
Chapter 3
Conventional and Inverse QRD-RLS Algorithms

José A. Apolinário Jr. and Maria D. Miranda

Abstract This chapter deals with the basic concepts used in the recursive least-
squares (RLS) algorithms employing conventional and inverse QR decomposition.
The methods of triangularizing the input data matrix and the meaning of the internal
variables of these algorithms are emphasized in order to provide details of their
most important relations. The notation and variables used herein will be exactly the
same used in the previous introductory chapter. For clarity, all derivations will be
carried out using real variables and the final presentation of the algorithms (tables
and pseudo-codes) will correspond to their complex-valued versions.

3.1 The Least-Squares Problem and the QR Decomposition

We start by introducing the weighted least-squares (WLS) filtering problem for the
identification of a linear system [1]. To this end, we consider two sets of variables,
d(�) and x(�), and the errors ē(�), for 0 ≤ � ≤ k. The set d(�) is the response of an
unknown system at time-instant � when the input is the set of variables x(�), with
x(�)=0 for � < 0. The error at time-instant � is defined as ē(�) = d(�)−wT(k)x(�),
w(k) being the filter coefficient vector. These errors and the variables d(�) and x(�)
are attenuated by the factor λ (k−�)/2, 0 � λ < 1.
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Now, to facilitate the problem formulation, we collect the attenuated estimation
errors into a (k +1)×1 vector, written as

e(k) =
[

ē(k) λ 1/2
ē(k−1) · · · λ k/2ē(0)

]T
. (3.1)

This vector can take the form

e(k) = d(k)− d̂(k), (3.2)

where the desired response vector is given by

d(k) =
[

d(k) λ 1/2
d(k−1) · · · λ k/2d(0)

]T
, (3.3)

and its estimate, obtained from linear weighted averages of observation sequences,
is given as

d̂(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k) x(k−1) · · · x(k−N)

λ 1/2
x(k−1) λ 1/2

x(k−2)
...

λ (k−N)/2x(0)
...

... 0

λ (k−1)/2x(1) λ (k−1)/2x(0)
...

λ k/2x(0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X(k)

⎡
⎢⎢⎢⎣

w0(k)
w1(k)

...
wN(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
w(k)

. (3.4)

The input data matrix, denoted here as X(k), has dimension (k+1)×(N +1) and
can be represented in terms of its N +1 columns or its k +1 rows, that is,

X(k) =
[
x(0)(k) x(1)(k) · · ·x(N)(k)

]
=

⎡
⎢⎢⎢⎣

xT(k)
λ 1/2

xT(k−1)
...

λ k/2xT(0)

⎤
⎥⎥⎥⎦ . (3.5)

Note that x(�) = [x(�) x(�−1) · · · x(�−N)]T represents the input regression vector
at instant �, 0 ≤ � ≤ k, with N +1 elements, and x(i)(k) for (i = 0, · · · ,N) represents
the (i+1)th column of X(k).

The Euclidean norm of the weighted estimation error vector corresponds to the
deterministic cost function ξD(k), the same one used for the recursive least-squares
(RLS) algorithm, which is given by

ξD(k) = ‖e(k)‖2 = eT(k)e(k) =
k

∑
�=0

λ k−�ē2(�). (3.6)
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The WLS filtering problem consists in determining, at instant k, the coefficient
vector w(k) that minimizes ξD(k). The optimal solution is obtained when the
coefficient vector satisfies [1, 2]

w(k) = R−1(k)p(k), (3.7)

where
R(k) = XT(k)X(k) (3.8)

is the (N +1)× (N +1) input-data deterministic autocorrelation matrix, and

p(k) = XT(k)d(k) (3.9)

is the (N +1)×1 deterministic cross-correlation vector.

The deterministic autocorrelation matrix R(k) is considered non-singular; nev-
ertheless, the inverse of R(k), used in (3.7), can become ill-conditioned, e.g., due
to loss of persistence of excitation of the input signal or due to quantization effects
[1, 2].

The WLS problem may be solved by means of a QR decomposition which is
numerically well-conditioned [3, 4]. This approach is based on the following trian-
gularization of the input data matrix:

Q(k)X(k) =

⎡
⎣

0(k−N)×(N+1)

U(k)

⎤
⎦ . (3.10)

Matrix U(k) has dimension (N + 1)× (N + 1) and a triangular structure as, for
example, shown in Figure 3.1. Q(k) is an unitary matrix with dimension (k + 1)×
(k + 1) which represents the overall triangularization process. The unicity of the
decomposition is yielded through the condition that all elements of the main anti-
diagonal of U(k) are non-negative [4].

0

0

0

0

0

0

(a) (b)

N +1

N +1

N +1

N +1
U(k) = U(k) =

Fig. 3.1 The different triangularizations of U(k): (a) UPPER and (b) LOWER.
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As X(k) is a (k + 1)× (N + 1) matrix, it is interesting to consider the following
partition of matrix Q(k):

Q(k) =

⎡
⎣

Q1(k)

Q2(k)

⎤
⎦ , (3.11)

with Q1(k) and Q2(k) having dimensions (k−N)× (k + 1) and (N + 1)× (k + 1),
respectively. Since matrix Q(k) is unitary, i.e.,

QT(k)Q(k) = Q(k)QT(k) = Ik+1, (3.12)

it follows that
QT

1 (k)Q1(k)+QT
2 (k)Q2(k) = Ik+1,

Q1(k)QT
1 (k) = Ik−N , and

Q2(k)QT
2 (k) = IN+1.

(3.13)

The pre-multiplication of (3.10) by QT(k), with (3.12) and (3.11) yields

X(k) = QT
2 (k)U(k). (3.14)

Therefore, the deterministic autocorrelation matrix satisfies

R(k) = XT(k)X(k) = UT(k)U(k), (3.15)

and matrix U(k) is referred to as the Cholesky factor of R(k) [1, 3].
The pre-multiplication of (3.2) by Q(k), i.e.,

eq(k) = Q(k)e(k) =
[

eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
O

U(k)

]
w(k), (3.16)

triangularizes X(k) and, being Q(k) a unitary matrix, it will not affect the cost func-
tion, i.e., ‖eq(k)‖2 = ‖e(k)‖2. The subscripts 1 and 2 indicate the first k−N and the
last N +1 components of the vector, respectively.

The weighted-square error (or cost function) can be minimized when, by a
proper choice of w(k), the term dq2(k)−U(k)w(k) becomes zero. The tap-
weight coefficients can then be computed as

w(k) = U−1(k)dq2(k). (3.17)

Note that (3.7) and (3.17) represent different ways to find the same WLS solu-
tion. Next, with geometric and linear algebraic arguments, we show how these two
representations are related.

When the coefficient vector w(k) satisfies (3.7), it is easy to figure out that
the estimated desired response d̂(k) = X(k)w(k) and the estimation error vector
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e(k) = d(k)− d̂(k) can be expressed as

d̂(k) = X(k)R−1(k)p(k)︸ ︷︷ ︸
w(k)

= P(k)d(k) (3.18)

and
e(k) = [Ik+1 −P(k)]d(k), (3.19)

where P(k) = X(k)R−1(k)XT(k).
Matrix P(k) is a projection operator, responsible for projecting the desired

response vector in the space spanned by the data matrix columns of X(k). This
projection is orthogonal to the estimation error (orthogonality principle). In this
condition, e(k) is known as the optimum estimation error.

When the norm of e(k) is minimum, the coefficient vector w(k) also satisfies
(3.17). Then, vector d̂(k) = X(k)w(k) can also be rewritten using (3.17) and (3.14)
as

d̂(k) = QT
2 (k)dq2(k) = QT

2 (k)Q2(k)d(k), (3.20)

and the optimum estimation error vector is given as

e(k) =
[
Ik+1 −QT

2 (k)Q2(k)
]

d(k) = QT
1 (k)Q1(k)d(k). (3.21)

Therefore, the projection operator can be defined by matrix Q2(k) as

P(k) = QT
2 (k)Q2(k), (3.22)

and the complementary projection operator by matrix Q1(k) as

P⊥(k) = Ik+1 −P(k) = QT
1 (k)Q1(k). (3.23)

From the mathematical relationships presented so far, we can observe that matrix
Q(k) rotates the subspace spanned by the columns of matrix X(k) and by its opti-
mum estimation error e(k), which is orthogonal to the columns of X(k). In this case,
matrix Q(k) forces the subspace spanned by the columns of matrix X(k), of dimen-
sion (N + 1), to coincide with the subspace spanned by the last (N + 1) vectors of
the Euclidean space basis, of dimension (k+1)×(k+1), used in the representation.
Hence, the subspace of dimension (k−N), where the optimum estimation error e(k)
lies and which is orthogonal to the space spanned by the columns of X(k), coincides
with the subspace spanned by the other (k−N) vectors from the Euclidean basis.
Figure 3.2 illustrates these interpretations. Such transformation affects the input sig-
nal, the desired signal, and the projection operator, without modifying the autocor-
relation matrix, the cross-correlation vector, and the optimum coefficient vector.

