
Chapter 12
On Linearly Constrained QRD-Based
Algorithms

Shiunn-Jang Chern

Abstract The linearly constrained adaptive filtering (LCAF) technique has been
extensively used in many engineering applications. In this chapter, we introduce
the linearly constrained minimum variance (LCMV) filter, implemented using the
linearly constrained recursive least squares (RLS) criterion, with the inverse QR
decomposition (IQRD) approach. First, the direct form of recursively updating the
constrained weight vector of LS solution based on the IQRD is developed, which is
named as the LC-IQRD-RLS algorithm. With the IQRD approach, the parameters
related to the Kalman gain are evaluated via Givens rotations and the LS weight
vector can be computed without back-substitution. This algorithm is suitable to
be implemented using systolic arrays with very large scale integration technology
and DSP devices. For the sake of simplification, an alternative indirect approach,
referred to as the generalized sidelobe canceler (GSC), is adopted for implement-
ing the LCAF problem. The GSC structure essentially decomposes the adaptive
weight vector into constrained and unconstrained components. The unconstrained
component can then be freely adjusted to meet any criterion since the constrained
component will always ensure that the constraint equations are satisfied. The indi-
rect implementation could attain the same performance as that using the direct con-
strained approach and possesses better numerical properties. Via computer simu-
lation, the merits of the LC-IQRD-RLS algorithms over the conventional LC-RLS
algorithm and its modified version are verified.

12.1 Introduction

The linearly constrained (LC) adaptive filtering (LCAF) technique is known to
have many applications in areas such as minimum variance spectral analysis, time
delay estimation, and antenna array signal processing [1–5]. More recently, these
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constrained approaches have been applied to wireless communication systems for
multiuser detection [6, 7]. Among the adaptive filtering algorithms, in most practi-
cal applications, the RLS algorithm has shown to offer better convergence rate and
steady-state mean-squared error (MSE) over the least mean squares (LMS)-based
algorithms. Unfortunately, the widespread acceptance of the RLS filter has been
refrained due to numerical instability problems when it is implemented in limited-
precision environments. Performance degradation is especially noticeable for the
family of techniques collectively known as “fast” RLS filters [8–10]. To circumvent
this problem, a well-known numerical stable RLS algorithm, which is called the
QR-decomposition RLS (QRD-RLS) algorithm was proposed [8, 11–13]. It com-
putes the QR decomposition (triangular orthogonalization) of the input data matrix
using Givens rotation and then solves the LS weight vector by means of the back-
substitution procedure.

The QRD-RLS algorithm can be implemented using the systolic array [14–17]
with very large scale integration (VLSI) technology and DSP devices. However,
in some practical applications, if the LS weight vector is desired in each iteration,
back-substitution steps must be performed accordingly. Due to the fact that back-
substitution is a costly operation to be performed in an array structure, the so-called
inverse QRD-RLS (IQRD-RLS) algorithm proposed in [18] is preferred, for the LS
weight vector can be computed without implementing back-substitution.

In this chapter, we first introduce the LC-RLS filtering algorithm based on an
IQRD, where a direct form of recursively updating the constrained weight vector
of LS solution is developed. The basic approach of the LC-IQRD-RLS algorithm is
very similar to that discussed in [2]. That is, based on the Kalman gain of the conven-
tional IQRD-RLS algorithm, the LC-IQRD-RLS algorithm can be developed where
the unconstrained form of the weight vector and the a priori estimation error can
be avoided. In the IQRD-RLS algorithm, the parameters related to the Kalman gain
are evaluated using the Givens rotations (QR decomposition), which is quite differ-
ent from the one discussed in [2] (using the fast RLS algorithm), yielding different
development. Usually, the IQRD-RLS algorithm has better numerical accuracy than
the “fast” RLS algorithm. Indeed, the numerical instability may cause the constraint
drift problem [19] for the constrained approach based on the conventional fast RLS
algorithm, named the constrained fast LS (CFLS) algorithm [2].

In this chapter, an alternative indirect approach, referred to as the general-
ized side-lobe canceler (GSC), is employed [6, 8, 20, 21] for various applica-
tions. The GSC structure essentially decomposes the adaptive weight vector
into constrained and unconstrained components. The unconstrained compo-
nent can then be freely adjusted to meet any criterion since the constrained
component will always ensure that the constraint equations are satisfied. The
GSC-based algorithm could attain the same performance as the direct con-
strained approach and possesses better numerical properties.
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In [22], the authors have proved that the optimal linearly constrained solution
derived with the direct and indirect (GSC structure) structures are equivalent for the
conjugate gradient and LMS-based algorithms, if the blocking matrix satisfies the
following condition, e.g., BHB = I. Furthermore, in [21] a more general proof of the
equivalency of direct and GSC structures for the LMS-based algorithms was given.

This chapter is organized as follows. First, in Section 12.2, we derive the opti-
mal linearly constrained LS weight vector solution, based on the IQRD, and discuss
the rationale behind it. After that, in Section 12.3, the LC-IQRD-RLS algorithm is
developed and applied to the linearly constrained minimum variance (LCMV) fil-
tering problems to achieve the desired performance. In Section 12.4, an alternative
indirect approach using the GSC structure is developed. To document the merits of
the proposed algorithm, in Section 12.5, two applications with computer simulations
results are given to show the efficiency in terms of fast convergence and numerical
stability of the LC-IQRD-RLS and the GSC-IQRD-RLS algorithms over the con-
strained fast RLS (CFLS) algorithm. Finally, we give a conclusion in Section 12.6
to summarize this chapter.

