
Chapter 7
Householder-Based RLS Algorithms

Athanasios A. Rontogiannis and Sergios Theodoridis

Abstract This chapter presents recursive least-squares (RLS) algorithms, which are
based on numerically robust Householder transformations. Section 7.1 introduces
the conventional orthogonal Householder transform and provides its geometrical
interpretation. The hyperbolic Householder and the row (orthogonal and hyperbolic)
Householder transforms are also briefly described. In Section 7.2, the Householder
RLS (HRLS) algorithm is presented, its relation with the other known square-root
RLS algorithms is discussed, and two applications, where the HRLS algorithm has
been successfully applied, are presented. By considering a block-by-block update
approach to the RLS problem, the block exact Householder QRD-RLS algorithm
is developed in Section 7.3, which constitutes a generalization of the conventional
QRD-RLS algorithm. Section 7.4 presents an inverse QRD-RLS algorithm, which
employs block updating via the application of appropriate row orthogonal House-
holder transformations. Finally, a sliding window block RLS algorithm, which com-
prises a pair of row Householder transforms, is introduced in Section 7.5.

7.1 Householder Transforms

The Householder transform is an orthogonal matrix transform, named after Alston
S. Householder, who has discovered it in the late 1950s [1]. It defines a norm-
preserving transformation on a vector as the reflection of the vector with respect
to a properly selected hyperplane. More specifically, let x and y be M × 1 vectors.
The projection of x onto y is then defined as follows:
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Py(x) =
xTy
||y||2 y (7.1)

By denoting with P⊥
y (x) the projection of x onto the hyperplane, which is perpen-

dicular to y, we may write
x = P⊥

y (x)+Py(x). (7.2)

The Householder transform of x with respect to y is then given by [2]

Ty(x) = P⊥
y (x)−Py(x) (7.3)

or, from (7.1) and (7.2),

Ty(x) =
(

I−2
yyT

||y||2
)

x. (7.4)

The matrix
H = I−βyyT (7.5)

where β = 2/||y||2 is easily seen to be orthogonal and symmetric. It is called House-
holder matrix and consists a rank-1 update to the identity matrix. The Householder
transform is illustrated graphically in Figure 7.1. It can be seen from Figure 7.1 that
multiplication of x with the Householder matrix H is equivalent to reflecting x with
respect to the hyperplane, which is perpendicular to y.

In many signal processing applications, it turns out to be convenient to transform
an initial set of data to a sparse one, which is equivalent to the initial dataset in terms
of a certain type of invariance. Mobilizing the Householder transformation in (7.5)
and a suitable choice of y in terms of x, it is possible to compress all the energy of
x in just one element of Ty(x). Indeed, it can be easily verified from (7.4) that, by

x

y
Py(x)

y⊥

−Py(x)

Ty(x)

P⊥
y (x)

Fig. 7.1 Geometrical representation of the orthogonal Householder transform.
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setting
y = x+ ||x||ai, (7.6)

then
Ty(x) = Hx = −||x||ai, (7.7)

where ai is the ith column of the M ×M identity matrix.1 That is, a Householder
matrix can be designed so that to annul a block of elements by reflecting a vector
onto a coordinate axis. This procedure is illustrated in Figure 7.2.

The Householder transformation is a numerically robust approach to produce
sparsity in data. Compared to the Givens rotations approach, which is used to
zero one vector element at a time, multiple vector elements are zeroed with
the application of one Householder reflection. Thus, an M ×M Householder
reflection can be considered equivalent to a succession of M−1 Givens rota-
tions, requiring less computations.

Due to its special form, a Householder matrix need not be computed explicitly.
For instance, multiplication of H with an M×M matrix A is expressed as

HA = A−2
y

||y||2 (yTA) (7.8)

and thus a matrix-by-matrix multiplication is replaced by matrix-by-vector and
vector-by-vector operations.

x
y= x+ ||x||a1

Py(x)

y⊥

−Py(x)

Ty(x) = −||x||a1

P⊥
y (x)

Fig. 7.2 The Householder transform that zeroes entries of vector x.

1 One could also choose y = x−||x||ai, which results in Hx = ||x||ai.
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7.1.1 Hyperbolic Householder transforms

A slightly different matrix that can be used to introduce zeros in a vector or a col-
umn of a matrix is the hyperbolic Householder transform [3]. Let ΦΦΦ be an M ×M
diagonal matrix with entries +1 and −1. Then, the hyperbolic norm of a vector x is
defined as follows:

xTΦΦΦx =
M

∑
i=1

φi|xi|2 (7.9)

where we assumed that xTΦΦΦx > 0, φi is the ith diagonal element of ΦΦΦ and xi the ith
element of x.

An M×M matrix Q satisfying

QTΦΦΦQ = ΦΦΦ , (7.10)

is called hypernormal matrix with respect to ΦΦΦ and has the property to preserve the
hyperbolic norm of a vector, i.e., if z = QTx then zTΦΦΦz = xTΦΦΦx.

A matrix H defined as
H = ΦΦΦ−βyyT, (7.11)

where β = 2/(yTΦΦΦy), is called hyperbolic Householder transform. It is not difficult
to verify that H is symmetric and hypernormal with respect to ΦΦΦ . Similarly to the
orthogonal Householder transforms, y can be properly selected so that application
of H in (7.11) annihilates all but one entries of a vector. Indeed, by setting

y = ΦΦΦx+
(

xi

|xi|
√

xTΦΦΦx
)

ai (7.12)

and assuming that xTΦΦΦx > 0 and φi = 1, then

Hx = −
(

xi

|xi|
√

xTΦΦΦx
)

ai (7.13)

and all hyperbolic energy of x, i.e., xTΦΦΦx, is compressed to its ith entry.

