
Chapter 11
Weight Extraction of Fast QRD-RLS Algorithms

Stefan Werner and Mohammed Mobien

Abstract The main limitation of fast QR-decomposition recursive least-squares
(FQRD-RLS) algorithms is that they lack an explicit weight vector term. Further-
more, they do not directly provide the variables allowing for a straightforward
computation of the weight vector as is the case with the conventional QRD-RLS
algorithm, where a back-substitution procedure can be used to compute the coef-
ficients. Therefore, the applications of the FQRD-RLS algorithms are limited to
certain output-error-based applications (e.g., noise cancelation), or to applications
that can provide a decision-feedback estimate of the training signal (e.g., equalizers
operating in decision-directed mode). This chapter presents some observations that
allow us to apply the FQRD-RLS algorithms in applications that traditionally have
required explicit knowledge of the transversal weights. Section 11.1 reviews the
basic concepts of QRD-RLS and the particular FQRD-RLS algorithm that is used
in the development of the new applications. Section 11.2 describes how to identify
the implicit FQRD-RLS transversal weights. This allows us to use the FQRD-RLS
algorithm in a system identification setup. Section 11.3 applies the FQRD-RLS
algorithm to burst-trained systems, where the weight vector is updated during a
training phase and then kept fixed and used for output filtering. Section 11.4 applies
the FQRD-RLS algorithm for single-channel active noise control, where a copy of
the adaptive filter is required for filtering a different input sequence than that of the
adaptive filter. A discussion on multichannel and lattice extensions is provided in
Section 11.5. Finally, conclusions are drawn in Section 11.6.

Stefan Werner
Helsinki University of Technology, Espoo – Finland
e-mail: stefan.werner@tkk.fi

Mohammed Mobien
Helsinki University of Technology, Espoo – Finland
e-mail: mobien@ieee.org

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 299
DOI 10.1007/978-0-387-09734-3 11, c© Springer Science+Business Media, LLC 2009

stefan.werner@tkk.fi
mobien@ieee.org

300 Stefan Werner and Mohammed Mobien

11.1 FQRD-RLS Preliminaries

To aid the presentation of the new FQRD-RLS applications, this section reviews the
basic concepts of the QRD-RLS algorithm and one of the FQRD-RLS algorithms
in Chapter 4, namely the FQR POS B algorithm.

11.1.1 QR decomposition algorithms

The RLS algorithm minimizes the following cost function:

ξ (k) =
k

∑
i=0

λ k−i[d(i)−xT(i)w(k)]2 = ‖e(k)‖2, (11.1)

where λ is the forgetting factor and e(k) ∈ R
(k+1)×1 is the a posteriori error vector

given as

e(k) = d(k)−X(k)w(k), (11.2)

where d(k) ∈ R
(k+1)×1 is the desired signal vector, X(k) ∈ R

(k+1)×(N+1) is the input
data matrix, and w(k) ∈ R

(N+1)×1. The QRD-RLS algorithm uses an orthogonal
rotation matrix Q(k) ∈ R

(k+1)×(k+1) to triangularize matrix X(k) as [1]

[
0

U(k)

]
= Q(k)X(k), (11.3)

where U(k) ∈ R
(N+1)×(N+1) is the Cholesky factor of the deterministic autocorrela-

tion matrix R(k) = XT(k)X(k). Pre-multiplying (11.2) with Q(k) gives

Q(k)e(k) =
[

eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0

U(k)

]
w(k). (11.4)

The cost function in (11.1) is minimized by choosing w(k) such that dq2(k)−
U(k)w(k) is zero, i.e.,

w(k) = U−1(k)dq2(k). (11.5)

The QRD-RLS algorithm updates vector dq2(k) and matrix U(k) as

[
eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ 1/2dq2(k−1)

]
(11.6)

11 Weight Extraction of Fast QRD-RLS Algorithms 301

and [
0

U(k)

]
= Qθ (k)

[
xT(k)

λ 1/2U(k−1)

]
, (11.7)

where Qθ (k) ∈ R
(N+2)×(N+2) is a sequence of Givens rotation matrices which anni-

hilates the input vector x(k) in (11.7) and is partitioned as [2]

Qθ (k) =
[
γ(k) gT(k)
f(k) E(k)

]
. (11.8)

The QRD-RLS algorithm is complete with the definition of the a priori error value
e(k) = eq1(k)/γ(k), where γ(k) is a scalar found in matrix Qθ (k), see (11.8).

11.1.2 FQR POS B algorithm

The idea of the FQRD-RLS algorithm is to replace the matrix update in (11.7) with
a vector update. Using (11.5), we can express the a posteriori error ε(k) of the
adaptive filter as

ε(k) = d(k)−x
T
(k)U−1(k)︸ ︷︷ ︸

fT(k)

dq2(k), (11.9)

where

f(k) = U−T(k)x(k). (11.10)

The FQR POS B algorithm, introduced in Chapter 4, updates vector f(k) by
using forward and backward prediction equations and applying rotation matrices
to triangularize the data matrix. The update is given by

[
εb(k)

‖eb(k)‖
f(k)

]
= Q′

θ f (k)

[
f(k−1)

ε f (k)
‖e f (k)‖

]
, (11.11)

where ε f (k) and εb(k) are the a posteriori forward and backward prediction errors,
defined as

ε f (k) = x(k)−wT
f (k)x(k−1), and

εb(k) = x(k−N −1)−wT
b (k)x(k),

(11.12)

which are the first elements of the corresponding forward and backward prediction
errors vectors, e f (k) and eb(k), given by (see Chapter 3)

302 Stefan Werner and Mohammed Mobien

e f (k) =

⎡
⎢⎢⎢⎣

x(k)
λ 1/2x(k−1)

...
λ k/2x(0)

⎤
⎥⎥⎥⎦−

[
X(k−1)
01×(N+1)

]
w f (k) = d f (k)−

[
X(k−1)
01×(N+1)

]
w f (k),

eb(k) =

⎡
⎢⎢⎢⎢⎢⎣

x(k−N −1)
λ 1/2x(k−N −2)

...
λ (k−N−1)/2x(0)

0(N+1)×1

⎤
⎥⎥⎥⎥⎥⎦
−X(k)wb(k) = db(k)−X(k)wb(k).

