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Abstract This chapter discusses the pipelined systolic implementations of QR-
decomposition-based recursive least-squares (QRD-RLS) adaptive filters. The
annihilation-reording look-ahead technique is presented as an attractive technique
for pipelining of Givens rotation (or CO-ordinate Rotation DIgital Computer
(CORDIC)) based adaptive filters. It is an exact look-ahead and is based on
CORDIC arithmetic, which is known to be numerically stable. The conventional
look-ahead is based on multiply–add arithmetic. The annihilation-reording look-
ahead technique transforms an orthogonal sequential adaptive filtering algorithm
into an equivalent orthogonal concurrent one by creating additional concurrency
in the algorithm. Parallelism in the transformed algorithm is explored, and differ-
ent implementation styles including pipelining, block processing, and incremental
block processing are presented. Their complexity are also studied and compared.
The annihilation-reording look-ahead is employed to develop fine-grain pipelined
QRD-RLS adaptive filters. Both implicit and explicit weight extraction algorithms
are considered. The proposed pipelined architectures can be operated at arbitrarily
high sample rate without degrading the filter convergence behavior. Stability under
finite-precision arithmetic are studied and proved for the proposed architectures.
The complexity of the pipelined architectures are analyzed and compared.
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10.1 QRD-RLS Systolic Architecture

Recursive least squares (RLS) [1] based adaptive filters have wide applications in
channel equalization, voiceband modem, high-definition TV (HDTV), digital audio
broadcast (DAB) system, beamforming, and speech and image processing. Histor-
ically, least mean squares (LMS) based adaptive filters are preferred in practical
applications due to their simplicity and ease of implementation. A limitation of LMS
algorithm is that it has a very slow convergence rate. The convergence of the LMS
algorithm is also very sensitive to the eigenvalue spread of the correlation matrix
of the input data. In applications such as HDTV equalizer and DAB system, there
are only limited number of data samples available. LMS-based equalizer may not
be able to reach convergence. The convergence of the RLS algorithm is an order of
magnitude faster than that of the LMS algorithm, but its complexity is an order of
magnitude higher. However, with rapid advances in scaled very large scale integra-
tion (VLSI) technologies, it is possible to implement RLS adaptive filters on single
chips which will make them attractive due to their rapid convergence behavior.

QR decomposition-based RLS (QRD-RLS) algorithm [1], also referred as Givens
rotation or COordinate Rotation DIgital Computer (CORDIC)-based RLS algorithm
in this chapter, is the most promising RLS algorithm since it possess desirable prop-
erties for VLSI implementations such as regularity, good finite word-length behav-
ior, and can be mapped onto CORDIC arithmetic-based processors [2–5]. The QRD-
RLS algorithm can be summarized as follows. The notations used in this chapter are
slightly different from those used in previous chapters, e.g. Chapters 2–4. For ease
of reading, their correspondences are summarized in Table 10.1. At each sample
time instance n, evaluate a residual (a posteriori) error:

e(n) = y(n)−uT(n)w(n), (10.1)

where u(n) and y(n) denote the p-element vector of signal samples and the reference
signal at time instance n, respectively, and w(n) is the p-element vector of weights
which minimize the quantity

ξ (n) = ‖Λ 1/2(n)e(n) ‖2

= ‖Λ 1/2(n)(y(n)−A(n)w(n)) ‖2,
(10.2)

Table 10.1 Notation correspondences between Chapter 10 and Chapters 2–4.

Notations Chapter 10 Chapters 2–4
Time index n k
Input signal u(n) x(k)
Input vector u(n) x(k)
Input matrix A(n) X(k)

Reference signal y(n) d(k)
Cholesky factor R(n) U(k)

Cholesky factor degree p× p (N +1)× (N +1)
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where y(n) = [y(1), . . . ,y(n) ]T denotes the sequence of all reference signal sam-
ples obtained up to time instance n, A(n) = [u(1), u(2), · · · ,u(n)]T is the input data
matrix, and Λ(n) = diag[λ n−1, · · · ,λ ,1] is the diagonal matrix of the forgetting fac-
tors. Here, we assume that all the data are real. The extension to the complex case
does not seem to have any particular difficulties. The optimum weight vector wls of
the QRD-RLS solution can be obtained by solving the following equation:

R(n)wls(n) = p(n), (10.3)

where R(n) and p(n) are p-by-p matrix and p-by-1 vector, respectively, which are
obtained by applying a QR decomposition to the weighted data matrix Λ 1/2(n)A(n)
and the weighted reference vector Λ 1/2(n)y(n), respectively. R(n), which is usually
referred to, in the literature [17], as the Cholesky factor, is chosen, in this chapter,
to be an upper triangular matrix.

In practice, the QR decomposition is implemented in a recursive manner. With
each incoming data sample set, a new row uT(n) is appended to the data matrix
A(n− 1) to yield A(n). An orthogonal transformation matrix Q(n) is determined
as products of p Givens rotation matrices to null the last row of A(n). Thus the
triangular matrix R(n−1) gets updated to R(n). The determined matrix Q(n) is then
used to update p(n−1) to p(n). The QR update procedure can be described by the
following equation:

[
R(n) p(n)
0T

p α(n)

]
= Q(n)

[
λ 1/2R(n−1) λ 1/2p(n−1)

uT(n) y(n)

]
. (10.4)

A systolic array-based signal flow graph (SFG) representation of the QR update
procedure is shown in Figure 10.1. In this figure, cells with symbols r and p inside
are the elements of the upper triangular matrix R and the vector p, respectively, as
shown in Equation (10.4). The recursive update relationship from time index n−1
to n, shown in Equation (10.4), is reflected by the delay element denoted by the
small square cell with symbol D inside in Figure 10.1. The input data ui(n) at the
top row of Figure 10.1 are the elements of input vector u(n) in Equation (10.4),
and the reference data y(n) in Figure 10.1 corresponds to the reference data y(n) in
Equation (10.4). In Figure 10.1, the circle and square cells denote Givens rotations
or CORDIC operations with circle cells operating in vectoring mode and square
cells operating in rotating mode. The functionality of the recursive update from
time index n− 1 to n is shown at the bottom of Figure 10.1. The c and s denote
cosθ and sinθ , respectively, which are chosen to annihilate x1(n). The determined
rotation angle is then applied to rotate the second column vector which consists of
λM/2r2(n−1) and x2(n), where M = 1 in the case of Equation (10.4). The forgetting
factor λ in Equation (10.4), for clarity purpose, is omitted in the circle and square
cell in Figure 10.1.