Table 3.1 presents the relationship between the conventional LS (or WLS)
method and its QR decomposition counterpart. In the second column, the represen-
tations of the main results and the operators in the rotated domain are presented. The
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Ik−N 0

0 0N+1

Ik−N 0

0 0N+1

0k−N 0

0 IN+1

0k−N 0

0 IN+1

(a) (b)

d(k)
e(k)

d(k)
X(k)

Q(k)X(k)

Q(k)d(k)
dq1 (k)
0N+1

0k−N

dq2 (k)

Fig. 3.2 Spacial visualization of the rotated vectors. (a) Estimation of d(k) projected onto the
subspace spanned by the columns of X(k). (b) Estimation of dq(k) projected onto the Euclidean
basis space.

last three rows indicate how to calculate the results, which values will not change
due to the transformation, using whether the original or the rotated variables. It is
worth mentioning that, in the domain of the signals rotated by the matrix Q(k), the
projection operator and its complement assume very simple forms.

Table 3.1 Relationships between methods LS and QRD-LS.

Method LS QRD-LS

Data matrix X(k)
[

O
U(k)

]
= Q(k)X(k)

Desired response vector d(k)
[

dq1(k)
dq2(k)

]
= Q(k)d(k)

Projection operator X(k)R−1(k)XT(k)
[

Ok−N O
O IN+1

]

Estimated response P(k)d(k)
[

0
dq2(k)

]
=

[
O

Q2(k)

]
d(k)

Complementary projection operator P⊥(k)
[

Ik−N O
O ON+1

]

Estimation error P⊥(k)d(k)
[

dq1(k)
0

]
=

[
Q1(k)

0

]
d(k)

Autocorrelation matrix R(k) = XT(k)X(k) = UT(k)U(k)

Cross-correlation vector p(k) = XT(k)d(k) = UT(k)dq2(k)

Optimum coefficients vector w(k) = R−1(k)p(k) = U−1(k)dq2(k)
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The solution for the least-squares problem using the QR decomposition consists
basically in the data matrix decomposition (3.10) and, depending on the particular
method employed, in executing some of the calculation indicated in (3.20), (3.17),
and (3.21). Obviously, the procedure is numerically complex due to the data matrix
QR decomposition. But, in practical adaptive filtering applications, the data matrix
can be performed recursively. Also, if U(k) and dq2(k) are available, the optimum
vector w(k) can be computed with a reduced computational complexity. This is due
to the triangular nature of matrix U(k) and the possibility to use the so-called back-
substitution procedure (if assuming a lower triangular matrix). In Appendix 1, we
present this procedure as well as the forward substitution procedure, its counterpart
for the case of an upper triangular matrix U(k). It is important to note that, apart
from the reduction in the computational burden, if the main diagonal elements are
non-zero, the existence of the inverse of U(k) is ensured [3, 4].

3.2 The Givens Rotation Method

The orthogonal triangularization process may be carried out using various
techniques such as Gram–Schmidt orthogonalization, Householder transfor-
mation, or Givens rotations. Particularly, Givens rotations leads to an efficient
algorithm whereby the triangularization process is updated recursively. As we
are interested in the iterative least-squares solution, we consider a triangular-
ization procedure carried out through Givens rotations.

In order to introduce the Givens rotation method, we consider vectors v and v′ as
shown in Figure 3.3. If we represent vector v as

v =
[

v1

v2

]
=

[
r cosθ
r sinθ

]
, (3.24)

v

v

v

v1

v2

v1

v2

θ θ

φr

r

(a) (b)

Fig. 3.3 (a) Vector v projected onto the Euclidean space; (b) Vector v rotated by φ and projected
onto the Euclidean space.
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vector v′, obtained from a plane rotation of φ degrees counterclockwise, can be
written as

v′=
[

v
′
1

v
′
2

]
=
[

r cos(θ +φ)
r sin(θ +φ)

]
=
[

cosφ −sinφ
sinφ cosφ

][
v1

v2

]
. (3.25)

For convenience, we rewrite v′ = Gv, where

G =
[

cosφ −sinφ
sinφ cosφ

]
(3.26)

is the elementary Givens rotation matrix.
When the plane rotation is clockwise, v′ is given as

v′ =
[

r cos(θ −φ)
r sin(θ −φ)

]
=

[
cosφ sinφ

−sinφ cosφ

][
v1

v2

]
. (3.27)

In this case, the elementary Givens rotation matrix takes the form

G =
[

cosφ sinφ
−sinφ cosφ

]
. (3.28)

In both cases (counterclockwise and clockwise), the rotation matrix is unitary,
that is, GT G = GGT = I, and therefore it preserves the norm r of vector v. We
consider the counterclockwise rotation throughout this chapter.

If φ +θ = π/2, then v
′
1 = 0, v

′
2 = r and

[
0
r

]
=

[
cosφ −sinφ
sinφ cosφ

][
v1

v2

]
. (3.29)

The above development suggests that it is possible to annihilate an element in a two-
dimensional vector by using plane rotation. From the relation in (3.29) and noting
that sinφ and cosφ are always constrained by the trigonometric relation

sin2 φ + cos2 φ = 1, (3.30)

we have: cosφ = v2/r, sinφ = v1/r, and r =
√

v2
1 + v2

2.

The annihilation using the Givens rotations, as seen above, can be extended to
annihilate a specific element in a vector of N + 1 elements, or a sequence of
elements in a vector or in a matrix [5]. Various choices of rotation orders can
be used to solve the problem.

In order to illustrate, for a 4×3 matrix formed by a first row and a lower triangular
matrix, the rotation angles to annihilate all elements of the first row, we consider
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A =

⎡
⎢⎢⎣

x1,1 x1,2 x1,3

0 0 v1,3

0 v2,2 v2,3

v3,1 v3,2 v3,3

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

0 0 0
0 0 u1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ . (3.31)

In this example, we have to find a transformation matrix Qθ (k) such that B =
Qθ (k)A. Matrix Qθ (k) must annihilate all elements of the first row of A from left
to right. Three Givens rotations are shown in the following steps.

Step 1:

⎡
⎢⎢⎣

cosθ0 0 0 −sinθ0

0 1 0 0
0 0 1 0

sinθ0 0 0 cosθ0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1,1 x1,2 x1,3

0 0 v1,3

0 v2,2 v2,3

v3,1 v3,2 v3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 x̄1,2 x̄1,3

0 0 v1,3

0 v2,2 v2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ (3.32)

Step 2:

⎡
⎢⎢⎣

cosθ1 0 −sinθ1 0
0 1 0 0

sinθ1 0 cosθ1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 x̄1,2 x̄1,3

0 0 v1,3

0 v2,2 v2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 ¯̄x1,3

0 0 v1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ (3.33)

Step 3:

⎡
⎢⎢⎣

cosθ2 −sinθ2 0 0
sinθ2 cosθ2 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 ¯̄x1,3

0 0 v1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0
0 0 u1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ . (3.34)

This completes the lower triangularization of matrix A.
At this point, it is important to note that the transformation matrix Qθ (k) can be

written as a product of Givens rotation matrices given by

Qθ (k) = QθN (k) · · · Qθ1(k)Qθ0(k) =
N

∏
i=0

Qθi(k). (3.35)

If matrix U(k) is triangularized as depicted in Figure 3.1, the corresponding
Qθi(k), for 0 ≤ I ≤ N, are given as follows:

UPPER : Qθi(k) =

⎡
⎢⎢⎣

cosθi(k) 0T −sinθi(k) 0T

0 Ii 0 0 · · ·0
sinθi(k) 0T cosθi(k) 0T

0 0 · · ·0 0 IN−i

⎤
⎥⎥⎦ (3.36)

LOWER : Qθi(k) =

⎡
⎢⎢⎣

cosθi(k) 0T −sinθi(k) 0T

0 IN−i 0 0 · · ·0
sinθi(k) 0T cosθi(k) 0T

0 0 · · ·0 0 Ii

⎤
⎥⎥⎦ . (3.37)
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The row and column of each cosθi and sinθi are related with the element that we
want to annihilate. Only the elements of matrix A at a position related to the row and
column of cosθi and sinθi, respectively, are affected by the transformation imposed
by Qθi

. The angles θi(k) in (3.36) and (3.37) are not the same although written, for
the sake of simplicity, using the same notation.

3.3 The Conventional QRD-RLS Algorithm

One of the first works that used QR decomposition to solve the RLS problem was
proposed by Gentleman [6]. He used a triangular array in order to avoid matrix
inversion and proposed a pipelined sequence of Givens rotations to perform the
back-substitution process required to solve the associated system of equations.
From [6], the conventional QRD-RLS algorithm, as we know it today, was con-
ceived by McWhirter [7]. He was the first to describe a systolic array, using a
pipelined sequence of Givens rotations, performing an orthogonal triangularization
of the input data matrix and generating the estimated error without having to resort
to back-substitution. This section presents the most basic equations of the QRD-
RLS algorithms.