(11.13)

As seen in Chapter 4, vector w f (k) is not explicitly used for updating f(k). Instead,
the term ε f (k)/‖e f (k)‖ in (11.11) is recursively computed by the FQRD-RLS algo-
rithm. The methods presented in the following will make explicit use of vector
w f (k). Therefore, if we consider e f (k) in (11.13), then the vector w f (k) that mini-
mizes ‖e f (k)‖2 is given by

w f (k) =
[
XT(k−1)X(k−1)

]−1
[

X(k−1)
01×(N+1)

]T

d f (k). (11.14)

Let Q f (k−1) denotes the Givens rotation matrix defined as below.

[
Q(k−1) 0k×1

01×k 1

]T

︸ ︷︷ ︸
QT

f (k−1)

[
Q(k−1) 0k×1

01×k 1

]

︸ ︷︷ ︸
Q f (k−1)

= I, (11.15)

where Q(k − 1) is the matrix that triangularizes X(k − 1), see (11.4). Applying
Q(k−1) and Q f (k−1) to (11.14) yields

w f (k) =
[
XT(k−1)QT(k−1)Q(k−1)X(k−1)

]−1

×
[

X(k−1)
01×(N+1)

]T

QT
f (k−1)Q f (k−1)d f (k)

=
[
UT(k−1)U(k−1)

]−1 UT(k−1)d f q2(k)

= U−1(k−1)d f q2(k),

(11.16)

where d fq2(k) corresponds to the last N + 1 elements (not taking into account the

last element which corresponds to λ k/2x(0)) of the rotated weighted forward error
vector defined as e fq = Q f (k−1)e f (k).

Equations (11.5), (11.11), (11.12), and (11.16) are essential for the understanding
of the weight extraction (WE) mechanism and output filtering methods explained in
the following.

11 Weight Extraction of Fast QRD-RLS Algorithms 303

11.2 System Identification with FQRD-RLS

In many applications, it is necessary to identify an unknown system. Examples of
such applications are: identification of the acoustic echo path in acoustic echo can-
celation, channel identification in communications systems, and active noise control
(ANC) [1]. Figure 11.1 shows the basic structure of a system-identification applica-
tion, where x(k), y(k), d(k), and e(k) are the input, output, desired output, and error
signals of the adaptive filter, respectively, at time instant k. The adaptive filter and the
unknown system share the same input signal, usually a wideband signal in the case
of channel identification or a noisy voice signal in the case of acoustic echo cance-
lation. The adaptation algorithm compares the desired signal with the output of the
adaptive filter in order to minimize the chosen objective function. The desired signal
will, in addition to the output from the unknown system, contain some measurement
noise n(k) which will affect the variance of the estimate of the unknown system.

Let us now consider two possible approaches for identifying the unknown plant:
one using an inverse QRD-RLS (IQRD-RLS) algorithm, with complexity O[N2]
per iteration, and another one that uses an FQRD-RLS algorithm with complexity
O[N] per iteration. Obviously, the latter approach requires a mechanism in which
the transversal weights embedded in the FQRD-RLS variables can be identified at
any iteration of interest, e.g., after convergence. If the transversal weights are not
required at every iteration, which might be the case in some applications, and the
cost of extracting the FQRD-RLS weights is reasonably low, the overall computa-
tional complexity would be much lower with the second approach.

The goal of this section is to develop a WE (identification) mechanism that can
be used in tandem with the FQRD-RLS algorithm at any particular iteration of inter-
est. This would reduce the overall computational cost (and peak-complexity) of the
system identification.

x(k)

y(k)

n(k)

d(k)

e(k)

Unknown system

Adaptive filter

Adaptation

algorithm

+
−

+

+

Fig. 11.1 Schematic diagram of a system-identification application.

304 Stefan Werner and Mohammed Mobien

11.2.1 Weight extraction in the FQRD-RLS algorithm

Note that the reduced computational cost of the FQRD-RLS algorithm is due
to the fact that the matrix update Equation (11.7) is replaced with the vector
update Equation (11.11). Thus, we are no longer able to separate U−1(k) from
x(k). As a consequence, if we excite the algorithm with a unit impulse, like in
the serial weight flushing technique in [3, 4], (11.9) will not sequence out the
correct coefficients.

To approach the solution, we note from (11.5) that the ith coefficient of vector w(k)
is given by

wi(k) = dT
q2(k)ui(k), (11.17)

where ui(k) denotes the ith column of matrix U−T(k). This means that when dq2(k)
is given, the elements of the weight vector w(k) can be computed if all the columns
of matrix U−T(k) are known. In the following, we show how all the column vectors
ui(k) can be obtained in a serial manner given u0(k). The main result is that the
column vector ui(k) can be obtained from the column vector ui−1(k) using two
relations (denoted by →):

ui−1(k) → ui−1(k−1) → ui(k).

Let us first look at the relation ui−1(k−1) → ui(k). That is, assume that we are
given the (i− 1)th column of U−T(k− 1) (please note the index value k− 1). We
can then compute the ith column of U−T(k) using (11.11) as stated in Lemma 1.

Lemma 1. Let ui(k) ∈ R
(N+1)×1 denote the ith column of the upper triangu-

lar matrix U−T(k) ∈ R
(N+1)×(N+1). Given Q′

θ f (k) ∈ R
(N+2)×(N+2), d f q2(k) ∈

R
(N+1)×1, and ‖e f (k)‖ from the FQRD-RLS algorithm, then ui(k) can be

obtained from ui−1(k−1) using the following relation:

[
∗

ui(k)

]
= Q′

θ f (k)

[
ui−1(k−1)
−w f ,i−1(k)
‖e f (k)‖

]
, i = 0, . . . ,N, (11.18)

where ∗ is a “don’t-care” and

w f ,i−1(k) =
{

−1 for i = 0,
uT

i−1(k−1)d f q2(k) otherwise.
(11.19)

Equation (11.18) is initialized with u−1(k−1) = 0(N+1)×1.

11 Weight Extraction of Fast QRD-RLS Algorithms 305

The definitions in (11.10) and (11.12) allow us to rewrite (11.11) as

[
−wT

b (k)
‖eb(k)‖

1
‖eb(k)‖

U−T(k) 0

]
x(N+2)(k) = Q′

θ f (k)

[
0 U−T(k−1)
1

‖e f (k)‖
−wT

f (k)
‖e f (k)‖

]
x(N+2)(k), (11.20)

where x(N+2)(k) = [x(k) x(k−1) · · · x(k−N −1)]T.
Equation (11.20) is illustrated in Figure 11.2, where we see that (11.18) and

(11.19) are just the column description of the matrices multiplying the extended
input vector x(N+2)(k). To account for the first column of (11.20) we initialize with
u−1(k−1) = 0N×1 and w f ,−1(k) =−1, which can be clearly seen from Figure 11.2.

