case (details)

We can make explicit the inner product on H in the Gaussian case. The associated
norm is

kf k2H D
Z

X

1X

nD0

�2n

nŠ 2n

�
dn

dxn
f

�2
.x/ dx D

1X

nD0

�2n

nŠ 2n

����
dn

dxn
f

����
2

L2.X /
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which penalizes all fast variations of f at all derivative orders. We refer to [6] for
a more general mathematical study of radial basis functions. Intuitively, consider

the operator P D e
� �2

2
d2

dx2 WD P
n
.��2=2/n

nŠ
d2n

dx2n
. In the Fourier domain, it writes

e�
2w2=2, whereas k.x; �/ becomes �e��2w2=2e�iwx . Thus 1

�
P.k.x; �// D ıx.�/ is

a Dirac peak in the space D.X / of distributions over X . The inner product
hf; giH WD ˝

1
�
P .f / ; g

˛
D.X /

on H will therefore satisfy:

hk.x; �/; f iH WD
�
1

�
P .k.x; �// ; f

�

D.X /

D hıx; f iD.X / D f .x/

hence, for the particular case f D k.x0; �/,
˝
k.x; �/; k.x0; �/˛

H
D k.x; x0/:

The overfitting problem

The kernel k should be chosen carefully, since it is the core of the generalization
process: if the neighborhood induced by k is too small (for instance if k is a
Gaussian with a tiny standard deviation �), then we will overfit the given examples
without being able to generalize to new points (which would be found very
dissimilar to all examples). On the contrary, if the neighborhood is too large (for
instance if k is a Gaussian with a standard deviation so huge that all examples are
considered as very similar), then it is not possible to distinguish any clusters or
classes.

Kernels as regularizers

We introduced initially kernels as similarity measures on the space X of inputs. But
with the reproducing kernel framework, the choice of a kernel implies a structure
on the space of functions from X to R, in particular it defines a norm on this
space. Consequently choosing a kernel is the same as choosing a regularizer on the
function space.

Let us go back to the initial problem, and, for the sake of simplicity, let us consider
the case where the output space Y is included in R. We expressed the classification
or regression problem as the search for the best function f from X to Y that
minimizes a loss plus a regularizer on f . We have found here a natural way to
choose the regularizer according to the kernel, i.e. R.f / D kf k2H .

A whole class of problems involving this norm can be shown [11] to have
solutions in the span of functions k.xi ; �/, i.e. solutions f have the form f .x/ DP

i ˛i k.xi ; x/. Interestingly, this allows the reduction of the search space (the
function space) to a linear, finite-dimensioned subspace, while involving non-linear
quantities (the kernels k.x; x0/ or the features ˆ.x/).
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x

c+
w

c− c

Fig. 1 A very simple classifier in the feature space: associate to any new point x the class whose
mean ci is the closest. The decision boundary is an hyperplane

2.3 Kernelization of existing linear algorithms

We now have all the concepts required to transform existing algorithms dealing
linearly with data into kernel methods. We consider standard, simple algorithms
such as PCA and linear regression and build out of them more efficient tools which
take advantage of the prior knowledge provided by the definition of a kernel and of
their ability to deal linearly with non-linear quantities.

A very simple hyperplanar classifier

To show the spirit of kernelization, let us first describe a very simple learning
algorithm for binary classification. The label space Y contains only two elements,
C1 and �1, and the training set consists of labeled examples of the two classes.
The basic idea is to assign any previously unseen pattern x to the class with closest
mean. Let us work directly in the feature space H and deal with x D ˆ.x/ instead
of x since the metric which makes sense is the one in the feature space. In H , the
means of the two classes are:

cC D 1

mC

X

fi jyiDC1g
xi and c� D 1

m�

X

fi jyiD�1g
xi ; (5)

where mC and m� are the number of examples with positive and negative labels,
respectively. Half way between cC and c� lies the point c WD .cC C c�/=2. We
compute the class of x, based on the angle between the vector x � c and the vector
w WD cC � c� (see Fig. 1):

y D sgn h.x � c/;wiH D sgn h.x � .cC C c�/=2/; .cC � c�/iH
D sgn .hx; cCiH � hx; c�iH C b/ (6)
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where we have defined the offset b WD 1

2
.kc�k2H � kcCk2H /: (7)

Note that (6) induces a decision boundary which has the form of a hyperplane in the
feature space. We can now call the kernel trick in order to express all quantities as
a function of the kernel, which is the only thing we can easily compute (unlessˆ is
explicit and simple). But this trick deals only with norms, distances and angles of
features points of the form x D ˆ.x/, for which we already know x. Therefore we
need to express the vectors ci and w in terms of x1; : : : ; xm.

To this end, substitute (5) into (6) to get the decision function

y D sgn
� 1

mC

X

fi jyiDC1g
hx; xiiH � 1

m�

X

fi jyiD�1g
hx; xiiH C b

�

D sgn
� 1

mC

X

fi jyiDC1g
k.x; xi / � 1

m�

X

fi jyiD�1g
k.x; xi /C b

�
: (8)

Similarly, the offset becomes

b WD 1

2

� 1

m2�

X

f.i;j /jyiDyjD�1g
k.xi ; xj / � 1

m2C

X

f.i;j /jyiDyjDC1g
k.xi ; xj /

�
: (9)

Surprisingly, it turns out that this rather simple-minded approach contains a
well-known statistical classification method as a special case. Assume that the class
means have the same distance to the origin (hence b D 0, cf. (7)), and that k can
be viewed as a probability density when one of its arguments is fixed. By this we
mean that it is positive and that 8x0 2 X ;

R
X k.x; x0/dx D 1. In this case, (8)

takes the form of the so-called Bayes classifier separating the two classes, subject
to the assumption that the two classes of patterns were generated by sampling from
two probability distributions that are correctly estimated by the Parzen windows
estimators of the two class densities,

pC.x/ WD 1

mC

X

fi jyiDC1g
k.x; xi / and p�.x/ WD 1

m�

X

fi jyiD�1g
k.x; xi /: (10)

Given some point x, the label is then simply computed by checking which of
the two values pC.x/ or p�.x/ is larger, which leads directly to (8). Note that this
decision is the best we can do if we have no prior information about the probabilities
of the two classes.

The classifier (8) is a particular case of a more general family of classifiers,
which are of the form of an affine combination of kernels on the input domain,
yD sgn

�Pm
iD1 ˛ik.x; xi /C b

�
. The affine combination corresponds to a separat-

ing hyperplane in the feature space. In this sense, the ˛i can be considered a dual
representation of the hyperplane’s normal vector [7]. These classifiers are example-
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based in the sense that the kernels are centered on the training patterns; that is, one of
the two arguments of the kernel is always a training pattern. A test point is classified
by comparing it to all the training points with a nonzero weight ˛i . One of the great
benefits that SVM brings in the next section is the assignment of a zero weight to
most training points and the sensible selection of the ones kept for classification.

Principal component analysis

Suppose we are given a set of unlabeled points, or a set of points of the same class. In
the case of a vector space, we could perform a principal component analysis (PCA)
to extract the main axes of the cloud of points. These main axes can then be used as
a low-dimensional coordinate system expressing most of the information contained
in the initial vector coordinates.

PCA in feature space leads to an algorithm called kernel PCA [12]. By solving an
eigenvalue problem, the algorithm computes nonlinear feature extraction functions

fn.x/ D
mX

iD1
˛ni k.xi ; x/; (11)

where, up to a normalizing constant, the ˛ni are the components of the nth
eigenvector of the kernel matrixKij WD .k.xi ; xj //.

In a nutshell, this can be understood as follows. To perform PCA in H , we need
to find eigenvectors v and eigenvalues � of the so-called covariance matrix C in the
feature space, where

C WD 1

m

mX

iD1
ˆ.xi /ˆ.xi /

>: (12)

Here, ˆ.xi /> denotes the transpose of ˆ.xi /. When H is very high dimensional,
the computational costs of doing this directly are prohibitive. Fortunately, one can
show that all solutions to

Cv D �v (13)

with � 6D 0 must lie in the span of ˆ-images of the training data. Thus, we may
expand the solution v as

v D
mX

iD1
˛iˆ.xi /; (14)

thereby reducing the problem to that of finding the ˛i . It turns out that this leads to
a dual eigenvalue problem for the expansion coefficients,

K˛ D m�˛; (15)

where ˛ D .˛1; : : : ; ˛m/
>.
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To extract nonlinear features from a test point x, we compute the dot product
between ˆ.x/ and the nth normalized eigenvector in feature space,

hvn;ˆ.x/i D
mX

iD1
˛ni k.xi ; x/: (16)

Usually, this will be computationally far less expensive than taking the dot product
in the feature space explicitly.

Kernel ridge regression and the representer theorem

Let us now consider the case of regression: we know the values yi 2 R of a function
at m given points .xi /16i6m and we would like to interpolate it to any new point
x 2X . The notion of regression requires the one of regularization, so we choose
a kernel k and use the associated norm k � kH . The problem can be expressed
mathematically as the search for the best function f W X ! R which minimizes
a weighted sum of the prediction errors .f .xi / � yi /

2 at known points and the
regularity cost kf kH :

inf
f WX !R

(
mX

iD1
.f .xi /� yi /

2 C �kf k2H
)

(17)

Representer Theorem The solution f of (17) in the RKHS belongs to the span of
functions k.xi ; �/ and thus admits a representation of the form

f .x/ D
mX

jD1
˛j k.xj ; x/: (18)

More details can be found in ([11], p. 89). Using (18) and (4), the problem (17)
becomes:

inf
˛2Rm

8
<

:

mX

iD1

�X

j

˛j k.xj ; xi /� yi

�2 C �
X

i;j

˛i˛j k.xi ; xj /

9
=

; : (19)

By computing the derivative with respect to ˛, denoting by K the m � m matrix�
k.xi ; xj /

�
i;j

, and by Y the vector .yi /16i6m we obtain:

2K.K˛ � Y /C 2�K˛ D 0

which leads, since K is positive definite, to the linear system:

.K C � Id/˛ D Y: (20)

where Id is the identity matrix.
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2.4 Support vectors

The kernelized examples in the previous section are able to deal linearly with
the non-linear priors on the data (i.e., the kernel, which induces a feature space
and a metric therein) and are consequently able to deal with far more general
tasks than usual linear classification or regression. However the computation of the
label to assign to a new test point involves its distances to all training points, and
consequently these algorithms are naturally slow if the training set is big. Instead
of using tricks to reduce the training set size or to avoid the computation of all
distances for each new point, one can wonder whether there would exist another,
similar approach, which would naturally and directly lead to a huge compression of
the training data, keeping only a few meaningful training points to predict the labels
of new test points. Such an approach does exist. We present here the fundaments of
support vector classification.

Hyperplanar classifier in feature space and margin

We are given a set of points xi with a binary label yi 2 f�1; 1g and we would like
to attribute to any new point x 2 X a class label f .x/. We consider a kernel k and
search for the best hyperplane in the feature space H which separates the training
points xi D ˆ.xi / into two classes, so that f has the form:

f .x/ D sgn
� hw; xiiH C b

�
(21)

where w 2 H is a vector normal to the hyperplane and b 2 R is the shift of the
hyperplane. Let us rescale the problem by adding the constraint that the closest data
point xi to the hyperplane satisfies

jhw; xiiH C bj D 1: (22)

Note that the margin, i.e. the distance between the hyperplane and the closest point,
is then 1=kwkH . We would like the margin to be as large as possible in order to
ensure the quality and the robustness of the classification (see Fig. 2). Therefore we
would like to minimize kwkH .

We would like also the predictions f .xi / on training points to be as good as
possible. Since the labels are binary, i.e. yi 2 f�1; 1g, a correct labelling f .xi / of
the point xi means yif .xi / > 0. Because of constraint (22), this is equivalent to:

8i; yi
� hw; xiiH C b

�
> 1: (23)
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Fig. 2 Example of a good and two bad hyperplane classifiers for a same training set. The larger
the margin is, the better the classifier is likely to perform

Soft margin

However, in practice, it may happen that the two classes overlap in the feature
space and consequently cannot be separated by an hyperplane satisfying (23) for
all examples i . Outliers may also be present in the training set and it may be better
to relax the constraints (23) than to overfit the data. Let us denote by �i non-negative
slack variables, and relax (23) to:

8i; yi
� hw; xiiH C b

�
> 1� �i : (24)

We would prefer the sum of the slacks
P

i �i to be as small as possible, so we build
a soft margin classifier by solving

minimize
w2H ;b2R;�2Rm

C

�.w; �/ D 1

2
kwk2 C C

mX

iD1
�i (25)

subject to 8i; yi .hw; xi i C b/� 1C �i � 0: (26)

where the constant C > 0 determines the trade-off between margin maximization
and training error minimization.

Lagrangian approach and dual problem

The constrained optimization problem (25,26) can be solved by introducing
Lagrangian multipliers ˛i > 0 and a Lagrangian

L.w; b; �;˛/ D �.w; �/�
mX

iD1
˛i
�
yi .hxi ;wi C b/� 1C �i

�
: (27)
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and by minimizing it with respect to w, b and � while maximizing it with respect to
˛. This additional maximization is a practical way to enforce the constraints (26).
Indeed, for given w, b and �, if one constraint i was violated in (27), then the
corresponding yi .hxi ;wi C b/ � 1 C �i would be negative, and thus maximizing
L w.r.t. ˛i would lead to infinity. Similarly, for given w, b and �, the ˛i that
maximize (27) are zero if the corresponding constraints are strictly satisfied (i.e.
yi .hxi ;wi C b/ � 1C �i > 0). This is essentially the Karush-Kuhn-Tucker (KKT)
complementarity conditions of optimization theory. Consequently only a few ˛i will
be non-zero, leading to a sparse representation of the training data.
Maximizing L w.r.t. the primal variables w, b and � leads to:

@L

@w
D 0 and

@L

@b
D 0 and 8i; @L

@�i
D 0 or

�
�i D 0 and

@L

@�i
� 0

�
(28)

which are respectively equivalent to w D
mX

iD1
˛iyixi (29)

and
mX

iD1
˛iyi D 0 and 8i; ˛i D C or f�i D 0 and ˛i � C g : (30)

Incorporating (29, 30) into (27) makes w, b and � vanish, and together with the
kernel trick (4) we obtain

maximize
˛2Rm W.˛/ D

mX

iD1
˛i � 1

2

mX

i;jD1
˛i˛j yiyj k.xi ; xj / (31)

subject to
mX

iD1
˛iyi D 0 and 8i; 0 � ˛i � C: (32)

Note that there is an alternative parametrization of SV classifiers where a free
parameter � is used instead of C , with � asymptotically charaterizing the fraction
of points falling into the margin, and the fraction of support vectors.

Support vector machine

Once the quadratic energy (31) in ˛ with linear constraints (32) has been maximized,
equation (29) gives us an algorithm of the form (21) we were searching for:

f .x/ D sgn
� X

i

˛iyi k.xi ; x/C b
�

(33)

with ˛i D 0 for most i . The few data points xi which have a non-zero coefficient
˛i are called support vectors. To compute the value of the threshold b, one uses
equation (30) which states that for any support vector xi with ˛i < C , the slack �i
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is zero and consequently the constraint (24) becomes:

b D yi �
X

j

˛j k.xj ; xi /: (34)

3 Application to Intermodality Image Prediction

As a medical application of the above methods, we look at intermodality image
prediction, i.e. the task of predicting an image of a subject (for instance a Computed
Tomography (CT) scan), from an image of the same subject in a different modality
(here, a Magnetic Resonance (MR) scan), given a training set of corresponding
MR-CT pairs from different patients.

3.1 The MR-CT issue

MR-based CT prediction is needed for example for attenuation correction in
Positron Emission Tomography (PET). The 511 keV radiation in PET gets attenu-
ated while passing through tissue, and correcting for this effect requires knowledge
of the so-called attenuation map, which can be derived from a CT image. In
modern scanners, CT images are therefore often acquired alongside the PET image,
typically in combined PET/CT scanners. However, the CT scan involves important
additional radiation exposure for the patient. Moreover, novel PET/MR scanners are
not equipped with a CT scanner, and thus it is desirable to perform the attenuation
correction based on the MR, by estimating a “pseudo” CT image from the MR.

MR and CT scanners detect different properties of the matter, and consequently
there is no one-to-one correspondence between the intensities in the MR image and
the CT intensities. In particular, bone and air both yield no signal in all standard MR
sequences, whereas their intensities in CT images are on opposite ends of the scale.
For this application, it is therefore crucial to distinguish bone from air, and the MR
intensity alone contains no helpful information for this problem.

3.2 Atlas registration vs. patches

Atlas registration is the process of aligning a new image with a template image
already segmented into bone, air and tissue regions. This yields a segmentation
for the new image. The implicit assumption is that there exists a continuous one-
to-one transformation between the new patient and the template, and that this
transformation can be easily computed. In the case of medical scans, it turns out
that these assumptions are not always satisfied, for instance pockets of gas in
the abdominal region are unlikely to occur in the same number and shape for
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different patients. Even if the assumptions were satisfied, one may be trying to solve
a problem more difficult than necessary by searching for a topology-preserving
transformation.

Even a rough registration, which does not assume one-to-one correspondence
between images, brings useful information since the location of a point in a scan
is clearly correlated with the type of tissue which can be found at that point. This
correlation is not always decisive enough to determine fully the tissue class, for
instance when several scenarios can be thought of at a same place (abdomen or
random pocket of gas), or when the registration lacks accuracy.

On the other hand, a patch-based approach would consist in extracting local
information from a patch in the MR image centered on the pixel considered,
and in classifying this pixel according to similar patches previously observed.
This would not require any prior registration, would not assume a one-to-one
correspondence between all MR scans and consequently would be able to deal with
several possibilities of scenarios for the same location. It would, in some way, build
a prediction by picking parts from different examples. This approach is much more
flexible than template registration. However it ignores the important information
given by the location.

We proposed in [8] to make simultaneous use of both the local and global
information given by patches and registration, respectively. We first estimate a rough
registration of the test image to a template image, and call normalized coordinates
the resulting new positions of pixels.

3.3 Image prediction using kernel methods

The key in working with kernel methods is in designing a kernel, or features, which
are adapted to the application. In our case an input will be a pair xi D .pi ; ci / of
the local patch pi and its normalized coordinates ci ; we define a similarity measure
between inputs by

k.xi ; xj / D exp
��kpi � pjk2

2 �2patch

�
exp

��kci � cj k2
2 �2pos

�
: (35)

The parameters �patch and �pos involved express the weighting between the different
information sources. Their optimal values can be determined by the standard
technique of cross-validation: to estimate the relevance of any particular choice of
.�patch; �pos/, the training set is partitioned into n subsets, and each subset is used for
testing the algorithm trained with these parameters on the remaining n � 1 subsets.
The sum of the losses of all subsets is the energy to minimize with respect to the
parameters.
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Fig. 3 Left: MR (T2 MEDIC) of a rabbit. Middle: Three class labels as predicted using SVM.
Right: Three class labels obtained by thresholding a CT image of the rabbit. Many differences
between b) and c) are due not to false classifications, but to some slight movement between MR
and CT scans, which explains the misalignment between the test image a) and the ground truth c)

For our application, cross-validation typically yields optimal values for �pos that
are far bigger than 1. This implies that registration errors of a few pixels will not
affect the accuracy of our algorithm.

In the CT prediction problem, we may be interested in the classification of MR
pixels into three classes, namely bone, air and tissue, because in first approximation
there is a one-to-one correspondence between these classes and the CT values. We
build three binary classifiers with SVM, one for each class against the two others, or
more exactly we compute the quantity whose sign is checked in (33), and then return
the class which achieves the greatest score. We show examples of results in Fig. 3.

3.4 Local learning

If the position is very informative, we can learn locally, i.e. cut the template image
into regions and train independently a classifier/regression for each region. For brain
images for example, intersubject variability is much smaller than for whole body
images. Thus non-rigid registration between subjects is possible with only minor
misalignments, and it is reasonable to compare patches only within a localized
neighborhood. We use kernel ridge regression in order to take into account the
variability of CT values. More precisely, from pairs of patches and normalized
coordinates, we do not predict the CT value itself but the variation between the
CT value and the one in the template at that position. Results are shown in Fig. 4.
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Fig. 4 New MR image; pseudo-CT predicted by our method; ground truth

4 Discussion

After a tutorial on kernel methods, we have presented a way to use these machine
learning tools to extract information from a set of medical images for MR-based CT
prediction, in a framework which makes use of both local and global information.
This presents the advantage of requiring neither a precise registration between
template and test image, nor a one-to-one correspondence between them. We hope
we have woken up the reader’s enthusiasm for machine learning in medical imaging,
there are still plenty of other ways to use machine learning tools in this field!
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Geometric Deformable Models

Y. Bai, X. Han, and J.L. Prince

Abstract Geometric deformable models are deformable models that are
implemented using the level set method. They have been extensively studied and
widely used in a variety of applications in biomedical image analysis. In this
chapter, the general geometric deformable model framework is first presented and
then recent developments on topology, prior shape, intensity and motion, resolution,
efficiency, robust optimization, and multiple objects are reviewed. Key equations
and motivating and demonstrative examples are provided for many methods and
guidelines for appropriate use are noted.

1 Introduction

Deformable models (also called “snakes” and “active contours”) have been exten-
sively studied and widely used in biomedical image analysis applications such as
image segmentation, geometrical modeling, surgery simulation, etc. Deformable
models are curves or surfaces that deform within two-dimensional (2D) or three-
dimensional (3D) digital images under the influence of both internal and external
forces and/or user defined constraints. Traditional deformable models [27, 47, 70,
73, 99, 120] are represented using explicit parametric forms during deformation,

Y. Bai (�)
HeartFlow, Inc., 1400B Seaport Blvd, Redwood City, CA 94063, USA
e-mail: yingbai@gmail.com

X. Han
Elekta Inc., 13723 Riverport Dr., Suite 100, St. Louis, MO, 63043, USA
e-mail: xiao.han@elekta.com

J.L. Prince
Department of Electrical and Computer Engineering, Johns Hopkins University,
201B Clark Hall, 3400 N Charles St, Baltimore, MD 21218, USA
e-mail: prince@jhu.edu

N. Paragios et al. (eds.), Handbook of Biomedical Imaging: Methodologies
and Clinical Research, DOI 10.1007/978-0-387-09749-7__5,
© Springer ScienceCBusiness Media New York 2015

83

mailto:yingbai@gmail.com
mailto:xiao.han@elekta.com
mailto:prince@jhu.edu


84 Y. Bai et al.

and are implemented in a Lagrangian framework. Parametric models have been
very successful in a broad cross-section of applications; however, topological
inflexibility, self-intersections, and reparametrization are often stated as difficulties
with these models.

Geometric deformable models (GDMs) [17,20,68,127] are represented implicitly
without the need for parameterization during contour evolution. GDMs deform
according to an Eulerian formulation known as the level set method [76, 95]. They
provide an elegant solution to the primary limitations of parametric deformable
models: they are independent of parametrization, they are numerically stable
yielding no self-intersections, and they permit automatic change of topology.
A comprehensive accounting of the connections between PDMs and GDMs is
provided in [119, 121].

Most earlier GDMs are driven by forces derived from local edge information or
global regional statistics. There has been considerable recent research devoted to
the integration of high-level prior knowledge into GDM segmentation. Of particular
interest is the knowledge of object topology, object shape, and image appearance.
Many objects in biomedical images have known topologies, and conforming to
the known object topology is often necessary both for meaningful segmentations
and for correct shape modeling and analysis. Knowledge of the typical shape and
image appearance of an object is another important cue that can be integrated into
a GDM to improve its performance. Given a set of training data, one can learn
the intensity distribution of each object region, the geometric relationships between
neighboring objects, the overall shape of each object, and/or the pattern of motion
of an object in an image sequence. Use of these kinds of prior information can
help constrain the computation to within a reduced space of admissible solutions
and thereby improve an algorithm’s robustness with respect to image noise, weak
or missing object boundaries, and other artifacts often encountered in real medical
image data.

There are several other considerations in developing GDMs. First, there is
a tradeoff between the model resolution and the computational efficiency. The
resolution of a GDM is inherently limited by the resolution of the sampling grid used
to implement the model. A highly refined grid improves the achievable resolution
at the cost of increasing the computation time. Second, it is difficult to define a
GDM for the simultaneous segmentation of multiple objects. The classical GDM is
a so-called “two-phase” representation that can only segment a single object relative
to a single background. Third, there is a question of robustness. Ideally, when the
segmentation problem is formulated as a variational problem, the solution—i.e.,
the GDM algorithm— should be able to start from an arbitrary initialization and
converge to a global minimizer of the energy function. In reality, the classical
gradient descent approach often converges to a local minimum, which is not the
desired object.

In this chapter, we briefly review the basics of GDMs and then discuss recent
developments that aim to address the challenges mentioned above. The chapter
is organized as follows. In Sect. 2, we first revisit the classical GDM framework,
including the topology-preserving method of Han et al. [42] and the shape-based
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priors of Leventon et al. [57]. We then survey the recent research developments
of GDMs to achieve more flexible and general topology control, integration of
statistical priors of shape, intensity and motion, higher resolution and better effi-
ciency, robust optimization, and extensions to the segmentation of multiple objects.
For other excellent tutorials and reviews of earlier development of deformable
models, we refer interested readers to [71, 75, 119, 121].

2 Overview

2.1 Basic Framework

GDMs are based on the theory of front evolution [2, 52, 90] and are implemented
using the level set numerical method [76, 95]. The model contour(s) (curves in
2D or surfaces in 3D) are embedded as the zero level set of a higher dimensional
level set function ˆ.x; t/ and propagates implicitly through the temporal evolution
of ˆ.x; t/. Due to numerical stability and computational convenience, ˆ.x; t/ is
often chosen to be a signed distance function of the embedded contour(s). Such a
signed distance function can be computed very efficiently using the fast marching
method [94, 109] or the fast sweeping method [130].

For image segmentation problems, a GDM is either formulated as an energy
minimization problem where the solution is sought through gradient descent
optimization, or by directly designing the various forces that drive the model
contour(s) towards desired object boundaries. In either case, the final evolution
equation regarding the level set functionˆ.x; t/ can be summarized in the following
general form:

@ˆ.x; t/
@t

D ŒFprop.x; t/C Fcurv.x; t/�jrˆ.x; t/j C F adv.x; t/ � rˆ.x; t/;

where Fprop, Fcurv, and Fadv are spatially-varying force terms that drive the front
evolution. In particular, Fprop is an expansion or contraction force, Fcurv is the part
of the force that depends on the intrinsic geometry, especially the curvature of the
implicit contour and/or its derivatives, and Fadv is an advection force that passively
transports the contour.

Numerical schemes to solve the above level set PDE must be carefully designed.
The time derivative can be approximated by a forward difference scheme. The
spatial derivatives are computed using upwind scheme for terms Fprop and Fadv,
and using central difference scheme for term Fcurv [76,95]. No parameterization of
the deforming contour is needed during the evolution. The parametric representation
is computed (if necessary) using an isocontour algorithm (e.g., [65]) only after the
evolution is complete.
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Classical GDMs use edge information to design driving forces [16,49,50,68,98].
For example, the well-known geodesic active contour (GAC) model proposed by
Caselles et al. [16, 17, 18] and Kichenassamy et al. [49, 50] is designed to find
the best minimal-length smooth contour that takes into account the image gradient
information. In a GAC model, Fprop.x; t/ D cg.x/, Fcurv.x; t/ D �.x; t/g.x/, and
Fadv.x; t/ D rg.x/, where c is a constant and g.�/ is an image-derived metric,
which is often a monotonically decreasing function of the gradient magnitude of the
image I . Also, �.x; t/ is the (mean) curvature of the level set of ˆ.�; t/ that passes
through x. As edge-based models rely primarily on local gradient information, they
are extremely sensitive to noise and spurious edges. Initialization close to the final
boundary is needed to avoid becoming stuck in local minima. Leakage through weak
edges is another typical problem with these models.

To increase the robustness of the edge-based models, a number of region-
based models have been proposed [20, 26, 78, 80, 84, 116, 128, 132]. Most
region-based methods assume that an image consists of a finite number of regions,
parametrized by a predetermined set of features (e.g., means, variances, textures)
which may be inferred or estimated from the image data. Contours are then driven by
regional forces such that a maximal separation of the regional features is achieved.
Most often the region features are re-evaluated each time the contour evolves. More
recently, models that are based on non-parametric region statistics [51] and shape
optimization principles [5, 44] have also been proposed.

2.2 Topology Preservation

Incorporation of topology control in the GDM framework was introduced by
Han et al. [42] in the topology preserving geometric deformable model (TGDM).
Assuming that the topology of the zero level set (i.e., the embedded contour) is
homeomorphic to the topology of the boundary of the digital object it encircles,
TGDM preserves the topology of the implicit contour by preserving the topology
of the corresponding digital object. This is achieved by adopting the concept of
simple point from the digital topology theory [55] to monitor the sign changes of
the level set function during its evolution, and preventing sign changes at non-simple
points. The basic principle is illustrated in Fig. 1. In Fig. 1(a), the point x is a
simple point. A sign change at x yields a contour that has the same topology as the
original contour, as shown in Fig. 1(b). In contrast, the point y in Fig. 1(b) is not a
simple point. A sign change at y will split the original contour into two, as shown
in Fig. 1(c). A simple point criterion check can thus predict and prevent possible
topology changes. In addition, a connectivity-consistent isocontour algorithm is
necessary to extract a topologically-consistent explicit contour representation from
the embedded level set function at convergence. More details of the algorithm and
its implementation can be found in [42].

TGDMs are useful when the object topology is known a priori. As mentioned
earlier, in cortical segmentation it is known that a cortical surface (closed at the
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Fig. 1 Topology equivalence of implicit contour topology and the digital object boundary
topology: 4-connectivity for dark points and 8-connectivity for others. (a) Original contour.
(b) The contour passes over a simple point. (c) The contour splits at a nonsimple point

bottom) should be topologically equivalent to a sphere with no handles. Due to
image noise and artifacts, standard GDMs typically yield a surface segmentation
with many handles, as shown in Fig. 2(b). A TGDM can guarantee the correct
topology with the same input image and image force design, as shown in Fig. 2(c).
Another example is the segmentation of the human pelvis, whose boundary surface
is typically assumed to be of genus 3 (with three handles). As shown in bottom
row of Fig. 2(b) and Fig. 2(c), a standard GDM yields a segmentation with many
undesirable handles, while the TGDM result does not have these extra handles.

2.3 Shape Priors

Segmentation algorithms that only make use of low-level image information (such
as intensity gradients) often fail to produce satisfactory results in medical imaging
applications due to image noise, limited image resolution and contrast, and other
imaging artifacts that often present in typical medical image data. In these cases,
simple geometric regularization no longer suffices, and higher-level prior knowledge
about the shape of desired object(s) can help.

The first published method that applies shape priors in GDM segmentation was
proposed by Leventon et al. [57]. The method consists of two major stages. In the
first stage, a statistical object shape model is computed from a set of training samples
� D fˆ1;ˆ2; � � � ; ˆng, where each training shape ˆi ; 1 � i � n is embedded as
the zero level set of a signed distance function. Using principal component analysis
(PCA), the covariance matrix of the training set is decomposed as U†UT , where
U is a matrix whose column vectors represent the set of orthogonal modes of shape
variation and † is a diagonal matrix of corresponding singular values. The first k
columns of U form the eigenspace of the (typical) shapes. One can project a given
shape ˆ onto this shape space using

˛ D UT
k .ˆ� N̂ /
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Fig. 2 Topologically-constrained segmentations. (a) shows the reconstructed surface; (b) shows
close-up views of the standard GDM results; and (c) shows close-up views of the TGDM results

where N̂ is the mean shape, and ˛ is the k-dimensional vector of coefficients that
representˆ in the space spanned by Uk . The shape model construction is illustrated
in the top panel of Fig. 3. A training set of corpus callosa segmentation is analyzed
by PCA and the three primary modes of variations of the shape distribution are
shown in the figure. Assuming a Gaussian distribution for ˛, the probability of a
new shape can be computed as:

P.˛/ D 1p
.2�/kj†kj

exp

�
�1
2
˛T †�1

k ˛

�

where†k contains the first k rows and columns of†.
In the second stage of the method, an active contour model is evolved both

locally, based on image gradient and curvature information, and globally towards
a maximum a posteriori (MAP) estimate of the shape and pose. At each iteration,
the MAP estimates of the shape coefficients ˛� and the pose parameter p� are first
computed, and the MAP estimate of the shapeˆ� is then determined. Incorporating
the shape estimation into a traditional GAC model leads to a new level set evolution
equation in the following form:

@ˆ

@t
D .c C �/gjrˆ.t/j C rg � rˆ.t/C ˇ.ˆ�.t/ �ˆ.t//:
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−2σ Mean +2σ

Mode 1

Mode 2

Mode 3

Fig. 3 Top: The three primary modes of variations of the corpus callosum training data set.
Bottom: Four steps in the segmentation of two different corpora callosa. The last image in each
case shows the final segmentation in red. The cyan contour is the standard evolution without the
shape influence. Image courtesy of the authors of [57]

The first two terms are the typical GAC model (as mentioned earlier) and the last
term is the shape prior term. The parameter ˇ is used to balance the influence of
the shape model and the GAC model. The bottom panel of Fig. 3 compares the
performance of the GAC model with and without using the shape prior. Due to
weak edges, the GAC without the shape prior leaks out and fails to capture the
desired shape; whereas the GAC with the proposed shape prior is well constrained
and successfully converges to the boundary of the corpus callosum.

3 GDMs with Topology Control

Since the introduction of the original TGDM, several alternative approaches or
extensions have been proposed in the literature. We briefly summarize these
approaches in this section.

In the original TGDM, strict topology preservation is enforced, i.e., the number
of connected components, cavities and handles are all constrained to remain
unchanged [42]. Segonne et al. [92, 93] made the observation that TGDM can
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Fig. 4 Segmentation of a
“C” shape using a spherical
initialization. First row: GDM
without topology control;
second row: TGDM result;
third row: GGDM result.
Image courtesy of the authors
of [93]

sometimes generate “topological barriers” that lead to geometric inconsisten-
cies (cf. Fig. 4). They proposed to loosen the topological constraint so that only
genus (i.e., the number of handles) is preserved. Their genus-preserving GDM
(GGDM) allows connected components to merge, split, or vanish but no topological
defects (i.e., handles) can be generated. To this end, the concept of “simple point”
is extended to a“multisimple point” criterion, which is checked whenever the level
set function is about to change sign at a computational point. Fig. 4 illustrates the
benefit of the GGDM method.

In both TGDM and GGDM, the topological constraint is enforced in the discrete
sense. A few efforts have been made to formulate topology preservation in the
continuous domain. Shi and Karl [97] proposed to use the so-called differentiable
minimum shape distance (DMSD) to define a topological prior. DMSD is defined
as the shortest distance between any two points on two closed curves. Cast in
a variational framework, a topological prior term is introduced that is inversely
proportional to the DMSD. The term approaches infinity when the DMSD between
two curves approaches zero, thus preventing two curves from merging (though they
can still split).

Alexandrov and Santosa [1] proposed a topology-preserving level set method for
shape optimization. A topological constraint is built into the optimization problem
by adding the following logarithmic barrier energy functional:

H.ˆ/ D �
Z

@D

logŒˆ.x C drˆ.x//�ds �
Z

@D

logŒ�ˆ.x � lrˆ.x//�ds

where ˆ denotes the level set function, @D denotes the contour boundary, ds is the
arc-length measure, and d > 0 and l > 0 are real numbers. These two terms probe
in the vicinity of the contour boundary in the inner and outer normal directions,
respectively, and penalize cases when points away from the zero level set have small
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Fig. 5 (a)-(e): carpal bone segmentation. (f): a toy problem in which the “stuck” situation of
TGDM is avoided by the global regularizing flow. (See text for details.) Image courtesy of the
authors of [103]

absolute distance values. The energy functional has the effect similar to building
“barriers” between merging or splitting contours, thus preventing such topological
changes to happen.

Sundaramoorthi and Yezzi [103] proposed to use a PDE-based geometric flow to
achieve topology preservation. The flow minimizes the following energy functional:

E
.C / D 1

2

Z Z

C�C
dOsds

jjC.Os/ � C.s/jj


where C is a contour, dOs and ds are the arc-length measures, jj � jj is the Euclidean
norm, and 
 > 0 is a free parameter. Minimization of this energy functional leads to
a repulsive force that prevents the model contour from self-intersecting or splitting.
It also imposes a global regularization of the evolving contour. Fig. 5 demonstrates
the benefit of this global regularizing force. Figs. 5(a)–(e) compare the segmentation
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results of TGDM and the global regularizing flow for a carpal bone image. Fig. 5(a)
shows the contour initialization. Fig. 5(b) shows the final segmentation of the global
regularization flow. A magnified view of the bone joint part is shown in Fig. 5(c),
and the results of TGDM and the new method in this area are shown in Figs. 5(d)
and (e), respectively. Clearly, the latter approach keeps the contours more separated.
Fig. 5(f) is another demonstration using a toy problem. Since TGDM only uses
a hard constraint that does not come into play until topology is about to change
in the next step, it does not regularize the contour as the global regularizing flow
does. A similar double integral energy was also used by Rochery et al. [83] for
the extraction of a road network and by Guyader and Vese [40] who integrate this
energy over regions and formulate it directly in the level set framework.

4 GDMs Incorporating Shape Priors

Following the work of Leventon et al., many GDM methods that incorporate prior
shape information have been recently proposed [24, 25, 87, 88, 107, 108, 124].
An extensive review can be found in [32]. We briefly summarize the major
contributions.

Most of the shape-constrained GDM methods assume a linear model for shape
variations, which tend to have two major limitations [21, 30, 31, 86]. First, the
training shapes do not always satisfy a Gaussian distribution as typically assumed.
Second, the space of signed distance functions is not linear, i.e. a linear combination
of signed distance functions is in general no longer a signed distance function. To
address these limitations, Cremers et al. [30,31,86] proposed a statistical shape prior
based on an extension of classical kernel density estimators (cf. [81,85]) to the level
set domain. This prior statistically approximates an arbitrary distribution of training
shapes (without making the restrictive assumption of a Gaussian distribution). In
the limit of infinite sample size, the distribution inferred by the kernel density
estimator converges towards a distribution on the manifold of signed distance
functions. In addition, the cited works also embed an intrinsic alignment in the
energy function so that the shape prior is invariant to certain group transformations
such as translation and scaling. Fig. 6 compares the segmentation result of using a
kernel prior against the results of using a uniform prior, a linear prior, and a manual
segmentation. It can be seen that in this example, the result of using a kernel prior
is closest to the manual segmentation.

Another development in shape prior modeling is the incorporation of object
dynamics. In applications such as cardiac segmentation and tracking, it is important
to take into account temporal correlations of the images. Cremers et al. [29]
proposed to extend the shape modeling to learn the temporal dynamics of a
deforming shape for the segmentation of an image sequence. The dynamical
statistical shape model is constructed by approximating the shape vectors of a
sequence of silhouettes by a Markov chain, which is then integrated into a Bayesian
segmentation framework. Kohlberger et al. [54] proposed to treat time as an ordinary
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Fig. 6 Comparison of the segmentations obtained with the kernel prior (white) and with alterna-
tive approaches (black). Image courtesy of the authors of [86]

fourth dimension and applied a 4D PCA analysis on the training sequences to derive
a 4D shape model. In this method, a whole volume sequence is segmented at the
same time as a 4D image.

5 Fast GDMs

Since GDMs represent the model contour(s) using a higher-dimensional level set
function, a heavy computational cost can be incurred with a naive implementation.
To improve computational efficiency, narrowband methods in conjunction with
reinitialization techniques [82,95] are widely used to restrict the computation to the
neighborhood of the evolving contour(s). However, the overall computation load
can still be prohibitive when the grid size is large.

Several fast implementations of GDMs have been proposed. Goldenberg
et al. [38] and Weickert et al. [113] proposed to adapt the additive operator splitting
(AOS) scheme [114] for GDMs, which relaxes the stability constraint on the size
of the time step associated with the explicit numerical schemes. The AOS scheme
is very stable; but when large time steps are used, splitting artifacts may arise
due to reduced rotational invariance. Kenigsberg et al. [48] and Papandreou and
Maragos [77] proposed to use multigrid techniques to address this problem and
to allow the use of even larger time steps than the AOS scheme. When sub-voxel
accuracy is not of concern, Shi and Karl [96]’s method can provide a very high
efficiency since it eliminates the need to solve the level set PDE. The method
directly tests an optimality condition for the final curve location based on the speed
functions, and uses only simple operations like insertion and deletion on two lists
of boundary points to evolve the curve.

The reinitialization of the level set function can also be accelerated or even
omitted. Krissian and Westin [56] proposed a fast implementation of the Chamfer
distance to save computation time while maintaining the sub-voxel accuracy of
the interface. Li et al. [58, 59] proposed a distance-preserving energy function
that forces the level set function to be close to a signed distance function, which
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eliminates the need for re-initialization and improves the overall efficiency. Another
distance-preserving level set method was later proposed by Estellers et al. [35]; it
is more efficient due to the use of a splitting strategy and advanced `1 optimization
techniques.

Several new methods, constituting a new variational model for image segmenta-
tion that is closely related to the GDM, have been recently proposed [13, 19, 39].
These methods represent objects by soft membership functions rather than signed
distance functions and the smoothness of the segmentation results is controlled
by total variation regularization. The resulting models are convex and thus global
optimal solutions can be guaranteed to be found. Also, the development of efficient
convex relaxation methods [13,39] allows such models to be computed much faster
than traditional GDMs. One weakness, however, is that geometric properties of
objects such as surface curvature and distances between coupled surfaces cannot
be easily modeled and there is no control of the final segmentation topology. Such
models have also been extended to the segmentation of multiple objects (cf. [6,60]).

6 Adaptive Grid GDMs

The development of adaptive grid GDMs was motivated by the observation that the
resolution of a GDM is directly limited by the resolution of the computational grid.
One can improve the model resolution by using highly refined grids at the cost of
losing efficiency and increasing the size—i.e., number of vertices—of the resulting
contour(s). A more elegant approach to address the resolution and efficiency tradeoff
is to use adaptive grid techniques [53], which locally refine or deform a coarse grid
to concentrate computational efforts where more accuracy is needed. Incorporation
of topological constraints also becomes feasible. Two types of adaptive grids have
been used: the moving grid and the quadtree/octree grid. We briefly summarize
these two types of approaches in the following.

A 2D moving grid GDM method was introduced in [41]; it maintains a fixed
reference grid, but moves the actual physical grid points according to the desired
image features [15, 63]. The adaptively deformed grid is obtained by first solving
a Poisson equation using a DCT solver, and then solving an ordinary differential
equation. After that, the level set PDE is solved on the deformed grid with narrow-
banding. Since a uniform reference grid is always kept, the topology preserving
principle on uniform grids (cf. Sect. 2.2) can be directly applied, by performing the
simple point check directly on the reference grid.

An octree grid in 3D (or similarly a quadtree grid in 2D) is a hierarchical cartesian
grid that is locally refined in regions of interest. These adaptive grids are widely
used to improve accuracy in the solution of PDE’s [74, 104] and in medical image
segmentation [8, 34, 122]. The cost for generating an adaptive octree grid is much
smaller compared to that for a moving grid, since no partial differential equations
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Fig. 7 Extraction of inner and outer surfaces using three computational grids. (a)–(c) triangle
meshes: (a) coarse uniform grid TGDM result; (b) fine uniform grid TGDM result; (c) OTGDM
result. (d) and (f): close-up views of inner and outer surfaces reconstructed by three types of grid:
red–coarse uniform grid TGDM result, blue–fine uniform grid TGDM result, yellow–OTGDM
result; (e) and (g): close-up views of octree grids used by OTGDM (shown in blue)

need to be solved. Implementation of topological constraints as introduced in
TGDM is challenging, however, since the theories of common digital topology on
uniform grids cannot be directly applied to an octree grid. Bai et al. [7, 8] proposed
a new digital topology framework on octree grids that include new definitions of
neighborhood, connectivities, and simple points. Based on this extension, a new
octree-grid TGDM (OTGDM) method was introduced in [8, 9]. Adaptive octree
grids are generated according to boundary curvature estimates, and the OTGDMs
preserve the surface topology while evolving on octree grids.

A comparison is shown in Fig. 7 for the use of TGDM to extract inner and
outer cortical surfaces from a brain image on three types of grids: a coarse uniform
computational grid (of the original image size); a fine uniform computational grid
(double size of the original image); and an octree grid whose finest grid resolution
is same as the fine uniform grid. Figs. 7(a)–(c) show close-up views of the three
inner surface results. It can be seen that the OTGDM result provides an adaptive
multi-resolution representation of the surface mesh, which has large triangles in
regions that are relatively flat and small triangles in regions with high curvatures.
Figs. 7(d)–(g) show close-up cross-sectional views of the inner and outer surface
results and the octree grids generated. It can be observed that the fine grid TGDM
result and the OTGDM result capture anatomical details (such as the deeply folded
sulci and gyri indicated by the circles) better than the coarse grid TGDM result.
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7 Miscellaneous

There are many other interesting developments in GDM in addition to those
categorized above. Due to the lack of space, we briefly summarize some of them
in the following. For others such as GDM methods for the segmentation of tubular
structures or tensor-valued images, we refer interested readers to [36, 37, 43, 45, 46,
66, 67, 72, 110, 112, 123].

7.1 Multiple Objects

The conventional level set implementation of GDMs can only deal with a two-phase
image, i.e. a single object on a single background. Extensions to multiple objects in
which n level set functions are used to model n objects with different characteristics
have been proposed [79, 89, 129, 131]. In [106, 125], a joint shape modeling of
n neighboring structures is also implemented using n level set functions. Such
a strategy incurs great computational cost when the number of objects is large
[3, 14, 62, 64, 69, 79, 89, 105, 111, 129, 131].

The multi-phase level set (MPLS) method [111] is an elegant framework pro-
posed to address the above issue. MPLS generalizes the Chan and Vese model [20]
to segment images with more than two regions. Using heaviside functions, the
MPLS method needs only logn level set functions for n phases in the piecewise
constant case, and can represent boundaries with complex topologies including
triple junctions. In the piecewise smooth case, only two level set functions formally
suffice to represent any partition, based on the four color theorem [4]. Fig. 8 shows
how the model works on a color image, where three level set functions are used
to represent up to eight phases (or colors). In this example, the MPLS method
detects six regions and their junctions, which would require at least six level set
functions using the conventional approach. The MPLS framework has been adopted
by many others to extend their work to deal with multiple regions, such as Bertelli
et al. [10] who extended their graph-partitioning method in [100], Kim et al. [51]
who extended their mutual information based approach, and Cremers et al. [33] who
integrated multiple competing shape priors into shape-based GDMs.

The multi-object geometric deformable model (MGDM) was recently developed
to further improve memory requirements, flexibility in speed specification, and
topology control [12]. MGDM represents multiple objects with label and distance
functions rather than separate level set functions. To good approximation only four
functions in 2-D and six functions in 3-D are required to represent any number of
objects and to carry out shape evolution without reconstructing independent level
set functions. Boundary-specific speed functions and topology control of individual
objects and groups of objects can be specified. MGDM was used to parcellate the
cerebellum into individual lobules from magnetic resonance brain images in [11].
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Fig. 8 Color noisy picture with junctions. Three level set functions are used to represent up to
eight constant regions. Six segments are detected. Bottom row shows the final zero-level sets of
�1; �2; �3. Image courtesy of the authors of [111]

7.2 Long-range Interactions

Most existing GDMs allow only local interactions or competitions between different
parts of an implicit contour or between multiple contours. Recently, it has been
shown that enabling long-range interactions can improve the robustness of GDMs
and enable modeling of shapes with complex geometries.

Sebastian et al. [91] proposed a skeletally coupled deformable model which
combines the advantages of curve evolution deformable models, seeded region
growing and region competition. The method uses a curve evolution implementation
of region growing from initialized seeds, where growth is modulated by a skeletally-
mediated competition between neighboring regions. The inter-seed skeleton, which
is interpreted as the predicted boundary of collision between two regions, is used to
couple the growth of seeds and to mediate long-range competition between them.
The long range predicted competition made possible by the inter-seed skeletons
helps achieve a more global minimizer.

Rochery et al. [83] extended the GDM formulation to higher order energy
functionals. Instead of a single integral over the contour, the new functionals consist
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of arbitrary order polynomials that include multiple integrals over the contour
so that arbitrary long-range interactions between subsets of the contour can be
modeled. We note that the authors of [103] and [40] also proposed to use quadratic
energy functionals, although the methods were specifically designed for topology
preservation purposes.

Xiang et al. [115] proposed a physics-based active contour model using a long-
ranged interaction between image boundaries and the moving contours, which was
inspired by the elastic interaction effects between line defects in solids. Another
interesting physics-based model called magnetostatic active contour model was
recently proposed by Xie and Mirmehdi [117,118]. Their model simulates magnetic
interactions between the evolving contour and target object boundaries to improve
the method robustness against arbitrary model initialization and weak edges. The
model was further generalized and extended to 3D in [126].

7.3 Robust Optimization

In most GDM formulations, the final solution is sought through gradient descent
types of approaches that can easily get trapped in undesirable local minima. A multi-
resolution implementation can partially address this problem. Recently, more efforts
are made towards the design of novel optimization methods that are robust to image
noise and insensitive to model initialization.

Li and Yezzi [61] proposed a dual front implementation of GDMs that was
motivated by minimal path techniques [28]. The method seeks a global optimum
inside an active region surrounding the current model position. By tuning the size of
the active region, it achieves an optimal solution with variable degrees of localness
and globalness.

Sundaramoorthi and Yezzi [101, 102] and Charpiat et al. [22, 23] observed that
using the canonicalL2 norm as the Riemannian metric in gradient flow optimization
often leads to undesirable local minimum and irregular flows. They both proposed
to optimize the solution in other functional spaces such as the Sobolev space. The
resulting Sobolev gradient flows are more global in the sense that the deformation of
each point is affected by all the other points on the contour. These flows also favor
global motions (such as translations) over local deformations, which helps avoid
getting trapped at undesired local optima.

8 Conclusion

In this chapter, we reviewed the basics and recent developments of geometric
deformable models based on the level set method. The surveyed work clearly
demonstrates the importance of GDMs as a valuable framework for image segmen-
tation, allowing easy integration of both image boundary and region information, as
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well as prior knowledge about object topology and shape. Undoubtedly, they will
continue to play an important role in various image processing and computer vision
applications for a long time.
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Active Shape and Appearance Models

T.F. Cootes, M.G. Roberts, K.O. Babalola, and C.J. Taylor

Abstract Statistical models of shape and appearance are powerful tools for medical
image analysis. The shape models can capture the mean and variation in shape of a
structure or set of structures across a population. They can be used to help interpret
new images by finding the parameters which best match an instance of the model to
the image. Two widely used methods for matching are the Active Shape Model and
the Active Appearance Model. We describe the models and the matching algorithms,
and give examples of their use.

1 Introduction

Although organs and structures in the body can exhibit a huge range of variation
across a population, the shape of many can be characterised as being a transformed
version of some template or reference shape. For instance, almost everyone’s face
can be thought of as a variant of an ‘average’ face, with two eyes, a nose and a
mouth, though in different positions on each individual. Similarly, almost every
human femur has a shape which is a transformed version of the average. We can
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thus capture the range of shapes of such objects by recording the average shape, and
the ways in which they may vary across a population. In this chapter we describe a
simple method of achieving this.

We represent a shape using a set of points (sometimes called ‘landmarks’), which
define equivalent positions on each example. It should be noted that this can only
be applied to objects whose shape can be consistently described in this manner.
It cannot be applied to structures where we cannot define a simple correspondence
across shapes. For instance, since two trees may have different numbers of branches,
there is no simple way of placing meaningful landmarks across a set of trees.

For anatomical structures where this assumption holds, we can construct statis-
tical shape models to summarise the variation across a population. Such models
can be used for image interpretation. The parameters of a model define a specific
shape. Given a new image, our goal is to find the model parameters which generate a
shape as close as possible to that of the object in the image. This requires additional
information in the form of a description of how any shape appears - what patterns of
intensity information are associated with a particular shape. This too can be learned
from a training set of images. However, there are many ways in which we can
represent the intensity information. For instance, we could model the intensities
across the whole of the object, or we can focus on areas around the boundaries of
interest. Which approach is most useful depends on the application.

Given a model of shape, and some representation of intensities associated with the
shape, matching the model to the image becomes an optimisation problem. Since we
typically have many model parameters, it is a potentially difficult one. We describe
two approaches, the Active Shape Model and the Active Appearance Model, both
of which have been found to be effective. Both are iterative, local search algorithms.
Thus they both require a sensible initialisation if they are to avoid falling into local
minima.

2 Statistical Shape Models

Shape is usually defined as that quality of a configuration of points which is
invariant under some transformation. In two or three dimensions we usually consider
either the similarity transformation (translation, rotation and scaling) or the affine
transformation.

Let Tt.x/ apply a transformation defined by parameters t. In 2D, similarity trans-
formations have 4 parameters, affine transformations are defined by 6 parameters.
The configurations of points defined by x and Tt.x/ are considered to have the same
shape. Shape differences are those changes that cannot be explained by application
of such a global transformation. If we use n 2D points,f.xj ; yj /g, to describe the
shape, then we can represent the shape as the 2n element vector, x, where

x D .x1; : : : ; xn; y1; : : : ; yn/
T (1)

For instance, Fig. 1 gives an example of a set of 46 points used to define the shape
of the outline of a vertebra in a DXA image
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Fig. 1 Set of points used to
define the shape of a vertebra
in a DXA image (image
enhanced to aid visibility of
structures)

Given s training examples, we generate s such vectors xi (i D 1 : : : s). Before
we can perform statistical analysis on these vectors it is important that the shapes
represented are in the same co-ordinate frame. This can be achieved by using
Procrustes Analysis [15]. This transforms each shape in a set, xi , so that the sum
of squared distances of the shape to the mean (D D P jS.xi / � Nxj2) is minimised.

Let the vector xi contain the n coordinates of the i th shape. These vectors form
a distribution in 2n dimensional space. If we can model this distribution, we can
generate new examples, similar to those in the original training set, and we can
examine new shapes to decide whether they are plausible examples.

To simplify the problem, we first wish to reduce the dimensionality of the data
from nd to something more manageable. An effective approach is to apply Principal
Component Analysis (PCA) to the data [10]. The data form a cloud of points
in the 2n-D space. PCA computes the main axes of this cloud, allowing one to
approximate any of the original points using a model with fewer than 2n parameters.
The result is a linear model of the form

x D Nx C Pb (2)

where Nx is the mean of the data, P D .�1j�2j : : : j�t/ contains the t eigenvectors of
the covariance matrix of the training set, corresponding to the largest eigenvalues, b
is a t dimensional parameter vector.

Equation (2) generates a shape in the model frame, where the effects of the
global transformation have been removed by the Procrustes Analysis. A shape in
the image frame, X, can be generated by applying a suitable transformation to the
points, x: X D Tt.x/. Typically Tt will be a similarity transformation described by
a scaling, s, an in-plane rotation, � , and a translation .tx; ty/.
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Shape Mode 1 (b1 = −3σ1, 0, +3σ1) Shape Mode 2 (b2 = −3σ2, 0,+3σ2)

Fig. 2 First two modes of a shape model of a vertebra (Parameters varied by ˙3 s.d. from the
mean)

The best choice of parameters for a given shape x is given by

b D PT .x � Nx/ (3)

The vector b defines a set of parameters of a deformable model. By varying the
elements of b we can vary the shape, x, using Eq. (2). The variance of the i th

parameter, bi , across the training set is given by �i . By applying suitable limits
to the model parameters we ensure that the shape generated is similar to those in the
original training set.

If the original data, fxig, is distributed as a multivariate Gaussian, then the
parameters b are distributed as an axis-aligned Gaussian, p.b/ D N.0; ƒ/ where
ƒ D diag.�1; : : : ; �t /. In practise it has been found that the assumption of normality
works well for many anatomical structures.

2.1 Examples of shape models

Figure 2 shows the effect of changing the first two shape parameters on a model of
the outline of a vertebra, trained from 350 examples such as that shown in Fig. 1.

Figure 3 shows the effect of varying the parameter controlling the first mode of
shape variation of a 3D model of a set of deep brain structures, constructed from
shapes extracted from MR images of 69 different subjects1. Note that since the
method only represents points, it easily model multiple structures.

3 Active Shape Models

Given a new image containing the structure of interest, we wish to find the pose
parameters, t, and the shape parameters, b, which best approximate the shape of the
object. To do this we require a model of how well a given shape would match to
the image.

1Provided by David Kennedy at the Centre for Morphometric Analysis
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Fig. 3 Two views of the first mode of a shape model of structures in the brain

Suppose we have a set of local models, each of which can estimate how well
the image information around a point matches that expected from the training set,
returning a value qi .Xi ; Yi /. We then seek the shape and pose parameters which
generate points X D fXi; Yi g so as to maximise

Qasm.t;b/ D
nX

iD1
qi .Xi ; Yi / (4)

where X D Tt.Nx C Pb/.
The basic Active Shape Model algorithm is a simple iterative approach to locating

this optima. Each iteration involves two steps

1. Search around each point .Xi ; Yi / for a better position, .X 0
i ; Y

0
i /

2. Update the pose and shape parameters to best fit the model to the new positions X0

By decoupling the search and update steps the method can be fast. Since each
point is searched for independently, it is simple to implement and can make use of
parallel processing where available.

Because of the local nature of the search, there is a danger of falling into local
minima. To reduce the chance of this it is common to use a multi-resolution
framework, in which we first search at coarse resolutions, with low resolution
models, then refine at finer resolutions as the search progresses. This has been shown
to significantly improve the speed, robustness and final accuracy of the method.
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a

b

Fig. 4 ASM search requires models of the image around each point

The approach has been found to be very effective, and numerous variants
explored. In the following we will summarise some of the more significant
approaches to each step.

3.1 Searching for Model Points

The simplest approach is to have qi .X; Y / return the edge strength at a point.
However we will usually have a direction and scale associated with each point,
allowing the local models to be more specific. For instance, since most points are
defined along boundaries (or surfaces in 3D), the normal to the boundary/surface
defines a direction, and a scale can be estimated from the global pose transformation.

Since we have a training set, a natural approach is to learn statistical models of
the local structure from that around each point in the known examples [10]. For each
model point in each image, we can sample at a set of nearby positions. For instance,
at points along smooth curves we can sample profiles (Fig. 4a), whereas at corner
points we can sample on a grid around the point (Fig. 4b).

The samples around model point i in training image j can be concatenated
into a vector, gij . Typically each such vector is normalised to introduce invariance
to overall intensity effects (for instance, by subtracting the mean intensity and
scaling so the vector is of unit length). We then can estimate the probability density
distribution pi .g/, which may be a Gaussian, or something more sophisticated if
sufficient samples are available.

Given such a PDF for each point, we can evaluate a new proposed position by
sampling the image around the point into a new vector g, and setting qi .Xi / D
logpi .g/.
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To search for a better position, we evaluate the PDF at a number of displaced
positions, and choose the best. For profile models, we typically search at positions
along a profile normal to the current boundary. For grid based models, we would
test points on a grid. There are natural extensions to 3D volume images.

Rather than simply sample image intensities, it is possible to sample other
features. For instance van Ginneken et al. [36] sampled Gabor features at multiple
scales.

This approach has been shown to be effective in many applications [10]. However,
van Ginneken et al. [36] pointed out that improved estimates of the model point
positions can be obtained by explicitly training classifiers for each point, to
discriminate the correct position from incorrect nearby positions. The approach is
to treat samples at the model points in the training set as positive examples, then
create a set of negative examples by sampling nearby. These examples are used
to train a classifier. During search samples around a set of candidate positions are
evaluated, and the one most strongly classified as positive is used. It is assumed that
the classifier gives a continuous response which is larger for positive examples, and
can thus be used to rank the candidates.

In the case of [36] a nearest neighbour classifier was used, but encouraging results
have been obtained with a range of methods. For instance, Li and Ito [37] used
Adaboost to train a classifier for facial feature point detection.

A related approach is to attempt to learn an objective function which has
its minimum at the correct position, and has a smooth form to allow efficient
optimisation [28].

3.2 Updating the Model Parameters

After locating the best local match for each model point, X0, we update the model
pose and shape parameters so as to best match these new points. This can be
considered as a regularisation step, forcing points to form a ‘reasonable’ shape -
one defined by the original model.

The simplest approach is to find t and b so as to minimise

jX0 � Tt.Nx C Pb/j2 (5)

For anything other than when T ./ is a translation, this is a non-linear sum of
squares problem, so can be efficiently solved with Levenberg-Marquardt [29], or
an iterative algorithm in which we alternate between solving for b with fixed t, and
solving for t with fixed b, each of which has a closed form. To prevent the generation
of extreme shapes, limits can be placed on the parameters. If we assume a normal
distribution for the original shapes, then the parameters bi are linearly independent
with a variance �i . A natural constraint is then to force
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M D
tX

iD1

b2i
�i
< Mthresh (6)

SinceM will be distributed as �2 with t degrees of freedom, this distribution can be
used to select a suitable value ofMthresh (for instance, one that includes 98% of the
normal samples).

This approach effectively treats every choice of shape parameters within the
threshold as equally likely. An alternative is to include a prior, rather than a hard
threshold, for instance

logp.t;bjX0/ D const � jT �1
t .X0/ � .Nx C Pb/j2=�2r �

tX

iD1

b2i
�i

(7)

where �2r is the variance of the residuals (those not explained by the model) in the
model frame and we assume all pose parameters are equally likely. We can thus find
the most likely values for t;b by optimising (7). Again, this is a non-linear sum of
squares problem, for which fast iterative algorithms exist (for instance, see [38]).

Information about the uncertainty of the estimates of the best matching point
positions can also be included into the optimisation [17].

Since the models for each point may return false matches (for instance by latching
on to the wrong nearby structure), it can be effective to use a more robust method in
which outliers are detected and discarded [27].

4 Active Appearance Models

The Active Shape Model treats the search for each model point as independent.
However, there will usually be correlations between the local appearance around
nearby points. This can be modelled, but leads to a more difficult optimisation
problem. The Active Appearance Model algorithm is a local optimisation technique
which can match models of appearance to new images efficiently.

4.1 Appearance Models

We assume that each example of an object in a class can be thought of as being
generated by creating a version with an ‘average’ shape in a reference frame, then
deforming it using the shape model.

To train a statistical model we can warp each training example back to the
reference frame, and analyse the variation of the ‘shape-corrected’ intensities.
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a b

Fig. 5 Sample points can be on a dense grid, or along profiles around boundaries

More formally, let W.y W b; t/ apply a deformation of space such that the mean
model points Nx are mapped to the points defined by the shape model

W.Nx W b; t/ D Tt.Nx C Pb/ (8)

and that other points are suitably interpolated.2

Let f D F.I;Y/ be a set of features sampled at points Y in image I . These can
be interpolated intensities, gradient information or something more sophisticated.
Note that the feature sampling will usually include some normalisation, for instance,
arranging that the mean of the elements in f is zero and their variance is unity, to
introduce some invariance to intensity changes.

Let y be a set of points in the reference frame (that of the mean of a model)
indicating the normalised positions of the points in the image at which we wish to
sample. This may be a dense grid of points across the region, or a subset of points
around the model boundaries (see Fig. 5).

Given a set of training images, Ii , together with a set of corresponding model
points Xi for each image, we can construct a statistical model as follows.

1. Construct a statistical shape model from the corresponding points as described
above.

2. For each image, Ii ,

(a) Estimate the optimal shape and pose parameters, bi ,ti
(b) Sample the features3 fi D F.Ii ;W.y W bi ; ti //

3. Apply PCA to the set of feature vectors ffig to generate a linear model of the form
f D Nf C Fa, where F contains the most significant eigenvectors of the covariance
matrix of the feature vectors.

Thus for each training example we have a shape, summarised by t and b, and a
set of feature samples, summarised by a D FT .f � Nf/.

2We use a variant of the notation introduced by Matthews and Baker [22]
3Note that we sample the features at points based on the best shape model approximation to the
shape X, not on X itself. Thus any approximation errors in the shape are absorbed into uncertainty
in the feature samples, ensuring we are better able to reconstruct the original training set if required.
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It is often the case that there is significant correllation between the shape and
the feature samples. We can model this explicitly by generating joint vectors j D
.bT jWaT /T , where W is a diagonal weighting matrix, chosen to account for the
difference in units between the shape and the features. A useful choice of W D ˛I,
where ˛ is chosen so that the shape and scaled feature components have similar
variance. If we apply a third PCA to these joint vectors, we can construct a combined
linear model of the form

�
b

Wa

�
D j D Qc (9)

which can be decomposed into separate shape and feature terms,

x D Nx C Qsc
f D Nf C Qf c

(10)

where c is a set of parameters which control both the shape and the feature model
(see [7] for more details).

4.2 Image Search

Given a new image we wish to find the model parameters which generate a shape
and features most similar to those in the image. This is an interpretation through
synthesis approach.

For a given choice of parameters, p D .tT ; cT /T , we can generate shape
parameters b using Eq. (9) and corresponding features f using Eq. (10).

Let f0 D F.Ii ;W.y W b; t// be the features sampled from the image given the
current shape. The residual difference between those features given by the model
and those sampled from the image is

r.p/ D f0 � f (11)

The residual is a function of the model parameters. The way in which the residual
varies as we vary the parameters is approximated by Jacobian, J,

Jij D @ri

@pj
(12)

To match the model to the image we seek the parameters which minimise the sum
of squares of the residual,

E.p/ D jr.p/j2 D jf0 � fj2 (13)
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This problem can be solved efficiently with a fast iterative gradient descent
method. If our current parameters are p, we seek an update step, ıp which improves
our match. It can be shown [7, 22] that a good estimate of the step is given by

ıp D �Rr (14)

where R is the pseudo-inverse of the Jacobian of r.p/,

R D .JJT /�1JT (15)

This requires an estimate of the Jacobian at the current parameters, which can
be relatively expensive to compute. However, since the residual is measured in
the normalised reference frame, for many problems it is found that the Jacobian
is approximately constant over a reasonable range of parameters. Thus we can
precompute it, by numeric differentiation on the training set [7, 22]. Alternatively
good results can be obtained by treating (14) as a regression problem and learning R
from large numbers of randomly sampled displacements across the training set [5].

A simple algorithm to search for the best match given this relationship is then

1. Evaluate the residual r.p/ D f0 � f
2. Evaluate the current error E0 D jrj2
3. Predict the displacement, ıp D �Rr
4. If jr.p C ıp/j2 < E0 then accept the new estimate, p WD p C ıp, otherwise

perform line search along p C ˛ıp
5. Repeat until convergence

Typically only a small number of iterations are required. The algorithm is
usually used in a multi-resolution framework, in which models trained at a coarse
resolution are used to get an approximate estimate, which is then refined using
higher resolution models.

4.3 Updating the parameters

In the above we use a simplification that the parameters should be updated in an
additive fashion (p WD p C ıp). However, in practise a slightly more complicated
compositional approach should be used [7, 22].

Consider, for instance, the parameters defining the pose transformation, Tt.x/.
The feature sampling effectively warps the image into the reference frame, and
the residual is computed in that frame. Suppose that the predicted update is ıt.
The resulting transform should then be Tt0.x/ D Tt.Tıt.x// (we first apply the
update in the reference frame, then apply the original transformation). Thus the
correct approach is to use a compositional updating scheme. Matthews and Baker
[22] point out that the shape update should also be treated as a transformation,
and a compositional scheme used for that, rather than simply updating the shape
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parameters linearly. Refering to Eq. (8), if ıt and ıb are the pose and shape updates,
the new parameter values, t0 and b0 should be chosen so that

W.Nx W b0; t0/ � W.W.Nx W ıb; ıt/ W b; t/ (16)

However, this is more complex, and in practise it seems that a linear scheme is
generally sufficient (though slightly less efficient), as long as the pose is dealt with
correctly.

4.4 Choice of Features

The simplest approach is to sample intensity values at each point. The resulting
feature vector of intensities can be normalised to allow for some variations in
imaging conditions. However, methods based just on intensities can be sensitive
to variation in brightness across the image and other effects. More robust results can
be obtained by modeling some filtered version of the original image.

Edge-based representations tend to be less sensitive to imaging parameters than
raw intensity measures. Thus an obvious alternative to modeling the intensity
values directly is to record the local image gradient in each direction at each pixel.
Although this yields more information at each pixel, and at first glance might seem
to favor edge regions over flatter regions, it is only a linear transformation of the
original intensity data. Where model building involves applying a linear PCA to the
samples, the resulting model is almost identical to one built from raw intensities,
apart from some effects around the border, where computing the gradients includes
some background information into the model.

However, nonlinear normalization of the gradient at each pixel in the region to
be modeled has been found to be a useful representation. If the local gradients at
a pixel are gx , gy , we compute normalized features .g0

x; g
0
y/ D .gx; gy/=.g C g0/

where g is the magnitude of the gradient, and g0 is the mean gradient magnitude
over a region. Building texture models of this normalized value has been shown to
give more robust matching than matching intensity models [34].

Stegmann and Larsen [24] demonstrated that combining multiple feature bands
(e.g., intensity, hue, and edge information) improved face feature location accuracy.
Scott et al. [18] have shown that including features derived from "cornerness"
measures can further improve performance.

Liu [21] uses features learnt from the training set (see below).

4.5 Shape AAMs

The original AAM manipulates the combined shape and feature parameter vector, c.
However, a very similar formulation can be used to instead drive the shape and pose
parameters, treating them as independent of the feature parameters [6, 22].
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In this formulation the explicit parameters are t and b. The feature parameters, a,
are set to the best match to the normalised features sampled from the image, f0,

a D FT .f0 � Nf/ (17)

The residual is then a function of t and b alone,

rs.t;b/ D f0 � .Nf C Fa/ (18)

Again the updates, ıt and ıb can be computed using a matrix multiplication with
this residual,

ıt D Rs1rs.t;b/
ıb D Rs2rs.t;b/

(19)

where the update matrices Rs1 and Rs2 are derived from numerical estimates of the
Jacobian of rs , or learnt from training data.

The advantage of this approach is that there are fewer shape parameters than
combined parameters, thus the method has the potential to be more efficient and
more robust. However, whether it does indeed give better results than the formu-
lation manipulating the combined parameters seems to be somewhat dependent
on the nature of the application being addressed, so it is advisable to try both
methods. In particular, where there is significant correlation between shape and
texture parameters, the combined parameter update may be more robust.

4.6 Other Variants

Liu [21] describes a variant in which the image features are selected from a large
basis set using an Adaboost approach, chosen so as to best discriminate between
the correct position and nearby incorrect positions. Given this feature model, it is
possible to evaluate the quality of fit of a particular choice of shape parameters. Liu
presents an efficient gradient-descent search algorithm for optimising the shape and
pose parameters.

Batur and Hayes demonstrated that modifying the update matrix R, depending
on the current estimates of the model parameters, can lead to more accurate and
reliable matching [2].

Cootes and Taylor demonstrated that the estimate of the Jacobian can be refined
during the search itself, leading to a better overall result [3].

Various authors have extended the AAM to use robust estimates for the model
building and parameter updates [13, 16, 25].

Stegmann et al. have done extensive work with Active Appearance Models, and
have made their software available [23].
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The approach extends naturally to 3D volume images, either by using volumetric
models [26] or profiles normal to surfaces [1].

Non-linear regressors have been used in place of the linear predictor in the update
step (Eq. 14), leading to improved performance if carefully trained. For instance
boosted regressors [33, 35] and Random Forest regressors [30].

5 Examples of application

5.1 Detecting Vertebral Fracture

Osteoporosis is a progressive skeletal disease characterized by a reduction in bone
density, leading to an increased risk of fractures, particularly of the hip, vertebrae
and wrist. Vertebral fractures are the most common, and appear in younger patients.
The detection of such fractures is often used to diagnose and monitor osteoporosis.
Typically vertebral fractures are located by expert radiologists analysing either
radiographs or DXA images of the spine. A fractured vertebra typically exhibits
changes in shape and more subtle changes in the appearance of the ‘endplate’.

Automating the relatively time-consuming process of detecting such fractures is
challenging because of the noisy and cluttered nature of the images (see Fig. 1 for
an example of the appearance of a vertebra in a DXA image). However, by using
statistical models of shape and appearance it is possible to accurately and reliably
segment such structures [25, 31, 32].

A training set of 315 DXA images was annotated by expert radiologists. On each
image the outlines of 10 vertebra (T7-L4) were marked using a total of 405 points
(Fig. 6).

A global shape model was constructed from all 10 vertebrae. Figure 6 shows the
first two shape modes of the model. In addition, models were constructed for each
triplet of 3 consecutive vertebrae.

Given a new image, the model is initialised by the radiologist clicking the
approximate centre of each vertebra. The global shape model is then matched to the
input points. The result of this is then used to initialise the triplet models. Each triplet
model is matched using a constrained AAM search and the quality of its final match
evaluated. The best fitting triplet is selected, and the points of its central vertebra
fixed. The global shape model is updated to refine the initialisation of remaining
triplets, and other triplets are tried. This leads to a dynamic ordering in which the
best fitting models are used to constrain the search for the models where poorer
image information is available (for full details, see [31]). It can be demonstrated
that decomposing a global model into a set of overlapping smaller models in this
way can lead to more accurate and robust results than searching with the global
model alone. This is in part due to the global model not being flexible enough due to
undertraining. The system has been shown to achieve a median accuracy of 0.55 mm
on normal vertebra, and 0.88 mm on the most extreme grade 3 fractures [25].
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Fig. 6 Typical training image and second mode of a shape model of a spine

6 Discussion

The statistical models of shape and appearance described above are able to capture
the variation in structure across a population. Such models are very useful for
searching new images and for giving concise descriptions of new examples of the
modelled structure.

Though they can only be used for objects which can be modelled as a deformed
version of some template, they still have wide application, as many structures and
organs of interest satisfy this constraint.

The choice of which approach (ASM or AAM) is most suitable is somewhat
application specific. ASMs, relying on multiple local searches, can be made very
efficient and are simpler to implement. AAMs are more complex, as they take
account of correlations in the texture across the whole of the modelled region.
However, both methods have been shown to give good results in different domains.

A limitation of using a single global shape model is that it can overconstrain the
final solution, particularly when there is a lot of local variation in shape which may
not be adequately captured in a small training set. Approaches to overcoming this
include artificially introducing extra shape variation into the model [8,11], applying
local search to locally deform the fit of the best global result [9] and using a set of
linked local models to optimise the result of a global model [31].
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One of the most effective new techniques for matching shape models to new
images is a variant of the Active Shape Model which uses Random Forest regressors
at each point to vote for the best position of the points. Votes are accumulated from
a region around the current position, and the shape model is fitted so as to maximise
the total votes under each model point - see [20]. The ability of the Random Forest
to capture non-linear relationships between image structure and point positions is
particularly useful for achieving robust results.

Perhaps the most challenging problem associated with the use of such models is
obtaining the point correspondences required for training. Though in 2D they can
often be supplied manually, for large 3D datasets this is not practical. Considerable
research has been done into the subject of automatically finding correspondences
across large groups of shapes and images. Though it is still an active area, practical
methods are now available, including [4, 12, 14, 19].
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4. T. F. Cootes, C. J. Twining, V. S. Petrović, K. O. Babalola, and C. J. Taylor. Computing
accurate correspondences across groups of images. IEEE Trans. Pattern Analysis and Machine
Intelligence, 32(11):1994–2005, 2010.

5. T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In ECCV, volume 2,
pages 484–498, 1998.

6. T. F. Cootes, G. J. Edwards, and C. J. Taylor. A comparative evaluation of active appearance
model algorithms. In British Machine Vision Conference, volume 2, pages 680–689. BMVA
Press, Sept. 1998.

7. T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. IEEE Trans. Pattern
Analysis and Machine Intelligence, 23(6):681–685, 2001.

8. T. F. Cootes and C. J. Taylor. Combining point distribution models with shape models based
on finite-element analysis. Image and Vision Computing, 13(5):403–409, 1995.

9. T. F. Cootes and C. J. Taylor. Combining elastic and statistical models of appearance variation.
In European Conference on Computer Vision, volume 1, pages 149–163. Springer, 2000.

10. T. F. Cootes, C. J. Taylor, D. Cooper, and J. Graham. Active shape models - their training and
application. Computer Vision and Image Understanding, 61(1):38–59, Jan. 1995.

11. C. Davatzikos, X. Tao, and D. Shen. Hierarchical active shape models using the wavelet
transform. IEEE Trans. on Medical Imaging, 22(3):414–423, 2003.

12. R. Davies, C. Twining, T. Cootes, J. Waterton, and C. Taylor. 3D statistical shape models
using direct optimisation of description length. In European Conference on Computer Vision,
volume 3, pages 3–20. Springer, 2002.



Active Shape and Appearance Models 121

13. G. Edwards, T. F. Cootes, and C. J. Taylor. Advances in active appearance models. In Int.Conf.
on Computer Vision, pages 137–142, 1999.

14. A. Frangi, D. Rueckert, J. Schnabel, and W. Niessen. Automatic construction of multiple-
object three-dimensional statistical shape models: Application to cardiac modeling. IEEE-TMI,
21:1151–66, 2002.

15. C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal
Statistical Society B, 53(2):285–339, 1991.

16. R. Gross, I. Matthews, and S. Baker. Constructing and fitting active appearance models with
occlusion. In Proceedings of the IEEE Workshop on Face Processing in Video, June 2004.

17. A. Hill, T. Cootes, and C. Taylor. Active shape models and the shape approximation problem.
In British Machine Vision Conference, pages 157–166. BMVA Press, 1995.

18. I. M. Scott, T. F. Cootes, and C. J. Taylor. Improving appearance model matching using local
image structure. In Information Processing in Medical Imaging, pages 258–269. Springer-
Verlag, 2003.

19. J. Klemencic, J. Pluim, and M. Viergever. Non-rigid registration based active appearance
models for 3d medical image segmentation. Journal of Imaging Science and Technology,
48(2):166–171, 2004.

20. C. Lindner, S. Thiagarajah, J. M. Wilkinson, arcOGEN, G. Wallis, and T. F. Cootes. Fully
automatic segmentation of the proximal femur using random forest regression voting. IEEE
Trans. Medical Imaging, 32(8):1462–1472, 2013.

21. X. Liu. Generic face alignment using boosted appearance model. In Computer Vision and
Pattern Recognition, pages 1–8, 2007.

22. I. Matthews and S. Baker. Active appearance models revisited. International Journal of
Computer Vision, 60(2):135 – 164, November 2004.

23. M. B. Stegmann, B. K. Ersbøll, and R. Larsen. FAME - a flexible appearance modelling
environment. IEEE Trans. on Medical Imaging, 22(10):1319–1331, 2003.

24. M. B. Stegmann and R. Larsen. Multi-band modelling of appearance. Image and Vision
Computing, 21(1):66–67, 2003.

25. M. G. Roberts, T. F. Cootes, and J. E. Adams. Robust active appearance models with iteratively
rescaled kernels. In Proc. British Machine Vision Conference, volume 1, pages 302–311, 2007.

26. S. Mitchell, H. Bosch, B. F. Lelieveldt, R. van der Geest, J. Reiber, and M. Sonka. 3-D
active appearance models: Segmentation of cardiac mr and ultrasound images. Trans. Medical
Imaging, 21(9):1167–78, 2002.

27. M. Rogers and J. Graham. Robust active shape model search. In European Conference on
Computer Vision, volume 4, pages 517–530. Springer, 2002.

28. M. Wimmer, F. Stulp, S. J. Tschechne, and B. Radig. Learning robust objective functions for
model fitting in image understanding applications. In Proc. British Machine Vision Conference,
volume 3, pages 1159–168, 2006.

29. W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C (2nd Edition).
Cambridge University Press, 1992.

30. P. Sauer, T. Cootes, and C. Taylor. Accurate regression procedures for active appearance
models. In BMVC, 2011.

31. M. Roberts, T. Cootes, and J. Adams. Linking sequences of active appearance sub-models via
constraints: an application in automated vertebral morphometry. In 14th British Machine Vision
Conference, volume 1, pages 349–358, 2003.

32. M. Roberts, T. Cootes, and J. Adams. Vertebral morphometry: Semi-automatic determination
of detailed vertebral shape from dxa images using active appearance models. Investigative
Radiology, 41(12):849–859, 2006.

33. J. Saragih and R. Goecke. A non-linear discriminative approach to AAM fitting. In Proc. ICCV,
2007.

34. T. F. Cootes and C. J. Taylor. On representing edge structure for model matching. In Computer
Vision and Pattern Recognition, volume 1, pages 1114–1119, 2001.

35. P. Tresadern, P. Sauer, and T. Cootes. Additive update predictors in active appearance models.
In British Machine Vision Conference. BMVA Press, 2010.



122 T.F. Cootes et al.

36. B. van Ginneken, A. F. Frangi, J. J. Stall, and B. ter Haar Romeny. Active shape model
segmentation with optimal features. IEEE-TMI, 21:924–933, 2002.

37. Y. Li and W. Ito. Shape parameter optimization for adaboost active shape model. In Interna-
tional Conference on Computer Vision, volume 1, pages 251–258. IEEE Computer Society
Press, 2005.

38. Y. Zhou, L. Gu, and H. -J. Zhang. Bayesian tangent shape model: Estimating shape and pose
parameters via bayesian inference. In Computer Vision and Pattern Recognition, volume 1,
pages 109–118, 2003.



Part II
Statistical & Physiological Models



Statistical Atlases

C. Davatzikos, R. Verma, and D. Shen

Abstract This chapter discusses the general concept of statistical atlases built from
medical images. A statistical atlas is a quantitative reflection of normal variability
in anatomy, function, pathology, or other imaging measurements, and it allows
us to establish a baseline against which abnormal images are to be compared for
diagnostic or treatment planning purposes. Constructing a statistical atlas relies on a
fundamental building block, namely deformable registration, which maps imaging
data from many individuals to a common coordinate system, so that statistics of
normal variability, as well as abnormal deviations from it, can be performed. 3D
and 4D registration methods are discussed. This chapter also discusses the statistical
analyses applied to co-registered normative images, and finally briefly touches upon
use of machine learning for detection of imaging patterns that distinctly deviate
from the normative range to allow for individualized classification.

1 Introduction

Medical images are now used routinely in a large number of diagnostic and prog-
nostic evaluations. Their widespread use has opened up tremendous opportunities
for studying the structure and physiology of the human body, as well as the ways in
which structure and function are affected by a variety of diseases and disorders.
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Fig. 1 A statistical atlas of the spatial distribution of gray mattr (GM) in a population of elderly
healthy individuals. Hot colors indicate brain regions with the highest frequency/volume of GM in
the population. A new individual’s spatial distribution of GM can be contrasted against this atlas,
to identify regions of potentially abnormal brain atrophy

Although earlier studies typically involved a few dozens of images each, many
current clinical research studies involve hundreds, and thousands of participants,
often with multiple scans each. Large databases are therefore constructed rapidly,
incorporating rich information of structure and function in normal and diseased
states. Analysis of such a wealth of information is becoming increasingly difficult,
without the availability of advanced statistical image analysis methods.

In order to be able to integrate images from different individuals, modalities,
time-points, and conditions, the concept of a statistical atlas has been introduced
and used extensively in the medical image analysis literature, especially in the fields
of computational anatomy and statistical parametric mapping of brain functional
images [8, 14, 23, 28, 30, 82, 84]. images over certain populations. For example,
a statistical atlas of the typical regional distribution of gray and white matter
(GM, WM) in the brain can be constructed by spatially normalizing a number
of brain images of healthy individuals into the stereotaxic space, and measuring
the average and standard deviation of the amount of GM and WM in each brain
region (Fig. 1). This atlas can also become more specific, for example to the age,
sex, and other characteristics of the underlying population. Similarly, a statistical
atlas of cardiac structure and function can provide the average myocardial wall
thickness at different locations, its change over time within the cardiac cycle, and
its statistical variation over a number of healthy individuals or of patients with a
specific cardiac pathology. Another representative example could be an atlas of the
spatial distribution of prostate cancer [98], which can be constructed from a number
of patients undergoing prostatectomy, in order to guide biopsy procedures aiming
to sample prostate regions that tend to present higher incidence of prostate cancer
(e.g. Fig. 2).

Statistical atlases are quantitative analogs to the knowledge acquired by a
radiologist during clinical training, in that they learn patterns from large number of
scans, and represent anatomical or functional variability in a group of individuals.
The two most common ways in which atlases are used are the following:
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Fig. 2 A statistical atlas of the spatial distribution of prostate cancer obtained from co-registered
prostatectomy specimens. Brighter green indicates areas of higher cancer incidence. This atlas can
potentially be used to guide biopsy procedures aiming to obtain tissue from regions more likely to
host cancer

1) To compare two groups of individuals, for example a group of patients with
a specific disease and a group of healthy controls. Conventional approaches
havse used standard linear statistics [40]. However, the more and more common
use of multi-parametric or multi-modality images calls for more sophisticated
statistical image analysis methods that determine often nonlinear relationships
among different scans, and therefore lead to the identification of subtle imaging
phenotypes. Section 3 discusses some of the approaches and challenges.

2) To compare an individual with a group of individuals. For example, one might
want to evaluate whether a patient with cognitive impairment presents the spatial
pattern of brain tissue atrophy that is common to Alzheimer’s disease patients.
The individual’s scans are then to be compared with the statistical atlas of AD
patients. High-dimensional pattern classification methods are finding their way
into the imaging literature more and more frequently, providing a new class of
imaging-based diagnostic tools. Some of the work in this direction is discussed
in Sect. 4.

A fundamental process in constructing a statistical atlas is that of registration, i.e.
the process of bringing scans from different session and different individuals into a
common spatial coordinate system, where they can directly be compared with each
other and integrated into a statistical atlas. This process is described in Sect. 2.

2 3D and 4D Deformable registration

Image analysis methods have been studied in the literature during the past 15
years [3, 6, 12, 22, 26, 38, 46, 47, 50, 60, 65, 67, 69, 76, 77, 81]. One very promising
approach for morphometric analysis is based on shape transformations that maps
one template of anatomy (e.g. a typical brain, spinal, cardiac, or prostate image) to
an image of interest. The resulting transformation measures the detailed differences
between the two anatomies under consideration. So far, many methods have been
proposed in the literature for obtaining the shape transformations, typically based
on a method called deformable image registration.
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The goal of deformable image registration is to find a transformation that
maps every point in one image to its matching point in another image. Matching
points should correspond to the same anatomical feature or structure. Also, the
resulting shape transformation is usually required to be a diffeomorphism, i.e.,
a differentiable and invertible mapping between the domains of the two images.
So far, various methods have been proposed for deformable image registration
[1, 2, 6, 11, 18, 19, 20, 24, 31, 40, 42, 44, 49, 62, 68, 79, 81, 89, 90], which fall into
three categories, i.e., landmark-based registration, intensity-based registration, and
feature-based registration. Each of these methods has its own advantages and
disadvantages, as descried below.

