
Chapter 5
QRD Least-Squares Lattice Algorithms

Jenq-Tay Yuan

Abstract This chapter presents a full derivation of the square-root-free (SRF) QR-
decomposition-based least-squares lattice (QRD-LSL) algorithms in complex form,
based on linear interpolation (or two-sided prediction) theory as a generalization
of linear prediction theory. The conventionally adopted QRD-LSL prediction algo-
rithm can be derived directly from the QRD-LSL interpolation algorithm and then
extended to solve the joint process estimation problem. The QRD-LSL interpolation
algorithm that produces interpolation errors (residuals) of various orders may have
potential implications for some signal processing and communication problems.
Interestingly, the QRD-LSL interpolation algorithm can also be used to calculate the
Kalman gain vector to implement the widely known recursive least-squares (RLS)
algorithm in a transversal structure to generate the least-squares filter weights at
each time step. Therefore, linear interpolation theory may provide a bridge between
lattice filters and transversal filters. The chapter is organized as follows. Section 5.1
presents the fundamentals of QRD-LSL algorithms. The LSL interpolator and the
LSL predictor are briefly presented in Section 5.2. Section 5.3 presents the SRF
Givens rotation with feedback mechanism that is employed to develop the SRF
QRD-LSL algorithms. In Section 5.4, the SRF QRD-LSL interpolation algorithm
is derived, and then reduced to the SRF QRD-LSL prediction algorithm, which is
then extended to develop the SRF joint process estimation. The RLS algorithm in
the transversal structure based on the SRF QRD-LSL interpolation algorithm is pre-
sented in Section 5.5 followed by some simulation results in Section 5.6. Section 5.7
draws conclusions.

Jenq-Tay Yuan
Fu Jen Catholic University, Taipei, Taiwan – R.O.C.
e-mail: yuan@ee.fju.edu.tw

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 115
DOI 10.1007/978-0-387-09734-3 5, c© Springer Science+Business Media, LLC 2009

yuan@ee.fju.edu.tw

116 Jenq-Tay Yuan

5.1 Fundamentals of QRD-LSL Algorithms

An Nth-stage lattice filter, displayed in Figure 5.1, automatically generates all N
of the outputs that would be provided by N separate transversal filters of length
1,2, . . . ,N [1–6]. In Figure 5.1, ε f ,m(k) and εb,m(k) are the forward and backward
prediction errors of order m; π f ,1(k), . . . ,π f ,N(k) and πb,1(k), . . . ,πb,N(k) are the for-
ward reflection coefficients and backward reflection coefficients, respectively, which
can be obtained by minimizing the sum of weighted prediction error squares at each
stage. Optimum higher order lattice filters can be constructed from lower order ones
by simply adding more lattice stages, leaving the original stages unchanged. This
property is called the order-recursive property (or decoupling property) and follows
from the fact that lattice filters essentially perform the Gram–Schmidt orthogonal-
ization recursively such that each stage as effectively as possible decorrelates (or
orthogonalizes) the inputs that enter it. This order-recursive property of a lattice fil-
ter along with its good numerical property is also shared by the QR-decomposition
(QRD)-based algorithms. Accordingly, a combination of both the QRD-based algo-
rithm and the least-squares lattice (LSL) filter can be reasonably expected to be
a powerful algorithm, known as the QR-decomposition-based least-squares lattice
(QRD-LSL) algorithm, for solving the adaptive least-squares (LS) filtering prob-
lem when the corresponding filter weights are not required. The order-recursive
property of the QRD-LSL algorithms allows a variable-length filter to be designed,
since it permits dynamic assignment, and rapid automatic determination of the most
effective filter length. Consequently, in many LS applications, such as acoustic echo
cancelation [7], in which only the LS errors of various orders are required to reduce

Stage NStage1

()x k

,1()b k

,0 ()f k

,0 ()b k
1z

,1()b k

,1()f k

1z
, 1()b N k

, 1()f N k , ()f N k

, ()b N k

, ()b N k

, ()f N k,1()f k

0 ()p k ()Np k1()Np k1 ()p k

1()N k()N k2()k1()k()d k

-s
ta

ge
la

tti
ce

 fi
lte

r
N

Fig. 5.1 Joint process estimation based on an Nth-stage lattice filter.

5 QRD Least-Squares Lattice Algorithms 117

effectively near-end speech distortion and improve noise robustness without explic-
itly computing the corresponding filter weights, the QRD-LSL prediction algorithm
along with the joint process estimation may play an important role. Even when the
corresponding filter weights are required in applications such as system identifica-
tion, the QRD-LSL interpolation algorithm that is developed in this chapter can still
be applied to implement efficiently the well-known recursive least-squares (RLS)
algorithm.

A recursive fast QRD-based LS filtering algorithm (or known as the QRD-based
fast Kalman algorithm) of O[N] complexity was developed by Cioffi [8], where N
is the number of taps in the adaptive filter. Although this algorithm is of a fixed-
order transversal filter type and thus lacks the flexibility of order recursiveness, it
presents for the first time the idea of a fast QRD-based algorithm for RLS esti-
mation. Proudler et al. [9] developed a QRD-LSL prediction algorithm of O[N]
complexity recursively in time and order. They then extended this QRD-LSL pre-
diction algorithm to solve the joint process estimation problem. A similar fast
LS lattice algorithm based on Givens rotations was developed independently by
Ling [10]. Regalia and Bellanger [11] developed a hybrid QR-lattice algorithm that
is closely related to the algorithms of Cioffi [8], Proudler et al. [9], and Ling [10],
but they emphasized the relationship between fast QR algorithms and lattice fil-
ters. Other related works can also be found in Rontogiannis and Theodoridis [12],
who proposed a unified approach for deriving fast QRD algorithms. The QRD-LSL
algorithm is now well-known to provide many desirable features such as compu-
tational efficiency, fast rate of convergence and fast tracking capability, robustness
against and insensitivity to round-off noise, and suitability for very large scale inte-
gration (VLSI) implementations. According to the simulations conducted by Yang
and Bohme [13], the joint process estimation based on the QRD-LSL prediction
algorithm is numerically more stable than the fixed order fast QR algorithms such as
those developed by Cioffi [8] and Regalia and Bellanger [11]. The unstable behav-
iors exhibited by some fast Kalman algorithms may further justify the use of the
order-recursive QRD-LSL algorithms.

Almost all of the QRD-LSL algorithms discussed in the literature are designed
to solve the linear prediction problem recursively in time and order. This chapter
addresses the QRD-LSL problem differently, and presents a complete derivation
of the square-root-free (SRF) QRD-LSL algorithms from the perspective of lin-
ear interpolation. The derivation of the QRD-LSL interpolation algorithm is moti-
vated by three main considerations. First, the QRD-LSL interpolation algorithm has
potential implications for signal processing and communication problems, including
data compression, coding and restoration of speech and images, and narrowband
interference suppression in spread spectrum communications [14–18]. Secondly,
the QRD-LSL prediction algorithm is in effect a special case of the QRD-LSL
interpolation algorithm. As will be demonstrated in Section 5.4, the widely known
QRD-LSL prediction algorithm can be developed directly from the QRD-LSL inter-
polation algorithm, because linear interpolation theory is a generalization of lin-
ear prediction theory and the former provides a broader interpretation and a more
thorough understanding of the latter. Studies [19–22] have demonstrated that linear

118 Jenq-Tay Yuan

interpolation may substantially outperform linear prediction in terms of minimum
mean squared error, because interpolation makes better use of the correlation
between the nearest neighboring samples than does prediction. Thirdly, linear
interpolation turns out to form a bridge between an order-recursive lattice filter
that generates filter output only and the RLS algorithm, which also generates the
adaptive filter weights. Skidmore and Proudler [23] first realized the crucial fact
that the Kalman gain vector that is used to compute the RLS algorithm can be
calculated as a particular set of normalized LS interpolation errors (residuals).
The SRF QRD-LSL interpolation algorithm that produces interpolation errors of
various orders can thus be adopted to implement the RLS algorithm. Although
the resulting RLS algorithm of O[N log2 N] complexity may exhibit linear error
growth with time in a limited-precision environment, it may offer a favorable
compromise between some computationally efficient fast transversal filter algo-
rithms of O[N] complexity, which may exhibit exponential error growth with time
in a limited-precision environment, and some numerically stable algorithms of
O[N2] complexity, which may not be computationally feasible for some real-time
applications.

5.2 LSL Interpolator and LSL Predictor

Linear interpolation estimates an unknown data sample based on a weighted sum
of surrounding data samples. In one-dimensional signal processing, (p, f)th-order
linear interpolation is the linear estimation of present input data samples x(i) from
its p past and f future neighboring data samples with the pre-windowing condition
on the data (i.e., x(i) = 0, for i ≤−1), which is

x̂p, f (i) = −
f

∑
n=−p
n�=0

b∗(p, f),n(k− f)x(i+n), − f ≤ i ≤ k− f , (5.1)

where b(p, f),n(k − f) is the interpolation coefficient at time k. The (p, f)th-order
interpolation error at each time unit can thus be written as

ε I
p, f (i) = x(i)− x̂p, f (i) = bH

p, f (k− f)xN+1(i+ f), − f ≤ i ≤ k− f , (5.2)

where bH
p, f (k− f) = [b∗(p, f), f (k− f), . . . ,b∗(p, f),1(k− f),1,b∗(p, f),−1(k− f), . . . , b∗(p, f),−p(k− f)] is

the interpolation coefficient vector at time k and the (N +1)×1 input vector is given
as xN+1(i) = [x(i),x(i−1), . . . ,x(i−N)]T in which N = p+ f is assumed implicitly.
Notably, the notations used in this chapter are somewhat different from those used
in the four previous chapters. In this chapter, we refer to any interpolation filter that
operates on the present data sample as well as p past and f future data samples
to produce the (p, f)th-order interpolation errors at its output as a (p, f)th-order
interpolator. If the most recent data sample used is x(k), then (5.2) can be written
in a matrix form as

5 QRD Least-Squares Lattice Algorithms 119

εεε I
p, f (k− f) = XN+1(k)bp, f (k− f), (5.3)

where εεεI
p, f (k− f)=

[
ε I∗

p, f (− f) . . . ε I∗
p, f (−1) ε I∗

p, f (0) ε I∗
p, f (1) . . . ε I∗

p, f (k− f)
]T

, bp, f (k− f)=

[b(p, f), f (k− f) . . . b(p, f),1(k− f) 1 b(p, f),−1(k− f) . . . b(p, f),−p(k− f)]T, and the (k + 1)×
(N +1) matrix XN+1(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗(0) 0 · · · 0

x∗(1) x∗(0)
. . .

.

.

.

x∗(2) x∗(1)
. . .

.

.

.
.
.
.

.

.

.
. . . 0

.