In practice, there are two types of QRD-RLS algorithms. One is implicit weight
extraction-based RLS algorithms, which are found useful in applications such as
adaptive beamforming. In these algorithms, the residual error e(n) is obtained with-
out the explicit computation of the weight vector w(n). A popular implicit weight
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Fig. 10.1 The systolic array-based signal flow graph representation of the QR update procedure.

extraction algorithm is due to McWhirter etc. [6]. The other is explicit weight
extraction-based RLS algorithms, which are found useful in applications such as
channel equalization. One such algorithm is due to Gentleman and Kung [7], which
involves a triangular update part and a linear array for triangular back-solving. The
linear array part does not make use of Givens rotations, and thus cannot be effi-
ciently combined with the triangular update part. To overcome this problem, alter-
native QRD-RLS algorithms with inverse updating have been developed to achieve
explicit weight extraction and also make use of Givens rotations. A typical structure
is the double-triangular type adaptive inverse QR algorithm [8, 9]. This algorithm
performs a QR update in an upper triangular matrix and an inverse QR update for
weight extraction in a lower triangular matrix.

One of the important ways to design efficient RLS algorithms for high-speed/
low-power applications is through pipelining [10, 11] and parallel processing [12].
Both implicit and explicit weight extraction-based QRD-RLS algorithms can be eas-
ily pipelined at cell level (also referred as coarse-grain pipelining). However, the
speed or sample rate of the algorithms is limited by the recursive operations in indi-
vidual cells as shown in Figure 10.1. In many applications, such as image coding
and beamforming, very high data rates would be required, and the sequential QRD-
RLS algorithms may not be able to operate at such high data rate. In this chapter, we
exploit the parallelism that exists in the QRD-RLS algorithm and consider pipelin-
ing at finer level such as bit or multi-bit level (also referred as fine-grain pipelining).
Notice that apart from being used to increase speed, pipelining can also be used to
reduce power dissipation in low to moderate speed applications [13].

To exploit the parallelism and increase the speed of the QRD-RLS, look-ahead
techniques [14] or block processing techniques can be applied. The look-ahead
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techniques and the so called STAR rotation have been used in [15] to allow fine-
grain pipelining with little hardware overhead. However, this is achieved at the cost
of degradation of filtering performance due to the approximations in the algorithms.
Block processing was used to speed up the QRD-RLS in [16], however with large
hardware overhead. Both algorithms are based on multiply–add arithmetic. If one
insists on not using multiply–add arithmetic for their implementation, there is no
trivial extension of the look-ahead technique to the QRD-RLS algorithm.

There are other fast QRD-RLS algorithms, which are computationally more effi-
cient than the original algorithm [17, 18]. Square-root free forms of QRD-RLS are
presented in [17–22]. A unified approach to square-root QRD-RLS algorithm is pre-
sented in [19]. A low-complexity square-root free algorithm is developed in [20].
In [21], a scaled version of the fast Givens rotation [17] is developed that prevents
overflow and underflow. A division as well as square-root free algorithm has been
proposed in [23]. In [18], a fast QRD-RLS algorithm based on Givens rotations was
introduced. However, all these fast algorithms suffer the same pipelining difficulty
as the QRD-RLS algorithm, i.e., they cannot be pipelined at fine-grain level.

In this chapter, the annihilation-reording look-ahead technique [24] is presented
to achieve fine-grain pipelining in QRD-RLS adaptive filters. It is an exact look-
ahead and based on CORDIC arithmetic. One of the nice properties of this technique
is that it can transform an orthogonal sequential recursive DSP algorithm to an
equivalent orthogonal concurrent one by creating additional concurrency in the
algorithm. The resulting transformed algorithm possesses pipelinability, stability (if
the original one is stable), and good finite word-length behavior which are attractive
for VLSI implementations.

The rest of the chapter are organized as follows. The annihilation-reording look-
ahead technique is presented in Section 10.2. The derivation of pipelined CORDIC-
based RLS adaptive filters using the proposed look-ahead technique is presented
in Section 10.3. Section 10.4 draws conclusions and briefly discusses the adaptive
beamforming application. Appendix provides the derivation and proof of some key
formulas presented in the chapter.

10.2 The Annihilation-Reording Look-Ahead Technique

In this section, we introduce the annihilate-reording look-ahead technique as an
exact look-ahead based on CORDIC arithmetic. Similar to the traditional look-
ahead, it transforms a sequential recursive algorithm to an equivalent concurrent
one by creating additional parallelism in the algorithm. It is based on CORDIC
arithmetic and is suitable for pipelining of Givens rotation-based adaptive filtering
algorithms. The annihilation-reording look-ahead technique can be derived from
two aspects. One is from the block processing point of view, the other is from the
iteration point of view. The former is practical in real applications, while the latter
shows the connection with the traditional look-ahead technique. During our deriva-
tion, the forgetting factor λ is omitted for clarity purpose.
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This section is organized as follows. The derivations of the annihilation-reording
look-ahead through block processing and iteration are presented in Subsection 10.2.1
and Subsection 10.2.2, respectively. The relationship with the conventional multiply–
add look-ahead is shown in Subsection 10.2.3. Subsection 10.2.4 explores the paral-
lelism in the proposed look-ahead transformed algorithm. Different implementation
styles are then presented in Subsection 10.2.5. Finally, a lemma for stability invari-
ance is stated and proved in Subsection 10.2.6.

10.2.1 Look-ahead through block processing

In this subsection, we derive the annihilation-reording look-ahead transformation
for Givens rotation-based algorithms via block-processing formulation.

The annihilation-reording look-ahead technique can be summarized as the fol-
lowing two-step procedure.

1. Formulate block updating form of the recursive operations with block size
equal to the pipelining level M.

2. Choose a sequence of Givens rotations to perform the updating in such a
way that it first operates on the block data and then updates the recursive
variables. The aim is to reduce the computational complexity of a block
update inside the feedback loop to the same complexity as a single-step
update.