The landmark-based methods utilize the prior knowledge of anatomical structure
and thus are computationally fast since they do not evaluate a matching criterion
on every single voxel in an image. Generally, a human rater is required to define a
number of identifiable landmark points on a template and to manually locate their
corresponding points on each of the images that are subject to the analysis. The
beginning of the modern phase of this approach in medical imaging could perhaps
be dated back to 1989 with Bookstein’s work on landmark-based morphometrics [6].
Shape transformation is obtained by interpolating the mapping on the landmarks
everywhere else in the image, using a thin plate spline model. This approach
has been mainly used in 2D neuroimaging studies, often restricted to the corpus
callosum, since not many anatomical structures lend themselves to 2D analysis.
Moreover, defining landmarks in 3D with high accuracy and reproducibility is
often a very difficult and impractical task, especially in large studies. Also, it is
time-consuming to manually place a sufficient number of landmarks for accurate
registration.

The intensity-based methods [11, 12, 17, 21, 36, 39, 60, 68, 79] aim to maximize
the intensity similarity of two images, and can be fully automated since they do not
require the construction of a specific anatomical model each time they are applied
to a new problem. These methods assume that if a shape transformation renders
two images similar, it implies anatomical correspondence between the underlying
anatomies. This is a reasonable assumption, but it can easily be violated in practice,
since two images can be made similar via shape transformations that do not respect
the underlying anatomical correspondences.

Somewhat related to image intensity matching are the methods optimizing
information theoretic criteria, in order to find appropriate shape transformations.
The main advantage of these methods over intensity similarity methods is that they
can be potentially used for multi-modality image registration, particularly when the
tissue intensities are different in the different modality images. The most popular
criterion used for multimodality image registration has been mutual information
[68, 88, 91], which is maximized when the “predictability” of the warped image
based on the template is maximized, and which tends to occur when the same tissue
types in two images are well registered.

The feature-based registration methods formulate the image registration as a
feature matching and optimization problem [16, 41, 85, 86]. A number of features,
such as edges or curves or surfaces [15, 16, 29, 49, 65, 80, 81, 85], are typically
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extracted from the images via an image analysis algorithm, or simply drawn
manually, and are then used to drive a 3D deformable registration method, which
effectively interpolates feature correspondence in the remainder of the image.
Feature-based methods pay more attention to the biological relevance of the
shape matching procedure, since they only use anatomically distinct features to
determine the shape transformation, whereas image matching methods seek the
transformations that maximize the similarity of images, with little warranty that the
implied correspondences have anatomical meaning. However, the latter approaches
take advantage of the full dataset, and not only of a relatively sparse subset of
features.

Deformable registration using attribute vectors: A method that has been pre-
viously developed by our group attempts to integrate the advantages of various
methods and at the same time to overcome some of their limitations, by developing
an attribute vector as a morphological signature of each point, to allow the selection
of the distinctive points for hierarchically guiding the image registration procedure
[71, 73, 74, 95]. This is the method called Hierarchical Attribute Matching Mech-
anism for Elastic Registration (HAMMER). HAMMER is a hierarchical warping
mechanism that has three key characteristics.

First, it places emphasis on determining anatomical correspondences, which in
turn drive the 3D warping procedure. In particular, feature extraction methods have
been used for determining a number of parameters from the images, to characterize
at least some key anatomical features as distinctively as possible. In [73], geometric
moment invariants (GMIs) were particularly used as a means for achieving this goal.
GMIs are quantities that are constructed from images that are first segmented into
GM, WM and CSF, or any other set of tissues of interest. They are determined from
the image content around each voxel, and they quantify the anatomy in the vicinity
of that voxel. GMIs of different tissues and different orders are collected into a long
attribute vector for representing each voxel in an image. Ideally, attribute vectors are
made as distinctive as possible for each voxel, so that anatomical matching across
individual brains can be automatically determined during the image registration
procedure. Fig. 3 shows a color-coded image of the degree of similarity between the
GMI-based attribute vector of a point on the anterior horn of the left ventricle and
the attribute vectors of every other point in the image. The GMI attribute vector of
this point, as well as of many other points in the brain, is reasonably distinctive, as
shown in Fig. 3. We have also explored more distinctive attribute vectors, aiming
at constructing even more reliable and distinctive morphological signatures for
every voxel in the image. Toward this end, wavelet coefficients [95], multiple-scale
histogram features [72], local descriptor features [92], or combinations of various
local features [92] were computed for hierarchical characterization of images of
multi-scale neighborhoods centered on each voxel [94, 95].

Second, HAMMER addresses a fundamental problem encountered in high-
dimensional image matching. In particular, the cost function being optimized
typically has many local minima, which trap an iterative optimization procedure into
solutions that correspond to poor matches between the template and the individual.
This is partly due to the ambiguity in finding the point correspondences. For
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Fig. 3 The point marked by a cross has a relatively distinctive GMI-based attribute vector. The
color-coded image on the right shows the degree of similarity between the attribute vector of the
marked point and the attribute vector of every other point in the brain. 1 is maximum similarity
and 0 is minimum similarity

example, if many candidate points in an individual image have similar attribute
vectors to that of a particular template voxel, then this introduces an ambiguity
and thus local minima in the corresponding energy function. In contrast, with
definition of a good set of attributes, there will be a few anchor points for which
correspondences can be determined rather unambiguously, perhaps because each
anchor point’s attribute vector is very different from all but its corresponding
anchor point. In this way, correspondences on all other (non-anchor) points could
be approximately determined via some sort of interpolation from the anchor points.
This problem would not have local minima, since the cost function being minimized
would be a lower-dimensional approximation involving only a few anchor points,
compared to a cost function involving every single voxel in the two images under
registration. HAMMER is exactly based on this fact, i.e., forming successive lower-
dimensional cost functions, based initially only on key anchor points and gradually
on more and more points. More points are considered as a better estimate of the
shape transformation is obtained, thus potentially avoiding local minima.

Third, HAMMER is inverse-consistent, in terms of the driving correspondences.
This means that if the individual is deformed to the template, instead of the
converse, the mapping between any two driving points during this procedure would
be identical. This feature is a computationally fast approximation to the problem
of finding fully 3D inverse consistent shape transformations originally proposed by
Christensen [48].

We have validated the HAMMER approach on brain images, and have found
that it can achieve high accuracy, even in the presence of significant morphological
differences between the two images being matched, such as differences in the
cortical folding pattern of the brain. Fig. 4 show a representative example of the
performance of HAMMER on MR images of elderly subjects from the Baltimore
Longitudinal Study of Aging (BLSA) [66].

Longitudinal image registration: With a growing interest in longitudinal
studies, which are important in studying development, normal, aging, early markers
of Alzheimer’s disease, and response to various treatments, amongst others, securing
longitudinal stability of the measurements is of paramount importance. However,
in the longitudinal morphometric study, people would typically measure the shape
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Fig. 4 Results using the HAMMER warping algorithm. (A) 4 representative sections from MR
images of the BLSA database (B) Representative sections from the image formed by averaging
150 images warped by HAMMER to match the template shown in (C). (D1-D4) 3D renderings of
a representative case, its warped configuration using HAMMER, the template, and the average of
150 warped images, respectively. The anatomical detail seen in (B) and (D4) is indicative of the
registration accuracy

transformation during each time point, and then examine longitudinal changes in
the shape transformations. This approach is valid in theory, but limited in practice.
This is because the independent atlas warping for each longitudinal scan typically
leads to jittery longitudinal measurements, particularly for small structures such
as the hippocampus of the brain, due to inconsistent atlas warping across different
scans in a series [75]. Although smoothened estimates of longitudinal changes can
be obtained by smoothing or regressing over the measurements along the temporal
dimension, post hoc smoothed measurements will, in general, deviate significantly
from the actual image data, unless smoothing is performed concurrently with
atlas warping and by taking into account the image features. It is worth noting
that the issue of longitudinal measurement robustness is particularly important in
measuring the progression of a normal older adult into mild cognitive impairment,
which makes it possible to have the ability to detect subtle morphological changes
well before severe cognitive decline appears.

In order to achieve longitudinally stable measurements, we have developed
4-dimensional image analysis techniques, such as a 4D extension of HAMMER
[75]. In this approach [75], all serial scans are jointly considered as a single
4D scan, and the optimal 4D deformation is determined, thus avoid inconsistent
atlas warping across different serial scans. The 4D warping approach of [75]
simultaneously establishes longitudinal correspondences in the individual as well
as correspondences between the template and the individual. This is different from
the 3D warping methods, which aim at establishing only the inter-subject corre-
spondences between the template and the individual in a single time-point. Specif-
ically, 4D-HAMMER uses a fully automatic 4-dimensional atlas matching method
that constrains the smoothness in both spatial and temporal domains during the
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hierarchical atlas matching procedure, thereby producing smooth and accurate esti-
mations of structural changes over time. Most importantly, morphological features
and matches guiding this deformation process are determined via 4D image analysis,
which significantly reduces noise and improves robustness in detecting anatomical
correspondence. Put simply, image features that are consistently recognized in
all time-points guide the warping procedure, whereas spurious features (such as
noisy edges) that appear inconsistently at different time-points are eliminated. We
have validated this approach against manually-defined brain ROI volumes by very
well trained experts on serial scans [75], and we determined that it produces not
only smoother and more stable measurements of longitudinal atrophy, but also
significantly more accurate measurements, as demonstrated in [75].

Evaluation: The plethora of automated methods for deformable image registra-
tion has necessitated the evaluation of their relative merits. To this end, evaluation
criteria and metrics using large image populations have been proposed by using
richly annotated image databases, computer simulated data, and increasing the
number and types of evaluation criteria [13]. However, the traditional deformable
simulation methods, such as the use of analytic deformation fields or the displace-
ment of landmarks followed by some form of interpolation [6], are often unable
to construct rich (complex) and/or realistic deformations of anatomical organs. To
deal with this limitation, several methods have been developed to automatically sim-
ulate realistic inter-individual, intra-individual, and longitudinal deformations, for
validation of atlas-based segmentation, registration, and longitudinal measurement
algorithms [10, 96].

The inter-individual deformations can be simulated by a statistical approach,
from the high-deformation fields of a number of examples (training samples).
In [96], Wavelet-Packet Transform (WPT) of the training deformations and their
Jacobians, in conjunction with a Markov Random Field (MRF) spatial regulariza-
tion, were used to capture both coarse and fine characteristics of the training defor-
mations in a statistical fashion. Simulated deformations can then be constructed
by randomly sampling the resultant statistical distribution in an unconstrained or a
landmark-constrained fashion. In particular, the training sample deformations could
be generated by first extensively labeling and landmarking a number of images
[5], and then applying a high-dimensional warping algorithm constrained by these
manual labels and landmarks. Such adequately constrained warping algorithms are
likely to generate deformations that are close to a gold standard, and therefore
appropriate for training.

The intra-individual brain deformations can be generated to reflect the structural
changes of an individual brain at different time points, i.e., tissue atrophy/growth of
a selected structure or within a selected region of a brain. In particular, the method
proposed in [51] can be used to simulate the atrophy and growth, i.e., generating a
deformation field by minimizing the difference between its Jacobian determinants
and the desired ones, subject to some smoothness constraints on the deformation
field. The desired Jacobian determinants describe the desired volumetric changes of
different tissues or different regions. Moreover, by using the labeled mesh and the
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FEM solver [10], the realistic longitudinal atrophy in brain structures can be also
generated, to mimic the patterns of change obtained from a cohort of 19 real controls
and 27 probable Alzheimer’s disease patients.

3 Multi-parametric statistics and group analysis

Section 2 describes the process of spatial normalization, which brings images in the
same coordinate frame. These can now be incorporated into a statistical atlas for
group analysis as will be discussed next.

One of the most common applications of statistical atlases is to be able to compare
two groups. These groups could be groups of patients with a specific disease and a
group of healthy controls, or groups of subjects divided on the basis of age, gender
or some other physical characteristic. Prior to performing any group-analysis, the
images of the subjects to be used are spatially normalized to a subject chosen to
be the template. The method adopted for spatial normalization and group-based
analysis depends completely on the type of data (scalar or high-dimensional) used
for representing the subjects.

3.1 Statistical analysis of scalar maps

Traditionally, in the standard framework of voxel- and deformation-based analysis,
scalar images, such as tissue density maps [2, 25] or Jacobian determinants [17, 29]
are used for group analysis. In diffusion tensor images (DTI), one of the several
scalar maps of fractional anisotropy or diffusivity [4] may be used to represent
each of the subjects. These scalar maps of choice for representing the subjects
are then smoothed by a Gaussian filter to: 1) Gaussianize the data, so that linear
statistics are more applicable; 2) smooth out the noise; or 3) analyze the image
context around each voxel, since structural changes are unlikely to be localized at
a single voxel, but are rather more likely to encompass entire regions. Voxel-wise
statistical tests, such as the general linear model, are then applied to the spatially
normalized and smoothed data. The output is a voxel-wise map which identifies
regions of significant difference based on some user-defined threshold. Statistical
Parametric Mapping or SPM [40] has been a tool widely used for this purpose.
Fig. 5 shows an example of voxel-based statistical analysis performed on a group
of patients with schizophrenia versus a group of healthy controls, using MRI data.
Similar analysis has been performed on anisotropy and diffusivity maps computed
from DTI data [54, 55]. These regions can be further analyzed with respect to the
clinical correlates, to determine the biological underpinnings of the group-changes.

In addition to the application of voxel-wise statistical tests, analysis can also
be performed on a region wise basis, using regions that have been defined on a
template or average atlas of subjects that has been created using the process of
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Fig. 5 Regions of difference between schizophrenia patients and healthy controls using voxel-
wise application of linear statistics

spatial normalization. By the process of spatial normalization, each of these regions
can be warped to each of the subjects (or vice versa) and group-based analysis may
be performed using region-based values of scalar quantities that characterize the
effect of pathology on these regions. For example, tissue atrophy during the course
of aging or as a manifestation of disease could be evaluated percentage-wise in each
of the regions that have been outlined in the atlas of ROIs.

3.2 Statistical analysis of multi-parametric
and multi-modal data

While the general linear model (GLM) has been used effectively for the statistical
analysis of the scalar map representation of the subjects, with the increasing use
of multi-parametric or multi-modality images, GLM with Gaussian smoothing does
not suffice for several reasons. The simple spatial filtering and subsequent linear
statistics are not a valid approach for the multi-parametric data such as tensors
and multi-modality data as the high-dimensional, non-linear data at each voxel
are typically distributed along sub-manifolds of the embedding space. In tensors,
this embedding space could be in R6, if single voxel data is to be considered. In
multi-modality data, the dimension of the embedding space will be the number of
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Fig. 6 Manifold structure of tensors. The gray surface represents the non-linear manifold fitted
through the tensors or any high dimensional structure represented as ellipses. The green line
represents the Euclidean distance between tensors treated as elements of R6 and the red line
represents the geodesic distance along the manifold that will be used for all tensor manipulations

modalities combined to represent the data. Fig. 6 demonstrates this concept, for
the case of tensors, but instead of ellipses, any high-dimensional structure could
be used to emulate the voxel-wise structure of multi-modality data. The filtering
and the subsequent statistics need to be performed on this underlying manifold.
In addition, to the underlying structure of the data, another reason for the lack of
feasibility of the GLM for this data is that the shape and size of a region of interest,
such as a region of growth or abnormal morphological characteristics, is not known
in advance; the way in which a disease process is likely to affect the local tissue
structure of the brain is highly unlikely to follow a Gaussian spatial profile of a
certain pre-defined size. Thus the two main challenges that we need to address in
order to form statistical atlases of this higher dimensional data and follow it with
group analysis are: 1) determining the true underlying structure of the data in the
form of a non-linear manifold and 2) estimating the statistical distribution of the
data on that manifold.

In order to address these two issues, more sophisticated image analysis methods
need to be developed that determine the often non-linear relationships among
different scans and therefore lead to the identification of subtle imaging phenotypes.
In relation to tensors, methods based upon Riemannian symmetric spaces [37, 58]
rely upon the assumption that the tensors around a given voxel from various subjects
belong to a principal geodesic (sub)-manifold and that these tensors obey a normal
distribution on that sub-manifold. The basic principle of these methods is sound,
namely that statistical analysis of high dimensional data must be restricted to an
appropriate manifold. However, there is no guarantee that the representations of the
tensors on this sub-manifold will have normal distributions, and most importantly,
restricting the analysis on the manifold of positive definite symmetric tensors is of
little help in hypothesis testing studies, since the tensors measured at a given voxel or
neighborhood, from a particular set of brains, typically lie on a much more restricted
sub-manifold of the space of symmetric positive definite matrices. For example,
if all voxels in a neighborhood around the voxel under consideration belong to
a particular fiber tract, then the tract geometry will itself impose an additional
nonlinear structure on the sub-space of the tensors at those voxels from all subjects.
Some of these issues were alleviated by the development of a manifold-based
statistical analysis framework which focuses on approximating/learning the local
structure of the manifold along which tensor/higher-dimensional measurements
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from various individuals are distributed. The learned features belonged to a low-
dimensional linear manifold parameterizing the higher-dimensional tensor manifold
and were subsequently used for group-wise statistical analysis. The filtering and
subsequent statistical analysis are then performed along the manifold, rather than in
the embedding space.

The two frameworks that are discussed below are from the perspective of
whether: 1) the manifold is explicitly determined (Sect. 3.3) or 2) the data distri-
bution is determined by implicitly incorporating the underlying structure of the data
(Sect. 3.4). While explained in the context of tensors they are applicable to high
dimensional muli-parametric data.

3.3 Statistical analysis on the estimated manifolds

Suppose the problem is to investigate group-wise (e.g. schizophrenia patients
and controls) morphological differences on a voxel-wise basis using DTI data
available for these subjects. Having spatially normalized this data [93, 97], we
will analyze group differences voxel-by-voxel. At a particular voxel, we form a
dataset by collecting tensors from that location from all subjects. For the purposes
of smoothing the data locally, tensor measurements from all voxels in a surrounding
neighborhood are collected, as well as from all subjects of our study. This collection
of tensors generally does not follow a Gaussian distribution in R6, but rather lies on
a sub-manifold of R6. In such a case, manifold learning methods [9] can be used to
learn the structure of the underlying manifold. Then the manifold can be linearized
via “flattening” to a lower dimensional space. We use a manifold learning technique
called Isomap [78] that builds a graph from these high dimensional samples,
and subsequently used graph searching methods to calculate geodesics along the
sub-manifold, finally applies multi dimensional scaling [9] on these geodesics, in
order to flatten the sub-manifold. Standard multi-variate statistical tests such as
Hotelling’s T2 test, can then be applied on the flattened sub-manifold, determined at
each voxel, to obtain a voxel-wise p-value map. Mathematical details of the method
can be found in [52, 87].

Forming group averages An important aspect of statistical atlases is the ability to
obtain average maps that are representative of a particular group property. This has
been achieved by simple linear averaging when scalar maps are used for statistical
analysis as all the maps have already been spatially normalized to a template. In
the case of high-dimensional data a manifold is fitted to the data at each voxel
(accumulated within a spatial neighborhood and across subjects) using manifold
learning and the average is computed on the manifold [87].
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3.4 Determining the statistical distribution
on high-dimensional data

The manifold-learning approach described above is quite effective if a sufficient
number of samples are available, so that the sub-manifold is properly sampled.
However in the absence of sufficient samples that do not cover the entire space,
results of learning the sub-manifold can be quite unpredictable. While this can
be somewhat alleviated by using neighborhood tensors from around the voxel
under consideration, thereby indirectly imposing spatial smoothness, it increases
the dimensionality of measurement at each voxel, thereby changing the embedding
space. Also, the dataset has unknown statistical distribution on the non-linear
manifold and Isomap or any other manifold learning technique flattens a sub-
manifold, but does not Gaussianize or otherwise estimate the statistical distribution
of tensors on the flattened manifold. Therefore, standard statistical tests may still be
inappropriate for use on the flattened sub-manifold.

Hence for statistical group analysis, it is important to nonlinearly approximate the
probability density from a number of samples, and to obtain a representation that
will enhance group separation. This can be achieved using kernel-based methods,
such as a combination of a kernel-based principal component analysis (kPCA)
[70] and kernel-based Fischer discriminant analysis (kFDA) [43]. The common
idea behind kernel-based techniques is to transform the samples into a higher-
dimensional space, which can be used for statistical analysis and for the purposes
of density estimation. These methods effectively estimate the nonlinear distribution
of tensors or other higher dimensional data on the underlying manifold (without
having to determine the structure of the manifold explicitly) (kPCA) and enhance
their statistical separation, by finding nonlinear projections of the data which can
optimally discriminate between the two groups (kFDA). Multi-variate statistical
tests can be applied to these kernel-based features, in order to obtain a voxel-wise
p-value map. Details can be found in [53].

As an essential final step, regions with significant differences between the
two groups are identified from these parametric or non-parametric p-value maps
obtained either by manifold learning or kernel-based methods by accounting
for multiple comparisons [43, 64]. This can be achieved using a more complex
form of the permutation test by controlling the family-wise error rate due to
multiple comparisons [64] or by controlling the false discovery rate (FDR) using
a suitable p-value threshold [43]. Fig. 7(a) identifies regions of difference between
schizophrenia patients and controls using kernel-based methods. Fig. 7(b) shows
the kernel based framework applied to mouse images (the two groups being the
young and the old) at a much higher level of significance. These regions survive
multi-comparison testing using FDR. Similar maps can be computed using manifold
learning.
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Fig. 7 Regions of significant
differences between
(a) schizophrenia patients and
controls and (b) young and
old mice obtained using
statistical analysis of
multi-parametric data

In the above discussion involving manifold learning and kernel based methods,
although the data at each voxel were tensors, the frameworks can easily lend
themself to higher dimensional data as it derived from multi-modality data. The
difference would be the manifold learned and the nature of the embedding space.

4 Individual patient analysis and high-dimensional
pattern classification

Section 3 discussed statistical image analysis methods for determining group
differences. Although informative from a biologic point of view, group analyses are
not meant to provide diagnostic tools for individuals. This is because two groups
can have highly overlapping values of a structural or functional variable, e.g. the
volume of a structure, but having a sufficiently large sample size, a group analysis
will identify significant group differences, even of the smallest magnitude, if they
are present. For example, the joint histogram of the volume of the hippocampus and
the volume of the entorhinal cortex (ERC) in a group of healthy elderly individuals
and a group with mild cognitive impairment (MCI) might show that the former tend
to have larger volumes than the latter in a statistical sense.

However, if we are given a new individual’s volumes of the hippocampus and the
ERC, we will not be able to correctly classify this individual, due to the overlap
between the two joint histograms. In order to address this issue, high-dimensional
pattern classification methods have been pursued with increasing frequency in
the recent literature [32, 33, 34, 35, 45, 46, 56, 59, 83]. A pattern is formed by a
collection of image-derived measurements, typically obtained from a number of
different anatomical regions. A statistical atlas is of fundamental importance in these
methods, since it represents the range of variation of the features that are used to
construct the pattern. A simple example is illustrated in Fig. 8, which displays the
z-score map of an Alzheimer’s patient’s regional distribution of gray matter tissue in
the brain. Pattern recognition methods are trained to recognize such spatio-temporal
patterns of structure and function.
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Fig. 8 An individual is compared against a statistical atlas of normal elderly individuals, in order
to determine whether the pattern of brain atrophy is typical of a normal elderly or not. The figure
displays a z-score map, i.e. a voxel-by-voxel evaluation of the individual’s gray matter volume
against the statistical atlas. A pattern of fronto-temporal atrophy (blue regions) indicates AD-like
pathology

One of the motivating factors behind these developments is the complex and
spatio-temporally distributed nature of the changes that many diseases cause,
particularly in the brain and the heart. For example, in Alzheimer’s Disease, the
anatomical structures that carry most discriminative power are likely to depend on
the stage of the disease, as the disease progressively spreads throughout various
brain regions [7], but also on age and other demographic and genetic factors [61],
since disease is to be distinguished from complex and progressively changing back-
ground normal variations in anatomy and function that may depend on demographic
and/or genetic background. Moreover, Alzheimer’s disease might cause changes
of the image characteristics beyond those measured by volumetrics, such as for
example brightening or darkening of an MR image due to demyelination, deposition
of minerals, or other macro- or micro-structural changes caused by disease. Vascular
disease also causes well-known MR signal changes, for example in the white matter
of the brain (e.g. brightening of T2-weighted signal). It is thus becoming clear that
multiple modalities and multiple anatomical regions must be considered jointly in
a (possibly nonlinear) multi-variate classification fashion, in order to achieve the
desirable diagnostic power. Moreover, regions that are relatively less affected by
disease should also be considered along with known to be affected regions (which,
for the example of Alzheimer’s Disease might include primarily temporal lobe
structures, in relatively early disease stages), since differential atrophy or image
intensity changes between these regions are likely to further amplify diagnostic
accuracy and discrimination from a background of normal variation. Certain cardiac
diseases also have subtle and spatio-temporally complex patterns of structural and
functional change. For example, arrhythmogenic right ventricular disease involves
spatial patterns of structural and physiological change that are not always easy to
distinguish from normal inter-individual variability.

A fundamental challenge faced by high-dimensional pattern classification meth-
ods in medical imaging is the curse of dimensionality, i.e. the fact that imaging
measurements have vastly larger dimensionality than the number of sample avail-
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able in the typical study. Extraction, selection, and reduction of all spatio-temporal
information included in a medical scan to a small number of features that optimally
distinguishes between two or more groups is an open problem. Some approaches
have employed global dimensionality reduction methods, such as principal or
independent component analysis [32,63], before feeding the reduced features into a
pattern classifier.

A more localized approach has been developed in our laboratory, and is termed
COMPARE (Classification of Mosphological Patterns using Adaptive Regional
Elements). This approach was described in [57] and examines spatio-temporal
patterns of regional brain atrophy, by hierarchically decomposing a an image into
images of different scales, each of which capturing structural and/or functional
characteristics of interest at a different degree of spatial resolution. The most
important parameters are then selected and used in conjunction with a nonlinear
pattern classification technique to form a hyper-surface, the high-dimensional
analog to a surface, which is constructed in a way that it optimally separates two
groups of interest, for example normal controls and patients of a particular disease.
Effectively, that approach defines a nonlinear combination of a large number of
image-derived measurements from the entire anatomy of interest, each taken at
a different scale that typically depends on the size of the respective anatomical
structure and the size of the region that is most affected by the disease. This
nonlinear combination of volumetric measurements is the best way, according to the
respective optimality criteria, to distinguish between two groups, and therefore to
perform diagnosis via classification of a new scan into patients or normal controls. In
[27] excellent separation was obtained by high-dimensional nonlinear classification
applied to a population of healthy controls and MCI patients that were not separable
using the commonly used volumetric measurements of the hippocampus and the
entorhinal cortex, further indicating that appropriate increase of dimensionality
helps separate otherwise unseparable data.

In summary, the availability of large numbers of medical image datasets has
necessitated the development and validation of image analysis tools that capture the
range of variation of image-derived structural and functional characteristics, over
populations of patients and healthy subjects. A new generation of techniques for
deformable registration, statistical analysis, and pattern classification has appeared
in the literature over the past decade, aiming to help identify anatomical and
functional differences across different groups, but also to classify individual scans
against baseline statistical atlases of normal and diseased populations. These new
tools are gradually being adopted in clinical studies.

References

1. D. Alexander and J. Gee. Elastic matching of diffusion tensor images. Computer Vision and
Image Understanding, 77:233–250, 1999.

2. J. Ashburner and K. Friston. Voxel-based morphometry: the methods. Neuroimage, 11(6):
805–821, 2000.



Statistical Atlases 141

3. J. Ashburner, C. Hutton, R. Frackowiak, I. Johnsrude, C. Price, and K. Friston. Identifying
global anatomical differences: Deformation-based morphometry. Human Brain Mapping,
6(5-6):348–357, 1998.

4. P. J. Basser and C. Pierpaoli. Microstructural and physiological features of tissues elucidated
by quantitative-diffusion-tensor mri. Journal of Magnetic Resonance, Series B, 111:209–219,
1996.

5. S. F. K. Boesen, J. Huang, J. Germann, J. Stern, D. L. Collins, A. C. Evans, and D. A.
Rottenberg. Inter-rater reproducibility of 3d cortical and subcortical landmark points. In 11th
Annual Meeting of the Organization for Human Brain Mapping, Toronto, Canada, 2005.

6. F. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.

7. H. Braak, E. Braak, J. Bohl, and H. Bratzke. Evolution of alzheimer’s disease related cortical
lesions. Journal of Neural Transmission. Supplementum, 54:97–106, 1998.

8. R. Bryan, C. Davatzikos, M. Vaillant, J. Prince, S. Letovsky, R. Raghavan, W. Nowinski,
G. Salamon, N. Murayama, O. Levrier, and M. Zilbovicius. Creation of population-based
anatomic atlases with a brain image database. In First International Conference on Functional
Brain Mapping, page 72, 1995.

9. C. Burges. Geometric methods for feature extraction and dimensional reduction. In L. Rokach
and O. Maimon, editors, Data Mining and Knowledge Discovery Handbook: A Complete Guide
for Practitioners and Researchers’. Kluwer Academic Publishers, 2005.

10. O. Camara, R. I. Scahill, J. A. Schnabel, W. R. Crum, G. R. Ridgway, D. L. G. Hill, and N. C.
Fox. Accuracy assessment of global and local atrophy measurement techniques with realistic
simulated longitudinal data,. In MICCAI, pages 785–792, 2007,.

11. G. Christensen and H. Johnson. Consistent image registration. IEEE Transactions on Medical
Imaging, 20(7):568–582, 2001.

12. G. Christensen, R. Rabbitt, and R. Miller. 3d brain mapping using a deformable neuroanatomy.
Physics in medicine and biology, 39:609–618, 1994.

13. G. E. Christensen, X. Geng, J. G. Kuhl, J. Bruss, T. J. Grabowski, I. A. Pirwani, M. W. Vannier,
J. S. Allen, and H. Damasio. Introduction to the non-rigid image registration evaluation project
(nirep). In WBIR., pages 128–135, 2006.

14. G. E. Christensen, H. J. Johnson, and M. W. Vannier. Synthesizing average 3d anatomical
shapes. NeuroImage, 32(1):146–158, 2006.

15. H. Chui and A. Rangarajan. A new point matching algorithm for non-rigid registration.
Computer Vision and Image Understanding, 89(2-3):114–141, 2003.

16. H. Chui, L. Win, R. Schultz, J. Duncan, and A. Rangarajan. A unified feature registration
method for brain mapping. In Information Processing in Medical Imaging, pages 300–314,
Davis, CA, USA, 2001.

17. M. Chung, K. Worsley, T. Paus, C. Cherif, D. Collins, J. Giedd, J. Rapoport, and A. Evans.
A unified statistical approach to deformation-based morphometry. Neuroimage, 14(3):
595–606, 2001.

18. A. Collignon. Multi-modality medical image registration by maximization of mutual informa-
tion. Ph.d. dissertation, Catholic Univ. Leuven, 1998.

19. A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated
multi-modality image registration based on information theory. In Y. Bizais, C. Barillot, and
R. D. Paola, editors, Information Processing in Medical Imaging, pages 263–274. Kluwer,
Dordrecht, The Netherlands, 1995.

20. D. Collins and A. Evans. Automatic 3d estimation of gross morphometric variability in the
human brain. Neuroimage, 3(3):S129, 1996.

21. D. Collins, P. Neelin, T. Peters, and A. Evans. Automatic 3d intersubject registration of mr
volumetric data in standardized talairach space. Journal of Computer Assisted Tomography,
18:192–205, 1994.

22. L. Collins, T. Peters, W. Dai, and A. Evans. Model-based segmentation of individual brain
structures from mri data. In Proceedings of SPIE Conference on Visualization in Biomedical
Computing, volume 1808, pages 10–23, 1992.



142 C. Davatzikos et al.

23. J. Csernansky, L. Wang, S. Joshi, J. Ratnanather, and M. Miller. Computational anatomy
and neuropsychiatric disease: probabilistic assessment of variation and statistical inference
of group difference, hemispheric asymmetry, and time-dependent change. NeuroImage, 23(1):
56–68, 2004.

24. C. Davatzikos. Spatial transformation and registration of brain images using elastically
deformable models. Computer Vision and Image Understanding, 66:207–222, 1997.

25. C. Davatzikos. Voxel based morphometric analysis using shape transformations. In M. F.
Glabus, editor, International Review of Neurobiology, Neuroimaging Part A, volume 66.
Elsevier Inc., 2005.

26. C. Davatzikos and R. Bryan. Using a deformable surface model to obtain a shape representation
of the cortex. IEEE Transactions on Medical Imaging, 15(6):785–795, 1996.

27. C. Davatzikos, Y. Fan, X. Wu, D. Shen, and S. M. Resnick. Detection of prodromal alzheimer’s
disease via pattern classification of mri. Neurobiology of Aging, page in press, 2007.

28. C. Davatzikos, A. Genc, D. Xu, and S. Resnick. Voxel-based morphometry using the ravens
maps: Methods and validation using simulated longitudinal atrophy. NeuroImage, 14(6):
1361–1369, 2001.

29. C. Davatzikos, M. Vaillant, S. Resnick, J. Prince, S. Letovsky, and R. Bryan. A computerized
approach for morphological analysis of the corpus callosum. Journal of Computer Assisted
Tomography, 20:88–97, 1996.

30. C. Davatzikos and R. Verma. Constructing statistical brain atlases from diffusion tensor fields.
In ISMRM Workshop on methods for quantitative diffusion of human brain, Lake Louise,
Alberta, Canada, 2005.

31. B. Dawant, S. Hartmann, and S. Gadamsetty. Brain atlas deformation in the presence of large
space-occupying tumours. In MICCAI, volume 1679, pages 589–596, 1999.

32. S. Duchesne, A. Caroli, C. Geroldi, G. Frisoni, and D. Collins. Predicting clinical variable from
mri features: application to mmse in mci. In MICCAI, volume 8, pages 392–399, 2005.

33. Y. Fan, D. Shen, and C. Davatzikos. Classification of structural images via high-dimensional
image warping, robust feature extraction, and svm. In J. S. Duncan and G. Gerig, editors,
MICCAI, volume 3749 / 2005 of Lecture Notes in Computer Science, pages 1–8, Palm Springs,
California, USA, 2005. Springer Berlin / Heidelberg.

34. Y. Fan, D. Shen, and C. Davatzikos. Decoding cognitive states from fmri images of subjects by
machine learning and multivariate classification. In IEEE Workshop on Mathematical Methods
in Biomedical Image (MMBIA 2006), New York City, NY, USA, 2006.

35. Y. Fan, D. Shen, R. C. Gur, R. E. Gur, and C. Davatzikos. Compare: Classification of
morphological patterns using adaptive regional elements. IEEE Transactions on Medical
Imaging, 26(1):93–105, 2007.

36. M. Ferrant, S. Warfield, C. Guttman, R. Mulkern, F. Jolesz, and R. Kikinis. 3d image matching
using a finite element based elastic deformation model. In MICCAI, pages 202–209, 1999.

37. P. T. Fletcher and S. Joshi. Principal geodesic analysis on symmetric spaces: Statistics of
diffusion tensors. In Computer Vision Approaches to Medical Image Analysis, volume 3117
of LNCS: CVAMIA, pages 87–98, 2004.

38. P. Freeborough and N. Fox. Modeling brain deformations in alzheimer’s disease by fluid
registration of serial 3d mr images. Journal of Computer Assisted Tomography, 22:838–843,
1998.

39. K. Friston, J. Ashburner, C. Frith, J. Poline, J. Heather, and R. Frackowiak. Spatial registration
and normalization of images. Human Brain Mapping, 2:165–189, 1995.

40. K. Friston, A. Holmes, K. Worsley, J. Poline, C. Frith, and R. Frackowiak. Statistical parametric
maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4):189–210,
1995.

41. J. Gee, C. Barillot, L. Briquer, D. Haynor, and R. Bajcsy. Matching structural images of the
human brain using statistical and geometrical image features. Proc. SPIE Visualization in
Biomedical Computing, 2359:191–204, 1994.

42. J. Gee, M. Reivich, and R. Bajcsy. Elastically deforming 3d atlas to match anatomical brain
images. Journal of Computer Assisted Tomography, 17:225–236, 1993.



Statistical Atlases 143

43. C. R. Genovese, N. A. Lazar, and T. Nichols. Thresholding of statistical maps in functional
neuroimaging using the false discovery rate. Neuroimage, 15(4):870–878, 2002.

44. G. Gerig, M. Styner, and J. Lieberman. Shape versus size: Improved understanding of the
morphology of brain structures,. In MICCAI, Utrecht, the Netherlands, 2001. Kluver.

45. P. Golland, B. Fischl, M. Spiridon, N. Kanwisher, R. Buckner, M. Shenton, R. Kikinis, A. Dale,
and W. Grimson. Discriminative analysis for image-based studies. In R. K. T. Dohi, editor,
MICCAI, volume LNCS 2488, pages 508–515, Tokyo, Japan, 2002. Springer-Verlag GmbH.

46. P. Golland, W. Grimson, and R. Kikinis. Statistical shape analysis using fixed topology
skeletons: corpus callosum study. Lecture Notes in Computer Science, 1613:382–387, 1999.

47. P. Golland, W. E. L. Grimson, M. Shenton, and R. Kikinis. Deformation analysis for shape
based classification. Lecture Notes in Computer Science, 2082:517–530, 2001.

48. H. Johnson and G. Christensen. Landmark and intensity-based consistent thin-plate spline
image registration. In Proceedings of the Conference on Information Processing in Medical
Imaging, LNCS, volume 2081, pages 329–343, 2001.

49. S. Joshi, M. Miller, G. Christensen, A. Banerjee, T. Coogan, and U. Grenander. Hierarchical
brain mapping via a generalized dirichlet solution for mapping brain manifolds. Proceedings
of the SPIE Conference on Geom. Methods in Applied Imaging, 2573:278–289, 1995.

50. S. Joshi, S. Pizer, P. Fletcher, A. Thall, and G. Tracton. Multi-scale 3-d deformable model
segmentation based on medial description. Lecture Notes in Computer Science, 2082:64–77,
2001.

51. B. Karacali and C. Davatzikos. Simulation of tissue atrophy using a topology preserving
transformation model. IEEE Transactions on Medical Imaging, 25(5):649–652, 2006.

52. P. Khurd, R. Verma, and C. Davatzikos. On characterizing and analyzing diffusion tensor
images by learning their underlying manifold structure. In IEEE Computer Society Workshop
on Mathematical Methods in Biomedical Image Analysis, Ney York, NY, 2006.

53. P. Khurd, R. Verma, and C. Davatzikos. Kernel-based manifold learning for statistical analysis
of diffusion tensor images. In Information Processing in Medical Imaging (IPMI), volume
4584, pages 581–593, Netherlands, 2007.

54. M. Kubicki, R. W. McCarley, C. F. Westin, H. J. Park, S. Maier, R. Kikinis, F. A. Jolesz,
and M. E. Shenton. A review of diffusion tensor imaging studies in schizophrenia. Journal of
Psychiatric Research, 41(1-2):15–30, 2007.

55. M. Kubicki, M. E. Shenton, D. F. Salisbury, Y. Hirayasu, K. Kasai, R. Kikinis, F. A. Jolesz,
and R. W. McCarley. Voxel-based morphometric analysis of gray matter in first episode
schizophrenia. Neuroimage, 17(4):1711–1719, 2002.

56. Z. Lao, D. Shen, and C. Davatzikos. Statistical shape model for automatic skull-stripping of
brain images. In 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano,
pages 855–858, Washington, D.C., 2002.

57. Z. Lao, D. Shen, Z. Xue, B. Karacali, S. Resnick, and C. Davatzikos. Morphological
classification of brains via high-dimensional shape transformations and machine learning
methods. Neuroimage, 21(1):46–57, 2004.

58. C. Lenglet, M. Rousson, R. Deriche, and O. Faugeras. Statistics on the manifold of multivariate
normal distributions: Theory and application to diffusion tensor mri processing. Journal of
Mathematical Imaging and Vision [Special issue Mathematics and Image Analysis], 2006
(to appear).

59. Y. Liu, L. Teverovskiy, O. Carmichael, R. Kikinis, M. Shenton, C. Carter, V. Stenger, S. Davis,
H. Aizenstein, J. Becker, O. Lopez, and C. Meltzer. Discriminative mr image feature analysis
for automatic schizophrenia and alzheimer’s disease classification. In C. Barillot, D. R. Haynor,
and P. Hellier, editors, MICCAI, volume LNCS 3216, pages 393–401, Saint-Malo, France,
2004. Springer-Verlag GmbH.

60. M. Miller, G. Christensen, Y. Amit, and U. Grenander. Mathematical textbook of deformable
neuroanatomies. Proceedings of the National Academy of Sciences, 90:11944–11948, 1993.

61. S. Moffat, C. Szekely, A. Zonderman, N. Kabani, and S. Resnick. Longitudinal change in
hippocampal volume as a function of apolipoprotein e genotype. neurology 2000;. Neurology,
55(1):134–136–, 2000.



144 C. Davatzikos et al.

62. A. Mohamed, D. Shen, and C. Davatzikos. Deformable registration of brain tumor images
via a statistical model of tumor-induced deformation. In J. S. Duncan and G. Gerig, editors,
MICCAI, volume 3750 / 2005 of Lecture Notes in Computer Science, pages 263–270, Palm
Springs, CA, 2005. Springer-Verlag GmbH.

63. J. Mourao-Miranda, A. L. Bokde, C. Born, H. Hampel, and M. Stetter. Classifying brain states
and determining the discriminating activation patterns: Support vector machine on functional
mri data. Neuroimage, 28(4):980–995, 2005.

64. T. Nichols and A. Holmes. Non-parametric permutation tests for functional neuroimaging:
A primer with examples. In Human Brain Mapping, volume 15, pages 1–25, 2001.

65. S. Pizer, D. S. Fritsch, P. A. Yushkevich, V. E. Johnson, and E. L. Chaney. Segmentation,
registration and measurement of shape variation via image object shape. IEEE Transactions on
Medical Imaging, 18(10):851–865, 1999.

66. S. Resnick, A. Goldszal, C. Davatzikos, S. Golski, M. Kraut, E. Metter, R. Bryan, and
A. Zonderman. One-year age changes in mri brain volumes in older adults. Cerebral Cortex,
10(5):464–472, 2000.

67. J. Rexilius, S. Warfield, C. Guttman, X. Wei, R. Benson, L. Wolfson, M. Shenton, H. Handels,
and R. Kikinis. A novel nonrigid registration algorithm and applications. In MICCAI, pages
202–209, 1999.

68. D. Rueckert, L. Sonoda, C. Hayes, D. Hill, M. Leach, and D. Hawkes. Non-rigid registration
using free-form deformations: Application to breast mr images. IEEE Transactions on Medical
Imaging, 18(8):712–721, 1999.

69. S. Sandor and R. Leahy. Surface based labelling of cortical anatomy using a deformable atlas.
IEEE Transactions on Medical Imaging, 16(1):41–54, 1997.

70. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization and Beyond (Adaptive Computation and Machine Learning). The MIT
Press;, 1st edition (december 15, 2001) edition, 2001.

71. D. Shen. 4d image warping for measurement of longitudinal brain changes. In Proceedings of
the IEEE International Symposium on Biomedical Imaging, volume 1, Arlington, Va., 2004.

72. D. Shen. Image registration by hierarchical matching of local spatial intensity histograms. In
C. Barillot, D. R. Haynor, and P. Hellier, editors, MICCAI, volume 3216 / 2004 of Lecture
Notes in Computer Science, pages 582–590, St. Malo, France, 2004. Springer-Verlag GmbH.

73. D. Shen and C. Davatzikos. Hammer: Hierarchical attribute matching mechanism for elastic
registration. IEEE Transactions on Medical Imaging, 21(11):1421–1439, 2002.

74. D. Shen and C. Davatzikos. Very high resolution morphometry using mass-preserving defor-
mations and hammer elastic registration. NeuroImage, 18(1):28–41, 2003.

75. D. Shen and C. Davatzikos. Measuring temporal morphological changes robustly in brain mr
images via 4-dimensional template warping. NeuroImage, 21(4):1508–1517, 2004.

76. M. Styner and G. Gerig. Medial models incorporating object variability for 3d shape analysis.
Lecture Notes in Computer Science, 2082:502–516, 2001.

77. G. Szekely, A. Kelemen, C. Brechbuhler, and G. Gerig. Segmentation of 2-d and 3-d objects
from mri volume data using constrained deformations of flexible fourier contour and surface
models. Medical Image Analysis, 1:19–34, 1996.

78. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. Science, 290(5500):2319–2323, 2000.

79. J. Thirion. Non-rigid matching using deamons. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, 1996.

80. J. Thirion, O. Monga, S. Benayoun, A. Gueziec, and N. Ayache. Automatic registration of
3-d images using surface curvature. SPIE Proceedings, Mathematical Methods in Medical
Imaging, 1768.:206–216, 1992.

81. P. Thompson, D. MacDonald, M. Mega, C. Holmes, A. Evans, and A. Toga. Detection and
mapping of abnormal brain structure with a probabilistic atlas of cortical surfaces. Journal of
Computer Assisted Tomography, 21(4):567–581, 1997.

82. P. M. Thompson, M. Mega, R. Woods, C. Zoumalan, C. Lindshield, R. Blanton, J. Moussai,
C. Holmes, J. Cummings, and A. Toga. Cortical change in alzheimer’s disease detected with a
disease-specific population-based brain atlas. Cerebral Cortex, 11(1):1–16, 2001.



Statistical Atlases 145

83. S. Timoner, P. Golland, R. Kikinis, M. Shenton, W. Grimson, and W. M. Wells. Performance
issues in shape classification. In MICCAI, pages 355–362, Tokyo, Japan, 2002. Springer-
Verlag.

84. A. W. Toga, P. M. Thompson, M. S. Mega, K. L. Narr, and R. E. Blanton. Probabilistic
approaches for atlasing normal and disease-specific brain variability. Anatomy and Embry-
ology, 204(4):267–282, 2001.

85. M. Vaillant and C. Davatzikos. Hierarchical matching of cortical features for deformable brain
image registration. Lecture Notes in Computer Science: Information Processing in Medical
Imaging, 1613:182–195, 1999.

86. R. Verma and C. Davatzikos. Matching of diffusion tensor images using gabor features. In Pro-
ceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), pages 396–399,
Arlington, Va., 2004.

87. R. Verma, P. Khurd, and C. Davatzikos. On analyzing diffusion tensor images by identifying
manifold structure using isomaps. IEEE Transactions on Medical Imaging, 26(6):772–778,
2007.

88. P. Viola. Alignment by maximization of mutual information, Ph.D. dissertation. Ph.d. disserta-
tion, Massachusetts Inst. Technol., 1995.

89. Y. Wang, B. S. Peterson, and L. H. Staib. 3d brain surface matching based on geodesics and
local geometry. Computer Vision and Image Understanding, 89(2-3):252–271, 2003.

90. W. M. Wells, III, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal volume
registration by maximization of mutual information. Medical Image Analysis, 1(1):35–51,
1996.

91. W. M. Wells, III, P. Viola, and R. Kikinis. Multi-modal volume registration by maximization
of mutual information. In Medical Robotics and Computer Assisted Surgery, pages 55–62.
New York: Wiley, 1995.

92. G. Wu, F. Qi, and D. Shen. Learning best features for deformable registration of mr brains.
In MICCAI, volume 3349, pages 179–187, Palm Springs, CA, 2005.

93. D. Xu, S. Mori, D. Shen, P. C. M. van Zijl, and C. Davatzikos. Spatial normalization of
diffusion tensor fields. Magnetic Resonance in Medicine, 50(1):175–182, 2003.

94. Z. Xue, D. Shen, and C. Davatzikos. Correspondence detection using wavelet-based attribute
vectors. In MICCAI, volume 3349, pages 762–770, Montreal, Canada, 2003. Springer-Verlag
Heidelberg.

95. Z. Xue, D. Shen, and C. Davatzikos. Determining correspondence in 3d mr brain images
using attribute vectors as morphological signatures of voxels. IEEE Transactions on Medical
Imaging, 23(10):1276–1291, 2004.

96. Z. Xue, D. Shen, B. Karacali, J. Stern, D. Rottenberg, and C. Davatzikos. Simulating
deformations of mr brain images for validation of atlas-based segmentation and registration
algorithms. NeuroImage, 33(3):855–866, 2006.

97. J. Yang, D. Shen, C. Misra, X. Wu, S. Resnick, C. Davatzikos, and R. Verma. Spatial
normalization of diffusion tensor images based on anisotropic segmentation. In SPIE, San
Diego, CA, 2008.

98. Y. Zhan, D. Shen, J. Zeng, L. Sun, G. Fichtinger, J. Moul, and C. Davatzikos. Targeted
prostate biopsy using statistical image analysis. IEEE Transactions on Medical Imaging, 26(6):
779–788, 2007.



Statistical Computing on Non-Linear Spaces
for Computational Anatomy

X. Pennec and P. Fillard

Abstract Computational anatomy is an emerging discipline that aims at analyzing
and modeling the individual anatomy of organs and their biological variability
across a population. However, understanding and modeling the shape of organs is
made difficult by the absence of physical models for comparing different subjects,
the complexity of shapes, and the high number of degrees of freedom implied.
Moreover, the geometric nature of the anatomical features usually extracted raises
the need for statistics on objects like curves, surfaces and deformations that do not
belong to standard Euclidean spaces. We explain in this chapter how the Riemannian
structure can provide a powerful framework to build generic statistical computing
tools. We show that few computational tools derive for each Riemannian metric can
be used in practice as the basic atoms to build more complex generic algorithms such
as interpolation, filtering and anisotropic diffusion on fields of geometric features.
This computational framework is illustrated with the analysis of the shape of the
scoliotic spine and the modeling of the brain variability from sulcal lines where the
results suggest new anatomical findings.

1 Computational Anatomy: Aims and Methods

Anatomy is the science that studies the structure and the relationship in space of
different organs and tissues in living systems. Before the renaissance, anatomical
descriptions were mainly based on animal models and the physiology was more
philosophical than scientific. Modern anatomy really began with the authorized
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dissection of human cadavers, giving birth to the “De humani corporis fabrica”
published by in 1543 by Vesale (1514-1564), and was strongly pushed by the
progresses in surgery, as exemplified by the “Universal anatomy of the human body”
(1561-62) of the great surgeon Ambroise Paré (1509-1590). During the following
centuries, many progresses were done in anatomy thanks to new observation tools
like microscopy and histology, going down to the level of cells in the 19th and
20th centuries. However, in-vivo and in-situ imaging is radically renewing the field
since the 1980ies. An ever growing number of imaging modalities allows observing
both the anatomy and the function at many spatial scales (from cells to the whole
body) and at multiple time scales: milliseconds (e.g. beating heart), years (growth
or aging), or even ages (evolution of species). Moreover, the non-invasive aspect
allows repeating the observations on multiple subjects. This has a strong impact on
the goals of the anatomy which are changing from the description of a representative
individual to the description of the structure and organization of organs at the
population level. The huge amount of information generated also raises the need
for computerized methods to extract and structure information. This led in the last
10 to 20 years to the gradual evolution of descriptive atlases into interactive and
generative models, allowing the simulation of new observations. Typical examples
are given for the brain by the MNI 305 [25] and ICBM 152 [46] templates that are
the basis of the Brain Web MRI simulation engine [20]. In the orthopedic domain,
one may cite the “bone morphing” method [34,63] that allows to simulate the shape
of bones.

The combination of these new observation means and of the computerized
methods is at the heart of computational anatomy, an emerging discipline at the
interface of geometry, statistics and image analysis which aims at developing
algorithms to model and analyze the biological shape of tissues and organs. The goal
is not only to estimate representative organ anatomies across diseases, populations,
species or ages but also to model the organ development across time (growth or
aging) and to establish their variability. Another goal is to correlate this variability
information with other functional, genetic or structural information (e.g. fiber
bundles extracted from diffusion tensor images). From an applicative point of
view, a first objective is to understand and to model how life is functioning at the
population level, for instance by classifying pathologies from structural deviations
(taxonomy) and by integrating individual measures at the population level to relate
anatomy and function. For instance, the goal of spatial normalization of subjects in
neuroscience is to map all the anatomies into a common reference system. A second
application objective is to provide better quantitative and objective measures to
detect, understand and correct dysfunctions at the individual level in order to help
therapy planning (before), control (during) and follow-up (after).

The method is generally to map some generic (atlas-based) knowledge to
patients-specific data through atlas-patient registration. In the case of observations
of the same subject, many geometrical and physically based registration meth-
ods were proposed to faithfully model and recover the deformations. However,
in the case of different subjects, the absence of physical models relating the
anatomies leads to a reliance on statistics to learn the geometrical relationship from
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many observations. This is usually done by identifying anatomically representative
geometric features (points, tensors, curves, surfaces, volume transformations), and
then modeling their statistical distribution across the population, for instance via a
mean shape and covariance structure analysis after a group-wise matching. In the
case of the brain, one can rely on a hierarchy of structural models ranging from
anatomical or functional landmarks like the AC and PC points [15, 66], curves
like crest lines [65] or sulcal lines [29, 41, 44], surfaces like the cortical surface
or sulcal ribbons [1,68,72], images seen as 3D functions, which lead to voxel-based
morphometry (VBM) [6], diffusion imaging or rigid, multi-affine or diffeomorphic
transformations [2,49,70], leading to Tensor-based morphometry (TBM). However,
one crucial point is that these features usually belong to curved manifolds rather
than to Euclidean spaces, which precludes the use of classical linear statistics. For
instance, the average of points on a sphere is located inside the sphere and not on its
surface.

To address this problem, one has to rely on statistical tools that work directly
on manifolds in an intrinsic way. We summarize in Sect. 2 the mathematical bases
that are needed to properly work on finite dimensional manifolds. Then, we show
in Sect. 3 that a consistent set of statistical tools, including mean and covariance
matrix analysis, can be developed based on the choice of a Riemannian metric.
This algorithmic framework to compute on manifolds is then extended to process
fields of geometric features (manifold-valued image). In particular, we show that
one can perform interpolation, filtering, isotropic and anisotropic regularization and
restoration of missing data (extrapolation or in-painting) on manifold valued images
by using generalized weighted means and partial derivative equations (PDEs).
Finally, the methodology is exemplified in Sect. 4 with two example applications:
the statistical analysis of the anatomic variability of the spine in scoliotic patients,
where a set of rigid body transformations is used to model the articulations between
the vertebrae; and the modeling of the variability of the brain from a data-set of
precisely delineated sulcal lines, where covariance matrices (symmetric positive
definite matrices, so-called tensors) are used to describe the individual and joint
anatomical variability (Green function) of points in the brain.

2 Mathematical bases of computing on manifolds

Computing on simple manifolds like the 3D sphere or a flat torus (for instance
an image with opposite boundary points identified) might seems easy as we can
see the geometrical properties (e.g. invariance by rotation or translation) and
imagine tricks to alleviate the different problems. However, when it comes to
slightly more complex manifolds like tensors, rigid body or affine transformations,
without even thinking to infinite dimensional manifolds like spaces of surfaces or
diffeomorphisms, computational tricks are much more difficult to find and have to
be determined on a case by case basis. The goal of this section is to exemplify
with the development of basic but generic statistical tools that the work specific to
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each manifold can be limited the determination of a few computational tools derived
from a chosen Riemannian metric. These tools will then constitute the basic atoms
to build more complex generic algorithms in Sect. 3.

2.1 The basic structure: the Riemannian metric

In the geometric framework, one has to separate the topological and differential
properties of the manifold from the metric ones. The first ones determine the local
structure of a manifold M by specifying neighboring points and tangent vectors,
which allows to differentiate smooth functions on the manifold. The topology
also impacts the global structure as it determines if there exists a connected path
between two points. However, we need an additional structure to quantify how far
away two connected points are: a distance. By restricting to distances which are
compatible with the differential structure, we enter into the realm of Riemannian
geometry. A Riemannian metric is defined by a continuous collection of scalar
products h : j : ip (or equivalently quadratic norms k:kp) on each tangent space
TpM at point p of the manifold. Thus, if we consider a curve on the manifold,
we can compute at each point its instantaneous speed vector (this operation only
involves the differential structure) and its norm to obtain the instantaneous speed
(the Riemannian metric is needed for this operation). To compute the length of
the curve, this value is integrated as usual along the curve. The distance between
two points of a connected Riemannian manifold is the minimum length among
the curves joining these points. The curves realizing this minimum are called
geodesics. The calculus of variations shows that geodesics are the solutions of a
system of second order differential equations depending on the Riemannian metric.
In the following, we assume that the manifold is geodesically complete, i.e. that all
geodesics can be indefinitely extended. This means that the manifold has neither
boundary nor any singular point that we can reach in a finite time. As an important
consequence, the Hopf-Rinow-De Rham theorem states that there always exists at
least one minimizing geodesic between any two points of the manifold (i.e. whose
length is the distance between the two points).

2.2 Exponential chart

Let p be a point of the manifold that we consider as a local reference and Ev a vector
of the tangent space TpM at that point. From the theory of second order differential
equations, we know that there exists one and only one geodesic 
.p;Ev/.t/ starting
from that point with this tangent vector. This allows to wrap the tangent space onto
the manifold, or equivalently to develop the manifold in the tangent space along
the geodesics (think of rolling a sphere along its tangent plane at a given point), by
mapping to each vector Ev 2 TpM the point q of the manifold that is reached after
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Fig. 1 Left: The tangent planes at points p and q of the sphere S2 are different: the vectors v and
w of TpM cannot be compared to the vectors t and u of TqM . Thus, it is natural to define the
scalar product on each tangent plane. Right: The geodesics starting at x are straight lines in the
exponential map and the distance along them is conserved

a unit time by the geodesic 
.p;Ev/.t/. This mapping Expp.Ev/ D 
.p;Ev/.1/ is called
the exponential map at point p. Straight lines going through 0 in the tangent space
are transformed into geodesics going through point p on the manifold and distances
along these lines are conserved (Fig. 1).

The exponential map is defined in the whole tangent space TpM (since the
manifold is geodesically complete) but it is generally one-to-one only locally around
0 in the tangent space (i.e. around p in the manifold). In the sequel, we denote by�!pq D Logp.q/ the inverse of the exponential map: this is the smallest vector (in

norm) such that q D Expp.
�!pq/. If we look for the maximal definition domain, we

find out that it is a star-shaped domain delimited by a continuous curve Cp called
the tangential cut-locus. The image of Cp by the exponential map is the cut locus
Cp of point p. This is (the closure of) the set of points where several minimizing
geodesics starting from p meet. On the sphere S2.1/ for instance, the cut locus of
a point p is its antipodal point and the tangential cut locus is the circle of radius � .

The exponential and log maps within this domain realize a chart (a local
parameterization of the manifold) called the exponential chart at point p. It covers
all the manifold except the cut locus of the reference point p, which has a null
measure. In this chart, geodesics starting from p are straight lines, and the distance
from the reference point are conserved. This chart is somehow the “most linear”
chart of the manifold with respect to the reference point p. The set of all the
exponential charts at each point of the manifold realize an atlas which allows
working very easily on the manifold, as we will see in the following.

2.3 Practical implementation

The exponential and logarithmic maps (from now on Exp and Log maps) are
obviously different for each manifold and for each metric. Thus they have to be
determined and implemented on a case by case basis. Example for rotations, rigid
body transformations can be found for the left invariant metric in [60], and examples
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Table 1 Re-interpretation of standard operations in a Riemannian manifold

Euclidean space Riemannian manifold

Subtraction �!pq D q � p �!pq D Logp.q/
Addition p D q C Ev q D Expp.Ev/
Distance dist.p; q/ D kq � pk dist.p; q/ D k�!pqkp
Mean value (implicit)

P
i .pi � Np/ D 0

P
i

�!Nppi D 0

Gradient descent ptC" D pt � "
����!rC.pt / ptC" D Exppt .�"

����!rC.pt //
Geodesic interpolation p.t/ D p0 C t ��!p0p1 p.t/ D Expp0 .t

��!p0p1/

for tensors in [4, 58]. Exponential charts constitute very powerful atomic functions
in terms of implementation on which we will be able to express practically all
the geometric operations: the implementation of Logp and Expq is the basis of
programming on Riemannian manifolds, as we will see in the following.

In a Euclidean space, the exponential charts are nothing but one orthonormal
coordinates system translated at each point: we have in this case �!pq D Logp.q/ D
q�p and Expp.Ev/ D pCEv. This example is more than a simple coincidence. In fact,
most of the usual operations using additions and subtractions may be reinterpreted
in a Riemannian framework using the notion of bi-point, an antecedent of vector
introduced during the 19th Century. Indeed, vectors are defined as equivalent classes
of bi-points in a Euclidean space. This is possible because we have a canonical way
(the translation) to compare what happens at two different points. In a Riemannian
manifold, we can still compare things locally (by parallel transportation), but not
any more globally. This means that each “vector” has to remember at which point
of the manifold it is attached, which comes back to a bi-point.

A second way to see the vector �!pq is as a vector of the tangent space at point p.
Such a vector may be identified to a point on the manifold using the exponential
map q D Expp.

�!pq/. Conversely, the logarithmic map may be used to map almost

any bi-point .p; q/ into a vector �!pq D Logp.q/ of TpM . This reinterpretation of
addition and subtraction using logarithmic and exponential maps is very powerful
to generalize algorithms working on vector spaces to algorithms on Riemannian
manifolds, as illustrated in Table 1 and the in following sections.

2.4 Example of Metrics on Covariance matrices

Let us take an example with positive definite symmetric matrices, called tensors in
medical image analysis. They are used for instance to encode the covariance matrix
of the Brownian motion (diffusion) of water in Diffusion Tensor Imaging (DTI)
[8,40] or to encode the joint variability at different places (Green function) in shape
analysis (see [29, 30, 31] and Sect. 4). They are also widely used in image analysis
to guide the segmentation, grouping and motion analysis [16, 47, 73, 74].
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The main problem is that the tensor space is a manifold that is not a vector
space with the usual additive structure. Indeed, the positive definiteness constraint
delimits a convex half-cone in the vector space of symmetric matrices. Thus, convex
operations (like the mean) are stable in this space but problems arise with more
complex operations. For instance, there is inevitably a point in the image where
the time step is not small enough when smoothing fields of tensors with gradient
descents, and this results into negative eigenvalues.

To answer that problem, we proposed in [58] to endow the space of tensors with
a Riemannian metric invariant by any change of the underlying space coordinates,
i.e. invariant under the action of affine transformations on covariance matrices. A
few mathematical developments showed that the Exp, Log and distance maps were
given with quite simple formulas involving the matrix logarithm exp and log:

Exp†.W / D †1=2 exp
�
†�1=2W †�1=2�†1=2

Log†.ƒ/ D †1=2 log
�
†�1=2ƒ†�1=2�†1=2

dist2.†;ƒ/ D Tr
�
log.†�1=2ƒ†�1=2/2

�

This metric leads to a very regular Hadamard manifold structure, a kind of
hyperbolic space without cut-locus, which simplifies the computations. Tensors with
null and infinite eigenvalues are both at an infinite distance of any positive definite
symmetric matrix: the cone of positive definite symmetric matrices is changed
into a space of “constant” (homogeneous) non-scalar curvature without boundaries.
Moreover, there is one and only one geodesic joining any two tensors, the mean
of a set of tensors is uniquely defined, and we can even define globally consistent
orthonormal coordinate systems of tangent spaces. Thus, the structure we obtain is
very close to a vector space, except that the space is curved.

This affine-invariant Riemannian metric derives from affine invariant connec-
tions on homogeneous spaces [54]. It has been introduced in statistics to model
the geometry of the multivariate normal family (the Fisher information metric)
[18, 19, 64] and in simultaneously by many teams in medical image analysis to
deal with DTI [9, 33, 42, 52, 58]. In [58], we showed that this metric could be used
not only to compute distances between tensors, but also as the basis of a complete
computational framework on manifold-valued images as will be detailed in Sect. 3.

By trying to put a Lie group structure on the space of tensors, Vincent Arsigny
observed later that the matrix exponential was a diffeomorphism from the space
of symmetric matrices to the tensor space. Thus, one can seamlessly transport all
the operations defined in the vector space of symmetric matrices to the tensor space
[4,5]. This gives a commutative Lie group structure to the tensors, and the Euclidean
metric on symmetric matrices is transformed into a bi-invariant Riemannian metric
on the tensor manifold. As geodesics are straight lines in the space of symmetric
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matrices, the expression of the Exp, Log and distance maps for the Log-Euclidean
metric is easily determined:

Exp†.W / D exp.log.†/C @W log.†//

Log†.ƒ/ D D exp.log.†// .log.ƒ/ � log.†//

dist2LE.†1;†2/ D Tr
�
.log.†1/� log.†2//2

�

These formulas look more complex than for the affine invariant metric because
they involve the differential of the matrix exponential and logarithm in order to
transport tangent vectors from one space to another [59]. However, they are in fact
nothing but the transport of the addition and subtraction through the exponential
of symmetric matrices. In practice, the log-Euclidean framework consist in taking
the logarithm of the tensor data, computing like usual in the Euclidean space of
symmetric matrices, and coming back at the end to the tensor space using the
exponential [3, 5].

From a theoretical point of view, geodesics through the identity are the same
for both log-Euclidean and affine-invariant metrics, but this is not true any more
in general at other points of the tensor manifold [4]. A careful comparison of both
metrics in practical applications [3, 5] showed that there was very few differences
on the results (of the order of 1%) on real DTI images, but that the log-Euclidean
computations where 4 to 10 times faster. For other types of applications, like
adaptive re-meshing [53], the anisotropy of the tensors can be much larger, which
may lead to larger differences. In any case, initializing the iterative optimizations of
affine-invariant algorithms with the log-Euclidean result drastically speeds-up the
convergence. Important application example of this tensor computing framework
were provided in [27,28] with a statistically grounded estimation and regularization
of DTI images. The white matter tractography that was allowed by these methods in
clinical DTI images with very poor signal to noise ratios could lead to new clinical
indications of DTI, for instance in the spinal chord [23].

3 Statistical Computing on Manifolds

The previous section showed how to derive the atomic Exp and Log maps from a
Riemannian metric. We now summarize in this section how one generalizes on this
basis many important statistical notions, like the mean, covariance and Principal
Component Analysis (PCA), as well as many image processing algorithms like
interpolation, diffusion and restoration of missing data (extrapolation). For details
about the theory of statistics on Riemannian manifolds in itself, we refer the reader
to [56, 57] and reference therein. Manifold-valued image processing is detailed in
[58] with the example of tensors.
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3.1 First statistical moment: the mean

The Riemannian metric induces an infinitesimal volume element on each tangent
space, and thus a reference measure dM .p/ on the manifold that can be used
to measure random events on the manifold and to define the probability density
function (the function � such that dP.p/ D �.p/dM .p/, if it exists). It is worth
noticing that the induced measure dM represents the notion of uniformity according
to the chosen Riemannian metric. This automatic derivation of the uniform measure
from the metric gives a rather elegant solution to the Bertrand paradox for geometric
probabilities [38, 62]. With the probability measure of a random element, we can
integrate functions from the manifold to any vector space, thus defining the expected
value of this function. However, we generally cannot integrate manifold-valued
functions. Thus, one cannot define the mean or expected “value” of a random
manifold element that way.

One solution is to rely on a distance-based variational formulation: the Fréchet
(resp. Karcher) expected features minimize globally (resp. locally) the variance:

�2.q/ D
Z

dist.p; q/2 dP.p/ D 1

n

nX

iD1
dist.pi ; q/2;

written respectively in the continuous and discrete forms. One can generalize the
variance to a dispersion at order ˛ by changing the L2 with an ˛-norm: �˛.p/ D
.
R

dist.p; q/˛dP.p//1=˛ . The minimizers are called the central Karcher values at
order ˛. For instance, the median is obtained for ˛ D 1 and the modes for ˛ D 0,
exactly like in the vector case. It is worth noticing that the median and the modes
are not unique in general in the vector space, and that even the mean may not
exists (e.g. for heavy tailed distribution). In Riemannian manifolds, the existence
and uniqueness of all central Karcher values is generally not ensured as they are
obtained through a minimization procedure. However, for a finite number of discrete
samples at a finite distance of each other, which is the practical case in statistics, a
mean value always exists and it is unique as soon as the distribution is sufficiently
peaked [37, 39].

Local minima may be characterized as particular critical points of the cost func-
tion: at Karcher mean points, the gradient of the variance should be null. However,
the distance is continuous but not differentiable at cut locus points where several
minimizing geodesic meets. For instance, the distance from a point of the sphere to
its antipodal point is maximal, but decrease continuously everywhere around it. One
can show [56, 57] that the variance it differentiable at all points where the cut locus

has a null measure and has gradient:
���!r�2.q/ D �2 R �!qp dP.p/ D �2

n

Pn
iD1

�!qpi
respectively in the continuous (probabilistic) and discrete (statistical) formulations.
In practice, this gradient is well defined for all distributions that have a pdf since
the cut locus has a null measure. For discrete samples, the gradient exists if there is
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no sample lying exactly on the cut-locus of the current test point. Thus, we end up
with the implicit characterization of Karcher mean points as exponential barycenters
which was presented in Table 1.

To practically compute the mean value, we proposed in [60] for rigid body
transformations and in [56, 57] for the general Riemannian case to use a Gauss-
Newton gradient descent algorithm. It essentially alternates the computation of
the barycenter in the exponential chart centered at the current estimation of the
mean value, and a re-centering step of the chart at the point of the manifold that
corresponds to the computed barycenter (geodesic marching step). This gives the

Newton iteration: NptC1 D Exp Npt
�
1
n

Pn
iD1

��!Nptpi
�

. One can actually show that its

convergence is locally quadratic towards non degenerated critical points [22,43,55].

3.2 Covariance matrix and Principal Geodesic Analysis

Once the mean point is determined, using the exponential chart at the mean point is
particularly interesting as the random feature is represented by a random vector with
null mean in a star-shaped domain. With this representation, there is no difficulty to
define the covariance matrix:

† D
Z �!Npq:�!NpqT dP.q/ D 1

n

nX

iD1

��!Npqi :��!NpqiT

and potentially higher order moments. This covariance matrix can then be used to
defined the Mahalanobis distance between a random and a deterministic feature:
�. Np;†/.q/ D �!NpqT†.�1/�!Npq. Interestingly, the expected Mahalanobis distance of a
random element is independent of the distribution and is equal to the dimension of
the manifold, as in the vector case. This statistical distance can be used as a basis to
generalize some statistical tests such as the mahalanobisD2 test [57].

To analyze the results of a set of measurements in a Euclidean space, one often
performs a principal component analysis (PCA). A generalization to Riemannian
manifolds called Principal Geodesic Analysis (PGA) was proposed in [32] to
analyze shapes based on the medial axis representations (M-reps). The basic idea
is to find a low dimensional sub-manifold generated by some geodesic subspaces
that best explain the measurements (i.e. such that the squared Riemannian distance
from the measurements to that sub-manifold is minimized). Another point of view
is to assume that the measurements are generated by a low dimensional Gaussian
model. Estimating the model parameters amounts to a covariance analysis in order
to find the k-dimensional subspace that best explains the variance. In a Euclidean
space, these two definitions correspond thanks to Pythagoras’s theorem. However, in
the Riemannian setting, geodesic subspaces are generally not orthogonal due to the
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curvature. Thus, the two notions differ: while the Riemannian covariance analysis
(tangent PCA) can easily be performed in the tangent space of the mean, finding
Riemannian sub-manifolds turns out to become a very difficult problem. As a matter
of fact, the solution retained by [32] was finally to rely on the covariance analysis.

When the distribution is unimodal and sufficiently peaked, we believe that
covariance analysis is anyway much better suited. However, for many problems,
the goal is rather to find a sub-manifold on which measurements are more or less
uniformly distributed. This is the case for instance for features sampled on a surface
or points sampled along a trajectory (time sequences). While the one dimensional
case can be tackled by regression [21], the problem for higher dimensional sub-
manifolds remains quite open. Some solutions may come from manifold embedding
techniques as exemplified for instance in [17].

3.3 Interpolation and filtering as weighted means

One of the important operations in geometric data processing is to interpolate
values between known measurements. The standard way to interpolate on a regular
lattice is to make a linear combination of samples fk at integer (lattice) coordinates
k 2 Z

d : f .x/ D P
k w.x � k/ fk . A typical example is the sinus cardinal

interpolation. With the nearest-neighbor, linear (or tri-linear in 3D), and higher order
spline interpolations, the kernel is piecewise polynomial, and has a compact support
[48, 67]. With normalized weights, this interpolation can be seen as a weighted
mean. Thus, it can be generalized in the manifold framework as an optimization
problem: the interpolated value p.x/ on our feature manifold is the point that
minimizes C.p.x// D Pn

iD1 wi .x/ dist2.pi ; p.x//. This can easily be solved using
the iterative Gauss-Newton scheme proposed for the Karcher mean. The linear
interpolation is interesting and can be written explicitly since it is a simple geodesic
walking scheme: p.t/ D Expp0.t

���!p0p1/ D Expp1..1 � t/���!p1p0/.
Many other operators can be rephrased as weighted means. For instance approx-

imations and convolutions like Gaussian filtering can be viewed as the average of
the neighboring values weighted by a (Gaussian) function of their spatial distance.
For instance, OF .x/ D R

Rn
K.u/ F.x C u/ du is the minimizer of C. OF / DR

Rn
K.u/ dist2.F.x C u/; OF .x// du. In a Riemannian manifold, this minimization

problem is still valid, but instead of a closed-form solution, we have once again a
Gauss-Newton iterative gradient descent algorithm to reach the filtered value:

OptC1.x/ D
Z

Rn

K.u/ Log Opt .x/.p.x C u// du:

We can also use anisotropic and non-stationary kernels K.x; u/. For instance, it
can be modulated by the norm of the derivative of the field in the direction u. We
should notice that for a manifold-value field p.x/, the directional derivatives @up.x/

is a tangent vector of Tp.x/M which can be practically approximated using finite
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“differences” in the exponential chart: @up.x/ ' Logp.x/.p.x C u// C O.kuk2/.
However, to measure the norm of this vector, we have to use the Riemannian metric
at that point: k@upkp .

3.4 Harmonic diffusion and anisotropic regularization

An alternative to kernel filtering is to consider a regularization criterion that penal-
izes the spatial variations of the field. A measure of variation is the spatial gradient
(the linear form that maps to any spatial direction u the directional derivative
@up.x/), which can be robustly computed as the matrix that best approximates the
directional derivatives in the neighborhood (e.g. 6, 18 or 26 connectivity in 3D). The
simplest criterion based on the gradient is the Harmonic energy

Reg.p/ D 1

2

Z

	

krp.x/k2p.x/ dx D 1

2

dX

iD1

Z

	

k@xi p.x/k2p.x/ dx:

The Euler-Lagrange equation with Neumann boundary conditions is as usual
rReg.p/.x/ D ��p.x/. However, the Laplace-Beltrami operator on the manifold
�p.x/ is the sum of the usual flat Euclidean second order directional derivatives
@2xi p.x/ in a locally orthogonal system and an additional term due to the curvature
of the manifold that distorts the orthonormality of this coordinate system. To
practically compute this operator, we proposed in [58] an efficient and general
scheme based on the observation that the Christoffel symbols and their derivatives
along the geodesics vanish at the origin of the exponential chart. This means that the
correction for the curvature is in fact already included: by computing the standard
Laplacian in that specific map, one gets the directional Laplace-Beltrami operator
for free:�up D Logp.x/.p.xCu//CLogp.x/.p.x�u//CO.kuk4/. Averaging over
all the directions in a neighborhood finally gives a robust and efficient estimation.

A very simple scheme to perform Harmonic diffusion is to use a first order
geodesic gradient descent. At each iteration and at each point x, one walks a little bit
along the geodesic which start at the current point with the opposite of the gradient
of the regularization criterion:

ptC1.x/ D Exppt .x/
��"�pt.x/� with �p.x/ /

X

u2V

1

kuk2Logp.x/.p.x C u//

In order to filter within homogeneous regions but not across their boundaries,
an idea is to penalize the smoothing in the directions where the derivatives are
important [35, 61]. This can be realized directly in the discrete implementation of
the Laplacian by weighting the directional Laplacian by a decreasing function of
the norm k@upkp of the gradient in that direction. For instance, we used �up DP

u c.k@upkp/ �up with c.x/ D exp
��x2=�2� in [58]. As the convergence of
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this scheme is not guaranteed (anisotropic regularization “forces” may not derive
from a well-posed energy), the problem may be reformulated as the optimization
of a �-function of the Riemannian norm of the spatial gradient (a kind of robust
M-estimator): Reg�.p/ D 1

2

R
	
�
�krp.x/kp.x/

�
dx. By choosing an adequate

�-function, one can give to the regularization an isotropic or anisotropic behavior
[7]. The main difference with a classical Euclidean calculation is that we have to
take the curvature into account by using the Laplace-Beltrami operator, and by
measuring the length of directional derivatives using the Riemannian metric at the
right point [26]. Using ‰.x/ D �0.x/=x, we get:

rReg�.p/ D �‰.krpkp/�p �Pd
iD1 @xi‰.krpkp/@xi p:

3.5 Diffusion-based interpolation and extrapolation

The pure diffusion reduces the noise in the data but also the amount of information.
Moreover, the total diffusion time that controls the amount of smoothing is difficult
to estimate. At an infinite diffusion time, the field will be completely homogeneous.
Thus, it is more interesting to consider the data as noisy observations and the
regularization as a prior on the spatial regularity of the field. Usually, one assumes
a Gaussian noise independent at each position, which leads to a least-squares
criterion through a maximum likelihood approach. For a dense data field q.x/, the
similarity criterion that is added to the regularization criterion is simply Sim.p/ DR
	

dist2 .p.x/ ; q.x// dx. The only difference here is that it uses the Riemannian
distance. It simply adds a linear (geodesic) spring rp dist2.p; q/ D �2 �!pq to
the global gradient to prevent the regularization from pulling to far away from the
original data.

For sparse measures, using directly the maximum likelihood on the observed data
leads to deal with Dirac (mass) distributions in the derivatives, which is a problem
for the numerical implementation. One solution is to consider the Dirac distribution
as the limit of the Gaussian function G� when � goes to zero, which leads to the

regularized derivative [58]: rSim.x/ D �2 Pn
iD1 G�.x � xi /����!

p.x/pi .

4 Modeling the Anatomy

4.1 A statistical shape model of the scoliotic spine

Now that we have the methodology to work with geometric features, let us see how
it can be used to model the anatomy. A first interesting example was proposed by
Jonathan Boisvert [12, 13] with a 3D articulated model of the spine. The model
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Fig. 2 First (left) and second (right) modes of variation of the statistical spine model depicted at -3,
0 (mean) and 3 times its standard deviation. Images courtesy of Jonathan Boisvert, Polytechnique
School of Montreal, Canada

gathers the relative configurations of the vertebrae along the spinal chord (the
parameters are the rigid transforms that superpose neighboring vertebrae) rather
than the position and orientation of each vertebra in a global reference frame. As
small local motions at one point of the spine may have a large impact of the position
at another point, this local representation is better capturing information that may get
unnoticed in a global reference frame. However, this requires making statistics on
geometric objects (rigid body transformation parameters) rather than on just points.

The statistical model of the spine was established in a population of 307 untreated
scoliotic patients. Each vertebra was reconstructed in 3D from anatomical land-
marks in bi-planar radiographies. Posture during data acquisition was normalized
but individual factors such as the age, sex or type of scoliotic curve were not
taken into account. Thus, the statistics capture the anatomical variability inherent
to the pathology but also the growth stage. The Fréchet mean and the generalized
covariance of the articulated model was then computed. As there are 102 degrees of
freedom (5 lumbar and 12 thoracic vertebrae), the analysis of the covariance matrix
could hardly be performed by hand. Thus, the most meaningful modes of variation
were extracted using a PCA on the tangent plane.

A visual inspection reveals that the first modes had clinical meanings and were
explaining curve patterns that are routinely used in different clinical classifications
of scoliosis (see [11, 14] for details). For instance, the first mode appears to be
associated with the patient growth with a mild thoracic curve (King’s type II or
III depending on the amplitude of the mode) and the second could be described
as a double thoraco-lumbar curve (King’s type I), see Fig. 2. A more quantitative
analysis showed that there is a statistically significant link between the 4 principal
modes and King’s classes, although each class is generally linked to a combination
of modes rather than only one mode [11].
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4.2 Learning Brain Variability from Sulcal Lines

A second interesting shape analysis application is the statistical modeling of the
brain variability in a given population of 3D images. In such a process, a first
step is to measure the variability of each anatomical position independently by
identifying for instance corresponding points among each individual anatomy
(structural homologies). This allows us to encode the brain variability by covariance
matrices that we call variability tensors. The reason why we should not simplify
these tensors into simpler scalar values is that there are evidences that structural
variations are larger along certain preferred directions [69].

As exemplify in introduction, a hierarchy of anatomical features may be used
to abstract the brain anatomy. We chose sulcal lines as they are low dimensional
structures easily identified by neuroscientists. Moreover, a certain number of sulcal
landmarks consistently appear in all normal individuals and allow a consistent
subdivision of the cortex into major lobes and gyri [45]. In the framework of the
associated team program Brain-Atlas between Asclepios at INRIA and LONI at
UCLA, we use a data-set of sulcal lines manually delineated in 98 subjects by expert
neuroanatomists according to a precise protocol1. We used the 72 sulcal curves that
consistently appear in all normal subjects (abusively called sulci in the sequel).

To find the corresponding points between the 98 instances of each of the 72 sulci,
we proposed in [29, 30] an original methodology which alternatively compute the
matches that minimize the distance between the mean curve and the instances, and
re-estimates the mean curve from the updated matches. As a result, we obtain the
mean sulcal curves, along with a variability tensor which encodes the covariance
matrix of the anatomical positions in each subject corresponding to each mean
point. To optimally adjust the number of tensor needed to represent the variability
information along each sulcus, we proposed a tensor picking method. The principle
is to approximate our tensor measurements using a linear interpolation in-between
N tensors picked along the line. The optimal subset of tensors is determined by
optimizing the distance between interpolated and measured tensors along the line.
The number of tensors picked along each line is adjusted so that the interpolation
error does not exceed a prescribed value. In this process, we used the Riemannian
metrics presented in Sect. 2.4 for their very good theoretical properties, and the
algorithmic framework developed in Sect. 3.3. Tensor picking is illustrated in Fig. 3.
We were able to show that selecting only 366 variability tensors was sufficient to
encode the variability of the 72 sulci without a significant loss of accuracy.

The result is a sparse field of tensors, which can naturally be extrapolated to
the whole space using the framework described in Sect. 3.5 (Fig. 4). This dense
map of tensors was shown to be in good agreement with previous published
results: the highly specialized and lateralized areas such as the planum parietale
and the temporo-parietal areas consistently show the highest amount of variability.

1http://www.loni.ucla.edu/~khayashi/Public/medial_surface/

http://www.loni.ucla.edu/~khayashi/Public/medial_surface/
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Fig. 3 Measuring variability tensors along the Sylvian Fissure. Left: Covariance matrices
(ellipsoids at one standard deviation) are overlaid at regularly sampled spatial positions along the
mean sulci. Middle: Tensors selected by our tensor picking operation. Right: Tensors reconstructed
by linear interpolation in-between them. Notice that only 5 tensors in that case nicely represent the
variability of the entire sulcus

Fig. 4 Variability tensor extrapolation. Left: The 366 tensors retained for our model. Right: Result
of the extrapolation. Each point of this average brain shape contains a variability tensor

The lowest amount of variability is consistently found in phylogenetically older
areas (e.g. orbitofrontal cortex) and primary cortices that myelinate earliest during
development (e.g., primary somatosensory and auditory cortex). However, our
variability map gives more than just the amount of variability: we can extract from
the tensors the spatial directions where the variability is the greatest at every single
anatomical position. We refer the reader to [29, 30] for a more detailed explanation
of the method and for the neuroscience interpretation of these results.

Modeling independently the variability at each point may not be sufficient as
we may overlook potential statistical relationships between different brain regions.
Indeed, long range relationships may arise from common genetic and trophic
influences across brain regions (e.g., brain regions that develop together). In our
framework, such relationships can be revealed by an analysis of the correlation
between spatially close anatomical positions along the lines (neighboring points),
but also distant points (e.g., a point and its symmetric counterpart in the opposite
hemisphere).

In [31], we studied the correlation between two points Nx and Ny of the mean sulcal
lines by canonical correlation analysis. This analysis is based on the total covariance
matrix (TCM) of the corresponding points xi and yi in each subject anatomy:
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Fig. 5 Map of anatomical correlations. The tip of the superior temporal sulcus (marked A) was
picked as a reference point. The map indicates regions which are spotted as correlated with this
reference position (hot colors mean correlation). The most correlated points include the parietal
sulci (marked B and C), a very interesting neuroscience finding

TCM.x; y/ D 1

n � 1

nX

iD1

�
xi � Nx
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The TCM being a 6-dimensional tensor, our Riemannian processing framework
naturally allows us to extrapolate this tensor from the sulcal lines to the whole cortex
surface. To statistically assess the correlation of the variability at any two anatomical
positions, we used the Bartlett-Lawley test which tests the rank of the correlation
matrix � D †

�1=2
xx †xy†

�1=2
yy . The singular values of this matrix are the correlation

coefficients between the spatial directions given by corresponding eigenvector.
A rank of at least 1 means that the variability at Nx and at Ny are significantly
correlated in at least one direction. To account for multiple comparisons, we used
the very conservative Bonferroni correction. In addition to the expected local
correlation, results indicates that there was generally a long-range correlations
with the symmetric point in the other hemisphere, but also unexpected long-range
correlations with other parts of the brain as shown for instance in Fig. 5 with the
superior temporal sulcus.

5 Challenges

We have shown in this chapter that the choice of a Riemannian metric and the
implementation of a few tools derived from it, namely the Exp and Log maps,
provide the bases for building a consistent algorithmic framework to compute on
manifolds. In particular, we showed that one can compute consistent statistics, per-
form interpolation, filtering, isotropic and anisotropic regularization and restoration
of missing data.

