
Chapter 9
Finite and Infinite-Precision Properties
of QRD-RLS Algorithms

Paulo S. R. Diniz and Marcio G. Siqueira

Abstract This chapter analyzes the finite and infinite-precision properties of QR-
decomposition recursive least-squares (QRD-RLS) algorithms with emphasis on
the conventional QRD-RLS and fast QRD-lattice (FQRD-lattice) formulations. The
analysis encompasses deriving mean squared values of internal variables in steady-
state and also the mean squared error of the deviations of the same variables assum-
ing fixed-point arithmetic. In particular, analytical expressions for the excess of
mean squared error and for the variance of the deviation in the tap coefficients of the
QRD-RLS algorithm are derived, and the analysis is extended to the error signal of
the FQRD-lattice algorithm. All the analytical results are confirmed to be accurate
through computer simulations. Conclusions follow.

9.1 Introduction

The implementation of the QR-decomposition recursive least-squares (QRD-RLS)
algorithm requires the knowledge of the dynamic range of its internal variables in
order to determine their wordlengths. For the systolic array implementation of the
QRD-RLS algorithm, the steady-state values of the cosines and sines of the Givens
rotations and the bounds for the dynamic range of the processing cells contents
are known [1]. An attractive feature of the QRD-RLS algorithm is the bounded
input/bounded output stability, as proven in [1, 2].

In this chapter, we present a complete quantitative analysis of the dynamic range
of all internal quantities of the QRD-RLS and fast QRD (FQRD)-lattice algorithms.
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First, stability conditions for the QRD-RLS algorithm are derived by examining the
quantization error propagation in all recursive equations of the algorithm assuming
fixed-point arithmetic. In addition, the mean squared value of the errors accumulated
in all variables of the algorithm are derived and accurate expressions for the excess
of mean squared error and the mean squared value of the error in the filter coeffi-
cients are proposed for the conventional QRD-RLS algorithm. The results are later
extended to the FQRD-lattice algorithm. Simulations follow finite-precision analy-
sis. The chapter is concluded with a discussion on the derived and simulated results.

9.2 Precision Analysis of the QR-Decomposition RLS Algorithm

RLS algorithms update the adaptive filter coefficients in order to minimize the fol-
lowing objective (cost) function

ξ (k) =
k

∑
i=0

λ k−i|ē(i)|2 =
k

∑
i=0

[d(i)−wT(k)x(i)]2, (9.1)

where x(k) = [x(k) x(k − 1) · · · x(k − N)]T is the input signal vector, w(k) =
[w0(k)w1(k) · · · wN(k)]T is the coefficient vector at instant k, ē(i) is the output error
at instant i (computed with w(k)), and λ is the forgetting factor. The input signal
x(k) is considered a Gaussianly distributed white random variable with zero mean
and variance σ2

x . However, the analysis is extended for non-white inputs.
The error vector, the reference signal vector, and the input signal information

matrix can be defined, respectively, as

eT(k) Δ= [ē(k)λ 1/2ē(k−1) · · · λ k/2ē(0)], (9.2)

dT(k) Δ= [d(k)λ 1/2d(k−1) · · · λ k/2d(0)], and (9.3)

XT(k) Δ= [x(k)λ 1/2x(k−1) · · · λ k/2x(k)]

=

⎡
⎢⎢⎢⎣

x(k) λ 1/2x(k−1) · · · λ k/2x(0)
x(k−1) λ 1/2x(k−2) · · · 0

...
...

. . .
...

x(k−N) λ 1/2x(k−N −1) · · · 0

⎤
⎥⎥⎥⎦ , (9.4)

so that the objective function can be rewritten as ξ (k) = eT(k)e(k), where e(k) =
d(k)−X(k)w(k).

The input data matrix X(k) can be triangularized through Givens rotations. The
resulting triangularized matrix U(k), assuming the case of upper triangularization,
may be given by



9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 237

U(k) Δ=

⎡
⎢⎢⎢⎣

u0,0(k) u0,1(k) · · · u0,N(k)
0 u1,1(k) · · · u1,N(k)
...

...
. . .

...
0 0 · · · uN,N(k)

⎤
⎥⎥⎥⎦ . (9.5)

When the orthogonal transformation denoted by Q(k) is applied to the error vector,
it follows that:

Q(k)e(k) = Q(k)d(k)−Q(k)X(k)w(k) = d̂(k)− X̂(k)w(k)

=
[

ê1(k)
ê2(k)

]
=

[
d̂1(k)
d̂2(k)

]
−

[
0k−N,N+1

U(k)

]
w(k). (9.6)

The QRD-RLS algorithm shown in Table 9.1 originates from the formulation above,
see [3–5] for details. The operator Q[·] denotes quantization and should be ignored
in the discussions of the current section. The notation fQ denotes finite-precision
version of f .1

In Equations (9.7) and (9.8), ai,i(k) (not explicitly shown) represents an interme-
diate quantity that appears in the position (1, i) of the matrix Q′

i−1(k) · · ·Q′
0(k)X

p(k)
(see (9.11)), that will be eliminated by the Givens rotation Q′

i(k). Quantities bi(k)
represent intermediate values of the first element of Q′

i−1(k) · · ·Q′
0(k)d

p
2(k).

9.2.1 Infinite-precision analysis

Let’s now derive the mean squared value of several quantities related to the QRD-
RLS algorithm, namely cosθi(k), sinθi(k), ui, j(k), ai, j(k), d̂2,i(k), bi(k), and eq(k).
These results are required to analyze the QRD algorithm implemented with finite
precision.

It is worth mentioning that the analysis is valid for averages taken as k is large.
Although the label k is redundant in most expressions it can be useful for transient
analysis.

9.2.1.1 Mean squared values of sines and cosines

From the implementation of (9.7), (9.8), (9.10), and (9.11), with infinite-precision
arithmetic, it is can be shown that

ui,i(k) =
√

λu2
i,i(k−1)+a2

i,i(k); (9.18)

therefore,

1 In practice, vectors and matrices with growing dimensions in Equations (9.7), (9.8), (9.9), (9.10),
(9.11), (9.12), (9.13), (9.14), (9.15), (9.16), and (9.17) should be replaced by fixed dimension ones.
This notation was chosen to clarify the presentation.
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Table 9.1 Conventional QR-decomposition RLS algorithm.

QRD-RLS

Matrix Formulation: For i = 0, . . . ,N, do

cosQ θi(k) = Q

⎡
⎣z

λ 1/2ui,i;Q(k−1)

Q
[√

Q[λu2
i,i;Q(k−1)+a2

i,i;Q(k)]
]
⎤
⎦ (9.7)

sinQ θi(k) = Q

⎡
⎣ ai,i;Q(k)

Q
[√

Q[λu2
i,i;Q(k−1)+a2

i,i;Q(k)]
]
⎤
⎦ (9.8)

Q′
i;Q(k) =

⎡
⎢⎢⎣

cosQ θi(k) −sinQ θi(k)
Ik−N+i−1

sinQ θi(k) cosQ θi(k)
IN−i

⎤
⎥⎥⎦ (9.9)

Xp
Q(k) =

⎡
⎣

xT(k)
0k−N−1,N+1

λ 1/2UQ(k−1)

⎤
⎦ (9.10)

X̂Q(k) = Q[Q′
N;Q(k)Q[Q′

N−1;Q(k) · · ·Q[Q′
0;Q(k)Xp

Q(k)] · · · ]]
= Q[Q̃Q(k)Xp

Q(k)]

=
[

0k−N,N+1
UQ(k)

]
(9.11)

dp
Q(k) =

⎡
⎣

d∗(k)
λ 1/2d̂1;Q(k−1)
λ 1/2d̂2;Q(k−1)

⎤
⎦ (9.12)

d̂Q(k) = Q[Q′
N;Q(k)Q[Q′

N−1;Q(k) · · ·Q[Q′
0;Q(k)dp

Q(k)] · · · ]]
= Q[Q̃(k)dp

Q(k)]

=

⎡
⎣

eq;Q(k)
d̂1;Q(k)
d̂2;Q(k)

⎤
⎦ (9.13)

Back-substitution: For j = 0, . . . ,N do

f j;Q(k) = Q

[
N

∑
i= j+1

wi;Q(k)u j,i;Q(k)

]
(9.14)

w j;Q(k) = Q

[
d2, j;Q(k)− f j;Q(k)

u j, j;Q(k)

]
(9.15)

Error calculation: Use one of the equations

eQ(k) = Q[eq;Q(k)Q[cosQ θ0(k) · · ·Q[cosQ θN(k)cosQ θN−1(k)] · · · ]]]
(9.16)

eQ(k) = d(k)−Q[wT
Q(k)x(k)] (9.17)
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cosθi(k) =
λ 1/2ui,i(k−1)

ui,i(k)
, and (9.19)

sinθi(k) =
ai,i(k)
ui,i(k)

. (9.20)

The mean squared value of cosθi(k) is then given by

E
{

cos2 θi(k)
}

= E

{
λ
∑k−1

j=0 λ
k−1− ja2

i,i( j)

∑k
j=0λ k− ja2

i,i( j)

}
≈ λ . (9.21)

whereas the mean squared value of sinθi(k) can be calculated by using the funda-
mental trigonometric identity

E{sin2 θi(k)} ≈ 1−λ , (9.22)

for k → ∞.