Consequently, the first coefficient can be computed directly following the initial-
ization as

w0(k) = dT
q2(k)u0(k). (11.21)

To proceed with the next coefficient w1(k) = dT
q2(k)u1(k), we need vector u0(k−

1) to compute u1(k) using (11.18). In general, having computed wi(k), i.e., ui(k) is
known, we need a reverse mechanism, ui(k) → ui(k− 1), in tandem with (11.18),
(11.19) to allow for the computation of the next weight wi+1(k). How to compute
ui(k−1) from ui(k) is summarized by Lemma 2.

Equations (11.22) and (11.23) are obtained directly from the update equation for
U−T(k−1), see Chapter 3.

(i)th column(i)th column

=U−T(k)

−dT
bq2(k)U−T(k)

eb(k)
1

eb(k)

0

0

u
i (k)

−dT
bq2(k)ui(k)

eb(k)

U−T(k −1)

−dT
f q2(k)U−T(k−1)

e f (k)
1

e f (k)

u
i−

1 (k−
1)

−dT
f q2(k)ui−1(k−1)

e f (k)

Corresponding vectors

x
(N

+
2)(k)

x
(N

+
2)(k)

Qθ f (k)

Fig. 11.2 Illustration of (11.18) on how to obtain the ith column of U−T(k) (denoted as ui(k)) from
the (i−1)th column of U−T(k−1) (denoted as ui−1(k−1)).

306 Stefan Werner and Mohammed Mobien

Lemma 2. Let ui(k) ∈ R
(N+1)×1 denote the ith column of the upper trian-

gular matrix U−T(k) ∈ R
(N+1)×(N+1). Given Qθ (k) ∈ R

(N+2)×(N+2), f(k) ∈
R

(N+1)×1 and γ(k) from the FQRD-RLS algorithm, then ui(k − 1) can be
obtained from ui(k) using the relation below

[
0

λ−1/2ui(k−1)

]
= QT

θ (k)
[

zi(k)
ui(k)

]
, i = 0, . . . ,N −1, (11.22)

where
zi(k) = −fT(k)ui(k)/γ(k). (11.23)

The update is given by [5]

[
zT(k)

U−T(k)

]
= Qθ (k)

[
0T

λ−1/2U−T(k−1)

]
. (11.24)

Equation (11.22) is obtained by pre-multiplying both sides of (11.24) with QT
θ (k)

and considering each column separately, zi(k) being the ith element of vector z(k).
If we now employ the standard partition of Qθ (k) in (11.8), we can directly verify
that the first element of (11.22) is equal to

0 = γ(k)zi(k)+ fT(k)ui(k), (11.25)

which gives the relation in (11.23).
In summary, (11.18) and (11.22) allow for a serial WE of the weights w(k)

embedded in the FQRD-RLS variables. The pseudo-code for the WE mechanism
is given in Table 11.1. The number of operations required to completely extract all
the coefficients is given in Table 11.2. For comparison, the computational costs of
the FQRD-RLS and the IQRD-RLS algorithms are also given.

11.2.2 Example

The FQRD-RLS and IQRD-RLS algorithms, both using λ = 0.95, were used to
identify a system of order N = 10. The input signal x(k) was a noise sequence,
colored by filtering a zero-mean white Gaussian noise sequence nx(k) through the
fourth-order IIR filter x(k) = nx(k)+ x(k−1)+1.2x(k−2)+0.95x(k−3), and the
SNR was set to 30 dB. After 1900 iterations, the internal variables that are required
for computing w(k) were saved. The transversal weight vector of the IQRD-RLS

11 Weight Extraction of Fast QRD-RLS Algorithms 307

Table 11.1 FQRD-RLS WE algorithm.

Weight extraction

Initialization:

xi = 0,∀i ∈ [1,N]
x0 = −1
u−1(k−1) = 0(N+1)×1

Available from the FQRD-RLS algorithm:

Q′
θ f (k), d f q2(k), f(k), ‖e f (k)‖, Qθ (k), γ(k), and dq2(k)

for each i = 0 to N
{

Compute ui(k) from ui−1(k−1):

w f ,i−1(k) = xi −uT
i−1(k−1)d f q2(k)[

∗
ui(k)

]
= Q′

θ f (k)

[
ui−1(k−1)
−w f ,i−1(k)
‖e f (k)‖

]

Compute ui(k−1) from ui(k):

zi(k) = −fT(k)ui(k)/γ(k)[
0

λ−1/2ui(k−1)

]
= QT

θ (k)
[

z j(k)
ui(k)

]

Compute wi(k):

wi(k) = dT
q2(k)ui(k)

}

Table 11.2 Computational complexity of WE [8].

Algorithm Mult. Div. SQRT

FQRD-RLS 19N +23 4N +5 2N +3
WE (per weight i, 0 ≤ i ≤ N) 11N +14−11i 0 0

WE (total) 5.5N2 +19.5N +7 0 0
IQRD-RLS 3N2 +8N +4 2N +2 N +1

algorithm and the weight vector extracted from the FQRD-RLS algorithm are com-
pared by taking the squared difference of each coefficient, i.e.,

Δw2
i (k) = |wFQRD,i(k)−wIQRD,i(k)|2. (11.26)

Figure 11.3 shows the learning curves and the weight difference after 1900 iter-
ations. We see that the two algorithms have identical learning curves, and that the
transversal weight vector extracted from the FQRD-RLS algorithm is identical to
that of the IQRD-RLS algorithm up to the simulation precision.

308 Stefan Werner and Mohammed Mobien

200 400 600 800 1000 1200 1400 1600 1800
−30

−25

−20

−15

−10

−5
min MSE

FQRD-RLS
IQRD-RLS

M
SE

(d
B

)

Iteration, k
0 2 4 6 8 10

−335

−330

−325

−320

−315

−310

−305

Δ
w

i2 (
k)

(d
B

)

Coefficient, i

Fig. 11.3 Learning curves of the FQRD-RLS and the IQRD-RLS algorithms (left figure), squared
difference between coefficient weights of the IQRD-RLS and the FQRD-RLS algorithms.