We also showed that powerful computational models of the anatomy could
be built thanks to this Riemannian computing framework. For instance, Sect. 4.1
demonstrates that using a proper non-linear model of the spine allows to find a good



164 X. Pennec and P. Fillard

separation of different physiological phenomena such as pathological deformations
and normal growth. In this example, using the generic tools of the Riemannian
computing framework particularly simplifies both the inception of the experimental
setup, its implementation and the exploitation of the results. Sect. 4.2 also proposes
a brain variability model that is able to recover the estimation of the sulcal
variability with a very low number of parameters. By pushing further this statistical
investigation, we showed that the same Riemannian framework could be used to
measure and model the anatomical correlations between any two positions. These
correlations are very interesting from a neuroscientific point of view since they can
reveal factors of dependence between brain regions (like regions that develop or fail
to develop together).

However, there are many challenges left open both from the theoretical and appli-
cation point of views. For instance, it would be necessary to extend the computing
framework presented here to infinite dimensional manifolds in order to deal properly
with curves, surfaces and diffeomorphisms. For the case of diffeomorphism, we
already known how to provide Riemannian metrics for which the geodesics can be
computed by optimization [10, 36, 49, 50]. Through the so called EPDiff equation
(Euler-Poincarré equation for diffeomorphisms), this optimization framework has
been recently rephrased in an exponential/logarithm framework similar to the one
developed here [51]. Thus, the basic algorithmic tools are the same, except that
optimizing each time to compute the exponential and the logarithm has a deep
impact on the computational times. Moreover, the infinite number of dimensions
forbids the use of many tools like the probability density functions! For instance, the
computation of simple statistics like the mean and the principal component analysis
of diffeomorphism raises practical representation problems [24, 71].

From a computational anatomy standpoint, the huge number of degrees of
freedom involved in the estimation of the anatomical variability will require to
aggregate information coming from many different sources in order to improve
the statistical power. As there is no gold standard, we should also be careful that
many biases may be hidden in the results. Thus, methods to compare and fuse
statistical information coming from many different anatomical features will need
to be developed in order to confirm anatomical findings. For the brain variability,
one could for instance add to the sulci other cortical landmarks like sulcal ribbons
and gyri, the surface of internal structures like the ventricles, the hippocampus or the
corpus callosum, or fiber pathways mapped from DTI. These sources of information
are individually providing a partial and biased view of the whole variability. Thus,
we expect to observe a good agreement in some areas, and complementary measures
in other areas. This will most probably lead in a near future to new anatomical
findings and more robust medical image analysis applications.
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Building Patient-Specific Physical
and Physiological Computational Models
from Medical Images

H. Delingette and N. Ayache

Abstract We describe a hierarchy of computational models of the human body
operating at the geometrical, physical and physiological levels. Those models can
be coupled with medical images which play a crucial role in the diagnosis, planning,
control and follow-up of therapy. In this paper, we discuss the issue of building
patient-specific physical and physiological models from macroscopic observations
extracted from medical images. We illustrate the topic of model personalization with
concrete examples in brain shift modeling, hepatic surgery simulation, cardiac and
tumor growth modeling. We conclude this article with scientific perspectives.

1 Introduction

Computational models of the human body [3] aim at reproducing the geometrical,
physical and physiological properties of human organs and systems at various scales
(see Fig. 1). This is an emerging and rapidly progressing area of research that
is driven by a better understanding of the physical and physiological processes
involved but also by more efficient computational tools (either software or hardware)
for their realistic numerical simulation. The purpose of this paper is to show how
medical imaging plays a growing role in the development of those models. Indeed,
medical imaging provides macroscopic observations of the human anatomy and its
function for a wide number of patients. It can serve to personalize those computa-
tional models, i.e. to choose a specific set of parameters that best corresponds to the
studied patient.

Before entering the issue of creating patient specific models, it is useful to
structure those models into a hierarchy of three main levels [16], the knowledge
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Fig. 1 Hierarchy of computational models of the human body (from [15])

of the lower level being required for the implementation of the upper level. The
first level is mainly geometrical and addresses the construction of digital static
descriptions of the anatomy, often based on medical imagery. The techniques
for segmenting and reconstructing anatomical and pathological structures from
medical images have been developed for the past 15 years and have brought many
advances in several medical fields including computer-aided diagnosis, therapy
planning, image-guided interventions, drug delivery, etc. An distinctive achievement
of computational anatomy has been carried out by the “Visible Human Project” [1]
which provided the first digital multimodal anatomical representation of the full
human body.

A second level of modeling describes the physical properties of the human body,
involving for instance the biomechanical behavior of various tissues, organs, vessels,
muscles or bone structures [22].

A third level of modeling describes the functions of the major biological
systems [24, 38] (e.g. cardiovascular [5, 44], respiratory [25], digestive, hor-
monal, muscular, central or peripheral nervous system, etc.) or some pathological
metabolism (e.g. evolution of inflammatory or cancerous lesions [48], formation
of vessel stenoses [7, 42], etc.). Such physiological models often include reactive
mechanisms while physical models only provide a passive description of tissues
and structures.

There is an additional dimension associated with each level: the scale at which the
anatomical, physical or physiological structure is described. With the development
of new imaging modalities, it is now possible to observe the shape or function
of most structures at the macroscopic (tissue), microscopic (cellular) levels and
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Fig. 2 This diagram shows how computational models can be coupled with medical images and
signals to build personalized models and use them in clinical applications [4]

even in such cases to reveal the metabolic activity at the nanoscopic (molecular)
scale. Coupled with those multiscale observations are new generations of multiscale
computational models [24, 38]

Furthermore, each model is specified by a number of parameters (e.g. material
stiffness or electrical conductivity for a physical model) and a related task consists
in finding a set of those parameters that produces the best agreement between
the simulated processes (deformation, activation,...) and the observed ones. The
techniques consisting in finding the patient-specific parameters of a dynamic model
typically require to solve an inverse problem and are sometimes called “data
assimilation” techniques in the field of oceanography or climatology. As illustrated
in Fig. 2, the personalization of a model from medical images or signals is often a
requirement for using its predictive power in clinical applications such as therapy
planning or simulation. The personalized models may also be used as advanced
image processing tools that can provide a decision support system with additional
physical or physical parameters relevant for establishing a diagnosis.

Finally, the ability to recover patient-specific parameters leads to the variability
study of those parameters across a given population. Thus, statistical modeling of
those computational models can be seen as an orthogonal modeling activity that
aims for instance at finding the local or global similarities and dissimilarities of a
structure or a function between two populations [18,34,49]. Statistical findings may
also be used to calibrate, refine or constrain [11] a given model. At the basis of
this activity is the growing availability of large databases of subjects and patients
including biomedical signals and images as well as genetic information.

In the next sections, following the proposed hierarchy, we describe a number
of practical cases involving the personalization of computational models before
proposing some perspectives and challenges for future research.
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2 Patient Specific Biomechanical/Physical modeling

Anatomical models only provide a static geometrical representation of the patient
anatomy and do not take into account the deformation of soft tissue that may occur
before or during therapy. To address this issue, it is necessary to add a biomechanical
model that can estimate soft tissue deformations under the application of known
forces or displacements. The additional complexity of modeling may be used to
improve the pre-operative planning of a therapy [23, 43] or to provide advanced
surgical gesture training.

Personalization of biomechanical models mainly involves the estimation of
material parameters and boundary conditions from a time series of images, before
and after deformation. One should stress the importance of specifying the proper
boundary conditions (constraining the displacement of some nodes at the boundary
of the structure) when modeling soft tissue deformation since it has a key effect of
the displacement of neighboring nodes.

We briefly discuss below two limit cases for the personalization of biomechanical
models: small deformations involved in brain-shift during neurosurgery and large
deformations involved in liver surgery simulation.

2.1 Brain-Shift modeling in neurosurgery

The brain shift that occurs during a neuro-surgical intervention is the main source
of intra-operative localization inaccuracies of pathologies (cerebral tumors,: : :).
Indeed, a neurosurgeon establishes the surgical plan based on a pre-operative MR
image: any non-rigid motion of the brain between the pre-operative and the intra-
operative configuration may lead to an error in the localization of the target. To
model the brain motion after opening the dura, a number of authors [17, 32] have
made the hypothesis that the loss of cerebro-spinal fluid causes a pressure field along
the gravity direction (Archimedes principle). Furthermore, anatomical constraints
(falx cerebri, skull) of the deformation field can be enforced with a biomechanical
model of the brain discretized as a tetrahedral mesh since the relevant anatomical
information can be extracted from MR images and enforced on the mesh.

This clinical problem has motivated the study of the biomechanical behavior of
the brain. For instance, Miller [33] has proposed a rheological model for swine
brains valid for large displacements. However, in most cases, authors have relied
on linear elastic models to extrapolate displacement fields [17, 47] from the cortex
surface. Similarly, partial validation of brain shift models has been carried out [10]
with a linear elastic model by comparing computed displacements with those
observed from intra-operative MR images.

The fairly good predictive power of those simplified models show that a quasi-
incompressible (Poisson ratio close to 0:5) linear elastic model is a good choice
for simulating the small displacements induced by the brain shift. This is a
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sensible result since any non-linear material can be approximated as a linear elastic
material for sufficiently small displacements. Another important point that makes
the personalization of those biomechanical models less difficult is the fact they
are often used to predict displacements from given imposed displacements. In such
cases, the knowledge of the Young Modulus is irrelevant and only the Poisson ratio
and the boundary conditions must be chosen properly.

2.2 Hepatic Surgery Simulation

Surgery simulation aims at reproducing the visual and haptic senses experienced
by a surgeon during a surgical procedure, through the use of computer and
robotics systems. The medical scope of this technology is linked with the develop-
ment of minimally invasive techniques especially videoscopic surgery (endoscopy,
laparoscopy,...) and possibly telesurgery.

By creating patient-specific models, surgery simulation allows surgeons to verify,
optimize and rehearse the surgical strategy of a procedure on a given patient.

However, an important issue for patient-specific soft-tissue models is the esti-
mation of their material properties. Such parameters may be the Young Modulus
and Poisson ratios for linear elastic materials or other stiffness parameters for
general hyperelastic materials. There are three different sources of rheological data
to estimate those parameters: ex-vivo testing where a sample of a tissue is positioned
inside a testing rig [39]; in-vivo testing where a specific force and position sensing
device is introduced inside the abdomen to perform indentation [8,37]; Image-based
elastometry from ultrasound, Magnetic Resonance Elastometry [26, 31] or CT-scan
imaging.

There is no consensus on which method is best suited to recover meaningful
material parameters, each one having its limitation. For instance ex-vivo testing
may not be relevant because of the swelling or drying of the tissue. In-vivo
experiments should also be considered with caution because the response may be
location-dependent (linked to specific boundary conditions or non-homogeneity
of the material) and the influence of the loading tool caliper on the deformation
may not be well understood. Finally elastometry commonly assumes that the tissue
undergoes small displacements and need to be thoroughly calibrated.

Thus, when assessing the mechanical parameters of the liver, several authors have
reported widely varying parameters [15]. It is especially difficult in the case of the
liver because it undergoes large displacements and its perfusion affects deeply its
rheology (the liver receives one fifth of the total blood flow at any time). In fact,
trying to estimate the liver Young Modulus is prone to large errors because the
liver response largely depends on the speed at which the pressure was applied. One
can expect to obtain meaningful material parameters only if this material is highly
viscoelastic such as the one proposed by Kerdork et al. [27].
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Fig. 3 (Left) View of the simulated hepatic resection involving linear-elastic materials (from [12,
13, 15] and [20, 21]); (Right) A force feedback system suited for surgery simulation

Furthermore, in a surgical simulator there are strict real-time constraints for
simulating soft tissue deformations. For instance, the required refresh rate for user
interaction is 30 Hz for visual feedback and more than 500 Hz for force-feedback,
although the latter constraint can be alleviated with the addition of a local haptic
model [20]. This implies that specific optimisations of soft tissue deformation
must be devised either in the form of precomputations [15], or dedicated data
structures [40] or multigrid [14] algorithms.

Thus, providing patient-specific soft tissue deformation suitable for surgery
simulation remains largely an open problem that encompasses two separate issues.
The former one corresponds to the proposition of a physically realistic constitutive
material (with viscoelastic and non-linear behaviours) that is suitable for real-time
computation. The latter one consists in finding reliable and non-invasive ways to
estimate those material parameters from in-vivo data.

3 Patient Specific Physiological Modeling

To model the active properties of living tissues and the dynamic nature of normal or
pathological evolving processes, it is necessary to introduce physiological models
of the human body. We illustrate the personalization of those models with two
examples related to the modeling of the electro-mechanical activity of the heart
and the growth of brain tumors.
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3.1 Cardiac modeling

During the past 15 years, a scientific INRIA consortium1 has developed an
electro-mechanical model of the cardiac ventricles for medical purposes. The model
reproduces the electrical depolarization and repolarization of the cardiac tissues
through a set of macroscopic reaction-diffusion equations initially proposed by
Fitzugh and Nagumo [19] and further refined by Aliev and Panvilov [2].

"2@tu D "div .Dr.u//C ku.1 � u/.u � a/ � uz
@t z D �.ku.u � a � 1/C z//

(1)

where u is the action potential averaged within a volume element of the cardiac
tissue, z is the repolarization variable, D is the electrical conductivity tensor, " is
a numerical constant, k controls the electrical reaction and a controls the action
potential duration.

The electrical activity can be synchronized with the actual ECG (electro-
cardiogram) of the patient and creates a mechanical contraction followed by an
active relaxation which are modeled by a set of partial differential equations
initially proposed by Bestel, Clément and Sorine [6]. The average direction of
the myocardium fibers is also integrated into this model (for instance through
the conductivity tensor D), since it plays an important role in the anisotropic
propagation of both the electrical and mechanical excitations.

This electromechanical model of the heart includes several parameters related
to the heart anatomy (fiber orientation), electrophysiology (electrical conductivity),
blood flow (preload and afterload) or cardiac mechanics (passive stiffness, contrac-
tility). It was shown in [44] that this model could be interactively adjusted to the
actual geometrical, mechanical or electrical properties of patient’s heart through the
use of conventional or tagged MR images and some in vivo electrophysiological
measurements.

However it is important to make the personalization as automatic as possible in
order to predict in the most objective way the effect of a therapy or the evolution of
a pathology [45, 46]. This parameter estimation is typically an inverse problem that
can be formulated as the minimization of a functional measuring the discrepancy
between simulated and observed quantities: the “best” set of parameters specific
to a given patient observation is the one that minimizes the functional. Not all
parameters can be identified however since several combinations of parameters may
lead to the same simulation. For instance, in Eq. (1), the speed of the depolarization
propagation is governed by the product between the conductivity and the reaction
term: D � k.

1cf. CardioSense3D URL http://www-sop.inria.fr/CardioSense3D/

http://www-sop.inria.fr/CardioSense3D/
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Fig. 4 (a) Isochrone map of the epicardium measured on a canine heart. The location of the
infarted zone is shown; (b) Simulated isochrones after the estimation of global and regional
parameters; (c) Map of the apparent conductivity, the conductivity being constant for each region.
There exists a good correlation between regions of low conductivity and infarcted regions [36]

This problem of identifiability has been tackled in [36] by estimating appar-
ent conductivities instead of physical ones from isochrones maps (maps of the
epicardium describing the time at which the electrical signal reaches a given
point). This is performed by estimating a global value of the reaction term D

while finding regional variations of the electrical conductivities (see Fig. 4) around
a reference value. Minimizing the difference between simulated and observed
quantities is numerically challenging because the gradient of the functional cannot
be computed in a closed form. Instead, various numerical schemes can be used to
avoid an exhaustive search of parameters. For instance, in [36], the causality of
the propagation was assumed to break a multivariate optimisation into a series of
one dimensional optimization of each region conductivity. Furthermore, the Brent
algorithm allowed to minimize the functional without estimating its gradient.

To build patient specific models of the cardiac mechanics and estimate the con-
tractility of the myocardium, data assimilation techniques based on variational [45]
or sequential [35] approaches can be used assuming for instance that the speed



Building Patient-Specific Physical and Physiological Computational Models. . . 177

of material points are known from the analysis of time series of medical images.
A common difficulty in those approaches lies in the large size of the state vector and
associated covariance matrices due to the addition of the parameters to be estimated.

3.2 Tumor growth

The second physiological model is related to the modeling of the growth of
brain tumors. A joint action between INRIA, a Nice Hospital (Centre Antoine
Lacassagne), the Brigham and Women’s hospital and MIT (Boston) has led to the
development of a three stage model [9].

The first stage includes the geometrical model of a patient’s head, including the
skull, the brain parenchyma (grey and white matter) and the Cerebro-Spinal Fluid
(CSF). The shape of each region is acquired through a conventional MR exam.
In addition, the direction of the main white matter fibers is also acquired either
through Diffusion Tensor Imaging (DTI), or using average directions provided by a
brain atlas. A second stage includes the modeling of the biomechanical properties
of the brain tissues. Because we are considering small deformations only, this
model is linear elastic and implements the boundary conditions imposed by the
bony (skull) and fluid (ventricles) structures surrounding the brain parenchyma. The
third stage is an evolution model of the tumoral tissues, which is based on a set of
reaction-diffusion equations describing the proliferation and diffusion of malignant
cells [48].

An original point is the coupling of the third level with the previous two levels in
order to create a realistic deformation of the brain tissues (also called mass effect)
produced by the tumor growth. The direction of the white matter fibers plays an
important role in the highly anisotropic diffusion of cancerous cells (see Fig. 5).

In order to predict the tumor evolution beyond the time of image acquisition,
the parameters controlling the tumor growth must be estimated from T2 weighted
magnetic resonance images (MRI). Those patient-specific parameters include the
proliferation rate �, the diffusion coefficients dg and dw in the grey and white matter
respectively. However the proliferation rate cannot be determined independently
from the diffusion coefficients by just looking at the motion of the tumor front.
That is why our work in tumor growth parameter identification [28] has focused on
the estimation of apparent diffusion coefficients assuming a known proliferation
rate. In order to speed-up the computation, the tumor growth is simulated with
an anisotropic fast marching method [29] based on an Eikonal approximation of
the reaction-diffusion equation. The patient-specific parameters are estimated [28]
by minimizing the symmetric distance between the segmented tumor front and
the simulated one (see Fig. 5). The minimization is performed by using an
unconstrained optimization algorithm [41] that does not require derivatives of the
objective function. The average symmetric distance between the two fronts are less
than 0:1mm which seem to imply that the tumor growth model captures reasonably
well the physiological process.
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Fig. 5 (Top) Overview of the evolution model of cancerous cells which takes into account the
anisotropic diffusion along white matter fibers; (Bottom) Result of the tumor growth simulation
on a brain slice; (a) Initial MR T2 image of the patient with lines of constant tumor density; (b)
View of the corresponding MR T2 slice (after rigid registration) six months later; (c) Lines of
constant tumor density predicted by the tumor growth model [9] after 6 months of evolution. (d)
and (e) Patient specific tumor growth modeling in coronal and saggital views. Thick white contours
correspond to the segmented initial tumor front while the thin white contours are the segmented
front 270 days later. Thick black contours are the simulated front after optimizing the diffusion
coefficients : dw D 0:55mm2=day, dg D 2:7� 10�3mm2=day (from [28])
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4 Summary and Perspectives

We have shown in this article some examples of patient-specific physical and
physiological models resulting from their coupling with medical images. In fact
those models should be seen as a new generation of medical image analysis
tools that go beyond the geometrical principles used in the already existing tools
(image segmentation, image registration). An important aspect is the possibility
offered by these personalized models to actually fuse the geometrical, physical, and
physiological information necessary to provide a thorough and reliable analysis of
the complex and multimodal biomedical signals acquired on each patient, possibly
at various scales.

We list below some research topics that should open new perspectives in
combining physical and physiological models with medical images:

• Soft Tissue Modeling. The liver example presented in Sect. 2.2 illustrates the
need to develop sophisticated ex-vivo and in-vivo indentation devices in order to
provide a better understanding and new mathematical models of the mechanical
behavior of human organs. Without developing realistic macroscopic biome-
chanical models, it is impossible to reliably recover patient specific material
parameters useful for surgery simulation or therapy planning.

• Respiratory and cardiac modeling. In addition to providing better understanding
of pulmonary and cardio-vascular diseases, patient-specific models of the lungs
and the heart can be helpful to compensate the motion artefacts created when
imaging the thorax or the abdomen.

• Parameter estimation. Inversing realistic computational models from observa-
tions still remains an open problem due to the issue of identifiability and the
curse of dimensionality associated with sequential or variational approaches.
A reasonable objective for parameter identification would be to provide a
probability density function associated with each parameter in order to take into
account the uncertainty of the inversion.

• Statistical Analysis. The development of large databases of medical images
should further improve the robustness and accuracy of the previously discussed
computational models, and therefore the performances of image-guided interven-
tion or simulation systems.

• Microscopic Imaging. New in vivo microendoscopy techniques [30,50] providing
structural and functional information on the tissues at the cellular level should
also open new avenues for building patient specific models.
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Constructing a Patient-Specific Model Heart
from CT Data

D.M. McQueen, T. O’Donnell, B.E. Griffith, and C.S. Peskin

Abstract The goal of our work is to predict the patterns of blood flow in a model
of the human heart using the Immersed Boundary method. In this method, fluid is
moved by forces associated with the deformation of flexible boundaries which are
immersed in, and interacting with, the fluid. In the present work the boundary is
comprised of the muscular walls and valve leaflets of the heart. The method benefits
by having an anatomically correct model of the heart. This report describes the
construction of a model based on CT data from a particular individual, opening up
the possibility of simulating interventions in an individual for clinical purposes.
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1 Introduction

We wish to compute blood flow in the chambers of a model of the human heart.
For spatial scales on the order of the sizes of the chambers of the heart or the
great vessels, the motion of blood is well-described by the Navier-Stokes equations.
Solution of the Navier-Stokes equations requires specifying conditions on the
boundary. This can be a challenging requirement in the computation of blood flow
within the chambers of the heart. The valve leaflets comprise an important part of the
boundary, and the motion of those leaflets cannot be specified in advance. The valve
leaflets and the surrounding fluid (blood) form a coupled system; the motion of the
leaflets and the motion of the blood must be computed simultaneously. Although
less obviously so, this is equally true for the motion of the heart walls.

We have developed a numerical method, the Immersed Boundary (IB) method,
which simultaneously computes the motion of a fluid and the motion of an elastic
boundary immersed in, and interacting with, that fluid. In this method, the fluid is
represented by Eulerian velocities and pressures which are stored on a regular three-
dimensional computational lattice. The boundary is represented by elastic structures
which are free to move continuously in the space sampled by the computational
lattice. The essence of the method is to replace the elastic boundary by the forces
which result from its deformations. These forces are applied to the lattice in the
neighborhood of the elastic boundary with the aid of a numerical approximation to
the Dirac delta function. The fluid moves under the action of this body force field.
The numerical delta function is then used again, to interpolate the newly computed
lattice velocities to the locations of the boundary, and then the boundary is moved
at the interpolated velocity to a new location (this is the no-slip condition). The
process of calculating forces, computing fluid motion and moving the boundary is
repeated cyclically in a time-stepping procedure with a suitably chosen time step.
Neither the fluid motion nor the boundary motion is an input: both motions are
outputs. The inputs are physical properties of the fluid, the elastic properties of the
boundary (which may be time-dependent), and the initial geometry of the boundary.
A systematic description of the IB method can be found in [4], and its application
to the heart is illustrated in [2].

The myocardial muscle fibers supply the force which moves the heart and the
blood. Computation of blood flow within the chambers of the heart by the IB method
would benefit by the availability of an anatomically correct model of the cardiac
muscle fibers. We have previously described a somewhat idealized model of the fiber
anatomy of the heart [1], strongly influenced by the dissections of Thomas [8]. In
the idealized model the heart at end-systole was comprised of a collection of conical
surfaces; muscle fibers were represented by geodesic paths on these surfaces, each
geodesic beginning on one valve ring and ending on a (possibly different) valve
ring. Representing muscle fibers by geodesics was motivated by the observations of
Streeter, et al. [6]. The use of conical surfaces makes computation of the geodesics
straightforward, since a conical surface can be unrolled onto a plane, but it also
gives rise to some unnatural anatomical shapes, most notably in the neighborhood
of the apex and in the neighborhood of the valve rings. Since the flow patterns in
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Fig. 1 CT data from a patient with congestive heart failure visualized using the Osirix DICOM
viewer. The middle and right panels show the segmentation of the ascending aorta (enlarged)

the chambers of the heart are influenced by the shapes of the chambers, it would be
unrealistic to use the conical-surface model to study the blood flow in any particular
human.

A major (and ambitious) goal of our research is to provide a tool that would
permit a cardiologist to replicate a patient’s disease state in a computer model and
to study how a proposed intervention, such as surgery, changes the behavior of
the model, as a guide to how that intervention might change the behavior of the
patient’s heart. A vital component of such a tool would be an accurate model of the
patient’s cardiac anatomy, that is, a patient-specific heart model. In the following we
describe the techniques by which we produce a computer model of the heart based
on measurements from a particular individual.

2 Computed Tomography Data

The starting point of our construction is a computed tomography (CT) data set from
a patient with congestive heart failure, obtained by Arthur E. Stillman and Randolph
M. Setser at the Cleveland Clinic. A sample plane slice of this data set is shown
in the left panel of Fig. 1. The data set consists of about 300 such slices, 0.5 mm
apart. Cross-sections of the heart and the nearby great vessels from this data set are
segmented by hand. The right panel of Fig. 1 shows a sample segmentation of the
ascending aorta.

For technical reasons, the IB method requires that neighboring points on the
boundary be spaced apart no more than 1=2 of the computational lattice meshwidth
in order for the boundary not to leak. Consequently, the cross-section perimeters
produced by segmentation are re-discretized so that interpoint distances are slightly
less than 1=2 of the intended lattice meshwidth and are uniform around the
perimeter. All subsequent references here to discretized boundaries should be
understood to mean boundaries re-discretized in this way.

Figure 2(upper) shows oblique views of two neighboring cross-sections of the
ascending aorta just below the aortic arch. The aortic surface between these two
perimeters can be defined by triangulation. We find a good triangulation by the
following heuristic procedure. On each perimeter choose any point to be the first
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Fig. 2 Upper panel: oblique view of two neighboring cross-sections of the ascending aorta just
below the aortic arch; Middle panel: set of edges having minimal aggregate length joining points of
the discretized cross-sections; Lower panel: triangulation of the surface between the cross-sections

point and then compute the aggregate arclength to each subsequent point. The
perimeter is periodic, so the last point is also the first point. Normalize so that
the arclength from first point to last point is 1.0. Logically, the points from both
perimeters could be thought of as coexisting on a line segment of length 1.0. We are
going to connect points of one perimeter to points of the other, and it is convenient to
maintain a pointer on each perimeter to the “current point”, which is the last point on
that perimeter which has been connected to another point. Identify either perimeter
as perimeter one and the other perimeter as perimeter two. Connect the current point
of perimeter one to each point of perimeter two which has an arclength greater than
that of the current point of perimeter two and which also has an arclength less than
or equal to the arclength of the next point on perimeter one (or arclength D 1.0
if the current point of perimeter one is its last point). With each new connection,
the current point of perimeter two is incremented. After making these connections,
interchange perimeter identities, so the perimeter which had identity one now has
identity two, and vice-versa. The cycle of connecting points and interchanging
identities continues until the two last points are connected. These connections define
the edges of a triangulation whose other edges lie on the perimeters. The aggregate
length of the inter-perimeter edges depends on which points are chosen as the first
points. We test all possible pairs of first points and choose the pair which results in
the shortest aggregate length of the inter-perimeter edges. Figure 2(middle) shows
this set of inter-perimeter edges for the perimeters in Fig. 2(upper). Figure 2(lower)
shows the resulting surface triangulation.

Applying this procedure to the entire data set results in triangulated surfaces for
the major anatomical structures at end-systole: aorta and pulmonary artery; superior
and inferior vena cava and pulmonary veins; right atrium; left atrium and appendage;
right ventricle; left ventricular endocardium; left ventricular epicardium; the epi-
cardium of the entire heart. The valves are produced by a procedure described
later. In addition, we require a surface in the left ventricle, midway between the
endocardium and epicardium. For each level at which there are both endocardial and
epicardial cross-sections, a midwall cross-section can be constructed by averaging
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Fig. 3 Left panel: left ventricular endocardial, midwall and epicardial triangulated surfaces based
on CT data. Right panel: fiber-angle distribution in the LV wall. Continuous curve is predicted by
the asymptotic theory of Peskin [3], and vertical bars represent the observations of Streeter, et al.
(ref. [7], Fig. 4, curve a) plotted with a tolerance of ˙10o. Horizontal axis is radial distance through
the wall with midwall at zero and epicardial and endocardial surfaces as indicated. Vertical axis is
angle between cardiac fibers and a plane perpendicular to the axis of the left ventricle
along line segments connecting the two cross-sections, drawn normal to the
endocardial cross-section. In all cases the region of the apex is approximated by
the plane of the most apical cross-section of the data set. Figure 3(L) shows the
three surfaces (endocardial, midwall, epicardial) of the left ventricle (LV) with the
front and rear clipped away to improve visibility.

3 Construction of Model Heart Fibers

The model heart is comprised of three types of structures in each of which fibers are
constructed using variations on the same general theme: geodesics on surfaces. The
three types of structure are: thick-walled (the LV), thin-walled (all other chambers
and the great vessels), and valvular.

3.1 Model Left Ventricular Muscle Fibers

At the present time the technology for directly imaging cardiac muscle fibers (e.g.,
diffusion tensor MRI) is not sufficiently developed for our purposes. Instead, we
approximate the muscle fibers in the left ventricle using a method motivated again
by the observations of Streeter, et al. [6] and by an asymptotic analysis of Peskin [3].
From measurements on the hearts of macaques, and treating the left ventricle as a
nest of ellipsoidal surfaces of revolution, Streeter observed that muscle fibers in
the left ventricle follow trajectories that are approximately geodesic paths on those
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surfaces. Using an asymptotic approach, also treating the wall of the left ventricle
as a nest of surfaces (but not necessarily ellipsoids) of revolution, Peskin was able
to derive the relation between the angle made by the geodesics as a function of their
distance from the midwall surface. The angle is measured relative to the latitude
lines of an appropriate coordinate system constructed on the surface of revolution.
Figure 3(R) (redrawn from [3]) shows the relation between angle and distance from
the midwall surface.

We treat the midwall surface shown in Fig. 3(L) as if it were a surface of
revolution, even though it is not. A coordinate system is constructed on this surface
consisting of geodesic curves which radiate out from the apex and terminate at the
upper cross-sections of the data set, above the mitral or aortic valve ring. These
coordinates can be thought of as lines of longitude. Lines of latitude are constructed
by joining points of equal arclength measured from the apex along the lines of
longitude. It is an interesting theorem of differential geometry that the latitudes and
longitudes so constructed form an orthogonal net, even when the surface on which
the above construction is done is not a surface of revolution. Because the midwall
surface is not in fact a surface of revolution, some of these longitude lines intersect.
When a pair of longitude lines intersects, the longer of the longitudes is terminated
at the intersection. This insures that when following a line of constant latitude there
is a monotonic change in longitude.

Following Streeter’s observation, and the theoretical curve of Fig. 3(R), muscle
fibers are parallel to the lines of latitude on the midwall surface. We construct
families of model fibers by computing geodesic paths on the CT scan midwall
surface, starting at locations equally spaced on, and initially parallel to, a line of
constant latitude. Geodesics paths are computed in both directions (increasing lon-
gitude and decreasing longitude), terminating whenever a valve ring is encountered.
When a geodesic crosses a longitude line, its angle with respect to the latitude
line is calculated, and the intersection point is projected toward the epicardial or
endocardial surface by the distance given by the theoretical curve of Fig. 3(R). In
this way model muscle fibers fill the space between the epicardial and endocardial
surfaces, and have an angular distribution through the wall which matches the
observed distribution.

How are geodesics constructed? Recall that the surface is triangulated. Each
triangle in such a structure “knows” which triangles are its neighbors. Each triangle
shares each of its edges either with another triangle or with nothing (in the case of
edges on the upper end of the CT scan). No triangle shares any two of its edges with
the same other triangle. It is straightforward to construct a map that indicates the
other triangles with which any triangle shares edges. A triangle is a plane figure,
so on each triangle a local coordinate system may be constructed having one unit
vector normal to the plane of the triangle and two unit tangent vectors in the plane of
the triangle. If a line is drawn from a point within any triangle in a known direction
in the plane of the triangle, its intersection with one of the edges of the triangle
is easily calculated. From these considerations geodesic curves on the surface are
constructed as follows: draw a straight line or ray emanating from a point on a
latitude line in one direction along the latitude line. Call the triangle containing the
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starting point “the current triangle”. The drawn ray, straight and in the plane of the
triangle, is a geodesic of the triangle by definition. Calculate the intersection point of
the drawn ray with an edge of the current triangle (there can be only one such point).
Determine which triangle shares that edge with the current triangle, and call that
triangle “the next triangle”. The vector in the direction of the drawn ray intersecting
the edge can be decomposed into two components, along the edge and normal to the
edge within the current triangle, and then recomposed along the edge and normal
to the edge within the next triangle. The component along the edge is unchanged
since the edge is shared; the component which was normal to the edge within the
current triangle retains its magnitude but changes its direction to be normal to the
edge within the next triangle. The ray drawn in the next triangle line has a known
starting location (on the edge) and a known direction. Rename the next triangle as
the current triangle, and repeat the drawing process just described. The result is a
piecewise linear geodesic path on a triangulated surface. Note that the path is not
necessarily the globally shortest path between the endpoints, but is the shortest path
given the particular starting direction, which is sufficient for a geodesic path.

Figure 4 (upper row) shows the lines of longitude on the midwall surface (left
panel), and a family of midwall-surface geodesics starting on a latitude line near the
apex (right panel). Notice that even though geodesics are initially perpendicular to
longitude lines (near the apex), they become more longitudinal as they rise (toward
the base). Figure 4 (middle row, left panel) shows several families of geodesics
on the midwall surface, each family arising from one of a set of regularly spaced
latitude lines.

We now have a midwall surface covered by geodesic fibers. The density of
coverage can be increased (or decreased) by starting more (or fewer) geodesics
on any particular latitude line, or by having more (or fewer) latitude lines from
which geodesics are launched. Choosing an appropriate density of coverage is
discussed later. During the process of construction the angle any geodesic makes
when it intersects any longitude line can be tracked. The major requirement is a
table which lists the coordinates of the end points of the longitude line segments
crossing any triangle on the midwall surface. The interior of the LV wall can now be
populated with muscle fibers as follows. Recall that Fig. 3(R) shows fiber angle as a
function of depth. Simply inverting this gives depth as a function of fiber angle.
For each intersection of a geodesic with a longitude line, the intersection point
can be “inflated” along the normal to the midwall surface triangle by an amount
given by its angle with respect to the latitude line. For this purpose the distance in
Fig. 3(R) is taken to be the fraction of the maximum possible distance along the
normal. Since every surface is defined as a set of triangles, this inflation process
requires finding the intersection of a midwall-triangle normal with an epicardial
or endocardial surface triangle. There are several thousand such triangles, and
hundreds of intersection points on each of several thousand geodesics. A brute force
search for intersections of normals and triangles would be quite time-consuming. To
improve efficiency we construct a table which lists the endocardial and epicardial
surface triangles intersected by a normal at the centroid of each midwall surface
triangle. For a normal starting at some other point (not the centroid), this table
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Fig. 4 Upper left panel
shows midwall-surface
longitude lines; upper right
panel shows a family of
midwall-surface geodesics
arising from a latitude line
near the apex; middle left
panel shows families of
midwall-surface geodesics
arising from several regularly
spaced latitude lines; middle
right panel shows fibers
inflated from the
midwall-surface geodesics to
fill the LV wall; lower left
panel shows a thin
cross-section through the
midwall-surface geodesics;
lower right panel shows a
thin cross-section through
the inflated fibers

indicates the triangle which is probably intersected by the normal, and, if not, is
a reasonable place from which to start searching for the intersected triangle. (Recall
that each triangle knows its neighbors; a nearest neighbor flooding type of search
proves to be effective here.) Fig. 4 (middle row, right panel) shows the muscle fibers
resulting from inflating the geodesics shown to its left. Figure 4 (lower row) shows
thin cross-sections through the entire collection of geodesics on the midwall surface
(left panel) and the entire collection of inflated fibers in the LV wall (right panel).
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Fig. 5 Triangulated right ventricular surface, three different points of view. The right panel uses
the same point of view as in Fig. 4

3.2 Model Thin-Walled Chambers

All the other chambers of the heart are treated as thin-walled surfaces covered with
geodesics using the same general approach as used in the midwall surface of the LV.
For each chamber the particular geodesics selected are intended to represent fibers
observed experimentally. Figure 5 shows the triangulated surface resulting from
segmentation of the right ventricle (RV). Figure 6 shows the computed geodesics
on the model RV surface. There are two families: first, fibers which radiate out
from the RV apex (“lines of longitude”) and second, fibers which are approximately
orthogonal to the first on the septal surface. These particular families were suggested
by the dissections of Thomas [8].

Figure 7 shows the triangulated surfaces of the model atria. There are three atrial
surfaces in the model: left atrium, right atrium and a combined atrial surface which
serves to hold the two atrial chambers together. The left atrial surface includes
the appendage; the right atrial surface does not. The combined atrial surface is
constructed by joining the left and right surfaces with bridging surfaces consisting
of a small number of triangles (that is, the combined atrial surface is not the result of
another segmentation). All atrial surfaces are considered to be thin-walled. Geodesic
paths are constructed on each of these three surfaces. The resultant muscle fibers are
shown in Fig. 8. Two families of fibers are used here, one to represent the pectinate
muscles and one to represent the interatrial band.

3.3 Model Great Vessels

It is our intention initially to use the great vessels as a means to anchor the model
heart, that is, points on the great vessel walls will be connected to fixed points
in space with springs of appropriate stiffness, as if the vessels were surrounded
and constrained by the tissues of the body. Hence, it is unnecessary to construct
paths which represent fibers in the vessels. It is sufficient to represent the vessels as
surfaces triangulated finely enough that there are no leaks. Triangles with edges
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Fig. 6 Computed geodesics on the model RV surface. Left panel: family 1, radiating from the
apex (longitude lines). Middle panel: family 2, perpendicular to a longitude line on the septum.
Right panel: both families

Fig. 7 Triangulated surfaces of the model atria. Left panel: right atrium; Middle panel: left atrium;
Right panel: combined left and right atrium

Fig. 8 Muscle fibers of the model atria. Left panel: right atrium; Middle panel: left atrium; Right
panel: combined left and right atrium



Constructing a Patient-Specific Model Heart from CT Data 193

Fig. 9 Model great vessels. Left panel is a top view in which extensions of the left and right
pulmonary artery branches to the edges of the computational domain are clearly shown; right panel
is a front view in which the aorta is to viewer’s left of the pulmonary trunk, the superior vena cava
is to viewer’s left of the aorta, and the inferior vena cava is at the bottom

on the order of 1=2 of the computational lattice meshwidth are expected to be
adequate for this purpose. Figure 9 shows the triangulated surfaces for the inferior
and superior vena cava, the aorta, and the pulmonary artery. The data set ends just
below the arch of the aorta. In the figure vessels have been extended to the edges of
the computational domain where boundary conditions representing the circulation
(e.g., windkessels) will be imposed.

3.4 Valves

The CT data set from which we are constructing the model does not include any of
the four valves. The valves we intend to use, initially, are modified versions of the
valves used in the conical surface model. Figure 10 shows these (modified) valves.
The mitral valve consists of fibers lying on a surface which smoothly interpolates
between a line joining the tips of the papillary muscles and a circle in the plane
of the valve ring. This is a surface of the type described in [1] which interpolates
between two ellipses at different heights. The line joining the tips of the papillary
muscles is an ellipse of eccentricity 1.0, and the circle in the plane of the valve
ring is an ellipse of eccentricity 0.0. Fibers fan out from each papillary tip and
contribute to each leaflet. Where fibers from different papillary tips cross, a fabric
which constitutes the leaflet is formed. Between the papillary tip and the leaflet,
each fiber forms one of the chordae tendineae. The construction of the tricuspid
valve is similar, except that there are three papillary tips and three leaflets. Again,
fibers from each papillary tip fan out to contribute to the two leaflets nearest the
tip. Where fibers from different tips cross, a leaflet fabric is formed. Between the
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Fig. 10 Model valves in their
correct anatomical relations.
In the figure, the pulmonic
valve is uppermost, with the
aortic valve just below and to
its left. The tricuspid valve is
the leftmost valve, with the
mitral valve to its right. (All
directions are in the viewers
framework.)

tip and the leaflet, each fiber is one of the chordae. Each valve ring in the model is
constructed as the intersection of a plane with an appropriate triangulated surface.
The triangulation is left unchanged, but whenever a geodesic curve on a triangulated
surface intersects a valve ring, the geodesic is terminated at the point of intersection.
It is in the nature of the data set and the segmentation that the valve rings on any
triangulated surface are unlikely to be perfectly circular. Collars are inserted in order
to join the circular parts of the model valves with the non-circular valve rings. These
collars are visible in Fig. 10.

The model aortic and pulmonic valves result from the solution of a partial
differential equation which describes the equilibrium of a single family of fibers
supporting a hydrostatic pressure load [5]. As in the case of the inflow valves, the
outflow valve rings are not circular, and collars are inserted. The collars for the
outflow valves are significantly smaller than those for the inflow valves. Except for
the collars, the shapes of the aortic and pulmonic valves are identical. In the current
construction the diameter of the pulmonic valve is approximately 11% smaller than
that of the aortic valve.

All the valves shown in Fig. 10 are in their closed configurations. Nonetheless
there is a small gap between neighboring leaflets in each valve. This gap is required
in order for the valves to open. In the IB method, the velocity of any boundary point
is interpolated from the velocities stored on the surrounding computational lattice.
Any two boundary points with identical locations would therefore have the same
velocity and would always stay together. If there were no gap between valve leaflets,
points on neighboring leaflets would move with the same velocity and the leaflets
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Fig. 11 Left panel: entire heart model; Right panel: interior of heart model

would be unable to open. The gap must be sufficiently large that neighboring leaflets
can separate on opening, but not so large that the closed valve leaks. In practice, the
leaflet gap that works best is found by trial and error.

4 Entire Heart Model

Figure 11(Left) shows the entire model heart composed of all the pieces described
above. The left and right ventricles are contained in an investment layer composed
of longitudinal fibers radiating from the apex of the model heart. At this point in the
construction the great vessels all have open ends. In our earlier (conical surface)
model, the great vessels were capped off, and sources or sinks as appropriate
were inserted within the caps to represent the portions of the circulatory system
not modeled in detail. Although such caps have been constructed for the model
described here, we are currently investigating other approaches for treating inflow
and outflow, such as connecting the great vessels to circulation models (e.g.
windkessels) on the boundaries of the domain. Figure 11(Right) shows the interior
of the heart model by clipping away portions of the heart wall.

5 Selecting Boundary Point Density

We have previously remarked that the IB method requires neighboring points on the
boundary to be spaced apart 1=2 the meshwidth of the computational lattice in order
for the boundary to not leak. The meaning of this spacing requirement is clear for a
closed 2D curve. In three dimensions the situation is more complicated. It is easy to
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imagine, in 3D, that every point is within 1=2 meshwidth of some other point and
that there are gaping holes in the structure through which fluid could pass.

We have adopted a strategy based on flooding (our favorite technique) for
determining if a 3D structure is leak-proof on some target computational lattice
resolution, that is, whether the boundary has been discretized appropriately not to
leak in a particular computational lattice.

Flooding is a method for estimating the enclosed area within a curve (in 2D) or
volume within a surface (in 3D). It is most easily described for the 2D setting and the
extrapolation to 3D is obvious. Consider a closed 2D discretized curve. Construct
a Cartesian grid covering a rectangular domain which includes the 2D curve. Mark
with a 1 the corner points of every grid cell containing any point of the curve, mark
with a 1 the grid points on the edges of the grid, and unmark (with a 0) all other grid
points. The marks on the grid in the immediate neighborhood of the 2D curve form a
fat stair-step representation of the 2D curve. To begin flooding, locate an unmarked
grid point in the interior of the 2D curve, mark that point with a 1 and place the
coordinates of that grid point on a queue. Repeat the following process until all the
items in the queue have been examined:

(1) Examine the grid points which are neighbors of the grid point at the head of
the queue (at most 8 neighbors in 2D). Each neighbor which is found to be unmarked
is then marked and added to the tail of the queue.

(2) Advance the head pointer to the next grid point on the queue.
This process finishes when the head pointer advances beyond the tail of the queue.

The portion of the grid interior to the 2D curve will be marked (i.e., the interior of
the 2D curve will have been “flooded”) and the number of items placed on the queue
is the number of grid points in the interior of the 2D curve. If each such grid point
is treated as the lower left-hand corner of a grid cell, the number of such grid points
estimates the area enclosed by the 2D curve.

A difficulty arises if the distance between neighboring points on the curve is large
compared with the grid meshwidth. In this case there will be a gap in the stair-step
representation of the 2D curve, and the flooding will not be confined to the interior
of the curve, but will leak into the exterior, encompassing virtually the entire grid.
A remedy for this difficulty would be to interpolate points onto the boundary at
a density appropriate for the grid resolution. For our present purposes we wish to
consider a fixed discretization of the boundary and to use the onset of leaking when
the grid is made finer as an indicator of when that discretization of the boundary is
leak-proof.

Consider the following 1D model problem in which

’|’ indicates the locations of lines in the grid
’*’ indicates boundary points
nr how fine the flooding grid is w.r.t. the target grid
nr=1 means flooding grid is same resolution as target grid

In the picture below boundary points are spaced at 1=2 of the target grid
meshwidth (nr D 1). This is the spacing of boundary points which the IB method
sees as leak-proof. The flooding grid is initialized by marking the grid on either
side of a boundary point. Notice that in all 3 cases (nr D 1, 2, 3) there is a sufficient
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density of boundary points that every grid line ends up being marked, even though
there is not a boundary point between every pair of neighboring grid lines.

nr=1 | * * | * * | * * |
nr=2 | * | * | * | * | * | * |
nr=3 | * | | * | * | | * | * | | * |

Now suppose one boundary point is absent producing a local
failure of the ‘‘1/2 of the target grid meshwidth’’ rule.

nr=1 | * * | * | * * |
nr=2 | * | * | * | | * | * |
nr=3 | * | | * | * | | | * | | * |

For nr D 1 or nr D 2 there is still sufficient boundary point density to mark every
grid line, but at nr D 3 there is one grid line that does not get marked because the
cells on either side of it are empty. This would permit a flood of the interior (say the
space above the line) to pass through the line to the exterior (the space below the
line). We take this to mean that, if a 3D structure made of points does not leak when
the flooding grid is refined by a factor of 3 relative to the target grid, the 3D structure
has a sufficient density of points for the IB method with the target grid resolution.
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Image-based haemodynamics simulation
in intracranial aneurysms

A.G. Radaelli, H. Bogunović, M.C. Villa Uriol,
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Abstract Image-based haemodynamics simulation is a computational technique
that combines patient-specific vascular modeling from medical images with Com-
putational Fluid Dynamics techniques to approximate the complex blood flow
characteristics of healthy and diseased vessels. Advances in image quality, algo-
rithmic sophistication and computing power are enabling the introduction of such
technology not only as a biomedical research tool but also for clinical practice. In
particular, the interaction between haemodynamical forces and arterial wall biology
is believed to play an important role in the formation, growth and, eventually, rupture
of intracranial aneurysms. Due to the absence of ground truth image modalities to
measure blood flow, image-based haemodynamics simulation represents an attrac-
tive tool to provide insight into the haemodynamics characteristics of intracranial
aneurysms. In this chapter, we provide an overview of the main components of
this technique, illustrate recent efforts in its validation and sensitivity analysis and
discuss preliminary clinical studies and future research directions.
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1 Introduction

Intracranial aneurysms are pathological, localized dilatations of the cerebral arteries.
They have been reported to affect around 1-6% of the population and the major com-
plication is their rupture, which causes subarachnoid haemorrhage (SAH). Although
the annual risk of rupture is as low as 0.7%, aneurysm rupture has exceedingly
high mortality (50%) and morbidity (20%) rates [34,66,70]. Intracranial aneurysms
may be treated either by surgical clipping or endo vascular procedures, performed
primarily by coil embolization, whose aim is to disconnect the aneurysm from the
cerebral circulation and re-establish a physiological flow passage through the parent
artery. However, post-treatment complications and failure have been reported to
even potentially outweigh the risk of rupture, thus clinicians are often left with
the fundamental question whether to treat or not [52, 69]. Currently, clinical risk
assessment is based on the combination of patient-level and environmental risk
factors, aneurysm location and simple descriptors of aneurysmal size and shape such
as aneurysmal volume and aspect ratio. Intracranial aneurysms frequently occur at
or near arterial bifurcations in the circle of Willis, which suggests an important role
for haemodynamical stresses [37]. Factors such as wall shear stress (WSS), mural
stress, impingement force, flow rate and residence time have been suggested to
influence the initiation, progression and rupture of intracranial aneurysms, although
the exact mechanisms not only remain unknown but also are thought to differ
at various phases of their natural history [7, 26]. Abnormal haemodynamics has
also been indicated to influence the failure of surgical and endo vascular treatment
[27, 39].

Insight into the haemodynamics of a particular individual may allow for improved
diagnostic and treatment planning. With this goal in mind, several authors have
initially analyzed the fundamental haemodynamical properties of blood flow in
idealized models of intracranial aneurysms either experimentally in phantom mod-
els [40] or numerically using 2D and 3D Computational Fluid Dynamics (CFD)
[24,33]. Due to the strong dependence of fluid flow on the geometrical configuration
of branching vessels and on the aneurysm shape and neck size, a personalized
haemodynamical description was found to rely on the patient-specific geometry
[67]. A variety of image processing techniques have been then applied to retrieve
patient-specific flow measurements directly from medical images [54, 55, 63]. In
particular, quantitative measurements of blood velocity and volumetric flow rates
are provided by time-resolved 2D or, more recently, 3D phase contrast (PC)
magnetic resonance angiography (MRA) [72], although detailed information on
blood velocity is undermined by limited resolution and the effectiveness of the
methodology is still unproven for intracranial aneurysms. On the other hand, current
image acquisition techniques provide accurate measurements of vascular anatomy.
Realistic experimental phantoms, typically made of a translucid polymer, may be
casted starting from vascular models extracted by segmentation of the medical
images. The phantom is then connected to a pulsatile pump reproducing physio-
logical flow waveforms. Imaging techniques such as Laser Doppler Velocimetry
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(LDV) or Particle Image Velocimetry (PIV) are then applied to visualize and
measure the velocity field [59, 60]. A detailed measurement is however quite time
consuming and is generally not achievable close to the wall, thus hampering the
calculation of important haemodynamical variables such as WSS. In addition, the
manufacturing process is not trivial for small arteries and small aneurysms and
would be impractical for a systematic patient-specific analysis.

Instead, image-based haemodynamics simulation may represent an attractive
tool to provide a description of patient-specific haemodynamical variables with
compelling detail. The basic principle of this technique is to obtain accurate
patient-specific vascular models from medical images and apply CFD techniques
to reconstruct the time-resolved blood velocity and pressure fields starting from
flow and/or pressure conditions prescribed at the boundaries of the vascular
domain. The availability of high-resolution scanners, fast modeling algorithms
and powerful computational resources has been key to the widespread adoption
of image-based haemodynamics simulation techniques in biomedical research. In
the next sections, the fundamental components of an image-based haemodynamics
simulation workflow will be illustrated. The significance of assumptions, approxi-
mations and modeling parameters will be considered and efforts in the validation
of the simulation results will be discussed. Current application of state-of-the-art
technologies for the understanding of aneurysm rupture will be further addressed
and directions for future research and development will conclude the chapter.

2 Workflow overview

The application of image-based haemodynamics simulation technologies to cerebral
vessels and intracranial aneurysms involves the cross-disciplinary integration of
imaging, modeling and simulation techniques [58]. The main challenges are the
development of an efficient pipeline for the generation of patient-specific anatomical
models from medical images and the establishment of a sustainable level of realism
of the haemodynamics simulation model. In addition, due to the need of regular
patient monitoring, the processing pipeline has to be applicable to a variety of
angiographic imaging modalities, including Computed Tomography Angiography
(CTA), 3D Rotational Angiography (3DRA) and MRA. Our groups have recently
proposed an efficient pipeline for the modeling of blood flow patterns in intracranial
aneurysms from 3DRA and CTA images, with the eventual possibility of performing
CFD simulation in large samples of aneurysm models (and with other image modal-
ities, e.g. MRA) and of investigating the association of specific haemodynamics
variables with clinical events such as rupture [12]. Similar approaches have been
adopted by other groups in [13, 17, 29, 36, 57, 68].

A sketch of the image-based haemodynamics simulation pipeline is shown in
Fig. 1. The pipeline is composed of five key components: 1) medical image
acquisition; 2) anatomical modeling; 3) computational grid generation: 4) spec-
ification of boundary conditions; 5) CFD simulation and visualization. Medical
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Fig. 1 Sketch of the haemodynamics simulation pipeline

image acquisition requires the identification of protocols providing good contrast
between vessels and other tissues. At the same time, it is also important to adopt an
accurate anatomical modeling strategy able to reconstruct both the morphology of
the vessels of the Circle of Willis and of the aneurysm(s), which are both complex
and a priori unknown. Anatomical modeling comprises image segmentation and
mesh processing. Image segmentation here refers to the extraction of the boundaries
of vascular objects from a 3D image. The outcome is a binarization of the image
in voxels belonging either to the vessels or to the background (including other
tissues) or a distance transform image where voxels are given values representing
the Euclidean distance to the vascular surface. Mesh processing algorithms involve
first the extraction of a surface triangulation representing the vascular wall and then
some geometrical and topological corrections that lead to a smooth representation
of the vessels of interest.

The anatomical model is used as a support surface to generate a computational
grid that divides the complex arterial domain into a finite number of smaller poly-
hedral elements such as tetrahedra or hexahedra. Before simulating the blood flow
through the geometrical domain, the nodal velocities or pressure at the geometric
boundaries of the model must be specified. Blood is approximated as a Newtonian
fluid and vessel walls are typically assumed rigid. Blood flow is mathematically
modeled by the unsteady Navier-Stokes equations for an incompressible fluid. These
equations are converted into a matrix of discrete equations whose solution yields
the unknown velocity and pressure at the nodes of the entire volumetric grid. The
velocity field is then processed to facilitate the analysis of the complex unsteady
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flow characteristics, which includes simple operations such as derivation or time
averaging to extract clinically relevant quantities such as WSS magnitude and
gradient or the oscillatory shear index (OSI).

2.1 Image acquisition

At present, there are no standard guidelines for the evaluation of image quality
for haemodynamics simulation. This often requires a certain familiarity with the
flow realization across the vessels of the Circle of Willis, an understanding of
the geometrical features prone to affect blood flow and a basic knowledge of the
main components of the processing pipeline. It is generally accepted that 3DRA
images provide both higher resolution (	 0:15mm) and better contrast between
the signal intensity of vascular lumen and background when compared to CTA
and MRA. On the other hand, 3DRA images have been reported to occasionally
present artefacts leading to the underestimation of aneurysm dimensions in specific
locations of the Circle of Willis [35] or to the appearance of pseudo stenosis of
parent vessels [20, 32]. Due to the profound influence of parent vasculature on
aneurysmal haemodynamics, the absence of artefacts has to be ensured not only
in the aneurysm but also for all the vessels influencing the realization of the
aneurysm haemodynamics. While providing important information on the aneurysm
environment in the brain, CTA images offer instead lower resolution (	 0:4mm)
and the ranges of intensities of vessels and bone overlap. These conditions may
limit an accurate segmentation of both small aneurysms and vessels crossing the
skull base, where vascular and bone structures are very close. Similar resolution
is achieved with TOF MRA, which has the disadvantage of sensitivity to metal
implants such as endo vascular devices. In addition, progressive saturation may
occur as the spins penetrate into the imaging volume and for disturbed or slow
flow. The result is the appearance of signal voids in the vascular lumen or blurred
regions across the vascular boundaries, at bifurcations and inside aneurysms,
where complex flow patterns may be expected. Despite these limitations, MRA is
potentially the most suited imaging technique for haemodynamics simulation as it
can derive all the necessary boundary conditions from a single non-invasive imaging
session by combining TOF and PC MRA acquisitions.

2.2 Image segmentation

For adapt to the topological changes common in the cerebral vasculature, the
segmentation of cerebral vessels may be performed using the geometric deformable
model technique within the level set framework [45]. This technique describes the
evolution of a surface model within the image domain that deforms under the
action of internal (curvature and smoothness) and external (image gradient and
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other features) forces to recover the unknown shape of the vessels. The surface is
represented implicitly as a zero level set of a distance transform image whose size
corresponds to the original medical image. Information on image gradient drives
the evolution of the model towards the locus of maximum intensity variation across
the vascular boundaries [9]. Due to limited resolution and/or image artefacts, the
gradient information may be discontinuous or weak across the vascular boundaries,
thus leading to boundary leakage. To overcome this limitation, the Geodesic Active
Regions (GAR) [48] technique combines image gradient maps with statistical
region-based information. The region-based information is presented in the form
of a probability image map, that contains the probability of each image voxels to
belong to a certain region (or tissue) R. The estimated probability value can be
interpreted as a conditional probability, P.x 2 R j f.x//, where x is a point in
the image domain and f.x/ is the feature vector used to characterize the tissue
at the point x. The regional descriptors k for each region are then based on the
corresponding probability map. The equation that drives the evolution of the surface
is expressed as:

ˆt C �.kout � kin/ j rˆ j ��."gKm j rˆ j Crg � rˆ/ D 0 (1)

where ˆ is an implicit function whose zero level set at any time t of the evolution
represents the vascular surface, kout and kin are the descriptors of the inner and outer
tissues with respect to the vascular lumen,Km is the mean curvature of the surface, "
is a parameter that controls the contribution of the curvature to the evolution, while �
and � control the influence of region-based and boundary information, respectively.
We have proposed to create features as vectors of differential invariants [64] up
to the second order, which are computed at multiple scales to provide a richer
description of the different tissues [30]. These feature vectors are expected to be able
to differentiate between tissues that cover overlapping image intensity ranges but
present different shapes, such as vascular and bone tissues in CTA images. The set of
feature vectors belonging to a specific region are first learned in a supervised fashion
and then the probability of each image voxel to belong to a particular tissue is
estimated using a non-parametric technique. Such approach is particularly suitable
for multimodal vessel segmentation as for each modality the vectors of features
corresponding to each tissue can be learned from its own training set. Additionally,
the initialization process does not require user intervention since it can be obtained
by thresholding the probability map corresponding to the vessel region.

2.3 Mesh processing

The generation of numerical grids for flow simulation requires a watertight descrip-
tion of the vascular surface. This can be obtained by automatically applying the
method of the marching cubes (or tetrahedra) [6] to the distance transform image
obtained from the segmentation process. A sequence of global and local operations
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Fig. 2 Mesh processing steps. (a) initial model extracted using the marching tetrahedra technique;
(b) smooth model after the application of the Taubin smoothing technique and a gross clipping to
discard unwanted vessels; (c) final model after mesh optimization, editing, clipping and extrusion

is then applied to either improve the quality of the resulting triangulation or to
correct geometrical and topological irregularities, which include the fusion of the
surface with touching vessels or bones (in CTA only) and over- or under-estimation
of the aneurysm neck due to low image contrast and/or resolution. Improvements in
mesh quality are obtained by the use of automatic mesh smoothing and optimization
algorithms. In particular, the Taubin algorithm [61], which is a volume preserving
smoothing technique, is employed to remove bumps and sharp corners, although
there is no guarantee that some triangles do not become distorted or too small.
Therefore, some mesh optimization operations, including edge-collapsing and side
swapping or the removal of degenerate, stretched, repeated and small triangles [12],
are applied to the whole triangulation.

In the presence of residual geometrical or topological irregularities, a set of
interactive tools are adopted to efficiently edit the triangulation, locally remove
or smooth a single or a group of elements and close holes while preserving the
general topology and smoothness of the vascular surface [5]. The vessels are then
interactively cut perpendicularly to the axis. Each operation is carefully considered
to minimize the sensitivity of the results to parent vessel modeling and, at the
same time, obtain a workable model size for further grid generation and numerical
solution. In addition, the boundary surfaces are extruded along the direction of the
axis to minimize the effects of boundary conditions on the realization of blood flow.
Following work presented in [19, 25, 44], the length of each extension is typically 5
to 10 times the diameter of the associated vessel.

3DRA acquisition achieves a full description of the Circle of Willis only if
multiple injections are performed at the same time. As this carries some risks, Castro
[11] applied a surface merging technique to fuse models constructed from different
3DRA images into a single watertight model including all possible avenues of flow.
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Fig. 3 (a) Surface grid with increased mesh resolution in correspondence to a small branching
vessel near the aneurysm neck. (b) Detail of the corresponding volumetric grid

This approach allows to construct complex arterial networks and to investigate the
haemodynamics environment of aneurysms that are fed by vessels typically captured
in separate 3DRA images.

2.4 Grid generation

The process of generation of a finite element grid for CFD simulation typically
starts with the generation of a higher quality surface grid. Although mesh processing
operations lead to an appropriate representation of the vascular surface, the quality
and the size distribution of the triangulation is not adequate for CFD simulation.
New surface grids can be generated starting from an analytical representation of the
surface or directly from the surface triangulation obtained after mesh processing.
In the former case, the analytical representation of the surface can be obtained
using parametric patches or implicit functions of global support [50]. Our approach
instead adopts an advancing front method that places newly created points on the
original surface triangulation by linear or quadratic interpolation [41]. This process
provides elements of higher quality and a more uniform distribution of the element
size across the model. This surface mesh is then employed as a support for the
generation of tetrahedral elements inside the anatomical model using the advancing
front method [42]. Other approaches include Delaunay and octree meshing, but we
refer to the literature for further details on the progress in this field [47].

The distribution of element sizes is typically prescribed to obtain a minimum
number of elements across the smallest vessel. Adaptive background grids can also
be used and interactively specified to increase the mesh resolution in regions where
the anatomical model has a large surface curvature. The number of tetrahedral
elements in our models typically varies from 1:5 to 4 millions (average element
size of 0:1 to 0:15mm). Details of the surface and volumetric grids generated with
our approach are provided in Fig. 3.
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2.5 Specification of boundary conditions

The numerical solution of the equations governing the fluid flow requires the
specification of the fluid behavior at the boundaries of the computational domain,
that account for the unmodeled part of the vascular network. The assumption of
non-moving walls implies that the value of the velocity at the surface nodes is null.
Physiological boundary conditions are instead derived for the inlets and outlets of
the model. These can be obtained from 2D PC MRA images for the main branches
of the Circle of Willis, especially if contributing to the realization of the flow in
the aneurysm. Flow rate curves are obtained at each location across one cardiac
cycle, but due to resolution constraints the technique does not offer an adequate
description of the velocity profile. The flow rate curves are therefore decomposed
into their Fourier modes and the velocity profile is analytically computed from the
Womersley solution [62].

It must be noted that patient-specific flow rate measurements are seldom available
and reference data obtained from normal volunteers are instead employed. Ford
[21] suggested that the use of reference waveforms may be appropriate, although
the time-average flow rate should be scaled to coincide with the patient’s measured
one. If time-averaged flow rates are not available, an approach could be to scale
the reference waveforms by a factor depending on vascular dimensions or so that
the time-average flow rate corresponds to physiological shear stress values. In the
case reference waveforms are also not available, which is the typical scenario for
small outflow branches, traction free (zero-pressure) boundary conditions may be
applied, assuming that the flow division among the arterial branches is determined
by the geometry of the anatomical model. As flow divisions are actually determined
by the impedance of the distal arterial tree, more sophisticated strategies have been
proposed to integrate vascular bed models of the brain [15] or 1D models of the
whole cardiovascular system [3] into the simulation model.

2.6 CFD simulation

Blood is a suspension of particles (e.g. red/white cells and platelets) immersed into
an aqueous fluid (plasma). However, in medium and large sized vessels (diameter
> 1mm) blood may be considered a homogenous, incompressible, viscous fluid
with constant density. Blood flow is here governed by the Navier-Stokes equations
for incompressible fluids. Starting from an initial condition at t D 0, these equations
require the solution of a system of partial differential equations (PDE) for t > 0,
that express the conservation of mass and linear momentum, respectively, as

r � v D 0 (2)

�

�
@v
@t

C v � rv
�

D �rp C r � � C f (3)
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where � is the density, v D v.x; t/ is the velocity field, p is the pressure, � is
the deviatoric stress tensor and f is a source term that accounts for additional
contributions such as gravity, which is however generally not considered in our case.
The momentum equation is a vector equation and is therefore composed of three
differential equations. The role of the pressure term is peculiar for an incompressible
fluid as it is not related to density by an equation of state but is obtained from
the divergence constraint. The pressure establishes itself instantaneously and must
therefore be integrated implicitly. For a viscous and isotropic fluid, the stress/strain
rate relationship (although a tensor relation) is usually expressed as an algebraic
equation of the form � D � P
 , where � is the viscosity, while the strain-rate P

is defined as the second invariant of the strain-rate tensor and depends on first
derivatives of the velocity. The system of equations is closed by providing a
constitutive law for the local viscosity of the fluid. The simplest rheological model is
a Newtonian fluid that assumes a constant viscosity� D �0 and a linear relationship
between stress and strain. Typical values used for blood are � D 103kg=m3 and
� D 4:0close. As the caliber of cerebral vessels quickly decreases with the degree
of branching and low shear regions are common in intracranial aneurysms, more
accurate non-Newtonian models such as power law, Casson’s or based on Carreau’s
law may be used to introduce the shear thinning behavior of blood [38].

The solution of this system of equations requires the specification of boundary
conditions (see Sect. 2.5) and of initial conditions v.x; 0/ D v0.x/ the value of v0.x/
is usually chosen arbitrarily, thus the numerical solution of the system of equations
may produce initial transients to recover, typically after two or three cardiac cycles,
from the incorrect initial data.

The Navier-Stokes equations admit analytical solutions only in very simple
conditions such as for a laminar flow through a cylinder (Poiseuille’s law), thus we
need to resort to numerical techniques to find an approximation of the mathematical
problem. The most popular techniques in haemodynamics simulation involve the
reformulation and approximation of the system of PDEs in a finite number of
equations, which are then numerically solved on computational grids (see Sect. 2.4).
The numerical solution of the unknown v; p requires a spatial discretization and a
temporal advancement of the approximation vh; ph. Popular spatial discretization
techniques are the finite volume (FV) [31] and finite element (FE) [51] methods.
The FV method adopts an integral formulation of the PDEs, called the divergence
or conservation form, leading to a system of equations where the approximation
vh; ph of v; p at each element of the grid depends only on the value of vh; ph at
neighboring elements, which are thus used as a control volumes of a piecewise linear
(or non-linear) approximation. The FE method instead is based on the Galerkin
approximation method, which turns the system of PDEs into its weak variational
form. The approximation vh; ph is searched in functional subspaces and is expressed
as a linear combination of a finite number of basis functions weighted by the
values of v and p at the nodes of the computational grid. The basis functions are
typically high-order polynomials, whose degree determines the order of accuracy
of the method. In addition, the basis functions have small support so that the value
of vh; ph at each node only depends on the values of vh; ph in a limited region of
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the grid. Thus, as the finite number of equations is subsequently turned into a linear
system Au D b, this has the implication that the stiffness matrix A is sparse and
that smaller memory requirements and more efficient solutions can be achieved.
Similar considerations can be extended to the FV method. In addition, clearly for
both methods the finer the grid the more accurate the solution, but also the higher
the computational costs. Higher accuracy could also be achieved by increasing the
degree of the polynomial basis as in the spectral elements method [49].

For advance the solution in time, the two main approaches involve either an
implicit or an explicit time integration of the Navier-Stokes equations. Implicit
schemes involve an update of the solution at each time tn considering also the
unknowns at the new time tnC1, such as for the backward Euler or the Crank-
Nicholson schemes, and typically guarantee stability regardless the time step size.
Implicit schemes involve the iterative solution of a linear system of equations, which
is not required for explicit schemes, where the update at tnC1 is directly obtained
from the values of v; p at tn. On the other hand, explicit schemes, such as the forward
Euler method, are subject to a stability condition, which imposes limits to the time
step size. More details on the numerical solution of the Navier-Stokes equations can
be found in [43, 65, 71]. Novel techniques that are gaining ground in computational
haemodynamics include spectral/hp element methods [56] and Lattice-Boltzmann
methods [28].

2.7 Visualization and data extraction

The solution of the Navier-Stokes equations provides the values of the velocity and
pressure fields at the nodes of the computational grid for all the time steps. A number
of techniques may be adopted to investigate the blood flow structure across the
vascular domain and to reduce the large amount of data to a set of meaningful
quantities describing both the blood flow patterns and the fluid stresses on the
vascular wall. In the first case, typical visualization techniques involve the extraction
of particle trajectories and velocity streamlines (Fig. 4(a)), or the projection of
the three-dimensional vectorial field onto 2D cut planes placed within the vascular
domain (Fig. 4(b)).

The visualization of fluid stresses on the surface requires post-processing oper-
ations applied to the CFD solution. In particular, WSS represents the viscous
frictional force of blood that acts parallel to the vessel wall. The OSI instead
measures the degree of angular deviation of the shear stress force with respect to the
mean shear stress during a cardiac cycle. The WSS is represented by a 3D vector
field lying on tangential planes to the vascular surface at each node and at each time.
The WSS magnitude is commonly time-averaged over a cardiac cycle to investigate
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Fig. 4 Visualization of haemodynamics simulation results. (a) Streamlines color-coded by veloc-
ity magnitude at peak systole; (b) Velocity magnitude on a cut-plane through the aneurysm at peak
systole; (c) Time-averaged WSS distribution; (d) OSI distribution

its distribution across the aneurysm region. The equations used for the calculation
of time-averaged WSS . N�/ and OSI have the form:

N� D
Z
�dt D

Z
� � ndt (4)

OSI D 1

2

 
1 � j N� j

j � j

!
(5)

where � is the strain rate tensor and n is the surface normal. Surface color maps of
time-averaged WSS and the OSI are shown in Fig. 4(c) and (d), respectively.

3 Sensitivity analysis

Blood is a non-Newtonian fluid that circulates in vessels with distensible walls and
in a patient-specific pulsatile regime that may change over time. Sensitivity analysis
aims at both assessing the variability of the simulation to assumptions, approx-
imations and uncertainties in the modeling process and at potentially providing
confidence intervals to the simulation output. Our groups have recently conducted
a sensitivity analysis in four models of intracranial aneurysms [12] selected from
a database of 40 anatomical models obtained from CTA and 3DRA images. The
results showed that a qualitative characterization of the intra-aneurysmal flow
patterns is robust to variations to the mean input flow, the outflow division, the
viscosity model or to the grid resolution, while it strongly depends on the geometry
of the parent vessel and on the shape and neck size of the aneurysm. Conversely, an
accurate quantification of the intra-aneurysmal flow patterns and haemodynamical
forces may require the availability of patient-specific flow boundary conditions and
the use of a non-Newtonian rheology model. Without patient-specific information,
it was concluded that sensitivity analyzes should be routinely performed and that
a major effort should be paid to obtain accurate geometrical models. Similar
observations were reported in [10, 11, 68].
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Fig. 5 Maps of WSS for different distributions of wall displacement at some time points over the
cardiac cycle

Wall compliance has been indicated as an important factor altering the local
haemodynamics. In [18], we have introduced a method based on 2D non-rigid
registration to estimate the wall motion of aneurysm dome and neighboring vessels
from dynamic biplane Digital Subtraction Angiography (DSA). The method was
extended in [46] by post-processing the recovered motion in the Fourier domain
and further applied to cases providing higher acquisition frame rate. Wall motion
curves were compared to blood pressure waveforms confirming that the measured
values corresponded to real displacement. Wall compliance was then integrated
in flow simulations by imposing the measured wall displacement directly to the
3D mesh, thus circumventing the difficulties in estimating personalized elasticity
properties in a fluid-solid interaction approach. Due to the two-dimensional nature
of DSA images, some motion patterns were imposed to the flow simulations and
compared to a rigid wall condition. It was observed that the area of the aneurysm
under elevated WSS with respect to the average WSS in the proximal parent
vessel, the contribution to the total shear force of this region, and the shear force
concentration factor were relatively unaffected by the wall motion. In addition,
changing the amplitude of the wall motion or imposing differential rather than
uniform deformations (Fig. 5) did not have a considerable effect on these variables,
although the impact of the real three-dimensional displacement field (including
the possible angular movement of parent arteries) should be considered in further
studies.
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Fig. 6 Conventional (top row) and virtual (bottom row) angiograms during the filling phase of an
aneurysm

4 Validation

The introduction of blood flow simulation technology into routine clinical practice
will eventually require its validation against ground truth in vivo flow measurements.
Due to the absence of in vivo ground truth data, some authors have compared
simulations results with experimental flow measurements in anatomically realistic
replicas [22], while others have confronted their ability to reproduce the gross
haemodynamical features observed during routine clinical examinations. In particu-
lar, Cebral [14] compared the flow structure described by signal isointensity surfaces
in TOF MRA images used in [55] with high flow velocity isosurfaces extracted from
haemodynamics simulation data obtained starting from the same MRA images,
finding good agreement in the aneurysmal inflow region. In two separate works,
Ford [23] and Calamante [8] presented a strategy to simulate the transport of the
contrast agent from the cerebral vessels through to an intracranial aneurysm and
generate visualizations similar to conventional angiography. This technique is called
virtual angiography and allows to qualitatively compare simulation results with
high frame rate angiographic images routinely acquired during treatment. We have
recently applied this technique to assess the reliability of haemodynamics simulation
in three aneurysm models extracted from 3DRA images [16]. The approximated
time-dependent velocity fields were used to simulate the transport of a contrast
agent by solving the transport (or advection-diffusion) equation using an implicit
finite element formulation on unstructured grids. Virtual angiograms were then
constructed by volume rendering of the simulated contrast concentration field.
As depicted in Fig. 6, the virtual angiograms showed good agreement with the
conventional angiograms. Analogous size and orientation of the inflow jet, regions
of flow impaction, major intra-aneurysmal vortices and regions of outflow were
observed in both the conventional and virtual angiograms. Similar conclusions were
drawn by Ford [23], thus supporting the ability of patient-specific image-based
computational models to realistically reproduce the major intra-aneurysmal flow
structures observed with conventional angiography.
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5 Current applications and future work

Image-based haemodynamics simulation is a computational technique that com-
bines image processing, anatomical modeling and CFD simulation to recover
personalized vascular geometry and approximate blood flow characteristics starting
from medical images. Advances in image quality, algorithmic sophistication and
computing power are enabling the introduction of such technology not only as
a biomedical research tool but also for clinical evaluation. However, due to the
absence of ground truth data, it still remains unclear how accurately current com-
bined image processing and modeling techniques truly recover the in vivo geometry
and what degree of geometrical and numerical accuracy is required to obtain a
clinically meaningful prediction. In particular, the identification of diagnostic and
prognostic flow descriptors is a first necessary step to further establish the allowed
range of variability of the simulation results. Towards this goal, some investigators
have initiated international projects whose aim is to provide comprehensive models
of human physiology and pathology starting from biochemical pathways through
to cells, tissues and organs [1, 2]. A complementary approach is instead to
generate hypotheses on relevant flow descriptors of the disease from observations of
clinically measured and simulated data. Although still in its infancy, this top-down
methodology is being used to investigate the possible association between intra-
aneurysmal haemodynamical characteristics and rupture in samples of intracranial
aneurysm models. For example, Cebral [13] reported that aneurysms with complex
or unstable flow patterns, small impingement regions and small jet sizes may be
more likely to experience rupture. Radaelli [53], analyzing pairs of ruptured and
unruptured mirror aneurysms, observed that wide angles of bifurcation, longer
and highly curved parent vessels, irregular aneurysmal WSS distribution and small
impingement jets may be more common in ruptured aneurysms. From observations
on the location of high and low WSS regions, Shojima [57] suggested that high
WSS may have an important role in the initiation of the disease, while low WSS
may facilitate the growing phase and trigger the rupture event.

Further work towards the creation of larger datasets of aneurysm models has the
potential to facilitate the execution of clinical trials and help the evaluation of novel
endo vascular devices. Our immediate efforts are directed to the development of a
highly controlled and interactive environment to facilitate the use of our software
routinely in clinical settings by non-expert users. An appropriate integration into
a clinical workstation will also require the availability of multimodal registration
and fusion techniques to merge the information provided by different image
modalities and to facilitate the specification of boundary conditions. It is clear
that progress in modeling and computing facilities need to be accompanied with
stricter requirements in image quality. It can also be foreseen that improvements
in acquisition systems may eventually lead to more reliable in vivo descriptions of
aneurysm haemodynamics. Depending on the level of detail, these measurements
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may be used to offer accurate flow boundary conditions, for the validation of
simulation techniques or directly for diagnostic purposes. Image-based haemody-
namics simulation could then be used in combination with in vivo measurements
to offer prognostic information. Among our current interests is to progress in the
implementation of effective techniques to simulate blood flow around endo vascular
devices [4] and to further integrate models of blood clotting and tissue perfusion to
study the association between haemodynamics and treatment failure.

Among the new ventures ahead of investigators working in the field, we could
also cite the integration of haemodynamics information with imaging data capturing
cellular activities. This process has the potential to enable both the investigation of
the correlation between haemodynamics and biomarkers expressed at the cellular
level and the integration of image-based haemodynamics simulation with predictive
models developed within the framework of the STEP (A Strategy Towards the
Europhysiome) roadmap initiative [1, 2].
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Atlas-based Segmentation
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Abstract Image segmentation is a main task in many medical applications such as
surgical or radiation therapy planning, automatic labelling of anatomical structures
or morphological and morphometrical studies. Segmentation in medical imaging
is however challenging because of problems linked to low contrast images, fuzzy
object-contours, similar intensities with adjacent objects of interest, etc. Using prior
knowledge can help in the segmentation task. A widely used method consists to
extract this prior knowledge from a reference image often called atlas. We review
in this chapter the existing approaches for atlas-based segmentation in medical
imaging and we focus on those based on a volume registration method. We present
the problem of using atlas information for pathological image analysis and we
propose our solution for atlas-based segmentation in MR image of the brain when
large space-occupying lesions are present. Finally, we present the new research
directions that aim at overcome current limitations of atlas-based segmentation
approaches based on registration only.
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1 Introduction

A key research area in medical image analysis is image segmentation. Image
segmentation aims at extracting objects of interest1 in images or video sequences.
These objects are image structures containing relevant information for a given
application. Some examples of medical applications implying a segmentation
task are surgical or radiation therapy planning [48, 107], automatic labelling of
anatomical structures [5, 29] or morphological and morphometrical studies [49].

However, image segmentation is not an easy task. In many cases, the contours
of the objects of interest are difficult to delineate, even manually. The problems
linked to segmentation are often due to low contrast, fuzzy contours or too similar
intensities with adjacent objects. Fortunately, using prior knowledge can help in
the segmentation problem. A widely used method consists to extract this prior
knowledge from a reference image often called atlas. The goal of the atlas is to
describe the image to segment much like a map would describe the components of
a geographical area. In medical imaging, an atlas gives an estimation of the object
position in the image. This spatial information permits to save a lot of processing
time in the localization of the objects to extract and it allows distinguishing the
objects of interest from other objects with similar features. Moreover, an atlas can
also bring information that concerns the texture and the shape of the researched
objects. This information allows detecting the object contour in the area of interest.
Finally, the atlas can point out the features of adjacent objects. This last information
allows to better distinguishing the objects of interest from their neighborhood.

Until recently, atlases were paper-based. The development of digital image
processing techniques allowed the creation of digital versions of these atlases.
Digital atlases have an increased potential: they provide a lot of details and may be
used in a number of embedded software-based or computer-based applications (such
as computer assisted diagnosis, planning and guidance of surgical procedures, statis-
tical studies, etc.). While geographical atlases represent one region only, anatomical
atlas can characterize a group of individuals. This is due to the consistence between
anatomical structures of a same type. Biological images, especially medical images,
are thus particularly well suited for atlas-based segmentation methods. Digitized
atlases have proven their success in medical image analysis notably in atlas-based
segmentation of the head and neck [23, 95], the heart [81], the prostate [117] or the
knee [55]. However, the large majority of the works done so far on digitized medical
atlases concern the human cerebral anatomy. This is why we have mainly focused
the brief digitized atlases survey presented here after on human brain.

1Objects of interest can be for instance points, lines, surfaces or volumes.



Atlas-based Segmentation 223

1.1 Digitized Atlases of Human Brain

Determinist atlases. First attempts of atlas construction of the human brain are
based on a single subject. This type of atlas is called single-subject based atlas or
determinist atlas. It often corresponds to a reference system or volume image that
has been selected among a data set to be representative of the objects to segment in
other images (average size, shapes or intensity).

In medicine, the pioneer atlas reference system is the Talairach atlas [97] that
was proposed to identify deep brain structures in stereotaxic coordinates. The first
determinist digital atlas was proposed by the Visible Human Project of the National
Library of Medicine [72]. The goal of this project was the creation of complete
and detailed three-dimensional anatomical representations of the normal male and
female human bodies. These representations were obtained from the acquisition of
transverse CT, MR and cryosection high resolution images of representative male
and female cadavers. Also derived from a digitized cryosectioned human brain, the
Karolinska Institute and Hospital, Stockholm, created a Computerized Brain Atlas
(CBA) that was designed for display and analysis of tomographic brain images. The
atlas includes the brain surface, the ventricular system and about 400 structures and
all Brodmann areas [46, 99].

But the large majority of the determinist atlases are created directly from imaging
acquisition. For instance, the digital brain atlas developed by the Harvard Medical
School [58] is based on a 3D MR digitized atlas of the human brain to visualize
spatially complex structures. Also, the digital brain phantom from McConell Brain
Imaging Center [21] is based on 27 high-resolution scans of the same individual.
Its average resulted in a high-resolution (1mm isotropic voxels) brain atlas with
an increased signal-to-noise ratio. This template is the reference data within the
BrainWeb simulator [68]. Bajcsy et al. in [9, 11] created an artificial CT anatomical
volume based on the stained slices of a dead soldier brain of a 31 year old normal
male (from the so-called Yakovlev Collection).

Statistical atlases. Atlases based on a single-subject are however not represen-
tative of the diversity human anatomy. To better characterize the variability of the
anatomical structures, atlases have been constructed based on a population. This
second type of atlases is called population-based or statistical atlas. Such atlases
are in continuous evolution since new images can be easily incorporated. Moreover,
the population that a statistical atlas represents can be easily subdivided into groups
according to specific criteria (age, sex, handedness, etc.). Initial population-based
atlases were based in Talairach space [51, 111] Later, to compensate for implicit
limitations of Talairach space based atlases such as poor resolution across slices
(from 3 to 4 mm), population-based atlases from MR images were proposed.
A composite MRI data set was constructed by Evans et al. [39] from several
hundreds of normal subjects (239 males and 66 females of 23:4 ˙ 4:1 years old).
All the scans were first individually registered into the Talairach coordinate system.
Then, they were intensity normalized and, finally, all the scans were averaged voxel-
by-voxel and probabilistic maps for brain tissue were created. The same procedure
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for constructing an average brain was used later by the International Consortium for
Brain Mapping (ICBM) to 152 brains [60]. Recently, disease-based atlases [38,67]
have been created. They represent subgroups of some disease instead of using a
healthy group of subjects. Such atlases provide the way to examine the history and
evolution (due to natural disease evolution or reaction to clinical treatment) of a
specific disease.

Important questions arise when generating population-based atlases such as the
selection of a reference space or the registration method for the data alignment.
Many researchers have proposed new strategies to create unbiased average templates
and multi-subject registration as in [12, 23, 31, 47, 54, 63, 80, 118].

As conclusion, the term atlas is rather used in the literature to designate a
reference image generally composed of an intensity image, the intensity atlas and
a labeled image, the labeled atlas). However, as in [2], active shape models [25]
or active appearance models [26] can also be considered as atlases since they bring
spatial prior knowledge in a segmentation process.

2 Atlas Driven Segmentation

To exploit the information given by an atlas in a segmentation task, we need to regis-
ter it with the target image. Global image registration is usually applied first in order
to compensate for the difference of position, orientation and possibly size between
both images. It can consists in a Talaraich registration (piecewise affine registration
from anterior and posterior commissures), or an affine registration (12 parameters).
Then, when more precise localization or delineation is needed, deformations with
a higher degree of freedom should be applied. In fact, this second step aims to
compensate for the anatomical variability between both images. Thus, atlas-based
segmentation is most often considered as a registration problem only. However,
many examples in the literature show that the atlas-based segmentation problem
can also include a statistical segmentation or a contour morphing problem. Let us
describe here after these three different approaches of atlas-based segmentation.
Note that we will focus on this one based on registration.

2.1 A Statistical Classification Approach

Statistical methods usually solve the classification problem by either assigning a
class label to a voxel or by the estimation of the relative amounts of the various class
types within a voxel [77, 96]. Such decision is often taken in a Bayesian framework
where prior probability is used to model the spatial coherence of the images and
conditional probability models the image intensity distribution for each class [4,90,
102, 109].
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In such probabilistic framework, prior probabilities from statistical atlas are easily
incorporated as shown in [41,73,84,103]. Thus, statistical classification approaches
can be considered as atlas-based segmentation approaches when they incorporate
spatial probabilistic information from an atlas. (probably also refer here to previous
chapter on statistical classification).

2.2 A Contour Morphing Approach

We understand atlas-based segmentation as a morphing problem when the atlas
contours selected by the labeled atlas are directly deformed without extracting a
dense deformation field in the whole image [1, 8, 32, 35]. The contour matching
techniques that has attracted the most attention in atlas-based segmentation are the
active contour models [56].

The atlas-based segmentation process via active contours is the following. After
global matching of the atlas with the image to segment, and also sometimes an
approximative local registration to bring the atlas contour closer to the target
contour, the active contour segments the target image by combining the prior
information given by the deformed labeled atlas and the intensity atlas. The
advantage of this technique is its low computational cost. This is due to the fact that
it computes the deformation of the contours of interest only, not of the whole image.
Also, as it deforms the contours, it is directly designed to use local contour-based
information. However, with this method, the segmentation of several contours, open
contours or not visible contours is not as straightforward as with the atlas-based
segmentation via a registration approach presented in the next section.