Notations and used symbols: Vectors and matrices are denoted by boldface
lower and upper case letters. All vectors are column vectors. (·)−1, (·)∗, (·)T, and
(·)H denote inverse, complex conjugate, transpose, and conjugate transpose, respec-
tively. ‖ ·‖ denotes Frobenius norm and IN is the N×N identity matrix. Null matrix
or vector is denoted by 0 with corresponding dimension.

12.2 Optimal Linearly Constrained QRD-LS Filter

As an introduction, we consider the configuration of the LCAF as depicted in
Figure 12.1.1 Here, x(k) = [x(k),x(k−1), ...,x(k−N)]T denotes the vector of sam-
pled input signals at the time index k and the weight vector is defined as w(k) =
[w0(k),w1(k), ...,wN(k)]T. In this chapter, we focus on the LCMV filtering prob-
lem, which uses the blind optimization approach, with the exponentially weighted
least-squares (LS) method, the cost function is defined as

JLS(w) =
k

∑
i=0

λ k−i|y(i)|2 =
k

∑
i=0

λ k−i|wHx(i)|2. (12.1)

The LS solution of w(k) is obtained by minimizing (12.1) with respect to w, subject
to multiple constraints. In (12.1), the parameter λ (0 � λ ≤ 1) is the forgetting fac-
tor that controls the speed of convergence and tracking capability of the algorithm.
For convenience, we rewrite (12.1) in a matrix form, i.e.,

JLS(w) = ‖ΛΛΛ 1/2(k)y(k)‖2 = ‖ΛΛΛ 1/2(k)X(k)w‖2 (12.2)

1 Note that the same algorithms developed in this chapter can also be employed for the case of a
constrained linear combiner, when the input signal vector does not correspond to a delay line.



326 Shiunn-Jang Chern

0 ( )k 1 ( )k 2 ( )k 1(k)N − ( )N k

( )x k ( 1)x k − ( 2)x k − ( 1)x k N− + ( )x k N−

( )y k

w∗w∗w∗w∗w∗

Fig. 12.1 The structure of a linearly constrained FIR filter.

where y(k) = [y(0),y(1), ...y(k)]T is denoted as the output vector. Also, ΛΛΛ 1/2(k) =
diag[

√
λ k,

√
λ k−1, · · · ,

√
λ ,1] is a diagonal matrix and X(k) is the (k+1)× (N +1)

data matrix denoted by X(k) = [x(0),x(1), ...,x(k)]H. It can be noticed that the def-
inition of the data matrix X(k) in this chapter is slightly different from the defini-
tion found in (2.14), Chapter 2; however, this difference in the way the input data
matrix is defined results in equivalent algorithms. In the conventional QRD-RLS
algorithm, an orthogonal matrix Q(k) of order (k +1)× (k +1), is used to perform
the triangular orthogonalization of the data matrix ΛΛΛ 1/2(k)X(k) by means of Givens
rotations [8, 12], that is,

Q(k)ΛΛΛ 1/2(k)X(k) =
[

U(k)
O

]
, (12.3)

where U(k) is an (N + 1)× (N + 1) upper triangular matrix, and O is a (k−N)×
(N +1) null matrix.

We note that, in order to be consistent with the definition of the data matrix
X(k), the definition of U(k) is also slightly different from that given in introductory
chapters. Also, the Givens rotation is known to have the ability to be implemented
in parallel and systolic structure. In consequence, (12.2) can be rewritten as

JLS(w) = ‖U(k)w‖2 . (12.4)

For the linearly constrained optimization, (12.4) is minimized subjects to L lin-
ear constraints, e.g., CHw = f, where the (N + 1)×L constraint matrix is denoted
as C = [c1,c2, ...,cL] and f = [ f1, f2, ..., fL]T is the L-element response column vec-
tor. Proceeding in a similar way as in [2], via Lagrange multipliers with the QR-
decomposition approach, the linearly constrained LS solution is given by [1]

w(k) =
[
UH(k)U(k)

]−1
C
{

CH [
UH(k)U(k)

]−1
C
}−1

f . (12.5)
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Based on the optimal constrained LS solution of (12.5), in next section we will
develop the recursive form of (12.5), named the LC-IQRD-RLS algorithm.

12.3 The Adaptive LC-IQRD-RLS Filtering Algorithm

To derive the recursive form of (12.5) for using in a LCAF, as depicted in
Figure 12.2, we define a new (N +1)× (N +1) matrix S(k), i.e.,

S(k) = [UH(k)U(k)]−1. (12.6)

Its inverse can be easily shown to be equivalent to the following definition:

S−1(k) = UH(k)U(k) (12.7)

= XH(k)ΛΛΛ(k)X(k)

=
k

∑
i=1

λ k−ix(i)xH(i).