Let us start by using the fact that the data matrix in (3.5) can be rewritten as

X(k) =
[

xT(k)
λ 1/2

X(k−1)

]
(3.38)

and also that Q(k−1) is unitary. Thus, the product Q(k)X(k) can be written as

Q(k)
[

1 0T

0 QT(k−1)

][
1 0T

0 Q(k−1)

]

︸ ︷︷ ︸
I

[
xT(k)

λ 1/2
X(k−1)

]

︸ ︷︷ ︸
X(k)

=
[

O
U(k)

]
. (3.39)

In the above equation, if we denote the product of the first two matrices on the
left side by Q̃(k) and compute the multiplication of the remaining two matrices, we
obtain

Q̃(k)

⎡
⎣

xT(k)
0(k−N−1)×(N+1)

λ 1/2
U(k−1)

⎤
⎦ =

[
0(k−N)×(N+1)

U(k)

]
. (3.40)

From (3.40), we see that Q̃(k) is a product of Givens rotations matrices that
annihilates the current input vector. Moreover, the recursive nature of Q(k) may be
expressed by

Q(k) = Q̃(k)
[

1 0T

0 Q(k−1)

]
. (3.41)

Once Q̃(k) is responsible for zeroing xT(k), as shown in (3.40), its structure
includes a sub-matrix Ik−N−1, such that it can be represented as



3 Conventional and Inverse QRD-RLS Algorithms 61

Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 · · · 0 ∗ · · · ∗
0
...
0

Ik−N−1

0
...
0

∗
...
∗

0 · · · 0
...

. . .
...

0 · · · 0

∗ · · · ∗
...

. . .
...

∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.42)

with the asterisks (∗) corresponding to the non-zero elements. Although Q(k) is
(k + 1)× (k + 1), we can avoid the ever-increasing order characteristic rewriting
(3.40) as [

0T

U(k)

]
= Qθ (k)

[
xT(k)

λ 1/2
U(k−1)

]
, (3.43)

where Qθ (k) is (N + 2)× (N + 2) and corresponds to Q̃(k) after removing the
Ik−N−1 section along with the corresponding rows and columns.

Recalling (3.16), we see that eq1(k) = dq1(k); moreover, (3.41) shows that the
product Q(k)d(k) can be written as

Q(k)d(k) =
[

eq1(k)
dq2(k)

]
= Q̃(k)

[
1 0T

0 Q(k−1)

]

︸ ︷︷ ︸
Q(k)

[
d(k)

λ 1/2
d(k−1)

]

︸ ︷︷ ︸
d(k)

= Q̃(k)

⎡
⎢⎣

d(k)
λ 1/2

eq1(k−1)
λ 1/2

dq2(k−1)

⎤
⎥⎦

=

⎡
⎣

eq1(k)
λ 1/2

eq1(k−1)
dq2(k)

⎤
⎦ , (3.44)

where the last multiplication can be easily understood if we note in (3.40) and in
(3.42) that Q̃(k) alter only the first and the last N + 1 components of a (k + 1)× 1
vector.

From (3.44), it is also possible to remove the increasing section of Q̃(k),
resulting in the following expression:

[
eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ 1/2
dq2(k−1)

]
, (3.45)

where eq1(k) is the first element of the rotated error vector eq(k) and dq2(k) is
a vector with the last N +1 elements of the rotated desired signal vector. The
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rotated error eq1(k), with the help of a conversion factor, allows the compu-
tation of the prediction error—the difference between d(k) and its prediction
from x(k)—without computing the estimate of the desired response. This pro-
cess is usually termed joint-process estimation.

It is important to note that Qθ (k), being responsible for the update of U(k) as
in (3.43), is formed by a product of Givens rotation matrices as shown in (3.35) and
its structure will depend on the type of triangularization of U(k), i.e., whether it is
an upper or a lower triangular matrix. This choice determines two classes of fast
(reduced complexity) algorithms, as will be seen in Chapter 4. From the example of
the previous section, it is possible to obtain, using (3.35), the structure of Qθ (k) for
upper and lower triangularization of U(k); the results, for N = 2, are given by the
following two matrices:

UPPER : Qθ (k) =

⎡
⎢⎢⎣

cθ2cθ1cθ0 −cθ2cθ1sθ0 −cθ2sθ1 −sθ2

sθ0 cθ0 0 0
sθ1cθ0 −sθ1sθ0 cθ1 0

sθ2cθ1cθ0 −sθ2cθ1sθ0 −sθ2sθ1 cθ2

⎤
⎥⎥⎦ , (3.46)

and

LOWER : Qθ (k) =

⎡
⎢⎢⎣

cθ2cθ1cθ0 −sθ2 −cθ2sθ1 −cθ2cθ1sθ0

sθ2cθ1cθ0 cθ2 −sθ2sθ1 −sθ2cθ1sθ0

sθ1cθ0 0 cθ1 −sθ1sθ0

sθ0 0 0 cθ0

⎤
⎥⎥⎦ , (3.47)

where cθi = cosθi(k) and sθi = sinθi(k).
The structure of matrix Qθ (k) suggests, in both cases, that it can be partitioned

as

Qθ (k) =
[
γ(k) gT(k)
f(k) E(k)

]
, (3.48)

where the structures of vectors f(k), g(k), and matrix E(k) depend on the type of
triangularization of the data matrix. On the other hand, for both types of triangular-
ization, the scalar γ(k) denotes the product of successive cosine terms, i.e.,

γ(k) =
N

∏
i=0

cosθi(k). (3.49)

It was shown in [1], and will be detailed later in Section 3.5, that γ(k) represents the
squared root of the conversion factor between the a priori and a posteriori output
errors for the degree N +1 filtering problem.

In order to have all equations of the traditional QR algorithm, let us postmultiply
the transposed vector eT

q (k)Q(k) by the pinning vector [1 0 · · · 0]T, then



3 Conventional and Inverse QRD-RLS Algorithms 63

eT
q (k)Q(k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = eT(k)QT(k)Q(k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = ē(k), (3.50)

where ē(k) is the first element of the error vector defined in (3.1) and represents the
a posteriori estimation error ε(k), defined in Chapter 2 as

ε(k) = d(k)−xT(k)w(k) = ē(k). (3.51)

From Equations (3.41) and (3.48) and the fact that Qθ (k) is Q̃(k) after removing the
k−N − 1 increasing columns and rows, we can conclude that Q(k)[1 0 · · · 0]T =
[γ(k) 0 · · · 0 fT(k)]T. Once eq2(k) is a null vector (keep in mind that w(k) in (3.16)
was chosen in order to make it zero), it is possible to see that

ε(k) = eq1(k)γ(k). (3.52)

This equation was first noted by McWhirter in [7] and is particularly useful in
applications where the coefficients of the adaptive filter are not explicitly neces-
sary since we can obtain ε(k), the a posteriori output error, without computing
w(k). If, however, the coefficient vector w(k) is needed, it can be computed by
solving U(k)w(k) = dq2(k). In this case, due to the fact that the Cholesky matrix
U(k) is triangular, a matrix inversion can be avoided, e.g., with a forward or a back-
substitution procedure (see Appendix 1 for further details).

The equations of the conventional QR algorithm (complex version) are presented
in Table 3.2 where the type of triangularization used has no influence on the perfor-
mance of the conventional QRD-RLS algorithm. A pseudo-code of a lower triangu-
larization implementation is available in Appendix 3 (Table 3.5).

In the next section, we provide hints about the initialization of the triangulariza-
tion procedure. Appendix 2 presents ways of avoiding the square-root operation in

Table 3.2 The conventional QRD-RLS equations.

QRD-RLS
for each k
{ Obtaining Qθ (k) and updating U(k):[

0T

U(k)

]
= Qθ (k)

[
xH(k)

λ 1/2
U(k−1)

]

Obtaining γ(k):
γ(k) = ∏N

i=0 cosθi(k)
Obtaining eq1 (k) and updating dq2 (k):[

eq1 (k)
dq2 (k)

]
= Qθ (k)

[
d∗(k)

λ 1/2
dq2 (k−1)

]

Obtaining ε(k):
ε(k) = e∗q1

(k)γ(k) % a posteriori error: d(k)−wH(k)x(k)
}
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θi(k)

cosθi

cosθi

sinθi

−sinθi

λ 1/2
z−1λ 1/2

z−1

d(k) eq1(k)

θ0(k) θN(k)

[dq2(k)]u [dq2(k)]v

Fig. 3.4 McWhirter structure: Equation (3.45) implemented as a cascade of first-order orthogonal
filters.

QRD-RLS algorithms. Now, to close this section, it is worth noting that, since Qθ (k)
is a product of Givens rotation matrices, the equation system in (3.45) becomes
the cascade of first-order orthogonal filters. Figure 3.4 depicts the operation car-
ried out in (3.45). Due to the work of McWhirter [7], each orthogonal filter in [8]
was named a McWhirter structure. In this figure, when we use an upper triangu-
lar Cholesky factor, we make u = 0 and v = N; this means that we update the
elements of vector dq2(k) from the first to the last one. Otherwise, when a lower
triangular matrix is used, the updating is from the last element (u = N) to the first
one (v = 0).