7.1.2 Row Householder transforms

The Householder transforms discussed so far are designed to introduce zeros in
a column of a matrix. As shown in [4], Householder matrices (either orthogonal
or hyperbolic) can also be constructed to zero one row of a matrix. Let A be an
(M +1)×M matrix expressed as follows:

A =
[

C
bT

]
(7.14)
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where the M×M matrix C is assumed to be invertible. Suppose we wish to eliminate
the last row bT of A by applying an (M + 1)× (M + 1) orthogonal Householder
transformation, as the one given in (7.5), i.e.,

H
[

C
bT

]
=

[
C̃
0T

]
. (7.15)

It has been proven in [4] that for an H to satisfy the last equation, its defining (M +
1)×1 vector y must be constructed as

y =
1

||b||

⎡
⎣

C−Tb

−1−
√

1+(C−Tb)T(C−Tb)

⎤
⎦ . (7.16)

Note that finding y requires the computation of the inverse of C.
By following a similar analysis, it can be shown [4] that a hyperbolic House-

holder matrix, defined as in (7.11), can be constructed to eliminate bT. Its defining
vector will be now given by

y =
1

||b||

⎡
⎢⎣

C−Tb

−1−
√

1+φM+1(C−Tb)TΦ̃ΦΦ(C−Tb)

⎤
⎥⎦ , (7.17)

where φM+1 is the last diagonal element of the (M +1)× (M +1) matrix ΦΦΦ and Φ̃ΦΦ
its upper left M×M diagonal block.

Remarks
In the previous analysis, matrices and vectors with real entries have been

assumed. In case of complex entries:

• The analysis of Section 7.1 remains under the condition that the ith element of
vector x is real. The orthogonal Householder transform is now given by

H = I− 2
||y||2 yyH (7.18)

• The hyperbolic Householder transform is expressed as

H = ΦΦΦ− 2
yHΦΦΦy

yyH, (7.19)

while Equations (7.12) and (7.13) still hold with the hyperbolic energy now
defined as xHΦΦΦx.

• The analysis of Section 7.1.2 still holds by replacing simple transposition with
conjugate transposition in Equations (7.14), (7.15), (7.16), and (7.17), and con-
structing Householder matrices from (7.18) and (7.19).
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7.2 The Householder RLS (HRLS) Algorithm

In Chapter 3, the conventional and the inverse QR-decomposition recursive least-
squares (QRD-RLS) algorithms have been presented. The main characteristic of
these algorithms is that the triangular Cholesky factor of the input data correlation
matrix (or its inverse) is updated in each iteration based on a sequence of Givens
rotations. It is well known that a symmetric positive definite matrix has an infi-
nite number of square-roots. These can be expressed as the product of an arbitrary
orthogonal matrix with the respective Cholesky factor. In this section, we present
an RLS algorithm, which updates in time an arbitrary square-root of the input data
correlation matrix and provides naturally the LS weight vector. It will be shown
that such an update is performed by applying a properly constructed data dependent
Householder matrix.

Let S(k) be an arbitrary (not necessarily triangular) (N + 1)× (N + 1) square-
root factor of the data correlation matrix R(k) at time k. Then the following relation
holds:

R(k) = ST(k)S(k) (7.20)

Based on the new data vector x(k) and the square-root factor of the previous time
instant, we define the following vector:2

u(k) =
S−T(k−1)x(k)√

λ
(7.21)

where λ is the forgetting factor of the exponentially weighted LS cost function. Let
now P(k) be an (N +2)× (N +2) orthogonal matrix, which performs the following
transformation:

P(k)
[

1
u(k)

]
=

[
−δ (k)

0

]
, (7.22)

where δ (k) is a positive scalar. According to (7.22), matrix P(k) zeros u(k), which
coincides with the last N + 1 elements of the vector on the left-hand-side of the
equation. Due to the orthogonality of P(k) and (7.21), the positive scalar δ (k) is
given by

δ (k) =
√

1+ ||u(k)||2 =
√

1+λ−1xT(k)R−1(k−1)x(k). (7.23)

It is most interesting that the orthogonal matrix P(k), which satisfies (7.22), also
updates in time the inverse square-root factor of R(k− 1). Indeed, by formulating
the equation

P(k)
[

0T 1
λ−1/2S−T(k−1) u(k)

]
=

[
zT(k) −δ (k)
Y(k) 0

]
(7.24)

2 This vector is reminiscent of the so-called Kalman gain vector, which appears in the conventional
RLS algorithm [5]. The Kalman gain vector is obtained by replacing S−T(k − 1) in (7.21) by
R−T(k−1).
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and multiplying each side of (7.24) by its transpose and equating parts, z(k) and
Y(k) are obtained from the following set of expressions:

z(k) = −S−1(k−1)u(k)√
λδ (k)

= −R−1(k−1)x(k)
λδ (k)

(7.25)

and
YT(k)Y(k) = λ−1R−1(k−1)− z(k)zT(k). (7.26)

Note that, according to (7.25), z(k) is a scaled version of the Kalman gain vector [5],
which can be used to update the LS weight vector. Moreover, let us consider the
well-known LS input correlation matrix update equation

R(k) = λR(k−1)+x(k)xT(k). (7.27)