11.3 Burst-trained Equalizer with FQRD-RLS

In wireless communications systems, the main factors limiting the system capacity
are various kinds of interference such as intersymbol interference (ISI) due to mul-
tipath propagation in frequency selective fading channels, co-channel (or multiple
access) interference, and adjacent channel interference. ISI is the main impairment
in single-user communications and can be corrected through the use of an adap-
tive equalizer [6]. Figure 11.4 shows the structure of an adaptive equalizer, where
u(k) is the user signal of interest and i(k) is co-channel interference. The adaptive
filter will try to suppress the channel-induced ISI, and in certain applications also
the co-channel interference. The desired signal d(k) is now a delayed replica of the
transmitted signal, where the value of the delay D is chosen to compensate for the
delay introduced by the channel.

u(k)

i(k)+n(k)

z−D

x(k) y(k)

d(k)
e(k)

Adaptive filter
w(k −1)

Channel
C(z)

Adaptation

algorithm

+ −

+

+

Fig. 11.4 Schematic diagram of an adaptive equalizer.

11 Weight Extraction of Fast QRD-RLS Algorithms 309

In this section, we will examine the special case of burst-trained equalizers,
where the equalizer coefficients are periodically updated using known training sym-
bols and then used for fixed filtering of a useful data sequence.

11.3.1 Problem description

The problem under consideration is illustrated in Figure 11.5. During time instants
k ≤ k f , the equalizer operates in training mode and its coefficients are updated using
the input and desired signal pair {x(k),d(k)}. At time instant k = k f , the adaptive
process is stopped and the equalizer switches to data mode where the coefficient
vector obtained during the training mode is kept fixed. That is, the output of the
filter is given by

y(k) =
{

wT(k−1)x(k) k ≤ k f

wT(k f)x(k) k > k f
(11.27)

where w(k f) is the coefficient vector of the adaptive filter “frozen” at time instant
k = k f .

If the FQRD-RLS algorithm is employed during training, one alternative for car-
rying out the filtering during the data mode, k > k f , is to first extract the filter coef-
ficients according to Section 11.2 and, thereafter, perform the filtering of x(k) with
a simple transversal structure. To avoid the increased peak complexity O[N2] of this
solution (at time k f), we seek here alternative methods with reduced peak complex-
ity O[N] that can reproduce the output signal in (11.27) from the variables of the
FQRD-RLS algorithm available at instant k = k f [7].

11.3.2 Equivalent-output filtering

After the training of the FQRD-RLS algorithm is stopped (k = k f), filtering of the
useful signal should be carried out according to (compare with (11.27))

x(k)

w(k −1)

k

+
+

–

= k f

e(k)

y(k)

d(k)

Fig. 11.5 Operation of a burst-trained equalizer. The adaptive filter coefficients are updated during
training mode (k ≤ k f), and kept fixed and used for output filtering in data mode (k > k f). Note
that there is no weight update after k > k f .

310 Stefan Werner and Mohammed Mobien

y(k) = dT
q2(k f)U−T(k f)︸ ︷︷ ︸

wT(k f)

x(k), k > k f ,
(11.28)

where dq2(k f) and U−T(k f) are parameters of the FQRD-RLS algorithm at time
instant k = k f , respectively. Vector dq2(k f) in (11.28) is explicitly available in the
FQRD-RLS algorithm. However, knowledge of U−T(k f) is only provided through
the variable f(k f) = U−T(k f)x(k f). Thus, starting with f(k f) as an initial value,
we need to find a way to obtain vector U−T(k f)x(k) from vector U−T(k f)x(k−1),
i.e., we need to incorporate the new sample x(k) without affecting U−T(k f) in the
process.

This problem is somewhat similar to the WE problem that was treated in the
previous section. The solution exploits the following two steps:

U−T(k f)x(k−1) → U−T(k f −1)x(k−1) → U−T(k f)x(k).

The first step, summarized by Lemma 3, is obtained by pre-multiplying (11.24)
with QT

θ (k f) and post-multiplying with the vector [x(k) xT(k− 1)]T. The variable
z(k) in (11.31) is obtained in a similar manner as (11.24). That is, by employing the
partition of Qθ (k f) in (11.8), the equation describing the first element of (11.30) is
given by

0 = γ(k f)z(k)+ fT(k f)U−T(k f)x(k−1). (11.29)

Lemma 3. Let U−T(k f) ∈ R
(N+1)×(N+1) denote the upper triangular inverse

transpose Cholesky matrix corresponding to time instant k f , and x(k −
1) ∈ R

(N+1)×1 be the input vector at any instant k > k f . Given Qθ (k f) ∈
R

(N+2)×(N+2), f(k f) ∈ R
(N+1)×1, and γ(k f) from the FQRD-RLS algorithm,

then U−T(k f −1)x(k−1) is obtained from U−T(k f)x(k−1) using the relation
below

[
0

λ−1/2U−T(k f −1)x(k−1)

]
= QT

θ (k)
[

z(k)
U−T(k f)x(k−1)

]
, (11.30)

where
z(k) = −fT(k f)U−T(k f)x(k−1)/γ(k f). (11.31)

The second step, summarized by Lemma 4, is obtained from (11.20) and freezing
the FQRD-RLS variables at k = k f , i.e.,

[
−wT

b (k f)
‖eb(k f)‖

1
‖eb(k f)‖

U−T(k f) 0

]
x(N+2)(k) = Q′

θ f (k f)

[
0 U−T(k f −1)
1

‖e f (k f)‖
−wT

f (k f)
‖e f (k f)‖

]
x(N+2)(k).

(11.32)
We see that the extended input vector x(N+2)(k) multiplies both sides of (11.32).
Therefore, the time instant for x(N+2)(k) can be chosen arbitrarily.

