
Chapter 8
Numerical Stability Properties

Phillip Regalia and Richard Le Borne

Abstract Designers of algorithms must not only solve the problem of interest, but
do so using methods which are robust under perturbations in the data as well as the
intermediate parameters of the method. More generally, it is often the case that the
actual problem of interest is too complicated to solve directly; simplifying assump-
tions are necessary. At each stage, from problem identification, to the setup of the
problem to be solved using some method, to the ultimate algorithm to be imple-
mented in code, perturbations and their effects must be anticipated and analyzed.
Stability is the property that assesses the level of robustness to perturbations that
is required before the computed solution given by an algorithm can be used with
confidence. The origin of the perturbation can vary, as pointed out above. What is
important, however, is to have analysis that supports the premise that a small change
in the problem results in a small change to the solution.

8.1 Introduction

The use of the QR-decomposition (vs. QR-algorithm) depends greatly on its
reputation for providing consistently usable results. When an algorithm’s reputa-
tion suffers, whether deserved or not, users often seek an alternative. It is therefore
important, if not essential, to first establish the criteria in which a reliable solution
can be guaranteed. For example, the reputation of Gaussian elimination suffered
greatly in the 1940s because of its inability to always provide a usable solution.
It was not until an analysis performed by J. H. Wilkinson [1], that introduced the

Phillip Regalia
Catholic University of America, Washington, DC – USA
e-mail: regalia@cua.edu

Richard Le Borne
Tennessee Technological University, Cookeville, TN – USA
e-mail: rleborne@tntech.edu

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 205
DOI 10.1007/978-0-387-09734-3 8, c© Springer Science+Business Media, LLC 2009

regalia@cua.edu
rleborne@tntech.edu

206 Phillip Regalia and Richard Le Borne

relationship between perturbations and the conditioning of the problem, before con-
fidence in Gaussian elimination could be re-established. In this chapter, we will
focus our attention on stability and what it means in the context of the develop-
ment process that begins with the clear articulation of the problem and ends with
the computer implementation of the algorithm.

8.2 Preliminaries

The usefulness of a computed solution is a statement assessing its numerical accu-
racy. When the estimate of the desired solution is a vector, required is a means for
assessing its accuracy. The vector norm assigns a single number to a vector and this
property is very useful for assessing the error in a given quantity. There are different
vector norms, but the most often used are considered equivalent in IRN in that one
norm is within a constant factor of another. For example, the Euclidean norm, or
two-norm, is defined as the square-root of the sum of squares of vector elements.
For the vector of filter weights, w = [w1,w2, . . . ,wN]T, its Euclidean norm, ‖w‖2 is
given by

‖w‖2 =
√

w2
1 +w2

2 + · · ·+w2
N (8.1)

=
√

∑N
i=1 w2

i (8.2)

For matrices, the norm again is used to associate a single number to it but its defi-
nition is chosen to be compatible with vector norms. For example, the matrix norm
associated with the Euclidean norm is called the spectral norm. For X ∈ IRN×M , its
spectral norm, ‖X‖2, is defined as

‖X‖2 = max
‖w‖2 =1

‖Xw‖2 (8.3)

=
√

λmax(XTX) (8.4)

= σmax(X), (8.5)

where λmax(XTX) is the maximum eigenvalue of XTX and σmax(X) is the largest
singular value of the data matrix X. The singular value of a matrix will next
be defined. For a full discussion on vector and matrix norms a good source is
[2, Chapter 2].

Suppose at time index k, we are given the data matrix X(k) ∈ IR(k+1)×(N+1) of
rank r. Then there are unitary matrices U(k)∈IR(k+1)×(k+1) and V(k)∈IR(N+1)×(N+1)

where UT(k)U(k) = I ∈ IR(k+1)×(k+1) and VT(k)V(k) = I ∈ IR(N+1)×(N+1)

and a diagonal matrix ΣΣΣ(k) ∈ IR(k+1)×(N+1) where ΣΣΣ(k) = diag(σ1(k),σ2(k), . . . ,
σr(k),0, . . . ,0) = diag(ΣΣΣ+(k),0, . . . ,0) with σ1(k) ≥ σ2(k) ≥ . . . ≥ σr > 0. Then
the singular value decomposition is given by:

8 Numerical Stability Properties 207

Definition 1 (Singular Value Decomposition).

X(k) = U(k)ΣΣΣ(k)VT(k) (8.6)

= U(k)
[
ΣΣΣ+(k) 0

0 0

]
VT(k) (8.7)

Here, σi(k), i = 1, . . . ,r are the singular values of X(k) and for

U(k) = [u1(k), . . . ,uk+1(k)] (8.8)

V(k) = [v1(k), . . . ,vN+1(k)] , (8.9)

we have that the ui(k), i = 1, . . . ,k +1 and v j(k), j = 1, . . . ,N +1 are, respectively,
the left and right singular vectors associated with the singular values:

XT(k)ui(k) = σivi(k), i = 1, . . . ,r (8.10)

XT(k)ui(k) = 0, i = r +1, . . . ,k +1, (8.11)

and,

X(k)vi(k) = σiui(k), i = 1, . . . ,r (8.12)

X(k)vi(k) = 0, i = r +1, . . . ,N +1 (8.13)

It also holds that the square of the ith right singular value, σi(k), i = 1, . . . ,
N + 1 is equal to the ith eigenvalue of the correlation matrix, XT(k)X(k), that is,
λi(XT(k)X(k)) = σ2

i , and XT(k)X(k)vi(k) = λiv(k) = σ2
i vi(k), i = 1, . . . , N +1.

The pseudo-inverse, or generalized inverse, X†(k) can then be defined using the
singular value decomposition:

Definition 2 (Pseudo-Inverse).

X†(k)︸ ︷︷ ︸
(N+1)×(k+1)

= V(k)
[
ΣΣΣ−1

+ (k) 0
0 0

]

︸ ︷︷ ︸
(N+1)×(k+1)

UT(k) (8.14)

Consider the least-squares filtering problem which seeks to find the weight vector
w(k) such that

X(k)w(k) = d(k) (8.15)

208 Phillip Regalia and Richard Le Borne

with w(k) satisfying
min

w
‖d(k)−X(k)w‖2. (8.16)

It is well known [2, Chapter 3] that w(k) solves (8.15) if w(k) = X†(k)d(k)+ (I−
X†(k)X(k))z, where z ∈ IR(N+1)×1 is arbitrary. For (8.16), z must obviously be the
zero vector so that

w(k) = X†(k)d(k). (8.17)

Note that for the case that X(k) has full rank, i.e., rank(X(k)) = N + 1, then
X†(k)X(k) = I(N+1)×(N+1) and the solution is unique and can be given in terms
of the normal equations:

XT(k)X(k)w(k) = XT(k)d(k) (8.18)

w(k) =
(
XT(k)X(k)

)−1XT(k)d(k) (8.19)

w(k) = X†(k)d(k). (8.20)

Returning to our interest in whether the computed results from a recursive least-
squares method are usable, we turn to the cause for perturbations in a result that,
in theory, should not affect the convergence properties. The amount of deviation
in a computed quantity from its exact value, be it the filter weights or the filter a
posteriori residuals, can be affected from two sources: the nature of the problem
and the method chosen to solve it. For recursive least-squares, we are interested in
computing a sequence of least-squares solutions w(k), k = N, N + 1, . . . , where, at
time index k, we have the overdetermined system of equations X(k)w(k) ≈ d(k) in
which we are interested in determining either w(k), the least squares filter weights,
or the minimal-valued filter residuals, εεε(k) = d(k)−X(k)w(k). Before the stability
of a method can be assessed, however, the sensitivity of the problem to changes in
the data must be studied. Clear terminology is needed for this distinction.

8.2.1 Conditioning, forward stability, and backward stability

Depending on our purposes, we may not be interested in the determination of the
least-squares solution w(k) directly but only the least-squares residuals, ε(k). This
choice can, and in the case of recursive least-squares does, have an impact regarding
the sensitivity of the problem to perturbations in the input data. In general, this
sensitivity inherent to the problem is regarded as the conditioning of the problem
and is the first step in assessing the quality of a method.

