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Foreword

The Road to Reasoning

The teachers in this book share a worthy and courageous mission. They have all set
out to provide children with one of the most important educational experiences it is
possible to have — a form of mathematics teaching that is based upon sense making
and discussion, rather than submission and silence. Mathematical “reasoning” is what
mathematicians do — it involves forming and communicating a path between one idea
or concept and the next. When students form these paths they come to enjoy mathe-
matics, understand the reasons why ideas work, and develop a connected and power-
ful form of knowledge. When students do not engage in reasoning, they often do not
know that there are paths between different ideas in mathematics and they come to
believe, dangerously, that mathematics is a set of isolated facts and methods that need
to be remembered. I have visited hundreds of classrooms across the world in which
students have been required to work in silence on maths questions, never talking
about the ideas or forming links and connections between ideas; most of these stu-
dents come to dislike mathematics and drop the subject as soon as they can. Such
students are not only being denied the opportunity to learn in the most helpful way,
but they are denied access to real, living mathematics.

The teachers in this book, through their work with Karin Brodie, the author,
learned about the value of mathematical reasoning and set out to teach students to
engage in this valuable act. This book shares their important journey and provides
the world with new lenses for considering the teaching acts that were involved, as
well as the challenges and obstacles that stood in their way. For whilst we know the
importance of reasoning to children’s mathematical futures it would be dishonest to
pretend that teaching approaches that invite students to communicate their mathe-
matical thoughts and make connections between ideas are easy or well understood.
We have reached an advanced stage in the development of education and yet,
incredibly, we are still relatively uninformed about the ways teachers of mathemat-
ics can teach students to reason, which is part of the reason this book is so valuable
and could be a wonderful resource for many.

When Deborah Ball, in the United States, then an elementary teacher of math-
ematics, now a university dean, released a videotape of her teaching 7- and 8-year
olds to reason about odd and even numbers, the world was shocked to witness a boy
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named Shea propose a new way of classifying odd numbers. His numbers — those
that can be grouped into even numbers of pairs of twos — came to be known as
“Shea numbers”. The rich conversations in which the young children engaged in
the mathematics class that appeared on tape, seemed to unfold effortlessly, although
in reality they were expertly choreographed by the teacher. Deborah Ball has
offered records of her teaching decisions and actions, which have been read by
scores of people worldwide, including the teachers who write in this book. She was
one of the first teachers to offer such valuable records and analyses. This book adds
to the small but important collection of teachers who have engaged students in
mathematical reasoning and documented and unpacked the important teaching acts
that took place.

But what makes a record of teaching useful and worthwhile? Every act of teach-
ing, with a classroom full of children and their many thoughts and actions, is
extremely complex, and descriptions of a class in action can remain highly contex-
tualized and difficult for others to learn from. A teacher may record thoughts and
moves without communicating them in such a way that they are useful for other
teachers, educators, and analysts. The art in producing a record that is powerful and
valuable for others comes partly from having important teaching experiences to talk
about and partly from having a way of raising the individual acts to a higher and
more generalizable level that other teachers can learn from. This is where the com-
bination of the reports of the teachers who engaged students in reasoning, and the
theoretical lenses applied by Karin, are so generative and fruitful for the rest of the
world to learn from. When a new idea and teaching act is connected with a theory
of learning, the result can be very powerful indeed.

An example of the way a teaching act can be named and made more general is
the case of a set of interactions that has become known as IRE. These describe a
common teaching situation when a teacher initiates something (I), elicits a response
from a student (R), and then evaluates the response (E). Researchers found that the
majority of the interactions that take place in classrooms follow the IRE response
pattern and they gave it a particular classification. Since that initial classification
IRE has been used by scores of researchers and analysts over many years and has
proved extremely useful in the advancement of teaching. Yet teaching classifica-
tions such as IRE are rare and the field of mathematics education has not benefitted
from a similar mapping and classification of the teaching interactions that take
place when students are taught to reason about mathematics. This book provides
such a mapping.

Karin notes that a reasoning approach to mathematics involves a change in
authority. Students no longer need to look to teachers or textbooks to know if they
are moving in the right directions in mathematics, as they have learned a set of
reasons and connections that they can refer back to, evaluating their own thoughts
and ideas. This may seem as though the authority is shifting from the teacher to the
students and this is partly true, but it is important to note that the authority is also
shifting from the teacher to the domain of mathematics itself. Students no longer
need to refer to teachers to evaluate their mathematical thoughts, because they can
refer to the domain of mathematics, to consider whether they have followed the
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correct connections and paths. This is just one way in which reasoning as an act
brings classrooms closer to real and living mathematics. In addition, we now have
evidence that when students receive opportunities to discuss mathematics and
express their own thoughts, they become more open-minded as they learn to be
appreciative and respectful of other people’s ideas. Mathematical reasoning encour-
ages respect, responsibility, and a personal empowerment that has long been miss-
ing in mathematics classrooms. Karin starts this book by quoting the goals of the
new South African curriculum — to heal the divisions of the past and build a human
rights culture. Mathematics, the subject so many believe to be abstract and removed
from such responsibilities, has a key role to play in promoting such a culture, in
South Africa and beyond. This book communicates the way that mathematics can
provide this valuable contribution and the important work of teachers in doing so.
I hope you enjoy it and use it as both inspiration and resource.

Jo Boaler The University of Sussex
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Introduction to Part 1

Over the past 10 years, South Africa has introduced a new curriculum in all subjects
at all levels of schooling. The curriculum was inspired by the end of apartheid and
informed by curriculum developments and visions of reform in many other coun-
tries. The new curriculum has an impressive set of goals for individual learners and
society, including healing the divisions of the past, building a human rights culture,
and developing skilled and knowledgeable citizens who can contribute to and ben-
efit from a growing economy and a participatory democracy (Department of
Education 2003).

The new curriculum posits a very different view of mathematical knowledge
from that of previous curricula. Mathematics is seen as both conceptual and practi-
cal; abstract and applied. The curriculum argues for conceptual understanding of
mathematical ideas, skill in performing mathematical calculations, and the ability
to relate mathematical concepts to other subjects and to real-world applications.
Mathematical concepts and skills are developed and linked by “creative and logical
reasoning” and “rigorous logical thinking” (Department of Education 2003, p. 9).
The new curriculum puts mathematical reasoning firmly on the agenda arguing
“competence in mathematical process skills such as investigating, generalizing and
proving is more important than the acquisition of content knowledge for its own
sake” (Department of Education 2003, p. 9). A view of mathematics as a combina-
tion of conceptual depth, flexible skills, and mathematical reasoning resonates with
curriculum developments elsewhere in the world. Some proponents of reform
mathematics argue that reasoning should be taught alongside many of the basic
facts and concepts of mathematics and some even argue that mathematical reason-
ing is in itself a “basic” mathematical skill (Ball and Bass 2003).

Worldwide, too many learners struggle with mathematics, fail mathematics, and
hate mathematics. Moreover, when the factors of race and class are considered, it
is clear that a disproportionate number of black and economically disadvantaged
learners do not achieve success in mathematics and do not believe that they can do
mathematics (Association for Mathematics Education of South Africa 2000;
Department of Education 2001; Moses and Cobb 2001; Secada 1992). The propo-
nents of reform curricula propose that new approaches to mathematics and to teach-
ing mathematics will make mathematics more accessible, enjoyable, and inspiring
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for many more learners, enable more learners to be successful in mathematics and
will begin to close achievement gaps between rich and poor and black and white
learners.

There has been much debate as to whether current mathematics reforms can be
a mechanism for ensuring more equitable participation and achievement in mathe-
matics (see Brodie 2006 for a summary of these debates). Empirical evidence in
well-resourced countries is beginning to show that curriculum reforms do mitigate
achievement gaps between marginalized and other learners (Boaler 1997; Hayes
et al. 2006; Kitchen et al. 2007; Schoenfeld 2002). However, the evidence also sug-
gests an important caveat. The implementation of the new curriculum ideas is not
widespread and is inequitably distributed, tending to be found in more well-
resourced schools and countries, hence further disadvantaging poor learners
(Kitchen et al. 2007). There are two important implications of these findings. First,
in many contexts, lack of resources, including big classes and few materials,
teacher confidence and knowledge, and support for teachers, can be major barriers
to developing new ways of teaching (Tabulawa 1998; Tatto 1999). If reforms are
successful in promoting equity and if they are not taken up in less-resourced coun-
tries and schools, then existing divides between rich and poor will be exacerbated.
Second, it is not only a lack of resources that creates barriers to reform practice. In
fact, research in many well-resourced contexts suggests that most teachers struggle
to take up reform practices in substantive ways (Fraivillig et al. 1999; Hayes et al.
2006; Hufferd-Ackles et al. 2004; Lavi and Shriki 2008; Nolan 2008). This sug-
gests that reasons for the difficulties that teachers experience with reform curricula
cannot be found in resources alone. Something deeper is at play here.

The research on teacher change in the context of reform is based on the assump-
tion, shared in this book, that teachers are key to achieving the visions of better
mathematics learning for more learners. This research can be divided into two main
categories. The first describes models of exemplary reform teaching, making the
claim that such teaching is possible, albeit with many challenges, illuminating dif-
ferent approaches to reform teaching and showing how the challenges can be over-
come. Such cases come mainly from well-resourced contexts, further adding to the
concern that such teaching is only possible in these contexts (Boaler 1997; Boaler
and Humphreys 2005; Chazan and Ball 1999; Hayes et al. 2006; Heaton 2000;
Lampert 2001; Staples 2007). The second set of research, which includes some of
my own work, argues that teachers do not substantially shift their practices, even
after extensive pre-service or in-service courses (Brodie et al. 2002; Fraivillig et al.
1999; Lavi and Shriki 2008; Nolan 2008; Tatto 1999). These two sets of findings
tend to dichotomize the field, suggesting an ideal “reform vision”, which unfortu-
nately only a few can attain. A disturbing consequence of dichotomizing the field
in this way is that teachers are often blamed for not being able to implement visions
of reform because they do not live up to the ideals.

A far more promising line of research takes the middle road, presenting more
textured descriptions of points of difficulty for teaching and when, how and why
teaching in reform-oriented ways breaks down (Gamoran Sherin 2002). In my own
work with colleagues and students, we have shown that some aspects of reform
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practice are easier for teachers to work with, for example selecting tasks of higher
cognitive demand (Modau and Brodie 2008) whereas others are more difficult, for
example interacting with students while maintaining the level of task demand (Jina
and Brodie 2008; Modau and Brodie 2008; Stein et al. 1996, 2000). We have also
argued that adopting reforms requires teachers to coordinate a range of new prac-
tices and to think about their current practices in new ways. Such coordination is
an immense task and means that teachers’ taken-for-granted practices might break
down in the face of the new curriculum practices (Slonimsky and Brodie 2006). It
is thus highly likely that teachers attempting to work with reforms may resort to
traditional practices, more or less deliberately (Brodie 2007c).

This book aims to contribute to this third emerging strand of research and to give
substance to a number of claims that such research can make. The first is that teach-
ers’ difficulties in working with new curricula need to be taken seriously, because,
as we show in this book, mathematical reasoning is challenging to learn and to
teach. For teachers who learned mathematics and learned to teach mathematics in
traditional ways, the challenges are enormous. However, this does not mean that
teachers cannot begin to work towards teaching mathematical reasoning in ways
suggested by the reforms. But it does mean that researchers and teacher educators
need to find ways to capture teachers’ successes and challenges in ways that can
help teachers to move forward. The successes might be small and the challenges
might be large, but we need to find ways to show where and how teachers are shift-
ing and what the next steps for progress might be. It is our experience, some of
which we hope to share in this book, that teachers who do take risks and embark on
the journey of learning to teach in new ways, have experienced both the exhilara-
tion of success, when learners actually do begin to reason with each other and their
teachers, and the extreme challenges of sustaining the practice with all learners,
particularly given overcrowded curricula and high stakes tests and examinations.

So this book explores some of the successes and challenges faced by a group of
South African teachers who worked to develop mathematical reasoning among
their learners. In doing so, it explores what it means to teach mathematical reason-
ing in secondary school mathematics classrooms, addressing some important ques-
tions like what mathematical reasoning means; how can mathematical reasoning be
taught; how teaching mathematical reasoning differs from more conventional math-
ematics teaching; and the demands that teaching mathematical reasoning makes on
teachers and learners. A number of chapters address these questions from the per-
spective of the teachers analysing their own practice, and others address the ques-
tions from the perspective of an academic researcher, analysing the teachers’
practices.

The book is the result of an ongoing collaboration between five teachers and an
academic. We came together with a joint interest in promoting mathematical rea-
soning in South African classrooms. We share a passion for improving the experi-
ences of learners in mathematics classrooms, and a belief that working in
reform-oriented ways can do this. At the same time, we experience the real con-
straints of classrooms and are inspired by the need to find ways to work with con-
textual realities to support mathematical reasoning. Although this book is set in a
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South African context, it has strong implications for other contexts. This work was
conducted in a range of differently resourced classrooms, from very poorly
resourced to very well resourced, and so can illuminate the teaching of mathemati-
cal reasoning in relation to contextual differences and speak to readers working in
a wide range of countries and schools.

Each teacher conducted her/his study as the research component of an Honours
programme in mathematics education, in which they were all enrolled. At the time,
I was engaged in my doctoral research, and worked with the teachers as subjects of
my research and as advisor on their research projects. Each teacher worked on a
subset of her/his data from the larger data corpus, which I collected. We worked
closely together as a group and the results of each study informed the others. The
dilemmas, strengths, and challenges of such a collaboration have been discussed in
detail elsewhere (Brodie 2005; Brodie et al. 2005).

Outline of the Book

This book comprises three parts. Part 1, consisting of Chaps. 1 and 2, sets the con-
text of the work within the literature on teaching and learning mathematical reason-
ing and describes the school contexts in which the research took place. In Chap. 1,
I review the literature and develop the concepts of mathematical reasoning, learning
mathematical reasoning and teaching mathematical reasoning, that informed the
work of the project and the subsequent chapters of this book. In Chap. 2, I discuss
the differently resourced contexts in which the teachers worked. I argue that the
learners’ knowledge in the different classrooms forms a substantive part of the
teaching context. Through the development of this work, we came to see learners’
knowledge as a key resource for teaching mathematical reasoning. I also discuss the
tasks that the teachers developed to teach mathematical reasoning and which they
refer to in their chapters.

Part 2, consisting of Chaps. 3-7, describes the studies that the teachers con-
ducted. Each teacher researched an aspect of her/his practice, trying to understand
more deeply the challenges and successes that she/he experienced. These chapters
were informed by some of the literature discussed in Chap. 1 and each teacher
chose particular parts of the literature to work with as a conceptual framework. In
Chap. 3, we take a close look at how a set of tasks supported learners’ reasoning
and in Chap. 4 we explore how collaborative, whole-class discussion supported
both individual and group learning. In Chap. 5, we describe a set of practices,
which the teacher developed to enable learners to reason with each other and show
how his learners appropriated these practices to help with their thinking and reason-
ing. In Chap. 6, we show how the teacher supported the development of mathemati-
cal proficiency among her learners and in Chap. 7, we focus on the development of
justification among learners. Taken together, these chapters provide a rich account
of challenges and successes in teaching mathematical reasoning, and what is pos-
sible to achieve even in very difficult circumstances. They deal with a number of
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key aspects in teaching mathematical reasoning, namely, what tasks might be useful
to elicit learners’ reasoning and how are they best implemented in the classroom,
how different tasks support learners’ mathematical reasoning in different ways, and
how classroom interaction helps to support the development of mathematical
reasoning.

Part 3, consisting of Chaps. 8—11, comprises an overview of the practices in the
five classrooms, drawing on my doctoral research. Chapters 8 and 9 look across all
five classrooms and develop categories for talking about learner contributions and
teacher moves, as the beginnings of a language of description for reform-oriented
teaching. These two chapters together suggest a trajectory for the emergence of
learner contributions and teachers’ responses that promote mathematical reasoning.
The argument is that by finding more specific ways to talk about how teachers and
learners interact in classrooms, we can find ways to help teachers move forward in
engaging learners’ mathematical reasoning. Chapter 10 focuses in more depth on
two teachers and the dilemmas they experienced in teaching mathematical reason-
ing. Chapter 11 focuses even more closely on one classroom and explores the
resistance of the learners to their new experience of learning mathematical reason-
ing. Such resistance is often reported by teachers but not often explored. In this
chapter I suggest that resistance is an important aspect of the new methods of teach-
ing and suggest ways of managing it. The overarching argument of Part 3 is that
every success in reform pedagogy produces new challenges, a range of learner
contributions to respond to, new dilemmas in relation to these contributions, and
possible learner resistance. Teachers, teacher—educators, and researchers cannot
ignore these challenges; we have to find ways to talk about them as a normal part
of learning to teach in new ways, and the challenges that change brings.

Because teachers have been involved in the work of this book and in writing
parts of it, we hope that the work will speak to teachers, and to teacher educators
and researchers who are trying to work in and with new curriculum developments.
We have written this book for both teachers and researchers because we strongly
believe that teachers and researchers can and should speak to each other in many
ways, including through books such as this one. At the same time, we also realize
that teaching and research are distinct practices, with their own discourses. This has
caused some discomfort in the writing of this book in that we have had to continu-
ally consider two different audiences. We have resolved this by writing some chap-
ters in a more “academic” tone and others somewhat more colloquially. In doing
this, we have made sure to keep our research focus strong and rigorous throughout
the book. In particular Chap. 1 sets out the academic field of teaching and learning
mathematical reasoning and may not be the best part of the book for teachers to
start reading. The case studies in Chaps. 3-8 are structured to form part of the ongo-
ing narrative of the book as a whole but can also be read individually. In these
chapters, key parts of the literature have been revisited for the purposes of the par-
ticular case study, and although this has meant some repetition of key ideas, we
believe it will help readers to see these ideas working in different contexts. Chapters
8 and 9 develop a language of description, which might be more appealing to
researchers than teachers. Chapters 10 and 11 deal with particular issues in two of



6 Introduction to Part 1

the classrooms, and although building on the language of Chaps. 8 and 9, can also
be read on their own.

In our work together, practice has spoken closely to research, and so we hope
that the research described here will find ways to speak to practice. We believe that
the work in this book will provide useful models for other teachers wanting to teach
mathematical reasoning, for teachers wanting to research their own practice, and
for teacher—educators and researchers wanting to develop and analyse the teaching
of mathematical reasoning. We undertook a journey together in which we learned
a tremendous amount. We hope to convey some of it in this book and also inspire
others to embark on similar journeys.

Curriculum reform has become a global movement over the past 30 years.
Similarities among the South African and other mathematics curricula will be dis-
cussed further in this chapter and the book.

Terminology used across contexts to refer to new curricula is different. In this
book we use interchangeably the terms “new curriculum” which applies to South
Africa and other countries, which have national curricula, and “reform” which is
used predominantly in the United States. In both cases we include the enacted cur-
riculum, i.e. teaching and learning in classrooms.

In the South African Higher Education system an Honours degree follows a
3-year undergraduate degree and a professional teaching qualification and is neces-
sary for entry into Masters.



Chapter 1

Teaching Mathematical Reasoning:
A Challenging Task

The Centrality of Mathematical Reasoning
in Mathematics Education

When we “reason”, we develop lines of thinking or argument, which might serve a
number of purposes — to convince others or ourselves of a particular claim; to solve
a problem; or to integrate a number of ideas into a more coherent whole. Two pro-
cesses are important to reasoning — first, that the different steps or moves in the line
of reasoning are connected with each other (not necessarily analytically or deduc-
tively); and second, that these links are somehow “reasoned”, there are reasons why
one move follows another and how a number of moves come together to form an
argument or to solve a problem (Ball and Bass 2003). Brousseau and Gibel (2005)
point out that these reasons are only considered to be reasonable when they relate
to the constraints of the problem or the knowledge under consideration. An appeal
to authority, for example to what a teacher or textbook says, does not count as a
reason for a productive argument.

The product of a reasoning process is a text, either spoken or written (Douek
2005), which presents warrants for a conclusion that is acceptable within the com-
munity that is producing the argument (Krummheuer 1995). An individual can
reason, or a group of people can reason together, co-producing the line of argu-
ment'. Mathematical reasoning assumes mathematical communication (Ball and
Bass 2003; Douek 2005; Krummheuer 1995). Communication is an integral part of
the process of reasoning, both for an individual working with previously produced
texts to produce a new one, and for groups working together to produce an argu-
ment. The texts or products of reasoning have, as their main purpose, to communi-
cate reasoning.

Mathematical reasoning is reasoning about and with the objects of mathematics.
However, the relationship between mathematical reasoning and mathematics is not
obvious (Steen 1999), and the processes involved in mathematical reasoning need

'Social perspectives on learning and thinking would argue that even an individual reasoning,
seemingly on her own, is in fact in dialogue with others, co-producing an argument, with an
imagined audience, with ideas from others, and in a social and historical context (see below).

K. Brodie, Teaching Mathematical Reasoning in Secondary School Classrooms, 7
DOI 10.1007/978-0-387-09742-8_1, © Springer Science+Business Media, LLC 2010
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some elaboration. For Ball and Bass (2003) reasoning is a “basic skill” (p. 28) of
mathematics and is necessary for a number of purposes — to understand mathemati-
cal concepts, to use mathematical ideas and procedures flexibly, and to reconstruct
once understood, but forgotten mathematical knowledge. Kilpatrick et al. (2001)
define a notion of mathematical proficiency which requires five intertwined and
mutually influential strands — conceptual understanding, which entails comprehen-
sion of mathematical concepts, operations, and relations; procedural fluency,
involving skill in carrying out procedures flexibly, accurately, efficiently, and
appropriately; strategic competence, which is the ability to formulate, represent,
and solve mathematical problems; adaptive reasoning, which is the capacity for
logical thought, reflection, explanation, and justification; and productive disposi-
tion, an orientation to seeing mathematics as sensible, useful, worthwhile, and
reasonable, and that anyone can reason to make sense of mathematical ideas?. For
Kilpatrick et al. (2001), although all the strands are important and mutually influ-
ential, “adaptive reasoning is the glue that holds everything together” (p. 129) in
that it allows for concepts and procedures to connect together in sensible ways,
suggests possibilities for problem solving, and allows for disagreements to be set-
tled in reasoned ways. Central to adaptive reasoning is the justification of claims
and development of arguments.

This view of mathematical proficiency has informed all of the work in this book.
Most directly, in Chap. 6 we reflect on one teacher’s attempt to teach the five
strands in a holistic way. The teacher found that she devoted most of the time to
conceptual understanding rather than procedural fluency, which is traditionally the
norm in mathematics classrooms (Kilpatrick et al. 2001; Schoenfeld 1988; Stigler
and Hiebert 1999). However, she was concerned that she devoted less time to stra-
tegic competence and adaptive reasoning. She also found that more than half of the
learners in her class showed evidence of all five strands in their written work. In
Chaps. 5 and 7 we focus on the strand of adaptive reasoning and show how two
teachers supported learners to reason adaptively.

Justifying and Generalizing

The literature suggests that there are two key practices involved in mathematical
reasoning — justifying and generalizing — and other mathematical practices such as
symbolizing, representing, and communicating, are key in supporting these (Ball
2003; Ball and Bass 2003; Davis and Maher 1997; Triandafillidis and Potari 2005).
For Kilpatrick et al. justifying is a key element of adaptive reasoning and to justify
means “to provide sufficient reason for” (p. 130). They argue “students need to be
able to justify and explain ideas in order to make their reasoning clear, hone their

21 note here that Kilpatrick et al.’s work is an extension of the more usual distinctions of concep-
tual and procedural understandings of mathematics (Hiebert and Lefevre, 1986).
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reasoning skills and improve their conceptual understanding” (p. 130). For Ball and
Bass, “unjustified knowledge is unreasoned and, hence, easily becomes unreason-
able” (p. 29). Justification is a key mathematical practice that allows mathemati-
cians and mathematics teachers and learners to make connections between different
ideas and parts of an argument, to provide warrant for claims and conjectures, to
settle disputes, and to develop new mathematical ideas.

For Russell (1999), mathematical reasoning is “essentially about the develop-
ment, justification and use of mathematical generalizations” (p. 1). These general-
izations create an interconnected web of mathematical knowledge — conceptual
understanding in Kilpatrick et al.’s terms. For Russell, “seeing mathematics as a
web of interrelated ideas is both a result of an emphasis on mathematical reasoning
and a foundation for reasoning further” (p. 5). Creating generalizations also enables
problem solving, as generalizations support learners to see the underlying structure
of the problem and the bigger class of problems or ideas that it instantiates
(Brousseau and Gibel 2005; Kilpatrick et al. 2001; Russell 1999). Russell also
introduces a notion of “mathematical memory”, which is a memory of fundamental
mathematical relationships, rather than of isolated facts. This kind of memory is
what allows mathematical knowers to reconstruct, in a reasoned way, mathematical
concepts, procedures, and principles that they might have forgotten (Ball and Bass
2003; Brousseau and Gibel 2005). It also supports sense making and insight in
mathematics, and creates the conditions for solving problems.