2.3 A Registration Approach

The most known atlas-based segmentation approach consists to reduce the segmen-
tation problem to an image registration problem (see [85] for a recent survey).
To segment a new image, a dense deformation field that puts the atlas into a
point-to-point spatial correspondence with the target image is first computed. This
transformation is then used to project the labels assigned to structures from the atlas
onto the target image to be segmented. As mentioned above, the atlas is first globally
registered to the volume of interest and in a second step, a more local registration is
applied to compensate for the variability between both images. The main advantage
of this approach is that the dense deformation field, interpolated on the whole image
from the registration of visible image features, permits one to easily estimate, in the
target image, the position of structures with fuzzy or not visible contours. Moreover,
this approach permits one to segment simultaneously several contours of any types
(closed, open, connected or disconnected).
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Fig. 1 Atlas MRI and labeled image from Harvard Medical School [58]. Atlas-based segmentation
results (ventricles, corpus callosum, thalamus, trunk and cerebellum) using a tandem of affine
registration and Demons algorithm as proposed in [5]

In fact, a wide range of image registration techniques that allow to deform a
given atlas to a subject have been developed over the last 20 years [5, 10, 14, 18, 22,
29, 43, 53, 86, 98]. It is though beyond the scope of this chapter to review all them
and we refer the interested reader to [66, 85, 100]. Mathematically, they formulate
the registration as an optimization problem where two images, the intensity atlas
and the target image to be segmented are matched to each other. Then, the space
of allowed transformations (parametric or non-parametric), the similarity measure
and the optimization strategy are defined. Local transformations must usually add
to the similarity criteria a regularization term to ensure the smoothness of the
transformation while global transformations, defined by an analytical expression,
explicitly fulfill such physical constraint. However, a drawback of image registration
methods is that they often lead to a compromise between the accuracy of the
registration and the smoothness of the deformation. When at some places the
registration is not accurate enough, a widely-used solution is to globally or locally
allow more variability in the registration model in order to obtain more local
deformation, but with the risk of creating irregularities in the deformation field.
Also, this does not assure that the desired level of precision will be obtained. To cope
with this problem, local constraints should be included in the registration process.
Novel types of atlas registration algorithm that aim to overcome these limitations
are presented in Sect. 4.

As for image registration, the assessment of atlas-based segmentation is still an
open question. First, the atlas must represent the subject anatomy as well as possible.
Then, the accuracy of the registration algorithm in capturing the anatomical
variability between the atlas and the subject is evaluated. It is though not evident to
define a quantitative accuracy measure for validation in the particular case of inter-
subject non-rigid registration. In [108], Warfield et al. proposed a binary minimum
entropy criterion that allows the identification of an intrinsic coordinate system of
the subjects under study. Schnabel et al. [89] propose a biomechanical gold standard
of non-rigid registration based on finite element methods. Actually, validation of
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image registration is often application-based and, usually, the evaluation process is
only presented as a subsection of the work. However, some comparative studies are
published concerning the evaluation of different non-rigid registration techniques.
For instance, West et al. [110] present a survey and comparison of multimodal
registration techniques. The same is done by Hellier et al. [50] for inter-subject
image registration. Recently, Dawant et al. in [30] and Sanchez et al. in [88]
proposed a validation study of atlas-based segmentation technique in the framework
of subthalamic nuclei localization for the Parkinson surgery.

As mentioned above, a main assumption of the atlas-based segmentation process
using registration is that the images to segment are consistent with the atlas. How-
ever, possible inconsistencies between two images to be registered can exist. We
can distinguished two types of inconsistencies: the intensity-based and the content-
based. Trying to find a point to point correspondence between inconsistent images is
a challenging task. In the literature several methods have been proposed to remove
these inconsistencies. For example, different intensity ranges or the presence of a
bias field in the intensity of the target images can be corrected in a pre-processing
step by an histogram equalization [91] or a bias correction algorithm [61]. Some
similarity measures like gradient-based [15], joint-entropy [20, 94] or mutual
information [65,82,106] permit the registration of images from different modalities.
For content-based inconsistencies, geometrical models have been proposed either to
introduce the inconsistent object in the atlas [6, 7, 83] or to force corresponding
objects to match [64].

3 Atlas-based Segmentation in Pathological Cases

Atlas-based segmentation has been of limited use in presence of large space-
occupying lesions. In fact, brain deformations induced by such lesions may
dramatically shift and deform functionally important brain structures. In [7, 83] we
presented the problem of inter-subject registration of MR images with large tumors,
inducing a significant shift of surrounding anatomical structures. In such pathologi-
cal cases, the goal of the registration becomes even more complex: it not only tries to
capture the normal anatomical variability between subjects but also the deformation
induced by the pathology. Moreover, the anatomical meaningful correspondence
assumption done in the atlas-based segmentation paradigm is usually strongly
violated since voxels located inside the damaged area have no correspondence to
the atlas. However, precise segmentation of functionally important brain structures
would provide useful information for therapeutic consideration of space-occupying
lesions, including surgical, radio-surgical, and radiotherapeutic planning, in order to
increase treatment efficiency and minimize neurological damage.

Two early works related to atlas-based segmentation in presence of space-
occupying tumors were published in the late 90s. Kyriacou et al. [59] proposed a
biomechanical model of the brain using a finite-element method. On the other hand,
Dawant et al. [28] relied on a simpler approach based on optical-flow - Thirion’s
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demons algorithm [98] - for both tumor growth modeling and atlas matching
deformation. Their solution was called seeded atlas deformation (SAD), as they put
a seed with the same intensity properties as the lesion in the atlas image, and then
computed the non-rigid registration. Other methods [36, 92, 93] locally adapted the
elasticity of the transformation, rather than modeling the deformation induced by
the tumor, in a way that large deformations induced by the tumor can be captured.
Recently, Nowinski et al [74] proposed to use a Talairach registration followed by a
three-dimensional nonlinear tumor deformation based on a geometric assumption,
as in [3, 7], that the tumor compresses its surrounding tissues radially. A more
sophisticated model of lesion growth was proposed by Mohamed et al. [71] based
on 3D biomechanical finite element model.

Our proposed solution [7, 83] improved the SAD: instead of applying the
nonlinear registration algorithm to the whole image, a specific model of tumor
growth inside the tumor area was proposed, which assumed the tumor growth radial
from a single voxel seed. Demons algorithm [98] was used outside the tumor area
and the displacement vector field was regularized by an adaptive Gaussian filter to
avoid possible discontinuities. Note that this method does not apply to infiltrating
tumors or take into account the presence of the edema.

3.1 Methodology

Our approach is called model of lesion growth (MLG), and it works in 4 steps.
First, an affine transformation is applied to the brain atlas in order to globally match
the patient’s volume [27]. Second, the lesion is automatically segmented [57, 107].
Thirth, the atlas is manually seeded with a voxel synthetic lesion placed on the
estimated origin of the patient’s lesion. At this point, the affine registration ensures
that the small displacement assumption is respected in the region of the brain that
is far from the tumor. Meanwhile, the segmentation of the tumor volume and the
manual selection of the tumor seed provides an adequate model for the tumor
and its influence on immediately surrounding tissues. Fourth, the proposed non-
rigid deformation method distinguishes between those two areas fixed from the
segmentation of the lesion. The instantaneous displacement field is computed as:

�!
d iC1 D EDi C�t � �!v iC1; (1)

where �t=1, EDi is the current total displacement field. Outside the tumor, the
instantaneous force �!v iC1 (velocity) for each demon point Ep at iteration i+1, is
computed as

�!v iC1 D .g. Ep C EDi. Ep//� f . Ep//�!r f . Ep/
j�!rg. Ep/j2 C .g. Ep C EDi. Ep// � f . Ep//2

; (2)
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where f .�/ and g.�/ are the image intensities. Thus, there is a displacement in the
direction of the gradient provided by both a difference in image intensities and a
reference image gradient different from zero. Note that (2) is asymmetrical, that is,
it gives different results depending on which image is chosen as the reference and
which is chosen to be floating. As proposed by Thirion [98], bijectivity is ensured by
computing at each iteration both the direct deformation field ( Eddirect, from Eqs. (1)
and (2)) and the inverse deformation field ( Edinverse, also from Eqs. (1) and (2) but
replacing f instead of g and viceversa). Then, a residual vector field ER D Eddirect C
Edinverse is equally distributed onto the two deformation fields:

ED�iC1
direct D �!

d iC1
direct �

ER
2
;

ED�iC1
inverse D �!

d iC1
inverse �

ER
2
;

(3)

Inside the tumor, the tumor growth model assumes a radial growth of the tumor
from the tumor seed, i.e.

�!v iC1
lesion. Ep/ D

��!
DM seed

Nit
; (4)

where �!v lesion is the instantaneous velocity inside the lesion area,
��!
DM seed is the

distance from the corresponding point Ep to the seed, and Nit is the number
of iterations of the deformation algorithm that have to be performed. Then, the

deformation field
�!
d iC1

lesion is computed similarly as in (2). The bijectivety inside the

lesion area is ensured by forcing Eddirect D � Edinverse. This model allows the points
inside the lesion area to converge towards the seed voxel2, while remaining simple
and allowing any number of iterations to take place outside the tumor volume.

The displacement vector computed at every voxel using either the demons force
(1) or the tumor growth model (4) is regularized by an adaptive Gaussian filter to
avoid possible discontinuities

ED˛ D ED�iC1
˛ ıG.�/; (5)

where ED� is the deformation field at the current iteration, ˛ refers to direct
and inverse, G.�/ is the Gaussian filter with standard deviation � , and ED is the
regularized deformation field that will be used in Eq. (1) the next iteration. In
fact, three different � areas are considered: inside the lesion area, close to the
lesion (within 10mm of the tumor) where large deformations occur, and the rest
of the brain. Smoothing is not necessary inside the lesion because the vector field
induced by (4) is highly regular and the continuity is ensured. So, � D 0 inside

2Note that the vector field points the origin, and not the destiny, of a voxel.
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Fig. 2 Segmentation results after applying the MLG algorithm. Displayed structures are: tumor
(red), ventricles (green), thalamus (yellow), and central nuclei (blue)

the lesion area. In the region close to the tumor (including the tumor contour) there
are large deformations due to the tumor growth. Then, it is necessary to allow large
elasticity, i.e. � should have a small value, typically 0:5 mm. In the rest of the brain,
deformations are smaller, due primarily to inter-patient anatomical variability. So,
a larger � proves to be better, as it simulates a more rigid transformation. Previous
studies [3] suggest that a typical � to match two healthy brains is about 0:5 mm and
1 mm. In what follows, � D 0:8 mm is used. The number of iterations is arbitrarily
fixed to 256C128C32C16 from low to high resolution scale and it stops at the end
of the iterations. The algorithm is implemented in a multiscale way: a first match is
made with downsampled images and the resulting transformation is upsampled to
initialize the next match with finer image resolution.

3.2 Results

The result after applying these steps is a deformed brain atlas in which a tumor
has grown from an initial seed, causing displacement and deformation to the
surrounding tissues. After this, structures and substructures from the brain atlas
may be projected to the patient’s image. This is illustrated in Fig. 2. The need of a
correct estimation of the tumor growth in order to obtain a good final segmentation
of the structures directly displaced and deformed by the lesion is proven in [7]. As
illustrated in Fig. 3, without an explicit model of tumor growth, SAD cannot grow
the small seed until the final tumor size. However, it seems that a good deformation
has been obtained in the rest of the brain. Thus, since we are interested in the
deep brain structures and not in the tumor itself, the need of simulating the lesion
growth could be questionable. Let us then compare the accuracy of the segmentation
results of the ventricles, the thalamus and the central nuclei for both approaches.
The obtained results, Fig. 4 show that the MLG performs clearly better in the case
of the structures near the tumor (thalamus and central nuclei). The most critical
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Fig. 3 Top and bottom row, without and with model of lesion growth, respectively. First column,
seeded atlas (small seed on top and one voxel seed on bottom). Second column, deformation of
seeded atlas. Third column, deformation field in the tumor area

structure is the central nuclei (MLG in green and SAD in red) since it is initially
placed inside the tumor area. In this case, SAD method fails because the central
nuclei segmentation is placed inside the tumor area. On the contrary, MLG pushes
the central nuclei out of the tumor region and it obtains a better segmentation.

3.3 Limitations and future work

Our proposed method in [7, 83] increases the robustness of previous existing
methods but other limitations arise: the placement of the seed needs expertise
and previous segmentation of the lesion is still necessary. Also, since the Demons
algorithm [98] uses the sum of the mean squared differences of intensities as sim-
ilarity measure, the contrast agent (often present in MR scans of such pathologies)
induced some errors in the deformation field. Recently, we proposed in [6] a Mutual
Information (MI) flow algorithm combined with the same radial growth model
presented here. This approach is in fact very similar to the one presented in [7, 83]
but MI flow algorithm has proven its robustness to intensity inconsistencies between
the atlas and the patient images.

Other limitations persist and they are shared by all voxel-based methods since
they often lead to a compromise between the accuracy of the resulting segmentation
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Fig. 4 Importance of the tumor growth model: without (SAD) and with (MLG) model of lesion
growth, respectively. Segmented structures: ventricles (MLG in blue and SAD in magenta),
thalamus (MLG in cyan and SAD in yellow), and central nuclei (MLG in green and SAD in red)

and the smoothness of the transformation. In our solutions, the regularization of
the deformation field is done by an adaptive Gaussian filtering and three different
elasticities are allowed according to the distance to the tumor: inside the tumor the
radial force ensures the regularity, near the tumor large deformability is allowed and
far from the lesion elasticity modeling normal anatomy deformations is applied.
A more realistic model of deformability would be to consider not only the distance
to the tumor but also the implicit elasticity of some structures such the ventricles,
midsagittal plane or skull. This could be included as proposed by Duay et al. [36]
by considering that different anatomical structures in the atlas have different
elasticity parameters � but the estimation of these elasticity parameters remains not
straightforward. However, even if a better deformability is modeled, voxel-based
method still miss local registration constraints that could help selected atlas contours
to match their corresponding contours in the patient image.

To cope with this problem, more local constraints have to be included in the
atlas registration process for instance by incorporating local statistical measures
in the registration process as proposed recently by Commowick et al. in [24]. In
our opinion, among the different techniques proposed so far for image analysis,
the active contour framework is particularly well suited to define and implement
local constraints but it was initially designed for image segmentation. Recently, new
algorithms including active contour constraints in a registration process have been
proposed. These algorithms perform in fact a registration and segmentation tasks
jointly (see Sect. 4.1). We proposed in [34, 35, 37, 45] such type of algorithm and
we show in Fig. 5 some preliminary results with in a tumor growth application. The
atlas and the patient images are respectively shown in Figs. 5(a) and 5(b). These
images correspond to 2D slices extracted from 3D brain MR images. A one-voxel
seed (shown in Fig. 5(a) by a red point) has been inserted inside the atlas to model
the tumor growth. The difference between this model and the tumor growth model
presented above is that this seed corresponds to the initial position of an active
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Fig. 5 Active contour-based registration of an atlas on a brain MR image presenting a large
occupying tumor. (a) Intensity atlas [58] with objects of interest (the head in green, the brain
in yellow, the ventricles in blue, and the tumor one-voxel seed in red). (b) Atlas contours
superimposed to the patient image. (c) Results of the joint segmentation and registration driven
by the external contour of the head and the tumor contour. (d) Corresponding deformation field

contour. This active contour is going to segment the tumor of the patient image
during the registration process. Thus, with this model, the pre-segmentation of the
patient image is not anymore required. Contours of the objects of interest selected
in the atlas (the head in green, the brain in yellow, the ventricles in blue and the
tumor in red) are superimposed to all images. Our active contour-based algorithm
permits to select the atlas contours that will drive its registration. In this case, the
registration was performed following the registration of the head contour and the
tumor growth only. The rest of the image just follow the deformation interpolated
from the displacement of the selected contours. Fig. 5(c) shows the segmentation
result obtained after this type of registration and Fig. 5(d) shows the corresponding
deformation field. We can see that the registration of the selected green and red
contours are bringing the yellow and blue contours closer to their target contours.
This object-based registration process points out the spatial dependance that exists
between anatomical structures. Such spatial dependance can be exploited in a
hierarchical atlas as described in Sect. 4.2.

The registration framework we propose allows not only to easily include object-
based registration constraints but also to select different type of segmentation
forces derived from the active contour framework for the registration of different
structures in the atlas. Like the biomechanical methods, this algorithm can also be
seen as a surface-based registration method. Its first difference is that it computes
the deformation based on the image and not on mechanical or biological laws.
This implies that its accuracy does not depend on a good physical modeling of
the tissues. Above all, as mentioned above, its main advantage is that it does
not need a pre segmentation of the patient image. The contours defined in the
atlas evolve following an energy functional specially defined to be minimal when
they have reached the desired object contours, as in the active contour-based
segmentation framework [76]. Unfortunately, the main limitation of the surface to
surface registration algorithm remains. As the deformation is only based on contours
of interest, the probability of registration errors increases more we are far from these
contours. As far as we know, most of the existing methods for registration of images
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with space-occupying tumors are either surface-based [59, 62, 71, 116] or voxel-
based [7, 13, 28, 36, 83, 93] approaches. However, in our opinion it is worth to study
how to combine the advantages of both approaches.

4 Discussion

In this chapter, we saw that the atlas-based segmentation has become a standard
paradigm for exploiting spatial prior knowledge in medical image segmenta-
tion [16]. The labeled atlas aims to delineate objects of interest in the intensity atlas.
The atlas-based segmentation process consists to deform the selected atlas objects
in order to better align them with their corresponding objects in the patient image to
be segmented. To perform this task, we have distinguished two types of approaches
in the literature.

The most known approach reduces the segmentation problem in an image
registration problem [5,10,14,18,22,29,43,53,86,98]. Its main advantage is that the
deformation field computed from the registration of visible contours allows to easily
estimate the position of regions with fuzzy contours or without visible contours, as
for instance the subthalamic nuclei (STN) targeting for Parkinson disease [30, 88].
However, these registration algorithms do not exploit the object-based information
that could be obtained by combining the intensity and the labeled atlas. This object-
based information contains an estimation of the objects position in the patient image,
the description of their shape and texture, and the features of their adjacent regions.
Therefore, usual atlas-based segmentation methods via registration often miss local
constraints to improve the accuracy of the delineation of some objects. Besides,
this technique assumes that a point to point correspondence exists between the atlas
and the image to be segmented. Then, the presence of inconsistencies can generate
registration errors, and consequently segmentation errors, if special schemes are not
used (see Sect. 3).

As mentioned in Sect. 2.2, contours in the labeled atlas can be directly deformed
without need of a geometrical deformation [8,19,115]. The contour morphing tech-
nique that has attracted the most attention to date is the active contour segmentation
model [56]. Its advantage is that it can exploit the image information directly linked
to the object to be delineated. Therefore, active contour models are often able to
extract objects where the atlas-based segmentation method by registration fails (see
an example on the cerebellum segmentation in [32]). Moreover, this segmentation
method allows extracting only the objects that are consistent in the image. Thus,
it usually does not need special model to solve the problem of inconsistencies. On
the other hand, this segmentation method is very sensitive to the initial position of
the atlas contour: the closer to the contours to be detected, the more robust the
active contour-based segmentation will be. Besides, this segmentation technique
needs prior shape models to be able to estimate the position of regions with fuzzy
or without visible contours. Note that these shape models are in fact atlases that are
registered with the patient image during the process to incorporate prior knowledge
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in the active contour segmentation. See [17, 75, 78, 79, 104] for examples of active
contour segmentation of medical images with shape priors.

Biomechanical models such as in [40, 42, 59, 69] can be seen as object-based
registration since they are based on selected image objects. They track key surfaces
of objects, as for instance the cortical surface or the lateral ventricles of the brain, to
propagate then the surface displacements through the entire volume guided by the
prior biomechanical knowledge about the deformability of anatomical structures.
One drawback of this type of object-based registration method, compared to image-
based registration methods as [98] or [86], is that it remains difficult to accurately
estimate all the forces that can interact with the model. The level of accuracy stays
thus highly dependent on the number of surfaces tracked.

4.1 Atlas-based Segmentation Approaches combining
Registration and Segmentation

Novel atlas-based segmentation methods aim at combining segmentation and
registration to include more local constraints in the matching of the atlas contours
(see [2] for a recent survey on methods combining registration to level set-based
segmentation). We distinguish here two types of approaches: the methods that
performs a registration and segmentation task in two successive steps and the
methods that perform these two tasks jointly.

In a two steps registration and segmentation method, one approach consists
to assist the registration process with the solution of a segmentation task (see
for example [87, 98]). Indeed, the pre-segmentation of the intensity atlas and the
patient image permits to avoid problems linked to intensity differences between
the images to register (due to different acquisition conditions, different modalities
or the presence of noise) but also to isolate the image regions that are consistent
and relevant for the registration task. This contributes to make the registration
process more robust. A second approach consists to first globally register the
objects contours selected in the atlas to bring them as close as possible to their
corresponding contours in the patient image. Then, a deformable model is used to
match the atlas objects to their target contours [8, 32]. The drawback to combine
both approaches in two successive steps is that this does not permit to compute a
dense deformation field tracking the overall atlas contour deformation.

In a joint registration-segmentation method, one approach consists to track the
deformation of the atlas contours modeled by a level set function during an active
contour-based segmentation process [35, 44, 45, 105]. This method permits to apply
segmentation constraints directly in the deformation field calculation. A second
approach consists to extract the same objects in both images and to compute the
deformation regarding the contours of these extracted objects. In this method, the
segmentation by active contours permits to remove the possible inconsistencies
between both images. Conversely, the combination of the information of both
images by the registration process incorporates prior knowledge in the segmentation
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Fig. 6 Joint atlas-based registration and segmentation of Neck CT images. Row 1: Intensity Atlas
with surrounded objects of interest (the external contour of the neck in green, the trachea in yellow,
the jaw in red and the vertebra in blue). Row 2: Objects of interest delineated in the patients images.
Rows 3: Corresponding deformation fields

task. To our knowledge, two different methods corresponding to this second
approach were proposed. The first one consists to couple active contour segmenta-
tion to registration in a energy-based variational framework [1,33,70,101,114,115].
The second one joints the labellisation of the tissue of the source and target image
to the registration task by using Markov random fields [112, 113].

Figure 6 shows atlas-based segmentation results obtained on neck CT 2D images
with the joint registration-segmentation model developed in our lab [34, 35, 37, 44,
45]. Our model follows the approach that consists to track the deformation of a level
set function modeling selected atlas contours. For this case, the contours selected
to drive the registration are enhanced by different colors: the external contour of
the neck in green, the trachea in yellow, the jaw in red and the vertebra in blue.
Columns 2 show the segmentations obtained on the patient images. The deformed
grids of Row 3 help to visualize the dense deformation interpolated on the whole
image domain. This example shows that the joint registration-segmentation methods
permit to register only the objects that are consistent between the atlas and the
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patient image. Here, we did not consider in the registration process the arteria,
muscles and fat (structures inside the gray part of the neck) that do not correspond
between these 2D images.

4.2 Hierarchical Atlas

Atlas-based segmentation methods proposed so far use two types of atlas:
determinist atlases and statistical atlases (refer to Sect. 1.1 but the novel concept of
atlas-based segmentation approaches combining registration and segmentation led
to the concept of a new type of atlas, the hierarchical atlas [37, 52].

The hierarchical atlas is an atlas composed of several layers. Each layer contains a
subset of atlas objects and two successive layers are linked by a spatial relationship
(the position of the objects defined in one layer is depending of the position of
the objects defined in the previous layer). The design of such atlas requires to
study the spatial dependance existing between anatomical structures. Intuitively, it
seems logical that the position of the most rigid structures (the bones) determine the
position of softer structures (the tissues or the fluids).

The registration process of a hierarchical atlas permits to perform the registration
progressively by limiting the number of objects to register in the atlas. More visible
and important objects (layer 1) are registered first. The resulting deformation field is
then applied to get the initial condition for the registration of the objects of second
layer, including also the contours of the first layer in order to keep a constraint on
their registration. Indeed, such hierarchical approach aim at reducing the complexity
of the registration problem by limiting the number of objects to register. Then, the
solution of this simplified problem is used as initial condition for a more complex
problem, i.e. with more objects to register. The process is repeated until the original
image resolution is reached.

5 Conclusion

We reviewed here the existing approaches for atlas-based segmentation in medical
imaging and we focus on those based on a volume registration method. Particularly,
we presented the problem of using atlas information for pathological image analysis
and we proposed our solution for atlas-based segmentation in MR image of the brain
when large space-occupying lesions are present. We discussed also future research
directions that aim at overcome current limitations of atlas-based segmentation
approaches based on registration only by combining segmentation and registration
strategies.
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Integration of Topological Constraints
in Medical Image Segmentation

F. Ségonne and B. Fischl�

Abstract Topology is a strong global constraint that can be useful in generating
geometrically accurate segmentations of anatomical structures. Conversely, topo-
logical “defects” or departures from the true topology of a structure due to
segmentation errors can greatly reduce the utility of anatomical models. In this
chapter we cover methods for integrating topological constraints into segmentation
procedures in order to generate geometrically accurate and topologically correct
models, which is critical for many clinical and research applications.

1 Introduction

1.1 Description of the Problem

In medical imaging, the overall shape of a region of interest is typically prescribed
by medical knowledge; it is usually known a priori. Excluding pathological cases,
the shape of most macroscopic brain structures can be continuously deformed into
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Fig. 1 a) Subcortical structures have a spherical topology. For instance, the shape of the
hippocampus can be continuously deformed onto a sphere. b) The human cerebral cortex is a highly
folded ribbon of gray matter that lies inside the cerebrospinal fluid (the red interface) and outside
the white matter of the brain (the green interface). When the midline connections between the left
and right hemisphere are artificially closed, these two surfaces have the topology of a sphere. c)
Due to the partial volume effect, subject motion, etc : : : , it becomes hard to distinguish opposite
banks of a the gray matter. d) Segmentation algorithms that do not constrain the topology often
produce cortical segmentations with several topological defects (i.e. handles, cavities, disconnected
components). e) A close-up of a topologically-incorrect cortical surface representation

a sphere. In mathematical terms, these structures have the topology of a sphere.
Particularly, this implies that most brain structures consist of one single connected
object that does not possess any handles (i.e. holes) or cavities. This is the case
for noncortical structures (such as left and right ventricle, putamen, pallidum,
amygdala, hippocampus, thalamus, and caudate nucleus - see Fig. 1-a), but it also
holds for the cortex under some specific conditions.1 In addition to their individual
topological properties, anatomical structures occur in a characteristic spatial pattern
relative to one another (e.g. in the human brain, the amygdala is anterior and
superior to the hippocampus). The set of individual topological properties and
specific relationships between anatomical structures determine the global topology
of a region of interest.

Although many clinical and research applications require accurate segmentations
that respect the true anatomy of the targeted structures, only a few techniques have
been proposed to achieve accurate and topologically-correct segmentations.

1.2 Motivation

Many neurodegenerative disorders, psychiatric disorders, and healthy aging are
frequently associated with structural changes in the brain. These changes, which can
cause alterations in the imaging properties of the brain tissue, as well as in morpho-
metric properties of brain structures, can be captured and detected by sophisticated

1The human cerebral cortex is a highly folded ribbon of gray matter (GM) that lies inside the
cerebrospinal fluid (CSF) and outside the white matter (WM) of the brain. Locally, its intrinsic
“unfolded” structure is that of a 2D sheet, several millimeters thick. In the absence of pathology and
assuming that the midline hemispheric connections are artificially closed, each cortical hemisphere
can be considered as a simply-connected 2D sheet of neurons that carries the simple topology of a
sphere - see Fig. 1-b
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segmentation techniques. Certain clinical and research applications depend crucially
on the accuracy and correctness of the representations (visualization [11, 12, 56],
spherical coordinate system and surface-based atlases [12, 16–18, 22, 50, 56], shape
analysis [16, 20, 31, 43, 53, 54], surface-based processing of functional data [12],
and inter-subject registration [22, 51, 55], among others). Small geometric errors
in a segmentation can easily change the apparent connectivity of the segmented
structure, posing a problem to studies that aim at analyzing the connectedness of
different regions (e.g. dramatic underestimation of true geodesic distances). The
accuracy and correctness of the representations can be critical factors in the success
of studies investigating the subtle early effects of various disease processes.

1.3 Challenges

Accurate segmentation under anatomical consistency is challenging. Segmentation
algorithms, which operate on the intensity or texture variations of the image,
are sensitive to the artifacts produced by the image acquisition process. These
limitations include image noise, low frequency image intensity variations or non-
uniformity due to radio frequency (RF) inhomogeneities, geometric distortions in
the images, partial volume averaging effect, and subject motion. Segmentation
techniques that do not integrate any topological constraints generate segmentations
that often contain deviations from the true topology of the structures of interest.
These deviations are called topological defects and can be of three types: cavities,
disconnected components, or handles (which are topologically equivalent to holes)
that incorrectly connect parts of the volumes.

The integration of topological constraints significantly increases the complexity
of the task. Topology is both a global and a local concept; small and local
modifications of a geometric shape can change its global connectivity. Furthermore,
topology is intrinsically a continuous concept (Sect. 2.1) and topological notions are
difficult to adapt into a discrete framework (Sect. 2.2). Due to these difficulties, the
set of techniques applicable to the segmentation of images is quite limited (Sect. 3).

In this chapter, we present background material of central importance for
the segmentation of medical images under topological constraints. We introduce
some elementary notions of topology (Sect. 2.1) and show how these notions
can be adapted into a discrete framework and applied to the segmentation prob-
lem (Sect. 2.2). Next, we describe the current state-of- the-art segmentation of
images under topological constraints (Sect. 3) and detail the limitations of existing
approaches (Sect. 3). Section 4 concludes.
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Fig. 2 a-b) Two tori that are homeomorphically equivalent. They share the same intrinsic
topology. However, they do not share the same homotopy type as one cannot be continuously
transformed into the other. c) A geometric object with a spherical topology; its Euler-characteristic
is � D v � e C f D 8 � 12 C 6 D 2. d) A geometric object with a toroidal topology and an Euler-
characteristic of � D v � e C f D 16 � 32 C 16 D 0

2 Topology in Medical Imaging

In medical image segmentation, one is interested in locating (accurately and also
under topological constraints) specific regions of interest that are formed by one
or several anatomical structures. Those can be represented equivalently by their
volume or their surface and these two equivalent representations correspond to the
two most common data structures used in medical imaging: 3D voxel grids and
surfaces (such as triangulations or levelsets).

2.1 General Notions of Topology

Topology is a branch of mathematics that studies the properties of geometric figures
by abstracting their inherent connectivity while ignoring their detailed form. The
exact geometry of the objects, their location and the details of their shape are
irrelevant to the study of their topological properties. Schematically, this amounts
to characterizing a geometric object (i.e. a surface or a volume) by its number of
disconnected components, holes and cavities, but not by their position. For instance,
the surface of a coffee mug with a handle has the same topology as the surface of a
doughnut (this type of surface is called a one-handled torus).
A - Homeomorphism, Genus, and Euler-Characteristic
In medical imaging, the geometric entities under consideration are anatomical
structures, which can frequently be advantageously represented by their surfaces.
The Gauss-Bonnet theorem in differential geometry links the geometry of surfaces
with their topology. Any compact connected orientable surface is homeomorphic to
a sphere with some number of handles. This number of handles is a topological
invariant called the genus. For example, a sphere is of genus 0 and a torus is
of genus 1. The genus g is directly related to another topological invariant called
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Fig. 3 a) a simple closed curve with the topology of a circle. b) One example of a polyhedral
decomposition of the curve using 25 vertices and edges. The corresponding Euler-characteristic
� D v � e D 0 is that of a circle. c) Another discretization of the same curve using 14 edges and
vertices. Note that the Euler-characteristic is still that of a circle � D 0, even though the discrete
representation of the curve self-intersects in the 2D embedding space. d) Close-up

the Euler-characteristic � by the formula � D 2(1 � g).2 The Euler-characteristic
is of great practical interest because it can be calculated from any polyhedral
decomposition (e.g. triangulation) of the surface by the simple formula � D
v � e C f, where v, e and f denote respectively the number of vertices, edges and
faces of the polyhedron. The Euler-characteristic of a sphere is � D 2. This implies
that any surface with � D 2 is topologically equivalent (i.e. homeomorphic) to
a sphere and therefore does not contain any handles. Surfaces with an Euler-
characteristic � < 2 have a topology that is different from that of a sphere. Note,
however, that the Euler-characteristic does not provide any information about the
localization of the handles.

B - Intrinsic Topology and Homotopy Type
Homeomorphisms are used to define the intrinsic topology of an object, indepen-
dently of the embedding space. The topological invariance of the Euler characteristic
implies that the way a surface is decomposed (i.e. tessellated) does not influence its
(intrinsic) topology. Any polyhedral decomposition of a surface will encode the
same intrinsic topology. For example, a knotted solid torus has the same genus (and
the same Euler-characteristic � D 0) as a simple torus. In order to topologically
differentiate surfaces, one needs a theory that considers the embedding space.
Homotopy, which defines two surfaces to be homotopic if one can be continuously
transformed into the other, is such a theory that provides a measure of an object’s
topology (see [8] for an excellent course in algebraic topology). We stress the fact
that the Euler-characteristic does not define the homotopy type of a surface, since
the embedding space is being ignored. In particular, this implies that a discrete
representation of a surface using a polygonal decomposition with the desired Euler-
characteristic might be self-intersecting in the 3D embedding space (Fig 3).

C - Topological Defects, Duality Foreground/Background
In this chapter, we call topological defect any deviation from spherical topology:
cavities, disconnected components, or handles. We note that for each defect present
in a geometric entity, referred to as the foreground object, there exists a correspond-

2In the case of multiple surfaces involving K connected components, the total genus is related to
the total Euler-characteristic by the formula: � D 2(K � g).
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Fig. 4 a) 6-, 18- and 26-connectivity. b) The circled voxel is a non-simple point c) Several dual
topological corrections are possible: either cutting the handle (top) or filling the hole (bottom)

ing defect in the background (i.e. the embedding space): a disconnected foreground
component can be interpreted as a background cavity; a foreground cavity is a
disconnected background component; and a handle in a foreground component
defines another handle in the background component. This foreground/background
duality is of crucial importance for all retrospective topology correction techniques,
as it provides a dual methodology to correct a topological defect. For instance, the
presence of a handle in an object could be corrected by either cutting the handle
in the foreground object, or cutting the corresponding handle in the background
object. Cutting the background handle can be interpreted as filling the corresponding
foreground hole (Fig. 4-b,c).

2.2 Topology and Discrete Imaging

In order to apply topological concepts to a discrete framework and define the
topology type (i.e. homotopy type) of digital segmentations, the notion of continuity
must be adapted to discrete spaces and objects, such as 3D image grids and
triangulations. This is obtained by replacing the notion of continuity with the weaker
notion of connectivity. We describe how topological notions can be adapted to the
two most common data structures used in medical imaging: 3D data structures and
surfaces.
A - Digital Topology
Digital topology provides an elegant framework, which translates the continuous
concepts of topology to discrete images. In this theory, binary images inherit a
precise topological meaning. In particular, the concept of homotopic deformation,
which is required to assign a topological type to a digital object, is clearly defined
through the notion of simple point. An extensive discussion of these concepts can be
found in [36]. In this section, some basic notions of digital topology are presented.
All definitions are from the work of G. Bertrand, which we refer to for more
details [7].

In the digital topology framework, a 3D image I is interpreted as a graph.
The vertices of the graph are the digital points (i.e. the voxels) and the edges
are defined through neighborhood relations between points (i.e. the connectivity).
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A 3D binary digital image I is composed of a foreground object X and its inverse,
the complement NX . We first need to define the concept of connectivity, which
specifies the condition of adjacency that two points must fulfill to be regarded as
connected. Three types of connectivity are commonly used in 3D: 6-, 18- and 26-
connectivity. Two voxels are 6-adjacent if they share a face, 18-adjacent if they
share at least an edge and 26-adjacent if they share at least a corner (Fig. 4-a).
In order to avoid topological paradoxes, different connectivities, n and n; must
be used for one digital object X and its complement X . This leaves us with four
pairs of compatible connectivities: (6,26), (6,18), (26,6) and (18,6). One important
consequence of the previous requirement is that digital topology does not provide a
consistent framework for multi-label images. No compatible connectivities can be
chosen for neighboring components of the same object. Therefore, digital topology
is strictly limited to binary images.

We now come to the definition of a simple point. This concept is central to most
digital segmentation methods that integrate topological constraints [3, 26, 32, 36,
42, 44, 49].

Definition 1.1 Simple point. A point of a binary object is simple if it can be added
or removed without changing the topology of both the object and the background,
that is, without changing the number of connected components, cavities and handles
of both X and X (Fig. 4-b,c).

A simple point is easily characterized by two topological numbers with respect to
the digital object (X, X ) and a consistent connectivity pair (n, n). These numbers,
denoted Tn (x, X) and Tn (x,X ), were introduced by G. Bertrand in [1] as an elegant
way to classify the topology type of a given voxel. The values of Tn (x, X) and Tn
(x, X) characterize isolated, interior and border points as well as different kinds of
junctions. In particular, a point is simple if and only if Tn (x, X) D Tn (x, X ) D 1.
Their efficient computation, which only involves the 26-neighborhood, is described
in [6].

The definition of a discrete homotopy follows from the concept of simple point.

Definition 1.2 Homotopic deformation. We define a homotopic deformation of an
object X as a sequence of deletions or additions of simple points.

Finally, two objects X and Y share the same homotopy type if there exists a sequence
of transformations X0 : : :Xk and a sequence of points x1 : : : xk, such that X0 D X
and Xi�1 D Xi

Sfxig or Xi�1 D Xinfxig and the point xi is simple relative to Xi

for i D 1, : : : , k.
To be complete, we also mention some recent research in digital topology, such

as the concept of multisimple point in [45, 44] to characterize the modification of
the genus, a novel characterization of homeomorphic deformation in [4], as well as
some octree grid topology concept in [1].
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Fig. 5 a) A triangulated cortical surface b) Tiling inconscistency in isosurface extraction c)
Different tessellations corresponding to different topology types

B - Surfaces in Discrete Imaging
We now turn to the translation of continuous topological concepts to discrete surface
representations. There are essentially two ways of representing a surface in discrete
imaging. Surfaces can be either represented explicitly, by using a parameterized
polygonal decomposition, or implicitly as the level set of some function defined
in the 3D embedding space. Each type of representation has advantages and
disadvantages, and has been extensively used for the purpose of medical image
segmentation [11, 13, 21, 23, 35, 37, 57–59].

B.1 - Explicit Representations
An explicit representation models a surface by a set of vertices, edges, and faces,
associated with a chosen parameterization of each face. The set of vertices, edges,
and faces composes the polyhedral representation of the surface. The parameter-
ization of the faces determines the exact geometry of the surface. For instance,
tessellations correspond to linear parameterizations of each face, while splines use
higher-order approximations. Triangulations are a special kind of tessellation, in
which each face is a triangle (Fig. 5-a).

The topological invariance of the Euler-characteristic implies that explicit models
unambiguously encode the intrinsic topology of the surfaces. However, there is
no guarantee that the surface representation is not self-intersecting. As previously
mentioned, the topological equivalence defining the intrinsic topology of a geomet-
ric entity ignores the embedding space. Consequently, additional precautions must
be taken in order to ensure that the discretization of a surface does not generate
self-intersections. The self-intersection problem is important when the surfaces are
iteratively deformed in order to match a targeted structure (i.e. theory of active
contours).

Finally, we note that explicit representations can approximate surfaces at any
level of precision, by using more refined meshes. Contrary to the theory of digital
topology that constitutes a discrete approximation of the continuous space, and is
therefore limited by the resolution of the 3D digital images, explicit representations
can accurately approximate any surface by using high-resolution meshes.

B.2 - Implicit Representations
Implicit models encode the surface of interest C as the level set of a higher-
dimensional function � defined in the embedding space R3. The function �, defined
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on a 3D voxel grid, is usually the signed distance function of the surface with the
contour being the zero level set of �: C D� �1 (0).

This type of representation has several advantages. First, no explicit represen-
tation and no parameterization are required. In the theory of active contours, this
has proven to be a huge advantage as implicit representations can naturally change
topology during the deformation of the model. Self- intersections, which are costly
to prevent in parametric deformable models, are avoided and topological changes
are automated. In addition, many fundamental properties of the surface C, such as
its normal or its curvature, are easily computed from the level set function �.

However, these models can only represent manifolds of codimension one without
borders, i.e. closed surfaces in R

3. For the purpose of segmenting anatomical
structures, the use of such representations is not a limitation. Another - more
subtle - drawback of implicit representations is that, even though level sets achieve
sub-voxel accuracy, the exact location of the contour depends on the image
resolution. For instance, in the case of two adjacent banks of a sulcus that are
closer than the resolution of the underlying voxel grid (or physically touching), the
finite image resolution and the topological constraint necessitate some voxels to
be labeled as outside voxels (ideally, these voxels should be the ones belonging to
CSF), thus imposing a constraint on the location and accuracy of the surface model
(some recent methods to alleviate this limitation have been proposed in [2, 27]).

So far, we have not specified how implicit representations can ensure that the
topology of the encoded surface is the correct one. Since implicit representations
make use of the underlying 3D voxel grid (through a signed distance function �) to
encode the contour of interest, digital topology (Sect. 2.2-A) can be used to specify
the topology of the contour [28]. The foreground object X is simply defined as the
set of negative grid points (i.e. X D fx 2 R

3 j �.x/ � 0g), and the background
object X as the set of strictly positive grid points (i.e. NX D fx 2 R

3 j �.x/ > 0g).
Then, given a choice of compatible connectivities, the topology of the contour is
determined unambiguously.

C - From Images to Surfaces: Isocontour Extraction
In the previous section, we described the manner in which topology can be adapted
to the two most common data structures used in medical imaging. The ability to go
from one representation to the next arises as a difficulty. Although it is possible to
generate triangulations from 3D binary digital segmentations, such that the resulting
topology of the surfaces is consistent with the choice of digital topology, it is not
always possible to produce a digital binary representation, whose topology is similar
to that of a given triangulation: digital topology constitutes a discrete approximation
of the continuous space at a finite resolution, while triangulations approximate
continuous surfaces at any level of precision.

The marching cubes (MC) algorithm was first introduced by Lorensen and Cline
in 1987 [34] as a way to generate a polygonal decomposition (e.g. a triangulation)
from a scalar field sampled on a rectilinear grid (e.g. an implicit representation).
Given an isovalue, the MC algorithm quickly extracts a representation of the
isosurface of the scalar field. The MC algorithm first partitions the data into a set
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of cubic (or rectilinear) cells, the cell vertices being the grid points. Based on the
relative polarity of their scalar value (above or below the isovalue), each vertex is
assigned a binary label, which indicates whether the grid point is inside or outside
the isosurface. Then, each cubic cell is processed sequentially. Patches (i.e. sets
of triangles) that approximate the isosurface (based on tri-linear interpolation) are
produced within each cube, and the polygon patches are naturally joined together to
form the final isosurface representation.

Unfortunately, the standard marching squares or marching cubes algorithm does
not generate topologically consistent tessellations, since the resulting tessellations
may contain tiling and topological inconsistencies (Fig. 5-b). In order to alleviate
this problem, Han et al. [28] have designed a modified connectivity-consistent
marching contour algorithm, by building a specialized case table for each type of
digital topology (Fig. 5-c). Extensive discussion of isocontour extraction algorithms
can be found in the thesis of Han [25]. Note also some new research directions such
as [1].

3 State of the Art in Segmentation under Topological
Constraints

As noted previously, methods for producing topologically-correct segmentations
can be broadly divided into two categories. A first set of approaches directly
incorporates topological constraints into the segmentation process, while another
set aims at correcting retrospectively the spherical topology of an already segmented
image.

3.1 Topologically-Constrained Segmentations

The topology-enforcing techniques proceed by iteratively deforming a model of
known topology onto a targeted structure, while preserving its topology. Several
techniques have been used for the segmentation of anatomical structures, with the
topological constraint taking different forms depending on the chosen method.

A - Active Contours
Depending on the representation, two different implementations are usually encoun-
tered. One encodes the manifold of interest with an explicit representation using
a Lagrangian formulation [52], while another implicitly represents the contour as
the level set of a function defined on higher-dimensional manifold in an Eulerian
formulation [9, 40].

• Parameterized models maintain an explicit representation of the contour and
preserve its initial intrinsic topology. Any level of accuracy can be achieved by
using more refined meshes. However, the preservation of the whole topology also
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requires the prevention of self-intersections, which proves to be computationally
intensive and requires elaborate methods to detect and prevent surface intersec-
tion during the evolution. Also, note that the preservation of the initial topology
is often a strong limitation to most explicit models, since a fully automatic and
efficient handling of topology changes using explicit models remains an open
issue [14, 15, 33, 41, 38, 39].

• The ability to automatically handle topological changes is a long acknowledged
advantage of the level set method over explicit deformable models, but may not
be desirable in some applications where some prior knowledge of the target
topology is available. This is typically the case in biomedical image segmen-
tation, where the topology of the organs and their mutual topological relations
is prescribed by anatomical knowledge (in the absence of gross pathology). In
order to overcome this problem, a topology-preserving variant of the level set
method has been proposed in [28]. This method is based on the theory of digital
topology and uses the underlying embedding space to constrain the topology of
the interior of the level set. However, the strict topology preservation necessitates
an initialization of the active contour that is close to its final configuration in order
to avoid topological barriers that can easily generate large geometrical errors. In
the case of complex structures, like the cortical surface, such initialization proves
to be extremely difficult [26].

Recently, another variant was proposed to exert a more subtle topological control
on a level set evolution by allowing connected components to merge, split or vanish
without changing the genus of the active contours [44]. While the original level
set model does not provide any topological control, topology-preserving level sets
enforce a strong constraint that is often too restrictive. This framework establishes
a trade-off between the two models. It offers a more fine-grained topological
control that alleviates many problems of methods that enforce a strong topological
constraint (e.g. sensitivity to initialization and noise, simultaneous evolution of
multiple components and speed of convergence).

B - Digital Homotopic Deformations
Similar to active contour models, digital approaches [3, 5, 8, 36, 42] deform an
initial region with a known given topology (typically a single voxel carrying a
spherical topology), by addition/deletion of points, minimizing a global energy
functional while preserving the correct digital topology. Regions are grown or
shrunk by adding points that will not change the region topology. Most of these
methods are based on the theory of digital topology and the notion of simple points.

C - Segmentation by Registration
Some approaches have been proposed to match a template with a given topology
onto a specified MRI image [3, 10, 30]. These methods have the strong advantage
of being able to enforce complex topology in the segmentation process, and to
encode the spatial relationships that exist in between structures [4, 5]. Nevertheless,
the design of elaborate templates that include several structures with the correct
topology is challenging.
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D - Limitations of Topologically-Constrained Segmentations
All these methods have the advantage of allowing the user to specify the proper
topology and not allowing it to change. In the case of segmentation by registration,
full brain models containing several structures can be matched onto a targeted
image. Unfortunately, these methods are highly sensitive with regard to their
initialization, and accurate final configurations most often require an initialization
of the models that is close to its final configuration. One of the main reasons is that
the energy functionals driving the deformation are typically highly non-convex and
the evolution is therefore easily trapped in local minima.

A significant drawback of topologically constrained evolution is that it can
lead to large geometric errors, due to the topological constraint and the presence
of topological barriers (constituted by sets of non-simple points in the case of
digital segmentations, self-touching and frozen surface regions in active contours
segmentations). This is the case for methods that aim at segmenting the cortex
starting from one single object located deep inside the cortical surface. Large
topological barriers are often generated during the template deformation leading
to inaccurate final segmentations. This is mostly a result of the presence of noise
in the image and of the fact that topologically constrained segmentation prevents
the formation of cavities (easy to detect and suppress) as well as the formation of
handles.

Finally, we note that digital methods, as well as implicit representations that
use the 3D embedding space to encode the surface of interest, are constrained by
the finite resolution of the 3D grid and may not be able to represent deep folds
in the target structure. To solve this problem, Han et al. [27] have implemented a
moving grid algorithm, which aims at optimally deforming the underlying 3D grid
for accurate implicit representations. Let us also mention some recent octree-based
topology-preserving geometric deformable model [2].

3.2 Retrospective Topology Correction

Recently, new approaches have been developed to retrospectively correct the
topology of an already-segmented image. These techniques, which do not impose
any topological constraints on the segmentation process, can focus on attaining
more accurate models with few topological inconsistencies to be identified and
corrected post-hoc. These methods can be divided into two main classes: volume-
based methods that work directly on the volume lattice and correct the topology by
addition/deletion of voxels [26, 32, 46, 49], and surface-based methods that aim at
modifying the tessellation by locating and cutting handles [19, 24, 47, 48].

A - Volume-Based Approaches
Most volume-based approaches have been specifically designed to enforce the
spherical topology of cortical surface. These methods identify the location of
the topological defects present in the segmentation by building a graph encoding the
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connectivity of the segmentation; the topological defects present in the volume are
then corrected by introducing some cuts in the connectivity graph (e.g. modifying
the binary labels of some key voxels in the volume).

One of the most inspirational approaches in this domain is certainly the pioneer-
ing work of Shattuck and Leahy [49]. One drawback of their approach is that the
“cuts”, which are necessary to correct the topological defects, can only be oriented
along the Cartesian axes and give rise to “unnatural” topological corrections. Their
method is based on the theory of digital topology but is limited to 6-connectivity
and has not been generalized for any other connectivity rule.

Han et al. developed an algorithm to correct the topology of a binary object
under any digital connectivity [26]. They detect handles by graph analysis, using
successive foreground and background morphological openings to iteratively break
the potential topological defects at the smallest scales. In contrast to the approach
of Shattuck and Leahy, “cuts” are not forced to be oriented along cardinal axes.
However, topological corrections at a specific scale depend on the choice of
filter, either foreground or background morphological filter, which fails to evaluate
simultaneously the effect of two complementary dual solutions (i.e. cutting the
handle or filling the corresponding hole) on the corrected segmentation.

Kriegeskorte and Goeble proposed a region growing method prioritized by
the distance-to-surface of the voxels in order to force the cuts to be located at
the thinnest part of each topological defect [32]. The same process is applied to
the inverse object, offering an alternative solution to each cut. An empirical cost
is then assigned to each solution and the final decision is the one minimizing the
global cost function.

While these methods can be effective, they cannot be used to correct the topology
of arbitrary segmentations, as they make assumptions regarding the topology of
the initial input image. Most frequently, fully-connected volumes are assumed and
cavities are supposed to be removed as a preprocessing step. In addition, they do
not integrate any statistical or geometric information into the topology correction
process. To alleviate these limitations, Ségonne et al. [46, 45] propose a topology
correction approach that is phrased within the theory of Bayesian parameter estima-
tion and integrates statistical information into the topology correction process. In
addition, no assumption is made about the topology of the initial input images.

B - Surface-Based Approaches
Approaches of the other type operate directly on the triangulated surface mesh.
Topological defects are located either as intersections of wavefronts propagating
on the tessellation [24, 29] or as non-homeomorphic regions between the initial
triangulation and a sphere [19, 47, 48].

In [24, 29], a randomly selected vertex is used to initialize a region growing
algorithm, which detects loops (i.e. topological defects) in the triangulation where
wavefronts meet. Topological corrections are obtained through the use of opening
operators on the triangle mesh, resulting in a fast method that depends on the
initially selected vertex. In a similar work, Jaume [29] identifies minimal loops
in the volume by wavefront propagation. This method assumes that the initial
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triangulation was generated through the use of a topologically-consistent algorithm.
The minimal loops are then used to identify non-simple voxels in the volume,
which are subsequently deleted. Again, this approach orients the “cuts” along the
Cartesian axes and generates “unnatural” topological corrections. In addition, both
methods ignore all additional information, such as the underlying intensity profile
or the expected local curvature, and the resulting topological corrections might not
be accurate.

Fischl et al. [19] proposed an automated procedure to locate topological defects
by homeomorphically mapping the initial triangulation onto a sphere. Topological
defects are identified as regions in which the homeomorphic mapping is broken
and a greedy algorithm is used to retessellate incorrect patches, constraining the
topology on the sphere S while preserving geometric accuracy by a maximum
likelihood optimization. Unfortunately, this method relies on a greedy algorithm
and the reconstructed final surface might be inaccurate. In addition, even though
the final intrinsic topology will be the correct one, the proposed method cannot
guarantee that the final surface will not self-intersect.

Recently, Ségonne et al. proposed a methodology [47, 48] that alleviates most
limitations of previous approaches, and is able to generate accurate topological
corrections by integrating statistical and geometric information into the topol-
ogy correction process while guaranteeing that the final surface will not self-
intersect. Non-separating loops locate handles present in the volume, and produce
topologically-corrected candidate solutions by discarding the faces that form the
loops and by sealing the open mesh. The accuracy of each candidate solution is then
maximized by active contour optimization. Finally, randomly-generated candidate
solutions are selected based on their goodness of fit in a Bayesian framework.

C - Limitations of Retrospective Topology Correction Algorithms
Most of these methods assume that the topological defects in the segmentation are
located at the thinnest parts of the segmented volume and aim to correct the topology
by minimally modifying the volume or tessellation [24, 26, 29, 32, 49]. Although
this will often lead to accurate results, due to the accuracy of initial segmentations,
topological corrections may not be optimal: additional information, such as the
expected local curvature or the local intensity distribution, may lead to different
corrections (i.e. hopefully comparable to the ones a trained operator would make).
In addition, digital methods often suffer from the finite resolution of the digital grids,
posing a problem to the accurate location of the potential cuts.

Few methods have been proposed to integrate into the segmentation process
some additional information, such as intensity or curvature [46–48]. Although the
method introduced in [46] has the advantage of correcting the topology of any
initial segmentation without making any assumption on the initial connectedness of
the segmentation, it suffers from the same limitations as most digital methods (i.e.
the location of the potential cuts). Also, as most retrospective topology correction
methods it only evaluates a small number of potential topological corrections per
defect (i.e. only two dual corrections), consequently failing often to produce optimal
solutions. To our knowledge, only the approach developed in [48] has been proposed
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thus far to generate multiple solutions and explore the full space of potential
solutions in order to select the best correction of a topological defect.

4 Conclusion

In this chapter, we covered methods for integrating topological constraints into
segmentation procedures in order to generate geometrically accurate and topo-
logically correct models. We introduced some elementary but essential notions
of topology (Sect. 2.1), such as the concepts of homeomorphism and homotopy
that are necessary to characterize the topological type of a geometric object. We
have clearly distinguished the intrinsic topology of an object from its homotopy
type (Sect. 2.1). Also, we have emphasized the connections linking topology and
differential geometry, such as the crucial notion of the Euler-characteristic of a
surface.

The adaptation of the continuous concepts of topology into a discrete framework
that is practical to the segmentation of medical images proves to be challenging.
However, we have shown that topologically-consistent frameworks can be con-
structed by replacing the notion of continuity by the weaker notion of connectivity
(Sect. 2.2), using concepts from the theory of digital topology is (Sect. 2.2-A).
In particular, we have introduced the important concepts of simple point and
topological numbers, and defined the discrete equivalent of homotopic deformations
based on the notion of simple point. We have also presented isocontour extraction
techniques (Sect. 2.2-C).

Finally, we described current state-of-the-art segmentation of images under
topological constraints and detailed the limitations of existing approaches (Sect. 3).
Among state-of-art techniques, retrospective methods (Sect. 3.2) achieve overall
better results than topologically constrained segmentation methods (Sect. 3.1).
In addition, techniques that integrate additional information, such as intensity
or curvature, often lead to more accurate segmentations. However, segmentation
under topological constraints remains a challenge with several promising research
directions [2, 4, 5, 44, 48].
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of Tubular Structures
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Abstract In this paper, we present a multiple hypotheses testing for the
segmentation of tubular structures in medical imaging that addresses appearance
(scanner artifacts, pathologies, : : : ) and geometric (bifurcations) non-linearities.
Our method represents vessels/tubular structures as sequences of state vectors
(vessel cuts/cross-sections), which are described by the position of the
corresponding plane, the center of the vessel in this plane and its radius. Thus,
3D segmentation consists in finding the optimal sequence of 2D planes normal to
the vessel’s centerline. This sequence of planes is modeled by a probability density
function (pdf for short) which is maximized with respect to the parameters of the
state vector. Such a pdf is approximated in a non-parametric way, the Particle Filter
approach, that is able to express multiple hypotheses (branches). Validation using
ground truth from clinical experts and very promising experimental results for the
segmentation of the coronaries demonstrates the potential of the proposed approach.
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1 Introduction

1.1 Presentation of the problem

Cardio-vascular diseases are the leading cause of death in the western world; there
is a constant demand for improvement of diagnostic tools to detect and measure
anomalies in the coronary tree. Coronary arteries are narrow vessels (between 3
to 5 mms next to the aorta, between 1.5 to 2.5 mms after two branchings). Their
role is to feed the heart muscle with oxygenated blood, and their segmentation
provides a valuable tool for clinicians to diagnose pathologies such as calcifications
and stenoses. Nevertheless, their segmentation is a difficult task because of the low
contrast conditions, bifurcations, intensity distortions produced by pathologies and
scanner artifacts, and the coronaries’ proximity to the heart chambers [26].

1.2 Previous work in Tubular Structures Segmentation

Tubular structure segmentation techniques consist of model-free and model-based
methods. Skeleton-based techniques are the most fundamental among the model-
free [31] and aim at detecting the vessel centerlines, from which the whole vessel
tree is reconstructed. Region growing methods [37] progressively segment the
vessels from a seed point, based on intensity similarity between adjacent pixels.
These methods are successful for homogeneous regions, but pathological vessels
are more challenging, and may leak into other structures of similar intensity.
Morphological operators [11] can be applied to correct a segmentation, smooth
its edges or eventually fill holes in the structure of interest, but fail to account
for prior knowledge. Tracking approaches [18, 32] are based on the application
of local operators to track the vessel. Given a starting condition, such methods
recover the vessel centerline through processing vessel cross section information
[17]. Various forms of edge-driven techniques, similarity/matching terms between
the vessel profile in successive planes, as well as their combination, have been
considered to perform tracking. In particular a method that relies on the average
outward flux of the gradient vector field of the Euclidean distance from the vessel
boundary to recover skeleton points has been developed in [3].

Deformable models may either be parametric or geometric. Parametric
deformable models [27] can be viewed as elastic surfaces (often called snakes),
and can handle topological changes with some difficulties. Geometric deformable
models [4, 28], on the contrary, can change their topology during the process
and may eventually leak into neighboring structures or vasculature. Like snakes,
deformable models aim at minimizing the energy computed along the model. Level
sets [24] are a way to apply deformable models to non-linear problems, such as
vessel segmentation [21]. One may use the fast marching algorithm and its variant
for vessel segmentation using the minimal path principle [2, 7, 35] to determine the
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path of minimal length between two points, backtracking from one point toward
the other crossing the isosurfaces perpendicularly. To discourage leaking, a local
shape term that constrains the diameter of the vessel was introduced in [22]. One
should also mention the method introduced in [20], where the optimization of a
co-dimension two active contour was presented to segment brain vessels.

Model-based techniques, on the other hand, use prior knowledge and features
to match a model with the input image and extract the vessels. The knowledge
may concern the whole structure, or consist of a local region of the vessel. Along
this direction, vessel template matching techniques (deformable template matcher)
[25] have been investigated. The template model consists of a series of connected
nodes that is deformed to best match the input image. Generalized Cylindrical
models are modified in Extruded Generalized Cylinders in [23] to recover vessels in
angiograms. For highly curved vessels, the local basis used for classical generalized
cylinders may be twisted, and a non-orthogonality issue may occur. This problem is
solved by keeping the vessel cross section orthogonal to the centerline and the two
normal vectors always on the same side of the tangent vector spine as the algorithm
moves along the vessel. In [19], the vessel is modeled by a tubular structure, and
segmented by filtering the image with a multiscalestructural term derived from the
image intensity Hessian matrix [14, 36]. More recently, [30] a vessel likelihood is
obtained from a classifier trained over a bag of multiscale filters. After the likelihood
is computed over the whole image, a tracing algorithm tracks the vessel from a seed
point.

1.3 Overview of our method

Existing approaches suffer from certain limitations. Techniques such as local
operators, region growing, morphological filters and geometric contours are prone
to be sensitive to local minima and fail to take into account prior knowledge on the
form of the vessel. Alternatively, cylindrical models, parametric active contours and
template matching techniques may not be well suited to account for the eventual
distortions of vessel appearance produced by pathologies or scanner artifacts, and
require special handling of bifurcations. Tracking methods, on the other hand, may
often fail in the presence of missing and corrupted data, or sudden changes. Level
sets are time-consuming when they are implemented in the most general way. On
the other hand, their efficient implementation using the fast marching method [29,
33] reduces computational burden at the cost of loosing the local implicit function
properties. To improve the segmentation results, one must account for bifurcations,
sudden changes of pixels intensity and missing data.

The segmentation problem is replaced by a tracking problem (Sect. 2): the course
of the vessel is followed by obtaining the set of 2d planar (normal to the centerline)
segmentation (see Fig. 1). On a particular plane, the vessel is represented by a model
(see Sect. 2.1), whose parameters are optimized to fit the image data according to
a shape and an appearance measure. However, to follow the centerline by always
selecting the maximum likelihood in the parameter space is not sufficient. That is
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Fig. 1 The feature space is defined by the cross-section center position x D (x1, x2, x3), the cross-
section tangential direction ‚D (�1, �2, �3) and the lumen pixel intensity distribution pvessel

the reason why the authors are driven toward a method that would handle multiple
hypotheses, and keep only the few most probable following [12, 13]. At each step,
a scheme based on particle filtering [8] is used to sample the parameters probability
density function (pdf). To these samples is assign a probability measure (Sect. 2.2)
that is updated at every step with the prior value and the model’s fitness to the new
image features. In Sect. 3, the experimental method is explained and the results are
presented in Sect. 3.3. Finally, Sect. 4 concludes this chapter with a discussion.

2 Segmentation Model & Theoretical Foundations

2.1 Vessel Model & Particle Filters

To explain our method at a concept level, let us assume that a segment of the
vessel has been detected: a 2D shape on a 3D plane. Similar to region growing and
front propagation techniques, our method aims to segment the vessel in adjacent
planes. To this end, one can consider the hypotheses ! of the vessel being at a
certain location (x), having certain orientation (‚), and referring to certain shape -
an elliptic model is a common choice (ç) - with certain appearance characteristics
(pvessel).

x D .x1; x2; x3/„ ƒ‚ …
position

;‚ D .�1; �2; �3/„ ƒ‚ …
orientation

; – D .˛; ˇ; �/„ ƒ‚ …
shape

; pvessel„ƒ‚…
appearance

(1)

Then, segmentation consists in finding the optimal parameters of ! given the
observed 3D volume. Let us consider a probabilistic interpretation of the problem
with  (!) being the posterior distribution that measures the fitness of the vector !
with the observation. Under the assumption that such a law is present, segmentation
consists in finding at each step the set of parameters ! that maximizes  (!).
However, since such a model is unknown, one can assume an autoregressive
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mechanism that, given prior knowledge, predicts the actual position of the vessel
and a sequential estimate of its corresponding states. To this end, we define:

• a state vector ! composed of x, ‚, ç and pvessel (Eq. (1))
• an iterative process to predict the next state and update the density function, that

can be done using a Bayes sequential estimator and is based on the computation
of the present state !t pdf of a system, based on observations from time 1 to time
t z1:t :  (!t jz1:t ). Assuming that one has access to the prior pdf  (!t�1jz1:t�1),
the posterior pdf  (!t jz1:t) is computed according to the Bayes rule:

  .!t jz1Wt / D   .zt j!t /  .!t jz1Wt–1 /
  .zt jz1Wt–1 / :

• a distance between prediction and actual observation, based on the observation.

Simple parametric models will be suceptible to fail with vessels’ irregularities
(pathologies, prosthesis, : : : ). Therefore instead of optimizing a single state vector,
multiple hypotheses are generated and weighted according to actual observation.
Nevertheless, in practical cases, it is impossible to compute exactly the posterior
pdf  (!t jz1:t). An elegant approach to implement such a technique refers to the
use of particle filters where each given hypothesis is a state in the feature space (or
particle), and the collection of hypothesis is a sampling of the feature space.

Particle Filters [1, 8] are sequential Monte-Carlo techniques that are used to
estimate the Bayesian posterior probability density functions (pdf ) [16, 34]. In terms
of a mathematical formulation, such a method approximates the posterior pdf by M

random measures f!m
t

, m D 1..M g associated to M weights fœm
t

, m D 1..M g, such

that

� .!t jz1Wt / �
MX

mD1
œ
m

t
ı

�
!t–!

m

t

�
; (2)

where each weight œ
m

t
reflects the importance of the sample !

m

t
in the pdf.

The samples !
m

t
are drawn using the principle of Importance Density [9], of pdf

q

�
!
t

ˇ̌
xm1Wt ; zt

�
and it is shown that their weights œ

m

t
are updated according to

œ
m

t
/ œ

m

t-1

 

�
zt j! m
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�
 

�
!
m

t
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t-1

�

q

�
!
m
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j!m

t–1; zt

� : (3)
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Once a set of samples has been drawn,  

�
!
m

t
j! m

t–1; zt

�
can be computed out of

the observation zt for each sample, and the estimation of the posteriori pdf can be
sequentially updated.

2.2 Prediction & Observation: Distance

This theory is now applied to vessel tracking. Each one of the particles !
m

t

represents a hypothetic state of the vessel; a probability measure p

�
zt j! m

t

�
is

used to quantify how the image data zt fits the vessel model !
m

t
. To this end,

we are using the image terms, and in particular the intensities that do correspond
to the vessel in the current cross-section. The vessel’s cross-section is defined by
the hypothetic state vector (see Eq. (1)) with a 3D location, a 3D orientation, a
lumen’s diameter and a pixel intensity distribution model (the multi-Gaussian). The
observed distribution of this set is approximated using a Gaussian mixture model
according to the Expectancy-Maximization principle. Each hypothesis is composed
by the features given in Eq. (1), therefore, the probability measure is essentially
the likelihood of the observation z, given the appearance A model. The following
measures (loosely called probabilities) are normalized so that their sum over all
particles is equal to one. Assuming statistical independence between shape S and
appearance model A, p(zt j!t ) D p(zt jS)p(zt jA).

• Probability measure for shape based on contrast
Given the vessel model (see Eq. (1)), whose parameters are specified by

the particle !t , a measure of contrast, that we call the ribbon measure R, is
computed:

(
R D �1; �int � �ext

R D �int–�ext
�intC�ext

; otherwise
(4)

The probability of the observation given the shape model is then computed:

p
�

z
ˇ̌
ˇS
�

D e
– jRj

R0 (5)

where R0 is a normalizing constant (the average value of R from ground truth),
�int is the mean intensity value for the voxels in the vessel, and �ext is the
intensities mean value for the voxels in a band outside the vessel, such that the
band and the vessel’s lumen have the same area. This measure is normalized
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to be equivalent to model a probability measure. Since the coronary arteries are
brighter than the background, the best match maximizes R.

• Probability measure for appearance
For the vessel lumen pixels distribution pvessel Eq. (1), the probability is mea-

sured as the distance between the hypothesized distribution and the distribution
actually observed.

The distance we use is the symmetrized Kullback-Leibler distance D(p, q)
between the model p(x) D pvessel and the observation q(x):

D .p; q/ D
Z
p.x/log

�
p.x/

q.x/

�
C q.x/log

�
q.x/

p.x/

�
dx; (6)

p
�

z
ˇ̌
ˇA
�

D e
– jD.p;q/j

D0
; (7)

where D0 is a normalizing constant, equal to the average value of D from prior
knowledge. The appearance model p is a bi-modal Gaussian, and the observation
q is the histogram of the 2D cross-section. In practice, q is modeled by a
bi-modal Gaussian with an Expectancy-Minimization algorithm since such an
approximation is used for the model p. Equation (6) is then computed summing
the divergence over all pixels on the 2D cross-section. This method does not
provide the exact solution for Eq. (6) but is fast and precise enough for our
case, with 2D cross-sections of size 31 � 31. Once again, this measure p(zjA)
is normalized to be equivalent to a probability measure.

2.3 Branching Detection

When a branching occurs, the particles naturally split up in the two daughter
branches (the case of trifurcation is not studied here), and then track them separately
(see Fig. 2). As branchings are never perfectly balanced, one of them attracts the
majority of the particles after few resampling steps. To avoid the collapse of one of
the modes, two techniques are available: either to increase the number of particles in
the weakest branch, or to treat the two branches separately. The second approach is
preferred in this paper, for the particular context of vessel segmentation; therefore,
after branchings are detected, each modes is treated as an entirely separate new
particle filter. To this end, a simple K-means [10] clustering in the joint space
(position C orientation) of the particles is considered at each iteration. When the
two clusters are well separated (when the distance between the clusters center is
above a certain threshold), the number of particles is doubled and they are equally
dispatched in the two branches. The segmentation goes on, according to Eq. (3), by
treating the two modes as entirely distinct particle filters.
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Fig. 2 (a) branching points between LCX and LAD for three patients with the particles’ mean
state overlaid, (b) the particles are clustered at each time step. The branching is detected when the
distance between the two clusters center is above a certain threshold

Table 1 Intensity range for different organs coded on 12 bits

myocardium vessel lumen / ventricles calcification lungs

intensity 900-1100 1100-1300 1400-2000 0-200

3 Experimental Validation

3.1 Image Modality and Algorithm Specifications

The algorithm was tested on 34 CT images from different SOMATON scanners and
patients who presented different or no pathologies. A typical voxel resolution is
0.3 mm � 0.3 mm � 1 mm. Contrast agent was used for all images, with different
concentration and different products. Table 1 summarizes the typical intensity
range for different tissues, as they are found in a CT angiography volume, with
pixels’ value coded on 12 bits. No preprocessing is applied before the segmentation
procedure described in this article.

Regarding the initial configuration, the use of approximatively 1, 000 particles
gave sufficient results for our experiments. We performed a systematic resampling

according to the SIR every time the effective sampling size Neff D †i1=w
2

i
(where

wi is the weight of the ith particle) falls below half the number of particles. The
preference for SIR is motivated by the robustness of the segmentation. The tracking
stops when the sum of image measures at a given iteration falls below a given
threshold.



Monte Carlo Sampling for the Segmentation of Tubular Structures 271

Table 2 Results table showing the number of cases for which branches are incorrectly segmented,
over a dataset of 34 patients, using Particle Filters (PF) and Front Propagation (FP), with respect
to expert ground truth

vessel name RCA
Acute
Marg. LAD

First
Septal LCX

Obtuse
Marg.

# missed, PF none 5 none 2 none 2
# missed, FP 12 28 16 23 21 26

3.2 Comparison with Front Propagation

Our method is compared with Front Propagation, implemented using the Fast
Marching algorithm [5], based on a curvilinear structures detection [36]. The Hes-
sian analysis is used to detect tubular structures; this measure (called “vesselness”
in [15]) is integrated into a potential map on which the Fast Marching algorithm
is run such as in [6]. In few words, Front Propagation computes isosurfaces in a
Riemanian space, whose metric is based on the image: the vesselness measure in
our case. The front propagates faster along the vessel than in other non-tubular
structures. However, in the case of intensity inhomogeneities, this measure drops
and the front either stops or leaks into neighboring structures.

In the synthetic case, the error measure 4 is defined as the symmetric difference
between ground truth G and segmentation S:

� D 1 � 2 jG \ S j
jGj C jS j :

Since ground truth is not available for the real case studies, an expert visually
validates the number of branches correctly segmented and missed.

3.3 Results

The algorithm has been evaluated on 34 patients, and has successfully recovered
all the main arteries (RCA, LAD, LCX) for each patient as shown in Table 2,
while a small portion of visual results are also presented in Fig. 3. The results
in Table 2 corresponds to the number of branches segmented by Particle Filters
and identified by a human expert. For comparison purposes, the same test is
performed using Front Propagation based on the image Hessian matrix [36]. These
results were achieved with a one-click initialization. Allpatients presented some
kind of artery pathologies in one, at least, of their coronary vessels (12 cases with
calcification, 8 stenosis, 4 stent, 2 bypasses), and many present intensity artifacts
(7 stepping, 5 hardening effects). Our approach has successfully segmented both
healthy and unhealthy coronaries without leaking into neighboring structures (over-
segmentation). The method seems to outperform regarding the detection of the main
branchings, while in some cases branching of lower clinical importance at the distal
part of the tree have been missed.
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Table 3 Results table showing the symmetric difference between maximum
likelihood segmentation result (particle with maximum probability at each
step), and ground truth on synthetic data

Radius of curvature 3.5 7 10.5 13.3 14
symmetric difference 7.80 % 9.29 % 9.24 % 12.11 % 11.07 %
Gap width 4 6 8 12 16
symmetric difference 0 2.22 % 7.11 % 11.56 % 24.44 %

A second test is performed on a 2D synthetic dataset with Gaussian pixel
intensity distributions (vessel: mean D 1200, standard deviation D 50; background:
mean D 1000, standard deviation D 100) noisier and with less contrast than real
cases. Using real cases radiuses (3-4 pixels lumen diameters), and using the
segmentation provided by the particle of maximum weight, the symmetric differ-
ence between segmentation and ground truth is 11.07 % for a tubular structure with
a 14 pixels radius of curvature, and 2.22 % for a 6 pixels wide simulated lumen
obstruction (Table 3). The algorithm is stopped when the sum of the particles’
weight falls below a threshold.

4 Conclusion

In this chapter, we have shown that Monte-Carlo sampling and multiple hypotheses
testing can be used for the segmentation of tubular structures. In the context of vas-
cular segmentation, Particle Filters sequentially estimate the pdf of segmentations in
a particular feature space. The case of coronary arteries was considered to validate
such an approach where the ability to handle discontinuities on the structural
(branching) as well as appearance space (calcifications, pathological cases, etc.)
was demonstrated. The main advantage of such methods lies in their capability
to handle intensity inhomogeneitiesfrom pathologies and bifurcations. Experiments
were conducted on several healthy and diseased patients CTA data sets, segmenting
the Left Main Coronary Artery and the Right Coronary Artery Fig. 3.

As a final remark, it may be underlined that particle filters require heavy
computational time in a general context (around an hour for a CT 512 � 512 � 300
volumetric image), compared to front propagation. However, in the case of non
linear problems, with missing or corrupt data, particle filters provide a better
segmentation than deterministic methods. In the particular case of coronary arteries
segmentation, due to pathologies, contrast agent heterogeneities and branchings,
the use of non deterministic methods have been proved successful. Therefore, when
time is a constraint, a compromise is to be found to apply deterministic methods
in linear cases and statistical modelization, such as Particle Filtering, in all other
cases.
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Fig. 3 Segmentation of the Left anterior descending coronary artery and Right coronary artery in
CTA (in red) for four patients ; (a) coronary tree, (b,c,d) Different 3D views super-imposed to the
cardiac volume are presented
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Non-rigid registration using free-form
deformations

D. Rueckert and P. Aljabar

Abstract Free-form deformations are a powerful geometric modeling technique
which can be used to represent complex 3D deformations. In recent years, free-
form deformations have gained significant popularity in algorithms for the non-rigid
registration of medical images. In this chapter we show how free-form deformations
can be used in non-rigid registration to model complex local deformations of 3D
organs. In particular, we discuss diffeomorphic and non-diffeomorphic representa-
tions of 3D deformation fields using free-form deformations as well as different
penalty functions that can be used to constrain the deformation fields during the
registration. We also show how free-form deformations can be used in combination
with mutual information-based similarity metrics for the registration of mono-modal
and multi-modal medical images. Finally, we discuss applications of registration
techniques based on free-form deformations for the analysis of images of the breast,
heart and brain as well as for segmentation and shape modelling.

1 Introduction

The analysis of medical images plays an increasingly important role in various
clinical applications. Image registration is a key component in many image analysis
applications. The goal of image registration is to find corresponding anatomical
locations in two images. Image registration can be applied to images from the
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same subject acquired by different imaging modalities or at different time points
as well as to images acquired from different subjects. To bring images into
registration it is usually necessary to estimate a geometric transformation which
aligns the images. Most non-rigid registration techniques use either elastic [3, 29],
fluid [4, 8, 14, 15] or other deformation models [20, 33, 54, 58, 61] to represent
this geometric transformation. In this chapter we focus on registration algorithms
which use a particular deformation model, namely free-form deformations based on
B-splines.

In general, finding the optimal geometric transformation is achieved by mini-
mization of a cost function which measures the degree of (mis-)alignment of the
images as a function of the geometric transformation. Most registration algorithms
use a cost function based on image intensity information to directly to measure
the degree of (mis-)alignment of the images. These methods are called voxel-based
registration techniques and are especially successful since they do not require any
feature extraction or segmentation of the images. Comprehensive reviews of image
registration techniques can be found in [31, 44, 66].

2 Image registration using free-form deformations

The goal of image registration is to relate any point in the reference or target image
to the source image, i.e. to find the optimal transformation T W p 7! p0 which
maps any point in the target image IA into its corresponding point in the source
image IB . The transformation T can be separated into two components: A global
component (e.g. a rigid or affine transformation) and a local component. Thus, the
transformation T can be written as:

T.p/ D Tglobal .p/C Tlocal .p/ (1)

The global transformation typically accounts for variations in the position, orienta-
tion and scaling between the two images. However, the global transformation cannot
account for any local deformations.

In the late eighties a number of technique for modeling deformations emerged
in the computer graphics community. In particular, Sederberg and Parry developed
free-form deformations (FFD) [57] as a powerful modelling tool for 3D deformable
objects. The basic idea of FFDs is to deform an object by manipulating an
underlying mesh of control points. The resulting deformation controls the shape of
the 3D object and produces a smooth and continuous transformation. In the original
paper by Sederberg and Parry [57] trivariate Bernstein polynomials were used to
interpolate the deformation between control points. A more popular choice is to use
trivariate B-spline tensor products as the deformation function [37, 38]. The use of
FFDs based on B-splines for image registration was first proposed by Rueckert et al.
[53, 54]. Over the last decade the use of FFDs for image registration has attracted
significant interest [36, 45, 50, 51].
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2.1 Free-form deformations

To define a spline-based FFD we denote the domain of the image volume as 	 D
fp D .x; y; z/ j 0 � x < X; 0 � y < Y; 0 � z < Zg. Let ˆ denote a nx � ny � nz

mesh of control points �i;j;k with uniform control point spacing ı. Then, the FFD
can be written as the 3D tensor product of the familiar 1D cubic B-splines:

Tlocal .p/ D
3X

lD0

3X

mD0

3X

nD0
Bl .u/Bm.v/Bn.w/�iCl;jCm;kCn (2)

where i D b x
ı
c � 1; j D b y

ı
c � 1; k D b z

ı
c � 1; u D x

ı
� b x

ı
c; v D y

ı
� b y

ı
c;

w D z
ı
�b z

ı
c and whereBl represents the l-th basis function of the B-spline [37,38]:

B0.u/ D .1 � u/3=6

B1.u/ D .3u3 � 6u2 C 4/=6

B2.u/ D .�3u3 C 3u2 C 3u C 1/=6

B3.u/ D u3=6

In contrast to thin-plate splines [6] or elastic-body splines [23], B-splines are locally
controlled which makes them computationally efficient even for a large number of
control points. In particular, the basis functions of cubic B-splines have a limited
support, i.e. changing control point �i;j;k affects the transformation only in the local
neighbourhood of that control point.

The derivative of a coordinate transformation is the matrix of its partial deriva-
tives. In the case of 3D coordinate systems this is always a 3 � 3 matrix called the
Jacobian matrix and the determinant of this matrix is called the Jacobian determinant
of the transformation, or simply the Jacobian. This determinant measures how
infinitesimal volumes change under the transformation. For this reason, the Jacobian
determinant is the multiplicative factor needed to adjust the differential volume form
when applying the coordinate transformation.

An advantage of B-spline FFDs is the fact the derivatives of the transformation
can be computed analytically. The derivatives of the transformation are often
used in the optimization of the registration and for regularization as well as in
the subsequent analysis of the resulting transformation. The Jacobian matrix of
transformation is defined as:

J.p/ D

0
BBB@

@Tx.p/
@x

@Tx.p/
@y

@Tx.p/
@z

@Ty .p/
@x

@Ty .p/
@y

@Ty .p/
@z

@Tz.p/
@x

@Tz.p/
@y

@Tz.p/
@z

1
CCCA (3)
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The determinant of this matrix measures how infinitesimal volumes change under
the transformation and can be used to analyze the local behavior of the transforma-
tion. A positive value of the determinant of the Jacobian matrix can be interpreted
as follows:

J.p/ D det jJ.p/j D
8
<

:

> 1 volume expansion
D 1 no volume change
< 1 volume contraction

(4)

If the value of the determinant changes from positive to negative the transformation
is folding and is no longer a one-to-one transformation. Since the FFD is the tensor
product of independent 1D B-splines, the derivative of the local transformation
Tlocal with respect to x is computed as follows:

@Tlocal .p/
@x

D 1

ıx

3X

lD0

3X

mD0

3X

nD0

dBl.u/

du
Bm.v/Bn.w/�iCl;jCm;kCn (5)

The remaining derivatives have an analogous form. The computation of the deriva-
tives of the B-spline basis functions Bi itself is straightforward.

The control points ˆ act as parameters of the B-spline FFD and the degree
of non-rigid deformation which can be modelled depends essentially on the
resolution of the mesh of control points ˆ. A large spacing of control points allows
modelling of global non-rigid deformations while a small spacing of control points
allows modelling of highly local non-rigid deformations. At the same time, the
resolution of the control point mesh defines the number of degrees of freedom
and consequently the computational complexity. A common approach uses a multi-
resolution approach for FFDs in which the resolution of the control point mesh
is increased in a coarse to fine fashion (see Fig. 1). An arbitrary FFD based on
B-splines can be refined to an identical deformation with half the control point
spacing along each dimension. In the 1D case, the control point positions �0 of
the refined grid can be computed from the coarse control points � [26]:

�0
2iC1 D 1

2
.�i C �iC1/ and �0

2i D 1

8
.�i�1 C �iC1 C 6�i/ (6)

This equation can be easily generalized to 3D by applying the tensor product.
Another possibility is the use of non-uniform FFDs [55]. This can be achieved by
introducing a control point status associated with each control point in the mesh,
marking it either active or passive. Active control points can be modified during
the registration process, whereas passive control points remain fixed. An alternative
approach for FFDs based on non-uniform rational B-splines (NURBS) has been
proposed by Wang and Jiang [64].
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Fig. 1 A free-form deformation control point mesh (a) before subdivision (control point spacing
20 mm) and (b) after subdivision (control point spacing 10 mm)

In general FFDs are defined on a Cartesian coordinate system, however it is
possible to use other coordinate systems. For example, Chandrashekara proposed
the use of a FFD model defined in a cylindrical coordinate system for the registration
of cardiac MR images [11]. In a similar fashion, Lin et al. [40] proposed the use
of extended free-form deformations (EFFD) [19] for the registration of cardiac
MR images. Another, more generic, approach has been recently proposed by
Chandrashekara [10]: In this approach free-form deformations are defined on
lattices with arbitrary topology [42]. An advantage of this approach is the fact
that the control point mesh can be closely adapted to the geometry of the anatomy
studied, e.g. epi- and endocardial surfaces of the left ventricle.

2.2 Voxel-based similarity measures for free-form deformations

To relate a point in the target image to the source image, one must define a similarity
criterion (or cost function) which measures the degree of alignment between both
images. A popular choice for this are voxel-based similarity measures which use the
image intensities directly and do not require the extraction of any features such as
a landmarks, curves or surfaces. Commonly used voxel-based similarity measures
include the sum of squared differences (SSD) or cross-correlation (CC). However,
these measures make rather strong assumptions about the relationship of the image
intensities in both images which is not suitable for multi-modality registration.
Even in the case of mono-modality registration this assumption is often violated,
e.g. in contrast-enhanced imaging. An alternative voxel-based similarity measure is
mutual information (MI) which was independently proposed by Collignon [16] and
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Viola [62]. Mutual information is based on the concept of information theory and
expresses the amount of information in one imageA that explains a second imageB ,

Csimilarity.A;B/ D H.A/CH.B/ �H.A;B/ (7)

where H.A/;H.B/ denote the marginal entropies of A, B and H.A;B/ denotes
their joint entropy. These entropies can be estimated from the joint histogram of A
and B or using kernel density estimators like Parzen windowing. If both images are
aligned the mutual information is maximised. It has been shown by Studholme [60]
that mutual information itself is not independent of the overlap between two images.
To avoid any dependency on the amount of image overlap, Studholme suggested the
use of normalised mutual information (NMI) as a measure of image alignment:

Csimilarity.A;B/ D H.A/CH.B/

H.A;B/
(8)

Similar forms of normalised mutual information have been proposed by Maes
et al. [43]. A more complete review of the use of mutual information for image
registration can be found in [48].

2.3 Optimization of free-form deformations

Like many other problems in computer vision, registration can be formulated as
an optimisation problem whose goal is to minimise an associated energy or cost
function. The most general form of such a cost function in registration is

C D �Csimilarity C �Cpenalty (9)

This type of cost function comprises two competing goals: The first term represents
the cost associated with the image similarity Csimilarity in Eqs. (7) or (8) while the
second term penalizes certain transformations and thus constrains the behavior of
the transformation (different penalty functions will be discussed in the next section).
The parameter � is a weighting parameter which defines the trade-off between the
alignment of the two images and the penalty function of the transformation. From
a probabilistic point of view, the cost function in Eq. (9) can be explained in a
Bayesian context: The similarity measure can be viewed as a likelihood term which
expresses the probability of a match between source and target image while the
penalty function represents a prior which encodes a-priori knowledge about the
expected transformation.

In the original paper by Rueckert et al. [54] the optimization of the FFD is
carried out is a multi-resolution fashion via a steepest gradient descent optimization
algorithm. More recently, Klein et al. has compared different optimization strategies
for FFDs [35].
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2.4 Penalty functions for free-form deformations

Typically, non-rigid image registration is an ill-posed problem. Thus, it is necessary
to add some constraints to render the problem well-posed. A common approach is
enforce the smoothness of the deformation [54]. Free-form deformations based on
B-splines are intrinsically smooth (at least relative to the control point spacing),
however additional smoothness can be enforced by adding a penalty term which
regularizes the transformation. The general form of such a smoothness penalty term
has been described by Wahba [63]. In 3D, the penalty term takes the following form

Csmooth D
Z �

@2T
@x2

�2
C
�
@2T
@y2

�2
C
�
@2T
@z2

�2

C 2

�
@2T
@xy

�2
C 2

�
@2T
@xz

�2
C 2

�
@2T
@yz

�2
dp (10)

This quantity is the 3D counterpart of the 2D bending energy of a thin-plate of
metal and defines a cost function which is associated with the smoothness of the
transformation. Note that this regularization term is zero for an affine transformation
and therefore penalises only non-affine transformations [63].

