

QRD-RLS Adaptive Filtering

José Antonio Apolinário Jr.
Editor

QRD-RLS Adaptive Filtering

Foreword by Prof. John G. McWhirter

123

Editor
José Antonio Apolinário Jr.
Instituto Militar de Engenharia (IME)
Rio de Janeiro
Brazil
apolin@ime.eb.br

ISBN 978-0-387-09733-6 e-ISBN 978-0-387-09734-3
DOI 10.1007/978-0-387-09734-3

Library of Congress Control Number: 2008936641

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the date of
going to press, neither the authors nor the editors nor the publisher can accept any legal responsi-
bility for any errors or omissions that may be made. The publisher makes no warranty, express or
implied, with respect to the material contained herein.

Printed on acid-free paper

springer.com

To Ana, Isabela, and Eduardo.

Foreword

I feel very honoured to have been asked to write a brief foreword for this book on
QRD-RLS Adaptive Filtering – a subject which has been close to my heart for many
years. The book is well written and very timely – I look forward personally to seeing
it in print. The editor is to be congratulated on assembling such a highly esteemed
team of contributing authors able to span the broad range of topics and concepts
which underpin this subject.

In many respects, and for reasons well expounded by the authors, the LMS algo-
rithm has reigned supreme since its inception, as the algorithm of choice for practi-
cal applications of adaptive filtering. However, as a result of the relentless advances
in electronic technology, the demand for stable and efficient RLS algorithms is
growing rapidly – not just because the higher computational load is no longer such a
serious barrier, but also because the technological pull has grown much stronger in
the modern commercial world of 3G mobile communications, cognitive radio, high
speed imagery, and so on.

This book brings together under one cover, and with common notation, the key
results from many different strands of research relating to QRD-RLS adaptive fil-
tering over recent years. It succeeds in putting this research into a clear historical
perspective which highlights the underpinning theory and common motivating fac-
tors that have shaped the subject. This is achieved in the course of providing a very
thorough and comprehensive account of the various key topics including numerous
up-to-date algorithms in easily accessible form. As such, it should serve as a very
good reference text whilst having considerable tutorial value.

Chapter one provides an excellent tutorial review of the fundamental topics in
linear algebra which are essential in the context of developing and applying QRD-
RLS algorithms. It starts with a very useful historical review and goes on to bring
the concept of matrix triangularization and QR decomposition right up-to-date. The
Gram–Schmidt orthogonalization technique is included for comparison and it was
great to see a clear explanation of the difference between the Gram–Schmidt and
modified Gram–Schmidt (MGS) techniques. For this chapter alone, and its extensive
bibliography, the book is likely to be very high on the essential reading list for most
of my post-graduate students in future. But there is much more to follow.

vii

viii Foreword

The second chapter provides a very good overview of adaptive filtering tech-
niques ideal for someone fairly new to the subject. It gives a clear account of
the least mean square (LMS) and normalized LMS algorithms before going on to
introduce the basic recursive least-square (RLS) algorithm. On the way, it cleverly
presents data-reusing versions of the LMS algorithm, typified by the affine projec-
tion method. These help to bridge the gap between the LMS and RLS algorithms and
provide useful intermediate options. The LMS and data-reusing LMS algorithms are
thus seen to be special, simplified cases of the RLS technique.

The QRD approach to adaptive filtering is clearly explained and presented in
detail in Chapter 3 where the use of Givens rotations is assumed throughout. Unusu-
ally, and very sensibly, it also introduces the inverse QRD technique (based on
Givens rotations). This is closely related to the basic QRD technique and best
explained at this stage of the book since it is required in later chapters.

The core content of the book is presented in Chapters 4 and 5, which introduce
and give a detailed exposition of the fast QRD-RLS algorithms and closely related
QRD least squares lattice algorithms. A useful classification of the various QRD-
RLS algorithms in Chapter 5 helps to unify and clarify the different variations which
have emerged over the years. Similarly, explaining the key distinction between the
QRD-RLS and QRD least squares lattice algorithms helps to put the latter class into
context. It is worth noting that the author of Chapter 5 adopts a less conventional,
but very interesting, approach to deriving QRD lattice algorithms. He does it in
the more general context of linear interpolation, from which the conventional linear
prediction methods may be deduced whilst other novel algorithms are also derived.
A wealth of specific algorithms is presented throughout these two chapters.

Subsequent chapters of the book introduce and develop other important tech-
niques such as multi-channel fast QRD-RLS algorithms (including the generaliza-
tion to channels with different orders of prediction), QRD-RLS algorithms based on
Householder transformations, linearly constrained QRD-RLS algorithms, and tech-
niques for explicit weight extraction from fast QRD-RLS algorithms. The book also
moves on to consider some vitally important practical aspects such as numerical sta-
bility (a difficult topic which is expertly presented in Chapter 8), the practical effect
of finite-precision arithmetic, and the design of pipelined processing architectures to
exploit the potential power of parallel computation for higher speed implementation.

In all, this is a very worthwhile text for anyone working, or planning to work,
on adaptive filtering or adaptive beamforming. I have thoroughly enjoyed reading it
and have no doubt that most readers will find it equally useful and enjoyable.

Wales, UK
September 2008

Prof. John G. McWhirter, FRS FREng
Distinguished Research Professor
School of Engineering
Cardiff University

Preface

The fast growth of the technological resources observed nowadays has triggered
the development of new DSP techniques to cope with the requirements of modern
industry. The research of efficient algorithms to be used in the ever-increasing appli-
cations of adaptive filters has therefore developed tremendously. In such a scenario,
the QRD-RLS-based algorithms are a good option in applications where speed of
convergence is of paramount importance and an efficient, reliable, and numerically
robust adaptive filter is needed.

However, I believe that the nice features of this family of algorithms, in many
occasions, are not used simply due to the fact that their matrix equations are not
easy to understand. On the other hand, students, researchers, and practitioners need
to be constantly up-to-date with the recent developments, not only by attending
conferences and reading journal papers, but also by referring to a comprehensive
compendium, where all concepts were carefully matured and are presented in such
a way as to provide easy understanding. This is the main goal of this book: To
provide the reader with the necessary tools to understand and implement a variety
of QRD-RLS algorithms suitable to a vast number of applications.

This publication gathers some of the most recent developments as well as the
basic concepts for a complete understanding of the QRD-RLS-based algorithms.
Although this work does not cover all fronts of research in the field, it tries to
bring together the most important topics for those who need an elegant and fast-
converging adaptive filter.

QR decomposition has been a pearl in applied mathematics for many years; its
use in adaptive filtering is introduced in the first chapter of this book in the form of
an annotated bibliography.

The fundamental chapters materialized from lecture notes of a short course given
at Helsinki University of Technology in the winter of 2004–2005, a number of con-
ference and journal publications, and some theses I supervised. I was also lucky to
receive contributions from many prominent authorities in the field.

This book consists of 12 chapters, going from fundamentals to more advanced
aspects. Different algorithms are derived and presented, including basic, fast, lat-
tice, multichannel, and constrained versions. Important issues, such as numerical

ix

x Preface

stability, performance in finite-precision environments, and VLSI oriented imple-
mentations are also addressed. All algorithms are derived using Givens rotations,
although one chapter deals with implementations using Householder reflections.

I hope the readers will find this book a handy guide to most aspects of theory
and implementation details, quite useful in their professional practice. Upon request
to the editor, a set of MATLAB R©1 codes for the main algorithms described in this
book would be available.

Finally, I express my deep gratitude to all authors for their effort and competence
in their timely and high quality contributions. I also thank the people from Springer,
always very kind and professional. I am particularly grateful to my former DSc
supervisor, Paulo S. R. Diniz, for his support and ability to motivate his pupils, and
Marcello L. R. de Campos, the dear friend who, in the middle of a technical meeting
on a sunny Friday, suggested this book.

Rio de Janeiro, Brazil José A. Apolinário Jr. D. Sc.
September 2008 apolin@ieee.org

1 MATLAB is a registered trademark of The MathWorks, Inc.

Contents

1 QR Decomposition: An Annotated Bibliography 1
Marcello L. R. de Campos and Gilbert Strang
1.1 Preamble . 1
1.2 Eigenvalues and Eigenvectors . 2
1.3 Iterative Methods for the Solution of the Eigenproblem 3

1.3.1 The LR algorithm . 3
1.3.2 The QR algorithm . 4

1.4 QR Decomposition for Orthogonalization . 5
1.4.1 The classical Gram–Schmidt orthogonalization

method . 6
1.4.2 The modified Gram–Schmidt orthogonalization

method . 8
1.4.3 Triangularization via Householder reflections 9
1.4.4 Triangularization via Givens plane rotations 10

1.5 QR Decomposition for Linear Least Squares Problems 12
1.5.1 QR Decomposition by systolic arrays 14

1.6 QR Decomposition for Recursive Least Squares Adaptive
Filters . 14
1.6.1 Fast QR decomposition RLS adaptation algorithms 16

1.7 Conclusion . 17
References . 18

2 Introduction to Adaptive Filters . 23
José A. Apolinário Jr. and Sergio L. Netto
2.1 Basic Concepts . 23
2.2 Error Measurements . 28

2.2.1 The mean-square error . 28
2.2.2 The instantaneous square error . 29
2.2.3 The weighted least-squares . 29

2.3 Adaptation Algorithms . 30
2.3.1 LMS and normalized-LMS algorithms 31

xi

xii Contents

2.3.2 Data-reusing LMS algorithms . 34
2.3.3 RLS-type algorithms . 40

2.4 Computer Simulations . 42
2.4.1 Example 1: Misadjustment of the LMS algorithm 42
2.4.2 Example 2: Convergence trajectories 43
2.4.3 Example 3: Tracking performance 43
2.4.4 Example 4: Algorithm stability . 46

2.5 Conclusion . 47
References . 48

3 Conventional and Inverse QRD-RLS Algorithms 51
José A. Apolinário Jr. and Maria D. Miranda
3.1 The Least-Squares Problem and the QR Decomposition 51
3.2 The Givens Rotation Method . 57
3.3 The Conventional QRD-RLS Algorithm . 60
3.4 Initialization of the Triangularization Procedure 64
3.5 On the Qθ (k) Matrix . 66

3.5.1 The backward prediction problem . 69
3.5.2 The forward prediction problem . 71
3.5.3 Interpreting the elements of Qθ (k) for a lower

triangular Cholesky factor . 74
3.5.4 Interpreting the elements of Qθ (k) for an upper

triangular Cholesky factor . 75
3.6 The Inverse QRD-RLS Algorithm . 76
3.7 Conclusion . 77
Appendix 1 . 79
Appendix 2 . 80
Appendix 3 . 81
References . 84

4 Fast QRD-RLS Algorithms . 87
José A. Apolinário Jr. and Paulo S. R. Diniz
4.1 Introduction . 87
4.2 Upper Triangularization Algorithms

(Updating Forward Prediction Errors) . 89
4.2.1 The FQR POS F algorithm . 90
4.2.2 The FQR PRI F algorithm . 92

4.3 Lower Triangularization Algorithms
(Updating Backward Prediction Errors) . 93
4.3.1 The FQR POS B algorithm . 95
4.3.2 The FQR PRI B algorithm . 98

4.4 The Order Recursive Versions of the Fast QRD Algorithms 100
4.5 Conclusion . 104
Appendix 1 . 105

Contents xiii

Appendix 2 . 107
Appendix 3 . 111
References . 113

5 QRD Least-Squares Lattice Algorithms . 115
Jenq-Tay Yuan
5.1 Fundamentals of QRD-LSL Algorithms . 116
5.2 LSL Interpolator and LSL Predictor . 118

5.2.1 LSL interpolator . 119
5.2.2 Orthogonal bases for LSL interpolator 121
5.2.3 LSL predictor . 122

5.3 SRF Givens Rotation with Feedback Mechanism 123
5.4 SRF QRD-LSL Algorithms . 125

5.4.1 QRD based on interpolation . 126
5.4.2 SRF QRD-LSL interpolation algorithm 129
5.4.3 SRF QRD-LSL prediction algorithm and SRF joint

process estimation . 136
5.5 SRF (QRD-LSL)-Based RLS Algorithm . 139
5.6 Simulations . 140
5.7 Conclusion . 142
References . 143