Application of the matrix inversion lemma in (7.27) leads to the expression on the
right-hand-side of (7.26). Thus, R−1(k) = YT(k)Y(k), verifying that

Y(k) = S−T(k). (7.28)

Since Equation (7.22) represents an annihilation of a block of elements in a vector,
the natural choice for P(k) is a Householder matrix. According to the analysis of
Section 7.1, a Householder matrix P(k) satisfying (7.22) is expressed as follows:

P(k) = I−β (k)y(k)yT(k), (7.29)

where

y(k) =
[

1+δ (k)
u(k)

]
, (7.30)

and

β (k) =
1

δ (k)(1+δ (k))
. (7.31)

The Householder RLS (HRLS) algorithm is completed with the formulas required
for the computation of the a priori LS error and the update of the LS weight vector,
respectively, i.e.,

e(k) = d(k)−wT(k−1)x(k), and (7.32)

w(k) = w(k−1)− e(k)
δ (k)

z(k). (7.33)

The basic steps of the HRLS algorithm are summarized in Table 7.1, where the
structure of the orthogonal matrix P(k) has not been taken into consideration. How-
ever, by exploiting the special form of the employed Householder transformation,
P(k) need not be explicitly computed. More specifically, from (7.28) to (7.31) and
(7.24), the following explicit update equation for S−1(k−1) is obtained:
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Table 7.1 The basic steps of the HRLS algorithm.

HRLS
Initialize 0 � λ < 1,w(0) = 0,ε ≈ 1/σ2

x and S−1(0) =
√
εI

for each k
{ Computing u(k):

u(k) = λ−1/2S−H(k−1)x(k)
Obtaining P(k) and δ (k):

P(k)
[

1
u(k)

]
=

[
−δ (k)

0

]

Updating S−1(k−1):

P(k)
[

0T

λ−1/2S−H(k−1)

]
=

[
zH(k)

S−H(k)

]

Obtaining e(k) and w(k):
e(k) = d(k)−wH(k−1)x(k)
w(k) = w(k−1)− e∗(k)

δ (k) z(k)
}

S−1(k) = λ−1/2S−1(k−1)+
z(k)uT(k)
1+δ (k)

. (7.34)

Thus, we are led to an analytical form of the HRLS algorithm, as illustrated in
Table 7.2.

The HRLS algorithm was originally introduced in [6] and [7] and later redis-
covered independently in [8]. The main advantage of the algorithm is its numer-
ically robust behavior in a finite-precision environment. This is clearly shown in
Figure 7.3, where the mean squared error of the RLS and HRLS algorithms is
depicted for a numerically unstable situation. More specifically, we have consid-
ered a system of order N = 8 and an input signal is generated as follows:

x(k) = cos(0.05πk)+
√

2cos(0.3πk)+η(k) (7.35)

Table 7.2 Analytical form of the HRLS algorithm.

HRLS
Initialize 0 � λ < 1,w(0) = 0,ε ≈ 1/σ2

x and S−1(0) =
√
εI

for each k
{ u(k) = λ−1/2S−H(k−1)x(k)
δ (k) =

√
1+ ||u(k)||2

z(k) = − λ−1/2S−1(k−1)u(k)
δ (k)

S−1(k) = λ−1/2S−1(k−1)+ z(k)uH(k)
1+δ (k)

e(k) = d(k)−wH(k−1)x(k)
w(k) = w(k−1)− e∗(k)

δ (k) z(k)
}
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Fig. 7.3 (a) Mean squared error of HRLS, (b) Mean squared error of RLS.

where η(k) is zero-mean Gaussian random noise with variance equal to 10−10. Note
that the 8×8 autocorrelation matrix of the input signal is nearly singular. A forget-
ting factor λ = 0.99 has been used in both schemes. As observed from Figure 7.3,
RLS diverges after a number of iterations, while HRLS retains a numerically robust
behavior.

Concerning the computational complexity, the HRLS algorithm requires slightly
more arithmetic operations compared to the other square-root RLS schemes (con-
ventional and inverse QRD-RLS algorithms). However, as indicated in the analysis
performed in [9], the HRLS is the fastest numerically robust RLS algorithm in terms
of MATLAB execution time, irrespective of the problem size N. This is due to the
fact that the HRLS algorithm includes simple matrix-by-vector and vector-by-vector
operations, which are best suited for implementation in the MATLAB environment.

It should be emphasized that the HRLS algorithm is closely related to the
inverse QRD-RLS algorithm. In both algorithms, an orthogonal transforma-
tion is constructed by zeroing a vector quantity and then this transformation
is applied for the update of an inverse square-root factor of the input data
correlation matrix.

As shown in Chapter 3, the orthogonal transformation used in the inverse QRD-
RLS algorithm can also be applied for the update of the square-root factor itself,
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leading to the QRD-RLS algorithm. It is easily verified that the same holds for the
HRLS algorithm. More specifically, as proven in [6], the Householder matrix P(k)
satisfies the following equations:

P(k)
[

−xT(k)
λ 1/2S(k−1)

]
=

[
0T(k)
S(k)

]
, and (7.36)

P(k)
[

−d(k)
λ 1/2d̂q2(k−1)

]
=

[
eq1(k)
d̂q2(k)

]
. (7.37)

where eq1(k) is the rotated estimation error defined in Chapter 3 and d̂q2(k) is an
orthogonal transformation of the rotated desired signal vector satisfying S(k)w(k) =
d̂q2(k). In the QRD-RLS algorithm, the generation of the orthogonal transforma-
tion and the update of the triangular Cholesky factor are performed jointly, without
involving the inverse Cholesky factor. Similarly, from (7.36), except for the update
of S(k−1), matrix P(k) could also be produced as an orthogonal row Householder
reflection, which zeroes row −xT(k) with respect to the matrix λ 1/2S(k−1). How-
ever, the analysis of Section 7.1.2 has shown that, in order to construct such a matrix,
the inverse of the square-root factor S(k−1) is also required (see Equation (7.16)).
Thus, it seems that a Householder-based RLS algorithm equivalent to the QRD-RLS
cannot be derived.