In Chap. 7, we directly address the challenges that a teacher faced in supporting
his learners to justify their thinking. The vast majority of learners in his class were
not able to answer the question: “can x>+1 be less than zero, when x is a real num-
ber”, with appropriate justifications. We show how the teacher worked through a
number of different contributions from learners, ranging from incorrect justifica-
tions through those that were partially correct, to one that was completely correct,
asking them to discuss and communicate their reasoning. Even though his learners
had very weak mathematical knowledge, they were, with a lot of help from the
teacher, able to contribute and to help each other develop better justifications. In
each of the other teachers’ chapters, we see examples of learners’ successes and
challenges as they work to justify, explain, and generalize their ideas.

The Role of Proof in Mathematical Reasoning

Justification and generalization are closely related to proof in mathematics. In fact,
for many mathematicians and in many mathematics curricula, mathematical rea-
soning is equated with proof. In this book we take the view, together with others
(Ball and Bass 2003; Davis and Hersh 1981; Hanna and Jahnke 1996; Kilpatrick
et al. 2001; Kline 1980; Krummheuer 1995), that whereas proof is one form of
argument and justification, not all arguments and justifications are proofs, and a
formal proof is not always an adequate justification or explanation of mathematical
ideas. Although formal proof has long been thought to produce infallibility in
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mathematical knowledge, in fact it does not do so (Davis and Hersh 1981; Ernest
1991; Hanna and Jahnke 1996). Standards of rigour are socially constructed
(Ernest 1991; Volmink 1990) and “there has never been a single set of universally
accepted criteria for the validity of a mathematical proof” (Hanna and Jahnke 1996,
p. 884). For example, most mathematics teachers are convinced by the standard
one-page presentation of the proof of Pythagoras’ theorem; however, a completely
logically rigorous proof would take about eighty pages (De Villiers 1990).

Just as in other disciplines, communities of practice (Wenger 1998) exist in the
various domains of mathematics, which review new mathematical proofs in accor-
dance with the current questions, objects of study, ways of thinking, methods, and
results of the specific mathematical domain. The nature of the discipline of math-
ematics, founded and built on fundamental, shared concepts means that there is
more agreed upon knowledge in mathematics than in other disciplines, such as
psychology or sociology. However, this does not mean that mathematical knowl-
edge is not socially constructed or contested. Proof does not shield us from the
uncertainty of our knowledge (Hanna and Jahnke 1996; Kline 1980). At the same
time, proof is an important embodiment of mathematical reasoning and needs to be
taught as a particular form of reasoning, justification, and generalization within the
discipline of mathematics (Hanna and Jahnke 1996).

Creativity and Reasoning

A strong rebuttal to the hegemony of proof in mathematics comes from practising
mathematicians, who often work intuitively and creatively, searching for under-
standing and meaning, rather than rigour and formality. Sternberg and his col-
leagues distinguish between creative and analytical thinking (Sternberg 1999;
Sternberg et al. 1998), arguing that “analytical tasks involve analysing, judging,
evaluating, comparing and contrasting, and critiquing; creative tasks involve creat-
ing, inventing, discovering, imagining and supposing” (1998, p. 374). Although
creative and analytical thinking are often posed as dichotomous, they actually sup-
port each other in mathematical problem solving and reasoning, for example imag-
ining would require some form of comparing and supposing usually requires some
analysing. Comparing alternative solutions, ideas, and imaginings all require rea-
soning and justification; creative thinking can support links between previously
unconnected ideas; and leaps of imagination are often necessary to see a problem
from a different perspective.

Intuition has also been studied as an important part of mathematical problem
solving, creating mathematical arguments, and proving mathematical theorems
(Fischbein 1987). Intuition might precede more formal arguments, justifications,
and proof, and in some instances, might replace it. A mathematician who intuitively
feels that something is wrong in a proof, will search to find the mistake, doubting
the proof rather than her intuition (Hanna and Jahnke 1996). Crucial to notions of
creativity and intuition is a sense that conviction and understanding do not necessarily
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come from formal, deductive, or analytic proofs. Although these have their place,
they are certainly not sufficient to solve mathematical problems and communicate
mathematical justifications and generalizations. If practices in the mathematics
classroom are to be authentic to the discipline of mathematics (Brown et al. 1989),
then a broader range of reasoning should be acknowledged and developed in math-
ematics classrooms.

Empirical and inductive reasoning play an important part in the reasoning
practices of mathematicians and mathematics learners, often complementary to
theoretical and deductive reasoning. Simon (1996) argues for a notion of “transfor-
mational” reasoning, where dynamic transformations of objects are visualised and
which provide the reasoner(s) with a sense of conviction and understanding of how
and why something is the case. Transformational reasoning supports and is sup-
ported by both inductive and deductive reasoning. Drawing on Toulmin, Krummheuer
(1995) argues for substantive arguments, rather than merely analytic ones.
Substantive arguments show relationships between the main objects and premises,
rather than merely drawing deductive conclusions based on previously proved
results or axioms. This distinction is similar to Hanna’s characterization of proofs
that prove and proofs that explain (Hanna and Jahnke 1996). De Villiers (1990)
argues for five key functions for proof — verification, explanation, systematization,
discovery, and communication. It is useful to see these as functions of mathematical
reasoning as well. Verification establishes that something is the case, i.e. sufficient
justification has been produced to confirm that a claim is true. Explanation estab-
lishes why something is the case, showing what are the key properties that are
necessary for the truth of a claim. Explanatory proofs, or substantive arguments are
more satisfying to both mathematicians and mathematics learners (Hanna and
Jahnke 1996; Krummheuer 1995). Systematization organizes disparate mathemati-
cal concepts that are already established into a coherent mathematical system. As
argued above, mathematical reasoning is a key part of mathematical discovery and
mathematical reasoning also functions to help communicate our ideas and their
warrants to others.

The idea that mathematical reasoning involves creativity, discovery, and com-
munication is central to the work of this book. In Chap. 4, we show how a col-
laborative conversation among learners supported the development of the
mathematical concept of function. Communication was the key in enabling learn-
ers to make creative, reasoned conceptual leaps. In Chap. 5, we show how the
teacher’s practices supported the learners’ mathematical reasoning by encouraging
them to question and challenge each other and himself. Again, we see reasoned
creativity among his learners.

In this section, I have argued that mathematical reasoning is a key element of
mathematics and thus is central to learning mathematics in school. I have argued
for a broader notion of mathematical reasoning, in which intuition, creativity,
imagination, explanation, and communication all play an important role.
Fundamental to all forms of mathematical reasoning is the practice of justification
and creating adequate arguments in defence of claims. Throughout this section, I
have drawn on the notions of mathematical practices, communities of practice, and
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that mathematics is fundamentally a social practice. In the next section, I explore
these ideas further.

Theories of Learning and Mathematical Reasoning

The work in this book is informed by a number of theories of learning, in particular
constructivist, socio-cultural, and situated theories. Following Sfard (1998, 2001),
I argue that none of the above theories is sufficient on their own to explain the learn-
ing and teaching of mathematical reasoning, and in this project I use them in careful
combination. Although some scholars argue that since the fundamental mecha-
nisms that generate learning posed by the theories are so different (biological
equilibration for constructivists and social relations for socio-cultural and situated
theories), the theories may be incommensurable, my argument is that the different
mechanisms operate at different levels and in combination with each other and as
long as the differences are acknowledged and specified, we can use these theories
together to inform teaching and account for learning in mathematics classrooms
(see also Sfard 2001).

Constructivism

Constructivism, in its many varieties, is centrally concerned with how knowledge
is constructed and restructured in order to make sense of ever-increasing complex-
ity, both in one’s knowledge and in the outside world. Constructivism has had an
important influence on theories of mathematics learning and mathematical reason-
ing (Confrey and Kazak 2006; Hanna and Jahnke 1996), and on the new curriculum
in South Africa (Department of Education 2000). However, just as there are many
varieties of constructivism, there are many ways in which constructivism can be
misconstrued (Moll 2000).

The version of constructivism that informs the work in this book is derived from
Piagetian constructivism (Piaget 1964, 1968, 1975), informed by the interpretations
of Hatano (1996) and Rowell (1989). Two key principles of this version are first,
that what people learn is constrained and afforded by what they know; and second,
that there is an integrity to learners’ thinking — what learners think, say, and do
makes sense to them in relation to what they know. The role of current knowledge
is very particular in that current knowledge is not merely built upon (as in behav-
iourist theories); rather it is restructured and reorganized into richer, more con-
nected, and more powerful knowledge (Hatano 1996). Just as new knowledge is
transformed in relation to prior knowledge, so prior knowledge is transformed in
relation to new knowledge. From constructivist perspectives a deepening or trans-
forming of thinking involves a deepening or transforming of cognitive structures,
either integrating previously separate structures into more general and powerful
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structures, or differentiating previous structures into more nuanced structures,
which allow for more depth of thinking (Hatano 1996). The implication for math-
ematics classrooms is that teachers need to find out how learners are thinking in
order to help them build relationships between current and new knowledge.

The unit of analysis in constructivist theories is the mind of the individual
learner. Social interaction is crucial to constructivism in that it supports and con-
strains individual learning (Hatano 1996; Sfard 2001). However, social interaction
is a secondary mechanism, important only as long as it engages the key mechanism
for learning and development —equilibration (Piaget 1964; Rowell 1989). Equilibration
is a biological process where perturbations to current knowledge structures are
compensated for in ways that develop them into more powerful structures. Although
the initial perturbation might be created by social interaction, the biological pro-
cesses must engage for a shift in knowledge to occur. At the same time equilibration
on its own is not sufficient to account for learning, because social processes must
be taken into account as well.

The concept of cognitive conflict explains the links between biological and
social processes in constructivism. Cognitive conflict is where a teacher or peer
challenges the position of the learner, illuminating a contradiction in her/his think-
ing. The theory holds that if the challenge creates a perturbation in the learner, then
the learner will equilibrate and develop more powerful knowledge. However,
research and experience show that even when learners can see the contradiction,
they are often more comfortable maintaining contradictory positions than trying to
achieve coherence (Sasman et al. 1998), and might become defensive of their cur-
rent knowledge (Balacheff 1991; Chazan and Ball 1999). Although constructivism
might be able to account for how people do learn, it is less successful in accounting
for how they do not learn (Slonimsky, personal communication).

A key part of constructivist research has been work on misconceptions (Confrey
1990; Smith et al. 1993), which, in our experience, has been extremely helpful for
teachers. This research shows that learners’ errors are often systematic and consis-
tent across time and place, remarkably resistant to instruction, and extremely rea-
sonable when viewed from the perspective of how the learner might be thinking. To
account for these “rational errors” (Ben-Zeev 1996, 1998) researchers posit the
existence of misconceptions, which are underlying conceptual structures that
explain why alearner might produce a particular error or set of errors. Misconceptions
make sense when understood in relation to the current conceptual system of the
learner, which is usually a more limited version of a mature conceptual system (for
this reason, many researchers prefer terminology such as “alternate conceptions”).
Misconceptions result from structures that apply appropriately in one domain being
over-generalized to another, for example, the idea that you cannot take away a big-
ger number from a smaller makes sense in the domain of natural numbers, but not
in the domain of integers. Thus misconceptions are a normal part of the learning
process. Misconceptions have been thought to arise from teaching that emphasizes
procedures and individualized instructions (Ben-Zeev 1996; Erlwanger 1975;
Schoenfeld 1988). However reports from teachers working conceptually and col-
laboratively suggest that misconceptions continue to arise in these classrooms
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(Ball 1996, 1997; Chazan and Ball 1999; Lampert 2001), which is to be expected,
since misconceptions are a normal part of learning.

Since misconceptions form part of the learners’ current knowledge, the well
established educational truism that teachers need to work with and build on learners’
current knowledge suggests that teachers should work with learners’ errors and
misconceptions as well as their correct ideas. Misconceptions alert us to the fact
that “building” on current knowledge also means transforming it; current concep-
tual structures must change to become more powerful or more applicable to an
increased range of situations. At the same time the new structures have their roots
in and include earlier limited conceptions (Smith et al. 1993). Learners’ misconcep-
tions, when appropriately coordinated with other ideas, can and do provide points
of continuity for the restructuring of current knowledge into new knowledge
(Carraher 1996; Confrey 1990; Hatano 1996; Smith et al. 1993).

The idea that learners’ errors arise from the underlying conceptual structure of
the learner and can be an indication of appropriate reasoning and the integrity of
the learner’s thinking, can be extremely powerful in helping teachers to shift their
teaching towards taking learners’ thinking seriously (Ball and Cohen 1999; Nesher
1987). Teachers who orient toward learner thinking would want to try to understand
the thinking that produces the learners’ contributions, including their errors. They
would see errors as a normal part of coming to a correct conception. Since miscon-
ceptions can also produce correct responses (Nesher 1987), asking learners to
explain their thinking when they produce both correct and incorrect contributions
is a way to access appropriate or inappropriate underlying mathematical reasoning.
In Chap. 8 of this book, I draw on the notion of misconceptions to develop a lan-
guage of description for learner contributions, which takes learners’ errors and
partial insights seriously while looking for ways to transform them into more
appropriate understanding.

Socio-Cultural Theories

One of the key implications of constructivist theories, which has been popularized
in teacher training around the new curriculum in South Africa, is that teachers are
“facilitators”, which means that although they might support learning through
appropriate tasks and questions, they are not directly implicated in it (Department
of Education 1997; Hanna and Jahnke 1996). Teachers are often exhorted not to
“tell” learners any mathematics (Chazan and Ball 1999), for fear that they might
inhibit the learners’ own constructions. Socio-cultural theories provide a direct
challenge to this view, as they argue that adults, and teachers in particular, as bear-
ers of the culture, must be involved in developing learners’ understanding and in
so-doing, must leave their mark on what learners learn (Hatano 1996; Sfard 2001).
The processes of construction will include much of the teachers’ language and
ways of seeing that learners appropriate as teachers work with them.
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A key difference between socio-cultural and constructivist theories is that socio-
cultural theories posit social interaction as the primary mechanism in intellectual
development. For Vygotsky (1978), the interpsychological (interaction among
people) becomes the intrapsychological (mental functions). Vygotsky has a very
strong notion of the mind, which is formed biologically, through the lower mental
functions, and socially, through the higher mental functions. He argues that social
interaction and broader cultural historical patterns are constitutive of higher order
consciousness. The interaction between the social and biological is therefore key,
as in Piaget’s constructivism; however, the social is primary.

For Vygotsky, social, cultural, and historical knowledge is carried through signs
and artefacts and mediated to younger members of the culture by more experienced
members. So for Vygotsky, the unit of analysis is always the individual interacting
with another person or people, either directly, or through a tool or artefact (for
example, a book).

This is formalized in his notion of the zone of proximal development (Vygotsky
1978). In some of Vygotsky’s writings, it appears that he conceives of the zone of
proximal development as belonging to an individual learner. However, the social
nature of his theory suggests that zones of proximal development are created in
interaction between learner and teacher or between learner and artefact (Hedegaard
1990; Wertsch 1984). Thus the same teacher/artefact can create different zones of
proximal development with different learners, and different teachers/artefacts can
create different zones of proximal development for the same learner. Mediation is
crucial (Crook 1994; Herrenkohl and Wertsch 1999) in that it creates the conditions
of possibility for internalization of the key concepts of the culture.

Many teachers, including those whose work is represented in this book, have
found the concepts of the zone of proximal development and mediation extremely
appealing, because they posit a central role for the teacher. In Chap. 4, we draw on
the socio-cultural theory together with constructivism to show how one learner’s
development of mathematical reasoning is mediated by conversation with her peers
and the teacher, as they use a set of mathematical resources together to solve a
problem. We see how the learners’ collaborations are intimately connected with and
become part of an individual learner’s increasingly sophisticated reasoning. In
Chap. 5, we draw directly on the zone of proximal development, arguing that the
teacher’s practices of questioning and listening to the learners’ mathematical rea-
soning form a zone of proximal development for the learners and they begin to
listen to and question each other, and him, in similar ways.

It should be noted here that Vygotsky’s theory is also a theory of social con-
struction. Interpsychological processes do not become intrapsychological pro-
cesses without being transformed. Vygotsky states: “adults, through their verbal
communication with the child, are able to predetermine the path of the develop-
ment of generalizations and its final point — a fully formed concept. But the adult
cannot pass on to the child his mode of thinking” (1986, p. 120), and Leont’ev
writes “the process of internalisation is not transferal of all activity to a pre-
existing plane of consciousness; it is the process in which this internal plane
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is formed.” (1981, p. 57 in Cazden 1988, p. 108). So, internal processes, although
constituted by external processes, do not mirror them.

There are two strong critiques of Vygsotsky’s work, both relating to his notion
of internalization. The first is that the processes of internalization are left relatively
un-theorised. This is one area where Vygotsky’s work remains insufficient® and
where Piaget’s notions of assimilation, accommodation, and equilibration do far
more to explain how external ideas are internalized. Related to this is Vygotsky’s
under-acknowledgment of the role of errors and misconceptions in learning. His
work often suggests that learning proceeds relatively smoothly in the zone of proxi-
mal development. The second critique is that there is far too much emphasis on
internalization in Vygotsky’s theory, because of its strong focus on mind (Crook
1994; Daniels 2001; Lave 1993). This critique suggests that a focus on social rela-
tions is more useful in understanding learning. Related to this argument is the fact
that Vygotsky’s theory, while acknowledging necessary asymmetrical relationships
between teacher and learner, does not always acknowledge the power differences
among learners, particularly in relation to race, gender, and class and how these
might affect learning. A more participatory account allows for these to be
included.

Situated Theories

Situated theories view learning as participation in communities of practice (Lave
1993; Lave and Wenger 1991; Wenger 1998). To view learning as participation is
to say that not only does learning occur through participation, as both constructivist
and socio-cultural theories argue, but that learning is defined and identified as
increasing participation in a practice. To learn is to participate better. To learn math-
ematics is to become a better participant in a mathematical community and its
practices, using the discursive tools and resources that the community provides
(Forman and Ansell 2002; Greeno and MMAP 1998). The unit of analysis in situ-
ated theories is the community of practice and it is important to specify the prac-
tices of a particular community (Brown et al. 1989). Communities of practice
constitute contexts for the learning of their members, and as communities they also
learn (Wenger 1998). The mechanism for learning in situated theories is legitimate
peripheral participation in communities of practice (Lave and Wenger 1991).
Newcomers to the practice participate legitimately, but on the periphery, at first. As
they gain experience, their participation shifts towards full participation, which is
their learning. As newcomers become oldtimers, so the community itself learns and
shifts, creating both personal and communal growth. The processes of negotiation
between newcomers and oldtimers can create tensions and conflict, as newcomers

3T thank Steve Lerman for pointing out that this is probably because Vygotsky died a short time
after formulating the notion of zpd and internalization.
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stake their positions in the community. Thus power relations, which are not taken
into account by constructivist and socio-cultural theories, become the key to learning
in situated theories. Lave and Wenger argue that their theory of social practice
“emphasizes the inherently socially negotiated character of meaning and the inter-
ested, concerned character of the thought and action of persons-in-activity” (Lave
and Wenger 1991, p. 50).

Similar to socio-cultural theories, situated theories view the role of the social
interaction as constitutive of learning; they are social theories of learning (Wenger
1998). Different from socio-cultural theories, they view learning as only a social
phenomenon; the definition of learning as participation rather than constituted by
participation suggests learning is social and not mental. Learning is the creation of
identities in communities of practice (Wenger 1998). Situated perspectives argue
that knowledge cannot be seen as the “possession” of an individual, but rather is
distributed among people and resources (Greeno et al. 1996; Sfard 1998).

In situated perspectives, a concern with thinking is transformed into a concern
with participation, with how learners use mathematical tools and discourse to rea-
son and justify their reasoning (Sfard 2001). Making connections and generalizing
ideas are important in situated perspectives, however the connections and general-
izations are ideas that are in the conversation, rather than structures in the head.
Greeno and MMAP (1998) suggest that situated analyses broaden the notion of
conceptual structures into one of attunement to affordances and constraints.
Affordances and constraints are located in interactional situations, in the classroom,
the domain of mathematics, and the lives of the learners beyond school. From this
perspective, learners who do well in mathematics do so because they align and
identify with the requirements and expectations of the classroom, both mathemati-
cal and social. A learner may struggle to learn, not because she has not developed
appropriate conceptual structures, but because she is responding to a different task
than the one set by the teacher, or does not want to be seen to be too intelligent or
not intelligent enough in front of her peers, or has decided not to engage with math-
ematics because it does not seem to be important in the lives of people who are
important to her. Such attunements are patterned regularities, which may be just as
important in accounting for learning as are conceptual structures.

The de-emphasis of conceptual structures as products of learning makes situ-
ated theories somewhat difficult for teachers to own and work with, epecially
teachers, like the teachers in this book, for whom conceptual understanding and
mathematical reasoning are important. However, there is one key notion in situated
theories — communities of practice — which attract teachers, and which seem to be
compatible with the key elements of socio-cultural and constructivist theories.
Communities of practice present images of how communication can take place in
classrooms, the roles of resources, of different learners, and of the teacher.
Although classroom communities must be somewhat different from communities
outside of classrooms (Lave 1993, 1996; Lerman 1998), classroom communities,
where genuine mathematical communication and the development of mathematical
understanding and identities take place, can be established (Boaler 2004; Boaler
and Greeno 2000; Boaler and Humphreys 2005; Lampert 2001; Staples 2004).
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This view infuses the work in Chaps. 4-6 of this book, where we show how
communities of practice were created in three of the classrooms. It also informs
Chaps. 8 and 9, which show how learner contributions and teacher responses
co-produce each other, and Chaps. 10 and 11, where dilemmas of teaching and
resistance to teacher change are viewed as profoundly situated and developed in
and through communities of practice.

Teaching Mathematical Reasoning

The theories discussed above are primarily theories of learning. It is often thought
that theories of learning have direct application to classrooms and suggest particu-
lar pedagogical approaches. However, this is not the case; rather theories of learn-
ing suggest general pedagogical principles and implications for pedagogy; they do
not directly lead to particular pedagogical approaches. Moreover, pedagogical prin-
ciples do not derive from theories of learning in a one-to-one correspondence.
Different theories might suggest very similar approaches, which are distinguished
at the level of explanation rather than at the level of practice. It might be tempting
to conclude that since constructivist theories focus on the individual, they suggest
individual approaches to teaching and learning, while socio-cultural and situated
perspectives suggest group work. However, all three theories suggest that group
work is a useful pedagogical approach and none would advocate that learners do no
work on their own. From all three perspectives, encouraging learners to talk through
their ideas with each other is an important process, as is encouraging learners to
write down different versions of their thinking, for themselves and others.
Constructivist perspectives suggest that when learners are pushed by others to
articulate their thinking, they are likely to clarify their thinking, both for others and
for themselves (Barnes and Todd 1977; Glachan and Light 1982; Mercer 1995;
Vygotsky 1986). In the process of clarifying their thinking, learners might develop
more complex concepts, through differentiation, integration, and restructuring
(Hatano 1996). Situated perspectives suggest that as learners consider, question,
and add to each other’s thinking, important mathematical ideas and connections can
be co-produced. For constructivist perspectives the group is a social influence on
the individual; for sociocultural and situated perspectives the group is the important
unit, which produces mathematical ideas within or beyond the individual learner.
One, or both of these purposes for group work might be operating in a classroom
at any particular time.

In this section, I delineate pedagogical implications for teaching mathematical
reasoning, drawing on the arguments in the previous sections of this chapter. The
key in teaching mathematical reasoning, as in teaching any other aspect of mathe-
matical proficiency, are the kinds of tasks that learners engage in, the ways in which
they engage with these tasks, and the kinds of interactions around the tasks among
the learners and the teacher. However, as noted by Ball and Bass, “simply posing
open-ended mathematical problems that require mathematical reasoning is not
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sufficient to help students learn to reason mathematically. Neither is merely asking
students to explain their thinking” (2003, p. 42).

Tasks for Mathematical Reasoning

A number of frameworks have been developed to describe the complexity of
tasks (Biggs and Collis 1982; Shavelson et al. 2002; Stein et al. 1996, 2000). In
this project we drew mainly on the work of Stein et al. (1996, 2000). Although
we acknowledge limitations with this framework (Sanni 2008a), it was very use-
ful as a starting point for teachers wanting to select tasks to support learners’
mathematical reasoning. This framework is discussed in detail in Chap. 3, where
we use it to analyse how learners responded to tasks intended to develop math-
ematical reasoning. For the purposes of this chapter it is sufficient to note that
Stein et al. identify task features which support higher cognitive demands on
learners, including reasoning and sense making. These features are “the exis-
tence of multiple-solution strategies, the extent to which the task lends itself to
multiple representations, and the extent to which the task demands explanations
and/or justifications from the students” (Stein et al. 1996, p. 461). Stein and oth-
ers (Ball 1993; Boaler and Humphreys 2005; Chazan 2000; Lampert 2001) show
that tasks that support multiple voices, disagreements, and challenges also sup-
port mathematical reasoning, when used appropriately. Douek (2002) argues for
specific kinds of complexity in tasks to support the development of mathemati-
cal arguments, including the complexity of integrating a number of different
arguments into a coherent whole, the complexities involved in moving from
dynamic to static representations, and the complexity of the contexts in which
tasks are set. Garuti and Boero (2002) describe teaching experiments where the
arguments of famous scholars (Galileo, Plato) are presented to students as
examples of forms of argument, and students are asked to write similar argu-
ments for mathematical problems. Considering the arguments of others, includ-
ing those of one’s own peers, can be a powerful source of developing a learner’s
own reasoning and arguments.