11 Weight Extraction of Fast QRD-RLS Algorithms 311

Lemma 4. Let U−T(k f − 1) ∈ R
(N+1)×(N+1) denote the upper triangular

inverse transpose Cholesky matrix corresponding to time instant k f − 1, and
x(k−1)∈R

(N+1)×1 be the input vector at any instant k > k f . Given Q′
θ f (k f)∈

R
(N+2)×(N+2), d f q2(k f)∈R

(N+1)×1, and ‖e f (k f)‖ from the FQRD-RLS algo-
rithm and input sample x(k), then U−T(k f)x(k) is obtained from U−T(k f −
1)x(k−1) as

[
∗

U−T(k f)x(k)

]
= Q′

θ f (k f)

[
U−T(k f −1)x(k−1)

x(k)−dT
f q2(k f)U−T(k f −1)x(k−1)

‖e f (k f)‖

]
, (11.33)

where ∗ is a “don’t-care” variable.

In summary, (11.30) and (11.33) allow us to reproduce the equivalent-output
signal corresponding to (11.28) without explicit knowledge of the weights embed-
ded in the FQRD-RLS algorithm. The procedure is illustrated in Figure 11.6. The
pseudo-code of the equivalent-output filtering algorithm is provided in Table 11.3.

Eq. (11.30)

Eq. (11.30)

Eq. (11.33)

Eq. (11.33)

U−T(k f −1)x(k −1) U−T(k f)x(k)

U−T(k f −1)x(k) U−T(k f)x(k +1)

y(k) = dT
q2(k f)U−T(k f)x(k)

y(k 1) = dT
q2(k f)U−T(k f)x(k 1)

time

k :

k +

+ +

1 :

...

Fig. 11.6 Fixed filtering without explicit knowledge of weight vector embedded in the FQRD-RLS
algorithm.

11.3.3 Equivalent-output filtering with explicit weight extraction

The approach presented here is based on the observation that for k > k f we can
divide the input vector x(k) into two non-overlapping vectors c(k) ∈ C

(N+1)×1 and
v(k) ∈ C

(N+1)×1

312 Stefan Werner and Mohammed Mobien

Table 11.3 Reproducing output y(k) = wT(k f)x(k) (k > k f) from the FQRD-RLS variables.

Equivalent-output filtering

Initialization:

r(k) = f(k f) ≡ U−T(k f)x(k f)
Available from the FQRD-RLS algorithm:

Q′
θ f (k f), d f q2(k f), f(k f), ‖e f (k f)‖, Qθ (k f), γ(k f), and dq2(k f)

for each k > k f

{
Compute U−T(k f −1)x(k−1) from U−T(k f)x(k−1):[

0
λ−1/2r̃(k)

]
= QT

θ (k f)
[
−fT(k f)r(k−1)/γ(k f)

r(k−1)

]

Compute U−T(k f)x(k) from U−T(k f −1)x(k−1):
[

∗
r(k)

]
= Q′

θ f (k f)

[
r̃(k)

x(k)−dT
f q2(k f)r̃(k)

‖e f (k f)‖

]

Compute y(k) = wT(k f)x(k):

y(k) = dT
q2(k f)r(k)

}

x(k) = c(k)+v(k), k > k f , (11.34)

with initial values

c(k f) = 0

v(k f) = x(k f),
(11.35)

where c(k) contains the input-samples for k > k f and v(k) holds those remaining,
i.e., for k ≤ k f . In other words, for each time instant k the new input-sample x(k) is
shifted into c(k) and a zero is shifted into v(k). The output y(k) for k > k f can now
be written as

y(k) = yc(k)+ yv(k) = wT(k f)c(k)+wT(k f)v(k). (11.36)

Note that with the initialization in (11.35), v(k) = 0 and y(k) = yc(k) for k >
k f +N.

The above formulation allows us to make use of our previous results and divide
the problem into two parts that can be carried out in parallel: one distributed weight

11 Weight Extraction of Fast QRD-RLS Algorithms 313

extraction that is used with c(k) to produce yc(k), and; one equivalent-output part
reproducing yv(k).

Reproducing yv(k) is straightforward. We need only to apply the results in pre-
vious subsection using vector v(k) in place of x(k). Obtaining yc(k) and w(k f) is
based on the observation that yc(k) during the first N + 1 iterations, following the
training phase (k > k f), is given by

yc(k) =
k−(k f +1)

∑
i=0

wi(k f)c(k− i), k f < k ≤ k f +N +1, (11.37)

where c(k) = x(k) ∀k > k f and c(k) = 0 ∀k ≤ k f . We see that (11.37) allows us to
extract the weights in a distributed manner, i.e., one weight per each new incoming
sample. Such “on-the-fly” extraction provides us with all the weights after N+1 iter-
ations, and still produces the correct output yc(k) before all the weights are acquired
(according to (11.37)). Invoking Lemmas 1 and 2 using a unit pulse in parallel with
(11.37) will sequence out the weights wi(k f) at the time instant they show up in
(11.37).

After the initial N +1 iterations, the output y(k) is simply given by wT(k f)x(k) =
wT(k f)c(k). In other words, it is not necessary to make all the weights available
before starting filtering in data mode (peak complexity O[N2] [8]). This distributed
weight flushing procedure ensures a peak complexity of O[N].

11.3.4 Example

The channel equalization example is taken from [9], where the channel is
given by

C(z) = 0.5+1.2z−1 +1.5z−2 − z−3.

The SNR is set to 30 dB and the order of the equalizer is N = 49. During the first 150
iterations (i.e., k f = 150), the equalizer coefficients are updated by the FQRD-RLS
algorithm. The training symbols d(k) randomly generated BPSK symbols. Follow-
ing the initial training sequence, an unknown symbol sequence consisting of 750
4-PAM symbols was transmitted over the channel, and the equalizer output was
reproduced using the approach in Section 11.3.3.

For comparison purposes, an IQRD-RLS algorithm was also implemented. Note
that the IQRD-RLS has a complexity of O[N2] during coefficient adaptation.

Figure 11.7 shows the mean squared error (MSE) curves for the FQRD-RLS and
the IQRD-RLS approaches. The results were obtained by averaging and smoothing
100 realizations of the experiment. It can be seen that both algorithms converge to
the same solution.

314 Stefan Werner and Mohammed Mobien

0 100 200 300 400 500 600 700 800 900
−30

−25

−20

−15

−10

−5

0

training mode
FQRD-RLS

IQRD-RLS

Min. MSE
M

SE
(d

B
)

Iteration, k

data mode

Fig. 11.7 Learning curves of the FQRD-RLS and the IQRD-RLS algorithms.