9.2.1.2 Mean squared value of ui, j(k)

The derivations of the mean squared values of the elements of U(k) are some-
what involved, especially when the order of the adaptive filter is high. Under the
assumption that the input signal samples are uncorrelated, it is possible to deduce
the desired formulas [6]:

E{u2
i,i(k)} ≈ σ2

x

1−λ

[
2λ

1+λ

]i

, and (9.23)

E{u2
i, j(k)} ≈ σ2

x

1+λ

[
2λ

1+λ

]i

, (9.24)

where the last equation is valid for j > i, i = 0,1, . . . ,N.

9.2.1.3 Mean squared value of ai, j(k)

From (9.18), it is possible to verify that

E[u2
i,i(k)] =

E[a2
i,i(k)]

1−λ
. (9.25)

From (9.25) and (9.23), one can show that

E{a2
i,i(k)} = σ2

x

[
2λ

1+λ

]i

, (9.26)

for i = 0, . . . ,N. Since ai, j(k) for i �= j and ai,i(k) are result of similar dynamic
equations, it is possible to show that
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E{a2
i, j(k)} = σ2

x

[
2λ

1+λ

]i

, (9.27)

for i = 0, . . . ,N and j > i.

9.2.1.4 Mean squared value of d̂2,i(k)

The adaptive filter coefficients are calculated using (9.6), that is

d̂2,i(k) =
N

∑
j=i

ui, j(k)w j(k). (9.28)

If ui,i(k) is considered the only element in the ith row of U(k) with non-zero mean,
and that the elements in a given row are uncorrelated, the following expression
approximation is valid.

E{d̂2
2,i(k)} ≈

N

∑
j=i

E{u2
i, j(k)}E{w2

j(k)} (9.29)

In addition, considering that the mean of wi(k) is much larger than the variance,
so that the mean squared value can be replaced by the squared mean, the equation
becomes

E{d̂2
2,i(k)} ≈

[
2λ

1+λ

]i
[

σ2
x

1−λ
w2

o,i +
σ2

x

1+λ

N

∑
j=i+1

w2
o, j

]
, (9.30)

where

w2
o,i = E{w2

i (k)}. (9.31)

9.2.1.5 Mean squared value of bi(k)

The intermediate values of the first element of d̂(k) during the application of the
Givens rotations, denoted by bi(k) for i = 0,1 . . . ,N, are given by

bi+1(k) = −λ 1/2d̂2,i(k−1)sinθi(k)+bi(k)cosθi(k). (9.32)

Since E{cosθi(k)sinθi(k)} is relatively small, it is possible to infer that

E{b2
i+1(k)} = λE{d̂2

2,i(k−1)}E{sin2 θi(k)}+E{b2
i (k)}E{cos2 θi(k)}

= λ (1−λ )E{d̂2
2,i(k−1)}+λE{b2

i (k)}

=
i+1

∑
j=1

λ i− j+2(1−λ )E{d̂2
2, j(k)}+λ i+1E{d2(k)}. (9.33)
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9.2.1.6 Mean squared value of eq(k)

From (9.21) and (9.16), and by assuming that the mean values of the cosines are
much larger than their variance [7], it is possible to verify that

E{e2
q(k)} ≈

E{e2(k)}
λN+1 . (9.34)

If the QRD-RLS algorithm is applied in a sufficient order identification problem,
where the desired signal can be modeled by a moving average process with a mea-
surement noise with variance σ2

r . After convergence, it is expected that

E{e2
q(k)} ≈

σ2
r

λN+1 . (9.35)

9.2.1.7 Dynamic range

The internal variables of the QRD-RLS algorithm are the elements of U(k), of d̂2(k),
and the sines and cosines. Let’s assume that all variables are represented in fixed-
point arithmetic in the range −1 to +1, in order to derive the conditions on the
input signal variance to ensure that overflow does not occur frequently in internal
variables of the algorithm.

The off-diagonal elements of U(k) have zero mean and mean squared values
much smaller than the diagonal elements. The diagonal elements usually have larger
mean squared values as λ approaches 1; as such, some strategy to control the over-
flow must be devised. Considering that for λ close to one, the mean of ui,i(k) is
large as compared to its standard deviation, one can calculate its mean squared value
through its squared mean. From (9.23), it follows that

E{ui,i(k)} ≈
σx√
1−λ

[
2λ

1+λ

]i/2

. (9.36)

As u0,0(k) has the largest energy, and if the maximum value for u0,0(k) is 1, satisfy-
ing the condition

σx√
1−λ

< 1 (9.37)

is sufficient to avoid frequent internal overflow.
The values of the entries of d̂2(k) should also be kept in the range −1 and +1.

For any k,

E{d̂2,i(k)} =
N

∑
j=i

E{ui, j(k)w j(k)}. (9.38)

Assuming that the mean of ui, j(k) is zero for i �= j, and that the standard deviations
of ui,i(k) and wi(k) are small compared to their respective mean, it is possible to
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verify that

E{d̂2,i(k)} = E{ui,i(k)wi(k)} ≈ E{ui,i(k)}E{wi(k)}

=
σx√
1−λ

[
2λ

1+λ

]i/2

wo,i. (9.39)

The most stringent case is i = 0, so that frequent overflows can be avoided if, the
following inequality is satisfied:

σ2
x w2

o,i < 1−λ . (9.40)

This inequality requires the mean squared value of the taps wo,i, that accounts for
the relative power of the reference signal. Although the values of wo,i are not known
in advance, a rough estimate of σ2

x w2
o,i can be obtained through the power of the

reference signal [8].

9.2.2 Stability analysis

In this section, the fixed-point quantization errors are first modeled, and the recursive
equations describing the total error in each quantity of the QRD-RLS algorithm
are derived. For that, we discuss the conditions to guarantee the stability of the
algorithm.

For the analysis results presented here, we assume that the input signal has
been properly scaled in order to avoid overflow. Two’s complement arithmetic
is used for numeric representation. It is taken for granted that no overflow
occurs so that additions and subtractions do not introduce quantization errors.

The multiplication, division, and square-root operations introduce, respectively,
quantization errors described by

ηM(a,b) Δ= ab−Q[ab], (9.41)

ηD(a,b) Δ= a/b−Q[a/b], (9.42)

ηS(a) Δ=
√

a−Q[
√

a], (9.43)

where a and b are scalars. For inner product with quantization after addition, the
errors are denoted as

ηM[(a1,b1); · · · ;(ai,bi)]
Δ=

i

∑
j=1

a jb j −Q

[
i

∑
j=1

a jb j

]
. (9.44)
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The quantization errors for matrix–vector and matrix–matrix products are modeled
as

ηM(A,b) Δ= Ab−Q[Ab] (9.45)

and

NM(A,B) Δ= AB−Q[AB], (9.46)

respectively.
Instantaneous quantizations are performed by rounding, for any type of arith-

metic. The quantization error has zero mean and variance 2−2B/12, where B is the
number of bits excluding the sign.

