
Chapter 6
Multichannel Fast QRD-RLS Algorithms

António L. L. Ramos and Stefan Werner

Abstract When considering multichannel adaptive implementations, it is often
possible to directly apply standard single-channel algorithms to the multichannel
problem, e.g., the numerically stable and fast converging QR decomposition recur-
sive least-square (QRD-RLS) algorithm. Even though such a solution would provide
fast convergence, it may be computationally too complex due to a large number of
coefficients. In order to obtain a computationally efficient solution, RLS-type algo-
rithms specially tailored for the multichannel setup are a good option. This chapter
introduces various multichannel fast QRD-RLS (MC-FQRD-RLS) algorithms that
can be seen as extensions of the basic single-channel FQRD-RLS algorithms to the
case of a multichannel input vector, where it can be assumed that each channel has
a time-shift structure. We provide, in a general framework, a comprehensive and
up-to-date discussion of the MC-FQRD-RLS algorithms, addressing issues such as
derivation, implementation, and comparison in terms of computational complexity.

6.1 Introduction

Multichannel signal processing can be found in various applications such as color
image processing, multispectral remote sensing imagery, biomedicine, channel
equalization, stereophonic echo cancelation, multidimensional signal processing,
Volterra-type non-linear system identification, and speech enhancement [1, 2].
When choosing among the adaptive algorithms that can cope with multichannel
signals, the choice is more than often based on stability, convergence speed, and
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computational complexity. The standard QR decomposition recursive least-squares
(QRD-RLS) algorithm stands out as potential good option because of its well-known
fast convergence property and excellent numerical behavior. However, its O[P2]
computational complexity makes its use prohibitive when higher order filters are
required.

The FQRD-RLS algorithms, in general, offer the same fast converging feature as
the standard QRD-RLS algorithm, while attaining a lower computational complex-
ity, which is achieved by exploiting the underlying time-shift structure of the input
signal vector. Historically, the first solutions were presented for the case where the
input signal is just a “tapped-delay” line, i.e., a single-channel signal, and multi-
channel fast QRD-RLS (MC-FQRD-RLS) algorithms arise as a natural extensions
of basic FQRD-RLS algorithms making them useful also in multichannel applica-
tions. The MC-FQRD-RLS algorithms can be classified into three distinct ways,
according to [3]: (1) which error vector is being updated (a priori or a posteri-
ori); (2) the type of prediction used (forward or backward),1 and; (3) the approach
taken for the derivation (sequential- or block-type). The first two are inherited from
the single-channel case, whereas the last one, specific for multichannel algorithms,
determines how new multichannel input samples are processed. These three con-
cepts are combined in Table 6.1 for the case of MC-FQRD-RLS algorithms based
on backward prediction errors, which are the ones addressed in this work. The struc-
ture parameter introduced in this table simply denotes the way a particular algorithm
is implemented.

Table 6.1 Classification of the MCFQRD-RLS algorithms.

Error Approach Structure References Algorithm
type and order

Equal Lattice [4] 1
BLOCK-CHANNEL Order Transversal [4–6] 2

Multiple Lattice — 3
MCFQR Order Transversal [7, 8] 4
POS B Equal Lattice Implicit in [9] 5

SEQUENTIAL-CHANNEL Order Transversal Suggested in [5] 6
Multiple Lattice [9] 7
Order Transversal [8, 10] 8
Equal Lattice [11] 9

BLOCK-CHANNEL Order Transversal [4, 6, 11] 10
Multiple Lattice — 11

MCFQR Order Transversal [7] 12
PRI B Equal Lattice Implicit in [11] 13

SEQUENTIAL-CHANNEL Order Transversal Implicit in [11] 14
Multiple Lattice [11] 15
Order Transversal [11] 16

1 This chapter does not consider FQRD-RLS algorithms based on the updating of the forward error
vector. As pointed out in Chapter 4, and still holding for the multichannel case, these algorithms are
reported to be unstable, in contrast with their backward error vector updating-based counterparts.
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Depending on the approach taken for the derivation, the O[P2] computational
complexity of the standard QRD-RLS implementation can be reduced to O[MP]
and O[M2P], for sequential- and block-channel processing algorithms, respectively;
with P being the total number of filter coefficients and M the number of channels.
Although the computational cost of block-channel algorithms is slightly higher than
sequential-channel algorithms, they are more suitable for parallel processing imple-
mentations.

After reformulating the problem for the multichannel case, most of the equa-
tions are turned into matrix form, with some involving matrix inversion operations.
Beside being potential sources of numerical instability, the computational burden is
also greatly increased contrasting with desirable low-complexity feature of single-
channel FQRD-RLS algorithms that rely on scalar operations only. Nevertheless,
many good solutions to these problems exist and are addressed in the following.

The reminder of this chapter is organized as follows. In Section 6.2, we
introduce the standard MC-FQRD-RLS problem formulation along with a new def-
inition of the input vector that allows for a more general setup where the various
channels may have different orders. The sequential- and block-type algorithms are
discussed in Sections 6.3 and 6.4, respectively, while order-recursive implementa-
tions are addressed in Section 6.5. An application example and computational com-
plexity issues are presented in Sections 6.6.1 and 6.6.2, respectively. Finally, closing
remarks are given in Section 6.7.

6.2 Problem Formulation

The MC-FQRD-RLS problem for channels of equal orders was addressed in early
90’s, in [5], where the sequential approach was introduced to avoid complicated
matrix operations, and in [12] where both sequential and block approaches were
addressed. Later, multiple-order block-multichannel algorithms comprising scalar
operations only were introduced in [3, 8, 11, 13].

For the multichannel problem, the weighted least-squares (WLS) objective func-
tion, introduced in Chapter 2, is given as

ξ (k) =
k

∑
i=0

λ k−i[d(i)−xT
P(i)wP(k)]2 = eT(k)e(k), (6.1)

where e(k) is the weighted error vector defined as

e(k) =

⎡
⎢⎢⎢⎣

d(k)
λ 1/2d(k−1)

...
λ k/2d(0)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

xT
P(k)

λ 1/2xT
P(k−1)
...

λ k/2xT
P(0)

⎤
⎥⎥⎥⎦wP(k)

= d(k)−XP(k)wP(k), (6.2)
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and
xT

P(k) =
[
xT

k xT
k−1 · · · xT

k−N+1

]
, (6.3)

where xT
k = [x1(k) x2(k) · · · xM(k)] is the input signal vector at instant k. As

illustrated in Figure 6.1, N is the number of filter coefficients per channel, M is the
number of input channels, and wP(k) is the P× 1 coefficient vector at time instant
k, P = MN being the total number of elements for the case of channels with equal
orders.

The good numerical behavior of the QR-decomposition-based RLS algorithms is
due to the fact that they make use of the square root UP(k) of the input-data auto-
correlation matrix XT

P(k)XP(k). The lower triangular matrix UP(k) is also known as
the Cholesky factor of XT

P(k)XP(k) and can be obtained by applying a set of Givens
rotations QP(k) onto XP(k). Hence, pre-multiplying both sides of (6.2) by unitary
matrix QP(k) does not alter its norm yielding

eq(k) = QP(k)e(k) =
[

eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0

UP(k)

]
wP(k). (6.4)

Again, minimizing ‖eq(k)‖2 is equivalent to minimizing the cost function of (6.1).
In other words, Equation (6.1) is minimized by choosing wP(k) in (6.4) such that
dq2(k)−UP(k)wP(k) equals zero, i.e.,

wP(k) = U−1
P (k)dq2(k). (6.5)

x1(k)
x2(k)

xM(k)

y(k)

d(k)

e(k)

wP

xk

xk−1

xk−N+1

xP(k)

z−1

z−1

−

+

∑

Fig. 6.1 Multichannel adaptive filter: case of equal order.
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In many applications, we may come across the need of dealing with different
channel orders which is referred to as the multiple-order case. In such a scenario,
the elements of the input vector are arranged in a slightly different manner than for
the equal-order case treated above. Below we explain how to build the input vector
such that we can cope with both equal- and multiple-order channels.

6.2.1 Redefining the input vector

Let us define N1,N2, . . . ,NM as the number of taps in each of the M channels tapped
delay lines. Thus, the total number of taps in the input vector is P =∑M

r=1 Nr. Without
loss of generality, we will assume N1 ≥ N2 ≥ ·· · ≥ NM .

Figure 6.2 shows an example of a multichannel scenario with M = 3 channels of
unequal orders, where N1 = 4, N2 = 3, N3 = 2, i.e., P = 4+3+2 = 9. The following
approach to construct the input vector, xP(k), was considered in [11] first channel
are chosen to be the leading elements of xP(k), followed by N2–N3 pairs of samples
from the first and second channels, followed by N3–N4 triples of samples of the first
three channels and so on till the NM−NM+1 M-tuples of samples of all channels. It
is assumed that NM+1 = 0.

Alternatively, consider the N1 ×M matrix X̃(k) whose ith row contains the Ni

input data samples of channel i, i.e.,

x1(k) x1(k)

x1(k−1)

x1(k−2)

x1(k−3)

x2(k)

x2(k)

x2(k−1)

x2(k−2)x3(k)

x3(k)

x3(k−1)

xP(k)

z−1

z−1

z−1

z−1

z−1

z−1

N1 −N2 samples from
the first channel.

N2 −N3 pairs of samples
from the first and
second channels.

N3 −N4 triplets of
samples from the
first, second, and
third channels.