In the analysis presented in [10], it is shown that several variants of the RLS
family are closely related to algorithms developed for the Kalman filtering problem.
Under this framework, the QRD-RLS and the inverse QRD-RLS schemes are akin
to the so-called information and square-root covariance filters, respectively [11, 12].
In a similar way, the HRLS algorithm is related to Potter’s square-root covariance
filter, which was the first square-root Kalman filter implementation, developed in
the early 1960s [13]. It is noteworthy that Potter’s square-root filter was the variant
of the Kalman filter, which, due to its exceptional numerical properties, has been
utilized in the navigation software of the Apollo system [14].

7.2.1 Applications

In the following, we briefly review two specific applications, namely adaptive pre-
whitening and equalization in wideband code division multiple access (WCDMA)
downlink, whereby the HRLS algorithm has been successfully utilized as a compo-
nent of a larger system.

7.2.1.1 Adaptive pre-whitening

In several applications, such as blind source separation (BSS) or independent
component analysis (ICA), it is desirable that the input signal measurements are
whitened prior to applying any specific method. This procedure is known as pre-
whitening [15]. Let us assume that the signal vector x(k) is wide sense stationary
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with zero mean and autocorrelation matrix R = E[x(k)xT(k)], where E[·] denotes
statistical expectation. Then, to pre-whiten x(k) we need to determine a matrix trans-
formation T such that, if

v(k) = Tx(k), (7.38)

then
E[v(k)vT(k)] = TRTT = I. (7.39)

Apparently, (7.39) is satisfied if T is selected as the transpose of a square-root of
R−1. Note that, under time-varying conditions, the whitening transformation T must
be properly updated in time. Based on these two observations, a reasonable choice
for T is

T = S−T(k−1), (7.40)

i.e.,
v(k) = S−T(k−1)x(k). (7.41)

This transformation maintains the whitening property with respect to the determin-
istic autocorrelation matrix for every k, i.e.,

S−T(k−1)R(k−1)S(k−1) = I. (7.42)

From (7.41) the transformed data vector is now v(k) =
√
λu(k), with u(k) defined

in (7.21). Assuming x(k) to be wide sense stationary, v(k) enjoys the following
property [8]:

lim
k→∞

E[v(k)vT(k)] ≈ (1−λ )I. (7.43)

The adaptive whitening procedure is summarized by the first four steps of the algo-
rithm in Table 7.2. This procedure is numerically robust, as the update of the whiten-
ing transformation stems from the application of a Householder reflection.

7.2.1.2 Equalization in WCDMA downlink

Wideband code division multiple access (WCDMA) has been adopted in several
modern telecommunication standards such as the Universal Mobile Telecommuni-
cation Systems (UMTS) standard. Due to strong interference from other users, a
critical task in such systems is the design of an equalizer in the downlink. Most
often, the conventional RAKE receiver is used, which is, however, interference lim-
ited. Another solution is to employ a linear minimum mean squares error equalizer,
which provides the estimate of the kth symbol of the mth user as [16]

ŷm(k) = cT
m(k)ΘΘΘT(σ2

yΘΘΘΘΘΘT +σ2
ηI)−1x(k), (7.44)

where x(k) is the vector of the received samples, ΘΘΘ is the system channel matrix,
cT

m(k) is the spreading sequence of user k for symbol m, and σ2
y ,σ2

η are the variances
of the transmitted sequence and the receiver noise, respectively. From (7.44) we can
identify that the equalizer consists of two parts; the conventional RAKE receiver
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cT
m(k)ΘΘΘT and a preceding filter (σ2

yΘΘΘΘΘΘT + σ2
ηI)−1. It can be easily shown that

this prefilter coincides with the inverse autocorrelation matrix R−1 of the received
sequence x(k). By considering a Toeplitz approximation of R, the prefilter coeffi-
cients are given by the elements of the middle row of R−1 [16]. If sT

d stands for the
middle row of the square-root factor S−1 of R−1, the prefilter coefficients will be
given by the elements of the following vector:

v = S−1sd . (7.45)

Therefore, explicit computation of the inverse autocorrelation matrix is not nec-
essary. Instead, its square-root factor only need to be computed. Moreover, in an
adaptive equalization setup, the prefilter coefficients can be updated by applying
the HRLS algorithm, which provides, for every time instant the inverse square-root
factor S−1(k) [16], as shown in Table 7.2.

7.3 The Householder Block Exact QRD-RLS Algorithm

In a block RLS algorithm, the LS weight vector is updated in a data block-by-block
basis, instead of the sample-by-sample updating as it is the case for the conventional
RLS algorithms. In [17], a block QRD-RLS algorithm has been developed, where
an exponentially block weighting was utilized. In the following, we slightly modify
this algorithm, so that the LS weight vector, obtained at each block iteration, coin-
cides with its sample-by-sample counterpart as this is computed by the conventional
QRD-RLS algorithm. Such an algorithm is called block exact QRD-RLS algorithm
and belongs to a more general class of such algorithms [18].