11.4 Active Noise Control and FQRD-RLS

In ANC, a disturbing (primary) noise is canceled by generating an “anti-noise”
signal with identical amplitude and opposite phase [10]. Figure 11.8 shows
a single-channel system consisting of one reference sensor (microphone) measur-
ing the noise signal x(k), one actuator (loudspeaker) signal y(k), and one error
sensor (microphone) measuring the residual signal e(k). In the figure, P(z) is the

x(k)

y(k) y f (k)

d(k)

e(k)
Adaptive filter

w(k−1)

Primary path
P(z)

Secondary path
S(z)

+
−

+

Fig. 11.8 Schematic diagram of an ANC system.

11 Weight Extraction of Fast QRD-RLS Algorithms 315

primary-path response, i.e., the (acoustic) response from the noise sensor to the
error sensor, and S(z) is the secondary-path response that models the acoustic path
between the actuator and error microphone as well as other imperfections like D/A
and A/D converters, reconstruction filters, and power amplifier effects [10]. Assum-
ing that S(z) is known, the task of the adaptive filter is to identify the unknown
primary path P(z).

11.4.1 Filtered-x RLS

The error signal e(k) observed by the error microphone is given by

e(k) = d(k)− y f (k) = d(k)− s(k)∗ [xT(k)w(k−1)︸ ︷︷ ︸
y(k)

],
(11.38)

where ∗ denotes convolution, s(k) is the impulse response of the secondary path
S(z), and y(k) = ∑N

i=0 x(k− i)wi(k− 1) = x(k) ∗w, wi(k− 1) being the ith element
of w(k− 1) and w representing the impulse response of the adaptive filter at k− 1.
Knowing that s(k)∗ [x(k)∗w] = [s(k)∗ x(k)]∗w, we define the filtered input signal
vector

x f (k) = [x f (k) x f (k−1) · · · x f (k−N)]T, (11.39)

whose elements are given as delayed versions of x f (k) = s(k) ∗ x(k). We can now
formulate the WLS objective function as

Jw =
k

∑
i=0

λ k−i[d(i)−x f
T(i)w(k)]2. (11.40)

Differentiating the objective function Jw with respect to w(k) and solving for the
minimum results in w(k) = R−1

f (k)p f (k), where R f (k) and p f (k) are defined by

R f (k) =
k

∑
i=0

λ k−ix f (i)xT
f (i), and

p f (i) =
k

∑
i=0

λ k−ix f (i)d(i).

(11.41)

The filtered-x RLS (FX-RLS) algorithm is then obtained in a similar manner as
the conventional RLS algorithm in Chapter 2 by substituting R f (k) and p f (k) in
R−1

f (k)p f (k) with their recursive formulations

R f (k) = λR f (k)+x f (k)x f
T(k), and (11.42)

p f (k) = λp f (k)+d(k)x f (k), (11.43)

316 Stefan Werner and Mohammed Mobien

giving the following updating expression

w(k) = w(k−1)+ e(k)R f
−1(k)x f (k). (11.44)

The inverse R−1
f (k) can be obtained recursively in terms of R−1

f (k− 1) using the

matrix inversion lemma1 [1], thus avoiding direct inversion of R f (k) at each time
instant k.

Note that x f (k) depends on the impulse response s(k) of the secondary path S(z).
For most ANC systems, an estimate Ŝ(z) of S(z) can be obtained offline during an
initial training phase [10]. Then the filtered input signal vector x f (k) used with the
FX-RLS algorithm is given by

x f (k) = ŝ(k)∗x(k), (11.45)

where ŝ(k) is the impulse response of Ŝ(z).

11.4.2 Modified filtered-x FQRD-RLS

The main problems with the FX-RLS algorithm are potential divergence behav-
ior in finite-precision environment and high-computational complexity, which is of
order N2. As an alternative, we could think of a more robust solution with reduced
complexity that employs the FQRD-RLS algorithm. However, the FQRD-RLS algo-
rithm (and also standard QRD-RLS algorithms) requires explicit knowledge of d(k)
to minimize the objective function in (11.40). This should be compared with the
FX-RLS implementation in (11.44) that directly employs the error signal e(k) mea-
sured by the error microphone. On the other hand, we see from Figure 11.8 that if
we pass the actuator signal y(k) through the estimated secondary-path filter Ŝ(z),
i.e., we obtain ŷ f (k) = ŝ(k)∗ y(k), an estimate d̂(k) can be obtained as

d̂(k) = e(k)+ ŷ f (k) = e(k)+ ŝ(k)∗ y(k). (11.46)

This leads to the realization in Figure 11.9. This structure is referred to as the
modified filtered-x structure and has been used with conventional RLS and LMS
algorithms as well as with the IQRD-RLS algorithm [11] to improve convergence
speed and robustness.

We see from Figure 11.9 that the coefficient vector embedded in the FQRD-
RLS variables is needed for reproducing the output signal y(k) = wT(k − 1)x(k).
We know from Section 11.2 that w(k−1) can be made explicitly available at every
iteration. However, as can be seen from Table 11.2, such an approach would lead
to a solution of O[N2] complexity per iteration. In other words, there is no obvious
gain of using an FQRD-RLS algorithm in place of an IQRD-RLS algorithm. One
solution to this complexity problem is to extract and copy the weights at a reduced

1 [A+BCD]−1 = A−1 −A−1B[DA−1B+C−1]−1DA−1.

11 Weight Extraction of Fast QRD-RLS Algorithms 317

x(k)

y(k) y f (k)

ŷ f (k)

x f (k)

d(k)

d̂(k)

e(k)
Adaptive filter

copy

Primary path
P(z)

Secondary path
S(z)

Ŝ(z)

Ŝ(z)
FQRD-RLS
algorithm

+
−

+

+

Fig. 11.9 FQRD-RLS in an ANC system.

rate, say once every K samples. This type of intermediate solution was considered
in [11], where a QRD least-squares lattice (QRD-LSL) algorithm was employed
in the lower branch of Figure 11.9. Obviously, such an approach will no longer
yield identical results to an IQRD-RLS algorithm, and the convergence behavior
will certainly be different.

Our goal here is to reproduce, at each iteration, the exact output y(k) associ-
ated with the weight vector w(k−1) embedded in the FQRD-RLS algorithm.
The total computational complexity for calculating y(k) and updating w(k−1)
will be O[N] per iteration. The resulting structure will yield exactly the same
result as the modified filtered-x IQRD-RLS in algorithm [11], while reducing
the computational complexity by an order of magnitude.

