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Foreword

The Road to Reasoning

The teachers in this book share a worthy and courageous mission. They have all set 
out to provide children with one of the most important educational experiences it is 
possible to have – a form of mathematics teaching that is based upon sense making 
and discussion, rather than submission and silence. Mathematical “reasoning” is what 
mathematicians do – it involves forming and communicating a path between one idea 
or concept and the next. When students form these paths they come to enjoy mathe-
matics, understand the reasons why ideas work, and develop a connected and power-
ful form of knowledge. When students do not engage in reasoning, they often do not 
know that there are paths between different ideas in mathematics and they come to 
believe, dangerously, that mathematics is a set of isolated facts and methods that need 
to be remembered. I have visited hundreds of classrooms across the world in which 
students have been required to work in silence on maths questions, never talking 
about the ideas or forming links and connections between ideas; most of these stu-
dents come to dislike mathematics and drop the subject as soon as they can. Such 
students are not only being denied the opportunity to learn in the most helpful way, 
but they are denied access to real, living mathematics.

The teachers in this book, through their work with Karin Brodie, the author, 
learned about the value of mathematical reasoning and set out to teach students to 
engage in this valuable act. This book shares their important journey and provides 
the world with new lenses for considering the teaching acts that were involved, as 
well as the challenges and obstacles that stood in their way. For whilst we know the 
importance of reasoning to children’s mathematical futures it would be dishonest to 
pretend that teaching approaches that invite students to communicate their mathe-
matical thoughts and make connections between ideas are easy or well understood. 
We have reached an advanced stage in the development of education and yet, 
incredibly, we are still relatively uninformed about the ways teachers of mathemat-
ics can teach students to reason, which is part of the reason this book is so valuable 
and could be a wonderful resource for many.

When Deborah Ball, in the United States, then an elementary teacher of math-
ematics, now a university dean, released a videotape of her teaching 7- and 8-year 
olds to reason about odd and even numbers, the world was shocked to witness a boy 
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named Shea propose a new way of classifying odd numbers. His numbers – those 
that can be grouped into even numbers of pairs of twos – came to be known as 
“Shea numbers”. The rich conversations in which the young children engaged in 
the mathematics class that appeared on tape, seemed to unfold effortlessly, although 
in reality they were expertly choreographed by the teacher. Deborah Ball has 
offered records of her teaching decisions and actions, which have been read by 
scores of people worldwide, including the teachers who write in this book. She was 
one of the first teachers to offer such valuable records and analyses. This book adds 
to the small but important collection of teachers who have engaged students in 
mathematical reasoning and documented and unpacked the important teaching acts 
that took place.

But what makes a record of teaching useful and worthwhile? Every act of teach-
ing, with a classroom full of children and their many thoughts and actions, is 
extremely complex, and descriptions of a class in action can remain highly contex-
tualized and difficult for others to learn from. A teacher may record thoughts and 
moves without communicating them in such a way that they are useful for other 
teachers, educators, and analysts. The art in producing a record that is powerful and 
valuable for others comes partly from having important teaching experiences to talk 
about and partly from having a way of raising the individual acts to a higher and 
more generalizable level that other teachers can learn from. This is where the com-
bination of the reports of the teachers who engaged students in reasoning, and the 
theoretical lenses applied by Karin, are so generative and fruitful for the rest of the 
world to learn from. When a new idea and teaching act is connected with a theory 
of learning, the result can be very powerful indeed.

An example of the way a teaching act can be named and made more general is 
the case of a set of interactions that has become known as IRE. These describe a 
common teaching situation when a teacher initiates something (I), elicits a response 
from a student (R), and then evaluates the response (E). Researchers found that the 
majority of the interactions that take place in classrooms follow the IRE response 
pattern and they gave it a particular classification. Since that initial classification 
IRE has been used by scores of researchers and analysts over many years and has 
proved extremely useful in the advancement of teaching. Yet teaching classifica-
tions such as IRE are rare and the field of mathematics education has not benefitted 
from a similar mapping and classification of the teaching interactions that take 
place when students are taught to reason about mathematics. This book provides 
such a mapping.

Karin notes that a reasoning approach to mathematics involves a change in 
authority. Students no longer need to look to teachers or textbooks to know if they 
are moving in the right directions in mathematics, as they have learned a set of 
reasons and connections that they can refer back to, evaluating their own thoughts 
and ideas. This may seem as though the authority is shifting from the teacher to the 
students and this is partly true, but it is important to note that the authority is also 
shifting from the teacher to the domain of mathematics itself. Students no longer 
need to refer to teachers to evaluate their mathematical thoughts, because they can 
refer to the domain of mathematics, to consider whether they have followed the 
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correct connections and paths. This is just one way in which reasoning as an act 
brings classrooms closer to real and living mathematics. In addition, we now have 
evidence that when students receive opportunities to discuss mathematics and 
express their own thoughts, they become more open-minded as they learn to be 
appreciative and respectful of other people’s ideas. Mathematical reasoning encour-
ages respect, responsibility, and a personal empowerment that has long been miss-
ing in mathematics classrooms. Karin starts this book by quoting the goals of the 
new South African curriculum – to heal the divisions of the past and build a human 
rights culture. Mathematics, the subject so many believe to be abstract and removed 
from such responsibilities, has a key role to play in promoting such a culture, in 
South Africa and beyond. This book communicates the way that mathematics can 
provide this valuable contribution and the important work of teachers in doing so. 
I hope you enjoy it and use it as both inspiration and resource.

Jo Boaler The University of Sussex
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Over the past 10 years, South Africa has introduced a new curriculum in all subjects 
at all levels of schooling. The curriculum was inspired by the end of apartheid and 
informed by curriculum developments and visions of reform in many other coun-
tries. The new curriculum has an impressive set of goals for individual learners and 
society, including healing the divisions of the past, building a human rights culture, 
and developing skilled and knowledgeable citizens who can contribute to and ben-
efit from a growing economy and a participatory democracy (Department of 
Education 2003).

The new curriculum posits a very different view of mathematical knowledge 
from that of previous curricula. Mathematics is seen as both conceptual and practi-
cal; abstract and applied. The curriculum argues for conceptual understanding of 
mathematical ideas, skill in performing mathematical calculations, and the ability 
to relate mathematical concepts to other subjects and to real-world applications. 
Mathematical concepts and skills are developed and linked by “creative and logical 
reasoning” and “rigorous logical thinking” (Department of Education 2003, p. 9). 
The new curriculum puts mathematical reasoning firmly on the agenda arguing 
“competence in mathematical process skills such as investigating, generalizing and 
proving is more important than the acquisition of content knowledge for its own 
sake” (Department of Education 2003, p. 9). A view of mathematics as a combina-
tion of conceptual depth, flexible skills, and mathematical reasoning resonates with 
curriculum developments elsewhere in the world. Some proponents of reform 
mathematics argue that reasoning should be taught alongside many of the basic 
facts and concepts of mathematics and some even argue that mathematical reason-
ing is in itself a “basic” mathematical skill (Ball and Bass 2003).

Worldwide, too many learners struggle with mathematics, fail mathematics, and 
hate mathematics. Moreover, when the factors of race and class are considered, it 
is clear that a disproportionate number of black and economically disadvantaged 
learners do not achieve success in mathematics and do not believe that they can do 
mathematics (Association for Mathematics Education of South Africa 2000; 
Department of Education 2001; Moses and Cobb 2001; Secada 1992). The propo-
nents of reform curricula propose that new approaches to mathematics and to teach-
ing mathematics will make mathematics more accessible, enjoyable, and inspiring 
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for many more learners, enable more learners to be successful in mathematics and 
will begin to close achievement gaps between rich and poor and black and white 
learners.

There has been much debate as to whether current mathematics reforms can be 
a mechanism for ensuring more equitable participation and achievement in mathe-
matics (see Brodie 2006 for a summary of these debates). Empirical evidence in 
well-resourced countries is beginning to show that curriculum reforms do mitigate 
achievement gaps between marginalized and other learners (Boaler 1997; Hayes 
et al. 2006; Kitchen et al. 2007; Schoenfeld 2002). However, the evidence also sug-
gests an important caveat. The implementation of the new curriculum ideas is not 
widespread and is inequitably distributed, tending to be found in more well-
resourced schools and countries, hence further disadvantaging poor learners 
(Kitchen et al. 2007). There are two important implications of these findings. First, 
in many contexts, lack of resources, including big classes and few materials, 
teacher confidence and knowledge, and support for teachers, can be major barriers 
to developing new ways of teaching (Tabulawa 1998; Tatto 1999). If reforms are 
successful in promoting equity and if they are not taken up in less-resourced coun-
tries and schools, then existing divides between rich and poor will be exacerbated. 
Second, it is not only a lack of resources that creates barriers to reform practice. In 
fact, research in many well-resourced contexts suggests that most teachers struggle 
to take up reform practices in substantive ways (Fraivillig et al. 1999; Hayes et al. 
2006; Hufferd-Ackles et al. 2004; Lavi and Shriki 2008; Nolan 2008). This sug-
gests that reasons for the difficulties that teachers experience with reform curricula 
cannot be found in resources alone. Something deeper is at play here.

The research on teacher change in the context of reform is based on the assump-
tion, shared in this book, that teachers are key to achieving the visions of better 
mathematics learning for more learners. This research can be divided into two main 
categories. The first describes models of exemplary reform teaching, making the 
claim that such teaching is possible, albeit with many challenges, illuminating dif-
ferent approaches to reform teaching and showing how the challenges can be over-
come. Such cases come mainly from well-resourced contexts, further adding to the 
concern that such teaching is only possible in these contexts (Boaler 1997; Boaler 
and Humphreys 2005; Chazan and Ball 1999; Hayes et al. 2006; Heaton 2000; 
Lampert 2001; Staples 2007). The second set of research, which includes some of 
my own work, argues that teachers do not substantially shift their practices, even 
after extensive pre-service or in-service courses (Brodie et al. 2002; Fraivillig et al. 
1999; Lavi and Shriki 2008; Nolan 2008; Tatto 1999). These two sets of findings 
tend to dichotomize the field, suggesting an ideal “reform vision”, which unfortu-
nately only a few can attain. A disturbing consequence of dichotomizing the field 
in this way is that teachers are often blamed for not being able to implement visions 
of reform because they do not live up to the ideals.

A far more promising line of research takes the middle road, presenting more 
textured descriptions of points of difficulty for teaching and when, how and why 
teaching in reform-oriented ways breaks down (Gamoran Sherin 2002). In my own 
work with colleagues and students, we have shown that some aspects of reform 
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practice are easier for teachers to work with, for example selecting tasks of higher 
cognitive demand (Modau and Brodie 2008) whereas others are more difficult, for 
example interacting with students while maintaining the level of task demand (Jina 
and Brodie 2008; Modau and Brodie 2008; Stein et al. 1996, 2000). We have also 
argued that adopting reforms requires teachers to coordinate a range of new prac-
tices and to think about their current practices in new ways. Such coordination is 
an immense task and means that teachers’ taken-for-granted practices might break 
down in the face of the new curriculum practices (Slonimsky and Brodie 2006). It 
is thus highly likely that teachers attempting to work with reforms may resort to 
traditional practices, more or less deliberately (Brodie 2007c).

This book aims to contribute to this third emerging strand of research and to give 
substance to a number of claims that such research can make. The first is that teach-
ers’ difficulties in working with new curricula need to be taken seriously, because, 
as we show in this book, mathematical reasoning is challenging to learn and to 
teach. For teachers who learned mathematics and learned to teach mathematics in 
traditional ways, the challenges are enormous. However, this does not mean that 
teachers cannot begin to work towards teaching mathematical reasoning in ways 
suggested by the reforms. But it does mean that researchers and teacher educators 
need to find ways to capture teachers’ successes and challenges in ways that can 
help teachers to move forward. The successes might be small and the challenges 
might be large, but we need to find ways to show where and how teachers are shift-
ing and what the next steps for progress might be. It is our experience, some of 
which we hope to share in this book, that teachers who do take risks and embark on 
the journey of learning to teach in new ways, have experienced both the exhilara-
tion of success, when learners actually do begin to reason with each other and their 
teachers, and the extreme challenges of sustaining the practice with all learners, 
particularly given overcrowded curricula and high stakes tests and examinations.

So this book explores some of the successes and challenges faced by a group of 
South African teachers who worked to develop mathematical reasoning among 
their learners. In doing so, it explores what it means to teach mathematical reason-
ing in secondary school mathematics classrooms, addressing some important ques-
tions like what mathematical reasoning means; how can mathematical reasoning be 
taught; how teaching mathematical reasoning differs from more conventional math-
ematics teaching; and the demands that teaching mathematical reasoning makes on 
teachers and learners. A number of chapters address these questions from the per-
spective of the teachers analysing their own practice, and others address the ques-
tions from the perspective of an academic researcher, analysing the teachers’ 
practices.

The book is the result of an ongoing collaboration between five teachers and an 
academic. We came together with a joint interest in promoting mathematical rea-
soning in South African classrooms. We share a passion for improving the experi-
ences of learners in mathematics classrooms, and a belief that working in 
reform-oriented ways can do this. At the same time, we experience the real con-
straints of classrooms and are inspired by the need to find ways to work with con-
textual realities to support mathematical reasoning. Although this book is set in a 
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South African context, it has strong implications for other contexts. This work was 
conducted in a range of differently resourced classrooms, from very poorly 
resourced to very well resourced, and so can illuminate the teaching of mathemati-
cal reasoning in relation to contextual differences and speak to readers working in 
a wide range of countries and schools.

Each teacher conducted her/his study as the research component of an Honours 
programme in mathematics education, in which they were all enrolled. At the time, 
I was engaged in my doctoral research, and worked with the teachers as subjects of 
my research and as advisor on their research projects. Each teacher worked on a 
subset of her/his data from the larger data corpus, which I collected. We worked 
closely together as a group and the results of each study informed the others. The 
dilemmas, strengths, and challenges of such a collaboration have been discussed in 
detail elsewhere (Brodie 2005; Brodie et al. 2005).

Outline of the Book

This book comprises three parts. Part 1, consisting of Chaps. 1 and 2, sets the con-
text of the work within the literature on teaching and learning mathematical reason-
ing and describes the school contexts in which the research took place. In Chap. 1, 
I review the literature and develop the concepts of mathematical reasoning, learning 
mathematical reasoning and teaching mathematical reasoning, that informed the 
work of the project and the subsequent chapters of this book. In Chap. 2, I discuss 
the differently resourced contexts in which the teachers worked. I argue that the 
learners’ knowledge in the different classrooms forms a substantive part of the 
teaching context. Through the development of this work, we came to see learners’ 
knowledge as a key resource for teaching mathematical reasoning. I also discuss the 
tasks that the teachers developed to teach mathematical reasoning and which they 
refer to in their chapters.

Part 2, consisting of Chaps. 3–7, describes the studies that the teachers con-
ducted. Each teacher researched an aspect of her/his practice, trying to understand 
more deeply the challenges and successes that she/he experienced. These chapters 
were informed by some of the literature discussed in Chap. 1 and each teacher 
chose particular parts of the literature to work with as a conceptual framework. In 
Chap. 3, we take a close look at how a set of tasks supported learners’ reasoning 
and in Chap. 4 we explore how collaborative, whole-class discussion supported 
both individual and group learning. In Chap. 5, we describe a set of practices, 
which the teacher developed to enable learners to reason with each other and show 
how his learners appropriated these practices to help with their thinking and reason-
ing. In Chap. 6, we show how the teacher supported the development of mathemati-
cal proficiency among her learners and in Chap. 7, we focus on the development of 
justification among learners. Taken together, these chapters provide a rich account 
of challenges and successes in teaching mathematical reasoning, and what is pos-
sible to achieve even in very difficult circumstances. They deal with a number of 
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key aspects in teaching mathematical reasoning, namely, what tasks might be useful 
to elicit learners’ reasoning and how are they best implemented in the classroom, 
how different tasks support learners’ mathematical reasoning in different ways, and 
how classroom interaction helps to support the development of mathematical 
reasoning.

Part 3, consisting of Chaps. 8–11, comprises an overview of the practices in the 
five classrooms, drawing on my doctoral research. Chapters 8 and 9 look across all 
five classrooms and develop categories for talking about learner contributions and 
teacher moves, as the beginnings of a language of description for reform-oriented 
teaching. These two chapters together suggest a trajectory for the emergence of 
learner contributions and teachers’ responses that promote mathematical reasoning. 
The argument is that by finding more specific ways to talk about how teachers and 
learners interact in classrooms, we can find ways to help teachers move forward in 
engaging learners’ mathematical reasoning. Chapter 10 focuses in more depth on 
two teachers and the dilemmas they experienced in teaching mathematical reason-
ing. Chapter 11 focuses even more closely on one classroom and explores the 
resistance of the learners to their new experience of learning mathematical reason-
ing. Such resistance is often reported by teachers but not often explored. In this 
chapter I suggest that resistance is an important aspect of the new methods of teach-
ing and suggest ways of managing it. The overarching argument of Part 3 is that 
every success in reform pedagogy produces new challenges, a range of learner 
contributions to respond to, new dilemmas in relation to these contributions, and 
possible learner resistance. Teachers, teacher–educators, and researchers cannot 
ignore these challenges; we have to find ways to talk about them as a normal part 
of learning to teach in new ways, and the challenges that change brings.

Because teachers have been involved in the work of this book and in writing 
parts of it, we hope that the work will speak to teachers, and to teacher educators 
and researchers who are trying to work in and with new curriculum developments. 
We have written this book for both teachers and researchers because we strongly 
believe that teachers and researchers can and should speak to each other in many 
ways, including through books such as this one. At the same time, we also realize 
that teaching and research are distinct practices, with their own discourses. This has 
caused some discomfort in the writing of this book in that we have had to continu-
ally consider two different audiences. We have resolved this by writing some chap-
ters in a more “academic” tone and others somewhat more colloquially. In doing 
this, we have made sure to keep our research focus strong and rigorous throughout 
the book. In particular Chap. 1 sets out the academic field of teaching and learning 
mathematical reasoning and may not be the best part of the book for teachers to 
start reading. The case studies in Chaps. 3–8 are structured to form part of the ongo-
ing narrative of the book as a whole but can also be read individually. In these 
chapters, key parts of the literature have been revisited for the purposes of the par-
ticular case study, and although this has meant some repetition of key ideas, we 
believe it will help readers to see these ideas working in different contexts. Chapters 
8 and 9 develop a language of description, which might be more appealing to 
researchers than teachers. Chapters 10 and 11 deal with particular issues in two of 
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the classrooms, and although building on the language of Chaps. 8 and 9, can also 
be read on their own.

In our work together, practice has spoken closely to research, and so we hope 
that the research described here will find ways to speak to practice. We believe that 
the work in this book will provide useful models for other teachers wanting to teach 
mathematical reasoning, for teachers wanting to research their own practice, and 
for teacher–educators and researchers wanting to develop and analyse the teaching 
of mathematical reasoning. We undertook a journey together in which we learned 
a tremendous amount. We hope to convey some of it in this book and also inspire 
others to embark on similar journeys.

Curriculum reform has become a global movement over the past 30 years. 
Similarities among the South African and other mathematics curricula will be dis-
cussed further in this chapter and the book.

Terminology used across contexts to refer to new curricula is different. In this 
book we use interchangeably the terms “new curriculum” which applies to South 
Africa and other countries, which have national curricula, and “reform” which is 
used predominantly in the United States. In both cases we include the enacted cur-
riculum, i.e. teaching and learning in classrooms.

In the South African Higher Education system an Honours degree follows a 
3-year undergraduate degree and a professional teaching qualification and is neces-
sary for entry into Masters.
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The Centrality of Mathematical Reasoning  
in Mathematics Education

When we “reason”, we develop lines of thinking or argument, which might serve a 
number of purposes – to convince others or ourselves of a particular claim; to solve 
a problem; or to integrate a number of ideas into a more coherent whole. Two pro-
cesses are important to reasoning – first, that the different steps or moves in the line 
of reasoning are connected with each other (not necessarily analytically or deduc-
tively); and second, that these links are somehow “reasoned”, there are reasons why 
one move follows another and how a number of moves come together to form an 
argument or to solve a problem (Ball and Bass 2003). Brousseau and Gibel (2005) 
point out that these reasons are only considered to be reasonable when they relate 
to the constraints of the problem or the knowledge under consideration. An appeal 
to authority, for example to what a teacher or textbook says, does not count as a 
reason for a productive argument.

The product of a reasoning process is a text, either spoken or written (Douek 
2005), which presents warrants for a conclusion that is acceptable within the com-
munity that is producing the argument (Krummheuer 1995). An individual can 
reason, or a group of people can reason together, co-producing the line of argu-
ment1. Mathematical reasoning assumes mathematical communication (Ball and 
Bass 2003; Douek 2005; Krummheuer 1995). Communication is an integral part of 
the process of reasoning, both for an individual working with previously produced 
texts to produce a new one, and for groups working together to produce an argu-
ment. The texts or products of reasoning have, as their main purpose, to communi-
cate reasoning.

Mathematical reasoning is reasoning about and with the objects of mathematics. 
However, the relationship between mathematical reasoning and mathematics is not 
obvious (Steen 1999), and the processes involved in mathematical reasoning need 

Chapter 1
Teaching Mathematical Reasoning:  
A Challenging Task

1 Social perspectives on learning and thinking would argue that even an individual reasoning, 
seemingly on her own, is in fact in dialogue with others, co-producing an argument, with an 
imagined audience, with ideas from others, and in a social and historical context (see below).
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some elaboration. For Ball and Bass (2003) reasoning is a “basic skill” (p. 28) of 
mathematics and is necessary for a number of purposes – to understand mathemati-
cal concepts, to use mathematical ideas and procedures flexibly, and to reconstruct 
once understood, but forgotten mathematical knowledge. Kilpatrick et al. (2001) 
define a notion of mathematical proficiency which requires five intertwined and 
mutually influential strands – conceptual understanding, which entails comprehen-
sion of mathematical concepts, operations, and relations; procedural fluency, 
involving skill in carrying out procedures flexibly, accurately, efficiently, and 
appropriately; strategic competence, which is the ability to formulate, represent, 
and solve mathematical problems; adaptive reasoning, which is the capacity for 
logical thought, reflection, explanation, and justification; and productive disposi-
tion, an orientation to seeing mathematics as sensible, useful, worthwhile, and 
reasonable, and that anyone can reason to make sense of mathematical ideas2. For 
Kilpatrick et al. (2001), although all the strands are important and mutually influ-
ential, “adaptive reasoning is the glue that holds everything together” (p. 129) in 
that it allows for concepts and procedures to connect together in sensible ways, 
suggests possibilities for problem solving, and allows for disagreements to be set-
tled in reasoned ways. Central to adaptive reasoning is the justification of claims 
and development of arguments.

This view of mathematical proficiency has informed all of the work in this book. 
Most directly, in Chap. 6 we reflect on one teacher’s attempt to teach the five 
strands in a holistic way. The teacher found that she devoted most of the time to 
conceptual understanding rather than procedural fluency, which is traditionally the 
norm in mathematics classrooms (Kilpatrick et al. 2001; Schoenfeld 1988; Stigler 
and Hiebert 1999). However, she was concerned that she devoted less time to stra-
tegic competence and adaptive reasoning. She also found that more than half of the 
learners in her class showed evidence of all five strands in their written work. In 
Chaps. 5 and 7 we focus on the strand of adaptive reasoning and show how two 
teachers supported learners to reason adaptively.

Justifying and Generalizing

The literature suggests that there are two key practices involved in mathematical 
reasoning – justifying and generalizing – and other mathematical practices such as 
symbolizing, representing, and communicating, are key in supporting these (Ball 
2003; Ball and Bass 2003; Davis and Maher 1997; Triandafillidis and Potari 2005). 
For Kilpatrick et al. justifying is a key element of adaptive reasoning and to justify 
means “to provide sufficient reason for” (p. 130). They argue “students need to be 
able to justify and explain ideas in order to make their reasoning clear, hone their 

2 I note here that Kilpatrick et al.’s work is an extension of the more usual distinctions of concep-
tual and procedural understandings of mathematics (Hiebert and Lefevre, 1986).
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reasoning skills and improve their conceptual understanding” (p. 130). For Ball and 
Bass, “unjustified knowledge is unreasoned and, hence, easily becomes unreason-
able” (p. 29). Justification is a key mathematical practice that allows mathemati-
cians and mathematics teachers and learners to make connections between different 
ideas and parts of an argument, to provide warrant for claims and conjectures, to 
settle disputes, and to develop new mathematical ideas.

For Russell (1999), mathematical reasoning is “essentially about the develop-
ment, justification and use of mathematical generalizations” (p. 1). These general-
izations create an interconnected web of mathematical knowledge – conceptual 
understanding in Kilpatrick et al.’s terms. For Russell, “seeing mathematics as a 
web of interrelated ideas is both a result of an emphasis on mathematical reasoning 
and a foundation for reasoning further” (p. 5). Creating generalizations also enables 
problem solving, as generalizations support learners to see the underlying structure 
of the problem and the bigger class of problems or ideas that it instantiates 
(Brousseau and Gibel 2005; Kilpatrick et al. 2001; Russell 1999). Russell also 
introduces a notion of “mathematical memory”, which is a memory of fundamental 
mathematical relationships, rather than of isolated facts. This kind of memory is 
what allows mathematical knowers to reconstruct, in a reasoned way, mathematical 
concepts, procedures, and principles that they might have forgotten (Ball and Bass 
2003; Brousseau and Gibel 2005). It also supports sense making and insight in 
mathematics, and creates the conditions for solving problems.

In Chap. 7, we directly address the challenges that a teacher faced in supporting 
his learners to justify their thinking. The vast majority of learners in his class were 
not able to answer the question: “can x2+1 be less than zero, when x is a real num-
ber”, with appropriate justifications. We show how the teacher worked through a 
number of different contributions from learners, ranging from incorrect justifica-
tions through those that were partially correct, to one that was completely correct, 
asking them to discuss and communicate their reasoning. Even though his learners 
had very weak mathematical knowledge, they were, with a lot of help from the 
teacher, able to contribute and to help each other develop better justifications. In 
each of the other teachers’ chapters, we see examples of learners’ successes and 
challenges as they work to justify, explain, and generalize their ideas.

The Role of Proof in Mathematical Reasoning

Justification and generalization are closely related to proof in mathematics. In fact, 
for many mathematicians and in many mathematics curricula, mathematical rea-
soning is equated with proof. In this book we take the view, together with others 
(Ball and Bass 2003; Davis and Hersh 1981; Hanna and Jahnke 1996; Kilpatrick 
et al. 2001; Kline 1980; Krummheuer 1995), that whereas proof is one form of 
argument and justification, not all arguments and justifications are proofs, and a 
formal proof is not always an adequate justification or explanation of mathematical 
ideas. Although formal proof has long been thought to produce infallibility in 
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mathematical knowledge, in fact it does not do so (Davis and Hersh 1981; Ernest 
1991; Hanna and Jahnke 1996). Standards of rigour are socially constructed 
(Ernest 1991; Volmink 1990) and “there has never been a single set of universally 
accepted criteria for the validity of a mathematical proof” (Hanna and Jahnke 1996, 
p. 884). For example, most mathematics teachers are convinced by the standard 
one-page presentation of the proof of Pythagoras’ theorem; however, a completely 
logically rigorous proof would take about eighty pages (De Villiers 1990).

Just as in other disciplines, communities of practice (Wenger 1998) exist in the 
various domains of mathematics, which review new mathematical proofs in accor-
dance with the current questions, objects of study, ways of thinking, methods, and 
results of the specific mathematical domain. The nature of the discipline of math-
ematics, founded and built on fundamental, shared concepts means that there is 
more agreed upon knowledge in mathematics than in other disciplines, such as 
psychology or sociology. However, this does not mean that mathematical knowl-
edge is not socially constructed or contested. Proof does not shield us from the 
uncertainty of our knowledge (Hanna and Jahnke 1996; Kline 1980). At the same 
time, proof is an important embodiment of mathematical reasoning and needs to be 
taught as a particular form of reasoning, justification, and generalization within the 
discipline of mathematics (Hanna and Jahnke 1996).

Creativity and Reasoning

A strong rebuttal to the hegemony of proof in mathematics comes from practising 
mathematicians, who often work intuitively and creatively, searching for under-
standing and meaning, rather than rigour and formality. Sternberg and his col-
leagues distinguish between creative and analytical thinking (Sternberg 1999; 
Sternberg et al. 1998), arguing that “analytical tasks involve analysing, judging, 
evaluating, comparing and contrasting, and critiquing; creative tasks involve creat-
ing, inventing, discovering, imagining and supposing” (1998, p. 374). Although 
creative and analytical thinking are often posed as dichotomous, they actually sup-
port each other in mathematical problem solving and reasoning, for example imag-
ining would require some form of comparing and supposing usually requires some 
analysing. Comparing alternative solutions, ideas, and imaginings all require rea-
soning and justification; creative thinking can support links between previously 
unconnected ideas; and leaps of imagination are often necessary to see a problem 
from a different perspective.

Intuition has also been studied as an important part of mathematical problem 
solving, creating mathematical arguments, and proving mathematical theorems 
(Fischbein 1987). Intuition might precede more formal arguments, justifications, 
and proof, and in some instances, might replace it. A mathematician who intuitively 
feels that something is wrong in a proof, will search to find the mistake, doubting 
the proof rather than her intuition (Hanna and Jahnke 1996). Crucial to notions of 
creativity and intuition is a sense that conviction and understanding do not necessarily 
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come from formal, deductive, or analytic proofs. Although these have their place, 
they are certainly not sufficient to solve mathematical problems and communicate 
mathematical justifications and generalizations. If practices in the mathematics 
classroom are to be authentic to the discipline of mathematics (Brown et al. 1989), 
then a broader range of reasoning should be acknowledged and developed in math-
ematics classrooms.

Empirical and inductive reasoning play an important part in the reasoning 
practices of mathematicians and mathematics learners, often complementary to 
theoretical and deductive reasoning. Simon (1996) argues for a notion of “transfor-
mational” reasoning, where dynamic transformations of objects are visualised and 
which provide the reasoner(s) with a sense of conviction and understanding of how 
and why something is the case. Transformational reasoning supports and is sup-
ported by both inductive and deductive reasoning. Drawing on Toulmin, Krummheuer 
(1995) argues for substantive arguments, rather than merely analytic ones. 
Substantive arguments show relationships between the main objects and premises, 
rather than merely drawing deductive conclusions based on previously proved 
results or axioms. This distinction is similar to Hanna’s characterization of proofs 
that prove and proofs that explain (Hanna and Jahnke 1996). De Villiers (1990) 
argues for five key functions for proof – verification, explanation, systematization, 
discovery, and communication. It is useful to see these as functions of mathematical 
reasoning as well. Verification establishes that something is the case, i.e. sufficient 
justification has been produced to confirm that a claim is true. Explanation estab-
lishes why something is the case, showing what are the key properties that are 
necessary for the truth of a claim. Explanatory proofs, or substantive arguments are 
more satisfying to both mathematicians and mathematics learners (Hanna and 
Jahnke 1996; Krummheuer 1995). Systematization organizes disparate mathemati-
cal concepts that are already established into a coherent mathematical system. As 
argued above, mathematical reasoning is a key part of mathematical discovery and 
mathematical reasoning also functions to help communicate our ideas and their 
warrants to others.

The idea that mathematical reasoning involves creativity, discovery, and com-
munication is central to the work of this book. In Chap. 4, we show how a col-
laborative conversation among learners supported the development of the 
mathematical concept of function. Communication was the key in enabling learn-
ers to make creative, reasoned conceptual leaps. In Chap. 5, we show how the 
teacher’s practices supported the learners’ mathematical reasoning by encouraging 
them to question and challenge each other and himself. Again, we see reasoned 
creativity among his learners.

In this section, I have argued that mathematical reasoning is a key element of 
mathematics and thus is central to learning mathematics in school. I have argued 
for a broader notion of mathematical reasoning, in which intuition, creativity, 
imagination, explanation, and communication all play an important role. 
Fundamental to all forms of mathematical reasoning is the practice of justification 
and creating adequate arguments in defence of claims. Throughout this section, I 
have drawn on the notions of mathematical practices, communities of practice, and 
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that mathematics is fundamentally a social practice. In the next section, I explore 
these ideas further.

Theories of Learning and Mathematical Reasoning

The work in this book is informed by a number of theories of learning, in particular 
constructivist, socio-cultural, and situated theories. Following Sfard (1998, 2001), 
I argue that none of the above theories is sufficient on their own to explain the learn-
ing and teaching of mathematical reasoning, and in this project I use them in careful 
combination. Although some scholars argue that since the fundamental mecha-
nisms that generate learning posed by the theories are so different (biological 
equilibration for constructivists and social relations for socio-cultural and situated 
theories), the theories may be incommensurable, my argument is that the different 
mechanisms operate at different levels and in combination with each other and as 
long as the differences are acknowledged and specified, we can use these theories 
together to inform teaching and account for learning in mathematics classrooms 
(see also Sfard 2001).

Constructivism

Constructivism, in its many varieties, is centrally concerned with how knowledge 
is constructed and restructured in order to make sense of ever-increasing complex-
ity, both in one’s knowledge and in the outside world. Constructivism has had an 
important influence on theories of mathematics learning and mathematical reason-
ing (Confrey and Kazak 2006; Hanna and Jahnke 1996), and on the new curriculum 
in South Africa (Department of Education 2000). However, just as there are many 
varieties of constructivism, there are many ways in which constructivism can be 
misconstrued (Moll 2000).

The version of constructivism that informs the work in this book is derived from 
Piagetian constructivism (Piaget 1964, 1968, 1975), informed by the interpretations 
of Hatano (1996) and Rowell (1989). Two key principles of this version are first, 
that what people learn is constrained and afforded by what they know; and second, 
that there is an integrity to learners’ thinking – what learners think, say, and do 
makes sense to them in relation to what they know. The role of current knowledge 
is very particular in that current knowledge is not merely built upon (as in behav-
iourist theories); rather it is restructured and reorganized into richer, more con-
nected, and more powerful knowledge (Hatano 1996). Just as new knowledge is 
transformed in relation to prior knowledge, so prior knowledge is transformed in 
relation to new knowledge. From constructivist perspectives a deepening or trans-
forming of thinking involves a deepening or transforming of cognitive structures, 
either integrating previously separate structures into more general and powerful 
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structures, or differentiating previous structures into more nuanced structures, 
which allow for more depth of thinking (Hatano 1996). The implication for math-
ematics classrooms is that teachers need to find out how learners are thinking in 
order to help them build relationships between current and new knowledge.

The unit of analysis in constructivist theories is the mind of the individual 
learner. Social interaction is crucial to constructivism in that it supports and con-
strains individual learning (Hatano 1996; Sfard 2001). However, social interaction 
is a secondary mechanism, important only as long as it engages the key mechanism 
for learning and development – equilibration (Piaget 1964; Rowell 1989). Equilibration 
is a biological process where perturbations to current knowledge structures are 
compensated for in ways that develop them into more powerful structures. Although 
the initial perturbation might be created by social interaction, the biological pro-
cesses must engage for a shift in knowledge to occur. At the same time equilibration 
on its own is not sufficient to account for learning, because social processes must 
be taken into account as well.

The concept of cognitive conflict explains the links between biological and 
social processes in constructivism. Cognitive conflict is where a teacher or peer 
challenges the position of the learner, illuminating a contradiction in her/his think-
ing. The theory holds that if the challenge creates a perturbation in the learner, then 
the learner will equilibrate and develop more powerful knowledge. However, 
research and experience show that even when learners can see the contradiction, 
they are often more comfortable maintaining contradictory positions than trying to 
achieve coherence (Sasman et al. 1998), and might become defensive of their cur-
rent knowledge (Balacheff 1991; Chazan and Ball 1999). Although constructivism 
might be able to account for how people do learn, it is less successful in accounting 
for how they do not learn (Slonimsky, personal communication).

A key part of constructivist research has been work on misconceptions (Confrey 
1990; Smith et al. 1993), which, in our experience, has been extremely helpful for 
teachers. This research shows that learners’ errors are often systematic and consis-
tent across time and place, remarkably resistant to instruction, and extremely rea-
sonable when viewed from the perspective of how the learner might be thinking. To 
account for these “rational errors” (Ben-Zeev 1996, 1998) researchers posit the 
existence of misconceptions, which are underlying conceptual structures that 
explain why a learner might produce a particular error or set of errors. Misconceptions 
make sense when understood in relation to the current conceptual system of the 
learner, which is usually a more limited version of a mature conceptual system (for 
this reason, many researchers prefer terminology such as “alternate conceptions”). 
Misconceptions result from structures that apply appropriately in one domain being 
over-generalized to another, for example, the idea that you cannot take away a big-
ger number from a smaller makes sense in the domain of natural numbers, but not 
in the domain of integers. Thus misconceptions are a normal part of the learning 
process. Misconceptions have been thought to arise from teaching that emphasizes 
procedures and individualized instructions (Ben-Zeev 1996; Erlwanger 1975; 
Schoenfeld 1988). However reports from teachers working conceptually and col-
laboratively suggest that misconceptions continue to arise in these classrooms  
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(Ball 1996, 1997; Chazan and Ball 1999; Lampert 2001), which is to be expected, 
since misconceptions are a normal part of learning.

Since misconceptions form part of the learners’ current knowledge, the well 
established educational truism that teachers need to work with and build on learners’ 
current knowledge suggests that teachers should work with learners’ errors and 
misconceptions as well as their correct ideas. Misconceptions alert us to the fact 
that “building” on current knowledge also means transforming it; current concep-
tual structures must change to become more powerful or more applicable to an 
increased range of situations. At the same time the new structures have their roots 
in and include earlier limited conceptions (Smith et al. 1993). Learners’ misconcep-
tions, when appropriately coordinated with other ideas, can and do provide points 
of continuity for the restructuring of current knowledge into new knowledge 
(Carraher 1996; Confrey 1990; Hatano 1996; Smith et al. 1993).

The idea that learners’ errors arise from the underlying conceptual structure of 
the learner and can be an indication of appropriate reasoning and the integrity of 
the learner’s thinking, can be extremely powerful in helping teachers to shift their 
teaching towards taking learners’ thinking seriously (Ball and Cohen 1999; Nesher 
1987). Teachers who orient toward learner thinking would want to try to understand 
the thinking that produces the learners’ contributions, including their errors. They 
would see errors as a normal part of coming to a correct conception. Since miscon-
ceptions can also produce correct responses (Nesher 1987), asking learners to 
explain their thinking when they produce both correct and incorrect contributions 
is a way to access appropriate or inappropriate underlying mathematical reasoning. 
In Chap. 8 of this book, I draw on the notion of misconceptions to develop a lan-
guage of description for learner contributions, which takes learners’ errors and 
partial insights seriously while looking for ways to transform them into more 
appropriate understanding.

Socio-Cultural Theories

One of the key implications of constructivist theories, which has been popularized 
in teacher training around the new curriculum in South Africa, is that teachers are 
“facilitators”, which means that although they might support learning through 
appropriate tasks and questions, they are not directly implicated in it (Department 
of Education 1997; Hanna and Jahnke 1996). Teachers are often exhorted not to 
“tell” learners any mathematics (Chazan and Ball 1999), for fear that they might 
inhibit the learners’ own constructions. Socio-cultural theories provide a direct 
challenge to this view, as they argue that adults, and teachers in particular, as bear-
ers of the culture, must be involved in developing learners’ understanding and in 
so-doing, must leave their mark on what learners learn (Hatano 1996; Sfard 2001). 
The processes of construction will include much of the teachers’ language and 
ways of seeing that learners appropriate as teachers work with them.
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A key difference between socio-cultural and constructivist theories is that socio-
cultural theories posit social interaction as the primary mechanism in intellectual 
development. For Vygotsky (1978), the interpsychological (interaction among 
people) becomes the intrapsychological (mental functions). Vygotsky has a very 
strong notion of the mind, which is formed biologically, through the lower mental 
functions, and socially, through the higher mental functions. He argues that social 
interaction and broader cultural historical patterns are constitutive of higher order 
consciousness. The interaction between the social and biological is therefore key, 
as in Piaget’s constructivism; however, the social is primary.

For Vygotsky, social, cultural, and historical knowledge is carried through signs 
and artefacts and mediated to younger members of the culture by more experienced 
members. So for Vygotsky, the unit of analysis is always the individual interacting 
with another person or people, either directly, or through a tool or artefact (for 
example, a book).

This is formalized in his notion of the zone of proximal development (Vygotsky 
1978). In some of Vygotsky’s writings, it appears that he conceives of the zone of 
proximal development as belonging to an individual learner. However, the social 
nature of his theory suggests that zones of proximal development are created in 
interaction between learner and teacher or between learner and artefact (Hedegaard 
1990; Wertsch 1984). Thus the same teacher/artefact can create different zones of 
proximal development with different learners, and different teachers/artefacts can 
create different zones of proximal development for the same learner. Mediation is 
crucial (Crook 1994; Herrenkohl and Wertsch 1999) in that it creates the conditions 
of possibility for internalization of the key concepts of the culture.

Many teachers, including those whose work is represented in this book, have 
found the concepts of the zone of proximal development and mediation extremely 
appealing, because they posit a central role for the teacher. In Chap. 4, we draw on 
the socio-cultural theory together with constructivism to show how one learner’s 
development of mathematical reasoning is mediated by conversation with her peers 
and the teacher, as they use a set of mathematical resources together to solve a 
problem. We see how the learners’ collaborations are intimately connected with and 
become part of an individual learner’s increasingly sophisticated reasoning. In 
Chap. 5, we draw directly on the zone of proximal development, arguing that the 
teacher’s practices of questioning and listening to the learners’ mathematical rea-
soning form a zone of proximal development for the learners and they begin to 
listen to and question each other, and him, in similar ways.

It should be noted here that Vygotsky’s theory is also a theory of social con-
struction. Interpsychological processes do not become intrapsychological pro-
cesses without being transformed. Vygotsky states: “adults, through their verbal 
communication with the child, are able to predetermine the path of the develop-
ment of generalizations and its final point – a fully formed concept. But the adult 
cannot pass on to the child his mode of thinking” (1986, p. 120), and Leont’ev 
writes “the process of internalisation is not transferal of all activity to a pre-
existing plane of consciousness; it is the process in which this internal plane  
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is formed.” (1981, p. 57 in Cazden 1988, p. 108). So, internal processes, although 
constituted by external processes, do not mirror them.

There are two strong critiques of Vygsotsky’s work, both relating to his notion 
of internalization. The first is that the processes of internalization are left relatively 
un-theorised. This is one area where Vygotsky’s work remains insufficient3 and 
where Piaget’s notions of assimilation, accommodation, and equilibration do far 
more to explain how external ideas are internalized. Related to this is Vygotsky’s 
under-acknowledgment of the role of errors and misconceptions in learning. His 
work often suggests that learning proceeds relatively smoothly in the zone of proxi-
mal development. The second critique is that there is far too much emphasis on 
internalization in Vygotsky’s theory, because of its strong focus on mind (Crook 
1994; Daniels 2001; Lave 1993). This critique suggests that a focus on social rela-
tions is more useful in understanding learning. Related to this argument is the fact 
that Vygotsky’s theory, while acknowledging necessary asymmetrical relationships 
between teacher and learner, does not always acknowledge the power differences 
among learners, particularly in relation to race, gender, and class and how these 
might affect learning. A more participatory account allows for these to be 
included.

Situated Theories

Situated theories view learning as participation in communities of practice (Lave 
1993; Lave and Wenger 1991; Wenger 1998). To view learning as participation is 
to say that not only does learning occur through participation, as both constructivist 
and socio-cultural theories argue, but that learning is defined and identified as 
increasing participation in a practice. To learn is to participate better. To learn math-
ematics is to become a better participant in a mathematical community and its 
practices, using the discursive tools and resources that the community provides 
(Forman and Ansell 2002; Greeno and MMAP 1998). The unit of analysis in situ-
ated theories is the community of practice and it is important to specify the prac-
tices of a particular community (Brown et al. 1989). Communities of practice 
constitute contexts for the learning of their members, and as communities they also 
learn (Wenger 1998). The mechanism for learning in situated theories is legitimate 
peripheral participation in communities of practice (Lave and Wenger 1991). 
Newcomers to the practice participate legitimately, but on the periphery, at first. As 
they gain experience, their participation shifts towards full participation, which is 
their learning. As newcomers become oldtimers, so the community itself learns and 
shifts, creating both personal and communal growth. The processes of negotiation 
between newcomers and oldtimers can create tensions and conflict, as newcomers 

3 I thank Steve Lerman for pointing out that this is probably because Vygotsky died a short time 
after formulating the notion of zpd and internalization.
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stake their positions in the community. Thus power relations, which are not taken 
into account by constructivist and socio-cultural theories, become the key to learning 
in situated theories. Lave and Wenger argue that their theory of social practice 
“emphasizes the inherently socially negotiated character of meaning and the inter-
ested, concerned character of the thought and action of persons-in-activity” (Lave 
and Wenger 1991, p. 50).

Similar to socio-cultural theories, situated theories view the role of the social 
interaction as constitutive of learning; they are social theories of learning (Wenger 
1998). Different from socio-cultural theories, they view learning as only a social 
phenomenon; the definition of learning as participation rather than constituted by 
participation suggests learning is social and not mental. Learning is the creation of 
identities in communities of practice (Wenger 1998). Situated perspectives argue 
that knowledge cannot be seen as the “possession” of an individual, but rather is 
distributed among people and resources (Greeno et al. 1996; Sfard 1998).

In situated perspectives, a concern with thinking is transformed into a concern 
with participation, with how learners use mathematical tools and discourse to rea-
son and justify their reasoning (Sfard 2001). Making connections and generalizing 
ideas are important in situated perspectives, however the connections and general-
izations are ideas that are in the conversation, rather than structures in the head. 
Greeno and MMAP (1998) suggest that situated analyses broaden the notion of 
conceptual structures into one of attunement to affordances and constraints. 
Affordances and constraints are located in interactional situations, in the classroom, 
the domain of mathematics, and the lives of the learners beyond school. From this 
perspective, learners who do well in mathematics do so because they align and 
identify with the requirements and expectations of the classroom, both mathemati-
cal and social. A learner may struggle to learn, not because she has not developed 
appropriate conceptual structures, but because she is responding to a different task 
than the one set by the teacher, or does not want to be seen to be too intelligent or 
not intelligent enough in front of her peers, or has decided not to engage with math-
ematics because it does not seem to be important in the lives of people who are 
important to her. Such attunements are patterned regularities, which may be just as 
important in accounting for learning as are conceptual structures.

The de-emphasis of conceptual structures as products of learning makes situ-
ated theories somewhat difficult for teachers to own and work with, epecially 
teachers, like the teachers in this book, for whom conceptual understanding and 
mathematical reasoning are important. However, there is one key notion in situated 
theories – communities of practice – which attract teachers, and which seem to be 
compatible with the key elements of socio-cultural and constructivist theories. 
Communities of practice present images of how communication can take place in 
classrooms, the roles of resources, of different learners, and of the teacher. 
Although classroom communities must be somewhat different from communities 
outside of classrooms (Lave 1993, 1996; Lerman 1998), classroom communities, 
where genuine mathematical communication and the development of mathematical 
understanding and identities take place, can be established (Boaler 2004; Boaler 
and Greeno 2000; Boaler and Humphreys 2005; Lampert 2001; Staples 2004). 
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This view infuses the work in Chaps. 4–6 of this book, where we show how 
communities of practice were created in three of the classrooms. It also informs 
Chaps. 8 and 9, which show how learner contributions and teacher responses 
 co-produce each other, and Chaps. 10 and 11, where dilemmas of teaching and 
resistance to teacher change are viewed as profoundly situated and developed in 
and through communities of practice.

Teaching Mathematical Reasoning

The theories discussed above are primarily theories of learning. It is often thought 
that theories of learning have direct application to classrooms and suggest particu-
lar pedagogical approaches. However, this is not the case; rather theories of learn-
ing suggest general pedagogical principles and implications for pedagogy; they do 
not directly lead to particular pedagogical approaches. Moreover, pedagogical prin-
ciples do not derive from theories of learning in a one-to-one correspondence. 
Different theories might suggest very similar approaches, which are distinguished 
at the level of explanation rather than at the level of practice. It might be tempting 
to conclude that since constructivist theories focus on the individual, they suggest 
individual approaches to teaching and learning, while socio-cultural and situated 
perspectives suggest group work. However, all three theories suggest that group 
work is a useful pedagogical approach and none would advocate that learners do no 
work on their own. From all three perspectives, encouraging learners to talk through 
their ideas with each other is an important process, as is encouraging learners to 
write down different versions of their thinking, for themselves and others. 
Constructivist perspectives suggest that when learners are pushed by others to 
articulate their thinking, they are likely to clarify their thinking, both for others and 
for themselves (Barnes and Todd 1977; Glachan and Light 1982; Mercer 1995; 
Vygotsky 1986). In the process of clarifying their thinking, learners might develop 
more complex concepts, through differentiation, integration, and restructuring 
(Hatano 1996). Situated perspectives suggest that as learners consider, question, 
and add to each other’s thinking, important mathematical ideas and connections can 
be co-produced. For constructivist perspectives the group is a social influence on 
the individual; for sociocultural and situated perspectives the group is the important 
unit, which produces mathematical ideas within or beyond the individual learner. 
One, or both of these purposes for group work might be operating in a classroom 
at any particular time.

In this section, I delineate pedagogical implications for teaching mathematical 
reasoning, drawing on the arguments in the previous sections of this chapter. The 
key in teaching mathematical reasoning, as in teaching any other aspect of mathe-
matical proficiency, are the kinds of tasks that learners engage in, the ways in which 
they engage with these tasks, and the kinds of interactions around the tasks among 
the learners and the teacher. However, as noted by Ball and Bass, “simply posing 
open-ended mathematical problems that require mathematical reasoning is not 
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 sufficient to help students learn to reason mathematically. Neither is merely asking 
students to explain their thinking” (2003, p. 42).

Tasks for Mathematical Reasoning

A number of frameworks have been developed to describe the complexity of 
tasks (Biggs and Collis 1982; Shavelson et al. 2002; Stein et al. 1996, 2000). In 
this project we drew mainly on the work of Stein et al. (1996, 2000). Although 
we acknowledge limitations with this framework (Sanni 2008a), it was very use-
ful as a starting point for teachers wanting to select tasks to support learners’ 
mathematical reasoning. This framework is discussed in detail in Chap. 3, where 
we use it to analyse how learners responded to tasks intended to develop math-
ematical reasoning. For the purposes of this chapter it is sufficient to note that 
Stein et al. identify task features which support higher cognitive demands on 
learners, including reasoning and sense making. These features are “the exis-
tence of multiple-solution strategies, the extent to which the task lends itself to 
multiple representations, and the extent to which the task demands explanations 
and/or justifications from the students” (Stein et al. 1996, p. 461). Stein and oth-
ers (Ball 1993; Boaler and Humphreys 2005; Chazan 2000; Lampert 2001) show 
that tasks that support multiple voices, disagreements, and challenges also sup-
port mathematical reasoning, when used appropriately. Douek (2002) argues for 
specific kinds of complexity in tasks to support the development of mathemati-
cal arguments, including the complexity of integrating a number of different 
arguments into a coherent whole, the complexities involved in moving from 
dynamic to static representations, and the complexity of the contexts in which 
tasks are set. Garuti and Boero (2002) describe teaching experiments where the 
arguments of famous scholars (Galileo, Plato) are presented to students as 
examples of forms of argument, and students are asked to write similar argu-
ments for mathematical problems. Considering the arguments of others, includ-
ing those of one’s own peers, can be a powerful source of developing a learner’s 
own reasoning and arguments.

Choosing appropriate tasks is necessary but not sufficient to support a learner to 
develop reasoning. Stein et al. (1996) show that, with support, the teachers in their 
project chose tasks that made higher order cognitive demands on learners. However, 
as the tasks were implemented in the classrooms, the level of demand declined. In 
South Africa, Modau and Brodie (2008) show how a teacher teaching the new cur-
riculum in Grade 10, supported by a new curriculum textbook, chose tasks that 
required reasoning. However, at implementation, he was not able to maintain the 
level of the tasks, but through his questioning and patterns of interaction, lowered 
the task demands and thus did not support reasoning (Jina and Brodie 2008). Sanni 
has shown that in six Nigerian classrooms the level of most of the tasks also 
declined. However, when he worked as a support for one of the teachers, the level 
of the tasks remained high and the learners’ reasoning improved (Sanni 2008b). 
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Taken together these studies suggest that substantial work with teachers is required 
to support them to interact with their learners on tasks to support the learners’ 
mathematical reasoning.

Classroom Interaction

Since communication is fundamental to reasoning (Ball and Bass 2003; Douek 
2005; Krummheuer 1995), it makes sense that learners should discuss their reason-
ing with others. This is supported by all the learning theories discussed previously 
and by curriculum reforms in South Africa and internationally. As learners attempt 
to create reasoned arguments for their ideas, they help themselves and each other 
to clarify their thinking and they are able to create some of the practices that math-
ematicians engage in as they produce arguments and justifications. However com-
munication can be structured in a variety of ways, leading to very different kinds of 
support for mathematical reasoning. Many South African teachers talk about the 
“question and answer method” as if this guarantees learner participation. However, 
it is well known in the research literature that if the questions are narrow and do not 
challenge learners’ thinking, then the resulting interaction is stilted and does not 
support reasoning (Bauersfeld 1988; Edwards and Mercer 1987; Mehan 1979; 
Nystrand and Gamoran 1991). On the other hand, putting learners into groups and 
leaving them to work without mediation from the teacher does not necessarily pro-
vide enough support for developing their reasoning (Brodie and Pournara 2005). 
Even whole class discussions are often not successful, because working out exactly 
how to respond to the learners’ developing ideas and reasoning is a difficult task for 
teachers (Heaton 2000).

The work on classroom interaction in Chaps. 8–10 of this book draws on work 
done many years ago by Mehan (1979) and Sinclair and Coulthard (1975) on the 
pervasive exchange structure of classroom discourse, the Initiation-Response-
Feedback/Evaluation (IRF/E) exchange structure. The teacher makes an initiation 
move, a learner responds, the teacher provides feedback or evaluates the learner 
response and then moves on to a new initiation. Often, the feedback/evaluation and 
subsequent initiation moves are combined into one turn, and sometimes the feed-
back/evaluation is absent or implicit. This gives rise to an extended sequence of 
initiation-response pairs, where the repeated initiation works to achieve the 
response the teacher is looking for. When this response is achieved, the teacher 
positively evaluates the response and the extended sequence ends.

Neither Sinclair and Coulthard nor Mehan evaluated the consequences of the 
IRE structure. Other researchers (Edwards and Mercer 1987; Nystrand et al. 1997; 
Wells 1999) have argued that it may have both positive and negative consequences 
for learning. Although this structure requires a learner contribution every other turn 
(the response move), and therefore apparently gives the learners time to talk, much 
research has shown that because teachers tend to ask questions to which they 
already know the answers (Edwards and Mercer 1987) and to “funnel” learners’ 
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responses toward the answers that they want (Bauersfeld 1988), space for genuine 
learner contributions is limited. At the same time, it is very difficult for teachers to 
move away from this structure (Wells 1999) and so, in trying to understand a range 
of pedagogies, it is important to try to understand the benefits that it affords. 
Whether the IRE has positive or negative consequences for learning will most likely 
depend on the nature of the elicitation and evaluation moves, which in turn influ-
ence the depth and extent of the learners’ responses. In Chap. 9, I develop a lan-
guage to describe teacher responsiveness in the fused elicitation/evaluation moves, 
which distinguishes a number of teacher moves and their consequences for learner 
contributions.

One aspect of classroom interaction that has been identified as important to sup-
porting useful interaction, is the development of ground rules (Edwards and Mercer 
1987) or classroom norms (McClain and Cobb 2001), which are different from 
those in traditional classrooms. Norms that support reasoning would includethe 
following: learners are called on to justify all their reasoning, not only mistaken 
reasoning as might happen in traditional classrooms; learners are expected to listen 
to and build on each others’ ideas and challenge them where necessary; learners can 
and should challenge the teacher, and the teacher should justify her/his mathemati-
cal thinking. This raises the important issue of authority in mathematics class-
rooms. Traditionally, mathematics learners are expected to accept the authority of 
the teacher or the textbook, rather than the authority of mathematical justifications. 
These two kinds of authority are very different (Brousseau and Gibel 2005), and are 
implicated in the learners developing a productive disposition towards mathematics 
(Kilpatrick et al. 2001) and hence achieving overall mathematical proficiency. 
Productive disposition is a belief that mathematics can and does make sense, and 
that every learner can make sense of it. This requires an understanding that the 
“rules” are not arbitrarily decided on by powerful individuals, but that they make 
sense in terms of a system of knowledge, which can be understood by everyone, 
with sufficient effort.

Ball and Bass (2003) argue that mathematical justification is grounded in a body 
of public mathematics knowledge, where this knowledge can be that of a group of 
mathematicians, or an elementary classroom community. This public knowledge 
ensures that individual sense making becomes accountable to a broader commu-
nity; because an idea making sense to an individual is not the same as an idea being 
based on shared reasoning in communities of mathematicians over time. So taking 
the individual learner’s reasoning seriously means attempting to connect it to 
accepted mathematical reasoning. They argue, “reasoning, as we use it, comprises 
a set of practices and norms that are collective, not merely individual or idiosyn-
cratic, and rooted in the discipline” (p. 29). It follows from their position, although 
they do not argue it, that even the classroom mathematics community cannot be the 
final arbiter on the acceptance of a mathematical argument, because this commu-
nity is accountable to broader communities of mathematical practice and to the 
discipline of mathematics. The idea of accountability to the discipline is one that 
attracted all of us in this project, and subsequent chapters will show how we worked 
with this notion and how the learners received it.
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The Challenges of Teaching Mathematical Reasoning

In this chapter, I have outlined the theoretical positions on mathematics, learning 
and teaching, which inform this book and have suggested some of the many chal-
lenges that teachers face when trying to make reasoning a central part of their 
practice. I have also suggested some challenges that researchers and teacher educa-
tors face when looking for ways to talk about the teaching and learning of mathe-
matical reasoning. In the rest of this book, we take up some of these challenges:

How do learners respond to tasks chosen to elicit their mathematical reasoning?•	
How can teachers interact with learners around tasks to engage their mathemati-•	
cal reasoning?
How can teachers teach to develop mathematical proficiency?•	
How does collaborative conversation among learners and teacher promote math-•	
ematical reasoning?
What kinds of teaching practices, questions, and moves help to encourage and •	
sustain the learners’ mathematical reasoning?
How can we describe the learners’ contributions and teachers’ responses to these •	
in ways that can help us talk about them in more specific ways?
What kinds of dilemmas do teachers experience as they teach mathematical •	
reasoning?
What can teachers do in response to the resistance to new ways of teaching?•	

We approach these questions from two directions. In part two of this book, we present 
five studies conducted by teachers in their classrooms, each of which addresses one or 
two of these questions. The range of contexts in which the teachers work and their 
approaches to the topic of mathematical reasoning suggest a number of possibilities to 
other teachers, teacher educators, and researchers wanting to undertake case-studies of 
teachers teaching mathematical reasoning. In part three of the book, I look across the 
teachers’ practices, in a multiple-case study. I suggest a language of description for 
learner contributions and teacher moves, and I use this language to illuminate ways in 
which teachers, teacher educators, and researchers can gain deeper insight into how to 
respond to the learners’ mathematical thinking. I also use this language to illuminate 
some of the dilemmas that teachers experience when engaging learners’ mathematical 
reasoning and to talk about the resistance that they may experience.