.

.
.
.
.

. . . x∗(0)
.
.
.

.

.

.
. . . x∗(1)

.

.

.
.
.
.

. . . x∗(2)
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

x∗(k) x∗(k−1) · · · x∗(k− f +1)︸ ︷︷ ︸
f future data samples

0
.
.
.
.
.
.
.
.
.

0

x∗(0)

x∗(1)
.
.
.
.
.
.
.
.
.

x∗(k− f)︸ ︷︷ ︸
data sample

to be estimated

0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0
. . .

.

.

.

x∗(0)
. . .

.

.

.
.
.
.

. . . 0
.
.
.

. . . x∗(0)
.
.
.

. . .
.
.
.

x∗(k− f −1) · · · x∗(k−N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

︸ ︷︷ ︸
p past

data samples

5.2.1 LSL interpolator

The LS solution of the interpolation coefficients can be determined by minimizing

the sum of interpolation error squares ξ (k) =∑k− f
i=− f |ε I

p, f (i)|2 =
[
εεε I

p, f (k− f)
]H

εεε I
p, f

(k − f) =
[
XN+1(k)bp, f (k− f)

]H [
XN+1(k)bp, f (k− f)

]
= bH

p, f (k − f)R(k)bp, f

(k− f) subject to the constraint hHbp, f (k− f) = 1, where R(k) = XH
N+1(k)XN+1(k)

is the (N + 1)× (N + 1) time-average correlation matrix of the input data samples
x(i) and hH =

[
0T

f 1 0T
p

]
. Using the method of Lagrange, the interpolation coef-

ficient vector can be computed to be bp, f (k − f) =
(
hTR−1(k)h

)−1
R−1(k)h and

the minimum sum of interpolation error squares of order (p, f) can be computed to

be Ip, f (k− f) = ξmin(k) =
(
hTR−1(k)h

)−1
. The resulting augmented asymmetric

interpolation normal equations can thus be written as

R(k)bp, f (k− f) = ip, f (k− f), (5.4)

where ip, f (k− f) = [0T
f Ip, f (k− f) 0T

p]T is the (N + 1)×1 vector in which 0 f and
0p are column vectors of f and p zeros, respectively. A computationally efficient

120 Jenq-Tay Yuan

LSL interpolator developed in [22] requiring only O[N] operations via “intermedi-
ate predictions” can be employed to compute the exact order-updated interpolation
errors.

The LSL interpolator computes the order-recursive interpolation errors as an
additional past data sample [i.e., (p, f) → (p+1, f)] and an additional future
data sample [i.e., (p, f) → (p, f + 1)] are taken into account, respectively, as
follows:

ε I
p+1, f (k− f) = ε I

p, f (k− f)− k∗p+1, f (k)εb,N+1(k,k− f), (5.5)

ε I
p, f +1(k− f −1) = ε I

p, f (k− f −1)− k∗p, f +1(k)ε f ,N+1(k,k− f −1), (5.6)

where both kp+1, f (k) and kp, f +1(k) are the complex-valued coefficients of the inter-
polator;

ε f ,N+1(i, i− f −1) = x(i)+
N+1

∑
n=1

n�= f +1

a∗N+1,n(k)x(i−n), 0 ≤ i ≤ k (5.7)

is referred to as the (N + 1)th-order intermediate forward prediction (IFP) error,
as it is the prediction error of x(i) based on a weighted linear combination of
its (N + 1) previous data samples [i.e., x(i− 1), . . . ,x(i− f),x(i− f − 2), . . . ,x(i−
N −1)] without considering present data sample x(i− f −1), where aN+1,n(k),n =
1,2, . . . , f , f +2, . . . ,N +1 are (N +1)th-order IFP coefficients. Similarly, the (N +
1)th-order intermediate backward prediction (IBP) error is defined as the predic-
tion error of x(i−N −1) based on a weighted linear combination of x(i−N),x(i−
N + 1), . . . ,x(i− f − 1),x(i− f + 1), . . . ,x(i) without considering the data sample
x(i− f):

εb,N+1(i, i− f) = x(i−N −1)+
N+1

∑
n=1

n�=p+1

c∗N+1,n(k)x(i+n−N −1), 0 ≤ i ≤ k, (5.8)

where cN+1,n(k), n = 1,2, . . . , p, p + 2, . . . ,N + 1 are (N + 1)th-order intermediate
backward prediction coefficients. It is worth pointing out that two special cases arise
when f = 0 and when p = N, and, as a result, the Nth-order IFP error, ε f ,N(k,k− f),
is reduced to ε f ,N(k) and ε f ,N−1(k), which are the conventional forward prediction
(FP) errors of order N and order (N−1), respectively. Similarly, when p = 0 and f =
N, the Nth-order intermediate backward prediction error, εb,N(k,k− f), is reduced
to εb,N−1(k−1) and εb,N(k), which are the conventional backward prediction (BP)
errors of order (N −1) and order N, respectively.

5 QRD Least-Squares Lattice Algorithms 121

5.2.2 Orthogonal bases for LSL interpolator

To construct an LSL interpolator of order (p, f), Equations (5.5) and (5.6) must
be applied p and f times, respectively. However, any sequencing between these
two equations is permissible. Consequently, an LSL interpolator of order (p, f)
has Cp

N = C f
N = N!

p! f ! permissible realizations. For instance, to construct a (2,2)th-

order interpolator, a total of C2
4 = 6 permissible realizations may be identified by the

sequences BFBF, FBFB, BBFF, FFBB, FBBF, and BFFB of intermediate backward
(B) and intermediate forward (F) prediction errors that are used in (5.5) and (5.6),
respectively. Six possible order-recursive realizations for a (2,2)th-order LSL inter-
polator can thus be constructed by employing the six orthogonal bases. As an exam-
ple, the orthogonal basis identified by BFBF sequence may be verified as follows.
The sequence BFBF reveals that, to estimate the data sample x(k−2), the data sam-
ple immediately prior to x(k−2)(i.e., x(k−3)) is considered first corresponding to
a B followed by the consideration of the data sample immediately future to x(k−2)
(i.e., x(k− 1)) corresponding to an F. The above two operations are then followed
by the consideration of one additional past data sample, x(k−4), corresponding to
a B, and one additional future data sample, x(k), corresponding to an F. The inter-
mediate prediction error basis, which is an orthogonal basis set, can therefore be
generated by

[εb,1(k−2,k−2) ε f ,2(k−1,k−2) εb,3(k−1,k−2) ε f ,4(k,k−2) ε I
2,2(k−2)]T

=

⎡
⎢⎢⎢⎣

1 0 0 0 0
a∗2,2(k) 1 0 0 0
c∗3,1(k) c∗3,3(k) 1 0 0
a∗4,3(k) a∗4,1(k) a∗4,4(k) 1 0

b∗(2,2),−1(k−2) b∗(2,2),1(k−2) b∗(2,2),−2(k−2) b∗(2,2),2(k−2) 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(k−3)
x(k−1)
x(k−4)

x(k)
x(k−2)

⎤
⎥⎥⎦ , (5.9)

The above transformation is known as the Gram–Schmidt orthogonalization pro-
cedure. The other five orthogonal basis vectors identified by the sequences FBFB,
BBFF, FFBB, FBBF, and BFFB, can be similarly verified. Each of the orthogonal
bases identified by the six sequences can be used to construct an order-recursive
realization for a (2,2)th-order LSL interpolator.

Both IFP and IBP errors must be computed before the order-updated interpo-
lation errors in (5.5) and (5.6) can be computed. They can be computed using
the conventional BP and FP errors, as follows.

εb,N+1(k,k− f) = εb,N+1(k)+ l∗b,N+1(k)ε
I
p, f (k− f), (5.10)

ε f ,N+1(k,k− f −1) = ε f ,N+1(k)+ l∗f ,N+1(k)ε I
p, f (k− f −1), (5.11)

122 Jenq-Tay Yuan

where lb,N+1(k) and l f ,N+1(k) are complex-valued coefficients; εb,N+1(k) and
ε f ,N+1(k), which are conventional BP and FP errors, respectively, are directly
accessible from an (N + 1)th-order LSL predictor that can be embedded into
an LSL interpolator.

Notably, both ε I
p, f (k − f) and ε I

p, f (k − f − 1) are already computed from the
previous interpolation lattice stage of the LSL interpolator. Equations (5.5), (5.6),
(5.10), and (5.11) together with the well-known LSL predictor, constitute an order-
recursive LSL interpolator.

5.2.3 LSL predictor

The well-known exact decoupling property of the LSL predictor can be
readily demonstrated to be a special case of the orthogonal basis of the LSL
interpolator corresponding to sequence BB. . .B. By setting (p, f) = (N,0)
(i.e., an Nth-order LSL predictor), there is one unique orthogonal basis set for use in
an LSL interpolator of order (N,0) (since C0

N = 1), which is[
εb,1(k,k),εb,2(k,k), . . . ,εb,N(k,k),ε I

N,0(k)
]
. This orthogonal basis set is clearly

equivalent to [εb,0(k−1),εb,1(k−1), . . . ,εb,N−1(k−1),ε f ,N(k)], which, in turn, cor-
responds to [εb,0(k),εb,1(k), . . . ,εb,N−1(k)] that consists of a sequence of N uncor-
related backward prediction errors at all instants of time and forms a unique
orthogonal basis set [5].

The widely known LSL predictor can also be derived directly from the LSL
interpolator by setting (p, f) = (N,0) and (p, f) = (0,N) in (5.10) and (5.11),
respectively, and yields

εb,N+1(k) = εb,N(k−1)− l∗b,N+1(k)ε f ,N(k) (5.12)

ε f ,N+1(k) = ε f ,N(k)− l∗f ,N+1(k)εb,N(k−1). (5.13)

Notably, we have used the fact that εb,N+1(k,k) = εb,N(k−1), ε I
N,0(k) = ε f ,N(k),

ε f ,N+1(k,k − N − 1) = ε f ,N(k), and ε I
0,N(k − N − 1) = εb,N(k − 1). Interestingly,

(5.12) and (5.13) can also be reduced directly from (5.6) and (5.5) by setting
(p, f) = (0,N) and (p, f) = (N,0), respectively.