Assume that a three-time speed up is desired for the QR update shown in
Figure 10.1. Consider the block update form of the QR update procedure shown
in Figure 10.2 with block size equal to the desired pipelining level 3. A sequence
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Fig. 10.2 QRD-RLS block update.
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of Givens rotations is then chosen to annihilate the block data u(n− 2),u(n− 1),
and u(n), and update R(n− 3) to R(n). In this figure, traditional sequential update
operation is used. The sample data is annihilated in a row-by-row manner and the
diagonal r elements are involved in each update. The SFG of a typical r element
update is shown in Figure 10.3. It can be seen that the number of rotations inside
the feedback loop increases linearly with the number of delay elements in the loop.
Therefore, there is no net improvement in the sample or clock speed.

The annihilation-reording look-ahead technique is illustrated in Figure 10.4. In
this figure, the sample data is annihilated in a column-by-column manner and the
diagonal r elements are updated only at the last step. The SFG of a typical r ele-
ment update is shown in Figure 10.5. It can been seen that, without increasing the
loop computational complexity, the number of delay elements in the feedback loop
is increased from one delay element to three delay elements. These three delay ele-
ments can then be redistributed around the loop using the retiming technique [25]
to achieve fine-grain pipelining by three-level. The two CORDIC units outside the
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Fig. 10.5 (a) A sequential QR update procedure. (b) The three-level pipelined architecture using
annihilation-reording look-ahead.

feedback loop are the computation overhead due to the look-ahead transformation.
Since they are feed-forward, cutset pipelining [26] can be applied to speed them up.
Furthermore, the overhead CORDIC units outside the loop can be arranged in a tree
structure to explore the parallelism and reduce overall latency.

10.2.2 Look-ahead through iteration

Alternatively, the annihilation-reording look-ahead can be derived through matrix
iterations. From Figure 10.1 and Equation (10.4), the basic QR recursion is given as
follows:

[
r(n)

0

]
=

[
c s
−s c

][
r(n−1)

u(n)

]
, (10.5)

where r(n) and u(n) correspond to the boundary element and input data to the
boundary element in Figure 10.1, respectively. A direct look-ahead by iterating
Equation (10.5) two times can be performed by the following embedding proce-
dure. Equation (10.5) can be rewritten as

⎡
⎣

r(n)
0
0

⎤
⎦ =

⎡
⎣

c1 0 s1

0 1 0
−s1 0 c1

⎤
⎦
⎡
⎣

r(n−1)
0

u(n)

⎤
⎦ . (10.6)

From Equation (10.5), we also have
⎡
⎣

r(n−1)
0

u(n)

⎤
⎦ =

⎡
⎣

c2 s2 0
−s2 c2 0

0 0 1

⎤
⎦
⎡
⎣

r(n−2)
u(n−1)

u(n)

⎤
⎦ . (10.7)

Substituting Equation (10.7) into Equation (10.6) leads to
⎡
⎣

r(n)
0
0

⎤
⎦ =

⎡
⎣

c1 0 s1

0 1 0
−s1 0 c1

⎤
⎦
⎡
⎣

c2 s2 0
−s2 c2 0

0 0 1

⎤
⎦
⎡
⎣

r(n−2)
u(n−1)

u(n)

⎤
⎦ . (10.8)



10 On Pipelined Implementations of QRD-RLS Adaptive Filters 277

This is the one-step iterated version of Equation (10.5). Iterating (10.8) once more
leads to the following two-step iterated version of (10.5).

⎡
⎢⎢⎣

r(n)
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c1 0 0 s1

0 1 0 0
0 0 1 0

−s1 0 0 c1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c2 0 s2 0
0 1 0 0

−s2 0 c2 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c3 s3 0 0
−s3 c3 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r(n−3)
u(n−2)
u(n−1)

u(n)

⎤
⎥⎥⎦ (10.9)

The SFG of (10.9) is shown in Figure 10.3. Notice that this transformation does
not help much, since all three CORDIC operations involve updating the r element.
Although the feedback loop contains three delays, the computation time in the loop
is also increased by a factor of three. Therefore, the overall sample rate remains
unaltered.

In order to increase the sample rates, the following transformation is consid-
ered. Notice that, in (10.9), instead of vectoring the input vector in the order of
(1,2),(1,3), and (1,4), we could apply the Givens matrix in a different order so that
the input vector is annihilated in the order of (3,4),(2,3), and (1,2), where nota-
tion (i, j) represents a pair of row indexes of input matrix in (10.9). For example,
(3,4) denotes that the Givens matrix will operate on input vector [u(n−1),u(n)]T,
According to this scheme, the input samples are pre-processed and the r elements
are updated only at the last step. This leads to the following three-level annihilation-
reording look-ahead transformation for CORDIC-based RLS adaptive filters.

⎡
⎢⎢⎣

r(n)
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c
′
1 s

′
1 0 0

−s
′
1 c

′
1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 c

′
2 s

′
2 0

0 −s
′
2 c

′
2 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 c

′
1 s

′
1

0 0 −s
′
1 c

′
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r(n−3)
u(n−2)
u(n−1)

u(n)

⎤
⎥⎥⎦

The SFG of the above transformation is shown in Figure 10.5, which is the
same as the one derived from the block processing point of view. Therefore, with-
out increasing the loop computation time, we increase the number of delays in the
feedback loop from one delay element to three delay elements. These three delay
elements can then be redistributed around the loop to achieve pipelining by three-
level.

The above derivation is similar to the traditional multiply–add look-ahead [11]
procedure in the sense that both perform look-ahead through iteration. However, it
can be seen that the block processing derivation in Section 10.2.1 is more simple
and practical in real applications.