It is well established that meaningful change in teaching and learning takes time. 
In this book we illuminate both successes and challenges in teaching for mathemat-
ical reasoning, among ordinary teachers, to give substance to why such teaching 
takes time to achieve. We do not claim to have succeeded in producing the ideal 
teaching and learning situations that reformers might hope for, and we are not sure 
whether such perfection is possible. We do claim to have learned much about what 
we have achieved and how we might move forward. We hope that our work in 
developing research and practice together will provide ideas and possibilities for 
many other teachers, teacher-educators, and researchers to begin their own explora-
tions in teaching mathematical reasoning.
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In the previous chapter, I outlined possibilities for teaching mathematical reasoning 
that involves learners communicating their thinking to their teacher and their peers 
and teachers taking learners’ mathematical reasoning seriously to develop and 
transform it. This is in line with the visions of reform mathematics in a number of 
countries. However, international evidence suggests that very few teachers embrace 
reforms and those who do, experience significant challenges in their teaching. The 
challenges that I outlined at the end of the previous chapter are daunting in any 
context even in the most well resourced contexts. However, in South Africa and 
many other countries, resources in most schools are severely limited, adding to 
teachers’ difficulties in enacting reforms.

At the same time, resources are not the only influence on reform teaching and 
the ways in which they exert an influence are not always obvious. In a review of 
recent international and South African studies, Fleisch (2007) shows that the studies 
are inconclusive on the effects of resources such as teacher qualifications, class 
size, and learning materials on learner achievement. This suggests that there are 
ways in which resources that do matter are most likely mediated by other variables. 
In this chapter, I discuss some responses to reform pedagogy across a range of 
contexts and discuss ways in which contextual constraints and resources may or 
may not be implicated in enactments of reform teaching. This discussion, together 
with a more general discussion of the resources available for teaching and learning 
in South Africa, serves to situate the description of the different contexts of the 
teachers in this study and the resources available to them as they worked to teach 
mathematical reasoning in their classrooms.

Responses to Reforms

A strong impetus for reform curricula in many countries is the need to redress 
inequalities in mathematics education. Internationally, success in mathematics is 
distributed according to race and socio-economic status (Association for 
Mathematics Education of South Africa 2000; Department of Education 2001; 
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Moses and Cobb 2001; Secada 1992). While many of the reasons for this maldis-
tribution originate outside of the classroom, there are arguments that classroom 
practices can begin to work towards equity (Boaler 2002). Allowing different ways 
of knowing mathematics to be available in the classroom may afford success for a 
wider range of learners (Boaler 2002; Boaler and Greeno 2000). Allowing learners 
to express their ideas in the classroom can lend to diverse ways of thinking, and 
help to teach learners that everyone’s thinking can contribute to the development of 
mathematical knowledge (Lampert 2001).

There has been much debate as to whether current mathematics reforms can be 
a mechanism for ensuring more equitable participation and achievement in mathe-
matics (see Brodie 2006, for a summary of these debates). Empirical evidence in 
well-resourced countries is beginning to show that reforms do mitigate achievement 
gaps between marginalised and other learners and also enable learners to develop 
more motivated and positive identities as mathematics learners (Boaler 1997; 
Boaler and Greeno 2000; Hayes et al. 2006; Kitchen et al. 2007; Schoenfeld 2002). 
However, the evidence also shows that implementation of reform curricula is not 
widespread and in fact it is likely that implementation of reforms is inequitably 
distributed (Kitchen et al. 2007), so that poorer learners are less-likely to experience 
reform curricula and pedagogy. Particularly in African contexts, issues of resources, 
including big classes and few materials, teacher confidence and knowledge, and 
support for teachers, can be major barriers to developing new ways of teaching 
(Tabulawa 1998; Tatto 1999). If reforms are successful in promoting equity and if 
they are not taken up in less-resourced contexts, then the existing division between 
rich and poor are likely to be exacerbated.

There is also growing evidence that teaching in reform-oriented ways is an 
extremely challenging task for teachers (Sherin 2002; Nathan and Knuth 2003) and 
that successful reform teachers are rare, even in well resourced schools in the United 
States where the reforms have been in place for 10 years longer than in South Africa. 
Among the 18 teachers in their study, Fraivillig et al. (1999) considered only six 
teachers to be “skillful” in eliciting and supporting learner thinking, while only one 
was successful in eliciting, supporting, and extending learner thinking. Hufferd-
Ackles et al. (2004) described the development of reform practices through four 
levels. Of the four teachers they worked with, only one teacher’s trajectory took her 
and her learners through all four levels. These studies were conducted in well-
resourced classrooms and so suggest that while resources may be important, they are 
not the only challenge for teachers in working with learners’ reasoning.

Studies of and by teachers who are successful in developing discussion and col-
laboration around learners’ reasoning, identify a number of challenges in such 
work. These include: supporting learners to make contributions that are productive 
of further reasoning (Heaton 2000; Staples 2004); respecting and valuing all learn-
ers’ thinking while working with the diversity of their mathematical ideas (Lampert 
2001); respecting the integrity of learners’ errors while trying to transform them 
and teach the appropriate mathematics (Chazan and Ball 1999); seeing beyond 
one’s own long-held and taken-for-granted mathematical assumptions in order to 
hear and work with learners’ reasoning (Chazan 2000; Heaton 2000); maintaining 
a “common ground”, which enables all learners to follow the conversation and its 



25Responses to Reforms

BookID 159557_ChapID 2_Proof# 1 - 24/09/2009

mathematical purpose and to contribute appropriately (Staples 2004); and generating 
mathematical practices such as making connections, generalizing, and justifying 
(Boaler and Humphreys 2005). The above research shows that the pedagogical 
demands of mathematical conversations can be daunting and that we need to under-
stand more about the practices involved in generating and sustaining these conver-
sations (Brodie 2007b).

Research on the new curriculum in South Africa has shown that teachers who 
are enthusiastic about and express support for the new curriculum struggle to enact 
many of the ideas in their classrooms. These studies show that many classrooms 
remain teacher-centred, and teachers engage with learners’ ideas in superficial 
ways, if they do so at all (Chisholm et al. 2000; Taylor and Vinjevold 1999). Other 
studies show some hybrid practices beginning to develop. Jansen (1999) found that 
while most teachers were not implementing the new curriculum, or were doing so 
very superficially, some of the more experienced and confident teachers were able 
to move between old and new practices and negotiate for themselves and with their 
learners what it means to implement the new curriculum. Brodie et al. (2002) found 
that many teachers set up tasks and group work situations where learners engaged 
with the tasks. However, when learners expressed their thinking, teachers struggled 
to support and engage with their reasoning to take them further and to develop them 
mathematically (Brodie 1999; Brodie et al. 2002). This finding was confirmed in 
more recent studies, where teachers selected tasks that could elicit mathematical 
reasoning, but did not engage learners’ reasoning in classroom interaction (Jina and 
Brodie 2008; Modau and Brodie 2008; Stein et al. 1996; Stein et al. 2000).

There are a number of possible explanations for South African teachers’ difficul-
ties with the new curriculum. One claim, prominent at the moment, is that teachers 
do not know enough conceptual mathematics to teach in ways required by the new 
curriculum (Taylor and Vinjevold 1999). Other explanations are that teacher devel-
opment around the new curriculum has been inadequate and that appropriate cur-
riculum materials are not available (Chisholm et al. 2000; Taylor and Vinjevold 
1999). A third possibility is that teachers are able to implement some aspects of the 
new curriculum, for example, higher level tasks, relatively easily, whereas other 
aspects, in particular, interaction with learners, are particularly difficult (Brodie 
et al. 2007). Slonimsky and Brodie (2006) argue that new curriculum practices 
require that teachers coordinate a complex set of contextual and knowledge con-
straints and that such coordination takes a long time to develop. All the above 
explanations acknowledge that resources are only part of the problem.

One of the aims of this project was to explore possibilities for developing learn-
ers’ mathematical reasoning in a range of South African contexts and thereby begin 
to develop a deeper understanding of how resources are implicated in such prac-
tices. The next section presents some background on educational resources and 
achievement in South Africa and the following section describes the differently 
resourced contexts in which the five teachers in the project worked. In the discus-
sion of resources, I include the material resources of the schools, the human 
resources, in particular teacher and learner knowledge, and finally the resources 
that the teachers chose to work with in the study – the tasks that they developed to 
engage their learners in reasoning mathematically.
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The South African Context

As with all aspects of life in South Africa, the education system is characterized by large 
disparities between rich and poor, and most of our schools and learners are of very low 
socio-economic status. Most teachers in South Africa teach big classes in very poorly 
resourced schools. The latest national data shows that of the 25,145 operational schools 
in South Africa, 11.5% of schools did not have water, 16% had no electricity, 5.2% did 
not have ablution facilities, 80% did not have libraries and 67% did not have computers 
for teaching and learning (Department of Education 2007). The average learner–teacher 
ratio in schools was 32:1 and the average learner-classroom ratio was 38:1 (Department 
of Education 2008). These averages hide wide disparities between provinces and 
schools. A research study conducted in Gauteng and Limpopo (the richest and poorest 
provinces in South Africa respectively), observed averages of 35 students per class in 
secondary schools, with the three rural secondary schools averaging 60 learners per 
class and with some classes having as many as 120 learners (Adler and Reed 2002). 
There were limited resources such as overhead projectors and those resources that did 
exist, for example chalkboards, were often in poor condition.

While outrageous in any terms, this lack of resources is particularly significant for 
teachers attempting to work with their learners’ mathematical reasoning. It is difficult 
to attend to learners’ ideas when there are 50 or more learners in the class and few mate-
rial resources. Moreover, many learners, having experienced poorly resourced educa-
tion, often have weak mathematical knowledge (Fleisch 2007), and may be reluctant to 
participate in lessons. When they do participate, they may express barely coherent, or 
very problematic ideas, and teachers may not be able to engage with these ideas (Brodie 
2000). The fact that most teaching and learning takes place in English, which is not the 
main language of most teachers and learners, also makes participation more difficult for 
learners and development of learner thinking more difficult for teachers.

Learners’ weak mathematical knowledge is apparent in the annual results of the 
school leaving examinations1, which are taken by approximately 500,000 Grade 12 
learners each year, of which about 300,000 take the mathematics examinations. In 
2005, 55% of about 303,000 learners passed mathematics and in 2006, 52% of 
about 317,500 learners passed mathematics. In 2005, about 44,000 learners took the 
examination at the Higher Grade level, which is required for entry into scientific 
fields at university, and 59% passed while in 2006, about 47,000 took the examina-
tion at this level and 53% passed (Department of Education 2008). The inequities 
of the system become apparent when we see that of 40,000 Higher Grade candi-
dates in 2001, only 20,000 were “African”,2 and of these about 3,000 passed. Thus, 

1 South Africa has school learners examinations at the end of Grade 12. These examinations are 
high stakes and determine students’ eligibility for further study and job opportunities.
2 The apartheid system of racial classification was four-tiered and funding for education was 
directly linked to these tiers. Although many white South Africans refer to themselves as African, 
in this context “African” refers to black South Africans who are not “coloured” or of Indian 
descent, and whose schools and colleges received least funding under apartheid. Black Africans 
make up about 80% of the South African population.
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The South African Context

while about 85% of white Higher Grade candidates passed, only 15% of black 
African candidates did. Figures for 2004 are that 7,236 African learners passed out 
of a total of 40,000 candidates3 and of these, 2,406 African learners passed with a 
“C” grade or higher, which is 0.5% of the total number who wrote mathematics and 
6% of those who wrote Higher Grade mathematics (Centre for Development and 
Enterprise 2007).

Research in the lower grades shows that learners begin to struggle with mathe-
matics as early as Grade 3. Contrary to other developing countries, South African 
learners are almost all in school. Fleisch et al. (2008) show that in 2007, more than 
95% of children of compulsory school age attended an educational institution and 
that this reflects an improvement since 2001 in each age cohort between 7 and 
15 years of age. However, Motala and Dieltiens (2008) raise questions as to what 
these learners actually learn in school, suggesting that about 60% are disengaged 
and disaffected and learn very little.

Reviewing the research in mathematics, Taylor et al. (2003) conclude that “studies 
conducted in South Africa from 1998 to 2002 suggest that learners’ scores are far 
below what is expected at all levels of the schooling system, both in relation to other 
countries (including other developing countries) and in relation to the expectation of 
the South African curriculum.” Many Grade 3 learners struggle with basic skills 
such as adding and subtracting two-digit numbers that require “carrying” or “bor-
rowing”. South Africa also performs poorly in international comparison studies. In 
the third TIMSS study, South Africa came last out of 41 countries at all three grade 
levels tested, doing significantly worse than countries with similar GDPs, for exam-
ple Latvia and Lithuania (Howie and Hughes 1998). In the 2003 TIMSS study, 
South African Grade 8 learners again came last out of 46 countries, and more sig-
nificantly did worse than countries with lower Human Development Indices, includ-
ing Ghana et al. (Reddy 2006). In the Monitoring Learner Assessment Study (MLA), 
which compared Grade 4 learners across 12 African countries, South Africa had a 
mean score of 30% for numeracy, which was the lowest of all 12 countries (Taylor 
et al. 2003). These average scores hide the large disparities between black, low 
socio-economic status learners and wealthier, white learners, but they serve to show 
the extent of the “crisis” in mathematics learning in South Africa, which is quanti-
tatively different from many other countries. While we acknowledge critiques and 
limitations of such comparative studies (for example, Keitel 2000; Reddy 2006), 
they do serve as an indication of some of the challenges that our education system 
faces and the difficult conditions under which many teachers work.

The “crisis” also extends to the availability and quality of mathematics teachers 
in South Africa. Many South African teachers, because they were under-served by 
apartheid education, have relatively weak knowledge of mathematics and how best 
to teach it (Taylor and Vinjevold 1999). This situation does not look set to change 
in the near future. Given the limited numbers of students who graduate from school 
with strong mathematical knowledge, the pool for potentially well-qualified 

3 The number of African candidates who wrote is not available.
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teachers is small. Students who do well in mathematics and science usually have a 
range of more attractive career options in other fields. Knowledgeable teachers of 
mathematics are often recruited by industry with far better salaries and working 
conditions. There is a lack of detailed data about mathematics teachers in South 
Africa (Centre for Development and Enterprise 2007) but the following give only 
a part of the picture over the past 10 years. In 1997, only 50% of teachers of math-
ematics had specialized in mathematics in their training (Department of Education 
2001); in 2004, a survey of 1,766 secondary schools (out of a total of about 5,600) 
showed that there were 1,734 qualified mathematics teachers at these schools and 
of those only 1,362 were actually teaching the subject (Centre for Development and 
Enterprise 2007); and in 2006, 16 universities graduated a total of about 550 math-
ematics teachers (Centre for Development and Enterprise 2007).

I have taken some time to review these statistics because they provide a back-
ground for understanding the debates about the new curriculum in South Africa, 
and the contexts of the schools in this study. It is imperative to provide access to 
mathematics for large numbers of low socio-economic status learners. The govern-
ment’s response has been the development of policies that encourage the transfor-
mation of the curriculum and pedagogy in South African schools. The curriculum 
was developed in consultation with local and international experts and draws on the 
international research that suggests that reform pedagogy can reduce inequality in 
mathematics achievement. However, the international experience of teacher diffi-
culties with reform curricula, in addition to the particular challenges of the South 
African situation suggest that we cannot assume that the new curriculum will 
reduce inequality – it may even increase it. This was a concern for all of the teachers 
in this project, and so we wanted to examine how teachers worked with learners’ 
mathematical reasoning in a range of South African classrooms.

Five Schools: Contexts and Resources

Race and Socio-Economic Status

Fifteen years after the end of apartheid, although there have been some shifts, 
schools still largely reflect historical divisions of race and class. Table 2.1 gives 
a description of each of the five teachers’ schools in terms of race and socio-
economic status4.

4 Historically race and class have been closely related in South Africa. Although this is changing 
for some small sections of the population, to a large extent this trend still exists and is largely 
reflected in this sample. In order to determine socio-economic status, we used the location of the 
school, the school fees, which public schools in South Africa are allowed to charge, and the teach-
ers’ knowledge of the typical occupations of the parents.
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Under apartheid Mr. Nkomo’s and Mr. Mogale’s schools served only black 
learners, Mr. Peters’ school served only “coloured” learners, and Mr. Daniels’ and 
Ms. King’s schools served only white learners. Ms. King’s school is a private, boys- 
only school, with some boys living at the school, and all the others are public, co-
educational non-residential schools. The racial profile of the teachers matched 
those of the learners. Since schools began to integrate in the early 1990s, Mr. 
Peters’ school has black and “coloured” learners; Mr. Daniels’ school is racially 
diverse with learners from all four racial “groups”; and Ms. King’s school has a few 
black, “coloured”, and Indian learners, but is still predominantly white. Teacher 
diversity across the schools has occurred much more slowly. All the teachers in Mr. 
Nkomo’s and Mr. Mogale’s schools are black, most of the teachers in Mr. Peters’ 
school are “coloured”, with some black teachers, almost all of the teachers in Ms. 
King’s school are white, with a few teachers of other races. Mr. Daniels’ school has 
made the most progress in integrating teachers across race. Although many teachers 
are still white, there are a number of “coloured”, Indian and black teachers at the 
school. Mr. Daniels’ himself is “coloured”, and moved to this school from a 
“coloured” school about 4 years ago.

School Resources

All of the five schools are known in their areas as good schools. They all regularly 
achieved pass rates of 65% and above in the Grade 12 examinations, well above 
average nationally, and a little above average for Gauteng province in which they are 
located (Motala and Perry 2002). They are all functional most of the time, in contrast 
to many other schools in South Africa (Christie and Potterton 1997; Taylor et al. 
2003; Taylor and Vinjevold 1999). This means that school starts on time, most learners 
are present, absentees are noted, learners move between classes relatively quickly, 
teachers come to class and teach, learners return to classes after breaks, there are 

Table 2.1 Demographics of schools

Teacher Learners’ racea

Learners’ socio-economic 
status

School fees 
(per year)

No. of teachers/
no. of learners

Mr. Nkomo Black Working class R200 1,650/42 (39:1)
Mr. Mogale Black Working class R200 1,700/46 (37:1)
Mr. Daniels All races Middle and lower-middle 

class
R4,000 1,600/60 (27:1)

Mr. Peters Black and 
“coloured”

Working class R400 1,250/36 (35:1)

Ms. King White, with a 
few learners 
of other races

Middle and upper-middle 
class

R40,000 
(private)

850/65 (13:1)

aWe use apartheid terminology to describe race, which is standard practice in South Africa to 
indicate shifts or lack thereof in historical racial divisions
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regular teacher meetings, and there are administrative staff and administrative 
 computer systems. According to the teachers, the principals are supportive of efforts 
to improve teaching and learning in their schools. All the principals supported the 
teachers studying further and all were eager for this research to take place in their 
schools. So, while the five schools represent some diversity, they do not capture the full 
diversity of South African schools. The study is limited to an urban area, in the  wealthiest 
province in South Africa, and well-functioning schools. However, as the first study 
of teaching mathematical reasoning in South African high schools, it was important 
and appropriate to limit our study in this way.

All of the five schools have fences or walls and control access to the schools5. 
Ms. King’s school is located on a beautiful, large, peaceful property, situated next 
to a busy business district. There are dormitories for the learners who live on cam-
pus, houses for the teachers who live on campus, a church, plenty of sports fields 
and a dam with guinea fowl. It is easy to forget that you are in the middle of a big 
city while at the school. Mr. Daniels’ school is located in a residential suburb, on 
a hill with a beautiful view of neighbouring suburbs. It has a number of sports 
fields and has a “green” feel to it. Mr. Nkomo’s, Mr. Mogale’s, and Mr. Peters’ 
schools are located in residential areas which are poorer and less “green”. There 
is little open space in Mr. Peters’ school and some dusty fields in the other two 
schools. Mr. Peters’ school is an area that is well known for gang activity and 
violence. Sometimes learners come to school with knives and there have been 
some incidents with guns. During the time of the study, a teacher was robbed at 
gunpoint of his laptop and cellphone in the school grounds, an incident that caused 
considerable disruption to teaching and learning for about a week. Learners also 
are subject to attack when they leave the school, especially many black learners 
who come from other areas and have to walk through “coloured” gang territory in 
order to get home. Table 2.2 indicates other resources available at each of the 
teacher’s schools.

5 Christie and Potterton (1997) argue that this contributes to the functionality of schools.

Table 2.2 Resources available at the schools

Teacher Staffroom Library Computer room Photocopying

Mr. Nkomo Yes Old books:
mainly:
textbooks:

Non functional Yes

Mr. Mogale Yes Yes

Mr. Daniels Tea and coffee Well equipped Yes Yes

Mr. Peters Yes No Non functional Yes

Ms. King Tea, coffee, 
computers

Well equipped Yes Yes
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Five Schools: Contexts and Resources

Classroom Resources

Each teacher chose one Grade 10 or 11 class in which we would conduct the 
research. Table 2.3 gives an overview of the classes that comprised the research 
sample.

The above table shows the disparities in class size among the teachers, in rela-
tion to the socio-economic status of learners at the schools. The schools of lower 
socio-economic status tend to have larger classes. The only class that does not fit 
the trend is Mr. Nkomo’s, where mathematics classes are smaller in Grade 11 and 
12. There is a difference of almost 20 learners between Mr. Peters’ and Ms. King’s 
classes. The levels of the classes relate both to tracking practices at the schools and 
the level of examination that learners are being prepared for. Some schools teach 
standard and higher grade learners in the same class (Mr. Nkomo’s school in this 
study) while some differentiate them (Mr Mogale’s and Mr. Peters’ schools). Some 
schools track even further beyond this (Mr. Mogale’s and Ms. King’s schools).

Ms. King’s classroom is part of a newly built wing of the school, is carpeted and 
has air-conditioning. There is a big table and chair for each learner, which can be 
arranged for work in groups. There are whiteboards and pens, a teacher’s desk with 
a computer, cupboards and tables for storing paper and worksheets, notice boards 
filled with math posters, an overhead projector and screen, and a television set 
which can be used for presentations from a computer. Each learner has a textbook, 
which is purchased by the learner. Ms. King has a range of texts and resources, 
including international texts, from which she and her colleagues develop and share 
worksheets6. Learners have access to a computer lab and so they are given projects 
to do, either using the mathematical software or using the internet as a research 
tool, for example a project on the history of mathematics. Mr. Daniels’ classroom 
has small tables and chairs, which are arranged in groups of four. The classroom is 
in good repair, and there are notice boards with a few math posters that Mr. Daniels 
has obtained. There is a teacher’s desk and one cupboard that overflows with supplies, 
worksheets, learners’ work, and other documents (there is no other storage space). 

Table 2.3 Description of research classes

Teacher Grade Class size Tracking/level of class

Mr. Nkomo 11 28 Untracked: mixed standard and higher gradea

Mr. Mogale 11 43 Tracked: higher grade (top class)
Mr. Daniels 11 35 Tracked: standard grade
Mr. Peters 10 45 Untracked
Ms. King 10 27 Tracked: second highest class of seven
aAt the time of the study, the Grade 12 mathematics examination could be taken at two levels, 
standard and higher grade. Success on the higher grade (or exceptionally good marks on the stan-
dard grade) granted access to scientific fields at university

6 Two mathematics teachers at this school developed a very strong curriculum of investigations in 
the 1980’s and Ms. King and her colleagues still use some of this (McLachlan & Ryan, 1994).
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There is a chalkboard and chalk and an overhead projector and screen, although 
electricity is not always available and so it does not always work. The school 
issues a textbook to each learner, although Mr. Daniels and his colleagues work 
predominantly from worksheets, which they develop and share.

Mr. Nkomo and Mr. Mogale’s classrooms are similar. Tables are shared 
between two learners, with enough space for both. These are put together in pairs 
to form groups of four learners. There is a chalkboard and chalk, but no teacher’s 
desk and no overhead projector and screen. Mr. Nkomo’s classroom has a cup-
board that stores cleaning supplies, but he has an office nearby where he keeps 
texts, worksheets, and learners’ work. Mr. Mogale keeps his work in the staff-
room. Mr. Nkomo’s classroom is in good repair, although there is graffiti on the 
cupboard and notice boards. He occasionally puts posters and learners’ work on 
the notice boards but has to be careful because they often disappear. Electricity is 
regularly available. In Mr. Mogale’s classroom, some windows and the door are 
broken. There is no regular supply of electricity but on darker days (when it rains) 
lights can be provided with a starter. Both Mr. Nkomo’s and Mr. Mogale’s learn-
ers are issued a textbook, although they work from worksheets most of the time. 
Mr. Peters’ classroom has an “old style” desk with adjoined chair for each 
learner, which means that they cannot easily be arranged in groups of more than 
two. There is a teacher’s desk and cupboard, a chalkboard and chalk, no overhead 
projector and screen and no electricity, so on rainy days the classroom is dark. 
Some windows are broken. The school has some textbooks but there are not 
enough for each learner and so they are not issued and Mr. Peters works from 
worksheets that he develops.

I have spent some time describing the schools and the classrooms. This serves 
three purposes. First, it gives the readers a picture of the contexts so that they might 
better understand our later analyses of teaching and learning in these classrooms. 
Second, it shows that the five schools in which we worked are generally better 
resourced than most South African schools, although not as well resourced as many 
classrooms in “developed” countries. Third, it shows the differences in resources 
and socio-economic profiles across the five schools, which will allow me to make 
some claims in relation to equity and teaching and learning mathematical reason-
ing. The five classrooms create a matrix design across grades and socio-economic 
status as described in Table 2.4. I will show later in the chapter how this design is 
both reinforced and complicated by learners’ knowledge in relation to their socio-
economic status and by the tasks chosen by the teachers.

Table 2.4 Variation across schools

Grade

Socio-economic status

High Low

Grade 11 Mr. Daniels Mr. Nkomo
Mr. Mogale

Grade 10 Ms. King Mr. Peters
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Learner Knowledge

Learner knowledge was ascertained across the five classes through classroom 
observations and task-based interviews with learners. It was clear that Mr. Peters’ 
learners had extremely weak knowledge, probably a few grade levels below Grade 
10. Mr. Nkomo’s learners were closer to grade level but showed some weaknesses, 
particularly in relation to Mr. Daniels’ learners, who were around grade level. This 
is somewhat surprising, given that Mr. Nkomo’s class was untracked and consisted 
of both higher and standard grade learners, while Mr. Daniels’ class was a standard 
grade class only (see Table 2.2). The learners’ knowledge in these cases reflects the 
socio-economic status of the schools. Further reflecting socio-economic status, Ms. 
Kings’ Grade 10 learners were extremely strong and were the second highest class 
in a strongly tracked grade. In fact, their knowledge was stronger than both Mr. 
Nkomo’s and Mr. Daniels’ Grade 11 learners. Mr. Mogale’s learners provide an 
interesting counterpoint to the SES/learner knowledge link. Although his is a low 
SES school, this class had been chosen in Grade 9 as the strongest learners in the 
grade, had been kept together as a class and had Mr. Mogale as their mathematics 
teacher since then. He had worked to build their mathematics knowledge and con-
fidence over 3 years, informed by the principles of the new curriculum, which he 
had learned on in-service workshops.

In the task-based interviews, two or three learners were interviewed together and 
encouraged to help each other. High-achieving learners were chosen from Mr. 
Nkomo, Mr. Peters, and Mr. Daniels’ classes while the learners from Mr. Mogale’s 
and Ms. King’s classes were close to average achievement.

Mr. Peters’ learners showed very little facility in solving mathematics problems. 
Their solutions showed procedural errors in almost every step and suggested that 
they were looking for rules, rather than thinking about the meaning of what they 
were doing. Even the rules that they did remember, for example “what you do to 
the one side, you do to the other” were almost always applied incorrectly. 
Occasionally, with the easier problems, one learner used trial and error methods and 
obtained correct solutions but then did not know what to do with these, nor how to 
relate them to the mistaken rule-based calculations. Occasionally through prompting 
by the interviewer, this same learner was able to make some conceptual connections. 
The two learners did not manage to communicate with each other in ways that 
helped their problem solving; rather their conversations seemed to encourage even 
more mistakes and misunderstandings.

Mr. Nkomo’s learners showed some facility with mathematical procedures and 
calculations and working algebraically without mistakes. However, they did not 
relate their calculations to the underlying mathematical meaning and when they 
were confronted with something slightly out of the ordinary, could not make sense 
of it. They did not use trial and error methods and were heavily dependent on the 
interviewer’s help to solve most of the problems. They were able to work together 
and sometimes help each other with procedural issues.

The learners in Mr. Daniels’ class showed procedural fluency and were able to talk 
conceptually about the mathematical solutions they were developing. They were able 
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to reason with mathematical objects, although some of their reasoning was flawed 
and somewhat problematic from a mathematical standpoint. They spent useful time 
talking and explaining ideas to each other, correcting mistakes and resolving conflict-
ing ideas, while checking that their procedures were correct and eventually coming 
to consensus on most solution methods. They were able to work with the interviewer’s 
prompts and incorporate them into their own problem solving activities.

The learners in Ms. King’s class were much more procedurally fluent with equa-
tions than both Mr. Nkomo’s and Mr. Peters’ learners, and even slightly more fluent 
than Mr. Daniels’ learners even though they were a grade lower. They had been taught 
some Grade 11 concepts and procedures as “extras” in Grade 10 and were able to 
work with these as well, with some assistance from the interviewer. Conceptually, 
one learner struggled with some of the same issues that Mr. Daniels’ Grade 11 learners 
struggled with, while the other was able to reason mathematically in a particularly 
perceptive way. The two boys were able to work together and help each other.

The learners in Mr. Mogale’s class were procedurally fluent. They made occa-
sional mistakes, which they noticed themselves because they continuously checked 
their work, looking for mistakes. They also estimated answers as a check on their 
procedures. They understood the meanings of the mathematical objects they worked 
with and reasoned mathematically with them. They went further than the learners in 
the other classes, in that they noticed links with other areas of mathematics and 
posed interesting questions about their observations. So they extended their think-
ing, creating new conjectures about the relationships between mathematical ideas.

These differences in the learners’ knowledge were evident in the classroom 
interactions as well. These differences cannot be read as a comment on the particu-
lar teachers in this study (except possibly in the case of Mr. Mogale who had taught 
these learners for 3 years). It is clear that both the strengths and the weaknesses in 
the learners’ knowledge comes from prior years of schooling and is a function of 
far more than only particular teachers. In four of the five classrooms, learners’ 
knowledge is strongly associated with the racial and socio-economic profiles of the 
schools. This makes sense because schools in poorer areas usually have fewer 
resources, larger classes, and generally, less knowledgeable teachers (Fleisch 
2007). The strong association of learner knowledge with race and socio-economic 
status in this sample modifies the matrix design in Table 2.4 slightly (see Table 2.5 
below). Given that Mr. Mogale’s learners provide a strong exception to the rule, 
being of low socio-economic status but with strong learner knowledge, we will be 
able to make some arguments which de-link learner knowledge and socio-economic 
status in subsequent chapters.

Table 2.5 Variation across schools

Learner knowledge/SES Grade Strong/high Weak/low

Grade 11 Mr. Daniels
Mr. Mogale (knowledge)

Mr. Nkomo
Mr. Mogale (SES)

Grade 10 Ms. King Mr. Peters
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The Tasks

As part of the research design, the teachers worked together to plan tasks, which 
would engage learners in mathematical reasoning. The two Grade 10 teachers 
worked together and the three Grade 11 teachers worked together. They worked 
with drafts of new South African textbooks which were being developed in relation 
to the new curriculum (Jaffer and Johnson 2004; Johnson et al. 2006), as well as 
some of their own resources, in order to choose, modify, and develop tasks that they 
thought would be useful to elicit mathematical reasoning and would also fit in with 
their curriculum. They spent two sessions of 2½ h each, planning the tasks and how 
they might teach them.

The Grade 11 Tasks

The tasks developed by the Grade 11 teachers (see Appendix) aimed to get the 
learners to explore how horizontal and vertical shifts of a parabola on a Cartesian 
plane produce differences in the equations of the graphs. The task consisted of three 
activities. The first activity required the learners to trace a copy of the graph y = x2 
onto a transparency, shift the transparency three units to the right and four units to 
the left, and observe what happened to the values of corresponding points on the 
shifted graphs in relation to the original graph. The second activity showed the 
original and the two shifted graphs on the plane, with their equations: y = (x − 3)2 
and y = (x + 4)2 and asked learners to compare and contrast the graphs, and then to 
focus on the more general question of how the value of p in y = a(x − p)2 affects the 
graph. The third activity dealt with vertical shifts, with the graphs of y = (x − 3)2, 
y = (x − 3)2 + 2 and y = (x − 3)2 − 3. Again the learners were asked to compare and 
contrast the graph and then answer the more general questions of how the value of 
q in y = a(x − p)2 + q affects the graph.

An analysis of the task using Stein et al.’s (2000) framework (see Chap. 3 for 
more detail) shows that that it demands higher level thinking from learners, pre-
dominantly at level three – “procedures with connections”. According to Stein and 
her colleagues’ criteria, the activities suggest pathways, to follow, that are closely 
connected to underlying conceptual ideas, are represented in multiple ways to help 
learners build connections and develop meaning, and require learners to engage 
with conceptual ideas in order to complete the task successfully.

Two additional aspects of the task are important for the subsequent analysis. 
First, the task is inductive, in that it asks learners to explore particular examples of 
shifting graphs and then make generalizations based on these examples. It does not 
ask for any form of deductive proof or justification. Exploratory questions such as 
“Discuss with a partner how these graphs differ and are the same” and “What do 
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you observe?” are relatively open and unconstrained, except by the graphs, in what 
could count as an acceptable response. Learners could comment on only one obser-
vation or on as many as they could find. They could comment with or without 
explicit justification.

Second, the task contains a number of possibilities for misconceptions to arise 
and become visible. A key, counter-intuitive idea that is entailed in the task is that 
when the graph shifts in the positive direction, the equation has a negative sign in the 
brackets, i.e., y = (x − 3)2 is the equation of the graph that shifts three units to the right. 
Similarly, when the graph shifts in the negative direction, the sign in the brackets 
becomes positive. Many learners in all three Grade 11 classrooms demonstrated the 
misconception that the sign in the brackets should follow the direction of shift of 
the graph, making for some interesting discussions and exploration of the links 
between equations and graphs. Other conceptual issues that learners struggled with 
were: what does it mean if a graph extends infinitely along one axis; what counts 
as corresponding points; and how to read variables such as p and q in an equation. 
How these misconceptions influenced the teaching of mathematical reasoning in 
these classes is discussed in subsequent chapters.

The Grade 10 Tasks

Ms. King and Mr. Peters began their planning by looking for tasks that would 
enable learners to engage in all five strands of mathematical proficiency identified 
by Kilpatrick et al. (2001): conceptual understanding; procedural fluency; strategic 
competence; adaptive reasoning and productive disposition (see Chap. 6 for more 
detail). Ms. King wanted to focus on the integrated development of all five strands 
among her learners while Mr. Peters wanted to focus on the adaptive reasoning 
strand and develop his learners’ ability to justify their thinking. Given their slightly 
different foci, and because of Mr. Peters’ concerns that the tasks might be too chal-
lenging for his learners, Ms. King and Mr. Peters used the same first task, but dif-
ferent subsequent tasks. I will first discuss Ms. King’s tasks and then Mr. Peters’ 
tasks (see Appendix).

Tasks 1 and 5 on Ms. King’s worksheet are primarily deductive tasks in that they 
require the learners to evaluate conjectures as true or false and then justify their 
decision. Task 1 asks whether x2 + 1 can equal zero and what the smallest value for 
x2 + 1 is if x is a real number. Task 5 asks whether n2 − n + 11 is a prime number, if 
n is a natural number. Learners might test the conjectures using specific examples. 
However, they do not need to, they could work on a general justification from the 
beginning. In the case of task 5, if they do test examples, the first 10 natural num-
bers will give prime numbers but 11 will not and so makes the point that inductive 
testing is not good enough because there can be counter-examples. In this case, the 
general argument is that for n2 − n + p, n = p gives p2 which is not a prime number. 
Tasks 1 and 5 make demands on learners who are at level four (the highest level) 
of Stein et al.’s (2000) framework, which they call “doing mathematics”. The tasks 
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require nonalgorithmic thinking, they do not suggest specific solution approaches, 
they require learners to integrate existing knowledge to form understandings of new 
relationships, they require learners to examine task constraints, and they require 
some self-regulation and self-monitoring of the learners’ thinking processes.

Tasks 2 and 3 require learners to work with the definition and meaning of a func-
tion, and with function notation. They make level three demands in Stein and her 
colleagues’ hierarchy, suggesting solution methods that connect to underlying 
meanings and requiring multiple representations. Task 4 gives learners practice 
with function notation, which Ms. King thought was important in helping learners 
develop both conceptual understanding of and procedural fluency with functions. 
This task can be enacted at either level two or three of Stein’s hierarchy, depending 
on how individual learners approach it. The task can be approached using the pro-
cedures of substitution and simplification of algebraic expressions without thinking 
much more deeply about the notion of a function. Alternatively, the task might sup-
port learners to make connections with what they have done before, and come to a 
more fluent and better understanding of functions. Because making connections is 
not explicitly asked for in the task, this task would be considered to be a level two 
task – “procedures without connections”.

Mr. Peters worked with the same first task as Ms. King, although he excluded 
the second part: what is the smallest value for x2 + 1. His first task read: Consider 
the following conjecture: “x2 + 1 can never be zero”. Prove whether this statement 
is true or false if x ∈ R. During the planning process, Mr. Peters expressed concern 
about how his learners would approach this task because of their weak knowledge. 
He worried about moving on with the same tasks as Ms. King, expecting that his 
learners would need more time working with the first task and that he would need 
to give them additional guidance. He developed a second task (Task 1B) where he 
scaffolded the learners’ substituting into various single-term expressions and working 
with the sign of the expression. After two lessons where learners struggled with 
Task 1, he decided that this task (1B) would not help, as learners tended to focus 
on the sign rather than the value of the expression. So while teaching and monitoring 
learners’ responses, he developed a second task that he hoped would address these 
difficulties, because the sign in front of each expression is not the sole determining 
factor of the sign of the expression (Task 2).

Both Tasks 1 and 2 are primarily deductive and can be approached by using a 
combination of inductive and deductive methods. Mr. Peters hoped that both tasks 
would encourage the learners to use a combined inductive–deductive approach, 
through substituting, testing, and justifying conjectures. In Task 2, he had the more 
specific goals of developing procedural fluency in substituting into the expressions, 
conceptual understanding that the expressions represent a range of values, strategic 
competence in that learners should not read off whether the expression was positive 
or negative from superficial aspects of the expressions and adaptive reasoning in 
that they justified their answers. Task 1 would count as “doing mathematics” in 
Stein and her colleagues’ hierarchy, while Task 2, as Mr Peters intended it to be 
solved, would count as “procedures with connections”. In Task 2 there is a specified 
solution method (not in the task as such but Mr. Peters made it clear in class), which 
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is intended to help learners make connections with underlying meanings and 
concepts.

The above discussion of the tasks has shown differences in the ways they sup-
port learners to make connections between procedures and meanings; integrate the 
various strands of mathematical proficiency; and how they constrain what might 
count as an acceptable solution. In subsequent chapters, we will show how the tasks 
afforded and constrained the contributions that learners made in the classroom and 
how the teachers dealt with these. For the purposes of this chapter, the discussion 
of tasks fills out the matrix design of the study in Tables 2.4 and 2.5. Given that the 
tasks used in each grade were the same or similar, comparisons within and across 
grades are made easier. The matrix design in Table 2.6 enables some extrication of 
the variables of task, learner knowledge, and socio-economic status in relation to 
the possibilities for teaching mathematical reasoning in differently resourced 
classrooms.

All grade 11 teachers used the same tasks, which were inductive and which sup-
ported procedures with connections to meaning. Mr. Daniels’ learners had strong 
mathematical knowledge and were of high SES while Mr. Nkomo’s learners had 
weak mathematical knowledge and were of low SES. Mr. Mogale’s learners pro-
vide a contrast to the others in that they were of low SES but had strong mathematical 
knowledge. The two grade 10 teachers used similar tasks, which were mainly 
deductive and which varied from “doing mathematics”, through procedures with 
connections to procedures without connections. Ms. King’s learners were of high 
SES and had very strong mathematical knowledge while Mr. Peters’ learners were 
of low SES and had weak mathematical knowledge. These similarities and differ-
ences among the teachers enable comparisons in relation to tasks, school context, 
and learner knowledge, which we pursue in Part 3 of this book. In Part 2, we look 
at the individual case studies of each of the teachers, which provide in-depth 
descriptions of their teaching of mathematical reasoning.

Table 2.6 Variation across teachers in tasks, learner knowledge and SES

Learner knowledge/SES Tasks Stronger/higher Weaker/lower

Grade 11
Inductive
Procedures with connections

Mr. Daniels
Mr Mogale (knowledge)

Mr. Nkomo
Mr Mogale (SES)

Grade 10
Deductive (with some inductive)
Procedures with and without 

connections, doing mathematics

Ms. King Mr. Peters
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The next five chapters each present a case study of one of the teacher’s classrooms. 
All of the teachers were inspired by the same general concern – how to develop the 
teaching of mathematical reasoning as encouraged by the new South African curriculum 
in their particular context. This general concern was translated into more specific 
research foci by each of the teachers, each of which illuminates a specific aspect of 
teaching mathematical reasoning and which, taken together deepen our understanding 
of what such teaching demands of teachers and learners. These chapters, individually 
and collectively help to address some of the challenges identified in Chap. 1:

How do learners respond to tasks chosen to elicit their mathematical reasoning?•	
How can teachers interact with learners around tasks to engage their mathematical •	
reasoning?
How can teachers teach to develop mathematical proficiency?•	
How does collaborative conversation among learners and teacher promote math-•	
ematical reasoning?
What kinds of teaching practices, questions and moves help to encourage and •	
sustain learners’ mathematical reasoning?

Chapters 3–5 focus on the Grade 11 teachers and learners. In Chap. 3, we look at 
learners’ responses to tasks that require making connections between procedures and 
meanings. We show that the learners, with weak mathematical knowledge, struggled 
to respond to these tasks, which in turn challenged the teacher to respond in ways 
that would deepen learners’ engagement with the tasks. The teacher provides 
an honest reflection of how he struggled to do this in the beginning, improving as 
the week continued. In Chap. 4 ,we look at the learners’ engagement with the same 
tasks. In this classroom, learners had stronger mathematical knowledge, and were 
able to engage more deeply with the task demands. We show how a collaborative 
conversation among learners and the teacher supported the learning trajectory of 
one learner, as he or she deepened his or her engagement with the task and with 
mathematical reasoning. The learning trajectory provides a description of how math-
ematical reasoning can develop among learners and what learners can achieve. 
In Chap. 5, we focus more closely on the teacher’s practices and moves and show 

Introduction to Part 2
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how these were internalized by the learners to support their mathematical reasoning. 
These learners, also with stronger mathematical knowledge, were able to use some 
of the teacher’s moves to support both their own and each other’s reasoning.

Chapters 6 and 7 focus on the Grade 10 teachers and learners. In Chap. 6 we 
look at the extent to which teaching planned to include all five strands of mathe-
matical proficiency, managed to achieve these. In Chap. 7, we focus on the strand 
of adaptive reasoning and the mathematical practices of justification and explana-
tion. Again, we see that learners with weaker knowledge struggled to engage with 
the tasks and we see the teacher’s reflections on the challenges that he or she expe-
rienced in trying to engage the learners in conversation.

In the case studies, all of the teachers draw on Kilpatrick et al. (2001) notion of 
mathematical proficiency and Ball (2003) notion of mathematical practices. These 
are discussed in detail in Chap. 1 and in each of the teacher’s chapters, and so I will 
not repeat them here. A second general concern is teacher–learner interaction and 
the notion of “facilitator” as described by the South African curriculum documents. 
The notion of facilitator is informed by constructivism, which asserts that 
knowledge is not received by learners in the same form as transmitted by teachers, 
rather it is interpreted and restructured in relation to the learner’s current knowl-
edge. This introduces uncertainty into the teaching–learning process because teachers 
cannot know what learners have learned, although they can infer this from learners’ 
contributions. This argument is sometimes taken to mean that the teacher should 
reduce involvement in teaching and should not “tell” (Chazan and Ball 1999) or 
give learners mathematical information, in case they interfere with learners’ ability 
to construct the knowledge for themselves.

This last point is one that has been taken up by many South African teachers in 
ways that may be counterproductive for teaching and learning, as they give little or 
no direct mathematical input, particularly when learners work in groups. Such non-
intervention was not an option for the teachers in this study; they were more inter-
ested in finding ways to intervene more appropriately. They drew on a Vygotskian 
perspective, which asserts that the teacher’s input has a marked effect on learners’ 
constructions in both positive and negative ways; teachers’ responses can both sup-
port and inhibit learner constructions. We show how the five teachers influence 
learning in far more complex ways than the easy aphorism that too much telling 
inhibits learning. The teachers in this book walk a fine line between telling and not 
telling; questioning and not questioning; being silent and not being silent. Each of 
these can be appropriate at particular moments in the teaching–learning process, 
and moreover, it is the quality of the response that counts, not necessarily the kind 
of response. I have argued elsewhere (Brodie 2007a) that the dominant mode of 
question-and-answer methods, preferred by many South African teachers, does not 
necessarily make for more and better participation among learners. The chapters 
that follow provide alternatives to the question-and-answer method, which are both 
less and more directive, and we believe, more appropriate.

One teaching practice that is often ignored is that of listening (Davis 1997). The 
reason why many question and answer exchanges do not support mathematical 
reasoning is that teachers do not listen carefully enough to learners’ contributions 
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in order to formulate their next questions. The questions are driven by the teacher’s 
pre–determined agenda, rather than by the need to respond to and develop learners’ 
understandings (Davis 1997; Nystrand et al. 1997). All of the case studies that follow 
show teachers listening more carefully to learners’ reasoning before making decisions 
on how to follow up on learner contributions.

Finally, all of the teachers used tasks of higher cognitive levels in order to elicit and 
engage with learners’ mathematical reasoning. I argued in Chap. 1 that while tasks are 
necessary to develop mathematical reasoning, they are not sufficient; teacher–learner 
interactions of particular kinds and qualities, as discussed above, are equally necessary. 
What we add to the picture in these chapters is that tasks and interactions are experi-
enced differently by different learners, and hence their teachers, particularly if their 
teachers are responsive. We show that in classes where learners have weaker mathe-
matical knowledge, teaching mathematical reasoning is harder to achieve. This is of 
serious concern to those of us concerned with equity because if learners who are 
already advantaged become more advantaged through teaching methods, which they 
are better positioned to respond to, then the gap will widen rather than narrow. These 
case studies, particularly Chaps. 3 and 7 do suggest ways in which teachers of weaker 
learners can make progress, and also that they need support to do so.

We note here that this work took place prior to the introduction of the new cur-
riculum in South Africa in Grades 10 and 11, which are the grades we worked in11. 
However, the draft of the new curriculum was available, which is the document 
that the teachers worked with. At the same time, all of the teachers were working 
with the new curriculum in Grades 8 and 9, which has similar principles of engag-
ing learners in mathematical tasks and conversations. The teachers had different 
experiences with new curriculum ideas, for example Mr. Mogale (Chap. 5) and 
Mr. Daniels (Chap. 4), who had been on lengthy in-service programmes, had been 
trying out new ideas for some time, even before the introduction of the new curricu-
lum in Grades 8 and 9. Ms. King (Chap. 6) had been involved in a local project 
in her school, which worked with similar principles. Mr. Nkomo (Chap. 3) and 
Mr. Peters (Chap. 7) had much less experience than the other three teachers and were 
trying out some ideas for the first time. None of the teachers viewed themselves as 
accomplished “reform” teachers, and all saw this as an opportunity to confront old 
and new challenges and work with them. None of the learners had experienced this 
kind of teaching before, except in these teachers’ classes, and so were inexperi-
enced “reform learners”, who still had to learn the norms of such teaching (McClain 
and Cobb 2001) as the teachers point out in the casestudies.

As noted in the introduction, all of the five teachers were enrolled on an Honours 
Programme2, which had addressed a range of issues, including broadened concep-
tions of mathematics and mathematics learning, mathematical reasoning, language 

1 The new curriculum has only recently been implemented in Grade 10 (2006) and Grade 11 (2007).
2 In the South African Higher Education system an Honours degree follows a 3-year undergraduate 
degree and a professional teaching qualification and is necessary for entry into Masters.



42 Introduction to Part 2

BookID 159557_ChapID Intro 2_Proof# 1 - 24/09/2009

and mathematics learning, and formative assessment. They were therefore better 
informed about the mathematics-specific issues in the new curriculum than many 
South African teachers, who have experienced generic, rather than subject-related 
training, and whose understandings of the new ideas are relatively superficial 
(Chisholm et al. 2000). Each teacher conducted her/his study as an Honours 
research project, and therefore these chapters can also provide ideas and guidance 
for teacher research projects conducted at this level.
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In this chapter, I draw on the notion of mathematical reasoning discussed in Chap. 
1 as well as the approach to mathematics in the new curriculum in South Africa. 
The new curriculum takes the view that mathematics should make sense to all 
learners and that learners should be given opportunities to solve problems, look for 
patterns, make conjectures, make inferences from data, explain and justify their 
ideas and challenge others’ ideas. The National Curriculum Statement Grades 
10–12 (Department of Education 2003, pp. 9–10) describes the purpose of mathe-
matics in the new curriculum as follows:
Mathematics will enable learners to:

Communicate appropriately by using descriptions in words, graphs, symbols, •	
tables, and diagrams
Use mathematical process skills to identify, pose, and solve problems creatively •	
and critically
Organize, interpret, and manage authentic activities in substantial mathematical •	
ways that demonstrate responsibility and sensitivity to personal and broader 
societal concerns
Work collaboratively in teams and groups to enhance mathematical understanding•	
Collect, analyse, and organize quantitative data to evaluate and critique conclu-•	
sions arrived at
Engage responsibly in quantitative arguments relating to local, national, and •	
global issues

These broad curriculum outcomes resonate with the description of mathematical 
reasoning given in Chap. 1 and show the intention of the new curriculum to produce 
learners who can work with mathematics in a variety of ways. The intention has 
moved away from learners who use calculations and formulas as the only ways of 
solving mathematical problems, and producing only accepted correct solutions to 
problems. When our current learners leave school they will be facing a world dif-
ferent from that of their parents and teachers. They will need the mathematical skills 
of reasoning and justification to respond to a range of challenges. We do not help our 
learners to rise to these challenges by teaching them that all problems can be solved 
merely through the application of certain procedures. The National Curriculum 

Chapter 3
Mathematical Reasoning Through Tasks: 
Learners’ Responses
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Statement argues that there are many ways that learners can learn mathematics 
successfully. Learners should be given opportunities to communicate their ideas 
critically and creatively as they work on mathematics tasks.

One of the key influences in how learners learn to reason mathematically is 
the nature of the tasks that they work with in class (Stein et al. 1996, p. 72, 2000). 
In this chapter, I analyse Grade 11 learners’ work on tasks that involve mathematical 
reasoning. At the time of the study, the Grade 11 syllabus did not require learners 
to solve non-routine problems that they had not seen before and did not include 
tasks that required learners to display their reasoning, or to formulate, test, and 
justify conjectures. The tasks mostly required learners to carry out calculations or 
procedures that they had been taught. In my experience during the past 10 years of 
marking Grade 12 examination papers, I had come to realize that learners perform 
poorly on tasks that involve higher order mathematical reasoning. This chapter 
aims to explore the challenges that learners may encounter with tasks that involve 
mathematical reasoning and the ways in which a teacher can help learners to 
improve their mathematical reasoning.

Tasks that Support Mathematical Reasoning

Mathematical tasks are given to learners by the teacher to engage them in mathe-
matical activity in order to develop certain mathematical concepts or practices. 
Stein et al. (1996) defined a mathematical task as a classroom activity, which is 
intended to focus learners’ attention on a particular mathematical idea. Once the 
teacher has set up learning goals, s/he can give tasks that match with her/his goals 
for the kinds of thinking s/he would like the learners to engage in. If the teacher 
wants learners to memorize mathematical facts and procedures she/he will give 
tasks that require memorizing. The old curriculum tended to prioritize memorizing 
over other forms of mathematical activity and most textbook and examination tasks 
required learners to memorize and recall facts and procedures. The new curriculum 
requires a broader range of mathematical practices and if teachers are to help learners 
develop these, we will need to broaden the range of tasks that we ask learners 
to engage in.

Stein et al. (2000) distinguished between two levels of cognitive demand of 
mathematical tasks, and within each of these, two kinds of tasks. Lower level tasks 
are memorisation tasks and tasks that require procedures without connections 
to meaning or concepts. Higher-level tasks are those that require procedures with 
connections to meaning or concepts and “doing mathematics” tasks, which require 
a high level of exploration from learners. These are described below.

Memorization tasks involve reproducing previously learned facts, rules, 
formulae, or definitions. Memorization tasks do not require any explanation from 
learners; they are straightforward and learners use well-known facts to solve them. 
Procedures without connection tasks require reproduction of procedures but without 
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connection to underlying concepts. Such tasks are focused on producing correct 
solutions rather than developing mathematical understanding. Procedures with 
connection tasks focus learners’ attention on the use of procedures for the purpose 
of developing deeper levels of understanding of mathematical concepts and ideas. 
Such tasks focus learners on the procedure of solving mathematics problems 
in a meaningful way. Doing mathematics tasks do not require any procedure 
to be followed. There is no predictable way of solving these problems. Learners 
working with such tasks need to analyse task constraints and creatively find their 
own solutions.

Since learners interact with tasks, the cognitive demands of the tasks depend not 
only on the task, but also on the learner. For example, a task that is at a high level 
for a Grade 8 learner might be at a lower level for a Grade 11 learner; or two learn-
ers in the same grade might solve the same task in different ways. One might use 
procedures and think about the connections of the procedures to the underlying 
mathematical concepts, while another might use the same procedures without making 
any connections to meaning or concepts.

The cognitive demand of the tasks can be recognized in the task features, 
which include the “number of solution strategies, number and kind of representa-
tions and communication requirements” (Stein et al. 1996, p. 455). Tasks that can 
be solved by using different approaches, and those that require learners to bring 
together different representations and to explain, justify, and communicate their 
ideas are likely to be of higher cognitive demand than those that have only one 
method of solution and do not require additional effort in working with represen-
tations and explaining ideas. In order to encourage mathematical reasoning as 
suggested by the new curriculum, teachers should give learners tasks that allow 
for different levels of engagement, including the higher levels. If learners are 
given only tasks that are of a lower level, they will find it difficult to tackle 
higher-level tasks.

Examples of lower-level tasks are found in many textbooks, for example 
“Sketch the graph of y = (x − 3)2 + 2”. In response to such tasks most learners will 
use the usual procedure of finding the x and y intercepts, the turning point and draw 
the graph. Most learners use these procedures without understanding the relation-
ship between the equation and the graph, however as mentioned above, some (very 
few) learners do make connections with the meaning of the graph. An example of 
a higher-level task from a new curriculum textbook (Bennie 2006), explicitly asks 
learners to make connections between procedures and meanings and to justify 
conjectures:

(a) Draw a sketch of y = x2. Use a table if necessary.
(b) Consider the graphs with equations y = ax2. Make a conjecture about the effect on 

the graph when you change the value of a. Test your conjecture by drawing the 
graphs of y = 2x2, y = 3x2, and y = 1/2x2 on the same system of axes you used in (a).

(c) What will happen if the value of a in y = ax2 is negative? Choose suitable values 
for a and test your conjecture.

(d) Summarize your observations in questions a and b above, etc.
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This task requires learners to go beyond drawing the graph and to make conjectures 
from the graph. It also requires them to summarize their observations, which is 
something that was not visible in the old curriculum.

Stein et al. (1996, 2000) distinguish between two phases of task-use in the 
classroom: task set-up and task implementation. They note that the task demands 
can shift between the set-up and implementation phases, depending on how 
learners engage with the task and how teachers interact with learners. Often 
tasks that are set up at a higher level, decrease in level as they are implemented 
(Modau and Brodie 2008; Stein et al. 1996, 2000). This can happen for a number 
of reasons: learners might choose to work at a lower level than the task requires, 
ignoring the higher level task demands; and teachers might give learners too 
much help, which reduces the level, for example “funnelling” the task 
(Bauersfeld 1988). Stein et al. (1996) argue that “classroom norms, task condi-
tions and teachers’ and students habits and dispositions” (p. 461) can all influ-
ence how tasks change at implementation. Their research shows that tasks are 
usually maintained at the same level or decline in level. The higher-level tasks 
in particular tended to decline.

Teaching for Mathematical Reasoning

Stein et al.’s task framework is consistent with both constructivist and socio-cultural 
perspectives on learning, which were discussed in Chap. 1. The notion of cognitive 
demand suggests individual or group engagement with tasks that promote learning, 
thinking, and reasoning at different levels in the individual. The idea that the level 
of the task changes in interaction between teacher and learner, or among learners 
suggests a socio-cultural perspective, because social aspects of the classroom determine 
the level of individual cognition.

These theoretical frameworks suggest important implications for teachers. 
Constructivism shows how errors and misconceptions can be deep-seated in 
learners’ conceptual structures and learners have to do the difficult work of trans-
forming their own thinking, with their teacher’s help. If learners’ responses are 
incorrect, it does not necessarily help to tell them so. As Heaton (2000) remarks: 
“telling him he was wrong would not necessarily change how he thought”. 
Heaton also goes on to say that if learning and teaching are about understanding 
why answers are right or wrong, then it is important to explore learners’ errors 
with them. The teacher can ask learners to explain their answers by posing ques-
tions like: “can you explain how you got the answer” or “convince me that your 
answer is correct”. Moreover, asking learners to explain is just as important when 
their answers are correct as when they are incorrect because explaining can 
deepen their own thinking, and help others in the class. It also encourages the 
“social norm” (Yackel and Cobb 1996) that all answers should be justified in 
mathematics.
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A socio-cultural perspective suggests that by asking for explanation and justification, 
the teacher can make learners aware of their reasoning and support them to con-
struct appropriate mathematical ideas. The teacher can, through questions and 
prompts, try to provoke learners into thinking in particular ways and support them 
to compare, verify, explain, and justify their conjectures. It is not easy for the 
teacher to ask questions that will make learners aware of their reasoning, since 
learners might not respond as the teacher expects. Ball (2003) argues that when a 
teacher whose students have never been asked to explain their thinking asks them 
to justify their solution, s/he is likely to be greeted with silence. When s/he asks 
a learner to explain her/his method, the learner will probably think that she/he 
made an error. It is therefore important, but demanding, for teachers to develop 
norms of interaction in their classrooms (Yackel and Cobb 1996, see Chap. 1 for 
more discussion).

So teaching for mathematical reasoning involves teachers being aware of the 
type of tasks that we give to learners, choosing tasks that enable learners to make 
sense of mathematics and that give them opportunities to investigate, analyse, 
explain, conjecture and justify their thinking, and interacting with learners around 
the tasks to maintain, or even raise, the level of the task.

The Classroom and the Tasks

For the purposes of linking this chapter with chapter two, it is important to note 
that my pseudonym in the study is Mr Nkomo. This study was conducted in one 
of my Grade 11 classes, in a functional township school west of Johannesburg, 
with very basic facilities (see Chap. 2 for more detail). All the teachers and learners 
in the school were “black African” South Africans (see Chap. 2). English is not 
the main language of any of us, but all teaching and learning of mathematics 
occurs in English. There were 1,650 learners in the school at the time of the study 
and 42 teachers, giving a teacher–learner ratio of 1:39. There were 28 learners in 
my Grade 11 class. Since fewer learners take mathematics in the higher grades, 
these classes tend to be smaller. The learners worked in ten groups of between 2 
and 4 learners in a group. These groups were established prior to the study and 
learners were used to working with each other. The class was of mixed ability in 
mathematics and learners in the class were taking mathematics on both higher 
grade/standard grade.1

I planned a series of tasks on functions with the two other Grade 11 teachers as 
part of this project (see Chap. 2 and Appendix). The tasks were planned to take 1 
week of class time and were intended to engage learners’ mathematical reasoning as 

1 As explained in Chap. 2, at the time of the study, the Grade 12 mathematics examination could 
be taken at two levels, standard and higher grade. Success on the higher grade (or exceptionally 
good marks on the standard grade) granted access to scientific fields at university.
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discussed below. As learners worked in their groups, I went around asking questions 
where necessary. I also conducted whole class discussions after each task. At the 
end of each lesson, I took in each group’s work and read it carefully, preparing how 
to conduct a whole class discussion on different groups’ work the next day.