Let us assume a block length equal to Q. The LS error vector corresponding to
k +1 blocks can be expressed as follows:

e(k) =

⎡
⎢⎢⎢⎢⎣

ek

ek−1

...

e0

⎤
⎥⎥⎥⎥⎦

= d(k)−X(k)w(k). (7.46)

Let us define for i = 0, . . . ,k the Q× (N + 1) data block XT
i and the Q× 1 desired

response block di as follows:

XT
i =

⎡
⎢⎢⎢⎢⎣

xT((i+1)Q−1)
...

xT(iQ+1)
xT(iQ)

⎤
⎥⎥⎥⎥⎦

=
[

x0,i x1,i · · · xN,i
]

(7.47)
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and

di =

⎡
⎢⎢⎢⎢⎣

d((i+1)Q−1)
...

d(iQ+1)
d(iQ)

⎤
⎥⎥⎥⎥⎦

. (7.48)

Then, the input data matrix X(k) and the desired response vector d(k) in (7.46) are
expressed as follows:

X(k) =

⎡
⎢⎢⎢⎢⎢⎣

ΛΛΛXT
k

λQ/2ΛΛΛXT
k−1

...

λ kQ/2ΛΛΛXT
0

⎤
⎥⎥⎥⎥⎥⎦

(7.49)

and

d(k) =

⎡
⎢⎢⎢⎣

ΛΛΛdk

λQ/2ΛΛΛdk−1
...

λ kQ/2ΛΛΛd0

⎤
⎥⎥⎥⎦ , (7.50)

where ΛΛΛ is a Q×Q weighting matrix given by

ΛΛΛ =

⎡
⎢⎢⎢⎣

1 · · · 0 0
0 λ 1/2 · · · 0
...

...
. . .

...
0 · · · 0 λ (Q−1)/2

⎤
⎥⎥⎥⎦ . (7.51)

It is not difficult to verify from the above definitions that minimization of the norm of
e(k) given in (7.46) with respect to w(k), provides the exact exponentially weighted
LS solution for time instant (k + 1)Q− 1, i.e., w(k) minimizes the following cost
function:

J(w(k)) =
(k+1)Q−1

∑
j=0

λ (k+1)Q−1− j[d( j)−xT( j)w(k)]2. (7.52)

To see how we can obtain this solution adaptively in a block-by-block basis, we
observe that X(k) from (7.49) can be rewritten as

X(k) =
[

X̃T
k

λQ/2X(k−1)

]
, (7.53)

where X̃T
k =ΛΛΛXT

k . From the last equation, the deterministic data correlation matrix
at time (k +1)Q−1 can be expressed as follows:
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R(k) = λQR(k−1)+ X̃kX̃T
k , (7.54)

where R(k−1) = XT(k−1)X(k−1) is the data correlation matrix at time kQ−1.
By expressing R(k) and R(k− 1) by the respective Cholesky factorizations, (7.54)
is written as

UT(k)U(k) = λQUT(k−1)U(k−1)+ X̃kX̃T
k , (7.55)

where U(k),U(k−1) are assumed to be (N +1)×(N +1) upper triangular matrices.
From (7.55), a block time update of the Cholesky factor of the data correlation
matrix can be realized according to the following relation:

P̃(k)
[

X̃T
k

λQ/2U(k−1)

]
=

[
OQ×(N+1)

U(k)

]
, (7.56)

where P̃(k) is an orthogonal matrix. As suggested in (7.56), P̃(k) must be prop-
erly selected to zero the Q× (N +1) block X̃T

k with respect to the triangular matrix
λQ/2U(k−1). Moreover, by following similar analysis as in Chapter 3 for the con-
ventional QRD-RLS algorithm, it can be easily shown that P̃(k) block updates in
time a rotated desired (N +1)×1 signal vector, dq2(k), as in

P̃(k)
[

d̃k

λQ/2dq2(k−1)

]
=

[
ẽk

dq2(k)

]
, (7.57)

where d̃k =ΛΛΛdk and ẽk being a Q×1 rotated error block. The exact LS weight vector
at time (k +1)Q−1 is then given by the following triangular system of equations:

U(k)w(k) = dq2(k), (7.58)

which can be easily solved using back-substitution.
As mentioned before, matrix P̃(k) must be designed to eliminate the block

X̃T
k = [x̃0,k, x̃1,k, · · · , x̃N,k], where x̃n,k = ΛΛΛxn,k, while retaining the triangular struc-

ture of the Cholesky factor. By inspecting (7.56), it is easily shown that P̃(k) can be
expressed as a product of N +1 orthogonal (N +Q+1)× (N +Q+1) Householder
matrices as follows:

P̃(k) = P̃N(k)P̃N−1(k) · · · P̃0(k). (7.59)

Matrix P̃n(k), n = 0,1, . . . ,N, zeroes the (n + 1)-th column of the input data
block with respect to the corresponding diagonal element of the upper triangular
factor, i.e.,

P̃n(k)

⎡
⎢⎣

0 · · · x̃(n)
n,k x̃(n)

n+1,k · · · x̃(n)
N,k

U(n)(k−1)

⎤
⎥⎦ =

⎡
⎢⎣

0 · · · 0 x̃(n+1)
n+1,k · · · x̃(n+1)

N,k

U(n+1)(k−1)

⎤
⎥⎦ ,

(7.60)



7 Householder-Based RLS Algorithms 195

P̃n(k)