5 QRD Least-Squares Lattice Algorithms 123

5.3 SRF Givens Rotation with Feedback Mechanism

Consider first a Givens rotation matrix given by

[
c s∗

−s c

]
, where the two parameters

of the Givens rotation are the real cosine parameter c and the complex sine parameter
s, such that c2 + |s|2 = 1. A Givens rotation used to zero out the element at the (2,1)
location is an elementary transformation of the form

[
c s∗

−s c

][
α1 α2 . . . αp

β1 β2 . . . βp

]
=

[
α ′

1 α ′
2 . . . α ′

p

0 β ′
2 . . . β ′

p

]
, (5.14)

where α1 and α ′
1 are defined to be real and non-negative, whereas α2 . . .αp, α ′

2 . . .α ′
p,

β1 . . .βp, β ′
2 . . .β ′

p are all complex. Substituting s = cβ1/α1 into c2 + |s|2 = 1 yields

c = α1/α ′
1, where α ′

1 �
√

α2
1 + |β1|2. Accordingly,

c =
α1

α ′
1

and s =
β1

α ′
1
, (5.15)

(
α ′

1

)2 = α2
1 + |β1|2, (5.16)

(
α ′

i

)∗ = cα∗
i + sβ ∗

i , i = 2, . . . , p, (5.17)
(
β ′

i

)∗ = cβ ∗
i − s∗α∗

i , i = 2, . . . , p. (5.18)

Equations (5.15), (5.16), (5.17), and (5.18) summarize the square-root (SR) Givens
rotation of a complex version since it requires a SR operation in the generic formu-
lation. The SR operation may occupy a large area in a VLSI chip and many cycles
may be required to complete such computations; consequently, the operation is slow.
Proudler et al. [24] demonstrated that a finite-precision implementation of an SRF
lattice algorithm achieved better numerical results than that of the conventional SR
Givens rotation. Hsieh et al. [25] thus proposed a systematic way of generating a
unified SRF Givens rotation to avoid the SR operation. In the remaining part of this
section, the SRF Givens rotation developed in [25] is generalized to a complex form
and extended to include a feedback mechanism, which is known to have a stabi-
lizing effect when errors are made in the QRD-based RLS estimation, because of
finite-precision effects [26, 27]. The generalized SRF Givens rotation with a feed-
back mechanism is then applied to develop the SRF QRD-LSL algorithms that are
presented in Section 5.4.

By taking out a scaling factor from each row of the matrices on both sides
of (5.14), the two rows, before and after the Givens rotation, are denoted, respec-
tively, by

[
α1 α2 . . . αp

β1 β2 . . . βp

]
=

[√
ka 0

0
√

kb

][
a1 a2 . . . ap

b1 b2 . . . bp

]
(5.19)

and

124 Jenq-Tay Yuan

[
α ′

1 α ′
2 . . . α ′

p

0 β ′
2 . . . β ′

p

]
=

[√
k′a 0

0
√

k′b

][
a′1 a′2 . . . a′p
0 b′2 . . . b′p

]
, (5.20)

where ka, kb, k′a, and k′b are the scaling factors resulting in SRF operations, and α ′
i

and β ′
i are the updated αi and βi when β1 is zeroed out. Replacing αi =

√
kaai,

α ′
i =

√
k′aa′i, βi =

√
kbbi, i = 1, . . . , p and β ′

i =
√

k′bb′i, i = 2, . . . , p, in (5.15),
(5.16), (5.17), and (5.18) leads to c =

√
kaa1/α ′

1, s =
√

kbb1/α ′
1, a′1 = α ′

1/
√

k′a,

a′i = kaa1ai + kbb∗1bi/
√

k′aα ′
1, i = 2, . . . , p, and b′i =

√
kakb[a1bi−b1ai]√

k′bα
′
1

, i = 2, . . . , p,

where α ′
1 =

√
kaa2

1 + kb|b1|2. Clearly, if k′a = (α ′
1)

2/μ2 and k′b = kakb/ν2 (α ′
1)

2 =

kakb/μ2ν2k
′
a are chosen, then the computation of a′1, a′i, and b′i can avoid SR

operation; μ and ν are parameters to be determined later. Substituting the cho-
sen k′a and k′b into c, s, a′1, a′i, and, b′i shown above yields c = a1/μ ·

√
ka/k′a,

s = b1/μ ·
√

kb/k′a, a′1 = μ , a′i = (kaa1ai + kbb∗1bi)/μk′a, i = 2, . . . , p, and, b′i =
ν [a1bi −b1ai], i = 2, . . . , p. Evidently, the SR operations in a′1, a′i, and b′i are elimi-
nated, regardless of the values μ and ν .

Throughout this section, μ = 1 (or a′1 = 1), ν = 1, and a1 = 1 were set such that
the SRF results would be consistent with those of Gentleman [28] and McWhirter
[29]. Accordingly, we have

k′a = ka + kb|b1|2, (5.21)

k′b =
kakb

k′a
= c · kb, (5.22)

a′i = cai + s∗bi, i = 2, . . . , p, (5.23)

b′i = bi −b1ai, i = 2, . . . , p, (5.24)

where

c =
ka

k′a
and s = b1 ·

kb

k′a
(5.25)

are the defined generalized rotational parameters. Since ka = α2
1 and |β1|2 corre-

sponds to β1 ·β ∗
1 = kb|b1|2, we have k′a = ka +kb|b1|2 = α2

1 + |β1|2 = (α ′
1)

2. There-
fore,

c =
ka

k′a
=

ka(
α ′

1

)2 = c2 (5.26)

and s =
√

kb
k′a
·b1 =

√
b1 · s. The SRF Givens rotation with feedback mechanism can

be derived by substituting (5.24) into (5.23):

a′i = ai (c+ s∗b1)+ s∗b′i = ai + s∗b′i, (5.27)

5 QRD Least-Squares Lattice Algorithms 125

which is obtained using c + s∗b1 = ka
k′a

+ kbb∗1
k′a

b1 = 1. For notational convenience,
taking the complex conjugate of both sides of (5.24) and (5.27) yields

(
b′i
)∗ = b∗i −b∗1a∗i , i = 2, . . . , p, (5.28)(

a′i
)∗ = a∗i + s ·

(
b′i
)∗

, i = 2, . . . , p. (5.29)

Equations (5.21), (5.22), (5.25), (5.28), and (5.29) summarize the complex ver-
sion of the SRF Givens rotation with a feedback mechanism.

5.4 SRF QRD-LSL Algorithms

This section develops the SRF QRD-LSL interpolation algorithm and the SRF
QRD-LSL prediction algorithm. The latter algorithm is then extended to develop
the SRF joint process estimation that utilizes information from the prediction lattice
filter to generate the LS filtering estimate. More specifically, the joint process esti-
mation problem displayed in Figure 5.1 is the optimal LS estimation of a process
d(k), called the desired response, from a related process x(k), called the observa-
tions [2, 5].

The SRF QRD-LSL interpolation algorithm comprises six blocks: (a) FP
block and BP block (summarized in Table 5.1); (b) IFP block and interpo-
lation [Int(F)] block (summarized in Table 5.2); (c) IBP block and interpola-
tion [Int(P)] block (summarized in Table 5.2) [30]. Overall, the SRF QRD-
LSL interpolation algorithm has O[N] computational complexity per iteration
without any SR operation. Notably, both FP and BP blocks, which constitute
the SRF QRD-LSL prediction algorithm, are portions of the SRF QRD-LSL
interpolation algorithm and must be used to compute both the conventional
forward and backward prediction errors of order m [i.e., e f ,m(k) and eb,m(k)].

The SRF QRD-LSL interpolation algorithm performs adaptive filtering recur-
sively in order and time. As an additional “future” stage is increased [i.e., (p, f) →
(p, f +1)], then both the IFP block and the Int(F) block, which are the QRD imple-
mentations of (5.11) and (5.6), respectively, must be used to compute the a priori
interpolation error, eI

p, f +1(k− f −1). As an additional “past” stage is increased [i.e.,
(p, f) → (p + 1, f)], then both the IBP block and the Int(P) block, which are the
QRD implementations of (5.10) and (5.5), respectively, must be used to compute
the a priori interpolation error, eI

p+1, f (k− f). Throughout the chapter, the terms “ε”
and “e” represent the a posteriori and a priori versions of estimation errors, respec-
tively, whereas the term “ε” represents the “angle-normalized” estimation error.

126 Jenq-Tay Yuan

Table 5.1 SRF QRD-LSL algorithm and joint process estimation.

SRF QRD-LSL prediction and filtering
Initialization:

π f ,m(−1) = πb,m(−1) = eb,m−1(−1) = 0, for order m = 1,2, . . . ,N,
pm−1(−1) = 0, for order m = 1,2, . . . ,N +1,
Bm(−2) = Bm(−1) = Fm(−1) = δ , for order m = 0,1 . . . ,N,
For k = 0,1,2 . . ., set e f ,0(k) = eb,0(k) = x(k), e0(k) = d(k)
For k = −1,0,1,2 . . ., set γ0(k) = 1

Prediction: For time k = 0,1, . . ., and prediction order m = 1,2, . . . ,N.
FP block:

Bm−1(k−1) = λBm−1(k−2)+ γm−1(k−1)|eb,m−1(k−1)|2

cb,m−1(k−1) = λBm−1(k−2)
Bm−1(k−1)

sb,m−1(k−1) = γm−1(k−1)
e∗b,m−1(k−1)
Bm−1(k−1)

e f ,m(k) = e f ,m−1(k)− eb,m−1(k−1)π∗
f ,m(k−1)

π∗
f ,m(k) = π∗

f ,m(k−1)+ sb,m−1(k−1)e f ,m(k)

γm(k−1) = cb,m−1(k−1)γm−1(k−1)
BP block:

Fm−1(k) = λFm−1(k−1)+ γm−1(k−1)|e f ,m−1(k)|2

s f ,m−1(k) = γm−1(k−1)
e∗f ,m−1(k)
Fm−1(k)

eb,m(k) = eb,m−1(k−1)− e f ,m−1(k)π∗
b,m(k−1)

π∗
b,m(k) = π∗

b,m(k−1)+ s f ,m−1(k)eb,m(k)
Joint process estimation: For time k = 0,1, . . ., and m = 1,2, . . . ,N +1.

Bm−1(k) = λBm−1(k−1)+ γm−1(k)|eb,m−1(k)|2

cb,m−1(k) = λBm−1(k−1)
Bm−1(k)

sb,m−1(k) = γm−1(k)
e∗b,m−1(k)
Bm−1(k)

em(k) = em−1(k)− eb,m−1(k)p∗m−1(k−1)

p∗m−1(k) = p∗m−1(k−1)+ sb,m−1(k)em(k)

γm(k) = cb,m−1(k)γm−1(k)

5.4.1 QRD based on interpolation

Before deriving the SRF QRD-LSL interpolation algorithm, we briefly describe
a modified QR-decomposition for interpolation. It can be shown that a (k + 1)×
(k + 1) orthogonal matrix Q(k) can always be constructed from one of the C f

N
orthogonal basis sets described in Section 5.2 such that it applies a generalized
orthogonal triangularization to XN+1(k) in (5.3)

Q(k)XN+1(k) =
[

Qp, f (k)
S(k)

]
XN+1(k) =

[
Rp, f (k)

O(k−N)×(N+1)

]
, (5.30)

5 QRD Least-Squares Lattice Algorithms 127

Table 5.2 Summary of SRF QRD-LSL interpolation algorithm.