In the next section, I will analyse the first task and so I describe it here (see 
Appendix for actual task). Learners were presented with the graph of y = x2, asked 
to move it first 3 units to the right and then 4 units to the left. In each case, they 
were asked to compare the turning points of the two graphs (y = x2 and each shifted 
graph), and after that to compare corresponding points on the two graphs. The task 
encouraged learners to experiment with shifting graphs, and to focus on particular 
points in order to begin to notice relationships between them. Since they were 
explicitly told how to do this, i.e. told first to look at the turning point and then at 
other points, and since they were given a table with values for y = x2 filled in, which 
they had to complete, this is a “procedures with connections” task in Stein et al.’s 
(2000) framework. Learners were asked to write down their observations about 
how the points shifted as the graphs shifted and in doing so to make connections 
between the shifting graphs and shifting values of co-ordinates. Learners had to 
examine parameters, experiment with shifting graphs, make conjectures and write 
down observations.

Learners’ Responses: An Overview

My first step was to analyse the learners’ written responses to the tasks in three 
categories:

1. Comparing the turning point of y = x2 to the turning point of the new graphs
2. Choosing and comparing other corresponding points on the graph
3. Observations about the corresponding points of the two graphs

Table 3.1 shows the total number of groups who gave correct and incorrect responses 
for each of the above (there were ten groups).

Table 3.1 shows that learners were able to identify and compare the new turning 
points of the graphs, but struggled to identify, compare and make observations about 
other corresponding points on the graphs. However, as discussed above, correct and 
incorrect responses are not sufficient to illuminate or develop learners’ mathematical 
reasoning. So I continued to analyse learners’ reasoning, both from the written tasks 
that they handed in, and from videotapes of whole class discussions.

Table 3.1 Correct and incorrect responses

Category 1 Category 2 Category 3

Correct 10 1 0
Incorrect 0 9 10
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Learners’ Responses: Detailed Analysis

In the first part of the task (Category 1), learners were asked to compare the turning 
points of the shifted graphs to y = x2 (the graphs were shifted 3 units to the right and 
4 units to the left). The aim of this question was to help learners to connect the turning 
point to the position of the graph and to notice how the turning point changes as the 
graph shifts. As shown above, all the groups correctly identified the turning points of 
the shifted graphs. The only difference in the answers of the groups was that while 
most groups acknowledged that the turning point has two co-ordinates, and wrote the 
turning points as (0,0), (3,0), and (−4,0), two groups wrote only about the x-coordi-
nate of the turning point, for example: “For the first graph the turning point was 0. 
After moving it 3 units to the right we observed the new turning point, which is 3”. 
Although in some classrooms this might be considered to be “incorrect,” because the 
y-coordinate of the turning point has been left out, in fact in this context, the learners 
had commented on the parameter that had changed because of the shifting graph, the 
x-coordinate. So these learners have reasoned appropriately for this task.

From the above, it is clear that this part of the task does not demand high levels 
of reasoning from learners because it merely requires them to identify a point. 
Although it might support some learners to connect the shifting point to the shift-
ing graph, this part of the task does not explicitly require these connections and 
many learners may not have made them.

For the next part of the task (Category 2), choosing and comparing other corre-
sponding points, only one group (Group 9) correctly completed the task. This group 
correctly recorded new values for x on each graph for the given values of y on the 
table. Their observation was that the x values increase for the first shift (3 units to 
the right) and the x values decrease for the second shift (4 units to the left). 
However, they did not give the exact value of the shift in either case. Another group 
(Group 10) worked from the x-values and managed to record correct values for 
positive x values for the shift to the right. This is what they wrote:

x Values −3 −2 −1 0 1 2 3
y Values Are not to be found 9 4 1 0

They did not give their reasons for saying they could not find the y-values for nega-
tive x-values. This response seems strange to me because they were physically 
shifting the graph using a transparency, and therefore I am not sure how they could 
not see the left hand side of the graph. It might be that this group did not understand 
the meaning of “corresponding points” because, even though they drew the above 
table, in the rest of the answer they only spoke about differences in x- and y-inter-
cepts, rather than for a range of corresponding points. Only one other group (Group 6) 
tried to record values in a table and they did it incorrectly, and were unable to make 
a reasonable conclusion about the shifts.

The responses to this question suggest that learners struggled to make use of 
tables to understand shifting points on the graphs. It is very rare in the current 
Grade 11 textbooks to find tasks where learners are asked to record their findings. 
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It is also the case that they only use tables when initially introduced to graphs, so 
that they may not see them as a useful vehicle to think about graphs and solve 
problems with them. This task attempted to engage learners in making connections 
between the graphs and the points on them, and to move between different repre-
sentations, definitely a “procedures with connections” task. The fact that so few 
learners were able to manage it suggests that higher-level tasks and working with 
different representations are difficult for them.

The learners’ observations about the shifts in the points (Category 3) show some 
interesting patterns of reasoning, even among groups that did not record values in 
the tables. The different responses that I identified are:

(A) The x- and/or y-values change
(B) The x values increase/decrease
(C) The x-values are all positive/negative

Table 3.2 shows all the groups responses to this question, with the response labelled 
A, B, or C according to the above

Table 3.2 Groups responses to question 3

Shifting 3 units right Shifting 4 units left

Group 1 It has positive values. All values of x 
and y have changed (A and C)

All values of x are negative and all 
values of y are positive (C). In 
the middle and the left graph we 
find negative and positive values 
and the right graph has only 
positive values (C)

Group 2 In the new graph we have only 
positive x and y values (C)

The numbers which were negative 
become positive, when we move 
the graph to the left 4 units (C)

Group 3 On the new graph the x-values 
increase (B)

The x values decrease on the left 
graph because it includes the 
negative numbers (B and C)

Group 4 The x-values of the old graph has 
negative units and the new graph 
does not have negative units (C)

y-Values and x-values change again (A)

Group 5 All the points changed. The negative 
points became positive points (C)

The y-values and x-values changed (A)

Group 6 We did not have negative values in 
the new graph. When the turning 
point changes, the other points 
change (C)

Group 7 The y-values are still the same but 
the x-values have changed from 
the first graph (A)

The graph is not in touch with the 
y-axis

Group 8 The table points are totally different 
and the points of the second 
graph are all positive (C)

The x-values have changed to be 
negative as the graph was moved 
to the left (C)

Group 9 x-Value increases, y-values do not 
change (B)

x-Value decreases, y-values do not 
change (B)

Group 10 Wrote about intersection points of two parabolas rather than comparing them
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Only two responses were not classifiable according to A, B, and C. Group 10’s 
response, which was actually not a response to this task and so will not be discussed 
here, and Group 7’s response for the second shift, which is interesting and will be 
discussed. Of the groups that made response type A, all except one claimed that 
both x- and y-values changed. This suggests that they were not looking at corre-
sponding points, but at the graphs more generally. Group 7 made the correct claim 
that for the same y-values, the x-values change. However, they did not specify the 
direction or the nature of the change. So while this answer is correct, it suggests 
that the learners were not looking closely at the graphs to make the connections that 
the tasks expected. Groups 3 and 9 made response type B. Group 9 argued that the 
x-values would increase or decrease (depending on the graph), when the y-values 
remained constant. Group 3 did not mention the y-values but we can infer that they 
were looking at corresponding points on the graphs, which means that the y-values 
stayed the same. Neither of these groups indicated the magnitude of the changes 
(3 in one direction, 4 in the other).

Response type C, made by most of the groups, indicates an interesting miscon-
ception. As the learners’ shifted the graph, it seemed that all the x-values moved 
into the first quadrant (for the first shift) and into the second quadrant (for the sec-
ond shift). This would in fact have happened with the traced graph in the second, 
but not the first shift, because the graph does not show coordinates beyond x = 3.5. 
However, the learners’ responses in both cases suggest that they did not understand 
that these graphs extend to cover all x-values; they thought that the graph ends 
where the picture ends. This misconception was found in both the other Grade 11 
classes (see Chap. 8). Group 7’s response is also a version of this response in that 
they looked at the actual drawn graph and saw that the drawing did not cut the 
y-axis. They too did not realize that the graph must extend to cover the domain of 
all x-values.

These three response-types show up interesting issues in the learners’ reasoning 
and in the task demands. The “most correct” of the three sets of responses is type 
B because there are no errors. However, these responses are not specific about the 
magnitude of the change. Since the task was quite open, and asked learners “what 
do you observe”, this is a perfectly acceptable response. However, it suggests that 
learners did not ask themselves whether they could go further to observe anything 
more. In this case, I argue, the level of the task declined from procedures with con-
nections at set-up to procedures without connections in the learners’ responses. 
Response type A can also be correct, when it focuses on the corresponding points. 
In these cases, it is even less specific than response type B, because it does not note 
the direction of change. Here too, the learners did not push themselves further, but 
did write down what they observed, also signalling a task decline. Response type C 
is the most specific; it attempts to get to grips with the picture as well as the values 
and to go deeper into what is happening. In this case, the learners preserved the 
level of the task; they were looking for connections and trying to make a generalization 
from the picture, and in doing this, they revealed an interesting misconception in 
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their thinking, i.e. they did not think that a parabola extends infinitely along the 
x-axis in both directions.

This task analysis has suggested that when the task was of a lower level, learners 
were able to get it correct. When the levels increased, learners struggled both to 
get the tasks correct and to maintain the higher levels of the task. Ironically, the 
one time when they did maintain a higher level, a misconception arose. In the next 
section, I look at what happened when I discussed the responses in a whole-class 
discussion with the learners.

Teacher–Learner Interactions

As both teacher and researcher, I needed to understand learners’ reasoning 
within and beyond their written responses. Were they saying more than what 
they wrote? Did they have more to offer than their responses on the page? Did I 
interpret their responses correctly? Did the learners understand their own think-
ing? Finally I wanted the whole class to understand what other learners were 
thinking and reasoning. In this section, I will discuss four kinds of teaching 
interventions that I used to address the above questions. These interventions 
were drawn from the literature (Chazan and Ball 1999; Heaton 2000; Lampert 
2001) and seemed to make sense for my classroom. They are: encouraging learn-
ers to participate and listen; using learners’ contributions to move forward; and 
pushing for more explanation from learners. I show how these interventions 
became a learning process for me, at first I was not very successful in generating 
discussion and thinking around learners’ responses but as I persevered, I got 
better at it.

Encouraging Participation

At the beginning of the next lesson I told the class that I had read their responses 
the previous night and I found them all interesting. I then told them that I would ask 
them questions based on what I did not understand in their responses. This was a 
new norm for the class because they usually assumed that I did understand and 
asked questions to hear their answers, a “testing” function of questions (Nystrand 
and Gamoran 1991). This was the first interaction of the lesson after the groupwork, 
and involved Themba from Group 3. I chose to start with this one because, similarly 
to the other groups, Group 3 had mentioned that the x-values increased but had not 
been specific about the size of the increase.
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Mr Nkomo: So, Themba, what, what did you mean when you say, the, the values of, the 
values of, the x values increases?

Themba: You move the graph three units to the right. You’ll find that three is the 
turning point, and then one, eh nought, one, two, they are greater than 
minus one, minus two, minus three because in the first graph, minus one, 
minus two, minus three were included.

Mr Nkomo: Fine. Thank you Themba, Did you hear what Themba said?
Learners: Yes.
Mr Nkomo: Yes
Learners: Yes.
Mr Nkomo: Can someone say that again because you have just said yes.
Learners: (Silence)
Mr Nkomo: Hmm. You have said yes, Themba, would you say that again? They have said 

yes, but they don’t want to say that, okay? Themba please say that, for the 
last time?

Themba: First you move three units to the right. o finde [you find], the turning point is 
three, and the numbers including is nought, one, two, three, four, five, six. 
And then mo [in the] the first graph, the numbers that were included were 
minus three, minus two, minus one.

The other groups did not respond to Themba’s explanation and I was forced to ask 
him to explain again. So although I had hoped to generate discussion through 
Themba’s response, I was not successful even in getting learners to repeat his idea. 
This was both similar and different to Heaton’s (2000) experiences in trying out this 
kind of teaching for the first time. It is similar in that it is not very successful. It is 
different in that Heaton got responses from the learners but did not know what to 
do with them. In this case, I could not even get responses from the learners. It might 
be that because I was asking for an explanation, and they were not used to listening 
to each other’s explanations, they felt uncomfortable about repeating it to the class. 
This suggests that it is important to build learners’ listening skills, as well as their 
abilities to explain each other’s ideas (Lampert 2001). In the case of this interac-
tion, the level of the task declined – from one where procedures with connections 
were expected to one where connections were not made.

Using the Contribution to Move Forward

The next extract comes soon after the previous one. Here I focus on the responses 
that indicated that y-values stayed the same. I was trying to focus the class onto the 
notion of corresponding points.

Mr Nkomo: Jacob’s group said that the x-values change but the y-values don’t change, 
they stay the same, do you agree with them? Jabu, can you say more about 
it. Can you come and maybe explain why they are still the same?

Jabu: (Comes up to the board) Eh! On the new graph, there is still one and on the old 
graph, there is one. Four and four, nine and nine (he points on the graph).

Mr Nkomo: Nine and nine?
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Jabu: Yes.
Mr Nkomo: So, in other words, eh, you are saying, there is still one and one?
Jabu: Yes.
Mr Nkomo: There is still, once again?
Jabu: Four and four, and nine and nine.
Mr Nkomo: Four and four, and nine and nine.

In this case, I asked a particular learner to come up and explain another learners’ 
contribution, rather than leave it up to the whole class as previously. Jabu was not 
in Jacob’s group and his group’s response had been different, so I asked him to 
come and explain Jacob’s point. Here I was enabling broader participation and also 
teaching learners that they could respond to each other’s ideas and explain them. 
This is what had gone wrong in the first interaction. Chazan and Ball (1999), in 
discussing the teacher’s role in discussion-intensive teaching, suggest that while 
“telling” is not often a good idea for the teacher, what is important is to decide what 
to do instead of telling. In this case, I asked one learner to explain another learner’s 
idea and that helped the lesson to move forward (Heaton 2000). However, in this 
case, the interaction still remained at a lower level, as I did not push the learners to 
really explain and justify their thinking.

Pushing for Explanation of Particular Ideas

In the following extract, I deal with the response type C identified above through 
asking Group 1 to explain their answer. I first repeated it for the class.

Mr Nkomo: Kefilwe’s group said that it has positive values, all y and x has changed. In the 
middle and left graph we find negative and positive values and the right 
graph has only positive values.

Kefilwe: You see, pointing at the graph that was moved to the right, it has positive 
values and the other in the middle has positive and negative while the left 
has positive and negative.

Mr Nkomo: (Kept quiet, looked at the whole class and saw Meshack shaking his head.) 
Meshack, it seem you disagree with what Kefilwe said, can you tell us why?

Meshack: Sir, it doesn’t mean that always when we move a graph to the right it will 
have positive values only and to the left negative values only. Sir, for 
example if we move the graph that was moved four units to the left, two 
units to the right it will still have negative x-values.

Mr Nkomo: What about the one moved to the right?
Neo: If we move it one unit to the left it will still have positive values.
Mr Nkomo: What can you conclude from what Meshack and Neo said?
Lydia: I think it depends on how far you move the graph, so it doesn’t mean to the 

left negative values and to the right positive values.

I realized that Kefilwe’s group had a misconception about the x-values of the 
shifted graph. What I was doing here was “asking a question for the purpose of 
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helping her see something new, not to merely share her ideas” (Heaton 2000). 
Calling on Meshack was a deliberate strategy to help Kefilwe’s group see what they 
needed. In this extract, I was also more successful in getting more learners involved. 
Once Meshack had made his contribution, Neo echoed it in relation to the other 
graph and Lydia was able to draw the two contributions together and summarize 
them. It should be obvious to the reader that I was far less present in this extract 
than in the previous ones; however, since my questions were clear and focussed 
(Watson and Mason 1998), it was a more successful intervention. I was able to get 
learners to explain their own ideas and listen and build on the ideas of others 
(Heaton 2000). Here we managed to maintain the task demands at a higher level, 
procedures with connections to meaning.

Unfortunately, the above interchange did not quite solve the learners’ problem. 
While they seemed to agree that shifting to the left and right will not always create 
positive and negative x-values, they did not quite agree that it did not in the two 
cases under discussion. In fact, they may have only agreed for the cases that were 
moved fewer than 3 units to the right and 4 units to the left. So, there was still work 
to be done on this misconception.

Conclusions and Implications

There was a great deal of evidence in my data to suggest that learners had difficul-
ties in responding to tasks that involve mathematical reasoning. Learners had sev-
eral difficulties in responding to the more demanding parts of the task. These 
included not understanding what corresponding points were and why they should 
be compared, making limited observations about the corresponding points of the 
graphs, and not recording their observations in the table provided. It was evident 
that the learners were not used to such questions and did not know how to approach 
them. The learners were not used to “exploring” as much as they can in tasks. 
However, there was also evidence to suggest that in some cases, some learners did 
go deeper, and did maintain the connections to meaning, although they did this 
incorrectly.

My interactions with learners did not manage entirely to shift the levels of the 
task. I was not able to help the learners to bring the level of the task back to that of 
procedures with connections, except in the last case, where they had been making 
the connections. However, my analysis of my teaching suggested three very differ-
ent kinds of interaction, which improved over the course of the week and finally did 
put the learners in conversation with each other. My analysis confirms Heaton’s 
(2000) argument as to how difficult the task of engaging learners in genuine discus-
sion about reasoning really is.

In undertaking this project, I worked with tremendous support – with my four 
colleagues and with my supervisor. We had all read a number of books and articles 
about teaching, helped each other to prepare and supported each other in analysing 
our lessons. Given all this support, the fact that I still experienced difficulties suggests 



56 3 Mathematical Reasoning Through Tasks: Learners’ Responses

BookID 159557_ChapID 3_Proof# 1 - 24/09/2009

that the ideals of the new curriculum will not be easy to achieve. At the same time, 
however, in trying out these ideas, I have learned a tremendous amount, which will 
improve my teaching from now on. I have learned to:

Be aware of different levels that are entailed in tasks and to give learners a wider •	
variety of tasks
Accept learners’ responses, whether right or wrong•	
Assist learners by asking focused questions to let them see something new rather •	
than telling them the correct answer
Listen to what learners are saying during discussion to have a clearer meaning •	
of their understanding
Follow up learners’ written work with discussion of their meanings in class•	
Work harder to support learners to justify their mathematical ideas•	

I hope to take the above forward into my teaching and to further research.
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My interest in pursuing this study was driven primarily by my personal experience 
as a teacher as well as being faced with a new curriculum that I was not sure how 
to implement in my classroom. “Where am I going to use this mathematics?” is a 
popular question among my learners. This question emanates from learners seeing 
mathematics as unrelated pockets of knowledge rather than a set of related and use-
ful topics. I have also observed that when learners understand and relate a particular 
topic to their existing knowledge, this question seldom crops up. I believe that 
learners’ inability to see mathematics as a worthwhile human activity is in part due 
to the low level of mathematical reasoning and collaboration in classrooms. 
Learners who learn mathematics through mathematical reasoning may find the 
mathematics more meaningful. Mathematical reasoning allows learners to form 
connections between new and existing knowledge (Ball and Bass 2003), and this 
integration of knowledge may support sense-making on the part of learners and the 
ability to see mathematical activity as worthwhile. Mathematical reasoning enables 
the development of conceptual understanding and productive disposition (Kilpatrick 
et al. 2001), which allows learners to draw on their concepts in other situations and 
experience mathematics as something they can understand and relate to. Learners 
who engage in mathematical reasoning may be in a better position to connect 
school mathematical activity to other activity.

I view collaborative learning as a communicative process whereby two or more 
parties gain new knowledge as a result of their interaction. Collaborative learning 
not only refers to an exchange of knowledge between the parties, but the interaction 
itself serves as a catalyst for the formation of new knowledge by the parties con-
cerned (Mercer 1995). In my class, I think of collaborative learning as a joint ven-
ture between learner/s and teacher and among learners themselves. This collaboration 
is governed by the pursuit of knowledge for the development of learner and teacher. 
How we reason mathematically or allow our learners to reason mathematically is in 
part dependent on the nature of collaboration between the parties. The nature of the 
learning that occurs is a complex interplay between individual and social construc-
tion (Hatano 1996; Wood et al. 1992).

This chapter represents a response to the new curriculum developments in South 
Africa. Motivated by a need to teach in a way that will make mathematics more 
meaningful to my learners and guided by curriculum change, I decided to explore 

Chapter 4
Learning Mathematical Reasoning  
in a Collaborative Whole-Class Discussion
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the extent to which this could be achieved in my own teaching. In thinking about 
how to conduct the study, I posed the following questions to myself:

What do I understand by mathematical reasoning?•	
Why pursue the teaching of mathematical reasoning?•	
What is collaborative learning and how does it impact on the teaching and learning •	
of mathematical reasoning?

What Is Mathematical Reasoning?

An important part of all learning, including learning how to reason mathematically, 
is that new knowledge is always connected to current knowledge, and in fact 
restructures current knowledge if true learning is to occur (Hatano 1996). So, as we 
try to develop mathematical reasoning among learners, it is important to see 
whether and how they make these connections and transform their existing ways of 
reasoning. As discussed in Chap. 1, mathematical reasoning is intertwined with the 
other strands of mathematical proficiency (Kilpatrick et al. 2001): conceptual 
understanding, procedural fluency, strategic competence, and productive disposi-
tion. These strands suggest that teaching mathematical reasoning requires far more 
than merely following a “recipe”. If we take seriously the notion of mathematical 
proficiency, we are faced with an even bigger challenge, the simultaneous develop-
ment of a range of skills and abilities that is required for learners to be regarded as 
mathematically proficient.

Kilpatrick et al. (2001) argue that “the strands complement each other but at the 
same time the reasoning strand, called adaptive reasoning, is the glue that holds 
everything together” (p. 129). In analysing one learner’s developing reasoning in 
this chapter, I show how mathematical reasoning provides a link with the other 
strands, particularly conceptual understanding and procedural fluency. I also draw 
on the notion of mathematical practices (Ball 2003). These include representational 
practices, justification, generalization, and communication. These practices are 
seen as vehicles to achieve the mathematical proficiency discussed above.

The Open University (Open University 1997) suggests that mathematical rea-
soning unfolds as the learner asks and strives towards answering three important 
questions while engaged in mathematical activity:

•	 What is it that is true? This question arises as the learner looks to find patterns 
and regularities that can be rendered as evidence to justify an idea. If enough 
evidence is found to convince the learner, s/he can formulate a conjecture. This 
is where we see so many of our learners falter and regard the “evidence as proof” 
(Chazan 1993). Learners may prematurely draw generalized conclusions based 
on the measurement of a few examples. For example, learners may conclude that 
the interior angles of a triangle always add up to 180° after having measured 
only a few or just one set of interior angles of a triangle.
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•	 How can I be sure? This question arises as the learner is confronted with the 
possibility that the evidence collected may not account for all cases. There now 
exists the need for some reasoning that would include the evidence in the form 
of a generalized argument or proof. Without the process of gathering evidence 
and formulating conjectures, the learner at times regards this proof as merely 
evidence of another case (Chazan 1993). My learners have often viewed my 
explanation of a proof of a theorem as an example of how to approach the prob-
lems in the exercise and not as an explanation of why the theorem is true.

•	 Why is it true? At times, even a logical explanation that explains the truth of a 
statement is not enough to convince someone as to why something is true. As 
De Villiers (1990) points out, the explanatory function of proof or arguments is 
very different from the verification function. It is likely that learners will need 
to understand why something is true in order to accept it, rather than just verifi-
cation that it is true.

All of the above conceptions of mathematical reasoning, as making convincing and 
explanatory arguments; as intertwined with the other aspects of mathematical pro-
ficiency; as involving a number of important practices; and as restructuring current 
knowledge and practice, informed this study. However, I still had to answer some 
other important questions, the next one being why should we teach mathematical 
reasoning?

Why Teach Mathematical Reasoning?

I argued earlier that I view mathematical reasoning as the vehicle to sense-making 
of and in mathematical activity. I refer to making sense of the mathematics itself, 
not necessarily to making links with everyday life. My assumption is that only 
through making sense of the mathematics can we truly move to sense-making as a 
worthwhile everyday life activity. The National Curriculum Statement (Department 
of Education 2003) expresses the vision of a learner who is able to “transfer skills 
from one context to another” and to “think logically and analytically as well as 
holistically and laterally” (p. 5). This vision suggests a thorough conceptual under-
standing of mathematics among learners and the capacity to readily identify situa-
tions where their knowledge is of relevance.

Boaler (1997) talks about flexible conceptual knowledge. She worked in two 
schools that were homogeneous in terms of the socio-economic status and educa-
tional background of their learners. The only noticeable difference was the way in 
which the two schools approached the teaching of mathematics. On the one hand, 
Amber Hill had a typical textbook approach with lessons consisting of rule-based, 
procedural activities with much drill and practice. “A typical day of maths in the 
old apartheid days”, was my immediate response. On the other hand, Phoenix Park 
adopted an open-ended, problem-solving, real-life approach to teaching mathemat-
ics, which is what our new curriculum aims at. Boaler’s research concluded that 
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learners gained vastly different experiences of mathematics and developed different 
forms of mathematical knowledge. The majority of learners from Amber Hill were 
unable to apply their knowledge to new problems and situations. This suggested 
that they developed knowledge consisting primarily of memorization and applying 
rules that could only be applied within a school setting. Learners at Phoenix Park, 
however, developed more flexible knowledge, the kind of knowledge that enabled 
them to solve new problems they encountered. Boaler’s study inspired me to 
develop a teaching approach closer to that of Phoenix Park. Collaborative learning 
was the key to developing mathematical reasoning in this approach.

Collaborative Learning and Mathematical Reasoning

The National Curriculum Statement puts forward the following vision for a post-
apartheid South Africa: “To heal the divisions of the past and establish a society based 
on democratic values, social justice and fundamental human rights” (Department of 
Education 2003, p. 1). This statement acknowledges diversity and the need for equity, 
promotes the integrity of each individual with the power to affect decisions and sug-
gests that a way to achieve equity is through the promotion of social justice and 
fundamental human rights. To achieve this, learners need to “work effectively with 
others as members of a team, group, organization and community” (p. 2). This impor-
tant notion is picked up later in a focus on mathematics: “mathematics enables learners 
to work collaboratively in teams and groups to enhance mathematical understanding” 
(p. 10). Taking these two assertions together, we see that collaborative learning is 
both an end and a means (Brodie and Pournara 2005). We need to develop skills and 
dispositions towards collaboration in learners as democratic citizens and also to use 
collaborative learning to aid mathematics learning.

Developing a social conscience based on democratic rule, social justice, and human 
rights can be obtained within the context of collaborative learning. It would be difficult 
if not impossible to teach learners to value other people and their opinions, without 
learners actually learning together from each other. It is the relevance to the learning of 
mathematics that tends to be more challenging. There is, from South African class-
rooms, an evidence of teachers using group work without much mathematics learning 
happening (Brodie and Pournara 2005). I think of collaborative learning as a joint ven-
ture between learner/s and teacher as well as among learners themselves. How we 
reason mathematically or support our learners to reason mathematically is in part 
dependent on the interdependence between the parties in collaboration.

Mercer (1995) strengthens my ideas about collaboration with the following 
quotations: “I suggest that we need to recognize that knowledge exists as a social 
entity and not just as an individual possession” and “the essence of human knowl-
edge is that it is shared” (p. 66). Mercer’s ideas resonate with those of Lave and 
Wenger (1991) who argue that learning occurs in communities of practice, with 
shared goals and practices. The idea is to create such a community in the classroom, 
where the teacher takes a leading role in helping learners to develop interactions 
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and practices as a community. Teaching mathematical reasoning demands that 
learners be able to voice their mathematical thinking, so that mathematical discus-
sion around their assertions can generate an “intellectual ferment” (Chazan and Ball 
1999). Learners need to move away from a dependence on the teacher as the only 
mathematical authority in the class towards a position that Davis (1997) refers to as 
a “community-established standard: a collective authority” (p. 369). As argued in 
Chap. 1, this authority comes from the discipline of mathematics. Developing a 
broader sense of authority requires changes in the way learners and teachers view 
their roles in the classroom. Teachers need to become what Davis (1997) terms 
“hermeneutic listeners” (p. 369), which is genuine listening as a participant in the 
conversation in order to understand what learners are saying. We refer to this kind 
of listening “with” learners. This is very different from evaluative listening, i.e. 
listening for the right answer, which many teachers do most of the time.

Listening to learners in better ways does not necessarily help teachers to know 
how to respond to learners’ ideas (Heaton 2000). In their article aptly named 
“Beyond being told not to tell”, Chazan and Ball (1999) suggest practical ways in 
which teachers can act in classroom discussions, without giving the answers, that 
may focus and give direction to a particular discussion. These include

Rephrasing learners’ comments and helping the class to hear them•	
Asking for clarity when they think learners’ assertions are not clear and•	
Focussing learners’ attention on a particular aspect of a discussion•	

As teachers do this, focussing learners on the norms of participation is important, 
particularly sociomathematical norms (Yackel and Cobb 1996, see also Chap. 1), 
where an explanation consists of a mathematical argument, not simply a procedural 
description or summary; mathematical thinking involves understanding relation-
ships among multiple strategies; errors provide opportunities to reconceptualize a 
problem, explore contradictions in solutions, or pursue alternative strategies; and 
collaborative work involves individual accountability and reaching consensus 
through mathematical argumentation (Kazemi and Stipek 2001).

Summarizing My Perspective

In the above pages, I have made a number of arguments, which informed how I 
conducted this study and analysed the data. First, I argued that mathematical rea-
soning is made up of a number of processes. The learner makes observations, tries 
to provide evidence and explanations, and through connecting these with existing 
knowledge, restructures this knowledge (Hatano 1996). Proficiency in “procedural 
fluency” and “conceptual understanding” (Kilpatrick et al. 2001) is needed for such 
restructuring. Key to enabling restructuring is explaining, communicating, and 
justifying conjectures and claims, which are features of “adaptive reasoning” as 
argued by Kilpatrick et al. During this communicative process, we see the learner 
evaluating and refining new knowledge.
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I further argued that learning mathematical reasoning as part of mathematical 
proficiency (Kilpatrick et al. 2001) is best achieved through collaboration in com-
munities of practice (Lave and Wenger 1991). Such communities are governed by 
norms of practice, (Yackel and Cobb 1996) and as teachers, we can and should take 
the lead in developing classroom norms that deeply engage learners (Kazemi and 
Stipek 2001). Teachers can listen carefully and make a range of moves (Brodie 
2004b) which do engage learners’ thinking. Taking account of the above, I 
embarked on a study to see whether what these researchers are claiming is possible 
in my classroom in South Africa.

My Classroom

My pseudonym in this study is Mr. Daniels; there is a detailed description of my 
school context in Chap. 2. I refer to some of it briefly here. This study was con-
ducted with one of my Grade 11 classes, consisting of 35 learners with a range of 
mathematics abilities. The class was situated within a school of 1,600 learners, 
which is well integrated in terms of historically racial divisions. A teaching staff of 
63 puts the teacher–learner ratio at about 1:23. Actual class sizes average 33 learn-
ers per class. Although the school is situated in a middle-class suburb, a large 
number of the learners travel to school from lower income areas. English is the 
language of instruction at the school and is not the first language of the majority of 
the learners. My classroom is relatively well resourced with desks and chairs for 
every learner. The building structure in general is well maintained. Aside from the 
writing board, I also have an overhead projector and screen at my disposal.

As part of the collaboration in this project, I worked with two colleagues to 
develop a series of tasks that we hoped would elicit mathematical reasoning in our 
Grade 11 classes. We drew on a number of resources, including texts that were in 
the process of being written for the new curriculum. The tasks that we developed 
have been analysed in Chap. 2. I planned to use the tasks over a week in my Grade 
11 class. I structured the work as follows: learners had some time to work on the 
tasks themselves, then they came together in small groups of three or four learners 
to discuss their findings, and finally, the groups reported back to the class and we 
had a whole-class discussion. The lessons were videotaped and I wrote reflections 
after each lesson, which helped with my analysis.

The Analysis

There were three important issues in my analysis of the data collected:

The first was how to •	 select certain parts of the data to analyse.
The second was how to see the analysis in •	 context.
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The third involved •	 structuring the writing to make it easy for the reader to 
understand my argument even though I can present only some of the data.

As I struggled to select data, I decided to focus on one learner’s development in 
one lesson. It was not possible to do more in the scope of this study and I believed 
I could achieve more depth of analysis through focussing on one learner. My deci-
sion to focus on Winile in particular was because of her visible participation 
throughout the lessons, which allowed me to plot a developmental sequence of her 
learning. The analysis therefore focusses on the development of Winile’s reason-
ing through the lesson and how collaboration with me and other learners made this 
possible. Focussing on Winile’s learning enabled me to understand how her learn-
ing as an individual both influenced and was influenced by the social interaction 
in the class.

To isolate a learner from a whole-class discussion in order to analyse and fol-
low her mathematical reasoning is not entirely possible. This is due to the collab-
orative learning that takes place. In such an analysis, the question arises as to how 
to know which statements influence each other. One learner’s statement may or 
may not motivate another learner to say something. To link contributions in dis-
cussions to each other is a difficult task, and it is important to always remember 
that there is a variety of influences on learners’ development. This means that the 
context of any utterance needs to be considered very carefully and from a number 
of perspectives.

The analysis presented in the next section was obtained from thorough analysis 
of the video and transcript focussing on the claims that Winile made in one lesson, 
over a time period of about 36 min. It is clearly not feasible to present all of these 
data here. So, I need to make another selection, which is how to show the reader 
what I have seen, in much less time and space than it took me to see it.

Winile’s Learning

The analysis focusses on Activity 2. The content of the activity was how to think 
about the changes affected by the horizontal translation of the graph of y = x2 to the 
graphs of y = (x − p)2 where p was 3 and −4 respectively. Winile’s group had just 
reported back on their findings and Michelle posed a question, asking why the 
graph for y = (x + 4)2 has a turning point of −4. She suggested that the +4 inside the 
bracket contradicted a turning point of −4 and asked Winile to explain this. This 
served as a catalyst for a fervent discussion, which resulted ultimately in Winile 
formulating her new conceptual frame for understanding graphs and equations. The 
analysis follows Winile’s learning in five steps: (1) making observations; (2) 
explaining and justifying claims; (3) connecting her claims to the mathematical 
representations; (4) restructuring conceptual understanding; and (5) using her new 
conceptual frame to test other claims. I describe each of these and show how the 
classroom collaboration supported Winile’s shifts.
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Making Observations

Winile’s journey started as I called her group to share their findings with the rest of 
the class. Winile became the reluctant spokesperson for the group. In the extract 
below, Winile hesitantly indicated that the turning points of the graphs y = x2, 
y = (x − 3)

,
2 and y = (x + 4)2 differ; the y-values of corresponding points stay the same; 

the x-values change; and the sizes of the graphs are the same and the equations of 
the graphs differ.

Winile: We said they are different on the turning point, and the equation, but the y-axis 
stays the same, and the size of the graph also stays the same, and (inaudible)

Mr Daniels: Okay so the, what stay the same
Winile: The, the y-axis.
Mr Daniels: The y-axis. The y-axis stay the same.
Learners: talk over each other, inaudible
Winile: The y values stay the same but x-axis changes.
Mr Daniels: Okay, can we speak one at a time. Let’s speak respectfully to one another here.  

If you’ve got a question, just raise your hand.
Learner: (inaudible)
Winile: What
Learner: (inaudible)
Winile: The y-value stays the same, the x-value (inaudible) the turning point (inaudible)
Mr Daniels: Okay, so you say the equation changes, the y-value stays the same,
Winile: And the turning point,
Mr Daniels: And the turning point stays the same.
Winile: No, it changes (shakes her head and looks at her notes)
Mr Daniels: The turning point also changes

We see here that Winile’s initial claims were merely observational and she did not 
see a need for justification. In fact, even to enable her to make a proper report back 
required a lot of support from me. This support was in the form of keeping other 
learners quiet, establishing social norms so that Winile could be heard, and also 
helping her to voice her ideas, and in some cases rephrasing (Chazan and Ball 
1999) or revoicing them (O’Connor and Michaels 1996).

Explaining and Justifying Assertions Made

After this, Grant, a member of the same group, came up to comment on the next 
part of the task. Grant tried to explain that since the x-values changed and the 
y-values stayed the same as the graphs were shifted left or right, the equations must 
change. I pressed him to say more specifically how the graph had changed and 
Grant struggled, looking at his book and searching for an explanation. His attempt 
follows in the next extract:
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Grant: Sir, uh, the graph’s position has moved, so when you, however many positions 
its moved, you either add it or minus it, onto your equation.

Winile: Can I just make it simple sir, you substitute the x-value with the variable, we 
change the equation and then the y, uh, variables never changes (inaudible).

Mr Daniels: Yes, okay, now how d’you mean, just explain what you said, he said that it 
changes, what did you say? I didn’t follow nicely.

Grant: If the graph, the graph’s position has changed, on the x-axis
Mr Daniels: Right.
Grant: Therefore, so then you either add onto your equation, its moved how many 

spaces, or you minus it. Now do you understand?

After Grant’s initial contribution, Winile stepped in a little more confidently. Her 
assertion is still vague; however, it does show a different interpretation from 
Grant’s, which is also vague. This response from Winile suggests that she began to 
acknowledge a need to explain and justify claims, realizing that Grant’s claim 
needed explanation for her and probably the rest of the class.

Winile’s move shows how learning collaboratively feeds into the process of 
mathematical reasoning. Winile did not see a need to clarify or explain her own 
claims, yet hearing another learner’s claims, which she had been party to, 
prompted a need to explain. In making her explanation, Winile started to make 
connections between her observations and the equation. In a sense, she was jus-
tifying why the equation must change. She was reasoning at a higher level, 
brought on by realizing the need to explain Grant’s claim to the class. My role in 
this interaction was to press Grant to explain his claim, which also supported 
Winile to do so.

Connecting Observations with Mathematical Representations

As learners in the class sought more clarity from Winile with regard to Grant’s 
assertions, Winile realized that she needed to switch representations. She came up 
to the overhead projector and tried to explain her concept as follows:

It means that this x uh, here, because when you move three times to your right (writes 
y = x2 + 3), or you (writes y = x2 − 3), it means that you move to the left, this means when 
you move to the right three times, that’s what we trying to do, that when you move the 
graph three times, you supposed to add it three times, and when you move it three times to 
your left then you subtracting three times

These connections between equation and graph are mathematically incorrect. 
However they do show that she was starting to make conjectures about certain 
patterns she had observed.

The use of alternate representations by Winile suggests that again she was 
 reasoning at a higher level. Not only was she explaining observations, but she was 
making connections between her graphical observations and the representations in 
equations. The need to use a written representation to illustrate the translation of 
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the graph to y = x2 to y = x2 − 3 (translation of 3 units to the left) and to y = x2 + 3 
 (translation of 3 units to the right), served as a catalyst for making these connec-
tions. The need to explain to others more effectively once again served as a cata-
lyst for mathematical reasoning. Winile’s reasoning was extended to expressing 
the changes she observed in an alternate representation. She had progressed to not 
only connecting various aspects of the mathematics but also producing mathemati-
cal representations with which to express these connections. Although these rep-
resentations were mathematically incorrect, they demonstrate her reasoning in 
relation to the task.

At this point, Winile was interrupted by Michelle who wanted to ask her a question. 
The interaction involved a few learners and is captured in the following transcript:

Michelle: Okay, can I ask a question
Mr Daniels: Okay.
Michelle: Okay, look on task one right. You said that if it is a positive, you move to the 

right and if it is a negative, you move to the left. So now, can you please 
tell me why on your second drawing, where it says y equals x minus three 
squared (looks at Winile) can you see that? Say yes Winile if you understand.

Winile: Yes, I can see it.
Michelle: Alright, so now how come in the bracket there’s a negative but where the turning 

point is, is a positive. That’s what I would like to know.
Mr Daniels: Okay, Lorrayne (interruption by learners) Carry on Lorrayne
Lorrayne: Sir, you have a negative three in the bracket and it’s a square, when you square 

something, remember, Sir said when you square it, it becomes positive.
Learner: If it’s a negative
Lorrayne: Ja
Michelle: And then if you look at y equals x plus four, why is it that the turning point is a 

negative.
Learner: But the equation is positive
Michelle: And the drawing is positive.
Learner: I asked that too. (Some learners laugh).
Learner: I’m also asking the same question.

In the above extract, Michelle and Lorrayne co-produced an important question 
relating the equations to the graph. It was a question that had occurred in a number 
of groups and so was shared by learners. What is notable in this extract is how the 
learners worked together and spoke to each other, with almost no intervention from 
me, except to give Michelle permission to talk and to keep the class quiet so 
Lorrayne could speak. Brodie (2007b) argues in relation to this episode that when 
learners share important provocative questions, they are more likely to engage in 
real conversation.

Winile was silent during the above interaction and continued to be silent as a 
number of other learners discussed Michelle and Lorrayne’s question. Winile did 
not return to her seat however, but took a seat in front of the class where she listened 
intently to the ensuing discussion. The discussion continued for some time, until I 
felt the need to intervene and make an important point as follows:
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Mr Daniels: Okay now, what is a point? A point is made up of what?
Learner: x- and y-co-ordinates.
Mr Daniels: x- and y-co-ordinates. Good! So what is the x-co-ordinate there?
Learner: It’s minus four is your x co-ordinate
Mr Daniels: Good. So what is negative there? The turning point is negative or is it one of the 

co-ordinates that’s negative? Okay, let’s hear.

Brodie (2007c, see also Chap. 9) argues that although the above interaction might 
seemed somewhat constrained, in fact it served an important function in moving the 
learners’ discussion and thinking forward, in that it reminded them to consider both 
co-ordinates of the turning point, rather than only the x-value. Up until this point, 
they had been talking about the turning point as −4, which did not help them to see 
that a point is a relationship between x and y, given by the equation. This interpreta-
tion is borne out by Winile’s following contributions. The intervention helped to 
support her to move to the next level of her reasoning trajectory.

Reconstructing Conceptual Understanding

Immediately after my intervention above, Winile emerged from being a silent par-
ticipant with new ideas to contribute:

Winile: The positive four is not like the x, um, the x, like, the number, you know the  
x (showing x-axis with hand), it’s not the x, it’s another number. For that 
when you do the equation you get some sense from the answer you get, cause 
without that p, that minus p, your equation will never make sense.

Learners: (murmuring)
Mr Daniels: Can I just get back to, That’s good, Winile
Learners: Sshh
Mr Daniels: Does people want to make clear of what Winile is saying?
Learners: Yes, mutter, talk over each other as Winile comes up to OHP
Winile: You see, Michelle when you’ve got this [writes y = x2], you substitute this 

with a number, isn’t it. Like you go, whatever, then it gives you an answer. 
[substitutes 3 for x and gets 9]

Learner: Yes
Winile: You see when you got this, plus three [writes y = x2 + 3], you have to substitute 

this with the, that with like the one, zero, one two, three [Draws numberline, 
x axis]. Your turning point is here. You have to substitute this with this 
negative one here, plus three. Do you understand? This three [circles the 
3 in y = x2 + 3] is not, is not part of the, this x, uh, variables. Its the given 
(inaudible) Get it?

In this extract, Winile justified her claims similarly to how she explained Grant’s 
assertions earlier. First, she made a verbal contribution, which was difficult for 
others to understand. She then came up to the overhead projector and wrote equa-
tions to explain her new understanding. As she explained the second time, her 
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explanation is not only clearer to the listener but her explanation has progressed 
to become more focussed and connected, even though she is still using the incor-
rect equation.

The clarity of Winile’s mathematical reasoning was evident as she explained that 
the +4 and the −3 in the equations were not the x-values of the turning point but as 
she put it “some other” values. She affirmed that the equations represented the 
relationship between the x and y variables and that the x-values must be substituted 
into the equations to give the y-values. During these assertions, it was evident that 
Winile was more confident and self-assured that she was on the right track. Winile’s 
reasoning had evolved to a point where she was in a position to evaluate previous 
claims and adapt them to her understanding. She was now in a position to make the 
appropriate connections between the value of the turning point and the representa-
tional equation. This learning came after a relatively long period of silence from 
Winile where I can only assume that she was quietly reasoning and adjusting her 
own understanding as the class discussion involved other learners.

This highlights again the quality of collaborative learning which was present in 
Winile’s reasoning. She was able to modify her assertions by listening to the discussion 
that prompted her own reasoning. Her explanation to the class facilitated their under-
standing but also assisted in refining her own understanding of the issue at hand. With 
this understanding, she confidently answered Michelle and Lorrayne’s question.

Testing Other Claims

After this, David indicated disagreement with Winile, arguing that the turning 
points could be determined by taking out the +4 or the −3 from the bracket, moving 
them to the other side of the equal sign and changing the signs. Again, she had to 
justify her ideas, which she did as follows:

We supposed to get the y, aren’t we supposed to get the y, what the y equals. We’re not 
supposed to get what x is equal to, we getting what y is equal to. So we supposed to, sup-
posed to substitute x to get y.

This justification supported Winile to move to yet another level of mathematical 
reasoning. She emphasized the fact that we use the equation to get the y-value by 
substituting the x-value into the equation. In doing this, she tested her own conceptual 
frame against that of David’s and used her understanding to extract the weaknesses 
in David’s argument. Winile did not wait to be invited to give a response to David, 
but confidently and openly engaged David’s assertions. She argued (laughing):

Okay sir, he’s just telling us where to put like, the turning point of the graph, and we want 
to know why, the y-value is, we want to know what the y-value is and you’re telling us the 
x-value.

Winile was using her conceptual understanding to test and spot the failures in 
David’s argument. This places her in a position to challenge David’s assertions. She 
continued to do this for the rest of the lesson.
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The Teacher’s Role

The above analysis indicates how important the collaborative learning in the class 
was to Winile’s learning. In particular, the role of the teacher was central to this 
collaboration. In the above analysis, I indicated a number of roles that I played in 
supporting learners to talk, in steering the collaboration, in pushing for justification, 
in remaining silent when I needed to, and finally, in making substantial mathemati-
cal contributions when necessary. To further analyse my own role, I came up with 
three main categories, each of which contains some important teacher moves.

Establishing Discourse

By “establishing discourse,” I refer to my actions that attempted to create a climate 
of interaction, which could support the learners to participate in the discussion and to 
reason mathematically. One way in which I did this was to create social and socio-
mathematical norms in the classroom (Yackel and Cobb 1996). Social norms included 
speaking one at a time; raising one’s hand as an indication that one wants a speaking 
turn; listening to each other; and building on each other’s ideas. Socio-mathematical 
norms refer to the nature of the mathematical interaction. For example, after Michelle 
and Lorrayne had asked their question, Candy tried the following response:

Candy: Sir, couldn’t it just be like a basic thing, that if it’s on the positive side then your 
equation is negative and if it’s on the negative side then your equation is 
positive? Can’t it just be like that (laughs)

Michelle: I can’t accept that
Learners: Mutter, talk over each other
Mr Daniels: Okay. Let’s … Say that again.
Michelle: I can’t just accept that.
Mr Daniels: So, I’m not expecting you to accept it.
Michelle: No, I’m just saying that I can’t …
Mr Daniels: That’s good. That’s what I’m saying. I’m saying it’s good that you don’t just accept it

Candy was asking whether we should just accept the fact that the signs were different. 
Michelle indicated that she could not just accept that, implying that she needed a 
better justification. I praised her position as valid, indicating that I did not expect 
nor want her to just accept it and the discussion continued to try to find the justifi-
cation. This helped to establish the socio-mathematical norm of requiring a justification 
and may have helped Winile to restructure her understanding to include the need 
for justification.

The second way in which I established a particular kind of discourse is by mod-
elling how to participate. I listened attentively to try to understand what the speaker 
was saying and I asked questions if I disagreed with learners’ assertions or needed 
some clarity on their ideas. The following extract occured when I asked Michelle 
to clarify the question she asked Winile.
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Michelle: And then if you look at y equal x plus four, why is it that the turning point is a 
negative.

Learner: But the equation is positive
Michelle: And the drawing is positive.
Learner: I asked that too. (Some learners laugh).
Learner: I’m also asking the same question.
Mr Daniels: What question are you asking?
Michelle: The question …
Mr Daniels: Yes.
Michelle: Look at our drawing where …
Mr Daniels: Okay. Where’s my drawings? (finds drawings)
Michelle: Where it says y equals x plus four on the left hand side.
Mr Daniels: Right.
Michelle: Our turning point is a negative four.
Mr Daniels: Okay
Michelle: Then Lorrayne that said with the one on the right, where it says y equals x 

negative three squared, and the turning point is a positive. Because you 
squaring it, it will become a positive. But what happens with um, the one on 
the left?

Lorrayne: The negative one. The equation is positive but the graph is on the negative side.

In the above extract, I model how to listen by asking the learners “what question 
are you asking”, by explicitly showing them that I was looking for my drawings in 
order to understand their question and by indicating agreement as they spoke and I 
understood. This is important because many learners have not participated in dis-
cussions previously and may not know how to listen and contribute appropriately.

Framing Discussion

By framing discussion, I refer to the actual mathematical content that I used to help 
the learners make progress. The best example for this is the one quoted above, 
where I used a sequence of closed and directive questions to remind the learners 
that a point consists of two co-ordinates. I did not do this because I wanted them to 
remember that as a fact in and of itself. Rather, it was an important mathematical 
fact that could help their thinking (see also Brodie 2007c and Chap. 9). By remind-
ing learners that a point consists of a co-ordinate, I focussed their thinking onto the 
relationship between the x and y, helping to move the discussion forward.

Lesson Flow or Momentum

With lesson flow, I refer to the movement and progression of discussion. Does the 
discussion show any progression or is it stagnant on one point, which does not seem 
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to be resolved? Is there any discussion taking place at all? The ability of the teacher 
to negotiate between speaking turns and free dialogue plays a key role in the lesson 
flow. The ability to assess when to intervene and when to allow discussion to take 
its course is an important consideration for a progressive and meaningful lesson 
flow. For this, the teacher needs to be on the pulse of the discussion, constantly 
aware of the meanings learners are constructing within the discussion as well as the 
“social and emotional tone of the discussion” (Chazan and Ball 1999).

Conclusions and Implications

This study set out to analyse the ways in which learners collaboratively engaged in 
mathematical reasoning and how they learned to reason mathematically through 
collaboration. The analysis points towards the possibility of such learning. The 
analysis also provides an argument that this learning was made possible through 
mathematical processes characterized as follows:

Making observations•	
Connecting observations with various mathematical representations •	
Explaining and justifying assertions made•	
Reconstructing conceptual understanding•	
Using a new conceptual frame to evaluate assertions•	

My analysis shows how a learner constructed and readjusted her own conceptual 
understanding of the content, motivated by the collaborative nature of the learning 
environment. Her learning was not simply learning from her peers but learning with 
her peers. It could be argued that she might not have moved to a new conceptual 
frame without the catalyst provided by collaboration characterized by an intellectual 
ferment (Chazan and Ball 1999) in the classroom discussion. Reflecting on Winile’s 
learning, I can see the important role that collaboration played in her learning.

I have also shown that the teacher is central in collaborative learning. I have 
shown how I created the conditions of possibility for the collaboration and provided 
a mathematical voice at certain key moments. From me, there is a strong message 
to teachers here, which is that this kind of teaching is much harder than traditional 
teaching. If we are to continue to use the word “facilitate” to describe the teaching 
we would like to do, we should understand that facilitation requires much more 
work than we are used to. From this experience, I have seen that lessons in which 
teachers support mathematical reasoning in their learners through collaborative 
learning are very time consuming. These lessons are important in that they allow 
for greater conceptual understanding and reasoning as was shown in the analysis. 
However, it may be the case that less content is covered, as happened in my class. 
I suggest that researchers look into developing learning materials and teaching 
methods that will enable teachers to cover content in a more integrated way, so that 
more content can be covered, while reasoning is simultaneously developed.
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In concluding this chapter, so much is still left unsaid. What is clear to me, 
however, is that the teaching of mathematical reasoning is achievable through a 
collaborative learning environment with effective whole-class discussions. A lot of 
research still needs to be done in establishing sound pedagogy to facilitate this type 
of teaching. It is my hope that this project will spark a flame in many teachers and 
researchers to initiate more rigorous research and reflection.
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The previous two chapters focussed on learners, their responses to tasks and one 
particular learning trajectory, and analysed how the teachers supported the learners 
through their teaching moves and practices. In this chapter, I shift the emphasis 
slightly, focusing on the teacher’s practices and how these become internalized by 
the learners. So, while continuing the focus of the book on teacher–learner interac-
tion in the development of mathematical reasoning, I illuminate a slightly different 
view of the interaction in this chapter.

I do this by analysing a teaching approach that I developed over a number of 
years, in which thinking and talking are used to promote mathematical reasoning. 
The approach has been largely influenced by the changes in the South African cur-
riculum over the past 10 years. These changes have been in three areas: what it 
means to do mathematics (Ball 2003; Kilpatrick et al. 2001), what it means to learn 
mathematics (Hatano 1996; Lave and Wenger 1991; Vygotsky 1978), and what it 
means to teach mathematics (Chazan and Ball 1999; Lampert 2001). Informed by 
these shifts, I have developed a new approach, one which might be called learner-
centred, where learner-centred means encouraging learner participation in ways 
that allow learners to reason mathematically, to make sense of mathematics, to 
transform their mathematical ideas, and to own their mathematical thinking (Brodie 
2007a; Brodie et al. 2002). This is different from older curriculum approaches in 
which teachers introduced the subject matter, gave exercises to learners, and cor-
rected them, without hearing much about learners’ underlying thinking.

My approach aims to support learners’ thinking and talking in mathematics and 
to develop their mathematical reasoning. By mathematical reasoning, I mean 
“establishing some truth about a particular aspect of mathematics, finding some 
evidence or justification for the truth that one has assumed, and knowing why you 
are correct” (Open University 1997). As discussed in Chap. 1, this view of mathe-
matical reasoning is a broad one, it includes the notion of proof and proving, but is 
not restricted to them. Rather, I try to support learners to make reasoned and justi-
fied statements of their mathematical ideas.

Communication in the classroom, between learners and the teacher and among 
learners themselves, forms an important component in teaching learners to think 
and reason mathematically. Thinking mathematically is something that every 

Chapter 5
Classroom Practices for Teaching and Learning 
Mathematical Reasoning
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human being does all the time (Mason et al. 1982). What is important in the class-
room is how this thinking is externalized to make one’s ideas understood by other 
people. Lampert (2001) argues for learners to evaluate their own thinking in three 
ways: by privately reflecting on what they are doing; by talking about it in the local 
community, which in this case would be in their groups; and by presenting their 
ideas to the class for public discussion under the guidance of the teacher. It is in this 
way that I hope to encourage learners to share their ideas and respect each other’s 
opinion in their discussions.

Finally, an important part of reasoning mathematically is that the learner comes 
to own her or his ideas. A justified argument makes sense because it is justified. My 
approach encourages learners to refrain from viewing me as someone who has solu-
tions to all the problems and who is the authority on whether something is correct 
or not. Rather, they should consider me as a person who is there to help them in 
making their own sense of mathematics.

This chapter focusses on my attempts to achieve the above. In doing this, I pres-
ent an analysis of my teaching practices and the learning practices that are encour-
aged in my classroom.

Classroom Practices

I use Schifter’s definition of teaching practices as being skilful, patterned regulari-
ties that occur in teachers’ classrooms (Schifter 2001). These involve particular 
approaches that teachers employ in their classrooms consistently and which create 
contexts for developing meaning in mathematics. Practices are always social, intel-
lectual and practical and are directed towards a desired end or goal (Brodie 2008).

An important distinction can be made between teaching practices and mathemat-
ical practices (Ball 2003; Cobb 2000). Teaching practices are more general and 
occur in all classrooms, for example asking questions, writing on the board and 
asking for learner contributions. Mathematical practices are specific to mathemat-
ics classrooms, for example, explaining, generalizing, and justifying mathematical 
ideas. In describing “classroom mathematical practices”, Cobb (2000) focusses on 
mathematical interpretations and reasoning. Mathematical practices involve the 
normative or taken-as-shared mathematical content in arguments that arise in math-
ematics classrooms, are established by a classroom community, and “can be seen 
to constitute the immediate, local situation of the students’ development” (p. 73).  
I will talk more on the notion of classroom community below.

The Productive Pedagogies Research Group (Hayes et al. 2006) looked at a 
number of classroom practices that contribute to more equitable student outcomes 
for all students. Some of these practices are developing higher order thinking and 
depth of knowledge among learners; employing extended conversations and meta-
language in classrooms; creating connectedness and integration among topics; and 
encouraging learner self-regulation. These resonate with “equitable teaching prac-
tices” described by Boaler and her colleagues, which include asking conceptual 
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questions; keeping the level of mathematical challenge high; enabling broader par-
ticipation of learners in class; and supporting learners’ accountability to each other 
and to the mathematics (Boaler 2002, 2004; Brodie et al. 2004). Drawing on these 
practices as background, I analyse my own classroom to see which practices I 
employed to encourage learner participation, reasoning, and accountability.

Learning Mathematical Reasoning

As discussed above, mathematical reasoning is about the conviction that comes 
with knowing that you have a justified argument, which you can communicate to 
others. This notion is strongly informed by Kilpatrick et al.’s (2001) five strands of 
mathematical proficiency, which are discussed in detail in other chapters of this 
book. Here, I focus on their notion of adaptive reasoning, which they argue, holds 
the other four strands together. They argue that adaptive reasoning refers to the 
capacity to think logically and includes knowledge of how to justify conclusions. It 
is important that learners know and understand that answers are right because they 
make sense and come from valid reasoning, rather than merely accepting what the 
teacher and textbook tell them. Learning to reason mathematically involves a num-
ber of processes. These are the learner’s individual thinking and sense-making; 
teacher–learner interaction around reasoning; and the classroom as a community of 
practice developing the mathematical practices of justification, generalization, and 
communication.

As individuals, learners construct their own meanings of mathematical ideas, 
talks and symbols (Hatano 1996). Although this always happens in a social context, 
it is still important for teachers to focus on particular learners’ constructions and 
reasoning. Individual learners bring their current knowledge into the classroom, 
and hopefully through the process of interacting with others, will transform, shift, 
or reconstruct this knowledge (Hatano 1996). Hatano argues that the fact that mis-
conceptions exist shows that learners do construct their own knowledge because 
they are not often taught misconceptions. Errors and misconceptions are signs that 
learners are involved in their learning and that their thinking processes are engaged. 
Accepting errors and misconceptions as a normal part of the teaching and learning 
process means that further explanations can be encouraged from learners in order 
to understand why they made those errors and misconceptions. This is one way that 
further thinking and reasoning can be supported among learners.

Many teachers and theorists have interpreted constructivism to mean that learn-
ers work on their own, without the teacher. This in itself is a serious misconception. 
The importance of teacher–learner interaction comes to us from Vygotsky (1978), 
who argues that learning arises out of two minds in interaction, in this context the 
minds of teacher and learner. Vygotsky (1978) argues that learning takes place on 
two planes, on the inter-psychological (interaction between people) as well as on 
the intra-psychological (interaction within the mind of the individual). The intra-
psychological is internalized through the inter-psychological. What is therefore 
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internal in the “higher mental functions” was at some stage external, between 
people (Vygotsky 1978, p. 80). Internalization of classroom practices by learners is 
therefore an important support for and indication of learning.

Finally, although learners come into a classroom as individuals, they immediately 
become part of a community that exists in the classroom, what Lave and Wenger (1991) 
refer to as a community of practice. In this view, learning and teaching are seen as 
participation in socially situated practices (Lave 1996). As members of a community of 
practice, learners learn to participate in the classroom practices, through Legitimate 
Peripheral Participation (Lave and Wenger 1991). They learn practices from the teacher 
as well from each other. Drawing on both Vygotsky and Lave and Wenger, this study 
explores how learners, as members of a community of practice, internalize aspects of 
their teacher’s practices in developing their mathematical reasoning.