10.2.3 Relationship with multiply–add look-ahead

It is worth mentioning here, for the first order case, that there exists strong similarity
of the transformed flow graphs between the annihilation-reording look-ahead and
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the multiply–add look-ahead. Consider the first order IIR digital filter described by
the following equation:

y(n) = ay(n−1)+u(n). (10.10)

The SFG of (10.10) is shown in Figure 10.6(a). After applying the multiply–add
look-ahead transformation with pipelining level 3, the resulting equation is given as

y(n) = a3 y(n−3)+a2 u(n−2)+au(n−1)+u(n). (10.11)

The SFG of (10.11) is shown in Figure 10.6(b). The filter sample rate can be
increased by a factor of 3 after redistributing the three delay elements in the
feedback loop using the retiming technique [25].

On the other hand, a redraw of Figure 10.5 can be carried out as in Figure 10.7.
Comparing Figures 10.7 to Figure 10.6, it is seen that the two graphs are essen-
tially the same except that the multiply–add units are replaced by the CORDIC
units. Thus, both the annihilation-reording look-ahead and the multiply–add look-
ahead explore the intra-iteration constraints in the recursive algorithms and create
additional concurrency. The differences between the two techniques lie in that the
multiply–add look-ahead is suitable for multiply–add arithmetic-based recursive
digital filters where the filter coefficients are fixed. The annihilation-reording look-
ahead is suitable for CORDIC arithmetic (or Givens rotation) based adaptive digital
filters, where the filter coefficients are adaptive to the input data.
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Fig. 10.6 (a) A first-order IIR digital filter. (b) The three-level pipelined architecture using
multiply–add look-ahead.
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Fig. 10.7 (a) A sequential QR update procedure. (b) The three-level pipelined architecture using
annihilation-reording look-ahead.
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10.2.4 Parallelism in annihilation-reording look-ahead

In this subsection, we show explicitly how the annihilation-reording look-ahead
technique explore the parallelism in the recursive algorithm and create the addi-
tional concurrency.

Consider the sequential QR update procedure shown in Figure 10.5(a). Its depen-
dence graph (DG) representation is shown in Figure 10.8. In this figure, the little cir-
cle denotes CORDIC operations. The arrows denote dependency between signals.
The k direction is the time increasing direction. The arrows along the k direction
represent the dependency between iterations. For example, r(n+1) is dependent on
r(n), r(n) is dependent on r(n−1), and so on. As we mentioned in Section 10.1, it
is this kind of dependency that limits the speed of the QR update and thus limits the
sample rate. The annihilation-reording look-ahead actually breaks this dependency
and transforms the original DG into an equivalent DG which consists of M inde-
pendent sub-DGs, where M is the desired pipelining level. Since these M sub-DGs
are independent, they can be executed in parallel. Therefore, the M independent
sub-DGs are the additional concurrency created by look-ahead transformation. For
M = 3, the three sub-DGs: DG-I, DG-II, and DG-III are shown in Figure 10.9. Fig-
ure 10.9 is the DG representation of Figure 10.5(b). From Figure 10.9, it is seen that
the computation of r(n) is not dependent on the r(n−1) anymore, instead dependent
on the r element three iterations back in time which is r(n−3). Similarly, r(n+1) is
dependent on r(n−2), and r(n+2) depends on r(n−1). Therefore, after look-ahead
transformation, the dependency between consecutive iterations are broken down
into three independent operation sequences with each sequence having a depen-
dency between every three iterations. For each sub-DGs, the dependency which is
perpendicular to the k direction does not cause problem, since index transforma-
tion [27] (which is equivalent to the cut-set pipelining for SFG) can be performed to
reveal these dependency. Therefore, the three independent sequences, which consist
of 32 = 9 independent CORDIC operations in total, are created for one iteration. In
general, for pipelining level M, M2 independent CORDIC operations are created in
the algorithm for one iteration. As M increases, infinite parallelism can be created
in the algorithm, thus can achieve arbitrarily high sample rate.

r(n–3) r(n–2) r(n–1) r(n) r(n+1) r(n+2) r(n+3) r(n+4) r(n+5)

u(n–2) u(n–1) u(n+1) u(n+2) u(n+3) u(n+4) u(n+5)u(n)

k direction (time)

Fig. 10.8 The dependence graph of the sequential QR update procedure.
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r(n–3)
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Fig. 10.9 The dependence graph of the pipelined QR update with pipelining level 3.

10.2.5 Pipelined and block processing implementations

In this subsection, we present three concurrent realizations of CORDIC-based RLS
adaptive filters. They are pipelining, block processing, and incremental block pro-
cessing.

10.2.5.1 Pipelined realization

Consider the three sub-DGs in Figure 10.9. If they are mapped along the k direc-
tion, we obtain the SFG representation. Since the three sub-DGs are independent,
they can be mapped onto the same CORDIC operation resources and operated
in a pipeline interleaving fashion [11]. This leads to the pipelined realization of
CORDIC-based adaptive filters shown in Figure 10.10. In this figure, the input data
samples are processed in the block manner through a tapped delay line as shown
in Figure 10.11(a). Since consecutive block samples are shift-overlapped, thus all
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Fig. 10.11 Serial-to-parallel conversion for (a) Pipelining and (b) Block Processing.

filtering output can be obtained consecutively. The implementation complexity in
terms of CORDIC units for pipelined realization is linear with respect to the pipelin-
ing level M which is M = 3 CORDIC units in Figure 10.10.

10.2.5.2 Block processing realization

In block processing, the three sub-DGs are mapped independently along the k direc-
tion to obtain the block processing realization shown in Figure 10.12. In block real-
izations, input samples are processed in the form of non-overlapping blocks to gen-
erate non-overlapping output samples. The block of multiple inputs is derived from
the single serial input by using a serial-to-parallel converter at the input as shown
in Figure 10.11(b), and the serial output is derived from the block of outputs by a
parallel-to-serial converter at the output. The implementation complexity in terms
of CORDIC units for block processing realization is quadratic with respect to the
pipelining level M which is M2 = 32 = 9 CORDIC units in Figure 10.12. To reduce
complexity, incremental block processing technique can be used.
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Fig. 10.12 Block processing realization with block size 3.