Fig. 6.2 Example of input vector defined as in [11].
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X̃(k) =

⎡
⎢⎢⎢⎣

x1(k) x1(k−1) x1(k−2) . . . x1(k−N1 +1)
01×(N1−N2) x2(k) x2(k−1) . . . x2(k−N2 +1)

...
...

...
01×(N1−NM) xM(k) . . . xM(k−NM +1)

⎤
⎥⎥⎥⎦ (6.6)

where the zero-vectors appearing to the left in each row are of proper size to main-
tain the dimension of X̃(k) (if N1 = N2 = · · · = NM , the zeros will disappear). The
multichannel input vector xP(k) is obtained by simply stacking the columns of
matrix X̃(k) and excluding the zeros that were inserted in (6.6). We see from (6.6)
that the last M samples of vector xP(k) are {xl(k−Ni)}M

i=1. As a result, updating
the input vector from one time instant to the next, i.e., from xP(k) to xP(k + 1),
becomes particularly simple. This is because we know that, by construction, the
last M samples of xP(k) are to be removed when shifting in the new input samples
{xi(k +1)}M

i=1.
The procedure detailed above gives rise to two distinct ways of obtaining the

expanded input vector, xP+M(k + 1): (1) The new samples from each channel are
shifted one-by-one and processed recursively, from the first to the last channel and;
(2) All new samples from the different channels are shifted in together and processed
simultaneously.

The first approach leads to sequential-type multichannel algorithms and the sec-
ond one results in block-type multichannel algorithms. Before presenting the dif-
ferent algorithms, we take a closer look at the sequential- and block-type input
vectors.

6.2.2 Input vector for sequential-type multichannel algorithms

For the sequential-channel case, the extended input vector, xP+M(k + 1), is con-
structed from xP(k) in M successive steps as

xT
P+1(k +1) =

[
x1(k +1) xT

P(k)
]
, (6.7)

xT
P+i(k +1) =

[
xi(k +1) xP+i−1T(k+1)

]
Pi, (6.8)

where Pi is a permutation matrix which takes the most recent sample xi(k+1) of the
ith channel to position pi and left shifts the first pi − 1 elements of xT

P+i−1(k + 1),
where

pi =
i−1

∑
r=1

r(Nr −Nr+1)+ i, i = 1, 2, . . . , M. (6.9)

After processing all M channels, the first P elements of the updated extended
input vector constitute the input vector of the next iteration, i.e., xT

P+M(k + 1) =
[xT

P(k +1) x1(k−N1 +1) · · · xM(k−NM +1)].
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6.2.3 Input vector for block-type multichannel algorithms

For the case of block-channel multichannel algorithms, the expanded input vector,
xP+M(k +1), is given by

xT
P+M(k +1) =

[
x1(k +1) x2(k +1) · · · xM(k +1) xT

P(k)
]

P

=
[
xT

k+1 xT
P(k)

]
P, (6.10)

where P = PMPM−1 · · ·P1 is a product of M permutation matrices that moves the
most recent sample of the ith channel (for i = 1,2, . . . ,M) to position pi (given by
Equation (6.9)) in vector xP+M(k +1).

After the above process is terminated, we have xT
P+M(k+1) = [xT

P(k+1) x1(k−
N1 +1) · · · xM(k−NM +1)], such that the first P elements of xT

P+M(k+1) provide
the input vector for the next iteration. In order to illustrate the role of the permutation
matrix P, let us return to the example depicted in Figure 6.2. In this example, the
expanded input vector xP+M(k + 1) is obtained by inserting the new samples in
positions p1 = 1, p2 = 3, and p3 = 6, respectively, i.e.,

PT

⎡
⎢⎢⎣

x1(k +1)
x2(k +1)
x3(k +1)

xP(k)

⎤
⎥⎥⎦ = PT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k +1)
x2(k +1)
x3(k +1)

x1(k)
x1(k−1)

x2(k)
x1(k−2)
x2(k−1)

x3(k)
x1(k−3)
x2(k−2)
x3(k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k +1)
x1(k)

x2(k +1)
x1(k−1)

x2(k)
x3(k +1)
x1(k−2)
x2(k−1)

x3(k)
x1(k−3)
x2(k−2)
x3(k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

xP(k +1)
x1(k−3)
x2(k−2)
x3(k−1)

⎤
⎥⎥⎦ . (6.11)

6.3 Sequential-Type MC-FQRD-RLS Algorithms

In this section, we consider algorithms that process the channels sequentially. In
the following, we shall derive the a priori [11] and the a posteriori [3] versions of
sequential MC-FQRD-RLS algorithms based on updating backward error vectors.

Due to close similarities with the single-channel case, basic concepts on how
to solve the backward and forward prediction problems are omitted. Indeed, the
sequential processing of multichannel signals corresponds to solving the single-
channel algorithm M times, with M being the number of channels. Moreover, from
the forward prediction problem, the extended input data matrices used in sequential-
channel algorithms are defined as
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XP+i(k) =

⎡
⎢⎢⎢⎣

xT
P+i(k)

λ 1/2xT
P+i(k−1)

...
λ k/2xT

P+i(0)

⎤
⎥⎥⎥⎦ , i = 1,2, . . . ,M, (6.12)

where vector xP+i(k) is the extended input vector defined in Equation (6.8).

6.3.1 Triangularization of the information matrix

Equation (6.12) suggests that the updating of the information matrix is performed
in M forward steps for each iteration.

First step (i = 1)

XP+1(k) can be defined as

XP+1(k) =

⎡
⎢⎢⎢⎣

x1(k)
λ 1/2x1(k−1) XP(k−1)

...
λ k/2x1(0) 0T

⎤
⎥⎥⎥⎦ =

[
d(1)

f (k)
XP(k−1)

0T

]
, (6.13)

where d(1)
f 1 (k) = [x1(k) λ 1/2x1(k−1) · · · λ k/2x1(0)].

Let Q(1)
P (k) be the orthogonal matrix associated with the Cholesky factor UP

(k−1) of matrix XT
P(k−1)XP(k−1). Then, from (6.13), we can write

[
Q(1)

P (k) 0
0 I1×1

][
d(1)

f (k)
XP(k−1)

0T

]
=

⎡
⎢⎣

e(1)
f q1(k) 0

d(1)
f q2(k) UP(k−1)

λ k/2x1(0) 0T

⎤
⎥⎦ . (6.14)

To complete the triangularization process of XP+1(k) leading to UP+1(k), we
pre-multiply (6.14) by two other Givens rotation matrices as follows:

[
0

UP+1(k)

]
= Q′

f
(1)(k)Q f

(1)(k)

⎡
⎢⎣

e(1)
f q1(k) 0

d(1)
f q2(k) UP(k−1)

λ k/2x1(0) 0T

⎤
⎥⎦

= Q′
f
(1)(k)

⎡
⎢⎣

0 0

d(1)
f q2(k) UP(k−1)

e(1)
f P (k) 0T

⎤
⎥⎦ . (6.15)
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In the previous equation, Q f
(1)(k) is the orthogonal matrix zeroing e(1)

f q1(k) gen-

erating e(1)
f P (k). Matrix Q′

f
(1)(k) completes the triangularization process by zeroing

d(1)
f q2(k) from (6.15) in a top down procedure against e(1)

f P (k). Removing the resulting
null section in the upper part of (6.15) gives

UP+1(k) = Q′
θ f

(1)(k)

[
d(1)

f q2(k) UP(k−1)

e(1)
f P (k) 0T

]
. (6.16)

From (6.16), we get the following relation that is useful for the updating of aP(k)
and fP(k), the a priori and the a posteriori error vectors, respectively.

[UP+1(k +1)]−1 =⎡
⎢⎣

0T 1

e(1)
f P (k+1)

U−1
P (k) − 1

e(1)
f P (k+1)

U−1
P (k)d(1)

f q2(k +1)

⎤
⎥⎦
[
Q′

θ f
(1)(k +1)

]T
(6.17)

Also from (6.16), we see that Q′
θ f

(1)(k) is the Givens rotation matrix responsible

for zeroing d(1)
f q2(k) against e(1)

f P (k), i.e.,

[
0

e(1)
f 0 (k +1)

]
= Q′

θ f
(1)(k +1)

[
d(1)

f q2(k +1)

e(1)
f P (k +1)

]
. (6.18)

The updating of d(1)
f q2(k) is performed according to

[
ẽ(1)

f q1(k +1)

d(1)
f q2(k +1)

]
= Q(0)

θP
(k)

[
x1(k +1)

λ 1/2d(1)
f q2(k)

]
, (6.19)

where Q(0)
θP

(k) = Q(M)
θP

(k − 1), i.e., the values obtained after processing the Mth

channel on last iteration. For 1 < i ≤ M, d(i)
f q2(k) is updated according to

[
ẽ(i)

f q1(k +1)

d(i)
f q2(k +1)

]
= Q(i−1)

θP+i−1
(k +1)

[
xi(k +1)

λ 1/2d(i)
f q2(k)

]
. (6.20)

Following steps (i > 1)

The input information matrix XP+i(k) is related to XP+i−1(k) according to
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XP+i(k) =

⎡
⎢⎢⎢⎣

xi(k)
λ 1/2xi(k−1)

...
λ k/2xi(0)

XP+i−1(k)

⎤
⎥⎥⎥⎦Pi. (6.21)

As in the first step, matrix XP+i(k) must be triangularized to obtain UP+i(k)
(Cholesky factor of XT

P+i(k)XP+i(k)). This process is detailed in the following. Let
QθP+i−1(k) denotes the orthogonal matrix associated with the QR decomposition of
XP+i−1(k). From (6.21), we can write

Q(i)
f (k)

[
QP+i−1(k) 0

0T 1

][
XP+i(k)

0T

]
=

Q(i)
f (k)

⎡
⎢⎣

e(i)
f q1P+i−1

(k) 0

d(i)
f q2(k) UP+i−1(k)

λ k/2xi(0) 0T

⎤
⎥⎦Pi =

⎡
⎢⎣

0 0

d(i)
f q2(k) UP+i−1(k)

e(i)
fP+i−1

(k) 0T

⎤
⎥⎦Pi.