The overall quantization error in each quantity is defined as the difference
between its value in infinite-precision implementation and its value in finite-
precision implementation, that is

Δa(k) Δ= a(k)−aQ(k). (9.47)

Matrix X̂(k) is defined as

X̂(k) = Q̃(k)Xp(k) = [Q̃Q(k)+ΔQ̃(k)][Xp
Q(k)+ΔXp(k)]

= Q̃Q(k)Xp
Q(k)+ Q̃Q(k)ΔXp(k)+ΔQ̃(k)Xp

Q(k)

+ΔQ̃(k)ΔXp(k). (9.48)

From (9.11) and (9.47), it follows that

Q̃Q(k)Xp
Q(k) = Q[Q̃Q(k)Xp

Q(k)]+NM[Q̃Q(k),Xp
Q(k)]

= X̂Q(k)+NM[Q̃Q(k),Xp
Q(k)]. (9.49)

It can then be shown that

Δ X̂(k) = X̂(k)− X̂Q(k) = Q̃Q(k)ΔXp(k)+ΔQ̃(k)ΔXp(k)
+ΔQ̃(k)Xp

Q(k)+NM[Q̃Q(k),Xp
Q(k)]. (9.50)

Using (9.50), (9.10), the definition of (9.47) and considering that U(k) = UQ(k)+
ΔU(k), we find that

[
0k−N,N+1

ΔU(k)

]
= Q̃Q(k)

[
0k−N,N+1

λ 1/2ΔU(k−1)

]

+ ΔQ̃(k)

⎡
⎣

xT(k)
0k−N−1,N+1

λ 1/2U(k−1)

⎤
⎦+ NM[Q̃Q(k),Xp

Q(k)]. (9.51)
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The above equation represents the dynamics of the error in the input signal matrix
after triangularization. The convergence in average of U(k) can be guaranteed if the
following inequality is satisfied

λ 1/2 ‖ Q̃Q(k) ‖2≤ 1, (9.52)

where the two norm of a matrix is defined here as the square root of the largest
eigenvalue. Hence,

‖ Q̃Q(k) ‖2 = MAXi

√
cos2

Q θi(k)+ sin2
Q θi(k). (9.53)

Then, the stability condition can be rewritten as follows:

λ <
1

MAXi [cos2
Q θi(k)+ sin2

Q θi(k)]
. (9.54)

By assuming instantaneous errors term non-zero in (9.51), we can show that

‖ E{ΔU(k)} ‖ ≤ λ 1/2 ‖ E{Q̃Q(k)} ‖‖ E{ΔU(k−1)} ‖
+ ‖ E{ΔQ̃(k)} ‖‖ E{X(k)} ‖ . (9.55)

Notice that (9.54) is also sufficient to guarantee that (9.55) is stable. For λ = 1 and
E{‖Q̃Q(k)‖} = 1, the norm of E[ΔU(k)] increases indefinitely, if the input signal is
non-zero.

9.2.3 Error propagation analysis in steady-state

In this subsection, we derive the error propagation. Analytical expressions for the
mean squared value of the errors in the prediction error and in the tap coefficients
are obtained.

9.2.3.1 Mean squared value of Δai, j(k)

During the triangularization process, the intermediate value that the jth element of
the first row of Xp(k) assumes in the ith Givens rotation is denoted as ai, j(k). These
quantities are given by

ai+1, j(k) = ai, j(k)cosθi(k)−λ 1/2ui, j(k−1)sinθi(k), (9.56)
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where a0, j(k)
Δ= x(k− j). The equation above can be solved recursively as

ai, j(k) = x(k− j)
i−1

∏
m=0

[cosQ θm(k)+Δ cosθm(k)]

−λ 1/2
i−1

∑
m=0

[um, j;Q(k−1)+Δui, j(k−1)][sinQ θm(k)+Δ sinθm(k)] ·

i−1

∏
n=m+1

[cosQ θn(k)+Δ cosθn(k)], (9.57)

Note that in the last equality ai, j(k) is expressed as a function of the quantities in
the finite-precision implementation and their respective errors. By neglecting all
second-order and higher-order error terms, it follows that

ai, j(k) ≈ x(k− j)
i−1

∏
m=0

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k)
i−1

∏
n=m+1

cosQ θn(k)

+x(k− j)
i−1

∑
n=0

Δ cosθn(k)
i−1

∏
m=0
m�=n

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

[um, j;Q(k−1)Δ sinθm(k)

+Δum, j(k−1)sinQ θm(k)]
i−1

∏
n=m+1

cosQ θn(k)

−λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k) ·
⎧
⎪⎨
⎪⎩

i−1

∑
n=m+1

Δ cosθn(k)
i−1

∏
q=0
q �=n

cosQ θq(k)

⎫
⎪⎬
⎪⎭

. (9.58)

In finite-precision case, ai, j;Q(k) is given by

ai, j;Q(k) = x(k− j)
i−1

∏
m=0

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k)
i−1

∏
n=m+1

cosQ θn(k)

−
i−1

∑
m=0

ηai j
M (k)

i−1

∏
n=m+1

cosQ θn(k), (9.59)
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The quantities ηai j
M (k) = ηM[(ai, j(k),cosθi(k));(λ 1/2ui, j(k−1),sinθi(k))], for m =

0, . . . , i, represent quantization noises generated by the products.
From (9.57) and (9.59), it follows that

Δai, j(k) = x(k− j)
i−1

∑
n=0

Δ cosQ θn(k)
i−1

∏
m=0
m�=n

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

[um, j;Q(k−1)Δ sinθm(k)+Δum, j(k−1)sinQ θm(k)] ·

i−1

∏
n=m+1

cosQ θn(k)λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k) ·

⎧
⎪⎨
⎪⎩

i−1

∑
n=m+1

Δ cosθn(k)
i−1

∏
q=m+1
n �=q

cosQ θq(k)

⎫
⎪⎬
⎪⎭

+
i−1

∑
m=0

ηai j
m (k)

i−1

∏
n=m+1

cosQ θn(k). (9.60)

We assume now that x(k), Δ cosθi(k), Δ sinθi(k), and ηai j
i (k) are all zero mean

with comparatively small cross-correlations. We also assume that E{u2
i, j;Q(k− 1)}

and E{[Δui, j(k−1)]2} can be replaced by E{u2
i, j;Q(k)} and E{[Δui, j(k)]2}, respec-

tively, by considering them stationary. Another assumption is that the mean squared
value of quantities in finite and infinite-precision coincide. Therefore, using the
assumptions (9.22) and (9.21), the resulting expression for the mean squared value
of Δai, j(k) is given by

E{[Δai, j(k)]2} = σ2
x λ i−1

i−1

∑
n=0

E{[Δ cosθn(k)]2}

+
i−1

∑
m=0

λ i−m{
E{u2

m, j(k)}E{[Δ sinθm(k)]2}+E{[Δum, j(k)]2}(1−λ )
}

+
i−1

∑
m=0

{
E{u2

m, j(k)}(1−λ )
i−1

∑
n=m+1

E{[Δ cosθn(k)]2}λ i−m−1

}

+
λ i −1
λ −1

σ2
n , (9.61)

where σ2
n is the variance of ηai j

M (k).
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9.2.3.2 Mean squared value of Δbi(k)

The values bi(k) correspond to the first element of the intermediate vectors resulting
from the application of Givens rotations to vector d̂2(k). The form of deriving Δbi(k)
is similar to Δai, j(k) and the result is

Δbi(k) ≈ d(k)
i−1

∑
m=0

Δ cosθm(k)
i−1

∏
j=0
j �=m

cosθ j(k)

−λ 1/2
i−1

∑
j=0

[d̂2, j;Q(k−1)Δ sinθ j(k)+Δ d̂2, j(k−1)sinθ j(k)] ·

i−1

∏
m= j+1

cosQ θm(k)−λ 1/2
i−1

∑
j=0

d̂2, j;Q(k−1)sinQ θ j(k) ·
⎧
⎪⎨
⎪⎩

i−1

∑
p= j+1

Δ cosθp(k)
i−1

∏
m= j+1
m�=p

cosQ θm(k)

⎫
⎪⎬
⎪⎭

+
i−1

∑
j=0

ηbi
j (k)

i−1

∏
m= j+1

cosQ θm(k), (9.62)

where ηbi
j (k) = ηM[(bi−1(k),cosθi−1(k));(λ 1/2d̂2,i−1(k − 1),sinθi−1(k))]. Using

the assumption that Δ cosθi(k), Δ sinθi(k), and ηbi
j (k) are all zero mean and have

small cross-correlation with each other and also assuming that E{d̂2
2, j;Q(k− 1)} =

E{d̂2
2, j;Q(k)} and E{[Δ d̂2, j;Q(k−1)]2} = E{[Δ d̂2, j;Q(k)]2}, it can be shown that

E{[Δbi(k)]2} = σ2
x ‖wo(k)‖2λ i−1

i−1

∑
m=0

E{[Δ cosθm(k)]2}

+
i−1

∑
j=0

λ i− j {E{d̂2
2, j(k)}E{[Δ sinθ j(k)]2}+E{[Δ d̂2, j(k)]2}(1−λ )

}

+
i−1

∑
j=0

E{d̂2
2, j(k)}(1−λ )

i−1

∑
p= j+1

E{[Δ cosθp(k)]2}λ i− j−1

+
λ i −1
λ −1

σ2
n , (9.63)

where σ2
n is the variance of ηbi

j (k), whereas E{d2(k)} was approximated by

σ2
x ‖wo(k)‖2 by neglecting the effects of the measurement noise in the desired sig-

nal. Vector wo(k) represents the tap coefficients of the unknown model.