The solution is very similar to the problem dealt with in Section 11.3, where the
weight vector in the FQRD-RLS algorithm was used for fixed filtering. The main
difference here is that the weight vector in the lower branch is continuously updated
by the FQRD-RLS algorithm.

The output y(k) can be expressed as

y(k) = wT(k−1)x(k) = dT
q2(k−1)U−T(k−1)x(k), (11.47)

318 Stefan Werner and Mohammed Mobien

where, dq2(k−1) and U−T(k−1) are parameters of the FQRD-RLS algorithm run-
ning in the lower branch of Figure 11.9. The rotated desired signal vector dq2(k) is
directly available in the FQRD-RLS algorithm. However, the Cholesky factor matrix
U−1(k− 1) is hidden in vector f(k− 1) = UT(k− 1)x f (k− 1). On the other hand,
we know from (11.20) that matrix Q′

θ f (k− 1) provides the relation UT(k− 2) →
UT(k− 1). Since vectors x f (k) and x(k) are both initially set to zero, we can use
(11.20) for calculating y(k) for k > 0. The required computations are summarized
by Lemma 5.

Lemma 5. Let U−T(k−1)∈R
(N+1)×(N+1) denote the upper triangular inverse

transpose Cholesky matrix corresponding to the filtered autocorrelation matrix
R f (k− 1) defined in (11.41), and x(k− 1) ∈ R

(N+1)×1 be the input vector at
any instant k > 0. Given Q′

θ f (k−1)∈ R
(N+2)×(N+2), d f q2(k−1)∈R

(N+1)×1,
and ‖e f (k−1)‖ from the FQRD-RLS algorithm operating in the lower branch
of Figure 11.9, then U−T(k − 1)x(k) in (11.47) obtained from U−T(k − 2)x
(k−1) is written as

[
∗

U−T(k−1)x(k)

]
= Q′

θ f (k−1)

[
U−T(k−2)x(k−1)

x(k)−dT
f q2(k−1)U−T(k−2)x(k−1)

‖e f (k)‖

]
, (11.48)

where ∗ is a “don’t-care” variable.

The algorithm for reproducing the output y(k) in the upper branch of Figure 11.9
is summarized in Table 11.4.

Table 11.4 Modified filtered-x FQRD-RLS algorithm.

Output filtering in the upper branch of Figure 11.9

Initialization:

r(0) = UT(−1)x(0) = 0(N+1)×1

Available from FQRD-RLS algorithm:

Q′
θ f (k−1), d f q2(k−1), and ‖e f (k−1)‖

for each k
{

Compute U−T(k−1)x(k) from U−T(k−2)x(k−1):
[

∗
r(k)

]
= Q′

θ f (k−1)

[
r(k−1)

x(k)−dT
f q2(k)r(k−1)

‖e f (k−1)‖

]

Compute y(k) = wT(k−1)x(k):

y(k) = dT
q2(k)r(k)

}

11 Weight Extraction of Fast QRD-RLS Algorithms 319

11.4.3 Example

To illustrate the modified filtered-x FQRD-RLS algorithm, we consider an ANC
setup where the primary-path and secondary-path filters are given as follows:

P(z) = 0.4828z−3 −0.8690z−4 +0.0966z−5 +0.0483z−6

S(z) = 0.8909z−2 +0.4454z−3 +0.0891z−4.
(11.49)

The order of the adaptive filter is N = 19, and the input signal x(k) was a colored
noise sequence, colored by filtering a zero-mean white Gaussian noise sequence
nx(k) through the third-order IIR filter x(k) = −1.2x(k−1)−0.95x(k−2)+nx(k).
The primary signal d(k) was further disturbed by an additive noise sequence n(k),
whose variance was set such that the SNR at the error microphone was 28 dB.

For comparison purposes, we implemented the IQRD-RLS algorithm [11] and
an FQRD-RLS solution where WE is performed in the lower branch at a reduced
rate, once every K = 20 or K = 50 iterations, and the extracted coefficients are
then copied to the upper branch and kept fixed until the next WE takes place. Fig-
ure 11.10 shows the MSE curves for the FQRD-RLS and the IQRD-RLS implemen-
tations. The results were obtained by averaging and smoothing 50 realizations of the
experiment. The FQRD-RLS and the IQRD-RLS algorithms have identical converge
behavior (up to machine precision). As expected, the convergence behavior changes
when considering a solution that extracts the weights at a reduced rate. In case of a
non-stationary primary path (which may be common in practical applications), this
difference would be more relevant.

0 100 200 300 400 500
−60

−50

−40

−30

−20

−10

0
FQRD-RLS

FQRD-RLS(WE) K = 50

FQRD-RLS(WE) K = 20

IQRD-RLS

M
SE

 (
dB

)

Iteration, k

Fig. 11.10 Learning curves of the FQRD-RLS and IQRD-RLS algorithms implemented in the
modified filtered-x structure. For comparison purposes, FQRD-RLS WE solutions are shown where
the coefficients are extracted at a reduced rate, for every K = 20 (intermediary curve) or K = 50
(upper curve) iterations, and copied to the upper branch.

320 Stefan Werner and Mohammed Mobien

11.5 Multichannel and Lattice Implementations

The results presented in this chapter were based on single-channel adaptive FIR
structures. All the results can be extended to multichannel FQRD-RLS algorithms,
e.g., [9, 12–15]. This extension allows for multichannel applications such as broad-
band beamforming [16], Volterra system identification [9], Volterra predistorters
[17], burst-trained decision-feedback (DFE) and Volterra equalizers [1], multichan-
nel ANC [18], to name but a few.

The result for WE can also be extended to FQRD algorithms belonging to the
family of least-squares lattice-based algorithms, e.g., the QRD-LSL algorithms pro-
posed in [19, 20]. The problem of parameter identification in fast RLS algorithms
has been previously addressed using the duality between the FQRD-RLS algo-
rithms and the normalized lattice structure [19]. In other words, the WE for the fast
QR-decomposition can be solved by finding the reflection coefficients and the back-
ward prediction weight counterparts using duality [19]. It was shown in [4] and
indicated in [19] that, by using the least-squares lattice version of the Levinson-
Durbin recursion, the transversal weights can be obtained from the variables of the
QRD-LSL algorithm at a cost of O[N3] operations. In practice, the high cost of the
weight identification using an exact Levinson-Durbin algorithm can be avoided by
assuming algorithm convergence and infinite memory support, i.e., λ = 1 [21].The
computational complexity is then reduced at the cost of accuracy of the solution.
A modification of Lemma 1 in Section 11.2 was introduced in [22] to allow for
the transversal weight identification at any chosen iteration with a computational
complexity of O[N2] without compromising accuracy. The main observation, was
that the order-update required by the exact Levinson-Durbin algorithm can be done
in one step by exploiting the known QRD-LSL variables, reducing the number of
required operations by an order of magnitude.