3.4 Initialization of the Triangularization Procedure

In order to run the QRD-RLS algorithm at time-instant k = 0, we need vector
dq2(−1) and matrix U(−1). Assuming pre-windowing, a natural choice would be
dq2(−1) = 0N+1 and U(−1) = 0(N+1)×(N+1). In that case, the choice U(−1) =
0(N+1)×(N+1) would lead to a non-singular matrix. In order to solve this problem,
two strategies are possible: the exact initialization and the soft-start, as in the RLS
algorithm [1, 9].

The exact initialization procedure comprises a period of N + 1 samples, from
k = 0 to N, during which the estimation error is zero. At k = N +1, the initialization
period is completed and the estimation error may assume a value different than zero
by executing the steps of the algorithm in Table 3.2.

If we are interested in an upper triangularization procedure, since X(N) is already
upper triangular, nothing needs to be done. The exact initialization in this case is
carried out as detailed in [2, Chapter 9] which corresponds to the exact initialization
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of the RLS algorithm, using back-substitution to obtain the coefficient vector. At
k = N +1, when x(N +1) is available, the matrix is no longer triangular and N +1
Givens rotations are necessary to annihilate all elements of the first row and the
QRD-RLS equations start to be used with U(N) = X(N).

If we are working with a lower triangular Cholesky factor, then the data matrix
needs to be transformed before k = N +1. The complete transformation can be car-
ried out with N +1 Givens rotations at k = N. In this case, we begin by annihilating
the elements of column one until column N. For each column i, only the elements
of row j = 1, ...(N − i + 1) are annihilated. The exact initialization procedure of a
3×3 lower triangular Cholesky matrix, that is, order N = 2, for k = 2, is described
below.

⎡
⎢⎣

c0 0 −s0

0 1 0

s0 0 c0

⎤
⎥⎦

⎡
⎢⎣

x(2) x(1) x(0)

λ 1/2x(1) λ 1/2x(0) 0

λ x(0) 0 0

⎤
⎥⎦=

⎡
⎢⎣

0 x̄(1) x̄(0)

λ 1/2x(1) λ 1/2x(0) 0

ū(3,1) ū(3,2) ū(3,3)

⎤
⎥⎦ (3.53)

⎡
⎢⎣

1 0 0

0 c1 −s1

0 s1 c1

⎤
⎥⎦

⎡
⎢⎣

0 x̄(1) x̄(0)

λ 1/2x(1) λ 1/2x(0) 0

ū(3,1) ū(3,2) ū(3,3)

⎤
⎥⎦=

⎡
⎢⎣

0 x̄(1) x̄(0)
0 ū(2,2) ū(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎥⎦ (3.54)

⎡
⎣

c2 −s2 0
s2 c2 0
0 0 1

⎤
⎦
⎡
⎣

0 x̄(1) x̄(0)
0 ū(2,2) ū(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎦ =

⎡
⎣

0 0 u(1,3)
0 u(2,2) u(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎦ (3.55)

As vector e(N) = d(N)−X(N)w(N) is (N +1)×1, then dq2(N) = Q(N)d(N) and

dq(2) =

⎡
⎣

c2 −s2 0
s2 c2 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 c1 −s1

0 s1 c1

⎤
⎦
⎡
⎣

c0 0 −s0

0 1 0
s0 0 c0

⎤
⎦

︸ ︷︷ ︸
Q(N)

⎡
⎣

d(2)
λ 1/2d(1)
λ d(0)

⎤
⎦

︸ ︷︷ ︸
d(N)

. (3.56)

The initialization of the lower triangular Cholesky factor can also be carried out
in a recursive way [1]. For this case, it is assumed that x(k) = 0 for k < 0 and, for k =
0, . . . ,N, and the same update procedures for the lower triangular U(k) and vector
dq(k) described in Table 3.2 are used. The iterative exact initialization procedure of
a 3×3 lower triangular matrix (N = 2), for k = 2 is described as follows:
At k = 0:

Qθ0
(0)︸ ︷︷ ︸

Qθ (0)

[
x(0) 0

0 0

]
=

[
0 0

x(0) 0

]
(3.57)

At k = 1:

Qθ1
(1) Qθ0

(1)︸ ︷︷ ︸
Qθ (1)

⎡
⎣

x(1) x(0)
0 0

λ 1/2x(0) 0

⎤
⎦ =

⎡
⎣

0 0
0 ¯̄x
¯̄x ¯̄x

⎤
⎦ (3.58)
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At k = 2:

Qθ2
(2) Qθ1

(2) Qθ0
(2)︸ ︷︷ ︸

Qθ (2)

⎡
⎢⎢⎣

x(2) x(1) x(0)
0 0 0
0 λ 1/2 ¯̄x 0

λ 1/2 ¯̄x λ 1/2 ¯̄x 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 0
0 0 u(1,3)
0 u(2,2) u(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎥⎥⎦ . (3.59)

It is worth mentioning that, in an infinite-precision environment, this exact ini-
tialization of the QRD-RLS algorithm is equivalent to the exact initialization of the
RLS algorithm.

For the case of the soft-start procedure, one should choose U(−1)=δJ, where
J is the reversal matrix and δ is a regularization parameter with a value proportional
to the standard deviation of the input signal. Note that Jv reverses vector v: Its first
element becomes the last one and vice-versa. The soft-start strategy is simpler than
the exact initialization and its effect becomes negligible when k increases.

Regarding the soft-constrained initialization, it is relevant to note that:

• As in the conventional RLS algorithm [1], the soft initialization causes a bias
and, if λ < 1, this bias tends to zero as k increases.

• In [10], the full quantitative analysis of the dynamic range of all internal quan-
tities of the QRD-RLS algorithm was presented; it was also shown in this ref-
erence, for the case of fixed-point arithmetics, that when the value of the regu-
larization parameter is approximately δ =σx/

√
1−λ , σ2

x being the variance of
the input signal, overflow in the internal variable with soft initialization can be
avoided.

3.5 On the Qθ (k) Matrix

Different versions of QRD-RLS algorithms can be obtained from adequate interpre-
tation of matrix Qθ (k). Below, based on (3.48), we present the key relations to allow
such interpretation.

• Observing the fact that Qθ (k) is unitary, that is,

IN+2 = Qθ (k)QT
θ (k) =

[
γ(k) gT(k)
f(k) E(k)

][
γ(k) fT(k)
g(k) ET(k)

]

= QT
θ (k)Qθ (k) =

[
γ(k) fT(k)
g(k) ET(k)

][
γ(k) g(k)T

f(k) E(k)

]
, (3.60)

then

f(k) = −γ−1(k)E(k)g(k), and (3.61)

g(k) = −γ−1(k)ET(k)f(k). (3.62)
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• Replacing Qθ (k), as in (3.48), in (3.43), we have:

[
γ(k) gT(k)
f(k) E(k)

][
xT(k)

λ 1/2
U(k−1)

]
=

[
0T

U(k)

]
; (3.63)

then, the next two relations follow:

f(k)xT(k)+λ
1/2

E(k)U(k−1) = U(k), and (3.64)

g(k) = −γ(k)λ
−1/2

U−T(k−1)x(k). (3.65)

• Observing the fact that Qθ (k) is unitary, we see that the norm of the expression
in (3.63) obeys

UT(k)U(k) = x(k)xT(k)+λUT(k−1)U(k−1). (3.66)

If we pre-multiply (3.66) by U−T(k), and confront the result

U(k) = U−T(k)x(k)xT(k)+λU−T(k)UT(k−1)U(k−1) (3.67)

with (3.64), we see that f(k) and E(k) can be given by

f(k) = U−T(k)x(k), and (3.68)

E(k) = λ
1/2

U−T(k)UT(k−1). (3.69)

The above relations are common to both triangularization methods. Especially
(3.65), (3.68), and (3.69) are key relations for the comprehension of other algorithms
of the QR family.

With the above, we can relate some expressions of the RLS algorithm, from the
previous chapter, with their corresponding QRD-RLS counterparts. These relations,
linking both algorithms, are shown in Table 3.3 where the expressions of the first
column rise naturally from the RLS algorithm while the equations in the second
column were basically obtained from (3.60).

Table 3.3 Relating equivalent expressions from the RLS and the QRD-RLS algorithms.