Fig. 7.4 Application of Householder transformations in the block exact QRD-RLS algorithm.

which is also illustrated in Figure 7.4. In (7.60), U(0)(k − 1) = λQ/2U(k − 1),
U(N)(k−1) = U(k), and x̃(n)

j,k , j = n, . . . ,N is the ( j +1)-th column of the data block

after the application of matrices P̃0(k), . . . , P̃n−1(k). To be more specific, P̃n(k) is an
orthogonal Householder matrix, whose defining vector, according to (7.6), is given
by3

yn(k) =

⎡
⎢⎢⎣

x̃(n)
n,k
0n

un+1,n+1 +ρn+1

0N−n

⎤
⎥⎥⎦ , (7.61)

where un+1,n+1 is the (n + 1)-th diagonal element of U(n)(k − 1) and ρ2
n+1 =

u2
n+1,n+1 + ||x̃(n)

n,k ||2.
The block exact Householder QRD-RLS algorithm is summarized in Table 7.3.

It must be noticed that block updating using Householder transforms results in
remarkable reduction in computational complexity compared to sample-by-sample
updating using Givens rotations. More specifically, the Householder-based approach
requires QN2 +O[QN] arithmetic operations, whereas the Givens rotations approach
needs 2QN2 + O[QN] operations, that is, the computational complexity is almost
halved.

Moreover, as described in [17], a slightly modified version of the block House-
holder QRD-RLS algorithm can be implemented in a systolic array archi-
tecture, providing a throughput rate similar to that of the Givens rotations
method.

3 To be precise, due to the definition of the Householder transform in (7.5), (7.6), and (7.7), the
resulting U(k) is the Cholesky factor of R(k) multiplied by −1. This, however, does not affect the
analysis of the algorithm.



196 Athanasios A. Rontogiannis and Sergios Theodoridis

Table 7.3 The basic steps of the block exact Householder QRD-RLS algorithm.

Block exact Householder QRD-RLS
Initialize 0 � λ < 1,ε ≈ 1/σ2

x and U(0) = 1/
√
εI

for each k

{ Computing P̃(k) and updating U(k−1):

P̃(k)

[
X̃H

k

λQ/2U(k−1)

]
=

[
OQ×(N+1)

U(k)

]

Updating dq2 (k−1):

P̃(k)

[
d̃∗

k

λQ/2dq2 (k−1)

]
=

[
ẽk

dq2 (k)

]

Obtaining w(k):

w(k) = U−1(k)dq2(k)

}

7.4 The Householder Block Exact Inverse QRD-RLS Algorithm

In the block exact QRD-RLS algorithm, the orthogonal matrix P̃(k) and the updated
Cholesky factor U(k) are jointly obtained from (7.56). Then, the inverse of U(k)
need to be computed in order to extract the LS weight vector according to (7.58).
Clearly, it would be more convenient to be able to work directly with the inverse of
the Cholesky factor. It is well known that if P̃(k) is orthogonal and satisfies (7.56),
then

P̃(k)
[

OQ×(N+1)
λ−Q/2U−T(k−1)

]
=

[
ET(k)

U−T(k)

]
, (7.62)

where E(k) is an (N +1)×Q matrix. To see this, let us note that we can express an
identity matrix as follows:

I =
[

O(N+1)×Q λ−Q/2U−1(k−1)
][ X̃T

k
λQ/2U(k−1)

]

=
[

O(N+1)×Q λ−Q/2U−1(k−1)
]

P̃T(k)P̃(k)
[

X̃T
k

λQ/2U(k−1)

]

=
[

E(k) W
][OQ×(N+1)

U(k)

]
(7.63)

and thus W = U−1(k). From (7.62), the inverse Cholesky factor can be updated.
However, in order to compute P̃(k) we have to resort to (7.56), which requires the
Cholesky factor itself. To avoid using U(k − 1) explicitly, the following lemma,
which has been derived in [4], can be employed.

Lemma 1. Let G(k) = −λ−Q/2U−T(k−1)X̃k and let P̂(k) be an orthogonal matrix
such that
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P̂(k)
[

IQ

G(k)

]
=

[
ΔΔΔ(k)

O(N+1)×Q

]
, (7.64)

where IQ is the Q×Q identity matrix and ΔΔΔ(k) is a Q×Q matrix. Then

P̂(k)
[

X̃T
k

λQ/2U(k−1)

]
=

[
OQ×(N+1)

V

]
. (7.65)

If V is upper triangular, then V = U(k) and

P̂(k)
[

OQ×(N+1)
λ−Q/2U−T(k−1)

]
=

[
ET(k)

U−T(k)

]
, (7.66)

where E(k) = λ−Q/2U−1(k−1)G(k)ΔΔΔ−1(k).