6 Multichannel Fast QRD-RLS Algorithms . 147
António L. L. Ramos and Stefan Werner
6.1 Introduction . 147
6.2 Problem Formulation . 149

6.2.1 Redefining the input vector . 151
6.2.2 Input vector for sequential-type multichannel

algorithms . 152
6.2.3 Input vector for block-type multichannel algorithms 153

6.3 Sequential-Type MC-FQRD-RLS Algorithms 153
6.3.1 Triangularization of the information matrix 154
6.3.2 A priori and A posteriori versions . 157
6.3.3 Alternative implementations . 159

6.4 Block-Type MC-FQRD-RLS Algorithms . 162
6.4.1 The backward and forward prediction problems 162
6.4.2 A priori and A posteriori versions . 166
6.4.3 Alternative implementations . 169

6.5 Order-Recursive MC-FQRD-RLS Algorithms 171
6.6 Application Example and Computational Complexity Issues 176

6.6.1 Application example . 176
6.6.2 Computational complexity issues . 178

6.7 Conclusion . 179
References . 179

xiv Contents

7 Householder-Based RLS Algorithms . 181
Athanasios A. Rontogiannis and Sergios Theodoridis
7.1 Householder Transforms . 181

7.1.1 Hyperbolic Householder transforms 184
7.1.2 Row Householder transforms . 184

7.2 The Householder RLS (HRLS) Algorithm . 186
7.2.1 Applications . 190

7.3 The Householder Block Exact QRD-RLS Algorithm 192
7.4 The Householder Block Exact Inverse QRD-RLS Algorithm 196
7.5 Sliding Window (SW) Householder Block Implementation 199
7.6 Conclusion . 202
References . 202

8 Numerical Stability Properties . 205
Phillip Regalia and Richard Le Borne
8.1 Introduction . 205
8.2 Preliminaries . 206

8.2.1 Conditioning, forward stability, and backward
stability . 208

8.3 The Conditioning of the Least-Squares Problem 210
8.3.1 The conditioning of the least-squares problem. 211
8.3.2 Consistency, stability, and convergence 212

8.4 The Recursive QR Least-Squares Methods . 214
8.4.1 Full QR decomposition adaptive algorithm 214

8.5 Fast QR Algorithms . 220
8.5.1 Past input reconstruction . 223
8.5.2 Reachable states in fast least-squares algorithms 227
8.5.3 QR decomposition lattice algorithm 229

8.6 Conclusion . 231
References . 232

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms . . . 235
Paulo S. R. Diniz and Marcio G. Siqueira
9.1 Introduction . 235
9.2 Precision Analysis of the QR-Decomposition RLS Algorithm 236

9.2.1 Infinite-precision analysis . 237
9.2.2 Stability analysis . 242
9.2.3 Error propagation analysis in steady-state 244
9.2.4 Simulation results . 255

9.3 Precision Analysis of the Fast QRD-Lattice Algorithm 256
9.3.1 Infinite-precision analysis . 258
9.3.2 Finite-precision analysis . 261
9.3.3 Simulation results . 265

9.4 Conclusion . 266
References . 266

Contents xv

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 269
Jun Ma and Keshab K. Parhi
10.1 QRD-RLS Systolic Architecture . 270
10.2 The Annihilation-Reording Look-Ahead Technique 273

10.2.1 Look-ahead through block processing 274
10.2.2 Look-ahead through iteration . 276
10.2.3 Relationship with multiply–add look-ahead 277
10.2.4 Parallelism in annihilation-reording look-ahead 279
10.2.5 Pipelined and block processing implementations 280
10.2.6 Invariance of bounded input and bounded output 283

10.3 Pipelined CORDIC-Based RLS Adaptive Filters 283
10.3.1 Pipelined QRD-RLS with implicit weight extraction 284
10.3.2 Stability analysis . 286
10.3.3 Pipelined QRD-RLS with explicit weight extraction 288

10.4 Conclusion . 291
Appendix . 294
References . 296

11 Weight Extraction of Fast QRD-RLS Algorithms 299
Stefan Werner and Mohammed Mobien
11.1 FQRD-RLS Preliminaries . 300

11.1.1 QR decomposition algorithms . 300
11.1.2 FQR POS B algorithm . 301

11.2 System Identification with FQRD-RLS . 303
11.2.1 Weight extraction in the FQRD-RLS algorithm 304
11.2.2 Example . 306

11.3 Burst-trained Equalizer with FQRD-RLS . 308
11.3.1 Problem description . 309
11.3.2 Equivalent-output filtering . 309
11.3.3 Equivalent-output filtering with explicit weight

extraction . 311
11.3.4 Example . 313

11.4 Active Noise Control and FQRD-RLS . 314
11.4.1 Filtered-x RLS . 315
11.4.2 Modified filtered-x FQRD-RLS . 316
11.4.3 Example . 319

11.5 Multichannel and Lattice Implementations . 320
11.6 Conclusion . 320
References . 321

12 On Linearly Constrained QRD-Based Algorithms 323
Shiunn-Jang Chern
12.1 Introduction . 323
12.2 Optimal Linearly Constrained QRD-LS Filter 325
12.3 The Adaptive LC-IQRD-RLS Filtering Algorithm 327
12.4 The Adaptive GSC-IQRD-RLS Algorithm . 331

xvi Contents

12.5 Applications . 335
12.5.1 Application 1: Adaptive LCMV filtering for spectrum

estimation . 335
12.5.2 Application 2: Adaptive LCMV antenna array

beamformer . 338
12.6 Conclusion . 343
References . 343

Index . 347

List of Contributors

José Antonio Apolinário Jr. (Editor)
Department of Electrical Engineering (SE/3)
Military Institute of Engineering (IME)
Praça General Tibúrcio 80, Rio de Janeiro, RJ, 22290-270 – Brazil
e-mail: apolin@ieee.org

Richard C. Le Borne
Department of Mathematics
Tennessee Technological University
Box 5054, Cookeville, TN 38505 – USA
e-mail: rleborne@tntech.edu

Marcello L. R. de Campos
Electrical Engineering Program, COPPE
Federal University of Rio de Janeiro (UFRJ)
P. O. Box 68504, Rio de Janeiro, RJ, 21941-972 – Brazil
e-mail: campos@lps.ufrj.br

Shiunn-Jang Chern
Department of Electrical Engineering
National Sun-Yat Sen University
70 Lienhai Road, Kaohsiung, Taiwan 80424 – R.O.C.
e-mail: chern@mail.ee.nsysu.edu.tw

Paulo S. R. Diniz
Electrical Engineering Program, COPPE
Federal University of Rio de Janeiro (UFRJ)
P. O. Box 68504, Rio de Janeiro, RJ, 21941-972 – Brazil
e-mail: diniz@lps.ufrj.br

xvii

apolin@ieee.org
rleborne@tntech.edu
campos@lps.ufrj.br
chern@mail.ee.nsysu.edu.tw
diniz@lps.ufrj.br

xviii List of Contributors

Jun Ma
School of Microelectronics
Shanghai Jiaotong University
800 Dongchun Road, Shanghai 200240 – China
e-mail: majun@ic.sjtu.edu.cn

Maria D. Miranda
Department of Telecommunications and Control
University of São Paulo (USP)
Avenida Prof. Luciano Gualberto 158, São Paulo, SP, 05508-900 – Brazil
e-mail: maria@lcs.poli.usp.br

Mohammed Mobien
Department of Signal Processing and Acoustics, SMARAD CoE
Helsinki University of Technology
P.O. Box 3000 TKK, FIN-02015 – Finland
e-mail: mobien@signal.tkk.fi

Sergio L. Netto
Electrical Engineering Program, COPPE
Federal University of Rio de Janeiro (UFRJ)
P. O. Box 68504, Rio de Janeiro, RJ, 21941-972 – Brazil
e-mail: sergioln@lps.ufrj.br

Keshab K. Parhi
Department of Electrical and Computer Engineering
University of Minnesota
200 Union Street SE, Minneapolis, MN 55455 – USA
e-mail: parhi@umn.edu

António L. L. Ramos
Department of Technology (ATEK)
Buskerud University College (HIBU)
P. O. Box 251, 3603 Kongsberg – Norway
e-mail: antonio.ramos@hibu.no

Phillip Regalia
Department of Electrical Engineering and Computer Science
Catholic University of America
620 Michigan Avenue NE, Washington, DC 20064 – USA
e-mail: regalia@cua.edu

majun@ic.sjtu.edu.cn
maria@lcs.poli.usp.br
mobien@signal.tkk.fi
sergioln@lps.ufrj.br
parhi@umn.edu
antonio.ramos@hibu.no
regalia@cua.edu

List of Contributors xix

Athanasios A. Rontogiannis
Institute for Space Applications and Remote Sensing
National Observatory of Athens
Metaxa and Vas. Pavlou Street, Athens 15236 – Greece
e-mail: tronto@space.noa.gr

Marcio G. Siqueira
Cisco Systems
170 West Tasman Drive, San Jose, CA 95134-1706 – USA
e-mail: mgs@cisco.com

Gilbert Strang
Department of Mathematics
Massachusetts Institute of Technology (MIT)
77 Massachusetts Avenue, Cambridge, MA 02139-4307 – USA
e-mail: gs@math.mit.edu

Sergios Theodoridis
Department of Informatics and Telecommunications
University of Athens
Panepistimiopolis, Ilissia, Athens 15784 – Greece
e-mail: stheodor@di.uoa.gr

Stefan Werner
Department of Signal Processing and Acoustics, SMARAD CoE
Helsinki University of Technology
P.O. Box 3000 TKK, FIN-02015 – Finland
e-mail: stefan.werner@tkk.fi

Jenq-Tay Yuan
Department of Electrical Engineering
Fu Jen Catholic University
510 Chung Cheng Road, Hsinchuang, Taiwan 24205 – R.O.C.
e-mail: yuan@ee.fju.edu.tw

tronto@space.noa.gr
mgs@cisco.com
gs@math.mit.edu
stheodor@di.uoa.gr
stefan.werner@tkk.fi
yuan@ee.fju.edu.tw

Chapter 1
QR Decomposition: An Annotated Bibliography

Marcello L. R. de Campos and Gilbert Strang

Abstract This chapter is divided into two parts. The first one goes back in time and
tries to retrace the steps of great mathematicians who laid the foundations of numer-
ical linear algebra. We describe some early methods to compute the eigenvalues and
eigenvectors associated to a matrix A. The QR decomposition (orthogonalization as
in Gram–Schmidt) is encountered in many of these methods as a fundamental tool
for the factorization of A. The first part describes the QR algorithm, which uses the
QR decomposition iteratively for solving the eigenproblem Ax = λx. The second
part of the chapter analyzes the application of the QR decomposition to adaptive
filtering.

1.1 Preamble

To tell the story of the QR decomposition, we must go back in history, to an era
when electronic calculating machines were first built and the associated algorithmic
programming languages were first proposed [1, 2]. Two problems that were common
to different applications and of particular importance to the newly created field of
applied mathematics were: The solution of large systems of linear simultaneous
equations

Ax = b, (1.1)

Marcello L. R. de Campos
Federal University of Rio de Janeiro, Rio de Janeiro – Brazil
e-mail: campos@lps.ufrj.br

Gilbert Strang
Massachusetts Institute of Technology, Cambridge, MA – USA
e-mail: gs@math.mit.edu

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 1
DOI 10.1007/978-0-387-09734-3 1, c© Springer Science+Business Media, LLC 2009

campos@lps.ufrj.br
gs@math.mit.edu

2 Marcello L. R. de Campos and Gilbert Strang

often arising as consequence of least-squares minimization [3], and the solution of
the eigenvalue–eigenvector problem [4, 5]

Ax = λx. (1.2)

These problems may also be seen as particular cases of the problem of Fredholm [6]
in the matrix format (see, e.g., [7]),

x−λAx = b, (1.3)

which simplifies to the eigenproblem for b = 0 and to the solution of the linear
system of equations for λ → ∞. The methods to be outlined here are systematic
procedures to solve the problem, offering a more economical and sometimes a more
stable alternative to matrix inversion or to the Liouville-Neumann expansion

x = (I−λA)−1b = (I+λA+λ 2A2 + · · ·)b. (1.4)

For an account of the early developments in numerical linear algebra related to
the different methods for matrix inversion and eigenproblem solution see,
e.g., [8–11].