10.2.5.3 Incremental block processing realization

Consider the annihilation-reording look-ahead transformed DG shown in
Figure 10.9. Instead of using u(n+1),u(n),u(n−1), and r(n−2) to obtain r(n+1),
r(n+1) can be computed incrementally using u(n+1) and r(n) once r(n) is avail-
able. Similarly, r(n+2) can be computed incrementally using u(n+2) and r(n+1)
once r(n + 1) is available. The DG of incremental block QR update is shown in
Figure 10.13. Mapping the DG along the k direction gives us the SFG representation
of the incremental block processing realization shown in Figure 10.14. The imple-
mentation complexity in terms of CORDIC units for incremental block processing
is linear with respect to the pipelining level M which is 2M − 1 = 2× 3− 1 = 5
CORDIC units in Figure 10.14. Notice that the incremental computation parts do not
contain feedback loops, thus cutset pipelining can be employed to speed them up.

r(n – 3)
r(n – 2) r(n – 1)

r(n) r(n + 3)
r(n + 1) r(n + 2)

u(n – 2) u(n – 1) u(n + 1) u(n + 2) u(n + 3)u(n)

k direction (time)

Fig. 10.13 The dependence graph of the incremental block QR update with block size 3.
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Therefore, in terms of number of CORDIC units used in the implementation,
pipelined realization is better than incremental block processing and block process-
ing, and incremental block processing is better than block processing. In practice,
the chosen of implementation styles depends on the target applications and available
hardware resources.

10.2.6 Invariance of bounded input and bounded output

In this subsection, we show a property of the annihilation-reording look-ahead trans-
formation. It will be useful in the proof of the stability of the pipelined QRD-RLS
algorithm in Section 10.3.2.

Lemma 1. Consider the compound CORDIC cell denoted by the dashed circle in
Figure 10.10. Under finite-precision arithmetic, if each individual CORDIC cell is
bounded input and bounded output (BIBO), then the compound CORDIC cell is also
BIBO.

Proof. Assume the pipelining level is M, from Figure 10.10, the look-ahead trans-
formed compound CORDIC cell consists of cascade connections of M CORDIC
units. Since each of them is BIBO under finite-precision arithmetic, therefore the
compound cell is also BIBO.

10.3 Pipelined CORDIC-Based RLS Adaptive Filters

In this section, we apply the annihilation-reording look-ahead techniques to the
CORDIC-based RLS adaptive filters and derive fine-grain pipelined topologies. We
consider both algorithms with implicit weight extraction (conventional QRD-RLS)
and explicit weight extraction (inverse QRD-RLS).
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This section is organized as follows. The pipelined QRD-RLS with implicit
weight extraction is presented in Section 10.3.1. Its stability under finite-precision
arithmetic is studied and proved in Section 10.3.2. Finally, the pipelined adaptive
inverse QR algorithm for explicit weight extraction is presented in Section 10.3.3.

10.3.1 Pipelined QRD-RLS with implicit weight extraction

Consider the QRD-RLS formulation given in Equations (10.1), (10.2), (10.3), and
(10.4). After the triangular matrix R(n) and the corresponding vector p(n) are gen-
erated, the optimum weight vector w(n) can be obtained by solving Equation (10.3).
The residual error e(n) is then computed as

e(n) = y(n)−uT(n)R−1(n)p(n). (10.12)

However, for some applications such as adaptive beamforming, this proves to be
unnecessary. Since in these cases, the residual error e(n) is usually the only variable
interested, and it is not necessary to compute the weight vector w(n) explicitly. In
[6], it is shown that the estimation error e(n) may be obtained directly as the product
of two variables, the angle-normalized residual α(n) and the likelihood factor γ(n).
α(n) and γ(n) are obtained by applying the same orthogonal transformation matrix
Q(n) to the vector [p(n− 1),y(n)]T and the pinning vector πππ = [0, · · · ,0,1]T [6].
Therefore, the adaptive RLS algorithm can be summarized as

[
R(n) p(n) s(n)
0T

p α(n) γ(n)

]
= Q(n)

[
λ 1/2R(n−1) λ 1/2p(n−1) 0p

uT(n) y(n) 1

]
, (10.13)

where 0p is the p-by-1 null vector. The SFG representation of the algorithm is shown
in Figure 10.15, where problem size p is chosen to be 4. The circle and square
cells in Figure 10.15 denote CORDIC operations which follow the same notations
in Figure 10.1. The circle cell with letter G inside denotes a Gaussian rotation (or
a linear CORDIC operation). Its functionality is shown in the figure. Notice that
the converting factor cells which generate the likelihood factor γ does not contain
recursive operations.

In Figure 10.15, the recursive operation in the cell limits the throughput of the
input samples. To increase the sample rates, the annihilation-reording look-ahead
technique is applied.

The recursive updating formula for the QRD-RLS with implicit weight extraction
is given in Equation (10.13). Its block updating form with block size M is given as
follows:
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[
R(n) p(n) s(n)

OM×p ααα(n) γγγ(n)

]
= Q(n)

[
λM/2R(n−M) λM/2p(n−M) 0p

UM(n) yM(n) δδδM

]
,

(10.14)

where UM(n) is an M-by-p matrix defined as

UM(n) = [u(n−M +1), · · · ,u(n−1),u(n)]T ,

and yM(n) is an M-by-1 vector defined as

yM(n) = [y(n−M +1), · · · ,y(n−1),y(n)]T .

In (10.14), OM×p and 0p denote M-by-p null matrix and p-by-1 null vector, respec-
tively, ααα(n) and γγγ(n) are M-by-1 vectors, and δδδM is a M-by-1 constant vector
defined as δδδM = [0, . . . ,0,1 ]T. The estimation error e(n) can be calculated as the
inner product of the angle-normalized residual vector ααα(n) and the likelihood vector
γγγ(n), i.e.,

e(n) = αααT(n)γγγ(n). (10.15)