Definition 3. A problem is well-conditioned if small changes in the data
invoke only small changes in the solution. Otherwise, the problem is con-
sidered to be ill-conditioned.

8 Numerical Stability Properties 209

For example, for linear square systems of equations in which the number of
unknowns equals the number of equations, Ax = b, for A ∈ IRn×n of full rank,
x,b ∈ IRn×1, the sensitivity of the solution, x, to changes in the elements in A is
measured through the condition number, κ2(A), of the matrix and is defined by

κ2(A) = ‖A‖2 ‖A−1‖2. (8.21)

This quantity gives a measurement to the proximity of A to a singular matrix. When
A is nearly singular, a small change in its entries could have a very profound change
in its solution x, regardless of the method chosen to solve the problem!

Suppose that because of inaccuracies whose origin is purposely left vague,
instead of determining w(k), we have computed ŵ(k). Whether it is acceptable to
use ŵ(k) in place of w(k) is often not answered through direct measurement of the
absolute or relative error, ‖w(k)− ŵ(k)‖2 or ‖w(k)− ŵ(k)‖2/‖w(k)‖2, ‖w(k)‖2 �=
0, respectively (since we would simply use w(k)!). However, through error analysis
techniques it is sometimes possible to bound this quantity by parameters that are
computable. When this is the case, the analysis bounding the absolute or relative
error is termed a forward or direct error analysis. If the bounded quantity is small
enough over general operating conditions, the computed solution ŵ(k) is deemed
usable and the method employed to solve the problem is considered forward stable.

Definition 4. A method for solving Xw = d is forward stable if it has a
small forward error. That is, the computed result ŵ satisfies the condition that
‖w−ŵ‖2
‖w‖2

(with ‖w‖2 �= 0) is small.

Often, a forward analysis is too difficult to achieve useful results. When this is
the case, an alternative approach for the error analysis, termed a backward error
analysis, may be considered. For this, the computed solution ŵ(k) is interpreted as
the exact solution to some other problem. Considering this new problem to be a
perturbation of the original problem defines the perspective for the analysis. When
the perturbed problem is near enough to the original problem, the computed solution
is considered to be backward stable. When there are many possible problems in
which ŵ(k) is the exact solution, the smallest perturbation from the original problem
is chosen.

Definition 5. A method for solving a problem is backward stable if its back-
ward error is small. That is, its computed solution is the exact solution to a
slightly perturbed problem.

210 Phillip Regalia and Richard Le Borne

The analysis to measure the effects of finite-precision is often an application of
the results found from the stability analysis of the method; the perturbations are
defined to model the effects of computer arithmetic and finite-precision represen-
tation. At this level, the implementation of the method could include variations for
handling the storage and numerical computations. The focus, then, would be to tailor
the implementation of the method to exploit the capabilities and avoid the handicaps
given by a computer representation environment.

To summarize the above, the attention is usually on the forward error since this
translates directly to the usefulness of the computed solution. When a direct anal-
ysis to bound the forward error is not possible or too difficult, a useful means for
interpreting and connecting the concepts of conditioning and forward and backward
errors, when defined in a consistent way is [3, Chapter 1, p. 10],

Forward Error
<∼ (Condition Number)×(Backward Error).

For a well-conditioned problem, a small backward error implies a small for-
ward error. But an ill-conditioned problem could lead to a misinterpretation of
a small backward error since here there could still be a large forward error. A
method is forward or backward stable if it produces a small forward or backward
error, respectively. But a backward stable method does not necessarily produce a
usable computed solution if the problem itself is sensitive to perturbations.

8.3 The Conditioning of the Least-Squares Problem

Signal processing problems, in particular least-squares problems, are recursively
updated in time as new measurement data is received. On a more abstract setting,
this can be formulated as a non-linear mapping that produces a sequence of vec-
tors that (hopefully) approximate with increasing accuracy some desired solution.
Determining the stability of this mapping, i.e., the study performed on the mapping
to determine the degree of continuity under the effect of perturbations, is the initial
goal of an analysis. Without additional specifics regarding continuity, the interpre-
tation of a stability analysis may be left to the reader; an unnecessary consequence
that should be avoided. To this end, it is often the case when analyzing the effects of
perturbations to make the following distinction: Conditioning refers to the problem
that is to be solved, while stability refers to either the method or its implementa-
tion as an algorithm. This means that it is possible to get a bad computed solution
because of the nature of the problem or because of the manner chosen to solve it. An
analysis assessing only the method/algorithm will be incomplete without an analysis
of the problem.

8 Numerical Stability Properties 211

8.3.1 The conditioning of the least-squares problem

Before we formally state the least-squares problem, we introduce the following ter-
minology. The following requires distinct notation to represent exact values from
those which have been affected by perturbations. We will denote a perturbation by
the δ symbol and the perturbed quantity by inserting a ˜ above the symbol. For
example, the presence of perturbations in the data matrix and the desired output will
be denoted and defined by X̃(k) = X(k)+δX(k) and d̃(k) = d(k)+δd(k), respec-
tively.

We now present two theorems from Golub and Wilkinson [4] that bound the
effect of perturbations in X(k) and d(k) on the solutions to the least squares problem
(8.15) and (8.16). For X(k) having full rank, we define its condition number κ2 as

κ2
(
X(k)

)
� σ1(k)

σN+1(k)
(8.22)

= ‖X(k)‖2

∥∥∥[XT(k)X(k)
]−1

XT(k)
∥∥∥

2
. (8.23)

From the singular value decomposition it follows that,

κ2(X(k))2 � ‖X(k)‖2
2

∥∥∥[XT(k)X(k)
]−1

∥∥∥
2
. (8.24)

Theorem 1. Let w(k), εεε(k), w̃(k), and ε̃εε(k) satisfy

‖X(k)w(k)−d(k)‖2 = min
w

‖εεε(k)‖2 (8.25)

‖(X(k)+δX(k)) w̃(k)− (d(k)+δd(k))‖2 = min
w̃

‖ε̃εε(k)‖2 (8.26)

where

εεε(k) = d(k)−X(k)w(k), and

ε̃εε(k) =
[
d+ d̃(k)

]
− [X(k)+δX(k)]w̃(k).

If δmax is given by

δmax = max

{
‖δX(k)‖2

‖X(k)‖2
,
‖δd(k)‖2

‖d(k)‖2

}
<

σN+1(k)
σ1(k)

(8.27)

and sin(θ) by

sin(θ) =
ρw(k)

‖d(k)‖2
�= 1, (8.28)

212 Phillip Regalia and Richard Le Borne

where ρw(k) � ‖X(k)w(k)− d(k)‖2 is the minimal least squares residual,
then

‖w̃(k)−w(k)‖2

‖w(k)‖2
≤ δmax

{
2κ2(X(k)

cos(θ)
+ tan(θ)κ2(X(k))2

}
+O(δ 2

max) (8.29)

and

‖ε̃εε(k)− εεε(k)‖2

‖d(k)‖2
≤ δmax (1+2κ2(X(k)))min(1,k−N)+O(δ 2

max). (8.30)

Theorem 1 tells us that the sensitivity of the least squares filter residuals, ε(k),
are proportional to the conditioning, κ2(X(k)). Comparatively, the sensitivity of the
filter weights to perturbations are proportional to the square of the conditioning,
κ2

2 (X(k)). This result pertains to the nature of the problem being solved and is inde-
pendent of the method employed to solve it.

Under the conditions of Theorem 1 with the data matrix X(k) having full rank
and no assumed perturbations in d(k), the conditioning of the least-squares problem,
κLS(X(k),d(k)) is defined as [5, Chapter 1],

Definition 6.

κLS(X(k),d(k)) = κ2(X(k))
(

1+κ2(X(k))
‖εεε(k)‖2

‖X(k)‖2 ‖w(k)‖2

)
. (8.31)

From (8.31) it is seen that the conditioning of the least-squares problem, that
is, the sensitivity of the least-squares problem to perturbations in the data matrix,
depends on the a posteriori residual and thus on the right-hand-side vector d(k).