For convenience, we define ΓΓΓ (k) = S(k)C and ΦΦΦ(k) = CHΓΓΓ (k) = CHS(k)C; as a
consequence, (12.5) can be expressed as

w(k) = ΓΓΓ (k)ΦΦΦ−1(k)f. (12.8)

We may view (12.8) as the LCMV weight vector solution implemented by the
LS approach with the IQRD. In what follows, based on the inverse Cholesky factor
U−1(k), the recursive form of (12.8) is developed. Also, some of the useful param-
eters and alternative recursive equations of ΓΓΓ (k) and ΦΦΦ−1(k), which are related to
the inverse Cholesky factor, are derived. Recalling from [11], the upper triangular
matrix of U(k) as defined in (12.3) can be written in a recursive form

[
U(k)
0T

]
= T(k)

[√
λU(k−1)

xH(k)

]
, (12.9)

x(k)
w(k)

y(k)

Adaptive Constrained
Algorithm

Fig. 12.2 The block diagram of the adaptive linearly constrained filter.
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where T(k) is the (N + 2)× (N + 2) orthogonal matrix, which annihilates the Her-
mitian of the input vector, xH(k), by rotating it into

√
λU(k−1). Thus, matrix T(k)

can be formed as the product of (N +1) Givens rotations. By multiplying both sides
of (12.9) with their respective Hermitian on the left, it gives

UH(k)U(k) = λUH(k−1)U(k−1)+x(k)xH(k). (12.10)

By using the matrix inversion lemma in (12.10), and after some mathematical
manipulation, we obtain

U−1(k)U−H(k) =
1
λ

U−1(k−1)U−H(k−1)−g(k)gH(k), (12.11)

where the intermediate vector, g(k) is defined by

g(k) =
U−1(k−1)z(k)√

λ t(k)
. (12.12)

The scalar variable t(k) and intermediate vector z(k) of (12.12) are defined, respec-
tively, by t(k) =

√
1+ zH(k)z(k) and

z(k) =
U−H(k−1)x(k)√

λ
. (12.13)

Equation (12.11) implies the existence of an (N +2)×(N +2) orthogonal matrix
P(k), which annihilates vector z(k), starting from the top, by rotating them into the

element at the bottom of the augment vector
[
zT(k) 1

]T
[1], which is given by

P(k)
[

z(k)
1

]
=

[
0

t(k)

]
. (12.14)

While updating the lower triangular matrix U−H(k) from U−H(k− 1), with the
rotation matrix P(k), we obtain the intermediate vector gH(k), i.e.,

P(k)
[
λ−1/2U−H(k−1)

0T

]
=

[
U−H(k)
gH(k)

]
. (12.15)

We note that both g(k) and z(k) just described are computed using the same set
of Givens rotations, when U−H(k) is updated from U−H(k− 1). It is of interest to
point out that vector g(k) scaled by t(k), i.e.,

k(k) =
g(k)
t(k)

, (12.16)

can be viewed as the adaptation or Kalman gain of the IQRD-RLS algorithm. Sub-
stituting (12.6) into (12.11), with definition (12.12) and (12.13), we can easily show
that
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S(k) = λ−1[S(k−1)−k(k)xH(k)S(k−1)], (12.17)

with

k(k) =
λ−1S(k−1)x(k)

1+λ−1xH(k)S(k−1)x(k)
. (12.18)

With the results of (12.17) and (12.18), we can prove that k(k) = S(k)x(k). Now,
with the recursive equation of (12.17), the (N + 1)×K matrix ΓΓΓ (k) = S(k)C can
be rewritten in a recursive form by doing the right multiplication on both sides of
(12.17) by C, i.e.

ΓΓΓ (k) = λ−1[ΓΓΓ (k−1)−k(k)xH(k)ΓΓΓ (k−1)] (12.19)

= λ−1ΓΓΓ (k−1)−g(k)ααα(k),

where ααα(k) = gH(k)C. The recursive equation of ΦΦΦ(k) = CHΓΓΓ (k), previously
defined when introducing (12.8), can be expressed as

ΦΦΦ(k) = λ−1[ΦΦΦ(k−1)−k(k)xH(k)ΦΦΦ(k−1)]. (12.20)

Applying the matrix inversion lemma to (12.20), we have

ΦΦΦ−1(k) = λ [I+
√
λq(k)ααα(k)]ΦΦΦ−1(k−1), (12.21)

where q(k) is defined as

q(k) =

√
λΦΦΦ−1(k−1)αααH(k)

1−λααα(k)ΦΦΦ−1(k−1)αααH(k)
. (12.22)

Based on (12.20) and (12.21), we can show that

q(k) = λ−1/2[ΦΦΦ−1(k)ααα(k)]. (12.23)

Indeed, (12.23) is very useful for deriving the recursive form of (12.5). Finally,
by applying the recursive equations defined in (12.19) and (12.21) to (12.8) and
after simplification, we have the recursive implementation of (12.5), named the LC-
IQRD-RLS algorithm

w(k) = w(k−1)−λ [g(k)−
√
λΓΓΓ (k)q(k)]ααα(k)ΦΦΦ−1(k−1)f. (12.24)

With the definition of (12.12) and (12.13), (12.24) can be further simplified as

w(k) = w(k−1)−ρρρ(k)e(k), (12.25)

where

ρρρ(k) = k(k)−
√
λ

t(k)
ΓΓΓ (k)q(k), and (12.26)

e(k) = wH(k−1)x(k). (12.27)
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In (12.27), e(k) can be viewed as the a priori output of the LCMV filter. This
completes our derivation for the adaptive LC-IQRD-RLS algorithm, which
is summarized in Table 12.1 for reference. For simplification, an alternative indi-
rect approach, within the GSC framework, of the optimal linearly constrained LS
solution, based on the IQRD-RLS algorithm, is developed in the next section.