(6.22)

Equation (6.22) is obtained by annihilating e(i)
f q1P+i−1

(k) into the first element

of the last row of the matrix using an appropriate orthogonal matrix, Q(i)
f (k), and

thereafter removing the resulting null section.
The existence of the permutation matrix Pi in (6.22) prevents us from directly

annihilating d(i)
f q2(k) into e(i)

fP+i−1
(k) to complete the triangularization of matrix

XP+i(k) (i.e., generating UP+i(k)). Figure 6.3 illustrates the application of Givens
rotations under these circumstances. The process is summarized as follows. The per-

mutation factor, Pi, right shifts d(i)
f q2(k) to the ith position as shown in the first part of

the figure. Then, the set of P + i− pi Givens rotation matrices, Q′
θ f

(i), nullifies the

first P+ i− pi elements of d(i)
f q2(k) by rotating them against e(i)

fP+i−1
(k) in a top down

procedure. The desired triangular structure is finally reached using another permu-

I II III IV

Pi PiQ (i)
θ f (k)

Fig. 6.3 Obtaining the lower triangular factor UP+i(k). The lighter color tone on top of parts III
and IV represents the matrix elements that have been rotated against the bottom line by the set of

Givens rotations in Q′(i)
θ f (k).
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tation factor that moves the last row of the matrix to the P− pi + 1 position, after
downshifting the previous P− pi rows. This permutation factor coincides with Pi.

Remark 1. The lower triangular matrix UP+i(k), obtained as described above
must be positive definite. That is guaranteed if its diagonal elements and

e(i)
fP+i−1

(k) are positive. Recalling that e(i)
fP+i−1

(k) is the absolute value of the
forward error, UP+i(k) will be positive definite if it is initialized properly.

The procedure above can be written in a more compact form as

UP+i(k) = PiQ′
θ f

(i)(k)

[
d(i)

f q2(k) UP+i−1(k)

e(i)
fP+i−1

(k) 0T

]
Pi. (6.23)

From (6.23), the following relation can be derived

[UP+i(k +1)]−1 = PT
i

×

⎡
⎢⎢⎣

0T 1

e(i)
fP+i−1

(k+1)

U−1
P+i−1(k +1) −U−1

P+i−1(k+1)d(i)
f q2(k+1)

e(i)
fP+i−1

(k+1)

⎤
⎥⎥⎦×Q′T

θ f
(i)

(k +1)PT
i . (6.24)

From (6.23), we realize that Q′
θ f

(i)(k) is the Givens rotation matrix responsible

for zeroing d(i)
f q2(k) against e(i)

f P(k), which yields

[
0

e(i)
f 0(k +1)

]
= Q′

θ f
(i)(k +1)

[
d(i)

f q2(k +1)

e(i)
f P(k +1)

]
. (6.25)

6.3.2 A priori and A posteriori versions

The a priori and the a posteriori versions of the sequential-channel algorithm are
based on updating expanded vectors aP+i(k +1) or fP+i(k +1) given by

aP+i(k +1) = λ−1/2U−T
P+i(k +1)xP+i(k +1) =

[
a(i)(k +1)
aP(k +1)

]
, and (6.26)

fP+i(k +1) = U−T
P+i(k +1)xP+i(k +1) =

[
f(i)(k +1)
fP(k +1)

]
, (6.27)

for i = 1,2, . . . ,M.
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In (6.26) and (6.27), a(i)(k + 1) and f(i)(k + 1) are vectors containing the first i
elements of aP+i(k +1) fP+i(k +1), respectively. Recall that for i = 1, U−1

P+i(k +1)
in (6.26) and (6.27) equals U−1

P+1(k) as defined in (6.17).
The updating of aP+i(k +1) and fP+i(k +1) is accomplished in M forward steps

at each instant k:

aP(k) → aP+1(k +1) → ·· · → aP+M(k +1),
fP(k) → fP+1(k +1) → ·· · → fP+M(k +1).

From (6.24), (6.8), and (6.27), we get the following recursive expression for
fP+i(k +1):

fP+i(k +1) = PiQ′
θ f

(i)(k +1)
[

fP+i−1(k +1)
p(i)

P+i−1(k +1)

]
, (6.28)

where

p(i)
P+i−1(k +1) =

e(i)
P+i−1(k +1)

|e(i)
fP+i−1

(k +1)|
, for i = 1,2, . . . ,M. (6.29)

The scalar quantity e(i)
P+i−1(k+1) is the a posteriori forward prediction error for the

ith channel, and |e(i)
fP+i−1

(k +1)| is given by

|e(i)
fP+i−1

(k +1)| =
√(

λ 1/2|e(i)
fP+i−1

(k)|
)2

+ |e(i)
f q1P+i−1

(k +1)|2. (6.30)

For i = 1, rather than (6.8), we would use (6.7) in obtaining (6.28), which simply
means that P1 = I, i.e,

fP+1(k +1) = Q′
θ f

(1)(k +1)
[

fP(k)
p(1)(k +1)

]
, (6.31)

with eP
(1)(k+1) denoting the a posteriori forward prediction error of the first chan-

nel, and |e(1)
fP

(k +1)| is given by

|e(1)
fP

(k +1)| =
√(

λ 1/2|e(1)
fP

(k)|
)2

+ |(e(i)
f q1P

(k +1)|2. (6.32)

Similarly, using (6.24), (6.8), and (6.26), we get the following recursive expres-
sion for aP+i(k +1):

aP+i(k +1) = λ−1/2PiQ′
θ f

(i)(k +1)
[

aP+i−1(k +1)
r(i)

P+i−1(k +1)

]
, (6.33)
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where

r(i)
P+i−1(k +1) =

e′(i)P+i−1(k +1)

γ(i−1)
√
λ |e(i)

fP+i−1
(k)|

, for i = 1,2, . . . ,M, (6.34)

and scalar quantity e(i)
P+i−1(k) is the a priori forward prediction error for the ith

channel. Again, for i = 1, we use (6.7) in obtaining (6.33) instead of (6.8), yielding

aP+1(k +1) = λ−1/2Q′
θ f

(1)(k +1)
[

aP(k)
r(1)(k +1)

]
. (6.35)

Remark 2. Examining (6.28) and recalling the definitions of Q′
θ f

(i)(k+1) and
Pi, we realize that the last pi−1 elements of fP+i(k+1) and fP+i−1(k+1) are
identical. Indeed, Givens rotations in Q′

θ f
(i)(k+1) are such that they act on a

smaller portion of fP+i(k+1) at each i; then Pi shifts down the unchanged ele-
ments which remain unchanged for next i. This fact reduces the computational
cost. The same observation holds for vectors aP+i(k +1) and aP+i−1(k +1).

For the algorithm based on updating the a posteriori backward errors, the Givens
rotations matrices QθP+i(k +1) needed in the next forward steps are obtained from

Q(i)
θP+i

(k +1)
[

1
0

]
=

[
γ(i)

P+i(k +1)
fP+i(k +1)

]
, for i ≥ 1. (6.36)

For the a priori case, the equivalent relations are

[
1/γ(i)

P+i(k +1)
0

]
= Q(i)

θP+i
(k +1)

[
1

aP+i(k +1)

]
, for i ≥ 1. (6.37)

After the Mth channel is processed, the joint process estimation is performed
according to [

eq1(k +1)
dq2(k +1)

]
= Q(0)

θ (k +1)
[

eq1(k)
dq2(k)

]
. (6.38)

The a posteriori and the a priori multiple order sequential algorithms are sum-
marized in Tables 6.2 and 6.3, respectively.

6.3.3 Alternative implementations

As observed before, when all channels are of equal order, matrix Pi in (6.23) degen-
erates to identity and, after carrying out the multiplication by Q′

θ f
(i)(k) on the right

side of that equation, UP+i(k) can be partitioned as follows.
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Table 6.2 Algorithm number 8 of Table 6.1 [10].