Teaching Mathematical Reasoning: Questioning and Listening

When learners reason mathematically, they explain, they generalize, they justify, 
and they communicate mathematics. “Students need to be able to justify and 
explain their ideas in order to make their reasoning clear, hone their reasoning 
skills, and improve their conceptual understanding” (Kilpatrick et al. 2001, p. 130). 
Learning mathematical reasoning is, of course, a process. It is a process that needs 
the guidance of the teacher and the participation of the whole classroom commu-
nity. The teacher’s guidance involves practices that teachers employ in the class-
room to help learners make sense of mathematics.

In looking at my teaching practices, I chose to focus on two main categories: 
teacher questioning and listening. Questioning plays an important role in mathemat-
ical reasoning, and teachers can ask questions that support or inhibit learners’ mathe-
matical reasoning (Boaler and Brodie 2004; Watson and Mason 1998). Teacher 
listening complements teacher questioning, in that when one asks a question, one 
ought to listen to how that question is answered. Listening carefully to how learners 
respond to questions helps teachers to know how to take their ideas forward in 
supporting them to think and reason mathematically.

Questions are normally asked in many mathematics lessons, in the form of tasks 
that learners have to work on, or as exercises that learners have to complete, or 
questions asked by the teacher to assess learners’ understandings. Research has 
shown that different kinds of questions influence mathematics learning and reason-
ing in different ways. Watson and Mason (1998, p. 3) believe that questions such as 
“How did you …?, Why does …?, and What if …?” are typical questions that can 
support learners to focus their thinking on the structures and processes of mathe-
matics. This is in contrast to questions that only focus on recollection of facts, 
where the teacher usually expects particular answers (Boaler and Brodie 2004). 
Many authors refer to teacher questions as being closed and thus by having a single, 
straightforward answer, their main aim becomes testing the learners, rather than 
encouraging them to think (Nystrand and Gamoran 1991).
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If teacher questions are more thought provoking, they can support learners to 
present a variety of responses. In this way, learners may be encouraged to think and 
reason mathematically and to evaluate each other’s responses. Learners usually 
learn how their teacher asks questions and come to expect particular kinds of ques-
tions from their teacher. If learners come to expect more complex questions, they 
are likely to expect to have to provide more complex answers, which require rea-
soning. However, finding the right questions to ask is not always easy. Heaton 
(2000) shows how many of her questions were too open, they did not support learn-
ers to engage with the task. She struggled to find a way to ask the appropriate ques-
tions. Kazemi and Stipek (2001) use the notion of “high press” and “low press” to 
distinguish between questions and prompts that teachers use to push learners into 
verifying their answers. They argue, “high press questions encourage learners to 
include mathematical arguments in their explanations, while low press questions 
encourage procedural descriptions only” (p. 78).

Asking questions goes hand in hand with how learners’ responses are heard and 
responded to, by both the teacher as well as other learners in the classroom. For this 
reason, listening is also an important tool in an environment that supports mathe-
matical reasoning and thinking. Davis (1997) makes a distinction between listening 
for and listening to. Teachers are often constrained by the fact that they listen for 
something in particular, rather than listening to the speaker. Listening for some-
thing goes with not being interested in what the other person is saying. Teachers 
often ask questions that address particular aspects or points that we are looking for, 
and when a learner produces an unexpected contribution, we usually do not enter-
tain that response, but continue to look for a response that would satisfy us. 
Listening to a learner suggests trying to understand the sense that the learner is 
making of the mathematics and taking that as the starting point for further discus-
sion. Davis calls listening for something, evaluative listening, and listening to 
someone, interpretive listening. He also has a notion of hermeneutic listening, 
which we have called listening with the learner, where the teacher listens as a co-
participant in a conversation with the learners. Listening with learners can help the 
teacher to listen more carefully, interpret the learners’ ideas more appropriately, and 
interrogate their responses.

As a teacher really listens to learners, s/he will find that the errors that learners 
make are quite sensible and come from underlying misconceptions. Brodie (2005) 
argues that errors are often “remarkably reasonable when viewed from the perspec-
tive of how the learner might be thinking” (p. 37). Schifter (2001) recommends that 
teachers try to follow learners’ lines of reasoning, even when the sense they are 
making is not obvious. Errors and misconceptions are an indication of learners’ 
thought processes and can be viewed by teachers as uncovering important mathe-
matical questions for the class to consider and discuss. Care must be taken though 
that other learners do not discourage learners who produce errors, but rather help 
them constructively. The main aim is to sharpen learners’ evaluation skills and 
abilities to help their peers and themselves, and in doing so, make learning more 
meaningful. Learners’ misconceptions can help them develop into better mathemat-
ical thinkers, if teachers ask learners to explain their thinking when they produce 
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these misconceptions (Brodie 2005). How to deal with errors and misconceptions 
forms part of the practices that teachers can develop to support learners’ mathemati-
cal reasoning.

My Classroom

For the purposes of linking this chapter with the rest of the book, it is important to 
note that my pseudonym in the study is Mr Mogale. This study was conducted in 
one of my Grade 11 classes, in a functional township school west of Johannesburg, 
with very basic facilities (see Chap. 2 for more detail). All the teachers and learners 
in the school were “black African” South Africans (see Chap. 2). English is not the 
main language of any of us, but all teaching and learning of mathematics occur in 
English. There were 1,700 learners in the school at the time of the study and 46 
teachers, giving a learner–teacher ratio of 37:1.

This was a reflective study on my own practice and was conducted in one of my 
Grade 11 classes, with 43 learners in the class. This was an accelerated class, where 
learners were taught more quickly than usual due to their strong achievement in 
mathematics and were eventually introduced to the Grade 12 syllabus while they 
were still in Grade 11. Most of the learners in the class were very strong in math-
ematics. I had taught this class (except for six learners) for one and half years, since 
they were in Grade 10.

I worked together with the other two Grade 11 teachers involved in this 
research project to choose a suitable task that would elicit learners’ mathematical 
reasoning. We chose a task that consisted of four activities to be done over a week. 
The task was based on quadratic functions, but was different from the problems 
that learners had dealt with before, since it involved exploring translations of the 
graph of y = x2. The task is discussed in more detail in Chap. 2. Learners worked 
in groups of three or four, which are easy to manage, and each group nominated a 
spokesperson to present their ideas to the class. In making these presentations, 
they had to explain to the class how they arrived at their solutions and why they 
thought their solutions were correct. In the process, they gave other learners the 
opportunity to ask them questions.

The role that I played during the lesson was that of a facilitator. I walked around 
the groups to check on how learners were discussing the activities and sharing ideas. 
I would ask questions that encouraged them to reason mathematically. During group 
presentations to the class, I had to make sure that discipline was maintained. Any 
learner who wanted to ask a question or comment should first raise his/her hand to 
be recognized. I tried as far as it was possible to stand back and give learners the 
opportunity to communicate their ideas, and allow the discussions to flow. I would 
only come in when it was necessary for me to insert my own voice (Chazan and Ball 
1999) in order to keep the mathematical discussion and reasoning at reasonable 
levels. Some of my questions and interventions were planned and some happened in 
an impromptu way, depending on learner responses.
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Three lessons of 70 min each were devoted to these tasks. All these lessons were 
videotaped. In order to analyse my practice, I watched the videotapes very care-
fully, looking at how I questioned and listened to my learners. I also looked for 
some other aspects of my teaching that I was trying to achieve, for example chal-
lenging learners for justification and redirecting learners’ input to the whole class. 
While noticing these, I became aware of some practices that I did not know about 
in advance, for example, adding my own voice or adding a learner’s voice. So, my 
final set of categories included aspects of my teaching that I had anticipated and 
those that I had not.

As I did the analysis, I realized that the practices of questioning and listening 
could be further distinguished into teacher “moves” (Brodie 2004b, see also Chap. 9).  
Practices here are viewed as a bigger set of which teacher moves form a subset. 
Teaching practices enable moves to surface in the classroom, and it is through 
moves that teachers and learners act in a manner that helps in the development of 
the practices. I also noticed learner moves and practices and saw how some of these 
related to my moves and practices. I discuss teacher and learner moves and practices 
in the following sections.

Teacher Moves and Practices

As discussed earlier, the two key teaching practices that I used to enable mathemati-
cal reasoning were questioning and listening and these are seen through particular 
teacher moves. In this section, I describe the teacher moves that I saw in my prac-
tices, give examples, and show how questioning and listening both support and are 
supported by these moves. Table 5.1 shows the teacher moves that I identified in 
my lessons. They can be categorized into two inter-related categories: enabling 
learner participation and communication and focussing on learners’ mathematical 
reasoning.

In the following transcript, I show how I make some of these moves and how 
they relate to the practices of questioning and listening. This extract from the lesson 
occurred during a report back from Mpolokeng’s group in response to Activity 1, 
where learners were asked to explain what they observed when the graph of y = x2 
was shifted 3 units to the right and 4 units to the left. Earlier, Mpolokeng had 
explained that in the case of the graph shifting 4 units to the left, the values of x 
would all be negative and the shifted graph would not cut the y-axis. The class had 

Table 5.1 Teacher moves

Enabling participation and communication Focusing on mathematical reasoning

Redirecting to the whole class Using learner contributions to move forward
Adding a learner’s voice Adding my own voice
Stirring productive argument Challenge for justification
Supporting and sustaining “intellectual ferment” Representing mathematical knowledge
Maintaining appropriate emotional tone Providing resources for thinking
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challenged her and she had come to agree with them that the graph would cut the 
y-axis. She then repeated her observation below (somewhat defensively), which led 
to another discussion.1

 1 Mpolokeng: What? I have said that the x-values are negative, haven’t I? Yes, I have 
said that the x-values are negative, and then when we extend the graph, 
it will cut the y-axis

 2 Takalani: (Nods his head)
 3 Mr Mogale: (Learners raise their hands) Let’s listen to Tebello first.
 4 Tebello: If the graph can cut the y-axis (learners laugh)
 5 Mr Mogale: Talk, what are you laughing at?
 6 Tebello: if, if the graph can cut the y-axis, the part on the right of the x axis, is it 

not positive?
 7 Mpolokeng: Ee [yes] e [its] positive.
 8 Mr Mogale: It’s a good question because she is saying that is going to be on the 

negative only, right?
 9 Learners: Yes.
10 Mr Mogale: She says we have only negative values.
11 Learners: Ee. [yes.]
12 Mr Mogale: But, we said that this graph can be extended, so what are we saying? We 

don’t only have to question, we must also be in a position to assist a 
kere? [right?]

13 Learners: Yes.
14 Mr Mogale: We can question, we can comment, we can advise the group, (points to 

learner) Ee [yes]
15 Gordon: Nna [me], I was saying according to the papers you gave us, e tlo nna fela  

[it will only be] negative, e tlo nna fela [it will only be] negative.
16 Mr Mogale: But, we are also given arrows and those arrows should mean something to 

you.
17 Gordon: We only concentrate on the left hand side
18 Mr Mogale: When you go out of the school and you go to the road crossing of 

ext fourteen and Randfontein road, there’s a board that shows you 
Randfontein that direction, Jo’burg there. It has an arrow, which shows 
you, right, what does it mean, we stop there, Randfontein ends there?

19 Gordon: It’s not the same as the graph
20 Mr Mogale: It’s not the same as the graph? But the arrow, what does the arrow tell you?
21 Gordon: (Inaudible) (learners laugh)
22 Mr Mogale: I am asking you about the arrow gore [that] what does it mean to you?
23 Gordon: yes, it continues
24 Mr Mogale: It means that it continues. So, what are you saying? We will only get 

negative values?
25 Gordon: I was only referring to this graph, on the table
26 Mr Mogale: Ee. [yes.]
27 Gordon: You see the table that they have given us, you see, Mpolokeng never 

looked at the graph, she’s looking at the table

1 Much of each transcript in this chapter was translated from Setswana. Wherever Setswana words 
and English translations remain in the text it is because the original utterance was in English with 
some code-switching.
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The above extract illuminates a number of moves in the table above, as well as my 
questioning and listening practices. The first thing to notice is that Takalani is the 
learner who had asked Mpolokeng to repeat her observation. He nodded his head 
to indicate that he accepted her new formulation. However, a number of other learn-
ers raised their hands, indicating that they wanted to say something. I indicated that 
Tebello should talk, but as he started talking, other learners started laughing. This 
was not usual in this class, so I reacted with a question: what are you laughing at? 
This was enough to suggest to this class that it was a ground rule (Edwards and 
Mercer 1987) that we allow each other to talk without laughing. This helped to 
restore an appropriate emotional tone to the discussion. Tebello continued to make 
his point, which was that if Mpolokeng was then claiming that the graph did cut the 
y-axis, then she could not claim that all the x-values would be negative, since those 
on the right hand side of the y-axis would be positive. Mpolokeng immediately 
agreed with him.

In all of the above, and previously, I had been listening to Mpolokeng and the 
learners who responded to her. I did not correct her mistakes, but I allowed the 
conversation to flow and learners to interact. At this point however, I worried that 
Mpolokeng was very quick to agree with Tebello. This could have been an instance 
of unproductive agreement (Chazan and Ball 1999). It was therefore time for me to 
intervene more forcefully, which I did in turns 8, 10, and 12. I repeated Tebello’s 
point and praised it as a good question. At this point, I was adding my own voice 
mathematically, indicating my agreement that Tebello’s question was an important 
one (note, I was not giving the answer). In doing this, I was also adding to a 
learner’s voice, or revoicing his contribution (O’Connor and Michaels 1996). I was 
also trying to sustain “intellectual ferment” (Chazan and Ball 1999), so that the 
discussion would not end in an unproductive agreement. In turns 12 and 14, I made 
an additional point that learners need not only challenge Mpolokeng, but could also 
help her to think through her ideas (something I have always stressed in this class). 
In doing this, I was again trying to create a positive emotional tone, as well as sup-
port a productive argument.

My interventions above allowed Gordon to talk, and he tried to suggest a reason 
why Mpolokeng’s group had made a contradictory argument. He suggested (turn 
15) that on the task handouts, the x-values that had been chosen were only negative 
and that Mpolokeng had been working from those, which focussed her attention on 
the left hand side of the graph (turn 17). In turn 18, I made a challenge for justifica-
tion and also pointed to a mathematical representation, by focussing Gordon’s 
attention on the arrows of the graph, which suggested that the graph continued to 
cut the y-axis, even if it was not shown on the picture in the handouts. In turn 18, 
my method of interaction shifted from listening to, to listening for. I did not con-
sider an interpretation of Gordon’s comment in turn 17 as being that perhaps 
Mpolokeng’s group knew about the arrows but chose to ignore them. I also did not 
consider that perhaps Gordon’s group had done the same thing, which he was then 
justifying. Instead, I tried to find an everyday analogy, which might help Gordon 
and others to understand the function of arrows on the graph, by using the idea of 



82 5 Classroom Practices for Teaching and Learning Mathematical Reasoning

BookID 159557_ChapID 5_Proof# 1 - 24/09/2009 BookID 159557_ChapID 5_Proof# 1 - 24/09/2009

arrows on a road signboard. Gordon’s response to the analogy was that it was not 
the same as the graph, which I agreed with, but suggested that he could still learn 
something from how the arrows function, that it shows continuation, both on the 
road and on the graph. In this case, I was providing a resource for thinking, an anal-
ogy from everyday life.

Although this resource may have been helpful for some learners, it was limited 
in two ways. First, as with all everyday analogies, it could model only some of the 
aspects of the mathematical situation. All analogies must be limited in some way, 
and it is important for teachers to understand how they are limited. Second, and 
more importantly for this chapter, I presented this analogy in an attempt to teach 
Gordon something that he already knew. In not listening to him, I did not see that 
he probably did understand this, but was trying to present a reasoned argument for 
why Mpolokeng had made her claims. In fact, he was finding her errors; as he said 
in turn 27, she had probably not even looked at the graph. If these had indeed been 
his own group’s errors, as I suggested above, then he was clearly learning some-
thing that I did not realize. In fact, I did not even see what Gordon was doing and 
the strength of his contributions, until I did this analysis.

In the above analysis, I have shown how I used a range of teacher moves, with 
varying degrees of effectiveness. These moves show that at the beginning of the 
episode, my questioning managed to support some productive discussion and chal-
lenge of ideas. I was able to listen to the learners. However, in the second part of 
the episode, I became more directive, did not listen to the learners and tried to focus 
the learners on a particular representation of mathematical ideas. This analysis 
shows exactly how difficult it is for a teacher to maintain the practices of appropri-
ate questioning and listening, even when s/he starts out in that way. The above 
analysis also shows how a learner, Gordon, was able to hold his ground, and in 
effect challenge me on some of my ideas, particularly the analogy. This was a com-
mon practice among the learners in my class. In the next section, I illustrate some 
of their moves and practices.

Learner Moves and Practices

A second part of my analysis was to identify a number of learner moves, as well as 
their questioning and listening practices (Table 5.2). The moves that I identified 
were all similar to, and a subset of, mine. These were

Table 5.2 Learner moves

Enabling participation and communication Focussing on mathematical reasoning

Stirring productive argument Using learner contributions to move forward
Supporting and sustaining “intellectual ferment” Challenge for justification (both the teacher 

and other learners)
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The following extract shows three learners talking to each other, with very little 
input from me. They were discussing a question from Activity 2: what is similar in 
the graphs of y = x2; y = (x + 4)

;
2 and y = (x − 3)2.

 1 Mamokete: Oh, they are similar in, why I am saying they are similar in the y-values, we 
don’t have the value of q there, it shows that if it is not there, it is zero 
that value of q, that is why they are the same throughout.

 2 Mr Mogale: Questions, comments, Mapula
 3 Mapula: Which y-value, where is the y-value? For what? y-value of which point?
 4 Mamokete: For the turning point.
 5 Mapula: Only?
 6 Mamokete: What do you mean?
 7 Learners: (laugh)
 8 Mapula: It means only they are similar, You say they are similar in y-values, don’t 

you?
 9 Mamokete: Yes
10 Mapula: So, I am asking that, you are implying that it’s y-value is zero?
11 Mamokete: Yes
12 Mapula: For the turning point?
13 Mamokete: Yes
14 Mapula: Oh, what about there, our y-value is not the same
15 Mamokete: The other y-value?
16 Mapula: For the other points (inaudible) on this graph, that lie on the graph, the one 

on the graph, are they not the same? (she is pointing in the sheet)
17 Mamokete: They are the same, these graphs move to left and right, so there is no way 

that they cannot be the same
18 Mapula: Oh.
19 Mr Mogale: Do you understand her question?
20 Mamokete: Yes
21 Mr Mogale: What is she saying?
22 Mamokete: She says I am implying that at the other points, beside the turning point, 

the y-value is not the same, and I said they are the same (Aganang 
raises hand)

23 Mr Mogale: Mm
24 Aganang: But that other time you said that since there is no q, it means then that the 

y-value is zero, but on the other points (she is pointing on the board)
25 Mamokete: (Interrupts Aganang) We are talking about the turning point, I am talking 

about the turning point

In her initial questions, Mapula was pushing Mamokete to be specific about which 
points she was claiming had the same y-values. Initially, Mamokete was referring 
to the turning points only; she spoke about the q value being zero in all three graphs 
and in line 4, she explicitly said she was talking about the turning points. However, 
through Mapula’s challenges for justification, particularly line 16, Mamokete 
seemed to shift her view, saying that since the graphs shifted horizontally, all the 
y-values (presumably of corresponding points) would stay the same. This indicates 
a shift in her thinking, made through the conversation. So, it seems that Mapula was 
able to use Mamokete’s contribution to move the discussion forward.
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However, when Mamokete was further challenged by Aganang, that she was 
contradicting an earlier point, it seemed that she might shift back to an earlier posi-
tion. Such shifting of positions is characteristic of genuine dialogue and suggests 
that the learner is thinking through her ideas far more than a learner who tries to 
provide an answer that she thinks the teacher wants to hear. Through this interac-
tion, the girls were exploring the nature of the graphs and their relationships to the 
equations. They were also stirring productive argument and supporting and sus-
taining intellectual ferment. They took seriously the roles of asking and answering 
questions to clarify each other’s thinking and were taking up each other’s ideas.

I took only three turns in this exchange (lines 2, 19, and 23), which is very 
unusual in mathematics classrooms, although there are quite a few places in my 
lessons where this happens. My three turns did not make any substantial mathemat-
ical contributions, but rather were directed at getting learners to talk and listen to 
each other. The first opened the floor for contributions, while the second and the 
third intervened to add to the learner’s voice. In line 19, I asked Mamokete whether 
she understood Mapula’s question, indicating its importance and in line 23, I sup-
ported her to repeat the point that she had learned through the conversation. This, 
then, allowed Aganang to come in, suggesting a contradiction with Mamokete’s 
earlier position.

The above analysis shows that the learners had internalized and could use some 
of my moves and practices. They listened to each other, challenged each other, and 
supported strong argument and justification of ideas, with the support from me. 
This is in line with Vygotsky’s (1978) ideas that learners can and will internalize 
their teacher’s ways of talking and interacting. It also supports a notion of com-
munity of practice (Lave and Wenger 1991), showing that the learners can interact 
with each other in ways that support the development of mathematical practices.

Conclusions and Implications

In this study, I have identified a range of practices and moves that I made as I 
shifted my teaching in relation to the new curriculum. I have shown that by engag-
ing regularly in these practices and moves, learners also internalize them and begin 
to use them. Thus, they become classroom practices, engaged in by learners and the 
teacher as a community. I have also shown how at times I was unsuccessful in shift-
ing my practices and became more directive. This was evident to me only on analy-
sis of my teaching and suggests that this kind of action research can suggest how 
to improve one’s practices. Shifting one’s teaching is a process that needs refining 
over time (see also Slonimsky and Brodie 2006). Through discussions with other 
people involved in the project, my teaching went through some positive changes, 
directed towards allowing learners to think and reason mathematically. I am still in 
the process of developing my approach to maximize learner involvement in the 
teaching and learning of mathematics. In doing so, I recognize that there will 
always be aspects of previous practices that remain in my new practices, not 
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everything that we used to do was problematic and it is not possible to transform 
one’s teaching into something completely different (Brodie 2007a, 2008).

This study illuminates some important general aspects with regard to teaching 
and learning mathematics. Teaching a mathematical topic does not necessarily 
require of teachers to first give an introduction and show learners how to do a par-
ticular task. Rather, giving learners a choice to do the task first and then discussing 
it is a useful approach, as my study shows. My study also shows that communica-
tion plays a very important role in supporting learners to explore mathematical 
ideas. An environment that allows learners to communicate about mathematics can 
be created in order to give learners the opportunity to think and reason about what 
they are doing, thus making sense of mathematics.

It is therefore necessary for us as teachers to give every learner the chance to 
present their ideas, as well as allow them to convince us of their thinking. We will 
not perfect this process, in one go, but with time may develop it as part of our practices, 
of questioning and listening to learners. This study has helped to convince me, and 
I hope will convince you that supporting learners to think and talk about mathe-
matics will go a long way in helping them to make sense of mathematics.
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Kilpatrick et al. (2001, p. 116) describe a composite, comprehensive view of successful 
mathematics learning and what mathematical proficiency means, in terms of five 
interwoven and interdependent strands. The strands are conceptual understanding 
(CU), which entails comprehension of mathematical concepts, operations, and rela-
tions; procedural fluency (PF), involving skill in carrying out procedures flexibly, 
accurately, efficiently, and appropriately; strategic competence (SC), which is the 
ability to formulate, represent, and solve mathematical problems; adaptive reasoning 
(AR), which is the capacity for logical thought, reflection, explanation, and justifi-
cation; and productive disposition (PD), a habitual inclination to see mathematics 
as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s 
own ability to come to know mathematics.

Kilpatrick et al. (2001) argue that mathematical proficiency cannot be achieved 
by focusing on one or two of the strands but that development across all five strands 
raises the standard of mathematical proficiency, because the strands interact and 
reinforce each other. The authors suggest, “students who have opportunities to 
develop all strands of proficiency are more likely to become truly competent at 
each” (Kilpatrick et al. 2001, p. 144). Therefore, teachers need to structure class-
room activities so that all five strands are emphasised and synchronised.

The new national curriculum for South Africa resonates with this notion of pro-
ficiency and mentions elements of each of the strands in its outcomes for mathe-
matics (Department of Education 2003). Since it is written in the language of 
outcomes, it emphasizes processes such as efficient calculation (procedural flu-
ency), creative problem solving in both mathematical and real-world contexts 
(strategic competence), using mathematics to understand the world (strategic com-
petence), and logical reasoning and justification (adaptive reasoning). It also 
emphasizes the importance of deeper understanding of mathematical ideas (con-
ceptual understanding) and beliefs that we can make sense of mathematics (produc-
tive disposition). A curriculum that emphasizes the five strands is an important first 
step in teaching mathematical reasoning. However, the intended curriculum often 
does not become the enacted curriculum for a variety of reasons. Sometimes, teachers 
don’t fully understand the new curriculum (Chisholm et al. 2000), or conditions 
in classrooms make it difficult for teachers and learners to enact the policy.  

Chapter 6
Teaching Mathematical Reasoning  
with the Five Strands
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My focus in this chapter is on the extent to which I could include the five strands 
in a series of lessons with my grade 10 class.

A Social-Constructivist Framework

My theoretical assumptions are that learners actively construct or create their own 
knowledge, and that their ability to do so is enhanced when they work together and 
communicate their understandings. Hatano (1996) argues that although knowledge 
can be transmitted from teacher to learner, for the learner to make it his or her own 
always requires interpretation. He argues that “active humans almost always try to 
interpret and enrich what is transmitted, in other words, to supplement it by con-
struction” (Hatano 1996, p. 200). This interpretation and construction should 
restructure the learner’s existing knowledge into better-organized knowledge. So 
learning is never only about adding new information, but about integrating this 
information with the learner’s existing knowledge so that it becomes reorganized 
and more powerful.

Vygotsky (1978) argued that a learner’s restructuring comes about not just as a 
result of his or her own internal processes and abilities, but is also indicative of the 
communication between teacher and learner. His theory investigates the construc-
tion of knowledge as a joint achievement between teachers and learners. Drawing 
on Vygotsky, Mercer (1995) recognizes specifically that “people construct knowl-
edge together” (p. 67) and that social interaction strongly constrains learners’ con-
structions. Bruner uses the concept of “scaffolding” to highlight how one person 
can be closely involved in someone else’s learning, through supporting his or her 
nascent ideas. Scaffolding “represents both teacher and learner as active partici-
pants in the construction of knowledge” (Mercer 1995, p. 74).

For this research, a social-constructivist framework required a careful selection 
of tasks and planning of their implementation in the classroom. It was essential for 
the learners to communicate their thought processes (Mercer 1995) through, firstly, 
speaking, then in writing and then in looking at each other’s work and in evaluating 
it. To afford every learner the opportunity to communicate, they needed to work 
together in small groups of three or four, so that they could discuss and reason 
informally about their various ideas. My function as the teacher was to assist in this 
joint venture by monitoring group progress and providing appropriate scaffolding. 
I needed to be aware of maintaining the integrity and complexity of the tasks, so 
that the mathematical reasoning processes in which the learners were engaging 
were not diluted by my giving too much, or not enough, help (Stein et al. 2000). 
Furthermore, I needed to ensure that adequate time was allocated for both small 
group and whole class discussions. The purpose of the whole class, teacher-led 
discussion was to share and develop further the achievements and difficulties in all 
the groups so that all the learners could achieve a high level of knowledge construc-
tion and hence, mathematical proficiency.
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Mathematical Practices and Proficiency

Kilpatrick et al. (2001) argue that traditionally schools in the United States have 
emphasized procedural understanding at the expense of the other strands. This is also 
the case in South African schools (Brodie 2004a; Taylor and Vinjevold 1999), 
although some teachers do try to teach for conceptual understanding as well. The 
over-emphasis on procedural fluency has led to the mathematics reform movement in 
the United States and influenced the new curriculum in South Africa. The mathematics 
reform movement emphasizes that students should develop “deep and interconnected 
understandings of mathematical concepts, procedures and principles, not simply an 
ability to memorize formulas and apply procedures” (Stein et al. 1996, p. 456). Stein 
et al. also say that mathematical understanding occurs when students “engage in the 
process of mathematical thinking” and “doing what makers and users of mathematics 
do: framing and solving problems, looking for patterns, making conjectures, examining 
constraints, making inferences from data, abstracting, inventing, explaining, justifying, 
challenging, and so on” (Stein et al. 1996, p. 456).

Ball (2003) refers to what people who learn and use mathematics successfully 
do as mathematical practices, for example, using symbolic notation effectively, 
making generalizations, and justifying claims. He says that knowledge of topics, 
concepts, and procedures is central to knowing mathematics but is not sufficient to 
use mathematics effectively. Using “mathematics involves doing a series of skillful 
things, depending on the problem” (p. 30). These practices are crucial to mathemat-
ical proficiency, and they further suggest that if we could understand these prac-
tices, and how they are learned, teachers would be able to facilitate significant 
improvement in learners’ achievement in mathematics. This could allow us to 
address unequal acquisition of mathematical proficiency in school. In terms of the 
five strands, the two that are most closely related to mathematical practices are 
strategic competence and adaptive reasoning.

Strategic competence refers to the ability to formulate, represent, and solve math-
ematical problems. Strategic competence does not develop in a vacuum; it requires 
a rich background of knowledge and intuition (Stewart, in foreword to Polya 
1994/1990). Schoenfeld concurs when he says that any “mathematical problem-
solving performance is built on a foundation of basic mathematical knowledge” 
(Schoenfeld 1985, p. 12). In terms of the strands, this would be conceptual under-
standing and procedural fluency. Schoenfeld also argues that to be effective problem-
solvers, students need to be “familiar with a broad range of problem-solving 
strategies known as heuristics” (Schoenfeld 1985, p. 12). These are the rules of 
thumb for effective problem solving and broad strategies that help a student make 
progress on unfamiliar or difficult problems.

Adaptive reasoning in mathematics is about proving results, but it is also much 
wider. It involves the pursuit of what is true, usually leading to the formulation of 
a conjecture, testing it, and then trying to produce an argument that the conjecture 
is true. Extensive empirical or quasi-empirical testing of the conjecture may be 
required to verify that it is true, and would probably also involve a search for 
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counter-examples (Lakatos 1976). This is where we see strategic competence work-
ing together with adaptive reasoning. Formulating an argument is similar to solving 
a problem and is required to convince ourselves and others of the truth of a conjec-
ture (Open University 1997). Adaptive mathematical reasoning also can involve a 
search for why the conjecture or proposition is true. De Villiers (1990) argues that 
conviction that a statement is true very often provides the motivation for finding a 
proof. The purpose of such a proof is then to explain why the conjecture is true.

Ball (2003) hypothesizes that mathematical practices need to be deliberately 
cultivated and developed if they are to be acquired by students. Stein et al. (1996) 
look at what types of instructional environment might produce the desired mathe-
matical thinking outcomes in learners. They suggest that students need to be 
exposed to “meaningful and worthwhile mathematical tasks” and that they are 
allowed sufficient time and given encouragement to explore their own mathemati-
cal ideas (Stein et al. 1996, p. 456). I believe that in this kind of classroom environ-
ment learners would develop the productive disposition strand of mathematical 
proficiency where they would “see themselves as effective learners and doers of 
mathematics” (Kilpatrick et al. 2001, p. 142). They would see mathematics as “use-
ful and worthwhile” and would believe in their own ability to make sense of the 
subject (Kilpatrick et al. 2001, p. 131).

My Classroom and the Tasks

My pseudonym in this study is Ms. King. I conducted this case study in my grade 10 
class, which was the second ability group out of a total of seven classes, so all 27 learn-
ers had achieved above average grades for mathematics. My school is an extremely 
well-resourced private boys school, with a teacher–learner ratio of 1:13 (see Chap. 2 
for more details). Twenty of the boys in my Grade 10 class spoke English as their first 
language; the others spoke Afrikaans, Chinese or Japanese. There were no black learn-
ers in this particular class, although there are a few in the school.

I worked together with a colleague in this project to develop a set of tasks for 
our Grade 10 learners. I worked on these tasks with the class over approximately 
four lessons. The lessons were videotaped with a focus on what learners were say-
ing as well as teacher–learner interactions. Unfortunately, a fifth lesson (task 5 
below) was not captured on video because of timetable changes.

Although these tasks have been analysed in Chap. 2 in terms of cognitive 
demands, I present an analysis here to show how they could promote all five of 
Kilpatrick’s strands. In planning the tasks, my underlying premise was borrowed 
from Stein et al., which stated that students need to “be provided with opportunities, 
encouragement, and assistance to engage in thinking, reasoning, and sense-making 
in the mathematics classroom” (1996, p. 457). I also needed to be aware of the cog-
nitive demands of the tasks in order to match the tasks with my goals. In addition, I 
needed to scaffold the tasks appropriately, both in how I set them up, and in how I 
helped the learners to achieve the tasks without narrowing the task demands.
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Task 1
Consider the following conjecture: x2 + 1 can never be 0.
(a)  Use a logical argument to convince someone else why the conjecture is either true or 

false for any real value of x.
(b) What is the smallest value of x2 + 1? Explain how you know.

I expected that the learners would begin part (a) of this task by substituting positive 
numerical values for x. This would develop their conceptual understanding and proce-
dural fluency when working with the concept of x2 and then with the operation of x2 + 1. 
They would need to execute this procedure accurately and appropriately for a represen-
tative sample of real numbers including fractions, negative numbers, and possibly 
irrationals. If they could not get to this stage where they applied concepts and performed 
procedures effectively, the rest of the exercise would be in jeopardy. This is one of the 
reasons why I chose groups for this work, as I believed that the learners could support 
each other around issues of procedural fluency and conceptual understanding.  
I expected them to be able to cope with the task at this level, even with negative number 
substitution, but perhaps with a little discussion and argument within their groups.

Through empirical testing, I expected the learners to convince themselves that 
the conjecture is true for any real value of x. They would need to use strategic com-
petence and adaptive reasoning to produce a logical argument to convince someone 
else why the conjecture is true for all real numbers. I was hoping that some learners 
might produce a convincing algebraic argument. In part (b), the strategic compe-
tence and adaptive reasoning strands would be emphasised again. Learners would 
need to draw on their empirical testing and logical argument in part (a) to conclude 
that the smallest value is 1.

In terms of productive disposition, I hoped that the learners would work diligently 
at the task because it is interesting mathematically. Since this is a higher-level class, 
they do show interest in mathematical concepts, and I thought that the idea that you 
can have an expression that will always be positive would arouse their curiosity.

Task 2
(a)  In the following list, the numbers on the right are related to those on the left: 

1 1

2 4

3 9

4 16

x y

→
→
→
→

(b) Can you find the rule that relates these numbers? Describe this rule in words.
(c) Can you write this rule mathematically?
(d)  Ask your teacher to show you some other ways of writing this rule in mathematical 

notation. Then, describe in words what each of the different notations means.

This task was intended to be an introduction to functions and function notation.  
I chose this approach because it introduces the concept with the strategic compe-
tence strand and the ability to represent and solve a mathematical problem. I prefer 
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this to the more frequently used approach wherein the concept comes first, then 
the procedure, and then the problem solving questions. In this way, I hoped to give 
the learners a glimpse of why we needed the concepts and procedures that were 
about to follow. In part (d), I wanted to introduce function notation as an alterna-
tive way to write y = x2, and asked the learners to compare the different notations 
to support their understanding that there are different ways of writing the same 
concept in mathematics. To solve this task, learners would need to use strategic 
competence, conceptual understanding, and productive disposition, the latter 
because it is an unusual task for them and they would need to stay focused and see 
its importance.

Task 3

In order to talk about the above rule, we need to give it a name.  We sometimes call it f, and we
write it mathematically as f (x ) =x2.  This means that when we apply the rule f to the number x , we
get x2. When we write f (2), we mean "apply the rule f to the number 2".
So f (2) = 22 = 4, Similarly,f (3) = 32 = 9.           

Work out the following:

(i) f (4) =                (ii) f (5) =                 (iii) f (√5) =               (iv) f (-2) =
(v) f (-1) =               (vi) f (a) =                (vii) f (a + h) =          (viii) f (x + 1) =

What do you think f (a + h) means? 

Definition of a function

We are now ready for a working definition of a function:

"A function f is a rule
that assigns to each element x in a set A

exactly one element, called f (x ), in a set B.     

Explain, in your own words, what you understand a function to be. Draw a picture if this
will help you to explain.  

N.B.
We often represent functions with the letters: f, g, h.  The letter in brackets after the f, g, h refers to
the variable.  We could write f (x ) = 2x  + 1, but would not write g(x ) = z + 3, as the variables on
the left and right hand sides do not correspond.

Task 3 continues with the learners reading and working out how to use function 
notation correctly and efficiently. They are then expected to practise using the 
notation and obtaining the correct answers, even though their level of understanding 
of what their answers mean is probably superficial. So at this stage, they are devel-
oping their skill to carry out the procedures accurately, working towards proce-
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dural fluency and conceptual understanding. The question “What do you think 
f(a + h) means?” was inserted not to get a precise answer, but rather to encourage 
the learners to think about what their answers might mean and to have them think 
about what a function is to prepare them for the formal definition of a function that 
followed.

Task 4
If g(x) = 2x2 + 3x – 1, evaluate the following:
(a) g(1)
(b) g(–1)
(c) g(2)
(d) g(–2)
(e) g(a)
(f) g(–a)
(g) g(a + h)
(h) g(x + h) – g(x)

h

I expected that the learners would start grasping the function concept and I wanted 
them to work with another example to consolidate their developing understanding. 
Question 4h was inserted to expose them to more challenging procedural work and 
to encourage them to work accurately.

Task 5
Consider the following statement: “f(n) = n2 – n + 11 is a prime number for all natural 

numbers n.”
(a) List the first 5 natural numbers.
(b) Determine f(1), f(2), f(3), f(4), etc.
(c) Is the above statement true? Does f(n) always generate a prime number?
(d) Try to justify/prove your answer in (c) above.

I chose this task because it demonstrates why empirical “proof” is not proof at all. 
It also shows that only one counter-example is needed to show that a statement is 
false. Part (a) provides the background for the task in reminding learners what natu-
ral numbers are. Part (b) reinforces procedures and shows a need for the function 
notation that they have just mastered. Perhaps this need is slightly contrived 
because the statement could have been written without the “f(n),” but I think that at 
grade 10 level, the f(n) allows for a neat way of writing up their results. Part (c) 
promotes strategic competence as it requires learners to solve a mathematical prob-
lem, but it is in part (d) that the real mathematical reasoning is expected to occur. 
Learners are expected to reason adaptively as they need to explain mathematically 
why the formula fails. I hoped that this task would help them to see mathematics 
as sensible, useful worthwhile, and sometimes surprising, and so develop their 
productive disposition.
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Initial Analysis

Classroom Interaction

My initial analysis of the videotapes was done by means of a coding system where 
I observed the video-recording of the lessons and marked off, at 2-min intervals, 
which of the first four strands (procedural fluency, conceptual understanding, stra-
tegic competence, and adaptive reasoning) was most evident. In order to help me to 
recognize the different strands, I expanded the definitions and listed, in detail, fur-
ther descriptions of exactly what Kilpatrick et al. (2001) meant by the five strands. 
For example, in the conceptual understanding strand, the ability to explain the 
method to each other and correct it if necessary helped me to see Kilpatrick’s et al.'s 
definition of conceptual understanding in practice. I excluded the productive dispo-
sition strand from my coding because it involves an attitude rather than an action, 
and this was difficult to infer from the videotapes.

In some of the 2-min intervals, more than one strand was evident. In such cases, 
I chose the strand that dominated. Another small problem that arose with the coding 
was that the strands might imply only correct contributions to mathematical profi-
ciency. For instance, how would one classify learners making conceptual errors? 
Learners may be grappling with misconceptions and advancing their conceptual 
understanding even though they are making an error. I decided to include both cor-
rect and incorrect ideas in each strand if there was evidence that the learners were 
in fact grappling with what the strand requires.

I also experienced some difficulty with certain classifications. For example, in one 
case, I was unsure initially whether the difficulty the learners were having should be 
classified as conceptual or procedural. To help to resolve this problem, I conferred 
with the other members of the project team. We watched the relevant video-clip and 
reached a consensus that the learners were grappling with conceptual understanding. 
They knew how to execute both of the procedures correctly, namely  − (1)2 = −1 and 
( − 1)2 = 1, but they were confused about which one represented x2 when x = −1. This 
consultation process gives increased reliability and validity to my study.

In order to establish the extent to which the four strands were present in the four 
lessons, I listed, on a spreadsheet, the two-minute time intervals for all the lessons. 
In the next column, I marked off the strand that dominated each time interval. This 
allowed me to determine the extent to which the strands had occurred in each lesson 
as well as over all the lessons.

The final breakdown of the four strands over the four lessons, given as a percent-
age of the total time is as follows:

Table 6.1 Strands in classroom activities

Conceptual understanding  41%
Procedural fluency  23%
Strategic competence  18%
Adaptive reasoning  18%
Total 100%
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These results indicate that with carefully selected tasks and appropriate teacher 
scaffolding and interaction, it is possible to teach with all the strands working 
together. It is important to note that since these percentages are a quantification of 
qualitative data, the actual numbers are not that important, but rather the general 
trend. It is interesting to observe that the conceptual understanding category scored 
the highest. I was pleased that it was not procedural fluency because I believe that 
we need to move away from procedures dominating our mathematics teaching and 
learning. Conceptual understanding occurred approximately twice as frequently as 
the other strands, which were of a similar magnitude to each other. I was a little 
disappointed that strategic competence and adaptive reasoning did not feature more 
in my lessons, but they were present, which is important. As mentioned earlier, task 
5 was not included in this analysis. If it had been, the strategic competence and adap-
tive reasoning strands may have been higher, because the final work that the learners 
handed in for task 5 included evidence of these two strands (discussed below).

The analysis of the video gave an indication of how much time was spent in 
class on the various strands. The next stage was to analyze the work handed in by 
the learners for evidence of the strands.

Learners’ Work

For this analysis, I chose only tasks 1 and 5 as these were the two tasks that were 
intended to include all 5 strands. I took the work submitted by each learner and 
indicated which of the first four strands (excluding productive disposition) was 
evident in the written work. I argue that when learners used all four strands well, 
productive disposition would also be present. A summary of the results of the 
whole class for both tasks 1 and 5 follows.

In task 1, 14 (58%) of learners used the first four strands (conceptual understanding, 
procedural fluency, strategic competence, and adaptive reasoning) and completed the 
task fairly successfully. I believe that these learners also exhibited a productive dis-
position. A further 6 learners (25%) used all 4 strands to some extent, but were not 
completely successful in writing up the task. These learners showed some productive 
disposition characteristics because they worked steadily at the task but need more prac-
tice to develop their skill in writing down their answers. The remaining 17% did not use 
all 4 strands and did not complete the task successfully. Their work tended to show a 
lack of perseverance, so I have categorised them as not having productive disposition.

In task 5, 16 (73%) of learners used all 4 strands and completed the task fairly 
successfully. A further 5 (23%) used the 4 strands to some extent, but were not 
completely successful in writing up the task. The remaining one learner (4%) did 
not use all 4 strands and did not complete the task successfully. The results are 
summarized in Table 6.2 below.

It is interesting to observe that where learners were less successful in writing up 
the tasks, it was mostly because the strategic competence and/or adaptive reasoning 
strands needed more attention; generally their concepts and procedures were cor-
rect. However, the learners whose concepts and procedures were incorrect failed 
completely when it came to the strategic competence and adaptive reasoning.
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It is also noteworthy that there was a general improvement from task 1 to task 5. 
This could have been because task 5 is easier, but on face value, it is a more dif-
ficult task, and it took the learners longer to complete the task. I believe that the 
learners improved because the whole class report-back and discussion on task 1 
made them more aware of what was required in terms of mathematical reasoning 
and enabled them to understand the strategic competence and adaptive reasoning 
practices better.

Having given a quantitative overview of the strands in the lesson and the learn-
ers work, in the next section, I provide more detailed analyses of particular exam-
ples. This serves to illustrate how I made my classification to get to the above tables 
and also to illuminate the strands in practice more clearly for the reader.

The Five Strands in the Lesson

Procedural Fluency

The following extract comes from a teacher-led whole class discussion. It happened 
in the context of a question as to how to represent a negative number algebraically. 
Some learners had written  − x, and I had spoken with them about having to consider 
that the value of x could be either positive or negative. To consolidate this concept, 
I decided to remind them of previous work on representing even and odd numbers 
algebraically. The learners would have covered this work before in both grade 8 and 9, 
and this was merely revision.

Ms King: If I want to represent an even number, how would I do it in algebra?
Learners: Two x
Ms King: Yes, Evan
Evan: Two x
Ms King: Two x, Okay. And an odd number Evan?
Evan: Two x minus one
Ms King: Or
Evan: Or add one, add one
Ms King: Okay. Now, let’s, we’ve thrown this x in, what does x mean?
Learners: Any number, any real number

Table 6.2 Evidence of strands in learners’ work

Task 1 Task 5

Number Percent Number Percent

Comprehensive use of all 5 
strands

14  58 16  73

Less comprehensive use of all 
5 strands

 6  25  5  23

Did not use all 5 strands  4  17  1  4
Total 24 100 22 100
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Ms King: x can be what?
Learners: Any number, any real number
Ms King: Uh, can it
Learner: No that was a mistake
Ms King: For, for, for...Let’s talk about even numbers. For even numbers, what can x be? can 

x be minus a half?
Learners: No, Yes
Ms King: Can x be point three?
Learners: No
Ms King: What can x be?
Learners: Natural numbers
Ms King: x can be a natural number; x is, and what are natural numbers Roelf?
Roelf: One, two, three
Ms King: x can be one, two, three, um...and here, same thing here. x is a natural number. So, 

just be careful. um, if you introduce an x, please define your x, say what your x 
means. In our old work, task 1, you were given x and knew what it meant. If you 
introduce an x, please define it; otherwise, I don’t know what you talking about.

The above represents an example of procedural fluency because I was reminding 
the class how to represent even and odd numbers algebraically. Evan showed pro-
cedural fluency and/or conceptual understanding in reproducing the expressions. 
He could have remembered them from previous years or could have worked them 
out, based on his understanding of odd and even numbers. However, when the 
learners said that x could be any real number, I could see that they did not fully 
understand why the expressions represented even and odd numbers. Even when 
they finally said x must be a natural number, they might have been guessing, based 
on how they interpreted my question about x being  − 1/2. So there is some evidence 
that the learners did not understand the expressions but could repeat them.

Conceptual Understanding

The extract below shows a group of four learners working on task 1 wherein they 
had to agree or disagree with the conjecture that x2 + 1 can never be zero. This group 
was struggling with how to represent x2 when x = −1 and were arguing whether the 
minus sign should be inside or outside the brackets, i.e., whether x2 = (−1)2 or  − (1)2. 
Learners who were arguing for the latter were then claiming that x2 + 1 can be zero, 
because x2 could be  − 1. I came over to see what they were doing and to try to scaf-
fold their thinking.

Ms King: So when is it (the statement, x2 + 1) false?
Roland: When it’s (he means x) minus one
Jimmy: No, when it’s minus bracket one bracket
Roland: No
Jimmy: If you put that in a calculator
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Roland: If x is minus one
Ms King: If x is minus one
Roland: But wouldn’t that put it in a bracket automatically?
Jimmy: No, not on a calculator
Roland: Because if you take, like, x is equal to two squared, if you put that in a bracket as x. 

So you’ll put the minus one in a bracket as x. So it won’t work
Randall: You can say minus one times minus one
Roland: So if you say x is equal to minus one, it will be minus one there…
Jimmy: No, x equals negative bracket one
Roland: You have to put the brackets in because you have to put the whole term of x in
Jimmy: x is equal to negative bracket one, like that
Randall: You can’t say that because then…
Roland: No, you can’t say that
Randall: Then the whole thing would be negative x squared
Roland: Jimmy, you can’t say that. You have to put the whole thing inside brackets because 

the whole thing represents x. So it’s (writes (−1)2)
Randall: Otherwise, the whole thing would be  − x2 (writes)
Ms King: So when is it (the statement, x2 + 1) false?
Roland: When it’s (he means x) minus one
Jimmy: So if you put the whole thing in brackets and square it, it’s going to be positive one

Roland and Randall were disagreeing with Jimmy as to how to represent x2 when 
x = −1. Jimmy was working on his calculator, which was using algebraic logic and 
could not see the limitations of his representations. As discussed above, the learn-
ers’ procedural fluency is not at issue here because they were all able to multiply 
both (−1)2 and  − (1)2 quickly and efficiently. Their discussion was about which 
representation to use in this context, which is about conceptual understanding and 
perhaps some strategic competence. This task generated a lot of similar conceptual 
discussion in all the groups.

Strategic Competence

The following extract comes from the same group working on task 5.  
Is f(n) = n2 − n + 11 prime for all natural numbers n?

Randall: Minus four squared is sixteen, minus minus four is twenty, plus eleven is thirty-one 
and thirty-one is a prime number.Jimmy: So we’ve got that one right. Okay, let’s try minus one. 
If I do minus one, the answer I get is eleven. If I do minus three, the answer I get is twenty-
three.
Randall: But negative numbers aren’t natural numbers.
Jimmy: Yes, but we’re trying to work out if it still works or not for non-natural numbers.
Roland: It does work for negative numbers.
Jimmy: Yes, but that’s only one. Try minus one.
Roland: We’ve tried many. We’ve tried minus one, minus four. We’ve tried…
Rex: But why? We have to justify why.



99The Five Strands in the Learners’ Work

BookID 159557_ChapID 6_Proof# 1 - 24/09/2009

I categorised this extract as strategic competence because the learners were finding 
ways to understand and solve the problem. In their attempts to find an answer, they 
were going beyond the limits of the problem as stated. This showed a flexible 
approach to problem solving. However, they had to remind themselves to come 
back to the problem constraints, and as we see in the last line, Rex was taking their 
problem solving to the next stage of adaptive reasoning.

Adaptive Reasoning

After working on task 1 (x2 + 1 can never equal 0) for about 10 min, a group called 
me over:

Michael: Ma’am, it’s simple ma’am.Ms King: Is it simple?
Michael: x2 can never equal a negative number.
Ms King: Why?
Michael: Because if you square a number, if there are two negatives, minus minus, positive.  

If it’s positive, it will be a positive.
Ms King: Yes, so…
Michael: It’s always going to be a positive number. You’re going to add something. It can never 

be zero.

I classified this incident in the adaptive reasoning category because Michael 
justified his conclusion using deductive reasoning. He worked from the defini-
tion of a square number and presented an explanatory argument as to why the 
expression must be greater than zero. His argument may not be complete in that 
he did not necessarily consider x = 0, but he certainly had considered negative 
numbers. He was clearly convinced that he was correct and had managed to 
convince his group mates.

The Five Strands in the Learners’ Work

The following example shows Jimmy’s work where the first four strands were evi-
dent in task 1.

 (a) x2 + 1 can never be zero.

 This statement is true.
 For x2 + 1 = 0, x2 must be equal to  − 1, but the square of any number can never be  

negative. Therefore, x2 + 1 can never be zero.
 (b) The smallest value will be 1.
 Since x2 can never be a negative number, it has to be 0, or a positive number. 0 is 

always smaller than positive numbers. Therefore, 0 + 1 = 1 is the smallest value for 
x2 + 1, since 02 = 0.
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We can see evidence of Jimmy’s conceptual understanding of the idea of squaring a 
negative number. Although his procedural fluency is not fully demonstrated, it is pos-
sible to infer that he would have needed it in order to calculate values for the expres-
sion. This is somewhat evident in part (b). From my analysis of the video (see above), 
I know that Jimmy initially made a conceptual error in relation to the difference 
between (−1)2 and  − (1)2, but he had sorted this out by the time he wrote up his solu-
tion. He devised an appropriate solution method appropriate for the problem, showing 
strategic competence and used adaptive reasoning to provide a convincing argument.

This next task shows Clive’s final submission for task 1, which scored zero for 
work in the conceptual understanding, procedural fluency, and adaptive reasoning 
strands. There is a little strategic competence evident because Clive tried to solve 
the problem but with inadequate concepts. He was unable to reason adaptively 
because the information that he was using was based on a flawed concept.

(a) It is true or false.
True if x = any no.
but false if  − 1 isn’t in brackets.
e.g., x = 2, 22 + 1 ¹ 0
 − 12 + 1 = 0
( − 1 × 1 × 1) + 1 = 0

In response to task 5, this next example shows all the strands:

(a) 1; 2; 3; 4; 5
(b) f(1) = 12 − 1 + 11 = 11

f(2) = 22 − 2 + 11 = 13
f(3) = 32 − 3 + 11 = 17
f(4) = 42 − 4 + 11 = 23
f(5) = 52 − 5 + 11 = 31
f(11) = 112 − 11 + 11 = 121
121 is not a prime number

(c) No/false. Multiples of 11 don’t work.
(d) Natural no. are from 1… onwards. 11 is a prime number. ∴ as we see above 11 + 11 

cancel out and =n2 and n2’s factors are 1, n and n2. ∴ 3 factors = non-prime

This work showed conceptual understanding and procedural fluency because the 
learner knew what the natural numbers are and how to substitute them correctly 
using function notation. He also knew how to identify the answers as prime or not. 
He showed good strategic competence because he established that multiples of 11 
do not work. Adaptive reasoning and strategic competence were evident in part (d) 
when he justified his answer by showing that, when you substitute 11, the result is 
the square of a natural number, which can never be prime.

Conclusion

So, is it possible to teach and learn in a classroom where all five strands are empha-
sised and synchronised? The tasks were selected carefully for their potential to promote 
all of the strands, and the analysis of the lessons allowed me to conclude that they 
were effective in doing so for most of these learners for the following reasons:
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1. The videotape coding of the classroom activities indicated that in terms of time, 
all strands were in fact present to a significant extent, although I would have 
preferred more strategic competence and adaptive reasoning to be evident in the 
classroom.

2. My analysis of the learners’ work indicated that approximately 75% of learners 
used all five strands to some extent in task 1, and approximately 95% used all the 
strands in task 5.

3. I attributed the improvement in quality of work submitted to the fact that the 
learners had acquired a better understanding of what was required. They achieved 
this by participating in whole-class, teacher-led discussions, which enhanced 
their ability to work with all the strands.

The results of this research may not be generalizable to all grade 10 classes 
because this particular class was above average in terms of mathematical achieve-
ment and was from a well-resourced school. However, from the positive results of 
this small research, I am encouraged to experiment further with different classes as 
I now believe more strongly that it is possible to teach and learn in an environment 
where all five strands are present and reinforce each other.

If other teachers were to attempt similar research in their classes, the critical 
factors that need to be considered are that the tasks need to be cognitively demand-
ing in terms of the kind and level of thinking required (Stein et al. 2000). Learners 
should also be exposed to such tasks on a regular basis in order to develop strategic 
competence, adaptive reasoning, and productive disposition more fully. Based on 
my experiences, I would recommend that teachers take the plunge and begin to 
teach in this way. It is not easy, but careful thought and planning can help, and it is 
very rewarding to feel that you are teaching in ways that are recommended, not only 
by the new curriculum in South Africa, but in other countries as well.
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Mathematics is generally perceived to be a difficult subject and as Ball (2003) 
states there is a “cultural belief that only some people have what it takes to learn 
mathematics” (p. 34). My motivation for researching mathematical thinking and 
reasoning stems from wanting to change this perception among my learners. From 
my reading, I am encouraged in thinking that this perception can be changed. 
Lampert (2001) and Heaton (2000) argue that changes in pedagogy towards teach-
ing that promotes mathematical reasoning can afford all learners the opportunity to 
increase their thinking and reasoning abilities, and change the perception that only 
the selected few can do mathematics.

In my teaching, I have been frustrated by the silence that I am often greeted with 
when I ask learners to explain their reasoning. Learners, and even parents, are of 
the opinion that it is the teacher’s job to teach and all they have to do is to copy 
notes and complete exercises. When trying to encourage justification and explana-
tion, learners often resort to the ever present “Sir, just tell us”. Ball et al. argue, 
“discouraged teachers may conclude that these students cannot do more complex 
work and may return to simpler tasks” (2003, p. 35). Therefore, they argue that “a 
focus on the practices for learning supply more learning resources needed by teach-
ers and learners to engage in more ambitious curricula and working toward more 
complex goals” (2003, p. 35).

With the dawning of a new curriculum in mathematics for Grades 10–12 
(Department of Education 2003), teachers in South Africa are encouraged to adopt 
new approaches to teaching and learning. The National Curriculum Statement 
envisages that learners need to work together in solving challenging problems. This 
will provide them with an important basis for acquiring a wide range of personal 
skills for the future by promoting creative thinking, improving communication and 
co-operation skills, and strengthening learners’ ability to acquire new knowledge.

This study sheds some light on the pedagogic demands, challenges, and possi-
bilities of the new curriculum. In working in an under-resourced school, I show how 
learners can be given opportunities to interact with challenging tasks, develop and 
demonstrate their reasoning skills and creative thinking, form generalizations, 
make conjectures, and justify their claims. Through an analysis of my teaching, I 
show how teachers can facilitate this process. I will also show that while it is 

Chapter 7
Teaching the Practices of Justification  
and Explanation
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 possible to achieve some success in this direction, this kind of teaching throws up 
immense challenges for teachers.

Construction and Practices

This study is informed by a constructivist theory of learning. To explain constructiv-
ism, Hatano (1996) argues, “Humans often explore tasks beyond the demands or 
requirements of problem solving and that we “try to find ‘meaning’ or a plausible 
interpretation of their observations of facts and effective procedures” (p. 61). So 
constructivism suggests that we all interpret and enrich the knowledge and experi-
ences that come from interacting with our environments, both social and physical. 
Constructivism also argues that as learners interpret new knowledge, they integrate it 
with their current knowledge and in so doing, restructure and reorganize their current 
knowledge (Hatano 1996). This means that the learner her/himself must make sense 
of new ideas; no one can do it for her/him. This is why constructivism forms a basis 
for learner-centred pedagogies (Brodie et al. 2002). At the same time, this does not 
mean that there is no role for the teacher. Hatano (1996) argues that social influences, 
including the teacher’s input, are central in supporting learners’ constructions.

The Ball (2003) defines mathematical practices as “the things that mathemati-
cians and mathematical users do” (p. 24). Examples of these practices include using 
symbolic notation, justifying claims, and making generalizations. I am particularly 
interested in the practices of justification and explanation. These two practices form 
an integral part of a constructivist perspective because as learners explain and jus-
tify, they are able to construct new meanings and build on their own and each oth-
er’s thinking. Lampert (2001, p. 64) argues that “implicit in these [the learners] 
responses is the message that students can and do give explanations, and can and 
do build on one another’s thinking”. In order for learners to build on one another’s 
thinking, new norms (McClain and Cobb 2001) need to be taught to create a class-
room culture for explanation and justification. This classroom culture should 
include learners’ tolerance and respect for others’ contributions or ideas, being 
polite within disagreement and building on each other’s contributions.

The Practices of Justification and Explanation

Davis (1988) makes a provocative statement: “Mathematics, as it appears in most 
classrooms, is a weird thing. There is virtually no mathematics in it” (p. 1). He 
observes that the mathematics taught is only a collection of rituals to manipulate 
symbols. He argues further that these rituals are meaningless and the students see 
symbols that do not make sense. Rituals like “Take all x’s to one side and the num-
bers to the other” are emphasized with no reasons given.
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Skemp (1976) distinguishes between two types of mathematical understanding: 
instrumental understanding and relational understanding. He describes relational 
understanding as “knowing both what to do and why” (Skemp 1976, p. 23), 
whereas instrumental understanding is “rules without reason” (p. 16), which 
requires “a multiplicity of rules rather than fewer principles of more general appli-
cation” (p. 19). Instrumental understanding is characterized as being “easier to 
understand, the rewards are more immediate and the right answer comes quickly” 
(p. 22). Skemp lists the following as advantages of relational mathematics: it is 
more adaptable to new tasks; it is easier to remember because it puts ideas into 
relation with each other and into a broader framework; the quest for relational 
knowledge is often a goal in and of itself; and relational knowledge is organic, i.e. 
it can create possibilities for growth of more knowledge (p. 22).