8.3.2 Consistency, stability, and convergence

The recursive least-squares problem produces a sequence of solutions, x(k), k =
N + 1, . . . , and it is because of this that the issue of convergence is of interest.
Specifically, even though in a stationary environment the recursive least-squares
solution converges, perturbations may significantly alter these theoretical properties
to the extent that the computed solution may not converge.

Suppose the computed solution, ŵ(k) at time index k, is a very good approxi-
mation to the true least-squares solution w(k). Since the next computed solution,

8 Numerical Stability Properties 213

ŵ(k + 1), involves ŵ(k), it is natural to question the usefulness for our definition
of a stable method. After a large number of iterations, the accumulative effect from
each approximate solution could have disastrous consequences regarding the notion
of convergence.

To this end, there is a need for additional conditions on the method before the
sequence of computed solutions can be guaranteed to converge to a good approxi-
mation of the desired solution, be it the filter weights (the least-squares solution) or
the filter a posteriori error (residual). In a recursive environment, the update param-
eters are typically non-linearly interlaced. Abstractly, let the parameters used in the
method’s update scheme be denoted as a non-linear mapping { f : A −→ B} where
A denotes the set of input data and parameters at the current state and B denotes the
computed solution as well as the updated parameters to be used in the next recur-
sion. The mapping f is strongly associated to the least-squares problem, and as such
inherits any restrictions such as matrix structure (symmetry, close-to-Toeplitz, pos-
itive definitiveness, etc.). Any perturbations to this mapping must not interfere with
this association. We will formalize this, but first we need to define what we mean by
an equicontinuous mapping.

Definition 7. The set {B} is admissible if for all a ∈ A φ(a) = b ∈ B and a,b
are associated to a least-squares problem.

Definition 8. The mapping { f : A −→ B} is continuous at a if for all ζ > 0
there exists an η > 0, such that ‖ φ(â)−φ(a) ‖≤ ζ whenever ‖ â−a ‖≤ η .

If we are interested in the convergence properties of all members fδ in a neigh-
borhood of f then we need the notion of consistency in addition to continuity.

Definition 9. The mapping f is consistent if for some η > 0, and all â =
a+δa, ‖ δa ‖< η , it holds that φ(â) = b̂ ∈ B, B admissible.

Definition 10. Φδ = f−1
δ is called an approximation to the inverse mapping

f−1 if and only if fδ is consistent with respect to the mapping f .

214 Phillip Regalia and Richard Le Borne

Theorem 2. For φδ consistent with respect to f , a sufficient condition for con-
vergence is the equicontinuity of Φδ .

The proof of Theorem 2 can be found in ([6] p. 10).

8.4 The Recursive QR Least-Squares Methods

The QR-decomposition relies on a process that will replace selected non-zero entries
of a matrix or vector with zeros. When this process is performed using orthogonal
matrices, desirable properties concerning numerical stability result. We review first
a direct stability analysis for the full QR decomposition adaptive filtering analysis,
and then observe that the sufficient conditions for stable behavior reduce to a form
of backward consistency. We then examine fast least-squares algorithms based on
the QR decomposition. Although a direct stability analysis is considerably more
complicated (if not intractable), backward consistency conditions can be obtained
in a simple form, and relate to convergence via Theorem 2.

8.4.1 Full QR decomposition adaptive algorithm

For the full QR decomposition adaptive filtering algorithm, the time recursions
absorb a new input vector x(k) and reference sample d(k) at each time instant.
The N+1 elements of x(k), however, need not derive from a tapped delay line, and
indeed might derive from N+1 separate channels or sensor outputs, for example.

The basic update recursion for the triangular array appears as:

[
0T

U(k)

]
= Qθ (k)

[
xT(k)

λ1/2U(k−1)

]
, U(−1) = U−1, (8.32)

in which U−1 is the initial condition on the triangular array (typically the zero array
or a small multiple of the identity), and the orthogonal matrix Qθ (k) is chosen to
null the entries of the top row of the array. In practice, roundoff errors will also
contaminate the updated triangular array; if we denote by Ũ(k) the finite-precision
representation of the triangular array, the finite-precision counterpart of the basic
update recursion may be written as

[
0T

Ũ(k)

]
= Qθ̃ (k)

[
xT(k)

λ1/2Ũ(k−1)

]
+

[
0T

δU(k)

]
, Ũ(−1) = U−1, (8.33)

8 Numerical Stability Properties 215

in which Qθ̃ (k) is the product of rotations determined from the (finite-precision)
triangularization of Ũ(k), and the second term on the right-hand-side accounts for
the difference between the first term, were it calculated in exact arithmetic, and the
actual stored result on the left-hand side. We assume also that the initial condition
U−1 admits an exact representation in finite-precision.

We examine first a direct stability analysis and then illustrate the connection with
backward consistency concepts.

By squaring up either side of (8.32), we recover the familiar recursion

R(k) = [0 UT(k)]
[

0T

U(k)

]

= [x(k) λ1/2UT(k−1)]QT
θ (k)Qθ (k)︸ ︷︷ ︸

I

[
xT(k)

λ1/2U(k−1)

]

= λ UT(k−1)U(k−1)+x(k)xT(k)
= λ R(k−1)+x(k)xT(k), R(−1) = UT

−1U−1. (8.34)

A similar squaring-up operation applied to (8.33) gives

R̃(k) = λ R̃(k−1)+x(k)xT(k)+δR(k), R̃−1 = UT
−1U−1, (8.35)

in which

δR(k) = [x λ1/2ŨT(k−1)]QT
θ̃ (k)

[
0T

δU(k)

]

+ [0 δUT(k)]Qθ̃ (k)
[

xT(k)
λ1/2Ũ(k−1)

]

+ [δU(k)]TδU(k) (8.36)

accounts for the roundoff errors injected at iteration k, once expressed in the covari-
ance domain. The difference R̃(k)−R(k) thus adheres to the recursion

[R̃(k)−R(k)] = λ [R̃(k−1)−R(k−1)]+δR(k), R̃(−1)−R(−1) = 0. (8.37)

This recursion admits the explicit solution

[R̃(k)−R(k)] =
k

∑
n=0

λk−n δR(n). (8.38)

Now, if the finite-precision errors are bounded at each iteration, meaning that
‖δR(n)‖ ≤ B < ∞ for some constant B, where ‖ · ‖ denotes any valid matrix norm,
then the difference R̃(k)−R(k) is easily bounded as follows:

216 Phillip Regalia and Richard Le Borne

‖R̃(k)−R(k)‖ =
∥∥∥∥

k

∑
n=0

λ n−k δR(n)
∥∥∥∥

≤
k

∑
n=0

λ n−k ‖δR(n)‖

≤ B
k

∑
n=0

λ n−k

≤ B
1

1−λ
, for all k, (8.39)

in which the final inequality is valid for 0 < λ < 1. We observe, as expected, that
a smaller value of B (corresponding to higher precision in the calculations) results
in R̃(k) tracking its exact-arithmetic counterpart R(k) more closely. Conversely,
choosing λ closer to one results in a less favorable distance bound between R̃(k) and
R(k). This is because values of λ closer to one induce a greater effective memory of
the algorithm, so that a given arithmetic error δR(n) will linger more prominently
through successive iterations.

So what does this bound imply about the difference Ũ(k)−U(k)? To answer this,
we note that U(k) [respectively, Ũ(k)] is a Cholesky factor of R(k) [respectively,
R̃(k)]; the Cholesky factor becomes unique once we specify whether it is upper
or lower triangular, with positive elements along the diagonal.1 We note also that
the Cholesky factor is a continuous function of a positive definite matrix argument
(e.g., [7]). Thus, if R(k) and R̃(k) remain positive definite (to be addressed shortly),
there exists a constant c such that the uniform bound ‖R̃(k)−R(k)‖ ≤ B/(1−λ)
for all k implies that

‖Ũ(k)−U(k)‖ ≤ cB
1−λ

, for all k. (8.40)

Now, positive definiteness of R(k) and R̃(k) (which are never explicitly formed),
reduces to a full rank condition on U(k) and Ũ(k). In view of the triangular structure,
this reduces, in turn, to either matrix having non-zero elements in each diagonal
position, which is rather easily checked.