In the following sections, the QR decomposition and the QR algorithm, which
have become a standard subject in all linear algebra books (see, e.g., [3, 12–16]),
will be placed in the context of the solutions proposed for the Equation (1.2). We
will describe the solutions trying to give credit to key researchers that contributed to
the development of the methods, as well as their refinement and dissemination.

1.2 Eigenvalues and Eigenvectors

The eigenproblem, as the eigenvalue–eigenvector problem is usually referred to,
can be traced back more than 150 years ago to the pioneering work of Jacobi [17]
(see also [18–21]). He has not described the problem in matrix notation, which was
invented shortly after [22–24]. Jacobi indeed proposed an ingenious solution to the
Equation (1.2) for the particular case of symmetric matrices.

A non-zero vector x ∈ C
N is an eigenvector of A ∈ C

N×N and λ ∈ C is the asso-
ciated eigenvalue if the Equation (1.2) is true. Since (A−λ I)x = 0, the eigenvalues
are the roots of the characteristic polynomial, given by

℘A(z) = det(zI−A), (1.5)

where I is the identity matrix [25]. A scalar λ is an eigenvalue of A if and only if
℘A(λ) = 0 [19, 26]. But the roots of an Nth-degree polynomial have no closed-form
formula for N > 4 [27–29], and a direct approach yields an ill-conditioned problem.
Therefore the solution of the eigenproblem must resort to iterative methods that
reveal the eigenvalues of A as they factor or transform the matrix.

1 QR Decomposition: An Annotated Bibliography 3

As all methods are iterative, their development and constant improvement aim
for reduction of computational complexity, increased speed of convergence,
and robustness against round-off errors. The QR algorithm, which is based
on the QR decomposition of A, is still considered one of the most important
methods developed so far.

1.3 Iterative Methods for the Solution of the Eigenproblem

All the methods can be broken down to two steps. The first one reduces the gen-
eral matrix A to a more condensed form, usually Hessenberg (tridiagonal when A
is symmetric or Hermitian). The second step solves the condensed eigenproblem
iteratively.

1.3.1 The LR algorithm

Based on the reduction of the matrix to a condensed form C−1AC = H, such as
Hessenberg, several methods were proposed to find the roots of the characteristic
equation. Perhaps the most significant development to follow was the proposition
of the LR algorithm by Rutishauser [30]. The reduction of the matrix, in this case,
yields a triangular matrix by means of non-orthogonal transformations:

A = LR, (1.6)

where L is lower triangular and R is upper triangular. The LR algorithm was a
development of previous methods also proposed by Rutishauser, such as the QD
algorithm (see, e.g., [31, 32]).

Based on the Equation (1.6), we may apply a similarity transformation to A as

A2 = L−1AL = L−1LRL = RL, (1.7)

which indicates that the lower and upper triangular factors of A, when multiplied in
the reverse order, yield a matrix similar to A. In the LR algorithm, this procedure is
applied iteratively and, under certain restrictions, Ak, k → ∞, converges to a trian-
gular matrix similar to A. The eigenvalues of A are revealed on the diagonal of this
new matrix Ak. The LR algorithm may be stated as follows:

A1 = A;

For k = 1,2, . . .

Ak = LkRk;

Ak+1 = RkLk.

(1.8)

4 Marcello L. R. de Campos and Gilbert Strang

Although the LR algorithm is usually referenced at a later date, its fundamentals
were already clear in [33], although only for the particular cases of A of Jacobi type
or real and symmetric.

1.3.2 The QR algorithm

Proposed by J. G. F. Francis [34] as a modification of the LR algorithm (and also
independently by V. N. Kublanovskaya [35]), the QR algorithm decomposes A into
a unitary matrix Q and a (different!) upper triangular matrix R, instead of the lower
and upper triangular matrices from elimination. The QR algorithm uses succes-
sive unitary transformations, which render the method superior to its predecessor
with respect to numerical stability and computational requirements [34, 36]. For
these reasons, together with the more recent development of its parallelizable ver-
sions, the QR algorithm still is the dominant method for solving the eigenprob-
lem [37, 38]. Standard public-domain software-library packages, such as EISPACK
and LINPACK, and more recently LAPACK [39] and ScaLAPACK [40], have been
using the QR algorithm in one form or other. The decomposition of A becomes

A = QR. (1.9)

Similarly to the LR algorithm, a similarity transformation Q applied to A yields

A2 = QHAQ = QHQRQ = RQ. (1.10)

The QR algorithm (without shift) can be described as follows [34]:

A1 = A;

For k = 1,2, . . .

Ak = QkRk;

Ak+1 = RkQk.

(1.11)

For any iteration k, we have

Ak = QH
k QH

k−1 · · ·QH
1 AQ1 · · ·Qk−1Qk

= Q̄H
k AQ̄k.

(1.12)

With few exceptions [41], Ak tends to an upper triangular matrix as k →∞ [42–44].

Successive pre- and post-multiplications by unitary matrices guarantee that
Ak and A are similar and therefore share the same eigenvalues, which are
revealed on the diagonal of Ak.

1 QR Decomposition: An Annotated Bibliography 5

The pre-multiplication by the unitary matrix QH
k can conveniently put zeros on

the sub-diagonal elements of any column of A, which might lead us to believe that
triangularization is possible exactly after a finite number of operations, contradicting
the fact that eigenvalue discovery should necessarily be iterative. However, it is pre-
cisely the post-multiplication by Q that destroys the triangular structure. Fortunately
the succession of transformations converges and all eigenvalues are resolved [34].

As the iterations progress and Ak converges to a triangular matrix, we may notice
that

A = Q1R1 = Q̄1R̄1

A2 = AQ1R1 = Q1R1Q1R1 = Q1A2R1

= Q1Q2R2R1 = Q̄2R̄2

...

Ak = Q1Q2 · · ·QkRk · · ·R2R1

= Q̄kR̄k,

(1.13)

which shows that the matrices Q̄k and R̄k are the Q and R factors of Ak [44–46].
Reducing A to a condensed Hessenberg form, prior to the QR steps, usually

speeds up the process considerably [38].
Up to this point, we have not worried about the decomposition of A into its

factors Q and R. This decomposition has been assumed possible and available. In
the next section, we will describe some QR decomposition methods that can be used
to factor Ak at the kth iteration of the QR algorithm.

1.4 QR Decomposition for Orthogonalization

The QR decomposition factors A into the product of a unitary matrix Q and an upper
triangular matrix R. Given that Q is unitary, AHA = RHR and therefore the matrix
R is the Cholesky factor of the matrix AHA, but R is not found that way.

Let A ∈ C
N×N have full rank and let Ak = {a1, . . . ,ak}, 1 ≤ k ≤ N be the succes-

sive spaces spanned by the first k columns of A. The QR decomposition yields a set
of orthonormal vectors qi ∈ C

N that span these successive spaces,

a1 = r11q1

a2 = r12q1 + r22q2

...

ak = r1kq1 + r2kq2 + · · ·+ rkkqk, 1 ≤ k ≤ N,

(1.14)

or, in matrix form,
A = QR, (1.15)

6 Marcello L. R. de Campos and Gilbert Strang

where
Q = [q1 q2 · · · qN] (1.16)

and

R =

⎡
⎢⎢⎢⎣

r11 r12 · · · r1N

0 r22 · · · r2N
...

. . .
...

0 rNN

⎤
⎥⎥⎥⎦ . (1.17)

We will describe briefly three methods commonly used to factor the matrix A:

1. the classical and the modified versions of the Gram–Schmidt orthogonalization
method based on projections,

2. the Householder orthogonalization method based on reflections, and
3. the Givens orthogonalization method based on rotations.

1.4.1 The classical Gram–Schmidt orthogonalization method

A simple, albeit unstable, means to obtain a succession of suitable orthonormal
vectors Qk = {q1, . . . ,qk}, 1 ≤ k ≤ N, is the classical Gram–Schmidt method. We
subtract from ak its projection onto the space Qk−1 already constructed:

gk = ak − (qH
1 ak)q1 − (qH

2 ak)q2 −·· ·− (qH
k−1ak)qk−1, 2 ≤ k ≤ N. (1.18)

Then normalize gk to the unit vector qk:

qk =
gk

‖gk‖2
, (1.19)

with g1 = a1. Referring to the Equation (1.14), we realize that
{

ri j = qH
i a j, i �= j,

r j j = ‖a j −∑ j−1
i=1 ri jqi‖2.

(1.20)

This orthogonalization method was proposed by Erhard Schmidt in 1907 [47],
although he acknowledged that the method is equivalent to the one proposed by
J. P. Gram in 1883 [48]. The method was probably first called the Gram–Schmidt
orthogonalization method by Y. K. Wong in 1935 [49], where its relation to Gauss’s
method of substitution was first pointed out. Curiously, the method proposed by
Schmidt became known as the Classical Gram–Schmidt orthogonalization method,
whereas Gram’s earlier version became known as the Modified Gram–Schmidt
orthogonalization method. For a thorough account of Gram–Schmidt orthogonal-
ization, including historical aspects and relationship with the QR factorization, the
reader is referred to [50] and the references therein.

1 QR Decomposition: An Annotated Bibliography 7

One may readily see that qk comes from the projection of ak onto the subspace
orthogonal to Qk−1, i.e.,

q1 =
P1a1

‖P1a1‖2

...

qk =
Pkak

‖Pkak‖2
,

(1.21)

where
Pi = I−Qi−1QH

i−1 ∈ C
N×N (1.22)

and
Qi−1 = [q1 q2 · · · qi−1] ∈ C

N×i−1. (1.23)

Equivalently, the algorithm may be described as post-multiplication by upper
triangular matrices R1, R2, . . . , RN . The first vector, q1, is obtained by post-
multiplying A by R1:

[q1 a2 · · · aN] = [a1 a2 · · · aN]

⎡
⎢⎢⎢⎣

1/r11 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎥⎥⎦ = AR1. (1.24)

The first two vectors, q1 and q2, q2 ⊥ q1, are obtained by post-multiplying A by the
upper-triangular matrices R1 and R2:

[q1 q2 a3 · · · aN] = [a1 a2 · · · aN]

⎡
⎢⎢⎢⎣

1/r11 0 · · · 0
0 1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1 −r12/r22 0 · · · 0
0 1/r22 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

= AR1R2,

(1.25)
where ri j is given in the Equation (1.20). In order to obtain k orthonormal vectors,
we must post-multiply the matrix A by k upper-triangular matrices Ri:

[q1 q2 · · · qk ak+1 · · · aN] = AR1 · · ·Rk−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · −r1k/rkk 0 · · · 0
0 1 0 · · · −r2k/rkk 0 · · · 0
...

. . .
...

...
0 · · · 1/rkk

0 1

0
. . .

0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= AR1R2 · · ·Rk.

(1.26)

8 Marcello L. R. de Campos and Gilbert Strang

The existence of the QR decomposition of any matrix A ∈C
M×N , M ≥ N, and

the uniqueness of this decomposition when A is of full rank can be readily
proved with the aid of the Gram–Schmidt triangular orthogonalization. As a
consequence, we may expect that all methods yield exactly the same factors
Q and R, at least in theory, when A is of full rank.

In practice, performance in terms of robustness and computational com-
plexity differs significantly. The methods to be presented next are superior to
the classical Gram–Schmidt method in terms of sensitivity to round-off errors
and are, usually, to be preferred in many practical applications.