Choosing appropriate tasks is necessary but not sufficient to support a learner to
develop reasoning. Stein et al. (1996) show that, with support, the teachers in their
project chose tasks that made higher order cognitive demands on learners. However,
as the tasks were implemented in the classrooms, the level of demand declined. In
South Africa, Modau and Brodie (2008) show how a teacher teaching the new cur-
riculum in Grade 10, supported by a new curriculum textbook, chose tasks that
required reasoning. However, at implementation, he was not able to maintain the
level of the tasks, but through his questioning and patterns of interaction, lowered
the task demands and thus did not support reasoning (Jina and Brodie 2008). Sanni
has shown that in six Nigerian classrooms the level of most of the tasks also
declined. However, when he worked as a support for one of the teachers, the level
of the tasks remained high and the learners’ reasoning improved (Sanni 2008b).
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Taken together these studies suggest that substantial work with teachers is required
to support them to interact with their learners on tasks to support the learners’
mathematical reasoning.

Classroom Interaction

Since communication is fundamental to reasoning (Ball and Bass 2003; Douek
2005; Krummbheuer 1995), it makes sense that learners should discuss their reason-
ing with others. This is supported by all the learning theories discussed previously
and by curriculum reforms in South Africa and internationally. As learners attempt
to create reasoned arguments for their ideas, they help themselves and each other
to clarify their thinking and they are able to create some of the practices that math-
ematicians engage in as they produce arguments and justifications. However com-
munication can be structured in a variety of ways, leading to very different kinds of
support for mathematical reasoning. Many South African teachers talk about the
“question and answer method” as if this guarantees learner participation. However,
it is well known in the research literature that if the questions are narrow and do not
challenge learners’ thinking, then the resulting interaction is stilted and does not
support reasoning (Bauersfeld 1988; Edwards and Mercer 1987; Mehan 1979;
Nystrand and Gamoran 1991). On the other hand, putting learners into groups and
leaving them to work without mediation from the teacher does not necessarily pro-
vide enough support for developing their reasoning (Brodie and Pournara 2005).
Even whole class discussions are often not successful, because working out exactly
how to respond to the learners’ developing ideas and reasoning is a difficult task for
teachers (Heaton 2000).

The work on classroom interaction in Chaps. 8—10 of this book draws on work
done many years ago by Mehan (1979) and Sinclair and Coulthard (1975) on the
pervasive exchange structure of classroom discourse, the Initiation-Response-
Feedback/Evaluation (IRF/E) exchange structure. The teacher makes an initiation
move, a learner responds, the teacher provides feedback or evaluates the learner
response and then moves on to a new initiation. Often, the feedback/evaluation and
subsequent initiation moves are combined into one turn, and sometimes the feed-
back/evaluation is absent or implicit. This gives rise to an extended sequence of
initiation-response pairs, where the repeated initiation works to achieve the
response the teacher is looking for. When this response is achieved, the teacher
positively evaluates the response and the extended sequence ends.

Neither Sinclair and Coulthard nor Mehan evaluated the consequences of the
IRE structure. Other researchers (Edwards and Mercer 1987; Nystrand et al. 1997;
Wells 1999) have argued that it may have both positive and negative consequences
for learning. Although this structure requires a learner contribution every other turn
(the response move), and therefore apparently gives the learners time to talk, much
research has shown that because teachers tend to ask questions to which they
already know the answers (Edwards and Mercer 1987) and to “funnel” learners’
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responses toward the answers that they want (Bauersfeld 1988), space for genuine
learner contributions is limited. At the same time, it is very difficult for teachers to
move away from this structure (Wells 1999) and so, in trying to understand a range
of pedagogies, it is important to try to understand the benefits that it affords.
Whether the IRE has positive or negative consequences for learning will most likely
depend on the nature of the elicitation and evaluation moves, which in turn influ-
ence the depth and extent of the learners’ responses. In Chap. 9, I develop a lan-
guage to describe teacher responsiveness in the fused elicitation/evaluation moves,
which distinguishes a number of teacher moves and their consequences for learner
contributions.

One aspect of classroom interaction that has been identified as important to sup-
porting useful interaction, is the development of ground rules (Edwards and Mercer
1987) or classroom norms (McClain and Cobb 2001), which are different from
those in traditional classrooms. Norms that support reasoning would includethe
following: learners are called on to justify all their reasoning, not only mistaken
reasoning as might happen in traditional classrooms; learners are expected to listen
to and build on each others’ ideas and challenge them where necessary; learners can
and should challenge the teacher, and the teacher should justify her/his mathemati-
cal thinking. This raises the important issue of authority in mathematics class-
rooms. Traditionally, mathematics learners are expected to accept the authority of
the teacher or the textbook, rather than the authority of mathematical justifications.
These two kinds of authority are very different (Brousseau and Gibel 2005), and are
implicated in the learners developing a productive disposition towards mathematics
(Kilpatrick et al. 2001) and hence achieving overall mathematical proficiency.
Productive disposition is a belief that mathematics can and does make sense, and
that every learner can make sense of it. This requires an understanding that the
“rules” are not arbitrarily decided on by powerful individuals, but that they make
sense in terms of a system of knowledge, which can be understood by everyone,
with sufficient effort.

Ball and Bass (2003) argue that mathematical justification is grounded in a body
of public mathematics knowledge, where this knowledge can be that of a group of
mathematicians, or an elementary classroom community. This public knowledge
ensures that individual sense making becomes accountable to a broader commu-
nity; because an idea making sense to an individual is not the same as an idea being
based on shared reasoning in communities of mathematicians over time. So taking
the individual learner’s reasoning seriously means attempting to connect it to
accepted mathematical reasoning. They argue, “reasoning, as we use it, comprises
a set of practices and norms that are collective, not merely individual or idiosyn-
cratic, and rooted in the discipline” (p. 29). It follows from their position, although
they do not argue it, that even the classroom mathematics community cannot be the
final arbiter on the acceptance of a mathematical argument, because this commu-
nity is accountable to broader communities of mathematical practice and to the
discipline of mathematics. The idea of accountability to the discipline is one that
attracted all of us in this project, and subsequent chapters will show how we worked
with this notion and how the learners received it.
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The Challenges of Teaching Mathematical Reasoning

In this chapter, I have outlined the theoretical positions on mathematics, learning
and teaching, which inform this book and have suggested some of the many chal-
lenges that teachers face when trying to make reasoning a central part of their
practice. I have also suggested some challenges that researchers and teacher educa-
tors face when looking for ways to talk about the teaching and learning of mathe-
matical reasoning. In the rest of this book, we take up some of these challenges:

* How do learners respond to tasks chosen to elicit their mathematical reasoning?

* How can teachers interact with learners around tasks to engage their mathemati-
cal reasoning?

e How can teachers teach to develop mathematical proficiency?

* How does collaborative conversation among learners and teacher promote math-
ematical reasoning?

e What kinds of teaching practices, questions, and moves help to encourage and
sustain the learners’ mathematical reasoning?

* How can we describe the learners’ contributions and teachers’ responses to these
in ways that can help us talk about them in more specific ways?

e What kinds of dilemmas do teachers experience as they teach mathematical
reasoning?

e What can teachers do in response to the resistance to new ways of teaching?

We approach these questions from two directions. In part two of this book, we present
five studies conducted by teachers in their classrooms, each of which addresses one or
two of these questions. The range of contexts in which the teachers work and their
approaches to the topic of mathematical reasoning suggest a number of possibilities to
other teachers, teacher educators, and researchers wanting to undertake case-studies of
teachers teaching mathematical reasoning. In part three of the book, I look across the
teachers’ practices, in a multiple-case study. I suggest a language of description for
learner contributions and teacher moves, and I use this language to illuminate ways in
which teachers, teacher educators, and researchers can gain deeper insight into how to
respond to the learners’ mathematical thinking. I also use this language to illuminate
some of the dilemmas that teachers experience when engaging learners’ mathematical
reasoning and to talk about the resistance that they may experience.

It is well established that meaningful change in teaching and learning takes time.
In this book we illuminate both successes and challenges in teaching for mathemat-
ical reasoning, among ordinary teachers, to give substance to why such teaching
takes time to achieve. We do not claim to have succeeded in producing the ideal
teaching and learning situations that reformers might hope for, and we are not sure
whether such perfection is possible. We do claim to have learned much about what
we have achieved and how we might move forward. We hope that our work in
developing research and practice together will provide ideas and possibilities for
many other teachers, teacher-educators, and researchers to begin their own explora-
tions in teaching mathematical reasoning.



Chapter 2
Contexts, Resources, and Reform

In the previous chapter, I outlined possibilities for teaching mathematical reasoning
that involves learners communicating their thinking to their teacher and their peers
and teachers taking learners’ mathematical reasoning seriously to develop and
transform it. This is in line with the visions of reform mathematics in a number of
countries. However, international evidence suggests that very few teachers embrace
reforms and those who do, experience significant challenges in their teaching. The
challenges that I outlined at the end of the previous chapter are daunting in any
context even in the most well resourced contexts. However, in South Africa and
many other countries, resources in most schools are severely limited, adding to
teachers’ difficulties in enacting reforms.

At the same time, resources are not the only influence on reform teaching and
the ways in which they exert an influence are not always obvious. In a review of
recent international and South African studies, Fleisch (2007) shows that the studies
are inconclusive on the effects of resources such as teacher qualifications, class
size, and learning materials on learner achievement. This suggests that there are
ways in which resources that do matter are most likely mediated by other variables.
In this chapter, I discuss some responses to reform pedagogy across a range of
contexts and discuss ways in which contextual constraints and resources may or
may not be implicated in enactments of reform teaching. This discussion, together
with a more general discussion of the resources available for teaching and learning
in South Africa, serves to situate the description of the different contexts of the
teachers in this study and the resources available to them as they worked to teach
mathematical reasoning in their classrooms.

Responses to Reforms

A strong impetus for reform curricula in many countries is the need to redress
inequalities in mathematics education. Internationally, success in mathematics is
distributed according to race and socio-economic status (Association for
Mathematics Education of South Africa 2000; Department of Education 2001;
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Moses and Cobb 2001; Secada 1992). While many of the reasons for this maldis-
tribution originate outside of the classroom, there are arguments that classroom
practices can begin to work towards equity (Boaler 2002). Allowing different ways
of knowing mathematics to be available in the classroom may afford success for a
wider range of learners (Boaler 2002; Boaler and Greeno 2000). Allowing learners
to express their ideas in the classroom can lend to diverse ways of thinking, and
help to teach learners that everyone’s thinking can contribute to the development of
mathematical knowledge (Lampert 2001).

There has been much debate as to whether current mathematics reforms can be
a mechanism for ensuring more equitable participation and achievement in mathe-
matics (see Brodie 2006, for a summary of these debates). Empirical evidence in
well-resourced countries is beginning to show that reforms do mitigate achievement
gaps between marginalised and other learners and also enable learners to develop
more motivated and positive identities as mathematics learners (Boaler 1997;
Boaler and Greeno 2000; Hayes et al. 2006; Kitchen et al. 2007; Schoenfeld 2002).
However, the evidence also shows that implementation of reform curricula is not
widespread and in fact it is likely that implementation of reforms is inequitably
distributed (Kitchen et al. 2007), so that poorer learners are less-likely to experience
reform curricula and pedagogy. Particularly in African contexts, issues of resources,
including big classes and few materials, teacher confidence and knowledge, and
support for teachers, can be major barriers to developing new ways of teaching
(Tabulawa 1998; Tatto 1999). If reforms are successful in promoting equity and if
they are not taken up in less-resourced contexts, then the existing division between
rich and poor are likely to be exacerbated.

There is also growing evidence that teaching in reform-oriented ways is an
extremely challenging task for teachers (Sherin 2002; Nathan and Knuth 2003) and
that successful reform teachers are rare, even in well resourced schools in the United
States where the reforms have been in place for 10 years longer than in South Africa.
Among the 18 teachers in their study, Fraivillig et al. (1999) considered only six
teachers to be “skillful” in eliciting and supporting learner thinking, while only one
was successful in eliciting, supporting, and extending learner thinking. Hufferd-
Ackles et al. (2004) described the development of reform practices through four
levels. Of the four teachers they worked with, only one teacher’s trajectory took her
and her learners through all four levels. These studies were conducted in well-
resourced classrooms and so suggest that while resources may be important, they are
not the only challenge for teachers in working with learners’ reasoning.

Studies of and by teachers who are successful in developing discussion and col-
laboration around learners’ reasoning, identify a number of challenges in such
work. These include: supporting learners to make contributions that are productive
of further reasoning (Heaton 2000; Staples 2004); respecting and valuing all learn-
ers’ thinking while working with the diversity of their mathematical ideas (Lampert
2001); respecting the integrity of learners’ errors while trying to transform them
and teach the appropriate mathematics (Chazan and Ball 1999); seeing beyond
one’s own long-held and taken-for-granted mathematical assumptions in order to
hear and work with learners’ reasoning (Chazan 2000; Heaton 2000); maintaining
a “common ground”, which enables all learners to follow the conversation and its
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mathematical purpose and to contribute appropriately (Staples 2004); and generating
mathematical practices such as making connections, generalizing, and justifying
(Boaler and Humphreys 2005). The above research shows that the pedagogical
demands of mathematical conversations can be daunting and that we need to under-
stand more about the practices involved in generating and sustaining these conver-
sations (Brodie 2007b).

Research on the new curriculum in South Africa has shown that teachers who
are enthusiastic about and express support for the new curriculum struggle to enact
many of the ideas in their classrooms. These studies show that many classrooms
remain teacher-centred, and teachers engage with learners’ ideas in superficial
ways, if they do so at all (Chisholm et al. 2000; Taylor and Vinjevold 1999). Other
studies show some hybrid practices beginning to develop. Jansen (1999) found that
while most teachers were not implementing the new curriculum, or were doing so
very superficially, some of the more experienced and confident teachers were able
to move between old and new practices and negotiate for themselves and with their
learners what it means to implement the new curriculum. Brodie et al. (2002) found
that many teachers set up tasks and group work situations where learners engaged
with the tasks. However, when learners expressed their thinking, teachers struggled
to support and engage with their reasoning to take them further and to develop them
mathematically (Brodie 1999; Brodie et al. 2002). This finding was confirmed in
more recent studies, where teachers selected tasks that could elicit mathematical
reasoning, but did not engage learners’ reasoning in classroom interaction (Jina and
Brodie 2008; Modau and Brodie 2008; Stein et al. 1996; Stein et al. 2000).

There are a number of possible explanations for South African teachers’ difficul-
ties with the new curriculum. One claim, prominent at the moment, is that teachers
do not know enough conceptual mathematics to teach in ways required by the new
curriculum (Taylor and Vinjevold 1999). Other explanations are that teacher devel-
opment around the new curriculum has been inadequate and that appropriate cur-
riculum materials are not available (Chisholm et al. 2000; Taylor and Vinjevold
1999). A third possibility is that teachers are able to implement some aspects of the
new curriculum, for example, higher level tasks, relatively easily, whereas other
aspects, in particular, interaction with learners, are particularly difficult (Brodie
et al. 2007). Slonimsky and Brodie (2006) argue that new curriculum practices
require that teachers coordinate a complex set of contextual and knowledge con-
straints and that such coordination takes a long time to develop. All the above
explanations acknowledge that resources are only part of the problem.

One of the aims of this project was to explore possibilities for developing learn-
ers’ mathematical reasoning in a range of South African contexts and thereby begin
to develop a deeper understanding of how resources are implicated in such prac-
tices. The next section presents some background on educational resources and
achievement in South Africa and the following section describes the differently
resourced contexts in which the five teachers in the project worked. In the discus-
sion of resources, I include the material resources of the schools, the human
resources, in particular teacher and learner knowledge, and finally the resources
that the teachers chose to work with in the study — the tasks that they developed to
engage their learners in reasoning mathematically.
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The South African Context

As with all aspects of life in South Africa, the education system is characterized by large
disparities between rich and poor, and most of our schools and learners are of very low
socio-economic status. Most teachers in South Africa teach big classes in very poorly
resourced schools. The latest national data shows that of the 25,145 operational schools
in South Africa, 11.5% of schools did not have water, 16% had no electricity, 5.2% did
not have ablution facilities, 80% did not have libraries and 67% did not have computers
for teaching and learning (Department of Education 2007). The average learner—teacher
ratio in schools was 32:1 and the average learner-classroom ratio was 38:1 (Department
of Education 2008). These averages hide wide disparities between provinces and
schools. A research study conducted in Gauteng and Limpopo (the richest and poorest
provinces in South Africa respectively), observed averages of 35 students per class in
secondary schools, with the three rural secondary schools averaging 60 learners per
class and with some classes having as many as 120 learners (Adler and Reed 2002).
There were limited resources such as overhead projectors and those resources that did
exist, for example chalkboards, were often in poor condition.

While outrageous in any terms, this lack of resources is particularly significant for
teachers attempting to work with their learners’ mathematical reasoning. It is difficult
to attend to learners’ ideas when there are 50 or more learners in the class and few mate-
rial resources. Moreover, many learners, having experienced poorly resourced educa-
tion, often have weak mathematical knowledge (Fleisch 2007), and may be reluctant to
participate in lessons. When they do participate, they may express barely coherent, or
very problematic ideas, and teachers may not be able to engage with these ideas (Brodie
2000). The fact that most teaching and learning takes place in English, which is not the
main language of most teachers and learners, also makes participation more difficult for
learners and development of learner thinking more difficult for teachers.

Learners’ weak mathematical knowledge is apparent in the annual results of the
school leaving examinations', which are taken by approximately 500,000 Grade 12
learners each year, of which about 300,000 take the mathematics examinations. In
2005, 55% of about 303,000 learners passed mathematics and in 2006, 52% of
about 317,500 learners passed mathematics. In 2005, about 44,000 learners took the
examination at the Higher Grade level, which is required for entry into scientific
fields at university, and 59% passed while in 2006, about 47,000 took the examina-
tion at this level and 53% passed (Department of Education 2008). The inequities
of the system become apparent when we see that of 40,000 Higher Grade candi-
dates in 2001, only 20,000 were “African”,? and of these about 3,000 passed. Thus,

'South Africa has school learners examinations at the end of Grade 12. These examinations are
high stakes and determine students’ eligibility for further study and job opportunities.

>The apartheid system of racial classification was four-tiered and funding for education was
directly linked to these tiers. Although many white South Africans refer to themselves as African,
in this context “African” refers to black South Africans who are not “coloured” or of Indian
descent, and whose schools and colleges received least funding under apartheid. Black Africans
make up about 80% of the South African population.
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while about 85% of white Higher Grade candidates passed, only 15% of black
African candidates did. Figures for 2004 are that 7,236 African learners passed out
of a total of 40,000 candidates® and of these, 2,406 African learners passed with a
“C” grade or higher, which is 0.5% of the total number who wrote mathematics and
6% of those who wrote Higher Grade mathematics (Centre for Development and
Enterprise 2007).

Research in the lower grades shows that learners begin to struggle with mathe-
matics as early as Grade 3. Contrary to other developing countries, South African
learners are almost all in school. Fleisch et al. (2008) show that in 2007, more than
95% of children of compulsory school age attended an educational institution and
that this reflects an improvement since 2001 in each age cohort between 7 and
15 years of age. However, Motala and Dieltiens (2008) raise questions as to what
these learners actually learn in school, suggesting that about 60% are disengaged
and disaffected and learn very little.

Reviewing the research in mathematics, Taylor et al. (2003) conclude that “studies
conducted in South Africa from 1998 to 2002 suggest that learners’ scores are far
below what is expected at all levels of the schooling system, both in relation to other
countries (including other developing countries) and in relation to the expectation of
the South African curriculum.” Many Grade 3 learners struggle with basic skills
such as adding and subtracting two-digit numbers that require “carrying” or “bor-
rowing”. South Africa also performs poorly in international comparison studies. In
the third TIMSS study, South Africa came last out of 41 countries at all three grade
levels tested, doing significantly worse than countries with similar GDPs, for exam-
ple Latvia and Lithuania (Howie and Hughes 1998). In the 2003 TIMSS study,
South African Grade 8 learners again came last out of 46 countries, and more sig-
nificantly did worse than countries with lower Human Development Indices, includ-
ing Ghana et al. (Reddy 2006). In the Monitoring Learner Assessment Study (MLA),
which compared Grade 4 learners across 12 African countries, South Africa had a
mean score of 30% for numeracy, which was the lowest of all 12 countries (Taylor
et al. 2003). These average scores hide the large disparities between black, low
socio-economic status learners and wealthier, white learners, but they serve to show
the extent of the “crisis” in mathematics learning in South Africa, which is quanti-
tatively different from many other countries. While we acknowledge critiques and
limitations of such comparative studies (for example, Keitel 2000; Reddy 2006),
they do serve as an indication of some of the challenges that our education system
faces and the difficult conditions under which many teachers work.

The “crisis” also extends to the availability and quality of mathematics teachers
in South Africa. Many South African teachers, because they were under-served by
apartheid education, have relatively weak knowledge of mathematics and how best
to teach it (Taylor and Vinjevold 1999). This situation does not look set to change
in the near future. Given the limited numbers of students who graduate from school
with strong mathematical knowledge, the pool for potentially well-qualified

3The number of African candidates who wrote is not available.
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teachers is small. Students who do well in mathematics and science usually have a
range of more attractive career options in other fields. Knowledgeable teachers of
mathematics are often recruited by industry with far better salaries and working
conditions. There is a lack of detailed data about mathematics teachers in South
Africa (Centre for Development and Enterprise 2007) but the following give only
a part of the picture over the past 10 years. In 1997, only 50% of teachers of math-
ematics had specialized in mathematics in their training (Department of Education
2001); in 2004, a survey of 1,766 secondary schools (out of a total of about 5,600)
showed that there were 1,734 qualified mathematics teachers at these schools and
of those only 1,362 were actually teaching the subject (Centre for Development and
Enterprise 2007); and in 2006, 16 universities graduated a total of about 550 math-
ematics teachers (Centre for Development and Enterprise 2007).

I have taken some time to review these statistics because they provide a back-
ground for understanding the debates about the new curriculum in South Africa,
and the contexts of the schools in this study. It is imperative to provide access to
mathematics for large numbers of low socio-economic status learners. The govern-
ment’s response has been the development of policies that encourage the transfor-
mation of the curriculum and pedagogy in South African schools. The curriculum
was developed in consultation with local and international experts and draws on the
international research that suggests that reform pedagogy can reduce inequality in
mathematics achievement. However, the international experience of teacher diffi-
culties with reform curricula, in addition to the particular challenges of the South
African situation suggest that we cannot assume that the new curriculum will
reduce inequality — it may even increase it. This was a concern for all of the teachers
in this project, and so we wanted to examine how teachers worked with learners’
mathematical reasoning in a range of South African classrooms.

Five Schools: Contexts and Resources

Race and Socio-Economic Status

Fifteen years after the end of apartheid, although there have been some shifts,
schools still largely reflect historical divisions of race and class. Table 2.1 gives
a description of each of the five teachers’ schools in terms of race and socio-
economic status®.

“Historically race and class have been closely related in South Africa. Although this is changing
for some small sections of the population, to a large extent this trend still exists and is largely
reflected in this sample. In order to determine socio-economic status, we used the location of the
school, the school fees, which public schools in South Africa are allowed to charge, and the teach-
ers’ knowledge of the typical occupations of the parents.
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Table 2.1 Demographics of schools

Learners’ socio-economic  School fees ~ No. of teachers/

Teacher Learners’ race® status (per year) no. of learners

Mr. Nkomo  Black Working class R200 1,650/42 (39:1)

Mr. Mogale  Black Working class R200 1,700/46 (37:1)

Mr. Daniels  All races Middle and lower-middle R4,000 1,600/60 (27:1)

class

Mr. Peters Black and Working class R400 1,250/36 (35:1)
“coloured”

Ms. King White, with a Middle and upper-middle ~ R40,000 850/65 (13:1)
few learners class (private)

of other races

We use apartheid terminology to describe race, which is standard practice in South Africa to
indicate shifts or lack thereof in historical racial divisions

Under apartheid Mr. Nkomo’s and Mr. Mogale’s schools served only black
learners, Mr. Peters’ school served only “coloured” learners, and Mr. Daniels’ and
Ms. King’s schools served only white learners. Ms. King’s school is a private, boys-
only school, with some boys living at the school, and all the others are public, co-
educational non-residential schools. The racial profile of the teachers matched
those of the learners. Since schools began to integrate in the early 1990s, Mr.
Peters’ school has black and “coloured” learners; Mr. Daniels’ school is racially
diverse with learners from all four racial “groups”; and Ms. King’s school has a few
black, “coloured”, and Indian learners, but is still predominantly white. Teacher
diversity across the schools has occurred much more slowly. All the teachers in Mr.
Nkomo’s and Mr. Mogale’s schools are black, most of the teachers in Mr. Peters’
school are “coloured”, with some black teachers, almost all of the teachers in Ms.
King’s school are white, with a few teachers of other races. Mr. Daniels’ school has
made the most progress in integrating teachers across race. Although many teachers
are still white, there are a number of “coloured”, Indian and black teachers at the
school. Mr. Daniels’ himself is “coloured”, and moved to this school from a
“coloured” school about 4 years ago.