Table 12.1 Summary of the adaptive LC-IQRD-RLS algorithm.

LC-IQRD-RLS

• Initialization (δ=small positive constant):

U−1(0) = δ−1I

ΓΓΓ (0) = U−1(0)U−H(0)C

ΦΦΦ−1(0) = [CHΓΓΓ (0)]−1

w(0) = ΓΓΓ (0)[CHΓΓΓ (0)]−1f

• For k=1,2,..., do

1. Compute the intermediate vector z(k):

z(k) =
U−H(k−1)x(k)√

λ

2. Evaluate the rotations that define P(k) which annihilates vector z(k) and compute the scalar
variable t(k):

P(k)
[

z(k)
1

]
=

[
0

t(k)

]

3. Update the lower triangular matrix U−H(k) and compute vectors g(k) and ααα(k):

P(k)
[
λ−1/2U−H(k−1)

0T

]
=

[
U−H(k)
gH(k)

]

ααα(k) = gH(k)C

4. Update the following equations and intermediate inverse matrix:

ΓΓΓ (k) = λ−1ΓΓΓ (k−1)−g(k)ααα(k)

q(k) =

√
λΦΦΦ−1(k−1)αααH(k)

1−λααα(k)ΦΦΦ−1(k)αααH(k)

ΦΦΦ−1(k) = λ
[
I+

√
λq(k)ααα(k)

]
ΦΦΦ−1(k−1)

5. Update the LS weight vector:

e(k) = wH(k−1)x(k)

ρρρ(k) = k(k)−
√
λ

t(k)
ΓΓΓ (k)q(k)

w(k) = w(k−1)−ρρρ(k)e∗(k)
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12.4 The Adaptive GSC-IQRD-RLS Algorithm

The overall weight vector with the GSC [26] structure illustrated in Figure 12.3 is
equivalent to that of Figure 12.2. With the GSC structure, an alternative indirect
approach of the optimal constrained LS weight vector can be developed. First, the
original weight vector of Figure 12.2 is decomposed into two parts, i.e.,

w(k) = wc −Bwa(k) . (12.28)

In (12.28), the weight vector of the upper path, wc, is referred to as quiescent
vector, while the (N +1)× (N +1−L) matrix B of the lower path is the rank reduc-
tion or blocking matrix. Indeed, B could be any matrix, whose columns span the left
null space of C, e.g., B is full rank and satisfies

BHC = 0 and CHB = 0 . (12.29)

Therefore, the columns of B form a basis for the null space of CH and (N +
1)× (N +1−L) matrix B can be obtained from C by any orthogonalization proce-
dures. On the other hand, the upper path vector wc simply ensures that the constraint
equations are satisfied. The overall system function with the GSC structure depicted
in Figure 12.3, ideally, should be equivalent to the direct approach of Figure 12.2;
therefore, substituting (12.28) into the definition of constraints, CHw(k) = f, yields

CHw(k) = CH [wc −Bwa(k)] = CHwc −CHBwa(k) = f . (12.30)

From (12.30), it can be easily shown that

wc = C(CHC)−1f = F . (12.31)

Based on the above discussion, we learn that the general mathematical framework
for the GSC structure relies on the unconstrained optimization. Clearly the (N +
1−L)× 1 weight vector, wa(k), is unconstrained and can be freely adapted using
any optimization criterion, while the overall weight vector will remain constrained.

Wc = F

Wa(k)B
( )

B
kx

x(k)
y(k)

Adaptive Algorithm

–

+

Fig. 12.3 The block diagram of the adaptive linearly constrained filter with the GSC structure.
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With the GSC structure, the optimization problem becomes to choose the adaptive
weight wa(k) from any wa in lower branch, to cancel jamming (interfering) signals
in upper branch after computing wc and B. Under the condition described above, the
cost function of (12.1) to be minimized, with the GSC structure, can be rewritten as

JLS(wa) =
k

∑
i=0

λ k−i|[wc −Bwa]Hx(i)|2 (12.32)

=
k

∑
i=0

λ k−i|wH
c x(i)− [Bwa]Hx(i)|2 .

If we let d(i) be the desired component of Figure 12.3, e.g., d(i) = wH
c x(i),

(12.32) can be represented as

JLS(wa) =
k

∑
i=0

λ k−i|[d(i)−wH
a BHx(i)|2 (12.33)

=
k

∑
i=0

λ k−i|eB(i/k)|2 = ‖ΛΛΛ 1/2(k)eB(k/k)‖,

where the error vector is designated by eB(k/k) = [eB(0/k),eB(1/k), ...,eB(k/k)]T.
Correspondingly, if we denote d(k) = [d(0),d(1), ...,d(k)]T as a desired signal vec-
tor, (12.33) becomes

JLS(w) = ‖ΛΛΛ 1/2[d∗(k)−XB(k)wa]‖2. (12.34)

Accordingly, the data matrix based on the structure of GSC is given by XB(k) =
[xB(0),xB(1), · · · ,xB(k)]H, and xB(i) = BTx(i). With the approach of the conven-
tional QRD-RLS algorithm [8, 12, 18], an orthogonal matrix QB(k), is used to carry
out the triangular orthogonalization of the data matrix, ΛΛΛ 1/2(k)XB(k), via Givens
rotations, that is,