1.4.2 The modified Gram–Schmidt orthogonalization method

For each column k, 1 ≤ k ≤ N, the classical Gram–Schmidt method applies to ak

a single orthogonal projection of rank N − k + 1, as seen in the Equation (1.22).
The modified Gram–Schmidt method applies to ak a succession of k − 1 projec-
tions of rank N − 1. It subtracts k− 1 one-dimensional projections onto the known
q1, . . . , qk−1:

gk = Pk−1 · · ·P1ak (1.27)

and

qk =
gk

‖gk‖2
, (1.28)

where

Pk−1 = I−qk−1qH
k−1. (1.29)

The difference between the two methods is in the computation of ri j such that the
Equation (1.20) now becomes

{
ri j = qH

i

(
a j −∑ j−1

k=1 rk jqk

)
, i �= j,

r j j = ‖a j −∑ j−1
i=1 ri jqi‖2.

(1.30)

Both the classical and the modified versions of the Gram–Schmidt method com-
pute the first two columns of Q and the first row of R with the exact same arithmetic
operations. However, for j > 2, the modified Gram–Schmidt method also takes into
account cross-products qH

i q j, i �= j, that should ideally be zero. If computations

1 QR Decomposition: An Annotated Bibliography 9

could be performed with infinite precision, both methods would yield the same
Q. However, the impact of finite precision arithmetic onto the classical version is
more pronounced, mostly in terms of stability and loss of orthogonality [50] (see
also [51–53]).

1.4.3 Triangularization via Householder reflections

The Gram–Schmidt method calculates a series of projections in order to reach A =
QR. The operation consists of a succession of multiplications of upper-triangular
non-unitary matrices Ri to the right of A in order to obtain a unitary matrix Q, such
that AR1 · · ·RN = AR−1 = Q.

The Householder method [54], on the other hand, applies a succession of unitary
matrices Qi to the left of A in order to obtain an upper-triangular matrix R, such that
QHA = R (Figure 1.1).

The matrix Qi, i = 1, 2, . . . , N −1, is chosen unitary such that

Qi =
[

Ii 0
0 Hi

]
, (1.31)

where the blocks I and H have size i−1 and N − i+1.
The first reflection H1 reflects the original vector a1 onto eN

1 = [1 0 · · · 0] ∈ C
N

with respect to some hyperplane H1 ∈ C
N (see Figure 1.2):

HH
1 a1 = ‖a1‖2eN

1 , HH
i = Hi, H2

i = I. (1.32)

The second reflection operates on the lower part of the second column of A, still
denoted here a2 although it has been modified by Q1. This part is reflected onto
eN−1

1 = [1 0 · · ·0] ∈ C
N−1 with respect to some hyperplane H2 ∈ C

N−1:

[
1 0
0 HH

2

]
a2 =

[
�

‖a2‖2eN−1
1

]
. (1.33)

The procedure is applied N − 1 times, ending with a multiple of eN in the last
column.

Q1 A
Q2 QN−1

Q2 Q1 A
Q3HA Q A = R

Q1 H H H

Fig. 1.1 Unitary triangularization of the matrix A: Householder reflections.

10 Marcello L. R. de Campos and Gilbert Strang

H1

a1

a1 2eN
1

h⊥
1

Fig. 1.2 A Householder reflection.

Given a hyperplane H1 and a unit vector h⊥
1 orthogonal to H1, the projection of

a1 onto H1 is given by

P1 = I−h⊥
1 h⊥H

1 . (1.34)

In order to project a1 across H1 and onto eN
1 , we must apply the Householder

reflection

HH
1 a1 =

(
I−2 h⊥

1 h⊥H
1

)
a1. (1.35)

Householder reflections have become the standard method for orthogonalization,
chosen by LAPACK [39] (and by MATLAB R© and other popular software systems).
One of its advantages is that orthogonalization of Q is guaranteed to the working
precision [50]. Although originally presented as a triangularization method with
immediate application to matrix inversion, soon it was recognized as a fast and
accurate method for solving the eigenproblem [55].

1.4.4 Triangularization via Givens plane rotations

Another interesting method to decompose A is based on plane rotations, proposed
by Givens [56]. The method can be illustrated as follows.

Let a j be any column of A and a j j be the component on the diagonal of A. We
wish to place zeros in the positions of ai j, i = j+1, . . . , N, and Givens’s proposition
is to treat those entries one at a time. To each dyad defined as xm = [a j j ai j], where

1 QR Decomposition: An Annotated Bibliography 11

Fig. 1.3 Givens rotations. The dyad x1 lies on the α–β plane and is constructed with the first two
elements of a1. It is rotated by Ḡ1 to be aligned with the axis α with length x̄11. The second dyad
x2 lies on the α–γ plane and is constructed with x̄11 and the third element of a1. It is rotated by Ḡ2
to be also aligned with the axis α .

m = 1, . . . , N − j is the index of rotations performed and i = j + m, we apply a
rotation Ḡm in order to align the dyad with the vector [1 0] (see Figure 1.3 for an
example with a1 ∈ C

3). Notice that the operation is a rotation, and not a projection;
therefore the entry in the position a j j is updated after each rotation, and is denoted
as x̄ j j in Figure 1.3. The rotations Ḡm are simply defined as:

Ḡm =

[
cos(θm) sin∗(θm)

−sin(θm) cos(θm)

]
, (1.36)

where

θm = tan−1 ai j

a j j
. (1.37)

We may cascade the succession of rotations applied to a j, not to the dyad, as

G j,N− j · · · G j,1 a j =

⎡
⎢⎢⎢⎣

�
0
...
0

⎤
⎥⎥⎥⎦ , (1.38)

where the rotations G j,m, m = 1, . . . , N − j, place zeros along the jth-column in
(i, j) positions, with i = j +m. The rotations G j,m ∈ C

N×N are given by

12 Marcello L. R. de Campos and Gilbert Strang

G j,m =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
cos(θm) sin∗(θm)

1
. . .

1
−sin(θm) cos(θm)

1
. . .

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

j = 1, . . . , N −1;
m = 1, . . . , N − j.

(1.39)

1.5 QR Decomposition for Linear Least Squares Problems

Linear simultaneous equations will arise when we wish to solve systems of simul-
taneous equations in the form of the Equation (1.1), arising, for example, when we
wish to solve the least squares problem

min
x

‖Ax−b‖2
2, (1.40)

where A ∈ C
M×N , M ≥ N, is of rank N. The solution of the Equation (1.40) above

is the vector x satisfying the normal equations [57]:

AHAx = AHb. (1.41)

The conditioning of AHA is worse than that of A [57], and the study of accurate
methods to solve the Equation (1.41) has deserved much attention, both due to its
challenging aspects and to its importance in many areas (see, e.g., [51, 57–64]. The
pioneering works of Gauss [65] and Legendre [66] independently formulated the
least squares problem and developed solutions which have withstood the test of
time).

As the Euclidean norm is invariant under unitary transformations, the problem
stated in the Equation (1.40) above can be rewritten as

min
x

‖QH(Ax−b)‖2
2, (1.42)

where Q ∈ C
M×M is unitary and chosen such that QHA = R, R ∈ C

M×N is upper
triangular, forming the Q and R factors of the QR decomposition of A. The matrix
Q can be obtained by any of the methods described in the previous section. The
matrix R, being upper triangular, may be partitioned as

1 QR Decomposition: An Annotated Bibliography 13

QHA = R =
[

U
0

]
, (1.43)

where U ∈C
N×N is of full rank provided that A is of full rank. The vector QHb may

be also partitioned accordingly,

QHb =
[

bu

bl

]
, (1.44)

where bu ∈ C
N and bl ∈ C

M−N .
The solution of the Equation (1.42) may be obtained as the solution of

UHUx = UHbu, (1.45)

or, equivalently, that of

Ux = bu. (1.46)

Notice that the Equation (1.46) describes a triangular system of equations, which
can be solved via back-substitution.

Golub [67] has suggested this approach for solving least squares problems
employing the Householder transformation for the QR decomposition of A (see
also [68]). Although Golub [67] briefly mentions that many methods do exist
to achieve the QR decomposition, for example a series of plane rotations, the
use of Givens plane rotations together with the QR decomposition to solve lin-
ear least squares problems was fully addressed only later by Gentleman [69] (see
also [70–72]).

It is usual, in least squares problems, that the matrix A is constructed one row
at a time, as data from observations are gathered. Furthermore, it is not uncom-
mon that the amount of data gathered becomes prohibitively large, and one should
benefit from the zeros already placed in previously transformed versions of A. A
method that processes A one row at a time may offer clear advantages in terms of
computational complexity, and the Givens plane rotations seem to be perfect for the
job.

Let Ak ∈ C
k×N , k ≥ N, be a matrix containing k observations of some sort orga-

nized in the k rows of Ak, and xk be the least squares solution that minimizes the
Euclidean norm of the residuals,

min
xk

‖Akxk −bk‖2
2. (1.47)

Let also Qk and Rk be the QR factors of Ak, such that

QH
k Ak = Rk =

[
Uk

0

]
. (1.48)

When new data is incorporated into the system, the matrix Ak+1 ∈C
k+1×N is formed

with an additional row, aH
k+1, as

14 Marcello L. R. de Campos and Gilbert Strang

Ak+1 =

[
Ak

aH
k+1

]
. (1.49)

The new matrix Ak+1 and the QR factors of Ak are related as

[
QH

k 0

0H 1

]
Ak+1 =

[
Rk

aH
k+1

]
=

⎡
⎢⎣

Uk

0

aH
k+1

⎤
⎥⎦ . (1.50)

We may now apply the Givens plane rotations to place zeros only on the last row of
this matrix, in order to obtain Rk+1 upper triangular:

QH
k+1

⎡
⎢⎣

Uk

0

aH
k+1

⎤
⎥⎦ =

[
Uk+1

0

]
. (1.51)

Only the upper part of the transformed vector QH
k bk needs to be stored, and only

the appropriate cosines and sines need to be calculated in order to perform the trans-
formations. Gentleman also suggests in [69] a means to avoid the computation of
square roots, supposedly needed for the Givens plane rotations.

1.5.1 QR Decomposition by systolic arrays

Matrix triangularization is certainly a major step in many methods for solving least
squares problems. When the solution is required to be obtained online and in real-
time, the computational complexity associated with the triangularization may be the
bottleneck. The use of systolic arrays [73] for solving least squares problems with
QR decomposition was first proposed by Gentleman and Kung [74] (see also [75]).
Their approach takes advantage of the inherent parallelism of the Givens plane rota-
tions for matrix triangularization, a fact already mentioned by Gentleman in [72] for
the error analysis of the QR decomposition by Givens rotations.

1.6 QR Decomposition for Recursive Least Squares
Adaptive Filters

Previous sections have dealt with the QR decomposition and the QR algorithm
applied to solving the eigenproblem and the least squares problem. Recursive least
squares (RLS) adaptive filters attempt to adjust the system parameters (filter coeffi-
cients) as new data are gathered in order to minimize the weighted sum of squares
of the residuals (output errors). The QR decomposition is definitely a superb tool
for the job, offering increased robustness, reduced complexity, and a possible VLSI
implementation in a modular (systolic array) structure.

1 QR Decomposition: An Annotated Bibliography 15

This section presents some of the early contributions that merged QR decompo-
sition and RLS adaptive filtering. More recent contributions that form the state-of-
the-art in the field are the subject of the remaining chapters of the book. We chose
to keep our notation consistent with that of the previous sections, and also of many
linear algebra texts. However, it is usual in adaptive filtering texts that the obser-
vation matrix is denoted by X(k), the parameter (coefficient) vector is denoted by
w, and the constant term (reference) vector is denoted by d(k). The index, often
displayed within parenthesis, is associated with iterations or sampled time instants
t = kT , where T is the sampling period, usually dropped from the notation for
simplicity.

At every iteration or time instant t = kT , the adaptive filter is presented with a
new vector of observations and a reference signal, which will be denoted here as
ak and bk, respectively. The filter coefficients, xk, must be estimated to produce an
output that approximates the reference signal in the sense that the sum of all the
previous errors (or residuals) squared, |ei|2, 1 ≤ i ≤ k, is minimized:

min
xk

(
ξk =

k

∑
i=1

λ k−i|ei|2
)

, (1.52)

where 0 < λ ≤ 1 and

ei = aH
i xk −bi. (1.53)

In matrix notation, the Equation (1.52) can be put in the same form as the Equa-
tion (1.47) if we construct the matrix Ak and the vector bk as

Ak =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ (k−1)/2aH
1

λ (k−2)/2aH
2

...