The proof is given in Appendix.
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We now determine a sequence of Givens rotations, whose product form the
orthogonal transformation matrix Q(n) in (10.14), to annihilate the block input data
matrix UM(n). The order of the Givens rotations is chosen such that the input data is
pre-processed and block-data update is finished in the same complexity as a single-
data update. This procedure was illustrated in detail in Figure 10.4. A three-level
fine-grain pipelined QR update topology was shown in Figure 10.5. After apply-
ing the annihilation-reording look-ahead, the concurrent QRD-RLS algorithm can
be realized using different implementation styles such as pipelining, block pro-
cessing, and incremental block processing as discussed in Section 10.2.5. In the
rest of the chapter, we only show the topologies for the pipelined realization. The
other realizations can be derived similarly. A fine-grain pipelining implementation
with pipelining level 3 of CORDIC-based QRD-RLS adaptive filter with implicit
weight extraction is shown in Figure 10.16. In this figure, all cell notations follow
the notations in Figure 10.15 except that they are compound versions. The inter-
nal structure of each compound cell is shown at the bottom part of Figure 10.16.
Compared to Figure 10.15, the three-level pipelined architecture tripled the num-
ber of CORDIC units and communication bandwidth which is linear with respect
to the pipelining level. Thus, in general, the total complexity is O[ 1

2 Mp2] CORDIC
units per sample time, where p is the input sample size, and M is the pipelining
level.

10.3.2 Stability analysis

It is generally recognized that the QR decomposition-based algorithms have good
numerical properties, which means that they can perform with an acceptable man-
ner in a short word-length environment. This is due to the fact that the algorithms
consist of only orthogonal transformation which leads to inherent stability under
finite-precision implementation. From Sections 10.2.1 and 10.2.2, we see that the
annihilation-reording look-ahead transformation only involves orthogonal transfor-
mation and does not alternate the orthogonality of the algorithm. This implies that
the pipelined algorithms also maintain the good numerical properties. Let’s define
the stability of the QRD-RLS algorithm in the sense of BIBO i.e., under finite-
precision arithmetic, if the input signals are bounded, then the output residual error
e(n) is also bounded. We have the following result:

Theorem 1. Under finite-precision arithmetic, given a pipelining level M, the M-
level fine-grain pipelined CORDIC-based RLS adaptive filter algorithm with implicit
weight extraction is stable.

Proof. In [28], it is shown that for the sequential QRD-RLS algorithm shown in
Figure 10.15, a CORDIC cell, operating with finite-precision arithmetic, constitutes
a BIBO subsystem of the array. From Figure 10.16, the pipelined algorithm has
the same architecture as the sequential one except that all CORDIC cells are com-
pound versions. Therefore, by Lemma 1, a compound CORDIC cell, operating with
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Fig. 10.16 A three-level fine-grain pipelined CORDIC-based implicit weight extraction QRD-RLS
adaptive filter architecture.

finite-precision arithmetic, constitutes a BIBO subsystem of the array. Thus, if the
desired response y(n) and input samples u(n) in Figure 10.16 are bounded, the quan-
tized value of the input of the final linear CORDIC cell is also bounded, which leads
to the bounded residual error e(n). This completes the proof of Theorem 1.
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The stability of other CORDIC-based RLS adaptive filtering algorithms pre-
sented in this chapter can also be proved using the similar approach as in Theorem 1
and will not be repeated any further.

10.3.3 Pipelined QRD-RLS with explicit weight extraction

In applications such as channel equalization, RLS-based equalization algorithms
such as, e.g., decision-directed schemes [29] and orthogonalized constant modulus
algorithms [30], require the explicit availability of the filter weight vector w(n). The
standard (Gentleman-Kung type) QRD-RLS update scheme involves two computa-
tional steps which cannot be efficiently combined on a pipelined array. To circum-
vent the difficulty, inverse updating-based algorithms are developed [30–32]. Here,
we focus on a double-triangular type adaptive inverse QR algorithm [8].

Consider the least squares formulation given in (10.1), (10.2), (10.3), and (10.4).
Define the (p+1)-by-(p+1) upper triangular compound matrix R̃(n) as

R̃(n) =
[
λ 1/2R(n) λ 1/2p(n)

0T
p γ(n)

]
,

where γ(n) is a scalar factor, and R(n),p(n),0T
p are defined as in Section 10.1. Using

Equation (10.3), R̃−1 is then given as

R̃−1(n) =
[
λ−1/2R−1(n) −R−1(n)p(n)/γ(n)

0T
p 1/γ(n)

]

=
[
λ−1/2R−1(n) −w(n)/γ(n)

0T
p 1/γ(n)

]
.

Notice that R̃−1 remains upper triangular and the optimal weight vector w(n) is
explicitly shown on the rightmost column of R̃−1 except for a scaling factor −1/γ .
Now, consider the QR update of the upper triangular compound matrix R̃. From
(10.4), we have [

R̃(n)
0T

p+1

]
= Q̃(n)

[
R̃(n−1)

ũT(n)

]
, (10.16)

where ũT(n) = [uT(n),y(n) ], and Q̃(n) is determined as products of (p+1) Givens
rotation matrices to null the input sample vector ũT(n) and update matrix R̃. Extend-
ing the (p + 2)-by-(p + 1) matrix on the right-hand-side of (10.16) to the (p + 2)-
by-(p + 2) square matrix by adding an extra column vector [0T

p+1,1 ]T to its right
leads to [

R̃(n) v(n)
0T

p+1 d(n)

]
= Q̃(n)

[
R̃(n−1) 0p+1

ũT(n) 1

]
, (10.17)

where vector v(n) and scalar d(n) correspond to the QR update of vector 0p+1

and scalar 1. Inverting the matrix on both sides of Equation (10.17) (the matrix is
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non-singular since R̃ is non-singular) and noticing that Q−1 = QT lead to

[
R̃−1(n) v′(n)
0T

p+1 d′(n)

]
=

[
R̃−1(n−1) 0p+1

−ũT(n) R̃−1(n−1) 1

]
Q̃T(n). (10.18)

Taking the transposition on both sides of (10.18), we obtain

[
R̃−T (n) 0p+1

v′T(n) d′(n)

]
= Q̃(n)

[
R̃−T (n−1) −R̃−T (n−1) ũ(n)

0T
p+1 1

]
.