SRF QRD-LSL interpolation algorithm
Initialization:

Δ f ,m(−1) = Δ b,m(−1) = 0, for order m = 1,2, . . . ,N +1,
ρ p, f (−1) = 0, for all p and f ,
Ip, f (k) = δ , for k ≤−1 and all p and f ,
Bm(−1,k) = Fm(−1,k) = δ , for k ≤−1 and order m = 1,2, . . . ,N +1
eI

p, f (k) = 0 for k ≤−1 and all p and f , and γ0,0(k) = 1 for k ≤−1,
For k = 0,1,2, . . ., set eI

0,0(k) = x(k).
For time k = 0,1, . . ., starting with p = f = 0.
As (p, f) → (p, f +1):

IFP block:
Ip, f (k− f −1) = λ Ip, f (k− f −2)+ γp, f (k− f −1)|eI

p, f (k− f −1)|2

cI,N(k−1) = λ Ip, f (k− f−2)
Ip, f (k− f−1) (needed only for deriving QRD-LSL prediction)

sI,N(k−1) = γp, f (k− f −1)
eI∗

p, f (k− f−1)
Ip, f (k− f−1)

e f ,N+1(k,k− f −1) = e f ,N+1(k)+ eI
p, f (k− f −1)Δ ∗

f ,N+1(k−1)

Δ ∗
f ,N+1(k) = Δ ∗

f ,N+1(k−1)+ sI,N(k−1)e f ,N+1(k)
Int(F) block:

FN+1(k,k− f −1) = λFN+1(k−1,k− f −2)
+γp, f (k− f −1)|e f ,N+1(k,k− f −1)|2

c′f ,N+1(k) = λFN+1(k−1,k− f−2)
FN+1(k,k− f−1)

s′f ,N+1(k) = γp, f (k− f −1)
e∗f ,N+1(k,k− f−1)
FN+1(k,k− f−1)

eI
p, f +1(k− f −1) = eI

p, f (k− f −1)− e f ,N+1(k,k− f −1)ρ∗
p, f +1(k−1)

ρ∗
p, f +1(k) = ρ∗

p, f +1(k−1)+ s′f ,N+1(k)e
I
p, f +1(k− f −1)

γp, f +1(k− f −1) = c′f ,N+1(k)γp, f (k− f −1)
As (p, f) → (p+1, f):

IBP block:
Ip, f (k− f) = λ Ip, f (k− f −1)+ γp, f (k− f)|eI

p, f (k− f)|2

sI,N(k) = γp, f (k− f)
eI∗

p, f (k− f)
Ip, f (k− f)

eb,N+1(k,k− f) = eb,N+1(k)+ eI
p, f (k− f)Δ∗

b,N+1(k−1)

Δ ∗
b,N+1(k) = Δ ∗

b,N+1(k−1)+ sI,N(k)eb,N+1(k)
Int(P) block:

BN+1(k,k− f) = λBN+1(k−1,k− f −1)+ γp, f (k− f)|eb,N+1(k,k− f)|2

c′b,N+1(k) = λBN+1(k−1,k− f−1)
BN+1(k,k− f)

s′b,N+1(k) = γp, f (k− f)
e∗b,N+1(k,k− f)
BN+1(k,k− f)

eI
p+1, f (k− f) = eI

p, f (k− f)− eb,N+1(k,k− f)ρ∗
p+1, f (k−1)

ρ∗
p+1, f (k) = ρ∗

p+1, f (k−1)+ s′b,N+1(k)e
I
p+1, f (k− f)

γp+1, f (k− f) = c′b,N+1(k)γp, f (k− f)

128 Jenq-Tay Yuan

where Qp, f (k) contains the first (N + 1) rows of Q(k), whereas S(k) contains the

remaining rows; O(k−N)×(N+1) is a null matrix of order (k−N)× (N +1). Since C f
N

possible sequences can be used, the (N +1)× (N +1) matrix Rp, f (k) in (5.30) can

display C f
N different forms, all of which contain one f × f lower triangular matrix

(upper-left submatrix of Rp, f (k)) and one p× p upper triangular matrix (lower-right
submatrix of Rp, f (k)) with zero elements filling the (f + 1)st row, except for the
(f + 1, f + 1)st element. More specifically, our results indicate that Rp, f (k) using
the BFBFBF. . . sequence can be shown to be

Rp, f (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γF,1 0 . . . 0 × × ×

×
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . .

.

.

.

.

.

.
. . . γF,2 0

.

.

.
.
.
.

. . .
. . .

.

.

.
× γF,3 × × ×

0 0 I
1
2

p, f (k− f) 0 0
× ·· · · · · × × γB,1 × . . . ×
.
.
.

. . .
. . .

.

.

.
.
.
. 0 γB,2

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . . ×

× × × 0 . . . 0 γB,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.31)

in which γF,1 = F
1
2

N (k,k− f), γF,2 = F
1
2

4 (k− f +2,k− f), γF,3 = F
1
2

2 (k− f +1,k− f),

γB,1 = B
1
2
1 (k− f ,k− f), γB,2 = B

1
2
3 (k− f +1,k− f), γB,3 = B

1
2
N−1(k−1,k− f), where

F
1
2

m (k− j,k− f) and B
1
2
m(k− j,k− f) are the square roots of the minimum sum of

mth-order intermediate forward and backward prediction error squares, respectively,

whereas I
1
2
p, f (k− f) is the square root of the minimum sum of (p, f)th-order inter-

polation error square; the symbol × denotes an element whose value is not of direct
interest. We refer to the result in (5.30) as the modified QR-decomposition for inter-
polation and refer to the form in Rp, f (k) of (5.31) as the standard lower/upper (LU)
triangular form for a (p, f)th-order interpolator based on the QR-decomposition.
For example, a special case of (5.31) identified by sequence BFBF for a (2,2)th-
order LSL interpolator can be expressed as

R2,2(k) =

⎡
⎢⎢⎢⎢⎣

F
1
2

4 (k,k−2) 0 × × ×

× F
1
2

2 (k−1,k−2) × × ×

0 0 I
1
2

2,2(k−2) 0 0

× × × B
1
2
1 (k−2,k−2) ×

× × × 0 B
1
2
3 (k−1,k−2)

⎤
⎥⎥⎥⎥⎦

(5.32)

Moreover, setting (p, f) = (N,0), the lower-right p× p upper triangular submatrix
of Rp, f (k) in (5.31) yields the following well-known upper triangular matrix after
an unitary matrix is used to develop the QRD-LSL prediction algorithm.

5 QRD Least-Squares Lattice Algorithms 129

RN,0(k−1) =

⎡
⎢⎢⎢⎢⎢⎣

B
1
2
0 (k−1) × × . . . ×

B
1
2
1 (k−1) × . . . ×

B
1
2
2 (k−1) . . . ×

O . . .
.
.
.

B
1
2
N−1(k−1)

⎤
⎥⎥⎥⎥⎥⎦

(5.33)

5.4.2 SRF QRD-LSL interpolation algorithm

The SRF QRD-LSL interpolation algorithm is derived according to the following
seven stages. In each stage, either a single Givens rotation or a sequence of Givens
rotations is applied. In the derivation, matrices are represented in uppercase boldface
type and column vectors in lowercase boldface type, whereas scalars appear in plain
text type. The dimensions of matrices and vectors appear as subscripts. For example,
Am×k and pm represent a m× k matrix and a m×1 column vector, respectively.

1. We first write (5.3), at time k−2, as εεε I
p, f (k− f −2) = XN+1(k−2)bp, f (k− f −

2) and pre-multiply both sides of the equation by ΛΛΛ
1
2 (k−2), where ΛΛΛ(k−2) =

diag[λ k−2,λ k−3, . . . ,1] is the (k − 1)× (k − 1) exponential weighting matrix
in which 0 � λ ≤ 1 is the forgetting factor. Next, we apply a sequence of N
Givens rotations that define the (k−1)× (k−1) orthogonal matrix Q(k−2) =[

Qp, f (k−2)
S(k−2)

]
such that matrix Qp, f (k−2) transforms data matrix XN+1(k−2)

into matrix

Rp, f (k−2) =

⎡
⎣

L f× f (k−2) p f (k−2) B f×p(k−2)

0T
f I

1
2
p, f (k− f −2) 0T

p

Ap× f (k−2) pp(k−2) Up×p(k−2)

⎤
⎦ , (5.34)

which is in the standard LU triangular form for a (p, f)th-order interpolator as
shown in (5.31) with x(k−2) being the most recent data sample used. Notably,
L f× f (k− 2) is the f × f lower triangular matrix and Up×p(k− 2) is the p× p
upper triangular matrix. We may thus write

ΛΛΛ
1
2 (k−2)Q(k−2)εεε I

p, f (k− f −2)

=ΛΛΛ
1
2 (k−2)

[
Rp, f (k−2)

O(k−N−2)×(N+1)

]
bp, f (k− f −2). (5.35)

2. We may apply the transformations produced by

[
1

Q(k−2)

]
and Q(k−2) to

the data vectors xk(k−1) = [x∗(0),x∗(1), . . . ,x∗(k−1)]T and xk−1(k−N−3) =
[0, . . . ,0,x∗(0), . . . ,x∗(k−N −3)]T, respectively. The two data vectors contain-
ing the next future and next past data samples for consideration, respectively,
will serve the purpose of deriving the order-updated recursions for the interpo-
lation error in the later stages. We may thus write

130 Jenq-Tay Yuan

[
1

Q(k−2)

]
ΛΛΛ

1
2 (k−1)xk(k−1)

= [λ
k−1

2 x∗(0), fT
f (k−1),Δ f ,N+1(k−1), fT

p(k−1), fT
k−N−2(k−1)]T (5.36)

and

Q(k−2)ΛΛΛ
1
2 (k−2)xk−1(k−N −3)

= [bT
f (k−2),Δb,N+1(k−2),bT

p(k−2),bT
k−N−2(k−2)]T, (5.37)

where Δ f ,N+1(k − 1) and Δb,N+1(k − 2) are auxiliary parameters which will
be used later to obtain the intermediate prediction errors. All vectors appear-
ing on the right-hand-side of (5.36) and (5.37) are defined merely for conve-
nience of presentation; their elements are not of direct interest. By appending
both transformed data vectors obtained in (5.36) and (5.37), respectively, as

the leftmost column and rightmost column of the matrix defined by ΛΛΛ
1
2 (k−2)[

Rp, f (k−2)
O(k−N−2)×(N+1)

]
in (5.35) [see the box in (5.38)], together with the new data

sample vector for time k at the bottom row, we obtain the following expanded
matrix D(k), which can be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