Another class of penalty functions aim to generate biomechanically plausible
deformations. For example, Rohlfing et al. suggested a constraint which preserves
volume [51]:

Cvolume D
Z

jlog.J.p//j dp (11)

Here J.p/ is the determinant of the Jacobian matrix J of the free-form deformation.
As mention previously the Jacobian measures how infinitesimal volumes change
under the transformation. This function therefore penalizes the compression or
expansion of tissues or organs during the registration. It should be noted that the
penalty term above penalizes volume changes over the entire domain, however due
to the integration there may be small regions in the image which show a large
volume change while the majority of regions show no volume change. Other authors
have proposed a rigidity constraint which forces the deformation in certain regions
to be nearly rigid [41], e.g.

Crigidity D
Z

jjJ.p/J.p/T � 1jjdp (12)

The penalty functions above do not guarantee that the resulting deformation field
is diffeomorphic (smooth and invertible). In order to ensure that the FFD is diffeo-
morphic it is possible to add a penalty function which penalizes non-diffeomorphic
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transformations, e.g. transformations which introduce folding. One suitable penalty
function for this has the following form:

Cfolding D
Z

P.p/dp (13)

where

P.p/ D
(


2

j.J.p/j2 � 2 if jJ.p/j � 


0 otherwise
(14)

A similar penalty function was first proposed by Edwards et al. [25] and effectively
penalises any transformations for which the determinant of the Jacobian falls below
a threshold 
 . By penalising Jacobians that approach zero, one can prevent the
transformation from collapsing and ensure diffeomorphisms. Note that simply using
a smoothness penalty function would not be sufficient to guarantee a diffeomorphic
transformation, since it is possible for a transformation to be smooth but non-
diffeomorphic.

2.5 Diffeomorphic free-form deformations

In general, most registration algorithms make the assumption that similar structures
are present in both images. Therefore it is desirable that the deformation field be
smooth and invertible (so that every point in one image has a corresponding point
in the other). Such smooth, invertible transformations are called diffeomorphisms.
Choi and Lee [13] have derived sufficient conditions for the injectivity of FFDs
which are represented in terms of control point displacements. These sufficient
conditions can be easily tested and can be used to guarantee a diffeomorphic FFD.
Without loss of generality we will assume in the following that the control points are
arranged on a lattice with unit spacing. Let �ci;j;k D .�xi;j;k; �yi;j;k; �zi;j;k/ be
the displacement of control point ci;j;k . Let ıx D max j�xi;j;kj, ıy D max j�yi;j;kj,
ız D max j�zi;j;kj.
Theorem 1. A FFD based on cubic B-splines is locally injective over all the
domain if ıx <

1
K

, ıy <
1
K

and ız <
1
K

.

Choi and Lee [13] have determined a value of K � 2:48 so that the maximum
displacement of control points given by the bound 1

K
is approximately 0.40. This

means that the maximum displacement of control points is determined by the
spacing of control points in the lattice. For example, for a lattice with 20mm control
point spacing the maximum control point displacement is 8mm while for a lattice
with 2.5mm control point spacing the maximum control point displacement is 1mm.
In practice the bounds on the displacements are too small to model any realistic
deformations. To model large deformations one can use a composition of FFDs as
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proposed in [30]. For each FFD in this composition, the maximum control point
displacement is limited by theorem 1. This a fundamentally different to the multi-
level FFDs mentioned earlier since the FFDs are concatenated,

T.p/ D Tn ı Tn�1 ı � � � ı T2 ı T1.p/ (15)

so that the final deformation is a composition of FFDs. Since the composition of
two diffeomorphisms produces a diffeomorphism one can construct a diffeomorphic
deformation by ensuring that each individual FFD is diffeomorphic.

3 Applications

In this section we discuss some of the applications of non-rigid registration based
on FFDs. In particular, we will concentrate on the use of non-rigid registration for
the alignment of images of the breast, heart and brain. In addition we will discuss
how registration techniques based on FFDs can be used for generic image analysis
tasks, i.e. image segmentation or shape modelling.

3.1 Non-rigid registration in mammography

A common registration problem is the matching of images of the same subject
acquired at different times. The need for non-rigid registration arises from the fact
that most tissues are far from rigid and can deform considerably. This tissue defor-
mation may be caused by patient motion, cardiac motion or respiratory motion. An
example application is given the use of non-rigid registration of contrast-enhanced
MRI of the breast. Here, the difference between the rate of uptake of contrast agent
in healthy and cancerous tissue can be used to identify cancerous lesions. The rate
of uptake of contrast agent is estimated using the difference between pre- and post-
contrast image, and any motion between the images complicates its estimation.
Due to the highly deformable nature of the breast tissue, non-rigid registration
techniques are required to correct for this motion. One of the first applications of
non-rigid registration based on FFDs was the alignment of pre- and post-constrast
MRI of the breast [54]. The performance of the non-rigid registration algorithm
has been evaluated in detail in a clinical study [24] as well as in a validation study
in which biomechanically plausible deformations have been simulated using FEM
techniques [56]. More recently it has been has observed that non-rigid registration
techniques based on FFDs can lead to biomechanically unrealistic deformations, e.g.
deformations which include local tissue expansion or compressions even though
normal tissue is nearly incompressible. Thus, the use of penalty functions which
prevent local volume change has been proposed (see Sect. 2.4) [51].
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3.2 Non-rigid registration in cardiovascular image analysis

Recent advances in non-invasive imaging modalities allow for high-resolution
imaging of the cardiovascular system. Among these imaging modalities, MRI
is playing an increasingly important role. The advantages of MRI include the
flexibility of choosing tomographic planes at any desired position and orientation
with high spatial and temporal resolution. Because of the high soft tissue contrast,
different anatomical structures can be clearly delineated, enabling their accurate
measurement and assessment. In addition to imaging of anatomical structures,
MRI may also be used to acquire functional information (such as the perfusion
or contractility of myocardial tissue) about the cardiac system. The combination
of both types of measurement provides valuable information for the study of the
cardiovascular system. Non-rigid registration is an important tool for the analysis
of cardiovascular MRI as it allows the modelling cardiac and respiratory motion as
well as the fusion of MRI with other imaging modalities such as ultrasound.

In cardiac MRI, non-rigid registration can be used to model the motion of
the myocardium. This enables the extraction of quantitative information on the
dynamics of the myocardium such as wall thickening or radial and circumferential
strain. In order to extract myocardial motion MR tagging is often used where a
pattern of stripes in the myocardial tissue is created by selective excitation to invert
or saturate a series of planes through the heart at specific points in time [65] or
by spatial modulation of magnetisation (SPAMM) [2]. The tracking of these tags
throughout the cardiac cycle is a challenging task since it is difficult to locate the
tags and fading of the tags towards the end of the cardiac cycle due to T1 relaxation.
In addition, to fully reconstruct the 3D motion of the myocardium, it is necessary to
acquire multiple-slice short-axis (SA) and long-axis (LA) images of the heart and
to track the tags in both SA and LA images simultaneously. The problem of motion
tracking in tagged MR images can be formulated as a registration problem [12]. The
advantage of such a registration-based approach is that tag localisation and motion
modelling can be achieved simultaneously as part of the non-rigid registration
process. To track the myocardium in a sequence of short-axis and long-axis image
volumes V0; : : : ;VN one can use a multi-level FFD in which the transformation
T.p; t/ is represented as the sum of FFDs [55]:

T.p; t/ D
tX

iD1
Tilocal .p/

After registering the volume V1 to V0 we obtain a single FFD representing the
motion of the myocardium at time t D 1. To register volume V2 to V0 a second
FFD is added to the sequence of FFDs to yield the transformation at time t D 2.
This process continues until all volumes in the sequence are registered, allowing
us to relate any point in the myocardium at time t D 0 to its corresponding point
throughout the sequence. An example of cardiac motion tracking using non-rigid
registration is shown in Fig. 2. In this figure a virtual tag grid is aligned with the
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Fig. 2 The short-axis images (top) and the long-axis images (bottom) taken at different times are
registered to their corresponding images taken at time t D 0 (left top and bottom) to recover the
deformation within the myocardium. The short-axis and long-axis images show a virtual tag grid
which has been aligned with the tag pattern at time t D 0. As time progresses, the virtual tag grid
is deformed by the free-form deformation and follows the underlying tag pattern in the images

tag pattern at time t D 0. As time progresses the virtual tag grid is deformed by
the free-form deformation according to the cardiac motion. If the cardiac motion
has been recovered the virtual tag grid will follow the underlying tag pattern in the
images.

A different application of non-rigid registration is the correction of respiratory
motion in contrast-enhanced dynamic MR. Here the motion induced by free
breathing during the acquisition degrades the images. It has been shown that
respiratory motion induces significant deformations of the heart [46]. Non-rigid
registration based on free-form deformations has been used successfully to correct
for this respiratory motion [47].

3.3 Non-rigid registration for neurological image analysis

The non-rigid registration of brain images has led to a variety of applications in the
context of neurological studies in which the transformations between image pairs
are the focus of attention. In longitudinal studies, changes in the brain over time
can be modeled using non-rigid transformations between serially acquired images.
These longitudinal changes can range from the dramatic and complex growth of
the early years to the subtle changes due to neurodegeneration later in life. In
cross-sectional studies, non-rigid registrations between images of different subjects
can be used to characterised inter-subject variability or the differences between an
individual and a reference image. Approaches that focus on the transformations in
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Fig. 3 An atlas illustrating
pattens of volume change
between one and two years of
age for a group of 25
subjects - hotter colours
indicate expansion and colder
colours indicate contraction.
The Jacobian determinant
maps derived from multiple
longitudinal FFD
registrations were aligned in
order to generate this atlas [1]

this way have been referred to as deformation- or tensor-based morphometry (DBM
or TBM). In a simple cross-sectional study, for example, where two clinical groups
are to be separated, it is possible to non-rigidly register all the images to a reference
brain image. This implies that differences between the subjects are now encoded
in the resulting transformations and the properties of these transformations can be
used to identify group differences. An example application of this approach was the
identification of volumetric changes in the brain due to pre-term birth carried out by
Boardman et al. [5]. This work focussed on the Jacobian determinant maps of the
subject-reference FFD transformations.

In a longitudinal study, a transformation between baseline and follow-up images
of the brain can be used to identify the patterns of change occuring between
scans. The analytic form of FFD transformations makes properties such as the
Jacobian tensor and its determinant, the curl, divergence etc. readily calculated.
The Jacobian determinant in particular can be used to identify regions of expansion
and contraction over time due tissue growth or loss. TBM studies based on
FFDs have been used to identify degenerative changes in the brain associated
with alcoholism [9, 52] and with dementia [7, 59]. FFDs have also been used to
characterise patterns of growth in the brain in children between the ages of one and
two years [1] where Jacobian maps derived from multiple intra-subject registrations
were spatially normalised and averaged to create an atlas of growth for the group
(see Fig. 3).

3.4 Atlas-based segmentation using non-rigid registration

A natural consequence of the development of non-invasive imaging techniques has
been the development of methods for delineating or segmenting anatomical struc-
tures within the images. Segmented images can then be used to provide clinically
useful volumetric or morphometric information for example by identifying growth
for particular anatomical structures or identifying blood flow or functional activ-
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Fig. 4 Left: An MRI image of the anatomy of a subject. Right: Overlay of the segmentation for a
group of sub-cortical structures obtained by using atlas-based segmentation and classifier fusion

ity within specific regions. However, accurate labelling of complex anatomical
structures - such as those in the sub-cortical region of the brain - is a difficult task
which is generally best achieved by trained and experienced human raters. The
correspondence obtained by non-rigid registration can be used to overcome this
problem and to create a segmentation by the propagation of a labelling; from an
image for which an accurate segmentation is available to an unseen or query image.
The image for which labels are available is often termed an ‘atlas’ and this approach
to segmentation is known as atlas-based segmentation. The main prerequisites for
accuracy in atlas-based segmentation are accurate registration of the atlas and query
images, accurate labelling in the original atlas and that the labels are anatomically
representative of the query. Many of the errors due to limitations in accuracy can,
however, be overcome by repeating the process: registering multiple atlases to the
query and transforming all of their labels. The propagated labels are then treated as
classifiers and fused on a per-voxel basis in order to obtain the final segmentation
estimate.

This classifier fusion approach can use any of a number of methods at the fusion
stage but a simple majority vote rule for the final label assignment has been shown
to perform very well against other atlas-based methods by Rohlfing et al. [49]
where FFD registrations were used to align the atlases with the query image. FFD
registrations were also used by Heckemann et al. [32] to carry out classifier fusion
based on a pool of manually labelled human brain images. These images were used
as query images in a comprensive set leave-one-out experiments. The manual labels
for each subject were used to assess the quality of segmentations resulting from
classifier fusion and the results obtained showed the approach to be robust and
accurate, reaching levels of accuracy comparable with expert raters.
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3.5 Statistical shape modeling using non-rigid registration

Statistical models of shape variability have been successfully applied to perform
various image analysis tasks in 2D and 3D images. In particular, their application
for image segmentation in the context of active shape models (ASM) has been
very successful [18]. In building such statistical models, a set of segmentations
of the shape of interest is required as well as a set of landmarks that can be
unambiguously defined in each sample shape. An extension of ASMs are the so-
called Active Appearance Models (AAM) [17] which have been used for atlas
matching. AAMs incorporate not only information about the spatial distribution
of landmarks and the intensity information at the landmarks, but also about their
underlying texture distribution. However, a fundamental problem when building
these models is the fact that they require the determination of point correspondences
between the different shapes. The manual identification of such correspondences is
a time consuming and tedious task. This is particularly true in 3D where the number
of landmarks required to describe the shape accurately increases dramatically
compared with 2D applications.

In recent years several approaches have been proposed for the automatic identi-
fication point correspondences between shapes. For example, Leventon et al. [39]
proposed an approach in which the statistical analysis is carried out directly on the
signed distance maps of a set of aligned shapes. This approach effectively assumes
that the corresponding points of two shapes are the closest points. Another solution
to the point correspondence problem is to construct correspondences implicitly via
the shape parameterisation, e.g. by using spherical harmonics [34]. Davies et al.
[21, 22] proposed a method for establishing correspondences between shapes by
optimising the quality of the statistical model based on the resulting minimum
description length.

An alternative approach is to use non-rigid registration to establish correspon-
dences across shapes: The approach by Frangi et al. [27, 28] assumes that each
shape is represented as a labeled image. During the first step of the shape model
construction an atlas of all shapes is constructed by rigid or affine registration of all
labeled images into a common coordinate system. After this alignment, the distance
transformations of the labeled images are averaged to produce a shape atlas. This
atlas is then landmarked by extracting pseudo-landmarks along the surfaces of the
shape, e.g. by applying a marching cubes algorithm followed by surface decimation.
Non-rigid registrations based on FFDs [54] between the shapes and the atlas are then
used to propagate the landmarks to each shape in the dataset.

4 Discussion

In this chapter we have discussed non-rigid registration techniques based on
B-spline FFDs and mutual information. We have shown how B-spline FFDs can
be constrained to achieve biomechanically plausible deformations as well as how
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B-spline FFDs can be used for diffeomorphic registration. In our experience
B-spline FFDs are a powerful and flexible tool for estimating local deformations.
These local deformations can be either the result of motion, deformation, growth
or disease processes. It should be pointed out that non-rigid registration is very
much an area of on-going research and most algorithms are still in the stage of
development and evaluation. The lack of a generic gold standard for assessing
and evaluating the success of non-rigid registration algorithms is one of their most
significant drawbacks. In the absence of any such gold standard, it is necessary to
compare any non-rigid registration algorithm to other established techniques.
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Image registration using mutual information

F. Maes, D. Loeckx, D. Vandermeulen, and P. Suetens

Abstract Different imaging modalities, such as CT, MRI and PET, are based
on different physical principles and capture different and often complementary
information. Many applications in clinical practice benefit from an integrated visu-
alization and combined analysis of such multimodal images. In many applications
it is also necessary to compare images acquired at a different time points, such as
in the analysis of dynamic image sequences or of follow-up studies. Analysis of a
single scene from multiple images assumes that the geometrical correspondence
or registration between these images is known, such that anatomically identical
points can be precisely identified and compared in each of the images. But reliable
automated retrospective fusion or registration of multimodality images based on
intrinsic image features is complicated by their different photometric properties,
by the complexity of the scene and by the large variety of clinical applications.
Maximization of mutual information of corresponding voxel intensities allows for
fully automated registration of multimodality images without need for segmentation
or user intervention, which makes it well suited for routine clinical use in a variety
of applications.

1 Introduction

A fundamental problem in medical image analysis is the integration of information
from multiple images of the same subject, acquired using the same or different
imaging modalities and possibly at different time points. One essential aspect
thereof is image registration, i.e. establishing the geometric relationship between
corresponding points in multiple images of the same scene. While various more or
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less automated approaches for image registration have been proposed, one strategy
in particular, namely maximization of mutual information (MMI) of corresponding
voxel intensities, has been very successful in the field of medical image analysis.
Mutual information (MI) is a basic concept from information theory, that is applied
in the context of image registration to measure the amount of information that one
image contains about the other. The MMI registration criterion postulates that MI
is maximal when the images are correctly aligned. MMI has been demonstrated
to be a very general and powerful criterion, that can be applied automatically
and very reliably, without prior segmentation or pre-processing, on a large variety
of applications. This makes the method highly suited for routine use in clinical
practice. In this text, which is a largely based on [21], we focus on the application
of MMI for global affine registration of three-dimensional (3-D) medical image
volumes. MMI has also been applied for other registration problems, such as non-
rigid image matching, 2D/3D image registration and registration of models to
images, or registration in other contexts, such as microscopy, histology, remote
sensing or computer vision.

2 Voxel-based multimodality image registration

Images acquired by different scanners or at different time points are usually acquired
independently. Unless specific provisions were made prior to acquisition (e.g. the
use of a stereotactic reference frame), their relative position is generally unknown
and a retrospective registration procedure is required that recovers the registration
transformation from the image content itself. Even when the images are acquired in
the same session without the patient leaving the scanner and can be assumed to be
registered by acquisition, explicit image registration may be required to correct for
inter-scan patient or organ motion. Image registration may be performed manually
by letting a human expert interactively displace one image relative to another,
based on geometric clues provided by anatomical landmarks visible in each of
the images and assisted by visualization software that supplies visual feedback
of image alignment. While such subjective approach may be sufficient to support
clinical decisions in some applications, a more formal and objective registration
measure is required to provide a reliable registration solution in case registration
clues are uncertain or inconsistent. Moreover, for the registration tool to be useful
and successful in clinical practice, automating the registration process as much as
possible is important to minimize the effort and time required by the user.

In many applications, local non-rigid tissue deformations are negligible or
irrelevant and the geometric relationship between the images to be registered
can be modeled by a rigid or affine linear transformation, composed of a 3-D
translation and rotation and possibly also 3-D scaling and skew. The registration
problem then consists of determining the 6 or 12 parameters of the rigid or affine
geometrical transformation that correctly aligns both images. In other applications
it may be needed to correct for local non-rigid image distortions, for instance to



Image registration using mutual information 297

compensate for breathing induced deformations in the thorax, or to quantify local
morphological differences from similar images of different subjects, for instance for
building geometrical models of the brain. In these cases a more general non-rigid
deformation model, with typically much more degrees of freedom, needs to be used.

Registration procedures can be classified according to the image features and the
correspondence criterion used to compute the registration [22]. Intrinsic registration
methods can be classified as either point based, surface based or voxel based.
Point based and surface based methods compute the registration solution by
minimizing the distances between corresponding anatomical landmarks or surfaces
respectively extracted from each of the images, while voxel based registration
methods optimize a functional measuring the similarity of corresponding voxel
pairs for some feature. The main advantage of voxel based methods is that feature
calculation is straightforward or even absent when only grey-values are used, such
that accuracy is not dependent on accurate segmentation as in point or surface based
methods, which is difficult to automate.

While for intra-modality registration it can often be assumed that the image
intensities in both images are identical or linearly related, this assumption is
not valid for inter-modality registration and measures such as sum of squared
differences or cross-correlation are therefore in general not applicable. Woods
et al. [47] and Hill et al. [8, 9] observed that misregistration induces dispersion
in the joint histogram of corresponding voxel intensities and proposed histogram
’peakedness’ as a measure of registration. Collignon et al. [3] recognized the
information theoretic nature of the image registration problem and proposed the
much more general notion of joint image intensity entropy as a new matching
criterion. However, this measure is sensitive to partial overlap of the images, as
it does not account for the fact that the entropy or information complexity of each
of the images separately within their region of overlap may vary during registration.
Finally, two different groups, Collignon and Maes et al. [2, 19] at KU Leuven,
Belgium, and Viola and Wells et al. [42, 43] at MIT, USA, almost simultaneously
but independently of each other, introduced maximization of mutual information
(MMI) of image intensities as a new registration criterion. Mutual information
(MI), or relative entropy, is a basic concept from information theory, which can
be considered a non-linear generalization of cross-correlation. MI measures the
statistical dependence between two random variables or the amount of information
that one variable contains about the other [4]. The MMI registration criterion
postulates that the MI of the image intensity values of corresponding voxel pairs
is maximal if the images are geometrically aligned. Related early work in this
area includes the work by Studholme et al. [35], who demonstrated the superior
performance of MMI over other voxel-based registration measures, by Pluim [25]
and by Meyer et al. [13], who was the first to apply MMI for non-rigid matching.
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3 The mutual information registration criterion

Multimodal medical images represent measurements of some physical property of
the anatomical objects in the imaged scene. Hence, although the image intensity
values at corresponding points in different images of the same scene may be
very different between different modalities, in general they are not independent
observations but statistically related measurements of the same underlying object
or tissue. This is intuitively clear for modalities that capture information which
is linked directly to anatomy, such as X-ray attenuation in CT or water content
in MR, but also holds for modalities that represent different kinds of information,
such as anatomy in MR and function in PET. Let A and B be two images that are
geometrically related by the registration transformation T˛ with parameters ˛ such
that voxels p in A with intensity a correspond to voxels q D T˛.p/ in B with
intensity b. Taking random samples p in A , a and b can be considered as discrete
random variables A and B with joint and marginal distributions pAB.a; b/, pA.a/
and pB.b/ respectively. The mutual information I.A;B/ of A and B measures the
degree of dependence betweenA andB as the distance between the joint distribution
pAB.a; b/ and the distribution associated to the case of complete independence
pA.a/:pB.b/, by means of the Kullback-Leibler measure [4], i.e.

I.A;B/ D
X

a;b

pAB.a; b/ log
pAB.a; b/

pA.a/:pB.b/
(1)

The relationship pAB.a; b/ between a and b and hence their mutual information
I.A;B/ depends on T˛, i.e. on the registration of the images. The mutual informa-
tion registration criterion postulates that the images are geometrically aligned by the
transformation T˛� for which I.A;B/ is maximal:

˛� D arg max
˛
I.A;B/

Mutual information is related to the information theoretic notion of entropy by
the equations I.A;B/ D H.A/ C H.B/ � H.A;B/ D H.A/ � H.AjB/ D
H.B/�H.BjA/ with H.A/ andH.B/ being the entropy of A and B respectively,
H.A;B/ their joint entropy and H.AjB/ and H.BjA/ the conditional entropy of
A given B and of B given A respectively. The entropy H.A/ is a measure of the
amount of uncertainty about the random variableA, whileH.AjB/ is the amount of
uncertainty left in A when knowing B . Hence, I.A;B/ measures the amount
of information that one image contains about the other, which should be maximal
at registration. If both marginal distributions pA.a/ and pB.b/ can be considered
to be independent of the registration parameters ˛, the MI criterion reduces to
minimizing the joint entropy HAB.A;B/. If either pA.a/ or pB.b/ is independent
of ˛, which is the case if one of the images is always completely contained in the
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other, the MI criterion reduces to minimizing the conditional entropy H.AjB/ or
H.BjA/. However, if both images only partially overlap, which is very likely during
optimization, the volume of overlap will change when ˛ is varied and both marginal
distributions pA.a/ and pB.b/ and therefore also their entropies H.A/ and H.B/
will in general depend on ˛. Hence, maximizing mutual information will tend to
find as much as possible of the complexity that is in the separate data sets so that at
the same time they explain each other well.

Other information-theoretic registration measures can be derived from the MI
criterion presented above, such as the entropy correlation coefficientECC.A;B/ D
2:

I.A;B/

H.A/CH.B/ [19] or the normalized mutual information NMI D H.A/CH.B/
H.A;B/

[38]
with 0 � ECC � 1, 1 � NMI � 2 and ECC D 2:.1 � 1=NMI/. Maximization
of NMI or ECC may be superior to MMI itself in case the region of overlap of
both images is relatively small at the correct registration solution, as MMI may
be biased towards registration solutions with larger total amount of information
H.A/ C H.B/ within the region of overlap [38]. MI is only one example of the
more general f � information measures of dependence, several of which were
investigated for image registration in [31].

4 Implementation

The MMI registration criterion does not require any preprocessing or segmentation
of the images. With each of the images is associated a 3-D coordinate frame in
millimeter units, that takes the pixel size, inter-slice distance and the orientation
of the image axes relative to the patient into account. One of the images to be
registered is selected to be the floating image F from which samples s 2 S are
taken and transformed by the geometric transformation T˛ with parameters ˛ into
the reference image R. S may include all voxels in F or a subset thereof to increase
speed performance.

The MMI method requires the estimation of the joint probability density p.f; r/
of corresponding voxel intensities f and r in the floating and reference image
respectively. This can be obtained from the joint intensity histogram of the region of
overlap of the images. The joint image intensity histogram h˛.f; r/ of the volume
of overlap s 2 S˛ � S of F and R can be constructed by simple binning of the
image intensity pairs .f .s/; r.T˛.s// for all s 2 S˛. In order to do this efficiently,
the floating and the reference image intensities are first linearly rescaled to the range
Œ0; nF �1� and Œ0; nR �1� respectively, with nF and nR the number of bins assigned
to the floating and reference image respectively and nF �nR being the total number
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of bins in the joint histogram. Estimations for the marginal and joint image intensity
distributions pF ;˛.f /, pR;˛.r/ and pFR;˛.f; r/ are obtained by normalization of
h˛.f; r/

pFR;˛.f; r/ D h˛.f; r/P
f;r h˛.f; r/

(2)

pF ;˛.f / D
X

r

pFR;˛.f; r/ (3)

pR;˛.r/ D
X

f

pFR;˛.f; r/ (4)

and the MI registration criterion is evaluated using

I.˛/ D
X

f;r

pFR;˛.f; r/ log2
pFR;˛.f; r/

pF ;˛.f / pR;˛.r/
: (5)

Typically, nF and nR need to be chosen much smaller than the number of differ-
ent values in the original images in order to assure a sufficient number of counts in
each bin. If not, the joint histogram hFR;˛ would be rather sparse with many zero
entries and entries that contain only one or a few counts, such that a small change
in the registration parameters ˛ would lead to many discontinuous changes in the
joint histogram, with non-zero entries becoming zero and vice versa, that propagate
into pFR;˛. Such abrupt changes in pFR;˛ induce discontinuities and many local
maxima in I.˛/, which deteriorates optimization robustness of the MI measure.
Appropriate values for nF and nR can only be determined by experimentation.
Moreover, T˛.s/ will in general not coincide with a grid point of R, such that
interpolation of the reference image is needed to obtain the image intensity value
r.T˛.s//. Zeroth order or nearest neighbor interpolation of R is most efficient,
but is insensitive to translations up to 1 voxel and therefore insufficient to guarantee
subvoxel accuracy. But even when higher order interpolation methods are used, such
as linear, cubic or B-spline interpolation, simple binning of the interpolated intensity
pairs .f .s/; r.T˛s// leads to discontinuous changes in the joint intensity probability
pFR;˛.f; r/ and in the marginal probabilitypR;˛.r/ for small variations of ˛ when
the interpolated values r.T˛s/ fall in a different bin. Note that post-processing the
histogram obtained by binning by convolution with a Gaussian or other smoothing
kernel is not sufficient to eliminate these discontinuities.

To avoid the problem of discontinuities induced by intensity binning, two
different solutions have been proposed. The first one involves the use of the Parzen
windowing technique (PW) to estimate the joint probability density p.f; r/ as a
sum of continuous and differentiable kernel functions k.f � fi ; r � ri / centered
around each interpolated voxel sample pair .fi ; ri / and satisfying the partitioning of
unity constraint

P
f;r k.f � fi ; r � ri / D 1;8fi ; ri . The function k distributes the

contribution of each sample i over multiple adjacent histogram bins .f; r/, hence
smoothing the histogram and making it a continuous function of the registration
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parameters ˛. Different kernel functions can be used for this purpose, such as
linear [18], Gaussian [42] or B-spline [39] functions. An alternative approach
to update the joint histogram in a continuous way for each voxel pair .s; T˛s/
was proposed in [1, 2, 19]. Instead of interpolating new intensity values in R,
This method, termed partial volume distribution interpolation (PV), distributes the
contribution to the joint histogram of the sample s with intensity f .s/ in F over
the intensity values r of the nearest neighbors of T˛s on the 3-D grid of R, using
the same weights as for trilinear [19] or higher order [1] interpolation. Each entry
in the joint histogram is then the sum of smoothly varying fractions of 1, such
that the histogram changes smoothly as ˛ is varied. PV interpolation results in a
continuous and a.e. differentiable registration criterion with typically a large basin
of attraction around the correct optimum [19]. However, in case the images to be
registered have identical voxel grids or if their voxel sizes are multiples of each other
in one or more dimensions, PV interpolation may introduce local optima in the MI
measure at grid aligning registration positions [18, 28, 40]. These may deteriorate
registration accuracy in case the true registration solution differs little from a grid-
aligning position, such as when using image registration to recover subvoxel small
displacements for motion correction in dynamic image sequences.

The optimal registration parameters ˛� are found by maximization of I.˛/ for
which different local optimization schemes can be applied, including heuristic
search [36], Powell’s method [19], simplex search [20, 24], gradient descent [39]
or other gradient based optimization methods [20], as well as global optimization
methods [11]. The gradient of MI w.r.t. the registration parameters can be evaluated
numerically using a finite difference scheme as in [33], while analytical expressions
for the gradient of MI w.r.t. the registration parameters have been derived for
PW interpolation in [23, 39] and for PV interpolation in [20]. For high resolution
images subsampling of the floating image can be applied without deteriorating
optimization robustness of the MMI registration criterion [20,29]. Important speed-
ups can thus be realized by using a multiresolution optimization strategy, starting
with a coarsely sampled image for efficiency and increasing the resolution as the
optimization proceeds for accuracy [36, 39]. Multiple multiresolution strategies,
involving different subsampling factors and number of resolution levels and using
various optimization methods, were compared in [20] for affine and in [15] for non-
rigid registration. A stochastic iterative gradient-based optimization method was
used in [14], estimating the gradient of MI at each iteration from only a small subset
of voxel pairs randomly sampled from the images.

5 Evaluation and applications

The robustness of the MMI registration algorithm was established in various studies
with respect to implementation issues such as sampling [19, 29, 36], interpola-
tion [19, 26, 28, 39], initial positioning of the images [35, 36] and optimization
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strategy [20, 39], as well as with respect to partial overlap of the images [36]
and image degradations such as noise, intensity inhomogeneity or geometric
distortion [19].

The accuracy of the MMI registration algorithm has been validated for registra-
tion of CT, MR and PET brain images within the framework of the Retrospective
Registration Evaluation Project (RREP) conducted by Fitzpatrick et al. at Vanderbilt
University [12] and reported in West et al. [44, 45, 46], using as gold standard a
prospective, marker-based registration method. To ensure blindness of the study, the
frame and the fiducial markers were removed from the images by manual editing
prior to retrospective image registration. The transformation differences between
the reference and the submitted transformations were evaluated at different sites
within the brain and the median and maximal error over all sites and all patients
were recorded for each method that participated in the study. The RREP evaluation
showed that the MMI approach achieves subvoxel registration accuracy for both
CT/MR as well as PET/MR registration and performs better than the other methods
in the study, although the number of registration experiments performed was too
small to draw statistically significant conclusions. This was confirmed in other
studies, such as [34].

Because of its reliability and generality and because of its full automation, image
registration by MMI has large potential for routine use in clinical practice in a
variety of applications, involving various organs and imaging modalities (see Fig. 1).
For an extensive survey of MMI registration applications we refer to [30].

6 Discussion

Mutual information does not rely on the intensity values directly to measure
correspondence between different images, but on their relative occurrence in each
of the images separately and co-occurrence in both images combined. As such it
is insensitive to intensity permutations or one-to-one intensity transformations and
is capable of handling positive and negative intensity correlations simultaneously.
Unlike other voxel-based registration criteria, the MI criterion does not make
limiting assumptions about the nature of the relationship between the image
intensities of corresponding voxels in the different modalities, which is highly data
dependent, and does not impose constraints on the image content of the modalities
involved. This explains the success of MMI for multimodal image registration in a
wide range of applications involving various modality combinations, while also for
unimodal registration applications MMI is often preferred [10].

Nevertheless, there are cases in which MMI fails as a registration criterion. Such
failures occur due to insufficient mutual information in the images, ambiguity about
the intensity relationship between both images if this is not spatially invariant, or
inability to reliably estimate MI if the number of image samples is small. The
fundamental assumption of MMI based registration that image intensities in both
images are related to corresponding objects that should be aligned by registration,
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Fig. 1 Global affine registration using MMI of CT (top) and MR images (bottom) of the prostate
used for radiotherapy planning. The central part of either image has been shown in overlay over
the other for visual inspection. The CT image is needed for estimating the dose distribution, while
the target volume and organs at risk can be more accurately delineated in the corresponding MR
image. Registration of both images allows to transfer the MR contours into the CT volume, such
that the complementary information of both scans can be combined during planning. Despite the
presence of large local non-rigid deformations of soft tissues such as skin, fat and muscles, the
MMI criterion succeeds at aligning corresponding rigid bony structures in the two images. The
registration can be locally refined if needed by defining a suitable region of interest around the
prostate
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may be invalid if the information in both images is very different, such as anatomical
information from CT with functional information from PET in non-brain regions
such as the thorax [41]. Because MI is computed from the joint intensity probability
of both images that is estimated by pooling contributions from everywhere in the
image domain, the MMI criterion implicitly assumes that the statistical relationship
between corresponding voxel intensities is identical over the whole area of overlap.
However, the photometric relationship between two multimodal images of the same
scene may not be spatially invariant, for instance if one of the images suffers from
severe intensity inhomogeneity. Also, the MMI registration criterion assumes that
the joint probability distribution of corresponding voxel intensities can be estimated
reliably around the registration solution. In practice, this requires the volume of
overlap at registration to contain a sufficiently large number of voxels. For low
resolution images or if the region of overlap is small, the statistical relationship
between both images needs to be derived from a small number of samples, which is
not robust. In these cases, the computed MI may show multiple local optima around
the correct registration solution or the registered position may not coincide with a
local maximum of MI [29, 38].

Several adaptations of the MI measure have been proposed in order to increase
registration robustness in cases where the joint intensity histogram by itself is
insufficient, such as including gradient information in the registration measure [27],
the use of higher-order mutual information to explicitly take the dependence
of neighboring voxel intensities into account [32], or incorporating additional
information channels with region labeling information in the mutual information
criterion [6, 37].

While 3D affine image registration using MMI is well established and already
used in routine clinical practice, extension of the MMI criterion to non-rigid image
registration is still subject of research. Non-rigid registration involves finding a 3-D
deformation field that maps each point in one image onto the corresponding point
in the other image, displacing each voxel individually to correct for local distortions
between both images up to voxel scale. Regularization of the deformation field is
required to constrain the registration solution space to include only deformation
fields that are physically acceptable and to smoothly extrapolate the registration
solution from sites with salient registration features (e.g. object boundaries) towards
regions where registration clues are absent or ambiguous (e.g. regions with homo-
geneous intensity). Various approaches for multimodal non-rigid image registration
using MMI have been proposed that differ in their regularization of the deformation
field, e.g. using thin plate splines [24] or B-splines [14, 17, 33], elastic [7] or
viscous fluid [5] deformation models. Another distinction can be made regarding the
way the variation of MI with changes in the deformation parameters is computed,
namely globally over the entire image domain [14, 33] or locally within subregions
only [16, 17].
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7 Conclusion

Image registration by maximization of mutual information considers all voxels
in the images to be registered to estimate the statistical dependence between
corresponding voxel intensities, which is assumed to be maximal when the images
are correctly aligned. The MMI criterion is histogram based rather than intensity
based and does not impose limiting assumptions on the specific nature of the
relationship between corresponding voxel intensities. Since its introduction in the
field in 1995 by Collignon et al. [2] and by Viola and Wells [42], MMI has
become the standard in the field and the method of choice for multimodal image
registration in a wide range of applications. The success of MMI for multimodal
image registration can be explained by the fact that it got rid of the need for image
segmentation or preprocessing as required with previous registration algorithms
and that it allows for completely automated registration without need for user
interaction, making the method very well suited for application in clinical practice.
Several approaches have been presented for extension of the MMI criterion to non-
rigid image matching in the context of image rectification, shape normalization,
motion estimation or tissue deformation correction, which is still an active area of
research.
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Physical Model Based Recovery of Displacement
and Deformations from 3D Medical Images

P. Yang, C. Delorenzo, X. Papademetris, and J.S. Duncan

Abstract Estimating tissue displacement and deformation from time-varying
medical images is a common problem in biomedical image analysis. For example,
in order to better manage patients with ischemic heart disease, it would be useful
to know their current extent of injury. This can be assessed by accurately tracking
the motion of the left ventricle of the beating heart. Another example of this type of
application is estimating the displacement of brain tissue during neurosurgery. The
latter application is necessary because the presurgical planning for these delicate
surgeries is based on images that may not accurately reflect the intraopertave brain
(due to the action of gravity and other forces). In both examples, the tissue deforma-
tion cannot be measured directly. Instead, a sparse set of (potentially noisy) displace-
ment estimates are extracted from acquired images. In this chapter, we explain how
to use the physical properties of underlying organs or structures to guide such esti-
mations of deformation, using neurosurgery and cardiac motion as example cases.

1 Introduction

Estimating displacements and deformations of real world objects from time-varying
medical images is a common problem in biomedical image analysis. In such
problems, the physical properties of the underlying organs or structures can be
used to guide this information recovery process. For example, knowledge of the
fiber architecture of the heart can be used as a constraint in the estimation of
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cardiac deformation [41]. This type of real displacement estimation stands in
contrast to the more common domain of non-rigid image registration methods
where the goal is to estimate displacement fields that map, for example, brains
from two difference subjects to the same coordinate system. Confusingly, in the
case of image registration, physical models are also often used to regularize the
displacement estimation process (e.g. see [12, 21]) as they often possess desirable
mathematical properties. However, in the cases of the problems described in this
chapter, we employ physical models precisely to take take advantage of research
in the biomechanics community (e.g. [25]) about the material properties of the
underlying tisses as an aid the displacement estimation process.

Two of the most common areas of biomedical image analysis in which physical
models have been employed are (i) the estimation of brain shift (and generally defor-
mation) during neurosurgery and (ii) the estimation of left ventricular deformation
over time. While these are, on the surface, very different problems we note that there
exist a number of common threads between them. Fundamentally, in both cases, the
goal is to estimate a dense and smooth displacement field over the whole space cov-
ered by the structure of interest (e.g. the brain or the left ventricle of the heart). How-
ever, usually what is available directly from the images are sparse, noise-corrupted
and often partial (i.e. only some of the components are measurable) measurements
of the actual displacement, often clustered on the outer surface of the organ.

The goal of much of this work is to use these measured displacements as an
input and to leverage physical and geometrical models to essentially approxi-
mate/interpolate between these measurements to generate a smooth, dense and com-
plete displacement field. To accomplish this we use patient specific geometric mod-
els derived from the image data to build either a finite element or a boundary element
model of the underlying organ together with generic biomechanical models with
parameters set based on the biomechanics literature. We emphasize that these mod-
els do not aim to predict the deformation in the style of forward models, but rather
should be thought off as smart and optimal interpolation/approximation techniques.

We use two examples studies to illustrate the use of this underlying mathematical
framework. In Sect. 2 we describe methodology to compensate for brain shift in
image guided neurosurgery using finite element methodology and in Sect. 3 we
describe algorithms to estimate the deformation of the left ventricle of the heart
using a boundary element based approach.

2 A Finite Element Based Approach: Brain Shift
Compensation for Image Guided Neurosurgery

2.1 Background

Prior to brain surgery, neurosurgeons may acquire images of different modalities
to delineate pathologic regions. One of the major challenges during neurosurgery
is the localization of these pathologic targets within the brain anatomy. Surgical
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navigation systems can aid intraoperative navigation by rigidly registering the
patient to preoperative images and then displaying the current position of surgical
instruments relative to these images. In these cases, the patient data is usually
registered only once [10, 24, 43], assuming that the brain and other intracranial
structures are rigid and will stay fixed relative to the skull. However, during surgery,
the brain can deform up to five centimeters or more due to gravity, loss of blood
and cerebrospinal fluid, swelling, surgical manipulation and the action of certain
medications [4, 14, 20, 22, 23, 27, 45]. This nonrigid brain shift is the primary
cause of intraoperative localization inaccuracies [16].

Due to the large number of contributing factors, it is nearly impossible to predict
the exact pattern of brain deformation preoperatively [19, 44]. Therefore, intra-
operative information is often necessary to compute the magnitude of brain shift.
This information can be either surface or volume based. Though volumetric images,
acquired by intraoperative magnetic resonance imaging (iMRI), computed tomog-
raphy (iCT) or ultrasound (iUS), provide visualization of deformation throughout
the entire brain, these methods are either invasive or costly [27, 39]. Additionally,
the necessary image acquisition time can substantially lengthen surgery [44]. Using
surface based information, acquired by laser range scanners (LRS) [3, 9, 18, 39,
46] or stereo cameras [47, 51], avoids these problems. However, while sometimes
capable of achieving high accuracy, both LRS and stereo can be affected by
resolution issues, which can compromise surface deformation estimations.

Since the LRS and stereo methods only acquire intraoperative information
at the cortical surface, these methods are typically used in conjunction with a
biomechanical model to infer volumetric deformation. Biomechanical models are
also often used with volumetric imaging data because preoperative to intraoperative
volumetric image matching can be difficult.

2.2 The Finite Element Method (FEM)

The finite element method is a numerical analysis technique for obtaining approx-
imate solutions to a wide variety of engineering problems [29]. The key to this
method is that the domain of problem is divided into small areas or volumes called
elements. The problem is then discretized on an element by element basis and the
resulting equations assembled to form the global solution.

An Example Problem: In this section, we describe an example problem and
outline a possible solution using FEM in an energy minimization framework.
The goal is to estimate a displacement field, u(x, y, z), that is the optimal trade
off between an internal energy function, W(u),1 and an approximating noisy
displacement field, um(x, y, z).

1Note that although W is defined as function of the strain, e, as e is a function of the displacement,
u, W can also be written as a function of the displacement field, u.
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We define the optimal solution displacement field, u, as the one that minimizes
functional P(u) in a weighted least squares sense:

P.u/ D
Z

vol
.W.u/C V .u; um// d .vol/

W.u/ D e.u/tCe.u/
V .u; um/ D ˛ .um � u/ 2

W(u) can be defined using a strain energy function as W D etCe, where e is local
tissue strain and C, the material stiffness matrix, is a function of the displacement
field (u), spatial position (m), and the tissue’s material properties-Young’s modulus
(E) and Poisson’s Ratio (�). V (u, um) is the external energy term, based on um, an
original displacement estimate, and ˛, the confidence in the match. We will focus
here primarily on the first term, W(u).

Outline of the Solution Procedure:

Step 1: Divide Volume into elements (tetrahedra or hexahedra) to provide the basis
functions for the discretization.

Step 2: Discretize the problem by approximating the displacement field in each
element as a linear combination of displacements at the nodes of each element.
For a hexahedral element, this discretization can be expressed as: u Ð

P8
1D1 Niui ;

where Ni is the interpolation shape function for node i and ui is the displacement at
node i of the element.

Step 3: Write the internal energy equation as the sum of the internal energy for each
element, vel:

W.u/ D
X

all elements

	Z

�el

etCed .�el /



(1)

We can approximate the derivatives of u in an element with respect to components
of the global coordinate system, x, as follows (note that the ui are constant in this
expression):

@u

@xk
D

8X

iD1

@ .Niui /

@xk
D

8X

iD1

@Ni

@xk
ui

The derivatives of the displacement field, u, (i.e. @u
@xk

) are linear functions of
the nodal displacements, ui. Since the infinitesimal strain tensor consists of only
sums and differences of partial derivatives, this tensor can also be expressed as a
linear function of the nodal displacements by e D Bu. (See Bathe [7] for nonlinear
extensions of the finite strain deformation case.) Substituting this into equation (1)
yields:
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W.u/ D
X

all elements

U et

	Z

�el

BtCBd .�el /



U e D

X

all elements

U et ŒKe� U e

where Ke is the element stiffness matrix, and Ue is a vector obtained by concatenat-
ing all the displacements of nodes in the element, i.e., U e D [u1,x, u1,y, u1,z, . . . , u8,x,
u8,y, u8,z] where ui D (ui,x, ui,y, ui,z) is the displacement of node i.

Step 4: Rewrite the internal energy function in matrix form. First, define the global
displacement vector, U, as U D [u1,x, u1,y, u1,z, . . . , un,x, un,y, un,z]t, where n is the
total number of nodes in the solid. Then, define the global stiffness matrix, K, as the
assembly of all the local element stiffness matrices, Ke:

K D
X

all elements

I .Ke/ (2)

where I is the re-indexing function, which takes element Ke
ij and adds it to the

element Kkl, where k and l are the global node numbers of local nodes i and j.2

The internal energy can now be written as W(U ) D U tKU.

Applying External Data Constraints: The rest of the process involves the formula-
tion of the external energy term, which is problem specific. Let’s assume for now
that this term can be posed in quadratic form as V(U ) D (Um � U)t A(Um � U ).
Once this is in place, the sum of W(U) C V(U) can be minimized, by differentiation
with respect to U, and set to zero. This results in the final equation:

KU D A.AUm � U / (3)

Equation (3) can be solved for U using sparse matrix methods.3 Since U represents
the values of u at each node, we can compute the resulting values of the displacement
field u anywhere in the volume by means of the finite element approximation .u �P8

iD1 Niui /.

2Within an element, the nodes are always numbered from 1 to 8. However this is a local index
(short-hand) to the global node numbers. When the global matrix is assembled, the local indices
(1 to 8) need to be converted back to the global indices (e.g. 1 to n). Ke has dimensions 24 � 24
and K has dimensions 3n � 3n. Ke

14, which is the stiffness between the x-directions of local nodes
1 and 2 would be part of Kkl where k D 3(a � 1) C 1 and a is the global index of local node 1 and
l D 3(b � 1) C 1, where b is the global index of local node 2. Since nodes appear in more than one
element the final value of Kkl is likely to be the sum of a number of local Ke

ij ’s.
3In the case of finite deformations, we end up with an expression of the form K(U) D A(Um�U)
which is solved iteratively.
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Fig. 1 Left: The brain and skull are extracted from the preoperative MRI, serving as inputs, along
with the deformed cortical surface, to the FEM volume calculation. The FEM result is the deformed
position of every brain mesh node. This mesh is then resampled into the original image space to
yield a simulated “intraoperative” MRI. The red arrow indicates the region of greatest deformation.
Right: Sample brain mesh with surface node labels. (See Sect. 2.3)

2.3 System Description

Our approach to brain shift compensation, outlined on the left side of Fig. 1,
employs a 3D biomechanical brain model guided by sparse intraoperative data. The
intraoperative data is acquired by stereo camera images and consists of cortical
surface intensities and features (sulci). We use a game theoretic framework to
overcome the resolution issues associated with stereo imaging and predict the
cortical deformation. The application of this method requires discretizing the
preoperative brain into small elements (right side of Fig. 1) and applying the finite
element method (Sect. 2.2) to determine each element’s displacement.

Image-based Displacement Estimates: In order to obtain accurate quantitative
information from stereo cameras, as with any imaging system, calibration is usually
necessary. However, in many real world situations, accurate calibrations are not
possible [34]. This is especially true in the operating room, where extreme time
and space constraints limit the calibration procedure possibilities. (See [52] for
calibration methods and the use of calibration parameters to project 3D points onto
images.) The resulting inaccurate camera calibrations decrease image resolution and
compound the difficulty of image-derived deformation estimation.

Therefore, in order to track the deforming cortical surface, a framework with
the ability to solve for competing variables (surface displacement field/accurate
camera calibration parameters) is needed. Game theory, the study of multiperson
decision making in a competitive environment [6, 36], can provide this framework.
In a game theoretic formulation, the players are computational modules. In the
context of intraoperative neurosurgical guidance, the players would be 1) Udns,
the dense displacement field applied to the preoperative cortical surface and 2)
A D ŒA0; A1�, the camera calibration parameters for the left (0) and right (1)
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stereo cameras. This analysis therefore updates surface displacement and calibration
parameter estimates at every iteration.

The model for determining these variables, expressed in a game theoretic
formulation is:

C1
�
Udns;A

� D TU
�
Udns

�
„ ƒ‚ …

smoothness constraint

C ˛ � TF
�
Udns;A

�
„ ƒ‚ …

feature matching

C TI
�
Udns;A

�
„ ƒ‚ …

intensity correlation

(4)

C2
�
Udns;A

� D TA .A/„ƒ‚…
fiducial matching

C ˇ � TC
�
Udns;A

�
„ ƒ‚ …

reconstructed sulci matching

(5)

where C1, C2 are the cost functions for the dense displacement field and camera
calibration parameters, respectively. These cost functions can be iteratively mini-
mized until they reach equilibrium, representing the algorithm solution [11]. The
constants in these functions, ˛ and ˇ, are chosen using game theoretic constructs
for noncooperative games, in which collusion between players is prevented and the
players can pursue their own interests, which may conflict [6, 11]. The other terms
are presented below.

Displacement Field Determination: The intensity correlation term matches the
stereo image intensities that are backprojected onto the exposed brain surface.
A backprojected image (Fig. 2D) is defined as BS

i D Ii .P.Ai ; x//8x 2 S , where S
is the deformed surface, I is an intraoperative stereo image, P is a standard camera
projection function from the surface to the images and i represents the camera
number (0 or 1). This term can be written as TI .Udns;A/ D �NCC

�
BS
0 ; B

S
1

�
where

NCC is the normalized cross correlation and � is a normalizing constant, ensuring
that all terms have similar orders of magnitude.

A feature matching term measures the distance between 3D sulci on the cortical
surface, C; which are projected into the stereo images, and the intraoperative sulci
outlined in those images, K D ŒK0;K1�. The imaged sulci are manually extracted
by an expert user and stored as 2D curves. This term can be expressed by:

TF
�
Udns;A

� D �
�Z

d
h
K0;P

�
A0;

�
C C UC

dns

��i
dS

C
Z
d
h
K1;P

�
A1;

�
C C UC

dns

��i
dS

�
;

where UC
dns is the dense displacement field restricted to the sulci and d is a mean

Euclidean distance metric.
A prior term, TU .Udns/ D �e�R kU "

dnskdS, where � is a normalizing constant and

U "
dns is the second derivative of the dense displacement field, ensures deformation

smoothness.
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Camera Calibration Optimization: The reconstructed sulci matching term in the
camera calibration optimization also takes advantage of the cortical surface features.
Using standard stereo camera geometry, a reconstruction function, ˚ , based on
the triangulation of imaged points, can be written [52]. Sulci outlined from
stereo images can therefore be reconstructed in 3D space and compared to their
positions on the deformed cortical surface using the function TC .Udns;A/ DZ
dŒˆ.K0;K1;A/; .C C UC

dns/�dS.

The initial camera calibration is performed by locating fiducial points on the
cortical surface and stereo images and finding the best fit transformation between
the two fiducial point sets [52]. The fiducial matching term, acting as a prior,
ensures that as the camera parameters are updated, the projection of the n fiducial
points, L0 : : : n, onto the stereo camera images will be close to imaged fidu-
cial points from cameras 0 and 1, m0i : : : n and m1i : : : n, respectively. This yields:
TA.A/DPn

iD1 k ŒP .A0; Li/ �m0i � k C k ŒP .A1; Li/ �m1i � k.

Biomechanical Model: Because brain shift is small relative to brain size, linear
elastic models (LEMs) can provide a good approximation of the tissue movement [2,
14, 19, 33, 47, 49]. An LEM is used in this work that (1) incorporates the main tissue
characteristics (elasticity/near-incompressibility) without including more model
parameters that are difficult to determine, (2) is static, since intraoperative brain
deformation is a relatively slow process with negligible dynamic components, (3) is
isotropic (Although brain tissues are not isotropic, especially the fibrous white
matter, since the fiber directions are not always known, we assume that brain tissues
are isotropic materials.) and (4) is guided by intraoperative inputs.

Based on the properties of LEMs, the deformation throughout the whole brain, B,
can be calculated using an energy minimization framework (Sect. 2.2):

bu D arg min
u

�Z

B

W .u; m;E; �/dB

�
(6)

where B is the entire brain, consisting of all nodes in the brain volume (V) and on
the surface (S) and W (u, m, E, �) is defined in Sect. 2.2.

Equation (6) is subject to three constraints: (1) The first constraint forces the
displacements of the intraoperatively exposed cortical nodes, u.Sci /, in the region
of the craniotomy, Sc, to exactly equal the game theoretic results at those nodes,
Udns

�
sci
�
. It can be written as u

�
sci
� D Udns

�
sci
�
;8sci 2 Sc . Due to this exact

matching, the external energy term of equation (1) is not used. (2) The second
constraint k .su

k C u.su
k//;�rj k > ı;8su

k 2 Su; rj 2 R, ensures that all nodes
on the brain surface remain some small distance away from the skull (except in
the craniotomy region). Here, su

k are brain surface nodes in the region not exposed
during surgery, Su, rj are nodes on the rigid skull surface, R, and ı is an arbitrarily
small constant. Due to the surface connectivity, this constraint also prevents any
nodes from crossing the skull boundary, as this would force other surface nodes
to violate this condition. Rather than forcing some surface nodes to be fixed, this
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Fig. 2 Mean (A) and maximum (B) displacement and algorithm error (˛D 4, ˇD 0.83, �D 0.1,
�D 25). In (C), intraoperative images of Data Set #2 show the misalignment of projected
preoperative sulci (green) with intraoperative sulci positions (black) due to brain shift and camera
calibration errors. Predicted sulci positions, projected with the updated calibration parameters
(yellow), show better alignment. Backprojected intensities (D) are found by projecting each point
on the surface to the left (left column) or right (right column) image and assigning the associated
image intensity value to that point. Red arrows indicate the misalignment between the sulci on the
preoperative surface (green) and those seen in the backprojected image. Sulci on the algorithm-
predicted surface (yellow) are better aligned with the image intensities

model more realistically constrains the anatomy. (3) Finally, the third constraint,
u.sfl / D 0;8sfl 2 Sf ; states that the model deformation of the fixed nodes, sfl ;
within the fixed region, Sf ; must be zero. The fixed surface region is at the base
of the brain in the inferior occipital lobes. Due to the tough tentorium cerebelli, as
well as their distance from the craniotomy site, these nodes will not move during
surgery. (See right side of Fig. 1.)

The constrained minimization was performed using the finite element analysis
software package ABAQUS (ABAQUS, Inc., Providence, RI). The model inputs
were a tetrahedral brain mesh (created using the automated algorithm suggested in
Stokking [50]), a manually-outlined surface representing the surrounding skull (with
craniotomy), Young’s modulus (66.7 kPa) and Poisson’s ratio (0.48) of brain [30].
The finite element analysis output is the displacement of all brain mesh nodes, which
can be resampled into image space using trilinear interpolation.

2.4 Experimental Results

Game theoretic cortical surface tracking was used in five separate surgeries for a
total of eight data sets. The algorithm results for all cases are shown in Figs. 2A & B.
In Fig. 2A, the blue bars represent the calculated mean average displacement of the
cortical surface as predicted by the game theoretic algorithm. Mean residual error
of the algorithm (red bars) is calculated by averaging the closest distances between
the predicted surface and sparse cortical surface points touched with a 3D locator
intraoperatively.

Five out of eight of the cases (62.5 %) resulted in a mean algorithm error of less
than 1.0 mm, and the mean error never exceeded 1.70 mm, representing an 81 %
improvement over uncompensated error. Also, for half the cases, the maximum error
was under 1.6 mm (Fig. 2B), representing a 76 % decrease in the maximum errors
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Fig. 3 A) A slice of the preoperative MRI (left), deformed using either a fixed surface (middle) or
a skull constraint (right). Red and yellow spheres indicate intraoperatively acquired surface points.
The aqua arrow is in the same location on each image. B) One slice of the preoperative (right) and
predicted intraoperative initial (middle) and final (left) MR image. The spheres were acquired by
the neurosurgeon either 2 (red) or 3.25 (yellow) hours into surgery. C) Volume Renderings of the
images in (B)

using the model guidance. Thus, for all eight cases, every part of the surface was
found more accurately using the game theoretic algorithm then by relying on the
preoperative surface. Figures 2C & D illustrate these results using images from a
typical sample case, Data Set #2.

These surface results were then used in conjunction with the biomechanical
model to obtain volumetric deformation. As mentioned above, rather than artificially
fixing the non-exposed surface nodes, the rigid skull was used to constrain the
surface deformation (constraint #2). Figure 3A illustrates this effect on a case
in which a bilateral craniotomy was performed. For this patient, the surface
deformation for each side of the brain was calculated separately, using data sets
2 (left side of brain) and 3 (right side of brain) from Fig. 2, and the modeled
skull contained two craniotomy sections. With a fixed surface, the nodes near the
craniotomy cannot move, even when the deformation becomes large. This effect is
most obvious in the region indicated by the aqua arrow, which is located in the same
relative position on all three images. The deformation decreases sharply to zero
outside the craniotomy region when the surface nodes are fixed. However, when
constrained by the skull, the region indicated by the aqua arrow is allowed to deform
inward as well, resulting in a more natural deformation.

To validate model consistency, volumetric deformation was also calculated for
two data sets (4 & 5) from the same surgery. Figures 3B & C show the calculated
downward surface shift, which is propagated through the volume.

3 A Boundary Element Based Approach: Estimation of 3D
Left Ventricular Deformation

3.1 Background

Acute coronary artery occlusion results in myocardial injury, which will progress
from the endocardium to the epicardium of the heart wall in a wavefront fashion.
A primary goal in the treatment of patients presenting with acute myocardial
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infarction is to reestablish coronary flow, and to interrupt the progression of
injury, thereby salvaging myocardium. A number of laboratories have shown that
a comprehensive quantitative analysis of myocardial strain can more accurately
identify ischemic injury than simple analysis of endocardial wall motion or radial
thickening [5]. Furthermore, the characterization of segmental strain components
has shown great promise for defining the mechanical mechanisms of tethering
or remodeling [31, 35]. At present, quantitative non-invasive measurement of
3D strain properties from images has been limited to special forms of magnetic
resonance (MR) acquisitions, specifically MR tagging and restricted to mostly
research settings.

In general, there are three different approaches to estimating displacement data
from MR tagging. The first approach involves tagging in multiple intersecting planes
at the same time, and using the tag intersections as tokens for tracking (e.g. [1, 54]).
The second approach involves tagging in multiple intersecting planes, one set of
parallel planes at a time. Then, each tagging plane is used separately to estimate the
normal direction of motion perpendicular to the plane. This generates a set of partial
displacements (i.e. the component parallel to the tag lines is missing) to be combined
later (e.g. [26, 17]). The final approach uses a lower resolution modulation technique
and attempts to model the tag fading over time using the Bloch equations. The
displacements are then extracted using a variable brightness optical flow technique.

As an alternative to MR tagging, several investigators have employed changes in
phase due to motion of tissue within a fixed voxel or volume of interest to assist in
estimating instantaneous, localized velocities, and ultimately cardiac motion and
deformation [55, 38]. This technique basically relies on the fact that a uniform
motion of tissue in the presence of a magnetic field gradient produces a change
in the MR signal phase that is proportional to velocity.

The use of computer vision-based techniques to estimate displacement is also
possible. One approach to establishing correspondence is to track shape-related
features on the LV over time as reported by Cohen [15], Papademetris [42], Lin [32].
This is the basis for much of our own work and is expanded later. We note that such
methods were applied to modalities other than magnetic resonance such as X-ray
CT [42] and ultrasound [42, 32, 53].

Finally, some investigators have used the intensity of the images directly to
track local LV regions. Song and Leahy [48] used the intensity in ultrafast CT
images to calculate the displacement fields for a beating heart. In addition, other
investigators have used local image intensity or intensity-based image texture
from echocardiographic image sequences to track local positions over 2D image
sequences [37]. These efforts, along with some related MR tagging approaches
roughly fall into the category of optical flow-based methods. With the exception
of methods based on magnetic resonance tagging and to a lesser extent MR phase
contrast velocities, none of the other methods is capable of estimating complete
three-dimensional deformation maps of the left ventricle.

In this work we propose a method for estimating non-rigid cardiac motion which
combines the shape based Generalized Robust Point Matching (GRPM) framework
and an biomechanical model constructed by BEM.
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Fig. 4 The procedure of a BEM-based regularization model: (a)Displacements associated with
scattered points (red); (b)Model interpolated displacements on the boundary nodes (green);
(c)Model interpolated dense displacement fields (yellow). Figure reprinted from [53], ©2007 by
permission from Elsevier

3.2 The Boundary Element Method (BEM)

The BEM is an alternative technique to FEM for solving Biomechanical problem.
The BEM reformulates a dense field problem to the integral equation over the
boundary of the field [8]. The procedure for employing the BEM-based regular-
ization model is described in Fig. 4. The red points and arrows in Fig. 4a are the
feature points and estimated displacements derived from image sequences. First, we
map these displacements associated with feature points to the boundary grid nodes
as shown in Fig. 4b. Then we interpolate the dense displacements on the dense grids
as shown in Fig. 4c.

Let Q D fqj, j D 1, 2, . . . , Jg be the nodes at regular positions of the boundary.
Consider a set of scattered points A D fai, i D 1, 2, . . . , Ig that are extracted from
the image. G D fgl, l D 1, 2, . . . , Lg are the dense points at regular positions.
With known displacements associated with the scattered points in A, our goal is
finding the optimal displacements for all the points in G. The points in A, Q and G
are red, green and yellow points as shown in Fig. 4, respectively. In the BEM, the
displacements U(qj) and tractions P(qj) of the boundary node qj can be written as:

HU.qj / D GP.qj / (7)

The H and G are the fundamental matrices for the boundary nodes and they are
defined by the elastic material property and shape information. The detail definition
of the H and G can be found in [8]. The displacement at any point can be derived
from known boundary displacements U (qj) and tractions P (qj):

u .ai / D
JX

jD1
bGP

�
qj
� � OHU �qj

�
(8)

u(ai) is the displacement at the point ai. bG and OH are the fundamental matrix
of the point ai. To determine the unknown displacements at boundary nodes, we
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first consider one data point ai in A. Here we denote the measured displacement
associating with the point ai as Qu .ai /. For the displacement at the point ai to take on
the value Qu .ai /, the displacements QUi

�
qj
�

at the boundary nodes must satisfy:

Qu .ai / D
JX

jD1
Cij QUi

�
qj
�

(9)

where C D bGG�1H � OH . There are many values of bU i

�
qj
�

that are solutions to
Eq. (9). Here we choose the solution in the least-squared sense such that:

QUi.q/ D arg min

0

@
JX

jD1
QU 2
i

�
qj
�
1

A (10)

Simple linear algebra using the pseudoinverse is used to derive the solution [28]:

QUi.q/ D �
Cij Qu .ai /

�
=

0

@
JX

jD1
C 2
ij

1

A (11)

Now we consider all the data points in A. Here we choose the displacements
U(q) of boundary nodes to minimize the sum of squared differences between the
displacements u(ai) and Qu .ai / of all the points in the point-set A, such as:

U.q/ D arg min

 
IX

iD1
�i k u .ai /� Qu .ai / k2

!
(12)

where �i is the weight based on the confidence in the Qu .ai / Then we get:

U.q/ D
 

IX

iD1
�iC

2
ij

QUi.q/
!
=

 
IX

iD1
�iC

2
ij

!
(13)

Once we know the displacements of all the boundary nodes, the displacements of
any point gl in the dense point-set G can be calculated by:

U .gl / D
JX

jD1
CljU

�
qj
�

(14)



322 P. Yang et al.

3.3 Generalized Robust Point Matching

The GRPM extends the Robust Point Matching (RPM) framework [13] to use a
more general metric form that includes curvature information [32]. In particular,
the use of shape information is embedded to guide more precise motion recovery
and points that are mistaken as features or unmatched real feature points are
automatically treated as outliers by the GRPM algorithm during the optimization
annealing process. The objective function of GRPM is:

E.M/ D
IX

iD1

KX

kD1
mikŒk f .ai /� bkk2 C �A g.k �A.ai / � �B.bk/k2/�

C � k L f k2 C T

IX

iD1

KX

kD1
miklogmik

C T0

IX

iD1
mi;KC1 logmi;KC1 C T0

KX

kD1
mIC1;k logmIC1;k (15)

where M is the correspondence matrix. A mesh is generated on the boundary
of I1. The T is annealing temperature gradually decreasing to zero as the matching
iteration begins. The T0 is annealing temperature for outliers. The f is the non-rigid
transformation function and L is an operating function on f. The g(�) is a strictly
in creasing function and �A balances the significance between distance and new
information. In our case, �A.ai / and �B.bk/ are two principal curvatures at ai and
bk, respectively.

3.4 Shape-based BEM-GRPM Tracking System

Figure 5 shows the design strategy: 1. Segmentation at the first frame; 2. Extracting
the feature points; 3. Calculating the curvature associated with each feature point;
4. Calculating the surface mesh at the next time frame using the BEM-GRPM; 5. If
the last time frame is reached, stop. Otherwise, repeat the step 4; 6. Calculating the
dense displacement fields; 7. Calculating the strains.

Following steps summarize the scheme of BEM-GRPM framework:

Step 1: Estimate the correspondence matrix M between the points aj and bk The
correspondence matrix M is calculated:

mik D 1p
2�T 2

e� kf .ai /�bkk
2

C�A�g.k�A.ai /��B .bk/k
2

T ;

IC1X

iD1
mik D1; and

KC1X

kD1
mik D1

(16)

We denote the outlier clusters as aN C1 and bK C1.
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Fig. 5 The overview of the shapebased motion tracking system

Step 2: Calculate the corresponding points and confident parameters: Let ^bi be
the corresponding point to ai and �i the confidence in the match:

bbi D
KX

kD1
mikbk=

KX

kD1
mik; �i D

KX

kD1
mik (17)

Step 3: Update the non-rigid transformation function: the non-rigid transformation
function f is defined by:

f D arg min
IX

f iD1
�i

���f .ai /�bbi
���
2

(18)

here f .ai / D aiCu.ai /;bbi D aiCQu .ai /. After we get the smoothed displacements
of all the feature points, we update f .ai / W f .ai / D ai C u.ai /:

Step 4: Annealing process: If T is bigger than a threshold, T D T � ı, and go back
to step 2. ı is the annealing rate of T.

Step 5: Dense displacement fields and strains: If annealing process is finished, we
derive the dense displacement fields and the Lagrangian strains.
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Fig. 6 A 2D slice of 3D radial strains Err (top) and circumferential strains Ecc (bottom) derived
from an in-vivo cardiac MRI data (ED ! ES). Positive values represent thickening and negative
values for shortening. Figure reprinted from [53], ©2007 by permission from Elsevier

3.5 Experimental Results

We first present the experimental results using the shape-based tracking system.
The key practical application includes the estimation of left ventricular deformation
from 3D C t MR and echocardiographic images. The results from MR images were
compared to displacements found using implanted markers.

Experiments on 3D Canine MR images We test the BEM-GRPM algorithm on
3D cardiac MRI data from the baseline MR images (without post-occlusion) [40].
The node number of the BEM mesh is set to be 20 � 15 (� , z). We track the
myocardium frame-by-frame along the image sequence (from end-diastole (ED) to
end-systole (ES)). The feature points are extracted by using thresholded curvature
in this experiment because MRI has good image quality. The coordinates and the
curvature value of the feature points are normalized in the beginning. We set the
starting temperature T as 4 pixels. In the annealing process, we gradually reduce it
by an annealing rate of 0.9. For each dataset, strains are calculated between end-
diastole (ED) and end-systole (ES). A 2D slice of the 3D-derived radial strains (Err)
and circumferential strains (Ecc) of one dataset are illustrated in Fig. 6. Note the
normal behavior in the LV, showing positive radial strain (thickening) and negative
circumferential strain (shortening) as we move from ED to ES.

To quantitatively validate the resulting motion trajectories, we use four canine
MRI datasets with implanted markers for point-by-point displacement comparison
(see [42] for more details on the marker implantation and localization). The
mean displacement errors of BEM-GRPM for the four datasets are calculated and
compared to the errors of EFFD-GRPM [32] which uses Extended Free Form
Deformation (EFFD) as the regularization model with the GRPM. The displacement
errors of BEM-GRPM are less than those of EFFD-GRPM as shown in Fig. 7.



Physical Model Based Recovery of Displacement and Deformations from 3D. . . 325

Fig. 7 Absolute
displacement error vs.
implanted markers. The errors
are estimated between ED to
ES for 4 canine MR image
datasets. Blue: the error of
BEM-GRPM; Red: the error
of EFFD-GRPM. Figure
reprinted from [53], ©2007
by permission from Elsevier

Fig. 8 Radial strains Err (top) and circumferential strains Ecc (bottom) derived from a contrast-
enhanced echocardiographic images (ED ! ES). Positive values represent thickening and negative
values for shortening. Figure reprinted from [53], ©2007 by permission from Elsevier

Experiments on 3D Echocardiographic B-mode images The experiments were
carried on contrast-enhanced full volume 3D B-mode canine data. A 2D slice
of the 3D-derived radial (Err) and circumferential strains (Ecc) are illustrated in
Fig. 8. Although we can’t evaluate our results from echocardiographic images
quantitatively, the derived LV motion patterns are visually correct.

4 Concluding Remarks

We have presented two distinct application areas where biomechanical models are
used to recover information from image sequences ....
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Edit this some more
We have described the development of an automatic, robust and efficient based

on a physical model. We have presented a sequence of results: First, dense displace-
ments and strains were derived from MR image sequences using the shape-based
BEM-GRPM tracking system. The results were compared to the displacements
found using implanted markers, taken as the ground truth. Second, we applied
the shape-based BEM-GRPM tracking system on a 3D echocardiographic image
sequence and got the reasonable results.
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Graph-based Deformable Image Registration

A. Sotiras�, Y. Ou�, N. Paragios, and C. Davatzikos

Abstract Deformable image registration is a field that has received considerable
attention in the medical image analysis community. As a consequence, there is an
important body of works that aims to tackle deformable registration. In this chapter
we review one class of these techniques that use discrete optimization, and more
specifically Markov Random Field models. We begin the chapter by explaining how
one can formulate the deformable registration problem as a minimal cost graph
problem where the nodes of the graph corresponds to the deformation grid, the
graph connectivity encodes regularization constraints, and the labels correspond
to 3D displacements. We then explain the use of discrete models in intensity-
based volumetric registration. In the third section, we detail the use of Gabor-based
attribute vectors in the context of discrete deformable registration, demonstrating
the versatility of the graph-based models. In the last section of the chapter, the case
of landmark-based registration is discussed. We first explain the discrete graphical
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model behind establishing landmark correspondences, and then continue to show
how one can integrate it with the intensity-based model towards creating enhanced
models that combine the best of both worlds.

1 Introduction

Medical image analysis plays an increasingly important role in many clinical
applications. The increased amount and complexity of medical image data, which
often involve multiple 3D image modalities as well as multiple acquisitions in
time, result in a challenging analysis setting. Image registration, as well as image
segmentation, are the two principal tools that allow for automatic and timely data
analysis.

Image registration consists of determining a spatial transformation that estab-
lishes meaningful anatomical, or functional, correspondences between different
image acquisitions. The term deformable is used to specify that the transformation
is allowed to spatially vary (in contrast to the case of linear or global registration). In
general, registration can be performed between two or more images. Nonetheless,
in this chapter, we will focus on registration methods that involve pairs of images.
The pairs of images may consist of acquisitions that image either the same subject
(intra-subject registration) or different subjects (inter-subject registration).

In intra-subject registration, the subject is typically imaged either under different
protocols, or at different time points. In the first case, different imaging modalities
are used to capture complementary anatomical or functional information, and image
registration is used to fuse this information towards enhancing the analytical and
diagnostic abilities of the clinicians. In the second case, one may study short-
or long-term longitudinal processes that range from tumor perfusion properties to
normal aging and development. Another application of image registration is surgical
or treatment planning. The registration of pre-operative and interventional data
allows the clinical experts to refine their planning and improve care-giving.

Inter-subject registration is the cornerstone of population studies. Mapping
members of a population to a common domain allows the study of within-population
variability and the quantitative analysis of the form of anatomical structures. On the
other hand, when distinct populations are spatially aligned, it is possible to discover
the focal differences that distinguish them by contrasting them in the common
domain.

In general, an image registration algorithm involves three components (see Fig. 1
[75]): i) a transformation model; ii) a similarity criterion; and iii) an optimization
method. Image registration has been studied extensively during the past decades,
leading to a rich body of works. These works differ mainly in their choices
with respect to these three components. While an extensive overview of these
components is beyond the scope of this chapter, let us briefly discuss some of the
most common choices and models. For a more comprehensive review, we refer the
interested reader to the books [26,54], the surveys [53,78,93] and [75] that provide
thorough overviews of the advances of the past decades in deformable registration.
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Registration
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Fig. 1 Typical components of registration algorithms

The choice of the transformation model is usually dictated by the application
at hand and is related to the nature of the deformation to be recovered. High-
dimensional nonlinear models are necessary to cope with highly variable soft tissue,
while low degrees of freedom models can represent the mapping between rigid
bone structures. It is important to note that increasing the degrees of freedom of the
model, and thus enriching its descriptive power, often comes at the cost of increased
computational burden.

Several transformation models have been introduced in medical imaging for non-
rigid alignment. These models can be coarsely classified into two categories (see
Fig. 1 [30,75]): i) models derived from physical models, and ii) models derived from
the interpolation theory or geometric models. Among the most prominent choices
of the first class, one may cite elastic [19, 20], fluid [14, 18] or diffusion models
[22, 80, 85]. Whereas, the second class comprises radial basis functions [10, 67],
free-form deformations [68, 69], locally affine [55] and poly-affine models [2], or
models parametrized by Fourier [1, 4] or Wavelet basis functions [87].

The similarity criterion quantifies the degree of alignment between the images.
Registration methods can be classified into three categories (see Fig. 1) depending
on the type of information that is utilized by the similarity criterion: i) geometric
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registration (a.k.a.landmark/feature-based registration); ii) iconic registration
(a.k.a.voxel-wise registration); and iii) hybrid registration.

Geometric registration aims to align meaningful anatomical locations or salient
landmarks, which are either automatically extracted from the images [51] or
provided by an expert. Geometric information is typically represented as point-sets
and registration is tackled by first estimating the point correspondences [43,82] and
then employing an interpolation strategy (e.g. thin-plate splines [10]) to determine a
dense deformation field that will align the images. Alternatively, geometric methods
may infer directly the transformation that aligns the images without explicitly
estimating point correspondences. This is possible by representing geometric
information either as probability distributions [23, 83] or through the use of signed
distance transformations [32]. Last, there exist methods that opt to simultaneously
solve for both the correspondences and the transformation [15].

Iconic methods employ a similarity criterion that takes into account the intensity
information of all image elements. The difficulty of choosing an appropriate
similarity criterion varies greatly depending on the problem. In the mono-modal
case, where both images are acquired using the same device and one can assume that
the intensity profiles for the two images differ only by Gaussian noise, the use of
sum of squared differences can be sufficient. Nonetheless, in the multi-modal case,
where images from different modalities are involved, the criterion should be able to
account for the different principles behind the acquisition protocols and capture the
relation between the distinct intensity profiles. Towards this end, criteria based on
statistics and information theory have been proposed. Examples include correlation
ratio [65], mutual-information [52, 86] and Kullback-Leibler divergence [16]. Last,
attribute-based methods that construct rich descriptions by summarizing intensity
information over local regions have been proposed for both mono-modal and multi-
modal registration [48, 62, 74].

Hybrid methods opt to exploit both iconic and geometric information in an
effort to leverage their complementary nature towards more robust and accurate
registration. Depending on how one combines the two types of information, three
subclasses can be distinguished. In the first case, geometric information is used
to initialize the alignment, while intensity-based volumetric registration refines
the results [35, 64]. In the second case, geometric information can be used to
provide additional constraints that are taken into account during iconic registration
[27, 29]. In the third case, iconic and geometric information are integrated in a
single objective function that allows for the simultaneous solution of both problems
[11, 25, 76].

Once the transformation model and a suitable similarity criterion have been
defined, an optimization method is used in order to infer the optimal set of
parameters by maximizing the alignment of the two images. Solving for the optimal
parameters is particularly challenging in the case of image registration. The reason
behind this lies in the fact that image registration is, in general, an ill-posed problem
and the associated objective functions are typically non-linear and non-convex. The
optimization methods that are typically used in image registration fall under the
umbrella of either continuous or discrete methods.
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Typically, continuous optimization methods are constrained to problems where
the variables take real values and the objective function is differentiable. This type
of problems are common in image registration. As a consequence, these methods
(typically gradient descent approaches) have been widely used in image registration
[8, 69] because of the fact that they are rather intuitive and easy to implement.
Moreover, they can handle a wide class of objective functions allowing for complex
modeling assumptions regarding the transformation model. Nonetheless, they are
often sensitive to the initial conditions, while being non-modular with respect to
the similarity criterion and the transformation model. What is more, they are often
computationally inefficient [24].

On the other hand, discrete optimization methods tackle problems where the
variables take discrete values. Discrete optimization methods based on the Markov
Random Field theory have been recently investigated in the context of image
registration [24, 25]. Discrete optimization methods are constrained by limited
precision due to the necessary quantization of the solution space. Moreover,
they can not efficiently model complex variable interactions due to increased
difficulty in inference. However, recent advances in higher-order inference methods
have allowed the modeling of more sophisticated regularization priors [42]. More
importantly, discrete optimization methods are versatile and can handle a wide range
of similarity metrics (including non-differentiable ones). What is more, they are
more robust to the initial conditions due to the global search they perform, while
often converging faster than continuous methods.

In this chapter, we review the application of Markov Random Fields (MRFs)
in deformable image registration. We explain in detail how one can map image
registration from the continuous domain to discrete graph structures. We first present
graph-based deformable registration in the case of iconic registration and show how
one can encode intensity-based and statistical approaches. We then present discrete
attribute-based registration methods and complete the presentation by describing
MRF models for geometric and hybrid registration. Throughout this chapter, we
discuss the underlying assumptions as well as implementation details. Experimental
results that demonstrate the value of graph-based registration are given at the end of
every section.

2 Graph-based Iconic Deformable Registration

In this chapter, we focus on pairwise deformable registration. The two images are
usually termed as source (or moving) and target (or fixed) images, respectively. The
source image is denoted by S W 	S � R

d 7! R, while the target image by T W 	T �
R
d 7! R, d D f2; 3g.	S and	T denote the image domain for the source and target

images, respectively. The source image undergoes a transformation T W 	S 7! 	T .
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Image registration aims to estimate the transformation T such that the two
images get aligned. This is typically achieved by means of an energy minimization
problem:

arg min
�

M .T; S ı T .�//C R.T .�//: (1)

Thus, the objective function comprises two terms. The first term, M , quantifies
the level of alignment between a target image T and a source image S under
the influence of the transformation T parametrized by � . The second term, R,
regularizes the transformation and accounts for the ill-posedness of the problem. In
general, the transformation at every position x 2 	 (	 depicting the image domain)
is given as T .x/ D x C u.x/ where u is the deformation field.

The previous minimization problem can be solved by adopting either continuous
or discrete optimization methods. In this chapter, we focus on the application of
discrete methods that exploit Markov Random Field theory.

2.1 Markov Random Fields

In discrete optimization settings, the variables take discrete values and the optimiza-
tion is formulated as a discrete labeling problem where one searches to assign a label
to each variable such that the objective function is minimized. Such problems can
be elegantly expressed in the language of discrete Markov Random Field theory.

An MRF is a probabilistic model that can be represented by an undirected graph
G D .V ;E /. The set of vertices V encodes the random variables, which take values
from a discrete set L . The interactions between the variables are encoded by the set
of edges E . The goal is to estimate the optimal label assignment by minimizing an
energy of the form:

EMRF D
X

p2V
Up.lp/C

X

pq2E
Ppq.lp; lq/: (2)

The MRF energy also comprises two terms. The first term is the sum of all unary
potentials Up of the nodes p 2 V . This term typically corresponds to the data term
since the unary terms are usually used to encode data likelihoods. The second term
comprises the pairwise potentials Ppq modeled by the edges connecting nodes p
and q. The pairwise potentials usually act as regularizers penalizing disagreements
in the label assignment of tightly related variables.

Many algorithms have been proposed in order to perform inference in the
case of discrete MRFs. In the works that are presented in this chapter, the fast-
PD1 algorithm [39, 40] has been used to estimate the optimal labeling. The main

1Fast-PD is available at http://cvc-komodakis.centrale-ponts.fr/.

http://cvc-komodakis.centrale-ponts.fr/
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motivation behind this choice is its great computational efficiency. Moreover, the
fast-PD algorithm is appropriate since it can handle a wide-class of MRF models
allowing us to use different smoothness penalty functions and has good optimality
guarantees.

In the continuation of this section, we detail how deformable registration is for-
mulated in terms of Markov Random Fields. First, however, the discrete formulation
requires a decomposition of the continuous problem into discrete entities. This is
described below.

2.2 Decomposition into Discrete Deformation Elements

Without loss of generality, let us consider a grid-based deformation model that
combines low degrees of freedom with smooth local deformations. Let us consider
a set of k control points distributed along the image domain using a uniform grid
pattern. Furthermore, let k be much smaller than the number of image points. One
can then deform the embedded image by manipulating the grid of control points.
The dense displacement field is defined as a linear combination of the control point
displacements D D fd1; :::;dkg, with di 2 R

d , as:

u.x/ D
kX

iD1
!i .x/di ; (3)

and the transformation T becomes:

T .x/ D x C
kX

iD1
!i .x/di : (4)

!i corresponds to an interpolation or weighting function which determines the
influence of a control point i to the image point x – the closer the image point
the higher the influence of the control point. The actual displacement of an image
point is then computed via a weighted sum of control point displacements. A dense
deformation of the image can thus be achieved by manipulating these few control
points.

The free-form deformation is a typical choice for such a representation [71]. This
model employs a weighting scheme that is based on cubic B-splines and has found
many applications in medical image registration [69] due to its efficiency and the
local support of the control points. We also employ this model. Nonetheless, let us
note that the discrete deformable registration framework is modular with respect to
the interpolation scheme and one may use this preferred strategy.

The parametrization of the deformation field leads naturally to the definition of
a set of discrete deformation elements. Instead of seeking a displacement vector
for every single image point, now, only the displacement vectors for the control



338 A. Sotiras et al.

points need to be sought. If we take them into consideration, the matching term (see
Eq. (1)) can be rewritten as:

M .S ı T ; T / D 1

k

kX

iD1

Z

	S

O!i .x/ �.S ı T .x/; T .x//dx; (5)

where O!i are weighting functions similar to the ones in Eq. (4) and � denotes a
similarity criterion.

Here, the weightings determine the influence or contribution of an image point x
onto the (local) matching term of individual control points. Only image points in the
vicinity of a control point are considered for the evaluation of the intensity-based
similarity measure with respect to the displacement of this particular control point.
This is in line with the local support that a control point has on the deformation.
The previous is valid when point-wise similarity criteria are considered. When a
criterion based on statistics or information theory is used, a different definition of
O!i is adopted,

O!i .x/ D
(
1; if !i .x/ � 0;

0 otherwise:
(6)

Thus, in both cases the criterion is evaluated on a patch. The only difference is
that the patch is weighted in the first case. These local evaluations enhance the
robustness of the algorithm to local intensity changes. Moreover, they allow for
computationally efficient schemes.

The regularization term of the deformable registration energy (Eq. (1)) can also
be expressed on the basis of the set of control points as:

R D 1

k

kX

iD1

Z

	S

O!i .x/  .T .x//dx; (7)

where  is a function that promotes desirable properties of the dense deformation
field such as the smoothness and topology preservation.

2.3 Markov Random Field Registration Energy

Having identified the discrete deformation elements of our problem, we need to map
them to MRF entities, i.e., the graph vertices, the edges, the set of labels, and the
potential functions.

Let Gico denote the graph that represents our problem. In this case, the random
variables of interest are the control point displacement updates. Thus, the set of
vertices Vico is used to encode them, i.e., jVicoj D j�Dj D k. Moreover, assigning
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a label lp 2 Lico to a node p 2 Vico is equivalent to displacing the corresponding
control point p by an update �dp , or lp 
 �dp . In other words, the label set for
this set of variable is a quantized version of the displacement space (Lico � R

d ).
The edge system Eico is constructed by following either a 6-connected neighborhood
system in the 3D case, or a 4-connected system in the 2D case. The edge system
follows the grid structure of the transformation model.

According to Eq. (5) we define the unary potentials as:

Uico;p.lp/ D
Z

	S

O!p.x/ �.S ı Tico;lp .x/; T .x// dx; (8)

where Tico;lp denotes the transformation where a control point p has been updated
by lp . Region-based and statistical measures are again encoded in a similar way
based on a local evaluation of the similarity measure.

Conditional independence is assumed between the random variables. As a
consequence, the unary potential that constitutes the matching term can only be an
approximation to the real matching energy. That is because the image deformation,
and thus the local similarity measure, depends on more than one control point
since their influence areas do overlap. Still, the above approximation yields very
accurate registration as deomonstrated by the experimental validation results that
are reported in latter sections (Sect. 2.4, Sect. 3.3 and Sect. 4.3). Furthermore, it
allows an extremely efficient approximation scheme which can be easily adapted
for parallel architectures yielding extremely fast cost evaluations.