To summarize, the following three conditions:

1. Bounded arithmetic errors: ‖δU(n)‖ ≤ cB for all n [giving the numerator in
(8.40)];

2. Forgetting factor strictly less than one: 0 < λ < 1;
3. Full rank data: all diagonal elements of Ũ(k) remain positive;

1 One can also define a Cholesky factor with respect to the anti-diagonal, as in Chapter 3. We
revert to the more conventional approach of triangular arrays with respect to the main diagonal
in this chapter, so that the various statements to follow are more consistent with the cited refer-
ences. The conclusions concerning stability carry over to algorithms based on an anti-diagonal
Cholesky factorization as well, although the notations to describe intermediate quantities would
change somewhat.

8 Numerical Stability Properties 217

are sufficient to ensure that the finite-precision representation Ũ(k) remains within a
bounded distance from its exact arithmetic counterpart U(k) as k increases. The first
two conditions are under the designer’s control; the third condition is data depen-
dent, and is usually captured as a persistence of excitation constraint. The formal
definition, in the present context, takes the following form: Let σ1(k) and σN+1(k)
be the largest and smallest singular values, respectively, of the data matrix X(k).
The data which build X(k) are persistently exciting of order N+1 if these extremal
singular values are uniformly bounded, meaning that there exists positive constants
κa and κb such that

σ1(k) ≤ κa < ∞, and σN+1(k) ≥ κb > 0 for all k > k0 (8.41)

where k0 is some starting time. These inequalities imply that the condition number
of X(k) is bounded:

σ1(k)
σN+1(k)

≤ κa

κb
< ∞, for all k > k0 (8.42)

and thus that the least-squares problem remains well-posed. Note that the ratio
κa/κb can be shown equal to the quantity κ2(X(k)) from (8.23).

Fortunately, the persistence of excitation condition is easily checked in the
orthogonal triangularization procedure:

Result 1 If the input data are bounded, then persistent excitation holds if and
only if there exists a constant c > 0 for which

cosθi(l) ≥ c, for all i and l.

For the verification, we note that the triangular matrix U(·) becomes rank defi-
cient if and only if at least one of its diagonal elements vanishes. Thus let Uii(l)
denote the ith diagonal element of the Cholesky factor at any time l. The formula
for the rotation angles which achieve the triangularization at an arbitrary time instant
l is

cosθi(l) =
λ1/2 Uii(l−1)

Uii(l)
, i = 0,1, . . . ,N−1, (8.43)

which shows that cosθi(l) = 0 for some i if and only if Uii(l−1) = 0, i.e., if and only
if U(l−1) is rank deficient. Thus if U(l−1) has full rank for all l, then cosθi(l) > 0
for all i and l, which is to say that cosθi(l) = 0 for some i and l if and only if
the smallest singular value σN+1(l−1) = 0. By continuity arguments, bounding the
smallest singular value σN+1(l−1) away from zero for all l must likewise bound
cosθi(l) away from zero for all i and l, and vice versa.

218 Phillip Regalia and Richard Le Borne

To treat the joint-process portion, recall that the basic structure takes the form of
the orthogonal filter

[
eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ1/2dq2(k−1)

]
. (8.44)

In a practical implementation that includes roundoff errors, the recursion instead
takes the form

[
ẽq1(k)
d̃q2(k)

]
= Qθ̃ (k)

[
d(k)

λ1/2d̃q2(k−1)

]
+

[
δe(k)
δdq2(k)

]
, (8.45)

in which Qθ̃ (k) is the product of rotations determined from the (finite-precision) tri-
angularization of Ũ(k). Observe that both d̃q2(k) and d̃q2(k−1) occur in this equa-
tion, indicative of a feedback loop involving the state variables d̃q2(·). As such,
roundoff errors accumulated in d̃q2(k) will propagate in time. Similar to the devel-
opment above, provided λ < 1, the feedback loop may be shown exponentially sta-
ble, inducing bounded error growth provided the injected roundoff error (modeled
by the term δdq2(k) above) is bounded at each time instant.

For the deeper question of whether the computed d̃q2(k) has relevance to the
underlying least-squares problem, return to the unperturbed system (8.44) and par-
tition the transition matrix Qθ (k) as

Qθ (k) =
[
γ(k) gT(k)
f(k) E(k)

]
, (8.46)

in which E(k) is (N+1)× (N+1), f(k) is (N+1)×1, g(k) is (N+1)×1, and γ(k) is
a scalar. The state equation may then be solved “backwards in time” as

dq2(k) = λ (l+1)/2ΦΦΦ(k,k−l)dq2(k−l)
+
[
f(k) E(k) f(k−1) ΦΦΦ(k,k−1) f(k−2) · · · ΦΦΦ(k,k−l+1) f(k−l)

]
︸ ︷︷ ︸

C (k,k−l)

×

⎡
⎢⎢⎢⎢⎢⎣

d(k)
λ 1/2d(k−1)
λ d(k−2)

...
λ l/2d(k−l)

⎤
⎥⎥⎥⎥⎥⎦

, (8.47)

in which

ΦΦΦ(k,k−l)
�
=

{
E(k)E(k−1) · · · E(k−l+1), l ≥ 1;

I, l = 0;
(8.48)

is the state transition matrix [8] from time k−l to k, and C (k,k−l) is the controlla-
bility matrix [8] for the system, over the same time window. The system is said to be
uniformly controllable [9] provided there exists a window length L, and constants

8 Numerical Stability Properties 219

a > 0 and b < ∞, for which the Gramian of the controllability matrix C (k,k−L) is
bounded and of full rank:

aI ≤ C (k,k−L)C T(k,k−L) ≤ bI, for all k ≥ k0, (8.49)

where k0 is some starting time. [Observe that
√

a and
√

b bound the extremal sin-
gular values of C (k,k−L).] Since the controllability matrix C (k,k−L) has dimen-
sions (N+1)× (L+1), clearly we must have L ≥ N if the full rank condition is
to hold.

The relevance of this condition is that, when satisfied, an arbitrary configuration
for d̃q2(k) can be reached by an appropriate choice of the (exponentially weighted)
reference vector

[d(k),λ 1/2d(k−1), . . . ,λL/2d(k−L)]T. (8.50)

As such, even with numerical errors accumulated in d̃q2(k), the values so obtained
may be considered the exact state produced by some reference vector, as required
of admissibility defined in Section 8.3.2.

Now, since the matrix Qθ̃ (k) is orthogonal for each k, one may show (e.g., [10])

ΦΦΦ(k,k−L)ΦΦΦT(k,k−L)+C (k,k−L)C T(k,k−L) = I, for all k and L, (8.51)

so that

C (k,k−L)C T(k,k−L) = I−ΦΦΦ(k,k−L)ΦΦΦT(k,k−L)
≤ I (8.52)

providing automatic satisfaction of the upper bound from (8.49) using b = 1.
For the lower bound, we claim:

Result 2 With L = N, the joint-process section is uniformly controllable pro-
vided there exists a constant c > 0 for which

cosθi(l) ≥ c > 0, for all i and l ≥ k0. (8.53)

The proof amounts to calculating the square matrix C (k,k−N) and observing
that it becomes rank deficient if and only if cosθi(l) = 0 for any order index i and
any time index k−L ≤ l ≤ k. By continuity arguments, bounding cosθi(l) away
from zero must also bound the smallest singular value of C (k,k−L) away from
zero, proving existence of a constant a fulfilling the lower bound from (8.49). In
view of result 1 above, we see that persistence of excitation is sufficient to ensure
backward consistency of the full QR algorithm, and that this in turn suffices for
bounded error growth.