λ
k
2 x∗(0) 0T

f 0 0T
p 0

λ
1
2 f f (k−1) λ

1
2 L f× f (k−2) λ

1
2 p f (k−2) λ

1
2 B f×p(k−2) λ

1
2 b f (k−2)

λ
1
2 Δ f ,N+1(k−1) 0T

f λ
1
2 I

1
2
p, f (k− f −2) 0T

p λ
1
2 Δb,N+1(k−2)

λ
1
2 fp(k−1) λ

1
2 Ap× f (k−2) λ

1
2 pp(k−2) λ

1
2 Up×p(k−2) λ

1
2 bp(k−2)

λ
1
2 fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ

1
2 bk−N−2(k−2)

x∗(k) . . . x∗(k− f −1) . . . x∗(k−N −2)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.38)

3. Next, we apply a sequence of Givens rotations to annihilate all elements in the
bottom row of the matrix D(k) except for the (k + 1,1)th, (k + 1, f + 2)th, and
(k+1,N +3)th elements. These rotations include an appropriate combination of
a sequence of f Givens rotations proceeding leftwards from the (k +1, f +1)th
element to the (k + 1,2)th element and a sequence of p Givens rotations pro-
ceeding rightwards from the (k+1, f +3)th element to the (k+1,N +2)th ele-
ment with the order in which the elements are annihilated in accordance with
the sequencing chosen (e.g., BFBFBF. . .) to preserve the standard LU triangu-
lar form for interpolator in the transformed matrix. Note that any sequencing
between F and B is permissible. Accordingly, there are C f

N possible sequences.
For example, if the sequence BFBFBF. . . is chosen, then the elements at the
bottom row of D(k) in the following order: (k + 1, f + 3), (k + 1, f + 1),
(k+1, f +4), (k+1, f), (k+1, f +5), (k+1, f −1), . . . , (k+1,N+2), (k+1,2)
will be annihilated successively. Such a sequence of N Givens rotations defines
the (k +1)× (k +1) orthogonal matrix L(k) that transforms the matrix D(k) to
the matrix E(k) as follows:

L(k)D(k) = E(k), (5.39)

5 QRD Least-Squares Lattice Algorithms 131

where E(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ
k
2 x∗(0) 0T

f 0 0T
p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

λ
1
2 Δ f ,N+1(k−1) 0T

f λ
1
2 I

1
2
p, f (k− f −2) 0T

p λ
1
2 Δb,N+1(k−2)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

λ
1
2 fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ

1
2 bk−N−2(k−2)

ε∗f ,N+1(k,k− f −1) 0T
f ε∗ 0T

p ε∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Since x∗(k − f − 1) at the bottom row of D(k) is the present data sample to
be estimated by its p past and f future neighboring data samples, it was not
annihilated by L(k) in the above transformation. Consequently, a non-zero
quantity, ε∗, was generated at the bottom row of E(k). By using the fact that
orthogonal rotations are norm preserving, one can show that ε∗ is actually the
complex conjugate of the (p, f)th-order angle-normalized interpolation error,
ε I∗

p, f (k− f −1), with x(k−1) being the most recent data sample used. Notably,
due to the non-zero quantity ε∗ at the bottom row of E(k), the (k + 1,1)th
and (k + 1,N + 3)th elements of E(k) in (5.39) are ε∗f ,N+1(k,k − f − 1) and
ε∗b,N+1(k− 1,k− f − 1), which are the angle-normalized intermediate forward
and backward prediction errors of order N +1, respectively.

4. Both the conventional angle-normalized FP error, ε f ,N+1(k), and the angle-
normalized backward prediction error, εb,N+1(k− 1), appear if the (k + 1, f +
2)th element of E(k) is annihilated. This can be accomplished by applying a
single Givens rotation to E(k). We may thus write

JI,N(k−1)E(k) = F(k), (5.40)

where JI,N(k−1) =

[I f +1
cI,N(k−1) s∗I,N(k−1)

Ik− f−2
−sI,N(k−1) cI,N(k−1)

]
and F(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
k
2 x∗(0) 0T

f 0 0T
p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

Δ f ,N+1(k) 0T
f I

1
2

p, f (k− f −1) 0T
p Δb,N+1(k−1)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

λ
1
2 fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ

1
2 bk−N−2(k−2)

ε∗f ,N+1(k) 0T
f 0 0T

p ε∗b,N+1(k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5. The annihilation in (5.40) has the effect of computing both the intermediate for-
ward and backward prediction errors from the conventional forward and back-
ward prediction errors. By taking out a scaling factor [i.e., the square root term
of each row of E(k) and F(k)] from each row of matrices E(k) and F(k) [31], the
rows before and after the Givens rotation in (5.40) is denoted, respectively, by

132 Jenq-Tay Yuan

E(k) = E1(k)E2(k)

= diag

[√
λ k, . . . ,

√
λ Ip, f (k− f −2), . . . ,

√
γp, f (k− f −1)

]

⎡
⎢⎢⎢⎢⎣

x∗(0) 0T
f 0 0T

p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

Δ f ,N+1(k−1) 0T
f 1 0T

p Δb,N+1(k−2)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p bk−N−2(k−2)

e∗f ,N+1(k,k− f −1) 0T
f eI∗

p, f (k− f −1) 0T
p e∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎦

, (5.41)

and

F(k) = F1(k)F2(k)

= diag

[√
λ k, . . . ,

√
Ip, f (k− f −1), . . . ,

√
γ ′p, f (k− f −1)

]

⎡
⎢⎢⎢⎢⎢⎣

x∗(0) 0T
f 0 0T

p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

Δ f ,N+1(k) 0T
f 1 0T

p Δ b,N+1(k−1)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p bk−N−2(k−2)

e∗f ,N+1(k) 0T
f 0 0T

p e∗b,N+1(k−1)

⎤
⎥⎥⎥⎥⎥⎦

. (5.42)

Some elements of the matrices in (5.41) and (5.42) and the corresponding ele-
ments of the matrices in (5.19) and (5.20), respectively, can be related as fol-
lows: ka = λ Ip, f (k− f − 2), kb = γp, f (k− f − 1), a1 = 1, a2 = Δ f ,N+1(k− 1),
a3 = Δ b,N+1(k − 2), b1 = eI∗

p, f (k − f − 1), b2 = e∗f ,N+1(k,k − f − 1), b3 =
e∗b,N+1(k−1,k− f −1), and k′a = Ip, f (k− f −1), k′b = γ ′p, f (k− f −1), a′1 = 1,

a′2 =Δ f ,N+1(k), a′3 =Δ b,N+1(k−1), b′1 = 0, b′2 = e∗f ,N+1(k), b′3 = e∗b,N+1(k−1).
Notably, “e” represents the a priori estimation error. Substituting ka, k′a, kb, b1,
a2, a′2, b2, b′2, a3, a′3, b3, and b′3 into (5.21), (5.25), (5.28), and (5.29) (by letting
i = 2 and i = 3) yields

Ip, f (k− f −1) = λ Ip, f (k− f −2)+ γp, f (k− f −1)|eI
p, f (k− f −1)|2, (5.43)

sI,N(k−1) = γp, f (k− f −1)
eI∗

p, f (k− f −1)

Ip, f (k− f −1)
, (5.44)

e f ,N+1(k) = e f ,N+1(k,k− f −1)− eI
p, f (k− f −1)Δ ∗

f ,N+1(k−1), (5.45)

Δ ∗
f ,N+1(k) = Δ ∗

f ,N+1(k−1)+ sI,N(k−1)e f ,N+1(k), (5.46)

eb,N+1(k) = eb,N+1(k,k− f)− eI
p, f (k− f)Δ∗

b,N+1(k−1), (5.47)

Δ ∗
b,N+1(k) = Δ ∗

b,N+1(k−1)+ sI,N(k)eb,N+1(k). (5.48)

5 QRD Least-Squares Lattice Algorithms 133

Note that the a priori IFP error e f ,N+1(k,k− f − 1) in (5.45) is still unknown
whereas the a priori FP error e f ,N+1(k) in (5.45) has already been computed
by using the SRF QRD-LSL prediction algorithm (see Table 5.1), which will
be derived in Section 5.4.3. In order to compute the a priori IFP error, we
“reverse” (5.45) in formulation such that, given the a priori FP error, the a
priori IFP error can be computed as

e f ,N+1(k,k− f −1) = e f ,N+1(k)+ eI
p, f (k− f −1)Δ ∗

f ,N+1(k−1). (5.49)

Similarly, (5.47) can be reformulated as

eb,N+1(k,k− f) = eb,N+1(k)+ eI
p, f (k− f)Δ ∗

b,N+1(k−1), (5.50)

which also corresponds to the “reversed” formulation. Notably, (5.49) and (5.50)
correspond to (5.11) and (5.10), respectively, and these computed intermediate
prediction errors are then used to compute the order-updated interpolation errors
in the following stages, as (p, f) → (p, f +1) and as (p, f) → (p+1, f).

6. To obtain the order-updated interpolation error of order (p, f + 1) from that of
the current order (p, f) as an additional future data sample is used, we proceed
with by transforming the matrix E(k) into the standard LU triangular form for a
(p, f +1)st-order interpolator. This transformation can be achieved by initially
applying an (k + 1)× (k + 1) orthogonal matrix P(k) to E(k). The matrix P(k)
represents the combined transformation produced by a sequence of (k −N −
2) Givens rotations, which has the effect of annihilating all the (k − N − 2)
elements of vector λ 1

2 fk−N−2(k−1) in the first column of matrix E(k). We may
thus write

P(k)E(k) = G(k), (5.51)

where G(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
1
2 F

1
2

N+1(k−1) 0T
f 0 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

λ
1
2 Δ f ,N+1(k−1) 0T

f λ
1
2 I

1
2
p, f (k− f −2) 0T

p λ
1
2 Δb,N+1(k−2)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ
1
2 b′k−N−2(k−2)

ε∗f ,N+1(k,k− f −1) 0T
f εI∗

p, f (k− f −1) 0T
p ε∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where λFN+1(k − 1) = λ k|x(0)|2 + ‖λ 1
2 fk−N−2(k − 1)‖2 is the minimum

weighted sum of the FP error square. This transformation is followed by rotat-
ing the element λ 1

2 Δ f ,N+1(k − 1) in the first column of matrix G(k) into the
(1, f + 2)th element of the matrix such that the resulting matrix C(k) in (5.52)
will be in standard LU triangular form that can be used to compute the order-
updated interpolation error. We may thus write

134 Jenq-Tay Yuan

⎡
⎢⎢⎢⎣

cΔ (k−1) s∗Δ (k−1)

I f

−sΔ (k−1) cΔ (k−1)

Ik− f−1

⎤
⎥⎥⎥⎦G(k) = C(k), (5.52)

where C(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γF 0T
f λ

1
2 ρp, f +1(k−1) 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f γI 0T

p ×

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ
1
2 b′k−N−2(k−2)

ε∗f ,N+1(k,k− f −1) 0T
f εI∗

p, f (k− f −1) 0T
p ε∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

in which γI = λ 1
2 I

1
2
p, f +1(k− f −2); the (1,1)th element of C(k), γF = λ 1

2 F
1
2

N+1
(k − 1,k − f − 2), is the square root of the minimum weighted sum of the
IFP error square and ρp, f +1(k−1) is the interpolation auxiliary parameter that
will be used in stage 7. Notably, the (f + 2, f + 2)th element of C(k) becomes

λ 1
2 I

1
2
p, f +1(k− f −2). Clearly, the upper-left (N +2)×(N +2) submatrix of C(k)

denotes the standard LU triangular form for a (p, f +1)st order interpolator and
is used in the next stage to compute the order-updated interpolation error of
order (p, f +1).