9.2.3.3 Mean squared value of Δui,i(k)

The value of Δui,i(k) can be derived from (9.18) as follows:
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Δui,i(k) =
√

λu2
i,i(k−1)+a2

i,i(k)

−
√

λu2
i,i;Q(k−1)+a2

i,i;Q(k)−ηM[λu2
i,i;Q(k−1),a2

i,i;Q(k)]

+ηS[λu2
i,i;Q(k−1)+a2

i,i(k)] (9.64)

Considering that the equation above has a square-root operation, the following
approximation can be used

√
r−

√
r−Δr ≈ Δr

2
√

r
; (9.65)

so that

E{[Δui,i(k)]2} ≈ λ 2E{[Δui,i(k)]2}+(1−λ )E{[Δai,i(k)]2}

+
σ2

n

4σ2
x
(1−λ )

[
1+λ

2λ

]i

+σ2
n . (9.66)

9.2.3.4 Mean square value of Δ sinθi(k)

For a division operation, the following approximation is valid for small Δr

1
r +Δr

≈ 1
r

[
1− Δr

r

]
. (9.67)

In (9.20), by replacing ai,i(k) and ui,i(k), respectively, by ai,i;Q(k) +Δai,i(k) and
ui,i;Q(k)+Δui,i(k), and using the approximation above, it is possible to show that

Δ sinθi(k) =
Δai,i(k)
ui,i(k)

+
ai,i(k)
u2

i,i(k)
Δui,i(k)+ηD(k), (9.68)

where ηD(k) represents ηD[ai,i;Q(k),ui,i;Q(k)]. Now, considering that the instan-
taneous and accumulated errors are zero mean and with relatively small cross-
correlations, and using the averaging principle, it can be demonstrated that

E{[Δ sinθi(k)]2} ≈ E{[Δai,i(k)]2}{(1−λ )3 +(1−λ )}
σ2

x

[
1+λ

2λ

]i

+
E{[Δui,i(k)]2}λ 2(1−λ )2

σ2
x

[
1+λ

2λ

]i

+
(1−λ )3σ2

n

4σ4
x

[
1+λ

2λ

]2i

+
σ2

n (1−λ )2

σ2
x

[
1+λ

2λ

]i

+σ2
n . (9.69)
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9.2.3.5 Mean squared value of Δ cosθi(k)

The cosines of the Givens rotations in the infinite and finite-precision implementa-
tions of the QRD-RLS algorithm are respectively expressed by

cosθi(k) =
λ 1/2ui,i;Q(k−1)

ui,i;Q(k)
+

λ 1/2Δui,i(k−1)
ui,i;Q(k)

−λ 1/2ui,i;Q(k−1)
u2

i,i;Q(k)
Δui,i(k) (9.70)

and

cosQ θi(k) =
λ 1/2ui,i;Q(k−1)

ui,i;Q(k)
−ηD(k), (9.71)

where ηD(k) represents ηD[λ 1/2ui,i;Q(k − 1),ui,i;Q(k)]. With these equations, one

can show that

Δ cosθi(k) =
λ 1/2Δui,i(k−1)

ui,i(k)
− λ 1/2ui,i(k−1)

u2
i,i(k)

Δui,i(k)+ηD(k). (9.72)

Thus, if we take the squared value of (9.72) and apply the expected value operation
to the resulting equation, we obtain

E{[Δ cosθi(k)]2} ≈ λ
E{[Δui,i(k−1)]2}

E{u2
i,i(k)}

+λ
E{[Δui,i(k)]2}

E{u2
i,i(k)}

−2λ
E{Δui,i(k−1)Δui,i(k)}

E{u2
i,i(k)}

+E{η2
D(k)}. (9.73)

It should be noted that Δui,i(k− 1) and Δui,i(k) are not uncorrelated and that the
mean of their product can be calculated as

E{Δui,i(k−1)Δui,i(k)} ≈ E{λ ui,i(k−1)
ui,i(k)

[Δui,i(k−1)]2}

≈ λE{[Δui,i(k−1)]2}

= λE{[Δui,i(k)]2}. (9.74)

From (9.73), (9.74), and (9.66) we get
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E{[Δ cosθi(k)]2} ≈ λ (1−λ )3E{[Δui,i(k)]2}
σ2

x

[
1+λ

2λ

]i

+
λ (1−λ )2E{[Δai,i(k)]2}

σ2
x

[
1+λ

2λ

]i

+σ2
n

+
λ (1−λ )2σ2

n

4σ4
x

[
1+λ

2λ

]2i

+
λ (1−λ )σ2

n

σ2
x

[
1+λ

2λ

]i

. (9.75)

9.2.3.6 Mean squared value of Δui, j(k)

For the infinite-precision implementation of the QRD-RLS algorithm, the elements
of the triangularized matrix U(k) are calculated by

ui, j(k) = λ 1/2ui, j(k−1)cosθi(k)+ai, j(k)sinθi(k) (9.76)

= [λ 1/2ui, j;Q(k−1)+λ 1/2Δui, j(k−1)][cosQ θi(k)+Δ cosθi(k)]
+[ai, j;Q(k)+Δai, j(k)][sinQ θi(k)+Δ sinθi(k)]

= λ 1/2ui, j;Q(k−1)cosQ θi(k)+ai, j;Q(k)sinQ θi(k)

+λ 1/2Δui, j(k−1)cosQ θi(k)

+λ 1/2ui, j;Q(k−1)Δ cosθi(k)
+ai, j;Q(k)Δ sinθi(k)+Δai, j(k)sinQ θi(k). (9.77)

In finite-precision implementation the elements of UQ(k) are given by

ui, j;Q(k) = λ 1/2ui, j;Q(k−1)cosQ θi(k)
+ai, j;Q(k)sinQ θi(k)−ηM(k), (9.78)

where ηM(k) represents ηM[(λ 1/2ui, j;Q(k − 1),cosQ θi(k));(ai, j;Q(k),sinQ θi(k))].
Subtracting (9.77) from (9.78), and replacing the quantities in finite precision by
their infinite precision counterpart, we obtain

Δui, j(k) = λ 1/2Δui, j(k−1)cosθi(k)+λ 1/2ui, j(k−1)Δ cosθi(k)
+ai, j(k)Δ sinθi(k)+Δai, j(k)sinθi(k)+ηM(k). (9.79)

Assuming that ηM(k) as well as the accumulated errors are zero mean with relatively
small cross-correlations, then

E{[Δui, j(k)]2} ≈ λE{[Δui, j(k−1)]2}E{cos2 θi(k)}
+λE{u2

i, j(k−1)}E{[Δ cosθi(k)]2}
+E{a2

i, j(k)}E{[Δ sinθi(k)]2}
+E{[Δai, j(k)]2}E{sin2 θi(k)}+E{η2

M(k)}. (9.80)
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Using (9.22) and (9.21), in the steady-state we get

E{[Δui, j(k)]2} ≈
λE{u2

i, j(k−1)}E{[Δ cosθi(k)]2}
1−λ 2

+
E{a2

i, j(k)}E{[Δ sinθi(k)]2}
1−λ 2

+
E{[Δai, j(k)]2}

1+λ
+

E{η2
M(k)}

1−λ 2 . (9.81)