QB(k)ΛΛΛ 1/2(k)XB(k) =
[

UB(k)
0

]
, (12.35)

where UB(k) is an (N + 1− L)× (N + 1− L) upper triangular matrix, and 0 is a
(k−N +L)× (N +1−L) null matrix. Similarly, to perform the orthogonal matrix,
QB(k), on the weighted desired vector, ΛΛΛ 1/2(k)d(k), it gives

QB(k)ΛΛΛ 1/2(k)d∗(k) =
[

zB(k)
vB(k)

]
, (12.36)

where vectors zB(k) and vB(k) are with the dimensions of (N +1−L)×1 and (k−
N +L)×1, respectively. Since orthogonal matrices are length preserving, using the
results of (12.12) and (12.13), the cost function defined in (12.11) can be expressed
as

JLS(wa) =
∥∥∥∥
[

zB(k)−UB(k)wa

vB(k)

]∥∥∥∥
2

. (12.37)
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It is straightforward to see that the norm in Equation (12.37) is minimized if the
top partition of (12.37) is set to null. From (12.37), the optimum LS weight vector
wa(k) based on the QR decomposition can be obtained

UB(k)wa(k) = zB(k). (12.38)

Similarly, the LS weight vector wa(k) based on the IQRD can be represented by

wa(k) = U−1
B (k)zB(k). (12.39)

As a consequence, the IQRD-RLS algorithm for updating the LS weight vector,
wa(k), is given by [18]

wa(k) = wa(k−1)+
gB(k)
tB(k)

e∗B(k), (12.40)

with the a priori estimation error, eB(k) being defined by

eB(k) = d(k)−wH
a (k−1)xB(k). (12.41)

The scalar variable tB(k) and the (N + 1) × 1 intermediate vector gB(k) are
defined as

tB(k) =
√

1+ zH
B (k)zB(k), (12.42)

and

gB(k) =
U−1

B (k−1)zB(k)√
λ tB(k)

, (12.43)

respectively, and the intermediate vector zB(k), which provides the key to the paral-
lelization of the IQRD-RLS approach, is designated by

zB(k) =
U−H

B (k−1)xB(k)√
λ

. (12.44)

It should be noted that both gB(k) and tB(k) are evaluated entirely by rotation-
based method, using Givens rotations, when U−1

B (k) is updated from U−1
B (k− 1).

From [18], it is known that there exists a rotation matrix P′(k) such that

P′(k)
[

zB(k)
1

]
=

[
o

tB(k)

]
, (12.45)

where P′(k) successively annihilates the elements of the vector zB(k), starting from
the top, by rotating them into the element at the bottom of the augmented vector
[zT

B(k),1]T. In consequence, we can evaluate gB(k) as follows:

P′(k)
[
λ−1/2U−H

B (k−1)
0T

]
=

[
U−H

B (k)
gH

B (k)

]
. (12.46)
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It is of interest to point out that the scalar variable tB(k) and the intermediate vec-
tor gB(k) are evaluated based on (12.45) and (12.46). Also, gB(k) scaled by tB(k) can
be viewed as the adaptation gain of the IQRD-RLS algorithm, which is defined as

kB(k) =
gB(k)
tB(k)

. (12.47)

Equation (12.40) tells us that the LS weight vector is updated by incrementing its
old value by an amount equal to the a priori estimation error, eB(k/k−1) times the
time-varying gain vector, kB(k). Moreover, it can be shown that kB(k) = SB(k)xB(k)
with SB(k) = U−1

B (k)U−H
B (k). This completes the derivation of the GSC-IQRD-RLS

algorithm which is summarized in Table 12.2. We note that, for this case where the

Table 12.2 Summary of the adaptive GSC-based IQRD-RLS algorithm.

GSC-IQRD-RLS

• Initialization δ=small positive constant:

U−1
B (0) = δ−1I

wc = [C(CHC)−1]f

wa(0) = 0

• For k = 1, 2, ... , do

1. Compute the intermediate desired signal d(k) and input vector xB(k):

d(k) = wH
c x(k)

xB(k) = BHx(k)

2. Compute the intermediate vector zB(k):

zB(k) =
U−H

B (k−1)xB(k)√
λ

3. Evaluate the rotations that define P′(k) which annihilates vector zB(k) and compute the
scalar variable tB(k):

P′(k)
[

zB(k)
1

]
=

[
0

tB(k)

]

4. Update the lower triangular matrix U−H
B (k) and compute vector gB(k):

P′(k)
[
λ−1/2U−H

B (k−1)
0T

]
=

[
U−H

B (k)
gH

B (k)

]

5. Updating the LS weight vector:

eB(k/k−1) = d(k)−wH
a (k−1)xB(k)

wa(k) = wa(k−1)+
gB(k)
tB(k)

e∗B(k/k−1)
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adaptive part within the GSC structure is unconstrained, it is immediate to find a
direct correspondence between the variables used here and those of the IQRD-RLS
algorithm presented in Chapter 3.

12.5 Applications

Before proceeding further to conclude the advantages of the adaptive LC-IQRD-
RLS and GSC-IQRD-RLS algorithms, it is instructive to develop an appreciation
for the versatility of these important algorithms by applying them to LCMV filtering
problems.