The multiple order sequential-type MC-FQRD POS B
Initializations:

d(i)
f q2 = zeros(P,1); f(M)

j (0) = 0; dq2 = 0; γ(0)
P (0) = 1;

e(i)
fP

(0) = μ; i = 1,2, · · · ,M, all cosines = 1, and all sines = 0.
for k = 1,2, · · ·
{ γ(1)

0 = 1; e(0)
q1 (k +1) = d(k +1);

for i = 1 : M,

{ e(i)
f q10

(k +1) = xi(k +1);

for j = 1 : P, % Obtaining e(i)
f q1(k +1) and d(i)

f q2(k +1):

{e(i)
f q1 j

(k +1) = cos
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1)+λ 1/2 sin
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k);

d(i)
f q2P− j+1

(k +1) = λ 1/2 cos
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k)− sin∗
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1);
}

‖e(i)
fP

(k +1)‖ =

√(
λ 1/2‖e(i)

fP
(k)‖

)2
+‖e(i)

f q1P
(k +1)‖2;

for j = P : −1 : pi, % Obtaining Q′
θ f

(i)(k +1):

{‖e(i)
f j−1

(k +1)‖ =
√
‖e(i)

f j
(k +1)‖2 +‖d(i)

f q2P− j+1
(k +1)‖2;

cosθ ′
f
(i)
j

(k +1) = ‖e(i)
f j

(k +1)‖/‖e(i)
f j−1

(k +1)‖;

sinθ ′
f
(i)
j

(k +1) =
[
cosθ ′

f
(i)
j

(k +1) d(i)
f q2P− j+1

(k +1)/e(i)
f j

(k +1)
]∗

;

}
p(i)

P (k +1) = γ(i−1)
P (k)

[
e(i)

f q1P
(k +1)

]∗
/‖e(i)

fP
(k +1)‖;

for j = P : −1 : pi, % Obtaining f(i)(k +1):

{f(i)P− j+1(k +1) = cosθ ′
f
(i)
j

(k +1)f(i−1)
P− j+2(k +1)−

[
sinθ ′

f
(i)
j

(k +1)
]∗

p(i)
j (k +1);

p(i)
j−1(k +1) = sinθ ′

f
(i)
j

(k +1)f(i−1)
P− j+2(k +1)+ cosθ ′

f
(i)
j

(k +1)p(i)
j (k +1);

}
f(i)P+1−pi+1(k +1) = p(i)

pi−1(k +1);

for j = pi : P, % Obtaining Q(i)
θ (k):

{sinθ (i)
j (k) = −

[
f(i)P− j+2(k +1)

]∗
/γ(i)

j−1(k);

cosθ (i)
j (k) =

√
1−‖sinθ (i)

j (k)‖2;

γ(i)
j (k) = cosθ (i)

j (k)γ(i)
j−1(k);

}
} for i
for j = 1 : P, % Joint process estimation:

{e( j)
q1 (k +1) = cosθ (0)

j (k +1)e( j−1)
q1 (k +1)+λ 1/2 sinθ (0)

j (k +1)d(P− j+1)
q2 (k);

d(P− j+1)
q2 (k +1) = λ 1/2 cosθ (0)

j (k +1)d(P− j+1)
q2 (k)−

[
sinθ (0)

j (k +1)
]∗

e( j−1)
q1 (k +1);

}
e(k +1) =

[
e(P)

q1 (k +1)
]∗

/γ(0)
P (k);

} for k

Obs.: θ (M)
j (k) = θ (0)

j (k +1) and f(M)
P− j+2(k) = f(0)

P− j+2(k +1). The asterisk (∗) denotes complex conjugation.

UP+i(k +1) =

[
0 B

e(i)
f 0(k +1) C

]
, for i = 1,2, . . . ,M. (6.39)

Taking the inverse of (6.39) yields

[UP+i(k +1)]−1 =

[
−
[
e(i)

f 0(k +1)
]−1

CB−1
[
e(i)

f 0(k +1)
]−1

B−1 0

]
. (6.40)
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Table 6.3 Algorithm number 16 of Table 6.1 [11].

The multiple order sequential-type MC-FQRD PRI B
Initializations:

d(i)
f q2 = zeros(P,1); a(M)

j (0) = 0; dq2 = 0; γ(0)
P (0) = 1;

e(i)
fP

(0) = μ; i = 1,2, · · · ,M, all cosines = 1, and all sines = 0.
for k = 1,2, · · ·
{ γ(1)

0 = 1; e(0)
q1 (k +1) = d(k +1);

for i = 1 : M,

{ e(i)
f q10

(k +1) = xi(k +1);

for j = 1 : P, % Obtaining e(i)
f q1(k +1) and d(i)

f q2(k +1):

{e(i)
f q1 j

(k +1) = cos
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1)+λ 1/2 sin
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k);

d(i)
f q2P− j+1

(k +1) = λ 1/2 cos
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k)− sin∗
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1);
}
r(i)

P (k +1) = λ−1/2[e(i)
f q1 j

(k +1)]∗/
[
γ(i−1)

P (k)‖e(i)
fP

(k)‖
]

;

for j = P : −1 : pi, % Obtaining a(i)(k +1):

{a(i)
P− j+1(k +1) = cosθ ′

f
(i)
j

(k)a(i−1)
P− j+2(k +1)−

[
sinθ ′

f
(i)
j

(k)
]∗

r(i)
j (k +1);

r(i)
j−1(k +1) = sinθ ′

f
(i)
j

(k)a(i−1)
P− j+2(k +1)+ cosθ ′

f
(i)
j

(k)r(i)
j (k +1);

}
a(i)

P+1−pi+1(k +1) = r(i)
pi−1(k +1);

‖e(i)
fP

(k +1)‖ =

√(
λ 1/2‖e(i)

fP
(k)‖

)2
+‖e(i)

f q1P
(k +1)‖2;

for j = P : −1 : pi, % Obtaining Q′
θ f

(i)(k +1):

{‖e(i)
f j−1

(k +1)‖ =
√
‖e(i)

f j
(k +1)‖2 +‖d(i)

f q2P− j+1
(k +1)‖2;

cosθ ′
f
(i)
j

(k +1) = ‖e(i)
f j

(k +1)‖/‖e(i)
f j−1

(k +1)‖;

sinθ ′
f
(i)
j

(k +1) =
[
cosθ ′

f
(i)
j

(k +1) d(i)
f q2P− j+1

(k +1)/‖e(i)
f j

(k +1)‖
]∗

;

}
for j = pi : P, % Obtaining Q(i)

θ (k):

{γ(i)
j (k) = 1/

√
(1/γ(i)

j−1(k))2 +(a(i)
P− j+2(k +1))2

cosθ (i)
j (k) = γ(i)

j (k)/γ(i)
j−1(k);

sinθ (i)
j (k) =

[
a(i)

P− j+2(k +1)cosθ (i)
j (k)/γ(i)

j−1(k)
]∗

;

}
} for i
for j = 1 : P, % Joint process estimation:

{e( j)
q1 (k +1) = cosθ (0)

j (k +1)e( j−1)
q1 (k +1)+λ 1/2 sinθ (0)

j (k +1)d(P− j+1)
q2 (k);

d(P− j+1)
q2 (k +1) = λ 1/2 cosθ (0)

j (k +1)d(P− j+1)
q2 (k)−

[
sinθ (0)

j (k +1)
]∗

e( j−1)
q1 (k +1);

}
e(k +1) =

[
e(P)

q1 (k +1)
]∗

/γ(0)
P (k +1);

} for k

Obs.: θ (M)
j (k) = θ (0)

j (k +1) and a(M)
P− j+2(k) = a(0)

P− j+2(k +1). The asterisk (∗) denotes complex conjugation.

Using (6.40), and recalling (6.26), (6.27), and the definition of the input vector
given in (6.8), we can now write vectors aP+i(k+1) and fP+i(k+1), respectively, as

aP+i(k +1) =

[
∗

xi(k +1)/
[√

λe(i)
f 0(k)

]
]

, and (6.41)

fP+i(k +1) =

[
∗

xi(k +1)/e(i)
f 0(k).

]
(6.42)
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As we can see from (6.41) and (6.42), the last element of aP+i(k+1) and fP+i(k+1)
are known at each iteration i (for i = 1,2, . . . ,M) prior to the updating process. That
observation is the key step leading to two alternative implementations of these algo-
rithms for the special case when the channels are of the same order. Thus, the recur-
sive updating of vectors aP+i(k + 1) and fP+i(k + 1) are performed now based on
this assumption.

6.4 Block-Type MC-FQRD-RLS Algorithms

This section discusses a general framework for block-type multichannel algorithms
using the extended input signal vector xP+M(k + 1) defined in Section 6.2.3. These
algorithms, despite exhibiting a higher computational burden as compared to the
sequential-type ones, have some attractive features, e.g., suitability for parallel
implementation.

To begin with, in Section 6.4.1 we shall revisit the backward and forward predic-
tion problems applied to a block-multichannel scenario from where some fundamen-
tal equations are derived. The a priori and the a posteriori versions are discussed in
Section 6.4.2 followed by a brief overview of some alternative implementations in
Section 6.4.3.

6.4.1 The backward and forward prediction problems

Using the definition of the input vector for the multiple order channels case as given
by (6.10), define the input data matrix XP+M(k +1) as follows.

XP+M(k +1) =

⎡
⎢⎢⎢⎣

xT
P+M(k +1)

λ 1/2xT
P+M(k)
...

λ (k+1)/2xT
P+M(0)

⎤
⎥⎥⎥⎦ (6.43)

The above matrix can be partitioned into two distinct ways, depending onto the
prediction problem, backward or forward, to be solved.

Define the backward prediction error matrix for block processing of equal order
channels as

Eb(k +1) = Db(k +1)−XP(k +1)Wb(k +1)

=
[

XP(k +1) Db(k +1)
][−Wb(k +1)

I

]
(6.44)

where Db(k + 1) and Wb(k + 1) are the respective desired response and coefficient
vector matrices of the backward prediction problem.
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Using the relation in (6.44), and assuming that the post-multiplication by permu-
tation matrix P is already carried out, XP+M(k +1) can be partitioned as

XP+M(k +1) =
[

XP(k +1) Db(k +1)
]
. (6.45)

The process of obtaining lower triangular matrix UP+M(k+1) from XP+M(k+1)
is performed as follows:

Qb(k +1)Q(k)XP+M(k +1) = Qb(k +1)
[

0 Ebq1(k +1)
UP(k +1) Dbq2(k +1)

]

=

⎡
⎣

0 0
0 Eb(k +1)

UP(k +1) Dbq2(k +1)

⎤
⎦ , (6.46)

where Q(k) contains QP(k+1) as a submatrix which triangulates XP(k+1), gener-
ating UP(k+1). Matrix Qb(k+1) is responsible for generating the lower triangular
matrix Eb(k +1) from Ebq1(k +1).