Actually, the previous approximation results in a weighted block matching strat-
egy encoded on the unary potentials. The smoothness of the transformation derives
from the explicit regularization constraints encoded by the pairwise potentials and
the implicit smoothness stemming from the interpolation strategy.

The evaluation of the unary potentials for a label l 2 Lico corresponding to
an update �d can be efficiently performed as follows. First, a global translation
according to the update �d is applied to the whole image, and then the unary
potentials for this label and for all control points are calculated simultaneously. This
results in an one pass through the image to calculate the cost and distribute the local
energies to the control points. The constrained transformation in the unary potentials
is then simply defined as Tico;lp .x/ D Tico.x/C lp , where Tico.x/ is the current or
initial estimate of the transformation.

The regularization term defined in Eq. (7) could be defined as well in the above
manner. However, this is not very efficient since the penalties need to be computed
on the dense field for every variable and every label. If we consider an elastic-like
regularization, we can employ a very efficient discrete approximation of this term
based on pairwise potentials as:

Pico; elastic;pq.lp; lq/ D k.dp C�dp/ � .dq C�dq/k
kp � qk : (9)
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The pairwise potentials penalize deviations of displacements of neighboring control
points .p; q/ 2 Eico which is an approximation to penalizing the first derivatives
of the transformation. Recall that lp 
 �dp. Note, we can also remove the
current displacements dp and dq from the above definition yielding a term that only
penalizes the updates on the deformation. This would change the behavior of the
energy from an elastic-like to a fluid-like regularization.

Let us detail how the label set Lico is constructed since that entails an important
accuracy-efficiency trade-off. The smaller the set of labels, the more efficient is
the inference. However, few labels result in a decrease of the accuracy of the
registration. This is due to the fact that the registration accuracy is bounded by
the range of deformations covered in the set of labels. As a consequence, it is
reasonable to assume that the registration result is sub-optimal. In order to strike
a satisfactory balance between accuracy and efficiency, we opt for an iterative
labeling strategy combined with a search space refinement one. At each iteration,
the optimal labeling is computed yielding an update on the transformation, i.e.
lp 
 �dp. This update is applied to the current estimate, and the subsequent
iteration continues the registration based on the updated transformation and a refined
label set. Thus, the error induced by the approximation stays small and incorrect
matches can be corrected in the next iteration. Furthermore, the overall domain of
possible deformations is rather bounded by the number of iterations and not by the
set of finite labels.

The iterative labeling allows us to keep the label set quite small. The refinement
strategy on the search space is rather intuitive. In the beginning we aim to recover
large deformations and as we iterate, finer deformations will be added refining the
solution. In each iteration, a sparse sampling with a fixed number of samples s is
employed. The total number of labels in each iteration is then jLicoj D g � s C 1

including the zero-displacement and g is the number of sampling directions.
We uniformly sample displacements along certain directions up to a maximum
displacement magnitude dmax. Initially, the maximum displacement corresponds
to our estimation of the larger deformation to be recovered. In the subsequent
iterations, it is decreased by a user-specified factor 0<f <1 limiting and refining
the search space.

The number and orientation of the sampling directions g depend on the dimen-
sionality of the registration. One possibility is to sample just along the main
coordinate axes, i.e. in positive and negative direction of the x-, y-, and z-axis
(in case of 3D). Additionally, we can add samples for instance along diagonal
axes. In 2D we commonly prefer a star-shape sampling, which turns out to be a
good compromise between the number of samples and the sampling density. In our
experiments we found that also very sparse samplings (e.g., just along the main
axes) gives very accurate registration results but might increase the total number
of iterations that are needed until convergence. However, a single iteration is much
faster to compute when the label set is small. In all our experiments we find that
small label sets provide an excellent performance in terms of computational speed
and registration accuracy.
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The explicit control that one has over the creation of the label set L enables us to
impose desirable properties on the obtained solution without further modifying the
discrete registration model. Two interesting properties that can be easily enforced
by adapting appropriately the discrete solution space are diffeomorphisms and
symmetry. Both properties are of particular interest in medical imaging and have
been the focus of the work of many researchers.

Diffeomorphic transformations preserve topology and both they and their inverse
are differentiable. These transformations are of interest in the field of computational
neuroanatomy. Moreover, the resulting deformation fields are, in general, more
physically plausible since foldings, which would disrupt topology, are avoided.
As a consequence, many diffeomorphic registration algorithms have been proposed
[3, 5, 8, 68, 85].

In this discrete setting, it is straightforward to guarantee a diffeomorphic result
through the creation of the label set. By bounding the maximum sampled dis-
placement by 0:4 times the deformation grid spacing, the resulting deformation is
guaranteed to be diffeomorphic [68].

The majority of image registration algorithms are asymmetric. As a consequence,
when interchanging the order of input images, the registration algorithm does not
estimate the inverse transformation. This asymmetry introduces undesirable bias
upon any statistical analysis that follows registration because the registration result
depends on the choice of the target domain. Symmetric algorithms have been
proposed in order to tackle this shortcoming [5, 13, 56, 79, 84].

Symmetry can also be introduced in graph-based deformable registration in a
straightforward manner [77]. This is achieved by estimating two transformations,
T f and T b , that deform both the source and the target images towards a common
domain that is constrained to be equidistant from the two image domains. In order
for this to be true, the transformations, or equivalently the two update deformation
fields, should sum up to zero. If one assumes a transformation model that consists
of two isomoprhic deformation grids, this constraint translates to ensuring that the
displacement updates of corresponding control points in the two grips sum to zero
and can be simply mapped to discrete elements.

The satisfaction of the previous constraint can be easily guaranteed in a discrete
setting by appropriately constructing the label set. More specifically, by letting the
labels index pairs of displacement updates (one for each deformation field) that
sum to zero, i.e. lp 
 f�dfp ;��dbpg. The extension of the unary terms is also
straightforward, while the pairwise potentials and the graph construction are the
same.

2.4 Experimental Validation

In this section, we present experimental results for the graph-based symmetric
registration in 3D brain registration. The data set consists of 18 T1-weighted
brain volumes that have been positionally normalized into the Talairach orientation
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Fig. 2 a) In the first row, from left to right, the mean intensity image is depicted for the data set,
after the graph-based symmetric registration method and after [5]. In the second row, from left to
right, the target image is shown as well as a typical deformed image for the graph-based symmetric
registration method and [5]. For all cases, the central slice is depicted. b) Boxplots for the DICE
criterion initially, with the graph-based symmetric registration method and with [5]. On the left,
the results for the WM. On the right, the results for the GM. The figure is reprinted from [77]

(rotation only). The MR brain data set along with manual segmentations was
provided by the Center for Morphometric Analysis at Massachusetts General
Hospital and are available online2. The data set was rescaled and resampled so
that all images have a size equal to 256 � 256 � 128 and a physical resolution
of approximately 0:9375 � 0:9375 � 1:5000mm.

This set of experiments is based on intensity-based similarity metrics (for results
using attribute-based similarity metrics, we refer the reader to the next section of this
chapter). The results are compared with a symmetric registration method based on
continuous optimization [5] that is considered to be the state of the art in continuous
deformable registration [38]. Both methods use Normalized Cross Correlation as
the similarity criterion.

A multiresolution scheme was used in order to harness the computational burden.
A three-level image pyramid was considered while a deformation grid of four
different resolutions was employed. The two finest grid resolutions operated on the
finest image resolution. The two coarsest operated on the respective coarse image
representations. The initial grid spacing was set to 40 mm resulting in a deformation
grid of size 7 � 7 � 6. The size of the gird was doubled at each finer resolution.
A number of 90 labels, 30 along each principal axis, were used. The maximum
displacement indexed by a label was bounded to 0.4 times the grid spacing. The
pairwise potentials were weighted by a factor of 0.1.

2http://www.cma.mgh.harvard.edu/ibsr/data.html

http://www.cma.mgh.harvard.edu/ibsr/data.html
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The qualitative results (sharp mean and deformed image) suggest that both
methods successfully registered the images to the template domain. The results
of [5] seem to have produced more aggressive deformation fields that have resulted
to some unrealistic deformations in the top of the brain and can also be observed
in the borders between white matter (WM) and gray matter (GM). This aggressive
registration has also resulted in slightly more increased DICE coefficients for WM
and GM. However, the results reported for the graph-based registration method were
obtained in 10 min. On the contrary, 1 hour was necessary to register the images
with [7] approximately. This important difference in the computational efficiency
between the two methods can outweigh the slight difference in the quality of the
solution in practice.

3 Graph-based Attribute-Based Deformable Registration

In the previous section, we studied the application of intensity-based deformable
registration methods that involve voxel-wise and statistical similarity criteria. While
these criteria are easy to compute and widely used, they suffer from certain
shortcomings. First, they often have difficulties to reflect the underlying anatomy
because pixels belonging to the same anatomical structure are often assigned differ-
ent intensity values due to variabilities arising from scanners, imaging protocols,
noise, partial volume effects, contrast differences, and image inhomogeneities.
Moreover, single intensities are not informative enough to uniquely characterize
image elements, and thus reliably guide image registration. For instance, hundreds
of thousands of gray matter voxels in a brain image share similar intensities; but they
belong to different anatomical structures. As a consequence, matching ambiguities
arise in the matching between two images.

In order to reduce matching, one needs to characterize each voxel more dis-
tinctively. This may be achieved by creating richer high-dimensional descriptors
of image elements that capture texture or geometric regional attributes. Therefore,
attribute-based similarity criteria have been increasingly used in image registration.
Typical examples include the use of geometric-moment-invariant (GMI) attributes
coupled with tissue membership attributes and boundary/edge attributes [74],
neighborhood intensity profile attributes [28], local frequency attributes [34, 49],
local intensity histogram attributes [73, 88], geodesic intensity histogram attributes
[44, 47] and scale-invariant attributes [81].

3.1 Gabor Attributes

The versatility of graph-based deformable registration models allows the seamless
integration of any of the previous attribute-based similarity criteria. Nonetheless,
the previous approaches involve features that are application-specific and fail
to generalize to other applications, or require sophisticated pre-processing steps
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(e.g.segmentation). As a consequence, it is important to appropriately choose the
attribute-based description so that, when coupled with the highly modular discrete
approaches, a general-purpose registration method is possible.

Gabor-attributes, which involve image convolution with Gaussian filters at
multiple scales and orientations, present an interesting choice for general-purpose
deformable registration. The reason is threefold. First, all anatomical images have
texture information, at some some scale and orientation, reflecting the underlying
geometric and anatomical characteristics. As a results, Gabor features that are
able to capture this information can be, and have been, applied in a variety of
studies. Second, Gabor filters are able to capture edge information that is relatively
encoded by various image modalities, thus making them suitable for both mono- and
multi-modal registration tasks. Third, their multi-scale and multi-orientation nature
render image elements more distinctive and better identifiable for establishing
correspondences. For example, the scale information helps differentiate voxels
that are the center of a small and a bigger plate, respectively. The orientation
information can help distinguish, for example, a voxel on a left-facing edge from
a voxel on a right-facing edge. Moreover, it is also possible to automatically select a
subset of Gabor attributes such that the information redundancy is reduced and the
distinctiveness of the descriptor is increased.

The effect of characterizing voxels using Gabor attributes (with and without
optimal Gabor attribute subset selection) is presented in Fig. 3 (reprinted from [62]).
These effects are contrasted to the effect of using only intensities and using Gray-
Level-Cooccurance-Matrix (GLCM) texture attributes through the use of similarity
maps between voxels from the source image (labeled under crosses) and all voxels
in the target image. The similarity between two voxels, x in the source image and y
in the target image, was defined as sim.x; y/ D 1

1CkA.x/�A.y/k2 , with A.�/ being the
attribute vector at each voxel. This similarity ranged from 0 (when the attributes
between two voxels differed infinitely) and 1 (when the attributes between two
voxels were identical). This figure shows that, as one replaced the intensity-based
similarity to (optimal-)attribute-based similarities, even very ordinal voxels under
the blue crosses were distinctively characterized or better localized in the space,
therefore we only needed to search for their corresponding voxels within a much
smaller range in the target image, largely removing matching ambiguities.

Let us detail in the next section how one can introduce Gabor-based attributes in
the case of graph-based deformable registration [62]. More specifically, let us detail
how the Markov Random Field energy (see Eq. (2)) changed in this regard.

3.2 Markov Random Field Registration Energy

The ease with which one can adopt attribute-based similarity criteria in the case
of graph-based formulations for deformable registration is evidence of their high
versatility and modularity. The key elements of the graphical model (i.e., graph
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Fig. 3 The similarity maps between special/ordinary voxels (labeled by red/blue crosses) in
the source (a.k.a, subject) images and all voxels in the target (a.k.a, template) images. As
correspondences were sought based on voxel similarities (subject to spatial smoothness con-
straints), (optimal-)Gabor-attribute-based similarity maps returned a much smaller search range
for correspondences. This figure is reprinted from [62]

construction, pairwise potentials, inference) need not change. One only needs to
slightly change the definition of the unary potentials.

The unary potentials need only be modified in two regards: i) to evaluate the
similarity criterion � over the attribute vectors A.�/; and ii) to optionally, as
suggested by [62], take into account a spatially-varying weighting parameterms.x/,
namely “mutual-saliency”, which automatically quantified the confidence of each
voxel x to establish reliable correspondences across images. Therefore, the modified
unary potentials are defined as:

Uico;p.lp/ D
Z

	S

ms.x/ � O!p.x/ � �.AS ı Tico;lp .x/; AT .x// dx: (10)
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Fig. 4 The computational times (in minutes) when combing the MRF registration formulation
with the discrete optimization strategy versus with the traditional gradient descent optimiza-
tion strategy. The discrete optimization strategy on the MRF registration formulation helped
significantly reduce the computational time. AM refers to attribute matching; MS refers to
mutual-saliency weighting, which is a second component in DRAMMS but was not described
in full detail in this section; basically it is a automatically computed weighting for adaptively
utilizing voxels based on how much confidence we have for those voxels to find correspondences
across images. FFD is the free form deformation transformation model as used in the MRF
registration formulation. And DisOpt and GradDes are the discrete optimization and gradient
descent optimization strategies. This figure is reprinted from [62]

3.3 Experimental Validation

In this section we present results obtained with an attributed-based discrete
deformable registration termed DRAMMS (Deformable Registration via Attribute
Matching and Mutual-Saliency) [62]. The presented results demonstrate the
advantageous computational efficiency of graph-based registration method in
comparison to the traditional gradient descent optimization strategy. Moreover, the
results demonstrate the generality, accuracy and robustness of coupling attributed-
based similarity criteria with graph-based formulations.

As far as the computational efficiency is concerned, Fig. 4 summarizes the com-
putational time that is required to register brain, prostate, and cardiac images using a
gradient descent optimization strategy and a discrete optimization strategy [39, 40],
respectively. The discrete approach requires significantly reduced computational
time.

In the second part of this section, we report results for DRAMMS in two different
cases: i) skull-stripped brain MR images; and ii) brain MR images from the large-
scale, multi-institutional, with-skull ADNI database.

In the first case, DRAMMS was compared to 11 other popular and publicly-
available registration tools, all used with the optimized parameters as reported
in [38] whenever applicable. In the public NIREP dataset containing T1-weighted
MR images (256� 300� 256 voxels and 1:0 � 1:0 � 1:0mm3/voxel) of 16 healthy
subjects, each registration method was applied to all the possible 210 pair-wise
registrations, leading to 2,520 registrations in total. DRAMMS had been shown
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Fig. 5 The average Jaccard overlap among all ROIs in all possible pair-wise registrations within
the NIREP database, for different registration tools. Reprinted from [57]

to yield the highest average Jaccard overlap among 32 regions-of-interest (ROIs)
annotated by human experts, indicating the high accuracy (Fig. 5). Such a trend had
also been observed in several other databases containing skull-stripped brain MR
images from healthy subjects [57].

In the second case, DRAMMS was validated using brain MR images from the
ADNI study. This study presents particular challenges because it contains data
acquired at different imaging vendors/centers, and some of those data contain
regions affected by pathologies. In Fig. 6 (re-printed from [57]) one can observe
that DRAMMS can align largely variable ventricles, whereas other registration tools
encountered great challenges. This is characteristic of the accuracy and robustness
of the attribute-based discrete deformable registration method.

These results emphasize the generality, accuracy and robustness of the attribute-
based discrete deformable registration. Because of these characteristics and its
public availability3, DRAMMS has found applications in numerous translational
studies including neuro-degenerative studies [17, 41, 72, 90], neuro-developmental
ones [21,33,60,70] as well as oncology studies [6,59]. These applications underline
the versatility of combining attribute-based similarity criteria with graph-based
formulations.

3DRAMMS is available at http://www.nitrc.org/projects/dramms/.

http://www.nitrc.org/projects/dramms/
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Fig. 6 Example registration results between subjects in the multi-site Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, by different registration methods. Blue arrows point
out regions where the results from various registration methods differ. Reprinted from [57]

4 Graph-based Geometric and Hybrid
Deformable Registration

The previous two sections presented MRF-based iconic (a.k.a.voxel-wise) registra-
tion using intensity- and attribute-based similarities. Typically, iconic approaches
evaluate the similarity criteria over the whole image domain and have the potential
to better quantify and represent the accuracy of the estimated dense deformation
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field, albeit at an important computational cost. Nonetheless, iconic approaches do
not explicitly take into account salient image points, failing to fully exploit image
information. Moreover, the performance of iconic methods, especially methods
based on continuous optimization, is greatly influenced by the initial conditions.

On the other hand, geometric methods utilize only a sparse subset of image
elements that correspond to salient geometry or anatomy. Exploiting relevant
information results in increased robustness. Nonetheless, the quality of the estimated
deformation field is high only on the vicinity of the landmarks.

Hybrid registration methods exploit both types of information towards bridging
the gap between the two basic classes of registration and enjoying the advantages of
both worlds. Iconic and geometric information are integrated in an unified objective
function and the solutions of the two problems satisfy each other. In this setting,
iconic methods may profit from geometric information in the cases they encounter
difficulties arising, for example, from large deformations (e.g., the largely different
ventricle size in Alzheimer’s Disease population), or from missing correspondences
such as the existence of pathologies. At the same time, geometric correspondences
can be refined based on the iconic information that is available throughout the image
domain.

In this section, we consecutively study the graph-based formulation of geometric
and hybrid deformable registration. Similar to the previous sections, we first study
the two problems in their continuous form and show how they can be decomposed
in discrete entities. Then, we detail the graph-based formulation and present
experimental results.

4.1 Decomposition into Discrete Deformation Elements

4.1.1 Geometric Registration

A prerequisite for geometric registration is the availability of landmarks that encode
salient geometry or anatomy. Landmarks can be annotated by experts, or, to reduce
intra-/inter-expert variability, by (semi-)automated methods. The latter is an open
problem and an active topic of research.

Automatic approaches to detect landmarks include, but are not limited to, edge
detection [31, 66], contour delineation [45], anatomical structure segmentation
[9, 12], scale space analysis [36, 46, 63], and feature transformation (e.g., SIFT
[37, 50, 89], SURF [7, 92]). In [61, 91], for example, the authors used Laplacian
operations to search for blob-like structures, and used the centers of the blobs as
landmarks. In [58], the authors used regional centers or edges at various scales and
orientations as landmarks, which were of strong response to Gabor filters. While a
detailed survey of landmark detection is outside the scope of this section, we want
to emphasize that the described graph-based formulation can seamlessly integrate
landmark information coming from any algorithm or expert.
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Given two sets of landmarks K .� 2 K/ and ƒ .� 2 ƒ/, one aims to estimate
the transformation Tgeo that will bring them into correspondence by minimizing an
objective function of the form of Eq. (1). More specifically, the goal is to bring every
landmark belonging to the set K as close as possible to the landmark in the set ƒ
that is most similar to it. In other words, the matching term is expressed as:

Mgeo.K ı Tgeo; ƒ/ D 1

n

nX

iD1
ı.Tgeo.�i /;e�i / (11)

where ı measures the Euclidean distance between two landmark positions, and

e�i D arg min
�j
�.Tgeo.�i /:�j /: (12)

Note that the Euclidean position of the landmarks � and � is denoted in bold.
As far as the regularization term Rgeo is concerned, it aims to preserve the

smoothness of the transformation. More specifically, it aims to locally preserve the
geometric distance between pairs of landmarks:

Rgeo.Tgeo/ D 1

n.n � 1/
nX

iD1

nX

jD1; j 6Di
k.Tgeo.�i / � Tgeo.�j // � .�i � �j /k: (13)

This implies the assumption that a linear registration step that has accounted for
differences in scales has been applied prior to the deformable registration.

An equivalent way of formulating the geometric registration problem consists of
first pairing landmarks � 2 K with the most similar in appearance landmarks � 2 ƒ
and then pruning the available pairs by keeping only those that are geometrically
consistent as quantified by the regularization term (Eq. (13)). Let us note that, in
both cases, the problem is inherently discrete.

4.1.2 Hybrid Registration

As discussed in the introduction, there are various ways of integrating geometric and
iconic information. The most interesting, and potentially more accurate, is the one
that allows both problems to be solved at the same time through the optimization of
a universal energy that enforces the separate solutions to agree. This is possible by
combining the previous energy terms for the iconic and geometric problem along
with a hybrid term that acts upon the separate solutions:

H .Tico;Tgeo/ D 1

n

nX

iD1
kTico.�i /� Tgeo.�i /k: (14)



Graph-based Deformable Image Registration 351

Note that we only need to enforce the agreement of the two solutions in the landmark
positions. If we now also consider a connection between control point displacements
D and landmark displacements, the previous relation can be rewritten as:

H .Tico;Tgeo/ D 1

n

nX

iD1
k�i C ugeo.�i /� �i �

kX

jD1
!j .�i /djk; (15)

where ugeo.�i / D e�i � �i , i.e. the displacement for the correspondence of the two
landmarks �i ande�i . As a principle, we would like this displacement to be ideally
equal to the one that is given as a linear combination of the displacements of the
control points at the position of a landmark. However, we can relax the previous
requirement in order to increase the computational efficiency of the method. If
we apply the triangular inequality and exploit the fact that the coefficients !j are
positive, the coupling constraint is redefined as:

H .Tico; Tgeo/ � 1

n

nX

iD1

kX

jD1
!j .�i /kugeo.�i / � dj k: (16)

The previous constraint comprises only pairwise interactions between discrete
elements.

4.2 Markov Random Field Registration Energy

Having identified the discrete elements for both geometric and hybrid registration,
let us map them to MRF entities.

4.2.1 Geometric Registration

Let us now introduce a second graph Ggeo D �
Vgeo;Egeo

�
for the geometric entities

K;ƒ. We recall that they are two sets of landmarks having different cardinalities
and we seek the transformation which will bring each landmark into correspondence
with the best candidate. Equivalently, we may state that we are trying to solve for
the correspondence of each landmark, which naturally results in a set of sparse
displacements.

The second graph consists of a set of vertices Vgeo corresponding to the set of
landmarks extracted in the source image, i.e. jVgeoj D jKj. A label assignment
lp 2 Lgeo WD ƒ (where p 2 Vgeo) is equivalent to matching the landmark �p 2 K to
a candidate point lp 
 � 2 ƒ. Assigning a label lp implicitly defines a displacement
ugeo;lp .�p/ D � � �p , since �p is mapped on the landmark lp .
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According to Eq. (12), the unary potentials are defined as:

Ugeo;p.lp/ D %.�p; lp/: (17)

The two different though equivalent ways to see the label assignment problem
are depicted in the previous equation. Assigning a label lp can be interpreted as
applying a transformation Tgeo;lp D �p C ugeo;lp .�p/ or stating that the landmark �p
corresponds to the lp. Contrary to the iconic case, the set of transformations that can
be applied is specified by the candidate landmarks and is sparse in its nature.

There is a number of ways to define the dissimilarity function %. One approach
would be to consider neighborhood information. That can be easily done by
evaluating the criterion over a patch centered around the landmarks,

Ugeo;p.lp/ D
Z

	S;p

%.S ı Tgeo;lp .x/; T .x//dx; (18)

where 	S;p denotes a patch around the point �p . Another approach is to exploit
attribute-based descriptors and mutual saliency [58] and define the potential as:

Ugeo;p.lp/ D exp

�
�ms.�p; lp/ � sim.�p; lp/

2�2

�
: (19)

where � is a scaling factor, estimated as the standard deviation of the mutual saliency
values of all the candidate pairs.

The regularization term defined in Eq. (13) can be encoded by the edge system
Egeo of the graph. In this setting, the regularization term can be expressed as:

Egeo;pq.lp; lq/ D k.Tgeo;lp .�p/� Tgeo;lq .�q//� .�p � �q/k: (20)

The pairwise potential will enforce an isometric constraint. Moreover, by consider-
ing the vector differences flipping of the point positions is penalized.

Last, it is interesting to note that the same graph Ggeo is able to encode both ways
of formulating the geometric registration problem that were presented in Sect. 4.1.1.
This model was presented in [58] and [76].

4.2.2 Hybrid Registration

In this case, the graph-based formulation will consist of the discrete model for
the iconic and geometric registration along with a coupling penalty (Eq. (16)).
Therefore, the graph that represents the problem comprises Gico and Ggeo along
with a third set of edges Ehyb containing all possible connections between the
iconic random variables and the geometric variables. The pairwise label assignment
penalty on these coupling edges is then defined as:

Phyb;pq.lp; lq/ D !q.�p/
��ugeo;lp .�p/ � .dq C lq/

�� ; (21)
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Fig. 7 An example
landmark pair (denoted
by red and blue crosses)
detected based on the
Gabor response-based
similarity metric and the
mutual-saliency measure.
(a) Source and (b) target
images. This figure is
re-printed from [58]

Fig. 8 The Dense
deformation fields
generated by (a) M1 – no
MRF regularization and
(b) M2 – with MRF
regularization. This figure
is re-printed from [58]

where p 2 Vgeo and q 2 Vico, lp 2 Lgeo and lq 2 Lico, and .p; q/ 2 Ehyb. Such
a pairwise term couples the displacements given by the two registration processes
and imposes consistency. To conclude, the coupled registration objective function
is represented by an MRF graph Ghyb D .Vgeo [ Vico;Egeo [ Eico [ Ehyb/ with its
associated unary and pairwise potential functions. This model was presented in [76].

4.3 Experimental Validation

4.3.1 Geometric Registration

Figure 7 shows a typical landmark pair detected by Gabor response and matched by
the MRF formulation. Many such pairs found by the MRF formulation resulted in a
deformation that was smoother with the MRF regularization rather than without, as
can be seen in Fig. 8.

4.3.2 Hybrid Registration

In order to validate the coupled geometric registration method in a way that is
invariant to landmark extraction, a multi-modal synthetic data set is used. In this
setting, the ground truth deformation is known allowing for a quantitative analysis
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Table 1 End point error (in millimeters) for the registration of the Synthetic MR Dataset. The grid
spacing is denoted by h. This figure is reprinted from [25]

Iconic (h D 60 mm) Hybrid (h D 60 mm) Iconic (h D 20 mm) Hybrid (h D 20 mm)

# mean std mean std mean std mean std

1 1.33 0.69 1.25 0.59 1.38 1.21 0.98 0.61
2 1.32 0.75 1.18 0.53 2.46 3.21 1.06 0.68
3 1.44 0.97 1.22 0.56 2.05 2.40 1.03 0.67
4 1.40 0.74 1.16 0.50 1.40 1.02 1.08 0.69
5 1.23 0.60 1.15 0.56 1.38 1.01 1.03 0.67
6 1.35 0.74 1.24 0.62 1.58 1.39 1.05 0.71
7 1.16 0.56 1.09 0.50 1.45 1.18 1.05 0.67
8 1.29 0.68 1.23 0.58 1.93 2.61 1.11 0.79
9 1.23 0.62 1.19 0.53 1.72 1.89 1.04 0.71
10 1.54 1.08 1.19 0.58 2.60 3.43 1.05 0.73

all 1.33 0.11 1.19 0.05 1.79 0.45 1.05 0.03

of the registration performance regarding both the dense deformation field accuracy
and the quality of the established landmark correspondences.

The goal of this experiment is to demonstrate the added value from considering
geometric information on top of standard iconic one. Thus, a comparison of the
proposed framework with and without the geometric registration part takes place.
Regarding the results, if we look at the registration accuracy in terms of end point
error (Table 1), we see that the coupled iconic geometric registration method is able
to further improve the results of the iconic one. This is evident, as the end point error
has decreased by taking advantage of the geometric information.

As we expect the hybrid approach to be able to cope with large displacements
better than the pure iconic one, we repeated the experiments by decreasing the
initial control point spacing to 20 mm and thus limiting the maximum amount of
deformation that can be handled. The results are also reported in Table 1. In this
case, we can observe a more significant difference between the performance of
the two proposed approaches. Therefore, we should conclude that the additional
computational cost demanded by the coupled approach can be compensated by the
better quality of the results.

5 Conclusion

This chapter presents a comprehensive overview of graph-based deformable regis-
tration. Discrete models for the cases of deformable registration involving point-
wise intensity-based similarity criteria, statistical intensity-based criteria, attribute-
based ones as well as for geometric and hybrid registration were presented.
The increased computational efficiency, accuracy and robustness of graph-based
formulations were also demonstrated.
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I.A. Kakadiaris, U. Kurkure, A. Bandekar, S. O’Malley, and M. Naghavi

Abstract As cardiac imaging technology advances, large amounts of imaging data
are being produced which are not being mined sufficiently by current diagnostic
tools for early detection and diagnosis of cardiovascular disease. We aim to develop
a computational framework to mine cardiac imaging data and provide quantitative
measures for developing a new risk assessment method. In this chapter, we
present novel methods to quantify pericardial fat in non-contrast cardiac computed
tomography images automatically, and to detect and quantify neovascularization in
the coronary vessels using intra-vascular ultrasound imaging.

1 Introduction

Cardiovascular disease has long been the leading cause of death in developed
countries, and it is rapidly becoming the number one killer in developing countries
[3]. In 2006, it is estimated that more than 19 million people worldwide experienced
a life-threatening heart attack. In the US alone, 1.4 million people suffer from a heart
attack annually. Of the 140 million Americans between the ages of 35-44, 17.4 %
of males (24.36 million) and 13.6 % of females (19.04 million) have coronary heart
disease. Approximately 50 % of heart attack related deaths occur in people with no
prior symptoms [6]. Hence, sudden heart attacks remain the number one cause
of death in the US. Unpredicted heart attacks account for the majority of the $280
billion burden of cardiovascular diseases.
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Coronary artery disease occurs as a result of atherosclerosis, a condition in which
a fatty substance called plaque builds up on the walls of the arteries. If these plaques
rupture, blood clots form that obstruct the flow of blood to the heart and may cause a
heart attack, which can often be fatal. Some plaques present a particularly high risk
of rupture and a subsequent heart attack. All types of atherosclerotic plaques with a
high likelihood of thrombotic complications and rapid progression are recognized as
vulnerable plaques. The field of cardiology has witnessed a major paradigm shift in
its determination of patients at risk of coronary artery disease. In the past, increasing
fat deposition and gradual inward luminal narrowing of coronary arteries were
thought to be the culprits in heart attacks. Today, cardiovascular specialists know
that heart attacks are caused by inflammation of the coronary arteries and thrombotic
complications of vulnerable plaques. As a result, the discovery of vulnerable plaque
has recently evolved into the definition of “vulnerable patient.” A vulnerable patient
is defined as a person with more than 10 % likelihood of having a heart attack in the
next 12 months. Over 45 world leaders in cardiology have collectively introduced the
field of vulnerable patient detection as the new era in preventive cardiology [7, 8].

Until a few years ago many cardiovascular specialists did not have many of
the novel diagnostic tools that are becoming increasingly available today. These
emerging diagnostic tests include: 1) novel genetic and serum biomarkers such as
CRP and inflammatory markers; 2) noninvasive imaging tests such as Computed
Tomography (CT), and CT Angiography (CTA), and ultrasound-based intima-
media thickness measurement; and 3) new interventional catheter-based diagnostic
tools (e.g., intravascular ultrasound (IVUS)). All of these provide unprecedented
opportunities for early detection and risk stratification of subjects at risk of heart
attack. A non-profit initiative pioneered by Association for Eradication of Heart
Attacks (AEHA), Screening for Heart Attack Prevention and Education (SHAPE),
presents a practice guideline for doctors to implement public screening of at-risk
populations, calling for men 45 and older and women 55 and older to undergo a
comprehensive vascular health assessment [6]. It comprises a pyramid of tests with
serum tests and Framingham Risk Score assessment at the bottom of the pyramid,
non-invasive imaging such as CT and CTA in the middle, and IVUS imaging at
the top. If a patient is found to be at risk with the tests at one level, then s/he
is referred to tests in the next level to allow better localization. Considering the
large amounts of data that the SHAPE program will produce, there is an urgent
need for computational tools to assist in screening for the conditions that underlie
sudden cardiac events. Existing cardiovascular risk scoring methods do not take
into account all the wealth of information that is available in imaging data. The
reason is two-fold: 1) there is a lack of automatic techniques to mine the data
for the required information, and 2) validation in large epidemiological studies is
needed to determine which type of information will offer additive predictive value.
Our long term vision is to contribute to the development of quantitative methods to
assess cumulative risk of vulnerable patients by developing new techniques to mine
additional information from their imaging data. In this chapter, we will focus on
presenting methods for the analysis of CT and IVUS data.



Cardiovascular Informatics 365

On one hand, CT can provide information to assess abdominal and pericardial
fat. Recent evidence indicates that pericardial fat may be a significant cardiovascular
risk factor [16]. Although pericardial fat is routinely imaged during CT for coronary
calcium scoring, it is currently ignored in the analysis of CT images. The primary
reason for this is the absence of a tool capable of automatic quantification of
pericardial fat. Recent studies on pericardial fat imaging were limited to manually
outlined regions-of-interest and preset fat attenuation thresholds, which are subject
to inter-observer and inter-scan variability. In general, there is an increased demand
for automated, robust, and accurate quantitative measures of these tissues in the
heart region. An accurate segmentation allows for quantitative and morphological
analysis. Thus, the development of fully automated methods which will provide
unbiased and consistent results is highly desirable.

On the other hand, IVUS, which is a catheter-based ultrasound technology,
can provide real-time video of the interior of a blood vessel at video frame
rates (10 to 30 frames/s). It is used routinely for the detailed assessment of
vessel morphology and atherosclerotic plaque, often as a guide for interventional
procedures (e.g., angioplasty) where alternative non-invasive imaging techniques
such as X-ray angiography are insufficient. Recent years have witnessed a plethora
of advancements [11, 12] in IVUS technology in an effort to extract additional
diagnostic information from these sensors. A number of techniques have been
developed to allow increased performance of IVUS contrast imaging, in which
an echogenic solution of microbubbles is incorporated into the bloodstream as
a tracer of perfusion. Unfortunately, the newest methods for contrast imaging
remain experimental and tend to require non-standard IVUS hardware [4] (e.g.,
harmonic imaging catheters), non-standard contrast agents, or both. In this paper,
we present a computer-aided technique [5, 17, 18] which allows IVUS contrast
imaging to be accomplished with commercially-available IVUS systems and off-
the-shelf microbubble contrast agents. Our contributions include a novel IVUS
contrast imaging protocol, as well as the algorithms necessary to process the
acquired imagery, that enabled quantification of vasa vasorum (VV) presence in
vivo for the first time.

Specifically, in this chapter, we describe a unified knowledge-based med-
ical image segmentation framework and a multi-class, multi-feature fuzzy
connectedness-based tissue classification and segmentation method, which were
used for automated detection and quantification of pericardial fat in non-contrast
cardiac CT images. We also present our recently developed novel imaging protocol
for contrast imaging in IVUS, employing stationary-catheter sequences, along with
the computational tools necessary for frame-gating, contour-tracking and processing
the resulting data, to image the extra-luminal perfusion due to blood flow through
the VV.

The rest of the chapter is organized as follows. In Sect. 2, we present methods
for CT data analysis. In Sect. 3, we present methods for IVUS data analysis. In
Sect. 4, we present the validation results from our methods. In Sect. 5, we discuss
the advantages and limitations of our work.
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2 CT Data Analysis

In this section, we describe a unified knowledge-based medical image segmenta-
tion framework [2]. We present a knowledge-based atlas which includes spatial
information from a probabilistic atlas, texture-based features relationships between
organs in the atlas, and image analysis methods for segmentation of specific tissues
or organs in the atlas. Our framework consists of a training phase and a deployment
phase. In the training phase, we construct a probabilistic atlas of the region of
interest and learn various parameters for each component in the framework. In
the deployment phase, we use the probabilistic atlas for initialization of the region
of interest and employ the learned parameters for further refinement of the region
of interest using the image analysis methods predefined for the segmentation of
a specific organ or tissue in the region of interest. Such a unified knowledge-
based framework can be generalized for the segmentation of various human body
regions such as the head, neck, pelvis, and other anatomical structures. We also
present a multi-class multi-feature region classification and segmentation method
based on fuzzy-connectedness formulation for fat tissue detection. By relaxing the
connectedness criterion, this method can be used for fat tissue classification [1].

Knowledge-based atlas: We consider the data D to be a bounded subset of R3. We
assume that we have a priori knowledge of the N � 1 organs present in the region
D. Our knowledge-based atlas K used to describe the region of interest D consists
of four elements, namely, a probabilistic atlas (P), texture-based features (T ),
relationships .R/, and specific segmentation methods .M / for organs in the region
D, K .D/ D fP ; T ; R; M g. We construct a probabilistic atlas P for our data
D, which is a map that assigns to each voxel a set of probabilities to belong to each
of the organs, P(D) D (p0, p1, p2, . . . , pN), where pi is the probability for the voxel
to belong to organ i, (1 � i � N). All the organs other than those that are manually
delineated are assigned the probability p0 where p0 D 1–˙N

k D 1pk. The probabilistic
atlas is constructed in the training phase of the frame-work. We initialize the organs
present in the atlas during deployment using registration techniques described
in [15]. This helps us to gain insight on the spatial information of different organs
and variations with respect to one another, and also guides automated segmentation
procedures.

Every organ will present different texture-based features depending on the image
modality and the tissue type of the organ. We denote the set of texture-based features
by, T D fT1, T2, . . . , TNg, where Ti D [f i

1, f i
2, : : : , f i

k] is set of optimal texture-based
features selected in the training phase for discrimination for organ i, (1 � i � N)
and k is the number of features for organ i. The optimal texture-based features are
selected in the training phase of our framework. Texture-based features are used by
the image analysis methods to segment the organs and refine the initialization by the
probabilistic atlas.

Relationships are a set of rules which describe relationships between two
organs in the region. Based on prior anatomical knowledge about the organs, we
consider two types of relationships: hierarchical (e.g., child-parent) and spatial
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(e.g., posterior-anterior). We denote the set of relationships byR D fRr,tjr, t organsg,
where Rr,t 2 fposterior, anterior, right, left, child, parentg, r is the reference organ
and t is the target organ. For example, Ri,j D child means that, the reference organ i
(e.g., ventricle) is the child of the target organ j (e.g., heart); while Ri,j D right
implies that the reference organ i (e.g., right lung) is to the right of the target organ j
(e.g., heart).

Image analysis methods are specific methods set during the training phase for
a specific organ. We denote the set of all methods by, M D fM1, M2, . . . ,
MKg. Due to high anatomic variations and the large amount of structural information
found in medical images, global information based segmentation methods yield
inadequate results in region extraction. We use the knowledge-based atlas to guide
the automatic segmentation process and then use specific image analysis methods
for segmentation of anatomical structures. We examine the performance of these
methods in the training phase and accordingly select methods with higher accuracy
and true positive rate as well as lower false positive rate. One of the segmentation
methods used is the multi-class multi-feature fuzzy connectedness method, which
is described in the following section.

Multi-class, multi-feature fuzzy connectedness: The anatomical objects in med-
ical data are characterized by certain intensity level and intensity homogeneity
features. Also, additional features can be computed to characterize certain properties
of a tissue class. Such features can be used to distinguish between different types
of tissue classes. Our multi-class, multi-feature fuzzy connectedness method is able
to take advantage of multiple features to distinguish between multiple classes for
segmentation and classification.

We define three kinds of fuzzy affinities: local fuzzy spel affinity, global object
affinity, and global class affinity. The local fuzzy spel affinity (��) consists of three
components: 1. the object feature intensity component (��), 2. the intensity homo-
geneity component (� ), and 3. the texture feature component (�®). The similarity
of the pixels’ feature vectors is computed using the Mahalanobis metric:m2

d.c!d/ D�
X.c!d/ � X.c!d/

�
T S�1

.c!d/

�
X.c!d/ � X.c!d/

�
; where X.c!d/;X.c!d/;S.c!d/ are

the feature vector, the mean feature vector, and the covariance matrix in the direction
from c to d, respectively. The bias in intensity in a specific direction is accounted
for by allowing different levels and signs of intensity homogeneities in different
directions of adjacency [13]. Thus, this formulation accounts for different levels of
the increase or decrease in intensity values in the horizontal (left, right) or vertical
(up, down) directions. The advantage of using the Maha-lanobis metric is that it
weighs the differences in various feature dimensions by the range of variability in
the direction of the feature dimension. These distances are computed in units of
standard deviation from the mean. This allows us to assign a statistical probability to
the measurement. The local fuzzy spel affinity is computed as:�� (c, d) D 1

1Cmd.c!d/

in order to ensure that�� (c, d) 2 Z2 ! [0, 1] and it is reflexive and symmetric, where
Z2 is a set of all pixels of a two-dimensional Euclidean space.

Fuzzy connectedness captures the global hanging-togetherness of pixels by using
the local affinity relation and by considering all possible paths between two, not
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Fig. 1 Pericardial fat
detection in CT. (a) Original
CT image, (b) all labels
overlaid after atlas
initialization, (c) all labels
after segmentation, and
(d) pericardial fat overlaid

necessarily nearby, pixels in the image. It considers the strengths of all possible
paths between given two pixels, where the strength of a particular path is the weakest
affinity between the successive pairs of pixels along the path. Thus, the strongest
connectedness path between the given two pixels specifies the degree of global
hanging togetherness between the given two pixels. Global object affinity is the
largest of the weakest affinities between the successive pairs of pixels along the
path pcd of all possible paths Pcd from c to d and is given by �K(c,d) D maxpcd 2Pcd

fmin1 � i � m[��(c(i), c(iC1))]g.
In our framework, the global object affinity and local pixel affinity are assigned

only if the global class affinity (or discrepancy measure) of c and d belonging to
the neighboring objects’ classes is more (or less) than a predefined value, 
 (note
that the affinity value has an inverse relationship with the Mahalanobis distance
metric in our formulation). The minimum discrepancy measure J(c,d) D min1� i �
b md(c, d), where b is the number of neighboring classes of the target object, gives
the maximum membership value of a pixel pair belonging to a certain class. If J(c,d)
< 
 , and the class to which the pixel pair belongs is not the target object class, then
the local pixel affinity ��(c,d) is set to zero, else its local pixel affinity is computed
as described earlier.

Since pericardial fat tissue appears as disjoint sets of pixels distributed all over in
the thoracic cavity, we relax the spatial connectedness constraint in our formulation
to allow scattered tissue classification (Fig. 1). Our segmentation algorithm uses
dynamic statistics of fat tissue for automatic segmentation of the fat tissue. We
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Fig. 2 Top: (a) Flowchart of an analysis of a contrast-enhanced IVUS sequence. From left to
right - the original sequence, the sequence decimated by gating, the contour-tracking step, and
difference imaging and overlay of results. Bottom: Demonstration of registration between histology
and IVUS. (b) A stained histological image, (c) an IVUS image to which the histology image will
be co-registered by manually defining corresponding landmarks, (d) deformed histology image
based on the landmarks, and (e) the IVUS image highlighting the correspondence. Note the
excellent agreement of our analysis with the histology

estimate the statistics of fat tissue by using a sample region around a seed point,
hence the selection of the seed point is very critical. We obviate the need for manual
seed selection by automatic seed initialization using relationships defined in the
training phase. Thus, instead of applying a space-invariant global threshold value,
our method adapts the threshold value locally in the feature space. In addition to fat
segmentation in CT, this method has also been used for left ventricular segmentation
in MRI [14].

3 IVUS Data Analysis

In this section, we introduce a number of techniques for IVUS image analysis [9,
10] which enable the use of difference imaging to detect those changes which occur
in the IVUS imagery due to the perfusion of an intravascularly-injected contrast
agent into the plaque and vessel wall. To determine if a particular physical region of
the frame experiences an increase in echogenicity due to contrast perfusion into the
wall, it is necessary to compare the appearance of that region under IVUS before
and after the introduction of contrast. Since multiple sources of motion are present,
we follow three steps to detect perfusion: motion compensation, image subtraction
and deriving statistics from the resulting difference images (Fig. 2(a)).
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The goal of two-step motion compensation (frame gating and contour- tracking)
is to provide pixelwise correspondence between a region of interest (e.g., the
plaque) in each frame. Unlike previous efforts utilizing ECG signals, we perform
an appearance-based grouping of frames. By formulating the problem in terms of
multidimensional scaling (MDS), a number of other useful operations may be per-
formed. The MDS transform places points defined only by inter-point proximities
into a metric space such that the proximities are preserved with minimal loss. In our
context, this allows the creation of a frame-similarity space which may be employed
as a concise visual and numerical summary of an entire frame sequence. Clustering
this space allows sets of frames with various similarity properties to be extracted
efficiently. We begin by taking our n-frame sequence and creating a square matrix
D in which each entry di,j represents the dissimilarity between frames i and j. As
normalized cross-correlation returns values in the range [�1, C1], we clamp these
values to [0, C1] and subtract them from one. This results in a matrix with zero
along the diagonal and values on the range [0, 1] everywhere else. Next, we let
A be the matrix where ai;j D – 1

2
d 2i;j and let Cn D In � 1

n
1n1

T
n ; where In is the

n � n identity matrix and 1n is the unit vector of length n. Let B D CnACn. We
let œ1 � � � � � œn and v1 , . . . , vn be the eigenvalues and associated eigenvectors
of B, and p be the number of positive eigenvalues. By forming the matrix Y D�p

œ1v1; : : : ;
p
œpvp

�
, we obtain a p-dimensional point cloud in which each frame

is represented in space by a single point. The distance between any two points i and
j in Y approximates the dissimilarity between those frames as represented in D. We
use randomly-initialized k-means with multiple runs to converge to a lowest-error
clustering [9, 10].

To eliminate residual motion artifacts after frame gating, a more precise contour
tracking operation is performed to provide pixel-wise correspondence. Two contours
are drawn which define the inner and outer boundaries. Initialization for a single
contour comes in the form of a manually-drawn contour on the first frame. Contours
are found for all frames after the first by pairwise matching. Our method follows a
two-step approach to complete the process: a rigid alignment step followed by an
elastic refinement step. In the rigid step, starting with static-image contour x, the
following rigid transformations are modeled to match the contour to the moving
image: ˙x translation, ˙y translation, ˙ rotation, and ˙ dilation. Then, we proceed
using a gradient ascent. In the elastic step, given the contour x0, which is itself a
rigid transformation of the initial contour x, we deform x0 elastically in order for it
to better conform to the image features associated spatially with x. The output of this
elastic matching step is a refined contour, x00. We define a contour energy function
for any contour, and by manipulating x0 we seek to maximize the energy function
to produce x00. Lastly, if information about of the regions on the inside and outside
of the contour is known, it is possible to use histogram statistics to influence the
deforming contour.

Given tracked contour pairs for each image in our gated IVUS sequence, the
region between the contours is resampled from image space into a rectangular region
space. Difference imaging is accomplished by subtracting the pre-injection baseline
from all region images in the gated sequence. As the same baseline is subtracted
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from both the pre- and post-injection frames, it is simpler to determine which
deviations from the baseline occur as a result of the contrast injection and which are
the result of noise unrelated to the presence of contrast. To quantify enhancement in
the difference-imaged regions of interest after they have been mapped back to the
IVUS image space, we consider the set of pixels in the region of interest which are
flagged as enhanced. Averaging the grey levels of these enhanced pixels, we obtain
the average enhancement per enhanced pixel (AEPEP) statistic. Each frame in our
gated sequence will have one associated AEPEP value; due to noise, pre-injection
frames will have some positive value but, if enhancement occurs, the post-injection
value will be greater.

4 Results

We applied our knowledge-based framework to detect and quantify the pericardial
fat tissue in 300 non-contrast cardiac CT scans using the multi-class, multi-feature
fuzzy connectedness method. We compared the results of our method (Automatic
Fat Analysis in Computed Tomography - AFACT) to expert manual segmentations
of pericardial fat. The manual delineation of the fat region in the CT images,
performed by experienced physicians/radiologists, was used as the gold standard.
We evaluated the results of our algorithm by computing accuracy, true positive
rate and true negative rate. Specifically, we computed the false negatives (FN),
false positives (FP), true negatives (TN), and true positives (TP) by computing
the number of pixels that were classified as the background and the fat, both
correctly and incorrectly. For 300 subjects, the mean accuracy for pericardial fat
was 98.13 % ˙ 2.2 %. The mean true negative rate was 99.48 % ˙ 2.2 %. Finally,
the mean true positive rate was 86.63% ˙ 9.32% [2].

In vasa vasorum imaging, from 35 patients that were screened initially, 19 patients
met the study criteria. The data from three patients were not analyzed due to
poor image quality of the arterial layers, suboptimal infusion of the microbubbles,
and displacement of the catheter. From the 16 patients, ten had unstable angina,
four had ST elevation acute myocardial infarction, and two had non-ST elevation
myocardial infarction. We performed three different types of analysis to evaluate
the performance of our method. First, we examined the stability of the sequences
before and after gating. “Stability” is measured as the mean cross-correlation
between every frame pair in a sequence; this is performed for both the gated and
ungated sequences. A significant increase was observed in mean cross-correlation
for gated sequences (from 0.76 ˙ 0.08 to 0.84 ˙ 0.06). Second, for three normal
sequences, the luminal border of 100 frames was manually segmented twice by
the same observer. One of these sets of segmentations was used as a ground truth
against which the other was compared; the root-mean-squared distance between
corresponding points on these contours were then measured for each frame as a
metric of error. All cases manifested the expected difference in error between our
algorithm (2.73 ˙ 0.47, 2.78 ˙ 0.91, 4.46˙0.92 for cases 1, 2, and 3 respectively)
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and normal intra-observer error (2.57˙0.74, 3.35˙1.11, 1.96˙0.97 for cases 1, 2,
and 3 respectively). Note that these sequences were ungated, and hence in practice
when we employ our gating algorithm as a pre-processing step, we can expect the
error of the contour-tracking step to be lower. Last, contrast-enhanced IVUS studies
were performed on the recordings from the 16 human patients. We observed an
increase in the mean grey level of all examined regions as expressed by AEPEP
from pre- to post-injection of microbubbles image. The percent increase of AEPEP
in the region of interest after the injection of microbubbles was less than 10 % in 3
patients and 10–40 % in 13 patients [17, 18].

5 Discussion

We have presented a novel method that allows detection and quantification of
pericardial fat in CT. Instead of using a fixed threshold, which is the standard
method to detect fat in CT, our method is data-driven and adapts to the variations
in individual scans. In addition to grey-level information, our method also uses
additional derived information (e.g., inhomogeneity and texture features to detect
pericardial fat). Our method is fully automatic except for the manual selection of
top and bottom axial slices containing the heart. To our knowledge, our method is
the first to use multiple features for adaptive data-driven classification of pericardial
fat in CT. Clinical investigation of our fat quantification method is warranted to
evaluate the role of pericardial fat in risk assessment.

We also presented a method which, for the first time, enabled (in vivo) imaging
of extra-luminal perfusion under IVUS. Current evidence and suggests that this
perfusion is related to the presence of VV microvessels which, in turn, are a potential
marker for plaque inflammation and consequent vulnerability. The significant
changes in the IVUS signal after microbubble passage leave no doubt as to its
ability to show contrast enhancement. The primary limitation of our method is
the requirement that we image every area of interest twice: once before and once
after the injection of contrast. However, this limitation is necessitated by our desire
to restrict ourselves to currently-available IVUS hardware and standard contrast
agents. As such, contrast-enhanced IVUS presents a promising imaging approach to
the assessment of plaque vulnerability. We are currently in the process of validating
our results with histological ground truth to obtain an estimate of the sensitivity of
our approach in a clinical setting (Fig. 2(b-e)).

6 Conclusion

Our long term goal is to develop a new risk assessment scoring index for a patient’s
risk of a cardiovascular event. If these scores are to be used as markers of subclinical
disease, they should provide the best representation of subclinical information.
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This requires optimal use of all available data. Currently used tools do not use the
wealth of information present in the images. In this chapter, we presented novel
methods to mine information from CT and IVUS data to obtain pericardial fat
measurements and to image extra-luminal perfusion due to blood flow through the
vasa vasorum. The results we obtained are encouraging, and show the possibility of
these methods being used in clinical settings.
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Rheumatoid Arthritis Quantification
using Appearance Models

G. Langs, P. Peloschek, H. Bischof, and F. Kainberger

Abstract Rheumatoid arthritis (RA) is a chronic disease that affects joints of
the human skeleton. During therapy and during clinical trials, the accurate and
precise measurement of the disease development is of crucial importance. Manual
scoring frameworks exhibit high inter-reader variability and therefore constrain
therapeutical monitoring or comparative evaluations during clinical trials.

In this chapter an automatic method for the quantification of rheumatoid arthritis
is described. It is largely based on appearance models, and analyses a radiograph
with regard to the two main indicators of RA progression: joint space width
narrowing and erosions on the bones.

With the automatic approach a transition from global scoring methods that
integrate over the entire anatomy, towards local measurements and the tracking of
individual pathological changes becomes feasible. This is expected to improve both
specificity and sensitivity of imaging biomarkers. It can improve therapy monitoring
in particular if subtle changes occur, and can enhance the significance of clinical
trials.
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Fig. 1 A joint affected by synovitis and succeeding RA exhibiting joint space narrowing and
erosive destructions in the bare area

1 Introduction

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease involving
joints on e.g. the fingers, wrists and feet. It is chronic and progressive, and can result
in severe pain. Recurring inflammation of the affected joints (i.e. arthritis) leads
to a degradation of cartilage (joint space narrowing) and to erosive destructions
(erosions) of the bone. If not treated properly RA can lead to the complete
destruction of the joints. It affects physical function and mobility, and causes
substantial short-term and long-term morbidity and increased mortality.

In Fig. 1a a joint affected by the disease is depicted. On the left side the course
of the synovitis is shown. On its inner side the joint capsule is covered by the
synovia. During the early phases of the disease the synovia becomes thicker and
hypervascularized, also called synovitis (i.e. inflamed synovia, or pannus). The
synovitis invades the bone and destroys the cartilage starting at the bare areas where
the bone is not protected by cartilage. In Fig. 1b the two radiological markers for the
disease progression are indicated: the thinned cartilage causes the joint space width
to decrease since the two bones constituting the joint converge. The bare area lies
between the cartilage and the osseous fixation of the joint capsule. It is not covered
by cartilage, which has an osteo-protective effect against synovitis, thus the inflamed
synovia starts here with the destruction of the bone (erosions).
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1.1 The evolving state of the art in RA assessment

The radiographic surrogates associated with the progression of RA are joint space
narrowing (JSN) which reflects an impairment of the cartilage and erosions, the
destructions of the bony structure. The precise quantification of these markers is a
decisive factor during treatment and during clinical multi-center trials. While ultra-
sound and magnetic resonance imaging are used to monitor synovitis, radiography
is the standard modality for long-term RA progression monitoring [34]. Scoring
of radiographic joint space width and erosions are accepted imaging biomarkers to
assess the progression of RA during therapy.

Several manual scoring systems [21, 27] have been published and refined over
the last 30 years. They use a discrete scale of categories to integrate the status
of multiple joints. They are time consuming, require specialized training, and
suffer from significant inter-and intra-reader variation [35]. This limits long-term
assessment of disease progression, as well as the feasibility and discriminative
power of multi-center studies.

Automated continuous local measurements can be expected to exceed tradi-
tional ordinal scoring scales in terms of sensitivity and precision.

The availability of digital image acquisition systems has prompted the devel-
opment of new, increasingly automatic, quantitative measurement methods for
radiographic features such as bone axes, bone density, or joint space width. In one
study [1] an interactive joint space measurement method for rheumatoid arthritis of
the finger joints gave highly reproducible results, thus increasing the study power
while remaining consistent with traditional scoring.

Another interactive approach [25, 26], where points had to be placed manually in
the metacarpophalangeal joint (MCP), achieved a considerably high reproducibility
rating. In [8, 10] the diagnostic performance of a computer based scoring method
was also found to surpass traditional scoring. These methods are restricted to angle-
and distance measurements, include manual annotation on the image as part of the
measurement procedure, and integrate only a limited degree of automation with user
input. In [30] different methods for the measurement of the joint space width with
various states of automation were compared. In [24] initial experiences with a fully
automatic joint space width measurement method for RA were reported.

In a number of recent clinical studies [2, 3, 15, 22] erosions proved to provide
more discriminative information on disease progression with respect to the treat-
ment as opposed to the joint space width. The manual assessment of erosions in
the traditional scoring frame work impedes the precise follow-up quantification and
suffers from the afore-mentioned limitations.
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2 Localized pathology quantification and tracking

A fully automatic local assessment of the pathological changes is highly desirable
since it is a prerequisite for an accurate, reproducible and ultimately more sensitive
measurement of the disease status. It is a development from discrete global scoring
schemes towards continuous measurement methodologies [26, 28]. Model-based
methods allow for a location consistent monitoring or tracking of subtle changes
of anatomical structures. This can result in higher accuracy and becomes essential,
due to advances in therapy that decelerate the disease development considerably [9].
Model-based strategies for an automated analysis of radiographs are applicable to
osteoarthrtitis, spondylosis, osteoporosis, and axial malalignments in a straightfor-
ward manner.

Appearance models are used to solve three different problems during the
disease assessment:

• Detection of the anatomical structures of interest in the radiography data.
• Consistent identification of individual positions in the anatomy over time

for a single patient (pathology tracking), and localization of corresponding
positions between patients.

• Analysis and measurement of the deviation from a healthy training popu-
lation: the residual error after appearance model matching can be used to
indicate pathologies if the training population is sufficiently representative.

In this chapter, we describe an automatic method to measure both joint space
width and erosive destructions caused by RA. Parts of it have been proposed in [17,
19, 20, 24]. The basis of the approach are appearance models, and we will emphasize
the particular uses one can make during the application of this family of methods.

3 Automatic Quantification of Rheumatoid Arthritis

Given a hand radiograph, the RA quantification is initialized by a local linear
mapping which uses texture appearance, to locate the relevant joint positions.
Subsequently active shape model (ASM) driven snakes identify the individual bone
contours with a statistical shape and texture model. They account for deviations
from the training population due to pathological changes. This allows for an accurate
bone contour delineation even with difficult and ambiguous image data and results
in a reproducible identification of landmark positions on the bones.
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The joint space widths are measured between the detected contours and the
location information covered by the model landmarks (i.e. the definition of the
joint region on the bone). Erosions and their extent are determined by a boosted
classifier ensemble that analyses texture features extracted from the bone contour
region. It results in a label for each contour point describing the extension of erosive
destructions. Furthermore erosions can be marked by the residual appearance
model fitting error [20]. For both measures the model landmarks serve to establish
correspondences across individuals, e.g. in order to define the joint space width
measurement region and to track changes during follow-up assessment of one
individual.

4 Locating the Joints: ShapeLLMs – Appearance Models
and Local Linear Mappings

As a first step before segmenting the individual bone contours, a coarse estimate of
the joint positions is necessary to provide the ASMs with a reliable initialization.
The repetitive appearance and the variability of the hand positioning during
acquisition is beyond the capture range of the ASMs that delineate the bone
contours. Local linear mappings (LLMs) are trained to detect the positions of 12
joints (Fingertips, metacarpophalangeal joint metacarpophalangeal joints (MCP)
and carpo metacarpal joints (CMC) of Fingers 2,3,4, and 5). They have been used
for hand gesture recognition [23] and perform well on salient structures. In the case
of radiographs they model dependencies between local image texture and landmark
positions, and give reliable results for the initial detection of the hand, its orientation
and the positions of the individual bones for the ASM initialization [17]. For each of
the 12 joints a cascade of LLMs is trained on a series of increasingly small texture
patches. The initial estimate is based on features extracted from a configuration
of 12 overlapping windows on the radiograph. Subsequent iterations are based on
features extracted locally at the current joint position estimate. The deformation of
the configuration is constrained by a statistical shape model. In Fig. 2 an overview
of this estimation is shown, a detailed explanation is given in [17, 19].

5 Delineating the Bone Contours: Active Shape Model
Driven Snakes

Based on coarse joint position estimates active shape model (ASM) driven snakes
[18, 19] delineate the bone contours and identify regions relevant to analysis. ASM
driven snakes (ASMdS) segment the bones in a two-phase process: first they rely
on a statistical shape model (ASM) to obtain a stable contour estimate, this is
followed by an active contour approach, that controls the statistical model constraint
in a gradual manner and adapts to deviations from the training population, while
retaining the landmark identities.
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Global filter configuration

Initial position estimatesHand radiograph

Local filter configuration
around improved position
estimate after first iteration

For each joint a local
position estimate re-
finement is performed
by the corresponding LLM
based on the local features

The positions of the joints
are corrected according to
the shape model constraint
learned during training. I.e.
A plausible joint position
configuration is calculated.
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around each position
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1. Initial coarse localization based on a single
model

2. Fine localization of individual positions based on a clique of
appearance models, connected by a joint shape model

Fig. 2 Schematic overview of the joint localization by ShapeLLMs

Fig. 3 Extracting grey value
profiles along the bone
contour: a radiograph with
ASM result landmarks and
the profiles orthogonal to the
interpolated contour; the
resulting set of profiles
extracted from the contour of
a proximal phalanx, showing
both adjoining bones,
metacarpal and middle
phalanx

5.1 ASM driven snakes

ASMs [6] are statistical landmark based models that represent the variation of shape
and local gray values of a training set of examples in a compact manner. Although
they provide very reliable estimates, the accuracy of ASMs with respect to the
true image structure or contour is limited because of the shape model constraint
that is based on a finite training population. This is a drawback if fine details
that possibly deviate from the training population have to be analyzed, and the
ASM training set stems from bones with no deviations from normal anatomy,
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e.g. because the variability of local pathological changes cannot be modeled with
a reasonable training set size and evades the representative power of a linear
model. A similar issue was addressed in [7]. ASM driven snakes overcome this
constraint by gradually decreasing the influence of the model constraint. They refine
the contour estimate obtained by ASM and fit slight deviations from the normal
training anatomy. However, they retain the location information captured by the
model landmarks. The result is a dense delineation of the bone contour, and known
positions of the landmarks on this contour.

5.2 ASM driven snakes search

The ASM search results in landmark estimates xASM D (x1, . . . ,xn). These
landmarks are interpolated by a spline which is sampled at smaller intervals: c D
(c1, . . . ,cd). Gray level profiles pi with length m are extracted from the image
orthogonally to the interpolated contour. They build a matrix P D [p1, . . . ,pd].
Figure 3 shows the original positions of the grey level extraction points for a contour
section of a proximal phalanx, and the set of extracted profiles P(x, y) for the entire
bone contour. The spline interpolation in between the ASM landmarks is positioned
at points s1 D (x, y)iD1, : : : ,d: (x, y)i D (i, m/2) in P(x, y), and can serve as initialization
for a search with an active contour in P. As in the standard active contour search,
we minimize an energy functional

E D
1Z

0

1

2

�
˛
ˇ̌
s0.s/

ˇ̌2 C ˇ
ˇ̌
s00.s/

ˇ̌2�C Eext .s.s// ds (1)

where the first term is the internal energy Eint capturing elasticity and rigidity
properties of the curve, and the second term is the external energy Eext. Their
influence is determined by the factors ˛ and ˇ. The external energy Eext is derived
from the image and usually drags the contour towards high gradient edges in the
data. In our case the local texture model of the ASM is taken advantage of by
deriving Eext from the image in the following way: the mean grey-level profiles
corresponding to the landmarks in the ASM: g1

ASM , . . . , gn
ASM are interpolated

in order to derive an ordered set g1 , . . . , gd. Thus, for every column in P a
corresponding grey level profile gi is generated approximating the mean appearance
in the training set from the model grey value profiles. The identification between gi

and pi is defined by the landmarks on the fitted ASM. Then

Eext D �
 jrPj � �P?G (2)

where P * G denotes the column wise convolution of pi with the corre- sponding
mean grey value profile gi. Thus, with a high value for � the lowest energy is
obtained if the snake follows a path corresponding to a maximal similarity of the
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External energy

Gray value profiles extracted along the ASM contour

ASM driven snake, 1st iteration

Gray value profiles extracted along prvious estimate

External energy

ASM driven snake, final result

Fig. 4 ASM driven snakes; alternating: section of the grey value profiles extracted along the
contour after ASM search, the resulting Eext and the snake result

actual profile and the expected ASM profile. A high 
 decreases the cost analogous
to a traditional external force field depending on the local gradient. This can support
the search if the convolution with the learned profiles does not result in a strong
minimum, e.g. if the variability in the training set appearance at the contour position
results in an undistinctive mean profile. In such cases the gradient in the search
image still can provide information on the contour location. The lowest cost path
passing P(x, y): s2 is a new estimate of the bone contour. Let c2 D (c2

1, : : : , c2
d) be

the corresponding curve in the image I. Then P2 (x, y) is recalculated and the snake
is fitted again. The resolution of the succeeding profile sets can be increased while
the search region decreases.

In the case of bones exhibiting pathological changes caused by rheumatoid
arthritis an outward pressure force can support convergence by preventing the snake
from being captured on isolated local minima within the bone. In Fig. 4 a section
of the profile sets extracted from a proximal phalanx, the corresponding cost-maps
and the resulting snakes are depicted for the first and the fourth iteration of the
process. In experiments with bones showing mild to moderate rheumatoid arthritis
this number usually sufficed to give good results.

The final active contour result in Pfinal (x, y), sfinal is projected on the image
resulting in the dense bone contour estimate cfinal . The corrected positions of the
landmarksbxi lie on this curve. The delineation of the bone contour thus retains the
ASM landmarks, making a repeatable addressing of positions on the bone possible.
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Fig. 5 The region for joint
space width measure-ment on
the MCP joint marked by
model landmarks, and
measurements for two MCP
joints

Fig. 6 Examples for patches
extracted from the bone
contour showing three
different cases: no erosion,
pre-erosion and erosion

6 Measuring Joint Space Width

The joint space width can be measured straightforwardly after the bone segmenta-
tion. Since the development over time or joint space narrowing (JSN) is clinically
relevant, the precision of the measurement is of prime importance. To measure the
joint space width of the metacarpal phalangeal joint (MCP) ASM landmarks in
the proximal region of the proximal phalanx (PP) and in the distal region of the
metacarpal (MC) identify the measurement region. They are depicted in Fig. 5. For
each point on an interpolation of the landmarks the minimum distance to the MC
bone is measured, the mean value of these measurements within the region is defined
as the JSW. In Fig. 5 an example of the resulting measurements for 2 MCP joints is
depicted. The vertical lines indicate the closest neighbor on the MC for every point
in the measurement region on the PP contour. In contrast to approaches that rely
on measuring gradients along a line that passes through the joint region this method
takes advantage of a model fitted to the entire bone, hence improving stability in case
of possible ambiguous local texture or centre line orientation in the joint region.

7 Detecting and Visualizing Erosions

After bone contours have been delineated, the task of detecting erosions on the
bone contour can be formulated as a classification of contour points into the classes
healthy bone contour, i.e. Non-Erosion and contour affected by RA, i.e. Erosion.
The result is a continuous value that captures the amount of affected bone contour.
For this, texture features are extracted from a sequence of rectangular patches along
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Fig. 7 Marked Erosions:
a. ground truth, b. classifier
result, and c. visualization
with residual error

the bone contour. The dimensionality of the feature vector is reduced by feature
selection [16] and the classification is accomplished by an AdaBoost classifier [11]
for each point on the contour. In order to account for the high variability of erosions
[32] two classes are referred to, Erosion I or pre-erosions and Erosion II, that
differ in their appearance. Class II erosions are unequivocal erosions exhibiting all
radiographic signs, while Class I erosions lack one or more of these features, and
appear as an unsharpening of bone architecture (Fig. 6).

7.1 Detection

For each point ci 2 cfinal on the bone contour, the bone texture is extracted in
the form of a rectangular patch pi with borders parallel and orthogonal to the
bone contour normal vector ni at the position si. This results in a set of patches
(pi)iD1, : : : ,n for a bone, each corresponding to a single contour point (Fig. 6). Erosion
detection performs a classification on these patches and assigns them one of the two
classes Erosion or Non Erosion.

For the patches pi texture features comprising gradient, gradient orientation, and
grey value deviation on a grid of 10 sub-patches are extracted. Before a classifier
is trained, the number of features is decreased by a feature selection procedure that
is based on an iterative re-weighting scheme similar to AdaBoost [16]. The point-
wise classification of the bone contour is accomplished by an AdaBoost classifier
working with linear discriminant analysis as a weak learner. Each weak learner is
trained on a sub-set of example patches and features. Thereby the variability of
erosion appearance can be accounted for. The classification of the contour points
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is achieved by a voting of 4 classifiers. For each of the erosion classes type 1 and
type 2, two classifiers are trained: one on the entire body bone contour Ci

f and one
in the joint region Ci

j. The combined classifier is defined by C D C2
j C2

f C C1
j C1

f

Ĉ1
f Ĉ2

f , where Ĉ is the indicator function of C > t. The inputs for the classifiers are
the features extracted from a single patch, the output is the class label No-Erosion vs.
Erosion. The voting results in a value indicating the presence of erosive destructions.
For each contour point a classifier response is calculated, and thereby the extent and
the location of the erosions are determined.

7.2 Visualization

In addition to the numerical value associated to each contour point, a more specific
visualization of the deviation of erosion appearance from normal anatomy is
necessary to allow the clinician to approve the results. This can be achieved by a
generic appearance model in a straightforward fashion. To visualize the deviation of
the observed local bone appearance from healthy bone texture a model is built from
healthy training regions on bones and the best fit of the model is compared to the
texture along the bone contour [20]. The appearance of healthy patches is modeled
by Gaussian mixture models (GMMs) [4]. These models are generative models, and
are able to synthesize data examples, which are plausible with regard to the training
data. During the visualization the generative model of an intact bone contour is used
to determine the deviation of erosion appearance from intact bone texture.

The GMM of patch appearance is a generative model. That is, it can simulate
bone appearance that is plausible with regard to the training population of bone
texture patches. By fitting a model to a patch, i.e., by reconstructing it, the algorithm
determines the closest estimate of the patch appearance within the constraints
imposed by the statistical model, i.e., the distribution of model parameters in the
training set. The residual error, the difference between the actual appearance and
the reconstruction by the model provides information about the local texture and its
difference from the learned distribution. Showing this residual in the radiograph in
addition to the labels C from the classifier, provides the musculoskeletal radiologist
not only with location information but also with an estimate about the deviation
of the bone contour texture from healthy bone. Note that the mere residual error
could also be used for the detection of erosions. However, experiments indicate, that
the discriminative power is not sufficient for classification, in particular in the case
of pre-erosions. For the high variation of erosion appearances a classifier utilizing
texture as described above is necessary.
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Fig. 8 Median contour error
for ASM driven snakes. The
x-axis corresponds to the
ratio 
 / (
 C�) (Eq. 2), the
y-axis corresponds to the
snake elasticity parameters ˛
i.e. the higher ˛, the less
elastic the snake is

8 Experimental Results and Discussion

In this section we report experimental results on several data sets of hand radio-
graphs with mild to moderate rheumatoid arthritis. More detailed evaluations are
reported in [19, 20, 24]. A comparative study of different approaches to semior
fully-automatically measure the joint space width is reported in [30].

Contour delineation: The effect of ASM driven snakes is important, if small local
deviations from the training population are to be expected. For meta-carpal and
proximal phalangeal bones and a varying ratio between 
 and �, and elasticity
parameter ˛, a minimum median error is reached by ASM driven snakes for
intermediate values. In Fig. 8, the median contour error is plotted. For standard
ASMs the mean/median error is 2.41/2.03px. The mean ASMdS error reaches its
lowest value 1.73 for high ˛ and highest influence 
 of the model gray value model.
The median exhibits a minimum of 1.09 within the parameter range. Results indicate
a better fit of the contour estimate toward small local rough sections of the bone
contour compared to standard ASMs. These occur particularly often on bones of
patients suffering from chronic joint disease.

Joint space width measurement: For joint space narrowing i.e. the development
over time the precision of the measurement method is of prime interest. For 10
repeated measurements on 160 MCP joints with a mean JSW of 1.75 mm, the
mean absolute error of the automatic measurement results compared to a standard
of reference annotated by experts was 0.19 to 0.4 mm. The standard deviation for 10
repeated measurements was between 0.04 to 0.13 mm corresponding to a coefficient
of variation of 2% for non-overlapping bones and 7% if overlap did occur at the
joint. The smallest detectable difference (SDD) for the joint space width is 0.08
mm. The joint space width measurement offers precision similar to existing semi-
automatic approaches [5, 13, 14] but in a fully automatic fashion.
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Erosions: When comparing automatic erosion detection (i.e. contour classification)
with a manual expert standard of reference by a ROC analysis, the area under the
ROC curve (AUC) is 0.89 (0.88 for class 1, and 0.92 for class 2). The AUC indicates
the probability of a detected erosion coinciding with a manual standard of reference
erosion [12]. In Fig. 7 an example bone with standard of reference annotation,
detected, and marked erosion is depicted. There are no alternative automated erosion
detection algorithms reported in previous literature. However for a group of expert
readers overall scoring variability was reported in [29]. The intra-class correlation
coefficient (ICC) [31] for this group ranged from 0.465 to 0.999, which indicates
that absolute scores cannot be compared across readers or different studies, as
mentioned in Sect. 1.1.

9 Conclusion

The method explained in this chapter automatically measures joint space width and
erosion extent on hands affected by rheumatoid arthritis. We expect the automatic
assessment of rheumatoid arthritis and other diseases to decrease inter-reader
variability and artifacts introduced by individual readers as described in [29, 33].
Increasing reliability and sensitivity in detecting treatment effects would help to
speed up the development of new and effective disease-controlling, anti-rheumatic
therapies and to reduce the number of patients necessary for clinical trials. It is
particularly relevant, since improved therapies make the changes caused by RA
more subtle. This makes a specific and local tracking of changes as opposed to
global and therefore less sensitive scores necessary. Future research in the field of
automated quantification methods will have to focus on the improvement of their
ability to adapt to different image acquisition protocols and to extend the area of
application to more complex anatomical sites.
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16. P. Křížek, J. Kittler, and V. Hlaváč. Feature selection based on the training set manipulation. In
Proceedings of ICPR’06, volume 2, pages 658–661, 2006.

17. G. Langs. Autonomous Learning of Appearance Models in Medical Image Analysis. PhD thesis,
Graz University of Technology, Institute for Computer Graphics and Vision, May 2007.

18. G. Langs, P. Peloschek, and H. Bischof. ASM driven snakes in rheumatoid arthritis assessment.
In Proceedings of 13th Scandinavian Conference on Image Analysis, SCIA 2003, Goeteborg,
Schweden, pages 454–461. Springer, 2003.

19. G. Langs, P. Peloschek, H. Bischof, and F. Kainberger. Automatic quantification of joint space
narrowing and erosions in rheumatoid arthritis. Submitted to IEEE Transactions on Medical
Imaging, Under Review.

20. G. Langs, P. Peloschek, H. Bischof, and F. Kainberger. Model-based erosion spotting and
visualization in rheumatoid arthritis. Acad Radiol, 14(10):1179–1188, 2007.

21. A. Larsen, K. Dale, and M. Eek. Radiographic evaluation of rheumatoid arthritis and related
conditions by standard reference films. Acta Radiol Diagn, 18:481–491, 1977.

22. P. E. Lipsky, D. van der Heijde, E. W. S. Clair, D. E. Furst, F. C. Breedveld, J. R. Kalden, J. S.
Smolen, M. Weisman, P. Emery, M. Feldmann, G. R. Harriman, and R. N. Maini. Infliximab
and methotrexate in the treatment of rheumatoid arthritis. N Engl J Med, 343(22):1594–1602,
2000.

23. C. Noelker and H. Ritter. GREFIT: Visual recognition of hand postures. In Gesture Workshop,
pages 61–72, 1999.

24. P. Peloschek, G. Langs, M. Weber, J. Sailer, M. Reisegger, H. Imhof, H. Bischof, and
F. Kainberger. An automatic model-based system for joint space measurements on hand
radiographs: Initial experience. Radiology, 245(3):855–862, 2007.

25. J. Sharp. Measurement of structural abnormalities in arthritis using radiographic images.
Radiol Clin North Am, 42(1):109–119, 2004.



Rheumatoid Arthritis Quantification using Appearance Models 389

26. J. Sharp, J. Gardner, and E. Bennett. Computer-based methods for measuring joint space and
estimating erosion volume in the finger and wrist joints of patients with rheumatoid arthritis.
Arthritis and Rheumatism, 43(6):1378–1386, 2000.

27. J. Sharp, M. Lidsky, L. Collins, and J. Moreland. Methods of scoring the progression of
radiologic changes in rheumatoid arthritis. Arthritis and Rheumatism, 14:706–720, 1971.

28. J. Sharp, D. van der Heijde, J. Angwin, J. Duryea, H. Moens, J. Jacobs, J. Maillefert, and C.
Strand. Measurement of joint space width and erosion size. J Rheumatol, 32(12):2456–2461,
December 2005.

29. J. Sharp, F. Wolfe, M. Lassere, MaartenBoers, D. von der Heijde, A. Larsen, H. Paulus, R. Rau,
and V. Strand. Variability of precision in scoring radiographic abnormalities in rheumatoid
arthritis by experienced readers. Journal of Rheumatology, 31(6):1062–1072, 2004.

30. J. T. Sharp, J. Angwin, M. Boers, J. Duryea, G. von Ingersleben, J. R. Hall, J. A. Kauffman, R.
Landewé, G. Langs, C. Lukas, J.-F. Maillefert, H. J. B. Moens, P. Peloschek, V. Strand, and D.
van der Heijde. Computer based methods for measurement of joint space width: Update of an
ongoing omeract project. Journal of Rheumatology, 34(4):874–83, 2007.

31. P. Shrout and J. Fleiss. Intraclass correlations: Uses in assessing rater reliability. Psychological
Bulletin, 86(2):420–428, 1979.

32. O. Sommer, A. Kladosek, V. Weiler, H. Czembirek, M. Boeck, and M. Stiskal. Rheumatoid
arthritis: a practical guide to state-of-the-art imaging, image interpretation, and clinical
implications. Radiographics, 25:381–398, 2005.

33. H. Swinkels, R. Laan, M. van ’t Hof, D. van der Heijde, N. de Vries, and P. van Riel.
Modified sharp method: factors influencing reproducibility and variability. Semin Arthritis
Rheum, 31(3):176–190, Dec 2001.

34. D. van der Heijde. Radiographic imaging: the ’gold standard’ for assessment of disease
progression in rheumatoid arthritis. Rheumatology, 39(Suppl 1):9–16, 2000.

35. D. v.d.Heijde, A. Boonen, M. Boers, P. Kostense, and S. van der Linden. Reading radiographs
in chronological order, in pairs or as single films has important implications ofor the
discriminative power of rheumatoid erthritis clinical trials. Rheumatology, 38:1213–1220,
1999.



Medical Image Processing for Analysis
of Colon Motility

N. Navab, B. Glocker, O. Kutter, S.M. Kirchhoff,
and M. Reiser

Abstract A precise analysis and diagnosis of colon motility dysfunctions with
current methods is almost unachievable. This makes it extremely difficult for the
clinical experts to decide for the right intervention such as colon resection. The
use of Cine MRI for visualizing the colon motility is a very promising technique.
In addition, if image segmentation and qualitative motion analysis provide the
necessary tools, it could provide the appropriate diagnostic solution. In this work
we define necessary steps in the image processing chain to obtain clinical relevant
measurements for a computer aided diagnosis of colon motility dysfunctions. For
each step, we develop methods for an efficient handling of the MRI time sequences.
There is need for compensating the breathing motion since no respiratory gating can
be used during acquisition. We segment the colon using a graph-cuts approach in
2D over time for further analysis and visualization. The analysis of the large bowel
motility is done by tracking the diameter of the colon during the propagation of the
peristaltic wave. The main objective of this work is to automatize the assessment
of clinical parameters which can be used to define a clinical index for motility
pathologies.
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1 Introduction

Dysfunctions of large bowel motility presents a common problem in our society
that may be attributable to a great variety of possible etiologies resulting most
commonly in either constipation or diarrhea. Today’s available diagnostic imaging
techniques, such as bowel enema and the determination of the bowel transit time
by the application of radiopaque markers, provide only snapshots of the dynamic
large bowel motility and approximate clues concerning motility dysfunctions.
These examination techniques cannot sufficiently demonstrate bowel movement
in real-time.

To date, only the pancolonic manometry technique has been used to evaluate
colonic motor function over either the entire length or limited segments of the
human colon [1, 8, 9]. Manometry as well as the barostat technique present both
scientifically established but very complicated methods with several drawbacks such
as the invasive examination itself being very time intensive and inconvenient for the
patients and thus, both methods are rarely used in clinical routine. Noninvasive,
well-established and examiner-independent methods are Scintigraphic examina-
tions. They allow for determining the colonic transit time. However, a considerable
radiation exposure is associated with this method [2]. Thus, classical examination
techniques are not suited to monitor large bowel motility. The ideal technique to
visualize and quantify large bowel motility would allow for a fast and repeated
imaging over larger time frames with a high temporal resolution reducing movement
and respiratory artifacts. Additionally, such a technique should allow to include
newly available technologies such as biofeedback, electrical stimulation of intestinal
pacemakers, or the administration of specific stimulating drugs [6].

Magnetic resonance imaging (MRI) allows noninvasive ultrafast dynamic imag-
ing with a high soft tissue contrast. The potential of functional Cine MRI for the
visualization of the abdominal organs has been presented previously [12] and makes
this technique a very promising tool in our application because it allows for the
visualization of morphology and function of the large bowel at the same time,
provided that fast image acquisition is used. However, without any stimulation, the
activity of the large bowel exhibits a broad range of individual differences, such
that an examination within an acceptable time frame of approximately 30 minutes
is not feasible [7, 12]. To this end, different prokinetic agents were used in our
previous studies [6] in order to achieve a predictable activity of the large bowel
which lead to the achievement of the first real-time visualization of the large bowel
movement and its peristaltic wave (see Fig. 1). A further and detailed analysis of
large bowel motility and possible dysfunctions provides an immense progress in
diagnosis of the lower gastrointestinal tract also concerning an individual and more
suitable therapeutical approach from surgical as well as the internal medical side.

In order to integrate such a novel imaging technique into the daily clinical routine,
it is mandatory to develop computer based analysis approaches. The huge amount of
data which is acquired per patient needs automatic and semi-automatic methods in
order to support the clinical expert in findings and diagnosis. Our main objective in
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Fig. 1 Coronal Cine MRI slices visualizing the peristaltic wave in the descending colon

this work is to model and quantify the activity of the large bowel hopefully providing
the means to define the clinical significance of a variety of motility disorders in
a wide range of patients. Necessary steps in the image processing workflow are
defined, and technical approaches towards a computer aided diagnosis tool are
proposed.

In the following, we present our preliminary results on a set of experimental
data. Volunteer data was acquired and processed using the imaging techniques and
algorithms presented in the next Sections.

2 Image Acquisition using Cine MRI

The volunteers undergo functional Cine MRI. The standardized functional Cine
MRI examination is performed at 6 AM, after a minimum starving phase of 8
hours, on 1.5-T system (Siemens Avanto). The volunteers are examined in supine
position. Neither premedication nor contrast agent is applied. The dynamic part
of the examination consists of 2 blocks of repeated measurements covering the
entire abdomen, using a T2-weighted HASTE-sequence. Each block contains a
stack of approximately 200 slices over time orientated in coronal plane adapted
to the anatomic course of the descending colon (see Fig. 1). The image resolution
is 256 � 320. Between the 2 dynamic blocks of measurements a prokinetic agent is
administered in order to stimulate the colon motility. For the further analysis of the
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Fig. 2 Our image processing chain within a computer aided diagnosis tool for colon motility
dysfunctions

peristaltic motion, the subsequence (usually about 20 slices) showing this motion is
manually selected from the image blocks. The pre-scan without stimulation was up
to now only used in our previous studies [6, 7].

In order to achieve the fastest possible frame rate for our MRI acquisition, no
respiratory gating can be used during the scans. The time between two successive
frames could be reduced to approximately 1.4 seconds which is fast enough to
visualize the peristaltic wave. Still, the sequences suffer from breathing motion
artifacts which makes the identification of corresponding points in the colon quite
hard. This was not a problem in our previous studies where manually extracted
diameters were measured over time and stimulated and non-stimulated sequences
were compared, the identification of corresponding points could be achieved
manually by the medical expert. In order to automatize such procedures, there is
need for an accurate motion compensation in a post-processing step. This leads us
to the first step in the image processing chain (see Fig 2).

3 Image Processing

In order to develop a computer aided diagnosis tool for colon motility dysfunctions,
we first identify necessary steps within the image processing chain. We already
mentioned the problem of breathing motion artifacts in the Cine MRI data sets.
Once, these artifacts can be successfully removed, all further steps will benefit
from the motion compensation. Our later analysis of the motility is based on the
segmentation of the colon in all slices over time. We propose a semi-automatic
approach based on interactive graph-cuts. This will be explained in more detail in
Sect. 3.2. The actual analysis and our approach for extracting clinically valuable
measurements is then described in Sect. 4. The full image processing chain is
sketched in Fig. 2.