The equation above can be simplified into two different ways. For i �= j, we can
apply (9.23) and (9.27) resulting in

E{[Δui, j(k)]2} ≈ λσ2
x E{[Δ cosθi(k)]2}
(1−λ )(1−λ 2)

[
2λ

1+λ

]i

+
σ2

x E{[Δ sinθi(k)]2}
1−λ 2

[
2λ

1+λ

]i

+
E{[Δai, j(k)]2}

1+λ
+

σ2
n

1−λ 2 , (9.82)

where σ2
n here is the variance of ηM(k). For i = j, we have to substitute (9.69),

(9.75), (9.23), and (9.24) in (9.81) in order to derive, after some manipulation

E{[Δui,i(k)]2} ≈ 2λ 2 −2λ +3
2λ 2 −λ +1

E{[Δai,i(k)]2}

+
3λ 2 −4λ +2
2λ 2 −λ +1

σ2
n

4σ2
x

[
2λ

1+λ

]i

+
(2λ 2 −2λ +2)σ2

n

(2λ 2 −λ +1)(1−λ )

+
σ2

nσ2
x

(1−λ )2(2λ 2 −λ +1)

[
1+λ

2λ

]i

. (9.83)

9.2.3.7 Mean squared value of Δ d̂2,i(k)

The elements of vector d̂2(k) are resultant of the application of N + 1 Givens rota-
tions to λ 1/2d2(k−1), that is

d̂2,i(k) = λ 1/2d̂2,i(k−1)cosθi(k)+bi(k)sinθi(k). (9.84)
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This equation is similar to (9.76); as a consequence, by following the same steps to
derive (9.79), we can show that

E{[Δ d̂2,i(k)]2} ≈
λE{d̂2

2,i(k)}E{[Δ cosθi(k)]2}
1−λ 2

+
E{b2

i (k)}E{[Δ sinθi(k)]2}
1−λ 2

+
E{[Δbi(k)]2}

1+λ
+

σ2
n

1−λ 2 . (9.85)

9.2.3.8 Mean squared value of Δe(k)

The error signal in the infinite- and finite-precision implementations are given by

e(k) = eq(k)cosθN(k) · · ·cosθ0(k) (9.86)

and

eQ(k) = Q[eq;Q(k)Q[cosQ θ0(k) · · ·Q[cosQ θN(k)cosQ θN−1(k)] · · · ]]], (9.87)

respectively.
From (9.47), the a posteriori error signal e(k) can be expressed as

e(k) = [eq;Q(k)+Δeq(k)][cosθN(k)+Δ cosθN(k)] · · ·
[cosQ θ1(k)+Δ cosθ1(k)][cosQ θ0(k)+Δ cosθ0(k)]

= eq;Q(k)cosQ θN(k) · · ·cosQ θ0(k)+Δeq(k)cosθN(k) · · ·cosθ0(k)

+eq,Q(k)

⎡
⎢⎣

N

∑
i=0

Δ cosQ θi(k)
N

∏
j=0
i �= j

cosθ j(k)

⎤
⎥⎦

+Δeq;Q(k)cosQ θN(k) · · ·cosQ θ0(k), (9.88)

where, in the last expression, the error terms of the second and higher order were
ignored.

The application of (9.41) to the multiplication operations of (9.16) yields

eQ(k) ≈ eq;Q(k)cosQ θN(k)cosQ θN−1(k) · · ·cosQ θ1(k)cosQ θ0(k)

−eq;Q(k)

[
N

∑
i=0

N

∏
j=i+1

cosQ θ j(k)ηe
i (k)

]
−ηe

N+1(k). (9.89)
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By replacing (9.88) and (9.89) in the definition (9.47), Δe(k) results in

Δe(k) ≈ eq;Q(k)

⎡
⎢⎣

N

∑
i=0

Δ cosθi(k)
N

∏
j=0
i �= j

cosθ j(k)

⎤
⎥⎦

+Δeq;Q(k)cosQ θ0(k) · · ·cosQ θN(k)

+eq;Q(k)

[
N

∑
i=0

N

∏
j=i+1

cosQ θ j(k)ηe
i (k)

]
−ηe

N+1(k). (9.90)

We assume that Δeq;Q(k), eq(k), Δ cosθi(k), and ηe
i (k), for i = 0, . . . ,N + 1, are

all zero mean with relatively small cross-correlation between each other. Also, the
variance ηe

i (k) is considered to be σ2
n (that is the variance of the quantization noise),

and E{cos2 θi(k)} ≈ λ .

With the above assumptions, one can show that the expected value of the
accumulated quantization error in the a posteriori error signal is given by

E{[Δe(k)]2} ≈ E{e2
q;Q(k)}

[
N

∑
i=0

E{[Δ cosθi(k)]2}λN

]

+E{[Δeq(k)]2}λN+1 +E{e2
q;Q(k)}

N

∑
i=0

λN−iσ2
n +σ2

n .(9.91)

In the first term of the right-hand-side of the equation above, we can substitute
E{e2

q(k)} as suggested in (9.35). In the third term, (9.35) should also be applied. In
the second term, if it is noted that eq(k) is the first element of d2(k), from (9.63), we
can determine E{[Δeq(k)]2} by setting i = N +1, i.e.,

E{[Δeq(k)]2} ≈ σ2
x ‖wo(k)‖2λN

N

∑
m=0

E{[Δ cosθm(k)]2}

+
N

∑
j=0

λN+1− j [E{d̂2
2, j(k)}E{[Δ sinθ j(k)]2}+E{[Δ d̂2, j(k)]2}(1−λ )

]

+
N

∑
j=0

E{d̂2
2, j(k)}(1−λ )

N

∑
p= j+1

E{[Δ cosθp(k)]2}λN− j

+
λN+1 −1
λ −1

σ2
n . (9.92)
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9.2.3.9 Mean squared value of Δwi(k)

The tap coefficients of the adaptive filter in the QRD-RLS algorithm are calculated
through the back-substitution algorithm, as illustrated in (9.14) and (9.15). After
some manipulations, it can be shown that

Δwi(k) =
d̂2,i(k)−∑N

j=i+1 wi(k)ui, j(k)
ui,i(k)

−
d̂2,i;Q(k)−∑N

j=i+1 wi;Q(k)ui, j;Q(k)+ηM(k)
ui,i;Q(k)

+ηD(k), (9.93)

where in the above equation we have

ηM(k) Δ= ηM

[
N

∑
j=i+1

wi;Q(k)ui, j;Q(k)

]
(9.94)

and

ηD(k) Δ= ηD

[(
d̂2,i;Q(k)−

N

∑
j=i+1

wi;Q(k)ui, j;Q(k)+η8(k)

)
,ui,i;Q(k)

]
. (9.95)

From the expression above and using the approximation in (9.67), we obtain

Δwi(k) ≈
Δ d̂2,i(k)−∑N

j=i+1[w j;Q(k)Δui, j(k)+Δw j(k)ui, j;Q(k)]
ui,i;Q(k)

−wi;Q(k)Δui,i(k)
ui,i;Q(k)

+
ηM(k)

ui,i;Q(k)
+ηD(k), (9.96)

where, in the last expression, we replaced the finite-precision quantities by their
infinite-precision counterparts. The introduced errors are of second order, and can
therefore be neglected. Assuming that ηM(k) and ηD(k) are uncorrelated and zero
mean; employing the averaging principle [9], it can be shown that

E{[Δwi(k)]2} ≈ E{[Δ d̂2,i(k)]2}
E{u2

i,i(k)}
+

∑N
j=i E{w2

j(k)}E{[Δui, j(k)]2}
E{u2

i,i(k)}

+
∑N

j=i+1 E{[Δw j(k)]2}E{u2
i, j(k)}

E{u2
i,i(k)}

+
σ2

n

E{u2
i,i(k)}

+σ2
n . (9.97)

In order to calculate E{[Δwi(k)]2}, it is necessary to have E{[Δui, j(k)]2} and
E{[Δd2,i(k)]2}, that in turn require the values of E{[Δai,i(k)]2}, E{[Δbi(k)]2},
E{[Δui,i(k)]2}, E{[Δ sinθi(k)]2}, and E{[Δ cosθi(k)]2}.
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From (9.97), we can determine the mean of the squared norm of the deviation
in the tap coefficients as follows:

E{‖Δw(k)‖2} =
N

∑
i=0

E{[Δwi(k)]2} (9.98)

9.2.4 Simulation results

The derived equations were verified through simulations using a system identifi-
cation application where both input signal and measurement noise were pseudo-
random sequences with normal distribution and zero-mean. Four different moving-
averaging processes were utilized to emulate unknown systems with orders equal
to 4, 6, 8, and 10, respectively. In all simulations, the QRD-RLS algorithm ran for
1500 iterations and the simulation results were obtained by averaging the results
of 100 independent runs. Infinite-precision simulations were executed with 64 bits
floating-point arithmetic. In the fixed-point implementation, the quantities were rep-
resented by numbers with magnitude less than unity. Frequent overflow was avoided
by choosing the input signal variance appropriately.