By removing the ever-increasing null section in (6.46), UP+M(k + 1) can be
finally written as follows:

UP+M(k +1) =
[

0 Eb(k +1)
UP(k +1) Dbq2(k +1)

]
. (6.47)

The inverse of UP+M(k+1) as given by (6.47) will be useful in further steps and
is defined as

[UP+M(k +1)]−1 =
[
−U−1

P (k +1)Dbq2(k +1)E−1
b (k +1) U−1

P (k +1)
E−1

b (k +1) 0

]
. (6.48)

Now, define forward prediction error matrix E f (k +1) as

E f (k +1) = D f (k +1)−
[

XP(k)
0

]
W f (k +1) =

[
D f (k +1)

XP(k)
0T

]

×
[

I
W f (k +1)

]
= XP+M(k +1)

[
I

W f (k +1)

]
, (6.49)

where D f (k + 1) and W f (k + 1) are the desired response and the coefficient vec-
tor matrix of the backward prediction problem, respectively. A modified input data
matrix X̄P+M(k + 1) incorporating permutation matrix P is defined as
follows.2

2 Note that X̄P+M(k + 1) is formed by adding M − 1 rows of zeros to XP+M(k + 1) such that
UP+M(k +1) has the correct dimension in (6.55), i.e., (P+M)× (P+M).
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X̄P+M(k +1) =

⎡
⎢⎢⎢⎢⎢⎣

xT
P+M(k +1)

λ 1/2xT
P+M(k)
...

λ (k+1)/2xT
P+M(0)

0(M−1)×(P+M)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎣D f (k +1)

XP(k)
0T

0(M−1)×(P+M)

⎤
⎦P (6.50)

In order to triangulate X̄P+M(k + 1) in (6.50) and obtain UP+M(k + 1), three sets
of Givens rotation matrices Q(k), Q f (k + 1), and Q′

f (k + 1) are needed [4, 5, 11].
The role of each matrix in the triangulation process is illustrated in the following
equation.

Q′
f (k +1)Q f (k +1)Q(k)X̄P+M(k +1) = Q′

f (k +1)Q f (k +1)

×

⎡
⎢⎢⎣

E f q1(k +1) 0
D f q2(k +1) UP(k)
λ (k+1)/2xT

0 0T

0(M−1)×(P+M)

⎤
⎥⎥⎦P = Q′

f (k +1)

⎡
⎣

0 0
D f q2(k +1) UP(k)
E f (k +1) 0

⎤
⎦P (6.51)

In (6.51), Q(k) contains QP(k) as a sub-matrix which triangulates XP(k), gener-
ating UP(k). Matrix Q f (k +1) is responsible for the zeroing of matrix E f q1(k +1).
Note that, when working with fixed-order (or fixed-dimension, as opposed to the
ever-increasing dimension of QP(k)), this is equivalent to annihilating eT

f q1(k + 1),
the first row of E f q1(k+1), against the diagonal of λ 1/2E f (k), generating E f (k+1),
as shown in (6.54).

Removing the ever-increasing null section in (6.51) and using the fixed-order
matrix Q′

θ f (k +1) embedded in Q′
f (k +1), we obtain

ŪP+M(k +1) = Q′
θ f (k +1)

[
D f q2(k +1) UP(k)
E f (k +1) 0

]
P. (6.52)

Also starting from (6.51) and by using the fixed-order matrices Qθ (k) embedded
in QP(k) and Q f (k + 1) embedded in Q f (k + 1), we obtain after some algebraic
manipulations the following equations:

[
eT

f q1(k +1)
D f q2(k +1)

]
= Qθ (k)

[
xT

k+1
λ 1/2D f q2(k)

]
, (6.53)

where xT
k+1 = [x1(k + 1) x2(k + 1) · · ·xM(k + 1)] is the forward reference signal

and eT
f q1(k +1) is the rotated forward error, and

[
0T

E f (k +1)

]
= Q f (k +1)

[
eT

f q1(k +1)
λ 1/2E f (k)

]
. (6.54)
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Let E f
x (k+1) = [E f (k+1)]TE f (k+1) be the forward prediction error covari-

ance matrix, where E f (k + 1) is the forward prediction error matrix defined
in (6.49). Using ŪP+M(k + 1) as defined in (6.52) instead of X̄P+M(k + 1), it
is straightforward to show that E f

x (k+1) = ET
f (k+1)E f (k+1). Thus, M×M

lower triangular matrix E f (k + 1) in (6.52) and (6.54) can be interpreted as
the Cholesky factor of the forward prediction error covariance matrix.

Note that the permutation matrix P in (6.52) prevents a direct annihilation of

the first M columns – corresponding to matrix D f q2(k +1) = [d(1)
f q2(k +1) d(2)

f q2(k +

1) · · · d(M)
f q2(k + 1)] – against the anti-diagonal of E f (k + 1) using the set of Givens

rotations Q′
θ f (k + 1) = Q′

θ f
(N)(k + 1) · · ·Q′

θ f
(2)(k + 1)Q′

θ f
(1)(k + 1). From (6.52)

it can be seen that this permutation factor, P = PMPM−1 · · ·P1, will right-shift the
first M columns to position pi, for i = M to 1, in this order. Thus, only the first

P + i− pi elements of each d(i)
f q2(k + 1) will be rotated against the anti-diagonal of

E f (k+1) using the set of Givens rotations in Q′
θ f (k+1). It is straightforward to see

that, when the position pi = i, the corresponding permutation factor Pi degenerates
to an identity matrix. If this is true for all M channels, this formulation leads to the
equal-order algorithms of [4–6, 11].

The process explained above is illustrated in Figure 6.4 (parts I–III) for a three-
channel case with the first two channels having equal length, i.e., p1 = 1 and p2 = 2;
consequently, P1 = P2 = I. Part I of this figure shows the initial state as in (6.52)
but with reduced dimension, and the operations involving matrices Q′

θ f (k + 1) and
P are illustrated in parts II and III, respectively. As we can see, the resulting matrix
ŪP+M(k +1) in (6.52) does not have the desired lower triangular shape, as depicted
in part III of this figure. Hence, another permutation factor, P, is needed for up-
shifting the (P+M− i+1)th row to the (P+M− pi +1)th position (see Figure 6.4 –
parts III–IV) leading to

I II III IV

P PQθ f (k +1)

Fig. 6.4 Obtaining the lower triangular UP+M(k +1). The lighter color tone on top of parts II–IV
denotes the matrix elements that have been rotated against the third line from the bottom by the
third (and last) set of Givens rotations embedded in Q′

θ f (k +1).
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UP+M(k +1) = PQ′
θ f (k +1)

[
D f q2(k +1) UP(k)
E f (k +1) 0

]
P, (6.55)

where permutation matrix P = P1P2 · · ·PM .
From (6.55), it is possible to obtain

[UP+M(k +1)]−1 = PT

×
[

0 E−1
f (k +1)

U−1
P (k) −U−1

P (k)D f q2(k +1)E−1
f (k +1)

]
Q′T

θ f (k +1)PT
, (6.56)

which will be used in the next section to derive the a priori and the a posteriori
versions of the algorithm. Also from (6.55), we can write

⎡
⎣

0
∗

E0
f (k +1)

⎤
⎦ = Q′

θ f (k +1)
[

D f q2(k +1)
E f (k +1)

]
, (6.57)

where E0
f (k + 1) is the Cholesky factor of the zero-order error covariance matrix.3

The asterisk ∗ denotes possible non-zero elements according to the process
explained above.

6.4.2 A priori and A posteriori versions

If matrix UP+M(k) is used to denote the Cholesky factor of XT
P+M(k)XP+M(k), we

can define the a priori and a posteriori backward error vectors, aP+M(k + 1) and
fP+M(k +1), as follows:

aP+M(k +1) = λ−1/2U−T
P+M(k)xP+M(k +1), and (6.58)

fP+M(k +1) = U−T
P+M(k +1)xP+M(k +1). (6.59)

Vectors aP(k +1) and fP(k +1) are contained within matrix Qθ (k +1) [5, 11].
From (6.10), (6.56), and (6.58), we can write

aP+M(k +1) = Pλ−1/2Q′
θ f (k)

[
aP(k)

r(k +1)

]
, (6.60)

3 The term is coined due to the fact that, in the single-channel case, the corresponding scalar

‖e(0)
f (k + 1)‖ = ∑k+1

i=0 λ (k+1−i)x2(i) is the norm of the zero-order forward prediction error which
is an estimate (albeit biased) of the input variance. Also note that, for zero-order prediction, the

forward prediction error vector equals its backward counterpart, and ‖e(0)
f (k)‖ = ‖e(0)

b (k)‖.
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where

r(k +1) = λ−1/2E−T
f (k)

[
xk+1 −WT

f (k)xP(k)
]

= λ−1/2E−T
f (k)e′f (k +1), (6.61)

with e′f (k + 1) being the a priori forward error vector. Thus, r(k + 1) can be inter-
preted as the Nth-order normalized a priori forward error vector. Matrix, W f (k)
given by

W f (k) = U−1
P (k−1)D f q2(k), (6.62)

contains the coefficient vectors of the forward prediction problem. The matrix inver-
sion operation in (6.61) can be avoided using the solution in [11], i.e.,

[
∗
0

]
= Q f (k +1)

[
1/γ(k)

−r(k +1)