The new curriculum in South Africa encourages the development of relational 
understandings. The National Curriculum Statement (Department of Education 
2003) includes as part of its definition of mathematics that, “Knowledge in the 
mathematical sciences is constructed through the establishment of descriptive, 
numeric and symbolic relationships. Mathematics is based on observing patterns; 
with rigorous logical thinking this leads to theories of abstract relations” (p. 9). The 
argument is that learning to explain and justify mathematical reasoning supports the 
construction of relational knowledge. Davis (1988) concurs by stating that “written 
symbols on paper, together with the ever present meaningless rules will never add 
up to mathematics” (p. 2).

Kilpatrick et al. (2001) strengthen this argument with their notion of mathemat-
ical proficiency that is constituted by “five, interwoven and interdependent 
strands” (p. 116). These have been discussed in detail in the previous chapters. The 
important point for this chapter is that relational understanding, or conceptual 
understanding in Kilpatrick et al’s terms, depends on the development of justifica-
tion and explanation. My research is located in the strand described as adaptive 
reasoning, which is “the capacity to think logically about the relationships amongst 
concepts and situations” (Kilpatrick et al. 2001, p. 129). They argue that “such 
reasoning is correct and valid, stems from careful consideration of alternatives, 
and includes knowledge of how to justify the conclusions” (Kilpatrick et al. 2001, 
p. 129). Kilpatrick et al. (2001) argue that adaptive reasoning is much broader than 
formal explanation and justification, and includes intuitive and inductive reason-
ing based on pattern, analogy, and metaphor. These they describe as the “tools to 
think with” (p. 129) to aid learning.

My investigation of the mathematical practices of justification and explanation 
is also guided by the research conducted by Ball (1993). He argues that through a 
study of mathematical practices, researchers can describe what learners need to 
know and do to become mathematically proficient, for example, to symbolize, rep-
resent, justify, and explain. In order to help learners to achieve these mathematical 
practices, it is important to understand the contributions made by tasks and teacher 
intervention strategies. My interest in this project was to adapt my teaching 
approach so that learners would be presented the opportunity to justify and explain 
their mathematical claims. I also wanted to research the ability of my learners to 
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mathematically explain and justify their thinking and reasoning. Ball (2003) argued 
that teaching with an emphasis on practices can support “low-achieving learners 
who may have had less opportunity to develop these practices [to] achieve signifi-
cant gains”

The Importance of Tasks

Stein et al. (2000) state: “some tasks have the potential to engage students in com-
plex forms of thinking and reasoning while others focus on memorization or the use 
of rules or procedures” (p. 14). They argue that if the goal for learning is to increase 
the ability to think, reason, and solve problems, then students need to start with 
cognitively challenging tasks that have the potential to engage students in complex 
forms of thinking. Boaler (1997), in her research in two schools, Amber Hill and 
Phoenix Park, illustrated the effects different tasks had on students’ ability to think, 
reason, and solve problems. While the students at Amber Hill engaged in “cue 
based learning”, those at Phoenix Park were exposed to “open ended tasks”, which 
supported the construction of flexible knowledge. Boaler (1997) confirms Stein 
et al’s. (2000) argument , that focusing on tasks that support procedures only, with-
out connections to underlying concepts and meanings, can lead to a limited under-
standing of what mathematics is and how one does it. Boaler (1997) argues:

Although the Amber Hill students spent more time on tasks in lessons and completed a lot 
of text book work, it was the students of Phoenix Park who were able to use mathematics 
in a range of settings” (Boaler 1997, p. 116)

Stein et al. (2000) classify tasks based on the kind of thinking they demand of 
students, i.e. the cognitive demand of the task. Tasks that require a mathematical 
explanation or justification are described as procedures with connections tasks. 
Tasks, for which no pathway is suggested, i.e. “there is no overarching procedure 
or rule that can be applied for solving the entire problem and the sequence of neces-
sary steps is unspecified” (p. 15) are classified as doing mathematics tasks. These 
two kinds of tasks are high-level tasks (see Chap. 3 for more detail). These tasks 
tend to be the ones that require explanation or justification from learners.

The Teacher’s Contribution

As was argued in Chap. 1, high-level tasks are not sufficient to engage learners in 
the practices of justification and explanation. So an important part of this study 
was to understand whether and how my teaching could promote explanation and 
justification. The new curriculum in South Africa redefines the role of the teacher 
to that of a facilitator. However, what this means is often not well specified (Brodie 
2003). Many people believe that to be a facilitator, a teacher must not tell anything 
to the learners, but should rather question them towards an understanding. 
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Chazan and Ball (1999) argue that telling teachers “not to tell” does not go far 
enough because it does not tell teachers what they should be doing. Brodie (2007a) 
argues that questioning does not always challenge learners; in fact, it can narrow 
and funnel their responses (Bauersfeld 1988). For this study, I found the skills and 
knowledge outlined by Schifter (2001) to be very helpful.

1. Attending to the mathematics in what one’s students are saying and doing
New methods of teaching ask teachers to listen more carefully to learners, what 
Davis (1997) calls interpretive listening – i.e. listening to the learners, rather than 
for what the teacher wants to hear. What is important here is to listen to the particu-
lar mathematical ideas, correct or incorrect, that learners express in order to under-
stand their thinking.

2. Assessing the mathematical validity of students ideas
This skill builds on the first. As teachers listen interpretively to the mathematics in 
learners’ contributions, they need to assess the possibilities for using the contribu-
tion to take the learner’s and the class’s thinking forward. This is different to listen-
ing for checking whether the answer is correct or not. The teacher should also 
encourage learners to assess the validity of their own and each other’s solutions. It 
is critical for the teacher to listen to mathematical arguments and assess the validity 
of those arguments. In the process, teachers will develop their own powers of math-
ematical thought.

3. Listening for the sense in students mathematical thinking even when something 
is amiss

Teachers need to search for the sense in what learners are saying or doing. They can 
look for mathematical strengths or for learning opportunities. They can work 
through learners’ logic and try to appreciate their sense making, even if there seems 
to be no logic. This skill builds on understandings of constructivism and learner-
centred teaching – that whatever the learner says, no matter how incorrect, must 
somehow make sense to her/him. In seeking the learner’s mathematical logic, the 
teacher discovers the work that needs to be done.

4. Identifying the conceptual issues the students are working on
Mathematical errors that are uncovered during a lesson can be made public for 
the class to consider and discuss (see also Swan 2001). Teachers need to identify 
what mathematics is missing, to see the logic of the learners’ thinking and then 
try to identify the general mathematics concepts with which learners are finding 
difficulty. Having done so, the teacher can proceed by rephrasing the problem or 
posing a question to help the learners to see the situation in a new way or in 
another context.

Up until this point, I have drawn on a range of literature to support my study. 
Drawing on the above literature, this study is anchored in a number of principles:

Learners are at the centre of the teaching process;•	
Teachers are central in supporting learning even though they can’t learn for •	
learners;
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All learners can construct their own ‘new’ knowledge through making mathe-•	
matical meaning and formulating, testing, and justifying conjectures.
All teachers can develop skills to support learners’ justification, reasoning, and •	
meaning making.

My Classroom

In this study, my pseudonym is Mr. Peters. My school is in western Johannesburg 
and is a dual-medium school, with English and Afrikaans being the languages of 
learning. The school is situated in a poor socio-economic community infested with 
gangs and drug trafficking. The school is poorly resourced, with old style desks, 
classrooms in disrepair, and no regular electricity in classrooms. There is paper for 
printing worksheets, but there are few textbooks for learners. The subjects of this 
study were learners in my grade 10 class, of 45 learners (boys and girls). The class 
is of mixed mathematical ability, although as discussed in Chap. 2, most of the 
learners have weak mathematical knowledge. Learners’ ages range from 14 to 16. 
The learners came mostly from working class families, or their parents are unem-
ployed. Many learners live with grandparents or other relatives. The language of 
learning in this class is English; however, the main languages of the learners differ 
considerably and include English, Afrikaans, isiZulu, seSotho, and xiTsonga.

Although I had not taught any of these learners previously, from my knowledge of 
other teaching in the school and from their responses to my initial requests for expla-
nation and justification, I speculated that their contact with higher-level tasks was 
minimal or non-existent. My primary goal in this research was to engage learners in 
proving conjectures through the mathematical practices of justification and explanation. 
I was inspired by Lampert’s goal that “everyone in the class was to study mathematical 
reasoning” and her role was to “teach them (learners) new ways to think about doing 
mathematics and what it means to be good at mathematics” (Lampert 2001, p. 65). 
In addition, an important goal for teachers is to use mathematical reasoning to teach 
content. As I worked with the learners on these tasks, I paid attention to developing 
in myself, Schifter’s four skills as discussed previously.

I worked together with a colleague in this project, to develop a set of tasks for 
our Grade 10 learners. However, since my learners were a lot weaker than my col-
leagues, and since their experience of these kinds of tasks was minimal, I changed 
some of the tasks in order to scaffold the process more carefully. Although I antici-
pated the difficulties my learners would experience and planned the tasks around 
these difficulties, at no stage did I simplify the tasks or “dumb them down”. I was 
very aware of the fact that in Stein et al.’s research “only about one third of the tasks 
that started out at a high-level remained that way as the students actually engaged 
with them” (Stein et al. 2000, p. 24) and did not want this to happen in my 
 classroom. I worked on these tasks with the class over four lessons, each one 
approximately 45 min. long. The lessons were videotaped with a focus on what 
learners were saying as well as teacher–learner interactions, which enabled me to 
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do a detailed analysis of parts of the lessons. As learners worked on the tasks in 
their groups, they were asked to write a final response. These written records were 
also useful to analyze, to try to understand the learners’ developing practices of 
justification and explanation.

The tasks have been analyzed in detail in Chap. 2. In this chapter, my analysis 
focuses on Task 1(B), so I will repeat it here. Since this was the main focus, the 
other parts of task 1 were intended to scaffold this task (see Appendix).

Task 1(B):
Consider the following conjecture: “x2 + 1 can never be zero”
Prove whether this statement is true or false if x ∈ R.

The task is open-ended, and no suggested pathway is offered to the learners. In 
choosing the task, I believed that it would engage learners in complex forms of think-
ing and reasoning. Using Stein et al’s (2000) framework, I would classify it at the 
highest task level of “doing mathematics” as it offers a variety of solutions to the 
problem (see also Chap. 2). My ideal solution for this task was that learners would 
recognize that x2 is a perfect square and therefore has a minimum value of zero for all 
real values of x and when added to one, this will result in a positive value. Hence the 
conjecture that x2 + 1 can never be zero is true. Another solution would be to say that 
for x2 + 1 to be zero, x2 must equal −1. This implies that x = √−1, which is impossible 
as we are working with real values for x; therefore x2 + 1 will never be zero. I did not 
expect my learners to work with imaginary numbers. A third solution would be a 
graphical representation of y = x2 + 1, which would display that there is no x-value to 
satisfy the equation when y = 0. I also expected some learners to substitute values to 
see what would happen to the expression. As will be seen in the analysis below, many 
of my learners did not even get close to these solutions, although some did make some 
progress. I had to work very hard to develop appropriate justifications among most of 
the learners.

I gave the learners 40 min. for this task so that they would have enough time to 
discuss the conjecture with their partners. We then had an extended whole-class 
discussion, based on report-backs from their groups. An analysis of their written 
responses and the whole-class interaction follows.

The Learners’ Written Responses

Twenty pairs of learners handed in their responses at the end of the session. I first 
classified the responses in relation to those who said the conjecture was true and those 
who said it was false. Only one pair said that the conjecture was false, their reason 
being that x can be zero (see example 1 below). For the learners who said the conjec-
ture was true, I further classified their responses according to whether their justification 
was incorrect, partial, or complete. Table 7.1 gives an overview of these responses, and 
following Table 7.1 are examples of the different kinds of justifications.
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1. False – incorrect justification

2. True – incorrect justification

3. True – partial justification

4. True – complete justification

Table 7.1 Justifications for the conjecture being true

Incorrect justification x2 + 1 = x2 + 1 because it can’t be simplified 13 pairs
Partial justification Adding a sum, plus another value will get a higher 

value, not zero
 2 pairs

Substituted positive values and zero for x. No negative 
values considered

 3 pairs

Complete justification Substituted positive, zero, and negative values for x. 
Realized that x2 must equal −1 for conjecture to be true

 1 pair
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Table 7.1 shows that the majority of learners gave an incorrect justification, using an 
algebraic argument that since the expression could not be simplified, it could not 
equal zero (example 2 above). While this justification made sense to me in terms of 
learners’ prior knowledge, it concerned me because it showed that learners did not 
recognize the fact that if they substituted values for x, the expression would have a 
value. This means that learners’ procedural knowledge was static, not flexible, 
because it was not connected to conceptual understanding (Kilpatrick et al. 2001).

Five pairs of learners gave partial justifications. Two pairs argued that the terms 
could be added if they were given values, and that adding two values would give an 
answer greater than zero. These responses showed some intuitive reasoning; however, 
they were poorly expressed and did not show that the learners actually understood 
that x2 could not be less than zero. Three pairs substituted numbers in the expressions 
(example 3 above). This approach is promising if extended to negative numbers and 
a more theoretical explanation; however, these learners did not get to that point. Only 
one pair gave what I considered to be a complete justification (example 4 above). This 
pair had started by testing numbers.

With the above analysis, I returned to the classroom the next day, concerned that 
the majority of my learners did not understand the conjecture or know how to jus-
tify it. There were a number of questions that needed to be asked regarding their 
mathematical reasoning:

Why did the majority of learners see •	 x2 + 1 as unlike terms and not as a variable 
expression which could have a value?
Did they realize that •	 x2 + 1 is a unit value if x is known or did they see them as 
unlike and therefore separate terms?
Did their limited conceptual and procedural understandings limit their possibilities •	
for adaptive reasoning and justification?

I hoped to generate discussion among those who had given incorrect justifications 
and those who had given partial or complete justifications, so that they could engage 
with different ways of seeing the problem. I therefore selected a response in each of the 
three categories in Table 7.1 to discuss in class the next day. The first response came from 
Grace and Rethabile (example 2 above), as typical of those who gave incorrect justifi-
cations. They were representative of a large group of learners who had a shared view that 
I needed to know more about. The second pair of learners, Jerome and Precious (example 
3 above), was selected because they used a systematic, empirical method of testing 
the conjecture. Unfortunately, they had not moved on to a complete justification. The third 
pair, Marlene and Tshepo, (example 4 above) was the only pair who had formulated a 
correct explanation to justify the conjecture that “x2 + 1 can never be zero”. I was impressed by 
their reasoning ability and wanted to afford them the opportunity to share it with the class.

Whole-Class Interaction

My reasons for having the class discussion about the learners’ written responses 
were threefold. Firstly, I needed to understand learners’ reasoning in their written 
responses. Were they understanding more than what they wrote? Had they more to 
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offer than their response on the page? Was I reading and interpreting their written 
responses correctly? The second reason for having the discussion was to establish 
whether learners could reflect on their own thinking and build on it, especially to 
transform misconceptions and partial reasoning into successful understandings and 
reasoning. The third reason was for the class to understand what other learners were 
thinking and reasoning and to engage them in a discussion, hopefully also to 
develop their explanation and justification practices.

Incorrect Justification

I began the lesson by writing up Grace and Rethabile’s solution and asking the two 
girls to comment on it. I did not give any indication as to whether they were correct or 
not. Rather, I invited them to say more about what they were thinking so that I could 
attend to the mathematics in what they were saying and doing (Schifter’s first skill).

Mr Peters: Grace and Rethabile. And most of you belong in this group. (writes Grace and 
Rethabile’s solution) Grace, do you want to say something about that? What 
were you thinking? What were the reasons that you (inaudible)

Grace: Sir, because the x squared plus one ne sir, you can never get the zero because it 
can’t be because they unlike terms. You can only get, the answers only gonna 
be x squared plus ones that’s the only thing that we saw because there’s no 
other answer or anything else.

Mr Peters: How do you relate this to the answer not being zero? Because you say there 
it’s true, the answer won’t be zero, because x squared plus one is equal to x 
squared plus one. You say they’re unlike terms. Why can’t the answer never be 
zero, using that explanation you are giving us?

Grace: (sighs and pinches Rethabile)
Mr Peters: Rethabile, do you wanna help her
Rethabile: Yes, sir.
Mr Peters: Come, let’s talk about it.
Rethabile: Sir, what we wrote here, I was going to say that the x2 is an unknown value and the 

1 is a real number, sir. So making it an unknown number and a real number and 
both unlike terms, they cannot be, you cannot get a zero, sir. You can only get x 
squared plus one.

Mr Peters: It can only end up x squared plus one
Rethabile: Yes, sir. There’s nothing else that we can get, sir. But the zero, sir.

In the transcript, Grace repeated exactly what she had written, that x2 + 1 equals 
x2 + 1 since they are unlike terms. She made it quite clear that the only answer we 
will get if we add x2 and 1 is x2 + 1. She re-emphasised her misconception and did 
not challenge it. My next move, to ask her to relate her explanation to the answer 
not being zero was an attempt to apply Schifter’s skills 2 and 3. I wanted to listen 
to their thinking and try to assess the validity of their mathematical argument and 
make mathematical sense of what they were saying. I also hoped to encourage them 
to do the same. However, Grace did not want to respond to my move and called on 
her partner, Rethabile, to help her, which I re-inforced.
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Rethabile was more explicit in saying that x2 is an unknown value and 1 is a real 
number. Therefore, the unlike terms cannot be added. This could help for the later 
discussion, but Rethabile could not take it further, insisting that they could not get 
any other value for the expression. As a teacher, I could understand their explana-
tion. It was true that x2 and 1 were unlike terms, as they had learned previously. 
However, they seemed unable to move beyond this idea and see that if x is given a 
value, x2 + 1 will have a value as well, i.e. if you substitute a real value for x, you do 
get a number for x2, which you can add to 1. My challenge was to decide how to 
work with their misconception in a way that would help them to move beyond it.

My next move was to call on other learners to confirm or challenge what Grace 
and Rethabile had said. Many other learners had used a similar justification to argue 
that the conjecture was true.

Mr Peters: Come there are many of you who wrote x squared equal to one. Wrote unlike 
terms. Who wants to add to what she is saying? What were you thinking, … 
shes saying that, yes Ahmed

Ahmed: Like you always say sir, in front of the x you see a one.
Mr Peters: In front of the x you see a (pause)?
Learners: one
Mr Peters: A one, here.
Ahmat: So um, you plussing one still, sir
Mr Peters: But this
Ahmed: You can get an answer.
Mr Peters: So, what is the answer
Ahmed: Um, if you have one x squared plus one, sir.
Mr Peters: What’s one x squared plus one
Ahmed: If I add it, if I add it sir, one x squared would give me, plus one would give me 

two x squared.
Mr Peters: Would give you two x squared. Right (pause), so x squared plus one, because of 

the one there, Ahmed says, that’s gonna be equal to two x squared. [writes 
on board 1x2 + 1 = 2x2] Has anyone got something to say about this?

Learner: Yes, sir.
Mr Peters: Victor
Victor: x squared plus one stays the same because you can’t add the unlike terms, so if 

x squared plus one s equals to two x sqaured, because if
Mr Peters: So you agree with, sorry, you agreeing that x squared plus one is equal to two x 

squared?
Victor: Yes, sir. If I add my one’s sir
Mr Peters: Which one’s are you adding?
Victor: In front of …
Mr Peters: This one and that one?
Victor: In front of x, sir. I chose 1 because x has unknown value so I prefer to take one, 

sir. And I make it one x squared plus one.
Mr Peters: So you adding one plus one to give you the two there?
Victor: Yes, sir. (Some others also say yes)

Ahmed brought out a misconception that many learners were struggling with. 
I felt it necessary to discuss this misconception, as there were other learners with 
the same view as Ahmed. I was interested in what these learners were saying and 
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reasoning. Were they saying that x2 is 1 because of the 1 before the x2? Here I was 
using Schifter’s skills 3 and 4, trying to make sense of the learners’ incorrect think-
ing and deciding on the conceptual issues that they were working with or needed to 
work with. Schifter states that conceptual errors uncover a deep mathematical issue 
for the class to discuss. I agreed with Schifter that this learning opportunity to clear 
up a conceptual issue should not be ignored, so my next move was to open this 
issue up for class discussion. Victor made a somewhat contradictory statement, 
repeating both Grace’s point that you can’t add unlike terms and Ahmed’s convic-
tion that x2 + 1 would give 2x2. Victor’s idea was slightly different from Ahmed’s, 
suggesting that the 1 in front of the x2 could be added to the other 1.

My next move was to call on Lebogang whose body language, raising her hand, 
and shaking of her head while Ahmed and Vincent spoke, suggested that she had a 
different idea from them. Lebogang disagreed vehemently with her fellow learners 
and supplied an adequate justification for her disagreement.

Lebogang: Um, I disagree because one x squared plus one, they are unlike terms because of 
the x squared. They are unlike terms, you can’t add unlike terms.

Learner: Ja
Mr Peters: You can’t add unlike terms.
Lebogang: (and some others) Yes.

After this, I tried to determine the effect of Lebogang’s contribution. Had 
Lebogang’s contribution and justification help other learners to shift their thinking? 
Had Lebogang provided sufficient mathematical reasoning to convince Victor and 
Ahmed differently? I determined that about half the class agreed with Ahmed and 
the other half with Lebogang. So I reminded them why they could not simplify 
unlike terms. However, this left me reinforcing the incorrect justification for the 
original task. At this point, I felt that the best way to deal with this was to discuss 
the solution of a pair of learners who had substituted values for x.

Partial Justification

Jerome and Precious had started by substituting two for x, which resulted in 
x2 + 1 = 5 and then moved on to x = 0, which gave x2 + 1 = 1. I questioned them on 
their choice and Jerome said that they used any number.

Mr Peters: What, what, what were you doing there Jerome?
Jerome: I said x was equal to two, sir
Mr Peters: Here, you said x is equal to (pause)
Jerome: Two
Mr Peters: x is equal to two. Why did you choose two? Why didn’t you choose any other number?
Jerome: I just took any number.
Mr Peters: You took any number. Okay.

I accepted this, trying to “listen to” what Jerome was saying, rather than listening 
“for” what I wanted to hear (B. Davis 1997). I proceeded by asking them: why zero?
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Jerome: I said x is equal to nought, sir.
Mr Peters: You said x is equal to zero.
Precious: Yes, sir.
Mr Peters: Why did you choose zero? First you chose two, now you’re choosing zero. Why?
Jerome: I chose any number sir.
Mr Peters: I want to believe you are choosing it for a reason and not just taking any number.
Jerome: I was trying to get out, to see if it ends up on nought, sir.
Mr Peters: You were trying to go closer to (pause)?
Jerome: Nought, sir.

I put Jerome and Precious’ work up for discussion because I believed that there 
was a learning opportunity for the class as a whole. There was mathematical 
sense in what they were doing, a systematic empirical testing on values for x; 
however, there were limitations to their method that I needed to clarify. Was their 
method of solution complete and did they think it was complete? Here I tried to 
assess the validity of their thinking and also get them to understand their own 
thinking. However, Jerome and Precious did not respond with an adequate expla-
nation of their thinking. Jerome argued that they did not choose zero for any 
particular reason. At that point, I had to intervene, insert my own voice (Chazan 
and Ball 1999) and say that I thought they were choosing it for a reason. I had to 
bring out the reasoning in their thinking, because they did not articulate it them-
selves. I wanted to show them and the class that by systematically moving 
towards and beyond zero in testing the numbers, they could begin to see a pattern. 
I did this in order to move the class forward (Heaton 2000). I worked with 
Jerome’s thinking, amplifying it for the class, and showing the reasoning that I 
assumed was behind it.

After this, I asked: What is the next logical value to substitute for x and why? 
Marlene immediately responded: negative one, and I decided to give her the oppor-
tunity to explain her and Tebogo’s solution.

Correct Justification

Marlene went up to the board and interacted with the class as follows:

Marlene: What’s negative one times negative one?
Class: Positive one (she writes –1x – 1 = +1 + 1 = 2) Negative one, positive one
Marlene: (writes: −1x – 1) You’ll never get to zero sir
Ahmed: You will get it
Class: You won’t
Marlene: Unless
Mr Peters: OK, give Marlene a chance
Marlene: Unless it was negative one times positive one
Class: shouts inaudibly

(continued)
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Marlene: Then you’d have plus one, a negative one and plus one will give us nought
Class: Yes
Marlene: But sir we have x squared which means we must have two numbers which are 

identical
Class: Yes
Learner: It won’t give zero, it will never give zero, because that’s like terms

When they worked together the previous day, Marlene and Tshepo had derived a 
complete response with a correct mathematical explanation and justification. They, 
like Jerome and Precious, had started by substituting values for x; however, they 
substituted positive values, zero and negative values and saw that each time x2 + 1 
did not result in zero. But they did not stop there. They proceeded to find a math-
ematical explanation to justify their claim and concluded that for x2 + 1 to be equal 
to zero, x2 must be −1 as −1 + 1 equals 0. But x2 cannot be equal to −1, as we cannot 
find the square root of −1.

In the interaction above, Marlene used a different explanation, possibly influ-
enced by the previous discussion with Jerome. She showed, using −1 as an example, 
that multiplying two negatives will give a positive. When Ahmed disagreed with 
her, she rethought her explanation, suggesting that only if you had −1 × 1 could you 
get zero. She then argued again that −1 × 1 is not an appropriate representation of 
x2. So even though Marlene had a correct, convincing argument, having to explain 
it and being challenged by another learner, forced her to rethink her idea and come 
to the same conviction, possibly strengthening it. However, at that point, I did not 
“celebrate” her solution (Lampert 2001, p. 160), because I wanted the class to 
engage in reasoning about it. My next move was to question Marlene’s correct 
answer. Lampert (2001, p. 53) argues that teachers should promote learners to be 
generators and defenders of mathematical knowledge. Teachers need to send a clear 
message to learners that all answers, correct or incorrect need to be justified.  
The learners’ mathematical reasoning regarding the issue is more important than 
the answer itself.

Mr Peters: But what have we got here? We’ve got an x squared. So the x squared must be 
equal to, Marlene

Marlene: Negative one
Mr Peters: Negative one
Marlene: But there is no square root of negative one.
Mr Peters: What d’you mean there’s no square root of negative one.
Marlene: Sir, can you tell me what the square root of negative one is?
Mr Peters: The square root of negative one is negative one.
Class: No, you can’t, you can’t, no sir

I challenged Marlene in what might seem an unorthodox move, claiming that there 
is a square root of −1, and that it is −1. I did this because I wanted to see how con-
vinced she was in her thinking. This goes beyond Schifter’s skills, but resonates 
with the idea that teachers can challenge and provoke learners to really think 
through their ideas. In this case, it was successful, Marlene had the strength to stand 
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up to me and stick with her answer. This shows that she sees that the mathematics 
makes sense, and is the authority on what is right and wrong, rather than the 
teacher. In fact, she has a productive disposition (Kilpatrick et al. 2001) towards 
mathematics, believing that she has the power to make sense of it. I end this section 
with her conviction.

Marlene: What number can you square that you get negative one.
Mr Peters: That’s what I’m asking you Marlene, don’t ask me, I’m asking the questions
Marlene: I’m telling you sir, there is no number

Conclusions

This study demonstrates that very few learners in my class were comfortable work-
ing with higher-level tasks that asked for justification. This is evident from the 65% 
of learners who responded similarly to Grace and Rethabile. These learners’ diffi-
culty was twofold. They struggled to test and justify the conjecture and they had 
difficulty with the conceptual understanding of the task. They could not understand 
x2 + 1 to be a value if x is any real value. Here we encounter the interdependence 
and interwoven nature of the mathematical strands as argued by Kilpatrick et al. 
(2001). The few learners who understood the task conceptually and showed some 
procedural fluency, did manage to make some progress on the task. Of these, only 
two had provided a complete solution. However, I was able to draw on a partial 
solution to develop some discussion in the class.

My role as a teacher was central in the development of this discussion. I dis-
played learners’ written work on the board and gave them the opportunity to clarify 
the mathematical validity of their logic. I made sure that both correct and incorrect 
responses had to be justified by learners, so that they would not think that I only 
questioned incorrect responses or reasoning. Marlene showed confidence when 
I questioned her correct response. She managed to maintain the authority of the 
mathematics against the authority of the teacher. Other learners were also able to 
do this at other times during the lessons. My analysis showed that I used Schifter’s 
skills to understand the learners’ thinking. I also realized that sometimes I would 
go into traditional teacher mode and listen for particular ideas or talk for the learn-
ers. While it is possible to work against such tendencies, other research has shown 
that teaching will always be a mix of old and new methods (Brodie 2007a). 
Teachers can accept this, and know that sometimes their teaching will have to shift. 
There is no such thing as “pure” teaching, either reform or traditional.

This study has shown that teachers can venture beyond the single strand of proce-
dural fluency. For too long, we as teachers have been stuck in second gear, i.e. trying to 
master mathematical procedures and have been content to call our actions doing math-
ematics. This study has offered me a new approach to teaching mathematics through 
the practices of justification and explanation. Learners need to be challenged to explain 
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and justify conjectures using mathematical reasoning and thinking. To achieve success, 
we teachers need to equip ourselves with new skills and carefully selected tasks that will 
assist us in reaching our goals. My study has shown that I can venture beyond traditional 
mathematics teaching. I hope to continue to move in this direction.
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The teachers’ case studies illuminate many of the complexities of working to engage 
learners’ mathematical reasoning. When teachers choose higher-order tasks, learners 
may struggle to respond appropriately to these and to teachers’ moves to try to 
engage them with the mathematics. Learners can and do internalize teachers’ moves 
designed to get them to think and talk with each other, but this can take time. 
Teaching in relation to the five strands of proficiency can work, but developing the 
strands of strategic competence and adaptive reasoning may be more difficult than 
that of conceptual understanding and procedural fluency. The case studies also sug-
gested that the challenge of teaching mathematical reasoning is more difficult when 
working with learners who have weaker mathematical knowledge.

Part 3 takes the same data that each of the teachers worked with and looks across 
the five classrooms for patterns that emerge and that are not visible through the 
individual case studies. These four chapters address some of the same questions 
that the teachers addressed in the case studies as well as some new questions:

How do learners respond to tasks chosen to elicit their mathematical reasoning?•	
How can teachers interact with learners around tasks to engage their mathematical •	
reasoning?
How can we describe learners’ contributions and teachers’ responses to these in •	
ways that can help us talk about them in more specific ways?
What kinds of teaching practices, questions, and moves help to encourage and •	
sustain learners’ mathematical reasoning?
What kinds of dilemmas do teachers experience as they teach mathematical •	
reasoning?
What can teachers do in response to resistance to new ways of teaching?•	

In Chaps. 8 and 9, I develop a coding scheme to look at learners’ contributions to 
the lessons and teachers’ moves in response to these. These provide the beginnings 
of a language of description for teacher and learner talk in classrooms, particularly 
classrooms where mathematical reasoning is a focus. I discuss learner contributions 
in Chap. 8 and teacher moves in Chap. 9. However, learner contributions and 
teacher moves co-produce each other, and it was very difficult to separate the two 
chapters from each other. It is therefore important that they be read together. 

Introduction to Part 3
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In Chap. 8, I show that learners produce a range of contributions, describe these, 
and show that these contributions can be accounted for by the tasks, the learners’ 
knowledge, and the teachers’ pedagogies. In Chap. 9, I focus in more detail on the 
teachers’ pedagogies, using a description of teacher moves, as they produce and 
respond to learner contributions. I suggest a trajectory of emergence and response 
to learner contributions in classrooms where mathematical reasoning is encouraged. 
The trajectory suggests that some contributions are easier than others for teachers 
to recognize and work with, which has implications for teacher education and 
further research.

In Chap. 10, I focus in detail on two of the teachers, and show how they experi-
enced dilemmas as they worked with learners’ mathematical reasoning. The two 
teachers are Mr. Peters and Mr. Daniels. Mr. Peters’ learners had the weakest math-
ematical knowledge among the five classrooms and, as he described in Chap. 7, 
struggled to engage with the tasks. Mr. Daniels’ learners had stronger mathematical 
knowledge and managed to support a collaborative discussion, in which important 
mathematical insights were gained (see Chap. 4). As I will show in Chap. 9, Mr. 
Peters and Mr. Daniels showed some similarities in their pedagogies – in particular, 
they both used ‘press’ moves to develop and sustain conversations among their 
learners (see also Brodie 2007b). These conversations presented them with a number 
of teaching dilemmas, which I show are closely related to some of the contradictions 
inherent in the ‘press’ move, which is the key to reform pedagogy.

In Chap. 11, I deal with an episode in Mr. Daniels classroom, where the learners 
strongly resisted his changing pedagogy. I show that different learners have different 
reasons for resisting reform pedagogy and that resistance can signal engagement 
with the new pedagogy rather than retreat from it. Such resistance is to be expected 
and can be managed by teachers.

Part 3 of this book provides different perspectives on the same classrooms that 
were discussed in Part 2. My analysis across the classrooms was able to illuminate 
a range of issues that each teacher focusing on her/his classroom alone could not 
see. I was also able to confirm some of what the teachers did see and comment on. 
My analysis confirms that “not telling” is not always the best option for teachers, 
although sometimes it may be (see also Chazan and Ball 1999); that questions are 
not necessarily more supportive of learners’ reasoning than other kinds of teacher 
moves (see also Brodie 2007a); and that teachers are likely to develop strategic 
hybrids between traditional and reform practices – “pure” reform practice is 
unlikely to be found, and to suggest that it is possible may in fact be inappropriate 
and unhelpful for both teachers and learners to suggest that it is possible (see also 
Brodie 2007c; Cuban 1993).
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The codes that I develop are strongly related to the Initiation-Response-Evaluation/
Feedback (IRE/F) exchange structure discussed in Chap. 1. This was the form of 
discourse in all five classrooms in the study most of the time, similar to many other 
mathematics classrooms. The teacher makes an initiation move, a learner responds, 
the teacher provides feedback or evaluates the learner response and then moves on 
to a new initiation. Often, the feedback/evaluation and subsequent initiation moves 
are combined into one turn, and sometimes the feedback/evaluation is absent or 
implicit. This gives rise to an extended sequence of initiation-response pairs. An 
IRE/F exchange pattern allows for a learner contribution at every other turn and a 
teacher response. As discussed in Chap. 1, when teachers’ questions are closed, or 
funnel learners towards a particular answer, the teachers’ combined initiation and 
evaluation moves leave little space for genuine learner reasoning. However, even 
within the IRE/F structure, it is possible to see instances where the teacher initiates 
and responds to learners in different ways, thus allowing for enhanced talk and 
reasoning by learners.

A description of a range of teachers’ response moves is the subject of Chap. 9. 
In this chapter, I will describe the range of learner contributions in the five class-
rooms. As I said in the introduction to Part 3, learner contributions and teacher 
moves are co-produced between teacher and learners. Teacher moves support 
learner contributions, which in turn support teacher moves. Thus Chaps. 8 and 9 are 
closely related and need to be read together.

In this chapter I have two main aims. The first is to present the codes that 
describe the learner contributions in the data and use these to develop a picture for 
the reader, of the kinds of talking and thinking that learners engaged in across the 
five classrooms. Using a numerical count of the codes, I show similarities and dif-
ferences across the classrooms in terms of the learner contributions. The second 
aim of the chapter is to begin to account for these differences in terms of the key 
variables discussed in Chap. 2: tasks and learner knowledge. As the analysis pro-
gresses, it will become clear that these two variables are not enough to account for 
the distribution of learner contributions across the classrooms and that the teachers’ 
pedagogies were fundamental in supporting the range of learner contributions in 
each class.

Chapter 8
Learner Contributions
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Learner Contributions and Mathematical Reasoning

In Chap. 1 I argued that an important part of teaching mathematical reasoning is to 
support learners to voice their mathematical thinking and reasoning, nascent or 
flawed as it might be. However, it is not sufficient for learners to merely express their 
thinking, as Heaton (2000) illuminates so clearly. She felt lost, unable to make use of 
the textbook or her own experience to recognize the mathematics in students’ contri-
butions, to ascertain whether students’ contributions were helpful or not and to work 
out ways to engage them. Many of her students made contributions that were proce-
dural, or that noted superficial aspects of the mathematics they were talking about. 
She did not know how to work with these contributions to take them to a deeper 
mathematical level. Once learners are talking, teachers need to know how to respond 
appropriately, how to engage learners’ thinking and take it forward. This is not an 
easy task, particularly, when teachers are faced with unusual learner contributions, 
which they have not heard before or could not have predicted from their knowledge 
of learners and the task. Heaton argues that knowing what to do with learners’ con-
tributions depends on a teacher’s mathematical goals and where she wants to take 
learners mathematically. My argument is that a language for talking about learners’ 
contributions will help teachers and researchers to think about the manner of reality 
different kinds of learner contributions to mathematical goals and directions.

In traditional mathematics pedagogy, teachers tend to work with the categories 
of “right” and “wrong”. They affirm correct answers and methods and negatively 
evaluate incorrect ones (Alro and Skovsmose 2004; Boaler 1997; Davis 1997). 
When teachers do engage with incorrect answers and methods, they usually aim for 
the production of correct answers, rather than an understanding of why the answers 
are incorrect and why the learners might be making errors. Moreover, there is 
always the possibility of a correct response masking a misconception (Nesher 
1987), or of learners producing what they think the teacher wants to hear (Bauersfeld 
1988). The research on misconceptions and mathematical reasoning suggests that 
going beyond the notion of error and trying to understand and engage the reasoning 
behind learners’ errors and other contributions is more productive for both teachers 
and learners (Ball 1993; Chazan 1993; Russell 1999; Sasman et al. 1998; Smith 
et al. 1993). Many researchers argue that in order to develop mathematical reason-
ing in classrooms, learners should be asked to justify and elaborate both correct and 
incorrect answers. A learner’s justifications can help her, other learners and the 
teacher evaluate the contribution, both in terms of the reasoning it presents and in 
terms of how it takes the conversation forward in the classroom.

When teachers go beyond traditional teaching, and actively elicit and engage 
learner’s ideas in order to develop conceptual links, promote discussion and develop 
mathematical reasoning, they are often confronted by a range of learner contribu-
tions. These contributions might be correct, incorrect or partially correct, well or 
poorly expressed, relevant or not relevant to the task or discussion, productive or 
unproductive for further conversation and development of mathematical ideas. 
Interacting with a range of learner contributions makes teachers’ decisions about 
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how to proceed and when and how to evaluate learner thinking very complex. In 
order to capture the complexity of learner contributions to the lessons, I focused on 
three important dimensions of their contributions: completeness and correctness of 
contributions, mathematical reasoning and insights, and learners’ grappling with 
mathematical ideas. These form part of a coding scheme, or language of descrip-
tion, that will be described below.

This work is informed by two important constructivist insights. First, errors that 
are produced by misconceptions cannot be “treated” by the teacher and replaced 
with correct ideas; they can only be transformed through the learner reorganizing the 
ideas that produce them (Smith et al. 1993). Second, errors and misconceptions are 
a normal part of learning mathematics and cannot be avoided. Describing the errors 
that learners make does not present a deficit view of learners. Trying to understand 
how errors emerge in the classroom and how teachers respond to them is a useful 
way to normalize teacher interaction with learner errors. Since teachers’ goals must 
be to teach appropriate mathematics, they need to orient their thinking and teaching 
towards learner errors in some way; the aim here is to elaborate how they do this. So 
it is important to think about errors within a broader range of learner contributions.

Describing Learner Contributions

Six categories can describe almost all the learner contributions in this study. These 
six are presented in Table 8.1, with an example in response to the task: can x2 + 1 
equal 0 if x Œ R. Each contribution is described in detail below.

In developing the above coding scheme, the first important distinction was 
between responses that could count as complete and correct responses to a task, and 
those that were partial responses in some way, either incomplete or incorrect. 
Complete, correct responses are responses that provide an adequate answer to a 
particular task or question. Partial responses are those that are either incomplete or 
incorrect in some way. There are three kinds of partial responses, one of which is 
incorrect, one of which is incomplete, and one of which is both. An appropriate 
error is an incorrect contribution that mathematics teachers and educators would 
expect at the particular grade level in relation to the task. Appropriate errors are 

Table 8.1 Examples of different kinds of contributions

Contribution Example

Basic error x2 + 1 = 2x2

Appropriate error If x is a negative number, you can write it as −x
Missing information x2 is always greater than zero
Partial insight As you substitute lower numbers, the value of x2 + 1 decreases.
Complete, correct For x2 + 1 equal to zero, x2 must be equal to −1. But the square of any 

number cannot be negative
Beyond task The square root of −1 squared [(Ö−1)2] equals −1, and then you say 

−1 + 1, then you get 0
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distinguished from basic errors, which will be discussed below. A contribution that 
is missing information is correct but incomplete and occurs when a learner presents 
some of the information required by the task, but not all of it. A contribution that 
shows partial insight is one where a learner is grappling with an important idea, 
which is not quite complete, nor correct. Although partial insights are both incom-
plete and incorrect, they actually suggest more of a relative presence than the other 
two partial contributions, in that the learner is offering an insight and is usually 
grappling with an important mathematical idea.

A second distinction that was important was between appropriate errors and 
basic errors. Basic errors are errors that one would not expect at the particular grade 
level. Basic errors are in a different relation to the task from appropriate errors, 
because they indicate that the learner is not struggling with the concepts that the 
task is intended to develop, but rather with other mathematical concepts that are 
necessary for completing the task, and have been taught in previous years. Finally, 
contributions that go beyond task requirements are contributions that are related to 
the task or topic of the lesson but go beyond the immediate task and/or make some 
interesting connections between ideas.

All coding of learner contributions is in relation to a particular task and a par-
ticular grade level. For example, what counts as a basic error is different in a Grade 
3 and a Grade 10 classroom and what counts as a partial insight or a beyond task 
contribution will be different in different grades and for different tasks. Almost all 
of the learner contributions could be categorized into the above categories, with two 
exceptions. First, a small number of contributions in each class were so unclear that 
I could not make out the learner’s meaning. Second, there were two sets of contri-
butions in Mr. Daniels’ lessons in which learners commented on and resisted 
Mr. Daniels’ pedagogy. These are discussed in Chap. 11.

This classification scheme for learner contributions to the lessons is useful in a 
number of ways. First, it provides a way to characterize what happens in a lesson. 
A lesson with many complete responses will look very different from one with 
many partial responses, and both of these will look different from a lesson with 
many basic errors. Second, the kinds of contributions suggest the affordances and 
constraints (Greeno and MMAP 1998) that are operating in the lesson. Different 
kinds of tasks, questions and ways of interacting will enable different kinds of 
learner contributions, which in turn afford and constrain different kinds of discus-
sions and mathematical reasoning. Third, this classification provides a language for 
researchers and teachers trying to understand how teachers work with learner con-
tributions to develop mathematical reasoning.

Distribution of Learner Contributions

Table 8.2 shows the distributions of learner contributions across the five classrooms.
The distribution across the categories shows an interesting set of similarities and 

differences among the learners in the different classes. The two grade 10 classrooms 
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have a similar distribution across most of the categories except in basic errors and 
complete, correct contributions where there is a substantial difference. This differ-
ence can be explained by the differences in the learner knowledge in the two class-
rooms as well as the teachers’ pedagogies, as will be discussed below.

The three Grade 11 teachers show an interesting set of similarities and differ-
ences, in relation to each other and to the Grade 10 teachers. If we take the three 
kinds of partial responses together, we see that there were in total 66% and 64% 
respectively in Mr. Daniels and Mr Nkomo’s lessons, 51% in Mr. Mogale’s lessons 
and 39% and 30% respectively in Mr. Peters’ and Ms. King’s lessons. So in this 
respect, Mr. Daniels' and Mr. Nkomo’s learners are similar to each other and very 
different from the Grade 10 learners, with Mr. Mogale’s learners somewhere in 
between. These similarities and differences can be partially accounted for by the 
nature of the tasks they were using. The Grade 11 tasks required learners to com-
pare and contrast different graphs as they shifted horizontally and vertically, and to 
infer general characteristics of the shifts inductively. The tasks asked for observa-
tions and asked questions such as “what did you notice” (see Chap. 2 and Appendix 
for more detail). These kinds of task demands tended to produce partial responses, 
because learners did not necessarily deal with all of the information in the task. 
They often wrote or reported contributions with missing information and as they 
made inferences based on limited information they made appropriate errors.

Looking within the partial response category we find that it shows differences 
among the Grade 11 teachers within the same task constraints. Mr. Daniels’ and 
Mr. Nkomo’s learners were similar with respect to appropriate errors, while 
Mr. Mogale’s learners were different. Mr. Mogale’s and Mr. Nkomo’s learners were 
somewhat similar in relation to missing information contributions, and Mr. Daniels’ 
learners were different. The three sets of learners were very different from each 
other in relation to partial insights. To account for these similarities and differences, 
the qualitative analysis below suggests that three variables: tasks, learner know ledge, 
and teacher pedagogy are important.

Table 8.2 Distributions of learner contributions across the classroomsa

Teacher Mr. Peters Ms. King Mr. Daniels Mr. Nkomo Mr. Mogale

Grade /knowledge 10/weak 10/strong 11/strong 11/weak 11/strong
Basic error 23 (21%) 1 (1%) 0 0 1 (1%)
Appropriate error 21 (19%) 14 (17%) 13 (25%) 11 (25%) 8 (10%)
Missing information 12 (11%) 8 (10%) 6 (11%) 16 (36%) 19 (25%)
Partial insight 9 (8%) 2 (3%) 16 (30%) 1 (2%) 13 (17%)
Complete Correct 38 (35%) 48 (59%) 10 (19%) 16 (36%) 36 (47%)
Beyond task 3 (3%) 7 (9%) 6 (11%) 0 0
Other 4 2 2 0 0
Total number  

of contributions
110 82 53 44 77

aThe unit of coding for learner contributions was slightly larger than the turn. Sometimes it would 
take a number of turns for a learner to state an idea that could count as a contribution. Every idea 
that was stated by a learner was counted and elaborations on previous ideas were counted as new 
contributions.



126 8 Learner Contributions

BookID 159557_ChapID 8_Proof# 1 - 24/09/2009 BookID 159557_ChapID 8_Proof# 1 - 24/09/2009

Another important difference is the low number of complete, correct responses 
among Mr. Daniels’ learners in relation to all of the other teachers. Given that their 
knowledge was stronger than both Mr. Nkomo’s and Mr. Peters’ learners, this is a 
surprising finding. Since the distributions are in percentages, one obvious reason 
for fewer complete, correct contributions is that there were relatively more of the 
other kinds of contributions in Mr. Daniels’ lessons, particularly partial insights 
and beyond task contributions.1 The substantive reason for the distribution among 
these three kinds of contributions is Mr. Daniels’ pedagogy, as will be argued below 
and in Chap. 9.

The above is a brief, first-level description of learner contributions in the lessons, 
suggesting that tasks, learner knowledge, and teacher pedagogy account, at least 
partially, for different distributions of learner contributions across the classrooms. 
To understand more fully how teachers support and engage these contributions requires 
a more in depth analysis of the different contributions and how they emerged in the 
classrooms.

Accounting for Learner Contributions

In order to account for the distributions of learner contributions, the discussions of 
learner knowledge and tasks in Chap. 2 is important. Table 8.3 should remind the 
reader of these dimensions of the classrooms in the study.

The Grade 11 teachers all used the same tasks, which were inductive and which 
supported procedures with connections to meaning. Mr. Daniels’ and Mr. Mogale’s 
learners had strong mathematical knowledge while Mr. Nkomo’s learners had weak 
mathematical knowledge The two Grade 10 teachers used similar tasks, which were 
mainly deductive and which varied from “doing mathematics”, through procedures 
with connections to procedures without connections. Ms. King’s learners had very 
strong mathematical knowledge while Mr. Peters’ learners had weak mathematical 
knowledge. I now turn to a discussion of the different kinds of learner contributions.

Table 8.3 Variation across teachers in tasks, learner knowledge 
and SES

Learner knowledge 

tasks

Stronger Weaker

Grade 11
Inductive
Procedures with connections

Mr. Daniels
Mr Mogale

Mr. Nkomo

Grade 10
Deductive (with some inductive)
Procedures with and without 
connections, doing mathematics

Ms. King Mr. Peters

1 This also raises an interesting question: what is an appropriate range of complete, correct contri-
butions in lessons where teachers are exploring learners’ reasoning.
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Basic Errors

Basic errors were substantially present only in Mr. Peters’ classroom and accounted 
for 20% of the learner contributions in his lessons. These errors occurred through-
out the lessons, were for the most part noticed and taken up by Mr. Peters and 
significantly influenced the flow of the lessons. These errors tended to cluster 
together in relation to a particular idea or task and can be classified into three main 
groups, which will be discussed below. Mr. Peters dealt with basic errors by trying 
to find out the exact nature of the error and then working to correct it.

The first set of basic errors related to algebraic manipulation of the expression 
x2 + 1, in the task: Consider the following conjecture: “x2 + 1 can never be zero”. 
Prove whether this statement is true or false if x Œ R.2 During discussion of this task 
and in their written work, a number of learners claimed that: “x has unknown value, 
so it can be taken to be 1”, “x is equal to 1 because there is a 1 in front of the x”; 
and “because there is a 1 in front of the x, 1x2 + 1 = 2x2”.

A second set of basic errors occurred when learners tried to substitute fractions 
into the expression x2 + 1 in order to see whether it could equal zero. Only a few learn-
ers had done this in their written work and Mr. Peters introduced it to the class as a 
possibility and suggested that they try substituting ½, asking “what’s ½ times ½”. 
Learners responded with a range of answers including ½, ¼ and 1. In trying to deal 
with this error, Mr. Peters had to use more fractions, which brought up more errors. 
For example, Mr. Peters showed that 1/2 times 6 can be written as ½ + ½ + ½ + ½ + ½ + ½; 
some learners suggested that this gives 6/12, while others suggested 1/12.

A third set of basic errors in Mr. Peters’ class related to substituting numbers in 
algebraic expressions. As learner substituted values into expressions such as x2 + 1, 
−2x, 3x2 and others, it became clear that many learners had trouble with actually 
substituting values for x. For example, Lebo said that if x = −1, x2 gives −1 gives −1 
which is −1, Samantha said if x = −1, 3x2 is −3, Ahmed said that if x = −9, he got 
−9 + x2 when substituting into x2 + 1 and a number of learners said that if x = −3, 
3x2 = 9, −9 and = −3x2.

The fact that basic errors occurred only in Mr. Peters’ classroom can be 
accounted for in two ways. First it is clear from the learner interviews discussed 
in Chap. 2 that his learners had very weak mathematical knowledge. However, 
Mr. Nkomo’s learners also had weak mathematical knowledge and no basic errors 
surfaced in his lessons. An analysis of Mr. Peters’ pedagogy, in particular his way 
of dealing with both appropriate and basic errors suggests that his pedagogy was 
key in allowing basic errors to surface.

Mr Peters spent a lot of time asking learners to justify their answers (see also 
Chap. 7). His usual response to a basic error was to ask the learner to explain how 
s/he got the answer. As the learner explained and others responded, other basic 
errors emerged, as shown above (see also Chap. 9). Mr. Peters spent a lot of time 
discussing appropriate errors with learners, again providing opportunities for more 

2 A detailed discussion of the range of responses to this task can be found in Chap. 7.
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errors to appear. Mr. Peters allowed errors to remain on the agenda in his lessons 
for a number of reasons: to find out how widespread the errors were in the class; to 
understand why learners were making these mistakes; to help learners understand 
why they were incorrect; and to put himself in a position to correct them. He also 
tried to find out which learners did not share the errors and might help him to 
correct them. In order to do this, Mr. Peters often called on other learners to explain 
why particular errors were incorrect. This move often produced yet more errors. So 
the basic errors in Mr. Peters’ lessons can be accounted for both by the weaker 
knowledge of his learners and his pedagogy of focusing on errors.

Appropriate Errors

An appropriate error is an incorrect contribution that might be expected as learners 
grapple with new ideas in relation to the task. Appropriate errors may indicate 
misconceptions. Table 8.2 shows that there were a significant number of these in all 
the classrooms: 25% in Mr. Daniels’ and Mr. Nkomo’s lessons; 19% in Mr. Peters’ 
lessons; 17% in Ms. King’s lessons; and 10% in Mr. Mogale’s lessons. In this sec-
tion, I show that the appropriate errors are predominantly related to the tasks and 
learner knowledge.

In the Grade 11 classrooms, there were two main clusters of appropriate errors. 
The first was in activity 1, when learners had to say what happens to points on the 
graph y = x2 as it shifts 3 units to the right or 4 units to the left. Learners made com-
ments like the following: “all your coordinates sit in the first quadrant” (referring 
to the shift to the right) and “all your coordinates sit in the second quadrant” (refer-
ring to the shift to the left); “the new graph does not cut the y-axis”; “there are no 
y-intercepts for either shift” and “negative points become positive points”. These 
contributions suggest a conception of a bounded graph, and that the learners are 
attuned to the image of the graph on their page at the expense of the function that 
produces the graph. When learners claim that all the coordinates sit in the first 
quadrant, they are not seeing that although the graph has shifted, it can still be 
extended into the second quadrant and in fact the two graphs have exactly the same 
domain and range. The difference is in the relationship between the x and y-values 
on each graph. In all three classrooms, these contributions were made during report 
backs from previous group work, suggesting that the issue was not resolved in 
the groups.

A second set of appropriate errors occurred in the relationship between the sign 
in the bracket of y = (x − p)2 and the sign of the x-coordinate of the turning point 
(p;0). In all three Grade 11 classrooms, learners confused the sign of p when p is 
negative, for example they identified the value of p in y = (x + 4)2 as 4 and so did not 
understand why the turning point was (−4;0). In Mr. Nkomo’s and Mr. Daniel’s 
lessons, learners tried to deal with the difference in sign by suggestion that “if you 
take that positive four out, you put it on the y side, it will turn to a negative”, an 
inappropriate manipulation of the equation. This did not happen in Mr. Mogale’s 
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lessons, for two possible reasons. First, because Mr. Mogale’s learners’ knowledge 
was stronger, they may not have considered the incorrect manipulation of the equa-
tion as an option. Second, Mr. Mogale focused his questions on how the axes of 
symmetry, and hence the turning points, shift as the graphs shift. So Mr. Mogale 
focused his learners on the graphs while the learners in the other two classrooms 
focused predominantly on the equation.

The appropriate errors in Mr. Peters’ lessons also clustered around particular 
tasks and concepts. The first, which was widespread (see Chap. 7) was learners’ 
insistence that x2 + 1 could not be simplified, and therefore could not equal zero. 
As Grace and Rethabile put it: “you can never get the zero because it can’t be, 
because they unlike terms, you can only get, the answers only gonna be x squared 
plus one, that’s the only thing that we saw because there’s no other answer or 
anything else”. Mr. Peters spent some time discussing this appropriate error with 
the class and realized that learners were not seeing x2 + 1 as a variable expression 
that could take on a range of values depending on the value of x; rather they were 
focusing on the syntactic elements of the expression – two terms separated by 
an addition sign. A related, second set of appropriate errors occurred when the 
learners claimed that an expression like −x or −2x is negative because of the negative 
sign, showing very clearly how they focus on the syntactic elements of the expression 
rather than its meaning.

Mr. Peters therefore developed a new set of tasks and spent most of his lessons 
trying to help learners to generate meaning for algebraic expressions.

State whether the following expressions in terms of x are:

(i)  Always ³0
(ii)  Always £0
(iii)   Sometimes positive, sometimes zero, sometimes negative, depending on the 

value of x.

 a) x
 b) −2x
 c) x2

 d) 3x2

 e) −x2

 f) (x + 1)2

 g) −(x + 2)2

 h) 2(x − 3)2

As learners worked through these tasks, a third appropriate error arose, in rela-
tion to whether 3x2 is a perfect square. Some learners argued that it is, because they 
understood 3x2 to mean 3x times 3x. Other learners disagreed, saying that since 3 is 
not a perfect square, 3x2 is not a perfect square. This is a subtle issue relating to the 
order of operations in algebraic expressions.

There were similar appropriate errors in Ms. King’s lessons, particularly in rela-
tion to the meaning of x and x2. Some learners argued that −(1)2, rather than (−1)2 is 
an appropriate instantiation of x2. They did not understand that in this context the 
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square applies to the whole of x, which is −1, rather than to the 1 only. This is also 
an issue of order of operations, similar to the 3x2 in Mr. Peters’ class. Also, similar to 
those of Mr. Peters’ learners, some of Ms. Kings’ learners claimed that −x represented 
a negative number. A major difference between the two classrooms was that these 
errors were widespread among Mr. Peters’ learners while very few learners in 
Ms King’s class made them, because of their stronger knowledge. Ms. King was able 
to draw on other learners for correct responses and explanations, which came very 
quickly and were usually accepted by the learner who had made the error.

In this section, I have shown that there were clear task-related similarities in 
appropriate errors across the classrooms and that these arose as learners brought 
their current understandings to the tasks. There were fewer appropriate errors in 
Mr. Mogale’s and Ms. King’s lessons because of the stronger knowledge of their 
learners. Teacher pedagogy was not an important variable in producing appropriate 
errors. Moreover, the teachers’ responses to appropriate errors were complex and 
relate closely to their responses to the other partial contributions. For these reasons, 
the teachers’ responses are not discussed here but in Chap. 9.

Missing Information

A contribution that is missing information, goes some way to answering the ques-
tion, presents some correct information, but is incomplete. Not everything required 
is presented, but there are no errors. In some cases, a number of these responses 
follow each other, and together the responses create a complete response. There 
were somewhat more of these in Mr. Nkomo’s and Mr. Mogale’s lessons (36% and 
25%) than in the other three classrooms (11%, 10% and 11%).

Most of the missing information contributions in the Grade 11 classrooms 
occurred during report backs, together with appropriate errors, as discussed above. 
As discussed in Chap. 2, the Grade 11 tasks were exploratory, asking learners to 
explore shifting graphs and to “write what you notice”. These kinds of task 
demands, tended to produce missing information responses because learners could 
choose what they noticed and may not have discussed all possibilities. The following 
is an example from Mr. Daniels’ class:

Okay, what our group basically came up with, is that um, if we move the graph along the 
x-axis, to wherever, the x-values are gonna change and the y-values are gonna remain 
constant, (slides a transparency over an original graph on the OHP to show changing 
values) and if you move it along the y-axis, then uh, then the y-values change accordingly 
and the x-values remain constant, and the coordinates are also gonna change

The above contribution correctly argues that the x and y values of corresponding 
points on the graph will change when the graph is moved horizontally and verti-
cally. It leaves out important information about the amount of change, which was 
asked for in the question. Similar missing information contributions occurred in the 
three Grade 11 classes but Mr. Daniels and Mr. Nkomo dealt with them differently 
from Mr. Mogale. Mr Daniels and Mr. Nkomo often called on other groups to add 
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to what had been said, so for example after interacting with the group who made 
the above comment, Mr. Daniels called on a second group who reported back:

This is for the first one, you move it three places, three units to the right, then the co-
ordinates have all changed and all your x-values have increased by three. Um, then if you 
look at the table, if you fill in the table, then there will be a pattern that will go, one unit at 
a time will go nought, one, two, three, four, five, six. There’s, then there’ll be a new equa-
tion – it will be, y equals x squared plus three, and then for one point two …

Although this contribution still has missing information, and an appropriate error, 
this group added additional information not provided by the first group, that the 
x-values increase by 3. I show in Chap. 9 how both Mr. Daniels and Mr. Nkomo 
focused on missing information contributions, sometimes at the expense of appro-
priate errors, encouraging learners to develop more complete contributions. 
Mr Mogale encouraged learner–learner interaction, and because his learners had strong 
knowledge, they often completed missing information contributions and corrected 
their classmates’ appropriate errors.

In Mr. Peters’ class, missing information contributions almost always related to 
learners’ not seeing all possibilities for an algebraic expression. When Mr. Peters 
asked “what does x mean to you?” a learner contribution was: “x has unknown 
value”. When he asked for an example, learners gave only positive numbers and 
zero. So Mr. Peters asked again, and got negative numbers. Mr. Peters built these 
responses to a complete response, through his questioning of learners in IRE 
patterns. Ms King also built from incomplete to complete responses using closed 
questions and IRE patterns. For example, when looking at the expression f(a + h), 
she asked what is a + h, and received the responses, “a variable or a subject”; “an 
element”, and “an element of the real numbers”. She asked for more information, 
but when a more complete response was not forthcoming, told the learners to look 
back at their worksheets for a definition, which was “its an element of Set A” and 
which seemed to be the complete response she was looking for.