7. We are now positioned to obtain the order-updated recursion (p, f)→ (p, f +1)
for the interpolation error as an additional future data sample is used by applying
one single Givens rotation to C(k) so as to annihilate ε∗f ,N+1(k,k− f −1) at the
bottom row of C(k). We thus obtain

J′F,N+1(k)C(k) = J(k), (5.53)

where J′F,N+1(k) =

⎡
⎢⎣

c′f ,N+1(k) s′
∗
f ,N+1(k)

Ik−1

−s′f ,N+1(k) c′f ,N+1(k)

⎤
⎥⎦ and J(k) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
1
2

N+1(k,k− f −1) 0T
f ρp, f +1(k) 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f λ

1
2 I

1
2
p, f +1(k− f −2) 0T

p ×

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ
1
2 b′k−N−2(k−2)

0 0T
f εI∗

p, f +1(k− f −1) 0T
p ε∗b,N+2(k,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similar to the procedure in (5.41) and (5.42), scalar factors in the first row and
the bottom row in matrices C(k) and J(k) can be taken out:

5 QRD Least-Squares Lattice Algorithms 135

C(k) = C1(k)C2(k)

= diag

[√
λFN+1(k−1,k− f −2), . . . ,

√
γp, f (k− f −1)

]

⎡
⎢⎢⎢⎢⎣

1 0T
f ρ p, f +1(k−1) 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f × 0T

p ×

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p b′k−N−2(k−2)

e∗f ,N+1(k,k− f −1) 0T
f eI∗

p, f (k− f −1) 0T
p e∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎦

, (5.54)

and

J(k) = J1(k)J2(k)

= diag

[√
FN+1(k,k− f −1), . . . ,

√
γp, f +1(k− f −1)

]

⎡
⎢⎢⎢⎢⎢⎣

1 0T
f ρ p, f +1(k) 0T

p ×
f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f × 0T

p ×
fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p b
′
k−N−2(k−2)

0 0T
f eI∗

p, f +1(k− f −1) 0T
p e∗b,N+2(k,k− f −1)

⎤
⎥⎥⎥⎥⎥⎦

. (5.55)

Some elements of matrices C1(k) and C2(k) in (5.54) and matrices J1(k)
and J2(k) in (5.55) and the corresponding elements of the matrices in (5.19)
and (5.20), respectively, can be related as follows: ka = λFN+1(k−1,k− f −2),
kb = γp, f (k − f − 1), a1 = 1, a2 = ρ p, f +1(k − 1), b1 = e∗f ,N+1(k,k − f − 1),
b2 = eI∗

p, f (k− f −1), and k′a = FN+1(k,k− f −1), k′b = γp, f +1(k− f −1), a′1 = 1,

a′2 = ρ p, f +1(k), b′1 = 0, b′2 = eI∗
p, f +1(k− f − 1). Substituting ka, k′a, kb, b1, a2,

a′2, b2, and b′2 into (5.21), (5.22), (5.25), (5.28), and (5.29) (by letting i = 2)
yields

FN+1(k,k− f −1) = λFN+1(k−1,k− f −2)

+ γp, f (k− f −1)|e f ,N+1(k,k− f −1)|2, (5.56)

c′f ,N+1(k) =
λFN+1(k−1,k− f −2)

FN+1(k,k− f −1)
, (5.57)

s′f ,N+1(k) = γp, f (k− f −1)
e∗f ,N+1(k,k− f −1)

FN+1(k,k− f −1)
, (5.58)

eI
p, f +1(k− f −1) = eI

p, f (k− f −1)− e f ,N+1(k,k− f −1)ρ∗
p, f +1(k−1),

(5.59)

ρ∗
p, f +1(k) = ρ∗

p, f +1(k−1)+ s′f ,N+1(k)e
I
p, f +1(k− f −1), (5.60)

γp, f +1(k− f −1) = c′f ,N+1(k)γp, f (k− f −1). (5.61)

136 Jenq-Tay Yuan

Equations (5.43), (5.44), (5.49), (5.46) (summarized in the IFP block of
Table 5.2) and (5.56), (5.57), (5.58), (5.59), (5.60), and (5.61) (summarized in
the Int(F) block of Table 5.2) constitute the SRF QRD-LSL interpolation algo-
rithm as (p, f) → (p, f + 1). However, eI

p, f +1(k− f − 1) computed in (5.59)
is actually the a priori interpolation error of order (p, f +1). The a posteriori
interpolation error of order (p, f +1) can then be computed by

ε I
p, f +1(k− f −1) = γp, f +1(k− f −1)eI

p, f +1(k− f −1). (5.62)

The derivation of the order-updated interpolation error of order (p, f) → (p +
1, f) can be similarly obtained.

5.4.3 SRF QRD-LSL prediction algorithm and SRF joint process
estimation

The widely known SRF QRD-LSL prediction algorithm, which consists of both
forward prediction (FP) block and backward prediction (BP) block summarized in
Table 5.1, is actually a special case of the SRF QRD-LSL interpolation algorithm.
The SRF QRD-LSL prediction algorithm in FP block and BP block can be directly
derived by setting (p, f) = (0,N) in the IFP block and (p, f) = (N,0) in the IBP
block, respectively. In deriving the SRF QRD-LSL prediction algorithm, the fol-
lowing results have been used. eI

0,N(k−N−1) = eb,N(k−1), e f ,N+1(k,k−N−1) =
e f ,N(k), I0,N(k−N −1) = BN(k−1), eI

N,0(k) = e f ,N(k), eb,N+1(k,k) = eb,N(k−1),
IN,0(k) = FN(k). The FP block and the BP block can also be reduced directly from
Int(P) block and Int(F) block by setting (p, f) = (N,0) and (p, f) = (0,N), respec-
tively.

The SRF QRD-LSL prediction algorithm provides the mathematical founda-
tion for the joint process estimation displayed in Figure 5.1 and is used as
a sub-system to solve the joint process estimation problem where two opti-
mal estimations are performed jointly. The two optimal estimations are (a)
the forward reflection coefficients π f ,m(k) in the FP block and the backward
reflection coefficients πb,m(k) in the BP block both of which characterize a
multistage lattice predictor with input x(k) in the LS sense; (b) the regression
coefficients pm(k) that characterize a LS estimator of d(k) to be developed
below.

The SRF joint process estimation is developed by first considering a special case
of (5.30) by setting (p, f) = (m,0), which transforms the data matrix Xm(k − 1)

5 QRD Least-Squares Lattice Algorithms 137

into the following upper triangular form that clearly is related to the QRD-LSL
prediction, with x(k−1) being the most recent data sample used,

Q(k−1)ΛΛΛ
1
2 (k−1)Xm(k−1) =

⎡
⎣

Rm−1,0(k−1) pb,m−1(k−1)

0T λ 1
2 B

1
2
m−1(k−1)

O(k−m)×(m−1) 0

⎤
⎦ , (5.63)

where Rm−1,0(k − 1) is a (m − 1) × (m − 1) upper triangular matrix as shown
in (5.33) and pb,m−1(k−1) is a (m−1)×1 vector whose elements are not of direct
interest. The same k×k unitary matrix Q(k−1) is also applied to a weighted desired
signal vector to obtain

Q(k−1)ΛΛΛ
1
2 (k−1)d(k−1) =

[
p(k−1)

pm−1(k−1)
v(k−1)

]
, (5.64)

where dT(k−1) = [d∗(0),d∗(1), . . . ,d∗(k−1)], pT(k−1) = [p0(k−1), p1(k−1),
. . . , pm−2(k−1)], and v(k − 1) is a vector containing the remaining (k −m) ele-
ments. Subtracting (5.64) from (5.63), the latter of which has been first post-
multiplied by a m×1 tap weight vector w(k−1), yields the following transformed
estimation error vector

Q(k−1)ΛΛΛ
1
2 (k−1)εεε(k−1)

=

[
p(k−1)

pm−1(k−1)
v(k−1)

]
−

⎡
⎣

Rm−1,0(k−1) pb,m−1(k−1)

0T λ 1
2 B

1
2
m−1(k−1)

O(k−m)×(m−1) 0

⎤
⎦w(k−1), (5.65)

where εεε(k−1) = [ε∗(0),ε∗(1), . . . ,ε∗(k−1)]T = d(k−1)−Xm(k−1) ·w(k−1) is
the error vector whose element ε∗(k−1) is the error in estimating d∗(k−1) of the
desired response from a linear combination of x∗(k−m), . . . ,x∗(k− 1) when using
the tap weight vector w(k−1) at time (k−1).

The optimum tap weight vector, if desired, can be obtained from

[
p(k−1)

pm−1(k−1)

]

=

[
Rm−1,0(k−1) pb,m−1(k−1)

0T λ 1
2 B

1
2
m−1(k−1)

]
wo(k − 1) using back-substitution and this

choice of wo(k−1) gives a minimized error vector as

min
wo(k−1)

‖εεε(k−1)‖ = ‖v(k−1)‖. (5.66)

Given new observation x∗(k) along with the new desired response d∗(k)
received at time k and by appending the transformed desired data vector in (5.64)
as the rightmost column of (5.63) followed by a sequence of (m − 1) Givens
rotations proceeding rightwards from the (k + 1,1)th element to the
(k + 1,m − 1)th element that are used to annihilate the bottom row vector
xH

m−1(k) = [x∗(k),x∗(k−1), . . . , x∗(k−m+2)] yields

138 Jenq-Tay Yuan

Tm−1(k)

⎡
⎢⎢⎢⎣

λ 1
2 Rm−1,0(k−1) pb,m−1(k−1) λ 1

2 p(k−1)

0T λ 1
2 B

1
2
m−1(k−1) λ 1

2 pm−1(k−1)
O 0 λ 1

2 v(k−1)
xH

m−1(k) x∗(k−m+1) d∗(k)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Rm−1,0(k) pb,m−1(k) p(k)

0T λ 1
2 B

1
2
m−1(k−1) λ 1

2 pm−1(k−1)
O 0 λ 1

2 v(k−1)
0T ε∗b,m−1(k) ε∗m−1(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
L(k)

, (5.67)

where the sequence of Givens rotations used in Tm−1(k) = J0(k) ·J1(k) · . . . ·Jm−2(k)
turns out to be the same cosine and sine parameters used in the FP block. As a
result of this transformation, both the (m− 1)th-order angle-normalized backward
prediction error ε∗b,m−1(k) and the (m− 1)th-order angle-normalized joint process
estimation error ε∗m−1(k) are produced.