11.6 Conclusion

This chapter showed how to reuse the internal variables of the fast QRD-RLS
(FQRD-RLS) algorithm to enable new applications which are different to the stan-
dard output-error type applications. We first considered the problem of system iden-
tification and showed how to extract the weights in a serial manner. Thereafter, the
WE results were extended to the case of burst-trained equalizers, where the equalizer
is periodically re-trained using pilots and then used for fixed filtering of useful data.
Finally, we considered the problem of ANC, where a modified filtered-x FQRD-
RLS structure was introduced. Simulation results were compared with those using
a design based on the IQRD-RLS algorithm. It was verified that, with the help of
the WE techniques detailed in this chapter, identical results are obtained using the
FQRD-RLS methods at a much lower computational cost.

11 Weight Extraction of Fast QRD-RLS Algorithms 321

Acknowledgements This work was partially funded by the Academy of Finland, Smart and Novel
Radios (SMARAD) Center of Excellence.

References

1. P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition
Springer, New York, NY, USA (2008)

2. J. A. Apolinário Jr. and P. S. R. Diniz, A new fast QR algorithm based on a priori errors.
IEEE Signal Processing Letters, vol. 4, no. 11, pp. 307–309 (November 1997)

3. C. R. Ward, A. J. Robson, P. J. Hargrave, and J. G. McWhirter, Application of a systolic
array to adaptive beamforming. IEE Proceedings, Part F – Communications, Radar and Signal
Processing, vol. 131, no. 6, pp. 638–645 (October 1984)

4. S. Haykin, Adaptive Filter Theory. 3rd edition Prentice-Hall, Englewood Cliffs, NJ, USA
(1996)

5. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

6. S. U. Qureshi, Adaptive equalization. Proceedings of the IEEE, vol. 73, no. 9, pp. 1349–1387
(September 1985)

7. M. Shoaib, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Equivalent output-filtering using
fast QRD-RLS algorithm for burst-type training applications. IEEE International Symposium
on Circuits and Systems, ISCAS’2006, Kos, Greece (May 2006)

8. M. Shoaib, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Solution to the weight extraction
problem in FQRD-RLS algorithms. IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP’2006, Toulouse, France, pp. 572–575 (May 2006)

9. M. A. Syed and V. J. Mathews, QR-decomposition based algorithms for adaptive Volterra fil-
tering. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 40, no. 6, pp. 372–382 (June 1993)

10. S. M. Kuo and D. R. Morgan, Active noise control: a tutorial review. Proceedings of the IEEE,
vol. 87, no. 6, pp. 943–973 (June 1999)

11. M. Bouchard, Numerically stable fast convergence least-squares algorithms for multichan-
nel active sound cancellation systems and sound deconvolution systems. Signal Processing,
vol. 82, no. 5, pp. 721–736 (May 2002)

12. A. A. Rontogiannis and S. Theodoridis, Multichannel fast QRD-LS adaptive filtering: new
technique and algorithms. IEEE Transactions on Signal Processing, vol. 46, no. 11, pp. 2862–
2876 (November 1998)

13. A. L. L. Ramos, J. Apolinário Jr, and M. G. Siqueira, A new order recursive multiple order
multichannel fast QRD algorithm. Thirty-Eighth Annual Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, USA, pp. 965–969 (November 2004)

14. C. A. Medina, J. Apolinário Jr., and M. G. Siqueira, A unified framework for multichannel fast
QRD-LS adaptive filters based on backward prediction errors. IEEE International Midwest
Symposium on Circuits and Systems, MWSCAS’02, Tulsa, USA, pp. 668–671 (August 2002)

15. A. L. L. Ramos, J. A. Apolinário Jr., and S. Werner, Multichannel fast QRD-LS adaptive filter-
ing: block-channel and sequential-channel algorithms based on updating backward prediction
errors. Signal Processing (Elsevier), vol. 87, pp. 1781–1798 (July 2007)

16. M. Shoaib, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Multichannel fast QR-
decomposition RLS algorithms with explicit weight extraction. European Signal Processing
Conference, EUSIPCO’2006, Florence, Italy (September 2006)

17. C. Eun and E. J. Powers, A new Volterra predistorter based on the indirect learning architec-
ture. IEEE Transactions on Signal Processing, vol. 45, no. 1, pp. 20–30 (January 1997)

322 Stefan Werner and Mohammed Mobien

18. M. Bouchard, Multichannel recursive-least-squares algorithms and fast-transversal-filter
algorithms for active noise control and sound reproduction systems. IEEE Transactions on
Speech and Audio Processing, vol. 8, no. 5, pp. 606–618 (September 2000)

19. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no. 4,
pp. 876–891 (April 1991)

20. M. D. Miranda and M. Gerken, A hybrid least squares QR-lattice algorithm using a priori
errors. IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 2900–2911 (Decem-
ber 1997)

21. A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons, Inc., Hoboken, NJ,
USA (2003)

22. M. Shoaib, S. Werner, and J. A. Apolinário Jr., Reduced complexity solution for weight
extraction in QRD-LSL algorithm. IEEE Signal Processing Letters, vol. 15, pp. 277–280
(February 2008)

	Weight Extraction of Fast QRD-RLS Algorithms
	Stefan Werner and Mohammed Mobien
	FQRD-RLS Preliminaries
	QR decomposition algorithms
	FQR_POS_B algorithm

	System Identification with FQRD-RLS
	Weight extraction in the FQRD-RLS algorithm
	Example

	Burst-trained Equalizer with FQRD-RLS
	Problem description
	Equivalent-output filtering
	Equivalent-output filtering with explicit weightextraction
	Example

	Active Noise Control and FQRD-RLS
	Filtered-x RLS
	Modified filtered-x FQRD-RLS
	Example

	Multichannel and Lattice Implementations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