220 Phillip Regalia and Richard Le Borne

8.5 Fast QR Algorithms

Perhaps the earliest fast QR decomposition adaptive filtering algorithm (where
“fast” means having computational complexity that scales linearly with the filter
order N) was devised by Cioffi [11]. Somewhat more coherent developments of
two varieties of such fast algorithms were obtained soon thereafter by Proudler
et al. [12, 13]: The first featured order recursions in both ascending and descending
order and was later rederived in [14], while the second exhibited all order recur-
sions in ascending order, and is better known as the QRD lattice algorithm [15]. A
traditional lattice-based derivation of this latter algorithm is found also in Ling [16].

The time recursion of the prediction section of a fast least-squares algorithm is a
dynamic system of the form

ξξξ (k) = f
[
ξξξ (k−1),x(k)

]
, ξξξ (−1) = ξξξ−1, (8.54)

in which ξξξ (·) is the state vector (collecting all the quantities that must be stored
at each iteration to propagate the solution in time), the map f [·, ·] accounts for the
update equations, and ξξξ−1 is the initial condition on the state vector. In the full QR
algorithm reviewed above, the state is simply ξξξ (k) = U(k), and the map f [·, ·] per-
forms the orthogonal triangularization to update U(k−1) to U(k). Fast least-squares
algorithms exploit the shift structure of the data matrix X(k), allowing a more com-
pact representation of the state and reducing the number of operations in the update
equations f [·, ·] to a quantity linear in N. Unlike the full QR algorithm, however,
the update equations cannot readily be rewritten as a linear recurrence relation, thus
complicating considerably any attempt at a direct error analysis.

Backward consistency concepts, on the other hand, are still useful in assessing
error propagation properties in such fast least-squares algorithms [17–19]. Introduce
the set of reachable states in exact arithmetic, i.e., the set of state vector configura-
tions that may be reached as the input sequence x(0), x(1), . . . , x(k) varies over
IRk, and the initial condition ξξξ−1 varies over all “valid” initial conditions. The set
of valid initial conditions is best thought of as the set of state vector orientations
ξξξ (−1) that can be deposited by some past input sequence x(−1), x(−2), x(−3),
. . . , that may potentially extend infinitely into the past.

Now, in finite-precision, the actual prediction section behaves as

ξ̃ξξ (k) = f
[
ξ̃ξξ (k−1),x(k)

]
+δξξξ (k), (8.55)

in which δξξξ (k) accounts for the roundoff errors injected in the state vector at time k.
Provided the computed state vector ξ̃ξξ (k) remains within the set of reachable states,
it is indistinguishable from the exact state produced by a different input sequence
x̃(0), x̃(1), . . . , x̃(k) using possibly a different (but valid) initial condition ξ̃ξξ−1. If
we now drive the perturbed system and its exact arithmetic counterpart (8.54) with
the same future sequence x(k+1), x(k+2), . . . , and allow both systems to evolve
without further arithmetic errors, the perturbed trajectory ξ̃ξξ (·) will return to the
true trajectory ξξξ (·) provided λ < 1, and the future data is persistently exciting. This

8 Numerical Stability Properties 221

is because, in the absence of arithmetic errors, either system is but a rewriting of
the full QR algorithm using a different initial condition U(k) or Ũ(k) at time k, and
fed with the same input sequence from time k forward. With λ < 1, the algorithm
forgets its initial condition as time evolves. This basic argument shows that, sub-
ject to consistency of the state vector, a least-squares algorithms (fast or full) will
enjoy stable error propagation [17, 18], in which the error propagation experiment
assumes no further arithmetic errors after a perturbation is injected. (This stable
error propagation was first observed in [20] from a direct analysis, although with-
out connections to backward consistency concepts). As such, explosive error growth
must be preceded by an inconsistent value arising numerically in the state vector, a
condition therefore to be avoided if at all possible. We should note that the error
propagation experiment described here assumes a single perturbation followed by
exact arithmetic calculations. In practice, roundoff errors are injected at each time-
step, requiring due attention to error accumulation (as we did for the full QR algo-
rithm above). Although stable propagation of a single error is a necessary condition
for bounded error accumulation, it need not be sufficient. Nonetheless, provided the
error propagation properties are exponentially stable, which generically holds pro-
vided λ < 1 and the input data are persistently exciting, bounded error growth may
be expected to hold, at least for sufficiently fine numerical resolution [21]. Stronger
results, in the form of Theorem 2 from Section 8.3.2, are also applicable here ([6]
p. 10).

We first review the data structure applicable to fast least-squares algorithms and
the data consistency properties which stem from these. For notational simplicity, we
first set λ = 1 and denote the resulting data matrix as X1(k) (where the subscript 1
emphasizes that λ = 1); this assumes a pre-windowed Hankel structure:

X1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k) x(k−1) · · · x(k−N)
x(k−1) x(k−2) · · · x(k−N−1)

... . .
.

. .
. ...

x(N) · · · x(1) x(0)
... . .

.
x(0) 0

x(1) . .
.

. .
. ...

x(0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.56)

If we introduce the correlation lags

rn =
k−n

∑
i=0

x(i)x(i+n), n = 0,1, . . . ,N, (8.57)

and rename the most recent input samples as

q1 = x(k), q2 = x(k−1), . . . qN = x(k−N+1), (8.58)

222 Phillip Regalia and Richard Le Borne

then for any k, the correlation matrix takes the structured form

R1(k) = XT
1 (k)X1(k)

=

⎡
⎢⎢⎢⎢⎣

r0 r1 · · · rN

r1 r0
. . .

...
...

. . .
. . . r1

rN · · · r1 r0

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0
... . .

.
0 q1

0 . .
.

. .
. ...

0 q1 · · · qN

⎤
⎥⎥⎥⎥⎦

2

. (8.59)

This is a symmetric Toeplitz matrix minus the square of a triangular Hankel matrix.

For the case λ < 1, let

ΛΛΛ(k) = diag(1,λ1/2,λ , . . . ,λk/2) (8.60)

so that the data matrix may be written as

X(k) =ΛΛΛ(k)X1(k), (8.61)

in terms of the (unweighted) data matrix X1(k) from (8.56). Let now

L = diag(1,λ1/2, . . . ,λN/2). (8.62)

Because X1(k) is a Hankel matrix, we may observe the identity

ΛΛΛ(k)X1(k) = X(k)L−1 (8.63)

in which X(k) is a Hankel matrix akin to (8.56) but built from the exponentially
weighted sequence

x(k−n) = λn/2 x(k−n), n = 0,1, . . . ,k. (8.64)

As such, a transformed correlation matrix becomes

R1(k)
�
= LR(k)L = LXT(k)X(k)L = X

T(k)X(k) (8.65)

which is the Gramian of a pre-windowed Hankel matrix X(k). It may thus be written
as a structured matrix as in (8.59), in which rn and qn are now defined from the
(exponentially weighted) sequence x(n) from (8.64). This “trick” will allow us to
examine the data consistency independently of the value of λ . We should emphasize
that the error accumulation effects, however, will still vary with λ , as illustrated in
the analysis of the full QR algorithm above.

The basic data consistency question for fast algorithms may thus be summarized
as follows:

8 Numerical Stability Properties 223

• Given a correlation matrix R1(k) = LR(k)L, under what conditions can we find

a pre-windowed Hankel matrix, call it X(n), for which R(k) = X
T(k)X(k)?

• Given the stored variables at time k in the prediction section of a fast least-
squares algorithm, under what conditions can they be considered the exact values
obtained from some input sequence?

For the first query, clearly R1(k) must be positive semi-definite, and assume the
structured form illustrated in (8.59) above. Is this sufficient as well? The following
result was first obtained in [22] in the context of digital filter design, and developed
in greater detail in [23–27]: 2

Result 3 The covariance matrix R1(k) = LXT(k)X(k)L may be factored as

R1(k) = X
T

X, (8.66)

with X a pre-windowed Hankel matrix, provided R1(k) is positive definite and
assumes the “Toeplitz minus squared Hankel” structure illustrated in (8.59).