The first experiment was aimed to verify the results for different moving average
processes. The input signal variance was fixed at −30 dB, while the additional noise
variance was −70 dB. The forgetting factor was λ = 0.95 and the wordlength was
15 bits. The measured and calculated results for E{‖w(k)‖2

2} and E{[Δe(k)]2} are
presented in Table 9.2, and it can be seen that simulated and calculated values are in
close agreement.

Table 9.2 Fixed-point environment: simulations for distinct MA processes with 15 bits and for-
getting factor λ = 0.95.

MA E{‖Δw(k)‖2
2} (dB) E{[Δe(k)]2} (dB)

process Simulated Calculated Simulated Calculated

MA1 −64.7 −64.3 −92.6 −92.2
MA2 −62.7 −62.2 −91.7 −91.3
MA3 −61.2 −60.7 −91.2 −90.8
MA4 −59.9 −59.2 −90.9 −90.5

The formulas (9.91) and (9.98) were tested for different values of λ , σ2
x = −25

dB and σ2
r =−70 dB. The wordlength again was 15 bits. The results are presented in

Table 9.3. Again, we observe close agreement between the calculated and simulated
values.
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Table 9.3 Simulations for distinct λ .

Forgetting E{‖Δw(k)‖2
2} (dB) E{[Δe(k)]2} (dB)

factor (λ ) Simulated Calculated Simulated Calculated

0.90 −68.2 −67.7 −93.7 −93.2
0.93 −69.0 −68.7 −93.0 −92.6
0.95 −69.7 −69.3 −92.5 −92.2
0.97 −70.3 −70.1 −92.1 −91.8
0.99 −70.9 −70.7 −91.6 −91.3

The theoretical results were also verified for different wordlengths with σ2
x =

−30 dB, λ = 0.95 and σ2
r = −70 dB. Table 9.4 illustrates the results. As can be

noted in the current and in all previous experiments, the obtained formulas are
shown to model accurately the finite wordlength effects in the main quantities of
the QRD-RLS algorithm.

Table 9.4 Simulations for distinct precisions.

Number of E{‖Δw(k)‖2
2} (dB) E{[Δe(k)]2} (dB)

bits Simulated Calculated Simulated Calculated

12 −46.5 −46.3 −74.1 −74.1
15 −68.2 −64.3 −91.7 −92.2
20 −94.8 −94.4 −122.3 −122.3
25 −124.9 −124.6 −152.8 −152.4
30 −154.0 −154.7 −182.8 −182.5

9.3 Precision Analysis of the Fast QRD-Lattice Algorithm

This section discusses the finite-precision analysis for the FQRD-lattice algorithm
proposed by McWhirter [10]. The notation of this reference was followed. The C
Language pseudo-code for the FQRD-lattice algorithm is shown in Table 9.5, which
details all algorithmic steps labeled from step (S.1) through (S.18). It can be seen
that this algorithm takes advantage of two operations named rotor and cisor for
performing all internal computations.

Exploring the fact that only two basic operations are performed by this algo-
rithm, a very regular structure can be derived as shown in Figure 9.1. This figure
uses squares to represent rotor cells (that perform rotations) and circles to represent
cisor cells (that perform cosine/sine calculations). The small cells in the last stage
represent multipliers.
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Table 9.5 C Language pseudo-code for the FQRD-lattice algorithm.

FQRD-Lattice RLS [10]

void rotor (double xin, double yin, double xout , double yout , double cin, double sin)
{

xout = Q[λ 1/2xincin + yinsin]; (S.1)
yout = Q[−λ 1/2xinsin + yincin]; (S.2)

}

void cisor (double xin, double yin, double xout , double bin, double bout , double cout ,
double sout )
{

double aux;

xout = Q[
√

Q[λx2
in + y2

in]]; (S.3)

cout = Q[λ 1/2xin/xout ]; (S.4)
sout = Q[yin/xout ]; (S.5)
bout = Q[bincout ]; (S.6)

}

void FqrdLattice (double x(k), double d(k), double e(k))
{

int i;
double aux;

e f
0(k) = eb

0(k) = x(k); (S.7)
e0(k) = d(k); (S.8)
α0(k) = 1.0; (S.9)
for (i=1; i ≤ N+1; i++)
{

cisor (αb
i−1(k−1),eb

i−1(k),α
b
i−1(k),αi−1(k),αi(k),c

f
i (k),s f

i (k)); (S.10)

rotor (β f
i−1(k−1),e f

i−1(k),β
f

i−1(k),e
f
i (k),c f

i (k−1),s f
i (k−1)); (S.11)

rotor (βi−1(k−1),ei−1(k),βi−1(k),ei(k),c
f
i (k),s f

i (k)); (S.12)

ε f
i (k) = Q[αi(k−1)e f

i (k)]; (S.13)
εi(k) = Q[αi(k)ei(k)]; (S.14)
cisor (α f

i−1(k−1),e f
i−1(k),α

f
i−1(k),aux,aux,cb

i (k),s
b
i (k)); (S.15)

rotor (β b
i−1(k−2),eb

i−1(k),β
b
i−1(k−1),eb

i (k),c
b
i (k),s

b
i (k)); (S.16)

εb
i (k) = Q[αi(k)eb

i (k)]; (S.17)
}
e(k) = Q[αN+1(k)eN+1(k)]; (S.18)

}
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d(k) e(k)

x(k)

eb(k)

e f (k)

1.0

1.0

z−1

z−1

z−1

z−1

z−1

z−1

Fig. 9.1 Structure representing the FQRD-lattice algorithm.

9.3.1 Infinite-precision analysis

This section derives mean squared values of the internal variables in the FQRD-
lattice algorithm. They are of key importance for the finite-precision analysis that
will be performed in the next subsection.

9.3.1.1 Mean squared values of c f
i (k) and s f

i (k)

Previous studies [11] have shown that the mean squared values of the forward recur-
sion cosines and sines are

E{[c f
i (k)]2} = λ , and (9.99)

E{[s f
i (k)]2} = 1−λ . (9.100)

Simulations for these variables in the QRD-RLS and for the FQRD-lattice algo-
rithms indicate that these approximations are reasonable.