School Resources

All of the five schools are known in their areas as good schools. They all regularly
achieved pass rates of 65% and above in the Grade 12 examinations, well above
average nationally, and a little above average for Gauteng province in which they are
located (Motala and Perry 2002). They are all functional most of the time, in contrast
to many other schools in South Africa (Christie and Potterton 1997; Taylor et al.
2003; Taylor and Vinjevold 1999). This means that school starts on time, most learners
are present, absentees are noted, learners move between classes relatively quickly,
teachers come to class and teach, learners return to classes after breaks, there are
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regular teacher meetings, and there are administrative staff and administrative
computer systems. According to the teachers, the principals are supportive of efforts
to improve teaching and learning in their schools. All the principals supported the
teachers studying further and all were eager for this research to take place in their
schools. So, while the five schools represent some diversity, they do not capture the full
diversity of South African schools. The study is limited to an urban area, in the wealthiest
province in South Africa, and well-functioning schools. However, as the first study
of teaching mathematical reasoning in South African high schools, it was important
and appropriate to limit our study in this way.

All of the five schools have fences or walls and control access to the schools®.
Ms. King’s school is located on a beautiful, large, peaceful property, situated next
to a busy business district. There are dormitories for the learners who live on cam-
pus, houses for the teachers who live on campus, a church, plenty of sports fields
and a dam with guinea fowl. It is easy to forget that you are in the middle of a big
city while at the school. Mr. Daniels’ school is located in a residential suburb, on
a hill with a beautiful view of neighbouring suburbs. It has a number of sports
fields and has a “green” feel to it. Mr. Nkomo’s, Mr. Mogale’s, and Mr. Peters’
schools are located in residential areas which are poorer and less “green”. There
is little open space in Mr. Peters’ school and some dusty fields in the other two
schools. Mr. Peters’ school is an area that is well known for gang activity and
violence. Sometimes learners come to school with knives and there have been
some incidents with guns. During the time of the study, a teacher was robbed at
gunpoint of his laptop and cellphone in the school grounds, an incident that caused
considerable disruption to teaching and learning for about a week. Learners also
are subject to attack when they leave the school, especially many black learners
who come from other areas and have to walk through “coloured” gang territory in
order to get home. Table 2.2 indicates other resources available at each of the
teacher’s schools.

Table 2.2 Resources available at the schools

Teacher Staffroom Library Computer room Photocopying
Mr. Nkomo | Yes Old books: Non functional Yes
Mr. Mogale | Yes mainly: Yes
textbooks:
Mr. Daniels | Tea and coffee Well equipped Yes Yes
Mr. Peters | Yes No Non functional Yes
Ms. King Tea, coffee, Well equipped Yes Yes
computers

>Christie and Potterton (1997) argue that this contributes to the functionality of schools.
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Classroom Resources

Each teacher chose one Grade 10 or 11 class in which we would conduct the
research. Table 2.3 gives an overview of the classes that comprised the research
sample.

The above table shows the disparities in class size among the teachers, in rela-
tion to the socio-economic status of learners at the schools. The schools of lower
socio-economic status tend to have larger classes. The only class that does not fit
the trend is Mr. Nkomo’s, where mathematics classes are smaller in Grade 11 and
12. There is a difference of almost 20 learners between Mr. Peters’ and Ms. King’s
classes. The levels of the classes relate both to tracking practices at the schools and
the level of examination that learners are being prepared for. Some schools teach
standard and higher grade learners in the same class (Mr. Nkomo’s school in this
study) while some differentiate them (Mr Mogale’s and Mr. Peters’ schools). Some
schools track even further beyond this (Mr. Mogale’s and Ms. King’s schools).

Ms. King’s classroom is part of a newly built wing of the school, is carpeted and
has air-conditioning. There is a big table and chair for each learner, which can be
arranged for work in groups. There are whiteboards and pens, a teacher’s desk with
a computer, cupboards and tables for storing paper and worksheets, notice boards
filled with math posters, an overhead projector and screen, and a television set
which can be used for presentations from a computer. Each learner has a textbook,
which is purchased by the learner. Ms. King has a range of texts and resources,
including international texts, from which she and her colleagues develop and share
worksheets®. Learners have access to a computer lab and so they are given projects
to do, either using the mathematical software or using the internet as a research
tool, for example a project on the history of mathematics. Mr. Daniels’ classroom
has small tables and chairs, which are arranged in groups of four. The classroom is
in good repair, and there are notice boards with a few math posters that Mr. Daniels
has obtained. There is a teacher’s desk and one cupboard that overflows with supplies,
worksheets, learners’ work, and other documents (there is no other storage space).

Table 2.3 Description of research classes

Teacher Grade Class size Tracking/level of class

Mr. Nkomo 11 28 Untracked: mixed standard and higher grade®
Mr. Mogale 11 43 Tracked: higher grade (top class)

Mr. Daniels 11 35 Tracked: standard grade

Mr. Peters 10 45 Untracked

Ms. King 10 27 Tracked: second highest class of seven

*At the time of the study, the Grade 12 mathematics examination could be taken at two levels,
standard and higher grade. Success on the higher grade (or exceptionally good marks on the stan-
dard grade) granted access to scientific fields at university

¢Two mathematics teachers at this school developed a very strong curriculum of investigations in
the 1980’s and Ms. King and her colleagues still use some of this (McLachlan & Ryan, 1994).
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There is a chalkboard and chalk and an overhead projector and screen, although
electricity is not always available and so it does not always work. The school
issues a textbook to each learner, although Mr. Daniels and his colleagues work
predominantly from worksheets, which they develop and share.

Mr. Nkomo and Mr. Mogale’s classrooms are similar. Tables are shared
between two learners, with enough space for both. These are put together in pairs
to form groups of four learners. There is a chalkboard and chalk, but no teacher’s
desk and no overhead projector and screen. Mr. Nkomo’s classroom has a cup-
board that stores cleaning supplies, but he has an office nearby where he keeps
texts, worksheets, and learners’ work. Mr. Mogale keeps his work in the staff-
room. Mr. Nkomo’s classroom is in good repair, although there is graffiti on the
cupboard and notice boards. He occasionally puts posters and learners’ work on
the notice boards but has to be careful because they often disappear. Electricity is
regularly available. In Mr. Mogale’s classroom, some windows and the door are
broken. There is no regular supply of electricity but on darker days (when it rains)
lights can be provided with a starter. Both Mr. Nkomo’s and Mr. Mogale’s learn-
ers are issued a textbook, although they work from worksheets most of the time.
Mr. Peters’ classroom has an “old style” desk with adjoined chair for each
learner, which means that they cannot easily be arranged in groups of more than
two. There is a teacher’s desk and cupboard, a chalkboard and chalk, no overhead
projector and screen and no electricity, so on rainy days the classroom is dark.
Some windows are broken. The school has some textbooks but there are not
enough for each learner and so they are not issued and Mr. Peters works from
worksheets that he develops.

I have spent some time describing the schools and the classrooms. This serves
three purposes. First, it gives the readers a picture of the contexts so that they might
better understand our later analyses of teaching and learning in these classrooms.
Second, it shows that the five schools in which we worked are generally better
resourced than most South African schools, although not as well resourced as many
classrooms in “developed” countries. Third, it shows the differences in resources
and socio-economic profiles across the five schools, which will allow me to make
some claims in relation to equity and teaching and learning mathematical reason-
ing. The five classrooms create a matrix design across grades and socio-economic
status as described in Table 2.4. I will show later in the chapter how this design is
both reinforced and complicated by learners’ knowledge in relation to their socio-
economic status and by the tasks chosen by the teachers.

Table 2.4 Variation across schools

Socio-economic status

Grade High Low
Grade 11 Mr. Daniels Mr. Nkomo
Mr. Mogale

Grade 10 Ms. King Mr. Peters
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Learner Knowledge

Learner knowledge was ascertained across the five classes through classroom
observations and task-based interviews with learners. It was clear that Mr. Peters’
learners had extremely weak knowledge, probably a few grade levels below Grade
10. Mr. Nkomo’s learners were closer to grade level but showed some weaknesses,
particularly in relation to Mr. Daniels’ learners, who were around grade level. This
is somewhat surprising, given that Mr. Nkomo’s class was untracked and consisted
of both higher and standard grade learners, while Mr. Daniels’ class was a standard
grade class only (see Table 2.2). The learners’ knowledge in these cases reflects the
socio-economic status of the schools. Further reflecting socio-economic status, Ms.
Kings’ Grade 10 learners were extremely strong and were the second highest class
in a strongly tracked grade. In fact, their knowledge was stronger than both Mr.
Nkomo’s and Mr. Daniels’ Grade 11 learners. Mr. Mogale’s learners provide an
interesting counterpoint to the SES/learner knowledge link. Although his is a low
SES school, this class had been chosen in Grade 9 as the strongest learners in the
grade, had been kept together as a class and had Mr. Mogale as their mathematics
teacher since then. He had worked to build their mathematics knowledge and con-
fidence over 3 years, informed by the principles of the new curriculum, which he
had learned on in-service workshops.

In the task-based interviews, two or three learners were interviewed together and
encouraged to help each other. High-achieving learners were chosen from Mr.
Nkomo, Mr. Peters, and Mr. Daniels’ classes while the learners from Mr. Mogale’s
and Ms. King’s classes were close to average achievement.

Mr. Peters’ learners showed very little facility in solving mathematics problems.
Their solutions showed procedural errors in almost every step and suggested that
they were looking for rules, rather than thinking about the meaning of what they
were doing. Even the rules that they did remember, for example “what you do to
the one side, you do to the other” were almost always applied incorrectly.
Occasionally, with the easier problems, one learner used trial and error methods and
obtained correct solutions but then did not know what to do with these, nor how to
relate them to the mistaken rule-based calculations. Occasionally through prompting
by the interviewer, this same learner was able to make some conceptual connections.
The two learners did not manage to communicate with each other in ways that
helped their problem solving; rather their conversations seemed to encourage even
more mistakes and misunderstandings.

Mr. Nkomo’s learners showed some facility with mathematical procedures and
calculations and working algebraically without mistakes. However, they did not
relate their calculations to the underlying mathematical meaning and when they
were confronted with something slightly out of the ordinary, could not make sense
of it. They did not use trial and error methods and were heavily dependent on the
interviewer’s help to solve most of the problems. They were able to work together
and sometimes help each other with procedural issues.

The learners in Mr. Daniels’ class showed procedural fluency and were able to talk
conceptually about the mathematical solutions they were developing. They were able
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to reason with mathematical objects, although some of their reasoning was flawed
and somewhat problematic from a mathematical standpoint. They spent useful time
talking and explaining ideas to each other, correcting mistakes and resolving conflict-
ing ideas, while checking that their procedures were correct and eventually coming
to consensus on most solution methods. They were able to work with the interviewer’s
prompts and incorporate them into their own problem solving activities.

The learners in Ms. King’s class were much more procedurally fluent with equa-
tions than both Mr. Nkomo’s and Mr. Peters’ learners, and even slightly more fluent
than Mr. Daniels’ learners even though they were a grade lower. They had been taught
some Grade 11 concepts and procedures as “extras” in Grade 10 and were able to
work with these as well, with some assistance from the interviewer. Conceptually,
one learner struggled with some of the same issues that Mr. Daniels’ Grade 11 learners
struggled with, while the other was able to reason mathematically in a particularly
perceptive way. The two boys were able to work together and help each other.

The learners in Mr. Mogale’s class were procedurally fluent. They made occa-
sional mistakes, which they noticed themselves because they continuously checked
their work, looking for mistakes. They also estimated answers as a check on their
procedures. They understood the meanings of the mathematical objects they worked
with and reasoned mathematically with them. They went further than the learners in
the other classes, in that they noticed links with other areas of mathematics and
posed interesting questions about their observations. So they extended their think-
ing, creating new conjectures about the relationships between mathematical ideas.

These differences in the learners’ knowledge were evident in the classroom
interactions as well. These differences cannot be read as a comment on the particu-
lar teachers in this study (except possibly in the case of Mr. Mogale who had taught
these learners for 3 years). It is clear that both the strengths and the weaknesses in
the learners’ knowledge comes from prior years of schooling and is a function of
far more than only particular teachers. In four of the five classrooms, learners’
knowledge is strongly associated with the racial and socio-economic profiles of the
schools. This makes sense because schools in poorer areas usually have fewer
resources, larger classes, and generally, less knowledgeable teachers (Fleisch
2007). The strong association of learner knowledge with race and socio-economic
status in this sample modifies the matrix design in Table 2.4 slightly (see Table 2.5
below). Given that Mr. Mogale’s learners provide a strong exception to the rule,
being of low socio-economic status but with strong learner knowledge, we will be
able to make some arguments which de-link learner knowledge and socio-economic
status in subsequent chapters.

Table 2.5 Variation across schools

Learner knowledge/SES Grade Strong/high Weak/low
Grade 11 Mr. Daniels Mr. Nkomo
Mr. Mogale (knowledge) Mr. Mogale (SES)

Grade 10 Ms. King Mr. Peters
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The Tasks

As part of the research design, the teachers worked together to plan tasks, which
would engage learners in mathematical reasoning. The two Grade 10 teachers
worked together and the three Grade 11 teachers worked together. They worked
with drafts of new South African textbooks which were being developed in relation
to the new curriculum (Jaffer and Johnson 2004; Johnson et al. 2006), as well as
some of their own resources, in order to choose, modify, and develop tasks that they
thought would be useful to elicit mathematical reasoning and would also fit in with
their curriculum. They spent two sessions of 2%2h each, planning the tasks and how
they might teach them.

The Grade 11 Tasks

The tasks developed by the Grade 11 teachers (see Appendix) aimed to get the
learners to explore how horizontal and vertical shifts of a parabola on a Cartesian
plane produce differences in the equations of the graphs. The task consisted of three
activities. The first activity required the learners to trace a copy of the graph y=x?
onto a transparency, shift the transparency three units to the right and four units to
the left, and observe what happened to the values of corresponding points on the
shifted graphs in relation to the original graph. The second activity showed the
original and the two shifted graphs on the plane, with their equations: y=(x—3)?
and y=(x+4)* and asked learners to compare and contrast the graphs, and then to
focus on the more general question of how the value of p in y=a(x—p)* affects the
graph. The third activity dealt with vertical shifts, with the graphs of y=(x-3)?
y=(x-3)*+2 and y=(x—3)*-3. Again the learners were asked to compare and
contrast the graph and then answer the more general questions of how the value of
q in y=a(x—p)*+q affects the graph.

An analysis of the task using Stein et al.’s (2000) framework (see Chap. 3 for
more detail) shows that that it demands higher level thinking from learners, pre-
dominantly at level three — “procedures with connections”. According to Stein and
her colleagues’ criteria, the activities suggest pathways, to follow, that are closely
connected to underlying conceptual ideas, are represented in multiple ways to help
learners build connections and develop meaning, and require learners to engage
with conceptual ideas in order to complete the task successfully.

Two additional aspects of the task are important for the subsequent analysis.
First, the task is inductive, in that it asks learners to explore particular examples of
shifting graphs and then make generalizations based on these examples. It does not
ask for any form of deductive proof or justification. Exploratory questions such as
“Discuss with a partner how these graphs differ and are the same” and “What do
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you observe?” are relatively open and unconstrained, except by the graphs, in what
could count as an acceptable response. Learners could comment on only one obser-
vation or on as many as they could find. They could comment with or without
explicit justification.

Second, the task contains a number of possibilities for misconceptions to arise
and become visible. A key, counter-intuitive idea that is entailed in the task is that
when the graph shifts in the positive direction, the equation has a negative sign in the
brackets, i.e., y=(x—3)*is the equation of the graph that shifts three units to the right.
Similarly, when the graph shifts in the negative direction, the sign in the brackets
becomes positive. Many learners in all three Grade 11 classrooms demonstrated the
misconception that the sign in the brackets should follow the direction of shift of
the graph, making for some interesting discussions and exploration of the links
between equations and graphs. Other conceptual issues that learners struggled with
were: what does it mean if a graph extends infinitely along one axis; what counts
as corresponding points; and how to read variables such as p and q in an equation.
How these misconceptions influenced the teaching of mathematical reasoning in
these classes is discussed in subsequent chapters.

The Grade 10 Tasks

Ms. King and Mr. Peters began their planning by looking for tasks that would
enable learners to engage in all five strands of mathematical proficiency identified
by Kilpatrick et al. (2001): conceptual understanding; procedural fluency; strategic
competence; adaptive reasoning and productive disposition (see Chap. 6 for more
detail). Ms. King wanted to focus on the integrated development of all five strands
among her learners while Mr. Peters wanted to focus on the adaptive reasoning
strand and develop his learners’ ability to justify their thinking. Given their slightly
different foci, and because of Mr. Peters’ concerns that the tasks might be too chal-
lenging for his learners, Ms. King and Mr. Peters used the same first task, but dif-
ferent subsequent tasks. I will first discuss Ms. King’s tasks and then Mr. Peters’
tasks (see Appendix).

Tasks 1 and 5 on Ms. King’s worksheet are primarily deductive tasks in that they
require the learners to evaluate conjectures as true or false and then justify their
decision. Task 1 asks whether x>+ 1 can equal zero and what the smallest value for
x*+1 is if x is a real number. Task 5 asks whether n*—n+11 is a prime number, if
n is a natural number. Learners might test the conjectures using specific examples.
However, they do not need to, they could work on a general justification from the
beginning. In the case of task 5, if they do test examples, the first 10 natural num-
bers will give prime numbers but 11 will not and so makes the point that inductive
testing is not good enough because there can be counter-examples. In this case, the
general argument is that for n>’—n+p, n=p gives p* which is not a prime number.
Tasks 1 and 5 make demands on learners who are at level four (the highest level)
of Stein et al.’s (2000) framework, which they call “doing mathematics”. The tasks
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require nonalgorithmic thinking, they do not suggest specific solution approaches,
they require learners to integrate existing knowledge to form understandings of new
relationships, they require learners to examine task constraints, and they require
some self-regulation and self-monitoring of the learners’ thinking processes.

Tasks 2 and 3 require learners to work with the definition and meaning of a func-
tion, and with function notation. They make level three demands in Stein and her
colleagues’ hierarchy, suggesting solution methods that connect to underlying
meanings and requiring multiple representations. Task 4 gives learners practice
with function notation, which Ms. King thought was important in helping learners
develop both conceptual understanding of and procedural fluency with functions.
This task can be enacted at either level two or three of Stein’s hierarchy, depending
on how individual learners approach it. The task can be approached using the pro-
cedures of substitution and simplification of algebraic expressions without thinking
much more deeply about the notion of a function. Alternatively, the task might sup-
port learners to make connections with what they have done before, and come to a
more fluent and better understanding of functions. Because making connections is
not explicitly asked for in the task, this task would be considered to be a level two
task — “procedures without connections”.

Mr. Peters worked with the same first task as Ms. King, although he excluded
the second part: what is the smallest value for x*+ 1. His first task read: Consider
the following conjecture: “x*+ 1 can never be zero”. Prove whether this statement
is true or false if x € R. During the planning process, Mr. Peters expressed concern
about how his learners would approach this task because of their weak knowledge.
He worried about moving on with the same tasks as Ms. King, expecting that his
learners would need more time working with the first task and that he would need
to give them additional guidance. He developed a second task (Task 1B) where he
scaffolded the learners’ substituting into various single-term expressions and working
with the sign of the expression. After two lessons where learners struggled with
Task 1, he decided that this task (1B) would not help, as learners tended to focus
on the sign rather than the value of the expression. So while teaching and monitoring
learners’ responses, he developed a second task that he hoped would address these
difficulties, because the sign in front of each expression is not the sole determining
factor of the sign of the expression (Task 2).

Both Tasks 1 and 2 are primarily deductive and can be approached by using a
combination of inductive and deductive methods. Mr. Peters hoped that both tasks
would encourage the learners to use a combined inductive—deductive approach,
through substituting, testing, and justifying conjectures. In Task 2, he had the more
specific goals of developing procedural fluency in substituting into the expressions,
conceptual understanding that the expressions represent a range of values, strategic
competence in that learners should not read off whether the expression was positive
or negative from superficial aspects of the expressions and adaptive reasoning in
that they justified their answers. Task 1 would count as “doing mathematics” in
Stein and her colleagues’ hierarchy, while Task 2, as Mr Peters intended it to be
solved, would count as “procedures with connections”. In Task 2 there is a specified
solution method (not in the task as such but Mr. Peters made it clear in class), which
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is intended to help learners make connections with underlying meanings and
concepts.

The above discussion of the tasks has shown differences in the ways they sup-
port learners to make connections between procedures and meanings; integrate the
various strands of mathematical proficiency; and how they constrain what might
count as an acceptable solution. In subsequent chapters, we will show how the tasks
afforded and constrained the contributions that learners made in the classroom and
how the teachers dealt with these. For the purposes of this chapter, the discussion
of tasks fills out the matrix design of the study in Tables 2.4 and 2.5. Given that the
tasks used in each grade were the same or similar, comparisons within and across
grades are made easier. The matrix design in Table 2.6 enables some extrication of
the variables of task, learner knowledge, and socio-economic status in relation to
the possibilities for teaching mathematical reasoning in differently resourced
classrooms.

All grade 11 teachers used the same tasks, which were inductive and which sup-
ported procedures with connections to meaning. Mr. Daniels’ learners had strong
mathematical knowledge and were of high SES while Mr. Nkomo’s learners had
weak mathematical knowledge and were of low SES. Mr. Mogale’s learners pro-
vide a contrast to the others in that they were of low SES but had strong mathematical
knowledge. The two grade 10 teachers used similar tasks, which were mainly
deductive and which varied from “doing mathematics”, through procedures with
connections to procedures without connections. Ms. King’s learners were of high
SES and had very strong mathematical knowledge while Mr. Peters’ learners were
of low SES and had weak mathematical knowledge. These similarities and differ-
ences among the teachers enable comparisons in relation to tasks, school context,
and learner knowledge, which we pursue in Part 3 of this book. In Part 2, we look
at the individual case studies of each of the teachers, which provide in-depth
descriptions of their teaching of mathematical reasoning.

Table 2.6 Variation across teachers in tasks, learner knowledge and SES

Learner knowledge/SES Tasks Stronger/higher Weaker/lower
Grade 11 Mr. Daniels Mr. Nkomo
Inductive Mr Mogale (knowledge) Mr Mogale (SES)
Procedures with connections

Grade 10 Ms. King Mr. Peters

Deductive (with some inductive)
Procedures with and without
connections, doing mathematics




Introduction to Part 2

The next five chapters each present a case study of one of the teacher’s classrooms.
All of the teachers were inspired by the same general concern — how to develop the
teaching of mathematical reasoning as encouraged by the new South African curriculum
in their particular context. This general concern was translated into more specific
research foci by each of the teachers, each of which illuminates a specific aspect of
teaching mathematical reasoning and which, taken together deepen our understanding
of what such teaching demands of teachers and learners. These chapters, individually
and collectively help to address some of the challenges identified in Chap. 1:

* How do learners respond to tasks chosen to elicit their mathematical reasoning?

* How can teachers interact with learners around tasks to engage their mathematical
reasoning?

e How can teachers teach to develop mathematical proficiency?

* How does collaborative conversation among learners and teacher promote math-
ematical reasoning?

e What kinds of teaching practices, questions and moves help to encourage and
sustain learners’ mathematical reasoning?

Chapters 3-5 focus on the Grade 11 teachers and learners. In Chap. 3, we look at
learners’ responses to tasks that require making connections between procedures and
meanings. We show that the learners, with weak mathematical knowledge, struggled
to respond to these tasks, which in turn challenged the teacher to respond in ways
that would deepen learners’ engagement with the tasks. The teacher provides
an honest reflection of how he struggled to do this in the beginning, improving as
the week continued. In Chap. 4 ,we look at the learners’ engagement with the same
tasks. In this classroom, learners had stronger mathematical knowledge, and were
able to engage more deeply with the task demands. We show how a collaborative
conversation among learners and the teacher supported the learning trajectory of
one learner, as he or she deepened his or her engagement with the task and with
mathematical reasoning. The learning trajectory provides a description of how math-
ematical reasoning can develop among learners and what learners can achieve.
In Chap. 5, we focus more closely on the teacher’s practices and moves and show
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how these were internalized by the learners to support their mathematical reasoning.
These learners, also with stronger mathematical knowledge, were able to use some
of the teacher’s moves to support both their own and each other’s reasoning.

Chapters 6 and 7 focus on the Grade 10 teachers and learners. In Chap. 6 we
look at the extent to which teaching planned to include all five strands of mathe-
matical proficiency, managed to achieve these. In Chap. 7, we focus on the strand
of adaptive reasoning and the mathematical practices of justification and explana-
tion. Again, we see that learners with weaker knowledge struggled to engage with
the tasks and we see the teacher’s reflections on the challenges that he or she expe-
rienced in trying to engage the learners in conversation.