In fact, when R1(k) is positive definite, there are infinitely many pre-windowed
Hankel matrices X fulfilling the factorization; they may all be parameterized via
inverse scattering constructions [26, 27]. We should emphasize that the number of
rows in any such factor X is not easily controlled in the constructive procedure
behind this result [27]; if we constrain the number of rows in X, the factorization
problem is considerably more difficult. In practice, the number of rows of X is not
of immediate concern to the error analysis.

We review next the constructive procedure behind past input reconstruction,
adapted from [27], and then examine consistency issues in fast QR adaptive
filters.

8.5.1 Past input reconstruction

Here we review the procedure for factoring a structured covariance matrix as in
(8.59) into a Hankel data matrix X. Let Z be the shift matrix with ones on the
subdiagonal and zeros elsewhere. The displacement structure [28] of the covariance
matrix from (8.59) becomes

2 The original claim from [22] was that such a factorization will exist even when R1(k) is positive
semi-definite, and singular. This is not true in general [26, 27], unless a certain supplementary
condition is satisfied as well. We shall sidestep this technical difficulty by focusing on the positive
definite case in what follows.

224 Phillip Regalia and Richard Le Borne

R1 −ZR1ZT =

⎡
⎢⎢⎢⎣

r0 r1 · · · rN

r1 0 · · · 0
...

...
. . .

...
rN 0 · · · 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

0
q1
...

qN

⎤
⎥⎥⎥⎦ [·]T

=

⎡
⎢⎢⎢⎣

√
r0

r1/
√

r0
...

rN/
√

r0

⎤
⎥⎥⎥⎦ [·]T −

⎡
⎢⎢⎢⎣

0
r1/

√
r0

...
rN/

√
r0

⎤
⎥⎥⎥⎦ [·]T −

⎡
⎢⎢⎢⎣

0
q1
...

qN

⎤
⎥⎥⎥⎦ [·]T, (8.67)

where “[·]” means “repeat the previous vector”. From the three “generator vectors”
[29] so exposed, create the 3× (N+1) array,

G =

⎡
⎢⎣
√

r0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

0 q1 q2 · · · qN

0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

⎤
⎥⎦ , (8.68)

and iterate the following procedure:

1. Shift the first row of the array one position to the right:

G Z→

⎡
⎢⎣

0
√

r0 r1/
√

r0 · · · rN−1/
√

r0

0 q1 q2 · · · qN

0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

⎤
⎥⎦ . (8.69)

2. Choose a hyperbolic rotation to annihilate the second element of the first non-
zero column. In the first pass, this appears as

⎡
⎣

1/cosθ0 sinθ0/cosθ0 0
sinθ0/cosθ0 1/cosθ0 0

0 0 1

⎤
⎦×

⎡
⎢⎣

0
√

r0 r1/
√

r0 · · · rN−1/
√

r0

0 q1 q2 · · · qN

0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

⎤
⎥⎦

=

⎡
⎢⎣

0 y1 × ·· · ×
0 0 × ·· · ×
0 r1/

√
r0 r2/

√
r0 · · · rN/

√
r0

⎤
⎥⎦ ,(8.70)

in which y1 =
√

r0 −q2
1 and sinθ0 = −q1/

√
r0.

3. Choose a hyperbolic rotation to annihilate the third element of the first non-zero
column. In the first pass, this appears as

8 Numerical Stability Properties 225

⎡
⎣

1/cosφ0 0 sinφ0/cosφ0

0 1 0
sinφ0/cosφ0 0 1/cosφ0

⎤
⎦ ×

⎡
⎢⎣

0 y1 × ·· · ×
0 0 × ·· · ×
0 r1/

√
r0 r2/

√
r0 · · · rN/

√
r0

⎤
⎥⎦

=

⎡
⎢⎣

0 y2 × ·· · ×
0 0 × ·· · ×
0 0 × ·· · ×

⎤
⎥⎦ , (8.71)

in which y2 =
√

y2
1 − (r2

1/r0) and sinφ0 = −(r1/
√

r0)/y1.
4. Replace G with the resulting array from (8.71), and iterative the above procedure

a further N−1 times to eliminate all the elements of the second and third rows.

The above procedure will successfully terminate, and yield angles satisfying

|sinθn| < 1 and |sinφn| < 1, for all n, (8.72)

if and only if the matrix R1 is positive definite [29].
A flow graph of the basic array operations appears as Figure 8.1, in which “z”

denotes a right shift operation. Imagine now changing the flow direction of the lower
two branches of the flow graph, to obtain Figure 8.2. In doing so, each hyperbolic
rotation is converted to a planar (or orthogonal) rotation. We may now terminate the
right-hand side of the figure by a lossless load SL(z), where lossless here means:

• SL(z) is analytic in |z| < 1, thus admitting a convergent series expansion

SL(z) =
∞

∑
n=0

Sn zn, |z| < 1. (8.73)

If z−1 is the unit delay operator from digital filter design, then z is the (anti-
causal) unit advance operator, and SL(z) may be understood as a stable and anti-
causal transfer function, with {Sn} its anti-causal impulse response.

−
−

/

/

Fig. 8.1 Illustrating the successive annihilation operations applied to the rows of the G array.

226 Phillip Regalia and Richard Le Borne

−
−

√

−

Fig. 8.2 Orthogonal filter, obtained by reversing the flow direction of the lower two branches.

• Upon partitioning SL(z) =
[

SL,1(z)
SL,2(z)

]
, the radial limits along the unit circle are

power complementary:

|SL,1(e jω)|2 + |SL,2(e jω)|2 = 1, for all ω . (8.74)

The flow graph with reversed directions on the lower two branches, and incorpo-
rating the load SL(z), is sketched in Figure 8.2; the curved arrows indicate partial
transfer functions S1(z) and S2(z) which result at the left-hand-side of the figure.
Provided the resulting S2(z) satisfies the supplementary constraint

1− zS2(z) �= 0, for all |z| = 1, (8.75)

we may close the left-hand side of Figure 8.2 to obtain a stable and anti-causal
transfer function

Q(z) =
√

r0
zS1(z)

1− zS2(z)
=

∞

∑
n=1

qn zn, (8.76)

with the following property:

Property 1. Let x(k−n+1) = qn, n = 1, 2, 3, The Hankel matrix X(k) built
from this sequence is a factor of the covariance matrix R1:

R1 = X
T(k)X(k). (8.77)

All such factors may be generated in this way, as SL(z) varies over the set of
lossless transfer functions.

A proof behind this construct may be found in [27]. We should note that the
impulse response {qn} will, in general, have infinite duration. The simplest choice
for the right-hand-side load SL(z) is a constant unit norm vector of the form SL(z) =[cosφN

sinφN

]
, where φN is any convenient value.

8 Numerical Stability Properties 227

This result shows, thus, that there exists a one-to-one correspondence between
the set of positive definite structured matrices of the form (8.59), and the set of
rotation angles and scale factor fulfilling the inequalities

r0 > 0 and cosθi > 0, cosφi > 0, i = 0,1, . . . ,N−1. (8.78)

Note that we end up with 2N+1 parameters, as expected, because the structured
matrix R1 [cf. (8.59)] is specified by 2N+1 values, namely r0, . . . , rN and q1, . . . ,
qN . We confirm next that 2N+1 is likewise the minimum state vector dimension of
a fast least-squares prediction algorithm.

8.5.2 Reachable states in fast least-squares algorithms

We first consider the fast least-squares algorithm from [12, 14], which is a slightly
simpler variant of the original fast QR algorithm from [11], and summarized in
Table 8.1. A flow graph of the algorithm appears as Figure 8.3; rotations with a zero
at one output represent angle solving steps (steps 2, 4 or 5 in the table), with the
angles then copied to the data rotation steps (steps 3 and 6 in the table).