12.5.1 Application 1: Adaptive LCMV filtering for spectrum
estimation

In the first application, we consider the spectral analysis which is very significant in
many signal processing applications, such as speech signal processing and interfer-
ence suppression. In this application, we would like to investigate the nulling capa-
bility of the LC-IQRD-RLS algorithm and compare it to the general constrained
fast LS algorithm. As described in [2], with the general fast LS algorithm (see [2],
Table 1), desired performance may not be satisfied due to round-off error during
the adaptation processes. Common to adaptive filter parameter updating algorithm,
a correction term, proportional to the quantity f−Cb f Hw(k), is an intuitively rea-
sonable form to obtain a more robust modified version, referred to as the robust con-
strained FLS (RCFLS) algorithm. To do so, the frequency response of the LCMV
filtering, for eliminating the undesired frequencies, is examined. We assume that
input signal consists of three sinusoids buried in additive white noise, i.e.,

x(k) = 10sin(0.3kπ)+100sin(0.66kπ)+ sin(0.7kπ)+b(k). (12.48)

The corresponding normalized frequencies and amplitudes are set to be 0.15,
0.33, and 0.35, and 10, 100, and 1, respectively, and b(k) denotes the additive white
noise with zero-mean and variance, σ2

b such that the signal-to-noise ratio (SNR)
is 40 dB.

Moreover, the filter is constrained to have unit response at two frequencies, viz.,
0.1 and 0.25 (normalized digital frequencies). Each of the two unit response fre-
quencies generates two-point constraints. In such case, L = 4 and (N + 1) = 11
(weight coefficients), the constraint parameters are

CT =

⎡
⎢⎢⎣

1 cos(0.2π) · · · cos((N)0.2π)
1 cos(0.5π) · · · cos((N)0.5π)
0 sin(0.2π) · · · sin((N)0.2π)
0 sin(0.5π) · · · sin((N)0.5π)

⎤
⎥⎥⎦

4×11

and fT =
[

1 1 0 0
]
. (12.49)
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We know that, usually, it is more difficult to separate two signals closely in adja-
cent frequency band, especially when one has relatively larger power than the other;
the signal with smaller power may be ignored and yields the wrong result.

From Figure 12.4, we observe that the learning curve of the RCFLS algorithm
might be disturbed by the inversion of the correlation matrix (while comput-
ing the adaptation gain) which is inherently numerically unstable. The nulling
capability for the undesired signal, the one with normalized frequency 0.35
and less power, is affected by the adjacent signal with frequency 0.33 and hav-
ing relatively larger power. However, the LC-IQRD-RLS algorithm has faster
convergence rate and better numerical stability than the RCFLS algorithm.
For comparison, the nulling gains, in dB, for different frequency components
using the LC-IQRD-RLS algorithm and the RCFLS algorithm, are listed in
Table 12.3.

Next, let us consider the problem of constrained drift which may be defined as
the squared norm of CTw(k)− f. Also, using the notation of functions found in
Matlab R©, the tolerance (Tol) of the numerical accuracy may be expressed as

Tol = max(size(A))×norm(A)× eps,

Fig. 12.4 Learning curve and frequency response of two algorithms after 1000 iterations with 100
independent runs.
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Table 12.3 Comparison of nulling capability of RCFLS and LC-IQRD algorithms.

Iteration Algorithms Normalized frequency of the signals

0.15 0.33 0.35

1000 RCFLS −44.05(dB) −43.50(dB) −28.35(dB)
1000 LCIQRD −44.12(dB) −44.04(dB) −49.55(dB)
10000 RCFLS −44.10(dB) −45.63(dB) −47.32(dB)
10000 LCIQRD −44.99(dB) −46.07(dB) −54.46(dB)

where eps is the floating point relative accuracy and A is denoted as the correlation
matrix. The smaller value of eps implies that a larger word-length is required to
achieve a specific Tol; for instance, if we set eps = 2−10, approximately, the word-
length will be 10 bits. From the implementation point of view, eps can also be treated
as the number of multiplication operator in the specific DSP device. Alternatively,
Tol may be used to set a limit or the precision for our simulation environment. That
is, for any singular value less than Tol will be treated as null or deriving a round-
ing error, during the computation procedure. In our simulation, the value of Tol is
chosen to be 0.9453 and the corresponding value of eps to achieve the numerical
accuracy of Tol is eps = 2−7. In Figure 12.5, the results of the RCFLS algorithm, in
terms of MSE, output power and the constrained drift, with the parameters described
above are given. The jitters phenomenon of the RCFLS algorithm are found in

Fig. 12.5 Numerical properties of the RCFLS algorithm with eps = 2−7.
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Fig. 12.6 Numerical properties of the LC-IQRD (LC-IQRD-RLS) algorithm with eps = 2−7.

the learning curve (MSE), output power and the constrained drift, as depicted in
Figure 12.5. However, as shown in Figure 12.6 with the same parameter as in Fig-
ure 12.5, the results of the LC-IQRD-RLS algorithm, in terms of MSE, output power
and constrained drift, are much better than those of the RCFLS algorithm.