3.1 Motion Compensation

As already mentioned, no respiratory gating techniques are used during the image
acquisition in order to achieve a high frame rate. The resulting breathing artifacts
in the image sequences are visible in a vertical jumping of the abdominal organs
effected by breathing motion such as liver, kidney, and of course the colon itself.
For our further processing steps, a compensation of this motion is of great interest.
In order to make the identification of corresponding points in the colon much
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Fig. 3 (a) Selected region and extracted Harris feature points. (b) Tracked features in one of the
following frames. (c) Difference image between reference frame and consecutive frame before
compensation, (d) and the difference image after compensation. Clearly visible, the motion at the
lower boundary of the liver has been reduced

easier we try to stabilize the image parts of interest. We propose a semi-automatic
motion compensation method. Therefore, the user selects a subregion in one of
the slices, which we call the reference frame. The selected region should represent
the overall breathing motion but should not include any parts of the colon. So we
can avoid to eventually compensate for colon motility. Within the selected region
features are extracted which fulfill the Harris [10, 14] assumptions. The robust and
fast implementation of the Lucas-Kanade optical flow method [3] is then used to
compute the displacements of each single feature in every frame in respect to the
reference frame. Afterwards we compute a mean vertical displacement for every
frame which represents the overall breathing motion. By translating each frame
by its corresponding mean displacement we can compensate for this motion. In
practice, the image part containing the lower liver boundary and right kidney turned
out to be a good region for tracking the breathing motion (see also Fig. 3). These
parts show a very similar breathing motion such as the colon itself. The result of the
motion compensation is a clear stabilization of all organs with a similar movement.
Naturally, former stable parts (e.g. the spine, see also Fig. 3d) are consecutively
jumping within the image series, However, this fact does not present a problem for
the further processing of the colon.

3.2 Colon Segmentation

The segmentation of the colon is crucial for our further analysis. Shape and
appearance have to be well preserved by the segmentation. The individual patient’s
anatomy is particularly reflected in varying orientation and form of the large bowel.
A segmentation method should be highly flexible to handle these variations. To this
end, we use the interactive graph-cuts approach proposed by Boykov and Jolly [4].
The segmentation is defined as an energy formulation

E.A/ D R.A/C � � B.A/ (1)
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where A indicates a segmentation of the pixels x of domain	 of the image series I
into two subsets O (object pixels) and B (background pixels) with

Ax2	 D
�

“obj " ifx 2 O

“bkg" ifx 2 B
(2)

Here, the regional term R represents a priori knowledge given through the user
interactions. Interactively, the user sets so-called seed brushes for the object Sobj

that is considered to be segmented (i.e. the colon) and additionally, seeds for the
background Sbkg (see Fig. 4a). The function R is then defined as

R.A/ D
X

x2	
Rx.Ax/ (3)

where

Rx.Ax/ D
8
<

:

1 ifAx D “obj 00 ^ x 2 Sbkg

1 ifAx D “bkg00 ^ x 2 Sobj

0 otherwise
(4)

Intuitively, the regional term forces the pixels belonging to seed brushes to keep
their assignment to the object respectively background segmentation subset. The
second part B of the segmentation energy is the so-called boundary term. Here,
it represents the interaction energy for pairs of neighboring pixels x; y 2 N to
belong to the same segmentation subset and thus provides a certain smoothness on
the segmentation result, or

B.A/ D
X

x;y2N
Bx;y � ı.Ax; Ay/ (5)

with

ı.Ax; Ay/ D
�
1 ifAx 6D Ay
0 otherwise

(6)

In our experiments, we use a simple boundary term based on intensity differences
which is define in terms of a penalty function, or

Bx;y / exp.� .Ix � Iy/2
2�2

/ � 1

dist.x; y/
(7)

This function penalizes discontinuities in the segmentation result for neighboring
pixels of similar intensities. The weighting � controls the influence of the boundary
term. We set this value to 0:01 which was determined empirically for our kind of



Medical Image Processing for Analysis of Colon Motility 397

Fig. 4 (a) Seed brushes in one frame of the image sequence. (b) Resulting segmentation of the
descending colon. (c) Skeletonization of the segmentation. (d) Extracted longest path which is
used as centerline. (e) Diameter measurement at 20 sample points

image data. The exact global minimum of the energy formulation in (1) can be
computed by using a max-flow algorithm (e.g [5]).

Since we are dealing with MRI time series of 2D slices, each frame is showing a
similar image of the patient’s abdomen with slightly moved, or in case of motility,
extended bowel diameter (see Fig. 1). Furthermore, after performing the motion
compensation, we can assume that the only large bowel motion left in the images is
due to motility. We can make use of this minimal changes within the segmentation
method in order to minimize the user interaction. Actually, we can perform a full
segmentation of the whole time series very efficiently. The user sets the seed brushes
only in one frame. Object seeds have to be set roughly at the centerline of the colon
and background seeds are placed around the colon part of interest (see Fig. 4a).
Thanks to the motion compensation we can benefit from this strategy in two ways:
on the one hand, these brushes can be set automatically in all other frames of
the time series in a “copy & paste" fashion, on the other hand, the surrounding
background seeds can be used as a restriction or bounding box for the computation
of the graph-cuts algorithm. The segmentation of the whole series is then done in
one single energy formulation. Thus, the boundary termB also acts as a smoothness
constraint in the temporal domain. The computation time of one segmentation for a
subsequence of about 20 frames showing the peristaltic wave is less than 10 seconds.

One important property of such a segmentation approach is the extreme flexi-
bility. This method can be used for all parts of the large bowel and can deal with
extreme shape variations which are likely to occur. This is crucial for our further
analysis of the colon motility which is based on the segmentation result.

4 Analysis of Colon Motility

The aim of the colon motility analysis is to obtain as much information as possible
about the peristaltic motion visible in the Cine MRI sequences. Our approach is
based on the idea of measuring the bowel diameter over time which was previously
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Fig. 5 (a) The maximum diameter tracked over time at each of the 25 sample points. Such a
measure can be used to estimate the speed of the peristaltic wave. (b) Ratio of minimum and
maximum diameter at each sample point is used to assess the activity of the colon. (c) The mean
extension for the lateral and medial side of the colon during a propagating peristaltic wave over 20
frames

presented in [7]. In a first clinical trial, this fully manual approach was able to
measure significant changes in the motility after administration of stimulating
drugs [6]. However, this method was extremely time consuming and tedious in
means of reproducibility. A limited number of 5 diameters were measured manually
in one frame. Then, the corresponding points were identified manually in the
successive frames and again the diameters had to be measured. In order to improve
and automatize this approach and increase the number of measurements to a user
selected bound, we are making use of the two proposed image processing steps so
far, the motion compensation and the segmentation.

At first, we extract the skeleton of the segmented colon in one frame using
a thinning algorithm proposed by Palagyi et al. [13]. From this skeletonization
we construct a graph using a wave propagation approach presented by Zahlten
et al. [15]. The result of these two steps is shown exemplary for one image sequence
in Fig. 4c. We extract the longest path from the resulting graph in order to obtain a
good approximation of the real centerline of the colon (see Fig. 4d). A B-Spline is
fitted to the centerline which then can be subdivided into a user defined number of
segments. At each segment we determine the diameter of the colon by measuring
the extension of the segmentation perpendicular to the centerline (see Fig. 4e).
Since the segmentation is already computed for all slices and thanks to the motion
compensation, we can easily measure the colon diameter at all these specific
positions over time. The user can change the number of measurement points without
any recomputation on the segmentation or centerline and gets the new measurements
within milliseconds.

In order to analyze the present colon motility, we extract several values with
clinical relevance from our measurements. One significant parameter of interest is
the propagation speed of the peristaltic wave. This can be measured by tracking
the maximum diameter along the measurement points (see Fig. 5a). A value also
important in assessing pathologies and dysfunctions of the colon motility is the
ratio of the average maximum and minimum diameter (see Fig. 5b). A ratio close
to 1:0 could indicate a local defect on the contraction ability. Besides these values
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Fig. 6 (a) Fusion of dynamic
2D and static 3D.
(b) Multi-plane MRI showing
the colon motion in three
dimensions

hopefully leading to a clinical index in near future, other phenomena reported in the
medical literature could be measured for the first time. We could show that there is a
significant difference in the contraction of the large bowel on the lateral and medial
side (see Fig. 5c). This is what clinical experts actually expected. However, up to
now there did not exist any image based method to proof these assumptions.

5 Conclusion

Our experiments focused on the descending part of the colon. This part is most
relevant for clinical interventions as it is suitable for minimally invasive sugery.
We tested our method on volunteer data and compared it to the manual approach
of diameter calculation [7]. Our approach significantly reduces user-interaction and
is fast in delivering quantitative results on colon motility assessment We increased
the number of clinical parameters by for instance the speed of propagation or the
min-max ratio.



400 N. Navab et al.

In future work, we consider fully-automatic methods, e.g learning-based template
matching approaches may provide a tool to remove user interactions from the
motion compensation task. Deformable registration methods will be considered in
order to compute dense motion fields. We also would like to propose advanced
visualization techniques, e.g fused 2D-3D data, which may help during planning
and intervention (see Fig. 6a). New experiments using manometry are realized
allowing a comparison of our non-invasive approach to an invasive but established
technique. Our goal is to achieve a higher sensitivity while providing precise spatial
information for defects. Recent advances in fast multi-plane imaging allow for
capturing motion in three dimensions (see Fig. 6b) and thus may further improve
the assessment of colon motility [11].
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Segmentation of Diseased Livers:
A 3D Refinement Approach

R. Beichel, C. Bauer, A. Bornik, E. Sorantin, and H. Bischof

Abstract Liver segmentation is the first data analysis step in computer-aided
planning of liver tumor resections. For clinical applicability, the segmentation
approach must be able to cope with the high variation in shape and gray-value
appearance of the liver. In this article we present a novel segmentation scheme based
on a true 3D segmentation refinement concept utilizing a hybrid desktop/virtual
reality user interface. The method consists of two main stages. First, an initial
segmentation is generated using graph cuts. Second, a segmentation refinement step
allows to fix arbitrary segmentation errors. We demonstrate the robustness of our
method on ten contrast enhanced liver CT scans and compare it to fifteen other
methods. Our segmentation approach copes successfully with the high variation
found in patient data sets and allows to produce a segmentation in a time-efficient
manner.
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1 Introduction

Liver cancer is one of the four most common deadly malignant neoplasms in
the world. Approximately 618,000 deaths due to liver cancer were reported in
20021. Tomographic imaging modalities like X-ray computed tomography (CT)
play an important role in diagnosis and treatment of liver diseases like hepatocellular
carcinoma (HCC). Liver resection has evolved as the treatment of choice for various
benign and malignant hepatic tumors. Deriving a digital geometric model of hepatic
(patho)anatomy from preoperative image data facilitates the planning procedure
of liver tumor resections [13]. Thus, methods for liver segmentation in volume
data are needed which are applicable in clinical routine. In this context, several
problems have to be addressed: (a) high shape variation due to natural anatomical
variation, disease (e.g., cirrhosis), or previous surgical interventions (e.g., liver
segment resection), (b) inhomogeneous gray-value appearance caused by tumors
or metastasis, and (c) low contrast to neighboring structures/organs like colon or
stomach. For clinical application, liver segmentation must be able to handle all
possible cases in a time-efficient manner. Especially, livers with large or multiple
tumors are of interest, since treatment selection is crucial in these cases.

A large number of approaches to liver segmentation have been developed using
methods like live wire, level sets, deformable models, or active shape models [8,
11, 12, 15]. Since the performance of the algorithms heavily depends on patient
selection, image quality, imaging protocol, and severeness of the disease, different
approaches can hardly be compared. Therefore, an international competition was
organized by Heimann et al. [7], addressing the problem of liver segmentation in
CT data. This competition was held in the form of a workshop at the 2007 Medical
Image Computing and Computer Assisted Intervention conference. The proceedings
give an overview of current liver segmentation methods and their performance [7].
To this competition, nine fully automated methods, five semi-automated methods,
and two interactive methods were submitted, including our approach [1].

In summary, despite the progress made in the development of liver segmentation
methods, segmentation errors or failure are still common. Tumors or previously
performed resection of liver segments can lead to large variations in the gray value
appearance or in the shape of the liver. No pure bottom-up approach or model-based
approach is able to succeccfully cope with all kinds of possible variations that occur
in clinical practice [7]. In order to make liver segmentation applicable for clinical
routine a method for efficient refinement of segmentation errors is essential.

One of the rare examples of segmentation refinement are reported in [9] and [2],
where Rational Gaussian (RaG) Surfaces are used to represent segmented objects.
Segmentation errors can be corrected by manipulation of control points using a 2D
desktop setup. Another system allowing to alter the boundary of segmented objects
by morphological operations and surface dragging was reported in [10]. A tool for

1 http://www.who.int/whr/2004/en

http://www.who.int/whr/2004/en
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data driven editing of presegmented images/volumes based on graph cuts or alterna-
tively random walker algorithms was proposed in [6]. All approaches mentioned
so far are based on 2D interaction and monoscopic desktop-based visualization
techniques, despite the fact that 3D objects are targeted. In general, 2D interaction
methods are not sufficient for refinement of 3D models extracted from volumetric
data sets. This is for two reasons: Interpreting the complex 3D anatomy when only
viewing 2D cross-sections is a complicated task; provided a 3D model of the liver
helps in understanding its complex shape [13]. Second, interaction with a 3D model
using a 2D input device is more time-consuming and complex in terms of interaction
patterns than directly using the 3D information provided by a VR setup [4].

To tackle these problems, we propose a novel refinement approach to 3D
liver segmentation. Based on an initial highly automated graph cut segmentation,
refinement tools allow to manipulate the segmentation result in 3D, and thus, to
correct possible errors. Segmentation refinement is facilitated by a hybrid user
interface, combining a conventional desktop setup with a virtual reality (VR)
system.

After presenting details of the method, the proposed approach is evaluated on
ten liver CT data sets from an international competition [7]. Achieved results and
benchmarks against competing methods are presented. At the end of this work the
clinical applicability of the system and possible extensions are discussed.

2 Methodology

The proposed approach to liver segmentation consists of two main stages: initial
segmentation and interactive segmentation refinement. As input for the first stage,
a CT volume and one or more start regions, marking liver tissue, are used.
The segmentation is then generated using a graph cut approach2. In addition, a
partitioning of the segmentation and the background into volume chunks is derived
from edge/surface features calculated from the CT volume. These two types of
output are passed on to the second stage which allows for the correction/refinement
of segmentation errors remaining after the first stage. Refinement takes place in
two steps. First, volume chunks can be added or removed. This step is usually very
fast, and the majority of segmentation errors occurring in practice can be fixed or
at least significantly reduced. Second, after conversion of the binary segmentation
to a simplex mesh, arbitrary errors can be addressed by deforming the mesh
using various tools. Each of the refinement steps is facilitated using interactive
VR-enabled tools for true 3D segmentation inspection and refinement, allowing for
stereoscopic viewing and true 3D interaction. Since the last stage of the refinement
procedure is mesh-based, a voxelization method is used to generate a labeled
volume [14].

2Note that graph cut segmentation is not used interactively, as proposed by Boykov et al. in [5],
since the behavior of graph cuts is not always intuitive.
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2.1 Graph-Cut-based initial segmentation

An initial segmentation is generated using a graph cut [5] approach. From image
data, a graph G D (V, E) is built, where nodes are denoted by V and undirected
edges by E. Nodes V of the graph are formed by data elements (voxels), and two
additional terminal nodes, a source node s and sink node t. Edge weights allow
to model different relations between nodes (see [5] for details). Let P denote the
set of voxels from the input volume data set V—to reduce computing time, only
voxels with density values above �600 Hounsfield Units (HU) are considered as
potentially belonging to the liver. The partitionA D .A1; :::; Ap; :::; AjP j

/ with A p 2
f“obj”, “bkg”g can be used to represent the segmentation of P into object (“obj”) and
background (“bkg”) voxels. Let N be the set of unordered neighboring pairs fp, qg
in set P according to the used neighborhood relation. In our case, a 6-neighborhood
relation is used to save memory. The cost of a given graph cut segmentation A is
defined as E.A/ D B.A/ C �R.A/ where R.A/ D P

p2P Rp.Ap/ takes region
properties into account and B.A/ D P

p;q2N Bp;q ıAp ¤ Aq , with ıAp ¤ Aq
equals 1 if Ap D Aq and 0 if Ap D Aq , being boundary properties. The parameter
œ with œ � 0 allows to tradeoff the influence of both cost terms. Using the s-t cut
algorithm, a partition A can be found which globally minimizes E(A).

Region term The region term R(A) specifies the costs of assigning a voxel to a label
based on its gray-value similarity to object and background regions. For this pur-
pose, user defined seed regions are utilized. The region cost Rp (�) for a given voxel
p is defined for labels “obj” and “bkg” as negative log-likelihoods Rp."obj "/ D
�ln.P r.Ipj"obj "// andRp."bkg"/ D �ln.P r.Ipj"bkg"//withP r.Ipj"obj "/ D
e

�.Ip�mobj /2=
�
2�2obj

�

and P r.Ipj"bkg"/ D 1 � P r.Ipj"obj"/, respectively. From a
object seed region placed inside the liver, the mean mobj and standard deviation
�obj are calculated. Clearly, in the above outlined approach, a simplification is
made since liver gray-value appearance is usually not homogeneous. However, in
combination with the other processing steps this simplification works quite well.
Further, the specified object seeds are incorporated as hard constraints, and the
boundary of the scene is used as background seeds.

Boundary term The basic idea is to utilize a surfaceness measure as boundary
term which is calculated in four steps:

1. Gradient tensor calculation: First, to reduce the effect of unrelated structures on
the gradient, the gray value range of the image is adapted:

Ĩ f D �
�
I
f

�
D

8
<

:

vlow if If < tlow

vhigh if I
f
> thigh

I
f

otherwise
. Second, a gradient vector rf D

.fx; fy; fz/
T is calculated for each voxel f on the with � gray-value

transformed data volume V by means of Gaussian derivatives with the kernel
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g� D 1=
�
2 �2

� 3
2 e

� x2Cy2Cz2

2�2 and standard deviation � . The gradient tensor
S D rf rf T is calculated for each voxel after gray-value transformation.

2. Spatial non-linear filtering: To enhance weak edges and to reduce false
responses, a spatial non-linear averaging of the gradient tensors is applied.
The non-linear filter kernel consists of a Gaussian kernel which is modulated
by the local gradient vector rf. Given a vector x that points from the center
of the kernel to any neighboring voxel, the weight for this voxel is calculated

as: h� 0;p .x;rf / D

8
<̂

:̂

1
N
e

� r

2�02 e
� tan .�/2

2�2 if � ¤  
2

0 if � ¤  
2

and r D 0;
1
N

otherwise

with r D xT x and

� D �
2

� j arccos.rf T x=.jrf jjxj//j. Parameter � determines the strength of
orientedness, and ¢ 0 determines the strength of punishment depending on the
distance. N is a normalization factor that makes the kernel integrate to unity. The
resulting structure tensor is denoted as W.

3. Surfaceness measure calculation: Let e1W.x/ ; e2W.x/ ; e3W.x/ be the eigenvectors
and �1W.x/ � �2W.x/ � �3W.x/ the corresponding eigenvalues of W(x) at
position x. If x is located on a plane-like structure, we can observe that �1 �
0; �2 � 0; and �3 � 0. Thus, we define the surfaceness measure as t(W(x)) Dq
œ1W.x/ � œ2W.x/ and the direction of the normal vector to the surface is given by

e1W.x/ .
4. Boundary weight calculation: In liver CT images, objects are often separated

only by weak boundaries, with higher gray level gradients present in close
proximity. To take these circumstances into account, we propose the following
weighting function Ÿ(t) D8
<̂

:̂

c1 if t < t1
c2 if t > t2
.t � t2/

c2�c1
t2�t1 C c1 otherwise

which models an uncertainty zone between

t1 and t2 (note: t1< t2 and c 1> c2). Ideally, the graph cut segmentation should
follow the ridges of the gradient magnitude. Therefore, we punish non-maximal
responses in the gradient magnitude volume by adjusting the weighting function
as follows: �nonmax.t/ D minf�.t/C ck; 1g, where ck is a constant.

Summing up, the boundary cost term is determined by

Bp;q D minf�nonmax.t.W.xp///; �nonmax.t.W.xq///g

2.2 Chunk-based Segmentation Refinement

After initial segmentation, objects with a similar gray-value range in close proximity
may be merged or tumors with different gray-value appearance might be missing.
Therefore, a refinement may be needed in some cases. The first refinement stage
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Fig. 1 Mesh-based refinement using a sphere deformation tool. In this case the segmentation error
is a leak. (a) Marking the region containing the segmentation error. (b) Refinement using the sphere
tool. (c) After some time using the sphere tool the error is fixed. (d) The corrected region in wire
frame mode highlighting the mesh contour

is based on volume chunks, which subdivide the graph cut segmentation result
(object) as well as the background into disjunct subregions; the segmentation can be
represented by a set of chunks. The presented approach partitions the image based
on constrictions in the initial segmentation and based on boundary information. It
allows to fix larger errors (e.g. due to high contrast tumors) in a time efficient manner
by altering the initial segmentation.

By thresholding t(W), a binary boundary volume (threshold tb) representing
boundary/surfaces parts is generated and merged with the boundary from the graph
cut segmentation by using a logical “or” operation. Then the distance transformation
is calculated. Inverting this distance map results in an image that can be interpreted
as a height map. To avoid over-segmentation, all small local minima resulting from
quantization noise in the distance map are eliminated. After running a watershed
segmentation, boundary voxels are merged with the neighboring chunks containing
the most similar adjacent voxels. Since the method can handle gaps in the edge
scene, the threshold tb can be set very conservatively to suppress background
noise. Refinement can be done very efficiently, since the user has to select/deselect
predefined chunks, which does not require a detailed border delineation. This step
requires adequate tools for interactive data inspection and selection methods. For
this purpose, a hybrid user interface was developed, which is described in Sect. 2.4.

2.3 Simplex-Mesh-based Refinement

After the first refinement step, selected chunks are converted to a simplex mesh
representation. Different tools allow then a deformation of the mesh representation.
One example is shown in Fig. 1. More details regarding this mesh-based refinement
step can be found in [4].
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Fig. 2 Components of the hybrid desktop/virtual reality user interface

2.4 Hybrid Desktop/Virtual Reality User Interface

To facilitate segmentation refinement, a hybrid user interface consisting of a desktop
part and a virtual reality (VR) part was developed as shown in Fig. 2 (see [3]
for details). The VR system part provides stereoscopic visualization on a large
screen projection wall, while the desktop part of the system uses a touch screen
for monoscopic visualization. The tracked input device can be used for interaction
in 3D, or it can be used as a stylus in combination with the touch screen.

This hybrid user interface allows to solve individual refinement tasks using the
best suited interaction technique, either in 2D or 3D. Inspection of the segmentation,
localization of errors, and correction of larger segmentation errors is facilitated
best in 3D as the VR system allows interaction in 3D directly. Refinement of
smaller segmentation errors, interaction with single image slices, or selecting the
appropriate refinement tools is facilitated best in 2D.

3 Experimental Setup, Evaluation Results,
and Performance Comparison

For evaluation of the segmentation approach, ten liver CT data sets with undisclosed
manual reference segmentation were provided by the workshop organizers [7].
Segmentation results were sent to the organizers, which provided in return evalua-
tion results (see [7] for details). For evaluation, the following parameters have been
used: Gaussian derivative kernel: � D 3.0; non-linear filtering: � 0 D 6.0, �D 0.4;
graph cut: œ D 0.05; weighting function: t1 D 2.0, t2 D 10.0, c1 D 1.0, c2 D 0.001,
ck D 0.75; Threshold for chunk generation: tb D 10.0; gray-value transformation:
tlow D �50, ¤low D �150, thigh D 200, and ¤high D 60. To simulate the clinical work-
flow, the initial seed regions were provided manually and the graph cut segmentation
as well as the chunk generation were calculated automatically. Based on the initial
segmentation, a medical expert was asked to perform: (a) chunk-based (CBR) and
(b) mesh-based refinement (MBR). Intermediate results and task completion times
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Fig. 3 Segmentation quality of the initial graph cut segmentation result, the CBR result, the MBR
result and required user interaction time. See text for details

were recorded. Prior to evaluation, the expert was introduced to the system by an
instructor.

Results of our method for each processing step are summarized in form of box-
and-whisker plots in Fig. 3, and tables for each test case can be found in [1].
Figure 3(a) depicts the overall segmentation score derived from the volumetric
overlap error, the relative absolute volume difference, the average symmetric surface
distance, the RMS symmetric surface distance, and the maximum symmetric surface
distance [7]. A higher overall score implies a better segmentation performance.
The effectiveness of both refinement steps is clearly demonstrated. This is also
reflected in the plots for the mean distance error (Fig. 3(b)) and the overlap error
(Fig. 3(c)). Time required for initial seed placement, CBR, and MBR as well as the
total interaction time is plotted in Fig. 3(d). Results on one CT scan are depicted in
Fig. 4.

As reported in [7], the best overall average segmentation score for automated
segmentation methods was 73, for semi-automated segmentation methods 75, and
for interactive segmentation methods, excluding our method, 76. In comparison, our
method reaches a overall mean segmentation score of 74 after the CBR, requiring
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Fig. 4 Visual comparison of segmentation results for initial graph cut result (a), CBR (b),
and MBR (b). The segmentaion result is shown in blue and the manual reference in red. The
improvement in segmentation quality with each refinement step can be seen clearly

less than one minute of interaction on average. The CBR result can be significantly
improved by the MBR step, which leads to a mean overall score of 82, the best result
of all the fifteen methods evaluated in [7]. For MBR, an additional 5.1 minutes were
required on average. Both results for CBR and MBR are well within score values
gained by comparing the manual reference to an additional independent human
observer, which yield a score of 75 for the liver test cases.

4 Discussion and Future Work

Several additional experiments with different physicians have shown that the system
can be used after a short learning phase (typically less than one hour), because
of the intuitive 3D user interface. The proposed refinement method can easily
be integrated into clinical work-flow. The CT volume together with the manual
generated start region is sent by a radiology assistant to a computing node which
performs the automated segmentation steps. As soon as a result is available, a
radiologist is notified that data are ready for further processing. After inspection,
possible refinement, and approval of correctness, the segmentation can be used for
clinical investigations or planning of treatment. For our experiments, we have used
a full-blown VR setup which is quite expensive. However, a fully functional scaled-
down working setup can be built for a reasonable price, comparable to the costs of
a radiological workstation.

The evaluation of our method on ten test CT data sets shows that a high
segmentation quality (mean average distance of less than 1 mm) can be achieved
by using this approach. In addition, the interaction time needed for refinement is
quite low (approx. 6.5 minutes). Thus, the presented refinement concept is well
suited for clinical application in the context of liver surgery planning. Future work
will focus on making the MBR step faster by incorporating local data terms into
the user-steered deformation process. In general, our approach is not limited to a
specific organ or modality, and therefore, it is very promising for other medical
segmentation applications.
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Intra and inter subject analyses of brain
functional Magnetic Resonance Images (fMRI)

J.B. Poline, P. Ciuciu, A. Roche, and B. Thirion

Abstract This chapter proposes a review of the most prominent issues in analysing
brain functional Magnetic Resonance data. It introduces the domain for readers with
no or little knowledge in the field. The introduction places the context and orients
the reader in the many questions put to the data, and summarizes the currently
most commonly applied approach. The second section deals with intra subject data
analysis, emphasizing hemodynamic response estimation issues. The third section
describes current approaches and advances in analysing group data in a standard
coordinate system. The last section proposes new spatial models for group analyses.
Overall, the chapter gives a brief overview of the field and details some specific
advances that are important for application studies in cognitive neurosciences.
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1 Introduction and overiew

The goal of this section is to present a synthetic view of the principles, goals and
techniques of fMRI data analysis. It does not try to be exhaustive but proposes a
specific view on this domain of research. It may therefore interest readers with some
knowledge of the field as well as naïve readers looking for entry points. As the
first functional Magnetic Resonance Images were acquired in the early nineties, the
domain is still young and the current techniques are evolving quickly. Nevertheless,
the research questions and directions described in this chapter are likely to still
be of interest for some time even with the anticipated evolution of acquisition and
processing techniques.

1.1 Background

1.1.1 Principle of an activation study

The principle of an activation study with fMRI is simple. It consists in placing a
subject or a patient in the scanner and acquiring data that reflect the hemodynamic
activity of the brain. While the acquisition occurs, subjects are submitted to various
stimuli or asked to perform certain tasks. These will influence the regional neural
activity of the brain which in turn will modulate locally the hemodynamic (blood
flow, blood volume and oxygenation) of some brain regions. The data acquired is
a series of slices, each of which can be recorded typically in less than 80ms, with
an in plane resolution and thickness of the order of the mm (1-3 mm). Therefore,
the whole brain volume can be covered in a few seconds with current scanners but
equipment is improving fast and these numbers are getting down. Data acquisition
is continuous for 5 to 20 min, and is called a “run”, an MR session usually
consists of several runs for a subject, together with the acquisition of other kind of
images reflecting the anatomy of the brain (e.g. T1 images with grey white matter
contrast, diffusion images from which fibre bundles connecting brain regions can
be reconstructed). The data acquired for one subject is of the order of the Giga
byte, and an actual experiment usually involves 15 to 40 subjects (for instance
using different groups of subjects such as control versus patients). During a run,
an experimental paradigm designed to elicit a certain component of perception
or cognition is proposed to the subject. It consists in several tasks or stimuli (the
“conditions”) and fMRI data is commonly used to detect brain regions in which
the hemodynamic response varies between conditions. Other data such as reaction
time, eye movement, cardiac or breathing rhythms can be conjointly acquired.
A comparison of 2 or more experimental conditions is called a contrast.
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1.1.2 A short perspective of functional neuroimaging

As previously described, fMRI data are often used for detecting brain regions whose
hemodynamic varies across experimental conditions. Applications in humans’
studies can be roughly located on two axes: group versus single subject studies and
normal versus patient studies. On the latter axis, the understanding of human brain
functions is opposed to dysfunctions in psychiatric or neurological diseases. On the
former axis, the specific information obtained from a particular subject is contrasted
to the description of the information obtained at the population level. Using groups
of normal subjects, cognitive neuroscientists that use fMRI to probe brain functions
are seriously challenged by philosophers or psychologist such as J. Fodor [1] who
claim that localizing brain regions that respond to certain stimuli does not help to
understand how the brain functions. Fodor uses the mechanistic analogy of a car
engine, and asks how the knowledge of the localisation of pieces such as the piston
or carburettor helps to understand the function of theses pieces in the engine. It does
not, unless one is interested in mending some parts, as the neurosurgeon might be
for pathologies involving brain surgery. While the argument is potent it does not
account for the numerous occasions where the spatial organisation is a reflection of
the functioning, such as the retinotopic organisation of the early visual cortex, and
that brain region characterisation and localisation might be a necessary first step in
the process of defining models of brain functioning.

1.1.3 What we need to know about the data

As described previously, the origin of the data is hemodynamic. Following an
increase of synaptic and spiking activity, neurons require more energy conveyed
through the blood in the form of oxygen and glucose [2]. Through a mechanism
not fully known, the result is first an increase of oxygen extraction followed by
an increase of blood flow that over compensates the loss of oxy-haemoglobin.
The Blood Oxygen Level Dependant (BOLD) contrast can be measured with
MRI because the oxy-haemoglobin is diamagnetic while the deoxy-haemoglobin
is paramagnetic, so that the MR signal increases with the ratio oxy over deoxy-
haemoglobin [3]. The timing of this effect is relatively slow and picks around 4-6
seconds after a short stimulation and returns to baseline in about 25s. Hemodynamic
responses are further described and studied in Sect. 2. It is interesting to note that
even if the absolute timing may be considered as poor, the differential timing
between two conditions can be precise to the order of 30-50 ms. The BOLD
contrast does not show many anatomical details, and is sensitive to artefacts due
to magnetic field variation around air/tissue interfaces inducing loss of signal or
volume deformation in these areas.
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1.2 Data analysis of fMRI: a view of today research axes
or how not to be lost in the literature

In this section, we propose a particular view of the current research in the analysis
of fMRI data. While the domain is complex and rapidly growing, the classification
that we describe suggests a certain view on the domain and should help the reader
to orient himself or herself in the current techniques proposed.

1.2.1 Standard analysis: a short description. Massively
univariate techniques

The most common approach that has dominated the past decade can be decomposed
in the following steps. It success is linked to freely available tools such as SPM (see
www.fil.ucl.ac.uk/SPM) or FSL (fsl.fmrib.ox.ac.uk/fsl).

Step 1. Data pre-processing: temporal and spatial realignments. Subjects are
never completely still in the scanner and movement needs to be corrected with a
strong impact on the signal obtained. Movements correlated to the experimental
paradigm are particularly difficult to correct if not impossible. Most current
techniques assume a rigid body movement between two brain scans. Temporally,
the slices of one brain volume are not acquired at the same time, and all voxel time
series are usually interpolated to impose a unique timing for all voxels of one brain
volume.

Step 2. (can also be done after step 3) If a group analysis is to be performed,
the data of different subjects need to be placed in a standard coordinate system.
While there are many different techniques to perform this, the most usual procedure
is to first realign the functional volumes to the anatomical volume acquired in the
same scanning session, and use this more detailed image to derive a deformation
field that warps the subject brain anatomy to a standard template (generally the
so called ICBM152 volume image which represents the average of 152 healthy T1
brain images by reducing it to 2 mm isotropic resolution). This template corresponds
(but only approximately) to a brain neurosurgical atlas, the Talairach and Tournoux
atlas [4]. Because of anatomical or functional variability across subjects, the
registration is not perfect and regional activity from different subjects is not located
exactly at the same location in the standard coordinate system. Gaussian filtering
is therefore often applied to fMRI data to enhance the possible overlap of regional
activity across subjects.

Step 3. Modelling the BOLD signal and constructing statistical maps. To a first
approximation the BOLD hemodynamic response function (HRF) can be considered
as a linear phenomenon with respect to stimulation. A linear model is constructed
that includes all experimental factors which are believed to impact the BOLD signal.
For instance, three experimental conditions will be modelled by three regressors.
Each regressor is constructed as the convolution of a standard HRF with a time series

www.fil.ucl.ac.uk/SPM
fsl.fmrib.ox.ac.uk/fsl
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representing the occurrence and duration of the experimental conditions (stimuli
or task). The model may then include other experimental factors of no interest
(low frequencies confound, cardiac rate, subject movement, etc). Remaining noise
is modelled as AR processes. The model parameters (magnitude of effects, noise
variance) are then estimated, and statistical maps of t-test or F-test are constructed
for each subject. The technique has the advantages of simplicity and flexibility, and
is computationally very efficient, but it makes a series of strong assumptions that
are not necessarily valid (linearity of the model, known and constant HRF, etc). In
Sect 2, methods for estimating the HRF are reviewed (see for instance Ciuciu and
coll. Section 2).

Step 4. Modelling at the group level. To infer results at the population level,
hierarchical models are constructed, in which the estimated individual effects at
the first level become the data of a simpler model at the second level. The second
level models are usually much simpler, modelling for instance only the mean of
a condition or contrast of conditions and assuming iid errors. So called mixed
effect models can account for the variability of the estimation at the first level and
estimation can be performed with expectation maximisation techniques. Section 3
describes this in more details.

Step 5. Thresholding. Once a statistical map is constructed at the individual or
group level, it remains to be decided which brain regions are worth reporting, hence
to derive a threshold defining brain regions with significant activity. The principle
on which this threshold is chosen varies across studies. Three types of statistical
threshold are used. Uncorrected thresholds are defined to control for the risk of
false positive at the voxel level. If only one region or voxel is tested, this is a valid
approach. Often however, a priori localisation is not known, and because a brain
volume contains several tens of thousands of voxels, a number of regions are likely
to be reported by chance with this kind of threshold. To prevent false positive results,
a number of techniques have been derived for controlling the risk of error family
wise (across voxels or regions). Worsley and colleagues in particular have based
this thresholding on the notion of the expected number of above threshold regions
approximated by the Euler characteristic of random fields. These approximations
have been extended to a number of statistical fields (T, F, X2, etc) and geometry
(any volume, surface, 4D data, etc) [5]. These tests are computationally efficient
but also rely on several assumptions, including a heavy smoothing of the volume
to be thresholded which contradicts the MRI physicist efforts to improve image
resolution. Other approaches (see Sect. 2 and the work of Roche and colleagues)
have been developed using permutation tests which are shown to be exact and often
more sensitive techniques. The third approach uses the false detection rate (FDR)
threshold that controls for the false positive rate as a function of the number of
reported voxels.

As usual, thresholding is a tradeoff between sensitivity and specificity, which
may depend on the application purpose although this is rarely acknowledged in the
literature. The defined regions are then reported using their local maxima in the
standard space.
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1.2.2 The problem of localising functional activity in the brain

Localising the functional activity, while crucial to the field, is a difficult issue
that meets several challenges. At the single subject level, reporting the localisation
appropriately relies on a good correspondence between the anatomical and func-
tional images, as well as a good identification of the individual brain structures. The
more difficult problem arises when reporting group results. Indeed, the algorithms
that warp a subject anatomy to a template do not and cannot perform a perfect match.
The information used for the warping is the main anatomical features (deep sulci,
ventricules) but the variation of the anatomy between subjects is such that there
is no obvious point to point correspondence between subjects. The identification
of individual structures is not easy either (see [6]). The relation between sulco-
gyral anatomy and functional activity is still to be further studied. Secondly, activity
of different subjects may not be localised exactly at the same location within an
anatomical structure. For instance, the Fusiform Face Area (responding more to
face than to objects) may be localised more anteriorly in the fusiform gyrus in
one subject compared to another. This prompts to other solutions than the standard
stereotactic space to detect and report the localisation of functional activity (see
Sect. 4). A number of laboratories now consider that the appropriate localisation
technique is to define subject per subject functional regions using a first experiment,
then study the activity of those well defined regions in a second step [7]. This also
makes statistical inference trivial.

1.2.3 Detecting modules versus establishing functional connections

While the techniques described previously aim at localizing the activity in the
brain, and therefore defining spatially functional modules, an increasingly large
part of the literature is now devoted to establishing functional connections between
brain regions. The original observation by Biswal et al. show that even during no
motor activity (resting state or other such as visual stimulation), BOLD signal of a
series of regions that respond to motor tasks are correlated. Since then, two main
approaches are concurrently explored. The first one tries to extract networks of
correlated activity (or sharing some information) and techniques such as principal
component analysis, independent component analysis (ICA), probabilistic ICA,
partial least square (PLS), various clustering techniques, self organizing maps, etc.
To summarize, those methods aim at defining the various functional networks that
underlie brain activity and their relation to external tasks or stimulations. The
alternative approach consists in defining a specific network, a graphical model,
choosing a priori the nodes and the structure of the graph, and to estimate the
functional links given the experimental paradigm. This led to the development
of structural equation models, dynamical causal models, etc. With the current
approaches, graphical models are generally not able to identify network structures
without strong a priori knowledge, while exploratory approaches often suffer from
a lack of interpretability. Furthermore, the steady states used in many functional
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connectivity studies are not always well-defined states, hence it would be of interest
to extend the notion of functional connectivity to states that are controlled to a larger
extent by the experimenter and that follow a predefined dynamic. Finally, signal
similarity does not only come about by functional interaction, but can be influenced
by confounding physiological effects of no interest like heart beat or artefacts like
subject motion (Dodel et al. 2004).

1.3 Analysing fMRI data: where does the future lie?

In this last subsection, we review briefly three important axes that should get an
increasing attention in the future.

• Adapting techniques to inter individual variability. The development of spatial
models able to account for (limited) inter individual variability of the activity
localisation is currently being established. This research relates to parcellation
techniques, that define parcels with similar functional activity and close spatial
activity, or hierarchical models of the spatial localisation in which the second
level model parameter corresponds to the group location. Variability is also to be
modelled for the magnitude of the activity once a location is defined, for which
non parametric modelling and testing show promising results. The identification
of individual structures such as sulci or fibre tracks will play an important role
in this by providing better coordinate systems based on individual anatomical or
functional landmarks.

• Decoding versus detecting? Recent works originating from Haxby et al. REF
have reversed the usual data processing by considering how fMRI data can
predict the experimental conditions. This was thought by some to be a step
forward an actual decoding of the brain activity. Often, these works try to extract
the regions or voxels that have the best predictive power. Methods to select those
voxels or regions are still under development and the specificity of those voxels or
regions with respect to the task or condition (their importance for the prediction)
is still an open question. Those techniques are sometime called Multivariate
Pattern Analysis (MPVA) and have hoped to shift the focus from where the
processing occurs in the brain to how that processing represents information.
These methods are likely to be much more sensitive compared to massively
univariate approaches but should lose localisation information.

• Databasing and datamining. The need to store, organise and share the large
amount of information that is acquired and processed in functional neuroimag-
ing has been acknowledge early with various initiatives. We cite here a few
significant attempt. Brainmap from P. Fox and coll. proposes to store biblio-
graphic information, experimental descriptors and 3D Talairach coordinates. The
fMRIDC database contains fMRI scanning data and summary images. The BIRN
initiative has created a repository of anatomical and functional brain images
accessible to a large network of hospitals. Clearly, the results obtained from a
database of hundreds or thousands of brain scan can reach a level of sensitivity
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that is not comparable to the results obtained with ten or twenty subjects.
However, those are yet early attempts limited in their use and in their proposals
that lack query and search systems as well as stable ontology of domains such as
brain localisation and neuropsychology or cognitive neuroscience. Nevertheless,
the need for sharing and exploiting large amounts of imaging, behavioural,
physiological and genetic data is likely to put pressure on neuroimaging as the
human genome project has a decade before.

2 Intra subject analysis and HRF estimation

Within-subject analysis in fMRI is usually addressed using a hypothesis-driven
approach that actually postulates a model for the HRF and enable voxelwise
inference in the General Linear Model (GLM) framework.

2.1 Standard GLM-based approach

In this formulation, the modelling of the BOLD response i.e. the definition of the
design matrix X is crucial. In its simplest form, this matrix relies on a spatially
invariant temporal model of the BOLD signal across the brain meaning that the
expected response to each stimulus is modelled by a single regressor. Assuming the
neurovascular system as linear and time-invariant (LTI), this regressor is built up as
the convolution of the stimulation signal xm associated to themth stimulus type with
the canonical HRF hc , i.e. a composition of two gamma functions which reflects the
BOLD signal best in the visual and motor cortices [8]. The GLM therefore reads:

Œy1; : : : ; yJ � D X Œa1; : : : ; aJ �C Œb1; : : : ; bJ � (1)

where yj is the fMRI time series measured in voxel Vj at times .tn/nD1WN and aj 2
R
M defines the vector of BOLD effects in Vj for all stimulus type m D 1 W M .

Noise bj is usually modelled as a first-order autoregressive (i.e. AR(1)) process
in order to account for the spatially-varying temporal correlation of fMRI data [5]:
bj;tn D �j bj;tn�1 C"j;tn ; 8j; t , with "j 	 N .0N ; �2"j IN /, where 0N is a null vector
of length N , and IN stands for the identity matrix of size N . Then, the estimated
BOLD magnitudesbaj in Vj are computed in the maximum likelihood sense by:

baj D arg min
a2RM

kyj � Xaj k2b��2
"j
bƒj

;

where b��2
"j
bƒj defines the inverse of the estimated autocorrelation matrix of bj ;

see for instance [9] for details about the identification of the noise structure. Later,
extensions that incorporate prior information on the BOLD effects .aj /jD1WJ have
been developed in the Bayesian framework [10]. In such cases, vectors .baj /jD1WJ
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are computed using more computationally demanding strategies [10]. However, all
these GLM-based contributions consider a unique and global model of the HRF
shape while intra-individual differences in its characteristics have been exhibited
between cortical areas [11].

2.2 Flexible GLM models

Intra-individual differences in the characteristics of the HRF have been exhibited
between cortical areas in [11, 12, 13, 14]. Although smaller than inter-individual
fluctuations, this regional variability is large enough to be regarded with care.
To account for these spatial fluctuations at the voxel level, one usually resorts
to hemodynamic function basis. For instance, the canonical HRF hc can be
supplemented with its first and second time derivatives (

�
hc j h0

c j h00
c


) to model eg.

differences in time-to-peak. Although powerful and elegant, flexibility is achievable
at the expense of fewer effective degrees of freedom and decreased sensitivity in any
subsequent statistical test. Importantly, in a GLM involving several regressors per
condition, the BOLD effect becomes multivariate (i.e. amj 2 R

P ) and the Student-
t statistic can no longer be used to infer on differences amj � anj between the mth

and nth stimulus types. Rather, an unsigned Fisher statistic has to be computed,
making direct interpretation of activation maps more difficult. Indeed, the null
hypothesis is actually rejected whenever any of the contrast components deviates
from zero and not specifically when the difference of the response magnitudes is far
from zero.

2.3 Beyond parametric modelling

The localisation of brain activation strongly depends on the modelling of the brain
response and thus of its estimation. Of course, the converse also holds: HRF
estimation is only relevant in voxels that elicit signal fluctuations correlated with the
paradigm. Hence, detection and estimation are intrinsically linked to each other. The
key point is therefore to tackle the two problems in a common setting, i.e. to set up
a formulation in which detection and estimation enter naturally and simultaneously.
This setting cannot be the classical hypothesis testing framework. Indeed, the
sequential procedure which consists in first estimating the HRF on a given dataset
and then building a specific GLM upon this estimate for detecting activations in the
same dataset, entails statistical problems in terms of sensitivity and specificity: the
control of the false positive rate actually becomes hazardous due to the use of an
erroneous number of degrees of freedom. Instead, we explore a Bayesian approach
that provides an appropriate framework, called the Joint Detection Estimation (JDE)
framework in what follows, to address both detection and estimation issues in the
same formalism.



424 J.B. Poline et al.

Fig. 1 Sagittal views of a
color-coded multi-subject
parcellation. Left: Subject 1.
Right: Subject 2

2.3.1 Regional non-parametric modelling of the BOLD signal

A spatially varying HRF model is necessary to keep a single regressor per
condition, and thus enable direct statistical comparison (b̌mj � b̌n

j ). The JDE
framework proposed in [15, 16] allows us to introduce such a spatially adaptive
GLM in which a local estimation of h is performed. To conduct the analysis
efficiently, HRF estimation is carried out at a regional scale coarser than the
voxel level. To properly define this scale, the functional brain mask is divided in
K functionally homogeneous parcels using the parcellation technique proposed
in [17]. This algorithm relies on the minimisation of a compound criterion reflecting
both the spatial and functional structures and hence the topology of the dataset.
The spatial similarity measure favours the closeness in the Talairach coordinates
system. The functional part of this criterion is computed on parameters that
characterise the functional properties of the voxels, for instance the fMRI time series
themselves.

The number of parcels K is set by hand. The larger the number of parcels,
the higher the degree of within-parcel homogeneity but potentially the lower the
signal-to-noise ratio (SNR). To objectively choose an adequate number of parcels,
Bayesian information criterion (BIC) and cross validation techniques have been
used in [18] on an fMRI study of ten subjects. The authors have shown converging
evidence for K � 500 for a whole brain analysis leading to typical parcel sizes
around a few hundreds voxels. Importantly, since the parcellation is derived at the
group level, there is a one-to-one correspondance of parcels across subjects, as
shown in Fig. 1.

The parcel-based model of the BOLD signal introduced in [15, 16] is illustrated
in Fig. 2. As shown, this model supposes that the HRF shape h is constant within a
parcel, while the magnitudes of activation amj can vary in space and across stimulus
types. Moreover, the model is said non-parametric since no model is assumed for
the impulse response h, which has therefore to be identified in each parcel. Let
P D .Vj /jD1WJ be the current parcel. Then, the generative BOLD model reads:

yj D
MX

mD1
amj Xmh C P`j C bj ; 8 j; Vj 2 P : (2)
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Fig. 2 Regional model of the BOLD signal in the JDE framework. The neural response levels amj
match with the BOLD effects amj

Xm denotes the N � .D C 1/ binary matrix that codes the onsets of the mth

stimulus. Vector h 2 R
DC1 represents the unknown HRF shape in P . The term

P`j models a low-frequency trend to account for physiological artifacts and noise
bj Ï N .0N ; �2"j ƒ

�1
j / stands for the above mentioned AR(1) process.

2.3.2 Spatial mixture modelling and Bayesian inference

The HRF shape h and the associated BOLD effects .aj /jD1WJ are jointly estimated
in P . Since no parametric model is considered for h, a smoothness constraint on the
second order derivative is introduced to regularise its estimation; see [15]. On the
other hand, our approach also aims at detecting which voxels in P elicit activations
in response to stimulation. To this end, prior mixture models are introduced on
.am/mD1WM to segregate activating voxels from the non-activating ones in a stimulus-
specific manner (i.e. for each m). In [16], it has been shown that Spatial Mixture
Models (SMMs) make it possible to recover clusters of activation instead of isolated
spots and hence to account for spatial correlation in the activation detection process
without smoothing the data. As our approach stands in the Bayesian framework,
other priors are formulated upon every other sought object in model (2). The reader
is referred to [15, 16] for their expressions. Finally, inference is based upon the
full posterior distribution p.h; .aj /; .`j /;‚ jY/, which is sampled using a Gibbs
sampling scheme [16]. Posterior mean (PM) estimates are therefore computed from
these samples according to: bxPM D PL1

kDL0 x
.k/=L; 8 x 2 ˚

h; .aj /;‚
�

where
L D L1 � L0 C 1 and L0 stands for the length of the burn-in period. Note that
this estimation process has to be repeated over each parcel of each subject’s brain.
Since the fMRI data are considered spatially independent across parcels, parallel
implementation makes the computation faster: whole brain analysis is achievable in
about 60 mn for N D 125 and K D 500.
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Fig. 3 BOLD effects estimates .bdA:�V:

j /j in a given subject for the A:� V: contrast. (a): SPM-
based results obtained with the canonical HRF hc . (b): JDE-based results considering model (2).
c: Comparison of HRF shapes in the mostly activated parcel P: hc and bhP appear in red and,
respectively

2.4 Illustration on a real fMRI dataset

2.4.1 Data acquisition

Real fMRI data were recorded in fifteen volunteers during an experiment, which
consisted of a single session of N D 125 scans lasting TR D 2:4 s each.
The main goal of this experiment was to quickly map several brain functions
such as motor, visual and auditory responses, as well as higher cognitive func-
tions like computation. Here, we only focus on the auditory and visual experi-
mental conditions and so on the auditory-visual contrast of interest (referenced
as A:�V:).

2.4.2 Results

We compare the BOLD effect estimates for the two within-subject analyses under
study. Fig. 3 clearly emphasizes for the A:�V: contrast that the JDE method
achieves a better sensitivity (bilateral activations) in comparison with GLM-based
inference when processing unsmoothed data. Indeed, the BOLD effects bdA:�V:

j

have higher values in Fig. 3(b) and appear more enhanced. This is partly due to
the modeling of spatial correlation using SMM in the JDE framework. As shown
in Fig. 3(c)-[red line], notice that the HRF estimate bhP computed in the mostly
activating parcel deviates from the canonical shape depicted in Fig. 3(c)[green line].
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3 Inference in group analyses: non-parametric
and permutation tests

3.1 Classical parametric population-based inference

To clarify the context, assume that S subjects are selected randomly in a population
of interest and submitted to the same fMRI experiment. As shown in previous
sections, the two types of within-subject analyses produce, in one particular voxel
Vj of the standardized space (usually, the MNI/Talairach space) and for each
subject s, BOLD effect estimatesbaj;s. Comparison between experimental conditions
is usually addressed through contrast definition. For mathematical convenience,
we restrict ourselves to scalar contrasts. Hence we focus on signed differences
bdm�n
j;s D b̌m

j;s � b̌nj;s of the BOLD effect relative to the mth and nth stimulus types.
For notational convenience, we will drop index j and the contrast under studym�n
in what follows.

While the estimated differencebds generally differs from the true but unobserved
effect ds , assume for now perfect within-subject estimation so that bds D ds
for s D 1 W S . We thus are given a sample .d1; ; : : : ; dS/ drawn from an unknown
probability density function (pdf) f .d/ that describes the distribution of the effects
in the population. Here, we are concerned with inferences about a location parameter
(mean, median, mode, ...). Assume for instance we wish to test the null hypothesis
that the population mean is negative:

H0 W �G D
Z
d f .d/dd � 0

where G stands for the group. To that end, we may use the classical one-sample
t test. We start with computing the t statistic:

t D O�G

O�G=
p
S
; with W O�G D

P
s ds

S
; O�2G D

P
s.ds � O�G/

2

S � 1 (3)

Next, we reject H0, hence accept the alternative H1: �G > 0, if the probability
under H0 of attaining the observed t value is lower than a given false positive rate.
Under the assumption that f .d/ is normal, this probability is well-known to be
obtained from the Student distribution with S � 1 degrees of freedom. In this para-
metric context, the t statistic can be proved to be optimally sensitive (technically, in
the sense of the uniformly most powerful unbiased test, see [19]).
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3.2 Non-Gaussian populations

If normality is not tenable, however, the Student distribution is valid only in the
limit of large samples, and may thus lead to inexact control over the false positive
rate in small samples. This problem can be worked around using non-parametric
calibration schemes such as sign permutations [19], which allow exact inferences
under a milder assumption of symmetry regarding f .d/. Although we recommend
permutation tests, they only provide an alternative strategy of thresholding a given
statistic and, as such, address a specificity issue.

The fact that the sampling pdf f .d/ may not be normal also raises a sensitivity
issue as the t statistic may no longer yield optimal power when normality does not
hold. Without prior knowledge of the shape of f .d/, a reasonable default choice for
the test statistic is one that maintains good detection performance over a wide range
of pdfs. Such a statistic is robust, not quite in the classical sense of being resistant
to outliers, but in the looser sense of being resistant to distributions that tend to
produce outliers, such as heavy-tailed, or multimodal distributions. In the following,
we use Wilcoxon’s signed rank (WSR) statistic while other robust choices could
be envisaged (Fisher’s sign test, empirical likelihood ratio). As a matter of fact,
such statistics have been used previously in fMRI group analyses [20], most often
combined with permutation tests.

3.3 Illustration on real fMRI dataset

To enforce the coherence of our group level comparison with actual pipelines for
fMRI data processing (SPM, FSL), the fMRI images that enter in model (1) were
spatially filtered using isotropic Gaussian smoothing at 5 mm. In the JDE formalism,
we still consider unsmoothed but normalized data to build the group parcellation as
described in Fig. 4. Note that both approaches will be available in the next release
of BrainVisa (http://brainvisa.info) in March, 2008.

Fig. 5 provides us with the WSR statistical maps, corrected for multiple
comparisons in the permutation testing framework. The displayed slices matched
with the place of most significant activations. Activation clusters appear larger
in Fig. 5(b-d-f), i.e. using the GLM based approach, as a direct consequence of
smoothing. The statistical map derived at the group level from the JDE analyses
seems to have a lesser extent while being more significant at the cluster level
than the GLM counterpart in the right hemisphere (left side). Moreover, the JDE
formalism allows us to detect a gain in sensitivity since activations in Broca’s area
can be seen in the front of Fig. 5(a), right side. Table 1 confirms quantitatively these
results and emphasizes that GLM-based inference systematically reports clusters
of larger size (see col. 3). However, in terms of significance, the situation appears
more contrasted since cluster level p-value is lower in the right hemisphere for

http://brainvisa.info
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Fig. 4 Pipelines associated to the two fMRI group analyses

Fig. 5 RFX analysis maps based on the WSR statistics in the slice corresponding to the mostly
activated cluster. Radiological convention: left is right. (a)-(c)-(e) and (b)-(d)-(f): results obtained
using the JDE and SPM analyses at the subject level, respectively
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Table 1 Suprathreshold clusters summary for the WSR statistic

Cluster level Cluster size Voxel level Peak coords.
pcorr (voxels) pcorr x y z

JDE 0.002 1151 1e–06 8 30 26
0.003 876 0.0007 47 27 30

SPM 0.0022 1788 0.0001 5 29 28
0.0028 1680 0.0001 45 27 27

Fig. 6 Subjects are
color-coded: HRF estimates
computed over the parcel
associated to the voxel of
maximal WSR value

JDE (top line in Table 1) in one cluster over two and thus provides most significant
activation. This might be a consequence of the between-subject variability that we
observed in the HRF estimate as reported in Fig. 6.

4 Spatial models for group analyses: accounting for spatial
intersubject variability

In group analyses of fMRI data, the question is to decide which regions show a
positive effect in average across subjects for a given functional contrast. This can
be assessed in mass univariate framework through a normalization of the images to
a common template, which in turns coregisters the data across subjects. However,
as discussed in Sect. 4.1, this procedure aligns neither anatomical landmarks nor
functional regions very accurately. Some solutions are thus proposed, which fall
into two categories: i) a prior subdivision of the brain into putatively homogeneous
regions (parcels) that may be better matched across subjects than voxels (Sect. 4.2)
and ii) structural approaches that try to extract individual patterns and compare them
at the group level (Sect. 4.3).
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4.1 Taking into account the absence of a brain reference

Brain normalization consists in warping anatomical MR images in order to match
a template, usually the MNI template [25]. Such warping procedures typically
use an affine coregistration followed by a diffeomorphic, low-frequency spatial
deformation model. More recent approaches use a segmentation of the grey matter to
have a more accurate matching of the cortical surface [21]. Functional MR images,
which are assumed to be coregistered with the individual anatomy, are then warped
accordingly. Assuming a correct correspondence with the template, this allows a
massively univariate analysis of group fMRI data using a general linear model
(typically a mixed effects model).

However, this approach suffers from important shortcomings: i) From an anatom-
ical point of view, sulco-gyral patterns, but also cyto-architectonic areas [22] are
not -and probably cannot be- matched exactly through a diffeomorphism across
individuals. A straightforward example is given by sulci that cannot be found
in some subjects, or have unusual structure [23]. In other terms, there is yet no
common template of the brain structures. ii) From an empirical point of view, it
is commonly found that the variability that remains after normalization for some
anatomical landmarks or functional areas is about 1cm. The commonly adopted
solution to this problem is a blurring of the data (using 8-12 mm FWHM Gaussian
kernel), which reduces the mismatch that remains after normalization. This solution
is not fully satisfactory, because volume-based smoothing mixes the signals from
heterogeneous anatomical compartments. More generally, it is doubtful that the
resulting group maps yield an unbiased picture of the activation maps.

When considering specifically cortical structure, a partial solution consists in
making the analysis on the cortical surface instead of the brain volume. Although the
detailed correspondence of sulco-gyral patterns across subjects remains an issue, the
constraints introduced by the surface-based representation benefit to the specificity
of the group-level activation maps [22,24]. However, one-to-one mapping is still not
possible.

A practical solution to this normalization issues has been to identify some regions
based on a separate experiment (functional localizer) in each individual, and then to
perform group inference at the region level. This approach is justified by the fact that
functional information itself may be the most reliable landmark to discriminate and
identify different brain regions, given the residual cyto-architectonic and sulco-gyral
variability [25]. Moreover, this procedure also bypasses a traditional difficulty in
fMRI-based inference, the multiple comparison problem, since only few statistical
tests are performed -one for each region of interest (ROI). However, one might be
concerned by the objectivity or reproducibility of these kind of procedure, as well
as the bias induced by the restriction to these ROIs.
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4.2 Parcelling the brain

A parcellation of the brain is a division of the brain into entities which are thought to
correspond to well-defined anatomical or functional regions. In the context of group
inference for neuroimaging, basing the analysis on parcels amounts to sacrificing
spatial resolution to obtain a more reliable as well as interpretable matching of
functional regions. Although atlas-based divisions are quite frequently used, it
should be pointed out that these procedures do not adapt to the individual anatomy,
and thus do not address the problem raised here.

Parcellations can be based on anatomical or functional features. Anatomical
parcellations are usually based on sulco-gyral anatomy [26], and yield some
segmentations of the main cortical lobes into a few tens of connected regions.
Basal ganglia and the cerebellum are handled with specific (usually atlas-based)
procedures. However, these procedures yield extremely coarse divisions of the
brain, and thus cannot be used straightforwardly for brain mapping. Sulci-based
parcellations can be performed at a much finer scale in individual datasets [27] but
then the correspondence of the parcels between subject can be difficult to guarantee.

As we have noticed, functional information itself could ultimately be a very
useful feature to segment the brain into small homogeneous regions. Brain par-
cellation can thus be driven by both functional and anatomical information. Such
procedures are usually based on clustering algorithms that segment small clusters
of voxels so that i) each parcel should be defined in each subject of the group under
study, ii) the parcels should be functionally homogeneous and spatially connected
within subjects iii) they should have similar functional properties and position across
subjects. Ideally, parcellations could be performed on some functional localizer
experiment, and then used to perform group inference in some experiment of
interest. Alternatively, the same data can be used for parcellation and inference,
but then the inference procedure should be based on a costly non-parametric test
which involves the computation of parcellation and statistic [17].

Parcellations are an especially interesting tool if one is interested in describing
the modular structure of the brain. This perspective raises important questions on
how many brain modules could be delineated at the population level based on some
functional information. There is clearly a compromise between the accuracy of the
description, which would favor small parcels, and the inter-subject reproducibility
of the structures, which is better assessed with coarse descriptions.

4.3 Structural approaches

The model underlying anatomo-functional parcellations is that the brain consists of
elementary units or modules. In many cases, this point of view may be considered
as limited. For instance, the activated regions for some tasks my be more general
patterns than simple cortical patches, and it may be more useful to describe them in
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Fig. 7 structural analysis of the regions involved in a computation task: (a) Group template built
from datasets from 10 subjects. (b-f) corresponding regions in 5 representative subjects. It is
important to notice that there is no one-to-one correspondence, but a global pattern similarity
between subjects. Moreover, the group template should be taken as an abstract model of the
individual maps, while each individual data represent true activations; see [29] for more details

terms of blobs, peaks or gradients. Finding which patterns of that kind are present in
a dataset and how frequent/typical they are in a population of subjects is what we call
here a structural approach to understanding brain functional anatomy. By contrast
with traditional approaches this kind of inference follows bottom-up strategy, where
objects extracted individually are compared at a high-level of description.

Typically, structural features or patterns that are relevant for descriptions are local
maxima of activity, regions segmented by watershed methods or blob models. The
emphasis may be either on the structure of the active regions (bifurcations pattern),
or merely the peaks (local maxima).

Whatever the kind of pattern extracted from the data, the most difficult questions
are i) to decide how likely these patterns represent true activity or noise-related
artifacts; ii) to infer a pattern common to the population of subjects. Several
approaches have been discussed in the literature

• The description in terms of scale-space blobs embedded in a Markov-Random
field was introduced in [28] in order to yield a kind of threshold-free analysis,
where inter-subject reproducibility plays a key role for inference. A stepwise
re-formulation of this approach was proposed in [29]. See Fig. 7.

• The idea that peaks could be a reliable feature to describe the information carried
by an activity map and implicitly align the subjects yielded the concept of brain
functional landmark [30].
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The benefit of this kind of structural method is that regions extracted from
individual datasets can then be compared across subjects or groups from the point
of view of their position, size or shape, which is not possible in traditional voxel-,
cluster- or even parcel-based inference framework.

Conclusion

One of the challenges of functional neuroimaging analysis methods and softwares
will be to enable neuroscientists to capitalize on their past experiments to build finer
or more complex models of information processing in the brain. Treating the brain
as an homogeneous three-dimensional space may not be the well suited for that
purpose. If the real matter is to understand the specialization of functional regions,
and what characterizes them both on anatomical and functional aspects, it will be
important not to rely solely on voxel-based descriptions, but also on region-based
or structure-based approaches.
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Diffusion Tensor Estimation, Regularization
and Classification

R. Neji, N. Azzabou, G. Fleury, and N. Paragios

Abstract In this chapter, we explore diffusion tensor estimation, regularization and
classification. To this end, we introduce a variational method for joint estimation and
regularization of diffusion tensor fields from noisy raw data as well as a Support
Vector Machine (SVM) based classification framework.

In order to simultaneously estimate and regularize diffusion tensor fields from
noisy observations, we integrate the classic quadratic data fidelity term derived
from the Stejskal-Tanner equation with a new smoothness term leading to a
convex objective function. The regularization term is based on the assumption
that the signal can be reconstructed using a weighted average of observations on
a local neighborhood. The weights measure the similarity between tensors and
are computed directly from the diffusion images. We preserve the positive semi-
definiteness constraint using a projected gradient descent.

The classification framework we consider in this chapter allows linear as well
as non linear separation of diffusion tensors using kernels defined on the space of
symmetric positive definite matrices. The kernels are derived from their counterparts
on the statistical manifold of multivariate Gaussian distributions with zero mean

R. Neji
Siemens Healthcare, UK
e-mail: radhouene.neji@gmail.com

N. Azzabou (�)
Institute of Myology 47 Boulevard Hôpital, 75013 Paris, France
e-mail: n.azzabou@institut-myologie.org

G. Fleury
Ecole Centrale Pékin
No. 37 Xueyuan Street, Haidian District Beijing, 100191, P.R. China
e-mail: gilles.fleury@supelec.fr

N. Paragios
Center for Visual Computing, Department of Applied Mathematics, Ecole Centrale Paris, Paris,
France
e-mail: nikos.paragios@ecp.fr

N. Paragios et al. (eds.), Handbook of Biomedical Imaging: Methodologies
and Clinical Research, DOI 10.1007/978-0-387-09749-7__24,
© Springer ScienceCBusiness Media New York 2015

437

mailto:radhouene.neji@gmail.com
mailto:n.azzabou@institut-myologie.org
mailto:gilles.fleury@supelec.fr
mailto:nikos.paragios@ecp.fr


438 R. Neji and N. Azzabou

or from distance substitution in the Gaussian Radial Basis Function (RBF) kernel.
Experimental results on diffusion tensor images of the human skeletal muscle (calf)
show the potential of our algorithms both in denoising and SVM-driven Markov
random field segmentation.

1 Introduction

Diffusion tensor imaging (DTI) is an emerging non-invasive modality allowing the
quantitative investigation of water protons diffusion within biologic tissues. Such
a modality offers measurements of the amount of diffusion of water molecules in
several different directions. One then can infer the estimation of a tensor which is a
3 � 3 symmetric positive definite matrix representing the uncertainty on the position
of water protons with a Gaussian model of displacement. It can be visualized as an
ellipsoid: the axes correspond to the principal directions of diffusion (eigenvectors)
and the radii correspond to the amount of diffusion along each principal direction
(eigenvalues). Diffusion in the presence of organized anatomical structures can
reveal informative properties inherent to the architecture of the imaged organs. More
explicitly, diffusion is hindered along some directions and facilitated along others
that often coincide with fiber trajectories. Therefore, DTI has been used mostly in
brain studies and has become a tool to infer white matter connectivity [4]. It is also
starting to be used in the study of the architecture of the muscles of the lower leg
[10, 11].

We address two issues that arise in the processing of diffusion tensor images:
joint estimation and denoising of tensors as well as tensor classification. In fact, the
DTI experimental protocol yields noisy observations due to the diffusion-sensitizing
magnetic gradient. Furthermore, the clinical protocols refer to relatively low magnet
strength, or a rather low signal-tonoise ratio. Therefore, signal reconstruction is
crucial to obtain an appropriate estimate of the tensor field and for subsequent use of
this estimate in applications like fiber tractography. Besides, since some anatomical
structures show distinct fiber orientations, classifying diffusion tensors in order to
learn orientation and eigenvalue distributions from manually segmented examples
is an appealing task that can be useful to guide segmentation algorithms.

The remainder of this chapter is structured as follows: in Sect. 2, we review the
previous work that addressed diffusion tensor regularization and classification. In
Sect. 3, we detail the proposed framework of joint estimation and regularization.
The SVM classification of tensors along with three classes of kernels on the
manifold of symmetric positive definite matrices are treated in Sect. 4, where we
also introduce the SVM-driven Markov random fields for segmentation purposes.
Sect. 5 is dedicated to experimental results both on synthetic and clinical data of the
calf muscle. In Sect. 6, we discuss the perspectives of this work.
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2 Previous work

Several methods have been proposed to address diffusion tensor regularization.
In [7], a two-step regularization was proposed consisting of the restoration of
the principal diffusion directions using a total variation-model followed by the
smoothing of the eigenvalues using an anisotropic tensor-driven formulation. In [2],
the maximization of a log-posterior probability based on the Rician noise model
is considered to smooth directly the diffusion-weighted images. A Bayesian model
based on a Gaussian Markov Random Field was used in [20] to smooth the diffusion
tensors. In [6], the authors consider the tensors as lying on a Riemannian manifold
and use the corresponding distance to derive a local weighted averaging for DTI
denoising. Tensors are assumed to be positive-definite matrices which was taken
into account in [8] where an anisotropic filtering of the L2 norm of the gradient
of the diffusion tensor was considered and their proposed PDE scheme constrains
the estimation to lie on this space. Such a concept was further developed in [28]
where a variational method was proposed that aimed to minimize the Lp norm of the
spatial gradient of the diffusion tensor under a constraint involving the non-linear
form of Stejskal-Tanner equation. A non linear diffusion scheme is described in [29]
where smoothing is made direction-dependent using a diffusion matrix in the PDE
system. More recently, in [9] a joint reconstruction and regularization was proposed
in the context of an energy minimization in a Log-Euclidean framework. The
existing variational methods focused disproportionately on enforcing the positive-
definiteness constraint, with the regularization term usually chosen as a function
of the norm of the gradient. The main limitation of most of the above-mentioned
methods is the nature of the cost function (non-convex) that entails a preliminary
initialization step, while little attention was paid to defining appropriate smoothness
components that account for the expected nature of tensors.

As far as diffusion tensor classification is concerned, very few previous works
tried to include a priori knowledge about the diffusion tensors or fiber tracts [19,
21], mainly because they focused on brain anatomy and connectivity which are less
well-known than the fiber architecture of the human skeletal muscle for example,
where each muscle group has specific pennation angles. Common machine learning
techniques were therefore mainly applied to separate populations of healthy and ill
patients on a voxel-wise basis rather than to learn distributions of diffusion tensors
within a specific anatomical region in order to guide segmentation algorithms [15,
27]. Besides, the non linear techniques used in the literature relied mainly on kernels
that are not specific to the space of symmetric positive definite matrices, mainly the
well known Gaussian and polynomial kernels.
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3 DTI Estimation and Regularization

Let us assume that n DTI acquisitions (Sk)kD1 : : : n with respect to different magnetic
gradient directions (gk)kD1 : : : n are available. Ideally, the expected signal at a voxel x
for the direction k as explained in [24] should respect the following condition

Sk .x/ D S0 .x/ exp
��bgtkD .x/ gk

�

with the tensor D being the unknown variable and b a value that depends on the
acquisition settings. The estimation of the tensors in the volume domain 	 can
be done through direct inference (6 acquisitions are at least available), which is
equivalent to minimizing:

Edata .D/ D
Z

	

nX

kD1

�
log .Sk .x/ =S0 .x//C bgtkD .x/ gk

�2
dx

This energy is based on the linearized diffusion tensor model which is reasonable for
moderate values of SNR [23]. Such a direct estimation is quite sensitive to noise, on
the other hand, it refers to a convex term, which is rather convenient when seeking
its lowest potential. The most common approach to account for noise is through the
use of an additional regularization term which constrains the estimation of D to be
locally smooth. One of the most prominent uses of DTI is fiber extraction. Therefore
it is natural to assume that locally these fibers do have similar orientations. In such a
context, the tensor can be expressed as a linear combination of the tensors lying in its
neighborhood since they are likely to represent the same population of fibers. Such a
regularization constraint was introduced in the case of image restoration in [1]. This
assumption still holds at the boundaries between different groups of fibers as long as
the linear combination is thoroughly chosen to ensure that the contribution of tensors
belonging to a different fiber population is negligible. It is also more accurate than
the underlying assumption of total-variation based approaches where the tensor field
is considered piecewise constant. This leads us to define the following regularization
component:

Esmooth.D/ D
Z

	

����D.x/� 1

Z.x/

Z

y2Nx

w.x; y/D.y/dy

����
2

F

dx

where w(x, y) reflects the similarity between tensors D(x) and D(y), jjAjjF) being
the Frobenius norm kAkF D p

t r .AtA/ and Z(x) is a normalization factor, i.e
Z.x/ D R

y2Nx
w.x; y/dy. The most critical aspect of such an approximation model

is the definition of weights, measuring the similarity between tensors within the
local neighborhood. The use of Gaussian weights is a common weight’s selection,

i.e

	
w.x; y/ D e

�d2.D.x/;D.y//
2�2



, where d(.; .) is a distance between tensors and � a scale
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factor. In the context of direct estimation and regularization it is more appropriate to
define similarities directly on the observation space rather than the estimation space.
Such a choice will lead to a tractable estimation, while preserving the convexity of
the cost function. Our distance definition as well as our minimization step are based
on the representation of symmetric positive semi-definite matrices S3C as a convex
closed cone in the Hilbert space of symmetric matrices S3, where the standard
scalar product is defined by hA;BiF D t r.AtB/ which induces the corresponding
Frobenius norm.

3.1 Measuring Similarities from diffusion weighted images

We aim at simultaneously estimating and smoothing the tensor field, therefore
the weights w(x, y) in Esmooth should be precalculated using the raw data. The
most straightforward estimation of the distances can be done through the algebraic
distance between the log(Sk /S0) for two neighborhood voxels in any direction

d.D.x/;D .y// D 1

b

vuuut
NX

kD1

�
log

�
Sk .x/
S0 .x/

�
� log

�
Sk .y/
S0 .y/

��2

One can easily show that such an expression does not reflect similarity between
tensors according to the norm k � kF . In fact, this leads to
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where Gk D gk gt
k do not form necessarily an orthonormal basis. We use a Gram-

Schmidt orthogonalization scheme to calculate an orthonormal basis QGk such that
QGk D

X
l
˛klGl (each new vector of the new basis is a linear combination of the

vectors of the initial basis). This procedure allows us to have an approximation of
jjD(x) � D(y)jjF directly from the raw data Sk and S0 as follows
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3.2 Semi-Definite Positive Gradient Descent

One now can seek the lowest potential of the cost function towards recovering
the optimal solution on the tensor space. The present framework consists of a
convex energy with a unique minimum which can be reached using a projected
gradient descent on the space of semi-definitive positive matrices. The projection
from S3 onto S3C denoted by …S3

C

is well defined and has an explicit expression.
Indeed, projecting M amounts to replacing the negative eigenvalues in its spectral
decomposition by 0 [8, 12]. Note that we minimize over the set of semi-definite
positive matrices because it is topologically closed, as opposed to the set of definite
positive matrices. In the current setting, the problem is well posed and the projected
gradient descent algorithm is convergent for a suitable choice of the time step dt.
Using a weighting factor � between the data attachment term and the regularization
energy, the gradient descent can be expressed as the following equation

DtC1 .x/ D …S3
C

�
Dt .x/� dt
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Let us define the norm k � kTF over the whole tensor field D as k D kTF DR
˝ k D(x) kFdx. Considering two tensor fields D1 and D2, we show in the following

that the gradient of our energy functional is L-Lipschitz. The constant L will allow
us to choose automatically a time step that insures the convergence of the algorithm.

����
@Edata
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.D1/� @Edata
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Therefore k rEdata(D1) � rEdata(D2) kTF � 2b 2P N
k D 1 k Gk k 2

F k D1 � D2 kTF .
Besides, we can easily show the following inequality
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k rEsmooth .D1/ � rEsmooth .D2/ kTF � 2
�
1C 2 jNxj C jNxj 2� k D1 � D2kTF

where jNxj is the number of the considered neighbors. Thus the gradient of the

objective function is L-Lipschitz with L D 2b2
XN

kD1 k Gkk2F C 2œ.jNxj C 1/2.

Choosing 0 < dt < 1

b2
XN

kD1 k Gkk2FCœ.jNxjC1/2
makes the projected gradient

descent convergent [3].
We can give an interpretation of our regularization energy in terms of diffusion-

weighted images smoothing. It can be easily verified that for each direction k
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Using Cauchy-Schwartz inequality we obtain:

1

b2

Z

	

2

4log

�
Sk.x/
S0.x/

�
� log

0

@
Y

y2Nx

.
Sk.y/
S0.y/

/

w.x;y/
Z.x/

1

A

3

5
2

dx � Esmooth k Gk k2F

We can see that minimizing Esmooth has a direct implication on the normalized
diffusion weighted images Sk

S0
. Reconstructing the tensors using a linear combination

of the tensors in its neighborhood leads to the reconstruction of the normalized
signals using a weighted geometric mean of the neighboring signals where the
weights are not calculated only with a single volume Sk but also with the volumes
obtained from the other magnetic gradient directions.

4 SVM classification and kernels on tensors

4.1 Two-class Support Vector Machines

We briefly review the principles of two class SVMs [26]. Given N points xi with
known class information yi (either C1 or �1), SVM training consists in finding
the optimal separating hyperplane described by the equation wtx C b D 0 with the
maximum distance to the training examples. It amounts to solving a dual convex
quadratic optimization problem and each data point x is classified using the SVM
output function f (x) D (†N

i ˛i yi xxi) C b. The algorithm is extended to achieve non
linear separation using a kernel function K(x,y)(symmetric, positive definite) that is
used instead of the standard inner product.
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4.2 Information diffusion kernel

In order to define a kernel on the set of definite positive matrices, we can propagate
class and structure information using its geometry as a Riemannian manifold [22].
Intuitively, we can see the construction of this kernel as diffusing the labels of the
training set to the whole set of definite positive matrices. Therefore, similarly to heat
diffusion on a Euclidean space, where the solution is given by the convolution of the
initial condition by a Gaussian kernel, heat diffusion on a Riemannian manifold
is driven by a kernel function Kt and given by the following asymptotic series
expansion [17]:

Kt .D1;D2/ / exp

�
�d

2 .D1;D2/

4t

� 1X

nD0
an .D1;D2/t

n

where d corresponds to the geodesic distance induced by the Riemannian metric,
an are the coefficients of the series expansion and t is the diffusion time, which is
a parameter of the kernel. We use a first order approximation in t of the previous
expression that yields

Kt .D1;D2/ / exp

�
�d

2 .D1;D2/

4t

�

In our case, d has an explicit expression given by d .D1;D2/ D pP
i .log .�i // 2

where œi are the generalized eigenvalues of D1 and D2 [22].

4.3 Bregman divergence kernels

Instead of using the geodesic distance in the information diffusion kernel, one
can instead use the Bregman divergence framework [25] to define a rich class of
kernels parametrized by a convex scalar function � W s3C ! R that extend in a
natural way the Euclidean distance and therefore the standard Gaussian radial basis
function kernel. Knowing �, one can define the corresponding Bregman divergence
D� between two matrices D1 and D2 as follows:

D� .D1;D2/ D � .D1/� � .D2/� t r
�r�.D2/

t .D1 � D2/
�

The symmetrization of the divergence gives the following similarity measure
_

D :

_

D� .D1;D2/ D t r
�
.r� .D1/� r� .D2//

t .D1 � D2/
�
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It is clear that choosing � .D/ D 1
2
kDk2F yields the standard Euclidean distance.

Therefore, we extend the Gaussian radial basis function (RBF) kernel using the
exponential embedding:

K.D1;D2/ D exp

�
�”_D� .D1;D2/

�

Two interesting cases of � are the Burg entropy [Eq. (1)] and the Von Neumann
Entropy [Eq. (2)]:

�1.D/ D � log.det.D// (1)

�2.D/ D t r.D log.D/ � D/ (2)

They induce the following kernels:

K1.D1;D2/ D exp.�
 tr..D1 � D2/.D�1
1 � D�1

2 //

K2.D1;D2/ D exp.�
 tr..D1 � D2/.log.D1/ � log.D2///

These kernels provide global similarity measures that quantify the differences
between tensors both in eigenvalues and eigenvectors. Note that the divergence that
derives from Burg entropy can also be obtained from a Kullback-Leibler divergence
between Gaussian distributions with zero mean [28].

4.4 Probability product kernels

The third kernel we will study is a probability product kernel [13] to derive a class
of kernels over the set of positive definite matrices. We consider again the set of
Gaussian probability distributions of zero mean, two elements p1 and p2 of this set
with D1 and D2 their covariance matrices and the corresponding probability product
kernel:

K.p1; p2/ D
Z
p1.x/

�p2.x/
�dx D< p�1; p�2>L2

where � is a positive constant. Note that the special case � D 1/2 coincides with
the well known Bhattacharyya kernel. Replacing the probabilities p1 and p2 by their
expressions gives the following kernel:

K.D1;D2/ D det.D1/
��=2det.D2/

��=2det
�
D�1
1 C D�1

2

���

This defines a Mercer kernel as the probability product kernel on Gaussian
distributions is based on the scalar product in L2 which is a Hilbert space. This is
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an advantage over the two above-cited classes of kernels which are not necessarily
positive definite. Note however that in practice, a thorough choice of the parameter

 will ensure the positive definiteness in a statistical sense, i.e. the property will
hold with high probability [5].

4.5 SVM-driven Markov random fields

The goal behind the use of an MRF model is two-fold: we aim at including spatial
information, i.e. tensors along the same fiber should belong to the same class and
we also try to minimize the effect of noise during segmentation. Besides, the MRF
framework allows to use all the scores given by the SVMs, instead of making the
labeling decision by simply taking the maximum score. Therefore, we define the
following energy E to minimize:

E D
X

i2	
us .l.i//C �

X

i2	;j2N .i/

up .l.i//; l.j /
�

(3)

where 	 is the image domain, l(i) is the label of the voxel i; N .i/ is the
considered neighborhood, us is the potential given by the SVM scores and up is
a pairwise potential that imposes spatial regularization. We choose us.l.i// D
exp.� f̨l .D.i/// which is a decreasing potential in the score given by a one-
against-all SVM classifier fl. The choice of the pairwise potential up is application-
dependent and should include prior knowledge about the structure of the anatomical
region that is to be segmented. For the case of the muscles of the calf, we know
that the fibers have a privileged orientation since they follow the direction of the leg
with a pennation angle, accordingly we propose two different costs for neighboring
voxels: if the voxels i and j belong to the same axial slice, the pairwise potential up

is set to

up.l.i/; l.j // D c.1 � ıl.i/;l.j //

where c is a constant and ı is the Kronecker delta, otherwise we choose

up .l.i/; l.j // D
�
1 � 1

2

vtD.i/v
�max.i/

� 1

2

vtD.j /v
�max.j /

��
1 � ıl.i/;l.j /

�

where v D i�j
ki�jk

and �max.i/ is the largest eigenvalue of D.i/; �max.i/ D
maxkZkD1 ztD.i/z. This potential is low for tensors belonging to the same fiber.
To minimize the energy defined in [Eq. (3)], we use the optimization algorithm
proposed in [16].
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Fig. 1 Tensors on a volume slice: (a) Noisy tensors (b) Ground-truth (c) Result obtained with [8]
(d) Result obtained with our method

5 Experiments and results

In order to validate the performance of the proposed algorithms, we (i) have
generated artificial tensors volumes corrupted with synthetic noise and compared the
obtained result with the output of the constrained anisotropic smoothing algorithm
(ii) used manual segmentation on T1 muscle images and tried to improve the
separability of classes in the DTI space after regularization (iii) compared the
performance of kernels in the training and testing phases for two muscle groups
(iv) run the SVM-driven MRF algorithm for the segmentation of the calf muscles in
three distinct regions.

5.1 Denoising of Artificially Corrupted Tensors

Let us consider two volumes, one that consists of two classes with orthogonal axes
on a 20 � 20 � 20 lattice and a helix in which the internal voxels are anisotropic and
the external ones are spheric [Fig. 1-b]. For the first volume, the tensor fields for
each region are D1 D 0.001 � [1 0.5 0.5 0 0 0] and D2 D 0.001 � [0.2 0.4 0.2 0 0 0]
where D is presented in the form of D D [Dxx Dyy Dzz Dxy Dxz Dyz]. We considered
for both datasets a field strength b D 700 s.mm�2, a constant value for S0 D 60 for
all volume voxels and twelve different directions for diffusion gradient, which are
used to generate the DTI corresponding to such tensor estimations.

The images were corrupted with a white zero-mean Gaussian noise forming a
data set where ground-truth on the tensor are available. An estimation of the tensor



448 R. Neji and N. Azzabou

Table 1 Average Sum of Square Differences (SSD) � 104 . Comparisons between our method and
the one in [8]

Helix dataset Homogeneous regions
�

n 0.5 1.2 3 1.5 4 9

Noisy Tensor 1.08 6.24 39.54 9.82 71.25 393.38
Method in [8] 0.33 1.60 10.57 3.32 22.47 120.70
Our Method 0.41 1.38 3.78 0.44 4.23 18.30

field relative to the noisy images provides the noisy tensors data. Then, to perform
comparisons we considered the regularization algorithm on noisy tensors presented
in [8]. The following parameters were used for our method: � D 50; Nx D
3 � 3 � 3; dt D 10�7 with 50 iterations. To evaluate the performance of these
methods, we considered the average sum of squared differences (SSD) between
the regularized tensors and ground truth ones. In [Table 1], we can see that our
estimation and regularization approach achieves better results and produces a tensor
close to the ground truth. Our method outperforms the one of [8] when the level
of noise is relatively important. In fact, it considers a more robust resemblance
degree between voxels. Such a criterion insures a better selection of neighboring
tensors involved in the estimation of a given tensor. On the other hand, the
anisotropic diffusion based regularization relies on gradient information which is
not robust in case of high noise. In order to assess qualitatively our algorithm,
we reported in [Fig. 1] the resulting tensors using our regularization method and
the constrained anisotropic one. We can observe that our method achieves a better
direction preservation, even in the presence of a strong noise.

5.2 Denoising of Diffusion Tensors of the Calf Muscle

In order to perform validation using real data, the following experiment was
considered. DTI acquisitions of human skeletal muscle (calf) using 12 directions
were carried out on a 1.5 T MRI scanner with the following parameters : repetition
time (TR) D 3600 ms, echo time(TE) D 70 ms, slice thickness D 7 mm and b value
of 700 s.mm�2. In order to improve the signal-to-noise ratio, the acquisition was
repeated thirteen times (one can use the average of the measurements) while a
high resolution T1-weighted volume was also obtained and manually segmented
[Fig. 2]. The muscles that were considered in our study were the soleus (SOL),
lateral gastrocnemius (LG), medial gastrocnemius (MG), posterior tibialis (PT),
anterior tibialis (AT), extensor digitorum longus (EDL), and the peroneus longus
(PL).

In order to proceed with an evaluation of the proposed method, the following
scenario was considered: Using the manual segmentation, and the observed mea-
surements of a given acquisition (12 directions), we have constructed seven linear
classifiers (a multi-class linear SVM [14]) separating each class of muscle versus
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Fig. 2 A slice of the T1-weighted volume, different muscle groups segmented manually

Table 2 Correct classification rates for the different methods and for each
muscle group. The first and third row show the average correct classification
rates for the set of 13 volumes

Overall MG LG SOL

DE 78.1 % 86.16 % 51.1 % 84.43 %
ADE 84.46 % 90.47 % 65.72 % 88.43 %
DER 86.45 % 91.82 % 69.76 % 89.97 %

all others. Then, the success rate (percentage of voxels being attributed to the right
class) from the classifier with respect to the ground truth was determined. We remark
that linear separation is hardly achieved for PT, PL, EDL and AT while it yields
quite satisfactory results for the MG, LG and to a lesser extent SOL which form the
major part of the muscle. We have performed this test thirteen times for: (i) direct
estimation (DE), (ii) direct estimation and regularization (DER), as well as using
direct estimation of the average measurements of the thirteen acquisitions (ADE).
One would expect that since muscles consist of myo-fibers of the same nature, the
classification should be improved if the estimation of the tensors is properly done,
i.e. with appropriate regularization. However, it is important to note that the aim of
this paper is not automatic classification of voxels in different muscle regions using
DTI (in such a case more advanced classifiers can be used).