]
. (6.63)

Combining (6.48), (6.58), and the definition of the input vector in (6.10), aP+M

(k +1) can be expressed as

aP+M(k +1) =
[

a(N)(k +1)
aP(k +1)

]
, (6.64)

where the M×1 element vector of aP+M(k +1), a(N)(k +1), is given by

a(N)(k +1) = λ−1/2E−T
b (k)

[
xk−N+1 −WT

b (k)xP(k +1)
]

= λ−1/2E−T
b (k)e′b(k +1), (6.65)

with e′b(k+1) being the Nth-order a priori backward error vector and matrix Wb(k)
contains the coefficient vectors of the backward prediction problem. From the last
equation, a(N)(k+1) can be thought as the Nth-order normalized a priori backward
error vector. 4

Using similar procedure, combining Equations (6.10), (6.56), and (6.59), yields

fP+M(k +1) = PQ′
θ f (k +1)

[
fP(k)

p(k +1)

]
, (6.66)

where

p(k +1) = E−T
f (k +1)

[
xk+1 −WT

f (k +1)xP(k)
]

= E−T
f (k +1)e f (k +1), (6.67)

4 As shall be seen in Section 6.5, this argument can be taken further to demonstrate that aP+M(k+1)
is actually a nesting of vectors a( j)(k+1) of size M×1, for j = 0,1, ..,N. Similar observation holds
for vector fP+M(k +1).
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with e f (k + 1) being the a posteriori forward error vector. Therefore, p(k + 1) is
interpreted as the Nth-order normalized a posteriori forward error vector. Matrix
W f (k +1) contains the coefficient vectors of the forward prediction problem.

Now, from (6.48), (6.59), and the definition of the input vector in (6.10), fP+M(k+
1) can be partitioned as

fP+M(k +1) =
[

f(N)(k +1)
fP(k +1)

]
, (6.68)

where vector f(N)(k +1) is given by

f(N)(k +1) = E−T
b (k +1)

[
xk−N+1 −WT

b (k +1)xP(k +1)
]

= E−T
b (k +1)eb(k +1), (6.69)

with eb(k + 1) being the Nth-order a posteriori backward error vector and matrix
Wb(k + 1) contains the coefficient vectors of the backward prediction problem.
Hence, f(N)(k + 1) can be regarded as the Nth-order normalized a posteriori back-
ward error vector.

To solve for p(k +1) avoiding the matrix inversion in (6.67), we can use

Q f (k +1)
[
γ(k)

0

]
=

[
∗

p(k +1)

]
. (6.70)

Proof. From (6.54), it is clear that E f (k +1) is the Cholesky factor of

[ẽ f q1 λ 1/2ET
f (k)][ẽ f q1 λ 1/2ET

f (k)]
T. (6.71)

Hence, (6.54) can be written in a product form as follows [14]:

ET
f (k +1)E f (k +1) = ẽ f q1(k +1)ẽT

f q1(k +1)+λET
f (k)E f (k). (6.72)

Pre-multiply and post-multiply (6.72) by E−T
f (k + 1)γ2(k) and E−1

f (k + 1), respec-
tively. After some algebraic manipulations, we have

γ2(k)I = p(k +1)pT(k +1)+Ψ (6.73)

whereΨ = λγ2(k)E−T
f (k +1)ET

f (k)E f (k)E−1
f (k +1).

Finally, after pre-multiplying and post-multiplying (6.73) by pT(k + 1) and
p(k +1), respectively, and dividing the result by pT(k +1)p(k +1), we obtain

γ2(k) = pT(k +1)p(k +1)+
pT(k +1)Ψp(k +1)
pT(k +1)p(k +1)

= pT(k +1)p(k +1)+∗2. (6.74)
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The expression in (6.74) can be regarded as a Cholesky product. Hence, it can be
factored as [

γ(k)
0

]
= Q

[
∗

p(k +1)

]
, (6.75)

where Q is an orthogonal matrix.
If we recall our starting point in (6.54), we can see that Q is related to Q f (k +

1). Moreover, from the knowledge of the internal structure of Q f (k + 1), we can

conclude that Q = Q
T
f (k + 1) satisfies (6.75) leading to (6.70). Vector p(k + 1) can

be easily obtained from (6.70) because γ(k) and Q f (k + 1) are known quantities.
The reader can use similar arguments in order to prove (6.63).

The rotation angles in matrix Qθ (k) are obtained using

Qθ (k +1)
[

1
0

]
=

[
γ(k +1)
fP(k +1)

]
, (6.76)

for the a posteriori case, and
[

1/γ(k +1)
0

]
= Qθ (k +1)

[
1

−aP(k +1)

]
, (6.77)

for the a priori case.
Finally, the joint process estimation is performed as

[
eq1(k +1)
dq2(k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2(k)

]
, (6.78)

and the a priori error is given by [5, 11]

e(k +1) = eq1(k +1)/γ(k +1). (6.79)

The a posteriori and a priori block-MC-FQRD-RLS algorithms are summarized
in Tables 6.4 and 6.5, respectively. In these tables, the common equations are in gray
in order to highlight the difference between both algorithms.

6.4.3 Alternative implementations

Similar to their sequential-channel processing counterparts, alternative implemen-
tations for the block-channel algorithms are available when the M channels are of
equal order, i.e., Ni = N and P = MN. In this particular case, the last M elements
of vectors aP+M(k + 1) and fP+M(k + 1) are known prior to their updating through
Equations (6.58) and (6.59), respectively [6].
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Table 6.4 Equations of the a posteriori block-MCFQRD based on the update of backward predic-
tion errors [5–7].

MCFQRD POS B
For each k, do
{ 1. Obtaining D f q2(k +1) and e f q1(k +1)[

eT
f q1(k +1)

D f q2(k +1)

]
= Qθ (k)

[
xT

k+1
λ 1/2D f q2(k)

]
(6.53)

2. Obtaining E f (k +1) and Q f (k +1)[
0T

E f (k +1)

]
= Q f (k +1)

[
eT

f q1(k +1)
λ 1/2E f (k)

]
(6.54)

3. Obtaining p(k +1)[
∗

p(k +1)

]
= Q f (k +1)

[
γ(k)

0

]
implements (6.67)

4. Obtaining Q′
θ f (k +1)⎡

⎣
0
∗

E0
f (k +1)

⎤
⎦ = Q′

θ f (k +1)
[

D f q2(k +1)
E f (k +1)

]
(6.57)

5. Obtaining fP(k +1)

fP+M(k +1) = PQ′
θ f (k +1)

[
fP(k)

p(k +1)

]
(6.66)

6. Obtaining Qθ (k +1) and γ(k +1)

Qθ (k +1)
[

1
0

]
=

[
γ(k +1)
fP(k +1)

]
(6.76)

7. Joint estimation[
eq1(k +1)
dq2(k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2(k)

]
(6.78)

8. Obtaining the a priori error

e(k +1) = eq1(k +1)/γ(k +1) (6.79)
}

Assuming P = P = I, after the multiplication by Q′
θ f (k + 1) is carried out in

(6.55), matrix UP+M(k +1) can be partitioned as

UP+M(k +1) =
[

0 B
E0

f (k +1) C

]
(6.80)

and by taking its inverse, yields

[UP+M(k +1)]−1 =

[
−
[
E0

f (k +1)
]−1

CB−1
[
E0

f (k +1)
]−1

B−1 0

]
. (6.81)

If we now use (6.81) together with (6.58), (6.59), and (6.10), vectors aP+M(k+1)
and fP+M(k +1) can be written, respectively, as

aP+M(k +1) =

[ ∗
λ−1/2

[
E0

f (k)
]−T

xk+1

]
, and (6.82)
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Table 6.5 Equations of the a priori block-MCFQRD based on the update of backward prediction
errors [6, 7, 11].

MCFQRD PRI B
For each k, do
{ 1. Obtaining D f q2(k +1) and e f q1(k +1)[

eT
f q1(k +1)

D f q2(k +1)

]
= Qθ (k)

[
xT

k+1
λ 1/2D f q2(k)

]
(6.53)

2. Obtaining E f (k +1) and Q f (k +1)[
0T

E f (k +1)

]
= Q f (k +1)

[
eT

f q1(k +1)
λ 1/2E f (k)

]
(6.54)

3. Obtaining r(k +1)[
∗
0

]
= Q f (k +1)

[
1/γ(k)

−r(k +1)

]
implements (6.61)

4. Obtaining aP(k +1)

aP+M(k +1) = PQ′
θ f (k)

[
aP(k)

r(k +1)

]
(6.60)

5. Obtaining Q′
θ f (k +1)⎡

⎣
0
∗

E0
f (k +1)

⎤
⎦ = Q′

θ f (k +1)
[

D f q2(k +1)
E f (k +1)

]
(6.57)

6. Obtaining Qθ (k +1) and γ(k +1)[
1/γ(k +1)

0

]
= Qθ (k +1)

[
1

−aP(k +1)

]
(6.77)

7. Joint estimation[
eq1(k +1)
dq2(k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2(k)

]
(6.78)

8. Obtaining the a priori error

e(k +1) = eq1(k +1)/γ(k +1) (6.79)
}

fP+M(k +1) =

[ ∗[
E0

f (k +1)
]−T

xk+1

]
. (6.83)

From (6.82) and (6.83), we can see that the last M elements of aP+M(k + 1) and
fP+M(k + 1) are known quantities. The alternative implementations of these algo-
rithms arise when the recursive updating of these vectors is performed based on this
a priori knowledge.