The order-updated angle-normalized joint process estimation error ε∗m(k) can be
obtained by applying the following Givens rotation to matrix L(k) to annihilate the
(k +1,m)th element and yields

[
Im−1

cb,m−1(k) s∗b,m−1(k)
Ik−m

−sb,m−1(k) cb,m−1(k)

]
L(k) =

⎡
⎢⎢⎢⎢⎢⎣

Rm−1,0(k) pb,m−1(k) p(k)

0T B
1
2
m−1(k) pm−1(k)

O 0 λ
1
2 v(k−1)

0T 0 ε∗m(k)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H(k)

. (5.68)

By taking out a scaling factor from each row of matrices L(k) and H(k), the rows
before and after the Givens rotation in (5.68) is denoted, respectively, by

L(k) = L1(k)L2(k) = diag
[
. . . ,

√
λBm−1(k−1), . . . ,

√
γm−1(k)

]

⎡
⎣

Rm−1,0(k) pb,m−1(k) p(k)
0T 1 pm−1(k−1)

O 0 λ
1
2 v(k−1)

0T e∗b,m−1(k) e∗m−1(k)

⎤
⎦ , (5.69)

and

H(k) = H1(k)H2(k) = diag
[
. . . ,

√
Bm−1(k), . . . ,

√
γm(k)

]
⎡
⎣

Rm−1,0(k) pb,m−1(k) p(k)
0T 1 pm−1(k)

O 0 λ
1
2 v(k−1)

0T 0 e∗m(k)

⎤
⎦ . (5.70)

Some elements of the matrices in (5.69) and (5.70) and the corresponding ele-
ments of the matrices in (5.19) and (5.20), respectively, can be related as fol-
lows: ka = λBm−1(k−1), kb = γm−1(k), a1 = 1, a2 = pm−1(k−1), b1 = e∗b,m−1(k),
b2 = e∗m−1(k), k′a = Bm−1(k), k′b = γm(k), a′1 = 1, a′2 = pm−1(k), b′1 = 0, and

5 QRD Least-Squares Lattice Algorithms 139

b′2 = e∗m(k). Substituting ka, k′a, kb, b1, a2, a′2, b2, and b′2 into (5.22), (5.25), (5.28),
and (5.29) (by letting i = 2) yields the following SRF joint process estimation, which
is also summarized in Table 5.1.

SRF joint process estimation:

em(k) = em−1(k)− eb,m−1(k)p∗m−1(k−1), (5.71)

p∗m−1(k) = p∗m−1(k−1)+ sb,m−1(k)em(k), (5.72)

where cb,m−1(k) = λBm−1(k−1)
Bm−1(k) and sb,m−1(k) = γm−1(k)

e∗b,m−1(k)
Bm−1(k) in which

γm(k) = γm−1(k)cb,m−1(k). The a posteriori estimation error can be computed
by εm(k) = γm(k)em(k).

5.5 SRF (QRD-LSL)-Based RLS Algorithm

For many applications such as system identification, adaptive equalization, and
active noise control, wherein the filter weights of the corresponding LS algorithm
are required. The SRF QRD-LSL interpolation algorithm can be applied to imple-
ment the RLS algorithm in the transversal structure that generates the desired weight
vector and the resulting algorithm is referred to as the SRF (QRD-LSL)-based RLS
algorithm. The (N + 1)st-order RLS algorithm with the tap weight vector at time
k, wN+1(k), can be calculated recursively in time using wN+1(k) = wN+1(k− 1)+
kN+1(k)e∗(k) (see Table 2.5 in Chapter 2), where kN+1(k) = R−1(k) ·xN+1(k) is the
Kalman gain vector.

The Kalman gain vector can also be calculated as a particular set of normal-
ized least-squares interpolation errors [23]:

kT
N+1(k) =

[
ε I

N,0(k)
IN,0(k)

, . . . ,
ε I

p+1, f−1(k− f +1)

Ip+1, f−1(k− f +1)
,
ε I

p, f (k− f)

Ip, f (k− f)
,

ε I
p−1, f +1(k− f −1)

Ip−1, f +1(k− f −1)
, . . . ,

ε I
0,N(k−N)

I0,N(k−N)

]
. (5.73)

Equation (5.73) can be proved as follows. From (5.4), we have bp, f (k − f) =
R−1(k)ip, f (k− f) = Ip, f (k− f) ·R−1(k)

[
0T

f 1 0T
p

]T
. Taking the Hermitian on both

sides of the above equation and realizing that the correlation matrix is Hermitian
[i.e., RH(k) = R(k)], we have

140 Jenq-Tay Yuan

[
0T

f 1 0T
p

]
·R−1(k) =

1
Ip, f (n− f)

·bH
p, f (n− f). (5.74)

We then post-multiply both sides of the (5.74) by xN+1(k). Using kN+1(k) =
R−1(k) · xN+1(k) and (5.2) [by setting i = k− f in (5.2)] yields the (f + 1)st ele-
ment of the Kalman gain vector.

[kN+1(k)] f +1 =
[

0T
f 1 0T

p

]
·R−1(k) ·xN+1(k) (5.75)

=
1

Ip, f (k− f)
·bH

p, f (k− f) ·xN+1(k) =
ε I

p, f (k− f)

Ip, f (k− f)
(5.76)

By adjusting the values of p and f with p + f = N, all the elements of the Kalman
gain vector in (5.73) can be calculated. Equation (5.74) reveals the connection
between linear interpolation and the inverse of the time-average correlation matrix
that is required to obtain the Kalman gain vector.

The Kalman gain vector is the most decorrelated version of the normalized input
vector, because each element of the Kalman gain vector in (5.73) is the optimum
two-sided prediction residual of each corresponding element of the input vector
xN+1(k). Accordingly, the Kalman gain vector corresponds to the least redundant
version of the input vector. Therefore, the elements of kN+1(k) may be responsi-
ble for the fast convergence of the RLS algorithm. The SRF QRD-LSL interpo-
lation algorithm can be used to calculate kN+1(k) in (5.73) in an order-recursive
manner through a divide and conquer method [23]; the resulting SRF (QRD-LSL)-
based RLS algorithm requires O[N log2 N] operations for a transversal filter of
order N.

5.6 Simulations

All simulations were run on a PC, in a floating-point environment, with 10-tap
weights. The effective number of mantissa bits in the floating-point representa-
tion is reduced to observe the finite-precision effects by truncating the mantissa
at a predefined position without affecting the exponent. Three algorithms were
applied to perform adaptive prediction of an autoregressive (AR) process that
closely follows the one presented in [13], and their numerical robustness were eval-
uated in this scenario. The observation is x(k) = xAR(k) + w1(k), where xAR(k) =
−∑10

i=1 aixAR(k− i)+w2(k) is an AR process of order 10 with an eigenvalue spread
approximately 1020. Both w1(k) and w2(k) are independent white noise processes
with zero mean. The variance of w2(k) is set to cause xAR(k) to have a variance
of 0 dB, whereas the variance of w1(k) is chosen such that the signal-to-noise
ratio is 30 dB. The desired response is therefore x(k) while the observations are
[x(k−1),x(k−2), . . . ,x(k−10)].

Figure 5.2 compares three learning curves obtained by ensemble-averaging the
prediction error squares over 200 independent experimental trials. The three learning

5 QRD Least-Squares Lattice Algorithms 141

0 0.5 1 1.5 2

x 10
6

−30

−20

−10

0

10

20

30

40

iterations (k)

20
0

en
se

m
bl

e−
av

er
ag

ed
 s

qu
ar

e
er

ro
r

(d
B

)
(A) Conventional RLS (15 bits)
(B) SRF (QRD−LSL)−based RLS algorithm (12 bits)
(C) SRF joint process estimation (5 bits)

(A)
(C)

(B)

Fig. 5.2 Learning curves of three algorithms in a finite-precision environment.

curves are the results of using a conventional RLS algorithm of O[N2] complexity in
Table 2.5 (in Chapter 2), the SRF (QRD-LSL)-based RLS algorithm of O[N log2 N]
complexity, and the joint process estimation of O[N] complexity in Table 5.1
without computing the optimal tap weight vector, all with a forgetting factor of
λ = 0.996 and a regularization parameter δ = 0.004. Our simulations demonstrated
that when exact arithmetic is used, all three algorithms yielded exactly the same
result, but they exhibited various unstable behaviors with finite-precision compu-
tation. While the conventional RLS algorithm became unacceptable for less than
16 mantissa bits, the SRF (QRD-LSL)-based RLS algorithm with 12 mantissa bits
ran successfully for two million iterations (at which point the experiment was ter-
minated). Although the mean square error produced by the joint process estima-
tion based on the QRD-LSL prediction algorithm is a little higher than that of the
SRF (QRD-LSL)-based RLS algorithm, it still produces useful results with only five
mantissa bits. This is because the joint process section is subordinate to the predic-
tion section, and the numerical stability of the joint process estimation thus depends
on the SRF QRD-LSL prediction algorithm. It can be shown that the computations
of the conventional forward and backward prediction errors in the SRF QRD-LSL
prediction algorithm involve the error feedback mechanism described in Section 5.3,
and therefore their error growth in a finite-precision environment is always bounded.
For example, the computation of the forward prediction error summarized in the FP
block in Table 5.1 is rewritten as

142 Jenq-Tay Yuan

e f ,m(k) = e f ,m−1(k)− eb,m−1(k−1)π∗
f ,m(k−1), (5.77)

π∗
f ,m(k) = π∗

f ,m(k−1)+ sb,m−1(k−1)e f ,m(k). (5.78)

A unique feature of the error feedback mechanism is that the a priori prediction error
e f ,m(k) computed in (5.77) is fed back to time-update the forward reflection coef-
ficient π∗

f ,m(k) whose cumulative error is bounded for all time in a finite-precision
environment. However, as mentioned in Section 5.4, the computations of the inter-
mediate forward and backward prediction errors from the conventional forward and
backward prediction errors in the two equation pairs using (5.49), (5.46) and (5.50),
(5.48) in the QRD-LSL interpolation algorithm, correspond to the reversed formula-
tions. These reversed formulations no longer involve an error feedback mechanism,
potentially causing numerical instability in the QRD-LSL interpolation algorithm
in a finite-precision environment. It has been shown by Skidmore and Proudler [23]
that the error growth in this reversed formulation is linear with time in nature in
a finite-precision environment (i.e., the errors accumulate but are not amplified by
each iteration). This linear error growth may have resulted in the divergence of the
SRF (QRD-LSL)-based RLS algorithm before two million iterations are completed
when less than 12 mantissa bits is used. However, this linear error growth should be
contrasted to the exponential error growth with time exhibited by the fast transver-
sal filter (FTF) algorithm [32] that may much more rapidly diverge from the correct
solution.