RLS QRD-RLS

γ2(k) = 1−xT(k)R−1(k)x(k) γ2(k) = 1− fT(k)f(k) = 1−||f(k)||2

γ−2(k) = 1+λ−1xT(k)R−1(k−1)x(k) γ−2(k) = 1+ ||γ−1(k)g(k)||2

λ−1γ2(k)R−1(k−1)x(k) = R−1(k)x(k) g(k) = −γ−1(k)ET(k)f(k)

x(k)xT(k) = R(k)−λR(k−1) f(k)fT(k) = I−E(k)ET(k)

R−1(k)x(k)xT(k) = I−λR−1(k)R(k−1) g(k)gT(k) = I−ET(k)E(k)
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We next interpret the elements of Qθ (k) beginning with γ(k). If Qθ (k) is
regarded as in (3.48), the first element of the equation system in (3.45) can be
written as

eq1(k) = γ(k)d(k)+gT(k)λ
1/2

dq2(k−1). (3.70)

From (3.65) and using (3.17), the rotated error can be expressed as

eq1(k) = γ(k)e(k), (3.71)

where e(k) = d(k)− xT(k)w(k − 1) is the a priori estimation error as defined in
Chapter 2. With (3.52) and (3.71), it follows that

ε(k) = γ2(k)e(k), (3.72)

and γ2(k) represents the conversion factor between the a priori and the a posteriori
output errors for the degree N +1 filtering problem. Note that, this same conversion
factor is also used in the context of the RLS algorithm.

In order to interpret the other elements of Qθ (k), it is necessary to apply the
QR decomposition to the problems of forward and backward predictions. In Sec-
tions 3.5.1 and 3.5.2, we consider the scheme shown in Figure 3.5 to present
the prediction of a past sample x(k −N − 1) from vector x(k) (backward predic-
tion) and the prediction of the current sample x(k) from vector x(k− 1) (forward
prediction).

Throughout the next subsections, the (k + 1)× i input data matrix is denoted
as X(i)(k) and all variables of backward and forward predictors, related to order
i predictors (i + 1 prediction coefficients), are indicated with the superscript (i+1),

FORWARD BACKWARD

x(k)

x(k−1)

...

x(k−N)

x(k−N−1)

x(k)

db(k)

x(k −1)

d f (k)

(a)

(b)

Fig. 3.5 Signal prediction at instant k and order N. (a) Forward prediction: sample x(k) is predicted
from vector x(k−1). (b) Backward prediction: sample x(k−N −1) is predicted from vector x(k).
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e.g., e(i+1)
b (k) and e(i+1)

f (k). However, for convenience of notation, order N pre-

dictors are indicated without the superscript (N+1), i.e., eb(k) = e(N+1)
b (k) and

e f (k) = e(N+1)
f (k).

3.5.1 The backward prediction problem

In the backward prediction problem, we try to obtain an estimate of a past sample of
a given input sequence using the more recent available information of this sequence.
In the problem of order N at instant k, the prediction of the desired backward sample
x(k−N−1) is based on vector x(k). The weighted backward prediction error vector
is defined as

eb(k)=

⎡
⎢⎢⎢⎢⎢⎣

x(k−N −1)
λ 1/2

x(k−N −2)
...

λ (k−N−1)/2x(0)
0N+1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
db(k)

−

⎡
⎢⎢⎢⎢⎢⎣

x(k) · · · x(k−N)
λ 1/2

x(k−1) · · · λ 1/2
x(k−N −1)

...
. . .

...
λ (k−1)/2x(1) · · · 0
λ k/2x(0) · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X(k)

wb(k), (3.73)

where wb(k) is the backward prediction coefficient vector and db(k) the weighted
backward desired signal vector.

In the backward prediction problem of order i−1 the weighted backward predic-
tion error vector is

e(i)
b (k) = d(i)

b (k)−X(i)(k)w(i)
b (k), (3.74)

where the weighted desired signal vector

d(i)
b (k) =

[
x(k− i) λ

1/2
x(k− i−1) · · · λ (k−i)/2x(0) 0T

i

]T
(3.75)

represents the (i+1)th column of the data matrix in (3.5) and is denoted as x(i)(k).

By differentiating e(i)
b

T
(k)e(i)

b (k) with respect to w(i)
b (k), the optimum backward

prediction coefficient vector is given by

w(i)
b (k) =

[
X(i)T

(k)X(i)(k)
]−1

X(i)T
(k)d(i)

b (k). (3.76)

From the relations used in backward prediction, it is worth noting that:

• For i = 0, e(0)
b (k) = d(0)

b (k) = x(0)(k). For {i = 1, . . . ,N}, the data matrix can be

denoted as X(i+1)(k) =
[

X(i)(k) d(i)
b (k)

]
and (3.74) can be rewritten as

e(i)
b (k) = X(i+1)(k)

[
−w(i)

b (k)
1

]
. (3.77)
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• The error vectors in (3.77) for {i = 0, . . . ,N} can be collected in matrix

G(k) = X(k)K−1(k), (3.78)

where
G(k) =

[
e(N)

b (k) e(N−1)
b (k) · · · e(0)

b (k)
]
, (3.79)

and

K−1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−w(N)
b,0 (k) −w(N−1)

b,0 (k) · · · −w(1)
b,0(k) 1

−w(N)
b,1 (k) −w(N−1)

b,1 (k) · · · 1 0
...

...
. . .

...
...

−w(N)
b,N−1(k) 1 · · · 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.80)

• The (i + 1)th column of K−1(k) for i = 0, . . . ,N, represents the coefficients of
the backward prediction errors filters of order N − i;

• The first row of matrix G(k) in (3.78) corresponds to the a posteriori backward
prediction error (with different orders and at instant k) vector transposed, i.e.,

K−T(k)x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(N)
b (k)

ε(N−1)
b (k)

...

ε(1)
b (k)

ε(0)
b (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.81)

• When w(i)
b (k) fulfills (3.76) for {i = N,N − 1, . . . ,1,0}, the product D2(k) =

GT(k)G(k) is a diagonal matrix whose elements ||e(i)
b (k)||2 represent the mini-

mum backward prediction errors energy.
• If we replace first (3.76) in (3.74) and then X(i)(k) by G(i)(k)K(i)(k) (of order

i−1), we obtain the expression

e(i)
b (k) = x(i)(k)−G(k)D−2(k)GT(k)x(i)(k). (3.82)

For convenience, we rewrite the last equation as

e(i)
b (k) = x(i)(k)−

i−1

∑
j=0

e j κ ji(k), (3.83)

with e j = e(N− j)
b (k), κ ji =eT

j x(i)(k)/‖e j ‖2 and j< i.
• The set of error vectors for {i = 0, . . . ,N} can be rewritten as
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X(k) = [e0 e1 · · ·eN ]

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 1
... κ1N

0
...

1 κN1 · · · κNN

⎤
⎥⎥⎥⎥⎥⎦

= G(k)K(k). (3.84)

• Equation (3.84) represents the Gram–Schmidt orthogonalization procedure [3]
of the columns of matrix X(k) of special interest for the case of a lower trian-
gular Cholesky factor.

The rotated weighted backward prediction error vector is defined below and it
will be used, in the next chapter, in the derivation of the fast QR algorithms.

ebq(k) = Q(k)eb(k) =
[

O ebq1
(k)

U(k) dbq2
(k)

][
−wb(k)

1

]
(3.85)

By following similar procedure as the one used in the WLS estimation problem,
it is possible to show that

εb(k) = γ(k)ebq1
(k) = γ2(k)eb(k). (3.86)

3.5.2 The forward prediction problem

In the forward prediction problem, we obtain an estimate of a sample of a given
input sequence using the past available information of this sequence. In the problem
of order N at instant k, the prediction of the desired signal x(k) is based on vector
x(k−1) and the weighted forward prediction error vector is defined as

e f (k)=

⎡
⎢⎢⎢⎢⎢⎣

x(k)
λ 1/2

x(k−1)
...

λ (k−1)/2x(1)
λ k/2x(0)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
d f (k)

−

⎡
⎢⎢⎢⎢⎢⎣

x(k−1) · · · x(k−N −1)
λ 1/2

x(k−2) · · · λ 1/2
x(k−N −2)

...
. . .

...
λ (k−1)/2x(0) · · · 0

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸[
X(k−1)

0T

]
,

w f (k) (3.87)

where w f (k) is the forward prediction coefficient vector. Note that the last row of the
data matrix, which contains zeros, appears due to the fact that we assume x(k) = 0
for k < 0.

The weighted forward prediction error vector, of order i−1 and instant k, is given
as
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e(i)
f (k) = d(i)

f (k)−
[

X(i)(k−1)
0T

]
w(i)

f (k), (3.88)

where d(i)
f (k) is the weighted desired signal and represents the first column of the

data matrix denoted in (3.5) as x(0)(k), that is,

d(i)
f (k) =

[
x(k) λ

1/2
x(k−1) · · · λ k/2x(0)

]T
. (3.89)

By differentiating [e(i)
f (k)]Te(i)

f (k) with respect to w(i)
f (k) and equating the result to

zero, we find the optimum forward prediction coefficient vector of order (i−1), i.e.,

w(i)
f (k) =

{[
X(i)(k−1)

]T
X(i)(k−1)

}−1 [X(i)(k−1)
0T

]T

d(i)
f (k). (3.90)

From the relations used in forward prediction, it is relevant to note that:

• At instant � = k−N and for i = 0, the weighted forward prediction error vector

is e(0)
f (k−N) = d(0)

f (k−N) = x(0)(k−N). At instant �+ i with {i = 1, . . . ,N}
the data matrix with dimension (�+ i+1)× (i+1) can be represented as X(i+1)

(�+ i) =
[

d(i)
f (�+ i) X(i)(�+ i−1)

0T

]
, and (3.88) can be rewritten as

e(i)
f (�+ i) = X(i+1)(�+ i)

[
1

−w(i)
f (�+ i)

]
. (3.91)

• The error vectors in (3.91) for {i = 0, . . . ,N} can be collected into matrix

G(k) = X(k)K−1(k), (3.92)

where
G(k) =

[
e0 e1 · · · eN

]
, (3.93)

with

ei =

[
e(i)

f (k−N + i)
0N−i

]
, (3.94)

and

K−1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

0 0 · · · 1 −w(N)
f ,0 (k)

...
...