6.5 Order-Recursive MC-FQRD-RLS Algorithms

Block multichannel algorithms are more suitable for order-recursive implementa-
tions and parallel processing as compared to their sequential-channel counterparts.
Therefore, only the formers shall be addressed in this section. Sequential-channel
processing algorithms can also be implemented order-recursively up to a certain
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degree [9, 11], however, adding order-recursiveness to the already existing channel
recursive nature, leads to more complicated structures.

For sake of simplicity, the special case of all M channels having equal orders, i.e.,
Ni = N, is considered. We shall start by revisiting the definitions of Cholesky fac-
tor of the information matrix, UP+M(k + 1), given by Equations (6.47) and (6.55),
obtained from solving the backward and the forward prediction problems, respec-
tively, and reproduced below assuming channels of equal orders.

UP+M(k +1) = UN+1(k +1) =
[

0 EN
b (k +1)

UN(k +1) DN
bq2(k +1)

]
(6.84)

= Q′
θ f (k +1)

[
DN

f q2(k +1) UN(k)
EN

f (k +1) 0

]
(6.85)

The superscript N added to variables Eb(k + 1), Dbq2, D f q2(k + 1), and E f (k + 1)
emphasizes that these quantities are related to the Nth-order prediction problem.5

The last two equations can be written in a generalized form as

U j+1(k +1) =

[
0 E( j)

b (k +1)
U j(k +1) D( j)

bq2(k +1)

]
(6.86)

= Q′( j)
θ f (k +1)

[
D( j)

f q2(k +1) U j(k)

E( j)
f (k +1) 0

]
, (6.87)

for j = 0,1, . . . ,N. This property is the key to derive the order-recursive versions of
the algorithms. Indeed, the information provided by (6.86) and (6.87) justifies the
generalization of Equations (6.65) and (6.69) from Section 6.4.2, respectively, as

a( j)(k +1) = λ−1/2[E( j)
b (k)]

−T
e′( j)

b (k +1) (6.88)

and

f( j)(k +1) = [E( j)
b (k +1)]

−T
e( j)

b (k +1) (6.89)

where e′( j)
b (k +1) and e( j)

b (k +1) are, respectively, the jth-order a priori and a pos-
teriori backward error vectors, for j = 0,1, . . . ,N. Therefore, vectors aP+M(k + 1)
and fP+M(k+1) can be regarded as a nesting of N +1 subvectors of size M×1, i.e.,

aN+1(k +1) =

⎡
⎢⎢⎢⎣

a(N)(k +1)
a(N−1)(k +1)

...
a(0)(k +1)

⎤
⎥⎥⎥⎦ =

[
a(N)(k +1)
aN(k +1)

]
(6.90)

5 Note that the subscripts P+M and N+1 are interchangeable and N+1 is used whenever the order
of the prediction problems needs to be highlighted, whereas P+M emphasizes vectors or matrices
dimensions.
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and

fN+1(k +1) =

⎡
⎢⎢⎢⎣

f(N)(k +1)
f(N−1)(k +1)

...
f(0)(k +1)

⎤
⎥⎥⎥⎦ =

[
f(N)(k +1)
fN(k +1)

]
. (6.91)

Recalling that Q′
θ f (k) and Q′

θ f (k + 1) are used to update aN+1(k) and fN+1(k),
respectively, we can finally rewrite Equations (6.60) and (6.66) into an order-
recursive form, i.e., for j = 1,2, . . . ,N, as

⎡
⎢⎢⎣

0M(N− j)
a( j)(k +1)

0M( j−1)
r j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
( j)(k)

⎡
⎢⎢⎣

0M(N− j)
a( j−1)(k)
0M( j−1)

r j(k +1)

⎤
⎥⎥⎦ , (6.92)

where r j(k +1) is the jth-order normalized a priori forward error vector, and

⎡
⎢⎢⎣

0M(N− j)
f( j)(k +1)

0M( j−1)
p j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
( j)(k +1)

⎡
⎢⎢⎣

0M(N− j)
f( j−1)(k)
0M( j−1)

p j(k +1)

⎤
⎥⎥⎦ (6.93)

where p j(k +1) is the jth-order normalized a posteriori forward error vector.
Equation (6.93) implements the order-recursive counterpart of step 5 (Table 6.4)

of the a posteriori version of the MC-FQRD-RLS algorithm, whereas (6.92) stands
for corresponding order-recursive implementation of step 4 (Table 6.5) of the a pri-
ori version.

Now we shall see how to compute the set of Givens rotations in Q′
θ f

( j)(k + 1).
Specifically, we shall find a way to carry out steps 4 and 5 of algorithms in Tables 6.4
and 6.5, respectively, in an order-recursive manner. We begin with noting that previ-
ous arguments support the partitioning of matrix D f q2(k +1) into N M×M-blocks
as follows:

D f q2(k +1) =

⎡
⎢⎢⎣

D(1)
f q2(k +1)

...

D(N)
f q2(k +1)

⎤
⎥⎥⎦ . (6.94)

Now, recalling (6.87), we realize that (6.57) can be rewritten as

⎡
⎢⎣

0M(N− j+1)×M

0M( j−1)×M

E( j−1)
f (k +1)

⎤
⎥⎦ = Q′

θ f
( j)(k +1)

⎡
⎢⎢⎢⎣

0M( j−1)×M

D( j)
f q2(k +1)

0M(N− j)×M

E( j)
f (k +1)

⎤
⎥⎥⎥⎦ (6.95)
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for j = 1,2, . . . ,N. Moreover, the inherent order-recursiveness of previous equation
leads us to conclude that matrix Q′

θ f (k + 1) in (6.57) can be regarded as a product
of the form:

Q′
θ f (k +1) = Q′

θ f
(N)(k +1)Q′

θ f
(N−1)(k +1) · · · Q′

θ f
(1)(k +1), (6.96)

where each Q′
θ f

( j)(k + 1), for j = 1,2, . . . ,N, is a product itself of M2 elementary
Givens rotation matrices.

As for step 6 (Tables 6.4 and 6.5), it is straightforward to see that the rotation

angles Q( j)
θ (k +1) are now obtained through

Table 6.6 Algorithm number 1 of Table 6.1 [4].

Lattice block-MCFQRD POS B
Initializations:
fP(0) = 0; D f q2(0) = 0; γ0(0) = 1; dq2(0) = 0; E j

f (0) = μI,
μ = small number, all cosines = 1, and all sines = 0;
For each k, do

{ ẽ(0)
f q1

T
(k +1) = xT

k+1;

Obtaining E(0)
f (k +1) and p0(k +1):[

0T ∗
E(0)

f (k +1) p0(k +1)

]
= Q

(0)
f (k +1)

[
ẽ(0)

f q1

T
(k +1) γ0(k)

λ 1/2E(0)
f (k) 0

]
;

f(N+1)(k +1) = p0(k +1); γ0(k +1) = 1;
eq1(k +1) = d(k +1);
for j = 1 : N

{ 1. Obtaining D( j)
f q2(k +1) and e( j)

f q1(k +1):[
ẽ( j)

f q1

T
(k +1)

D( j)
f q2(k +1)

]
= Q( j)

θ (k)

[
ẽ( j−1)

f q1

T
(k +1)

λ 1/2D( j)
f q2(k)

]
;

2. Obtaining E( j)
f (k +1) and p j(k +1):[

0T ∗
E( j)

f (k +1) p j(k +1)

]
= Q

( j)
f (k +1)

[
ẽ( j)

f q1

T
(k +1) γ j(k)

λ 1/2E( j)
f (k) 0

]
;

3. Obtaining Q′
θ f

( j)(k +1):
⎡
⎣

0M(N− j+1)×M
0M( j−1)×M

E( j−1)
f (k +1)

⎤
⎦ = Q′

θ f
( j)(k +1)

⎡
⎢⎢⎢⎣

0M( j−1)×M

D( j)
f q2(k +1)

0M(N− j)×M

E( j)
f (k +1)

⎤
⎥⎥⎥⎦ ;

4. Obtaining f( j)(k +1):⎡
⎢⎢⎣

0M(N− j)
f( j)(k +1)

0M( j−1)
p j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
( j)(k +1)

⎡
⎢⎢⎣

0M(N− j)
f( j−1)(k)
0M( j−1)

p j(k +1)

⎤
⎥⎥⎦ ;

5. Obtaining Q( j)
θ (k +1) and γ j(k +1):

Q( j)
θ (k +1)

[
γ j−1(k +1)

0

]
=

[
γ j(k +1)

f( j−1)(k +1)

]
;

6. Joint estimation:[
e( j)

q1 (k +1)
d( j)

q2 (k +1)

]
= Q( j)

θ (k +1)

[
e( j−1)

q1 (k +1)
λ 1/2d( j)

q2 (k)

]
;

7. Obtaining the a priori error:

e j(k +1) = e( j)
q1 (k +1)/γ j(k +1);

} % for j
} % for k
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[
1/γ j(k +1)

0

]
= Q( j)

θ (k +1)
[

1/γ j−1(k +1)
−a( j−1)(k +1)

]
(6.97)

for the a priori algorithm, and

Q( j)
θ (k +1)

[
γ j−1(k +1)

0

]
=

[
γ j(k +1)

f( j−1)(k +1)

]
(6.98)

for the a posteriori case. The joint estimation (step 7) is performed according to

[
e( j)

q1 (k +1)

d( j)
q2 (k +1)

]
= Q( j)

θ (k +1)

[
e( j−1)

q1 (k +1)

λ 1/2d( j)
q2 (k)

]
. (6.99)

Table 6.7 Algorithm number 9 of Table 6.1 [11].