12.5.2 Application 2: Adaptive LCMV antenna array beamformer

There are two types of antenna array beamformers, viz., broadband array structure
and narrowband array structure. In this application, the narrowband array
beamformer structure is considered for interferences (or undesired signals) sup-
pression. Basically, an array beamformer is a processor used in conjunction with
an array of sensors to provide a versatile form of spatial filtering. Since the desired
signal and the interference (or jammer) usually originate from different spatial loca-
tions, we are able to remove the jammer from the received signal by exploiting the
spatial diversity at the receiver. The LCMV beamformer is known to be one of the
most popular approaches for suppressing the undesired interference [16, 20, 23].
However, by using the adaptive array beamforming approach, the array system can
automatically adjust its directional response to null the jammers, and thus enhances
the reception of the desired signal.

The basic operation of the adaptive antenna array is usually described in terms
of a receiving system steering a null, that is, a reduction in sensitivity in a certain
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Fig. 12.7 Configuration of linearly constrained uniform spaced narrowband array beamformer.

position, towards a source of interference. It consists of a number of antenna ele-
ments coupled together via some form of amplitude control and phase shifting net-
work to form a single output. The amplitude and phase control can be regarded as
a set of complex weights, as illustrated in Figure 12.7. To start our derivation, let
us consider a uniform linear array (ULA) and a wavefront, generated by a desired
source of wavelength λ , propagating in an N + 1 element array of sensors from a
direction φk off the array boresight. Now, taking the first element in the array as
the phase reference and with equal array spacing, d, the relative phase shift of the
received signal at the nth element can be expressed as φnk = 2π

λ d(k−1)sinφk. More-
over, assuming that the spacing between the array elements is set to λ/2, the array
response vector of this (N +1)-antenna ULA can be denoted by

a(φk) =
[

1, e− jπ sin(φk), · · · , e− j(N)π sin(φk)
]T

. (12.50)

Thus, we choose φk toward the direction of arrival (DOA) of the desired source
signal and suitably adjust the weights of adaptive array; the array will pass the
desired source signal from direction φ0 and steer nulls toward interference sources
located at φk for k �= 0. It can be shown that an (N +1) element array has (N +1)×1
degrees of freedom giving up to (N +1)×1 independent pattern nulls. So it has bet-
ter performance if the array has more antenna elements. We assume that the received
signal in each sensor consists of a desired source signal buried in white Gaussian
noise and three directional interferences (or jammers) incident at angles φ1,φ2, and
φ3, respectively. For convenience, the look direction of the desired source signal is
chosen to be φ1 = 0◦. In the constrained approach of beamforming algorithm, the
use of adaptive array for suppressing interference, with a look-direction constraint,
is highly dependent on the accuracy of the a priori information (DOA) to achieve
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the maximum signal-to-interference-plus-noise ratio (SINR). However, an error in
the steering angle, termed pointing error, would cause the adaptive array to tend to
null out the desired signal as if it were a jammer. To verify the observation described
earlier in this application, the problem of adaptive beamformer with main-beam con-
strained, associated with the pointing error, is considered. The deviation angle Δφ
is defined as the discrepancy that the constraints look-direction, φc, deviates from
the true arrival direction of the desired signal φ1, i.e., Δφ = φ1 −φc. We note that,
if pointing error exists (the look direction and the main-beam constraint is deviated
due to estimation error of arrival angle), one of the conventional approaches would
be the derivatives constraint approach [24, 25]. In such a case we may adapt the
derivative constraints (DC) into the beamformer where constraint matrix C, with L
linear constraints, is given by

C =
[

a(φc) a(1)(φc) · · · aL−1(φc)
]
, (12.51)

where ai(φc) = ∂a(φ)
∂φ i |φ=φc is defined as the ith derivative of the steering vector with

respect to φ .
Moreover, there are two design approaches to obtain the response vector f. The

first approach is to use the conventional beamformer response, i.e.,

f =
1
M

[aH(φc)a(φc),aH(φc)a(1)(φc), · · · ,aH(φc)a(L−1)(φc)]T =
1
M

[
aH(φc)C

]T
.

(12.52)

This will make the beamformer force the lobe shape of the main beam. In the sec-
ond scheme, we set the other derivatives to a zero response, i.e., f = [1,0, · · · ,0]T,
and this could make the beamformer achieve the main beam with a flat top shape.
Since we can expect that the jammer power is, in general, much larger than the
desired signal source, the SNR is set to 0 dB. In our simulations, we have used
three jammers with different jammer power ratios (JPR), e.g., JNR1 = 10 dB,
JNR2 = 20 dB, and JNR3 = 40 dB, corresponding to incident angles −30◦, 35◦,
and 40◦. First, we consider the case of main-beam constraint (single constraint)
only, and assumed that there is no pointing error, e.g., Δφ = φ1 − φc = 0◦. The
results, in terms of nulling capability, are given in Figure 12.8 for both LC-IQRD-
RLS and GSC-IQRD-RLS algorithms, with the forgetting factor λ = 0.98. These
results were evaluated after 200 snapshots and correspond to an average of 500
independent runs. From Figure 12.8, we observe that both algorithms have identi-
cal beampatterns. We have also compared the results obtained with constrained LS
algorithms with those of the linearly constrained LMS (Frost’s algorithm) [5] and its
GSC counterpart [26]. As can be seen in Figure 12.8, the LC-IQRD-RLS algorithm
outperforms, in terms of nulling capability shown in the beampatterns, the LC-LMS
and the GSC-LMS algorithms. Moreover, as described in the literature for the case
where BHB = I, the LC-LMS algorithm is identical to the GSC-LMS algorithm [21].
It is worth noting that, for the LC-IQRD-RLS algorithm, the condition BHB = I is
not required for achieving the equivalency with the GSC-IQRD-RLS algorithm.
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Fig. 12.8 Comparison of the GSC-IQRD-RLS algorithm with other algorithms, λ = 0.98 (without
pointing error).