. . .
...

...

0 1 · · · −w(N−1)
f ,N−3(k−1) −w(N)

f ,N−2(k)

1 −w(1)
f ,0(k−N +1) · · · −w(N−1)

f ,N−2(k−1) −w(N)
f ,N−1(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.95)
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• The (i + 1)th column of K−1(k) for i = 0, . . . ,N, represents the coefficients of
the forward prediction error filters of order i at instant k−N + i.

• The first row of the system of equations in (3.92) is the a posteriori forward
prediction error vector, with different orders, and at distinct time instants, i.e.,

K−T(k)x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε(0)
f (k−N)

ε(1)
f (k−N +1)

...

ε(N)
f (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.96)

• When w(i)
f (k − N + i) obeys (3.90) for {i = N, . . . ,0}, the product D2(k) =

GT(k)G(k) is a diagonal matrix whose elements are the minimum forward pre-

diction error energy ||e(i)
f (k−N + i)||2.

• If we replace (3.90) in (3.88) and rewrite the data matrix X(i)(k−1) as G(i)(k−
1)K(i)(k−1), we obtain, at instant �+ i with � = k−N,

e(i)
f (�+ i) = d(i)

f (�+ i)−

⎡
⎢⎣

i−1

∑
j=0

e( j)
f (�+ j−1) κi j

0

⎤
⎥⎦ , (3.97)

where κi j =

[
e( j)

f (�+ j−1)
0

]T

d(i)
f (�+ i)/||e j

f (�+ j)||2 and j < i.

• The set of weighted forward prediction error vectors for {i = 0, . . . ,N} can be
rewritten as

X(k) = [e0 e1 · · ·eN ]

⎡
⎢⎢⎢⎢⎢⎣

κ00 · · · κ0 N−1 1
... 0

κN−1 0
...

1 0 · · ·

⎤
⎥⎥⎥⎥⎥⎦

= G(k)K(k). (3.98)

• Equation (3.98) represents the Gram–Schmidt orthogonalization procedure [3]
of the columns of X(k) matrix of special interest for the case of an upper trian-
gular Cholesky factor.

The rotated weighted forward prediction error vector, obtained from (3.88) with
i = N +1, is then defined as

e fq(k) =
[

Q(k−1) 0
0T 1

]
e f (k) =

⎡
⎣

e fq1
(k) O

d fq2
(k) U(k−1)

λ k/2x(0) 0T

⎤
⎦
[

1
−w f (k)

]
. (3.99)



74 José A. Apolinário Jr. and Maria D. Miranda

By following similar procedures as the one used in the WLS estimation problem,
it is possible to show that

ε f (k) = γ(k−1)e fq1
(k) = γ2(k−1)e f (k). (3.100)

3.5.3 Interpreting the elements of Qθ (k) for a lower triangular
Cholesky factor

This subsection provides insightful information about the variables used by the QR
algorithms. To start, we observe that both representations of the input data matrix,
in (3.84) and in (3.98), can be used to rewrite the autocorrelation matrix as

R(k) = UT(k)U(k) = XT(k)X(k)

= KT(k)GT(k)G(k)K(k)

= [D(k)K(k)]T[D(k)K(k)], (3.101)

and the projection operator as

P(k) = X(k)R−1(k)XT(k) = QT
2 (k)Q2(k) = G(k)D−2(k)GT(k). (3.102)

The term D(k)K(k) may represent the Cholesky factor of the deterministic auto-
correlation matrix, defined in (3.15) as U(k), and the columns of matrix QT

2 (k) =
G(k)D−1(k) represent the prediction error vectors normalized by the prediction
error energy.

Once U(k) = D(k)K(k), using (3.48), (3.68), (3.69) and (3.65), yields the fol-
lowing expression for Qθ (k):

Qθ (k)=

[
γ(k) −γ(k)λ−1/2 [

D−1(k−1)K−T(k−1)x(k)
]T

D−1(k)K−T(k)x(k) λ 1/2
D−1(k)K−T(k)KT(k−1)DT(k−1)

]
. (3.103)

Equations (3.101, 3.102, 3.103) are valid for both types of triangularization. Nev-
ertheless, from the backward prediction problem, where the product D(k)K(k) cor-
responds to a lower triangular matrix, if we recall the physical interpretation of
K−T(k)x(k) as in (3.81) and that the elements of the diagonal matrix D(k) are given

by ‖ e(N−i)
b (k) ‖, it follows that

f(k) = D−1(k)K−T(k)x(k) =

⎡
⎢⎢⎢⎢⎢⎣

ε(N)
b (k)/ ‖ e(N)

b (k) ‖
ε(N−1)

b (k)/ ‖ e(N−1)
b (k) ‖

...

ε(0)
b (k)/ ‖ e(0)

b (k) ‖

⎤
⎥⎥⎥⎥⎥⎦

. (3.104)
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Thus, f(k), for the case of lower triangularization of the Cholesky factor, is the a
posteriori backward prediction error vector at instant k normalized by backward
error energies at the same instant.

Moreover, from the same interpretation of D(k−1) and K−T(k−1), vector g(k),
from (3.48) and (3.65), may be given as

g(k) = −γ(k)λ
−1/2

⎡
⎢⎢⎢⎢⎣

e(N)
b (k)/ ‖ e(N)

b (k−1) ‖
e(N−1)

b (k)/ ‖ e(N−1)
b (k−1) ‖
...

e(0)
b (k)/ ‖ e(0)

b (k−1) ‖

⎤
⎥⎥⎥⎥⎦

. (3.105)

Thus, g(k) is the a priori backward prediction error vector at instant k weighted by

−γ(k)λ−1/2
and normalized by backward error energies at instant k−1.

3.5.4 Interpreting the elements of Qθ (k) for an upper triangular
Cholesky factor

For the case of an upper triangular Cholesky factor, the product D(k)K(k) comes
from the forward prediction orthogonalization procedure. It is also worth mention-
ing that (3.95) brings an interpretation of the non-zero elements of the rows of
K−T(k) as the coefficients of forward prediction filters of different orders at distinct
time instants. Recalling the physical interpretation of K−T(k)x(k) as (3.96) and that

the elements of the diagonal matrix D(k) are also given by ‖ e(i)
f (k −N + i) ‖, it

follows that

f(k) =

⎡
⎢⎢⎢⎢⎢⎣

ε(0)
f (k−N)/ ‖ e(0)

f (k−N) ‖
ε(1)

f (k−N +1)/ ‖ e(1)
f (k−N +1) ‖

...

ε(N)
f (k)/ ‖ e(N)

f (k) ‖

⎤
⎥⎥⎥⎥⎥⎦

. (3.106)

In this case, f(k) is the a posteriori forward prediction error vector normalized by
forward error energies at different time instants.

By using the same interpretation of D(k−1) and K−T(k−1), vector g(k) corre-
sponds, in the upper triangularization case, to

g(k) = −γ(k)λ
−1/2

⎡
⎢⎢⎢⎢⎢⎣

e(0)
f (k−N)/ ‖ e(0)

f (k−N −1) ‖
e(1)

f (k−N +1)/ ‖ e(1)
f (k−N) ‖

...

e(N)
f (k)/ ‖ e(N)

f (k−1) ‖

⎤
⎥⎥⎥⎥⎥⎦

. (3.107)
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Vector g(k) is then an a priori forward prediction error vector normalized by the a

posteriori forward error energies and weighted by −γ(k)λ−1/2
.

We note that, in the case of upper triangularization, the normalized errors present
in Qθ (k) are of different orders at distinct instants of time (order and time updating);
this fact seems to be the cause of the extra computational effort of the fast—or O[N]
(order of N)—algorithms derived from this type of triangularization.

With the physical interpretation of vectors g(k) and f(k) presented above and
taking into account Equations (3.61) and (3.62), matrix E(k) can be interpreted as a
conversion factor matrix between the a priori and the a posteriori prediction error
vectors.

3.6 The Inverse QRD-RLS Algorithm

An alternative approach to the conventional QRD-RLS algorithm based on the
update of the inverse Cholesky factor was presented in [11]. This algorithm, known
as the Inverse QR decomposition (IQRD-RLS) algorithm, allows the calculation of
the weight vector without back-substitution. In the following, based on the struc-
ture of Qθ (k) and on the relations (3.62), (3.65), (3.68), and (3.69), we present the
IQRD-RLS algorithm.