λ 1/2aH
k−1

ak

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1.54)

and

bk =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ (k−1)/2b1

λ (k−2)/2b2
...

λ 1/2bk−1

bk

⎤
⎥⎥⎥⎥⎥⎥⎦

. (1.55)

A vector of residuals can be constructed as

ek = Akxk −bk

= [e1 e2 · · · ek]
T ,

(1.56)

16 Marcello L. R. de Campos and Gilbert Strang

so that the Equation (1.47) can also be rewritten as

min
xk

‖ek‖2
2. (1.57)

McWhirter [76, 77] and later Ward et al. [78] have proposed adaptive filter-
ing implementations of the RLS algorithm solving the Equation (1.57). They took
advantage of the Givens rotations for the matrix triangularization and suggested a
systolic array implementation as in [74]. The implementation of the systolic array
in [76] was particularly interesting, for the method does not need to solve the tri-
angular linear system in order to extract the coefficients, as is the case in [74].
In [78], the application of interest was adaptive beamforming, for which coefficient
extraction may not be needed. If, however, obtaining the coefficients is necessary,
the authors propose a “weight flushing” method, simpler than back-substitution,
and also applicable when the square-root free Givens rotation method [69] is used.
In [79], Varvitsiotis et al. propose a structure that employs the modified Fadeeva’s
algorithm in order to avoid coefficient extraction via back-substitution. Instead, the
unknown coefficients are obtained via Gaussian elimination.

1.6.1 Fast QR decomposition RLS adaptation algorithms

In [80], Cioffi proposed an early version of the first fast implementation (with com-
putational complexity proportional to N) of the RLS algorithm using QR decom-
position. A fast pipelined version was presented shortly after in [81]. The method
was further developed and improved so that the implementation was based on a
pipelined array formed by two types of processing elements: rotational processors
(ROTORs) and cosine–sine processors (CISORs) [82]. (For an early account of fast
QR decomposition RLS adaptive filters, see [83].)

The search for implementation options that offered robustness and computa-
tional complexity that increased only linearly with N has concentrated on methods
that avoid the direct back-substitution for calculating the coefficients. One of the
options for coefficient extraction without solving the triangular linear system via
back-substitution is based on the inverse QR decomposition. In this case, instead
of updating the Cholesky factor of the normal matrix AHA, the method updates its
inverse [84–87].

As a consequence of the derivation of fast QR decomposition methods, a rela-
tionship between QR decomposition methods for adaptive filtering and linear pre-
diction was soon established [88, 89]. Furthermore, Bellanger [89] showed that the
reflection coefficients of the lattice filter may be obtained directly from the inter-
nal variables of the fast QR decomposition implementations. This relationship is
further explored in [90], where the authors propose a family of QR decomposition
RLS algorithms that reveal the reflection coefficients of an equivalent normalized
lattice predictor. The relationship between lattice predictors and QR decomposition
least squares methods received much attention not only in the context of adaptive

1 QR Decomposition: An Annotated Bibliography 17

filtering (see, e.g., [91, 92]), but also in the context of statistical signal processing in
general (see, e.g., [93–95]).

The use of a modular and systematic procedure to design systolic array imple-
mentations of QR decomposition RLS adaptive filters for different applications was
also an important research topic. Algorithmic engineering, introduced by McWhirter
[96, 97], provided the tools for efficiently prototyping parallel algorithms and archi-
tectures for different applications [98–102].

1.7 Conclusion

In this introductory chapter, we attempted to provide an annotated bibliography that
will hopefully serve the readers interested in the historical aspects related to the QR
decomposition and the QR algorithm, as well as introduce them to the algebraic
tools commonly encountered in the analysis and design of QR decomposition RLS
adaptive filters.

QRD-RLS adaptive filters do not rely on the QR algorithm, but on the unitary tri-
angularization of the observation matrix via Givens rotations. We presented a brief
introductory discussion about the QR decomposition, its application to the solu-
tion of the eigenproblem and of the least squares problem, and its implementation
options via Gram–Schmidt projections, Householder reflections, and Givens plane
rotations. Although Givens rotations preceded Householder reflections, we chose to
present the two methods out of their chronological order. Householder reflections
have become a standard in software packages, but Givens rotations have proved
more suitable and economical when new data is added to the least squares problem
and we wish to take advantage of the previously transformed data. We also men-
tioned the possibility of a VLSI implementation via systolic arrays of the matrix tri-
angularization, with a possible extension to the linear system solution. Here, again,
the Givens rotations offer a parallelism which can be efficiently explored by the
systolic array architecture.

The application of QR decomposition to RLS adaptive filtering may be regarded
as a natural consequence for many constraints, and objectives here are similar
to those of applied mathematics (e.g., computational complexity, robustness, and
accuracy). However, the investigation of new forms of implementation that provide
unforeseen advantages in different modern applications, such as multichannel signal
processing and multiple-input multiple-output systems, provide renewed challenges
to researchers in the field of signal processing.

We have made an effort to provide key references to give the reader informa-
tion of when each method or algorithm was first published, as well as books and
tutorials that present them with a more modern notation and an alternative form
of presentation that may be easier to understand and implement. As all such lists
are unavoidably incomplete, we sincerely apologize for any unfairness, which was
indeed unintentional.

18 Marcello L. R. de Campos and Gilbert Strang

Acknowledgements

The authors are grateful to Mr. Leonardo Baltar for tirelessly helping us to obtain
key references, and to Prof. Gander for kindly providing us a copy of his manuscript
to appear on the history of the Gram–Schmidt orthogonalization.

References

1. M. Gutknecht, The pioneer days of scientific computing in Switzerland. Proceedings of the
ACM Conference on History of Scientific and Numeric Computation. Princeton, NJ, USA,
pp. 63–69 (1987)

2. A. S. Householder, Bibliography on numerical analysis. Journal of the Association for Com-
puting Machinery (JACM), vol. 3, no. 2, pp. 85–100 (April 1956)

3. G. Strang, Computational Science and Engineering. Wellesley-Cambridge Press, Wellesley,
MA, USA (2007)

4. H. A. Van der Vorst and G. H. Golub, 150 years old and still alive: Eigenproblems. The State
of the Art in Numerical Analysis. I. S. Duff and G. A. Watson, Eds., vol. 63 of Institute
of Mathematics and Its Applications Conference Series New Series, pp. 93–120, Oxford
University Press (1997)

5. G. H. Golub and H. A. van der Vorst, Eigenvalue computation in the 20th century. Journal of
Computational and Applied Mathematics, vol. 123, no. 1–2, pp. 35–65 (November 2000)

6. I. Fredholm, Sur une classe d’équations fonctionnelles. Acta Mathematica, vol. 27, no. 1, pp.
365–390 (December 1903)

7. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differen-
tial and integral operators. Journal of Research of the National Bureau of Standards, vol. 45,
no. 4, pp. 255–282 (October 1950)

8. J. Von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order. Bulletin
of the American Mathematical Society, vol. 53, no. 11, pp. 1021–1099 (1947)

9. A. S. Householder, A survey of some closed methods for inverting matrices. Journal of the
Society for Industrial and Applied Mathematics, vol. 5, no. 3, pp. 155–169 (September 1957)

10. A. S. Householder, A class of methods for inverting matrices. Journal of the Society for
Industrial and Applied Mathematics, vol. 6, no. 2, pp. 189–195 (June 1958)

11. M. R. Hestenes, Inversion of matrices by biorthogonalization and related results. Journal of
the Society for Industrial and Applied Mathematics, vol. 6, no. 1, pp. 51–90 (March 1958)

12. J. H. Wilkinson, The Algebraic Eigenvalue Problem. Oxford University Press, New York,
NY, USA (1965)

13. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge,
UK (1985)

14. G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd edition The Johns Hopkins
University Press, Baltimore, MD, USA (1996)

15. L. N. Trefethen and D. Bau III, Numerical Linear Algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, USA (1997)

16. G. Strang, Linear Algebra and Its Applications. 4th edition Thomson–Brooks/Cole, Belmont,
CA, USA (2005)

17. C. G. J. Jacobi, Über ein leichtes verfahren, die in der theorie der säcularstörungen vorkom-
menden gleichungen numerisch aufzulösen. Journal für die Reine und Angewandte Mathe-
matik, vol. 30, pp. 51–94 (1846)

18. J. Greenstadt, A method for finding roots of arbitrary matrices. Mathematical Tables and
Other Aids to Computation, vol. 9, no. 50, pp. 47–52 (April 1955)

1 QR Decomposition: An Annotated Bibliography 19

19. H. H. Goldstine, F. J. Murray, and J. von Neumann, The Jacobi method for real symmetric
matrices. Journal of the ACM, vol. 6, no. 1, pp. 59–96 (January 1959)

20. H. H. Goldstine, A History of Numerical Analysis from the 16th through the 19th Century.
Studies in the History of Mathematics and Physical Sciences. Springer-Verlag, New York,
NY, USA (1977)

21. G. E. Forsythe and P. Henrici, The cyclic Jacobi method for computing the principal values
of a complex matrix. Transactions of the American Mathematical Society, vol. 94, no. 1, pp.
1–23 (January 1960)

22. A. Cayley, A memoir on the theory of matrices. Philosophical Transactions of the Royal
Society of London, vol. CXLVIII, pp. 17–37 (1858)

23. I. G. Bashmakova and A. N. Rudakov, The evolution of algebra 1800–1870. The American
Mathematical Monthly, vol. 102, no. 3, pp. 266–270 (March 1995)

24. N. J. Higham, Cayley, Sylvester, and early matrix theory. Linear Algebra and Its Applica-
tions, vol. 428, no. 1, pp. 39–43 (January 2008)

25. P. Horst, A method for determining the coefficients of a characteristic equation. The Annals
of Mathematical Statistics, vol. 6, no. 2, pp. 83–84 (June 1935)

26. W. Givens, The characteristic value-vector problem. Journal of the ACM, vol. 4, no. 3, pp.
298–307 (July 1957)

27. N. H. Abel. Démonstration de l’impossibilité de la résolution algébrique des équations
générales qui passent le quatrième degré. Oeuvres Complètes. Suivi de Niels Henrik Abel,
Sa Vie et Son Action Scientifique, deuxiéme edition Jacques Gabay, vol. I, pp. 66–87 (1992)

28. N. H. Abel. Mémoire sur les équations algébriques, où l’on démontre l’impossibilité de la
résolution de l’équation générale du cinquième degré. Oeuvres Complètes. Suivi de Niels
Henrik Abel, Sa Vie et Son Action Scientifique, deuxiéme edition Jacques Gabay, vol. I, pp.
28–33 (1992)

29. N. H. Abel. Sur la resolution algébrique des équations. Oeuvres Complètes. Suivi de Niels
Henrik Abel, Sa Vie et Son Action Scientifique, deuxiéme edition Jacques Gabay, vol. II, pp.
217–243 (1992)

30. H. Rutishauser and H. R. Schwarz, The LR transformation method for symmetric matrices.
Numerische Mathematik, vol. 5, no. 1, pp. 273–289 (December 1963)

31. H. Rutishauser, Der quotienten-differenzen-algorithmus. Zeitschrift für Angewandte Mathe-
matik und Physik, vol. 5, no. 3, pp. 233–251 (May 1954)

32. H. Rutishauser, Anwendungen des quotienten-differenzen-algorithmus. Zeitschrift für Ange-
wandte Mathematik und Physik, vol. 5, no. 6, pp. 496–508 (November 1954)

33. H. Rutishauser, Une méthode pour la détermination des valeurs propres d’une matrice.
Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, vol. 240, pp.
34–36 (January-March 1955)

34. J. G. F. Francis, The QR transformation, a unitary analogue to the LR transformation — part
1. The Computer Journal, vol. 4, no. 3, pp. 265–271 (1961)