Thus, we have the following inverse updating formula

[
R̃−T (n)
v′T(n)

]
= Q̃(n)

[
R̃−T (n−1)

0T
p+1

]
. (10.19)

Notice that the orthogonal transformation matrix Q̃(n), which updates the upper
triangular matrix R̃ in (10.16), also updates the lower triangular matrix R̃−T in
(10.19). Thus, the double-triangular adaptive inverse QR algorithm can be sum-
marized as follows:

[
R̃(n) R̃−T (n)
0T

p+1 v′T(n)

]
= Q̃(n)

[
R̃(n−1) R̃−T (n−1)

ũT(n) 0T
p+1

]
. (10.20)

The important point lies in noticing that the scaled weight vector −w/γ explicitly
sits on the bottom row of lower triangular matrix R̃−T or the rightmost column of
upper triangular matrix R̃−1 as shown before. Therefore, we could achieve parallel
weight extraction by taking out the last row elements of R̃−T (n) and multiply them
by the scaling factor γ(n) sitting on the lower right corner of upper triangular matrix
R̃(n).

An efficient SFG representation of the CORDIC-based double-triangular adap-
tive inverse QR algorithm is shown in Figure 10.17. In this figure, the notation fol-
lows the ones in Figure 10.1. The operation for updating r−1 elements is shown at
the bottom part of Figure 10.17. The residual error e(n) is computed according to
(10.1) as shown in the figure.

The element on the lower right corner of lower triangular matrix R̃−T contains
value 1/γ(n) and is not shown in the figure. This algorithm has complexity O[p2]
Givens rotations per sample period, where p is the size of the array.

From Figure 10.17, we see that the double-triangular adaptive inverse QR algo-
rithm can be easily pipelined at cell level after applying cut-set pipelining. The
speed or sample rates of the algorithm’s implementation is, however, limited by
recursive operations in each individual cell as described algebraically by (10.20).
We now apply the annihilation-reording look-ahead technique to derive concurrent
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adaptive inverse QR algorithm for high-speed CORDIC-based parallel RLS weight
extraction.

The block updating form with block size M of the sequential updating Equa-
tion (10.20) is given as follows:

[
R̃(n) R̃−T (n)

0M×(p+1) V (n)

]
= Q̃(n)

[
R̃(n−M) R̃−T (n−M)

ŨT
M(n) 0M×(p+1)

]
, (10.21)

where ŨT
M(n) is a M-by-(p+1) matrix defined as

ŨT
M(n) =

[
ũ(n−M +1) · · · ũ(n−1) ũ(n)

]T
,

OM×(p+1) denotes a M-by-(p+1) null matrix, and V (n) is a M-by-(p+1) matrix.
The derivation of (10.21) essentially follows the algebraic manipulation in

(10.16), (10.17), (10.18), (10.19), and (10.20) provided that we start from the fol-
lowing block update equation

[
R̃(n)

0M×(p+1)

]
= Q̃(n)

[
R̃(n−M)

ŨM(n)

]
. (10.22)

Notice that the Q̃(n) matrix in (10.22) is different from the Q̃(n) in (10.16), though
we use the same notation here.

Apply the annihilation-reording procedure described in Figure 10.4; we obtain
the concurrent architecture shown in Figure 10.5. A complete three-level fine-grain
pipelined topology for CORDIC-based QRD-RLS with explicit parallel weight
extraction is shown in Figure 10.18. In this figure, all cell notations follow the nota-
tions in Figure 10.17 except that some of them are compound versions. The inter-
nal structure of each compound cell is shown at the bottom part of Figure 10.18.
Compared to Figure 10.17, the number of CORDIC units and communication band-
width are tripled which is linear with respect to the pipelining level. In general,
the total complexity for pipelined realization of CORDIC-based QRD-RLS with
explicit weight extraction is O[Mp2], where M is the pipelining level and p is the
size of input samples.

10.4 Conclusion

In this chapter, the annihilation-reording look-ahead technique is presented to
achieve fine-grain pipelining for CORDIC-based RLS adaptive filtering algorithms.
It is an exact look-ahead and based on CORDIC arithmetic. The look-ahead trans-
formation can be derived from either the block processing or the iteration point
of view, while the former is simpler and more practical and the latter shows the
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Fig. 10.18 A three–level fine-grain pipelined topology of CORDIC-based double-triangular adap-
tive inverse QR algorithm.

connection with the traditional multiply–add look-ahead technique. The exploration
of the parallelism in the annihilation-reording look-ahead transformation leads to
three implementation styles namely pipelining, block processing, and incremental
block processing. The implementation complexity in terms of CORDIC units for
pipelined realization is the least, and the one for the block processing is the most.
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CORDIC-based RLS filters with implicit weight extraction are found useful in
applications such as adaptive beamforming, and the ones with explicit weight extrac-
tion are found useful in applications such as channel equalization. The application
of proposed look-ahead technique to these RLS filters lead to fine-grain pipelined
topologies which can be operated at arbitrarily high sample rate. The pipelined algo-
rithms maintain the orthogonality and the stability under finite-precision arithmetic.

QRD-RLS adaptive filters can also be used for adaptive beamforming appli-
cations, e.g., the linearly constrained minimum variance (LCMV) adaptive beam-
former [33], which will be briefly discussed here. The details can be found in
[24]. The LCMV adaptive beamforming is a constrained least squares minimiza-
tion problem. Solving the constrained minimization problem directly leads to the
QRD-MVDR beamforming realization [9]. An alternative is the unconstrained refor-
mulation which leads to the QR decomposition-based generalized sidelobe canceler
(GSC) realization [34, 35]. Both MVDR and GSC beamformer can be realized
using CORDIC arithmetic. The application of the annihilation-reording look-ahead
technique to these adaptive beamforming algorithms leads to fine-grain pipelined
topologies [24]. Furthermore, they consist of only Givens rotations which can be
mapped onto CORDIC arithmetic-based processors [5].

The implementation complexity in terms of CORDIC units for various RLS-
based algorithms and implementation styles are shown in Table 10.2. The imple-
mentation complexity of QRD-MVDR and QRD-GSC is obtained from reference
[24]. From the table, we see that the pipelining level M is a dimension variable in the
complexity expressions for all algorithms and implementation styles. The pipelined
and incremental block processing realizations require a linear increasing CORDIC
units with an increasing factor of M for the pipelining and a factor of 2M − 1 for
the incremental block processing. The complexity factor for the block processing
is M2 which is quadratic with respect to the pipelining level. The adaptive inverse
QR algorithm requires approximately two times of CORDIC units as the QRD-RLS
algorithm since an extra lower triangular matrix is needed to extract the weight vec-
tor. The MVDR topology outperforms GSC topology in terms of complexity by
employing a constraint post-processor rather than a constraint pre-processor for the
GSC realization.