Lattice block-MCFQR PRI B
Initializations:
aP(0) = 0; D f q2(0) = 0; γ0(0) = 1; dq2(0) = 0; E j

f (0) = μI,
μ = small number, all cosines = 1, and all sines = 0;
For each k, do

{ ẽ(0)
f q1

T
(k +1) = xT

k+1;

Obtaining E(0)
f (k +1) and r0(k +1):[

0T ∗
E(0)

f (k +1) 0

]
= Q

(0)
f (k +1)

[
ẽ(0)

f q1

T
(k +1) 1/γ0(k)

λ 1/2E(0)
f (k) −r0(k +1)

]
;

a(0)(k +1) = r0(k +1); γ0(k +1) = 1;
eq1(k +1) = d(k +1);
for j = 1 : N

{ 1. Obtaining D( j)
f q2(k +1) and e( j)

f q1(k +1):[
ẽ( j)

f q1

T
(k +1)

D( j)
f q2(k +1)

]
= Q( j)

θ (k)

[
ẽ( j−1)

f q1

T
(k +1)

λ 1/2D( j)
f q2(k)

]
;

2. Obtaining E( j)
f (k +1) and p j(k +1):[

0T ∗
E( j)

f (k +1) 0

]
= Q

( j)
f (k +1)

[
ẽ( j)

f q1

T
(k +1) 1/γ j(k)

λ 1/2E( j)
f (k) −r j(k +1)

]
;

3. Obtaining a( j)(k +1):⎡
⎢⎢⎣

0M(N− j)
a( j)(k +1)

0M( j−1)
r j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
( j)(k)

⎡
⎢⎢⎣

0M(N− j)
a( j−1)(k)
0M( j−1)

r j(k +1)

⎤
⎥⎥⎦ ;

4. Obtaining Q′
θ f

( j)(k +1):
⎡
⎣

0M(N− j+1)×M
0M( j−1)×M

E( j−1)
f (k +1)

⎤
⎦ = Q′

θ f
( j)(k +1)

⎡
⎢⎢⎢⎣

0M( j−1)×M

D( j)
f q2(k +1)

0M(N− j)×M

E( j)
f (k +1)

⎤
⎥⎥⎥⎦ ;

5. Obtaining Q( j)
θ (k +1) and γ j(k +1):[

1/γ j(k +1)
0

]
= Q( j)

θ (k +1)
[

1/γ j−1(k +1)
−a( j−1)(k +1)

]
;

6. Joint estimation:[
e( j)

q1 (k +1)
d( j)

q2 (k +1)

]
= Q( j)

θ (k +1)

[
e( j−1)

q1 (k +1)
λ 1/2d( j)

q2 (k)

]
;

7. Obtaining the a priori error:

e j(k +1) = e( j)
q1 (k +1)/γ j(k +1);

} % for j
} % for k
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Finally, in order to adjust the equations of steps 1–3 of the algorithms in
Tables 6.4 and 6.5 to this formulation, it suffices to observe that they can be split up
into blocks that will be processed in an order-recursive way. The resulting lattice (or
order-recursive) versions of the block-type MC-FQRD-RLS algorithms based on a
posteriori and a priori backward prediction errors are summarized in Tables 6.6
and 6.7, respectively.

6.6 Application Example and Computational Complexity Issues

In this section, the effectiveness of the algorithms addressed in this work is illus-
trated in a non-linear filtering problem. In addition, we provide a brief discussion
on computational complexity issues.

6.6.1 Application example

The computer experiment consists of a non-linear system identification. The plant
is a simple truncated second-order Volterra system [2] which can be summarized as

d(k) =
L−1

∑
n1=0

wn1(k)x(k−n1)+
L−1

∑
n1=0

L−1

∑
n2=0

wn1,n2(k)x(k−n1)x(k−n2)+ρ(k).(6.100)

Equation (6.100) can be easily reformulated as a multichannel problem with M =
L+1 channels, where the most recent sample of the ith channel is

xi(k) =
{

x(k), i = 1,
x(k)x(k− i+2), i = 2, . . . ,L+1,

and the ith channel order is

Ni =
{

L, i = 1,2,
L− i+2, i = 3, . . . ,L+1.

In the experiment, we have used L = 4 and the resulting multichannel sys-
tem is depicted in Figure 6.5. The forgetting factor was set to λ = 0.98, and the
power of the observation noise ρ(k) was chosen such that the signal-to-noise-
ratio (SNR) is 60 dB. The learning curves of the multichannel FQRD-RLS algo-
rithms are compared to the normalized least-mean-squares6 (NLMS) [15–17] and
the result is plotted in Figure 6.6 for an average of 100 independent runs. The trade-

6 The updating of the coefficient vector for the NLMS algorithm was performed according to

w(k) = w(k−1)+
μ

σ +‖x(k)‖2 x(x)e∗(k),

where x(k) is the input signal vector, σ is a small constant, and parameter μ was set equal to 1.
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x(k) x2(k) x(k)x(k −1) x(k)x(k −2) x(k)x(k −3)
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∑

Fig. 6.5 Multichannel set-up for a truncated second order Volterra system, L = 4.

0 100 200 300 400 500 600 700 800 900 1000
−70

−60

−50

−40

−30

−20

−10

0

10

20

M
SE

 (
dB

)

k

NLMS Algorithm

MC-FQRD-RLS Algorithms

Fig. 6.6 Learning curves of the non-linear system identification experiment.
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off between computational complexity and speed of convergence is also illustrated
in that figure.

6.6.2 Computational complexity issues

The computational complexity of the MC-FQRD-RLS algorithms, in terms of mul-
tiplication, divisions, and square roots per input sample, is summarized in Table 6.8,
according to the classification introduced earlier in Table 6.1. Generally speaking,
when the same structure and approach are considered, algorithms based on the a
posteriori backward prediction errors updating have lower computational burden
when compared to their a priori counterparts.

The suitability of the lattice structure for real-time implementations comes at the
cost of a slight increase in the computational burden of the algorithms. On the other
hand, sequential-type algorithms O[MP] computational complexity is lower by one
order as compared to the O[M2P] block-type multichannel algorithms computa-
tional complexity. It is also evident that the MC-FQRD-RLS algorithms outperform
the conventional QRD-RLS and inverse QRD-RLS algorithms, O[P2], in terms of
computational costs, while maintaining the good numerical stability features. The
computational advantage of block-type MC-FQRD-RLS algorithms is increasing
for larger number of coefficients per channel, N, (P = MN for channels of equal
orders).

Table 6.8 Computational complexity of MC-FQRD-RLS algorithms, according to Table 6.1.

Algorithm Multiplications Divisions Squared roots

Algs. 2, 4 [5–7], 4NM2 +11NM+ 2NM +2M +N− 2NM +M +N−
summarized 5M2 +6M +7N− 2M∑M

i=1(pi − i) 2M∑M
i=1(pi − i)

in Table 6.4 (4M2 +6M)∑M
i=1(pi − i)

Algs. 10, 12 [6, 7, 11], 4NM2 +11NM+ 2NM +3M +2N− 2NM +M +N−
summarized 5M2 +6M +9N− 2M∑M

i=1(pi − i)+2 2M∑M
i=1(pi − i)

in Table 6.5 (4M2 +6M)∑M
i=1(pi − i)

Alg. 1 [4], sum- 4M3N +17M2N+ 2M2N +3MN +2M M2N +2MN +M
marized in Table 6.6 12MN +5M2 +5M

Alg. 9 [11] sum- 4M3N +17M2N+ 2M2N +5MN +3M M2N +2MN +M
marized in Table 6.7 14MN +5M2 +6M

Algs. 6, 8 [10], sum- 14NM +13M+ 3NM +4M− 2NM +3M−
marized in Table 6.2 5N −9∑M

i=1 pi 3∑M
i=1 pi 2∑M

i=1 pi

Algs. 14, 16 [11] sum- 15NM +14M+ 4NM +5M− 2NM +3M−
marized in Table 6.3 5N −10∑M

i=1 pi 4∑M
i=1 pi 2∑M

i=1 pi

Algs. 5, 7 [9] 14NM +13M+ 4NM +5M− 2NM +3M−
5N −9∑M

i=1 pi 4∑M
i=1 pi 2∑M

i=1 pi

Algs. 13, 15 [11] 15NM +14M+ 5NM +6M− 2NM +3M−
5N −10∑M

i=1 pi 5∑M
i=1 pi 2∑M

i=1 pi



6 Multichannel Fast QRD-RLS Algorithms 179

6.7 Conclusion

The MC-FQRD-RLS algorithms exploit the time-shift structure in each channel
to reduce the computational complexity of the conventional QRD-RLS algorithm
which is of order O[P2], P being the number of coefficients. This chapter introduced
various MC-FQRD-RLS algorithms based on the updating of the backward predic-
tion error vector. Channels are allowed to have arbitrary orders, which enables us to
deal with more general multichannel systems, e.g., Volterra systems. The algorithms
presented in this chapter were derived using two distinct approaches: (1) sequential
approach where channels are processed individually in a sequential manner, and
(2) block approach that jointly processes all channels. Considering the case of M
channels, the computational complexities associated with block and sequential algo-
rithms are O[MP] and O[M2P], respectively. That is, taking a sequential approach
will render the lowest complexity. The main advantages of the block algorithms are
that they favor parallel processing implementations and can easily be turned into an
order-recursive form. To clarify the differences among the many versions available
in the literature, we provided a classification of these algorithms and their associated
computational complexities.
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