So missing information contributions are related both to the nature of the tasks 
and to teacher pedagogy. They are related to the nature of the tasks in that, inductive 
exploratory tasks are more likely to produce missing information contributions. 
They were related to the teachers’ pedagogy in that, report backs from group work 
tended to produce missing information contributions and because all of the teachers 
worked to complete these, although in slightly different ways. The teachers’ responses 
to these contributions were closely related to their responses to appropriate errors 
and are discussed in detail in Chap. 9.

Partial Insights

Partial insights are contributions that present an important idea, not quite fully 
formed but which suggest that the learner is grappling with some important aspects 
of the tasks or concepts, and making connections between ideas. These occurred 
mainly in Mr. Daniels’ lessons (30%), with some in Mr. Mogale’s lessons (17%), a few 
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in Mr. Peters’ lessons (8%) and almost none in Mr. Nkomo’s and Ms. King’s lessons 
(2% and 3%).

In Mr. Daniels’ and Mr. Mogale’s lessons partial insights occurred as the teacher 
or other learners pushed a learner to clarify or elaborate their thinking. An example 
from Mr. Daniels’ classroom occurred when Michelle asked why the signs of the 
turning points [(3;0) and (−4;0)] of the graphs y = (x − 3)2 and y = (x + 4)2 are the 
opposite of the signs in the brackets. Michelle’s contribution generated a discussion 
in which many partial insights came up, as learners tried to make sense of each 
other’s ideas and respond to them in order to answer Michelle’s question. One of 
these was Winile’s argument that:

the +4 is not like the x, um, the x, like, the number, you know the x (showing x-axis with 
hand), it’s not the x, it’s another number … you substitute this with a number, isn’t it, like 
you go, whatever, then it gives you an answer

and later

we’re not supposed to get what x is equal to, we getting what y is equal to, so we supposed 
to, supposed to substitute x to get y

Winile’s insight was that you could not make a direct link from the equation to the 
graph as Michelle was trying to do, because you had to operate on the equation first. 
She had not yet seen that there is a more direct relationship than she was imagining, 
but her contributions focused on the underlying relationships between the equation 
and graph rather than on the surface features of each and functioned to focus other 
learners on these as well (see Chap. 4).

Partial insights occurred as Mr. Daniels and Mr. Mogale encouraged learners to 
speak to each other, rather than to them. They both avoided making suggestions 
except in cases where they thought their suggestions would refocus learners on to 
the important points of the discussion. Enabling learner–learner talk was an explicit 
goal of both of their pedagogies and they both spoke often about how they tried 
to achieve this. Both also worked hard to communicate norms of communication to 
their learners.

It can be argued that partial insights emerged in these classrooms because of the 
stronger learners, and this might be part of the reason. However, we should note that 
there were very few partial insights in Ms. King’s lessons’ and there were some in 
Mr. Peters’ lessons, even though he had the weakest learners. Mr. Peters also managed 
to generate some discussion in his lessons, as will be discussed below and in Chap. 9, 
which led in some cases to partial insights even though his learners had weak knowl-
edge. The distribution of partial insights across grades and learner knowledge, together 
with analyses of the teachers’ pedagogies suggests that pedagogy is crucial in supporting 
partial insights. This will be discussed in more detail in Chap. 9.

Complete, Correct Contributions

These were distributed differently across the classrooms: 59% of the total learner 
contributions in Ms. King’s lessons; 47% in Mr. Mogale’s lessons; 35% in 
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Mr. Peters’ classroom; 36% in Mr. Nkomo’s classroom, and 18% in Mr. Daniels’ 
classroom, suggesting, as with partial insights, that they are not easy to relate to the 
tasks or learner knowledge. There were two kinds of complete correct contribu-
tions: relatively short, quick responses to relatively closed questions; and longer, 
more substantial responses to more open tasks and questions. The teachers dealt 
differently with these.

Longer complete contributions tended to occur during report backs from the 
group work. In all five classrooms, some of the groups had complete, correct 
responses and the teachers used these strategically, usually after discussion of some 
of the partial contributions. All of the teachers pressed further on these contribu-
tions, suggesting that they were not endpoints in themselves, but the sites for further 
discussion. They all wanted these contributions to be visible and noted by other 
learners as complete and correct and some of the work that they did served this 
purpose. A range of other teacher purposes were: to show that even when a contri-
bution was complete and correct, more could be gained from it: to show different 
strategies; to elicit some deeper thought as to what counts as an explanation; and to 
encourage learners to stand up for their responses and defend them from challenges, 
whether from other learners or the teacher. Taking complete, correct contributions 
further, shows that all of these teachers were working beyond the “traditional” 
approach of only affirming correct responses.

The teachers dealt differently with the shorter complete, correct contributions. 
These were usually short quick responses to relatively closed questions. Teachers 
most often affirmed these contributions. These kinds of questions, responses and 
affirmations are most often associated with the IRE exchange structure and tradi-
tional teaching, which was the case in this sample. However, my examples below 
suggest that even in this relatively uniform practice there are still a variety of func-
tions and consequences.

In Mr. Nkomo’s lessons, many of the shorter complete responses came towards 
the end of lessons, as he both summarized what had happened in the lessons and as 
he developed the more general relationships between the equation y = a(x − p)2 + q 
and the particular graphs. Ms. King developed a worksheet with many closed ques-
tions (see Chap. 2), for example, if g(x) = 2x2 + 3x − 1, what is g(1), g(−2), g(a), 
g(ab), g(a + b). Learners wrote their answers on the board and Ms. King and the 
class evaluated them and corrected them where necessary. Most of the learners 
managed these and so there were many complete, correct responses, evaluated 
affirmatively. Also, as she taught, Ms. King would develop important ideas through 
sequences of questions that obtained complete, correct responses (see Brodie 2006 
for more detail). In Mr. Peters’ lessons, many of the shorter complete responses 
occurred as he corrected basic errors. For these three teachers, the IRE functioned 
traditionally to achieve complete, correct responses.

Both Mr. Mogale and Mr. Daniels used IRE sequences similar to those used by 
the other three teachers. In addition, there are instances where these question and 
answer sequences played a different role. For example, in Mr. Daniels’ class, when 
the learners were discussing the fact that the equation y = (x + 4)2 had turning point 
(−4;0), they spoke about the turning point being −4 rather than (−4;0). This is a 
perfectly appropriate way of speaking about the turning point, which mathematics 
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teachers and mathematicians use. Although we know that the point has two coordinates, 
we know that the y-value of the turning point is zero, and so we only speak about 
the x-value. In this case though, Mr. Daniels raised the issue with the class, in an 
IRE sequence.

Mr. Daniels: Okay, now my question is, what is the turning point there really
Learner: It’s minus four
Mr. Daniels: Okay now, what is a point, a point is made up of what
Learner: x- and y-coordinates
Mr. Daniels: x- and y-coordinates, good

In the context of a longer discussion with many partial insights and with many 
twists and turns, the IRE sequence above and the closed question: “A point is made 
up of what” reminded the learners of what they knew but were not using to think 
about the task, that the turning point has two co-ordinates. This supported them to 
think about the relationship between the two co-ordinates and hence the relationships 
between the turning point and the equation in new, helpful ways, which helped them 
to make progress with the discussion (see Brodie 2007c for more detail).

So, there are two kinds of complete, correct contributions in these lessons, both 
of which play important roles in the lessons, and which are dealt with by the teachers 
in interesting ways. The shorter complete responses occur across the teachers, 
irrespective of tasks or learner knowledge. They come up when teachers use the 
traditional IRE sequence in traditional ways, to teach or summarize ideas, or correct 
errors relatively quickly and efficiently. There is also evidence that the IRE can be 
used in less traditional ways: in order to make important points relatively quickly 
and efficiently in order to enable the discussion to continue. The longer complete, 
correct responses also occurred across the classrooms. In these cases, all the teachers 
pressed further on these responses, showing that correct responses are not only 
valuable because they are correct, but because in thinking more about them, they can 
support further insights. So complete, correct responses are most strongly related 
to teacher pedagogy and also to learner knowledge.

Going Beyond the Task

In three of the five classrooms, learners made contributions that went beyond the 
task demands, making links between ideas in interesting ways and opening up 
potentially interesting avenues for conversation. There were relatively few of these 
in the three classrooms: 3 (3%), in Mr. Peters’, 6 (11%) in Mr. Daniels’, and 7 (9%) in 
Ms. King’s. The three teachers took these up in ways that gave them more significance 
as opportunities for learning than the numbers suggest.

In Ms. King’s class there were two sets of beyond task contributions. The first came 
up when Ms. King pressed further on a complete correct response to the question of 
whether x2 + 1 could equal zero, asking the class whether the learner had explained 
why the square of any number can never be negative and whether he should have. 
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The latter question took the learners beyond the task, requiring them to think about 
when it is necessary to articulate an explanation. Some learners indicated that they 
thought he should explain why, while others indicated that there was no need for 
an explanation because “its common knowledge”, i.e. explanations are not always 
necessary if there is an assumed shared base of understanding. Ms. King allowed 
some discussion of this issue and did not take a final position herself, leaving the 
question open.

The second set of beyond task contributions in Ms. King’s class came up when 
some learners took the problem to another mathematics teacher who told them that 
x2 + 1 can be zero if they considered complex numbers, and i as Ö−1. This group of 
learners discussed this with Ms. King prior to the lesson and when she had finished 
with the responses from the different groups, she asked them to explain what they 
had found. The discussion led to some appropriate errors as discussed above.

Ms. Kings’ responses to beyond task contributions were that she noticed them, 
tried to press for further contributions from learners and tried to build on their ideas. 
When this proved difficult, she took the opportunity to explain some mathematics 
that came out of their ideas. She provided clear, well-structured and elaborate 
explanations of mathematical concepts that responded to the learners’ contribution 
and took them further.

In Mr. Peters’ lesson there were three beyond task contributions, all made by the 
same learner, Lebo. First Lebo asked why −2 times 0 gives positive 0 because, as 
Mr. Peters had recently emphasized, multiplying a positive by a negative number 
should give a negative number. Lebo argued that the answer to −2 times 0 should be −0. 
Lebo’s contribution began a conversation that continued for about 70 turns and 
included appropriate errors, missing information and partial insights. During the 
conversation, six learners, including Lebo made individual contributions, taking 
between 1 and 12 turns each. Some examples of contributions were: “zero is neutral”, 
“zero is neither negative nor positive because of where it is on the numberline”, 
“positive zero and negative zero is the same”, “zero is like x because sometimes its 
positive and sometimes its negative”, “zero is nothing”, “zero is not nothing because 
we get problems with zero in like zero plus one and zero times zero and, “zero is a 
number because its on the numberline”. The teacher responded after each learner 
turn in a number of different ways. Sometimes, he pressed the learner to elaborate 
her/his idea, sometimes he called on another learner to contribute, sometimes he 
repeated a contribution, and sometimes he inserted his own contributions. He often 
refocused learners on the question in order to keep the point of the discussion clear, 
for example he asked: “Does it make a difference if we write positive zero or negative 
zero”; and “Why do we write it just as zero, why don’t I write negative zero?”

A detailed analysis of the conversation shows that there were many places where 
learners built on and challenged each other’s contributions and reflected on their own 
contributions. Lebo returned to her question a number of times, indicating that it had 
not been answered. Mr. Peters ended the conversation by saying they would agree to 
think of zero as neutral. Lebo’s facial expression indicated that she was not happy with 
how Mr. Peters ended the discussion. Mr. Peters acknowledged her dissatisfaction, 
which led to another interesting interaction and another beyond task contribution:
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Lebo: Sir, can I please ask you, if they say you are nothing, then, and, you have something 
that they, that they don’t have, Sir

Mr. Peters: Ja, ja they can’t, if someone says you are nothing, they can’t say, you are say, you 
a positive nothing

Lebo: Yeah, right
Mr. Peters: They can’t say, you are a negative nothing, they can’t say so, but, if he says, hey  

you a two, hey, you a positive two, can you see, he’s putting value there, you see, 
you see, but if he says you are a negative two, then it means that something’s 
bad, you see, that’s in the connotation of negative, but if he says you are 
nothing, are you positive nothing, there’s no difference if I say you are positive 
nothing or you are nothing, it’s exactly the same. Lebo, you are a positive two

Lebo did not go back to the original context of her question. Instead she made 
the link with everyday talk where people call each other “nothing”. From the tone 
of her voice, and her comment “you have something that they don’t have”, it seems 
like she has been a victim of such talk and is trying to find ways of dealing with it. 
In this way, she diverted attention from her original question. Mr. Peters tried to 
take up this issue, in a way that affirmed her feelings and her thinking, saying 
“Lebo you are a positive 2”. He drew on similarities between the everyday use and 
the mathematical use of nothing, but did not emphasize the differences. In this way, 
he again made his point that zero is neither positive nor negative, but did not answer 
Lebo’s original question.

So the few beyond task contributions can be somewhat accounted for by learner 
knowledge and teacher pedagogy. However, this cannot be claimed very strongly, 
given that very few of these were seen in only three classrooms.

Summary

In accounting for the distribution of learner contributions across the lessons, I have 
argued that the key variables are learner knowledge, tasks and pedagogy. I have looked 
at how these vary across the teachers as well as the ways in which they are related 
to the distributions of learner contributions. Table 8.4 shows the relationships as 
discussed in the chapter, which are summarized below

Basic errors occurred in significant numbers in only one classroom (Mr. Peters’) 
but in that classroom they were clearly related to the learners’ weak mathematical 

Table 8.4 Key variables and learner contributions

Learner knowledge Tasks Pedagogy

Basic errors ¸ ¸
Appropriate errors ¸ ¸ ¸
Missing information ¸ ¸
Partial insights ¸ ¸
Complete and correct ¸ ¸
Beyond task ¸ ¸
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knowledge. However, given the large number of basic errors in Mr. Peters’ class-
room (20%), and the very small number (or none) in the other classrooms, I also 
argued that basic errors could also be accounted for by Mr. Peters’ pedagogy in that 
he noticed and worked with both appropriate and basic errors extensively, which 
increased their visibility and allowed for additional errors to enter the conversation.

Appropriate errors occurred in all the classrooms and were distributed differently 
across the classrooms. I argued that these could be accounted for predominantly 
by learners’ knowledge and the tasks. It was clear that the kinds of appropriate 
errors in each classroom were task-related and it was also the case that particular 
appropriate errors were more widespread in Mr. Peters’ class than in Ms. King’s 
class. Some elements of Mr. Mogale’s pedagogy accounted for fewer appropriate 
errors in his class.

Missing information contributions were task-related in that, the tasks that 
asked learners to compare and contrast produced more of these, predominantly in 
Mr. Nkomo’s classroom. Missing information contributions occurred mainly during 
report-back sessions, and so can be related to pedagogy in that sense. These contri-
butions could not be related to the variations in learner knowledge across the class-
rooms. Partial insights were most clearly related to pedagogy in that they occurred 
in the three classrooms where the teachers managed to support learner–learner 
discussion, Mr. Peters’, Mr. Daniels’ and Mr. Mogale’s lessons (see Chap. 9 for more 
detail). Partial insights can also be argued to be task-related in that higher-level 
tasks are necessary, although not sufficient to enable learner engagement.

Complete, correct contributions were of two kinds: extended and short. Extended 
complete, correct contributions were mainly task-related in that the tasks demanded 
these kinds of contributions, either through the compare and contrast responses or 
through justification. Similar to missing information contributions, extended com-
plete correct contributions were related to the tasks and pedagogy similarly across 
the teachers, in that they occurred during the report back sessions. Short, complete 
correct contributions were related to pedagogy, again similarly across the teachers, 
in that they were produced by relatively closed and constrained questions and in 
more traditional-looking IRE exchanges.

Finally, beyond task contributions were the most complex to account for, 
particularly given that very few occurred. However, these are significant, and are 
worth understanding in more detail if we want to try to promote them more broadly 
in classrooms. I argued that these could be accounted for by both learner knowledge 
and pedagogy.

In this analysis, I have shown how and why the distributions of learner contribu-
tions are created in the classrooms. I have shown that the kinds of contributions 
depends on tasks, learner knowledge and teacher pedagogy. Given the small and 
purposeful sample, these results cannot be generalized empirically to other teachers. 
However, the explication of the relationships between tasks, learner knowledge 
and pedagogy are generative in understanding how teachers in general might work 
with learners’ thinking.

In relation to tasks, the teachers chose to work with higher-level tasks and I have 
argued, that these were necessary but not sufficient to enable partial insights. 
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The fact that the tasks required extended responses enabled extended complete 
correct contributions. The particular content of the tasks generated task-related 
appropriate errors. Finally, inductive, compare and contrast tasks generated missing 
information contributions, because they required learners to say what they noticed, 
rather than to provide a deductive justification.

In relation to learner knowledge, I have shown that weaker learner knowledge 
produces many more basic and appropriate errors, even though the appropriate 
errors are of the same kind among weaker and stronger learners because of a strong 
association with the tasks. The case of Mr. Peters suggests that teachers of learners 
with weaker knowledge may be faced with additional challenges in working 
with learners’ mathematical thinking. As Mr. Peters began to work with learners’ 
ideas and contributions, he faced a barrage of errors, which were difficult to deal with. 
The cases of Ms. King, Mr. Mogale and Mr. Daniels suggests that stronger learner 
knowledge helps in producing beyond task contributions and partial insights, 
but pedagogy is crucially important, both in producing these and in taking them 
forward in productive ways.

Finally, I have argued that teachers’ pedagogy is a crucial variable in producing 
different kinds of learner contributions. The particular form of report-backs from 
group work helped, together with the tasks, to produce missing information and 
extended complete, correct contributions. Particular teacher pedagogies supported 
all of the contributions in different ways for the different teachers. In the next 
chapter I look in more detail at teacher pedagogy, as seen through a description of 
“teacher moves”, showing how these supported and took forward the different 
learner contributions.
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In chapter 8 I argued that learner contributions in the lessons I observed were pro-
duced by an interaction between tasks, learner-knowledge and teacher pedagogy. 
Teacher pedagogy can be seen in broad terms, such as the selection and modifica-
tion of tasks and the use of group work and report-backs. These aspects of the 
teachers’ pedagogies were important in co-producing the different learner contribu-
tions. However, my descriptions in the previous chapter also suggested that a more 
fine-grained description of teachers’ pedagogies, in particular, their moves in 
response to learner contributions, is necessary. In this chapter I deepen my descrip-
tion of the teachers’ responses to the different learner contributions by using a cod-
ing scheme for the teacher moves in the lessons. As with learner contributions, this 
coding scheme builds on the IRE/F exchange structure and, drawing on a range of 
other literature on teacher moves and practices, elaborates the teacher’s turns in this 
structure, the initiation and response turns.

Teacher Moves

My codes describe the function of teacher utterances as they initiate and evaluate. 
As Mehan (1979) argues, initiation and evaluation are often combined into one 
teacher turn and so they are fused in form, although not in function. Therefore, my 
unit of coding was the teacher turn, or sub-turn, when the teacher made more than 
one move in a turn. A teacher move is constituted by all or part of a teacher turn, 
which can be described with one code. Thus codes help to determine moves, it is 
not possible to identify moves prior to coding.

When looking at teachers’ responses to learner contributions, a key code is follow up, 
which describes all teacher moves that respond to learner contributions. A teacher 
move is coded as follow up when the teacher picks up on a contribution made by 
a learner, either immediately preceding or some time earlier. The teacher could ask 
for clarification or elaboration, ask a question or challenge the learner. Usually, 
there is an explicit reference to the idea, but there does not have to be. Usually, the 
idea is in the public space, but it does not have to be; for example when a teacher 
asks a learner to share an idea that she saw previously in the learner’s work. 

Chapter 9
Teacher Responses to Learner Contributions

K. Brodie, Teaching Mathematical Reasoning in Secondary School Classrooms,
DOI 10.1007/978-0-387-09742-8_9, © Springer Science+Business Media, LLC 2010
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Repeating a contribution counts as follow up if it functions to solicit further contri-
butions in relation to the learner’s contribution. If a teacher repeats a contribution 
to affirm it and the discussion ends, then the move is coded affirm, not follow up.

My “follow up” code is closely to related to Nystrand et al's. (1997) notion of 
“uptake.” However, it is broader than their notion and includes some teacher moves 
that they might not include. This is discussed in more detail below. An initial cod-
ing of my data showed that there were a large number of follow up moves which 
functioned differently, so I further divided this category into different kinds of fol-
low up. The five subcategories of follow up are described in Table 9.1.

These codes are informed by various concepts in the literature. Elicit is closest to 
Edwards and Mercer’s (1987) “repeated questions imply wrong answers” or 
Bauersfeld’s (1980) “funneling,” where the teacher increasingly narrows her ques-
tions to help the learner provide the expected answer. This corresponds to a lowering 
of the task demands (Stein et al. 1996; Stein et al. 2000) and suggests that the learners 
may produce an answer that they do not own or fully understand. So elicit moves can 
constrain as much as enable learner thinking. It is likely that Nystrand et al. (1997) 
would not have included elicit moves in their notion of uptake because they may not 
represent a serious consideration of learner ideas.1 I chose to include elicit moves 
under follow up, because for my purposes it is illuminating to distinguish between 
different kinds of follow up rather than to exclude a range of moves that teachers 
might intend as a follow up from this category. Press is similar to Wood’s (1994) 
“focusing” and to Boaler and Brodie’s (2004) category “probing.” Press moves 
include Nystrand et al.’s “authentic” questions (1997), but is not limited to them. 
Authentic questions are questions to which the teacher genuinely does not know the 
answer. A teacher might press when she does know the answer but wants to give the 
learner a chance to articulate and hence deepen her thinking, and/or wants to make 

Table 9.1 Subcategories of follow up

Insert The teacher adds something in response to the learner’s contribution. She can 
elaborate on it, correct it, answer a question, suggest something, make a link etc

Elicit While following up on a contribution, the teacher tries to elicit something new 
from the learner or other learners. She elicits additional information or a new 
but related idea to take the lesson forward. Elicit moves often, but not always, 
narrow the contributions in the same way as funneling

Press The teacher pushes or probes the learner for more on her/his idea, to clarify, justify 
or explain more clearly. The teacher does this by asking the learner to explain 
more, by asking why the learner thinks s/he is correct, or by asking a specific 
question that relates to the learner’s idea and pushes for something more

Maintain The teacher maintains the contribution in the public realm for further consideration. 
She can repeat the idea, ask others for comment, or merely indicate that the 
learner should continue talking

Confirm The teacher confirms that s/he has heard the learner correctly. There should be 
some evidence that the teacher is not sure what s/he has heard from the learner, 
otherwise it could be press

1 However, they satisfy some of Nystrand et al'.s other criteria for uptake: they are partly shaped 
by what precedes them; the student’s ideas can change the course of the discussion; and the 
teacher’s next question is contingent on the student’s idea, rather than predetermined.
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sure that other learners gain access to the learner’s thinking. Elicit and press moves 
can sometimes seem similar to each other, they are distinguished in similar ways to 
how Wood (1994) distinguishes focusing from funneling – a press move orients 
towards the learners’ thinking, while an elicit move orients towards a solution.

Maintain is similar to “social scaffolding” (Nathan and Knuth 2003), and supports 
the process of learners’ articulating their contributions, rather than the mathematics 
itself (Gamoran Sherin 2002). It is also similar to revoicing (O’Connor and Michaels 
1996) and often involves a repetition or rephrasing of the learner’s contribution which 
keeps the idea in the public realm for further consideration. Insert is a category that 
I needed to describe instances when the teacher gave information to learners as a 
follow up to what they had said. This category is motivated by a similar rationale to 
that of Lobato et al. (2005), that teachers cannot avoid “telling” and this should be 
recognised as an appropriate part of their repertoire. I have not described this move 
as elaborately as Lobato et al. because it did not occur in as many different ways in 
my data. However, there were certainly instances when teachers did insert their own 
mathematical ideas into the discourse, and the insert category enables me to investi-
gate the consequences of this move and its relationship to the other moves.

All five teacher moves function to maintain learner contributions, but they do so in 
different ways. The main difference between maintain and confirm and the other three 
codes is that confirm and maintain are more neutral, confirming the accuracy of what 
the teacher has heard or maintaining the contribution very similarly to how the learner 
said it. Press, elicit and insert moves attempt to transform the contribution in some way 
while maintaining it as the focus of the lesson for the class. Press moves stay with the 
learner’s contribution, asking for something more and attempting to support the learner 
to transform her own contribution. Elicit moves support the learner to transform a 
contribution by contributing something new. Insert moves are where the teacher trans-
forms the contribution by making her own mathematical contribution. The moves can 
be arranged on a continuum of less to more intervention as follows: confirm is where 
the teacher makes no intervention, she merely tries to establish what the learner said; 
maintain is where the teacher makes very little intervention, rather she repeats the 
contribution, in order to keep it going, either for later intervention or transformation, 
or for other learners to do something with the contribution; press tries to get the learner 
to transform her own contribution by elaborating or justifying it; elicit tries to get learn-
ers to transform a contribution by contributing something new; and insert is where the 
teacher transforms the contribution by making her own mathematical contribution.

Table 9.2 Subcategories of “follow up”

Teacher Insert Elicit Press Maintain Confirm Follow up

Mr. Daniels 24% (41) 5% (9) 20% (35) 42% (73) 9% (16) 61% (174)
Mr. Nkomo 18% (44) 10% (24) 13% (30) 50% (119) 9% (21) 70% (238)
Mr. Mogale 19% (49) 26% (68) 15% (40) 37% (97) 4% (10) 69% (264)
Mr. Peters 24% (103) 23% (99) 20% (85) 30% (128) 4% (17) 68% (432)
Ms. King 31% (65) 21% (43) 7% (14) 39% (82) 2% (5) 52% (209)
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Distributions of Teacher Moves

A first point to note here, is that the category follow up accounted for the majority 
of all five teachers’ moves: 61% for Mr. Daniels, 70% for Mr. Nkomo, 69% for 
Mr. Mogale, 68% for Mr. Peters and 52% for Ms. King. Very few of the alternative 
codes2 to follow up were evident more than 10% of the time for any of the teachers. 
It is therefore most useful to focus on the subcategories of follow up which are 
given in Table 9.2, rather than the alternatives to it.

Table 9.2 shows interesting differences among the teachers. The first point of note is 
that half of Mr. Nkomo’s follow up moves are maintain, which means that he repeats 
the contribution, asks others for comment or asks the learner to continue. The other four 
teachers also do substantial maintaining, however, they also do more of elicit, insert and 
press, which suggests that as they follow up learner ideas they work to transform them 
in some way. Mr. Mogale, Ms. King and Mr. Peters elicit more than the other two teach-
ers. Mr. Daniels and Mr. Peters both press more than the other three teachers. Also 
noteworthy is how seldom Mr. Daniels elicits and how seldom Ms King presses. 
Finally, all the teachers do a reasonable amount of inserting. Subsequent sections will 
show that the teachers make these moves in response to different learner contributions 
and they also help to produce different learner contributions with these moves.

The above distributions provide a first level description of pedagogy through teacher 
moves. The predominance of maintain moves in Mr. Nkomo’s lessons suggests that he 
takes a relatively neutral stance to learner contributions. Mr. Nkomo looks different 
from the other teachers and his pedagogy seems to fit a profile of a less interventionist 
teacher. How and when he maintains contributions in relation to when he presses, elicits 
and inserts may illuminate the extent of his neutrality. Fewer follow ups in Ms. King’s 
lessons might suggest a more ‘traditional’ teacher. Her predominant follow up moves 
are maintain and insert, suggesting a possibly interesting mix of some neutrality and 
some explicit intervention. Mr. Peters and Mr. Daniels both press for 20% of the time. 
Mr. Daniels’ presses go together with a similar percentage of inserts and far fewer 
elicits. Mr. Peters’ distribution shows similar percentages of press, elicit and insert.

In the rest of this chapter, I present qualitative analyses of each teacher’s moves, 
showing how s/he responds to the different kinds of learner contributions. The analysis 
will illuminate similarities and differences among the teachers in this regard, 
and together with the analysis in Chap. 8, will build towards a trajectory for the 
emergence of and response to learner contributions.

Mainly Maintaining: Mr. Nkomo

Mr. Nkomo maintained learner contributions 50% of the time that he followed up on 
them, while each of the other moves were evident less than 20% of the time (insert: 18%; 
elicit: 10% and press: 13%). As discussed in Chap. 8, the predominant learner contri-
butions in Mr. Nkomo’s lessons were appropriate errors: 25%, missing information: 

2These were: initiate, inform, direct, affirm and other.
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Mainly Maintaining: Mr. Nkomo

36% complete and correct: 36%. In what follows, I will argue that Mr. Nkomo 
maintained missing information and appropriate errors, sometimes pressing as well, 
trying to get other learners to comment on them. When this did not work, he moved 
into elicit and insert moves, funneling learners towards complete and correct answers.

The extracts below come from Activity 2, where the learners had to consider 
what happens to the graph y = (x − p)2 as p changes. Prior to this, they had been talking 
about the two specific cases of y = (x − 3)2 and y = (x + 4)2. In the first extract, 
Mr. Nkomo initiated a consideration of the more general case. As learners made 
contributions he followed up on these in different ways.

72 Mr. Nkomo: So, I wanted to know, what is the effect of 
p? How does p control the graph in other 
words? How does p control the graph? Is 
it doing something to the graph, okay? 
Eh…let me hear from you

Initiate

73 Molefi: p is the turning point
74 Mr. Nkomo: p is the turning point Follow up Maintain
75 Learners: Yes
76 Mr. Nkomo: p is the turning point, is p the turning point Follow up Elicit
77 Learners: Yes
78 Mr. Nkomo: Why do you say p is the turning point? Follow up Press
79 Sibu: When you transfer minus p to the other side 

its going to become positive
80 Mr. Nkomo: It’s going to become positive Follow up Maintain
81 Learners: Yes

Molefi’s contribution (line 73) is a missing information contribution. Molefi has 
seen that p relates to the turning point and possibly sees that it is the x-co-ordinate, 
but has not spoken about the exact nature of the relationship and the y-co-ordinate. 
Sibu’s contribution (line 79) is an appropriate error. He is trying to explain how 
the − p in the bracket becomes a positive p as the x-value of the turning point.3 
Mr Nkomo’s first response to each of these contributions was a maintain move 
(lines 74 and 80), showing a relatively neutral stance in each case.4 In the first case 
Mr. Nkomo continued with an elicit (line 76) and press (line 78) move, possibly 
hoping that Molefi would reconsider his response and be more specific about the 
relationship of p to the turning point. However, Sibu’s response to his moves 
brought in another partial contribution, an appropriate error. Mr. Nkomo did not 
respond to this beyond his maintain move in the extract above.

3 Although some might consider this to be a basic error because it involves incorrect algebraic 
manipulation, which Grade 11 learners should be able to do, it occurred in all three Grade 11 
classrooms, in the context of this part of the task: the relationship of p to the turning point. Given 
that the underlying concept is about the relationship of the equation to the graph, learners’ 
attempts to understand the relationship were coded as appropriate errors.
4 This is evident in his tone. The fact that he reacted in the same way to contributions that could 
count as both correct and incorrect suggests that he was not using the ground rule “repeated ques-
tions imply wrong answers” (Edwards and Mercer 1987) although the learners may have been 
interpreting his moves using this rule.
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Immediately after this, Mr. Nkomo initiated a sequence of questions about 
whether a turning point has one or two co-ordinates, suggesting that he saw the 
missing information contribution as the one that needed work. It often happened in 
both Mr. Nkomo’s and Mr. Daniels’ lessons that missing information contributions 
and appropriate errors accompanied each other, usually in report backs from previ-
ous group work. In these cases, the teachers had to choose which to respond to, and 
these two teachers usually chose the missing information contributions, as hap-
pened in this case. In the extract below, we see how Mr. Nkomo’s moves support 
Kefilwe and Sizwe to complete Molefi’s missing information contribution. Sibu’s 
appropriate error was not dealt with at all in the lesson.

94 Mr. Nkomo: Okay, maybe Kefilwe would like to add from 
you, on that

Follow up Maintain

95 Kefilwe: What he is trying to say is p is the turning point 
of x. which means p is the axis of symmetry

96 Mr. Nkomo: It is the… Follow up Maintain
97 Learners: Axis of symmetry
98 Mr. Nkomo: So, p is the axis of symmetry. Okay Affirm
99 Mr. Nkomo: So, p is the axis of symmetry, but p is not the 

turning point. Agreed
Follow up Insert

100 Learners: Yes
101 Teacher: Now, how, why but in the meantime its turning 

at that particular point also, Oh, Sizwe 
wanted to say something?

Follow up Elicit

102 Sizwe: Because Sir, p is the value of the turning point 
for x

103 Teacher: Okay! It is the value of the turning point for… Follow up Maintain
104 Learners: For x
105 Teacher: For x okay Affirm
106 Teacher: So, that is very important. What Sifiso is saying, 

okay. p is the value of the x of the turning point, 
which is what, which is the axis of symmetry

Follow up Insert

Here Mr. Nkomo maintained a previous contribution by asking Kefilwe to add 
to it (line 94). She revoiced Molefi’s earlier contribution, and completed it (line 95). 
Mr. Nkomo maintained her complete, correct contribution, affirmed it and then 
inserted his own position, that while p is the axis of symmetry, it is not the turning 
point (lines 96, 98 and 99). He then elicited the response that he had wanted previ-
ously, that p is the x-value of the turning point (line 101), which he maintained and 
affirmed (lines 103 and 105), and then summarized with an insert move, linking the 
axis of symmetry to the x value of the turning point (line 106).

The two extracts shown above are similar to and different from each other in 
important ways. They both show how Mr. Nkomo combined maintain moves with 
the other moves to respond to learner contributions. Mr. Nkomo maintained the 
learners’ contributions but then moved quite quickly to other moves to try to develop 
mathematical ideas. In the first extract, his use of an elicit followed by a press move 
allowed for an appropriate error, which distracted from the issue of whether p is 
the turning point, and which Mr. Nkomo did not follow up. In the second extract, 
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The Power of Inserting: Ms. King

Mr. Nkomo’s use of insert and elicit moves functioned to constrain the discourse 
and funnel learner contributions to the complete, correct response, that p is the 
x-value of the turning point and the axis of symmetry.

This pattern was seen often in Mr. Nkomo’s teaching. He responded to missing infor-
mation contributions and appropriate errors with maintain and sometimes press moves. 
He worked to complete missing information contributions with maintain and elicit 
moves. He maintained and affirmed complete and correct contributions, and then sum-
marized, with insert moves and sometimes with a combination of elicit and insert moves. 
Mr. Nkomo’s teaching is an interesting combination of revoicing (O’Connor and 
Michaels 1996) and funneling (Bauersfeld 1980). Mr. Nkomo maintained learners’ 
contributions, both correct and incorrect, because he wanted others to hear them and he 
did seem to be genuinely trying to solicit discussion. However, he resorted quite quickly 
to elicit moves, which served to constrain what learners could contribute. It could be 
described as a relatively neutral move, together with a more interventionist move com-
bined to create constraining classroom discourse. This pattern could suggest a teacher 
who was trying to be more reform-oriented and less interventionist, as his interpretation 
of reform teaching, but who did not yet feel comfortable with using the full range of 
moves to really hear and engage with his learners’ reasoning and ideas. This analysis 
resonates with Mr. Nkomo’s own analysis of his teaching in Chap. 3. The extracts where 
he struggled to take learners’ ideas forward are those where he used predominantly 
maintain moves, trying to maintain his neutrality and was not yet sure how to develop 
learners’ thinking. What this analysis adds is that when he moved away from his neutral-
ity, his discourse became constraining – something that many teachers struggle with.

The Power of Inserting: Ms. King

Ms. King used maintain and elicit moves similar to that of Mr. Nkomo, with the 
same interesting combination of some neutrality with funneling towards an answer. 
However, Ms. King also used insert moves in ways that none of the other teachers 
did, explaining important ideas to learners. Insert moves are where the teacher’s 
voice is most directly evident and for this reason, it might be seen to be the most 
“traditional” of the teacher moves; “telling” (Chazan and Ball 1999) rather than 
asking or pressing. However, when Ms. King explained, she engaged directly with 
learners’ ideas and took them further. I remind the reader that Ms. King’s learners 
had the highest number of complete, correct contributions across the five teachers 
(59%) and the percentages for the other contributions in her class were: Appropriate 
errors: 14%, missing information: 10% and beyond task: 9% (see Table 8.2).

In the first extract below, Ms. King read a learner’s response to the task: Can x2 + 1 
equal 0? The response was also written on the board and Clive identified it as his.

7 Ms. King: This person said it’s true if x equals any 
number, but false if minus one isn’t in 
brackets, he gives us an example, he says, if 
x is two, two squared plus one is not zero

Follow up Maintain

8 Clive: Its mine
(continued)
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9 Ms. King: But if, he then what is he doing here Follow up Maintain
10 Learners: (Mutter)
11 Learner: He’s squaring the one, but not the negative
12 Ms. King: Right Affirm
13 Ms. King: He’s squaring the one, but not the negative Follow up Maintain
14 Ms. King: Now, what does, what do you think of that Follow up Maintain
15 Gordon: That’s wrong, its wrong
16 Jimmy: That doesn’t work because when you’ve got 

x equals minus one, its supposed to be the 
whole of minus one

Clive’s contribution was an appropriate error, because he struggled to deal with 
the idea that if x = −1 then x2 = (−1)2 rather than − (12), hence arguing that if x = −1 
then the expression could equal zero. Ms. Kings first two maintain moves (lines 7 
and 9) put Clive’s response on the table for discussion. One learner immediately 
articulated Clive’s difficulty (line 11) and again Ms. King maintained his contribu-
tion, asking the learners what they thought of it (line 14). Jimmy tried to explain 
why Clive’s contribution was incorrect. By using the relatively neutral maintain 
move, Ms. King supported other learners to get to the core of Clive’s error and 
to correct it. Ms. King could usually rely on the strong knowledge of her learners to 
see each other’s errors. However, Clive himself was still not sure and so in the 
following extract she used elicit and insert moves and relatively closed questions 
to funnel Clive to the correct answer.

34 Ms. King: Yes, you can have a sum minus one times one, 
but is that x squared

Follow up Insert

35 Clive: No
36 Ms. King: What does x squared mean, What does x 

squared mean, Clive
Follow up Elicit

37 Clive: That number whatever x is times itself
38 Ms. King: That number times itself Affirm
39 Ms. King: So, over here, Clive, if x is minus one, tell me 

what is x squared
Follow up Elicit

40 Clive: Uh, one
41 Ms. King: The long way, the whole thing Follow up Elicit
42 Clive: Minus one times minus one
43 Ms. King: Minus one times minus one, What’s the answer Follow up Elicit

There were a number of similar sequences in Ms. King’s lessons. They occurred 
when she was correcting errors or building from incomplete to complete contribu-
tions as well as when she taught new concepts. She worked with elicit moves to 
introduce the concepts and then questioned the learners on them, helping them 
to relate the ideas to their current knowledge. Similar to Mr. Nkomo, Ms. King’s 
teaching often played out in traditional IRE sequences with relatively constrained 
questions and responses.

Ms King departed from these constrained sequences when she dealt with 
more extended complete, correct contributions and beyond task contributions. 
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The Power of Inserting: Ms. King

In the extract below, Ms. King read a complete, correct contribution to the same 
task: Can x2 + 1 equal 0? She invited learners to comment on the contribution with 
maintain and press moves, similar to how she invited them to comment on Clive’s 
appropriate error above.

84 Ms. King: He says, what he’s saying is for x squared 
plus one equals zero, he is saying x 
squared must be equal to minus one, 
minus one plus one, but the square of any 
number can never be negative

Follow up Maintain

85 Ms. King: Is that true Follow up Press
86 Learners: Yes
87 Ms. King: Does he explain why Follow up Press
88 Learner: No, it can’t be
89 Ms. King: Lets see, It can’t be Follow up Maintain
90 Ms. King: Should he have explained why Follow up Press
91 Learners: Ja
92 Ms. King: You think he should have Follow up Maintain
93 Learner: (inaudible) It’s common knowledge
94 Learner: Its common knowledge
94 Ms. King: Okay, okay, now this is a very interesting issue Follow up Insert
96 Ms. King: Let’s just quickly talk about that, some guys 

say, he should have, he should have 
explained, why the square of any number 
can never be negative

Follow up Maintain

97 Learner: But there’s no point mam
98 Ms. King: He says, he says, it’s common knowledge Follow up Maintain
99 Learner: Ja
100 Ms. King: That is to do with what we’re allowed 

to assume in a proof, he says, it is so 
obvious, we can assume it. Other people 
say no, we need to, just, show it more 
clearly. It’s arguable, alright. So we’ll 
leave it open

Follow up Insert

In response to Ms. King’s presses (lines 87 and 89), some learners said that the 
learner whose contribution was on the board needed to explain why a square 
number could not be negative (many of them had). The learner concerned argued 
that this is common knowledge, and did not need to be explained (a beyond task 
contribution). Ms. King maintained the two positions as different sides in a debate 
(lines 96 and 98), but did not allow the learners to continue with the debate. Rather, 
with her insert move (line 100), she explained the mathematical point that what 
counts as enough explanation depends on the context and it is acceptable for differ-
ent people to have different views. It is interesting that she did not choose to allow 
the learners to have this debate at least for some time, which may have made the 
point more clearly and she did not work towards a conclusion but rather decided 
to “leave it open.” It may be that she was not sure how to deal with this meta-issue 
in mathematical discourse.
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Ms King was far less hesitant in explaining difficult mathematical concepts that 
arose in her lessons. In responding to a set of beyond task contributions relating to 
the concept of i, the square root of  − 1, Ms. King inserted a number of conceptual 
explanations. Based on an explanation from another teacher in the school, Robert 
had argued:

Okay, um. Basically we said that, um, the square root of negative one, squared, equals 
negative one. And then, you say minus one plus one, then you gonna get nought.

Ms. King maintained this contribution, asking other learners to contribute. However, 
they expressed confusion and Robert struggled to explain the concept. So Ms. King 
explained:

Okay. Out of the real numbers system, we talking about real numbers and our assignment 
referred to real numbers. If you read here: Use a logical argument to convince someone else 
why the conjecture is either true or false for any real value of x. Now the numbers we study 
at school are real numbers, numbers on the number line. There are numbers that are off the 
number line. Okay.

Jonny responded with a question: How could any number not be on the numberline 
and Ms. King explained further:

Um, okay, just. If we talk about our Cartesian plane. Now usually we draw graphs or we 
put points on the Cartesian plane. If you are talking about a point over here, this could 
be the point three, zero and this could be the point zero, two lets say. Now, if we go off the 
number line, this here would be the point three, two as a coordinate, okay, as coordinates. 
Another way of writing this exact thing, is by writing it as three plus two i. So, what in fact 
I’m saying is, we could think of complex numbers as being points on the Cartesian plane. 
So, any point you care to name, we would write this as minus five minus two, wouldn’t we, 
you could just as well write it as minus five minus two i, if you wanted to. So, it’s one way 
of representing complex numbers as numbers off the number line.

Ms. King was the only teacher who provided such elaborate explanations of math-
ematical concepts that went substantially beyond what learners had contributed. 
Her explanations were clear and well structured, even though unprepared, and 
responded to learners’ contributions. Learners were interested in the issue and 
asked questions about it and so Ms. King gave spontaneous, clear inputs, which 
explained important concepts, and enabled learners to ask conceptual questions, to 
which she responded further. So Ms. King showed a combination of traditional 
eliciting and explaining, which makes her pedagogy somewhat constraining and 
interventionist, and at the same time more responsive and conceptual.

In her own analysis of her teaching in Chap. 6, Ms. King shows how her teaching 
did manage to support all five strands of mathematical proficiency in the classroom, 
including a substantial amount of conceptual understanding. As argued in Chap. 8, 
one reason might be her learners’ stronger knowledge, so it might be the case that 
similar strategies would not be as successful with weaker learners. However, based on 
Ms. King’s teaching, I argue that there should be space in classrooms for extended, 
conceptual explanations of mathematical ideas in response to learner questions. 
This resonates with the argument of Lobato et al. (2005) that there is a role for 
telling in the classroom and that it can, when used strategically and appropriately, 
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support learners’ conceptual development. The fact that there were so few extended 
explanations in the other teachers’ lessons, suggests that teachers may have been 
dissuaded from using them, possibly because of reform attempts to discourage 
them from “telling” (Chazan and Ball 1999).

Strategic Combinations: Mr. Daniels

Mr. Daniels’ learners produced the most partial insights (30%), the fewest complete, 
correct responses (19%), and percentages similar to some of the other teachers for 
the other contributions: appropriate errors (25%), missing information (11%) and 
beyond task (11%) (see Table 8.2). In what follows, I show how he both supported 
and dealt with this range of contributions.

Similar to Mr. Nkomo’s lessons, appropriate errors and missing information 
contributions often emerged together in Mr. Daniels’ lessons, usually during report 
backs, as in the example below. David’s report back is a response to the question: 
what do you notice as the graph y = x2 is shifted 3 units to the right and 4 units 
to the left.

50 David: If you move it four to the left, then all your 
x-values will decrease by four, and then, 
your y-values again will stay the same, 
your new equation would be y equals x 
squared minus four

51 Mr. Daniels: (Writes y = x2 − 4 on the board) Follow up Maintain
52 David: And all, all your, all your coordinates will 

sit in the second quadrant, therefore, 
all negative, all your x-values, sorry, 
will all be negative, and there’s again, 
another pattern, it still increases by one, 
so it will go negative seven, negative 
six, negative five, negative four, negative 
three, negative two, negative one

53 Mr. Daniels: David, do you mind just, I just want to 
see what you mean by that, that there, 
there’s a pattern

Follow up Press

54 Learner: Yes
55 David: There’s a pattern
56 Mr. Daniels: Okay, do you mind just drawing the table on 

that side (points to board to the right of 
class), I just want to see

Follow up Press

There was a lot to focus on in David’s report-back, including missing information 
and appropriate errors. Mr. Daniels wrote y = x2 − 4 on the board, maintaining the 
appropriate error and suggesting that he had noticed it and wanted to come back 
to discuss it. He also pressed David about the pattern that he was talking about. 
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Mr. Daniels’ two press moves are presses on missing information as to what 
the pattern actually looked like. It may be that Mr. Daniels hoped, that as David 
completed the information on the pattern, he would see that there were some 
co-ordinates with positive values for x, and correct his appropriate error. However, 
as David began to draw the table, Mr. Daniels called on another group to present 
and then began to comment on their contributions. Mr. Daniels did not get back to 
the pattern, nor to the error of y = x2 − 4 as the equation of the shifted graph.

When appropriate errors and missing information contributions came together, 
both Mr. Daniels and Mr. Nkomo tended to work first with the missing information 
contributions. There is evidence that they noticed the appropriate errors and chose 
to work with the missing information contributions rather than the appropriate 
errors. They had to make difficult choices about what to deal with because they 
could not deal with everything that the learners said (see Chap. 10). Both 
Mr. Daniels and Mr. Nkomo usually decided to move on to the next group before 
they had dealt with everything that arose in the current report back. This may have 
been a decision to allow for maximum participation rather than to press on particu-
lar responses for an extended period of time (see Chap. 10). It also allowed for 
groups to build on each other’s presentations towards a complete solution, which 
happened in both classrooms.

I argued in Chap. 8 that the emergence of partial insights in Mr. Daniels and 
Mr. Mogale’s lessons could be related to their learners’ stronger knowledge as well 
as to their pedagogies and that the emergence of beyond task contributions in 
Mr. Daniels’ and Mr. Peters’ classes could be linked to their pedagogies. Mr. Daniels 
dealt with partial insights and beyond task contributions similarly in his lessons, by 
strategically using a combination of moves to draw them into an ongoing discussion. 
The analysis below both draws on and supports Mr. Daniels’ own analysis in Chap. 4, 
showing how his pedagogy supported learners’ collaborative learning.

In the extract below, Mr. Daniels’ class was working on the task: What happens 
as the graph y = x2 shifts 3 units to the right and 4 units to the left. Over a number of 
turns immediately preceding the extract, two learners, Michelle and Lorrayne, had 
co-produced the question: Why does a negative sign in brackets y = (x − 3)2 corre-
spond to a shift of the graph to the right and a positive turning point; while a positive 
sign in y = (x + 4)2 corresponds to a shift to the left and a negative turning point. 
This was a partial insight since they were grappling with the relationship between 
the sign in the brackets and the sign of the turning point. Mr. Daniels maintained the 
question for the class, signifying its importance as a focal point for discussion.

124 Mr. Daniels: The question is, they asking, if you look 
at the equation ok, the graph there, the 
one on the left hand side, they say that 
the turning point is negative four and 
the equation is y equals x plus four 
all squared, why do I have a negative 
turning point there

Follow up Maintain

125 Mr. Daniels: Am I interpreting your question correctly Follow up Confirm
126 Learners: Yes
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127 Mr. Daniels: Is that what everybody is struggling with Follow up Maintain
128 Learners: Yes Sir
129 Mr. Daniels: What do you think David Follow up Maintain
130 David: Sir they saying, they asking you, why 

do you have your, why’s it a negative 
turning point when it’s a positive

131 Mr. Daniels: It’s, minus four is the turning point but it’s 
a plus four inside in your equation

Follow up Maintain

132 David: Sir, can you say that um, it could, um 
(inaudible)

133 Mr. Daniels: David, don’t feel pressured if you can, if, 
if you

Follow up Insert

134 David: I’m thinking
135 Mr. Daniels: You thinking, okay Affirm
136 Mr. Daniels: Anybody else will like to try, why do you 

think, I’m sure that some, I mean you’ve 
moved the graph and you’ve played 
around with the graph, you must have 
some idea

Follow up Maintain

137 Mr. Daniels: Why, how did you justify it when you were 
going through the activity

Follow up Maintain

In the above extract Mr. Daniels made six maintain moves. His first and fourth 
maintain moves (lines 124 and 141) re-voiced Michelle and Lorrayne’s question. His 
second maintain move (line 127) re-voiced the learners’ “yes” that indicated they 
were also grappling with the same question,5 while his third, fifth and sixth maintain 
moves (lines 129, 136 and 137) tried to solicit contributions from David and other 
learners. Mr. Daniels’ repeated maintains kept the question on the table, maintained 
a demand for a response and gave the learners some tools with which to respond, 
without narrowing the mathematical task (Bauersfeld 1980; Stein et al. 1996).

After this learners continued to contribute to the conversation for some time, 
with a number of appropriate errors, partial insights and missing information con-
tributions. The same missing information contribution came up as in Mr. Nkomo’s 
class, that p is the turning point, which Mr. Daniels dealt with somewhat differently. 
In the following extract, we see Mr. Daniels using press and maintain moves and 
then strategically placed elicit moves, to take the conversation forward.

169 Mr. Daniels: Okay, they asking the question, why is the 
turning point negative

Follow up Maintain

170 Mr. Daniels: Okay, Now my question is, what is the 
turning point there really

Follow up Press

171 Learner: It’s minus four
172 Mr. Daniels: Okay now, what is a point, a point is made 

up of what
Follow up Elicit

173 Learner: x- and y-coordinates

5 Mr. Daniels had also seen the learners talk about this question in their groups the previous day.

(continued)
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174 Mr. Daniels: x- and y-coordinates, good Affirm
175 Mr. Daniels: So what is the x-coordinate there Follow up Elicit
176 Learner: It’s minus four is your x coordinate
177 Mr. Daniels: Good Affirm
178 Mr. Daniels: So what is negative there, the turning point 

is negative, or is it one of the coordinates 
that’s negative, Okay, let’s hear

Follow up Elicit

179 Winile: The plus four is not like the x, um, the 
x, like, the number, you know the x 
(showing x-axis with hand), it’s not the 
x, it’s another number. For that when 
you do the equation, you get some sense 
from the answer you get, cause without 
that p, that minus p, your equation will 
never make sense

Having repeated the question (line 169), Mr. Daniels pressed on what is the turning 
point (line 170). His use of “really” suggests that he was looking for something 
beyond what had already been spoken, which was that the turning point is  − 4. When 
a learner repeated “−4,” Mr. Daniels used a sequence of elicit moves to bring out what 
he assumed the learners knew, that a point is made up of two coordinates and it is the 
x-value that is  − 4. In this case, the elicit move functioned to point learners to some-
thing they knew but were not using at that point. The learners were talking about the 
turning point as  − 4, which is a perfectly appropriate way of speaking about the turning 
point often used by mathematics teachers and mathematicians. In this case though, 
Mr. Daniels needed the class to explicitly articulate that a point has two co-ordinates 
in order that they begin to think about the relationship between them.

Although the above section of the discourse is relatively constrained, it supported 
Winile to begin to articulate that the turning point is generated from the equation in 
a more complex way than they had been thinking up until now (line 179). She did 
not express her ideas very clearly, but her contribution helped the discussion to 
move to a consideration of the relationship between the x- and y-values in the equa-
tion and the turning point, and the role of p in that relationship. So Mr. Daniels’ 
elicit moves at this point in the discussion helped to provide an important resource 
for the learners’ thinking.

Mr. Daniels used different combinations of maintain, press and strategically 
placed elicit moves in order to support learner conversation and development of 
key ideas. In some ways, the distribution of Mr. Daniels’ moves look similar to 
that of Mr. Nkomo, with slightly fewer maintain moves and slightly more of the 
others. The differences in their pedagogies can be described by the ways in which 
they used the moves in combination with each other for different, strategically 
considered purposes. While Mr. Daniels’ elicit moves6 might look similar to 

6Another interpretation of Mr. Daniels’ elicit moves in the above example might be that he was 
concerned with the formal representation of a point, rather than the substantive relationship 
between its co-ordinates. I reject this interpretation because of how well timed this move was and 
how it helped the progression of the discussion.
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Mr. Nkomo’s, they in fact function very differently, in the contexts of the other 
moves that the two teachers make.

The above extract also shows how complete correct contributions functioned in 
Mr. Daniels’ lessons. He did not focus on complete correct contributions for their 
own sake, but rather for what they contributed to learners’ ongoing understanding 
of the task. When a learner produced the correct answer, that the point is made up 
of x- and y-co-ordinates and that the x-co-ordinate in this case was  − 4, Mr. Daniels 
continued to try to focus the learners on the relationship between the two points, 
which led to Winile’s helpful contribution.

So Mr. Daniels used a range of moves strategically to both respond to and sup-
port a number of different learner contributions. What the above analysis does not 
show is that Mr. Daniels managed to generate a conversation among learners for the 
greater part of one of his lessons. This conversation proved very challenging for 
both Mr. Daniels and his learners as they struggled to keep track of the key ideas 
(see Chap. 10 and Brodie, in press). At the same time, it was very generative of 
partial insights and learners’ grappling with important mathematical ideas. 
Mr. Daniels’ learners had relatively strong mathematical knowledge. However, 
their profile in relation to partial insights, beyond task contributions and complete, 
correct contributions was very different from the even stronger learners in Ms. 
King’s and Mr. Mogale’s classes. Mr. Daniels’ pedagogy of using a strategic range 
of moves to generate conversation was key in supporting partial insights and 
beyond task contributions.

Supporting Learner Moves: Mr. Mogale

A significant feature of Mr. Mogale’s teaching was how he supported learner-
learner interaction. These interactions worked differently in his classroom from 
Mr. Daniels’ classroom, they were less lively and more constrained, both math-
ematically and interactionally. A second difference from Mr. Daniels and simi-
larity to Ms. King and Mr. Nkomo is that Mr. Mogale spent more time in 
traditional IRE sequences, sometimes funneling learners towards answers. So 
his pedagogy is an interesting mix of generative discussions among learners, 
which he supports and constrained teacher-learner interaction to achieve complete 
correct responses.

The extract below7 shows how Mr. Mogale used report-backs from group discus-
sion to generate whole class interaction among learners. Mpolokeng was reporting 
back on the task: what do you notice as the graph y = x2 is shifted 3 units to the right 
and 4 units to the left.

7 The learners spoke in Setswana, this is a translation of the original into English.
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182 Mpolokeng: Ok, the observation is that the values of, of the 
x values are all negative. They are negative 
and then they don’t cut the y-axis, and 
our turning point is negative. (indicates to 
Pulane to talk)

183 Pulane: What do you mean when you say they don’t 
cut the y-axis?

184 Learners: (mutter)
185 Mr. Mogale: Did you get the question? Follow up Confirm
186 Mr. Mogale: Question again Direct
187 Mpolokeng: I am ok
188 Pulane: She says she is ok
189 Mr. Mogale: What do you mean when you say they don’t cut 

the y-axis? I am interested in that as well
Follow up Press

190 Mpolokeng: Ok isn’t it when we take, this graph, they move 
four units to the left, ne? We moved it, haven’t 
we? Yes, this thing, that graph, that we have 
moved, it doesn’t, it doesn’t cut at the y-axis

191 Mr. Mogale: Yes, Oratile. And then you Letsapa, Oratile first Direct
192 Oratile: Isn’t that the y-axis has arrows at the top of to 

show that this thing extends. If you extend 
it, and the graph as well, do you mean that 
they won’t meet somewhere?

193 Mpolokeng: They will meet
194 Oratile: Will they meet?
194 Mpolokeng: Yes
195 Oratile: So, when you say it doesn’t cut
196 Mpolokeng: Yes, but here we did not extend them

In this extract, Mr. Mogale made only four moves in fifteen turns: a confirm 
move to ask whether Mpolokeng had understood Pulane’s question (line 185), a 
press move which indicated his interest in Mpolokeng’s statement that the graph 
didn’t cut the y axis, thereby pressing her to clarify (line 189) and two direct 
moves, indicating to Pulane to repeat the question and to indicate who should speak 
(lines 186 and 191).

Mr. Mogale’s moves supported the two learners Pulane and Oratile to press 
Mpolokeng to clarify her claim that the shifted graph did not cut the y-axis, an 
appropriate error. An analysis of learner moves in Mr. Mogale’s lessons suggests 
that they produce similar moves to their teacher, maintaining contributions, pressing 
for explanations and eliciting new ideas (see Chap. 5 and Brodie 2007a). As 
Mpolokeng was pressed by her peers she made the claim, repeated later by her and 
another member of her group, that in fact the graph does cut the y-axis if it is 
extended, but her group did not extend it. This could seem to be defensive, but her 
insistence later suggests that she was grappling with the idea that the graph did 
extend to cut the y-axis and so made a contradictory claim, also an appropriate 
error. So discussion among peers raised further appropriate errors. This also happened 
in Mr. Daniels’ class, where an extended conversation about the relationship 
between the sign in the bracket y = (x + 4)2 and the sign of the turning point  − 4, led 
to a number of additional appropriate errors.
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In other similar examples, learners in Mr. Mogale’s class focused on missing infor-
mation. Given that Mr. Mogale’s learners had strong knowledge, they were able to 
complete the missing information contributions and correct the appropriate errors that 
their peers produced. Mr. Mogale’s main approach was to encourage learners to 
challenge each other and resolve the issues together. They often did this, sometimes 
completing and correcting each other’s contributions and sometimes generating partial 
insights. Mr. Mogale’s response to partial insights was similar to his responses to appro-
priate errors and missing information contributions, he encouraged learners to talk with 
each other about them. In some instances when learners did not notice the appropriate 
errors, missing information or partial insights in their peers’ contributions, Mr. Mogale 
himself challenged a learner, thus supporting a discussion around their contribution. 
His approach was always to press and maintain until learners came to a resolution.