9.3.1.2 Mean squared values of β f
i (k), e f

i (k), and α f
i (k)

Step (S.11) of the FQRD-lattice algorithm implies that

β f
i (k) = λ 1/2c f

i (k−1)β f
i−1(k−1)+ s f

i (k−1)e f
i−1(k), and (9.101)

e f
i (k) = −λ 1/2s f

i (k−1)β f
i−1(k−1)+ c f

i (k−1)e f
i−1(k). (9.102)
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If it is supposed that the sines and cosines of the previous equations are uncorrelated
with each other, and that the values of the sines are zero-mean, then it is possible to
obtain the following relations:

E{[β f
i (k)]2} = λE{[c f

i (k−1)]2}E{[β f
i−1(k−1)]2}

+E{[s f
i (k−1)]2}E{[e f

i−1(k)]
2}, (9.103)

E{[e f
i (k)]2} = λE{[s f

i (k)]2}E{[β f
i−1(k)]

2}
+E{[c f

i (k)]2}E{[e f
i−1(k)]

2}. (9.104)

Substituting relations (9.99) and (9.100) in (9.103), it is possible to show that

E{[β f
i−1(k)]

2} =
E{[e f

i−1(k)]
2}

1+λ
. (9.105)

Substituting relations (9.99), (9.100), and (9.105) on (9.104), we obtain

E{[e f
i (k)]2} =

2λ
1+λ

E{[e f
i−1(k)]

2}. (9.106)

Since e f
0(k) = x(k), according to step (S.10), it follows that

E{[e f
i (k)]2} = σ2

x

[
2λ

1+λ

]i

. (9.107)

Consequently, according to (9.105),

E{[β f
i (k)]2} =

σ2
x

1+λ

[
2λ

1+λ

]i

. (9.108)

The recursion formula for α f
i−1(k) is given by

α f
i−1(k) =

√
λ [αb

i−1(k−1)]2 +[e f
i−1(k)]2, (9.109)

according to step (S.15). Supposing that α f
i−1(k) and e f

i−1(k) are stationary for k →
∞, it follows that

E{[α f
i (k)]2} =

E{[e f
i (k)]2}

1−λ
. (9.110)
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Using (9.107), the following expression results:

E{[α f
i (k)]2} =

σ2
x

1−λ

[
2λ

1+λ

]i

. (9.111)

9.3.1.3 Mean squared values of cb
i (k) and sb

i (k)

According to the algorithm step (S.15), it follows that sines and cosines are calcu-
lated by

cb
i (k) =

λ 1/2α f
i−1(k−1)

α f
i−1(k)

, and (9.112)

sb
i (k) =

e f
i−1(k)

α f
i−1(k)

. (9.113)

Thus, the mean squared values of the backward recursion sines and cosines are

E{[cb
i (k)]

2} =
λE{[α f

i−1(k−1)]2}
E{[α f

i−1(k)]2}
, and (9.114)

E{[sb
i (k)]

2} =
E{[e f

i−1(k)]
2}

E{[α f
i−1(k)]2}

. (9.115)

In the above equations, the averaging principle [9] was used. Considering that
α f

i−1(k) is statistically stationary as k →∞ and using the fundamental trigonometric
relation, it follows

E{[cb
i (k)]

2} = λ , (9.116)

E{[sb
i (k)]

2} = 1−λ . (9.117)

Surprisingly, these mean square values are the same as the ones for the forward
recursion sines and cosines, and different from those in the fast QRD-RLS proposed
by Bellanger [10, 12].

9.3.1.4 Mean squared values of β b
i (k), eb

i (k), and αb
i (k)

The relations for β b
i (k) and eb

i (k) derived from step (S.16) are totally analogous
to the ones for β f

i (k) and e f
i (k) shown in (9.101) and (9.102). Considering that the
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mean squared values for cosines and sines are the same in the backward and forward
rotations and using the same statistical independence assumptions, it is possible to
obtain the following expressions:

E{[eb
i (k)]

2} = σ2
x

[
2λ

1+λ

]i

(9.118)

E{[β b
i (k)]2} =

σ2
x

1+λ

[
2λ

1+λ

]i

(9.119)

E{[αb
i (k)]2} =

σ2
x

1−λ

[
2λ

1+λ

]i

. (9.120)

9.3.1.5 Mean squared values of βi(k) and ei(k)

Using properties of the triangularized input signal matrix [11], a very simple rela-
tionship for the mean square value of βi(k) can be derived. It is supposed that the
reference input d(k) is an MA process added with white Gaussian measurement
noise r(k) so that d(k) = wo(k)∗ x(k)+ r(k). In this case, wo(k) is a sequence with
the coefficients of the MA process with non-zero values for k = 0, . . . ,N.

E{β 2
i (k)} =

[
2λ

1+λ

]i
[

σ2
x

1−λ
[wo

i ]
2 +

σ2
x

1+λ

N

∑
j=i+1

[wo
j ]

2

]
(9.121)

Using the norm conservation property of Givens rotations, a relation between
E{e2

i (k)} and E{β 2
i (k)} can be derived as follows:

E{e2
i (k)} = σ2

x ‖wo‖2 +(λ −1)
i−1

∑
j=0

E{β 2
i (k)}, (9.122)

where wo is a vector with N +1 entries with the sequence wo(k), k = 0, . . . ,N.

9.3.2 Finite-precision analysis

9.3.2.1 Mean squared value of Δαb
i (k)

According to step (S.10), the finite-precision version of αb
i (k), denoted by αb

i;Q(k),
can be modeled as

αb
i−1;Q(k) =

√
λ [αb

i−1;Q(k−1)]2 +[e f
i−1;Q(k)]2 +ηM(k)

+ηS(k), (9.123)
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where ηM(k) and ηS(k) are instantaneous quantization errors due to multiplica-
tion and square-root operations. Considering only first order terms, it is possible to
obtain

Δαb
i−1(k) =

λαb
i−1(k−1)Δαb

i−1(k−1)+ eb
i−1(k)Δeb

i−1(k)
αb

i−1(k)

− ηM(k)
αb

i−1(k)
+ηS(k). (9.124)

Squaring the above equation, supposing that the deviations and instantaneous quan-
tization noises are all zero mean and uncorrelated with each other, and substituting
Equations (9.118) and (9.120) it follows that

E{[Δαb
i−1(k)]

2} =
E[Δeb

i−1(k)]
2

1+λ
+

σ2
n

4σ2
x

1
1+λ

[
1+λ

2λ

]i−1

+
σ2

n

1−λ 2 . (9.125)

The averaging principle [9] was used on the derivation.

9.3.2.2 Mean squared values of Δs f
i (k) and Δc f

i (k)

Using relations derived from step (S.15) and first-order approximations it is possible
to write

E{[Δs f
i (k)]2} = E

[
Δeb

i−1(k)
αb

i−1(k)
−

eb
i−1(k)Δα

b
i−1(k)

[αb
i−1(k)]2

+ηD(k)

]2

. (9.126)

Using only first-order terms, supposing that the deviations and quantization noise
are all zero mean and uncorrelated with each other, and using the averaging princi-
ple [9], it is possible to derive

E{[Δs f
i (k)]2} =

E[Δeb
i−1(k)]

2

σ2
x

(1−λ )
[

1+λ
2λ

]i−1

+σ2
n

+E{[Δαb
i−1(k)]

2}σ2
x (1−λ )2

[
1+λ

2λ

]i−1

. (9.127)

The same methodology can be used to obtain the mean squared value of Δc f
i (k).

The result is

E{[Δc f
i (k)]2} =

2λ (1−λ 2)
σ2

x

[
1+λ

2λ

]i−1

E{[Δαb
i−1(k)]

2}+σ2
n . (9.128)
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9.3.2.3 Mean squared values of Δβ f
i (k) and Δe f

i (k)

The evolution of β f
i (k) is described by (9.103). If second-order errors are neglected,

it is possible to write

Δβ f
i−1(k) = λ 1/2c f

i (k−1)Δβ f
i−1(k−1)

+λ 1/2Δc f
i (k−1)β f

i−1(k−1)+Δs f
i (k−1)e f

i−1(k)

+s f
i (k−1)Δe f

i−1(k)+ηM(k). (9.129)

Supposing that all the deviations and the instantaneous quantization noise are zero
mean and uncorrelated with each other, it is possible to get

E{[Δβ f
i−1(k)]

2} =
λσ2

x

(1+λ )(1−λ 2)

[
2λ

1+λ

]i−1

E{[Δc f
i (k)]2}

+
σ2

n

1−λ 2 +
σ2

x

1−λ 2

[
2λ

1+λ

]i−1

E{[Δs f
i (k)]2}

+E{[Δs f
i (k)]2}+

E{[Δe f
i−1(k)]

2}
1+λ

. (9.130)

Using Equation (9.104) and following the same steps, it can be shown that

E{[Δe f
i (k)]2} = σ2

x

[
2λ

1+λ

]i−1

E{[Δc f
i (k)]2}+λE{[Δe f

i−1(k)]
2}

+E{[Δs f
i (k)]2}σ2

x
λ

1+λ

[
2λ

1+λ

]i−1

+λ (1−λ )E{[Δs f
i (k)]2}+σ2

n . (9.131)

9.3.2.4 Mean squared values of Δε f
i (k), Δαi(k), and Δεi(k)

According to step (S.13), it is possible to write

ε f
i (k) = αi(k−1)e f

i (k). (9.132)