Next, we would like to see the effect due to pointing error, and to verify that the
equivalency is also true for multiple constraint case. To do so, we consider the case
that a pointing error, Δφ = φ1 − φc = 3◦, occurs (also known as DOA mismatch).
Under this circumstance, with and without using the derivative constraint for the
main-beam, the performance of the same algorithms are investigated. We let the
other parameters be the same as in the case without having pointing error. From
Figure 12.9, we learn that, with the single constraint (without using the derivative
constraint), the gain of main beam is attenuated due to mismatch of the true look
direction and the main-beam constraint for the LC-IQRD-RLS and the GSC-IQRD-
RLS algorithms. Although the use of the LC-LMS algorithm has less effect due to
pointing error, nulling capability is still worse than the one with the LC-IQRD-RLS
algorithm. But, with the use of derivative constraints for the main-beam constraint
(multiple constraints, e.g., the main beam and its first order constraints), the effect
due to the pointing error has been alleviated while keeping better nulling capability
than the LC-LMS algorithm. In this case, the performance of the LC-IQRD-RLS
algorithm is again identical to the GSC-IQRD-RLS algorithm. Usually, we could
use higher order derivative constraint to achieve better result of combating DOA
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Fig. 12.9 Comparison of the GSC-IQRD-RLS algorithm with other algorithms, λ = 0.98 (pointing
error with derivative constraint).

mismatch. For comparison, the results of nulling capability for Figures 12.8 and
12.9 are listed in Tables 12.4 and 12.5.

From Tables 12.4 and 12.5, we observe that the use of the first order main
beam derivative constraint with the LC-LMS algorithm did not gain any ben-
efit. Conversely, a significant gain improvement has been verified for the LC-
IQRD-RLS algorithm.

From the results of the experiment carried out with this beamformer, we may
conclude that, for the multiple constraint case, both the LC-IQRD-RLS and the
GSC-IQRD-RLS algorithms did have the same performance. Although having a
similar performance, the use of the GSC-IQRD-RLS algorithm has the advantage of
requiring less computational complexity than the direct LC-IQRD-RLS
algorithm.
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Table 12.4 Comparison of nulling capability for various linearly constrained beamforming algo-
rithms with single constraint (without pointing error).

Desired signal jammer 1 jammer 2 jammer 3

SNR 0 (dB) 10 (dB) 20 (dB) 40 (dB)
Azimuth algorithm 0o −30o 35o 40o

LC-LMS algorithm −0.445(dB) −13.38(dB) −27.44(dB) −49.33(dB)
GSC-LMS algorithm −0.445(dB) −13.38(dB) −27.44(dB) −49.33(dB)
LC-IQRD-RLS algorithm −4.169(dB) −49.92(dB) −58.08(dB) −87.72(dB)
GSC-IQRD-RLS algorithm −4.169(dB) −49.92(dB) −58.08(dB) −87.72(dB)

Table 12.5 Comparison of nulling capability for various linearly constrained beamforming algo-
rithms with multiples constraint (pointing error with derivative constraint).

Desired signal jammer 1 jammer 2 jammer 3

SNR 0 (dB) 10 (dB) 20 (dB) 40 (dB)
Azimuth algorithm 0o −30o 35o 40o

LC-LMS algorithm −0.4745(dB) −12.3(dB) −27.26(dB) −47.7(dB)
GSC-LMS algorithm −0.4745(dB) −12.3(dB) −27.26(dB) −47.7(dB)
LC-IQRD-RLS algorithm −0.4773(dB) −45.58(dB) −61(dB) −87.95(dB)
GSC-IQRD-RLS algorithm −0.4773(dB) −45.58(dB) −61(dB) −87.95(dB)

12.6 Conclusion

In this chapter, we developed the direct and indirect IQRD-RLS-based constrained
adaptive filtering algorithms, named the LC-IQRD-RLS and the GSC-IQRD-RLS
algorithms, respectively, to implement the LCMV filter. The IQRD approach was
chosen such that the constrained LS weight vector solution could be updated with-
out using back-substitution, which is suitable to be implemented using a typical
VLSI technology structure termed systolic array. To verify the merits of the LC-
IQRD-RLS and the GSC-IQRD-RLS algorithms, we applied them to spectral anal-
ysis and smart antenna array beamforming problems. We have shown that, due to
the numerical stability of evaluating the adaptation (or Kalman) gain via Givens
rotations, the proposed LC-IQRD-RLS algorithm had less effect of constraint drift
compared with the CFLS algorithm and its robust version [2]. Thus, we concluded
that the LC-IQRD-RLS algorithm proposed in this chapter did perform better than
the CFLS and RCFLS algorithms developed in [2], in terms of capability to null
the undesired signal components output power as well as numerical efficiency in
practical implementation.
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