When learners could not resolve an issue, Mr. Mogale moved into insert and 
elicit moves, generating funneling sequences (Bauersfeld 1988), towards a correct 
answer. In the extract below, we see such a sequence. The class was working on the 
question: what changes and what stays the same when the graph of y = x2 shifts 4 
units to the left and becomes y = (x + 4)2. Reagile claimed that the axes of symmetry 
of the two graphs are different and Mr. Mogale asked him why they are different. 
The learner answered that it is because the equations are different and the following 
exchange ensued:

26 Reagile: The equations are different
27 Mr. Mogale: The equations are different Follow up Maintain
28 Reagile: (nods head)
29 Mr. Mogale: The equations are different Follow up Maintain
30 Mr. Mogale: As long as you can have a difference in the 

equations, then they differ
Follow up Elicit

31 Reagile: I think so
32 Mr. Mogale: (Writes on the board). Okay let’s say we have 

something like y equals, one was (x + 4)2, 
what if we have another one ya y equals 
–(x + 4)2. Are these equations the same or 
different?

Follow up Elicit

33 Learners: They are the same
34 Mr. Mogale: They are the same Follow up Elicit
35 Reagile: Ee [yes] the value of a, whether it’s negative or 

positive determines the shape of the graph 
(indicating with his hand). (someone comes 
into classroom to talk to the teacher)

36 Mr. Mogale: The value of Follow up Maintain
37 Reagile: a, determines, okay, the value of a determines 

the shape of the graph, so (inaudible, 
indicating with his hand)

38 Mr. Mogale: So the value of a determines the shape of the graph Follow up Maintain
39 Reagile: Yes
40 Mr. Mogale: So, but are you saying the equations are the same? Follow up Elicit

(continued)
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41 Reagile: (thinks, looks doubtful) Yes
42 Mr. Mogale: They are the same, if you say they are the same, 

you simply mean when we substitute our 
values of x here and here, if we say x is two 
here and here (points to the two equations on 
the board) and you simplify, you will come 
to the same expression, when we simplify. Is 
that what you are saying?

Follow up Insert

43 Reagile (inaudible)
44 Mr. Mogale Okay, lets (inaudible) two and negative two, are 

they the same?
Follow up Elicit

45 Reagile No
46 Mr. Mogale Why no? Follow up Elicit
47 Reagile The other one is negative (inaudible)

In his first two turns (lines 27 and 29) Mr. Mogale maintained Reagile’s claim 
that the axes of symmetry are different because the equations are different. However, 
it soon became clear that he wanted to challenge this claim, which he did with elicit 
moves in lines 30 and 32. From the exchange it is evident that the teacher wanted 
the learners to think beyond the particular case that they were dealing with [y = x2 and 
y = (x + 4)2], where the equations are different, and to think about whether different 
equations always produce different axes of symmetry. The teacher’s question about the 
two equations y = (x + 4)2 and y = −(x + 4)2 is a case of the teacher raising the task 
demands, rather than lowering them (Stein et al. 2000). However, the teacher was so 
intent on getting the learners to see that different equations do not necessarily generate 
different axes of symmetry that he ignored Reagile’s thinking and subsequently 
narrowed his own questions in an attempt to funnel Reagile to the correct answer.

Reagile was in fact arguing that the two equations are the same when you consider 
the axis of symmetry. The only difference in the two equations is the a-value, which 
determines the shape of the graph rather than the axis of symmetry. Reagile made this 
argument even in the face of the teacher’s disagreement, suggesting that he was con-
vinced of his position. Although the teacher listened to Reagile and maintained his 
contribution in line 38, he did not see it as a contribution to the more general question 
about differences in the axes of symmetry and so he ignored the gist of Reagile’s 
argument. As the exchange progressed, the teacher narrowed his questions in a num-
ber of ways. By focusing attention on the features of the two equations y = (x + 4)2 and 
y = −(x + 4)2, he removed attention from their relationship to the graphs, a move that 
Reagile resisted by continuing to focus on the relationships between the equation and 
the graph. The teacher then narrowed the question even further to whether 2 and  − 2 
are the same or different, a question that is obvious to any Grade 11 learner, and that 
is so simple that it completely lost its relevance and context in relation to the original 
task. In the exchange Reagile was reduced to answering a simple question, rather than 
having his genuine mathematical thinking taken seriously.

There were a number of similar sequences in Mr. Mogale’s lessons suggesting 
similarities between him, Ms. King and Mr. Nkomo in working towards complete, 
correct contributions. However, the key difference is that at other times Mr. Mogale 
enabled strong interaction among learners and supported them to use the same moves 
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that he made to challenge and support each others’ thinking. In this way, his pedagogy 
was similar to Mr. Daniels’ in generating learner discussion and insight. This combi-
nation of open and constraining discourse functioned to both support learner–learner 
interaction and to keep the key mathematical ideas in focus. In Mr. Mogale’s own 
analysis of his teaching in Chap. 5, he focuses on his moves and shows that his learners 
internalized these and used them in the discussion. Mr Mogale had worked hard with 
these learners to develop norms of participation in classroom discussion, and the 
analyses here and in his chapter attest to his success. He also noted in his own analysis, 
that he sometimes shifted from listening to learners, to listening for particular 
answers, so he was aware of when his pedagogy shifted. What these analyses show 
is that even after working for some time with learners to develop robust forms of 
interaction, it is likely that teachers will slip into familiar patterns and undermine 
some of their own attempts. This is to be expected as teachers take on the difficult 
task of shifting their practices (see also Chap. 11).

Entertaining Errors: Mr. Peters

Mr. Peters’ learners produced basic and appropriate errors in 40% of their contributions. 
Therefore, much of his work entailed recognizing and working with these errors. 
In Chap. 8, I argued that Mr. Peters’ response to both basic and appropriate errors 
was to ask learners to explain how they got them and to keep them on the agenda 
for discussion for some time. In the extract below, Ahmed made two incorrect 
claims: that x = 1 because there’s a 1 in front of the x (line 31)8 and that x2 + 1 = 2x2 
(line 41). It is not clear whether Ahmed sees these claims as related.

31 Ahmed: Like you always say sir, in front of the x you see 
a one

32 Mr. Peters: In front of the x you see a (pause) Follow up Maintain
33 Learners: One
34 Mr. Peters: A one, here Follow up Maintain
35 Ahmed: So um, you plussing one still, sir
36 Mr. Peters: But this Other
37 Ahmed: You can get an answer
38 Mr. Peters: So, what is the answer Follow up Press
39 Ahmed: Um, if you have one x squared plus one, sir
40 Mr. Peters: What’s one x squared plus one Follow up Press
41 Ahmed: If I add it, if I add it sir, one x squared, would give 

me, plus one would give me two x squared
42 Mr. Peters: Would give you two x squared right (pause), so 

x squared plus one, because of the one there, 
Ahmed says, that’s gonna be equal to two x 
squared (writes on board 1x2 + 1 = 2x2). Has 
anyone got something to say about this

Follow up Maintain

8 This was in response to another learner’s previous contribution that x = 1.
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In the above extract, Mr. Peters did not move to correct Ahmed’s errors. Rather 
he maintained them by getting Ahmed to repeat the first error in lines 32 and 34 
and by repeating the second error himself in line 42. He also pressed Ahmed for an 
“answer” to x2 + 1 in lines 38 and 40, supporting the second error. After this extract, 
other learners indicated that they agreed with Ahmed, while some argued that you 
“cannot add like terms.” Mr. Peters built on these contributions in order to correct 
the error, with predominantly elicit and insert moves, in the extract below.

66 Teacher: What is a + b equal to? These are unlike terms. 
What is a + b equal to?

Initiate

67 Class: a + b (chorus)
68 Teacher: Why can’t I say one plus one? There’s a one and 

there’s a one in front there. Can’t I say two ab?
Follow up Insert

69 Class: No, sir (chorus)
70 Teacher: Why not? Follow up Press
71 Class: Unlike terms (chorus)
72 Teacher: Put up your hands lets see. Victor, I’m going to 

write what you gonna tell me
Direct

73 Victor: Silence
74 Teacher: Grace Direct
75 Grace: Because they unlike terms…
76 Teacher: So can I do that? Follow up Elicit
77 Class: No, sir (chorus)
78 Teacher: So is one x squared plus one equal to two x 

squared?
Follow up Elicit

79 Class: No, sir (chorus)

Here we see Mr. Peters teaching the rule that you can’t add unlike terms. He 
does not explain the reason behind the rule, rather he gives an example (a + b) and 
then relates it to the example on the board (line 78). This extract has a very different 
tone and pace from the previous one. Here Mr. Peters clearly wants specific answers 
from the learners, hence the insert and elicit moves, rather than to hear what the 
learners are thinking as in the previous extract. Learners’ consistently chorused 
responses (lines 67, 69, 71, 77 and 79) show a co-produced narrative of the “right 
story.” However, it is unlikely that Ahmed, or others, have achieved a deeper under-
standing of why you can’t add unlike terms.

Mr. Peters followed the same pattern with all the other basic errors: He gave 
them attention by using maintain moves, tried to understand learners’ reasoning 
using press moves, and then worked to correct them using elicit and insert moves. 
His moves to correct the errors were always relatively procedural, even though it is 
clear from his interviews that Mr. Peters has a conceptual understanding of math-
ematics. Many of the basic errors related closely to Mr. Peters’ lesson agenda of 
dealing with the appropriate errors and partial insights that learners had generated. 
The way he worked with basic errors enabled him to both deal with them, and 
come back to the main mathematical issue under discussion, so that the basic errors 
did not detract too much from his mathematical agenda for the lesson.
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Mr. Peters worked to maintain appropriate errors for discussion and to press 
learners to clarify their thinking in a similar manner. In the extract below, he asks 
Grace to explain her contribution that x2 + 1 cannot equal zero because it cannot be 
simplified.

3 Mr. Peters Grace, do you want to say something about 
that, what were you thinking, what were the 
reasons that you (inaudible)

Follow up Press

4 Grace Sir, because the x squared plus one ne sir, you 
can never get the zero because it can’t be 
because they unlike terms. You can only get, 
the answers only gonna be x squared plus 
one, that’s the only thing that we saw because 
there’s no other answer or anything else

5 Mr. Peters How do you relate this to the answer not being 
zero, because you say there it’s true, the 
answer won’t be zero, because x squared 
plus one is equal to x squared plus one. You 
say they’re unlike terms. Why can’t the 
answer never be zero, using that explanation 
you are giving us

Follow up Press

6 Grace (Sighs and pinches Rethabile)
7 Mr. Peters Rethabile, do you wanna help her Follow up Press
8 Rethabile Yes, sir
9 Mr. Peters Come, let’s talk about it Direct
10 Rethabile Sir, what we wrote here, I was going to say 

that the x squared is an unknown value and 
the one is a real number, sir, so making 
it an unknown number and a real number 
and both unlike terms, they cannot be, you 
cannot get a zero, sir, you can only get x 
squared plus one

11 Mr. Peters It can only end up x squared plus one Follow up Maintain
12 Rethabile Yes, sir, there’s nothing else that we can get, sir, 

but the zero, sir
13 Mr. Peters So you can’t get a value, you can’t get a value Follow up Maintain
14 Rethabile That’s how far we got sir
15 Mr. Peters Come, Lebo, lets listen so you can contribute Direct
16 Mr. Peters So it will only give you squared plus one, it 

won’t give you another value, zero. Will it 
give us the value of one, will it give us the 
value of two, x squared plus one

Follow up Press

In the transcript we see Mr. Peters pressing for explanations (lines 3, 5, 9), main-
taining the girls’ claim (lines 11 and 13) and trying to press them more specifically 
to think about the expression (lines 5 and 15). His press moves ranged from being 
very general (line 3) to more specific (line 16). However, even this final question 
which could have supported learners to think about x2 + 1 as taking several values 
depending on the value of x, did not help. In fact, it led Rethabile directly into one 
of the basic errors discussed above (x is equal to 1).
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In all the cases of appropriate errors Mr. Peters’ response was to work on them 
in two ways. First, he kept them in the public arena for discussion, held up different 
ideas for discussion for some time and tried to get learners to justify and clarify 
their thinking. He did not always move to teaching the correct answer as he did with 
basic errors and when he did so, he worked less procedurally. Second, he planned 
new tasks, which he hoped would help learners with their errors (see Chap. 8 for 
more detail). However, each time Mr. Peters began a discussion on an appropriate 
error a host of basic errors came up. Mr. Peters dealt with these basic errors rela-
tively quickly as discussed previously and then came back to the discussion of the 
appropriate errors. Thus, Mr. Peters both supported and noticed learner errors and 
focused on discussing them.

Mr. Peters’ responses to the other kinds of contributions were similar. In the case 
of missing information contributions he maintained and pressed, and then moved to 
complete them with elicit and insert moves, similarly to how he worked with basic 
errors. With partial insights, he maintained and pressed, keeping them on the agenda 
for consideration, similarly to appropriate errors. There were very few instances of 
extended complete and correct answers in his lessons and he pressed for explana-
tion and justification on those that there were, similar to the other teachers. In the case 
of the beyond task contributions, he developed a conversation using all the moves 
(Brodie 2007b). In the case of appropriate errors and partial insights, Mr. Peters did 
not move towards complete, correct responses immediately. Rather, his response in 
the first two cases was to plan more tasks that would help learners to get to the 
reasons for their errors and insights (see Chap. 8).

Mr. Peters’ classroom looked different from all of the other teachers in that there 
were so many errors. Mr. Peters found these somewhat disturbing (see Chap. 7), as 
would many other teachers. However, if we take the misconceptions literature seri-
ously, particularly that errors are an important part of learning, then errors need not 
be seen as problematic. Rather, this analysis suggests that Mr. Peters was succeed-
ing somewhat in engaging the learners’ thinking, in that he supported them to 
express their incorrect ideas and engaged with them as an important step towards 
correct understandings.

Overview: Teacher Responses to Learner Contributions

The analysis up till now has highlighted similarities and differences among the 
teachers’ responses to learner contributions. Tables 9.3 and 9.4 provide summaries 
of this analysis.

Here we see strong similarities between Mr. Nkomo and Mr. Daniels, which, as 
discussed in Chap. 8, are task-related. Their tasks produced similar missing informa-
tion and appropriate error responses, particularly in report backs from group work. 
Because there was usually so much to deal with at any one time, the teachers had to 
make decisions as to what to take up and what to ignore, and both of them tended to 
focus on the missing information contributions. They maintained and pressed these, 
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Table 9.3 Teacher moves and learner contributions (part 1)

Basic errors Appropriate errors Missing information

Mr. Nkomo None When dealt with, used maintain 
and press to discuss. Missing 
information took precedence

Maintained and 
pressed. Used elicit 
and insert to complete

Mr. Daniels None When dealt with, used maintain 
and press to discuss. Missing 
information took precedence

Maintained and 
pressed. Different 
contributions came 
together to complete

Mr. Mogale None Supported learners to  
question using press  
and maintain. Sometimes 
corrected using elicit  
and insert

Supported learners 
to question using 
press and maintain. 
Sometimes corrected 
using elicit and insert

Ms. King None Used maintain to discuss. 
Corrected using elicit  
and insert

Maintained and 
pressed. Used elicit 
and insert to complete

Mr. Peters Used maintain and  
press to 
understand. Used 
elicit and insert to 
correct

Worked to understand using 
maintain and press. Planned new 
tasks to deal with

Maintained and 
pressed. Used elicit 
and insert to complete

Table 9.4 Teacher moves and learner contributions (part 2)

Partial insights

Complete correct

Beyond task(short) (long)

Mr. Nkomo Only one (not 
discussed here)

Summarised using insert and elicit None

Mr. Daniels Promoted 
discussion using all 
moves

Strategic use of all moves to help 
discussion and to take contribution 
further

Developed 
discussion using 
all moves

Mr. Mogale Supported learners 
to question using 
press and maintain

Built towards 
using elicit and 
insert

Supported learners 
to justify, using 
press, maintain 
and elicit

None

Ms. King Only two (not 
discussed here)

Built towards 
using initiate and 
elicit

Took further using 
insert and elicit

Maintained and 
pressed, then 
explained new 
math using elicit 
and insert

Mr. Peters Used maintain and 
press to engage. 
Worked into 
planning

Used elicit and 
insert to correct 
basic errors and to 
complete missing 
info contributions

Pressed for 
justification and 
explanation

Developed 
discussion using 
all moves
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and called on other groups to try to complete them. Mr. Mogale, who used the same 
tasks as Mr. Nkomo and Mr. Daniels, and whose learners made the same appropriate 
errors and similar missing information contributions, responded somewhat differently. 
His pedagogy consistently supported learners to challenge each other, and because of 
his learners’ stronger knowledge, they were able for the most part to recognize and 
challenge their peers’ errors and missing information contributions. Mr. Mogale’s 
learners had internalised many of his moves and used them in the classroom conver-
sation, thus supporting his work with them. Even though Mr. Nkomo and Mr. 
Daniels encouraged learners to comment on each other’s solutions, their challenges often 
did not generate useful consideration of the mathematical issues.

We also see interesting similarities and differences between Ms. King and 
Mr. Peters. They both maintained and worked with the appropriate errors, although 
in different ways. Ms. King moved quite quickly to correct these, and she was 
helped to do this by the many learners in her class who could recognise and correct 
their peers’ errors. Mr. Peters maintained appropriate errors for longer periods of 
time, using them to try to teach the important concepts and working them into his 
planning. His practice shows that he viewed these errors as important to work with 
in extended ways. It is interesting that Mr. Peters and Ms. King worked similarly in 
relation to basic errors and appropriate errors respectively. They maintained these, 
tried to understand them and then moved to correct them. These may be appropriate 
strategies in relation to their learners’ knowledge. Mr. Peters and Ms. King worked 
in similar ways in relation to missing information contributions; they both maintained  
them and then worked to complete them.

I argued in Chap. 8 that partial insights were strongly related to the teachers’ peda-
gogies. They occurred in the classrooms where the teachers managed to generate 
discussion among learners for at least some of the time. Partial insights reflect the 
fact that learners are grappling with important ideas and this study suggests that to get 
them to do this, at least publicly, there needs to be some discussion, even discussion 
which is not yet totally successful. Both Mr. Peters and Mr. Daniels used partial 
insights to spur further thinking and discussion among learners. Mr. Peters missed a 
number of partial insights, for the same reasons that Mr. Nkomo and Mr. Daniels 
missed some appropriate errors: Once the lesson is opened to learner ideas, many 
ideas come up; sometimes too many to deal with at once. At the same time, those 
partial insights that Mr. Peters thought were important, came to play a prominent role 
in his lessons, forming much of the lesson agenda and influencing his further plan-
ning, and in so doing, brought learners’ thinking into subsequent tasks and lessons.

In relation to complete, correct responses, Table 9.4 shows that all the teachers 
took these further in some way; they did not merely accept them as correct. 
Mr. Nkomo summarized them for the benefit of the class, Mr. Daniels, Mr. Mogale 
and Mr. Peters pressed for more elaboration and justification and Ms. King used 
them to teach further mathematics. All of the teachers worked towards complete 
correct contributions using similar moves but for slightly different purposes. 
Mr. Nkomo used sequences of short questions in order to summarize learner 
contributions and to teach the general concepts that learners did not develop 
through his other moves. Mr. Daniels used these to point to important mathematical 
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points that might help learners’ thinking and take the discussion further. Ms. King, 
Mr. Peters and Mr. Mogale all worked to correct errors and complete missing infor-
mation contributions. All of the teachers except Mr. Daniels worked towards short 
complete correct responses using the constraining questioning and funneling of the 
traditional IRE. This is an important part of teachers’ work and cannot be ignored. 
At the same time, all of the teachers knew that correct responses do not necessarily 
signal the end of a discussion, they can be taken further and all of the teachers did take 
them further, particularly the extended contributions that came out of report backs.

Contributions that went beyond the task came up in three of the five classrooms 
and were dealt with in different ways. Ms. King used these to explain new mathe-
matical ideas. Mr. Daniels and Mr. Peters both used these to try to generate some 
discussion among learners. These discussions allowed a range of ideas to be 
exchanged, and provided for genuine mathematical development on the part of 
learners in Mr. Daniels’ class. They also provided real challenges for these teachers, 
some of which will be discussed in Chap. 10.

Trajectories for Working with Learners’ Contributions

The analyses in Chaps. 8 and 9 come together to suggest possible trajectories for 
the emergence of and responses to learner contributions. This is discussed below 
and reflected graphically in Fig. 9.1.

All of the teachers worked to obtain complete, correct contributions. It is diffi-
cult to imagine teaching without such an orientation to complete correct responses, 
except in the most laissez faire child-centered teaching approaches, which are 
highly unlikely to exist in secondary mathematics classrooms (Chung and Walsh 
2000; Cuban 1993), and would be highly inappropriate. An important question for 
teachers is how many of these do they need to see in their classrooms in order to 
feel that they are making progress, or could some of the other contributions count 
as progress towards mathematical ideas, as they did in these five classrooms. All of 
the teachers took complete, correct responses further, requiring more of the learners 
who produced these. In addition, the teachers worked with complete, correct 

Complete, Correct
Teachers work towards and extend

Basic and Appropriate Errors/
Missing Information
Teachers notice and respond   

Partial Insights
Harder to enable and respond to

Beyond Task

Less challenging

More challenging

Fig. 9.1 Emergence of and response to learner contributions



164 9 Teacher Responses to Learner Contributions

BookID 159557_ChapID 9_Proof# 1 - 28/09/2009 BookID 159557_ChapID 9_Proof# 1 - 28/09/2009

responses for different purposes. This suggests that one way of beginning to work 
towards reform pedagogies is for teachers to think about ways in which complete, 
correct contributions can be taken further, becoming the beginning points rather 
than the end-points of conversations. Given that teachers will work towards com-
plete, correct contributions and will most likely have criteria for recognizing these, 
this might be a first step in a possible trajectory towards more reform-oriented 
teaching, a first step which builds on teachers’ strengths and helps them to develop 
new ways of teaching.

My analysis also shows that while these teachers worked towards complete cor-
rect responses, they also worked extensively with other kinds of contributions. 
They worked to maintain basic and appropriate errors and missing information 
contributions so that they could understand them, and only then worked to correct 
and complete them. They also tried to get other learners to help discuss and work 
with these. So they brought learner ideas into the public space of the classroom 
accepting them as valid ideas, while working to develop and transform them. They 
saw basic and appropriate errors and missing information as reflecting both pres-
ences and absences in learner thinking and worked with these in a variety of ways, 
constrained particularly by the tasks and their learners’ knowledge. My analysis 
suggests an important challenge for teachers working with basic errors, appropri-
ate errors and missing information contributions. The reform literature in general, 
and the misconceptions literature in particular, suggest that teachers need to under-
stand errors or partial contributions and raise them for discussion in class. The final 
step, as to how they are actually corrected is never explicitly discussed, almost as 
if it will occur spontaneously. My analysis shows that these next steps are likely to 
play out in different ways in different classrooms – in patterned ways that are 
related to tasks, learner knowledge and pedagogy.

This analysis has also suggested different ways to think about the three subcate-
gories of partial contributions: missing information, appropriate errors and partial 
insights. Based on the analysis in this chapter, partial insights can be seen differently 
from appropriate errors and missing information contributions. They occurred in 
only three of the five classrooms and where they occurred, the teachers worked with 
them to generate and maintain discussion. In the case of appropriate errors and 
missing information there was emphasis on both what the learners were thinking and 
at the same time, pressure to complete them and take them towards correct contribu-
tions. Thus, partial insights, while harder to generate, may be more worthwhile in terms 
of developing learner thinking in that they reflect connections and integration across 
ideas. My analysis suggests that partial contributions be grouped into two categories, 
one being appropriate errors and missing information contributions, and the other 
partial insights. Depending on a teacher, teacher-educator’s or researcher’s priorities, 
these can be worked with in different ways. For example, some might seek to 
develop ways of understanding and making public, appropriate errors and missing 
information contributions before partial insights, given that these may be easier to 
work with.9 Others might want to focus on the more difficult category of partial 
insights, given their importance in developing mathematical thinking.
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Finally, I have argued that three of the five teachers saw beyond task contribu-
tions as important presences in their classrooms and supported these when they 
came up. I have argued that the fact that they came up in the three classrooms can 
be accounted for by a combination of the tasks, learner knowledge and pedagogy, 
which also shows why they did not come up in two classrooms.

So, the analysis shows why complete correct contributions, basic and appropriate 
errors and missing information contributions, emerged more easily in the five class-
rooms and how the teachers worked more easily with these, and why partial 
insights and beyond task contributions are more difficult to achieve and work with. 
This suggests possible trajectories for teachers learning to shift their teaching in the 
direction of reform-oriented pedagogies. I have suggested that shifting ways of 
working with complete, correct contributions might be a place to start, given that 
this is an area of strength for teachers. Working with basic errors where they occur 
and/or partial contributions would be next, beginning either with partial insights or 
appropriate errors and missing information contributions, depending on particular 
priorities. Beyond task contributions could come before partial responses or after 
them in the trajectory, again depending on priorities in particular situations. This 
trajectory is graphically depicted in Fig. 9.1.

As I analysed the teachers’ responses to the learner contributions, I pointed to a 
number of challenges that the teachers experienced in dealing with their learners’ 
thinking and reasoning. These include choosing which responses to deal with, how 
to complete and correct contributions, how long to stay with particular learners’ 
ideas and how to conclude conversations. These will be discussed in more detail in 
the next two chapters.

9 Based on the analysis, I can also argue that in the context of certain tasks (i.e., the inductive, 
compare and contrast type task), missing information contributions seem to be easier to deal with 
than appropriate errors.
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In the previous two chapters I developed codes for learner contributions and teacher 
moves, which enabled a micro-ethnographic analysis across the five classrooms. 
The analysis illuminated patterns in how the teachers responded to the learner con-
tributions and suggested possible trajectories for the emergence of learner contribu-
tions in classrooms and teachers’ responses to these. I now turn to a more in-depth 
analysis of two issues that arose in some of the classrooms: dilemmas of teaching 
mathematical reasoning, which I discuss in this chapter and resistance to changing 
patterns of teaching, which I discuss in the in the next chapter.

In this chapter, I look in more detail at two of the classrooms, Mr. Peters’ and 
Mr. Daniels’ classrooms. I identify two dilemmas that these two teachers experi-
enced as part of their teaching mathematical reasoning to their learners. These 
dilemmas relate to other dilemmas in the literature, in both traditional and reform 
contexts. They were also experienced in some form by the other teachers in this 
study. Key to these dilemmas in these classrooms is the press move. I will show 
how the press move is implicated in two dilemmas of teaching mathematical reason-
ing as experienced by Mr. Peters and Mr. Daniels.

Teaching Dilemmas

Lampert (1985) defines teaching dilemmas as situations where teachers are con-
fronted by equally undesirable alternatives because of the varied and contradictory 
aims of the work of teaching. Using examples from her own teaching, she shows 
how dilemmas do not present clear and obvious choices for teachers, neither in the 
moment of teaching, nor with considerable reflection afterwards. In fact, Lampert’s 
careful articulation of her dilemmas shows exactly how intractable they can be. She 
argues that teachers cannot be guided by research or teacher education to make 
better choices among dichotomous alternatives or to resolve dilemmas. Rather, 

Chapter 10
Dilemmas of Teaching Mathematical Reasoning

Chapter 10 is reprinted in part from Journal of Curriculum Studies, K. Brodie, Pressing Dilemmas: 
meaning-making and justification in mathematics teaching. Copyright (2009), with permission 
from Taylor and Francis. http://www.informaworld.com
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dilemmas are an inherent part of teaching and the conflicts that they present are 
constitutive of the practice of teaching. For Lampert, “the conflicted teacher is her 
own antagonist, she cannot win by choosing” (p. 182). Rather, the teacher has to 
accept the inner struggle that dilemmas bring, manage dilemmas in ways which 
may not resolve them but which enable further action, and through deliberation and 
practical reasoning manage to “act with integrity while maintaining contradictory 
concerns” (p. 184). A review of the literature on teaching dilemmas shows that 
dilemmas fall into two main categories: those that involve teachers managing the 
tension between learners’ current knowledge and the subject matter they are teach-
ing and those that involve teachers managing tensions between individuals and the 
class. In practice, these are experienced simultaneously, but it is useful, at least at 
first, to separate them analytically.

Linking Learners with the Subject

Edwards and Mercer (1987) and Jaworski (1994) identify the “teacher’s dilemma” 
as a recurring aspect to reform pedagogy. This dilemma arises in classrooms where 
the teacher wants both learner’s to participate and to teach particular ideas. The 
dilemma is how to elicit the knowledge from learners that she wants to teach.  
As long as the teacher genuinely allows learners to express their thinking, she can-
not be sure that it will help to build towards what she is trying to teach and if learn-
ers divert significantly from her agenda, she will have to work harder to bring them 
back. If the teacher maintains her focus on covering the content of the curriculum, 
then she is in danger of losing out on what learners have to say and making connec-
tions between their meanings and the new knowledge.

Ball (1993, 1996, 1997) articulates this dilemma as how to respect both the integrity 
of the students’ thinking and the integrity of the mathematics they need to learn. This 
dilemma manifests particularly when learners make mistakes. For example, when 
her students argued that 5/5 is bigger than 4/4 because 5/5 has more pieces, Ball had 
to work out how they were thinking about fractions in order to make this claim and 
how to work with them to understand the equivalence of 5/5 and 4/4. Research on 
misconceptions (Confrey 1990; Smith et al. 1993) suggests that misconceptions are 
important steps en route to correct mathematical knowledge and that teachers can 
infer the reasoning and sense behind learners’ errors in order to help build new 
knowledge from old. For the teacher, the challenge is how long to allow errors to 
persist publicly in the classroom, and exactly when and how to step in and challenge 
them. Taking learners’ ideas seriously when they are mistaken requires that the 
teacher work out when and how to intervene to both value and validate the learners’ 
contributions and to develop appropriate mathematical knowledge.

In learning to teach in a reform-oriented way, Heaton (2000) describes, when 
she asked for student contributions, how many were not at all helpful and she 
struggled to work out what to do with them. Her dilemma was how to gain maxi-
mum participation from all learners while simultaneously taking the mathematics 
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under discussion forward and developing mathematical ideas. Heaton learned to 
manage this dilemma by learning to take control of the discussion while still taking 
students’ ideas seriously. In order to do this, she had to learn to understand the 
mathematical purpose of the task and to recognize the mathematics that related to 
this purpose in the students’ contributions. Only then could she intervene appropri-
ately in ways that enabled her to teach mathematics while drawing on students’ 
contributions.

A related concern is how teachers hear what learners are saying (Ball 1997; 
Davis 1997; Wallach and Even 2005). Hearing the ideas of others always requires 
some form of interpretation against one’s own perspectives. Since teachers have 
curricular goals to accomplish, they are likely to hear what learners say in rela-
tion to what they are trying to achieve, what Davis (1997) calls evaluative listen-
ing; rather than in relation to the thinking that underlies what learners are trying 
to say, what Davis calls interpretive listening. Understanding learners’ meanings 
in ways that enable teachers to support learning requires that teachers move 
beyond their own expectations and understandings and even their own mathematical 
knowledge (Chazan 2000; Heaton 2000), to really understand the meanings that 
learners make of mathematical ideas, even when they are not correct (see also 
Schifter 2001).

Working Simultaneously with Individuals and Groups

All teachers experience the tension between needing to develop individual learners’ 
understandings while teaching a whole class. In traditional teaching, this is often expe-
rienced as managing different ability levels and personalities among learners. In reform 
teaching, these challenges take a different form, as teachers endeavour to engage learn-
ers with each other’s thinking in order to create communities in which learners might 
further develop their ideas. Developing mathematical communities in classrooms 
requires that teachers support all learners to express their ideas and participate in the 
discussion and that they mediate appropriately between different learners’ ideas.

Chazan and Ball (1999) describe how they work to create classroom mathematical 
communities and how these break down in instances of what they call “unproductive 
agreement” and “unproductive disagreement”. Unproductive agreement occurs dur-
ing discussion when all students agree that an error is correct, and do not challenge 
it. Unproductive disagreement occurs when students disagree so vehemently with 
each other that very little genuine thinking or reconsideration of ideas can take place. 
Chazan and Ball found that they could not rely solely on students to challenge each 
other appropriately and take the mathematics forward, since group dynamics and 
relationships among students over-determined the conversations. They argue that the 
role of the teacher is to find appropriate ways to insert his or her voice to calm over-
excited or defensive argumentation, or to stir up challenge where necessary. Osborne 
(1997) describes the case of a learner, Cory, who is both productive and disruptive. 
Cory is extremely insightful and, therefore, helpful in class in that he raises ideas that 
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provoke thinking among his peers. At the same time, his behaviour can be so disrup-
tive that he distracts others from thinking. Osborne describes how she walks a fine 
line between disciplining him and thus preventing him from contributing, and disci-
plining him so that he and others can contribute.

Two key decision points for teachers are who to call on to contribute at a particu-
lar point in the conversation and when to call on particular learners. Most teachers 
want to give equal opportunities to learners to express their ideas, and yet in all 
classes, particular learners can be more or less helpful at particular times in taking 
discussions forward. An experienced reform teacher, Lampert (2001), chooses par-
ticular students to contribute at particular times for mathematical reasons “I used 
my choice of whom to call on to get a particular piece of mathematics up for con-
sideration” (p. 146). In researching the practices of a successful reform teacher, 
Boaler argues that strategic choices of student contributions at particular times can 
help shape the mathematical direction of the class. Since all students are likely to 
have ideas to offer at different times, making strategic choices could also include 
making equitable participation possible over longer time periods (Boaler and 
Humphreys 2005). These authors argue that managing the tensions between indi-
viduals and the class requires that the mathematical purposes of the lesson be 
foregrounded. While it is clearly important for all learners to contribute, learner 
contributions can be organized in ways that take the mathematical conversation 
forward, and this organization of learner contributions is a key role for the teacher 
in reform classrooms.

The above review of research across a number of contexts suggests that there are 
similarities in the dilemmas that teachers experience. At the same time, Lampert 
(1985) points to the deeply contextualized nature of teaching; dilemmas arise in 
particular ways in particular classrooms, which are experienced differently by 
teachers and are managed by teachers in locally conducive ways. In Mr. Peters’ and 
Mr. Daniels’ classrooms, the dilemmas discussed above were experienced in relation 
to how the two teachers used the “press” move to engage with learners’ mathematical 
reasoning. I identify two dilemmas experienced by Mr. Peters and Mr. Daniels: 
whether to press or not on particular learners’ meanings and whether to take up or 
ignore learner contributions. I show how the different choices that the two teachers 
made as to how they pressed their learners’ contributions had different consequences 
for how they experienced the dilemmas of teaching mathematical reasoning.

The “Press” Move

As discussed, in Chap. 9, pressing on learner’s ideas is a reform-oriented practice, 
where the teacher asks the learners to elaborate clarify, justify, or explain their ideas 
more clearly. Teacher presses can range from the general “can you say more” to 
very specific presses “why did you choose 2?” Other examples are “what do you 
mean by …” and “can you elaborate”. Teacher presses can be distinguished from 
the more predominant “elicit” move (Edwards and Mercer 1987; Mehan 1979) 
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which is common in traditional classroom discourse, in that teacher presses aim to 
enable the learner to transform her own contribution and thinking, rather than to 
produce a different contribution, usually the “correct” answer from the teacher’s 
perspective. Elicit moves often serve to narrow the discourse and “funnel” the 
learner’s contributions towards a particular point (Bauersfeld 1980), whereas press 
moves try to stay with the learner’s thinking.

Pressing shifts the norms of classroom discourse, in that it does not comply with 
the commonly accepted ground rule identified by Edwards and Mercer (1987) that 
repeated questions imply wrong answers. A teacher may press on a correct answer, 
if she wants the learner to elaborate the idea more clearly, either for the teacher, the 
learner himself or herself or other learners. Pressing also violates a pervasive class-
room norm that teachers only ask questions to which they already know the answers. 
Teachers might press with authentic questions (Nystrand et al. 1997) if they genu-
inely do not understand how a learner is thinking and want to find out. They can also 
press when they do know what a learner means and want the learner to re-articulate 
the idea or provide a justification. These shifting and more complex ground rules 
make reform classrooms harder to negotiate for both learners and teachers.

Kazemi and Stipek (2001) distinguish between low and high presses in mathe-
matics classrooms. High presses require that when learners explain their thinking 
they provide a mathematical argument underpinned by conceptual relationships 
while low presses accept procedural explanations of problem solving strategies. In 
this chapter, I distinguish between presses for meaning and presses for justification. 
The first transcript below shows a press for meaning and the second a press for 
justification (the presses are in bold font). David was reporting on his group’s dis-
cussion on the task: what happens when the graph of y = x2 is shifted four units to 
the left. This was the first part of a task that asked students to explore differences 
in the graph and equation as y = x2 shifted horizontally and vertically.

David: And all, all your, all your coordinates will sit in the second quadrant, therefore, 
all negative, all your x-values, sorry, will all be negative, and there’s again, 
another pattern, it still increases by one. So it will go negative seven, 
negative six, negative five, negative four, negative three, negative two, 
negative one.

Mr. Daniels: David, do you mind just, I just want to see what you mean by that, that 
there, there’s a pattern

Learner: Yes
David: There’s a pattern
Mr. Daniels: Okay, do you mind just drawing the table on that side (points to board to 

the right of class), I just want to see …
Mr. Daniels: My question to them is just, why did you do what, why did you do that
Ntabiseng: So everything can be clear, sir
Mr. Daniels: Sorry
Ntabiseng: So everything can be clear
Mr. Daniels: What do you mean by everything can be clear
Learner: When you move
Ntabiseng: Ja, you can see, how you move, and stuff like that
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The presses in the first transcript focus on what the learner means by a pattern. In 
this case, Mr. Daniels’ presses were authentic, he did not understand where David saw 
a pattern and wanted him to elaborate for himself and the other learners. In the second 
transcript, the first press is a press for justification. The learner’s response to this press 
did not provide an adequate justification, hence Mr. Daniels’ subsequent press, which 
looks like a press for meaning but functions as a press for further justification. It is likely 
that in this case Mr. Daniels had an idea as to why the learners had shifted the graph, 
but he wanted them to clarify this for the rest of the class, and for themselves.

In both of the examples above, and in many other examples across the five class-
rooms, teacher presses often did not succeed in producing clearer, more articulate 
ideas or evidence of deeper or transformed thinking on the part of the learner 
(Brodie 2005) and, therefore, might be considered examples of low presses by 
Kazemi and Stipek. In this chapter, I try to understand some of the reasons for this 
finding, which are located in the difficulties associated with the press move and the 
dilemmas it creates for teachers.

To Press or Not to Press?

As discussed above, a common challenge for teachers in reform classrooms is when 
and how to intervene to link learners’ ideas with important mathematical ideas and 
to develop them further. The dilemma of whether to press or not arises once the 
teacher has made a decision to intervene and is faced with decisions about how to 
do so: whether to continue pressing a particular idea or learner and for how long. 
The concerns that arise in relation to how long to press relate to the two dilemmas 
discussed above: working between learners’ ideas and the subject and working 
between individuals and the group. While pressing can help the teacher to under-
stand a particular learner’s thinking, it may divert the class from the mathematics 
under discussion, and it also may reduce the time available for others to contribute.

Across the five teachers, Mr. Peters was more comfortable than the others in 
pressing longer on learners’ thinking, and I use an example from his class to illus-
trate this dilemma. The task in this lesson was: Can x2 + 1 equal 0 if x is a real 
number. In this task, learners can reason empirically by trying out numbers in the 
expression x2 + 1 and noticing that x2 will always give a number greater than or 
equal to zero. They can also reason theoretically by drawing on the property that as 
a perfect square, x2 will always have to be greater than or equal to zero and therefore 
x2 + 1 will always be positive. In planning the task, Mr. Peters expected predomi-
nantly empirical reasoning from learners and hoped that through the class discussion 
he could build on their empirical reasoning to develop theoretical reasoning.

Learners had worked on the task in pairs and submitted their solutions to  
Mr. Peters the previous day. Mr. Peters had read these and chosen some to put up 
on discussion. Mr. Peters’ choices and his justifications for these show a very clear 
sense of working hierarchically with the reasoning in the groups’ contributions: 
from those that had serious errors (which he did not expect), through those who 
reasoned empirically, to those that provided an adequate mathematical justification. 
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Most learners had argued that x2 + 1 could not equal 0 because x2 and 1 are unlike 
terms and so could not be simplified. They did not think about the possibility that 
if x was given a value, then x2 + 1 could be simplified and would have a value. Only 
a few groups had taken the empirical route. One of these responses, that of Jerome 
and Precious, was central in Mr. Peters’ plan for moving through the learners’ par-
tial contributions towards an acceptable mathematical argument. Jerome and 
Precious had substituted values for x before answering the question; however, they 
had not gone further to provide an explanation. In his interviews, Mr. Peters articu-
lated three purposes for his focus on their response: to develop a sense of meaning 
for the expression as a variable expression; to develop a method of systematically 
substituting values for x; and to show how Jerome and Precious’ strategy could be 
taken further to a more general explanation. Mr. Peters had written Jerome and 
Precious’ response on the board and in the two extracts below we see him pressing 
Jerome in order to achieve these purposes (the presses are in bold font):

121 Mr. Peters: Let’s look what Jerome and Precious did, let’s just go and see what 
Jerome and Precious did, so Jerome and Precious, I hope you gonna 
explain what you did here, and Lebo and Boitumelo and Tebogo 
and Marlene also did something similar, ne, Jerome, what were 
you thinking? Come let’s see, come let’s give Jerome a chance

122 Jerome: Sir, I said zero equals to anyone of them
123 Mr. Peters: What, what, what were you doing there Jerome?
124 Jerome: I said x was equal to two, sir
125 Mr. Peters: Here, you said x is equal to (pause)
126 Jerome: two
127 Mr. Peters: x is equal to two, Why did you choose two, why didn’t you choose 

any other number?
128 Jerome: I just took any number
129 Mr. Peters: You took any number, okay, and what you found out
130 Jerome: Sir, and I said two times two
131 Mr. Peters: So what did you do, you took the two into x’s place, remember, it’s x 

times x plus (pause)
132 Learners: one
133 Mr. Peters: Plus one, So you said two times two plus one, And you got an answer 

of
134 Learners: five
135 Mr. Peters: Answer of five, Do y’all see what Jerome was doing
167 Mr. Peters: Now, I want to know why did you choose the two specifically, what 

other numbers did you choose there Jerome
168 Jerome: I said x is equal to nought, sir
169 Mr. Peters: You said x is equal to zero
170 Precious: Yes, sir
171 Mr. Peters: Why did you choose zero, first you chose two, now you’re choosing 

zero, why
172 Jerome: I chose any number sir
173 Mr. Peters: I want to believe you are choosing it for a reason and not just taking 

any number
174 Jerome: I was trying to get out, to see if it ends up on nought, sir
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In the first extract, Mr. Peters used two presses for meaning (lines 121 and 123) 
and one press for justification (line 127), where he pressed Jerome on why he started 
his substitutions with the number two, trying to press Jerome to articulate his trial and 
error strategy for the class. Jerome’s responses to these presses were short and did not 
elaborate his thinking. He stated that the number two was not particularly significant, 
a response that Mr. Peters accepted temporarily in order to work with the class on the 
process of substituting the two and other numbers into the expression.

In the second extract, Mr. Peters pressed much more specifically on Jerome and 
Precious’ choice of numbers, focusing again on their choice of two to start with and 
their subsequent choice of zero (lines 167 and 171). Mr. Peters was still trying to 
support Jerome to articulate their systematic trial and error strategy. This was par-
ticularly important since so few other learners even thought to attempt an empirical 
approach. Again, Jerome argued that their choice of numbers was not systematic, 
and it was only after Mr. Peters inserted his own opinion that Jerome and Precious 
were thinking systematically and did have reasons behind their actions, that Jerome 
began to articulate his reasoning – he was trying to get the expression to be zero.

There are a number of points here that are important to my argument. In an 
interview about this exchange, Mr. Peters said that he had chosen to spend some 
time reflecting on Jerome and Precious’ solution, both because it reflected reason-
ing that others could learn from, a systematic trial and error strategy, and because 
the reasoning was limited and needed to be supported towards a more theoretical 
justification. He wanted to try to build an understanding of why a theoretical justi-
fication was necessary. He was pressing on Jerome’s thinking to make it accessible 
to the class (and Jerome) so that they could consider the strengths and weaknesses 
of the argument. However, in doing this, he was faced with a dilemma in relation 
to how he interpreted Jerome’s responses.

Jerome’s responses to Mr. Peters’ presses were short replies that did not elaborate 
his thinking. Even after pressing for an extended period of time, Mr. Peters struggled 
to support Jerome to articulate his strategy. It was only after inserting his own 
opinion that Jerome did have a reasoned strategy (line 173), possibly removing 
some of the pressure from him, that Jerome was able to articulate at least some of 
his strategy. Mr. Peters’ press moves may have been unsuccessful initially because 
Jerome interpreted them as low presses (Kazemi and Stipek 2001) not requiring a 
conceptual justification, or as repeated questions signalling that his responses were 
not correct (Edwards and Mercer 1987), rather than as Mr. Peters intended, that 
they could provide helpful steps towards a solution.

In an interview, Mr. Peters articulated another possibility, which reflected part of 
his dilemma. He knew Jerome as a shy learner who may not have appreciated the 
extended attention on his reasoning, even if it was correct. At the same time, Mr. 
Peters believed that he should persevere, believing that Jerome’s reasoning was 
helpful and that he could articulate his reasoning for the benefit of both the class 
and himself. So, even if Jerome had understood the norm that Mr. Peters was working 
with, that repeated questions mean an attempt to understand his thinking rather than 
achieve a correct answer, he still may not have been comfortable in expressing his 
thinking, an interpretation supported by the terse way in which he finally did so 
(line 174). In this case, articulating the strategy seemed to require a more authorita-
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tive re-voicing (O’Connor and Michaels 1996), which Mr. Peters did choose (line 
173), to support Jerome to see the strength of his thinking1.

So in this case, pressing was not immediately useful in supporting Jerome to 
elaborate his thinking and created a dilemma for the teacher, which he managed by 
partially removing the pressure from Jerome through using his own authority.  
Mr. Peters also articulated a second aspect of this dilemma: focusing in detail on 
one learner’s approach at the expense of other learners. Mr. Peters’ learners had 
weak mathematical knowledge, and he worried much of the time about getting 
through the work. At the same time, he was clear about his teaching goals: he 
wanted to teach both an important mathematical concept, that the expression 
x2 + 1will take a range of values depending on the value of x, and a mathematical 
practice (Ball 2003) that there is a systematic, justifiable process that can be fol-
lowed in trying to find out and justify whether x2 + 1 can equal zero2. According to 
Mr. Peters:

They could not understand x2 plus one to be a unit value if x is any real value … 
Teachers in the lower grades place too much emphasis on x2 plus one having two 
terms and don’t emphasize its unit status if the x-value is known.

In trying to shift a misconception, give meaning to the expression and teach the 
systematic nature of testing conjectures, which the misconception had prevented 
many learners from even attempting, Mr. Peters was again working with the 
dilemma of connecting learners’ partial ideas with appropriate mathematical 
knowledge. He had previously focused directly on the misconception by asking 
learners to comment on it, but the learners did not manage to see x2 + 1 as taking 
variable values. So, he took the time to work with Jerome’s thinking to help make 
this point. However, focusing on Jerome’s reasoning meant that other learners 
were not brought into the conversation to try to link the new ideas with their own. 
Mr. Peters did ask other learners to participate procedurally in substituting numbers 
into the expression and obtaining answers but did not ask them to comment on 
Jerome’s strategy because it had taken so long for him to articulate. After the above 
extracts, Mr. Peters articulated Jerome’s strategy clearly for the class, which led to 
a consideration of x = −1 and the development of the theoretical argument. However, 
there is no evidence that most of the learners connected this process with their 
original misconception or that they shifted this misconception.

The above analysis shows Mr. Peters working with mathematical knowledge at 
a number of levels. He managed to co-ordinate a range of learner ideas, which 
demonstrate qualitatively different levels of reasoning, as well as mathematical 
concepts and practices that he wanted to teach. The fact that he could work simul-
taneously with these layers of knowledge produced a key dilemma for him: whether 
or not to press on a learner’s idea. In making a strategic choice (Boaler and 
Humphreys 2005; Lampert 2001) to press on one learner’s reasoning to try to 

1 Mr. Peters’ statement in line 173 can also be seen as “assigning competence” (Cohen 1994) to 
Jerome, trying to increase his confidence that his method was reasonable and useful, so that he 
would feel comfortable to articulate it.
2 I remind the reader that very few learners understood this. Most had argued that x2 + 1 could not 
be simplified because they are unlike terms.
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develop it, he ignored others’ – not in the sense that he did not know about their 
ideas or choose to deal with them (he had earlier) – but because he did not find 
ways to manage to bring together the different learner understandings within a 
limited time period. While he found an appropriate way to build mathematical 
justification from Jerome’s original approach, he could not do this for the others in 
the class. Mr. Peters was painfully aware of this and even after extensive reflection 
did not think he could have found a way to deal with the situation differently.

To Take Up or Ignore Learners’ Contributions?

The range of mathematical ideas that were present in Mr. Peters’ class was relatively 
constrained by the task and possibly by Mr. Peters’ extended focus on individual 
pairs’ contributions and thinking. In Mr. Daniels’ class, the tasks and Mr. Daniels’ 
pedagogy created a situation of many different contributions, not all of which could 
be given time in the classroom, creating a dilemma of whether to take up or ignore 
learners’ contributions. While Mr. Daniels’ also pressed learners ideas, he did it in 
different ways from Mr. Peters, with different consequences both for him and for the 
learners. Mr. Daniels’ task asked learners to explore what happens to the turning 
point and the equation when the graph y = x2 is shifted horizontally on the x-axis. The 
transcript below is part of a group’s report on the question: what happens when you 
shift the graph y = x2 four units to the left (Mr. Daniels’ press moves are in bold).

50 David: If you move it four to the left, then all your x-values will decrease by 
four, and the, your y-values again will stay the same, your new 
equation would be y equals x squared minus four

51 Mr. Daniels: (Writes y = x − 4 on the board)
52 David: And all, all your, all your coordinates will sit in the second quadrant, 

therefore, all negative, all your x-values, sorry, will all be negative, 
and there’s again, another pattern, it still increases by one, so it will 
go negative seven, negative six, negative five, negative four, negative 
three, negative two, negative one

53 Mr. Daniels: David, do you mind just, I just want to see what you mean by that, 
that there, there’s a pattern.

54 Learner: Yes.
55 David: There’s a pattern.
56 Mr. Daniels: Okay, do you mind just drawing the table on that side (points to 

board to the right of class), I just want to see

I discussed this extract in Chap. 9, as an example of Mr, Daniels’ responses to 
appropriate errors and missing information contributions, arguing that when these 
occurred simultaneously, Mr. Daniels’ chose to focus on the missing information 
contributions. Here, I focus on some of the reasons for these choices, which illumi-
nate the dilemma. Faced with a range of ideas, Mr. Daniels noted two aspects of 
David’s report: the (incorrect) equation, which he wrote on the board as David was 
speaking; and the pattern, which he pressed David to elaborate on (lines 53 and 56). 
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As noted earlier, these were presses for meaning, and were authentic. Since the 
group had not put up enough examples, it was difficult to see where they saw a 
pattern. David wrote up the pattern but did not respond further to these presses and 
Mr. Daniels did not press further but moved on to another group. Both the pattern 
and the equation were on the board and these were referred to in later discussions. 
However, the claims that all the points were in the second quadrant and that all the 
x-values were negative were not at all taken up in the discussion.

Mr. Daniels’ responses to this and other groups suggest that his main goal in 
this part of the lesson was to get a number of ideas into the public domain, to be 
discussed in more detail at a later point. He pressed on an idea that he was not clear 
about, suggesting that he wanted to understand the learner’s thinking. The other 
ideas, even though not correct, did not receive any attention (except for writing up 
the equation), possibly because he wanted other learners to respond to them later. 
So, Mr. Daniels made a choice to get many learner contributions into the discus-
sion, rather than to try to develop particular contributions towards his mathematical 
goals. This necessitated ignoring some contributions and clarifying others, and he 
focused on a range of contributions rather than bringing the contributions into rela-
tionships with each other.

Later in the lesson, Mr. Daniels invited learners to respond to each other’s report 
backs. At one point, learners asked why, when the graph shifts four units to the left 
giving a turning point of (−4,0), the sign in the equation y = (x + 4)2 is positive. This 
began a long discussion, in which learners focused on the superficial features of the 
graph, until one learner, Winile, supported by Mr. Daniels (see Chap. 9) made the 
important breakthrough that the graph gives a relationship between x and y that is not 
obvious and they would need to perform some calculation to find the co-ordinates of 
the turning point from the equation (see also Chap. 4). Winile explained this idea to 
the class; however, she used examples in her explanation that were not entirely correct 
and that some learners found difficult to follow. The teacher asked if others would like 
to comment on Winile’s explanation or “help to make sense of it”.

195 Teacher: Sh, Okay, you want to try, Maria, sh,
196 Melanie: Sir but is the explanation right?
197 Teacher: I don’t know, what do you think?
198 Melanie: I dunno that’s why I’m asking you
199 Teacher: That’s why I’m asking, that’s why I’m asking Maria what she thinks.
200 Melanie: No but you know sir
201 Teacher: Maybe she can explain it.
202 Maria: I’m gonna try. Sir, I think here, on the equation, y equals (inaudible)
203 Learners: (Talking), Shh
204 Teacher: Guys, come on.
205 David: Sir I disagree with her
206 Teacher: You disagree with that? Okay I’ll give you an opportunity to disagree. 

Let’s have Maria, then we’ll have David.
207 Winile: Sir, can I just tell you something before David answers. We supposed to 

get the y, aren’t we supposed to get the y, what the y equals. We’re not 
supposed to get what x is equal to, we getting what y is equal to. So we 
supposed to, supposed to substitute x to get y.
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208 David: But you get negative one, negative one multiplied by itself can’t give you a 
negative one

209 Winile: No, I was making an example, I was making an example,
210 David: We can just put it (inaudible)
211 Learners: It was an example
212 Winile: Do you understand what I was doing?
213 Teacher: I, I like the way you were put it now, Winile, the way you said, the way 

she said that she’s getting y, she’s not getting x, you’re saying that, 
she’s getting the y-value when she substitute the x, so, what, what she’s 
saying is that, that squaring will square, give you the y-value after you 
square it, not the x-value, that is what she is saying.

214 David: Sir, but you can get it another way.
215 Teacher: Okay, but Maria, you wanted to say something also.
216 Maria: Ag, sir, I’m confused now. (Shakes her head, class laughs)

As Maria tried to explain her interpretation of Winile’s points, Melanie and David 
both commented on Winile’s ideas without waiting for Maria to talk. Mr. Daniels 
refused Melanie’s request that he authorize Winile’s explanation saying that he 
hoped Maria would explain, and also asked David to wait so that Maria could 
have her turn (see Chap. 11 for a more detailed discussion). Winile jumped in to 
re-make her point, which set off a conversation between herself and David. When 
Maria finally got to speak, she had forgotten what she wanted to say.

One interpretation of this interaction could be that learners were not obeying 
norms of turn taking, and the teacher was not managing this process properly. 
However, we see that each of the teacher’s interventions made the point that learners 
should respond to each other’s ideas and do so in turns, and he was desperately trying 
to give Maria her turn. A second interpretation suggests that the learners were deeply 
engaged in the conversation and had points to make and questions to ask. This was 
particularly the case because Winile, while providing a useful explanation, had used 
examples that did not quite work and had made some mistakes. So, there was a lot to 
comment on in her explanation. While Winile and David’s engagement throughout 
the lesson might be seen as argumentative, in fact their intellectual antagonism 
became a source of very productive ideas for the class to work with and increased the 
engagement of many learners. Mr. Daniels was treading a fine line between support-
ing individual learners to make their points in ways in which they could be heard and 
supporting a climate that excited learners and helped them to stay engaged.

In the extract, Mr. Daniels did not make use of many press moves, in fact there was 
only one (line 197) which he did not follow through because he wanted to give Maria 
her turn. In choosing to support many learners’ contributions, Mr. Daniels chose not 
to press for too long on individual learners’ contributions. Mr. Daniels noticed the 
significance of many of the learner contributions and tried to give them all a chance to 
be heard. However, doing this, led to at least one contribution, Maria’s, being ignored.

Mr Daniels’ dilemma was both different from and similar to Mr. Peters’. 
Differently from Mr. Peters, he chose to allow a range of contributions and ideas to 
be stated publicly, which meant that he ignored a number of them and also strug-
gled to develop further those that he did not ignore. Similarly, to Mr. Peters, he had 
two clear goals for his teaching. First, he wanted to challenge the learners’ miscon-
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ception about the relationship between the turning point and the equation by sup-
porting them to see that the relationship between the graph and the equation was 
more complicated than they thought. Second, he also wanted them to justify their 
reasoning both as a means to develop their mathematical thinking and as an end in 
itself. Similarly, to Mr. Peters, Mr Daniels also struggled to see how to bring the 
learners’ contributions into contact with the concept and practice that he wanted to 
teach. Differently from Mr. Peters, he chose to allow a range of contributions to 
help him do this. This approach did work to some extent, because Winile and David 
did push each other to articulate the relationship.

The analysis of Mr. Daniels’ teaching illuminates how, when teachers support 
learners to express their thinking, they can be faced with a barrage of contributions. 
Some of these might be related to the original contribution and some might not be, 
some might be helpful for the mathematical direction of the lesson and some might 
not be, some might be worth considering in their own right for the new mathematical 
insights they might support, and some might be so poorly expressed that they are 
difficult to understand without much more work on the part of the teacher and the 
class. Reform-oriented teachers want to value, support, and encourage such learner 
engagement, however, making decisions as to which contributions to take up and 
which to ignore, and keeping track of the full range of contributions present chal-
lenges for teachers. Noticing significance becomes more demanding as teachers 
need to keep track of: (1) the original question and the extent to which learner 
contributions do address and answer it; (2) the extent to which learner contributions 
address each other’s points; (3) additional points that emerge in subsequent contri-
butions; (4) errors or misconceptions in the contributions that are made and that 
might need some discussion and work; and (5) who has spoken and who still needs 
to speak – a task often complicated by excited interruptions from learners, as seen 
above. In addition, teachers also have to find ways to help learners to keep track of 
the discussion. If the teacher finds it demanding to keep track of the relevance of 
the contributions, it is far more demanding for the learners. In many cases in both 
Mr. Daniels’ and Mr. Peters’ lessons, learners could not respond appropriately to 
previous ideas because they did not understand their significance and so further 
contributions did not always build on previous ones (see Chap. 11 for a discussion 
of some of the consequences of this). Managing these situations requires steering a 
path somewhere between Chazan and Ball’s (1999) unproductive agreement and 
unproductive disagreement. The teachers in this study faced agreement and dis-
agreement, productive and unproductive ideas all at once and had to manage this 
range while making progress with the mathematics.

Conclusions

In the two scenarios described in this chapter, I have illuminated how two knowledge-
able and thoughtful teachers were confronted by dilemmas as they engaged with 
learners’ meanings to develop their mathematical reasoning. That they were con-
fronted with these dilemmas is not surprising – a number of other more experienced 
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and knowledgeable teachers and researchers have written about similar dilemmas. 
What I have shown is how closely related these dilemmas are to reform pedagogy, 
particularly the press move. Choosing which learner contributions to work with, 
when to work with them and for how long, in order to build appropriate mathematics 
is a feature of all the dilemmas described here and in the literature. At the heart of 
both Mr. Peters’ and Mr. Daniels’ dilemmas was an attempt to value and engage with 
learner contributions while simultaneously transforming them into appropriate math-
ematical concepts and practices. Both were working with the idea of mathematical 
reasoning as an important part of mathematical proficiency (Kilpatrick et al. 2001) 
supporting and supported by mathematical concepts and relationships. Both strug-
gled, in different ways, to bring learners’ partial meanings and intuitive reasoning 
and justification into contact with established mathematical ideas.