The crucial task now becomes to determine the orthogonal matrix in (7.64) so that
the triangular structures are retained in (7.66). As a generalization of the procedure
for Q = 1 (inverse QRD-RLS algorithm of Chapter 3), P̂(k) can be constructed as
the product of N +1 orthogonal row Householder reflections [4], i.e,

P̂(k) = P̂N(k)P̂N−1(k) · · · P̂0(k). (7.67)

The row Householder matrix P̂n(k),n = 0,1, . . . ,N, zeros the (n+1)-th row of G(k)
as follows:

P̂n(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔΔΔ n(k)
0T

...
gT

n (k)
gT

n+1(k)
...

gT
N(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔΔΔ n+1(k)
0T

...
0T

gT
n+1(k)

...
gT

N(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.68)

where ΔΔΔ 0(k) = IQ, ΔΔΔN(k) = ΔΔΔ(k), and gT
n (k) is the (n + 1)-th row of G(k) for

n = 0,1, . . . ,N. This procedure is also graphically illustrated in Figure 7.5. From
the analysis on row Householder matrices and (7.68), the defining vector of the row
Householder matrix P̂n(k) is given by

yn(k) =
1

||gn(k)||

⎡
⎢⎢⎢⎣

ΔΔΔ−T
n (k)gn(k)

0n

−1−
√

1+(ΔΔΔ−T
n (k)gn(k))TΔΔΔ−T

n (k)gn(k)
0N−n

⎤
⎥⎥⎥⎦ . (7.69)

Recall that P̂n(k) need not be explicitly constructed, but, instead, yn(k) is computed
from (7.69) and is properly used in (7.68). Thus, the orthogonal matrix P̂(k) can
be constructed from (7.67), (7.68), and (7.69) and then applied in (7.66) in order to
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P̂n(k)

Fig. 7.5 Application of row Householder transformations in the block exact inverse QRD-RLS
algorithm.

update directly the inverse Cholesky factor. Furthermore, the LS weight vector can
be efficiently updated using the following block recursive formula [4]:

w(k) = w(k−1)−E(k)ΔΔΔ−T(k)
[
d̃k − X̃T

k w(k−1)
]
, (7.70)

where w(k) refers to the exponentially weighted LS solution at time (k +1)Q−1.
The Householder block exact inverse QRD-RLS algorithm is summarized in

Table 7.4.

As mentioned before, in the second step of the algorithm, inversion of the
Q×Q matrices ΔΔΔ n(k) is required. Note, however, that in most applications that
employ a block-type recursive scheme, the block length Q is taken to be much
smaller than the filter size N [18]. Therefore, the overall burden in complexity,
which is due to these inverse matrix calculations, is not considerable.

Table 7.4 The basic steps of the block exact Householder inverse QRD-RLS algorithm.

Block exact Householder inverse QRD-RLS
Initialize 0 � λ < 1,w(0) = 0,ε ≈ 1/σ2

x and U−1(0) =
√
εI

for each k
{ Computing G(k):

G(k) = −λ−Q/2U−H(k−1)X̃k

Computing P̂(k) and ΔΔΔ(k):

P̂(k)
[

IQ

G(k)

]
=

[
ΔΔΔ(k)

O(N+1)×Q

]

Updating U−1(k−1):

P̂(k)
[

OQ×(N+1)
λ−Q/2U−H(k−1)

]
=

[
EH(k)

U−H(k)

]

Computing w(k):
w(k) = w(k−1)−E(k)ΔΔΔ−H(k)

[
d̃∗

k − X̃H
k w(k−1)

]
}
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7.5 Sliding Window (SW) Householder Block Implementation

In the previous analysis, an exponentially weighted LS cost function has been con-
sidered, which is more frequently used in practice. In a time-varying environment,
an alternative popular approach is to employ a sliding window (SW) on the data.
To reduce complexity, data can be organized in blocks of size Q, and the LS weight
vector can be updated on a block-by-block basis. In a block SW formulation, the LS
error vector, whose norm is to be minimized, is given by

e(k) =

⎡
⎢⎢⎢⎢⎣

ek

ek−1

...

ek−L+1

⎤
⎥⎥⎥⎥⎦

= d(k)−X(k)w(k), (7.71)

where L is the window size,

X(k) =

⎡
⎢⎢⎢⎢⎣

XT
k

XT
k−1

...

XT
k−L+1

⎤
⎥⎥⎥⎥⎦

(7.72)

and

d(k) =

⎡
⎢⎢⎢⎢⎣

dk

dk−1

...

dk−L+1

⎤
⎥⎥⎥⎥⎦

. (7.73)

The Q× (N + 1) input data matrices XT
i and the Q×1 desired response vectors di,

i = k−L + 1, . . . ,k, are given by (7.47) and (7.48), respectively. Let us now define
the following augmented quantities:

X̄(k) =

[
X(k)
XT

k−L

]
=

[
XT

k

X(k−1)

]
, and (7.74)

d̄(k) =

[
d(k)
dk−L

]
=

[
dk

d(k−1)

]
. (7.75)

The LS problem can be solved recursively via a two-step procedure. This proce-
dure comprises an update step and a downdate step, as described in the following
representation:

w(k−1) −→ w̄(k) −→ w(k), (7.76)
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where w̄(k) is the solution of the LS problem, which results by substituting in (7.71)
X(k) and d(k) by X̄(k) and d̄(k), respectively. The update step can be implemented
directly by using one of the algorithms described in Sections 7.3 and 7.4. For the
downdate step, the following relation between the involved data correlation matrices
holds:

XT(k)X(k) = X̄T(k)X̄(k)−Xk−LXT
k−L (7.77)

or
R(k) = R̄(k)−Xk−LXT

k−L. (7.78)

By expressing the correlation matrices in terms of their Cholesky factors, the last
equation is rewritten as follows:

UT(k)U(k) = ŪT(k)Ū(k)−Xk−LXT
k−L. (7.79)

In [3], it is shown that there exists a hypernormal matrix H(k) with respect to the
signature

ΦΦΦ =
[
−IQ O
O IN+1

]
(7.80)

such that

H(k)
[

XT
k−L

Ū(k)

]
=

[
OQ×(N+1)

U(k)

]
. (7.81)