Starting from the RLS solution w(k) = R−1(k)p(k) with R(k) and p(k) defined
as in (3.9) and in (3.8), respectively, and using the expression in (3.38) instead of
X(k), after some manipulations, we can show that

w(k) = w(k−1)+ e(k)U−1(k)U−T(k)x(k), (3.108)

where e(k) = d(k)−xT(k)w(k−1) is the a priori error and the term multiplying this
variable is known as the Kalman Gain. Also note, knowing that R(k) = UT(k)U(k),
that (3.108) corresponds to (2.55), from the previous chapter.

Since we know that Qθ (k) is unitary, if we post-multiply this matrix by its first
row transposed, it follows that

Qθ (k)

[
γ(k)
g(k)

]
=

[
1

0

]
. (3.109)

From (3.65), we have g(k) = −γ(k)λ−1/2
U−T(k − 1)x(k). For convenience, we

define
a(k) = −γ−1(k)g(k) = λ

−1/2
U−T(k−1)x(k) (3.110)

and rewrite (3.109) as

Qθ (k)

[
1

−a(k)

]
=

[
γ−1(k)

0

]
. (3.111)
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This expression, if we know a(k), provides Qθ (k). At this point, it is relevant

to observe that (3.69), rewritten as λ−1/2
E(k)U−T(k− 1) = U−T(k), suggests that

U−T(k− 1) can be updated with the same matrix that updates U(k− 1). In fact, if

we rotate
[

0 λ−1/2
U−1(k−1)

]T
with Qθ (k), we obtain

[
γ(k) gT(k)
f(k) E(k)

][
0T

λ−1/2
U−T(k−1)

]
=

[
λ−1/2

gT(k)U−T(k−1)
U−T(k)

]
. (3.112)

For convenience, we define u(k) = λ−1/2
U−1(k−1)g(k). Using vector a(k) from

(3.110), this vector can be expressed as

u(k) = −λ
−1/2

γ(k)U−1(k−1)a(k), (3.113)

or, using (3.62), (3.68), and (3.69), as

u(k) = −γ−1(k)U−1(k)U−T(k)x(k). (3.114)

Finally, with this last equation, (3.108) can be rewritten as

w(k) = w(k−1)− e(k)γ(k)u(k), (3.115)

where the Kalman vector is now expressed as −γ(k)u(k).
By combining (3.112) and (3.111) in one single equation, we have

[
1/γ(k) uT(k)

0 U−T(k)

]
= Qθ (k)

[
1 0T

−a(k) λ−1/2
U−T(k−1)

]
. (3.116)

Equation (3.116) is a key relation to the inverse QRD-RLS algorithm, which
equations are presented in Table 3.4. A pseudo-code of the (lower-triangularization
version) inverse QRD-RLS algorithm is available in Appendix 3 (Table 3.6).

To close this section, we note that Equation (3.45) can be added to (3.116), i.e,

[
γ−1(k) uT(k) eq1(k)

0 U−T(k) dq2(k)

]
=Qθ (k)

[
1 0T d(k)

−a(k) λ−1/2
U−T(k−1) λ 1/2

dq2(k−1)

]

(3.117)
The resulting set of equations is known as the extended QRD-RLS algorithm. It was
presented in [12], before the inverse QRD-RLS algorithm [11].

3.7 Conclusion

This chapter presented concepts and derivations of the basic algorithms belonging
to the QRD-RLS family: the conventional and the inverse QRD-RLS algorithms.
We started by noting that the QR decomposition, when applied to solve the LS
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Table 3.4 The inverse QRD-RLS equations.

IQRD-RLS
for each k
{ Obtaining a(k):

a(k) = U−H(k−1)x(k)/
√
λ

Obtaining Qθ (k) and γ(k):[
1/γ(k)

0

]
= Qθ (k)

[
1

−a(k)

]

Obtaining u(k) and updating U−H(k):[
uH(k)

U−H(k)

]
= Qθ (k)

[
0T

λ−1/2
U−H(k−1)

]

Obtaining the a priori error e(k):
e(k) = d(k)−wH(k−1)x(k)
Updating the coefficient vector:
w(k) = w(k−1)− γ(k)e∗(k)u(k)

}

problem, comprises the rotation of the space spanned by the columns of the input
data matrix. The relationship between the conventional LS and the QRD-LS meth-
ods was established and the orthogonality principle was shown in the rotate signal
domain.

Using the recursive structure of the data matrix, the rotated RLS solution of
(3.45) follows. It is worth mentioning that, if we apply the transformation

[
γ(k) 0T

0 U(k)

]
(3.118)

in the filtering and adaptation operations of the RLS algorithm, i.e.,

[
e(k)
w(k)

]
=

[
1 −xT(k)

R−1(k)x(k) I−R−1(k)x(k)xT(k)

][
d(k)

w(k−1)

]
, (3.119)

after some algebra, the same conventional QRD-RLS algorithm of (3.45) follows,
that is, [

eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ 1/2
dq2(k−1)

]
. (3.120)

In fact, with the change of coordinates, the system described in (3.119) can be
transformed into another system, with different internal descriptions, but with the
same input–output behavior for solving the LS problem. Although theoretically
equivalent, the resulting system may have different numerical behavior when imple-
mented in finite precision arithmetics [13]. Concerning specially the transformed
system in (3.120), it is possible to find a numerically robust algorithm, e.g., those
in [8, 14].
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In Section 3.5, the structure of matrix Qθ (k) and the physical interpretation of
its internal variables were presented. From the known structure of matrix Qθ (k),
the IQRD-RLS algorithm was easily obtained. This algorithm, besides the inherited
numerical robustness of its family, provides the coefficient vector at every itera-
tion, without having to resort to the computationally onerous backward or forward
substitution procedures. With the interpretation of the internal variables of Qθ (k),
expressed in terms of backward and forward prediction errors, we have also pro-
vided all necessary tools to help readers understand the forthcoming chapters of this
book.

It is worth mentioning that the QRD-RLS algorithms addressed in this chapter
present a computational complexity of O[N2] and preserve the desirable fast con-
vergence property of the conventional RLS algorithm. Hence, assuming an infinite-
precision environment, the outcomes of both algorithms (the RLS and the QRD-
RLS, conventional or inverse), once initialized in an equivalent form, are identical in
terms of speed of convergence and quality of estimation. Since the solution obtained
by the QRD-RLS algorithm corresponds to the solution of the RLS algorithm from
a transformed domain, the good numerical behavior can be presumed as a direct
consequence of this transformation.

Appendix 1 - Forward and Back-Substitution Procedures

In order to show two possible procedures used to obtaining the coefficient vec-
tor with one order of magnitude less computational complexity than matrix inver-
sion [15], consider the following system of equations:

Ux = y, (3.121)

where U is a (N +1)× (N +1) triangular matrix, as illustrated in Figure 3.1, and x
is the (N +1)×1 vector we need to obtain.

When U is upper triangular, we use the forward substitution procedure:

x1 =
yN+1

UN+1,1

xi =
1

U�,i

(
y� −

i−1

∑
j=1

U�, jx j

)
(3.122)

for i = 2,3, . . . ,N +1 and � = N − i+2.
When U is lower triangular, we use the back-substitution procedure:

xN+1 =
y1

U1,N+1

xi =
1

U�,i

(
y� −

N+1

∑
j=i+1

U�, jx j

)
(3.123)

for i = N,N −1, . . . ,1 and � = N − i+2.
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Appendix 2 - Square-Root-Free QRD-RLS Algorithms

The two-dimensional vector rotations, necessary to execute the QRD-RLS algo-
rithm, can be efficiently implemented using a CORDIC (COrdinate Rotation DIg-
ital Computer) processor [16, 17]. In systems based on general-purpose program-
able DSPs, vector rotations requires a SQuare-RooT (SQRT) operation, which may
eventually represent a bottleneck due to its significant computational burden. To cir-
cumvent this problem, many authors have proposed square-root-free methods for
performing Givens rotations. Gentleman, in his pioneer work [18], shows how to
perform the plane rotations without SQRT. After that, different versions of Givens
rotations without SQRT were introduced (see, e.g. [19–23]).

Among different implementations of rotations without SQRT, for the sake of sim-
plicity, we address the version introduced in [19]. We thus start with the following
rotation. [

cosθ1 −sinθ1

sinθ1 cosθ1

][
x1 x2

u1 u2

]
=

[
0 x′2
u′1 u′2

]
(3.124)

In order to have the first element of the first column nulled, the rotation angle is

such that cosθ1 = u1/u′1, sinθ1 = x1/u′1 and u′1 =
√

x2
1 +u2

1, which requires a SQRT
operation.