I have argued that the “press” move, privileged by reform discourse for supporting 
learners’ thinking can have varying success and is implicated in the dilemmas that 
the teachers experienced. In Mr Peters’ class, a series of extended presses needed 
to be supported with the teacher’s authority that the learner had something valuable 
to contribute, in order to support the learner to articulate some of his reasoning.  
In Mr. Daniels’ class, the demands of managing a range of excited contributions 
meant that pressing was not always useful. When the teachers did choose to press 
more extensively on particular contributions, they had to make choices to ignore 
other contributions. In distinguishing between presses for meaning and presses for 
justification, I suggest that it might help teachers to know which of those they are 
using, just as Kazemi and Stipek (2001) distinguish between high and low presses. 
However, I am also suggesting that continued pressing for learner thinking can be 
counter-productive, even if learners understand the norms with which the teacher is 
working. This supports my argument in Chap. 9 that pressing needs to be strategi-
cally combined with a range of other moves, including bringing the teacher’s author-
ity into the discussion through revoicing (O’Connor and Michaels 1996), conceptual 
explanations (Lobato et al. 2005), or strategic episodes of closed questioning 
(Brodie 2007c).

I would like to end this chapter with a quote from Mr. Daniels, made as he 
reflected on the above incidents in his classroom:

It is quite demanding to negotiate between learners’ understanding, trying to listen to what 
they do, and at the same time keep track of where you want to go to, and also with negotiating 
their arguments, listening at the same time while negotiating and keeping track where you 
want to go, and then you are bound to slip up … I thought that preparing will help but 
that is not why it happens. You can still prepare and you can still be confronted with all 
these issues because the focus is not just on what you are saying but also you are thinking 
about what the response is and what just happened before that (my emphasis).

That Mr. Daniels believed he had slipped up when not managing to take account of 
all learner contributions in his classroom, suggests a long-standing view that teach-
ers need to be perfect, that they do not make mistakes. This is true of the reform 
literature as well, we present ideal images of what mathematics classrooms should 
look like, images which may be very difficult to live up to, except perhaps for short 
periods of time. Even the literature on dilemmas suggests that teachers can manage 
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these in ways that are deemed to be successful. The only times when mistakes can 
be acknowledged is when teachers are learning reform practices (Heaton 2000). My 
analysis suggests that teachers who work with reform-oriented pedagogies and seri-
ously grapple with the demands that arise, will both be successful and unsuccessful: 
they will at times choose appropriate moves which help some learners to articulate 
their reasoning; and while taking up some ideas, they may ignore other potentially 
fruitful lines of conversation, either consciously or because they did not notice the 
significance of particular contributions. Teachers’ more and less successful moments 
are not steps along a road to perfection, but are a part of this way of teaching. 
Although, as Mr. Daniels hoped, teachers can become more prepared for particular 
dilemmas, as he found out, there will always be surprises and new challenges as new 
groups of learners interact in new ways around mathematical ideas.



183

BookID 159557_ChapID 11_Proof# 1 - 24/09/2009

The previous chapters have described a range of ways in which five teachers shifted 
their pedagogies to take account of learner contributions and to teach mathematical 
reasoning. The analysis has pointed to both successes and challenges in their teach-
ing and has shown that a new curriculum and new pedagogies place new and 
increased demands on teachers and learners. Increased demands can lead to resis-
tance on the part of both teachers and learners. In this chapter, I focus on learners’ 
resistance to their teacher’s changing pedagogy.

The phenomenon of learner resistance is often spoken about by teachers but has 
not received significant attention in the mathematics education literature. Extended 
resistance in Mr. Daniels’ classroom suggested that this was an important area to 
explore in this study. As Mr. Daniels shifted his pedagogy to include learners’ 
mathematical reasoning, so the learners began to resist this shift in demands on 
them, at first subtly and then openly. In this chapter, I explore the dynamics of this 
resistance, including both the learners’ and teacher’s contributions to it. I argue that 
it is not possible to avoid learner resistance to changing pedagogy, and that in fact, 
a certain amount of resistance is useful and positive. However, too much resistance 
can be destructive and teachers can be aware of the potential for resistance and the 
possibilities of managing it.

Resistance to Pedagogy

Research into resistance in schools has identified a range of complex dynamics that 
come together to produce resistance. In his seminal study into the cultural repro-
duction of schooling, Willis (1977) showed how working class boys explicitly 
rejected the hegemony of middle-class schools and society through the creation of 
counter-cultures. However, in doing this, these boys further entrenched their mar-
ginalized positions because they did not gain access to the very resources that could 
shift their material conditions, the material benefits of schooling. So resistance both 
requires and creates collusion with the very structures that are being resisted. 
McNeil (1981, 1999) further illuminates this collusion among teachers and students 
and shows how it creates the phenomenon of “defensive teaching”. Her study 
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showed that teachers who had deep knowledge and convictions about issues in the 
social studies curriculum, nevertheless, simplified and fragmented what they taught 
in class in order to avoid controversy in their lessons. Students responded to this 
simplification by acquiescing to classroom procedures: taking notes, not making 
contributions or asking questions, and publicly accepting the “facts” that the teach-
ers presented. However, interviews with the students showed that they often did not 
believe what their teachers told them, particularly when they had access to other 
information, or held strong views on particular issues. They silently resisted the 
knowledge offered in their classrooms, learning what was required to pass tests and 
keeping quiet about their own opinions. McNeil argues that defensive teaching 
stems from teachers’ fears that allowing a variety of opinions and discussions 
around controversial issues might create a loss of control in the classroom. Students 
also preferred not to risk their own ideas and beliefs in public discussion and so 
publicly acquiesced to the teachers’ control while privately resisting it. Thus, 
“teachers and students contributed to each other’s (and their own) alienation in the 
classroom which further reinforced tighter knowledge control and increased resis-
tance to it” (1981, p. 323). In the South African context, Chick (1996) argues that 
teachers’ and learners’ resistance to communicative language teaching can be 
explained by the “safe-talk”, that they engage in; highly stylised interaction pat-
terns with substantial chorusing by learners. He argues that “safe-talk” represents 
collusion by teachers and learners to maintain dignity in the face of the “unpleasant 
realities” of the South African education system, which deny real access to knowl-
edge to so many. Becoming more communicative would remove this defensive 
strategy, hence the reason why teachers and learners resist any significant shifts in 
interactional style.

The above research helps understand the seeds of resistance to new pedagogies. 
Because collusion and defensiveness bring some form of safety in traditional 
modes of interaction, both teacher and learner will resist shifting these, even as 
these represent forms of resistance to current structures of schooling. One key 
vision of reform pedagogies is to overcome traditional authority relations between 
learners and the teacher, where the teacher is assumed to be the sole authority in the 
classroom, particularly in relation to knowledge. The above research argues that 
such authority relationships both produce and are produced by resistance. In reform 
pedagogies, learners are encouraged to both author and authorize mathematical 
knowledge in the classroom, through expressing their own reasoning and evaluating 
the ideas and reasoning of others, thus overcoming some of the reasons for resis-
tance in traditional schools. In such classrooms, the epistemic authority derives 
from the mathematics itself, which provides the grounds for reasoning and justifica-
tion (Ball and Bass 2003; Kilpatrick et al. 2001). Resistance to reform pedagogies, 
thus, presents a paradox for teachers and researchers. Why do pedagogies that 
attempt to overcome resistance in fact continue to produce resistance?

Research into learner resistance to reform pedagogy suggests a number of pos-
sible answers to this question. Particularly, but not only, in developing countries, 
the authoritarian nature of many education systems ignores teachers’ perspectives 
and new curricula, and pedagogies often do not find points of contact with teachers’ 
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realities in order to provide appropriate guidance in relation to the ideas of reform 
(O’Sullivan 2004; Tabulawa 1998; Tatto 1999). Reform pedagogies often clash 
with deep-rooted beliefs about knowledge, learning and the purposes of schooling 
and with teachers’, learners’ and parents’ images of classrooms as places where the 
teacher is in control of the knowledge produced (Association for the Development 
of Education in Africa (ADEA) 2003; Cuban 1993; Shamim 1996; Tabulawa 
1998). However, as Shamim (1996) notes, this is not enough of an explanation, and 
it poses a serious paradox for teachers and researchers. If learners, teachers, and 
parents expect compliance to authority, then why is this compliance “functional 
only in terms of the social organization and shared norms of interaction of the tra-
ditional classroom” (p. 118). Even though new pedagogies encourage a shift in 
authority relations, they are still underlined by a notion of authority, and it is still 
the teacher who, from a position of authority, is introducing the changes. Thus, 
further explanation is required.

Reform approaches require more work from both teachers and learners; defen-
sive strategies are relinquished, and learners are expected to articulate their thinking 
for the consideration by the teacher and other learners. As Chick (1996) notes, these 
approaches are more threatening in two ways: learners have to express and take 
responsibility for their ideas publicly and the teacher has to feel competent to 
respond appropriately to learners’ unexpected ideas (see Chap. 10). Reform 
approaches also require that the teacher and learners become comfortable with 
some loss of certainty in the classroom, ideas are discussed and debated, and the 
“right” answer is not always forthcoming or easy to discern (Copes 1982; Kloss 
1994; Lubienski 2000). It is clear that reform teaching demands more work and 
more risk from both teachers and learners, adding to the challenges in the class-
room and opening possibilities for resistance.

Much of the research into resistance to reform pedagogy views resistance as 
problematic for developing new ways of teaching and proposes ways of overcom-
ing resistance. Cobb and his colleagues’ work on classroom norms argues that 
learners can be taught different ways of interacting in classrooms, which is neces-
sary for new pedagogies to be enacted successfully (McClain and Cobb 2001). In 
traditional classrooms, teachers explain ideas, ask questions to which they expect 
correct answers, and strongly evaluate learners’ responses as correct or incorrect. 
In reform pedagogy, appropriate norms for interaction are that mathematical rea-
soning, justification, and communication are as important as correct answers and 
count as appropriate contributions; partially correct or incorrect contributions are 
helpful and often illuminate important ideas; and learners are expected to listen to 
and comment on their classmates’ contributions in respectful ways. Teachers who 
teach mathematical reasoning do continuous work on developing these norms 
(Boaler and Humphreys 2005; Lampert 2001; Staples 2004). Boaler (2002) argues 
that students need to be taught how to participate in reform classrooms and that 
teachers should explicitly develop learning practices among learners such as how 
to begin exploring open-ended problems and how to explain and justify ideas. In 
the Namibian context, O’Sullivan (2004) has developed a programme of action 
research with teachers where they actively challenge assumptions about both tradi-
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tional and reform pedagogies. While developing ways of overcoming learner resis-
tance are important and extremely helpful for teachers and teacher-educators trying 
to develop the teaching of mathematical reasoning, they can lead to a dangerous 
assumption: that all forms of resistance can and should be overcome and if they are 
overcome, teaching can proceed smoothly. This represents an approach to teaching 
and knowledge about teaching that suggests that problems of teaching can be 
solved rather than managed, a position eloquently argued against by Lampert 
(1985) (see Chap. 10). In this chapter, I suggest that while openly expressed resis-
tance on the part of learners might be uncomfortable for teachers who are already 
engaged in the difficult work of developing new pedagogies, such resistance can be 
a sign of healthy interaction in the classroom. At the same time, I suggest that 
teachers can consider the particular dynamics of resistance in their classrooms and 
find ways to work with it.

One of the key claims of reform pedagogy is that it responds to theories of learn-
ing, particularly constructivist and situated perspectives on learning. Constructivist 
perspectives argue that learners construct new knowledge through engaging with 
their social and physical environments (Hatano 1996). Different environments pro-
vide different possibilities and constraints for the construction of mathematical 
knowledge (Hatano 1996). Situated perspectives argue that learning occurs as 
learners become better participants in communities of practice, using the intellectual 
resources and tools of these communities. Both of these perspectives argue that 
resistance is an inherent and important part of learning. From a Piagetian construc-
tivist position, resistance is inherently part of the processes of assimilation and 
accommodation which together create the process of equilibration (Rowell 1989). 
To develop new knowledge from this perspective it requires that the learner gives 
up a current equilibrium and takes on the difficult task of restructuring and reorga-
nizing her knowledge (Hatano 1996). All learners resist this task, trying successive 
compensations in order to avoid real transformations in knowledge organization. It 
is only when the integrity of our current knowledge is so seriously threatened that 
the task of reorganizing knowledge becomes a preferred process. From situated 
perspectives, resistance and contestation take place in communities of practice 
(Wenger 1998). Lave and Wenger (1999) argue that the process of legitimate 
peripheral participation is one that must involve resistance, from both newcomers 
and oldtimers. In order for practices to grow, newcomers must both accept and chal-
lenge the practice; they need to both engage existing practice and within this assert 
new ways of knowing and being. Oldtimers may resist challenges to the practice, 
wanting to preserve their preferred ways of action; however, they know that the 
practice must grow and change in order to survive. In the case of classroom reform, 
particularly in secondary schools, learners are oldtimers, having participated in 
traditional classrooms for many years. In a strange twist of roles, teachers introduc-
ing new ideas may take on aspects of the newcomer’s role, introducing new ideas 
into practice, which learners may resist. Practices are always sensitively balanced 
in relation to new ideas, because they need to be open to these in order to grow and 
yet maintain a core stability and regularity to continue the practice. Thus, contradiction 
and resistance are key to growing practice.
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In what follows, I show how this balance both shifts and is maintained in  
Mr. Daniels’ classroom. The dynamics of the resistance that he encountered are 
complex. Learners did not consistently resist, and not all learners resisted. Many of 
the key resistors were also key participants in the conversation, expressing their 
own reasoning and engaging with the ideas of others. However through the lesson, 
we begin to see mounting resistance as the ideas in the conversation became more 
difficult for the learners to access. I show how both learners and the teacher contribute 
to the dynamics of the resistance and argue that while such resistance can be seen 
as positive, indicating important shifts in practice, it is clearly uncomfortable for 
both teacher and learners. Resistance can be seen as both positive and negative, and 
it is not and should not be entirely avoidable. Rather, teachers can develop under-
standings about when and why resistance might occur and find ways to manage it.

The Context of the Resistance

The episodes of resistance occurred as learners in Mr, Daniels’ classroom were 
working on the question: What changes as the graph of y = x2 shifts 3 units to the 
right to become y = (x − 3)2, and 4 units to the left to become y = (x + 4)2. In Chap. 4, 
we showed how, through the week, one learner, Winile’s, learning developed, 
informed by an extended conversation. Here, I show how, later in the week, open 
resistance among the same classmates to the same conversation influenced the 
course of the lesson and subsequent learning. The conversation was in response to a 
question established by both teacher and learners as an important question to dis-
cuss: Why does a negative sign in brackets correspond to a shift to the right and a 
positive turning point; and a positive sign correspond to a shift to the left and a nega-
tive turning point? This question was co-produced in conversation between two 
learners, Michelle and Lorrayne in relation to a report-back from Winile’s group.

Mr. Daniels worked hard to facilitate discussion around this question. First, he 
tried to establish a common ground (Staples 2007) making sure that all learners 
understood and were interested in the question. The following extract shows how 
he spent substantial time in doing this.

100 Michelle: And then if you look at y equal x plus four, why is it that the turning 
point is a negative.

101 Learner: But the equation is positive
102 Michelle: And the drawing is positive.
103 Learner: I asked that too. (Some learners laugh).
104 Learner: I’m also asking the same question.
105 Mr. Daniels: What question are you asking?
106 Michelle: The question …
107 Mr. Daniels: Yes.
108 Michelle: Look at our drawing where …
109 Mr. Daniels: Okay. Where’s my drawings? (finds drawings)

(continued)
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110 Michelle: Where it says y equals x plus four on the left hand side.
111 Mr. Daniels: Right.
112 Michelle: Our turning point is a negative four.
113 Mr. Daniels: Okay
114 Michelle: Then Lorrayne that said with the one on the right, where it says y equals 

x negative three squared, and the turning point is a positive. Because you 
squaring it, it will become a positive. But what happens with um, the one 
on the left?

115 Lorrayne: The negative one. The equation is positive but the graph is on the 
negative side.

116 Mr. Daniels: The equation is positive but the graph is on the
117 Learners: Negative side
118 Mr. Daniels: Okay David. Do you know how to explain that? Do you have any ideas 

on that?
119 David: Sir, you people are taking my graphs and making other things with them.
120 Mr. Daniels: Okay. Now that’s why I’m specifically asking you because I know that 

you sitting there with something that you’ve got an understanding of. And 
we want you to share it with us.

121 David: No, I got that graph. Is that what you want
122 Mr. Daniels: No, no no. That question is … That’s why it’s important for you guys to 

listen. We need to learn to listen to each other and talk to each other to 
help each other to learn. That’s the point of being in this class in the first 
place.

123 David: Sir, can you please say the question again.
124 Mr. Daniels: The question is, they asking, if you look at the equation ok, the graph 

there, the one on the left hand side. They say that the turning point is 
minus four and the equation is y equal x plus four all squared. Why do I 
have a negative turning point there?

125 Mr. Daniels: Am I interpreting your question correctly?
126 Learners: Yes.
127 Mr. Daniels: Is that what everybody is struggling with?
128 Learners: Yes Sir.
129 Mr. Daniels: What do you think David?
130 David: Sir they saying, they asking you, why do you have your, why’s it a 

negative turning point when it’s a positive?
131 Mr. Daniels: It’s minus four is the turning point but it’s a plus four inside in your 

equation.

In lines 100–104 Michelle repeated part of the question that she had asked previ-
ously, relating to the graph y = (x + 4)2. A classmate helped her to re-articulate the 
question, while another confirmed that she too asked the same question. Mr. 
Daniels built on this asking for yet another re-articulation of the question in lines 
105–108. His move to “find his drawings” in line 109 signalled the importance of 
using the graphs to understand the question. In lines 109–117, Michelle, helped by 
Lorrayne, re-articulated the question slowly, for all to hear. Mr. Daniels helped to 
slow down the discourse by coming in every other line to affirm the statement 
of part of the question and by repeating the key part of the question in line 117.  
Mr. Daniels then asked David to try to answer the question, which he did not do, 
and asked for the question to be repeated, which Mr. Daniels did in line 124. He then 
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checked that he had in fact stated the question correctly (line 125) and reconfirmed 
that this was the question that the class was struggling with. By the end of the 
extract above, the question had been stated and re-stated a number of times and a 
number of learners had indicated interest in the question, suggesting that there was 
a common ground (Staples 2007) on which to build.

In the above extract we see Mr. Daniels doing some “norm work”, first in articu-
lating the question as an important, shared question and second in directly com-
municating key norms about the discourse (lines 120 and 122). He stated his 
opinion that David had something useful to share, thus assigning competence to 
David (Cohen 1994) and indicating an expectation that learners with knowledge 
should share it with the class. He stated that it was everyone’s responsibility to 
listen to each other, so that they could help each other with the question, and also 
acknowledged the girls as authors of the question by asking if he was interpreting 
the question correctly (line 125). Such “norm work” was common in Mr. Daniel’s 
classroom and always worked towards his goal of enabling learners to collaborate 
to achieve understanding (see also Chap. 4).

After the above extract, an extended conversation about this question ensued for 
over 30 min. During the conversation, many learners made extensive contributions, 
articulated their ideas and developed their thinking substantially. Two learners, 
Winile and David contributed a number of ideas in response to each other, which 
were important in constructing both the development of the mathematical ideas 
through the conversation and some of the resistance.

In her initial presentation on behalf of her group, Winile had presented a rather 
confused argument, suggesting that she did not understand the relationship between 
the equations and the graphs. Michelle and Lorrayne had picked up on this in their 
question, which attempted to get at the relationship. After listening to the conversa-
tion for some time, Winile made an important contribution:

the plus four is not like the x, um, the x, like, the number, you know the x (showing x-axis 
with hand), it’s not the x, it’s another number … you substitute this with a number, isn’t it, 
like you go, whatever, then it gives you an answer … we’re not supposed to get what x is 
equal to, we getting what y is equal to, so we supposed to, supposed to substitute x to get y

Here, she argued that they could not make a direct link from a superficial feature of 
the equation, the +4, to a feature of the graph, the turning point. Rather, they had to 
take account of the underlying relationships between the variables that gave rise to the 
graph, and that the equation transformed the numbers in ways that were not obvious. 
This suggests a deepening of her thinking about equations and graphs; she had dif-
ferentiated the direct equation–graph relationship and now saw a more complex rela-
tionship, between the variables in relation to each other and in relation to the graph 
(see Chap. 4 for an account of how this contribution both emerged from and contrib-
uted to preceding and subsequent contributions in Winile’s learning trajectory).

Later in the conversation, David argued the following about the relationship 
between the equation and the turning point:

Okay, every one agrees that your standard equation we got first was this, right [writes 
y = x2]. That was the first one we got. Another one we got is y equals x, no wait, plus four 
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squared right [writes y = (x + 4)2]. Now that’s the one we got. Now if you want to find out 
where to put your graph, you take out your constant, alright, just put it over there, then 
you’ll get, you, ja, your y equals x squared back, that’s your standard graph, you take this 
constant, you put it over there [indicates putting it on LHS], okay, which will give you 
negative four, okay, plus y, x squared, and then now because it’s negative four, you’ll have 
your graph, one, two, three, four, and then you need to know, you need to, your turning 
point will be there, because it’s negative.

And a little later he extend the argument to the case of y = (x − 3)2 giving a turning 
point of positive three.

Yes, I mean, look if this was a negative, okay, let’s take another one, x minus three here, 
squared, take that out, it gives negative three, okay, then y, then your three will become a 
positive, you see, because you’re putting it on that side of the equation, then you need to 
put it three spaces forward.

David’s argument combined a form of inappropriate algebraic manipulation “take 
out your constant, alright, just put it over there” with some of the exploration they 
had done previously in shifting the graphs. He did not articulate his argument very 
clearly, but he could have been arguing that y = (x + 4)2 is the same as y = x2 + 4 and 
so the four could be “taken over to the other side” and become a negative four.

In the extract below, Winile challenged David’s argument, saying that he was 
telling them what to do, rather than explaining why, which is what Michelle had 
asked. She also did not articulate her challenge clearly. Her previous contributions 
suggested that she was looking for a relationship between the x and y values in the 
equation and the graph, but she claimed that David was telling them about the 
x-value rather than the y-value.

279 Winile: (Laughs) Okay sir, he’s just telling us where to put like, the turning 
point of the graph, and we want to know why, the y-value is, we 
want to know what the y-value is and you’re telling us the x-value.

280 David: That would give you a y-value of nought.
281 Winile: You gave us four plus four,
282 Mr. Daniels: Just say that again, what did you say,
283 David: That would give you the y-value at nought, each one of those.
284 Mr. Daniels: Just come explain that again.
285 David: (Shakes his head)
286 Learners: (Talk simultaneously)
287 Mr. Daniels: You said now that will give you the y-value of nought, now explain, 

how does it give you that.

The way in which Winile articulated her challenge allowed David to respond that 
the y-value is 0, without having to explain how this answered the question. Mr, Daniels 
realized that if David could make the connection between the y-value of 0, which he 
had merely stated, and the x-value, he would make some progress in answering the 
question, so he pressed David to explain. Mr. Daniels asked David three times to 
explain how he got the y-value of 0, but David refused. It was at this point that two 
learners, who had previously both contributed to the conversation and expressed some 
resistance to it, erupted into a full-blown challenge to the conversation.
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Learner Resistance

Although much learning took place through the conversation, and many learners 
openly expressed enjoyment of the interaction and their learning, a point came in 
the lesson where some learners began to openly express resistance to the conversation. 
An analysis of this resistance from the perspectives of the learners and the teacher 
illuminates some of the dynamics of resistance and suggests that learners’ resis-
tance is not a unitary construct. Different learners will resist for different reasons.1 
In this case, I show that the two main “resistors” in the lesson, Michelle and 
Melanie, showed both similarities and differences in their orientations to the con-
versation, their learning and their resistance to the conversation. I argue that their 
resistance relates to their different orientations to learning and teaching and sets up 
different dynamics for the teacher to deal with.

The following extract follows immediately after the previous one.

288 Michelle: If you had the chance you would keep us here until tomorrow
289 Mr. Daniels: I will keep you here until tomorrow
290 Learners: Aah, sir (talk simultaneously) (Michelle sits back and folds her arms, 

other learners, including Melanie have their hands up)
291 Mr. Daniels: Because, because, ai, this is what I want, I want you people to talk 

to each other, I want you to talk about the mathematics and it’s 
happening, so I’m happy about this, very

292 Melanie: But when I go home what did I learn (laughter)
293 Mr. Daniels: You’d be surprised
294 Melanie: Excuse me, sir, I, okay, sir, you can see we are so battling with this 

but, you refuse to just give us the answers
295 Learner: Because we just get more confused
296 Learner: Ja, but don’t give me that
297 Michelle: How long are we going to play this game (learners talk 

simultaneously) man, I can play the game until it’s over
298 Mr. Daniels: Sh, guys, listen up, (inaudible), I think I need to say something here, 

this is not a game, okay, this is mathematics that you need to 
understand, okay, there’s, there is mathematics that you need to 
understand, there is mathematics that is in your syllabus and you 
need to make sense of it, I just don’t want to give you answers, 
which means nothing to you, If I give you the answer what will 
it mean to you, really, without an understanding of why the 
answer is that, and that is the point here, and I like, Winile is 
making sense of it, David is trying to make sense here, we’ve got 
Lorrayne here that contributed, Maria, Ntabiseng had wanted to 
say something, (Melanie indicates herself), you, exactly, that’s 
what I want. So let’s, let’s

299 Michelle: Some of us aren’t that intelligent as these guys
300 Mr. Daniels: You don’t need to be
301 Michelle: This guy that comes with the answer out of the blue, I mean, I never 

did, look at that, I can’t just sit here fiddling, and I don’t even 
understand what’s going on, no man

1McKinney (2004, 2005) explores how different kinds of resistance are related to different kinds 
of identity work by university students in the context of a critical literacy approach.
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Michelle and Melanie had both contributed to the discussion, and were engaged in 
trying to make sense of the ideas throughout the lesson. Michelle had asked the 
original question that began the conversation. When Mr. Daniels listed a number 
of contributors (line 298), Melanie eagerly indicated that she too was one and  
Mr. Daniels affirmed this.

Melanie’s contributions in the above extract suggest that she felt she was not 
learning anything through the conversation and that the teacher could see that the 
class was struggling and was refusing to help them (lines 292 and 294). In the next 
section, we will see Melanie demanding to know whether David’s explanation was 
correct and claiming again that Mr. Daniels was concealing his knowledge from them. 
Previously she had asked David if he was sure about his contribution, and whether 
it would “always be like this, forever and ever amen”. Melanie’s expressed resistance 
suggests that she was focused on finding correct answers, rather than on trying to 
understand her classmates’ mathematical reasoning. Using the new norms of con-
versation, she first constituted David as the authority on his explanation, asking if it 
would always be correct. She initially seemed satisfied with his assertion that it 
would be. However, as the discussion continued and Winile challenged David’s 
explanation, Melanie constituted the teacher as the authority, as in traditional class-
rooms, demanding the correct answer. We can characterize Melanie’s resistance as 
coming from a learner who was willing to engage with the mathematics in the class-
room but who did not want to author her own understanding, she was more comfortable 
with the teacher or another learner as the authority. So Melanie was willing to engage 
with some of the demands of reform pedagogy, to make contributions, to listen, and 
to evaluate those of others, and to try to come to a resolution. When there was no 
clear resolution, she demanded one from the teacher.

In contrast, Michelle seemed more interested in authoring her own understanding 
of the mathematics. She had asked the question that began the discussion and was 
clearly engaged in trying to work out a justified answer. In the episode above, she 
was frustrated that an answer “came just out of the blue” and that she could not 
understand it (line 301). In an earlier exchange, when a classmate, Candy, had sug-
gested as an answer to her question: “can’t it just be like that”, she was unwilling 
to accept the response without a proper justification. Mr. Daniels affirmed her 
demand for a better explanation.

138 Candy: Sir, couldn’t it just be like a basic thing, that if it’s on the positive side 
then your equation is negative and if it’s on the negative side then 
your equation is positive? Can’t it just be like that (laughs)

139 Michelle: I can’t accept that
140 Learners: Mutter, talk over each other
141 Mr. Daniels: Okay. Let’s …. Say that again.
142 Michelle: I can’t just accept that.
143 Mr. Daniels: So, I’m not expecting you to accept it.
144 Michelle: No, I’m just saying that I can’t …
145 Teacher: That’s good. That’s what I’m saying. I’m saying it’s good that you don’t 

just accept it
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Michelle’s references to time in the first extract above: “you would keep us here 
until tomorrow” (line 288) and “how long are we going to play this game” (line 297) 
suggests that it was not the struggle to make sense that bothered her, but the fact 
that it was taking so long. She was concerned that others, who were more “intelligent” 
than her (line 299), were understanding, but that she wasn’t getting it. She also 
referred to the conversation as a “game” (line 297), possibly building on Melanie’s 
accusation that the teacher was playing with them because he refused to help to 
resolve their difficulties. Unlike Melanie, Michelle did not demand that the teacher 
actually resolve the situation, but she did challenge the fact that the teacher seemed 
willing to allow the conversation to continue indefinitely without giving any sense 
about what was going on that she could understand.

The above analysis works with the two girls’ explicitly expressed resistance. 
However, it is likely that there were other issues that were bothering them that they 
could not fully express, although their comments give us a clue. It may have been 
the case that either Michelle or both girls doubted David’s explanation, which was 
incorrect. Their struggle to make sense of complex ideas was not helped by the 
barely coherent and sometimes incorrect responses of their peers. Although Winile 
had challenged David, her challenge was also poorly expressed and it is likely that 
the other learners struggled to understand her as well. What we see above is not 
merely resistance to a new way of interacting in the classroom. Rather it portrays 
the complex dynamics of the cognitive, social, linguistic, and emotional demands 
of making sense of new ideas in new ways. The fact that there was such resistance 
suggests that Mr. Daniels was achieving some of his goals.

It is important to note that many learners did not resist, to the contrary many 
were enjoying the conversation. After Michelle and Melanie erupted, some learn-
ers claimed that they had never enjoyed a lesson so much, precisely because of 
the discussion and debate it engendered. Mr. Daniels did make use of these learn-
ers to help make progress in the lesson, nevertheless he was visibly disturbed by 
Michelle and Melanie’s challenges, as many other teachers would be. I now turn 
to the ways in which his responses to the resistance helped to support and fuel it 
further.

The Teacher’s Contributions

Mr. Daniels both tried to work against the resistance and also inadvertently contrib-
uted to it. In the extracts in the previous section, some of his contributions attempted 
to make clear what his expectations were and how they differed from what is usu-
ally expected in mathematics classrooms; the “norm work” that he did throughout 
the lessons (lines 143, 145, 291, 298). At the same time Mr. Daniels may have 
unintentionally undermined some of what he was trying to do by making flippant 
comments. In response to his remark “I’ll keep you here until tomorrow” (line 289), 
Michelle sat back with folded arms looking angry. It is not clear why Mr. Daniels 
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made this remark, nor the next one: “you’d be surprised” (line 293). His first state-
ment suggests that he may have been trying to reclaim some of his authority in the 
face of obvious resistance. When teachers are faced with these kinds of challenges, 
they may fall back on well-worn expressions of authority. Trying to reclaim author-
ity in this way can be counter-productive, as it was in this case. Mr. Daniels’ first 
statement made Michelle even more angry and his second made Melanie more 
demanding that he provide the answers.

So, teachers falling back on traditional norms, even as they teach new ones, may 
fuel learner resistance, particularly if the learners have engaged in the new demands 
of exploring mathematical reasoning. One of the key contributors to the learners’ 
resistance in this lesson was Mr. Daniels’ successful enactment of aspects of reform 
pedagogy. In the first extract in the previous section, we saw Mr. Daniels pressing 
on David for an explanation. He did not help David to give the explanation, wanting 
it to come from him. It was this pressing, and David’s refusal to explain that 
angered Michelle and that was most likely the “game” that she was refusing to 
continue to play. Because Mr. Daniels did manage to hold back his own ideas in 
order to elicit the learners’ thinking and when learners’ ideas were unclear, he 
pressed them to explain, rather than re-articulating the ideas himself, other learners 
such as Michelle and Melanie felt lost and frustrated. Earlier in the chapter,  
I showed how Mr. Daniels’ approach was very helpful in supporting the learners to 
articulate and re-articulate the question to be discussed so that all could work from 
a common ground. However, he was less successful in achieving a common ground 
and shared understandings with respect to the learners’ attempts to answer the ques-
tion, probably because these were more divergent and less clearly articulated  
(see also Brodie 2007b).

Yet another aspect of Mr. Daniels’ enactment of reform pedagogy probably 
contributed to the learners’ resistance. Because he was trying to get learners to 
talk to each other and to express and articulate their own ideas, he often claimed 
not to understand what a learner was saying. Sometimes these claims were genuine; 
he did not understand the learner’s idea and needed more explanation himself.  
At other times, his claims were not genuine; he feigned ignorance in order to 
obtain more articulation and justification from learners. The following extract 
illustrates this.

188 Winile: You see when you got this, plus three [writes y = x2 + 3], you have to 
substitute this with the, that with like the one, zero, one two, three 
[Draws numberline, x axis]. Your turning point is here. You have 
to substitute this with this negative one here, plus three. Do you 
understand? This three [circles the 3 in y = x2 + 3] is not, is not part 
of the, this x, uh, variables. Its the given (inaudible) Get it.

189 Learners: Oh…(lots of muttered comments)
190 Mr. Daniels: Okay guys, let’s, let’s,
200 Winile: y is equal to that four, that’s your turning point, then you get your final 

answer
201 Learners: Mutter
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202 Mr. Daniels: Can somebody else try, because I saw a lot of people said, oh-ja, now 
we see, can I just see, Lorrayne, maybe you can put it another way

203 Learners: (General chatter – inaudible)
204 Mr, Daniels: Sh, okay, you want to try, Maria, sh
205 Melanie: Sir but is the explanation right
206 Mr. Daniels: I don’t know, what do you think
207 Melanie: I dunno, that’s why I’m asking you
208 Mr, Daniels: That’s why I’m asking, that’s why I’m asking Maria what she thinks
209 Melanie: No but you know sir
300 Mr, Daniels: Maybe she can explain it.
301 Maria: I’m gonna try, sir, I think here, on the equation, y equals (inaudible)

After Winile’s contribution, a number of learners indicated that they wanted to 
respond. Mr. Daniels indicated that Maria should talk (line 204) but before she 
could make a contribution, Melanie jumped in, asking whether Winile’s explana-
tion was correct. The teacher reflected Melanie’s question back to her, claiming not 
to know and asking what she thought, trying to press her to make her own evalua-
tions of the mathematical truth of Winile’s statement, rather than relying on his 
authority. Mr. Daniels did know that parts of the explanation were incorrect and 
later in the lesson he directly challenged Winile on her mistake. It may have been 
the case that Melanie suspected a problem with Winile’s explanation, which was 
why she asked the question. From her perspective, the teacher knew the correct 
answer and seemed to be deliberately withholding it. However, other learners did 
not seem to have the same concerns. In the extract Maria was certainly eager to try 
to explain Winile’s idea, as were other learners (line 202).

The above analysis raises some important questions. Was it the case that 
Michelle and Melanie resisted Mr. Daniels’ pedagogy because they really were 
engaged in trying to achieve some level of understanding (a different kind for each 
girl) and needed help from Mr. Daniels, which was not forthcoming? Other learners 
might not have been as engaged, as concerned that they were not getting it, or as 
concerned about the time the conversation was taking. Many were enjoying the 
discussion and may have been willing to see where it took them. What kind of help 
could Mr. Daniels have provided, without sacrificing the benefits of discussion and 
engagement among the learners, yet providing some emotional and cognitive scaf-
folds so that the two girls did not feel so lost? In this case, may it have been more 
productive for Mr, Daniels not to feign ignorance but to explain why he wanted 
others to contribute? It may have been useful for him to indicate that there might 
be problems with David’s and Winile’s explanation and ask learners to comment 
specifically on these. I should point out here that there were many times during the 
lesson when Mr. Daniels did provide such scaffolds and used strategic combina-
tions of a range of teacher moves (see Chap. 9), which were helpful in taking the 
conversation forward. So this is not a case of a teacher abdicating responsibility for 
teaching or not knowing how to work with reform pedagogy. Rather it illuminates 
the very complex nature of this kind of teaching, and how successful enactments of 
teaching mathematical reasoning throws up new challenges for both teacher and 
learner.
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Making Sense of the Resistance

In this chapter, I have identified a number of different dimensions of learner 
resistance that were evident in one classroom, arguing that these came together to 
produce a complex dynamic that is not easy for the teacher to manage. Two different 
learners contributed differently to the openly expressed episodes of resistance, even 
as they built on each other’s contributions to express their resistance. The teacher also 
contributed, by successfully pressing for the learners’ own reasoning and explanations 
and by insisting that he would not explain for the learners. However, the learners’ 
resistance increased when he continued to feign ignorance and as resistance mounted 
he reverted to expressions of traditional authority, which fuelled the learners’ resistance 
even further.

So what exactly were the two learners resisting, and why were they resisting it? 
The fact that they engaged in the classroom conversation and were willing to offer 
their own thinking for consideration and consider the ideas of others suggests that 
these were not “defensive” learners in McNeill’s sense; they were not opting out of 
the process of learning in the real sense, engaging with others’ ideas. However, they 
both reached a moment where they did want to opt out of the current processes 
operating in the classroom. The fact that they did this vocally rather than retreating 
into silence, suggests that they still believed in the process; however, they had 
reached a point where the conversation was not working for them. They were not 
resisting all of Mr. Daniels’ pedagogy, but aspects of it that did not make sense to 
them. Melanie wanted some authorization from the teacher because she felt she was 
unable to make the appropriate mathematical judgements on her own. Michelle 
wanted some closure, an answer to her question that she could work out and under-
stand; but could not build on her classmates’ contributions to achieve this under-
standing. Mr. Daniels had provided a number of resources during the lesson to help 
learners develop their reasoning and their understandings, resources that had helped 
David and Winile and other learners, but had not helped Melanie, Michelle, and 
possibly other learners as well who remained silent.

The literature on creating norms of participation for reform pedagogy suggests 
that when learners have difficulties in participating it is because they do not under-
stand what is expected of them as they struggle to shift from traditional to new 
pedagogies. My analysis in this chapter suggests that this is only part of the story. 
Different learners will have different reasons for resisting, in this case, related to 
their orientations to learning. It is significant that a learner who was engaged in the 
mathematical practices of asking questions, relating different representations to 
each other, and attempting to make sense of mathematical ideas, began to resist the 
conversation, precisely because she was not making progress on making sense, and 
found some of the discussion difficult to follow. How to enable all learners to fol-
low each other’s, sometimes muddled, articulations, without constraining their 
thinking and participation, is a demanding task for teachers, but this chapter sug-
gests that it is one that is worth working on. How to provide some authority, while 
not shutting down learners’ thinking also seems to be a useful front on which to 
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work. The idea of probing learners’ ideas rather than explaining clearly might seem 
dishonest and a shirking of the teacher’s responsibility. Additional “norm work” 
might be required to help learners to see this as part of the teacher’s responsibility 
and a way of challenging learners to think more deeply.

The main argument that I have made in this chapter is that such resistance, while 
uncomfortable for teachers, is a normal response to reform pedagogies, and is to be 
preferred over the silent, safe, defensive resistance discussed at the beginning of the 
chapter. The fact that this resistance suggests “non-defensiveness” on the part of 
learners is something to celebrate. Although it may be possible to manage such 
instances more productively so that they do not disrupt the ongoing conversation, 
as a teacher successfully manages to enact reforms, so we can expect resistance. 
Understanding different forms of resistance, as I have attempted to do in this chap-
ter is, probably the best way we have to develop ways of managing them. As dis-
cussed in the rest of this book, teaching for mathematical reasoning requires much 
more of teachers than going beyond “not telling” and establishing appropriate 
norms. It requires thoughtful combinations of teaching moves that respond appro-
priately to learner contributions. It requires managing dilemmas of teaching and it 
also requires some understanding of where resistance might arise, and the range of 
reasons for this resistance, thus adding to the difficulties and demands of such 
teaching and explaining its rarity.
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Much of the research on teacher change tells us that teachers either remain resistant 
to change (Lavi and Shriki 2008), or they embrace the rhetoric of change but their 
practices remain constant (Chisholm et al. 2000; Taylor 1999). Teachers are said to 
maintain algorithmic and procedural approaches to mathematics through lower-level 
tasks and strongly constrained classroom interaction; and learners very seldom 
engage in genuine mathematical thinking. I agree with Nolan (2008) that character-
izing teaching in this way says more about researchers than teachers. For me it is 
more important to find ways to talk about what teachers have managed, rather than 
what they have not, even if the successes are small. To do this is a difficult task for 
researchers, but no more difficult than the task we ask of teachers when we suggest 
that they shift their practices.

Vygotsky’s sociocultural perspective suggests the concept of the zone of proximal 
development as a tool to understand learning and development (Vygotsky 1978).  
I suggest here that it can also be used to understand teacher learning and develop-
ment. Learning and development progress as new goals are set in advance of, but 
within the constraints of, the learner’s current position. The learner can only pro-
ceed towards new goals from her current competence. Reaching ultimate learning 
goals requires that intermediate goals are constantly set and shifted by the learner 
and by those who mediate his/her journey (Wertsch 1984). So, change is a constant 
interaction between learners’ and teachers’ current and future positions, and the 
goals and direction of change shift as we make the journey.

In the context of curriculum reforms, the new practices that the curriculum sets 
out constitute a set of teaching goals. These new practices are constrained by teach-
ers’ histories, current positions, and current knowledge. Teacher change requires 
continuity as well as transformation; some things must stay the same in order for 
others to change (Slonimsky and Brodie 2006). So teacher change will be a slow, 
uneven, and messy process and the process will be different for different teachers. 
This book has described how a group of teachers, all with strong mathematical and 
pedagogical content knowledge, who worked together to plan tasks for mathemati-
cal reasoning, supported different kinds of interactions and engagement in their 
classrooms. There was variation within each teacher’s practice as well as across 
their practices. This book has illuminated the common and different achievements 
of the teachers as well as the challenges that they faced as they worked to teach 
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mathematical reasoning. Part of the messy middle ground of reforming practice is 
that achievements and challenges are often not separate from each other; achieve-
ments gives rise to new challenges. As in all areas of human endeavour, strengths 
can produce weaknesses and weakness can produce strengths.

To improve practice, teachers need to recognize the shifts that they have made 
and those they still need to make. Researchers need to find ways to describe both 
small and large shifts in teachers’ practices and the textures and complexities of the 
processes of change. This book has combined perspectives of teachers and a 
researcher and has found ways to talk about the successes and challenges of changing 
practice, on two levels: Individual case studies and an overview across the cases. 
Each of these levels gives a different view of the teaching enterprise and how it 
develops. Here I draw together the findings in the book and show how they are 
enriched by the different views that we have taken.

Tasks and Mathematical Reasoning

One of the key shifts that reform mathematics curricula ask of teachers is to work 
with tasks that support mathematical reasoning. Teachers may struggle to do this 
for a number of reasons. They often do not have access to texts with higher-level 
tasks (Taylor and Vinjevold 1999) and if they do, they have to recognize the mathe-
matics that such tasks can support, which often requires a shift in teachers’ own 
mathematical thinking (Heaton 2000). The teachers represented in this book, working 
together, developed tasks that could support mathematical reasoning at different 
levels. They drew on a number of textbooks and materials and adapted these 
thoughtfully and carefully for their own classrooms.

Each set of tasks that the teachers developed reflects a range of levels of cognitive 
demand (Stein et al. 1996) (see Chap. 2). It is important to emphasise this range in 
discussions about changing curricula. It is not possible, nor desirable, for all the 
tasks that learners encounter to be at the higher levels. There is a place for lower-
level tasks in any curriculum and these can be a point of continuity with previous 
practice. It is, however, important that lower-level tasks are articulated with higher-
level tasks in order to develop mathematical reasoning. We need a full range of 
tasks in the curriculum, brought together by the teacher and learners to create 
opportunities for reasoning. The teachers in this book took this challenge seriously 
and developed tasks at a range of levels, appropriate for their classrooms.

An important issue in choosing and developing tasks is how to tailor them for a 
particular group of learners. Knowing that learners can only work with their current 
knowledge, teachers whose learners have weaker knowledge often think that 
higher-level tasks may be too challenging for them. Such concerns may lead to 
learners with weaker knowledge being denied opportunities to engage with tasks 
that support mathematical reasoning. In this book, the teachers were sensitive to the 
interactions between current and new knowledge among their particular learners. 
Even though the two Grade 10 teachers worked together to develop and plan tasks, 
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they finally chose different tasks for their classrooms (with one in common), on the 
basis that their learners had very different levels of mathematical knowledge (see 
Chap. 2). Significantly, Mr. Peters chose tasks of higher-level cognitive demand 
that he believed his learners could tackle, even with their weaker knowledge. Mr. 
Peters knew his learners well and was sensitive to their weaker knowledge; how-
ever, he was not willing to compromise on teaching them mathematical reasoning 
and did not lower the level of the tasks and his mathematical goals as he tailored 
them for his learners.

Supporting Learner Contributions

Once teachers choose higher-level tasks, maintaining the level of the tasks in class-
room interaction is an additional challenge, one that is not often achieved (Modau 
and Brodie 2008; Stein et al. 1996; Stein et al. 2000). The challenge involves sup-
porting learner contributions and engagement with the tasks at the intended levels. 
The analysis in this book shows that all the teachers supported a range of learner 
contributions, although the distributions of the different kinds of learner contribu-
tions were different across the different classroom contexts (see Chap. 8).

An important element of reform practices is how teachers work to extend and 
explore learners’ correct contributions. Teachers usually value correct contribu-
tions, but how they are valued distinguishes reform from traditional practice. In 
traditional teaching, correct answers end the conversation; in reform teaching, they 
are not the ultimate goal and are taken further. This book shows that all the teachers 
worked with correct contributions in both reform and traditional ways at different 
times. In some cases, they accepted and positively evaluated correct responses, end-
ing the discussion and in others they pressed learners to justify and explain the 
thinking underlying their correct responses, taking the mathematics forward. The 
analysis suggests that working in reform ways with correct contributions can be an 
important point of leverage for teacher-educators to support teachers to begin shift-
ing their practices.

A second important element of reform pedagogy is accepting, valuing, and 
engaging learners’ incorrect and partial contributions as points where new learning 
can occur. Most theories of learning argue that current knowledge both constrains 
and enables further learning.1 However, what this means for teachers trying to take 
their learners’ thinking seriously is not often explored, particularly when engaging 
current knowledge produces errors and misconceptions. This book shows that all 
the teachers managed to work with learners’ current knowledge to some extent, and 
how they managed it can be partially accounted for by their different classroom 
contexts. A clear finding that emerged from both the case studies and the overview 

1 Different theories of learning conceptualize the relationship between current and new knowledge 
differently (see Chap. 1).
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analysis is that the teachers whose learners had weaker knowledge, experienced 
greater challenges in supporting learner contributions. The case studies in Chaps. 3 
and 7 showed that Mr. Peters’ and Mr. Nkomo’s learners, who had the weakest 
knowledge, struggled most to engage the higher-level tasks and to justify their 
thinking. The overview analysis in Chap. 8 supports this and shows that Mr. Peters’ 
learners produced more errors than learners in any of the other classrooms, including 
many more basic errors, while Ms. King’s and Mr. Mogale’s learners, who had the 
strongest knowledge, produced the least. Working with learner errors emerged as a 
key aspect of this research.

Working with Learner Errors

There are strong research traditions in the area of learners’ misconceptions and in 
the area of teachers’ take-up of reforms (see Chap. 1). However, there is little work 
that shows how learner errors and teachers’ reform practices support each other. 
The analysis in this book shows that as teachers ask their learners to respond to 
higher-level tasks and promote discussions around these, more errors may be pro-
duced, particularly those that are task-related (appropriate errors), and more errors 
will become public, particularly if students feel confident to express errors that they 
might not have otherwise.

All learners make errors, and this is a normal part of the learning process. 
However, when more learners in a class have stronger knowledge, teachers can usu-
ally rely on some learners to engage with the errors of others and can expect fruitful 
discussion about errors. This happened in Mr. Mogale’s, Mr. Daniels’, and Ms. King’s 
classrooms. However, where many learners have weaker knowledge, as learners 
attempt to respond to each other’s errors they may produce even more errors. In  
Mr. Peters’ classroom the errors came thick and fast, particularly basic errors. Mr. 
Peters successfully employed a range of teaching strategies to help learners express 
their thinking and engage each other’s ideas. He also succeeded in supporting a genu-
ine conversation among his weaker learners, which produced partial insights and 
beyond task contributions. However, his efforts were not always successful in helping 
learners to understand the nature of their errors and misconceptions and often brought 
more errors into the public arena. Since errors are immediately visible and often 
worrying to teachers, learning how to work with them as possibilities for new learning 
is an important leverage point for developing practice.

Classroom Conversations

Supporting genuine classroom conversations is another important element of 
reform curricula (Boaler 2002; Lampert 2001; Nystrand and Gamoran 1991). This 
research illuminates three important points about classroom conversations. First, it 
is possible to create genuine conversations in classrooms, including classrooms 
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where learners have very weak knowledge. Second, it is not possible for all teaching 
to occur through genuine mathematical conversations; these are rare occurrences. 
Third, the teacher is always present in a conversation, even if not immediately 
physically present.

This book describes three examples of genuine mathematical conversation, one 
in each of Mr. Mogale’s, Mr. Daniels’, and Mr. Peters’ classrooms. In Mr. Mogale’s 
and Mr. Daniels’ classrooms the learners had stronger knowledge and the conversa-
tions both supported and were supported by many of the partial insights that were 
evident in those classrooms. Mr. Peters and his learners also managed to generate 
and sustain a genuine conversation, about whether zero is a positive or negative 
number. The analysis shows that a number of learners in this class reasoned usefully 
and appropriately as they tried to resolve this issue and that Mr. Peters’ pedagogy 
was central in supporting this engagement.

The analysis in this book also shows that it is not always possible to have genuine 
mathematical conversation in classrooms. These happen on rare occasions and 
require particular conditions of possibility. They take hard work and teacher insight 
to instigate, maintain, and end appropriately (Brodie 2007b). When they do happen, 
they are exciting, particularly because learners build on each others’ reasoning and 
the collaborative and dialogic (Mortimer and Scott 2003) nature of learning 
becomes visible and is supported. So, this work argues that while teachers can and 
should recognize possible occasions for conversations and exploit these, not all of 
teaching and learning can consist of conversations.

This work also takes issue with a prevalent idea in South Africa and elsewhere 
that genuine conversations in classrooms can only occur without the teacher being 
present. This idea is supported by a misinterpreted maxim of constructivism: 
“Learners learn on their own”. In bringing constructivism and sociocultural theories 
together, this maxim can be rephrased more usefully as “only the learner can learn 
and s/he cannot learn alone”. Drawing further on Vygotsky’s work and Mr. Mogale’s 
case study, we have shown that fruitful discussion can only occur without the 
teacher’s immediate presence if the teacher has mediated such discussions previ-
ously and provided the learners with the conversational and conceptual tools to 
interact with each other. Mr. Mogale shows how his learners internalized his prac-
tices, which in turn supported their interactions both with him and with each other.

Maintaining the IRE/F

Arguments for teaching through conversations are usually supported by arguments 
for reducing the predominance of the IRE/F exchange structure in classrooms. The 
work in this book presents a different argument. In all the classrooms in this study, 
the IRE/F structure remained predominant, in form and often in function as well.  
I, therefore, argue that it is more useful to open up possibilities for working within 
the IRE/F than suggesting that teachers avoid it entirely (see also Wells 1999). 
Teachers do need to evaluate and/or give feedback on learners’ contributions and 
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are well practiced at doing so. The analysis in Chap. 9 shows that teachers can and 
do respond in a range of ways within the IRE/F format and that opening up a wider 
range of possibilities for teachers can be generative in supporting them to develop 
new practices. Within the IRE/F, the teachers pressed learners’ thinking and facili-
tated and maintained discussion, and even when they inserted their own mathemati-
cal ideas they helped learners to move their thinking forward (see also Lobato et al. 
2005). Perhaps the most problematic move in the teachers’ repertoire was the 
“elicit” move, because it tended to narrow learners’ thinking. However, even with 
this move, there are examples where such eliciting functioned to generate more and 
better discussion.

Supporting all Learners to Participate

This book has shown that supporting some learners to express their mathematical 
thinking is a challenging task for teachers. For teachers who are successful in doing 
this, encouraging all learners to participate, particularly in classrooms of up to 45 
learners, is an ongoing challenge. While all of the teachers in this study found ways 
to increase their learners’ participation in the lessons and more learners participated 
more often across all of the classrooms, there were some learners in each class who 
did not participate at all during the week. While some learners may prefer to engage 
by listening, it is likely that some were not engaged at all. This work illuminated 
the challenges that all of the teachers experienced as they worked to increase 
participation.

Mr. Nkomo’s case study illuminates two important points: First, just how difficult 
it is to support learners to participate at higher levels of mathematical thinking; and 
second that teachers can learn to do this. Mr. Nkomo’s reflections on his practice 
show how his first interactions with learners did not enable them to interact at all 
with each other or with him. Later, he managed some interaction but not at higher 
levels of thinking. Finally, he managed to get some learners to think and talk about 
each other’s ideas in ways that helped to develop the ideas. So it takes time and support 
for teachers to interact with their learners in useful ways.

Even the teachers who were more successful in generating conversations 
experienced challenges in encouraging all learners to participate. Precisely 
because of their success, they experienced dilemmas in relation to learner partici-
pation. In Chap. 10, I showed how Mr. Peters and Mr. Daniels sometimes strug-
gled with which contributions to take up for further discussion and which to 
ignore. When many learners contributed, not all could be heard all of the time. 
Mr. Peters experienced an additional dilemma about whether or not to press a shy 
learner to contribute. He persevered and used his authority to assign competence 
to the learner, encouraging him to participate. Teachers are often reluctant to 
embarrass learners by calling them to participate. This study has shown that 
teachers can work sensitively with learners’ feelings while still supporting them 
to participate.
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Learner Resistance

There is very little work on learner resistance to changing teaching. The reform 
argument is that reform practices will reduce learner resistance to schooling. 
However, it is possible, as shown in Chap. 11 that shifting towards reform practices 
can produce new forms of resistance. Different learners can resist for different 
reasons, and the teacher may unwittingly contribute to learner resistance as s/he 
struggles to deal with it. Although explicit learner resistance is distressing and 
extremely challenging for teachers, my analysis suggests that such resistance can 
be seen as a sign of success and can be understood and managed appropriately by 
teachers. As teacher educators, it is important to alert teachers to the possibilities 
of such resistance, and to think about ways of working with it.

Conclusions

The teachers’ achievements and challenges illuminated in this study constitute the 
messy middle ground of reforming practice. All these teachers developed broader 
understandings of mathematical knowledge and reasoning, they all chose tasks to 
support mathematical reasoning, they all to some extent managed to shift interaction 
patterns in their classrooms to accommodate learner contributions and ideas, and 
they all found ways to think about these and bring them into their lessons. The chal-
lenges emerged in the on-the-spot interactions with particular learners’ thinking, 
moving between old and new practices, and maintaining the levels of mathematical 
reasoning among all learners. This book has identified a number of leverage points 
for changing practice and presented a language of description to enable teachers, 
teacher educators, and researchers to talk about these. It is only in describing and 
analyzing the challenges and unevenness of change that we will make progress 
towards better mathematics learning for all learners.

One of the ongoing themes of this book has been how the five teachers worked 
together and with me to form a community to support changing practices. This 
community provided a safe space to try out new ideas, to take risks and to reflect 
on these in ongoing and systematic ways. The teacher’s research projects, con-
ducted as collaborative action research projects provided the space for exploration 
and systematic reflection. Some of the teachers had been working with these ideas 
before we began this project and all have continued to do so. Talking and working 
together as a small community has made it possible to initiate a broader conversation 
about these important issues through this book.

The key aim of this book is to capture the textures and complexities of teaching 
practices as teachers work to adapt their practice to new curriculum ideas, in this 
case, the teaching of mathematical reasoning. In trying to find ways to talk about 
practice we have come to understand more deeply the challenges involved in shifting 
towards reform-oriented teaching. We have come to realize that meaningful change 
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in teaching takes time, imagination, courage, and honest reflection on what works 
and what does not, and that these qualities are much easier to talk about than to 
achieve. We have also confirmed our assumption that teaching is a continuous quest 
for improved knowledge and improved practice. Educational reformers and teach-
ers often create lofty goals, like the goals of reform mathematics curricula. We do 
this because we are inspired to improve education for subsequent generations and 
because in striving for more challenging goals we are in a better position to achieve 
more reasonable ones. We need to recognize that important goals take a long time 
to achieve – which is why they have not yet been achieved. In questing for “perfec-
tion,” we must realize that we may never reach it and find ways to talk about and 
share what we have indeed achieved, so that our quest can continue.
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Grade 10 Tasks: Ms. King

Task 1

Work in groups but hand in your own work. Work in the space provided below.
Consider the following conjecture: x2 + 1 can never be 0.
(a) Use a logical argument to convince someone else why the conjecture is either 

true or false for any real value of x.
(b) What is the smallest value of x2 + 1? Explain how you know.

Task 2 (work on this sheet)

(a) In the following list, the numbers on the right are related to those on the left:

x y
 1 ®	 1
	 2	 ®	 4
	 3	 ®	 9
	 4	 ®	 16

(b) Can you find the rule that relates these numbers? Describe this rule in words.
(c) Can you write this rule mathematically?
(d) Ask your teacher to show you some other ways of writing this rule in 

mathematical notation. Then describe in words what each of the different 
notations means.

Task 3

In order to talk about the above rule, we need to give it a name. We sometimes call 
it f, and we write it mathematically as f(x) = x2. This means that when we apply the 
rule f to the number x, we get x2. When we write f(2), we mean “apply the rule f to 
the number 2.”

So f(2) = 22 = 4.
Similarly, f(3) = 32 = 9.

Work out the following:
   (i) f(4) = 
  (ii) f(5) = 
(iii) f(−2) = 
(iv) f(−1) = 
    (v) f(a) = 
  (vi) f(a + h) = 
(vii) f(x + 1) = 
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What do you think f(a + h) means?

Definition of a function

We are now ready for a working definition of a function:

"A function f is a rule
that assigns to each element x in a set A

exactly one element, called f (x ), in a set B.     

Explain, in your own words, what you understand a function to be. Draw a 
picture if this will help you to explain.

N.B.
We often represent functions with the letters f, g, h.
The letter in brackets after the f, g, h refers to the variable.
We could write f(x) = 2x + 1, but would not write g(x) = z + 3, as the variables on 

the left and right hand sides do not correspond.

Task 4

If g(x) = 2x2 + 3x – 1, evaluate the following:

(a) g(1)
(b) g(−1)
(c) g(2)
(d) g(−2)
(e) g(a)
(f) g(−a)
(g) g(a + h)
(h) ( ) ( )

;
g a h g a

h
h

+ −
≠ 0

Task 5

Consider the following statement: “f(n) = n2 – n + 11 is a prime number for all natural 
numbers n.”
(a) List the first five natural numbers.
(b) Determine f(1), f(2), f(3), f(4) etc.,
(c) Is the above statement true? i.e., Does f(n) always generate a prime number?
(d) Try to justify/prove your answer in (c) above.



212 Appendix

BookID 159557_ChapID BM1_Proof# 1 - 24/09/2009 BookID 159557_ChapID BM1_Proof# 1 - 24/09/2009

Grade 10 Tasks: Mr. Peters

Task 1

Consider the following conjecture: “x2 + 1 can never be zero”!
Prove whether this statement is true or false if x ∈ R?

Task 1 (B)

(a) Complete the table.

x −3 −2 −1 0 1 2 3

x2

2x2

−x2

−2x2

(b) Study rows 1–4. What conclusions can be drawn from the observation?
(c) If x = ½ or √7, would your conclusions be true?
(d) Referring back to task 1, “x2 + 1 can never be zero”!

Is this statement is true or false?
(e) Justify or explain why you say so.

Task 2

State whether the following expressions in terms of x are:

    (i) Always ³0
  (ii) Always £0
(iii) Sometimes positive, sometimes zero, sometimes negative, depending on the 

value of x.

(a) x (b) −2x (c) x2

(d) 3x2 (e) −x2 (f) (x + 1)2

(g) −(x + 2)2 (h) 2(x − 3)2
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