35. V. N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalue prob-
lem. Computational Mathematics and Mathematical Physics, vol. 3, pp. 637–657 (1961)

36. J. G. F. Francis, The QR transformation — part 2. The Computer Journal, vol. 4, no. 4, pp.
332–345 (1962)

37. D. S. Watkins, QR-like algorithms for eigenvalue problems. Journal of Computational and
Applied Mathematics, vol. 123, no. 1–2, pp. 67–83 (November 2000)

38. D. S. Watkins, The QR algorithm revisited. SIAM Review, vol. 50, no. 1, pp. 133–145 (2008)
39. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, third edi-
tion, (1999)

40. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLA-
PACK Users’ Guide. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, USA (1997)

20 Marcello L. R. de Campos and Gilbert Strang

41. D. Day. How the QR algorithm fails to converge and how to fix it. Technical Report 96-0913J,
Sandia National Laboratory, USA (April 1996)

42. B. N. Parlett, Convergence of the QR algorithm. Numerische Mathematik, vol. 7, no. 2, pp.
187–193 (April 1965)

43. B. N. Parlett, Global convergence of the basic QR algorithm on Hessenberg matrices. Math-
ematics of Computation, vol. 22, no. 104, pp. 803–817 (October 1968)

44. B. N. Parlett, The Symmetric Eigenvalue Problem. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, USA (1998)

45. D. S. Watkins, Understanding the QR algorithm. SIAM Review, vol. 24, no. 4, pp. 427–440
(October 1982)

46. B. N. Parlett and Jr. W. G. Poole, A geometric theory for the QR, LU, and power iterations.
SIAM Journal on Numerical Analysis, vol. 10, no. 2, pp. 389–412 (April 1973)

47. E. Schmidt, Zur theorie der linearen und nichtlinearen integralgleichungen i. teil: Entwick-
lung willkürlicher funktionen nach systemen vorgeschriebener. Mathematische Annalen, vol.
63, no. 4, pp. 433–476 (December 1907)

48. J. P. Gram, Ueber entwickelung reeller functionen in reihen mittelst der methode der kle-
insten quadrate. Journal für die reine und angewandte Mathematik, vol. 94, pp. 71–73
(1883)

49. Y. K. Wong, An application of orthogonalization process to the theory of least squares. The
Annals of Mathematical Statistics, vol. 6, no. 2, pp. 53–75 (June 1935)

50. S. J. Leon, W. Gander, J. Langou, and Å. Björck, Gram-Schmidt orthogonalization: 100 years
and more. Manuscript to appear (2008)

51. Å. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization. BIT
Numerical Mathematics, vol. 7, no. 1, pp. 1–21 (March 1967)

52. Å. Björck, Numerics of Gram-Schmidt orthogonalization. Linear Algebra and its Applica-
tions, vol. 197–198, pp. 297–316 (January–February 1994)

53. W. Gander. Algorithms for the QR-decomposition. Research Report 80-02, Eidgenoessische
Technische Hochschule, Zurich, Switzerland (April 1980)

54. A. S. Householder, Unitary triangularization of a nonsymmetric matrix. Journal of the ACM,
vol. 5, no. 4, pp. 339–342 (October 1958)

55. J. H. Wilkinson, Householder’s method for the solution of the algebraic eigenproblem. The
Computer Journal, vol. 3, no. 1, pp. 23–27 (1960)

56. W. Givens, Computation of plane unitary rotations transforming a general matrix to triangular
form. Journal of the Society for Industrial and Applied Mathematics, vol. 6, no. 1, pp. 26–50
(March 1958)

57. E. E. Osborne, On least squares solutions of linear equations. Journal of the ACM, vol. 8, no.
4, pp. 628–636 (October 1961)

58. A. S. Householder, The approximate solution of matrix problems. Journal of the ACM, vol.
5, no. 3, pp. 205–243 (July 1958)

59. J. H. Wilkinson, Error analysis of direct methods of matrix inversion. Journal of the ACM,
vol. 8, no. 3, pp. 281–330 (July 1961)

60. Å. Björck, Iterative refinement of linear least squares solutions I. BIT Numerical Mathemat-
ics, vol. 7, no. 4, pp. 257–278 (December 1967)

61. Å. Björck, Iterative refinement of linear least squares solutions II. BIT Numerical Mathemat-
ics, vol. 8, no. 1, pp. 8–30 (March 1968)

62. Å. Björck and G. H. Golub, Iterative refinement of linear least squares solutions by House-
holder transformation. BIT Numerical Mathematics, vol. 7, no. 4, pp. 322–337 (December
1967)

63. Å. Björck, Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

64. R. W. Farebrother, Linear Least Squares Computations. Marcel Dekker, Inc., New York, NY,
USA (1988)

65. C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambien-
tium. Perthes and Besser, Hamburg (1809)

1 QR Decomposition: An Annotated Bibliography 21

66. A. M. Legendre, Nouvelles Méthodes pour la Détermination des Orbites des Comètes.
Courcier, Paris, France (1805)

67. G. H. Golub, Numerical methods for solving linear least squares problems. Numerische
Mathematik, vol. 7, no. 3, pp. 206–216 (June 1965)

68. P. Businger and G. H. Golub, Linear least squares solutions by Householder transformations.
Numerische Mathematik, vol. 7, no. 3, pp. 269–276 (June 1965)

69. W. M. Gentleman, Least squares computations by Givens transformations without square
roots. IMA Journal of Applied Mathematics, vol. 12, no. 3, pp. 329–336 (1973)

70. W. M. Gentleman, Basic procedures for large, sparse or weighted linear least squares prob-
lems (algorithm AS 75). Applied Statistics, vol. 23, no. 3, pp. 448–454 (1974)

71. S. Hammarling, A note on the modifications to the Givens plane rotations. IMA Journal of
Applied Mathematics, vol. 13, no. 2, pp. 215–218 (April 1974)

72. W. M. Gentleman, Error analysis of QR decompositions by Givens transformations. Linear
Algebra and Its Applications, vol. 10, no. 3, pp. 189–197 (June 1975)

73. H. T. Kung, Why systolic architectures? Computer, vol. 15, no. 1, pp. 37–46 (January 1982)
74. W. M. Gentleman and H. T. Kung, Matrix triangularization by systolic arrays. Real-Time

Signal Processing IV, SPIE Proceedings, vol. 298, pp. 19–26 (1981)
75. A. Bojanczyk, R. P. Brent, and H. T. Kung, Numerically stable solution of dense systems of

linear equations using mesh-connected processors. SIAM Journal on Scientific and Statistical
Computing, vol. 5, no. 1, pp. 95–104 (1984)

76. J. G. McWhirter, Recursive least-squares minimization using a systolic array. Real-Time
Signal Processing VI, SPIE Proceedings, vol. 431, pp. 105–112 (1983)

77. J. G. McWhirter, Systolic array for recursive least-squares minimisation. Electronics Letters,
vol. 19, no. 18, pp. 729–730 (September 1983)

78. C. R. Ward, P. J. Hargrave, and J. G. McWhirter, A novel algorithm and architecture for
adaptive digital beamforming. IEEE Transactions on Antennas and Propagation, vol. AP-34,
no. 3, pp. 338–346 (March 1986)

79. A. P. Varvitsiotis, S. Theodoridis, and G. Moustakides, A novel structure for adaptive LS FIR
filtering based on QR decomposition. IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP’ 89, vol. 2, pp. 904–907 (May 1989)

80. J. M. Cioffi, A fast QR/frequency-domain RLS adaptive filter. IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP’87, vol. 12, pp. 407–410 (April 1987)

81. J. M. Cioffi, High-speed systolic implementation of fast QR adaptive filters. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, ICASSP’88, vol. 3,
pp. 1584–1587 (April 1988)

82. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 38, no. 4, pp. 631–653 (April 1990)

83. M. Bellanger, A survey of QR based fast least squares adaptive filters: From principles to
realization. IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP’91, vol. 3, pp. 1833–1836 (April 1991)

84. A. L. Ghirnikar and S. T. Alexander, Stable recursive least squares filtering using an inverse
QR decomposition. IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, ICASSP’90, vol. 3, pp. 1623–1626 (April 1990)

85. A. L. Ghirnikar, Performance and implementation of the inverse QR adaptive filter. IEEE
International Conference on Acoustics, Speech, and Signal Processing, ICASSP’92, vol. 4,
pp. 29–32 (March 1992)

86. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

87. J. G. McWhirter and I. K. Proudler, On the formal derivation of a systolic array for recursive
least squares estimation. International Conference on Control, vol. 2, pp. 1272–1277 (March
1994)

88. M. Bellanger, The potential of QR adaptive filter variables for signal analysis. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, ICASSP’89, vol. 4, pp.
2166–2169 (May 1989)

22 Marcello L. R. de Campos and Gilbert Strang

89. M. Bellanger, Sur la dualité entre la prédiction linéaire d’un signal et la decomposition QR.
Douzième Colloque Gretsi - Juan-les-Pins, pp. 13–16 (June 1989)

90. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice
methods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39,
no. 4, pp. 879–891 (April 1991)

91. I. K. Proudler, T. J. Shepherd, and J. G. McWhirter, Computationally efficient QRD-based
wide-band beamforming. IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP’90, vol. 3, pp. 1799–1802 (April 1990)

92. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Computationally efficient QR decom-
position approach to least squares adaptive filtering. IEE Proceedings F, Radar and Signal
Processing, vol. 138, no. 4, pp. 341–353 (August 1991)

93. C. J. Demeure and L. L. Scharf, True lattice algorithms for square root solution of least
squares linear prediction problems. IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP’88, vol. 4, pp. 2312–2315 (April 1988)

94. C. P. Rialan, Fast algorithms for QR and Cholesky factors of Toeplitz operators. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, ICASSP’87, vol. 12, pp.
41–44 (April 1987)

95. C. P. Rialan and L. L. Scharf, Fast algorithms for computing QR and Cholesky factors of
Toeplitz operators. IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36,
no. 11, pp. 1740–1748 (November 1988)

96. J. G. McWhirter, Algorithmic engineering in digital signal processing. Second International
Specialist Seminar on the Design and Application of Parallel Digital Processors, pp. 11–18
(April 1991)

97. J. G. McWhirter, Algorithmic engineering in adaptive signal processing. IEE Proceedings F,
Radar and Signal Processing, vol. 139, no. 3, pp. 226–232 (June 1992)

98. I. K. Proudler and J. G. McWhirter, Algorithmic engineering in adaptive signal processing:
worked examples. IEE Proceedings — Vision, Image and Signal Processing, vol. 141, no. 1,
pp. 19–26 (February 1994)

99. I. K. Proudler, J. G. McWhirter, and M. Moonen, On the formal derivation of a systolic
array for recursive least squares estimation. IEEE International Symposium on Circuits and
Systems, ISCAS’94, vol. 2, pp. 329–332 (June 1994)

100. I. K. Proudler, J. G. McWhirter, M. Moonen, and G. Hekstra, Formal derivation of a systolic
array for recursive least squares estimation. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 43, no. 3, pp. 247–254 (March 1996)

101. M. Moonen and I. K. Proudler, Generating ‘fast QR’ algorithms using signal flow graph
techniques. Thirtieth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp.
410–414 (November 1996)

102. M. Harteneck, J. G. McWhirter, I. K. Proudler, and R. W. Stewart, Algorithmically engi-
neered fast multichannel adaptive filter based on QR-RLS. IEE Proceedings — Vision, Image
and Signal Processing, vol. 146, no. 1, pp. 7–13 (February 1999)

Chapter 2
Introduction to Adaptive Filters

José A. Apolinário Jr. and Sergio L. Netto

Abstract This chapter introduces the general concepts of adaptive filtering and its
families of algorithms, and settles the basic notation used in the remaining of the
book. Section 2.1 presents the fundamentals concepts, highlighting several config-
urations, such as system identification, interference cancelation, channel equaliza-
tion, and signal prediction, in which adaptive filters have been successfully applied.
The main objective functions associated to optimal filtering are then introduced in
Section 2.2, followed, in Section 2.3, by the corresponding classical algorithms,
with emphasis given to the least-mean square, data-reusing, and recursive least-
squares (RLS) families of algorithms. It is observed that RLS algorithms based on
the so-called QR decomposition combines excellent convergence speed with good
numerical properties in finite-precision implementations. Finally, computer simula-
tions are presented in Section 2.4, illustrating some convergence properties of the
most important adaptation algorithms. For simplicity, all theoretical developments
are performed using real variables, whereas the algorithm pseudo-codes are pre-
sented in their complex versions, for generality purposes.