The main “trick” behind this class of algorithm is to scale the rows as follows.

xi = δ 1/2

1 x̄i

ui = d
1/2

1 ūi

u′i = d
1/2

2 ū′i

(3.125)

for i = 1,2 and, also, x′2 = δ 1/2

2 x̄′2. In terms of the new quantities, the Givens rotation
in (3.124) can be rewritten as

[
cosθ1 −sinθ1

sinθ1 cosθ1

][
δ 1/2

1 0

0 d
1/2

1

][
x̄1 x̄2

ū1 ū2

]
=

[
δ 1/2

2 0

0 d
1/2

2

][
0 x̄′2
ū′1 ū′2

]
. (3.126)

By rearranging the transformations, we obtain

Ḡ

[
x̄1 x̄2

ū1 ū2

]
=

[
0 x̄′2
ū′1 ū′2

]
, (3.127)

where

Ḡ =
[

cosθ1
√

δ1/δ2 −sinθ1
√

d1/δ2

sinθ1
√

δ1/d2 cosθ1
√

d1/d2

]
. (3.128)

We now rewrite cosθ1 in terms of the new quantities:

cosθ1 =
u1

u′1
=

d
1/2

1 ū1

d
1/2

2 ū′1
. (3.129)
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To find an adequate scale factor, we set

cosθ1 =
√

d2/d1 =
√

δ2/δ1. (3.130)

From (3.129) and (3.130), it follows that d2ū′1 = d1ū1. Therefore

sinθ1 =
x1

u′1
=

δ 1/2

1 x̄1

d
1/2

2 ū′1
=

d
1/2

2 δ 1/2

1 x̄1

d1ū1
, (3.131)

sinθ1

√
δ1/d2 =

d
1/2

2 δ 1/2

1 x̄1

d1ū1

δ 1/2

1

d
1/2

2

=
δ1x̄1

d1ū1
, and (3.132)

sinθ1

√
d1/δ2 =

d
1/2

2 δ 1/2

1 x̄1

d1ū1

d1
1/2

δ 1/2

2

=
x̄1

ū1

d
1/2

2

d
1/2

1

δ 1/2

1

δ 1/2

2

=
x̄1

ū1
. (3.133)

Thus, we can write (3.128) as

Ḡ =

[
1 − x̄1

ū1
δ2 x̄1
d2ū1

1

]
. (3.134)

From (3.130), we have

d2 = d1 cos2 θ1, and (3.135)

δ2 = δ1 cos2 θ1. (3.136)

From (3.130) and (3.131), it appears that

sin2 θ1

cos2 θ1
=

δ1x̄2
1

d1ū2
1

, (3.137)

such that cos2 θ1 can be obtained with

cos2 θ1 = (1+ sin2 θ1/cos2 θ1)−1 = (1+
δ1x̄2

1

d1ū2
1

)−1. (3.138)

As a result, the update formula in (3.127) with Ḡ as in (3.134) and their elements
computed with (3.138, 3.135, 3.136) shall avoid the use of SQRT.

Appendix 3 - Pseudo-Codes

In the following, we present the pseudo-codes for the conventional and the inverse
QRD-RLS algorithms. In both cases, we present their complex versions employing
the Cholesky vector with lower triangular matrices.



82 José A. Apolinário Jr. and Maria D. Miranda

Table 3.5 Pseudo-code for the conventional QRD-RLS algorithm.

QRD-RLS

% Initialization:
N (filter order), δ (small constant), λ (forgetting factor)
U(k−1) = δJN+1; (JN+1 being the reversal matrix)
w(k) = 0(N+1)×1; (if necessary) dq2(k−1) = 0(N+1)×1;

for k = 1,2, . . .
{ xaux = xH(k); % xaux(n) = x∗(k−n−1) for n = 1 : N +1

Uaux = λ 1/2
U(k−1); % Uaux(n,m) = λ 1/2

[U(k−1)]n,m for n,m = 1 : N +1
daux = d∗(k);
dq2aux = λ 1/2

dq2(k−1);
gamma = 1;
for n = 1 : N +1
{ % Obtaining Qθ (k) and updating U(k):

cosθn−1(k) = |Uaux(N +2−n,n)|√
|xaux(n)|2+|Uaux(N +2−n,n)|2

;

sinθn−1(k) =
(

xaux(n)
Uaux(N +2−n,n)

)∗
cosθn−1(k);

xaux(n) = 0;
Uaux(N +2−n,n) = sinθn−1(k)xaux(n)+ cosθn−1(k)Uaux(N +2−n,n);
for m = n+1 : N +1
{ oldxaux = xaux(m);

xaux(m) = cosθn−1(k)oldxaux− sin∗θn−1(k)Uaux(N +2−n,m);
Uaux(N +2−n,m)= sinθn−1(k)oldxaux+ cosθn−1(k)Uaux(N +2−n,m);

}
% Obtaining γ(k):
gamma = gamma cosθn−1(k);
% Obtaining eq1(k) and updating dq2(k):
olddaux = daux;
daux = cosθn−1(k).olddaux− sin∗θn−1(k)dq2aux(N +2−n);
dq2aux(N +2−n) = sinθn−1(k)olddaux+ cosθn−1(k)dq2aux(N +2−n);
% Back-substitution, if necessary:
summa= 0;
for m = 1 : (n−1)
{ summa = summa+Uaux(n,N +2−m)[w(k)]N+2−n;
}
[w(k)]N+2−n = (dq2aux(n)-summa)/Uaux(n,N +2−n);

}
U(k) = Uaux;
γ(k) = gamma;
dq2(k) = dq2aux;
eq1(k) = daux;
% Obtaining the estimation errors:
ε(k) = e∗q1(k)γ(k); % a posteriori error, i.e, d(k)−wH(k)x(k)
e(k) = e∗q1(k)/γ(k); % a priori error, i.e, d(k)−wH(k−1)x(k)

}
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Table 3.6 Pseudo-code for the inverse QRD-RLS algorithm.

IQRD-RLS

% Initialization:
N (filter order), δ (small constant), λ (forgetting factor)
UH(k−1) = 1

δ JN+1; (JN+1 being the reversal matrix)
w(k) = 0(N+1)×1; dq2(k−1) = 0(N+1)×1;

for k = 1,2, . . .
{ % Obtaining a(k):

akaux = 0(N+1)×1;

xaux = λ−1/2
x(k);

for n = 1 : N +1
for m = 1 : (N +2−n)
{ akaux(n) = akaux(n)+ [U−H(k−1)]n,mxaux(m);
}

}
a(k) = akaux;
% Obtaining Qθ (k) and γ(k):
igamma = 1;
for n = 1 : N +1

aux1 =
√

|igamma|2 + |akaux(N +2−n)|2;

cosθn−1(k) = |igamma|
aux1 ;

sinθn−1(k) = akaux(N +2−n)
igamma cosθn−1(k);

igamma = aux1; % or cosθn−1(k)igamma+ sin∗θn−1(k)akaux(N +2−m);
}
γ(k) = 1/igamma;
% Obtaining u(k) and updating U−H(k):
uHaux = 0(N+1)×1;

UmHaux = λ−1/2
U−H(k−1);

for n = 1 : N +1
for m = 1 : n
{ aux2 = uHaux(m);

uHaux(m) = cosθn−1(k)aux2− sin∗θn−1(k)UmHaux(N +2−n,m);
UmHaux(N +2−n,m) = sinθn−1(k)aux2+ · · ·

· · ·+ cosθn−1(k)UmHaux(N +2−n,m);
}

}
u(k) = uHaux∗;
U−H(k) = UmHaux;
% Obtaining e(k):
e(k) = d(k)−wH(k−1)x(k); % a priori error
% Updating the coefficient vector:
w(k) = w(k−1)− γ(k)e∗(k)u(k);

}
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In order to provide a better understanding of a Givens rotation matrix, for the case
of a complex vector, we give a simple example: consider vector z = [a b]T where
a and b are complex numbers and we want to rotate this vector by pre-multiplying
matrix Qθ such that the resulting vector has the same norm but one element was
annihilated. This can be carried out as follows.

1. Qθ z =
[

cosθ −sin∗ θ
sinθ cosθ

][
a
b

]
=

[
α
0

]

For this case, the values of the cosine and the sine of θ are given by

{
cosθ = |a|√

|a|2+|b|2
, and

sinθ =
(
− b

a

)∗
cosθ .

This definition was used in the conventional QRD-RLS algorithm in order to
obtain Qθ .

2. Qθ z =
[

cosθ −sin∗ θ
sinθ cosθ

][
a
b

]
=

[
0
α

]

For this second case, the values of the cosine and the sine of θ are given by
{

cosθ = |b|√
|a|2+|b|2

, and

sinθ =
(
− a

b

)∗
cosθ .

These expressions were used in inverse QRD-RLS algorithm to obtain Qθ .

In both cases, α has the same norm of z and may be expressed as ±e jφ
√

|a|2 + |b|2
where φ is the phase of a (first case) or b (second case). Qθ can also be chosen
slightly different in order to compensate this phase and produce a real number, the
norm of z, instead of ±e jφ ||z||.

A pseudo-code for the conventional QRD-RLS algorithm is presented in
Table 3.5 while a pseudo-code for the inverse QRD-RLS algorithm is presented
in Table 3.6, both employing lower triangular Cholesky factors.
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