5.7 Conclusion

This chapter develops the SRF QRD-LSL interpolation algorithm, which is then
reduced to the SRF QRD-LSL prediction algorithm, which is in turn extended to
develop the SRF joint process estimation. As described in [32, 33], no exact-RLS
algorithm, whether in lattice or transversal filter, can always be stable, because of
limited-precision instabilities. The RLS algorithm based on the SRF QRD-LSL
interpolation algorithm is no exception, and it may diverge in a finite-precision
environment due to error accumulation. Simulations indicated that the SRF (QRD-
LSL)-based RLS algorithm using only eight mantissa bits, started to diverge from
the correct solution around k = 2× 105 in the computer experiment conducted in
Section 5.6, because of the two equation pairs, (5.49), (5.46) and (5.50), (5.48),
computed in the QRD-LSL interpolation algorithm. In contrast, the computations
of the forward and backward prediction errors in the SRF QRD-LSL prediction
algorithm involve an error feedback mechanism, and therefore the corresponding
error growth in a finite-precision environment is always bounded. Consequently,
the joint process estimation based on the SRF QRD-LSL prediction algorithm still
exhibits well-conditioned behaviors with only five mantissa bits. However, the joint
process estimation does not generate the filter weights, which are required in some
applications.

5 QRD Least-Squares Lattice Algorithms 143

Skidmore and Proudler [23] employed exactly the same concept as demonstrated
by the two equation pairs, (5.49), (5.46) and (5.50), (5.48), to implement an SRF
QR-RLS algorithm, referred to as the KaGE RLS algorithm. Although the KaGE
RLS algorithm, like the SRF (QRD-LSL)-based RLS algorithm, may exhibit lin-
ear error growth with time in a finite-precision environment owing to the computa-
tion of the two equation pairs described above, simulation results presented in [23]
reveal that the KaGE RLS algorithm can run reliably for many millions of iterations
using single precision arithmetic and is inherently much more stable than the stabi-
lized FTF algorithm proposed by Maouche and Slock [34]. Therefore, as suggested
in [23], to generate the transversal filter weights, the KaGE algorithm as well as the
SRF (QRD-LSL)-based RLS algorithm presented in this chapter, both employing
interpolation residuals and both of O[N log2 N] complexity, may offer a favorable
compromise between the computationally efficient FTF algorithms of O[N] com-
plexity and the stable algorithms of O[N2] complexity, such as the Inverse QRD-
RLS algorithm proposed by Alexander and Ghirnikar [35]. The Inverse QRD-RLS
algorithm may not be computationally feasible for some real-time implementations
of long adaptive filters.

References

1. D. T. Lee, M. Morf, and B. Friedlander, Recursive least squares ladder estimation algo-
rithms. IEEE Transactions on Acoustic, Speech, and Signal Processing, vol. ASSP-29, no. 3,
pp. 627–641 (June 1981)

2. L. J. Griffiths, An adaptive lattice structure for noise-cancelling applications. IEEE Inter-
national Conference on Acoustic, Speech, and Signal Processing, ICASSP’78, Tulsa, USA,
pp. 873–90 (April 1978)

3. J. Makhoul, A class of all-zero lattice digital filters: Properties and applications. IEEE Trans-
actions on Acoustic, Speech, and Signal Processing, vol. ASSP-26, pp. 304–314 (August
1978)

4. P. Strobach, Linear Prediction Theory – A Mathematical Basis for Adaptive Systems.
Springer-Verlag, Berlin, Germany (1990)

5. S. Haykin, Adaptive Filter Theory. 4th edition Prentice-Hall, Englewood Cliffs, NJ, USA
(2002)

6. A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley, NJ, USA (2003)
7. F. Capman, J. Boudy, and P. Lockwood, Acoustic echo cancellation using a fast QR-RLS

algorithm and multirate schemes. IEEE International Conference on Acoustic, Speech, and
Signal Processing, ICASSP’95, Detroit, USA, pp. 969–972 (May 1995)

8. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustic,
Speech, and Signal Processing, vol. ASSP-38, no. 4, pp. 631–653 (April 1990)

9. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, QRD-based lattice filter algorithms. SPIE
Conference on Advanced Algorithms and Architectures for Signal Processing, San Diego,
USA, vol. 1152, pp. 56–67 (August 1989)

10. F. Ling, Givens rotation based least squares lattice and related algorithms. IEEE Transactions
on Signal Processing, vol. 39, no. 7, pp. 1541–1551 (July 1991)

11. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no.
4, pp. 879–891 (April 1991)

144 Jenq-Tay Yuan

12. A. A. Rontogiannis and S. Theodoridis, New fast QR decomposition least squares adaptive
algorithms. IEEE Transactions on Signal Processing, vol. 46, no. 8, pp. 2113–2121 (August
1998)

13. B. Yang and J. F. Böhme, Rotation-based RLS algorithms: unified derivations, numerical
properties, and parallel implementations. IEEE Transactions on Signal Processing, vol. 40,
no. 5, pp. 1151–1167 (May 1992)

14. A. K. Jain, Image coding via a nearest neighbors image model. IEEE Transactions on Com-
munications, vol. COMM-23, no. 3, pp. 318–331 (March 1975)

15. E. A. Gifford, B. R. Hunt, and M. W. Marcellin, Image coding using adaptive recursive
interpolative DPCM. IEEE Transactions on Image Processing, vol. 4, no. 8, pp. 1061–1069
(August 1995)

16. G. Yang, H. Leich, and R. Boite, Voiced speech coding at very low bit rates based on forward–
backward waveform prediction. IEEE Transactions on Speech and Audio Processing, vol. 3,
no. 1, pp. 40–47 (January 1995)

17. E. Masry, Closed-form analytical results for the rejection of narrow-band interference in PN
spread spectrum systems-Part II: linear interpolation filters. IEEE Transactions on Commu-
nications, vol. COMM-33, no. 1, pp. 10–19 (January 1985)

18. J.-T. Yuan and J.-N. Lee, Narrowband interference rejection in DS/CDMA systems using
adaptive (QRD-LSL)-based nonlinear ACM interpolators. IEEE Transactions on Vehicular
Technology, vol. 52, no. 2, pp. 374–379 (March 2003)

19. S. Kay, Some results in linear interpolation theory. IEEE Transactions on Acoustic, Speech,
and Signal Processing, vol. ASSP-31, no. 3, pp. 746–749 (June 1983)

20. B. Picinobono and J. M. Kerilis, Some properties of prediction and interpolation errors. IEEE
Transactions on Acoustic, Speech, and Signal Processing, vol. ASSP-36, no. 4, pp. 525–531
(April 1988)

21. C. K. Coursey and J. A. Stuller, Linear interpolation lattice. IEEE Transactions on Signal
Processing, vol. 39, no. 4, pp. 965–967 (April 1991)

22. J.-T. Yuan, QR-decomposition-based least-squares lattice interpolators. IEEE Transactions on
Signal Processing, vol. 48, no. 1, pp. 70–79 (January 2000)

23. I. D. Skidmore and I. K. Proudler, The KaGE RLS algorithm. IEEE Transactions on Signal
Processing, vol. 51, no. 12, pp. 3094–3104 (December 2003)

24. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, The QRD-based least squares lattice algo-
rithm: Some computer simulations using finite wordlengths. IEEE International Symposium
on Circuits and Systems, ISCAS’90, New Orleans, USA, pp. 258–261 (May 1990)

25. S. F. Hsieh, K. J. R. Liu, and K. Yao, A unified square-root-free approach for QRD-based
recursive least squares estimation. IEEE Transactions on Signal Processing, vol. 41, no. 3,
pp. 1405–1409 (March 1993)

26. F. Ling, D. Manolakis, and J. G. Proakis, Numerically robust least-squares lattice-ladder algo-
rithms with direct updating of the reflection coefficients. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-34, no. 4, pp. 837–845 (August 1986)

27. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Computationally efficient QR-
decomposition approach to least squares adaptive filtering. IEE Proceedings-F, vol. 138, no.
4, pp. 341–353 (August 1991)

28. W. M. Gentleman, Least squares computations by Givens transformations without square
roots. IMA Journal of Applied Mathematics, vol. 12. pp. 329–336 (December 1973)

29. J. G. McWhirter, Recursive least-squares minimization using a systolic array. SPIE Real-Time
Signal Processing VI, vol. 431, pp. 105–112 (January 1983)

30. J.-T. Yuan, C.-A. Chiang, and C.-H. Wu, A square-root-free QRD-LSL interpolation
algorithm. IEEE International Conference on Acoustic, Speech, and Signal Processing,
ICASSP’2008, Las Vegas, USA, pp. 3813–3816 (April 2008)

31. C.-A. Chiang, A recursive least-squares (RLS) algorithm based on interpolation lattice recur-
sive structure. M.S. thesis, Adviser: J.-T. Yuan, Fu Jen Catholic University, Taipei, Taiwan,
R.O.C. (April 2006)

5 QRD Least-Squares Lattice Algorithms 145

32. J. M. Cioffi and T. Kailath, Fast, recursive-least-squares transversal filters for adaptive filter-
ing. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-32, no. 2,
pp. 304–337 (April 1984)

33. S. Ljung, Fast algorithms for integral equations and least-squares identification problems.
Ph.D. thesis, Linkoping University, Sweden (1983)

34. K. Maouche and D. T. M. Slock, Fast subsampled-updating stabilized fast transversal filter
(FSU SFTF) RLS algorithm for adaptive filtering. IEEE Transactions on Signal Processing,
vol. 48, no. 8, pp. 2248–2257 (August 2000)

35. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

	QRD Least-Squares Lattice Algorithms
	Jenq-Tay Yuan
	Fundamentals of QRD-LSL Algorithms
	LSL Interpolator and LSL Predictor
	LSL interpolator
	Orthogonal bases for LSL interpolator
	LSL predictor

	SRF Givens Rotation with Feedback Mechanism
	SRF QRD-LSL Algorithms
	QRD based on interpolation
	SRF QRD-LSL interpolation algorithm
	SRF QRD-LSL prediction algorithm and SRF joint process estimation

	SRF (QRD-LSL)-Based RLS Algorithm
	Simulations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