We observe that the state of the algorithm is the collection of 2N+1 stored
variables

x f ,0(k), . . . ,x f ,N−1(k),
√

E f ,N(k),εb,0(k), . . . ,εb,N−1(k) (8.79)

since all other variables are calculated from these. Thus, the minimum state vector
dimension can be no larger than 2N+1. The minimum state vector dimension can
be no smaller, either, since there are 2N+1 parameters involved in reconstructing
past inputs by the procedure of Section 8.5.1, which is to say that 2N+1 is indeed
the minimum state vector dimension of a fast least-squares algorithm.

Suppose we consider now the experiment in which the input sequence {x(k)}
is allowed to vary over all sequences for which the structured matrix R1(k) from
(8.59) remains positive definite, and let us keep track of all state orientations that
may be reached in the algorithm of Table 8.1 when using exact arithmetic. This
defines the set of reachable states for the algorithm, and is characterized by the
inequalities [30]

√
E f ,N(k) > 0,

N−1

∑
i=0

ε 2
b,i(k) < 1. (8.80)

These inequalities are necessary and sufficient for the rotation angles determined in
steps 2 and 5 of Table 8.1 to satisfy

|sinθi(k)| < 1, |sinφi(k)| < 1, for all i. (8.81)

For any such state, therefore, a valid input sequence may be deduced, based on the
following property:

228 Phillip Regalia and Richard Le Borne

Table 8.1 Minimal fast QR decomposition least-squares prediction algorithm.

FQR POS B – Version 2a

Available at time k: x f ,i(k−1), i = 0,1, . . . ,N−1;√
E f ,N(k−1);

εb,i(k−1), i = 0,1, . . . ,N−1;
New datum: x(k);

1. Obtain conversion factor γN−1(k):

γN−1(k) =

√
1−

N−1

∑
i=0

ε 2
b,i(k−1) ;

2. Solve for θi(k) angles:

[
γi−1(k)

0

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][
γi(k)

εb,i(k−1)

]
, i = N−1, . . . ,1,0;

3. Update forward prediction variables. With e f ,0(k) = x(k), run

[
x f ,i(k)

e f ,i+1(k)

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][√
λ x f ,i(k−1)

e f ,i(k)

]
, i = 0,1, . . . ,N−1;

4. Update square-root forward prediction energy:
[√

E f ,N(k)
0

]
=

[
cosθN(k) sinθN(k)

−sinθN(k) cosθN(k)

][√
λ E f ,N(k−1)

e f ,N(k)

]
;

5. Solve for φi(k) angles:

[√
E f ,i(k)

0

]
=

[
cosφi(k) sinφi(k)

−sinφi(k) cosφi(k)

][√
E f ,i+1(k)
x f ,i(k)

]
, i = N−1, . . . ,1,0;

6. Update backward prediction errors: with e f ,N(k) = γN−1(k−1) sinθN(k−1), run

[
ε f ,i(k)
εb,i+1(k)

]
=

[
cosφi(k) sinφi(k)

−sinφi(k) cosφi(k)

][
ε f ,i+1(k)
εb,i(k−1)

]
, i = N−1, . . . ,1,0;

At the end of the loop, set εb,0(k) = ε f ,0(k).

a This algorithm corresponds to the one introduced in [14] and named FQR POS B–Version 2
in Chapter 4.

8 Numerical Stability Properties 229

√ − √ − √ −

√ −

− − −− =

− − −
−

− −

Fig. 8.3 Flow graph of minimal fast QR decomposition least-squares algorithm.

Property 2. Let θ0(k), . . . , θN−1(k) and φ0(k), . . . , φN−1(k) be the angles
computed in exact arithmetic from the algorithm of Table 8.1, for a given
input sequence {x(·)}. Let R1(k) be the structured matrix from (8.59) built
using this same input sequence. The angles θ0(k), . . . , θN−1(k) and φ0(k), . . . ,
φN−1(k) are precisely those which achieve the annihilation of the generator
vectors in the algorithm of Section 8.5.1.

The proof of this property involves more advanced notions of displacement gen-
erators [31], and may be found in [27, Appendix A]. The upshot is that, as long as the
computed state variables in the algorithm satisfy the inequalities (8.80), they may
be considered the exact values associated with a perturbed input sequence: From
the computed state variables (or the rotation angles which annihilate them in steps 2
and 5 of Table 8.1), a valid past input sequence that would give rise to the computed
values may be placed in evidence from the anti-causal filter of Figure 8.2. Backward
consistency is thus straightforward to ensure in this version of the algorithm.

8.5.3 QR decomposition lattice algorithm

A noted oddity of the previous fast algorithm is that the order recursions run in both
ascending and descending order, which can impede pipelined implementations. An
alternate fast QR decomposition algorithm, obtained by Proudler et al. [12, 13], and
Ling [16], runs all recursions in ascending order, and consists of the cascade of basic
sections illustrated in Figure 8.4; the resulting algorithm is summarized in Table 8.2.

We observe that the total storage is 5N variables in the state vector, which is
greater than the minimal number 2N+1. Thus, some redundancy necessarily exists

230 Phillip Regalia and Richard Le Borne

√ −

−

√ −

√ −

√ −

−

−

+

+

−

−

−

Fig. 8.4 Basic section to be cascaded to obtain the QRD-lattice algorithm.

among the elements of the state vector. For example, one may show [15] that, in
exact arithmetic,

p f ,i(k) =
∑k

j=0 ε f ,i(j)εb,i(j−1)√
Eb,i(k−1)

, and (8.82)

pb,i(k) =
∑k

j=0 ε f ,i(j)εb,i(j−1)√
E f ,i(k)

. (8.83)

From this follows easily the equality

p f ,i(k)
√

Eb,i(k−1)− pb,i(k)
√

E f ,i(k) = 0, for each k and i, (8.84)

inducing one constraint on four of the state variables from any section, so that one
variable may be deduced given the remaining three. In the same manner, redundancy
between sections may be deduced from the equality

√
E f ,i+1(k)√
E f ,i(k)

−
√

Eb,i+1(k)√
Eb,i(k−1)

= 0, for each k and i, (8.85)

since either ratio relates to the reflection coefficient from section i (e.g., [14, 29]).
The values calculated in finite precision, however, will not generally satisfy these
constraints, which is to say that consistency is not inherited by the QRD-lattice algo-
rithm (a generic problem with non-minimal realizations [17]). For this algorithm,
however, the error accumulation properties will nonetheless remain bounded pro-
vided λ < 1 and the input sequence {x(k)} is persistently exciting. This is because
the algorithm consists of rotations, and variables reinjected through the feedback
loop are all attenuated by

√
λ ; the proof of bounded error growth mimics that of

Section 8.4.1 for the full QR adaptive filtering algorithm. Alternatively, a minimal

8 Numerical Stability Properties 231

Table 8.2 QR decomposition lattice least-squares prediction algorithm.

FQRD–Lattice [12, 13, 16]

Available at time k: p f ,i(k−1), i = 0,1, . . . ,N−1; (forward prediction variables)
pb,i(k−1), i = 0,1, . . . ,N−1; (backward prediction variables)√

E f ,i(k−1), i = 0,1, . . . ,N−1;
√

forward prediction energies√
Eb,i(k−1), i = 0,1, . . . ,N−1;

√
backward prediction energies

εb,i(k−1), i = 0,1, . . . ,N−1; (backward prediction residuals)

New datum: ε f ,0(k) = εb,0(k) = x(k);

For i = 0, 1, . . . , N−1, do:

1. Solve for θi(k) angle:

[√
Eb,i(k−1)

0

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][√
λ Eb,i(k−2)
εb,i(k−1)

]
;

2. Update forward prediction variables:

[
p f ,i(k)
ε f ,i+1(k)

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][√
λ p f ,i(k−1)
ε f ,i(k)

]
;

3. Solve for ϕi(k) angle:

[√
E f ,i(k)

0

]
=

[
cosϕi(k) sinϕi(k)

−sinϕi(k) cosϕi(k)

][√
λ E f ,i(k−1)
ε f ,i(k)

]
;

4. Update backward prediction variables:

[
pb,i(k)
εb,i+1(k)

]
=

[
cosϕi(k) sinϕi(k)

−sinϕi(k) cosϕi(k)

][√
λ pb,i(k−1)
εb,i(k−1)

]
;

variant of the rotation-based lattice algorithm may also be developed [32], using
principles of spherical trigonometry. The resulting algorithm inherits the backward
consistency property of other minimal algorithms, with the resulting stable error
propagation.