In the case studies, all of the teachers draw on Kilpatrick et al. (2001) notion of
mathematical proficiency and Ball (2003) notion of mathematical practices. These
are discussed in detail in Chap. 1 and in each of the teacher’s chapters, and so I will
not repeat them here. A second general concern is teacher—learner interaction and
the notion of “facilitator” as described by the South African curriculum documents.
The notion of facilitator is informed by constructivism, which asserts that
knowledge is not received by learners in the same form as transmitted by teachers,
rather it is interpreted and restructured in relation to the learner’s current knowl-
edge. This introduces uncertainty into the teaching—learning process because teachers
cannot know what learners have learned, although they can infer this from learners’
contributions. This argument is sometimes taken to mean that the teacher should
reduce involvement in teaching and should not “tell” (Chazan and Ball 1999) or
give learners mathematical information, in case they interfere with learners’ ability
to construct the knowledge for themselves.

This last point is one that has been taken up by many South African teachers in
ways that may be counterproductive for teaching and learning, as they give little or
no direct mathematical input, particularly when learners work in groups. Such non-
intervention was not an option for the teachers in this study; they were more inter-
ested in finding ways to intervene more appropriately. They drew on a Vygotskian
perspective, which asserts that the teacher’s input has a marked effect on learners’
constructions in both positive and negative ways; teachers’ responses can both sup-
port and inhibit learner constructions. We show how the five teachers influence
learning in far more complex ways than the easy aphorism that too much telling
inhibits learning. The teachers in this book walk a fine line between telling and not
telling; questioning and not questioning; being silent and not being silent. Each of
these can be appropriate at particular moments in the teaching—learning process,
and moreover, it is the quality of the response that counts, not necessarily the kind
of response. I have argued elsewhere (Brodie 2007a) that the dominant mode of
question-and-answer methods, preferred by many South African teachers, does not
necessarily make for more and better participation among learners. The chapters
that follow provide alternatives to the question-and-answer method, which are both
less and more directive, and we believe, more appropriate.

One teaching practice that is often ignored is that of listening (Davis 1997). The
reason why many question and answer exchanges do not support mathematical
reasoning is that teachers do not listen carefully enough to learners’ contributions
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in order to formulate their next questions. The questions are driven by the teacher’s
pre—determined agenda, rather than by the need to respond to and develop learners’
understandings (Davis 1997; Nystrand et al. 1997). All of the case studies that follow
show teachers listening more carefully to learners’ reasoning before making decisions
on how to follow up on learner contributions.

Finally, all of the teachers used tasks of higher cognitive levels in order to elicit and
engage with learners’ mathematical reasoning. I argued in Chap. 1 that while tasks are
necessary to develop mathematical reasoning, they are not sufficient; teacher—learner
interactions of particular kinds and qualities, as discussed above, are equally necessary.
What we add to the picture in these chapters is that tasks and interactions are experi-
enced differently by different learners, and hence their teachers, particularly if their
teachers are responsive. We show that in classes where learners have weaker mathe-
matical knowledge, teaching mathematical reasoning is harder to achieve. This is of
serious concern to those of us concerned with equity because if learners who are
already advantaged become more advantaged through teaching methods, which they
are better positioned to respond to, then the gap will widen rather than narrow. These
case studies, particularly Chaps. 3 and 7 do suggest ways in which teachers of weaker
learners can make progress, and also that they need support to do so.

We note here that this work took place prior to the introduction of the new cur-
riculum in South Africa in Grades 10 and 11, which are the grades we worked inl'.
However, the draft of the new curriculum was available, which is the document
that the teachers worked with. At the same time, all of the teachers were working
with the new curriculum in Grades 8 and 9, which has similar principles of engag-
ing learners in mathematical tasks and conversations. The teachers had different
experiences with new curriculum ideas, for example Mr. Mogale (Chap. 5) and
Mr. Daniels (Chap. 4), who had been on lengthy in-service programmes, had been
trying out new ideas for some time, even before the introduction of the new curricu-
lum in Grades 8 and 9. Ms. King (Chap. 6) had been involved in a local project
in her school, which worked with similar principles. Mr. Nkomo (Chap. 3) and
Mr. Peters (Chap. 7) had much less experience than the other three teachers and were
trying out some ideas for the first time. None of the teachers viewed themselves as
accomplished “reform” teachers, and all saw this as an opportunity to confront old
and new challenges and work with them. None of the learners had experienced this
kind of teaching before, except in these teachers’ classes, and so were inexperi-
enced “reform learners”, who still had to learn the norms of such teaching (McClain
and Cobb 2001) as the teachers point out in the casestudies.

As noted in the introduction, all of the five teachers were enrolled on an Honours
Programme?, which had addressed a range of issues, including broadened concep-
tions of mathematics and mathematics learning, mathematical reasoning, language

'The new curriculum has only recently been implemented in Grade 10 (2006) and Grade 11 (2007).

2In the South African Higher Education system an Honours degree follows a 3-year undergraduate
degree and a professional teaching qualification and is necessary for entry into Masters.
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and mathematics learning, and formative assessment. They were therefore better
informed about the mathematics-specific issues in the new curriculum than many
South African teachers, who have experienced generic, rather than subject-related
training, and whose understandings of the new ideas are relatively superficial
(Chisholm et al. 2000). Each teacher conducted her/his study as an Honours
research project, and therefore these chapters can also provide ideas and guidance
for teacher research projects conducted at this level.



Chapter 3
Mathematical Reasoning Through Tasks:
Learners’ Responses

In this chapter, I draw on the notion of mathematical reasoning discussed in Chap.
1 as well as the approach to mathematics in the new curriculum in South Africa.
The new curriculum takes the view that mathematics should make sense to all
learners and that learners should be given opportunities to solve problems, look for
patterns, make conjectures, make inferences from data, explain and justify their
ideas and challenge others’ ideas. The National Curriculum Statement Grades
10—-12 (Department of Education 2003, pp. 9-10) describes the purpose of mathe-
matics in the new curriculum as follows:

Mathematics will enable learners to:

e Communicate appropriately by using descriptions in words, graphs, symbols,
tables, and diagrams

* Use mathematical process skills to identify, pose, and solve problems creatively
and critically

e Organize, interpret, and manage authentic activities in substantial mathematical
ways that demonstrate responsibility and sensitivity to personal and broader
societal concerns

e Work collaboratively in teams and groups to enhance mathematical understanding

e Collect, analyse, and organize quantitative data to evaluate and critique conclu-
sions arrived at

» Engage responsibly in quantitative arguments relating to local, national, and
global issues

These broad curriculum outcomes resonate with the description of mathematical
reasoning given in Chap. 1 and show the intention of the new curriculum to produce
learners who can work with mathematics in a variety of ways. The intention has
moved away from learners who use calculations and formulas as the only ways of
solving mathematical problems, and producing only accepted correct solutions to
problems. When our current learners leave school they will be facing a world dif-
ferent from that of their parents and teachers. They will need the mathematical skills
of reasoning and justification to respond to a range of challenges. We do not help our
learners to rise to these challenges by teaching them that all problems can be solved
merely through the application of certain procedures. The National Curriculum
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Statement argues that there are many ways that learners can learn mathematics
successfully. Learners should be given opportunities to communicate their ideas
critically and creatively as they work on mathematics tasks.

One of the key influences in how learners learn to reason mathematically is
the nature of the tasks that they work with in class (Stein et al. 1996, p. 72, 2000).
In this chapter, I analyse Grade 11 learners’ work on tasks that involve mathematical
reasoning. At the time of the study, the Grade 11 syllabus did not require learners
to solve non-routine problems that they had not seen before and did not include
tasks that required learners to display their reasoning, or to formulate, test, and
justify conjectures. The tasks mostly required learners to carry out calculations or
procedures that they had been taught. In my experience during the past 10 years of
marking Grade 12 examination papers, I had come to realize that learners perform
poorly on tasks that involve higher order mathematical reasoning. This chapter
aims to explore the challenges that learners may encounter with tasks that involve
mathematical reasoning and the ways in which a teacher can help learners to
improve their mathematical reasoning.

Tasks that Support Mathematical Reasoning

Mathematical tasks are given to learners by the teacher to engage them in mathe-
matical activity in order to develop certain mathematical concepts or practices.
Stein et al. (1996) defined a mathematical task as a classroom activity, which is
intended to focus learners’ attention on a particular mathematical idea. Once the
teacher has set up learning goals, s/he can give tasks that match with her/his goals
for the kinds of thinking s/he would like the learners to engage in. If the teacher
wants learners to memorize mathematical facts and procedures she/he will give
tasks that require memorizing. The old curriculum tended to prioritize memorizing
over other forms of mathematical activity and most textbook and examination tasks
required learners to memorize and recall facts and procedures. The new curriculum
requires a broader range of mathematical practices and if teachers are to help learners
develop these, we will need to broaden the range of tasks that we ask learners
to engage in.

Stein et al. (2000) distinguished between two levels of cognitive demand of
mathematical tasks, and within each of these, two kinds of tasks. Lower level tasks
are memorisation tasks and tasks that require procedures without connections
to meaning or concepts. Higher-level tasks are those that require procedures with
connections to meaning or concepts and “doing mathematics” tasks, which require
a high level of exploration from learners. These are described below.

Memorization tasks involve reproducing previously learned facts, rules,
formulae, or definitions. Memorization tasks do not require any explanation from
learners; they are straightforward and learners use well-known facts to solve them.
Procedures without connection tasks require reproduction of procedures but without
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connection to underlying concepts. Such tasks are focused on producing correct
solutions rather than developing mathematical understanding. Procedures with
connection tasks focus learners’ attention on the use of procedures for the purpose
of developing deeper levels of understanding of mathematical concepts and ideas.
Such tasks focus learners on the procedure of solving mathematics problems
in a meaningful way. Doing mathematics tasks do not require any procedure
to be followed. There is no predictable way of solving these problems. Learners
working with such tasks need to analyse task constraints and creatively find their
own solutions.

Since learners interact with tasks, the cognitive demands of the tasks depend not
only on the task, but also on the learner. For example, a task that is at a high level
for a Grade 8 learner might be at a lower level for a Grade 11 learner; or two learn-
ers in the same grade might solve the same task in different ways. One might use
procedures and think about the connections of the procedures to the underlying
mathematical concepts, while another might use the same procedures without making
any connections to meaning or concepts.

The cognitive demand of the tasks can be recognized in the task features,
which include the “number of solution strategies, number and kind of representa-
tions and communication requirements” (Stein et al. 1996, p. 455). Tasks that can
be solved by using different approaches, and those that require learners to bring
together different representations and to explain, justify, and communicate their
ideas are likely to be of higher cognitive demand than those that have only one
method of solution and do not require additional effort in working with represen-
tations and explaining ideas. In order to encourage mathematical reasoning as
suggested by the new curriculum, teachers should give learners tasks that allow
for different levels of engagement, including the higher levels. If learners are
given only tasks that are of a lower level, they will find it difficult to tackle
higher-level tasks.

Examples of lower-level tasks are found in many textbooks, for example
“Sketch the graph of y=(x—3)*+2". In response to such tasks most learners will
use the usual procedure of finding the x and y intercepts, the turning point and draw
the graph. Most learners use these procedures without understanding the relation-
ship between the equation and the graph, however as mentioned above, some (very
few) learners do make connections with the meaning of the graph. An example of
a higher-level task from a new curriculum textbook (Bennie 2006), explicitly asks
learners to make connections between procedures and meanings and to justify
conjectures:

(a) Draw a sketch of y=x Use a table if necessary.

(b) Consider the graphs with equations y=ax>. Make a conjecture about the effect on
the graph when you change the value of a. Test your conjecture by drawing the
graphs of y=2x?, y=3x?, and y=1/2x? on the same system of axes you used in (a).

(¢) What will happen if the value of a in y=ax? is negative? Choose suitable values
for a and test your conjecture.

(d) Summarize your observations in questions a and b above, etc.
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This task requires learners to go beyond drawing the graph and to make conjectures
from the graph. It also requires them to summarize their observations, which is
something that was not visible in the old curriculum.

Stein et al. (1996, 2000) distinguish between two phases of task-use in the
classroom: task set-up and task implementation. They note that the task demands
can shift between the set-up and implementation phases, depending on how
learners engage with the task and how teachers interact with learners. Often
tasks that are set up at a higher level, decrease in level as they are implemented
(Modau and Brodie 2008; Stein et al. 1996, 2000). This can happen for a number
of reasons: learners might choose to work at a lower level than the task requires,
ignoring the higher level task demands; and teachers might give learners too
much help, which reduces the level, for example “funnelling” the task
(Bauersfeld 1988). Stein et al. (1996) argue that “classroom norms, task condi-
tions and teachers’ and students habits and dispositions” (p. 461) can all influ-
ence how tasks change at implementation. Their research shows that tasks are
usually maintained at the same level or decline in level. The higher-level tasks
in particular tended to decline.

Teaching for Mathematical Reasoning

Stein et al.’s task framework is consistent with both constructivist and socio-cultural
perspectives on learning, which were discussed in Chap. 1. The notion of cognitive
demand suggests individual or group engagement with tasks that promote learning,
thinking, and reasoning at different levels in the individual. The idea that the level
of the task changes in interaction between teacher and learner, or among learners
suggests a socio-cultural perspective, because social aspects of the classroom determine
the level of individual cognition.

These theoretical frameworks suggest important implications for teachers.
Constructivism shows how errors and misconceptions can be deep-seated in
learners’ conceptual structures and learners have to do the difficult work of trans-
forming their own thinking, with their teacher’s help. If learners’ responses are
incorrect, it does not necessarily help to tell them so. As Heaton (2000) remarks:
“telling him he was wrong would not necessarily change how he thought”.
Heaton also goes on to say that if learning and teaching are about understanding
why answers are right or wrong, then it is important to explore learners’ errors
with them. The teacher can ask learners to explain their answers by posing ques-
tions like: “can you explain how you got the answer” or “convince me that your
answer is correct”. Moreover, asking learners to explain is just as important when
their answers are correct as when they are incorrect because explaining can
deepen their own thinking, and help others in the class. It also encourages the
“social norm” (Yackel and Cobb 1996) that all answers should be justified in
mathematics.
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A socio-cultural perspective suggests that by asking for explanation and justification,
the teacher can make learners aware of their reasoning and support them to con-
struct appropriate mathematical ideas. The teacher can, through questions and
prompts, try to provoke learners into thinking in particular ways and support them
to compare, verify, explain, and justify their conjectures. It is not easy for the
teacher to ask questions that will make learners aware of their reasoning, since
learners might not respond as the teacher expects. Ball (2003) argues that when a
teacher whose students have never been asked to explain their thinking asks them
to justify their solution, s/he is likely to be greeted with silence. When s/he asks
a learner to explain her/his method, the learner will probably think that she/he
made an error. It is therefore important, but demanding, for teachers to develop
norms of interaction in their classrooms (Yackel and Cobb 1996, see Chap. 1 for
more discussion).

So teaching for mathematical reasoning involves teachers being aware of the
type of tasks that we give to learners, choosing tasks that enable learners to make
sense of mathematics and that give them opportunities to investigate, analyse,
explain, conjecture and justify their thinking, and interacting with learners around
the tasks to maintain, or even raise, the level of the task.

The Classroom and the Tasks

For the purposes of linking this chapter with chapter two, it is important to note
that my pseudonym in the study is Mr Nkomo. This study was conducted in one
of my Grade 11 classes, in a functional township school west of Johannesburg,
with very basic facilities (see Chap. 2 for more detail). All the teachers and learners
in the school were “black African” South Africans (see Chap. 2). English is not
the main language of any of us, but all teaching and learning of mathematics
occurs in English. There were 1,650 learners in the school at the time of the study
and 42 teachers, giving a teacher—learner ratio of 1:39. There were 28 learners in
my Grade 11 class. Since fewer learners take mathematics in the higher grades,
these classes tend to be smaller. The learners worked in ten groups of between 2
and 4 learners in a group. These groups were established prior to the study and
learners were used to working with each other. The class was of mixed ability in
mathematics and learners in the class were taking mathematics on both higher
grade/standard grade.'

I planned a series of tasks on functions with the two other Grade 11 teachers as
part of this project (see Chap. 2 and Appendix). The tasks were planned to take 1
week of class time and were intended to engage learners’ mathematical reasoning as

"'As explained in Chap. 2, at the time of the study, the Grade 12 mathematics examination could
be taken at two levels, standard and higher grade. Success on the higher grade (or exceptionally
good marks on the standard grade) granted access to scientific fields at university.
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discussed below. As learners worked in their groups, I went around asking questions
where necessary. I also conducted whole class discussions after each task. At the
end of each lesson, I took in each group’s work and read it carefully, preparing how
to conduct a whole class discussion on different groups’ work the next day.

In the next section, I will analyse the first task and so I describe it here (see
Appendix for actual task). Learners were presented with the graph of y=x% asked
to move it first 3 units to the right and then 4 units to the left. In each case, they
were asked to compare the turning points of the two graphs (y=x* and each shifted
graph), and after that to compare corresponding points on the two graphs. The task
encouraged learners to experiment with shifting graphs, and to focus on particular
points in order to begin to notice relationships between them. Since they were
explicitly told how to do this, i.e. told first to look at the turning point and then at
other points, and since they were given a table with values for y=x filled in, which
they had to complete, this is a “procedures with connections” task in Stein et al.’s
(2000) framework. Learners were asked to write down their observations about
how the points shifted as the graphs shifted and in doing so to make connections
between the shifting graphs and shifting values of co-ordinates. Learners had to
examine parameters, experiment with shifting graphs, make conjectures and write
down observations.

Learners’ Responses: An Overview

My first step was to analyse the learners’ written responses to the tasks in three
categories:

1. Comparing the turning point of y=x? to the turning point of the new graphs
2. Choosing and comparing other corresponding points on the graph
3. Observations about the corresponding points of the two graphs

Table 3.1 shows the total number of groups who gave correct and incorrect responses
for each of the above (there were ten groups).

Table 3.1 shows that learners were able to identify and compare the new turning
points of the graphs, but struggled to identify, compare and make observations about
other corresponding points on the graphs. However, as discussed above, correct and
incorrect responses are not sufficient to illuminate or develop learners’ mathematical
reasoning. So I continued to analyse learners’ reasoning, both from the written tasks
that they handed in, and from videotapes of whole class discussions.

Table 3.1 Correct and incorrect responses

Category I  Category 2 Category 3
Correct 10 1 0
Incorrect 0 9 10
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Learners’ Responses: Detailed Analysis

In the first part of the task (Category 1), learners were asked to compare the turning
points of the shifted graphs to y=x? (the graphs were shifted 3 units to the right and
4 units to the left). The aim of this question was to help learners to connect the turning
point to the position of the graph and to notice how the turning point changes as the
graph shifts. As shown above, all the groups correctly identified the turning points of
the shifted graphs. The only difference in the answers of the groups was that while
most groups acknowledged that the turning point has two co-ordinates, and wrote the
turning points as (0,0), (3,0), and (-4,0), two groups wrote only about the x-coordi-
nate of the turning point, for example: “For the first graph the turning point was 0.
After moving it 3 units to the right we observed the new turning point, which is 3”.
Although in some classrooms this might be considered to be “incorrect,” because the
y-coordinate of the turning point has been left out, in fact in this context, the learners
had commented on the parameter that had changed because of the shifting graph, the
x-coordinate. So these learners have reasoned appropriately for this task.

From the above, it is clear that this part of the task does not demand high levels
of reasoning from learners because it merely requires them to identify a point.
Although it might support some learners to connect the shifting point to the shift-
ing graph, this part of the task does not explicitly require these connections and
many learners may not have made them.

For the next part of the task (Category 2), choosing and comparing other corre-
sponding points, only one group (Group 9) correctly completed the task. This group
correctly recorded new values for x on each graph for the given values of y on the
table. Their observation was that the x values increase for the first shift (3 units to
the right) and the x values decrease for the second shift (4 units to the left).
However, they did not give the exact value of the shift in either case. Another group
(Group 10) worked from the x-values and managed to record correct values for
positive x values for the shift to the right. This is what they wrote:

x Values -3 -2 -1 0 1 2 3
y Values Are not to be found 9 4 1 0

They did not give their reasons for saying they could not find the y-values for nega-
tive x-values. This response seems strange to me because they were physically
shifting the graph using a transparency, and therefore I am not sure how they could
not see the left hand side of the graph. It might be that this group did not understand
the meaning of “corresponding points” because, even though they drew the above
table, in the rest of the answer they only spoke about differences in x- and y-inter-
cepts, rather than for a range of corresponding points. Only one other group (Group 6)
tried to record values in a table and they did it incorrectly, and were unable to make
a reasonable conclusion about the shifts.

The responses to this question suggest that learners struggled to make use of
tables to understand shifting points on the graphs. It is very rare in the current
Grade 11 textbooks to find tasks where learners are asked to record their findings.
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It is also the case that they only use tables when initially introduced to graphs, so
that they may not see them as a useful vehicle to think about graphs and solve
problems with them. This task attempted to engage learners in making connections
between the graphs and the points on them, and to move between different repre-
sentations, definitely a “procedures with connections” task. The fact that so few
learners were able to manage it suggests that higher-level tasks and working with
different representations are difficult for them.

The learners’ observations about the shifts in the points (Category 3) show some
interesting patterns of reasoning, even among groups that did not record values in

the tables. The different responses that I identified are:

(A) The x- and/or y-values change
(B) The x values increase/decrease
(C) The x-values are all positive/negative

Table 3.2 shows all the groups responses to this question, with the response labelled
A, B, or C according to the above

Table 3.2 Groups responses to question 3

Shifting 3 units right

Shifting 4 units left

Group 1 It has positive values. All values of x All values of x are negative and all
and y have changed (A and C) values of y are positive (C). In
the middle and the left graph we
find negative and positive values
and the right graph has only
positive values (C)
Group 2 In the new graph we have only The numbers which were negative
positive x and y values (C) become positive, when we move
the graph to the left 4 units (C)
Group 3 On the new graph the x-values The x values decrease on the left
increase (B) graph because it includes the
negative numbers (B and C)
Group 4 The x-values of the old graph has y-Values and x-values change again (A)
negative units and the new graph
does not have negative units (C)
Group 5 All the points changed. The negative The y-values and x-values changed (A)
points became positive points (C)
Group 6 We did not have negative values in
the new graph. When the turning
point changes, the other points
change (C)
Group 7 The y-values are still the same but The graph is not in touch with the
the x-values have changed from y-axis
the first graph (A)
Group 8 The table points are totally different The x-values have changed to be
and the points of the second negative as the graph was moved
graph are all positive (C) to the left (C)
Group 9 x-Value increases, y-values do not x-Value decreases, y-values do not
change (B) change (B)
Group 10 Wrote about intersection points of two parabolas rather than comparing them
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Only two responses were not classifiable according to A, B, and C. Group 10’s
response, which was actually not a response to this task and so will not be discussed
here, and Group 7’s response for the second shift, which is interesting and will be
discussed. Of the groups that made response type A, all except one claimed that
both x- and y-values changed. This suggests that they were not looking at corre-
sponding points, but at the graphs more generally. Group 7 made the correct claim
that for the same y-values, the x-values change. However, they did not specify the
direction or the nature of the change. So while this answer is correct, it suggests
that the learners were not looking closely at the graphs to make the connections that
the tasks expected. Groups 3 and 9 made response type B. Group 9 argued that the
x-values would increase or decrease (depending on the graph), when the y-values
remained constant. Group 3 did not mention the y-values but we can infer that they
were looking at corresponding points on the graphs, which means that the y-values
stayed the same. Neither of these groups indicated the magnitude of the changes
(3 in one direction, 4 in the other).

Response type C, made by most of the groups, indicates an interesting miscon-
ception. As the learners’ shifted the graph, it seemed that all the x-values moved
into the first quadrant (for the first shift) and into the second quadrant (for the sec-
ond shift). This would in fact have happened with the traced graph in the second,
but not the first shift, because the graph does not show coordinates beyond x=3.5.
However, the learners’ responses in both cases suggest that they did not understand
that these graphs extend to cover all x-values; they thought that the graph ends
where the picture ends. This misconception was found in both the other Grade 11
classes (see Chap. 8). Group 7’s response is also a version of this response in that
they looked at the actual drawn graph and saw that the drawing did not cut the
y-axis. They too did not realize that the graph must extend to cover the domain of
all x-values.

These three response-types show up interesting issues in the learners’ reasoning
and in the task demands. The “most correct” of the three sets of responses is type
B because there are no errors. However, these responses are not specific about the
magnitude of the change. Since the task was quite open, and asked learners “what
do you observe”, this is a perfectly acceptable response. However, it suggests that
learners did not ask themselves whether they could go further to observe anything
more. In this case, I argue, the level of the task declined from procedures with con-
nections at set-up to procedures without connections in the learners’ responses.
Response type A can also be correct, when it focuses on the corresponding points.
In these cases, it is even less specific than response type B, because it does not note
the direction of change. Here too, the learners did not push themselves further, but
did write down what they observed, also signalling a task decline. Response type C
is the most specific; it attempts to get to grips with the picture as well as the values
and to go deeper into what is happening. In this case, the learners preserved the
level of the task; they were looking for connections and trying to make a generalization
from the picture, and in doing this, they revealed an interesting misconception in



52 3 Mathematical Reasoning Through Tasks: Learners’ Responses

their thinking, i.e. they did not think that a parabola extends infinitely along the
x-axis in both directions.