2.1 Basic Concepts

In the last decades, the field of digital signal processing, and particularly adaptive
signal processing, has developed enormously due to the increasingly availability
of technology for the implementation of the emerging algorithms. These algo-
rithms have been applied to an extensive number of problems including noise and

José A. Apolinário Jr.
Military Institute of Engineering (IME), Rio de Janeiro – Brazil
e-mail: apolin@ieee.org

Sergio L. Netto
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro – Brazil
e-mail: sergioln@lps.ufrj.br

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 23
DOI 10.1007/978-0-387-09734-3 2, c© Springer Science+Business Media, LLC 2009

apolin@ieee.org
sergioln@lps.ufrj.br

24 José A. Apolinário Jr. and Sergio L. Netto

echo canceling, channel equalization, signal prediction, adaptive arrays as well as
many others.

An adaptive filter may be understood as a self-modifying digital filter that
adjusts its coefficients in order to minimize an error function. This error func-
tion, also referred to as the cost function, is a distance measurement between
the reference or desired signal and the output of the adaptive filter.

Adaptive filtering algorithms, which constitute the adjusting mechanism for the
filter coefficients, are in fact closely related to classical optimization techniques
although, in the latter, all calculations are carried out in an off-line manner. More-
over, an adaptive filter, due to its real-time self-adjusting characteristic, is sometimes
expected to track the optimum behavior of a slowly varying environment.

In order to compare the wide variety of algorithms available in the literature of
adaptive filtering, the following aspects must be taken into account [1–3]:

• Filter structure: The input–output relationship of the adaptive filter depends on
its transfer function implementation. Due to its simplicity and efficacy, the most
widely employed adaptive structure is by far the transversal filter (or tapped-
delay line) associated to standard finite-duration impulse response (FIR) filters.
Other structures comprise FIR lattice and infinite-duration impulse response
(IIR) filters. This aspect greatly influences the computational complexity of a
given adaptive algorithm and the overall speed of the adaptation process.

• Rate of convergence, misadjustment, and tracking: In a noiseless (no measure-
ment or modeling noise) situation, the coefficients of an adaptive filter can be
made to converge fast or slowly to the optimum solution. In practice, the adap-
tive coefficients do not reach the optimum values but stay close to the optimum.
Misadjustment is a measure of excess error associated to how close these coef-
ficients (the estimated and the optimum) are to each other in steady-state. It can
be taken as a general rule that, for a given algorithm, a faster convergence yields
a higher misadjustment. In non-stationary environments, the algorithm conver-
gence speed is also associated to the tracking ability of the adaptive filter.

• Computational aspects: Due to the desired real-time characteristic, the adap-
tive filter performance must take into account practical levels of computational
complexity and limited-precision representation of associated signals and coeffi-
cients. The effort in obtaining fast versions of more complex algorithms results
from the desire of reducing the computational requirements to a minimal num-
ber of operations, as well as reducing the size of memory necessary to run these
algorithms in practical applications. On the other hand, a limited-precision envi-
ronment generates quantization errors which drive the attention of designers
to numerical stability, numerical accuracy, and convergence robustness of the
algorithm.

The basic configuration of an adaptive filter, operating in the discrete-time
domain k, is illustrated in Figure 2.1. In such a scheme, the input signal is denoted

2 Introduction to Adaptive Filters 25

y(k)
Σ

+

−
x(k)

d(k)

e(k)

w

Fig. 2.1 Basic block diagram of an adaptive filter.

by x(k), the reference signal d(k) represents the desired output signal (that usually
includes some noise component), y(k) is the output of the adaptive filter, and the
error signal is defined as e(k) = d(k)− y(k).

The error signal is used by the adaptation algorithm to update the adaptive
filter coefficient vector w(k) according to some performance criterion. In gen-
eral, the whole adaptation process aims at minimizing some metric of the error
signal, forcing the adaptive filter output signal to approximate the reference
signal in a statistical sense.

It is interesting to notice how this basic configuration fits perfectly in several
practical applications such as system identification, interference canceling, channel
equalization, and signal prediction [1–3], which are detailed as follows.

For instance, Figure 2.2 depicts a typical system identification configuration,
where wo is an ideal coefficient vector of an unknown plant, whose output is rep-
resented by yo(k), and n(k) denotes the observation or measurement noise. In this
setup, the plant and the adaptive filter receive the same input signal. After con-
vergence, the output signals of both systems become similar, and consequently the
adaptive transfer function becomes a good model for the input–output relationship
of the plant.

y(k)
Σ

+

−
x(k)

d(k)

e(k)

w

Σ

+

+

n(k)

yo(k)
wo

Fig. 2.2 System identification configuration of an adaptive filter: The adaptive coefficient w vector
estimates the unknown system coefficient vector wo.

26 José A. Apolinário Jr. and Sergio L. Netto

y(k)
Σ

+

−
x(k)

d(k)

e(k)

w

s(k) + n(k)

n̂(k)

ŝ(k)

Fig. 2.3 Interference cancelation configuration of an adaptive filter: The error signal e(k) approx-
imates the desired signal component s(k) if n(k) and n̂(k) are correlated.

Another application of an adaptive filter is interference canceling or signal
enhancement represented in Figure 2.3. In this problem, a signal of interest s(k) is
corrupted by a noise component n(k). A cleaner version of s(k) is desired but can-
not be obtained directly in practice. The noisy signal, s(k)+n(k), is then employed
as the reference signal for the adaptive filter, whose input must be another ver-
sion, n̂(k), of the noise signal, strongly correlated to n(k). The adaptive mechanism
adjusts the filter coefficients in such a manner that the filter output y(k) approximates
n(k), thus forcing the error signal e(k) to resemble signal s(k).

In practical communications systems, a transmitted signal can be heavily dis-
torted by the transmission channel. One may attempt to recover the original sig-
nal by employing an adaptive filter in the channel equalization configuration, as
depicted in Figure 2.4. In such a framework, a training sequence s(k) known by the
receiver is sent via a given channel generating a distorted signal. The same sequence
s(k), after a proper time shift to compensate for transmission delays, is used as a
reference signal in the receiver for the adaptive filter, whose input is the distorted
signal. When the error function approximates zero, the output signal y(k) resembles
the transmitted signal s(k), indicating that the adaptive filter is compensating for the
channel distortions. After this training process, the desired information can be sent
through the channel, which is properly equalized by the adaptive filter.

The adaptive predictor configuration is depicted in Figure 2.5. In this case, the
adaptive filter input signal x(k) is a delayed version of the reference signal d(k).

y(k)
Σ

+

−
x(k)

d(k)

e(k)

w
ŝ(k)

s(k)
Channel

Delay

Fig. 2.4 Channel equalization configuration of an adaptive filter: The output signal y(k) estimates
the transmitted signal s(k).

2 Introduction to Adaptive Filters 27

y(k)
Σ

+

−
x(k)

d(k)

e(k)

w
ŝ(k)

s(k)
Delay

Fig. 2.5 Predictor configuration of an adaptive filter: The output signal y(k) estimates the present
input sample s(k) based on past values of this same signal.

Therefore, when the adaptive filter output y(k) approximates the reference, the adap-
tive filter operates as a predictor system.

From the discussion so far, one observes that the reference signal, through the
definition of the error signal, acts as a general guide for the entire adaptation process.
The four configurations illustrated above indicate how one can determine the desired
output signal in several practical situations. In all cases, one can clearly identify the
adaptive filter block given in Figure 2.1. To completely characterize this common
basic cell, three main aspects must be defined:

1. Adaptive filter structure: This book will focus on the adaptive transversal FIR
structure, whose input–output relationship is described by

y(k) = w0x(k)+w1x(k−1)+ · · ·+wNx(k−N)

=
N

∑
i=0

wix(k− i)

= wTx(k), (2.1)

where N is the filter order and x(k) and w are vectors composed by the input-
signal samples and the filter coefficients, respectively; that is

x(k) = [x(k) x(k−1) . . . x(k−N)]T, (2.2)

w = [w0 w1 . . . wN]T. (2.3)

In cases of complex implementations, the output signal is represented as wHx(k),
where the superscript H denotes the Hermitian operator (transpose and complex
conjugate).

2. Error metric: As mentioned before, the adaptation algorithms adjust the adaptive
filter coefficients in an attempt to minimize a given error norm. Different met-
rics yield adaptation processes with quite distinct characteristics. The commonly
employed processes are discussed in detail in Section 2.2.

3. Adaptation algorithm: Several optimization procedures can be employed to
adjust the filter coefficients, including, for instance, the least mean-square (LMS)
and its normalized version, the data-reusing (DR) including the affine projection

28 José A. Apolinário Jr. and Sergio L. Netto

(AP), and the recursive least-squares (RLS) algorithms. All these schemes are
discussed in Section 2.3, emphasizing their main convergence and implementa-
tion characteristics. The remaining of the book focuses on the RLS algorithms,
particularly, those employing QR decomposition, which achieve excellent overall
convergence performance.

2.2 Error Measurements

Adaptation of the filter coefficients follows a minimization procedure of a particular
objective or cost function. This function is commonly defined as a norm of the error
signal e(k). The three most commonly employed norms are the mean-square error
(MSE), the instantaneous square error (ISE), and the weighted least-squares (WLS),
which are introduced below.

2.2.1 The mean-square error

The MSE is defined as

ξ (k) = E[e2(k)] = E[|d(k)− y(k)|2]. (2.4)

Writing the output signal y(k) as given in Equation (2.1), one obtains

ξ (k) = E[|d(k)−wTx(k)|2]
= E[d2(k)]−2wTE[d(k)x(k)]+wTE[x(k)xT(k)]w
= E[d2(k)]−2wTp+wTRw, (2.5)

where R and p are the input-signal correlation matrix and the cross-correlation
vector between the reference signal and the input signal, respectively, and are
defined as

R = E[x(k)xT(k)], (2.6)

p = E[d(k)xT(k)]. (2.7)

Note, from the above equations, that R and p are not represented as a function of
the iteration k or not time-varying, due to the assumed stationarity of the input and
reference signals.

From Equation (2.5), the gradient vector of the MSE function with respect to the
adaptive filter coefficient vector is given by

∇wξ (k) = −2p+2Rw. (2.8)

2 Introduction to Adaptive Filters 29

The so-called Wiener solution wo, that minimizes the MSE cost function, is
obtained by equating the gradient vector in Equation (2.8) to zero. Assuming
that R is non-singular, one gets that

wo = R−1p. (2.9)

2.2.2 The instantaneous square error

The MSE is a cost function that requires knowledge of the error function e(k) at all
time k. For that purpose, the MSE cannot be determined precisely in practice and is
commonly approximated by other cost functions. The simpler form to estimate the
MSE function is to work with the ISE given by

ξ̂ (k) = e2(k). (2.10)

In this case, the associated gradient vector with respect to the coefficient vector is
determined as

∇wξ̂ (k) = 2e(k)∇we(k)
= 2e(k)∇w

[
d(k)−wTx(k)

]

= −2e(k)x(k). (2.11)

This vector can be seen as a noisy estimate of the MSE gradient vector defined in
Equation (2.8) or as a precise gradient of the ISE function, which, in its own turn, is
a noisy estimate of the MSE cost function seen in Section 2.2.1.

2.2.3 The weighted least-squares

Another objective function is the WLS function given by

ξD(k) =
k

∑
i=0

λ k−i[d(i)−wTx(i)]2 (2.12)

where 0 � λ < 1 is the so-called forgetting factor. The parameter λ k−i emphasizes
the most recent error samples (where i ≈ k) in the composition of the deterministic
cost function ξD(k), giving to this function the ability of modeling non-stationary
processes. In addition, since the WLS function is based on several error samples,
its stochastic nature reduces in time, being significantly smaller than the noisy ISE
nature as k increases.