8.6 Conclusion

We have reviewed how standard concepts of backward consistency and condi-
tioning intervene in the analysis of recursive least-squares algorithms, and focus-
ing in particular how these concepts play out in QR decomposition recursive

232 Phillip Regalia and Richard Le Borne

least-squares adaptive filtering algorithms. The notion of persistence of excitation
on the input sequence proves equivalent to that of a condition number remaining
uniformly bounded in time.

The full QR decomposition update equations admit a reasonably direct anal-
ysis showing bounded error accumulation, owing to the orthogonal nature of the
calculations combined with past data being attenuated via the forgetting factor λ .
The conditions for such bounded error growth may also be explained via back-
ward consistency: If numerical errors are indistinguishable from perturbation on the
past input data, then the effects of such numerical errors must be forgotten at the
same rate as the past input data. This concept proves convenient when studying fast
least-squares algorithms, which tend not to admit tractable error analyses through
other methods. Two fast QR decomposition algorithms were highlighted. The first is
minimal in its storage requirements, and admits simple checks for backward consis-
tency. The rotation angles of that algorithm were shown to have a direct connection
to past input reconstruction procedure, which serves to validate the simple descrip-
tion of the set of reachable states. The QR decomposition lattice algorithm was also
reviewed, as it offers a modular, pipelineable structure. Although the algorithm is
not minimal and thus does not offer backward consistency in general, bounded error
growth can be shown in a manner similar to that for the full QR decomposition
algorithm. This represents a noted improvement over some other fast least-squares
algorithms, notably certain fast transversal filters, which can exhibit explosive error
growth once the backward consistency conditions are violated [15, 17, 18].

References

1. J. H. Wilkinson, Error analysis of direct methods of matrix inversion. Journal of the Associa-
tion for Computing Machinery (JACM), vol. 8, no. 3, pp. 281–330 (July 1961)

2. G. W. Stewart and J. Sun, Matrix Perturbation Theory. Academic Press, San Diego, CA, USA
(1990)

3. N. J. Higham, Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

4. G. H. Golub and J. H. Wilkinson, Note on the iterative refinement of least squares solution.
Numerische Mathematik, vol. 9, pp. 139–148 (1966)

5. Å. Björck, Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

6. F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Precision Computations. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

7. J. H. Wilkinson, A priori error analysis of algebraic processes. Proceedings of the Interna-
tional Congress of Mathematicians, Izdat. MIE, pp. 629–639, Moscow, USSR (1968)

8. T. Kailath, Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, USA (1980)
9. R. R. Bitmead and B. D. O. Anderson, Lyapunov techniques for the exponential stability

of linear difference equations with random coefficients. IEEE Transactions on Automatic
Control, vol. 25, no. 4, pp. 782–787 (August 1980)

10. P. Dewilde and A.-J. van der Veen, Time-Varying Systems and Computations. Kluwer Aca-
demic Publishers, Boston, MA, USA (1998)

11. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 38, no. 4, pp. 631–653 (April 1990)

8 Numerical Stability Properties 233

12. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Fast QRD-based algorithms for least
squares linear prediction. Mathematics in Signal Processing II (J. G. McWhirter, ed.), Insti-
tute of Mathematics and its Applications (IMA) Conference Series, Clarendon Press, no. 26,
pp. 465–488, Oxford, UK (September 1990)

13. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Computationally efficient QR decompo-
sition approach to least squares adaptive filtering. IEE Proceedings-Part F, vol. 138, pp. 341–
353 (August 1991)

14. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no. 4,
pp. 879–891 (April 1991)

15. S. Haykin, Adaptive Filter Theory. 3rd edition Prentice-Hall, Upper Saddle River, NJ, USA
(1996)

16. F. Ling, Givens rotation based least-squares lattice and related algorithms. IEEE Transactions
on Signal Processing, vol. 39, no, 7, pp. 1541–1551 (July 1991)

17. P. A. Regalia, Numerical stability issues in fast least-squares adaptation algorithms. Optical
Engineering, vol. 31, pp. 1144–1152 (June 1992)

18. D. T. M. Slock, The backward consistency concept and round-off error propagation dynam-
ics in recursive least-squares algorithms. Optical Engineering, vol. 31, pp. 1153–1169 (June
1992)

19. J. R. Bunch, R. C. Le Borne, and I. K. Proudler, A conceptual framework for consistency, con-
ditioning, and stability issues in signal processing. IEEE Transactions on Signal Processing,
vol. 49, no. 9, pp. 1971–1981 (September 2001)

20. S. Ljung and L. Ljung, Error propagation properties of recursive least-squares adaptation
algorithms. Automatica, vol. 21, no. 2, pp. 157–167 (March 1985)

21. A. P. Liavas and P. A. Regalia, On the numerical stability and accuracy of the conventional
recursive least-squares algorithm. IEEE Transactions on Signal Processing, vol. 47, no. 1,
pp. 88–96 (January 1999)

22. C. T. Mullis and R. A. Roberts, The use of second-order information in the approximation of
discrete-time linear systems. IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. ASSP-24, no. 3, pp. 226–238 (June 1976)

23. Y. Inouye, Approximation of multivariable linear systems with impulse response and auto-
correlation sequences. Automatica, vol. 19, no. 2, pp. 265–277 (May 1983)

24. A. M. King, U. B. Desai, and R. E. Skelton, A generalized approach to q-Markov covariance
equivalent realizations for discrete systems. Automatica, vol. 24, no. 4, pp. 507–515 (July
1988)

25. P. A. Regalia, M. Mboup, and M. Ashari, A class of first- and second-order interpolation prob-
lems in model reduction. Archiv für Elektronik und Ubertragungstechnik, vol. 49, no. 5/6,
pp. 332–343 (September 1995)

26. D. Alpay, V. Bolotnikov, and Ph. Loubaton, On tangential H2 interpolation with second order
norm constraints. Integral Equations and Operator Theory (Birkhäuser Basel), vol. 24, no. 2,
pp. 156–178 (June 1996)

27. P. A. Regalia, Past input reconstruction in fast least-squares algorithms. IEEE Transactions
on Signal Processing, vol. 45, no. 9, pp. 2231–2240 (September 1997)

28. T. Kailath and A. H. Sayed, Displacement structure: Theory and applications. SIAM Review,
vol. 37, no. 3, pp. 297–386 (September 1995)

29. H. Lev-Ari and T. Kailath, Lattice filter parametrization and modeling of nonstationary pro-
cesses. IEEE Transactions on Information Theory, vol. IT-30, no. 1, pp. 2–16 (January 1984)

30. P. A. Regalia, Numerical stability properties of a QR-based fast least squares algorithm. IEEE
Transactions on Signal Processing, vol. 41, no. 6, pp. 2096–109 (June 1993)

31. J. Chun, T. Kailath, and H. Lev-Ari, Fast parallel algorithms for QR and triangular factor-
ization. SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 6, pp. 899–913
(November 1987)

32. F. Desbouvries and P. A. Regalia, A minimal rotation-based FRLS lattice algorithm. IEEE
Transactions on Signal Processing, vol. 45, no. 5, pp. 1371–1374 (May 1997)

	Numerical Stability Properties
	Phillip Regalia and Richard Le Borne
	Introduction
	Preliminaries
	Conditioning, forward stability, and backwardstability

	The Conditioning of the Least-Squares Problem
	The conditioning of the least-squares problem
	Consistency, stability, and convergence

	The Recursive QR Least-Squares Methods
	Full QR decomposition adaptive algorithm

	Fast QR Algorithms
	Past input reconstruction
	Reachable states in fast least-squares algorithms
	QR decomposition lattice algorithm

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