This task analysis has suggested that when the task was of a lower level, learners
were able to get it correct. When the levels increased, learners struggled both to
get the tasks correct and to maintain the higher levels of the task. Ironically, the
one time when they did maintain a higher level, a misconception arose. In the next
section, I look at what happened when I discussed the responses in a whole-class
discussion with the learners.

Teacher-Learner Interactions

As both teacher and researcher, I needed to understand learners’ reasoning
within and beyond their written responses. Were they saying more than what
they wrote? Did they have more to offer than their responses on the page? Did I
interpret their responses correctly? Did the learners understand their own think-
ing? Finally I wanted the whole class to understand what other learners were
thinking and reasoning. In this section, I will discuss four kinds of teaching
interventions that I used to address the above questions. These interventions
were drawn from the literature (Chazan and Ball 1999; Heaton 2000; Lampert
2001) and seemed to make sense for my classroom. They are: encouraging learn-
ers to participate and listen; using learners’ contributions to move forward; and
pushing for more explanation from learners. I show how these interventions
became a learning process for me, at first I was not very successful in generating
discussion and thinking around learners’ responses but as I persevered, I got
better at it.

Encouraging Participation

At the beginning of the next lesson I told the class that I had read their responses
the previous night and I found them all interesting. I then told them that I would ask
them questions based on what I did not understand in their responses. This was a
new norm for the class because they usually assumed that I did understand and
asked questions to hear their answers, a “testing” function of questions (Nystrand
and Gamoran 1991). This was the first interaction of the lesson after the groupwork,
and involved Themba from Group 3. I chose to start with this one because, similarly
to the other groups, Group 3 had mentioned that the x-values increased but had not
been specific about the size of the increase.
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Mr Nkomo: So, Themba, what, what did you mean when you say, the, the values of, the
values of, the x values increases?
Themba: You move the graph three units to the right. You’ll find that three is the

turning point, and then one, eh nought, one, two, they are greater than
minus one, minus two, minus three because in the first graph, minus one,
minus two, minus three were included.

Mr Nkomo: Fine. Thank you Themba, Did you hear what Themba said?

Learners: Yes.

Mr Nkomo: Yes

Learners: Yes.

Mr Nkomo: Can someone say that again because you have just said yes.

Learners: (Silence)

Mr Nkomo: Hmm. You have said yes, Themba, would you say that again? They have said
yes, but they don’t want to say that, okay? Themba please say that, for the
last time?

Themba: First you move three units to the right. o finde [you find], the turning point is

three, and the numbers including is nought, one, two, three, four, five, six.
And then mo [in the] the first graph, the numbers that were included were
minus three, minus two, minus one.

The other groups did not respond to Themba’s explanation and I was forced to ask
him to explain again. So although I had hoped to generate discussion through
Themba’s response, I was not successful even in getting learners to repeat his idea.
This was both similar and different to Heaton’s (2000) experiences in trying out this
kind of teaching for the first time. It is similar in that it is not very successful. It is
different in that Heaton got responses from the learners but did not know what to
do with them. In this case, I could not even get responses from the learners. It might
be that because I was asking for an explanation, and they were not used to listening
to each other’s explanations, they felt uncomfortable about repeating it to the class.
This suggests that it is important to build learners’ listening skills, as well as their
abilities to explain each other’s ideas (Lampert 2001). In the case of this interac-
tion, the level of the task declined — from one where procedures with connections
were expected to one where connections were not made.

Using the Contribution to Move Forward

The next extract comes soon after the previous one. Here I focus on the responses
that indicated that y-values stayed the same. I was trying to focus the class onto the
notion of corresponding points.

Mr Nkomo: Jacob’s group said that the x-values change but the y-values don’t change,
they stay the same, do you agree with them? Jabu, can you say more about
it. Can you come and maybe explain why they are still the same?

Jabu: (Comes up to the board) Eh! On the new graph, there is still one and on the old
graph, there is one. Four and four, nine and nine (he points on the graph).

Mr Nkomo: Nine and nine?
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Jabu: Yes.

Mr Nkomo: So, in other words, eh, you are saying, there is still one and one?
Jabu: Yes.

Mr Nkomo: There is still, once again?

Jabu: Four and four, and nine and nine.

Mr Nkomo: Four and four, and nine and nine.

In this case, I asked a particular learner to come up and explain another learners’
contribution, rather than leave it up to the whole class as previously. Jabu was not
in Jacob’s group and his group’s response had been different, so I asked him to
come and explain Jacob’s point. Here I was enabling broader participation and also
teaching learners that they could respond to each other’s ideas and explain them.
This is what had gone wrong in the first interaction. Chazan and Ball (1999), in
discussing the teacher’s role in discussion-intensive teaching, suggest that while
“telling” is not often a good idea for the teacher, what is important is to decide what
to do instead of telling. In this case, I asked one learner to explain another learner’s
idea and that helped the lesson to move forward (Heaton 2000). However, in this
case, the interaction still remained at a lower level, as I did not push the learners to
really explain and justify their thinking.

Pushing for Explanation of Particular Ideas

In the following extract, I deal with the response type C identified above through
asking Group 1 to explain their answer. I first repeated it for the class.

Mr Nkomo: Kefilwe’s group said that it has positive values, all y and x has changed. In the
middle and left graph we find negative and positive values and the right
graph has only positive values.

Kefilwe: You see, pointing at the graph that was moved to the right, it has positive
values and the other in the middle has positive and negative while the left
has positive and negative.

Mr Nkomo: (Kept quiet, looked at the whole class and saw Meshack shaking his head.)
Meshack, it seem you disagree with what Kefilwe said, can you tell us why?
Meshack: Sir, it doesn’t mean that always when we move a graph to the right it will

have positive values only and to the left negative values only. Sir, for
example if we move the graph that was moved four units to the left, two
units to the right it will still have negative x-values.

Mr Nkomo: What about the one moved to the right?

Neo: If we move it one unit to the left it will still have positive values.

Mr Nkomo: What can you conclude from what Meshack and Neo said?

Lydia: I think it depends on how far you move the graph, so it doesn’t mean to the

left negative values and to the right positive values.

I realized that Kefilwe’s group had a misconception about the x-values of the
shifted graph. What I was doing here was “asking a question for the purpose of
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helping her see something new, not to merely share her ideas” (Heaton 2000).
Calling on Meshack was a deliberate strategy to help Kefilwe’s group see what they
needed. In this extract, I was also more successful in getting more learners involved.
Once Meshack had made his contribution, Neo echoed it in relation to the other
graph and Lydia was able to draw the two contributions together and summarize
them. It should be obvious to the reader that I was far less present in this extract
than in the previous ones; however, since my questions were clear and focussed
(Watson and Mason 1998), it was a more successful intervention. I was able to get
learners to explain their own ideas and listen and build on the ideas of others
(Heaton 2000). Here we managed to maintain the task demands at a higher level,
procedures with connections to meaning.

Unfortunately, the above interchange did not quite solve the learners’ problem.
While they seemed to agree that shifting to the left and right will not always create
positive and negative x-values, they did not quite agree that it did not in the two
cases under discussion. In fact, they may have only agreed for the cases that were
moved fewer than 3 units to the right and 4 units to the left. So, there was still work
to be done on this misconception.

Conclusions and Implications

There was a great deal of evidence in my data to suggest that learners had difficul-
ties in responding to tasks that involve mathematical reasoning. Learners had sev-
eral difficulties in responding to the more demanding parts of the task. These
included not understanding what corresponding points were and why they should
be compared, making limited observations about the corresponding points of the
graphs, and not recording their observations in the table provided. It was evident
that the learners were not used to such questions and did not know how to approach
them. The learners were not used to “exploring” as much as they can in tasks.
However, there was also evidence to suggest that in some cases, some learners did
go deeper, and did maintain the connections to meaning, although they did this
incorrectly.

My interactions with learners did not manage entirely to shift the levels of the
task. I was not able to help the learners to bring the level of the task back to that of
procedures with connections, except in the last case, where they had been making
the connections. However, my analysis of my teaching suggested three very differ-
ent kinds of interaction, which improved over the course of the week and finally did
put the learners in conversation with each other. My analysis confirms Heaton’s
(2000) argument as to how difficult the task of engaging learners in genuine discus-
sion about reasoning really is.

In undertaking this project, I worked with tremendous support — with my four
colleagues and with my supervisor. We had all read a number of books and articles
about teaching, helped each other to prepare and supported each other in analysing
our lessons. Given all this support, the fact that I still experienced difficulties suggests
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that the ideals of the new curriculum will not be easy to achieve. At the same time,
however, in trying out these ideas, I have learned a tremendous amount, which will
improve my teaching from now on. I have learned to:

* Be aware of different levels that are entailed in tasks and to give learners a wider
variety of tasks

* Accept learners’ responses, whether right or wrong

* Assist learners by asking focused questions to let them see something new rather
than telling them the correct answer

e Listen to what learners are saying during discussion to have a clearer meaning
of their understanding

* Follow up learners’ written work with discussion of their meanings in class

*  Work harder to support learners to justify their mathematical ideas

I hope to take the above forward into my teaching and to further research.



Chapter 4
Learning Mathematical Reasoning
in a Collaborative Whole-Class Discussion

My interest in pursuing this study was driven primarily by my personal experience
as a teacher as well as being faced with a new curriculum that I was not sure how
to implement in my classroom. “Where am I going to use this mathematics?” is a
popular question among my learners. This question emanates from learners seeing
mathematics as unrelated pockets of knowledge rather than a set of related and use-
ful topics. I have also observed that when learners understand and relate a particular
topic to their existing knowledge, this question seldom crops up. I believe that
learners’ inability to see mathematics as a worthwhile human activity is in part due
to the low level of mathematical reasoning and collaboration in classrooms.
Learners who learn mathematics through mathematical reasoning may find the
mathematics more meaningful. Mathematical reasoning allows learners to form
connections between new and existing knowledge (Ball and Bass 2003), and this
integration of knowledge may support sense-making on the part of learners and the
ability to see mathematical activity as worthwhile. Mathematical reasoning enables
the development of conceptual understanding and productive disposition (Kilpatrick
et al. 2001), which allows learners to draw on their concepts in other situations and
experience mathematics as something they can understand and relate to. Learners
who engage in mathematical reasoning may be in a better position to connect
school mathematical activity to other activity.

I view collaborative learning as a communicative process whereby two or more
parties gain new knowledge as a result of their interaction. Collaborative learning
not only refers to an exchange of knowledge between the parties, but the interaction
itself serves as a catalyst for the formation of new knowledge by the parties con-
cerned (Mercer 1995). In my class, I think of collaborative learning as a joint ven-
ture between learner/s and teacher and among learners themselves. This collaboration
is governed by the pursuit of knowledge for the development of learner and teacher.
How we reason mathematically or allow our learners to reason mathematically is in
part dependent on the nature of collaboration between the parties. The nature of the
learning that occurs is a complex interplay between individual and social construc-
tion (Hatano 1996; Wood et al. 1992).

This chapter represents a response to the new curriculum developments in South
Africa. Motivated by a need to teach in a way that will make mathematics more
meaningful to my learners and guided by curriculum change, I decided to explore
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the extent to which this could be achieved in my own teaching. In thinking about
how to conduct the study, I posed the following questions to myself:

e What do I understand by mathematical reasoning?

*  Why pursue the teaching of mathematical reasoning?

*  What is collaborative learning and how does it impact on the teaching and learning
of mathematical reasoning?

What Is Mathematical Reasoning?

An important part of all learning, including learning how to reason mathematically,
is that new knowledge is always connected to current knowledge, and in fact
restructures current knowledge if true learning is to occur (Hatano 1996). So, as we
try to develop mathematical reasoning among learners, it is important to see
whether and how they make these connections and transform their existing ways of
reasoning. As discussed in Chap. 1, mathematical reasoning is intertwined with the
other strands of mathematical proficiency (Kilpatrick et al. 2001): conceptual
understanding, procedural fluency, strategic competence, and productive disposi-
tion. These strands suggest that teaching mathematical reasoning requires far more
than merely following a “recipe”. If we take seriously the notion of mathematical
proficiency, we are faced with an even bigger challenge, the simultaneous develop-
ment of a range of skills and abilities that is required for learners to be regarded as
mathematically proficient.

Kilpatrick et al. (2001) argue that “the strands complement each other but at the
same time the reasoning strand, called adaptive reasoning, is the glue that holds
everything together” (p. 129). In analysing one learner’s developing reasoning in
this chapter, I show how mathematical reasoning provides a link with the other
strands, particularly conceptual understanding and procedural fluency. I also draw
on the notion of mathematical practices (Ball 2003). These include representational
practices, justification, generalization, and communication. These practices are
seen as vehicles to achieve the mathematical proficiency discussed above.

The Open University (Open University 1997) suggests that mathematical rea-
soning unfolds as the learner asks and strives towards answering three important
questions while engaged in mathematical activity:

» What is it that is true? This question arises as the learner looks to find patterns
and regularities that can be rendered as evidence to justify an idea. If enough
evidence is found to convince the learner, s/he can formulate a conjecture. This
is where we see so many of our learners falter and regard the “evidence as proof”
(Chazan 1993). Learners may prematurely draw generalized conclusions based
on the measurement of a few examples. For example, learners may conclude that
the interior angles of a triangle always add up to 180° after having measured
only a few or just one set of interior angles of a triangle.
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* How can I be sure? This question arises as the learner is confronted with the
possibility that the evidence collected may not account for all cases. There now
exists the need for some reasoning that would include the evidence in the form
of a generalized argument or proof. Without the process of gathering evidence
and formulating conjectures, the learner at times regards this proof as merely
evidence of another case (Chazan 1993). My learners have often viewed my
explanation of a proof of a theorem as an example of how to approach the prob-
lems in the exercise and not as an explanation of why the theorem is true.

* Why is it true? At times, even a logical explanation that explains the truth of a
statement is not enough to convince someone as to why something is true. As
De Villiers (1990) points out, the explanatory function of proof or arguments is
very different from the verification function. It is likely that learners will need
to understand why something is true in order to accept it, rather than just verifi-
cation that it is true.

All of the above conceptions of mathematical reasoning, as making convincing and
explanatory arguments; as intertwined with the other aspects of mathematical pro-
ficiency; as involving a number of important practices; and as restructuring current
knowledge and practice, informed this study. However, I still had to answer some
other important questions, the next one being why should we teach mathematical
reasoning?

Why Teach Mathematical Reasoning?

I argued earlier that I view mathematical reasoning as the vehicle to sense-making
of and in mathematical activity. I refer to making sense of the mathematics itself,
not necessarily to making links with everyday life. My assumption is that only
through making sense of the mathematics can we truly move to sense-making as a
worthwhile everyday life activity. The National Curriculum Statement (Department
of Education 2003) expresses the vision of a learner who is able to “transfer skills
from one context to another” and to “think logically and analytically as well as
holistically and laterally” (p. 5). This vision suggests a thorough conceptual under-
standing of mathematics among learners and the capacity to readily identify situa-
tions where their knowledge is of relevance.

Boaler (1997) talks about flexible conceptual knowledge. She worked in two
schools that were homogeneous in terms of the socio-economic status and educa-
tional background of their learners. The only noticeable difference was the way in
which the two schools approached the teaching of mathematics. On the one hand,
Amber Hill had a typical textbook approach with lessons consisting of rule-based,
procedural activities with much drill and practice. “A typical day of maths in the
old apartheid days”, was my immediate response. On the other hand, Phoenix Park
adopted an open-ended, problem-solving, real-life approach to teaching mathemat-
ics, which is what our new curriculum aims at. Boaler’s research concluded that
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learners gained vastly different experiences of mathematics and developed different
forms of mathematical knowledge. The majority of learners from Amber Hill were
unable to apply their knowledge to new problems and situations. This suggested
that they developed knowledge consisting primarily of memorization and applying
rules that could only be applied within a school setting. Learners at Phoenix Park,
however, developed more flexible knowledge, the kind of knowledge that enabled
them to solve new problems they encountered. Boaler’s study inspired me to
develop a teaching approach closer to that of Phoenix Park. Collaborative learning
was the key to developing mathematical reasoning in this approach.

Collaborative Learning and Mathematical Reasoning

The National Curriculum Statement puts forward the following vision for a post-
apartheid South Africa: “To heal the divisions of the past and establish a society based
on democratic values, social justice and fundamental human rights” (Department of
Education 2003, p. 1). This statement acknowledges diversity and the need for equity,
promotes the integrity of each individual with the power to affect decisions and sug-
gests that a way to achieve equity is through the promotion of social justice and
fundamental human rights. To achieve this, learners need to “work effectively with
others as members of a team, group, organization and community” (p. 2). This impor-
tant notion is picked up later in a focus on mathematics: “mathematics enables learners
to work collaboratively in teams and groups to enhance mathematical understanding”
(p. 10). Taking these two assertions together, we see that collaborative learning is
both an end and a means (Brodie and Pournara 2005). We need to develop skills and
dispositions towards collaboration in learners as democratic citizens and also to use
collaborative learning to aid mathematics learning.

Developing a social conscience based on democratic rule, social justice, and human
rights can be obtained within the context of collaborative learning. It would be difficult
if not impossible to teach learners to value other people and their opinions, without
learners actually learning together from each other. It is the relevance to the learning of
mathematics that tends to be more challenging. There is, from South African class-
rooms, an evidence of teachers using group work without much mathematics learning
happening (Brodie and Pournara 2005). I think of collaborative learning as a joint ven-
ture between learner/s and teacher as well as among learners themselves. How we
reason mathematically or support our learners to reason mathematically is in part
dependent on the interdependence between the parties in collaboration.

Mercer (1995) strengthens my ideas about collaboration with the following
quotations: “I suggest that we need to recognize that knowledge exists as a social
entity and not just as an individual possession” and “the essence of human knowl-
edge is that it is shared” (p. 66). Mercer’s ideas resonate with those of Lave and
Wenger (1991) who argue that learning occurs in communities of practice, with
shared goals and practices. The idea is to create such a community in the classroom,
where the teacher takes a leading role in helping learners to develop interactions
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and practices as a community. Teaching mathematical reasoning demands that
learners be able to voice their mathematical thinking, so that mathematical discus-
sion around their assertions can generate an “intellectual ferment” (Chazan and Ball
1999). Learners need to move away from a dependence on the teacher as the only
mathematical authority in the class towards a position that Davis (1997) refers to as
a “community-established standard: a collective authority” (p. 369). As argued in
Chap. 1, this authority comes from the discipline of mathematics. Developing a
broader sense of authority requires changes in the way learners and teachers view
their roles in the classroom. Teachers need to become what Davis (1997) terms
“hermeneutic listeners” (p. 369), which is genuine listening as a participant in the
conversation in order to understand what learners are saying. We refer to this kind
of listening “with” learners. This is very different from evaluative listening, i.e.
listening for the right answer, which many teachers do most of the time.

Listening to learners in better ways does not necessarily help teachers to know
how to respond to learners’ ideas (Heaton 2000). In their article aptly named
“Beyond being told not to tell”, Chazan and Ball (1999) suggest practical ways in
which teachers can act in classroom discussions, without giving the answers, that
may focus and give direction to a particular discussion. These include

* Rephrasing learners’ comments and helping the class to hear them
* Asking for clarity when they think learners’ assertions are not clear and
* Focussing learners’ attention on a particular aspect of a discussion

As teachers do this, focussing learners on the norms of participation is important,
particularly sociomathematical norms (Yackel and Cobb 1996, see also Chap. 1),
where an explanation consists of a mathematical argument, not simply a procedural
description or summary; mathematical thinking involves understanding relation-
ships among multiple strategies; errors provide opportunities to reconceptualize a
problem, explore contradictions in solutions, or pursue alternative strategies; and
collaborative work involves individual accountability and reaching consensus
through mathematical argumentation (Kazemi and Stipek 2001).

Summarizing My Perspective

In the above pages, I have made a number of arguments, which informed how I
conducted this study and analysed the data. First, I argued that mathematical rea-
soning is made up of a number of processes. The learner makes observations, tries
to provide evidence and explanations, and through connecting these with existing
knowledge, restructures this knowledge (Hatano 1996). Proficiency in “procedural
fluency” and “conceptual understanding” (Kilpatrick et al. 2001) is needed for such
restructuring. Key to enabling restructuring is explaining, communicating, and
justifying conjectures and claims, which are features of “adaptive reasoning” as
argued by Kilpatrick et al. During this communicative process, we see the learner
evaluating and refining new knowledge.
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I further argued that learning mathematical reasoning as part of mathematical
proficiency (Kilpatrick et al. 2001) is best achieved through collaboration in com-
munities of practice (Lave and Wenger 1991). Such communities are governed by
norms of practice, (Yackel and Cobb 1996) and as teachers, we can and should take
the lead in developing classroom norms that deeply engage learners (Kazemi and
Stipek 2001). Teachers can listen carefully and make a range of moves (Brodie
2004b) which do engage learners’ thinking. Taking account of the above, I
embarked on a study to see whether what these researchers are claiming is possible
in my classroom in South Africa.

My Classroom

My pseudonym in this study is Mr. Daniels; there is a detailed description of my
school context in Chap. 2. I refer to some of it briefly here. This study was con-
ducted with one of my Grade 11 classes, consisting of 35 learners with a range of
mathematics abilities. The class was situated within a school of 1,600 learners,
which is well integrated in terms of historically racial divisions. A teaching staff of
63 puts the teacher—learner ratio at about 1:23. Actual class sizes average 33 learn-
ers per class. Although the school is situated in a middle-class suburb, a large
number of the learners travel to school from lower income areas. English is the
language of instruction at the school and is not the first language of the majority of
the learners. My classroom is relatively well resourced with desks and chairs for
every learner. The building structure in general is well maintained. Aside from the
writing board, I also have an overhead projector and screen at my disposal.

As part of the collaboration in this project, I worked with two colleagues to
develop a series of tasks that we hoped would elicit mathematical reasoning in our
Grade 11 classes. We drew on a number of resources, including texts that were in
the process of being written for the new curriculum. The tasks that we developed
have been analysed in Chap. 2. I planned to use the tasks over a week in my Grade
11 class. I structured the work as follows: learners had some time to work on the
tasks themselves, then they came together in small groups of three or four learners
to discuss their findings, and finally, the groups reported back to the class and we
had a whole-class discussion. The lessons were videotaped and I wrote reflections
after each lesson, which helped with my analysis.

The Analysis
There were three important issues in my analysis of the data collected:

e The first was how to select certain parts of the data to analyse.
e The second was how to see the analysis in context.
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e The third involved structuring the writing to make it easy for the reader to
understand my argument even though I can present only some of the data.

As I struggled to select data, I decided to focus on one learner’s development in
one lesson. It was not possible to do more in the scope of this study and I believed
I could achieve more depth of analysis through focussing on one learner. My deci-
sion to focus on Winile in particular was because of her visible participation
throughout the lessons, which allowed me to plot a developmental sequence of her
learning. The analysis therefore focusses on the development of Winile’s reason-
ing through the lesson and how collaboration with me and other learners made this
possible. Focussing on Winile’s learning enabled me to understand how her learn-
ing as an individual both influenced and was influenced by the social interaction
in the class.

To isolate a learner from a whole-class discussion in order to analyse and fol-
low her mathematical reasoning is not entirely possible. This is due to the collab-
orative learning that takes place. In such an analysis, the question arises as to how
to know which statements influence each other. One learner’s statement may or
may not motivate another learner to say something. To link contributions in dis-
cussions to each other is a difficult task, and it is important to always remember
that there is a variety of influences on learners’ development. This means that the
context of any utterance needs to be considered very carefully and from a number
of perspectives.

The analysis presented in the next section was obtained from thorough analysis
of the video and transcript focussing on the claims that Winile made in one lesson,
over a time period of about 36 min. It is clearly not feasible to present all of these
data here. So, I need to make another selection, which is how to show the reader
what I have seen, in much less time and space than it took me to see it.

Winile’s Learning

The analysis focusses on Activity 2. The content of the activity was how to think
about the changes affected by the horizontal translation of the graph of y=x? to the
graphs of y=(x—p)* where p was 3 and —4 respectively. Winile’s group had just
reported back on their findings and Michelle posed a question, asking why the
graph for y=(x+4)? has a turning point of —4. She suggested that the +4 inside the
bracket contradicted a turning point of —4 and asked Winile to explain this. This
served as a catalyst for a fervent discussion, which resulted ultimately in Winile
formulating her new conceptual frame for understanding graphs and equations. The
analysis follows Winile’s learning in five steps: (1) making observations; (2)
explaining and justifying claims; (3) connecting her claims to the mathematical
representations; (4) restructuring conceptual understanding; and (5) using her new
conceptual frame to test other claims. I describe each of these and show how the
classroom collaboration supported Winile’s shifts.
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Making Observations

Winile’s journey started as I called her group to share their findings with the rest of
the class. Winile became the reluctant spokesperson for the group. In the extract
below, Winile hesitantly indicated that the turning points of the graphs y=x?
y=(x—3)2and y=(x+4)* differ; the y-values of corresponding points stay the same;
the x-values change; and the sizes of the graphs are the same and the equations of
the graphs differ.