Table 10.2 The implementation complexity in terms of CORDIC units for various RLS-based
algorithms and implementation styles.

Implementation styles QRD-RLS Inverse QR QRD-MVDR QRD-GSC
Pipelining 1

2 Mp2 Mp2 M( 1
2 p2 +K p) MK( 1

2 p2 + p)
Incremental block 1

2 (2M−1)p2 (2M−1)p2 (2M−1)( 1
2 p2 +K p) (2M−1)K( 1

2 p2 + p)
Block processing 1

2 M2 p2 M2 p2 M2( 1
2 p2 +K p) M2K( 1

2 p2 + p)
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Appendix

In this appendix, we derive Equations (10.14) and (10.15). At time instance (n−M),
apply the QR decomposition to the weighted data matrix Λ 1/2(n−M)A(n−M) and
the reference vector y(n) as follows:

Q(n−M)Λ 1/2(n−M)
[

A(n−M) y(n−M)
]
=

[
R(n−M) p(n−M)

O v(n−M)

]
, (10.23)

where R(n−M) is p-by-p upper triangular matrix, p(n−M) and v(n−M) are p-
by-1 and (n−M − p)-by-1 vectors, respectively. At time n, the new inputs UM(n)
and yM(n) become available processing, we have

[
A(n) y(n)

]
=

[
A(n−M) y(n−M)

UT
M(n) yM(n)

]
. (10.24)

Define

Λ̄ 1/2(n) =
[
λM/2Λ 1/2(n−M)

IM

]
, and (10.25)

Q̄(n−M) =
[

Q(n−M)
IM

]
. (10.26)

Then

Q̄(n−M)Λ̄ 1/2(n)
[

A(n) y(n)
]
=

⎡
⎣
λM/2R(n−M) λM/2p(n−M)

O λM/2v(n−M)
UT

M(n) yM(n)

⎤
⎦ . (10.27)

Notice that here we choose Λ̄ 1/2(n) instead of Λ 1/2(n). Λ 1/2(n) differs from
Λ̄ 1/2(n) in replacing IM by Λ 1/2(M). Using Λ 1/2(n) will lead to extra operations of
the input data. Conversely, using Λ̄ 1/2(n) will not and also not affect the algorithm’s
convergence behavior due to the existence of λM/2 in Λ̄ 1/2(n).

Apply the orthogonal matrix Q(n) which consists of a sequence of Givens rota-
tions to annihilate the input data UM(n) using λM/2R(n−M) in (10.27), we have

⎡
⎣

R(n) p(n)
O v(n)

OM×N ααα(n)

⎤
⎦ = Q(n)

⎡
⎣
λM/2R(n−M) λM/2p(n−M)

O λM/2v(n−M)
UM(n) yM(n)

⎤
⎦ , (10.28)

which derives the first two columns in (10.14). Next we prove Equation (10.15) and
justify the third column in (10.14). From (10.2), we have

e(n−M) = y(n−M)−A(n−M)w(n−M). (10.29)

By (10.23), we then have
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Q(n−M)Λ 1/2(n−M)e(n−M) =
[

p(n−M)
v(n−M)

]
−

[
R(n−M)

O

]
w(n−M).

(10.30)
Let

εεε(n−M) = Q1/2(n−M)Λ 1/2(n−M)e(n−M)
ēM(n) = yM(n)−UT

M(n)w(n−M)
eM(n) = yM(n)−UT

M(n)w(n),
(10.31)

where εεε(n−M), ēM(n), and eM(n) are M-by-1 vectors. By (10.1), it is seen that
the last element in eM(n) is the desired residual error e(n) at time instance n. From
(10.30) and (10.31), we obtain

[
λM/2εεε(n−M)

ēM(n)

]
=

⎡
⎣
λM/2p(n−M)
λM/2v(n−M)

yM(n)

⎤
⎦−

⎡
⎣
λM/2R(n−M)

O
UT

M(n)

⎤
⎦w(n−M). (10.32)

Apply the orthogonal matrix Q(n) to both sides of (10.32) and use (10.28) result-
ing

Q(n)
[
λM/2εεε(n−M)

eM(n)

]
=

⎡
⎣

p(n)
v(n)
ααα(n)

⎤
⎦−

⎡
⎣

R(n)
O
O

⎤
⎦w(n). (10.33)

Notice that, after annihilating the input block data UT
M(n), the weight vector w(n−

M) has been updated to w(n). Correspondingly, the residual error ēM(n) becomes
eM(n) as defined in (10.31). Now, moving Q(n) to the right-hand-side of (10.33),
and noticing that Q(n) is orthogonal, we obtain

[
λM/2εεε(n−M)

eM(n)

]
= QT(n)

⎡
⎣

p(n)−R(n)w(n)
v(n)
ααα(n)

⎤
⎦ . (10.34)

Since the optimum weight vector w(n) satisfies p(n)−R(n)w(n) = 0p, (10.34)
reduces to [

λM/2εεε(n−M)
eM(n)

]
= QT(n)

⎡
⎣

0p

v(n)
ααα(n)

⎤
⎦ . (10.35)

Noticing that the last element of eM(n) is e(n), we have

e(n) =
[

0T
n−M δT

M

]
QT(n)

⎡
⎣

0p

v(n)
ααα(n)

⎤
⎦

=
[

0T
n−M δT

M

]
QT(n)

[
O(n−M)×M

IM

]
ααα(n).

(10.36)

The second equality is due to the fact that QT(n) only makes use of elements 0p

and ααα(n) in the vector [0T
p,v

T(n),αααT(n) ]T. Taking the transpose on both sides of
(10.36), and noticing that e(n) is a scalar, then
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e(n) = αααT(n)
[

OM×(n−M) IM
](

Q(n)
[

On−M

δM

])

= αααT(n)
[

OM×(n−M) IM
][ s(n)

γγγ(n)

]

= αααT(n)γγγ(n).

(10.37)

The second equality justify the third column in (10.14). This completes the
derivation of (10.14) and (10.15).
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