Using the same methodology of previous derivations, it is possible to obtain

E{[Δε f
i (k)]2} = σ2

x

[
2λ

1+λ

]i

E{[Δαi(k)]2}+λ iE{[Δe f
i (k)]2}+σ2

n . (9.133)

Step (S.10) implies that

αi(k) = c f
i (k−1)αi−1(k). (9.134)
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The mean squared value for Δαi(k) can be shown to be

E{[Δαi(k)]2} = E{[Δc f
i (k)]2}λ i−1 +λE{[Δαi−1(k)]2}+σ2

n . (9.135)

It can be seen that εi(k) is described by step (S.14). The mean squared value for
Δεi(k) can be calculated as

E{[Δεi(k)]2} = E{[Δαi(k)]2}E{e2
i (k)}+σ2

n

+
σ2

x

1−λ

[
2λ

1+λ

]i−1

E{[Δei(k)]2}. (9.136)

9.3.2.5 Mean squared values of Δα f
i (k), Δsb

i (k), Δc f
i (k), Δβi(k), and Δei(k)

According to Table 9.5, these quantities have dynamic relations that are very similar
to their “dual” (forward or backward) counterparts. Using the same methodology
described in the previous sections, the following relations are derived:

E{[Δα f
i−1(k)]

2} =
E[Δe f

i−1(k)]
2

1+λ
+

σ2
n

4σ2
x

1
1+λ

[
1+λ

2λ

]i−1

+
σ2

n

1−λ 2 (9.137)

E{[Δsb
i (k)]

2} =
E[Δe f

i−1(k)]
2

σ2
x

(1−λ )
[

1+λ
2λ

]i−1

+σ2
n

+E{[Δα f
i−1(k)]

2}σ2
x (1−λ )2

[
1+λ

2λ

]i−1

(9.138)

E{[Δc f
i (k)]2} =

2λ (1−λ 2)
σ2

x

[
1+λ

2λ

]i−1

E{[Δα f
i−1(k)]

2}+σ2
n (9.139)

E{[Δeb
i (k)]

2} = σ2
x

[
2λ

1+λ

]i−1

E{[Δcb
i (k)]

2}+λE{[Δeb
i−1(k)]

2}

+E{[Δsb
i (k)]

2}σ2
x

λ
1+λ

[
2λ

1+λ

]i−1

+λ (1−λ )E{[Δsb
i (k)]

2}+σ2
n (9.140)

The other two remaining values required to compute E{[Δe(k)]2} can be derived
from step (S.12) and are shown below.
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E{[Δβi−1(k)]2} =
λ

1−λ 2 E{[Δc f
i (k)]2E{β 2

i−1(k)}

+
1

1+λ
E{[Δei−1(k)]2}+E{e2

i−1(k)}+
σ2

n

1−λ 2

+
1

1−λ 2 E{[Δs f
i (k)]2} (9.141)

E{[Δei(k)]2} = λE{[Δei−1(k)]2}+E{[Δc f
i (k)]2}E{e2

i−1(k)}
+(1−λ )λE{[Δβi−1(k)]2}
+λE{[Δs f

i (k)]2}E{β 2
i−1(k)}+σ2

n (9.142)

9.3.2.6 Mean squared value of Δe(k)

Using step (S.18), the mean squared accumulated quantization error of the a
posteriori error signal is given by

E{[Δe(k)]2} = λNE{[ΔeN+1(k)]2}+E{[ΔαN+1(k)]2}
σ2

r

λ i +σ2
n . (9.143)

9.3.3 Simulation results

Intensive simulations were performed to verify the accuracy of derived relations in
both infinite and finite-precision. Different values of λ , σ2

x and different number of
bits were used. In the simulations, 2s complement rounding was used, the input was
white Gaussian noise with σ2

x = −30 dB, λ = 0.99, the measurement error signal
had variance σ2

r = −70 dB, and an MA process of order 2 was used. A total of
10,000 points were calculated in both finite-precision and infinite-precision and the
last 9000 samples were averaged. The results of simulated and calculated results for
E{[Δe(k)]2} are displayed in Table 9.6.

Simulations with different values of λ were also performed. On these simula-
tions, 15 bits were used. The input signals were the same as in the previous simula-
tions. The results are shown in Table 9.7.

Table 9.6 Simulation results of E{[Δe(k)]2} – different number of bits (λ = 0.99).

Number of Bits Simulated (dB) Calculated (dB)
10 −60.66 −59.94
15 −89.55 −90.05
20 −119.46 −120.15
30 −178.84 −180.36
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Table 9.7 Simulation results of E{[Δe(k)]2} – different values of λ (15 bits).

λ Simulated (dB) Calculated (dB)
0.90 −87.75 −88.96
0.95 −88.67 −89.67
0.98 −89.40 −89.98
0.99 −89.63 −90.05

9.4 Conclusion

This chapter describes propagation models for the error generated by quantization in
two important QRD-RLS algorithms, namely the conventional and the FQRD-lattice
algorithms. These algorithms are among the sub-class of algorithms that are known
to have stable behavior in finite-precision implementations. The approach presented
consists of deriving the steady-state mean squared values of all internal variables of
the algorithms as well as the mean squared values of their errors originating from
quantization.

As a rule, the analytical expressions for the internal variables allow access to
estimates of their dynamic range, which in turn should be employed in determining
their required wordlengths. In addition, the expressions related to the quantization
effects provide tools to estimate the loss in accuracy originating from error propa-
gation in the internal variables. The derived expressions are all verified to be quite
accurate through the simulations presented.

References

1. K. J. R. Liu, S.-F. Hsieh, K. Yao, and C.-T. Chiu, Dynamic range, stability, and fault-tolerant
capability of finite-precision RLS systolic array based on Givens rotations. IEEE Transactions
on Circuits and Systems, vol. 38, no. 6, pp. 625–636 (June 1991)

2. S. Leung and S. Haykin, Stability of recursive QRD-LS algorithms using finite-precision sys-
tolic array implementation. IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 5, pp. 760–763 (May 1989)

3. S. Haykin, Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, USA (1991)
4. J. G. McWhirter, Recursive least-squares minimization using a systolic array. SPIE Real-Time

Signal Processing VI, vol. 431, pp. 105–112 (January 1983)
5. W. H. Gentleman and H. T. Kung, Matrix triangularization by systolic arrays. SPIE Real-Time

Signal Processing IV, vol. 298, pp. 19–26 (January 1981)
6. P. S. R. Diniz and M. G. Siqueira, Finite precision analysis of the QR-recursive least squares

algorithm. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Process-
ing, vol. 42, pp. 334–348 (May 1995)

7. A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill Book
Company, New York, NY, USA (1965)

8. C. Caraiscos and B. Liu, A roundoff error analysis of the LMS adaptive algorithm. IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, no, 1, pp. 34–41
(February 1984)



9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 267

9. C. G. Samson and V. U. Reddy, Fixed point error analysis of the normalized ladder algo-
rithm. IEEE Transactions on Audio, Speech, and Signal Processing, vol. ASSP-31, no. 5,
pp. 1177–1191 (October 1983)

10. N. Kalouptsidis and S. Theodoridis, Adaptive System Identification and Signal Processing
Algorithms, Prentice-Hall, Upper Saddle River, NJ, USA (1993)

11. M. G. Siqueira and P. S. R. Diniz, Infinite precision analysis of the QR-recursive least squares
algorithm. IEEE International Symposium on Circuit and Systems, ISCAS’93, Chicago,
USA, pp. 878–881 (May 1993)

12. M. G. Siqueira, P. S. R. Diniz, and A. Alwan, Infinite precision analysis of the fast QR decom-
position RLS algorithm. IEEE International Symposium on Circuits and Systems, ISCAS’94,
London, UK, vol. 2, pp. 293–296 (May–June 1994)


	Finite and Infinite-Precision Properties of QRD-RLS Algorithms
	Paulo S. R. Diniz and Marcio G. Siqueira
	Introduction
	Precision Analysis of the QR-Decomposition RLS Algorithm
	Infinite-precision analysis
	Stability analysis
	Error propagation analysis in steady-state
	Simulation results

	Precision Analysis of the Fast QRD-Lattice Algorithm
	Infinite-precision analysis
	Finite-precision analysis
	Simulation results

	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