Winile: We said they are different on the turning point, and the equation, but the y-axis
stays the same, and the size of the graph also stays the same, and (inaudible)
Mr Daniels:  Okay so the, what stay the same

Winile: The, the y-axis.

Mr Daniels:  The y-axis. The y-axis stay the same.
Learners: talk over each other, inaudible

Winile: The y values stay the same but x-axis changes.

Mr Daniels:  Okay, can we speak one at a time. Let’s speak respectfully to one another here.
If you’ve got a question, just raise your hand.

Learner: (inaudible)

Winile: What

Learner: (inaudible)

Winile: The y-value stays the same, the x-value (inaudible) the turning point (inaudible)

Mr Daniels:  Okay, so you say the equation changes, the y-value stays the same,
Winile: And the turning point,

Mr Daniels:  And the turning point stays the same.

Winile: No, it changes (shakes her head and looks at her notes)

Mr Daniels:  The turning point also changes

We see here that Winile’s initial claims were merely observational and she did not
see a need for justification. In fact, even to enable her to make a proper report back
required a lot of support from me. This support was in the form of keeping other
learners quiet, establishing social norms so that Winile could be heard, and also
helping her to voice her ideas, and in some cases rephrasing (Chazan and Ball
1999) or revoicing them (O’Connor and Michaels 1996).

Explaining and Justifying Assertions Made

After this, Grant, a member of the same group, came up to comment on the next
part of the task. Grant tried to explain that since the x-values changed and the
y-values stayed the same as the graphs were shifted left or right, the equations must
change. I pressed him to say more specifically how the graph had changed and
Grant struggled, looking at his book and searching for an explanation. His attempt
follows in the next extract:
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Grant: Sir, uh, the graph’s position has moved, so when you, however many positions
its moved, you either add it or minus it, onto your equation.

Winile: Can I just make it simple sir, you substitute the x-value with the variable, we
change the equation and then the y, uh, variables never changes (inaudible).

Mr Daniels:  Yes, okay, now how d’you mean, just explain what you said, he said that it
changes, what did you say? I didn’t follow nicely.

Grant: If the graph, the graph’s position has changed, on the x-axis
Mr Daniels:  Right.
Grant: Therefore, so then you either add onto your equation, its moved how many

spaces, or you minus it. Now do you understand?

After Grant’s initial contribution, Winile stepped in a little more confidently. Her
assertion is still vague; however, it does show a different interpretation from
Grant’s, which is also vague. This response from Winile suggests that she began to
acknowledge a need to explain and justify claims, realizing that Grant’s claim
needed explanation for her and probably the rest of the class.

Winile’s move shows how learning collaboratively feeds into the process of
mathematical reasoning. Winile did not see a need to clarify or explain her own
claims, yet hearing another learner’s claims, which she had been party to,
prompted a need to explain. In making her explanation, Winile started to make
connections between her observations and the equation. In a sense, she was jus-
tifying why the equation must change. She was reasoning at a higher level,
brought on by realizing the need to explain Grant’s claim to the class. My role in
this interaction was to press Grant to explain his claim, which also supported
Winile to do so.

Connecting Observations with Mathematical Representations

As learners in the class sought more clarity from Winile with regard to Grant’s
assertions, Winile realized that she needed to switch representations. She came up
to the overhead projector and tried to explain her concept as follows:

It means that this x uh, here, because when you move three times to your right (writes
y=x’+3), or you (writes y=x*>—3), it means that you move to the left, this means when
you move to the right three times, that’s what we trying to do, that when you move the
graph three times, you supposed to add it three times, and when you move it three times to
your left then you subtracting three times

These connections between equation and graph are mathematically incorrect.
However they do show that she was starting to make conjectures about certain
patterns she had observed.

The use of alternate representations by Winile suggests that again she was
reasoning at a higher level. Not only was she explaining observations, but she was
making connections between her graphical observations and the representations in
equations. The need to use a written representation to illustrate the translation of
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the graph to y=x? to y=x?-3 (translation of 3 units to the left) and to y=x?+3
(translation of 3 units to the right), served as a catalyst for making these connec-
tions. The need to explain to others more effectively once again served as a cata-
lyst for mathematical reasoning. Winile’s reasoning was extended to expressing
the changes she observed in an alternate representation. She had progressed to not
only connecting various aspects of the mathematics but also producing mathemati-
cal representations with which to express these connections. Although these rep-
resentations were mathematically incorrect, they demonstrate her reasoning in
relation to the task.

At this point, Winile was interrupted by Michelle who wanted to ask her a question.
The interaction involved a few learners and is captured in the following transcript:

Michelle: Okay, can I ask a question

Mr Daniels:  Okay.

Michelle: Okay, look on task one right. You said that if it is a positive, you move to the
right and if it is a negative, you move to the left. So now, can you please
tell me why on your second drawing, where it says y equals x minus three
squared (looks at Winile) can you see that? Say yes Winile if you understand.

Winile: Yes, I can see it.

Michelle: Alright, so now how come in the bracket there’s a negative but where the turning
point is, is a positive. That’s what I would like to know.

Mr Daniels:  Okay, Lorrayne (interruption by learners) Carry on Lorrayne

Lorrayne: Sir, you have a negative three in the bracket and it’s a square, when you square
something, remember, Sir said when you square it, it becomes positive.

Learner: If it’s a negative

Lorrayne: Ja

Michelle: And then if you look at y equals x plus four, why is it that the turning point is a
negative.

Learner: But the equation is positive

Michelle: And the drawing is positive.

Learner: I asked that too. (Some learners laugh).

Learner: I’m also asking the same question.

In the above extract, Michelle and Lorrayne co-produced an important question
relating the equations to the graph. It was a question that had occurred in a number
of groups and so was shared by learners. What is notable in this extract is how the
learners worked together and spoke to each other, with almost no intervention from
me, except to give Michelle permission to talk and to keep the class quiet so
Lorrayne could speak. Brodie (2007b) argues in relation to this episode that when
learners share important provocative questions, they are more likely to engage in
real conversation.

Winile was silent during the above interaction and continued to be silent as a
number of other learners discussed Michelle and Lorrayne’s question. Winile did
not return to her seat however, but took a seat in front of the class where she listened
intently to the ensuing discussion. The discussion continued for some time, until I
felt the need to intervene and make an important point as follows:
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Mr Daniels:  Okay now, what is a point? A point is made up of what?

Learner: x- and y-co-ordinates.
Mr Daniels:  x- and y-co-ordinates. Good! So what is the x-co-ordinate there?
Learner: It’s minus four is your X co-ordinate

Mr Daniels:  Good. So what is negative there? The turning point is negative or is it one of the
co-ordinates that’s negative? Okay, let’s hear.

Brodie (2007c, see also Chap. 9) argues that although the above interaction might
seemed somewhat constrained, in fact it served an important function in moving the
learners’ discussion and thinking forward, in that it reminded them to consider both
co-ordinates of the turning point, rather than only the x-value. Up until this point,
they had been talking about the turning point as —4, which did not help them to see
that a point is a relationship between x and y, given by the equation. This interpreta-
tion is borne out by Winile’s following contributions. The intervention helped to
support her to move to the next level of her reasoning trajectory.

Reconstructing Conceptual Understanding

Immediately after my intervention above, Winile emerged from being a silent par-
ticipant with new ideas to contribute:

Winile: The positive four is not like the x, um, the x, like, the number, you know the
X (showing x-axis with hand), it’s not the X, it’s another number. For that
when you do the equation you get some sense from the answer you get, cause
without that p, that minus p, your equation will never make sense.

Learners: (murmuring)

Mr Daniels:  Can I just get back to, That’s good, Winile

Learners: Sshh

Mr Daniels:  Does people want to make clear of what Winile is saying?

Learners: Yes, mutter; talk over each other as Winile comes up to OHP

Winile: You see, Michelle when you’ve got this [writes y=x?], you substitute this
with a number, isn’t it. Like you go, whatever, then it gives you an answer.
[substitutes 3 for x and gets 9]

Learner: Yes

Winile: You see when you got this, plus three [writes y=x?+ 3], you have to substitute
this with the, that with like the one, zero, one two, three [Draws numberline,
x axis]. Your turning point is here. You have to substitute this with this
negative one here, plus three. Do you understand? This three /[circles the
3 in y=x?+ 3] is not, is not part of the, this x, uh, variables. Its the given
(inaudible) Get it?

In this extract, Winile justified her claims similarly to how she explained Grant’s
assertions earlier. First, she made a verbal contribution, which was difficult for
others to understand. She then came up to the overhead projector and wrote equa-
tions to explain her new understanding. As she explained the second time, her
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explanation is not only clearer to the listener but her explanation has progressed
to become more focussed and connected, even though she is still using the incor-
rect equation.

The clarity of Winile’s mathematical reasoning was evident as she explained that
the +4 and the -3 in the equations were not the x-values of the turning point but as
she put it “some other” values. She affirmed that the equations represented the
relationship between the x and y variables and that the x-values must be substituted
into the equations to give the y-values. During these assertions, it was evident that
Winile was more confident and self-assured that she was on the right track. Winile’s
reasoning had evolved to a point where she was in a position to evaluate previous
claims and adapt them to her understanding. She was now in a position to make the
appropriate connections between the value of the turning point and the representa-
tional equation. This learning came after a relatively long period of silence from
Winile where I can only assume that she was quietly reasoning and adjusting her
own understanding as the class discussion involved other learners.

This highlights again the quality of collaborative learning which was present in
Winile’s reasoning. She was able to modify her assertions by listening to the discussion
that prompted her own reasoning. Her explanation to the class facilitated their under-
standing but also assisted in refining her own understanding of the issue at hand. With
this understanding, she confidently answered Michelle and Lorrayne’s question.

Testing Other Claims

After this, David indicated disagreement with Winile, arguing that the turning
points could be determined by taking out the +4 or the —3 from the bracket, moving
them to the other side of the equal sign and changing the signs. Again, she had to
justify her ideas, which she did as follows:

We supposed to get the y, aren’t we supposed to get the y, what the y equals. We’re not
supposed to get what x is equal to, we getting what y is equal to. So we supposed to, sup-
posed to substitute x to get y.

This justification supported Winile to move to yet another level of mathematical
reasoning. She emphasized the fact that we use the equation to get the y-value by
substituting the x-value into the equation. In doing this, she tested her own conceptual
frame against that of David’s and used her understanding to extract the weaknesses
in David’s argument. Winile did not wait to be invited to give a response to David,
but confidently and openly engaged David’s assertions. She argued (laughing):

Okay sir, he’s just telling us where to put like, the turning point of the graph, and we want

to know why, the y-value is, we want to know what the y-value is and you’re telling us the
x-value.

Winile was using her conceptual understanding to test and spot the failures in
David’s argument. This places her in a position to challenge David’s assertions. She
continued to do this for the rest of the lesson.



The Teacher’s Role 69

The Teacher’s Role

The above analysis indicates how important the collaborative learning in the class
was to Winile’s learning. In particular, the role of the teacher was central to this
collaboration. In the above analysis, I indicated a number of roles that I played in
supporting learners to talk, in steering the collaboration, in pushing for justification,
in remaining silent when I needed to, and finally, in making substantial mathemati-
cal contributions when necessary. To further analyse my own role, I came up with
three main categories, each of which contains some important teacher moves.

Establishing Discourse

By “establishing discourse,” I refer to my actions that attempted to create a climate
of interaction, which could support the learners to participate in the discussion and to
reason mathematically. One way in which I did this was to create social and socio-
mathematical norms in the classroom (Yackel and Cobb 1996). Social norms included
speaking one at a time; raising one’s hand as an indication that one wants a speaking
turn; listening to each other; and building on each other’s ideas. Socio-mathematical
norms refer to the nature of the mathematical interaction. For example, after Michelle
and Lorrayne had asked their question, Candy tried the following response:

Candy: Sir, couldn’t it just be like a basic thing, that if it’s on the positive side then your
equation is negative and if it’s on the negative side then your equation is
positive? Can’t it just be like that (laughs)

Michelle: I can’t accept that

Learners: Mutter, talk over each other
Mr Daniels:  Okay. Let’s ... Say that again.
Michelle: I can’t just accept that.

Mr Daniels:  So, I'm not expecting you to accept it.
Michelle: No, I’m just saying that I can’t ...
Mr Daniels:  That’s good. That’s what I'm saying. I'm saying it’s good that you don’t just accept it

Candy was asking whether we should just accept the fact that the signs were different.
Michelle indicated that she could not just accept that, implying that she needed a
better justification. I praised her position as valid, indicating that I did not expect
nor want her to just accept it and the discussion continued to try to find the justifi-
cation. This helped to establish the socio-mathematical norm of requiring a justification
and may have helped Winile to restructure her understanding to include the need
for justification.

The second way in which I established a particular kind of discourse is by mod-
elling how to participate. I listened attentively to try to understand what the speaker
was saying and I asked questions if I disagreed with learners’ assertions or needed
some clarity on their ideas. The following extract occured when I asked Michelle
to clarify the question she asked Winile.
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Michelle: And then if you look at y equal x plus four, why is it that the turning point is a
negative.

Learner: But the equation is positive

Michelle: And the drawing is positive.

Learner: I asked that too. (Some learners laugh).

Learner: I’m also asking the same question.

Mr Daniels: ~ What question are you asking?

Michelle: The question ...

Mr Daniels:  Yes.

Michelle: Look at our drawing where ...

Mr Daniels:  Okay. Where’s my drawings? (finds drawings)

Michelle: Where it says y equals x plus four on the left hand side.

Mr Daniels:  Right.

Michelle: Our turning point is a negative four.

Mr Daniels:  Okay

Michelle: Then Lorrayne that said with the one on the right, where it says y equals x

negative three squared, and the turning point is a positive. Because you
squaring it, it will become a positive. But what happens with um, the one on
the left?

Lorrayne: The negative one. The equation is positive but the graph is on the negative side.

In the above extract, I model how to listen by asking the learners “what question
are you asking”, by explicitly showing them that I was looking for my drawings in
order to understand their question and by indicating agreement as they spoke and I
understood. This is important because many learners have not participated in dis-
cussions previously and may not know how to listen and contribute appropriately.

Framing Discussion

By framing discussion, I refer to the actual mathematical content that I used to help
the learners make progress. The best example for this is the one quoted above,
where I used a sequence of closed and directive questions to remind the learners
that a point consists of two co-ordinates. I did not do this because I wanted them to
remember that as a fact in and of itself. Rather, it was an important mathematical
fact that could help their thinking (see also Brodie 2007¢c and Chap. 9). By remind-
ing learners that a point consists of a co-ordinate, I focussed their thinking onto the
relationship between the x and y, helping to move the discussion forward.

Lesson Flow or Momentum

With lesson flow, I refer to the movement and progression of discussion. Does the
discussion show any progression or is it stagnant on one point, which does not seem
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to be resolved? Is there any discussion taking place at all? The ability of the teacher
to negotiate between speaking turns and free dialogue plays a key role in the lesson
flow. The ability to assess when to intervene and when to allow discussion to take
its course is an important consideration for a progressive and meaningful lesson
flow. For this, the teacher needs to be on the pulse of the discussion, constantly
aware of the meanings learners are constructing within the discussion as well as the
“social and emotional tone of the discussion” (Chazan and Ball 1999).

Conclusions and Implications

This study set out to analyse the ways in which learners collaboratively engaged in
mathematical reasoning and how they learned to reason mathematically through
collaboration. The analysis points towards the possibility of such learning. The
analysis also provides an argument that this learning was made possible through
mathematical processes characterized as follows:

e Making observations

* Connecting observations with various mathematical representations
* Explaining and justifying assertions made

e Reconstructing conceptual understanding

» Using a new conceptual frame to evaluate assertions

My analysis shows how a learner constructed and readjusted her own conceptual
understanding of the content, motivated by the collaborative nature of the learning
environment. Her learning was not simply learning from her peers but learning with
her peers. It could be argued that she might not have moved to a new conceptual
frame without the catalyst provided by collaboration characterized by an intellectual
ferment (Chazan and Ball 1999) in the classroom discussion. Reflecting on Winile’s
learning, I can see the important role that collaboration played in her learning.

I have also shown that the teacher is central in collaborative learning. I have
shown how I created the conditions of possibility for the collaboration and provided
a mathematical voice at certain key moments. From me, there is a strong message
to teachers here, which is that this kind of teaching is much harder than traditional
teaching. If we are to continue to use the word “facilitate” to describe the teaching
we would like to do, we should understand that facilitation requires much more
work than we are used to. From this experience, I have seen that lessons in which
teachers support mathematical reasoning in their learners through collaborative
learning are very time consuming. These lessons are important in that they allow
for greater conceptual understanding and reasoning as was shown in the analysis.
However, it may be the case that less content is covered, as happened in my class.
I suggest that researchers look into developing learning materials and teaching
methods that will enable teachers to cover content in a more integrated way, so that
more content can be covered, while reasoning is simultaneously developed.
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In concluding this chapter, so much is still left unsaid. What is clear to me,
however, is that the teaching of mathematical reasoning is achievable through a
collaborative learning environment with effective whole-class discussions. A lot of
research still needs to be done in establishing sound pedagogy to facilitate this type
of teaching. It is my hope that this project will spark a flame in many teachers and
researchers to initiate more rigorous research and reflection.



Chapter 5
Classroom Practices for Teaching and Learning
Mathematical Reasoning

The previous two chapters focussed on learners, their responses to tasks and one
particular learning trajectory, and analysed how the teachers supported the learners
through their teaching moves and practices. In this chapter, I shift the emphasis
slightly, focusing on the teacher’s practices and how these become internalized by
the learners. So, while continuing the focus of the book on teacher—learner interac-
tion in the development of mathematical reasoning, I illuminate a slightly different
view of the interaction in this chapter.

I do this by analysing a teaching approach that I developed over a number of
years, in which thinking and talking are used to promote mathematical reasoning.
The approach has been largely influenced by the changes in the South African cur-
riculum over the past 10 years. These changes have been in three areas: what it
means to do mathematics (Ball 2003; Kilpatrick et al. 2001), what it means to learn
mathematics (Hatano 1996; Lave and Wenger 1991; Vygotsky 1978), and what it
means to teach mathematics (Chazan and Ball 1999; Lampert 2001). Informed by
these shifts, I have developed a new approach, one which might be called learner-
centred, where learner-centred means encouraging learner participation in ways
that allow learners to reason mathematically, to make sense of mathematics, to
transform their mathematical ideas, and to own their mathematical thinking (Brodie
2007a; Brodie et al. 2002). This is different from older curriculum approaches in
which teachers introduced the subject matter, gave exercises to learners, and cor-
rected them, without hearing much about learners’ underlying thinking.

My approach aims to support learners’ thinking and talking in mathematics and
to develop their mathematical reasoning. By mathematical reasoning, I mean
“establishing some truth about a particular aspect of mathematics, finding some
evidence or justification for the truth that one has assumed, and knowing why you
are correct” (Open University 1997). As discussed in Chap. 1, this view of mathe-
matical reasoning is a broad one, it includes the notion of proof and proving, but is
not restricted to them. Rather, I try to support learners to make reasoned and justi-
fied statements of their mathematical ideas.

Communication in the classroom, between learners and the teacher and among
learners themselves, forms an important component in teaching learners to think
and reason mathematically. Thinking mathematically is something that every
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human being does all the time (Mason et al. 1982). What is important in the class-
room is how this thinking is externalized to make one’s ideas understood by other
people. Lampert (2001) argues for learners to evaluate their own thinking in three
ways: by privately reflecting on what they are doing; by talking about it in the local
community, which in this case would be in their groups; and by presenting their
ideas to the class for public discussion under the guidance of the teacher. It is in this
way that I hope to encourage learners to share their ideas and respect each other’s
opinion in their discussions.

Finally, an important part of reasoning mathematically is that the learner comes
to own her or his ideas. A justified argument makes sense because it is justified. My
approach encourages learners to refrain from viewing me as someone who has solu-
tions to all the problems and who is the authority on whether something is correct
or not. Rather, they should consider me as a person who is there to help them in
making their own sense of mathematics.

This chapter focusses on my attempts to achieve the above. In doing this, I pres-
ent an analysis of my teaching practices and the learning practices that are encour-
aged in my classroom.

Classroom Practices

I use Schifter’s definition of teaching practices as being skilful, patterned regulari-
ties that occur in teachers’ classrooms (Schifter 2001). These involve particular
approaches that teachers employ in their classrooms consistently and which create
contexts for developing meaning in mathematics. Practices are always social, intel-
lectual and practical and are directed towards a desired end or goal (Brodie 2008).

An important distinction can be made between teaching practices and mathemat-
ical practices (Ball 2003; Cobb 2000). Teaching practices are more general and
occur in all classrooms, for example asking questions, writing on the board and
asking for learner contributions. Mathematical practices are specific to mathemat-
ics classrooms, for example, explaining, generalizing, and justifying mathematical
ideas. In describing “classroom mathematical practices”, Cobb (2000) focusses on
mathematical interpretations and reasoning. Mathematical practices involve the
normative or taken-as-shared mathematical content in arguments that arise in math-
ematics classrooms, are established by a classroom community, and “can be seen
to constitute the immediate, local situation of the students’ development” (p. 73).
I will talk more on the notion of classroom community below.

The Productive Pedagogies Research Group (Hayes et al. 2006) looked at a
number of classroom practices that contribute to more equitable student outcomes
for all students. Some of these practices are developing higher order thinking and
depth of knowledge among learners; employing extended conversations and meta-
language in classrooms; creating connectedness and integration among topics; and
encouraging learner self-regulation. These resonate with “equitable teaching prac-
tices” described by Boaler and her colleagues, which include asking conceptual
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questions; keeping the level of mathematical challenge high; enabling broader par-
ticipation of learners in class; and supporting learners’ accountability to each other
and to the mathematics (Boaler 2002, 2004; Brodie et al. 2004). Drawing on these
practices as background, I analyse my own classroom to see which practices I
employed to encourage learner participation, reasoning, and accountability.

Learning Mathematical Reasoning

As discussed above, mathematical reasoning is about the conviction that comes
with knowing that you have a justified argument, which you can communicate to
others. This notion is strongly informed by Kilpatrick et al.’s (2001) five strands of
mathematical proficiency, which are discussed in detail in other chapters of this
book. Here, I focus on their notion of adaptive reasoning, which they argue, holds
the other four strands together. They argue that adaptive reasoning refers to the
capacity to think logically and includes knowledge of how to justify conclusions. It
is important that learners know and understand that answers are right because they
make sense and come from valid reasoning, rather than merely accepting what the
teacher and textbook tell them. Learning to reason mathematically involves a num-
ber of processes. These are the learner’s individual thinking and sense-making;
teacher—learner interaction around reasoning; and the classroom as a community of
practice developing the mathematical practices of justification, generalization, and
communication.

As individuals, learners construct their own meanings of mathematical ideas,
talks and symbols (Hatano 1996). Although this always happens in a social context,
it is still important for teachers to focus on particular learners’ constructions and
reasoning. Individual learners bring their current knowledge into the classroom,
and hopefully through the process of interacting with others, will transform, shift,
or reconstruct this knowledge (Hatano 1996). Hatano argues that the fact that mis-
conceptions exist shows that learners do construct their own knowledge because
they are not often taught misconceptions. Errors and misconceptions are signs that
learners are involved in their learning and that their thinking processes are engaged.
Accepting errors and misconceptions as a normal part of the teaching and learning
process means that further explanations can be encouraged from learners in order
to understand why they made those errors and misconceptions. This is one way that
further thinking and reasoning can be supported among learners.

Many teachers and theorists have interpreted constructivism to mean that learn-
ers work on their own, without the teacher. This in itself is a serious misconception.
The importance of teacher—learner interaction comes to us from Vygotsky (1978),
who argues that learning arises out of two minds in interaction, in this context the
minds of teacher and learner. Vygotsky (1978) argues that learning takes place on
two planes, on the inter-psychological (interaction between people) as well as on
the intra-psychological (interaction within the mind of the individual). The intra-
psychological is internalized through the inter-psychological. What is therefore
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internal in the “higher mental functions” was at some stage external, between
people (Vygotsky 1978, p. 80). Internalization of classroom practices by learners is
therefore an important support for and indication of learning.

Finally, although learners come into a classroom as individuals, they immediately
become part of a community that exists in the classroom, what Lave and Wenger (1991)
refer to as a community of practice. In this view, learning and teaching are seen as
participation in socially situated practices (Lave 1996). As members of a community of
practice, learners learn to participate in the classroom practices, through Legitimate
Peripheral Participation (Lave and Wenger 1991). They learn practices from the teacher
as well from each other. Drawing on both Vygotsky and Lave and Wenger, this study
explores how learners, as members of a community of practice, internalize aspects of
their teacher’s practices in developing their mathematical reasoning.