Matrix H(k) can be constructed as the product of N + 1 hyperbolic Householder
matrices, which annihilate the columns of XT

k−L with respect to the diagonal ele-
ments of Ū(k). Note that Ū(k) in (7.81) has been obtained from the initial update
step, and thus (7.81) provides the Cholesky factor of the SW RLS problem at time
k. However, in order to compute the required LS solution w(k), we have to resort to
the inverse Cholesky factor. It is easily shown that H(k) can also be used to compute
U−1(k) from Ū−1(k) as in [4]

H(k)
[

OQ×(N+1)
Ū−T (k)

]
=

[
FT(k)

U−T (k)

]
, (7.82)

where F(k) is an (N + 1)×Q matrix. To compute H(k), a result similar to that of
Lemma 1 can be employed [4]. More specifically, by defining the vector Ḡ(k) =
−Ū−T(k)Xk−L, a hypernormal matrix H(k) such that

H(k)
[

IQ

Ḡ(k)

]
=

[
Δ̄ΔΔ(k)

O(N+1)×Q

]
, (7.83)

where Δ̄ΔΔ(k) is a Q×Q matrix, also satisfies (7.82). To retain the triangular structure
of the matrices in (7.82), H(k) is constructed as a sequence of N +1 row hyperbolic
Householder reflections Hn(k), n = 0,1, . . . ,N, with respect to the signature ΦΦΦ given
in (7.80). Hn(k) annihilates the (n + 1)-th row of Ḡ(k) with respect to the upper
Q×Q block of the matrix on the left-hand-side of (7.83). Thus, from the analysis
on row Householder matrices and (7.80), its defining vector can be written as
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Table 7.5 The basic steps of the sliding window (SW) block HRLS algorithm.

SW block Householder RLS
Run the update step L times to obtain w(L) and U−1(L)
for each k > L
{ Update Step

Computing G(k):
G(k) = −U−H(k−1)Xk
Computing Q(k):

Q(k)
[

IQ

G(k)

]
=

[
ΔΔΔ(k)

O(N+1)×Q

]

Updating U−1(k−1):

Q(k)
[

OQ×(N+1)
U−H(k−1)

]
=

[
EH(k)

Ū−H(k)

]

Computing w̄(k):
w̄(k) = w(k−1)−E(k)ΔΔΔ−H(k)

[
d∗

k −XH
k w(k−1)

]
Downdate Step
Computing Ḡ(k):
Ḡ(k) = −Ū−H(k)Xk−L
Computing H(k):

H(k)
[

IQ

Ḡ(k)

]
=

[
Δ̄ΔΔ(k)

O(N+1)×Q

]

Downdating Ū−1(k):

H(k)
[

OQ×(N+1)
Ū−H(k)

]
=

[
FH(k)

U−H(k)

]

Computing w(k):
w(k) = w̄(k)−F(k)Δ̄ΔΔ−H(k)

[
d∗

k−L −XH
k−Lw̄(k)

]
}

ȳn(k) =
1

||ḡn(k)||

⎡
⎢⎢⎢⎢⎣

Δ̄ΔΔ−T
n (k)ḡn(k)

0n

−1−
√

1− (Δ̄ΔΔ−T
n (k)ḡn(k))TΔ̄ΔΔ−T

n (k)ḡn(k)
0N−n

⎤
⎥⎥⎥⎥⎦

, (7.84)

where Δ̄ΔΔ 0(k) = IQ, Δ̄ΔΔN(k) = Δ̄ΔΔ(k), and ḡT
n (k) is the (n + 1)-th row of Ḡ(k) for

n = 0,1, . . . ,N. Furthermore, the LS weight vector is computed according to the
following recursive formula [4]:

w(k) = w̄(k)+F(k)Δ̄ΔΔ−T(k)(dk−L −XT
k−Lw̄(k)). (7.85)

The SW block HRLS algorithm is summarized in Table 7.5. The algorithm consists

of an update step, implemented with the block inverse QRD-RLS algorithm using a
row orthogonal Householder matrix Q(k), and a downdate step as described in the
previous analysis. Note that in the initialization phase the update step is executed L
times, before the algorithm switches to the two-step procedure.
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7.6 Conclusion

The aim of the chapter was to present various RLS algorithms, whose recursion
procedure is based on Householder transforms. Householder transforms are known
to possess exceptional numerical properties, and thus the resulting RLS schemes
exhibit numerical robustness in finite-precision environments. The HRLS algorithm
was first presented, which updates in time an arbitrary square-root of the data cor-
relation matrix using an orthogonal Householder transformation. The algorithm is
particularly attractive in several applications, due to its low-computational complex-
ity and numerical robustness. In the sequel, three other Householder-based RLS
algorithms have been described. The common characteristic of these schemes is
that the weight vector is updated on a block-by-block basis, which calls directly
for the application of Householder reflections instead of Givens rotations. The first
two algorithms can be considered as generalizations of the conventional sample-by-
sample QRD-RLS and inverse QRD-RLS algorithms, respectively. The block exact
QRD-RLS scheme provides the per block update of the data correlation matrix
Cholesky factor, with the application of a sequence of orthogonal Householder
matrices. The block exact inverse QRD-RLS algorithm block updates the inverse
Cholesky factor through a sequence of row orthogonal Householder matrices. The
third algorithm was a SW block RLS scheme, which also manipulates the inverse
Cholesky factor. The algorithm provides the respective LS weight vector by utilizing
two Householder transformations, namely a row orthogonal and a row hyperbolic,
in order to update and downdate the inverse Cholesky factor, respectively.
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