In [Table 2], we present quantitative validation of the present framework for the
linearly separable muscles. One can see that our method leads to an improvement
in the correct classification rates with respect to a plain direct estimation. We also
obtain better results when compared to the averaging C estimation method. We also
show the result of our regularization on a slice of the volume in [Fig. 3].
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Fig. 3 Estimated tensors without regularization, tensors obtained with our method

5.3 Kernels comparison

In order to assess the behavior of the defined kernels, we consider the SOL and MG
muscle groups. SVM classification was performed both in a linear and a non linear
fashion using the above-defined kernels.

We motivate the use of kernel-based SVMs by focusing on the architecture of the
soleus muscle. While the medial gastrocnemius is a unipennate muscle (the fibers
have one line of action), the soleus is a bipennate one (the fibers have two lines of
action) and exhibits a richer structure. As can be seen in [Fig. 4] where the principal
directions of diffusion in the MG and SOL muscles are displayed as points on the
unit sphere, it is more natural and mathematically more sound to trace the decision
boundary while respecting the manifold structure, rather than using a hyperplane
to separate the different classes or flattening the manifold using the Gaussian RBF
kernel. We compared the behavior of the defined kernels in separating the MG from
the SOL using a set of 9904 diffusion tensors with approximately the same number
of tensors for each class (4976 tensors belonging to MG, 4928 tensors from the SOL
muscle). We subdivided this set into a training set and a testing one to evaluate the
generalization errors (50 % of the set for the training and 50 % for the testing). As
shown in [Table 3], the kernels that are specific to the space of symmetric positive
definite matrices perform better than the linear classification both in the training and
testing phases. The best result was obtained for the information diffusion kernel with
approximately 3 % of classification error. Note that the number of support vectors
has not increased much with respect to a linear classification.
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Fig. 4 Principal directions of
diffusion of SOL and MG in
red and blue respectively

Table 3 Performance of the different kernels

Kernel Training error Support vectors Testing error

Linear 5.27 % 741 5.81 %
Information diffusion 0.26 % 999 2.89 %
Probability product 3.77 % 547 4.94 %
Burg 3.23 % 482 3.94 %
V. Neumann 3.25 % 494 4.05 %

Table 4 Comparison of error
rates with and without MRF
regularization

class 1 class 2 class 3

SVM 85.71 % 82.53 % 76.4 %
SVMCMRF 88.64 % 90.22 % 88.42 %

5.4 Segmentation of the calf muscle with SVM-driven MRFs

Two different diffusion datasets were considered to evaluate the segmentation
algorithm, one for training and the other for testing. We used SVMs in a one against
all fashion to learn the diffusions tensors of three major groups in the calf muscle:
the soleus, the medial gastrocnemius and a third group consisting of the lateral
gastrocnemius as well as the muscles of the anterior compartment of the calf. The
learning was done on a manually segmented volume and we tested the performance
of the SVM C MRF algorithm using the information diffusion kernel on another
volume. As can be seen in [Table 4], the MRF regularization improves significantly
the correct classification rates with respect to a labeling decision based on the
maximum score, achieving a correct classification rate of approximately 90 % for
each of the three classes. Qualitative results are provided in [Fig. 5]. We can see that
while SVM classification can be misled by noise, the combination of SVMs and
MRF provides a smoother result and decreases the number of misclassifications.
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Fig. 5 Obtained 3D
segmentation in three groups
with some misclassifications
visible, axial slice of the
baseline image with overlaid
segmentation for the ground
truth, SVM classification and
SVM C MRF algorithm
respectively

6 Discussion

In this chapter a novel approach to direct estimation and regularization of diffusion
tensor images was proposed along with an SVM framework for tensor classification.
The main strength of the regularization algorithm is the smoothness term that
assumes linear (convex) approximation of neighborhood tensors as well as the
convex nature of the proposed cost function which can be easily optimized. Our
method was compared and outperformed the anisotropic constrained regularization
using generated data with known noise model, and improved human skeletal muscle
segmentation/classification through DTI using real data.

A possible extension of the regularization framework is a better selection of
the bandwidth � which is a critical parameter of the process. Data-driven variable
bandwidth models is a natural extension of the method. One would expect that the
optimal bandwidth depends on the form of the observed anatomical structure which
varies spatially. We can further extend this work by replacing the Frobenius norm
in the energy functional by the Riemannian distance [6, 22] or the Log-Euclidean
distance [9]. However this will be done at the expense of the convexity of the
function and the computational time.

The SVM classification approach introduced in this paper allows linear and
non-linear separation and learning of diffusion tensors. It can be incorporated
in a Markov random field model for segmentation with prior knowledge. This
framework can be generalized to classify fibers. In fact, a fiber can be considered as
an ordered set of tensors and one can use the summation kernel or more elaborate
kernels on structured data [18] to build kernels on entire fibers.

The use of DTI towards understanding the human skeletal muscle as well as
providing means of diagnosis for muscular diseases is a more long-term objective of
our research. The ability to understand the remodeling of myofibers due to muscular
diseases using non-invasive means is a great perspective.
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From Local Q-Ball Estimation to Fibre
Crossing Tractography

M. Descoteaux and R. Deriche

Abstract Fibre crossing is an important problem for most existing diffusion tensor
imaging (DTI) based tractography algorithms. To overcome limitations of DTI, high
angular resolution diffusion imaging (HARDI) techniques such as q-ball imaging
(QBI) have been introduced. The purpose of this chapter is to first give state of
the art review of the existing local HARDI reconstruction techniques as well as the
existing HARDI-based tractography algorithms. Then, we describe our analytical
QBI solution to reconstruct the diffusion orientation distribution function (ODF) of
water molecules and we propose a spherical deconvolution method to transform the
diffusion ODF into a sharper fibre ODF. Finally, we propose a new deterministic and
a new probabilistic algorithm based on this fibre ODF. We show that the diffusion
ODF and fibre ODF can recover fibre crossing in simulated data, in a biological
phantom and in real datasets. The fibre ODF improves angular resolution of QBI by
more than 15ı and greatly improves tractography results in regions of complex fibre
crossing, fanning and branching.

1 Introduction & Problem Statement

At the current resolution of diffusion-weighted (DW) magnetic resonance imaging
(MRI), research groups agree that there are between one and two thirds of imaging
voxels in the human brain white matter that contain fibre crossing bundles [10].
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We know that in these locations, the diffusion is non-Gaussian and the diffusion
tensor (DT) [8] is limited due to its intrinsic Gaussian diffusion assumption. Hence,
DT-based tractography algorithms can follow false tracts and produce unreliable
tracking results. To overcome limitations of the DT, new high angular resolution
diffusion imaging (HARDI) techniques [2, 65] have been proposed to estimate the
diffusion orientation distribution function (ODF) [66] of water molecules or other
high order spherical function estimate of the diffusion profile [4,5,20,34,37,38,40,
52, 58, 63, 64], These HARDI techniques (see Fig. 1) were developed to deal with
non-Gaussian diffusion process and to reconstruct spherical functions with maxima
aligned with the underlying fibre populations.

In this chapter, we focus on deterministic and probabilistic tractography using
state of the art reconstruction of the diffusion and fibre ODF from QBI. QBI
is of interest because it is model-free and it can be computed analytically and
robustly with low computational cost [23]. First, we review the existing HARDI
reconstruction techniques and state of the art HARDI-based tractography algorithms
to put our new methods into context. Then, we develop our analytical solution
to reconstruct the diffusion ODF and the fibre ODF from QBI data. Finally,
we describe a new deterministic tractography algorithm and a new probabilistic
tractography algorithm able to recover complex fibre tracts with known crossing,
fanning and branching configurations. Most current DTI based methods neglect
these fibres, which might lead to wrong interpretations of the brain functions.

2 Prior Art

HARDI samples q-space along as many directions as possible in order to recon-
struct estimates of the true diffusion probability density function (PDF) of water
molecules. This true diffusion PDF is model-free and can recover the diffusion of
water molecules in any underlying fibre population. HARDI depends on the number
of measurements N and the gradient strength (b-value), which will directly affect
acquisition time and signal to noise ratio in the signal. Typically, there are currently
two strategies used in HARDI: 1) sampling of the whole q-space 3D Cartesian grid
or 2) single shell spherical sampling.1 In the first case, a large number of q-space
points are taken over the discrete grid (N > 200) and the inverse Fourier transform
of the measured DW signal is taken to obtain an estimate of the diffusion PDF. This
is q-space imaging (QSI) and DSI [69]. The method requires very strong imaging
gradients (500 � b � 20000 s/mm2) and a long time for acquisition (15-60 minutes)
depending on the number of sampling directions. In the second case, a uniform
sampling of a single sphere is done for a certain radius in q-space (given by the
b-value). Typically, 60 � N � 200, b � 1000 s/mm2 is used and acquisition time
is between 10 and 20 minutes.

1There is very recent development in multiple-shell acquisition schemes (see [41]).
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2.1 Review of HARDI Reconstruction Techniques

The goal of HARDI is to capture multiple fibre directions within the same imaging
voxel. Some HARDI reconstruction techniques are model dependent, some model-
free, some have linear solutions whereas others require non-linear optimization
schemes. A schematic view of the major multiple fibre HARDI reconstruction
algorithms is shown in Fig. 1. A good review of these methods up to 2005 can be
found in [2]. We now summarize the major techniques.

It is a simple extension of the DTI model to assume that a mixture of Gaussians
can describe the diffusion PDF. [65] proposed the initial solution and many other
works [1, 13, 18, 48, 55, 65, 67] proposed variants of the multi-Gaussian with
constraints such as forcing symmetry of eigenvalues, forcing certain magnitude
and ratios of eigenvalues or imposing positive definiteness of the DT (see [2]).
A similar approach to multi-Gaussian modeling is the ball & stick mixture model. It
assumes that water molecules in an imaging voxel belong to one of two populations,
a restricted population within or near fibre structures (stick), modeled with an
anisotropic Gaussian distribution, and a free population that is not affected by
fibre structure barriers (ball), modeling by an isotropic Gaussian distribution. The
approach extends to a mixture of restricted compartments and is thus able to recover
multiple fibre compartments [10, 33]. Another similar approach is the CHARMED
technique [7]. This technique assumes a highly restricted compartment that is
non-Gaussian and a hindered compartment that is approximately Gaussian. The
approach can also be formulated as a mixture of restricted compartments and is thus
able to recover multiple fibre compartments. The multi-Gaussian, ball & stick and
CHARMED all suffer from the same shortcomings regarding model selection and
numerical implementation. One must select the number of compartments a priori,
one must use non-linear optimization to solve for the parameters and the methods
are sensitive to noise and to the number of measurements.

Spherical deconvolution (SD) methods generalize the mixture modeling meth-
ods of the previous section by assuming a distribution of fibre orientations to
overcome the limitation of the number of compartment selection n. The original
SD method [64] was improved in [4, 20, 37, 40, 57] using non-linear optimization
techniques that better deal with the SD instabilities, noise and negative diffusion
appearing in the deconvolution process. A recent review SD methods can be
found in [37]. In [38], the case of multiple fibre bundles is handled in a similar
way to the SD methods. The novelty is that each fibre bundle is represented by
a Wishart distribution. This leads to a reformulation of DTI in the presence of
a single orientation but is also able to account for multiple fibre crossings. In
contrast, in [49], the diffusion ODF is modeled with a mixture of von Mises-Fisher
distributions, which allows for the definition of a closed-form Riemannian distance
between diffusion ODFs.

Another model-independent method reconstructs the radially persistent angular
structure (PAS) [2,34] of the diffusion PDF. The reconstruction forces probabilities
to be non-zero only on a spherical shell of a certain radius. The PAS reconstruction
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Fig. 1 Sketch of HARDI reconstruction techniques

is non-linear and computationally very heavy but recent efforts [61] have been done
to propose a linearized solution to PAS-MRI based on the fact that it is a special
case of SD methods (relation indicated by an arrow between SD and PAS-MRI in
Fig. 1).

Finally, the diffusion orientation transform (DOT) proposed in [52] is yet another
model-independent reconstruction algorithm. The DOT is a function that maps the
apparent diffusion coefficient (ADC) profile to the diffusion PDF. Using similar
techniques, [51] fit high-order tensors (HOT) to the HARDI measurements to model
the ADC. ADC modeling is not discussed in this chapter because it is not an
appropriate function for fibre tractography (see [22]) but it can also be modeled with
spherical harmonics (SH) [3,26] or generalized DTI (gDTI) [47]. Finally, similar to
QBI, the DOT has a possible multiple shell HARDI extension with the bi and tri
exponential fit [52].
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2.2 Review of HARDI-Based Tractography Algorithms

In tractography, two families of algorithms exist: deterministic and probabilistic
algorithms. Research groups have recently started to generalize both deterministic
and probabilistic DT-based tracking algorithms to use HARDI reconstruction
methods mentioned in the previous section. Some of these methods use the principal
direction extracted from the diffusion ODF computed from DSI [30, 65], from
a multi-tensor/Gaussian local model [12, 28, 43, 53], or from a q-ball diffusion
ODF [14,17]. In this chapter, we propose another extension to streamline tractogra-
phy based on the multiple maxima information of the fibre ODF.

Deterministic tractography algorithms inherit the classical limitations of deter-
ministic algorithms such as choice of initialization [39], sensitivity in estimated
principal direction and lack of straightforward way to compute statistics on tracts
and lack of connectivity information between regions of the brain [65]. To overcome
limitations of deterministic tractography, DT-based probabilistic [11, 27, 42, 44, 53]
and geodesic [35, 45] algorithms have been used. Probabilistic algorithms are
computationally more expensive than deterministic algorithms but can better deal
with partial volume averaging effects and noise uncertainty in underlying fibre
direction and output a connectivity index measuring how probable two voxels are
connected to one another.

HARDI-based probabilistic tractography have recently been published in the
literature [10, 16, 31, 36, 40, 54, 56, 59, 62] to generalize several existing DT-based
methods. First, in [40] parametric SD is used and in [10] a mixture of Gaussian
model is used to extend the probabilistic Bayesian DT-based tracking [11]. Related
to these techniques, [36] uses a Bayesian framework to do global tractography
instead of tracking through local orientations. In [56], Monte Carlo particles move
inside the continuous field of q-ball diffusion ODF and are subject to a trajectory
regularization scheme. In [31, 54], an extension to their DT-based approach [53] is
also proposed using a Monte Carlo estimation of the white matter geometry and
recently, a Bingham distribution is used to model the peak anisotropy in the fibre
distributions [62]. Finally, in [16], large number of M-FACT QBI streamlines are
reconstructed and all pathways are reversed-traced from their end points to generate
of map of connection probability. In this chapter, our new probabilistic algorithm is
based the fibre ODF using a Monte Carlo random walk algorithm.

3 Analytical Solution to Q-Ball Imaging

QBI [66] is a model-independent method to estimate the diffusion ODF. This
diffusion ODF contains the full angular information of the diffusion PDF and is
defined as

‰.�; �/ D
Z 1

0

P.˛r/d˛; (1)
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where .�; �/ obey physics convention (� 2 Œ0; ��; � 2 Œ0; 2��). [66] showed that it
was possible to reconstruct a smoothed version of the diffusion ODF directly from
single shell HARDI acquisition with the Funk-Radon transform (FRT). Intuitively,
the FRT value at a given spherical point is the great circle integral of the signal
on the sphere defined by the plane through the origin perpendicular to the point
of evaluation. The original QBI has a numerical solution [66] and more recent
methods [5,23,32] have introduced an analytical spherical harmonic reconstruction
solution that is faster and more robust. To develop the analytical solution to QBI, we
first need to estimate the HARDI signal with spherical harmonics (SH) and then, to
solve the FRT analytically with SH.

Letting Y m` denote the SH of order ` and degree m (m D �`; :::; `), we define a
modified SH basis that is real and symmetric. For even order `, we define a single
index j in terms of ` andm such that j.`;m/ D .`2 C `C 2/=2Cm. The modified
basis is given by

Yj D

8
<̂

:̂

p
2Re

�
Y

jmj
`

�
; if m < 0

Y m` ; if m D 0p
2 Im.Y m` /; if m > 0:

(2)

where Re.Y m` / and Im.Y m` / represent the real and imaginary parts of Y m` respec-
tively. The basis is designed to be symmetric, real and orthonormal. It is then
possible to obtain an analytical diffusion ODF estimate,‰, with

‰.�; �/ D
LX

jD1
2�P`.j /.0/cj„ ƒ‚ …

c0

j

Yj .�; �/; (3)

where L D .` C 1/.` C 2/=2 is the number of elements in the spherical
harmonic basis, cj are the SH coefficients describing the input HARDI signal,
P`.j / is the Legendre polynomial of order `.j /2 and c0

j the coefficients describing
the ODF ‰. Here, we estimate the cj coefficients with the solution presented
in [23] with a Laplace-Beltrami regularization of the SH coefficients cj to obtain a
more robust ODF estimation. The detailed implementation of the Laplace-Beltrami
regularization and the comparison with the state of the art methods [5, 32] are
presented in [22, 23].

2`.j / is the order associated with the j th element of the SH basis, i.e. for j D 1; 2; 3; 4; 5;

6; 7; ::: `.j / D 0; 2; 2; 2; 2; 2; 4; :::
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dODF
R

fODF = dODF S dODF fODF
(true) Ψ S → Ψ → F

Fig. 2 Left: The convolution between the diffusion ODF kernel, R, and true fibre ODF produces
a smooth diffusion ODF estimate, ‰. Right: The Funk-Radon transform of the HARDI signal, S ,
produces a smooth diffusion ODF, ‰, which is transformed into a sharper fibre ODF estimate, F ,
by the deconvolution

3.1 Fibre ODF reconstruction

The relation between the measured diffusion ODF and the underlying fibre dis-
tribution, the fibre ODF, is still an important open question in the field [56, 65].
The diffusion ODF is a blurred version of the “true” fibre ODF. Because of this
blurring effect, the extracted maxima of the diffusion ODF are often used for
fibre tractography. An alternative is to use spherical deconvolution methods that
provide an estimate of the fibre ODF [5, 20, 25, 37, 40, 58, 63, 64]. These techniques
have better angular resolution than QBI and produce sharper fibre ODF profiles
than the q-ball diffusion ODF. Smaller fibre compartments with smaller volume
fractions are visible with fibre ODF and not with the diffusion ODF. SD and fibre
ODF estimation are currently subject to active research. Here, we use a simple linear
transformation of our analytical QBI solution. A schematic view of our spherical
deconvolution method is shown in Fig. 2.

The fibre ODF is reconstructed in three steps. 1) The regularized diffusion
ODF coefficients c0

j are reconstructed using Eq. (3) of the last section, c0
j D

2�P`.j /.0/cj =S0, where S0 is the unweighted b D 0 diffusion image.
2) The single fibre diffusion ODF,R, used as deconvolution kernel is estimated from
the real data. As in [5, 64], we assume an axially symmetric diffusion tensor model
with eigenvalues .e2; e2; e1/ and e1 >> e2 for the underlying single fibre diffusion
model. The values of e1 and e2 are estimated from 300 voxels with highest FA value
in our real dataset, as these voxels can each be assumed to contain a single fibre
population. The single fibre diffusion ODF kernel has an analytical expression [25]
and is given by

R.t/ D .1 � ˛t2/�1=2

8�b
p
e1e2

; (4)

where ˛ D .1 � e2=e1/, b is the b-value of the real dataset and t 2 Œ�1; 1� is the
variable that represents the dot product between the direction of the fibre and the
point of evaluation .�; �/ on the sphere.
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3) The SH coefficient of the fiber ODF, fj , are then obtained by a simple linear
transformation,

fj D c0
j =r`.j /; with r`.j / D 2�

Z 1

�1
R.t/P`.j /.t/dt; (5)

which can be solved analytically by taking the power expansion of P`.j /.t/ and
integrating r`.j / term by term. As for the analytical diffusion ODF solution, the
spherical deconvolution is obtained with the Funk-Hecke theorem [23]. Therefore,
the fibre ODF in terms of the HARDI signal is

fj D 8�b
p
e1e2P`.j /.0/

S0A`.˛/
cj ; (6)

where A`.˛/ D R 1
�1.1 � ˛t2/�1=2P`.t/dt . The final fibre ODF is reconstructed for

any .�; �/ and point p as F.�; �/p D PR
jD1 fj Yj .�; �/. In [25], the fibre ODF is

shown to be a valid choice of fibre ODF that is in close agreement with the classical
SD method [64].

4 Q-Ball Tractography

4.1 Deterministic Tractography

We extend the classical streamline techniques [9, 19, 50] based on diffusion tensor
principal direction to take into account multiple fibre ODF maxima at each step.
We denote p.s/ as the curve parameterized by its arc-length. This curve can be
computed as a 3D path adapting its tangent orientation locally according to vector
field v. Hence, for a given starting pointp0, we solvep.t/ D p0C

R t
0

v.p.s//ds: The
integration is typically performed numerically with Euler or Runge-Kutta schemes
of order 2 or 4. In the Euler case, we have the discrete evolution equation

pnC1 D pn C v.pn/�s; (7)

where�s is a small enough step size to obtain subvoxel precision.
For our deterministic algorithm [21, 25], we use a threshold on the GFA ([66])

or FA (typically, FA � 0.1) to prevent tracks to leak outside white matter. We set
curving angle threshold t� D 75ı and �s D 0:1 and we use Euler integration
and classical trilinear interpolation to obtain diffusion ODF, fibre ODF and DT at
subvoxel precision. The fibre ODF is reconstructed with order ` D 6, regularization
parameter � D 0:006 and eigenvalues e1; e2 are estimated from our real dataset
to be 13:9 and 3:55 x 10�4 mm2 / s. For the rest of the chapter, DT-STR refer to
the streamline (STR) tracking using the DT principal eigenvector, dODF-STR and
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fODF-STR refer to the STR tracking using a single diffusion ODF and fibre ODF
maxima that is the closest to the incoming tangent direction of the curve and SPLIT-
STR refers to STR tracking using the fibre ODF maxima with splitting if there are
multiple maxima [21, 25].

4.2 Probabilistic Tractography

We propose an extension of the random walk method proposed in [42] to use the
distribution profile of the fibre ODF. We start a large number of particles from the
same seed point, let the particles move randomly according to our local fibre ODF
estimate, F , and count the number of times a voxel is reached by the path of a
particle. This yields higher transitional probabilities along the main fibre directions.
The random walk is stopped when the particle leaves the white matter mask.

For each elementary transition of the particle, the probability for a movement
from the seed point x to the target point y in direction uxy is computed as the
product of the local fibre ODFs in direction uxy , i.e.

P.x ! y/ D F.uxy/x � F.uxy/y (8)

where P.x ! y/ is the probability for a transition from point x to point y, F.uxy/x
is the fibre ODF at point x in direction xy (by symmetry, direction xy and yx are
the same).

The transition directions in the local model are limited to 120 discrete directions
corresponding to the angular sampling resolution of the acquired brain data and the
step size of the particle step was fixed to 0.5 times the voxel size. We used trilinear
interpolation of the fibre ODF for the subvoxel position and we use a white matter
mask computed from a minimum FA value of 0.1 and a maximum ADC value of
0.0015. A total of 100000 particles were tested for each seed voxel. The connectivity
of any given voxel with the seed voxel is estimated by the number of particles that
reach the respective voxel, called a tractogram.

4.3 Data Acquisition

Our synthetic HARDI data is generated with the multi-tensor model [3, 22, 23, 66],
which can control the separation angle, anisotropy, volume fraction of each fibre
compartment as well as the signal to noise ratio (SNR) and number of gradient
directions N . Then, we use a biological phantom dataset obtained from a 1.5 T
scanner with 90 gradient directions and a b D 3000 s/mm2 [15]. We also use a
human brain dataset obtained on a 3 T scanner, which has 1:7 mm3 cubic grid and
contains 116, 93 x 93 slices with 60 gradient directions and a b D 1000 s/mm2 [6].
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Fig. 3 Diffusion ODF (dODF) and fibre ODF recover multiple fibre crossing in the rat biological
phantom [15]

Fig. 4 The fibre ODF (fODF) improves angular resolution of the diffusion ODF (dODF) by more
than 15ı. The signal is generated with fibres equal volume fraction and FA D 0.7, N D 60 data
points, b D 3000 s/mm2 and SNR 30. The opaque surface is the mean fibre ODF over 100 noise
trials, whereas the transparent surface corresponds to the mean C 2 standard deviations. Blue and
red lines correspond to ground truth fibre directions and detected maxima respectively

5 Evaluation With the State of the Art

5.1 Analytical QBI Results

The analytical QBI reconstruction has several advantages over the classical numer-
ical QBI reconstruction [66]. Overall, the analytical QBI reconstruction of the
diffusion ODF has the following four major advantages. (1) It is up to 15 times
faster than the numerical QBI implementation. (2) It is more robust to noise than the
numerical QBI solution. (3) It allows for more precise diffusion ODF reconstruction
for lower number of gradient directions N in the acquisition. (4) Most of the
information is contained in harmonic orders of order 6 and less. Higher order
harmonics contain small perturbations due to noise. To illustrate some of these
properties, Figs. 3 and 5 show that diffusion ODFs can recover multiple fibre
crossings in real HARDI datasets. In Fig. 3, the diffusion ODFs have multiple peaks
that agree with the known underlying fibre populations. For extensive details and
discussion, we refer the reader to [23] and [32].
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Fig. 5 The fibre ODF improves fibre detection of QBI. There are more crossings detected using
the fibre ODF (a,b) than diffusion ODF (a’,b’)

5.2 Fibre ODF Deconvolution Results

In [25], we show that the fibre ODF obtained from QBI is a valid choice which
agrees with the classical SD method [64]. Overall, the fibre ODF has a striking
angular resolution gain over the q-ball diffusion ODF of more than 15ı. This is
seen in Fig. 4, where the fibre ODF is able to better discriminate the two fibre
compartments at a separation angle of 45ı whereas the diffusion ODF is limited
to the separation angle of 60ı. In general, as also seen in Figs. 3 and 5, fibre ODF
can recover fibre crossings more easily while noise effect is kept under control.

Figure 5 shows the multi-directional information coming from the diffusion ODF
and the fibre ODF on a region of interest in a coronal slice (Talairach -4) of the
human brain dataset. In this ROI, the corpus callosum (CC) forms the roof of the
lateral ventricles and fans out in a massive collateral radiation, the corticospinal tract
(CST) lies lateral to the ventricle and is directed vertically and the SLF crosses the
base of the precentral gyrus in anterior-posterior direction. The lateral projections
of the CC cross the CST and the SLF. Fibres of the SLF partly intersect with the
fibres of the CST and the CC.
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dODF/fODF

DT-STR
FA ≥ 0.1
tθ = 75�

DT-STR
FA ≥ 0.05
tθ = 75�

SPLIT-STR
GFA ≥ 0.1

tθ = 75�

SPLIT-STR
GFA ≥ 0.1

tθ = 90�

Fig. 6 Deterministic tracking on the biological phantom

Fig. 7 SPLIT-STR recovers known fanning/crossing configurations to the two motor gyri from
both seed points

5.3 Tractography Results

Figure 6 shows deterministic tracking on the biological phantom. DT-STR cannot
track through the crossing area with a standard FA threshold of 0.1 whereas q-ball
tracking can. It can go through the crossing if the threshold is lowered to 0.05 but
then, the tracking steps out of the fibre bundle at the top. Deterministic tracking
from the diffusion ODF and the fibre ODF produce the same qualitative result, even
if allowed to split. Not only can q-ball tracking go through the crossing area, it can
also recover part of the curving section of the spinal cord at the top. Finally, if there
is no curvature constraint, i.e. t� D 90ı, SPLIT-STR recovers parts of both spinal
cord bundles.
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Fig. 8 Deterministic and probabilistic tracking of the anterior commissure (AC) fibres

Figure 7 shows a fanning/branching fibre configuration in the same ROI as seen
in Fig. 5. One set of tracts (red fibres) are started from a voxel in the CC and another
set of tracts are started from a voxel in the CST (green/yellow fibres). As expected,
SPLIT-STR recovers the branching configuration of both fibre tracts and recovers
fibres projecting in motor areas in two gyri. On the other hand, fODF-STR is able
to step through the crossings whereas dODF-STR and DT-STR are limited.

Figure 8 shows the reconstruction of the fibres passing through the anterior
commissural (AC) fibres. A seed voxel was placed in the mid-sagittal cross section
of the AC. The tracking results of the AC fibres shows the advantages of the fODF-
PROBA tracking over dODF-PROBA and DT-STR tracking. dODF-PROBA and
DT-STR are blocked close to the seed point by low FA areas. Particles of dODF-
PROBA cannot propagate to the temporal poles because the paths are diffusive and
leak outside the anterior commissural bundle, which is only a few voxel wide around
the seed point. As a consequence, dODF-PROBA mostly recovers shorter parts
of the fibre bundles. However, with a multiple seeding approach (shown in [25]),
DT-STR and dODF-STR are able to recover both paths to the temporal poles. In
contrary, deterministic fODF-STR and SPLIT-STR tracking can reconstruct the
fibres connecting the temporal pole via the AC from a single seed point.

Figure 9 shows the reconstruction of the commissural fibres connecting the
contralateral inferior and middle frontal gyrus. A seed voxel was defined in the
mid-sagittal section of the rostral body of the CC (Talairach 0, 18, 18). DT-STR
and fODF-STR tracking can only find the commissural fibres connecting the medial
parts of the frontal lobe. Fanning of the fibre bundle to the inferior and middle
frontal gyrus is found with the SPLIT-STR method on the left hemisphere and
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Fig. 9 Deterministic and probabilistic tracking of the projections of the corpus callosum

to a lower extent on the right. The tractogram computed with the fODF-PROBA
method reveals a strong interhemispheric connection of the lateral parts of the
frontal lobe. Additional fibres are found branching to the anterior thalamic radiation.
The tractogram shows asymmetry with stronger connections to the left inferior and
middle frontal gyrus than to the homologue area. We also show a selection of the
probabilistic fibres colored differently depending on their end point projections to
the lateral or medial areas. From the deterministic methods only SPLIT-STR can
reconstruct this complex structure.

6 Discussion and Future Work

We have proposed an integral concept for tractography of crossing and splitting
fibre bundles in the brain based on HARDI and QBI data. The fibre ODF shows
great potential for fibre tractography. The better angular resolution of the fibre ODF
allows the tracking to follow multiple maxima and recover fanning and branching
structures.

Although more sensitive to initialization, streamline tracking is able to recover
similar bundles as the probabilistic method in most cases. SPLIT-STR is thus an
efficient and easy way to obtain a good idea of fibre tracts starting from only a few
seeds. The underlying assumption of SPLIT-STR is that all multiple peaked fibre
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ODF have an underlying fanning/branching structure, which makes it reasonable to
follow all available maxima at each step. This is the reason for using a curvature
threshold of the tracts of 75ı instead of 90ı. This threshold avoids following tracts
through “pure” crossing configurations, where we know that we are then stepping
into other fibre bundles. This is seen in the biological phantom tracking in Fig. 6.
When the curvature threshold is set to 90ı, both fibre cords are recovered even if
the tracking is initialized in only one of the two single fibres. This raises questions
for multi-directional deterministic tractography: Should the tracking algorithm split
as much as possible to recover as much fibre structure as possible before clustering
and post-processing the tracts to separate them into bundles? Or, should the tracking
have a built-in scheme to differentiate the different sub-voxel crossing possibilities
and decide whether or not a tract should be split in the tracking process? For
instance, split in the case of a fanning/branching bundle but not split in the case
of a crossing fibre because it is assumed that it steps into a different fibre bundle.
More investigation and better characterization of crossing, kissing, fanning and
branching fibre configurations remains to be done in the human brain [54, 56, 59].
Information about the local geometry, curvature and torsion of tracts can help
for this problem [60]. In [59], preliminary results are obtained discriminating and
labeling crossing and fanning sub-voxel fibre configurations.

To deal with the uncertainty in the fibre ODF maxima, a probabilistic approach is
more robust and gives more complete results. In probabilistic tracking, tractograms
produced by the diffusion ODF are diffusive, stop prematurely and leak into
unwanted bundles. In our method, we use a fibre ODF computed from QBI and
this function is sampled directly to account for the fact that the fibres in a bundle
are not all strictly parallel. Our algorithm follows all possible fibre directions from
this fibre ODF. However, it is still unknown how to disentangle the uncertainty
and the actual spreading of fibre orientations. We are therefore conservative in our
approach and track all possible directions that are given by our data and the assumed
model assumption. Other methods use calibration [53,62], statistical techniques like
Bayesian modeling [27], Markov Chain Monte Carlo [11, 40], bootstrap [31] to
infer a peak uncertainty of the fibre distributions. It is now important to compare
these different HARDI-based probabilistic approaches and see how the different
integration of the local reconstruction information impacts the resulting tractograms.

Although, the standard q-ball diffusion ODF reconstruction is smooth, it can
be useful as such for other applications than fibre tractography. For instance, in
segmentation of fibre bundles, we find that the statistics across diffusion ODF are
more stable than with fibre ODFs [24]. Moreover, the diffusion ODF can also be
used reliably for clustering. In [68], we show that fibre architecture can be grouped
and clustered in different fibre bundles and fibre crossing area. It is now important
to understand what information can be extracted precisely by HARDI/QBI/DTI
clustering, HARDI/QBI/DTI segmentation and HARDI/QBI/DTI tractography and
how they can improve one another. What is in common and complementary about
these techniques? To answer this question and compare the algorithms, better tools
for validation will be crucial. Ex-vivo and biological phantoms such as [15, 46, 56]
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are useful but their configurations are not complex enough. We believe that further
development of realistic and complex phantoms will greatly help the validation
problem.
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Segmentation of Clustered Cells in Microscopy
Images by Geometric PDEs and Level Sets

A. Kuijper, B. Heise, Y. Zhou, L. He, H. Wolinski, and S. Kohlwein

Abstract With the huge amount of cell images produced in bio-imaging, automatic
methods for segmentation are needed in order to evaluate the content of the images
with respect to types of cells and their sizes. Traditional PDE-based methods using
level-sets can perform automatic segmentation, but do not perform well on images
with clustered cells containing sub-structures. We present two modifications for
popular methods and show the improved results.

1 Introduction

Automatic cell segmentation and cell scan analysis belong to the challenging tasks
in image processing. Due to different types of microscopy, e.g. fluorescence, trans-
mission or phase contrast microscopy, no general solution is applicable. Whereas
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Fig. 1 Top row: Yeast cells in different concentrations recorded by transmission microscopy.
Bottom row: Yeast cells in different concentrations recorded by DIC microscopy and the
reconstructed OPL map. Note the wide variations in image quality

for fluorescence microscopy some image processing software exists, transmission
and phase contrast microscopy are still slightly neglected in automatic bio-image
analysis. In recent years, however, biologists renewed their interest in the latter and
used microscopical setups avoiding additional staining to reduce stress reactions in
cells.

The tasks of cell population analysis can be described by counting cells,
determining the distribution of cell areas and distinguishing between different states
as e.g. mother and daughter cells. Especially yeast cells act as a well-established
model for several microbiological investigations in the field of proteomics. Often
automatic segmentation and analysis of cell scans are connected with a previous
screening of hundreds of cell scans automatically performed by a robot [24].
Due to this automated high-throughput imaging we have to cope in reality with
several additional difficulties as various cell concentrations, defocused scans or
overlapping cells. In this chapter we describe automatic cell segmentation methods
for transmission microscopy (top row of Fig. 1) and Differential Interference
Contrast (DIC) microscopy (bottom row left of Fig. 1) as two examples of light
microscopy without any fluorescence staining.

In DIC microscopy the phase gradient is measured. For image processing this
scan type is difficult to analyse directly. By a deconvolution method adapted to the
DIC microscope [5] we can transform the DIC image into an intermediate image
(bottom row right of Fig. 1) with an appearance similar to a fluorescence image.
The deconvolution replaces the measured phase gradient by an optical path length
(OPL) map. We will further use the OPL image for segmentation.
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1.1 PDE methods

The task of automatic segmentation is to find coherent regions that relate to objects
the observer is interested in. Typically, these regions are bounded and the boundary
of objects are often found as the location where the intensity changes significantly.
However, methods that use such edge information only, perform unsatisfactory
as locally this edge information may be missing. In order to find edges at these
locations, iterative schemes can be used that are based on Partial Differential
Equations (PDEs). Roughly speaking, these PDEs are designed using driving forces
that evolve curves towards edges. Usually, the PDE contains an edge detector which
depends on the gradient of the image. Alternatively, a homogeneous area detector
can be used which favours areas without much intensity changes. To minimise the
influence of noise and missing information, constraints that penalise (for instance)
the length of edges are added.

Examples of such approaches relate for instance to the active contour model
[6], and modifications of it. The initial curve is to be placed around the object
to be detected. The curve moves in the normal dimension to itself and ideally
stops at the boundary of the object. The main drawbacks of the original snakes are
their sensitivity to initial conditions and the difficulties associated with topological
transformations.

Other approaches arise from the Mumford-Shah model [11]. It minimises a
proposed energy of an image. This energy depends on piecewise smooth approxi-
mations for the given image. Although the model has its mathematical peculiarities,
it formed the basis of many segmentation algorithms. For an overview of the ample
literature on geometric pde models in image analysis, one can consult the collections
of papers in e.g. [9, 13, 15].

1.2 Level set methods

A drawback of many PDEs approaches is the computation time. Often, the dis-
cretisation scheme requires small time steps in order to maintain a stable evolution.
Secondly, PDE methods require an initial guess, which may heavily influence the
final result. Thirdly, as one doesn’t know the number of objects at forehand, the
number of available edge contours has to be flexible.

A framework that overcomes these problems to a large extent use level sets,
initiated by Osher and Sethian [14, 18]. It exploits mathematical properties of
equations of the form

�t C F � jr�j D 0; (1)

where F is a function that is user-defined. It can, for example, contain edge
information. This model is applied in a wide variety of applications, see e.g.
[9, 12, 13, 19].
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Fig. 2 Level Set implementations may fail. From left to right: The initial contour; results after
100, 1000, and 2000 iterations

Fig. 3 Segmentation result of the Multiphase Chan-Vese model. From left to right: original image;
initial condition; final contour after 2000 iterations, � D 0:0015 � 2552; final phase

In image segmentation, one can think of � being (a level line of) the image that
evolves as a function of its gradient, or, more explicitly: as the evolution of edges
towards their mathematically optimal position. The level set framework allows for a
flexible setup, as it is able to split and merge curves during the process. To some
extent, this also overcomes the initialisation problem. Finally, fast methods are
available for implementation [8, 10].

1.3 Cell segmentation

In cell segmentation, impressive results using this methodology can be reached
[3, 20, 21] when the cells are no too clustered and when they do not contain too
much sub-structure. However, when they do, even these methods fail. An example
is given in Fig. 2, where the implementation by Li et al. is used [8]. The optimal
solution finds a set of clustered cells, since in this case the length of the edge
curve is smallest. Relaxing the edge-length constraint results in segmenting dark
sub-structures. An example of this can be seen in Fig. 3.

In the next two sections we present extensions of two general methodologies that
use PDEs in a level-set framework. Firstly, we use a pre-processing step in Sect. 2
to get useful results for the Chan-Vese model [27] . Secondly, in Sect. 3 we combine
a voting method for the cell centre with geometric PDEs [7]. Full details on the
methodology and comparison with related methods can be found in [28].
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2 The Chan-Vese Level Set Method

Chan and Vese [1] proposed a model for image segmentation based on the Mumford-
Shah functional and level sets. This model does not explicitly depend on the gradient
of the image. It therefore performs well in images with ambiguous boundaries.
The model is defined as the following minimisation problem [1, 2]: Given the
original image u0 in 	 and two unknown constants c1 and c2 in the inside and
outside region, respectively, which are separated by the curve ı.�/jr�j, minimise
the following energy with respect to c1; c2 and �:

F.c1; c2; �/ D R
	 �1.u0 � c1/2H.�/C �2.u0 � c2/

2.1 �H.�//

C�ı.�/jr�jd	; (2)

where H denotes the Heaviside function and ı the Dirac measure. The first and
second term penalise the L2 distance in the inside and outside regions, and the third
term measures the length of the curve.

2.1 The multiphase level set method

The traditional Chan-Vese model can segment the image into two regions -
background and foreground. In order to segment images into more regions, a
Multiphase Level Set Method has been developed [4, 23]. It is motivated by the
Four Colour Theorem which states that only four colours are enough to dye all the
regions in a partition. Therefore, only two level set functions will suffice to represent
any partition. The multiphase level set method is the direct extension of Eq. (2) and
is defined as follows:

F.c; �/ D R
	
.u0 � c11/

2H.�1/H.�2/d	

C R
	
.u0 � c10/2H.�1/.1 �H.�2//d	

C R
	
.u0 � c01/2.1 �H.�1//H.�2/d	

C R
	
.u0 � c00/2.1 �H.�1//.1�H.�2//d	

C� R
	

jrH.�1/j C �
R
	

jrH.�2/j;

(3)

where the first four integrals compute the L2 distance of a constant cij to u0 in each
of the four difference regions (c11 2 f.x; y/ W �1 > 0; �2 > 0g, etc.). The Euler-
Lagrange equations obtained by minimising Eq. (3) with respect to c and � are:

@�1
@t

D ı�.�1/f� � div. r�1
jr�1j /

�Œ..u0 � c11/
2 � .u0 � c01/2/H.�2/

C..u0 � c10/
2 � .u0 � c00/

2/.1�H.�2//�g;
(4)
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@�2
@t

D ı�.�2/f� � div. r�2
jr�2j /

�Œ..u0 � c11/2 � .u0 � c10/2/H.�1/
C..u0 � c01/

2 � .u0 � c00/2/.1 �H.�1//�g:
(5)

Furthermore, cij D ju0j in the regions where they are defined.
The only varying parameter in the model is the coefficient of the length term �.

This term affects the length of the final contour. The smaller � is, the longer the
final contour is. So if we want to detect as many objects as possible (for example,
segment all cells), the � should be small. If we are only interested in large objects
and do not want to detect small objects (for example, the sub-structure inside the
cell, cf. Fig. 2), � should be large. However, these two requirements contradict each
other as we want both.

Figure 3 shows the result applying the Multiphase Chan-Vese model with a small
value of �. It manages to find the individual cells, but only at the cost of sub-
segmenting the cells. The segmentation criterion for Chan-Vese based models is
the average grey level of an object, cf. Eq. (3). For piecewise constant objects, the
performance of this model is therefore excellent. However, real cells always contain
sub-structures inside them, which will cause a false segmentation. Furthermore, in
some cell images, the grey level difference between the cells and background is not
distinct. Therefore, a pre-processing method is needed to solve these problems.

2.2 Pre-processing

In order to remove the substructures, one can try to detect these small parts and
remove them [25]. This is not only computationally intensive, but also assumes
that the locations of the cells (including boundaries!) are more or less known.
We therefore proceed with a PDE-based pre-processing method that smoothes
regions with small variability and maintains edges. The most popular among such
approaches is the one by Perona and Malik [17]:

It D r � .c.jrI j/rI /: (6)

Here c.jrI j/ is a decreasing function of the gradient. In this work, we choose the

rather standard function c.�/ D .1C �2

K2 /
�1.

In Fig. 4 we show the result of the Perona - Malik pre-processing, followed by the
multiphase Chan-Vese model. Indeed, the sub-structures are removed and the cells
and background are properly segmented.

The Perona - Malik pre-processing method performs well for images with
sufficiently contrast between cells and background, cf. Figs. 3 and 4. In most images
of our data base, cf. Fig. 1, this is the case. However, in some cases the final result
is not satisfactory due to the merging of cells. This happens when the cells in the
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Fig. 4 Segmentation result after pre-processing. From left to right: Result of Perona-Malik
processing (K=10, 30 iterations) of Fig. 3a; initial contours; final contour after 2000 iterations,
� D 0:0015 � 2552; final phase

image are too close to each other or even overlap each other. We therefore consider
a different approach in the next section which enforces the non-merging of cells.

3 Seed Detection and Geometric PDEs

The first step for this segmentation method is the detection of the centres of the cells.
In the second step these locations are used as seed points for a PDE-based region
growing method that stops at the cell boundaries.

3.1 Iterative voting

The shape of a cell has some characteristic properties, like symmetry, continuity,
and closure. Therefore, we apply an iterative method using oriented kernels to detect
the candidate position for the centre of the cell [3, 16, 26]. The basic idea of this
algorithm is a voting method. It defines a series of cone-shaped kernels that vote
iteratively along radial directions the likeness of the point as being the middle of a
rather homogeneous structure. Applying this kernel along the gradient direction, at
each iteration and each grid location, the orientation of the kernel is updated. The
shape of the kernel is also refined and focused as the iterative process continues.
Finally, the point of interest is selected by certain threshold.

Numerical results

The algorithm is tested on a data base with different types of images, cf. Fig. 1. We
present the results of four typical images, showing different types of cell clustering
for which results can be verified by human observers. The complete data base also
contains images with completely overlapping and out-of-focus cells. In these cases,
human observers cannot distinguish individual cells. In Fig. 5, the first column
shows the original images. The second row shows the last image of the iterative
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voting method. These images are thresholded in order to get the binary images in
the last column, yielding the location of the seeds, located approximately in the
middle of each cell, as expected.

3.2 Geometric PDE evolution using level sets

In the next step, the detected centre is used to define the initial condition for
detecting the boundary. A sequence of three level set functions are set up for each
cell. See [9, 20, 28] for more details.

Phase 1: Initial expansion

Motivated by the traditional level set model, the following level set equation is
defined [20]:

�t C g � .1 � ��/ � jr�j � ˇrg � r� D 0; (7)

where g D e�˛jr.G�I0.x//j; ˛ > 0,G�I0.x/ is the convolution of the original image
I0.x/ with a Gaussian function G. The function g � .1� ��/ contains an inflationary
term (C1), which determines the direction of evolution to be outward. The curvature
term (��) regularises the surface by accelerating the movement of those parts of
surface behind the average of the front and slowing down the advanced parts of flow.
The parameter � determines the strength of regularisation, if � is large, it will smooth
out front irregularities. For extreme cases, the final front will become a circle. If �
is small, the front will maintain sharp corners. In practise, an intermediate value of
� is chosen that allows the front to have concavities (concavities are possible for the
cell border), while small gaps and noise are smoothed. The effect of g is to speed
up the flow in those areas where the image gradient is low and slowing down where
the image gradient is high. Because of this term, the front slows down almost to
stop when it reaches the internal cell boundary. The parameter ˛ determines the
sensitivity of the flow to the gradient. The extra term ˇrg � r� is a parabolic term
that enhances the edge effect.

In this step, there is another restriction condition for the equation: The growing
front may not invade (and merge with) other cells’ region when seed grows. By
using this level set equation, the internal boundary of the cells is detected.

Phase 2: Free expansion

The initial expansion level set function usually causes underestimation of cell area
due to the thick boundary. So a second and third step are added to compensate the
result. The second step is the free expansion, in which the front is allowed to expand
freely and the speed of evolution doesn’t rely on the gradient of original image. The
level set equation is simply defined as below:
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Fig. 5 Seed Detection Result for several types of images. For visualisation purposes we selected
a smaller part of the original images. From left to right: Initial image; final voting result; resulting
seed point

�t C jr�j D 0: (8)

Similar as the first step, the growing fronts may not penetrate each other when
the front expands. This expansion only needs a small number of steps to ensure that
all the fronts move beyond the external boundary of cells. The number of iteration
depends on the thickness of the cell boundary.

Phase 3: Surface wrapping

After the free expansion step, the fronts are located outside the cells’ boundary. The
last step is to move the front inwards to get the exact location of the external cell
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boundary using

�t C g � .�1 � ��/jr�j D 0: (9)

This is similar to initial expansion except for the shrinking term (�1), which
determines the direction of evolution to be inward.

Reinitialisation

For the three level set phases described above, reinitialisation is necessary. The
purpose of reinitialisation is to keep the evolving level set function close to a signed
distance function during the evolution. It is a numerical remedy for maintaining
stable curve evolution [22]. The reinitialisation step is to solve the following
evolution equation:

�
 � D sign.�.t//.1 � jr j/;
 .0; �/ D �.t; �/: (10)

Here, �.t; �/ is the solution � at time t . This equation is solved by an iterative
method. Five iterations are sufficient. The result  will be the new � used in the
evolution.

Numerical results

Figure 6 shows the results on the images used in Fig. 5. The columns show the initial
condition for level set function, the results after the three level set phases, and the
final segmentation. Note that in the DIC image (the last row), the mother cells are
segmented successfully.

4 Summary and Conclusions

We discussed two PDE-based methods to segment cells with level sets: the Chan-
Vese model and geometric PDEs. In case of clustered cells with sub-structures, these
models perform unsatisfactory. We presented possible pre-processing methods, viz.
Perona-Malik smoothing and voting, which provide a modified image and starting
conditions, respectively.

The methods are tested on different types of cell images, with both regular and
irregular patterns, and overlapping cells. The modified Chan-Vese model is fast and
performs well in most cases. The performance of the geometric PDEs combined
with voting performs better, but requires more computation time, see [28] for full
details. As long as the cells are distinguishable by the human eye, the method can
segment individual cells properly. Both methods require parameter settings that need
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Fig. 6 Results for the seeded images of Fig. 5. From left to right: Initial Contour; Result after
Initial Expansion; Result after Free Expansion; Result after Surface Wrapping; Final Result

to be determined once, as long as the intrinsic properties of the cell images are stable,
i.e. when the images are not too much out of focus. In the latter case, even human
observers are unable to segment the cells.
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Atlas-based whole-body registration in mice

M. Baiker, J. Dijkstra, J. Milles, C.W.G.M. Löwik, and B.P.F. Lelieveldt

Abstract In this chapter, we present a fully automated approach for whole-body
segmentation of mice in CT data, based on articulated skeleton registration. The
method uses an anatomical animal atlas where position and degrees of freedom
for each joint have been specified. Based on the registration result of the skeleton,
a set of corresponding landmarks on bone and joint locations is used to derive
further correspondences on surface representations of the lung and the skin. While
atlas-based registration is applied to the former, a local geodesic shape context is
employed for the latter. Subsequently, major organs are mapped from the atlas
to the subject domain using Thin-Plate-Spline approximation, constrained by the
landmarks on the skeleton, the lung and the skin. Accuracy and precision of the
skeleton registration as well as organ approximation results in a follow-up study are
demonstrated.

1 Introduction

In recent years, two widely applied imaging modalities in clinical practice, Com-
puted Tomography (CT) and Magnetic Resonance Imaging (MRI), have been
adapted for small animal applications. Due to their non-invasive nature and the
imaging field of view, the new modalities (�CT and �MRI) can be used for
monitoring dynamic processes under realistic conditions in-vivo and in the entire
animal. This adds a new dimension to animal experiments, since it enables studying
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the effect of e.g. genetic manipulations or drug administration within the same
subject, at subsequent points in time. Therefore, the traditional cross-sectional
studies using different animals can be extended to follow-up studies.

2 Problem Statement

Efficient comparison, compilation or assessment of processes in entire animals
requires capturing and matching the body as a whole. While a large amount of
methods aim at rigid or non-rigid registration of objects with equal or similar
intrinsic structural properties like single bones or organs [12,20], only little attention
has been paid so far to the matching of a system that may consist of many different
structures with significantly different properties. An animal body is an example of
such a system because it contains rigid structures like bones next to elastic (non-
rigid) structures like internal organs. In addition, it contains many articulated parts.
As a result, the shape and the posture can vary significantly among animals and
among acquisition time points.

The strategy to capture an animal body as a whole is dependent on the amount of
Degrees of Freedom (DoFs) to be accounted for by the kind of study (intra-subject,
cross-sectional or longitudinal). Also the way the data is acquired determines
how prominent the expected articulations are (e.g. usage of an animal holder).
Besides that, the imaging modality is an important factor because certain anatomical
structures may not show sufficient contrast for registration. Examples are the lack of
bone information in MRI or the lack of soft tissue contrast in CT data. Dependent on
these issues, a method requires including a certain amount of a-priori information.
This can e.g. be realized by adding knowledge about structural properties of single
elements of the system, about kinematics of elements relative to each other or about
position and spatial extent of anatomical objects.

2.1 Prior art

In the literature, there are two approaches for the problem of matching anatomical
structures with heterogeneous and potentially articulated parts:

1. Data-driven registration of the entire body or body parts, based on the data
directly or on extracted features like points or surfaces.

2. Registration based on an underlying model of the relation between subparts of
the body (articulated registration), applied to body parts. Again, the registration
can be based on the data or extracted features like points or surfaces.

An example of a data-driven approach is presented in Chaudhari et al. [6].
The authors perform a surface-based registration between an entire mouse body
and the Digimouse atlas (Dogdas et al. [8]). They segment the animal interior by
surface-constrained warping of the atlas volume to the subject using harmonic maps.
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The method does not take anatomical heterogeneity into account. Li et al. [11]
present a whole-body intra-modality approach (CT) for mice that besides the skin
uses the skeleton for registration. They put additional constraints on a point match-
ing framework to account for rigidity of bones. Kovacevic et al. [10] demonstrate
whole-body registration in mice based on a basic model, the “part-of” concept.
This is a hierarchical intra-modality approach that first separates the main organ
compound and refines that division as the registration progresses, down to single
bones and organs. While the method integrates inter-structure relationships inside
the body, these are only exploited for initializing the registration of low-hierarchical
elements by the result from high-hierarchical elements.

Martin-Fernandez et al. [13] make use of an anatomically realistic articulation
model to register 2D hand radiographs. The bones are thereby represented by a
wire-frame where individual ‘rods’ are registered imposing kinematic constraints.
Papademetris et al. [14] register the legs of a mouse by modeling the joints. After
registration of the leg bones, they pay special attention on the propagation of the
deformations to soft tissue parts by focusing on the folding problem at interfaces
of articulated parts. Du Bois d’Aische et al. [9] register a human head, based on
a model of the jugular part of the spine. Articulated cervices are registered to the
target image and the deformation is propagated to the rest of the head using a linear
elastic model.

In summary, some available methods can be used either for whole-body appli-
cations, as long as differences in posture and shape are small, or for registration
of subparts of a body. However, most methods need a significant amount of
user interaction e.g. to define joint locations or manually segment bones prior to
registration.

3 Methodology

In this section, a method is proposed to segment an entire mouse body from Micro-
CT data using an anatomical mouse atlas that contains the skeleton and major
organs (Segars et al. [16]). To this end, the skeleton is registered as a first step,
because it 1) forms the rigid, articulated frame of a body, 2) is the main determinant
of whole-body posture and 3) can be robustly and automatically extracted from
the data. Combining the “part-of” concept with a hierarchical anatomical model
and articulated registration enables fully automated registration of the atlas to the
skeleton of a given mouse.

Due to the lack of soft-tissue contrast in Micro-CT data, intensity-based organ
registration is not possible. However, the mouse atlas contains all major organs
which can be mapped from the atlas domain to the subject domain using Thin-Plate-
Spline (TPS) interpolation [5]. While the necessary set of corresponding anatomical
landmarks is mainly determined by the result of the skeleton registration, more
lateral landmarks are needed in the ventral part of the animal abdomen to sufficiently
constrain the TPS mapping. Besides bone, also the lung and the skin show sufficient
contrast for robust segmentation from CT data. Therefore, corresponding lung
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Fig. 1 The mouse skeleton as included in the atlas (top) and after segmentation of single bones
and adding joints (bottom)(adapted from [2], ©2007 IEEE)

Table 1 Joint types of the
atlas skeleton and the DoFs
for the registration of the
distal articulated bone
(Pictograms from [7])

landmarks can be determined using atlas-based registration. Moreover, a sparse
set of skin correspondences can be derived since at many locations in the animal,
skin is very close to the skeleton. This serves to determine a denser set of skin
correspondences. Parts of this work have been published in [1, 2]

3.1 Modeling articulation kinematics

The used atlas skeleton (Segars et al. [16]) does not distinguish between individual
bones. Therefore, these were manually segmented (Fig. 1). Second, the position and
the DoFs were specified for each joint.

Three types of joints have to be modeled: ball joints, hinge joints and the shoulder
complex (both shoulders combined). Table 1 shows the DoFs for the ball and hinge
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joints. In addition to these anatomically relevant DoFs, three translations for both
joint types and two rotations for the hinge joints are allowed to a small extent, to
be able to compensate for potential errors that have been made during previous
registration of another bone that is rigidly connected. Due to the large number of
DoFs in the shoulder, an additional motion constraint has to be introduced for the
shoulder by allowing only a coupled, symmetric displacement of both front upper
limbs, with a varying distance between the shoulders and a rotation towards and
away from each other. Subsequently, the left and the right front upper limb can be
decoupled.

3.2 Hierarchical anatomical model of the skeleton

The hierarchical anatomical tree used for this work is shown in Fig. 2. The strategy
to incorporate the entire bone structure is to first align the atlas and the subject
skeleton coarsely and then to apply an articulated registration scheme traversing
the hierarchical tree. In this way, lower tree levels are initialized and constrained
by higher level transformations. The highest hierarchical level is the entire mouse
skeleton itself (L0). The skull is placed on the next lower level (L1), because its
registration result initializes the matching of all other parts. The rest of the skeleton
is divided into three subparts, consisting either of single bones or bone compounds
(L2 �L6).

These are the rear part consisting of spine, pelvis, upper and lower hind limbs
and the paws, the front part consisting of upper and lower front limbs and the paws
and the ribcage, represented by the sternum. The relations between all elements in
the three subparts are fully determined by rigid connections (joints). Including the
shoulder blade into the tree or making further distinctions such as refining the paws
is not relevant for the goal of capturing the animal posture and therefore can be
omitted. Assuming that the spine and the sternum sufficiently constrain the shape of
the ribcage, the ribs can be left out as well.

3.3 Resolving global degrees of freedom

For initialization of the articulated registration, the mouse atlas needs to be coarsely
aligned to the skeleton segmented from CT i.e. global DoFs have to be removed.
Taking the nodes of a skeleton surface representation as a 3D point set enables to
resolve several global DoFs by aligning the principal axes. Subsequent extraction
and analysis of a 3D curve that represents the skeleton allows to resolve all other
possible global DoFs (refer to Baiker et al. [2] for details).
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Fig. 2 Hierarchical
anatomical tree for the
skeleton. The connections
depict relations between
single bones or bone
compounds such that a part
on a lower level is initialized
by the registration result on a
high level (figure adapted
from [2], ©2007 IEEE)

3.4 3D point matching algorithm for bones and the lung

Two problems arise in matching two point sets: correspondence and transformation.
A method that solves for both simultaneously is the Iterative Closest Point (ICP)
algorithm (Besl et al. [4]). While originally been developed for incorporating rigid
transformations only, pilot experiments have shown that non-isotropic scaling can
be integrated too as long as it is moderate. In this way, it is possible to account for
inter-subject variability. The articulated registration of the skeleton is performed by
stepwise traversing the hierarchical anatomical tree (Fig. 2) in a top-down manner.
If the correspondence, i.e. the Euclidean distance between the point sets representing
the atlas bone and the target bone surfaces respectively does not improve any more
within an iteration step, the final transformation function is used to initialize the
registration of a bone at a lower hierarchical level. Depending on the joint type,
the DoFs for this node level are kinematically constrained. Traversing the tree, the
overall correspondence improves gradually. The lung is registered in the same way
as the bones including non-isotropic scaling, to account for shape variations due to
breathing.

There is one exception to the registration scheme. Due to its high flexibility, the
spine is not determined by registration but by binning the bone point set along its
longitudinal axis and applying three dimensional region growing using the head-
spine connection as seed point after the head is registered. The number of bone
voxels per bin enables to determine the spine-pelvis connection and therefore to
initialize the pelvis registration.
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3.5 Determination of corresponding landmarks on the skin

Establishing correspondence between two point sets representing skin surfaces in
the most general case is very difficult. This is because depending on how the
animal is placed during acquisition, the shape can be almost rotation-symmetric
to the longitudinal axis of the body, symmetric to the sagittal plane or even
almost symmetric to the transverse plane. Furthermore, the shape of an animal
can differ significantly e.g. if two mice are positioned in prone and supine position
respectively.

The first issue can be resolved directly, if a registered skeleton is at hand.
Then it is possible to determine a sparse set of corresponding landmarks on the
surface of the animal skin by calculating the nodes with the smallest Euclidean
distance from a set of bone landmarks. Having defined a sparse landmark set allows
removing ambiguity during matching. The second issue can be resolved by taking
surface information into account and relying on a local shape context to identify
corresponding nodes. The idea of matching shapes based on global shape contexts
has been introduced by Belongie et al. [3]. However to be able to take local shape
deformation into account, the representation has to be bending invariant. Using
geodesic instead of Euclidean distances in a local context allows rendering the
representation rotation, translation and bending invariant. Scaling invariance can
be achieved as well, by normalization of the geodesic distances.

Let P D fp1 : : : png and Q D fq1 : : : qmg be the nodes of two surfaces to be
matched and hi and hj be the histograms of geodesic distances from nodes pi 2 P
and qj 2 Q to other nodes of the surface. The method to find dense correspondence
on the skin is as follows:

1. Initialize a list with corresponding skin nodes that are known (landmarks derived
from skeleton registration)

Repeat steps 2-7 for all elements in the correspondence list:

2. Select all nodes on P and Q in the vicinity (i.e. between a maximum and
minimum geodesic distance and with a minimum distance to already known
correspondences of the next element on the list

3. Calculate a local shape context based on geodesic distances towards K known
corresponding nodes for the selected nodes in P andQ

Repeat steps 4-7 until no selected nodes are left:

4. Calculate the cost for matching two nodes pi and qj by calculating the distance
of their histograms:

Cij D †KkD1jhi .k/� hj .k/j

5. Find the best match as min.Cij /
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6. Add the found match to the list with correspondences
7. Remove the selected nodes whose geodesic distance to the newly found corre-

spondence is too small

Due to the discretization of the surfaces, detected correspondences are generally
not exact. To avoid the accumulation of small localization errors while progressing
over the surface, determination of corresponding nodes should start at a coarse
scale (in terms of inter-node distance) and, dependent on the amount of detail to
be captured, continue at a smaller scale e.g. as proposed in Wang et al. [19]).

3.6 Atlas organ interpolation

Based on landmarks on bone, lung and skin, organs can be warped from the atlas
domain to the subject domain. In its original form i.e. if used as an interpolant, the
TPS does force landmarks in the source domain to fit landmarks in the target domain
exactly. However in general small spatial errors may occur and this can cause
local distortions of the mapping. A remedy is to allow small landmark localization
errors and relax the constraint of interpolation towards approximation (thin-plate
smoothing spline [18]).

4 Implementation details/Evaluation

For evaluation, 26 data volumes of 22 animals in prone and supine position and
with arbitrary limb position were acquired with a Skyscan 1178 Micro-CT scanner
(Kontich, Belgium). In a follow-up study, one mouse was scanned five times within
five weeks.

The data was subsampled and smoothed, yielding a voxel size of 320 � 320 �
320 �m3. Subsequently, the skeleton was segmented through isodata thresholding
(Ridler et al. [15]). The skin and the lung were extracted using object-background
thresholding and 3D region growing respectively, with a seed point relative to
selected points on the spine and sternum. Triangular meshes of the skeleton, the lung
and the skin were determined from the volume labels, smoothed and subsampled.
The atlas elements were represented as triangular meshes as well.

The registration of the bones and the lung was done in two iterations, using
ICP together with Levenberg-Marquardt minimization to optimize correspondence
with respect to the parameters (DoFs). The first iteration was used for coarse
rigid alignment allowing 6 DoFs. The second iteration incorporated scaling as
well (9 DoFs). The minimization scheme was terminated if the difference between
subsequently estimated parameters was below a certain threshold. This was 0.01
degrees for the rotation, 3.2 �m for the translation and 0.001 for the scaling
parameters. For determining correspondences on the skin, a triangulated surface
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Fig. 3 Mean error of specific bones for 26 datasets ([2] ©2007 IEEE)

representation and a sparse set of 32 landmarks, derived from the joints, the
spine and the skull were used. Geodesic distances were determined using the Fast
Marching Algorithm [17] and the error criterion was based on the eight closest
landmarks (i.e. K=8). The initial set was replenished by �120 landmarks from the
skin all over the torso and 30 landmarks on the lung, yielding a total set of �182
corresponding nodes to constrain the TPS approximation.

During registration, the error decreased from an average of 2.93 ˙ 0.63 mm
to 0.58 ˙ 0.04 mm for the skeleton and from an average of 1.76 ˙ 0.49 mm to
0.42 ˙ 0.068 mm for the lung, including all 26 cases. A detailed overview of the
registration error for specific bones is given in Fig. 3. The mean Euclidean distance
between atlas and subject skin decreased from 1.73 ˙ 0.4 mm to 0.34 ˙ 0.036 mm.
Two examples of the skeleton registration and subsequent organ approximation are
shown in Fig. 4. Results of the follow-up study are given in Fig. 5 and Table 2.

5 Discussion/Future Work

In this chapter, we presented an atlas-based method to segment bone and organs
from CT data of mice that are placed arbitrarily during acquisition. The approach
is based on registration of body parts that allow robust intensity-based segmen-
tation from the data and approximation of other body parts that do not show
sufficient contrast. The chosen ICP algorithm together with Levenberg-Marquardt
minimization has shown to lead to a registration result of the skeleton and the lung
with an average node distance within two times the resolution of the data, for all
datasets. Due to the non-rigid shape difference between the atlas bones and the
subject bones as well as between the atlas lung and the subject lung, the proposed
method has limited accuracy. This could be faced by applying a subsequent non-
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Fig. 4 Registration results between the atlas (red) and two different subjects (gray) after coarsely
aligning the skeleton (top), after the articulated registration (middle) and after organ approximation
(bottom) (adapted from [2], ©2007 IEEE)

Fig. 5 Skeleton registration and organ approximation for a follow-up study over five weeks (t1-t5)
with the subject in supine (t1-t3) and prone (t4-t5) position respectively

rigid registration to individual bones of interest or by repeating the registration at a
higher data resolution, using the low-resolution result as initialization. Furthermore
we show that starting from a sparse set of initial landmarks allows to robustly and
non-ambiguously derive dense correspondence on the skin. This provides sufficient
constraints for a TPS based approximation of the skin and major organs, leading to a
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Table 2 Organ volumes (in mm3) of the original atlas and after mapping for a follow-up study of
a mouse acquired at 5 subsequent time points (t1-t5)

Brain Heart Lungs Liver Kidneys

Atlas 415,05 200,93 330,67 1779,87 257,24
Subject t1 449,09 196,25 380,40 1624,68 246,99
Subject t2 363,50 206,72 392,08 1902,58 267,40
Subject t3 389,99 201,12 363,25 1797,59 262,07
Subject t4 384,69 239,10 426,37 1822,90 194,83
Subject t5 448,88 242,03 425,04 1970,06 245,92

Mean (t1-t5) 407,23 217,04 397,43 1823,56 243,44
Std (t1-t5) 39,39 21,81 27,78 130,32 28,73
% 9,67 10,05 6,99 7,15 11,80

mean skin distance between the atlas and a subject within the data resolution range.
The results of the organ approximation for the follow-up study (Fig. 5 and Table 2)
reveal, that the method allows consistent localization and shape approximation of
the brain, the heart, the lungs, the liver and the kidneys with a low variability in
organ volume estimation (standard deviation <12%). The stomach and the spleen
are shown for referencing, but no volume data is given due to the very large
environmentally dependent variability of shape, location and volume. The same
holds for the small and large intestine and the bladder, which have therefore not
been included.

In conclusion, the presented method is applicable for referencing of internal
processes in molecular imaging research or whole-body segmentation (e.g. to
provide a heterogeneous tissue model for bioluminescence tomography). Further-
more, the approximation could serve to initialize a subsequent highly accurate
registration of specific bones or organs, as long as the image data shows sufficient
contrast. For CT data this might be realized using a contrast agent. In return, the
approximation could be improved using organ registration results. We expect that
this method generalizes well towards other rodents, provided that an anatomical
atlas is available.
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Potential carotid atherosclerosis biomarkers
based on ultrasound image analysis

S. Golemati, J. Stoitsis, and K.S. Nikita

Abstract It has been shown that computerized analysis of ultrasound images of
the carotid artery may provide quantitative disease biomarkers and can potentially
serve as a "second opinion" in the diagnosis of carotid atherosclerosis. Extending
the findings of previous work on the subject, a set of methodologies are presented in
this chapter, suitable for application on two-dimensional B-mode ultrasound images.
More specifically, a Hough-Transform-based technique for automatic segmentation
of the arterial wall allows the estimation of the intima-media thickness and the
arterial distension waveform, two widely used determinants of arterial disease.
Texture features extracted from Fourier-, wavelet-, and Gabor-filter-based methods
can characterize symptomatic and asymptomatic atheromatous plaque. Finally, a
methodology based on least-squares optical flow is proposed for the analysis and
quantification of motion of the arterial wall.

The suggested methodologies allow the extraction of useful biomarkers for the
study of (a) the physiology of the arterial wall and (b) the mechanisms of carotid
atherosclerosis.

1 Introduction

The carotid arteries are responsible for supplying blood to the brain. Each common
carotid artery divides into an external and an internal branch at the carotid
bifurcation. The external carotids supply blood to the neck, pharynx, larynx, lower
jaw and face, whereas the internal carotids enter the skull delivering blood to the
brain. The presence of an atheromatous lesion, or plaque, in the carotid arteries, also
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Fig. 1 Examples of B-mode ultrasound images of (a) a healthy (non-atherosclerotic) and
(b) a diseased (atherosclerotic) carotid artery

known as carotid atherosclerosis, may disturb the normal circulatory supply to the
brain. Carotid atherosclerosis may produce total occlusion of a specific arterial site
or cause a thromboembolic event. In advanced stages of the disease, cerebrovascular
symptoms, such as transient ischaemic attack, amaurosis fugax (temporal blinding)
or stroke, may occur.

Ultrasound imaging of the carotid artery is the most widely used modality in the
diagnosis of carotid atherosclerosis due to its noninvasiveness, non-ionizing nature
and low cost. In particular, B (Brightness)-mode imaging, i.e. the reproduction of
the amplitude of the reflected waves by their brightness, is commonly used to assess
arterial wall morphology. B-mode images exhibit a granular appearance, called
speckle pattern, which is caused by the constructive and destructive interference
of the wavelets scattered by the tissue components. In B-mode ultrasound, blood
reflects very little and the vessel lumen appears as a hypoechoic band. Figure 1
shows examples of B-mode ultrasound images of (a) a healthy (non-atherosclerotic)
and (b) a diseased (atherosclerotic) carotid artery.

2 Quantitative assessment of carotid atherosclerosis

Currently, severity of carotid atherosclerosis and selection of patients to be consid-
ered for endarterectomy, i.e. surgical removal of plaque, are based (a) on the degree
of stenosis caused by the plaque, in asymptomatic subjects, and (b) on both the
degree of stenosis and previous occurrence of clinical symptoms, in symptomatic
subjects. However, there is evidence that atheromatous plaques with relatively low
stenosis degree may produce symptoms and that highly stenotic atherosclerotic
plaques can remain asymptomatic. Because not all carotid plaques are necessarily
harmful and because carotid endarterectomy carries a considerable risk for the
patient, the crucial task of optimized selection of patients for operation may be
greatly facilitated by the use of novel biomarkers. B-mode ultrasonic images, in
combination with appropriate image processing methods for segmentation, texture
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and motion analysis, may be used to extract useful diagnostic indices of the
geometry, echogenicity and strain, respectively, of the carotid artery wall.

2.1 Prior Art

Previous work on computerized analysis of ultrasound images of the carotid arteries
includes automatic segmentation of the arterial lumen, plaque texture analysis and
tissue motion analysis. The use of deformable models [12], including snakes [3],
allows automatic identification of the random-shaped carotid artery wall from static
ultrasound images. In addition to this, the Hough Transform (HT) has been used to
segment the arterial wall from sequences of images [15,17]. In this case, the arterial
distension waveform can be estimated facilitating the study of the dynamic arterial
geometry. Plaque echogenicity, estimated from B-mode ultrasound images using
texture analysis techniques, may be used to characterize atheromatous plaque and
differentiate between symptomatic and asymptomatic cases. Plaque echogenicity
has been analyzed using a number of statistical, model-based and Fourier-based
methods [4, 16]. Motion of the arterial wall and atheromatous plaque has recently
gained attention as a determinant of carotid atherosclerosis. It has been shown
that plaque strain, expressed as relative motion between different parts of the
plaque, may be related to plaque instability, i.e. to the risk for cerebrovascular
complications, such as stroke [13]. Temporal sequences of ultrasound images can
be used to estimate movement of the carotid artery wall by tracking the speckle
patterns generated by the tissue [5, 7, 13].

The purpose of this chapter is to suggest a set of methodologies which extend
the findings of previous work on computerized analysis of ultrasound images of the
carotid artery in an attempt to identify quantitative indices of diagnostic value. Such
indices may be useful for early and valid diagnosis of atherosclerosis as well as for
the study of the physiology of the normal and diseased arterial wall.

3 Computerized analysis of ultrasound images
of carotid artery

The methodologies described in this chapter are suitable for two-dimensional (2D)
B-mode ultrasound imaging. This is the most widely used modality for the assess-
ment of the carotid artery. The methodologies aim at (a) automatic segmentation
of the arterial wall from longitudinal and transverse sections, (b) texture analysis
of atheromatous plaque and (c) analysis and quantification of motion of the arterial
wall. It is recommended that the methodologies be applied to normalized ultrasound
images, according to widely accepted specifications [6], to minimize variability
introduced by different equipment, operators and gain settings and facilitate imaged
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tissue comparability. The techniques are designed to be applied to sequences of
images, thus allowing the extraction of quantitative information at different phases
of the cardiac cycle, e.g. systole or diastole. Obviously, it is possible to apply them
to individual (static) images, if this is required by the clinical application.

4 Early disease biomarkers

Early disease stages may be assessed by interrogating the arterial wall on which
focal lesions (plaques) may not yet have become obvious. The suggested HT
technique allows the automatic extraction of straight lines and circles to approximate
the wall-lumen boundary in longitudinal and transverse sections, respectively. HT
can be used to detect parametric curves of the form v.c; pi / D 0 in digital images,
where c is the vector of coordinates, p the vector of parameters and i D 1:::n,
the number of parameters required to define the curve. HT transforms the image
to an n-dimensional parametric space, called the accumulator array. Operating on a
binary image of edge pixels, all possible curves v.c; pi / D 0 through a pixel with
vector coordinates c are transformed to a combination of parameters pi , which then
increment the corresponding cell of the accumulator array. The main steps of the
methodology, which are described in detail in [8], include:

Reduction of image area This may be achieved by automatically isolating a
rectangular area containing the vessel lumen. To this end, four points may be
defined to delimit the area to be investigated. This is an important step because
it minimizes the possibility to detect unwanted structures, which may be present
biasing the representation of the arterial lumen and, thus, reduces the computa-
tional cost and the time required to perform the segmentation task.

Image pre-processing This step includes removal of high frequency noise using a
symmetric Gaussian lowpass filter and morphological closing to suppress small
‘channels’ and ‘openings’ of the image.

Edge detection The image is first transformed into binary through the application
of a global threshold and then a Sobel gradient operator may be applied.

Hough Transform Longitudinal sections are searched for lines defined as z D
xcos� C ysin� , where z is the distance from the left upper corner of the image
and � is the angle with the x-axis. Transverse sections are searched for circles
defined as .x � a/2 C .y � b/2 D r2, where .a; b/ are the coordinates of the
center and r is the radius of the circle.

Selection of dominant lines/circle Two lines in longitudinal sections and one
circle in transverse sections with the maximal values in the corresponding
accumulator arrays are eventually selected, representing the boundaries of the
wall-lumen interface.

Figure 2 shows examples of the application of the HT technique in longitudinal and
transverse sections of ultrasound images of the carotid artery. Arterial diameters
can be calculated through the application of the previously described methodology,
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Fig. 2 Examples of the application of the HT technique in longitudinal and transverse sections of
ultrasound images of the carotid artery. (a), (d) original images, (b), (e) images after morphological
closing, thresholding and edge detection. (c), (f) HT technique result shown on original image

namely from the distance of the two lines in longitudinal sections and the circle
diameter in transverse sections. The arterial distension waveform can then easily
be estimated by recording the diameter values in all images of the sequences.
Furthermore, in longitudinal sections, the HT methodology can be applied to the
far wall alone, to extract two dominant lines corresponding to the boundaries of the
wall, from which the intima-media thickness can be evaluated.

A methodology combining HT and active contours is also suggested, in an
attempt to achieve a more accurate approximation of the arterial wall geometry in
transverse sections. Departure from the strict geometrical shape indicated by HT is
more evident in these sections. The methodology is based on the generation of a
gradient vector flow field [18], an approach attempting to overcome conventional
active contours constraints. The main steps include:

HT technique Application of the HT methodology described above allows the
estimation of a circle, which is subsequently used for initializing the active
contour.

Image pre-processing This step includes a number of tasks (calculation of gra-
dient field, thresholding, morphological closing and smoothing, and gradient
operator application) to estimate the image edge map.

Calculation of gradient vector flow field
Contour estimation Deformation of initial curve (circle) based on gradient vector

flow field.

Figure 3 shows an example of the application of the combined HT-active-contours
methodology in a transverse section of the carotid artery. As we can see, the
methodology results in a random shaped boundary which follows more closely the
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Fig. 3 Examples of the application of the combined HT-active-contours technique in a transverse
section of the carotid artery. (a) illustration of gradient field of original image. (b) image after
application of gradient operator on gradient field . (c) combined HT-active-contours methodology
result shown on original image (solid line); dashed line indicates result (circle) of HT methodology

actual wall-lumen interface than the circle. However, widely used physiological
indices, such as the arterial distension waveform, may be more easily estimated
from the latter.

5 Assessment of advanced stages of disease

The severity of the carotid atherosclerotic plaque, an advanced disease stage, can
be assessed through its echogenicity estimated by a number of texture analysis
techniques. The use of transform-based texture analysis is suggested here, which
has not been previously applied in ultrasound images of the carotid artery. The
Fourier Transform (FT), the Wavelet Transform (WT) and Gabor filters allow
the estimation of texture features capable of characterizing symptomatic and
asymptomatic plaques.

The discrete 2D FT [9] can be used to quantify image texture in the frequency
domain. The radial distribution of values in Fourier Power Spectrum (FPS) is
sensitive to texture coarseness in an image, whereas their angular distribution is
sensitive to the directionality of the texture. Power concentration in low spatial
frequencies indicates coarse texture, while power concentration in high frequencies
indicates fine texture. Texture with strong directional characteristics produces a
power spectrum concentrated along lines perpendicular to the texture direction.
A total of nine texture features can be extracted from the FPS, five corresponding to
the radial and four to the angular distribution of the FPS.

The 2D WT can be used to analyze the frequency content of an image within
different scales [1] and, thus, to extract information about the low and high fre-
quencies of an image at different resolutions. The resulting wavelet coefficients are
called the sub-images at different resolutions and consist of an approximation image
and three detail images, namely the horizontal, vertical and diagonal detail images.
Quantitative texture measures can be extracted from the wavelet coefficients. Each
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plaque image can be decomposed up to five scales using an orthogonal, near
symmetric and compactly supported mother wavelet, the symlet20 [2]. The choice
of the mother wavelet is critical and, because the interrogated images exhibit rapid
intensity fluctuations, a tight wavelet should be preferred. We suggest avoiding the
use of the approximation sub-images for texture analysis because they represent a
rough estimate of the original image and capture variations induced by lighting and
illumination. A total of one hundred features can be extracted for each plaque image
based on this methodology.

Gabor filters are a group of wavelets. They can be obtained by the dilation and
rotation of a Gaussian function modulated by a complex sinusoid. A set of filtered
images can be obtained by convolving Gabor filters with the original plaque image.
Each of these filtered images represents texture information of the image at a specific
scale and orientation. From each filtered image two features, namely the mean
and standard deviation of the magnitude of the transformed coefficients, can be
extracted [10]. These represent the energy content at different scales and orientations
of the image. We suggest using five scales and four orientations resulting in a total
of twenty Gabor-based texture features.

6 Motion analysis of normal and diseased arterial wall

To address the problem of arterial wall motion estimation, a methodology based
on weighted least-squares optical flow (WLSOF) [11] is suggested. Compared
to conventional optical flow, which was previously used in similar applications
[13, 14], WLSOF allows smoothing out of large velocity differences between
adjacent sites. WLSOF is used to recover velocity from the following equation,
known as the gradient constraint equation relating velocity to the space and time
derivatives at any one point of the image:

u � rI.x; t/C It .x; t/ D 0

where u D �u
�t

D .ux; uy/, and rI.x; t/ and It denote spatial and temporal partial
derivatives, respectively, of the image I .

A common way to constrain velocity is to use gradient constraints from neigh-
boring pixels, assuming that they share the same 2D velocity. In reality, there may
be no single velocity value that simultaneously satisfies all pixels of the region, so
the velocity that minimizes the constraint errors is found instead. The least-squares
estimator that minimizes the squared errors is:

E.u/ D
X

x

g.x/ � Œu � rI.x; t/C It .x; t/�
2

where g.x/ is a Gaussian weighted function. It is used to enhance constraints in the
center of the neighborhood, thus increasing their influence. The minimum of E.u/
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can be found from the critical points, where derivatives with respect to u are equal
to zero:

#E.u/
#ux

D
X

x

g.x/ � Œux � I 2x C uy � Ix � Iy C Ix � It �

#E.u/
#uy

D
X

x

g.x/ � Œuy � I 2y C ux � Ix � Iy C Iy � It �

The above equations can be written in matrix form and the resulting linear system
can be solved using the Gaussian elimination method.

To compute spatial .Ix; Iy/ and temporal .It / gradients, the images can first be
smoothed using a Gaussian 7 � 7 kernel with standard deviation 0.8. Use of the
Gaussian lowpass filter also allows removal of high frequency noise inherent in
ultrasound images.

To estimate arterial wall motion, the previous method can be applied to appropri-
ately selected image areas. These include pixels of the normal and/or diseased wall
and exclude pixels of the lumen and the surrounding tissue. Specifically, pixels at
a distance of 1.5 mm along the interface, i.e. in the longitudinal direction, and at a
distance of 0.5 mm through the tissue, i.e. in the radial direction, can be selected.
Pixel density is lower in the longitudinal direction because less relative motion is
expected compared to the radial direction. Reduction of the image area to a set of
individual pixels for further investigation reduces significantly the computational
cost without compromising the related physiological information.

Figure 4 shows examples of velocity fields of the far arterial wall of a normal
artery, as well as for a symptomatic and an asymptomatic case. In the same figure,
examples of longitudinal and radial displacement waveforms for two points on the
wall are also shown. The points distance is approximately 12.5 mm; in the case
of the diseased (atherosclerotic) wall one point is on the plaque and the other
on the adjacent normal part of the wall. As we can see, axial displacement, i.e.
displacement along the arterial wall, exhibits a periodic pattern of frequency equal
to almost double the frequency of the radial displacement. This finding agrees with
recently reported results [5].

7 Experimental results and discussion

The methodologies presented here are useful for the quantitative assessment
of carotid atherosclerosis. In combination with the experience of a specialized
physician, they may improve the diagnostic power of ultrasound imaging. Their
integration into clinical practice depends not only on their performance but also on
how well the physician performs a task when the computer output is used as an aid.

More specifically, the suggested HT technique provides a simple, fast and
accurate way to identify the arterial wall in longitudinal and transverse sections
of the carotid artery and can be used in clinical practice to estimate indices of
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Fig. 4 Examples of velocity fields and displacement waveforms obtained by the application of
the WLSOF methodology in a healthy (non-atherosclerotic) arterial wall (a, d), an asymptomatic
plaque (b, e) and a symptomatic plaque (c, f). Illustrated vectors were enhanced by a factor of 10.
Velocities correspond to beginning of systole

arterial wall physiology, such as the IMT and the ADW. In ten normal subjects, the
specificity and accuracy of HT-based segmentation were on average higher than 0.96
for both sections, whereas the sensitivity was higher than 0.96 in longitudinal and
higher than 0.82 in transverse sections. The corresponding validation parameters for
IMT estimation were generally higher than 0.90. The HT technique was also applied
to 4 subjects with atherosclerosis, in which sensitivity, specificity and accuracy were
comparable to those of normal subjects; the low values of sensitivity in transverse
sections may reflect departure from the circular model due to the presence of plaque.
For these cases, the combined HT-active-contours technique was found to increase
the sensitivity values.

Texture features using the three transform-based methods described previously
were extracted from a limited number of symptomatic (ten plaques) and asymp-
tomatic (nine plaques) cases. Differences between the two case types were estimated
using bootstrapping. Both the WT- and the Gabor-filter-based methodologies
resulted in significantly different features, which characterized texture at low
resolutions and in the horizontal direction. Features at low resolutions are indicative
of fine texture; finer texture was found in symptomatic compared to asymptomatic
plaques. Horizontal texture patterns are an interesting finding, especially when one
combines this information with arterial wall biomechanics. Mechanical stresses due
to blood blow may be responsible for such texture patterns; compared to blood
pressure, the other main cause of stress on the arterial wall, the effect of blood flow is
more pronounced around a plaque. The discriminative ability of the transform-based
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texture features was found superior to that of the gray-scale median, a widely used
texture parameter of carotid plaque, for the small population that was interrogated,
emphasizing the need for using advanced techniques to efficiently characterize
atheromatous plaque.

Reliable estimation of arterial wall motion is a challenging task and is believed
to provide a powerful tool in the study of the physiology and biomechanics
of atheromatous plaque. The strain experienced by the arterial wall is a crucial
biomarker of carotid atherosclerosis and can be assessed through motion analysis.
In combination with information of the exerted stresses, it can prove useful for the
study of the mechanical behavior of cardiovascular tissue.

8 Conclusion

The methodologies presented in this chapter are expected to provide powerful tools
in the diagnosis of carotid atherosclerosis because they can assist interpretation of
ultrasound images. Individual techniques facilitate the diagnostic tasks of vessel
wall identification, plaque characterization and strain estimation of normal and
diseased arterial wall.
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