Teaching Mathematical Reasoning: Questioning and Listening

When learners reason mathematically, they explain, they generalize, they justify,
and they communicate mathematics. “Students need to be able to justify and
explain their ideas in order to make their reasoning clear, hone their reasoning
skills, and improve their conceptual understanding” (Kilpatrick et al. 2001, p. 130).
Learning mathematical reasoning is, of course, a process. It is a process that needs
the guidance of the teacher and the participation of the whole classroom commu-
nity. The teacher’s guidance involves practices that teachers employ in the class-
room to help learners make sense of mathematics.

In looking at my teaching practices, I chose to focus on two main categories:
teacher questioning and listening. Questioning plays an important role in mathemat-
ical reasoning, and teachers can ask questions that support or inhibit learners’ mathe-
matical reasoning (Boaler and Brodie 2004; Watson and Mason 1998). Teacher
listening complements teacher questioning, in that when one asks a question, one
ought to listen to how that question is answered. Listening carefully to how learners
respond to questions helps teachers to know how to take their ideas forward in
supporting them to think and reason mathematically.

Questions are normally asked in many mathematics lessons, in the form of tasks
that learners have to work on, or as exercises that learners have to complete, or
questions asked by the teacher to assess learners’ understandings. Research has
shown that different kinds of questions influence mathematics learning and reason-
ing in different ways. Watson and Mason (1998, p. 3) believe that questions such as
“How did you ...?, Why does ...?, and What if ...?” are typical questions that can
support learners to focus their thinking on the structures and processes of mathe-
matics. This is in contrast to questions that only focus on recollection of facts,
where the teacher usually expects particular answers (Boaler and Brodie 2004).
Many authors refer to teacher questions as being closed and thus by having a single,
straightforward answer, their main aim becomes testing the learners, rather than
encouraging them to think (Nystrand and Gamoran 1991).
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If teacher questions are more thought provoking, they can support learners to
present a variety of responses. In this way, learners may be encouraged to think and
reason mathematically and to evaluate each other’s responses. Learners usually
learn how their teacher asks questions and come to expect particular kinds of ques-
tions from their teacher. If learners come to expect more complex questions, they
are likely to expect to have to provide more complex answers, which require rea-
soning. However, finding the right questions to ask is not always easy. Heaton
(2000) shows how many of her questions were too open, they did not support learn-
ers to engage with the task. She struggled to find a way to ask the appropriate ques-
tions. Kazemi and Stipek (2001) use the notion of “high press” and “low press” to
distinguish between questions and prompts that teachers use to push learners into
verifying their answers. They argue, “high press questions encourage learners to
include mathematical arguments in their explanations, while low press questions
encourage procedural descriptions only” (p. 78).

Asking questions goes hand in hand with how learners’ responses are heard and
responded to, by both the teacher as well as other learners in the classroom. For this
reason, listening is also an important tool in an environment that supports mathe-
matical reasoning and thinking. Davis (1997) makes a distinction between listening
for and listening fo. Teachers are often constrained by the fact that they listen for
something in particular, rather than listening fo the speaker. Listening for some-
thing goes with not being interested in what the other person is saying. Teachers
often ask questions that address particular aspects or points that we are looking for,
and when a learner produces an unexpected contribution, we usually do not enter-
tain that response, but continue to look for a response that would satisfy us.
Listening to a learner suggests trying to understand the sense that the learner is
making of the mathematics and taking that as the starting point for further discus-
sion. Davis calls listening for something, evaluative listening, and listening fo
someone, interpretive listening. He also has a notion of hermeneutic listening,
which we have called listening with the learner, where the teacher listens as a co-
participant in a conversation with the learners. Listening with learners can help the
teacher to listen more carefully, interpret the learners’ ideas more appropriately, and
interrogate their responses.

As a teacher really listens to learners, s/he will find that the errors that learners
make are quite sensible and come from underlying misconceptions. Brodie (2005)
argues that errors are often “remarkably reasonable when viewed from the perspec-
tive of how the learner might be thinking” (p. 37). Schifter (2001) recommends that
teachers try to follow learners’ lines of reasoning, even when the sense they are
making is not obvious. Errors and misconceptions are an indication of learners’
thought processes and can be viewed by teachers as uncovering important mathe-
matical questions for the class to consider and discuss. Care must be taken though
that other learners do not discourage learners who produce errors, but rather help
them constructively. The main aim is to sharpen learners’ evaluation skills and
abilities to help their peers and themselves, and in doing so, make learning more
meaningful. Learners’ misconceptions can help them develop into better mathemat-
ical thinkers, if teachers ask learners to explain their thinking when they produce
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these misconceptions (Brodie 2005). How to deal with errors and misconceptions
forms part of the practices that teachers can develop to support learners’ mathemati-
cal reasoning.

My Classroom

For the purposes of linking this chapter with the rest of the book, it is important to
note that my pseudonym in the study is Mr Mogale. This study was conducted in
one of my Grade 11 classes, in a functional township school west of Johannesburg,
with very basic facilities (see Chap. 2 for more detail). All the teachers and learners
in the school were “black African” South Africans (see Chap. 2). English is not the
main language of any of us, but all teaching and learning of mathematics occur in
English. There were 1,700 learners in the school at the time of the study and 46
teachers, giving a learner—teacher ratio of 37:1.

This was a reflective study on my own practice and was conducted in one of my
Grade 11 classes, with 43 learners in the class. This was an accelerated class, where
learners were taught more quickly than usual due to their strong achievement in
mathematics and were eventually introduced to the Grade 12 syllabus while they
were still in Grade 11. Most of the learners in the class were very strong in math-
ematics. I had taught this class (except for six learners) for one and half years, since
they were in Grade 10.

I worked together with the other two Grade 11 teachers involved in this
research project to choose a suitable task that would elicit learners’ mathematical
reasoning. We chose a task that consisted of four activities to be done over a week.
The task was based on quadratic functions, but was different from the problems
that learners had dealt with before, since it involved exploring translations of the
graph of y=x2. The task is discussed in more detail in Chap. 2. Learners worked
in groups of three or four, which are easy to manage, and each group nominated a
spokesperson to present their ideas to the class. In making these presentations,
they had to explain to the class how they arrived at their solutions and why they
thought their solutions were correct. In the process, they gave other learners the
opportunity to ask them questions.

The role that I played during the lesson was that of a facilitator. I walked around
the groups to check on how learners were discussing the activities and sharing ideas.
I would ask questions that encouraged them to reason mathematically. During group
presentations to the class, I had to make sure that discipline was maintained. Any
learner who wanted to ask a question or comment should first raise his/her hand to
be recognized. I tried as far as it was possible to stand back and give learners the
opportunity to communicate their ideas, and allow the discussions to flow. I would
only come in when it was necessary for me to insert my own voice (Chazan and Ball
1999) in order to keep the mathematical discussion and reasoning at reasonable
levels. Some of my questions and interventions were planned and some happened in
an impromptu way, depending on learner responses.
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Three lessons of 70 min each were devoted to these tasks. All these lessons were
videotaped. In order to analyse my practice, I watched the videotapes very care-
fully, looking at how I questioned and listened to my learners. I also looked for
some other aspects of my teaching that I was trying to achieve, for example chal-
lenging learners for justification and redirecting learners’ input to the whole class.
While noticing these, I became aware of some practices that I did not know about
in advance, for example, adding my own voice or adding a learner’s voice. So, my
final set of categories included aspects of my teaching that I had anticipated and
those that I had not.

As I did the analysis, I realized that the practices of questioning and listening
could be further distinguished into teacher “moves” (Brodie 2004b, see also Chap. 9).
Practices here are viewed as a bigger set of which teacher moves form a subset.
Teaching practices enable moves to surface in the classroom, and it is through
moves that teachers and learners act in a manner that helps in the development of
the practices. I also noticed learner moves and practices and saw how some of these
related to my moves and practices. I discuss teacher and learner moves and practices
in the following sections.

Teacher Moves and Practices

As discussed earlier, the two key teaching practices that I used to enable mathemati-
cal reasoning were questioning and listening and these are seen through particular
teacher moves. In this section, I describe the teacher moves that I saw in my prac-
tices, give examples, and show how questioning and listening both support and are
supported by these moves. Table 5.1 shows the teacher moves that I identified in
my lessons. They can be categorized into two inter-related categories: enabling
learner participation and communication and focussing on learners’ mathematical
reasoning.

In the following transcript, I show how I make some of these moves and how
they relate to the practices of questioning and listening. This extract from the lesson
occurred during a report back from Mpolokeng’s group in response to Activity 1,
where learners were asked to explain what they observed when the graph of y=x?
was shifted 3 units to the right and 4 units to the left. Earlier, Mpolokeng had
explained that in the case of the graph shifting 4 units to the left, the values of x
would all be negative and the shifted graph would not cut the y-axis. The class had

Table 5.1 Teacher moves

Enabling participation and communication Focusing on mathematical reasoning
Redirecting to the whole class Using learner contributions to move forward
Adding a learner’s voice Adding my own voice

Stirring productive argument Challenge for justification

Supporting and sustaining “intellectual ferment” Representing mathematical knowledge

Maintaining appropriate emotional tone Providing resources for thinking
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challenged her and she had come to agree with them that the graph would cut the
y-axis. She then repeated her observation below (somewhat defensively), which led
to another discussion.!

1 Mpolokeng: ~ What? I have said that the x-values are negative, haven’t I? Yes, I have
said that the x-values are negative, and then when we extend the graph,
it will cut the y-axis

2 Takalani: (Nods his head)

3 Mr Mogale: (Learners raise their hands) Let’s listen to Tebello first.

4 Tebello: If the graph can cut the y-axis (learners laugh)

5 Mr Mogale: Talk, what are you laughing at?

6 Tebello: if, if the graph can cut the y-axis, the part on the right of the x axis, is it
not positive?

7 Mpolokeng:  Ee [yes] e [its] positive.

8 Mr Mogale: It’s a good question because she is saying that is going to be on the
negative only, right?

9 Learners: Yes.
10 Mr Mogale: She says we have only negative values.
11 Learners: Ee. [yes.]

12 Mr Mogale: But, we said that this graph can be extended, so what are we saying? We
don’t only have to question, we must also be in a position to assist a
kere? [right?]

13 Learners: Yes.

14 Mr Mogale: We can question, we can comment, we can advise the group, (points to
learner) Ee [yes]

15 Gordon: Nna [me], I was saying according to the papers you gave us, e tlo nna fela
[it will only be] negative, e tlo nna fela [it will only be] negative.

16 Mr Mogale: But, we are also given arrows and those arrows should mean something to
you.

17  Gordon: We only concentrate on the left hand side

18 Mr Mogale: When you go out of the school and you go to the road crossing of
ext fourteen and Randfontein road, there’s a board that shows you
Randfontein that direction, Jo’burg there. It has an arrow, which shows
you, right, what does it mean, we stop there, Randfontein ends there?

19 Gordon: It’s not the same as the graph

20 Mr Mogale: It’s not the same as the graph? But the arrow, what does the arrow tell you?
21 Gordon: (Inaudible) (learners laugh)

22 Mr Mogale: I am asking you about the arrow gore [that] what does it mean to you?

23 Gordon: yes, it continues

24 Mr Mogale: It means that it continues. So, what are you saying? We will only get
negative values?

25 Gordon: I was only referring to this graph, on the table
26 Mr Mogale: Ee. [yes.]
27 Gordon: You see the table that they have given us, you see, Mpolokeng never

looked at the graph, she’s looking at the table

"Much of each transcript in this chapter was translated from Setswana. Wherever Setswana words
and English translations remain in the text it is because the original utterance was in English with
some code-switching.
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The above extract illuminates a number of moves in the table above, as well as my
questioning and listening practices. The first thing to notice is that Takalani is the
learner who had asked Mpolokeng to repeat her observation. He nodded his head
to indicate that he accepted her new formulation. However, a number of other learn-
ers raised their hands, indicating that they wanted to say something. I indicated that
Tebello should talk, but as he started talking, other learners started laughing. This
was not usual in this class, so I reacted with a question: what are you laughing at?
This was enough to suggest to this class that it was a ground rule (Edwards and
Mercer 1987) that we allow each other to talk without laughing. This helped to
restore an appropriate emotional tone to the discussion. Tebello continued to make
his point, which was that if Mpolokeng was then claiming that the graph did cut the
y-axis, then she could not claim that all the x-values would be negative, since those
on the right hand side of the y-axis would be positive. Mpolokeng immediately
agreed with him.

In all of the above, and previously, I had been listening to Mpolokeng and the
learners who responded to her. I did not correct her mistakes, but I allowed the
conversation to flow and learners to interact. At this point however, I worried that
Mpolokeng was very quick to agree with Tebello. This could have been an instance
of unproductive agreement (Chazan and Ball 1999). It was therefore time for me to
intervene more forcefully, which I did in turns 8, 10, and 12. I repeated Tebello’s
point and praised it as a good question. At this point, I was adding my own voice
mathematically, indicating my agreement that Tebello’s question was an important
one (note, I was not giving the answer). In doing this, I was also adding to a
learner’s voice, or revoicing his contribution (O’Connor and Michaels 1996). I was
also trying to sustain “intellectual ferment” (Chazan and Ball 1999), so that the
discussion would not end in an unproductive agreement. In turns 12 and 14, I made
an additional point that learners need not only challenge Mpolokeng, but could also
help her to think through her ideas (something I have always stressed in this class).
In doing this, I was again trying to create a positive emotional tone, as well as sup-
port a productive argument.

My interventions above allowed Gordon to talk, and he tried to suggest a reason
why Mpolokeng’s group had made a contradictory argument. He suggested (turn
15) that on the task handouts, the x-values that had been chosen were only negative
and that Mpolokeng had been working from those, which focussed her attention on
the left hand side of the graph (turn 17). In turn 18, I made a challenge for justifica-
tion and also pointed to a mathematical representation, by focussing Gordon’s
attention on the arrows of the graph, which suggested that the graph continued to
cut the y-axis, even if it was not shown on the picture in the handouts. In turn 18,
my method of interaction shifted from listening 7o, to listening for. I did not con-
sider an interpretation of Gordon’s comment in turn 17 as being that perhaps
Mpolokeng’s group knew about the arrows but chose to ignore them. I also did not
consider that perhaps Gordon’s group had done the same thing, which he was then
justifying. Instead, I tried to find an everyday analogy, which might help Gordon
and others to understand the function of arrows on the graph, by using the idea of



82 5 Classroom Practices for Teaching and Learning Mathematical Reasoning

arrows on a road signboard. Gordon’s response to the analogy was that it was not
the same as the graph, which I agreed with, but suggested that he could still learn
something from how the arrows function, that it shows continuation, both on the
road and on the graph. In this case, I was providing a resource for thinking, an anal-
ogy from everyday life.

Although this resource may have been helpful for some learners, it was limited
in two ways. First, as with all everyday analogies, it could model only some of the
aspects of the mathematical situation. All analogies must be limited in some way,
and it is important for teachers to understand how they are limited. Second, and
more importantly for this chapter, I presented this analogy in an attempt to teach
Gordon something that he already knew. In not listening 7o him, I did not see that
he probably did understand this, but was trying to present a reasoned argument for
why Mpolokeng had made her claims. In fact, he was finding her errors; as he said
in turn 27, she had probably not even looked at the graph. If these had indeed been
his own group’s errors, as I suggested above, then he was clearly learning some-
thing that I did not realize. In fact, I did not even see what Gordon was doing and
the strength of his contributions, until I did this analysis.

In the above analysis, I have shown how I used a range of teacher moves, with
varying degrees of effectiveness. These moves show that at the beginning of the
episode, my questioning managed to support some productive discussion and chal-
lenge of ideas. I was able to listen fo the learners. However, in the second part of
the episode, I became more directive, did not listen to the learners and tried to focus
the learners on a particular representation of mathematical ideas. This analysis
shows exactly how difficult it is for a teacher to maintain the practices of appropri-
ate questioning and listening, even when s/he starts out in that way. The above
analysis also shows how a learner, Gordon, was able to hold his ground, and in
effect challenge me on some of my ideas, particularly the analogy. This was a com-
mon practice among the learners in my class. In the next section, I illustrate some
of their moves and practices.

Learner Moves and Practices

A second part of my analysis was to identify a number of learner moves, as well as
their questioning and listening practices (Table 5.2). The moves that I identified
were all similar to, and a subset of, mine. These were

Table 5.2 Learner moves

Enabling participation and communication Focussing on mathematical reasoning

Stirring productive argument Using learner contributions to move forward
Supporting and sustaining “intellectual ferment”  Challenge for justification (both the teacher
and other learners)
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The following extract shows three learners talking to each other, with very little
input from me. They were discussing a question from Activity 2: what is similar in
the graphs of y=x* y=(x+4)? and y=(x-3)".

1
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18
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23
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25

Mamokete:

Mr Mogale:
Mapula:
Mamokete:
Mapula:
Mamokete:
Learners:
Mapula:

Mamokete:
Mapula:
Mamokete:
Mapula:
Mamokete:
Mapula:
Mamokete:
Mapula:

Mamokete:

Mapula:

Mr Mogale:
Mamokete:
Mr Mogale:
Mamokete:

Mr Mogale:
Aganang:

Mamokete:

Oh, they are similar in, why I am saying they are similar in the y-values, we
don’t have the value of q there, it shows that if it is not there, it is zero
that value of q, that is why they are the same throughout.

Questions, comments, Mapula

Which y-value, where is the y-value? For what? y-value of which point?

For the turning point.

Only?

What do you mean?

(laugh)

It means only they are similar, You say they are similar in y-values, don’t
you?

Yes

So, I am asking that, you are implying that it’s y-value is zero?

Yes

For the turning point?

Yes

Oh, what about there, our y-value is not the same

The other y-value?

For the other points (inaudible) on this graph, that lie on the graph, the one
on the graph, are they not the same? (she is pointing in the sheet)

They are the same, these graphs move to left and right, so there is no way
that they cannot be the same

Oh.

Do you understand her question?

Yes

What is she saying?

She says I am implying that at the other points, beside the turning point,
the y-value is not the same, and I said they are the same (Aganang
raises hand)

Mm

But that other time you said that since there is no q, it means then that the
y-value is zero, but on the other points (she is pointing on the board)

(Interrupts Aganang) We are talking about the turning point, I am talking
about the turning point

In her initial questions, Mapula was pushing Mamokete to be specific about which
points she was claiming had the same y-values. Initially, Mamokete was referring
to the turning points only; she spoke about the q value being zero in all three graphs
and in line 4, she explicitly said she was talking about the turning points. However,
through Mapula’s challenges for justification, particularly line 16, Mamokete
seemed to shift her view, saying that since the graphs shifted horizontally, all the
y-values (presumably of corresponding points) would stay the same. This indicates
a shift in her thinking, made through the conversation. So, it seems that Mapula was
able to use Mamokete’s contribution to move the discussion forward.
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However, when Mamokete was further challenged by Aganang, that she was
contradicting an earlier point, it seemed that she might shift back to an earlier posi-
tion. Such shifting of positions is characteristic of genuine dialogue and suggests
that the learner is thinking through her ideas far more than a learner who tries to
provide an answer that she thinks the teacher wants to hear. Through this interac-
tion, the girls were exploring the nature of the graphs and their relationships to the
equations. They were also stirring productive argument and supporting and sus-
taining intellectual ferment. They took seriously the roles of asking and answering
questions to clarify each other’s thinking and were taking up each other’s ideas.

I took only three turns in this exchange (lines 2, 19, and 23), which is very
unusual in mathematics classrooms, although there are quite a few places in my
lessons where this happens. My three turns did not make any substantial mathemat-
ical contributions, but rather were directed at getting learners to talk and listen to
each other. The first opened the floor for contributions, while the second and the
third intervened to add to the learner’s voice. In line 19, I asked Mamokete whether
she understood Mapula’s question, indicating its importance and in line 23, I sup-
ported her to repeat the point that she had learned through the conversation. This,
then, allowed Aganang to come in, suggesting a contradiction with Mamokete’s
earlier position.

The above analysis shows that the learners had internalized and could use some
of my moves and practices. They listened to each other, challenged each other, and
supported strong argument and justification of ideas, with the support from me.
This is in line with Vygotsky’s (1978) ideas that learners can and will internalize
their teacher’s ways of talking and interacting. It also supports a notion of com-
munity of practice (Lave and Wenger 1991), showing that the learners can interact
with each other in ways that support the development of mathematical practices.

Conclusions and Implications

In this study, I have identified a range of practices and moves that I made as I
shifted my teaching in relation to the new curriculum. I have shown that by engag-
ing regularly in these practices and moves, learners also internalize them and begin
to use them. Thus, they become classroom practices, engaged in by learners and the
teacher as a community. [ have also shown how at times I was unsuccessful in shift-
ing my practices and became more directive. This was evident to me only on analy-
sis of my teaching and suggests that this kind of action research can suggest how
to improve one’s practices. Shifting one’s teaching is a process that needs refining
over time (see also Slonimsky and Brodie 2006). Through discussions with other
people involved in the project, my teaching went through some positive changes,
directed towards allowing learners to think and reason mathematically. I am still in
the process of developing my approach to maximize learner involvement in the
teaching and learning of mathematics. In doing so, I recognize that there will
always be aspects of previous practices that remain in my new practices, not
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everything that we used to do was problematic and it is not possible to transform
one’s teaching into something completely different (Brodie 2007a, 2008).

This study illuminates some important general aspects with regard to teaching
and learning mathematics. Teaching a mathematical topic does not necessarily
require of teachers to first give an introduction and show learners how to do a par-
ticular task. Rather, giving learners a choice to do the task first and then discussing
it is a useful approach, as my study shows. My study also shows that communica-
tion plays a very important role in supporting learners to explore mathematical
ideas. An environment that allows learners to communicate about mathematics can
be created in order to give learners the opportunity to think and reason about what
they are doing, thus making sense of mathematics.

It is therefore necessary for us as teachers to give every learner the chance to
present their ideas, as well as allow them to convince us of their thinking. We will
not perfect this process, in one go, but with time may develop it as part of our practices,
of questioning and listening to learners. This study has helped to convince me, and
I hope will convince you that supporting learners to think and talk about mathe-
matics will go a long way in helping them to make sense of mathematics.



Chapter 6
Teaching Mathematical Reasoning
with the Five Strands

Kilpatrick et al. (2001, p. 116) describe a composite, comprehensive view of successful
mathematics learning and what mathematical proficiency means, in terms of five
interwoven and interdependent strands. The strands are conceptual understanding
(CU), which entails comprehension of mathematical concepts, operations, and rela-
tions; procedural fluency (PF), involving skill in carrying out procedures flexibly,
accurately, efficiently, and appropriately; strategic competence (SC), which is the
ability to formulate, represent, and solve mathematical problems; adaptive reasoning
(AR), which is the capacity for logical thought, reflection, explanation, and justifi-
cation; and productive disposition (PD), a habitual inclination to see mathematics
as sensible, useful, and worthwhile, coupled with a belief in diligence and one’s
own ability to come to know mathematics.

Kilpatrick et al. (2001) argue that mathematical proficiency cannot be achieved
by focusing on one or two of the strands but that development across all five strands
raises the standard of mathematical proficiency, because the strands interact and
reinforce each other. The authors suggest, “students who have opportunities to
develop all strands of proficiency are more likely to become truly competent at
each” (Kilpatrick et al. 2001, p. 144). Therefore, teachers need to structure class-
room activities so that all five strands are emphasised and synchronised.

The new national curriculum for South Africa resonates with this notion of pro-
ficiency and mentions elements of each of the strands in its outcomes for mathe-
matics (Department of Education 2003). Since it is written in the language of
outcomes, it emphasizes processes such as efficient calculation (procedural flu-
ency), creative problem solving in both mathematical and real-world contexts
(strategic competence), using mathematics to understand the world (strategic com-
petence), and logical reasoning and justification (adaptive reasoning). It also
emphasizes the importance of deeper understanding of mathematical ideas (con-
ceptual understanding) and beliefs that we can make sense of mathematics (produc-
tive disposition). A curriculum that emphasizes the five strands is an important first
step in teaching mathematical reasoning. However, the intended curriculum often
does not become the enacted curriculum for a variety of reasons. Sometimes, teachers
don’t fully understand the new curriculum (Chisholm et al. 2000), or conditions
in classrooms make it difficult for teachers and learners to enact the policy.
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My focus in this chapter is on the extent to which I could include the five strands
in a series of lessons with my grade 10 class.

A Social-Constructivist Framework

My theoretical assumptions are that learners actively construct or create their own
knowledge, and that their ability to do so is enhanced when they work together and
communicate their understandings. Hatano (1996) argues that although knowledge
can be transmitted from teacher to learner, for the learner to make it his or her own
always requires interpretation. He argues that “active humans almost always try to
interpret and enrich what is transmitted, in other words, to supplement it by con-
struction” (Hatano 1996, p. 200). This interpretation and construction should
restructure the learner’s existing knowledge into better-organized knowledge. So
learning is never only about adding new information, but about integrating this
information with the learner’s existing knowledge so that it becomes reorganized
and more powerful.

Vygotsky (1978) argued that a learner’s restructuring comes about not just as a
result of his or her own internal processes and abilities, but is also indicative of the
communication between teacher and learner. His theory investigates the construc-
tion of knowledge as a joint achievement between teachers and learners. Drawing
on 