30 José A. Apolinário Jr. and Sergio L. Netto

Defining the auxiliary variables

d(k) = [d(k) λ 1/2d(k−1) . . . λ k/2d(0)]T, (2.13)

X(k) =

⎡
⎢⎢⎢⎣

xT(k)
λ 1/2xT(k−1)

...
λ k/2xT(0)

⎤
⎥⎥⎥⎦ , (2.14)

with x(k) as defined in Equation (2.2), one may rewrite Equation (2.12) as

ξD(k) = eT(k)e(k), (2.15)

where

e(k) = d(k)−X(k)w. (2.16)

The corresponding WLS gradient vector is given by

∇wξD(k) = −2
k

∑
i=0

λ k−ix(i)
[
d(i)−wTx(i)

]

= −2XT(k)d(k)+2XT(k)X(k)w
= −2p(k)+2R(k)w, (2.17)

where

R(k) =
k

∑
i=0

λ k−ix(i)xT(i) = XT(k)X(k), (2.18)

p(k) =
k

∑
i=0

λ k−id(i)x(i) = XT(k)d(k), (2.19)

are the deterministic counterparts of R and p defined in Equations (2.6) and (2.7),
respectively. The optimum solution w(k) in the WLS sense is determined by equat-
ing the gradient vector ∇wξD(k) to zero, yielding

w(k) = R−1(k)p(k). (2.20)

2.3 Adaptation Algorithms

In this section, a number of schemes are presented to find the optimal filter solution
for the error functions seen in Section 2.2. Each scheme constitutes an adaptation
algorithm that adjusts the adaptive filter coefficients in order to minimize the asso-
ciated error norm.

2 Introduction to Adaptive Filters 31

The algorithms seen here can be grouped into three families, namely the LMS,
the DR, and the RLS classes of algorithms. Each group presents particular char-
acteristics of computational complexity and speed of convergence, which tend to
determine the best possible solution to an application at hand.

2.3.1 LMS and normalized-LMS algorithms

Determining the Wiener solution for the MSE problem requires inversion of matrix
R, which makes Equation (2.9) hard to implement in real time. One can then esti-
mate the Wiener solution, in a computationally efficient manner, iteratively adjust-
ing the coefficient vector w at each time instant k, in such a manner that the resulting
sequence w(k) converges to the desired wo solution, possibly in a sufficiently small
number of iterations.

The so-called steepest-descent scheme searches for the minimum of a given func-
tion following the opposite direction of the associated gradient vector. A factor μ/2,
where μ is the so-called convergence factor, adjusts the step size between consecu-
tive coefficient vector estimates, yielding the following updating procedure:

w(k) = w(k−1)− μ
2
∇wξ (k). (2.21)

This iterative procedure is illustrated in Figure 2.6 for the two-dimensional coeffi-
cient vector w(k) = [w0(k) w1(k)]T case.

The Wiener solution requires knowledge of the autocorrelation matrix R and the
cross-correlation vector p. To do that, one must have access to the complete second-
order statistics of signals x(k) and d(k), what makes Equation (2.9) unsuitable for
most practical applications. Naturally, the Wiener solution can be approximated by a
proper estimation of R and p based on sufficiently long time intervals, also assuming
ergodicity. A rather simpler approach is to approximate the MSE by the ISE func-
tion, using the gradient vector of the latter, given in Equation (2.11), to adjust the
coefficient vector in Equation (2.21). The resulting algorithm is the LMS algorithm
characterized by

w(k) = w(k−1)− μ
2
∇wξ̂ (k) = w(k−1)+μe(k)x(k), (2.22)

where, in this iterative case,

e(k) = d(k)−wT(k−1)x(k). (2.23)

The LMS algorithm is summarized in Table 2.1, where the superscripts ∗ and H
denote the complex-conjugate and the Hermitian operations, respectively. Although
behavior analysis of the LMS algorithm is beyond the scope of this work, it is
important to mention that the step-size parameter μ plays an important role in the
convergence characteristics of the algorithm as well as in its stability condition.

32 José A. Apolinário Jr. and Sergio L. Netto

w0

w1

ξ (w0,w1)

ξmin

∇wξ

w(k)

w(k−1)

wo

Fig. 2.6 Coefficient updating in a steepest-descent-based algorithm.

Table 2.1 The LMS algorithm.

LMS
Initialize μ
for each k
{ e(k) = d(k)−wH(k−1)x(k);

w(k) = w(k−1)+μe∗(k)x(k);
}

An approximation for the upperbound of this parameter is given in the technical
literature and may be stated as [1–3]

0 < μ <
2

tr[R]
, (2.24)

where tr[.] denotes the trace operator of a matrix.

2 Introduction to Adaptive Filters 33

The LMS algorithm is very popular and has been widely used due to its
extreme simplicity. Its convergence speed, however, is highly dependent on
the condition number ρ of the input-signal autocorrelation matrix [1–3],
defined as the ratio between the maximum and minimum eigenvalues of this
matrix.

Alternative schemes which attempt to improve performance at the cost of mini-
mum additional computational complexity have been proposed and are extensively
discussed in [3, 4]. One approach that has been successfully employed in situations
where signal statistics are unknown is the on-line calculation of the convergence fac-
tor which takes part in updating the filter coefficients [5, 6]. The normalized LMS
(NLMS) algorithm can be included in this category [5, 7]. The NLMS algorithm
normalizes the convergence factor such that the relation

wT(k)x(k) = d(k) = wT(k−1)x(k)+μe(k)xT(k)x(k) (2.25)

is always satisfied. This results in a variable step-size parameter given by

μ(k) =
1

xT(k)x(k)
. (2.26)

In practice, this parameter is modified to

μ(k) =
μ̄

xT(k)x(k)+ ε
, (2.27)

where another fixed step-size, usually within the range 0 < μ̄ ≤ 1, is used to control
misadjustment1 and convergence speed, and the parameter ε is a very small posi-
tive number that avoids possible divisions by zero.2 Therefore, the NLMS updating
equation is given by

w(k) = w(k−1)+μ(k)e(k)x(k), (2.28)

which is summarized in Table 2.2. In the NLMS algorithm, when μ̄ = 0, one has
w(k) = w(k − 1) and the updating halts. When μ̄ = 1, the fastest convergence is
attained at the price of a higher misadjustment then the one obtained for 0 < μ̄ < 1.
Using μ̄ > 1 is not a practical choice (although, theoretically, μ̄ can vary within the
range 0 < μ̄ < 2), since it yields slower convergence rate and an even higher misad-
justment than when μ̄ = 1. Figure 2.7 depicts the theoretical misadjustment of the
NLMS algorithm as a function of μ̄ in two cases of exact-order system identifica-
tion: with small (N = 5) and large (N = 50) values of filter order. In both cases, the

1 The misadjustment is defined as M = (ξ (∞)−ξmin)/ξmin [3], where ξ (∞) and ξmin denote the
steady-state MSE yielded by the adaptation algorithm and the theoretical minimum value for the
MSE, respectively.
2 Some authors name this algorithm the ε-NLMS algorithm when this constant is employed [8].

34 José A. Apolinário Jr. and Sergio L. Netto

Table 2.2 The NLMS algorithm.

NLMS
Initialize ε ≈ 0+ and 0 < μ̄ ≤ 1
for each k
{ e(k) = d(k)−wH(k−1)x(k);

w(k) = w(k−1)+ μ̄
xH(k)x(k)+ε e∗(k)x(k);

}

0 0.5 1 1.5 2
10−4

10−2

100

102

104

μ̄

N = 5
N = 50

(μ̄
)

M

Fig. 2.7 Misadjustment value, as a function of the NLMS convergence factor, using white noise as
input signal.

input signal consisted of a zero-mean Gaussian white noise with variance σ2
x and

the misadjustment was approximated by [5]

M(μ̄) ≈ μ̄
2− μ̄

N +2
N −1

. (2.29)

2.3.2 Data-reusing LMS algorithms

As remarked before, the LMS algorithm estimates the MSE function with the cur-
rent ISE value, yielding a noisy adaptation process. In this algorithm, information
from each time sample k is disregarded in future coefficient updates. DR algo-
rithms [9–11] employ present and past samples of the reference and input signals to
improve convergence characteristics of the overall adaptation process.

2 Introduction to Adaptive Filters 35

For the DR-LMS algorithm, with L data reuses, the coefficients are updated as

wi+1(k) = wi(k)+μei(k)x(k), (2.30)

for i = 0,1, . . . ,L, where

ei(k) = d(k)−wT
i (k)x(k), (2.31)

and

w0(k) = w(k−1), (2.32)

wL+1(k) = w(k). (2.33)

Note that, if L = 0, these equations correspond to the LMS algorithm.
As for the LMS algorithm, the DR-LMS also has a normalized-DR (NDR) ver-

sion, whose updating equation, for L data reuses, is given by

wi+1(k) = wi(k)+
ei(k)

xT(k− i)x(k− i)+ ε
x(k− i) (2.34)

for i = 0, . . . ,L, where

ei(k) = d(k− i)−wT
i (k)x(k− i), (2.35)

with w0(k) = w(k−1) and wL+1(k) = w(k) as before.
Figure 2.8 provides a geometric interpretation for the coefficient vector upgrade

for the LMS, NLMS, DR-LMS, and NDR-LMS algorithms in the two-dimensional
case (N = 1). In this figure, S (k) denotes the hyperplane which contains all vectors

1

2

3

4

5

(k − 1)

(k)

6

w(k − 1)

�

�

Fig. 2.8 Coefficient vector update for several LMS-type algorithms: 1. Initial vector w(k− 1); 2.
LMS and intermediary DR-LMS; 3. DR-LMS (L = 1); 4. NLMS and DR-LMS (for L → ∞); 5.
NDR-LMS; 6. BNDR-LMS.

36 José A. Apolinário Jr. and Sergio L. Netto

w such that wTx(k) = d(k) and the initial coefficient vector w(k−1) is indicated by
position 1. In a noise-free exact-order modeling situation, S (k) would contain the
optimal coefficient vector wo. In this scenario, it can be verified that x(k) and, con-
sequently, the ISE gradient vector, is orthogonal to the hyperplane S (k). The LMS
algorithm takes a single step towards S (k) yielding a new position represented by
point 2 in Figure 2.8. The NLMS algorithm performs a line search in the direction
of x(k) to reach the position represented by point 4, which belongs to S (k), in
a unique iteration. The DR-LMS algorithm iteratively approaches S (k) by taking
successive steps (within a single iteration) in the direction of x(k), as indicated in
Equations (2.30) and (2.31). In Figure 2.8, with L = 1, positions 2 and 3 indicate
the intermediary and final DR-LMS positions. It can be verified that the DR-LMS
algorithm reaches S (k) in the limit, as the number of data reuses L approaches
infinity [10, 11], turning this algorithm similar to the NLMS algorithm. From Equa-
tions (2.34) and (2.35), the NDR algorithm [11] employs more than one hyperplane,
that is, uses more data pairs {x(k− i),d(k− i)}, with i > 0, to adjust the coefficient
vector w(k), closer to wo than the adjustment obtained with only the current data
pair {x(k),d(k)}. In Figure 2.8, the NDR update is represented by point 5. Posi-
tion 6 corresponds to the binormalized data-reusing (BNDR) LMS [4] algorithm
addressed below.

For a noise-free exact-order modeling situation, the MSE optimal solution wo

is at the intersection of (N + 1) hyperplanes determined by (N + 1) linearly inde-
pendent input-signal vectors. In this case, an orthogonal-projections algorithm [12]
would reach wo in exact (N + 1) iterations. This algorithm may be viewed as an
orthogonal-NDR algorithm that performs exact line searches in (N +1) orthogonal
directions determined by the data pairs {x(k− i),d(k− i)}, for i = 0,1, . . . ,N. The
BNDR algorithm [4] employs normalization on two orthogonal directions obtained
from consecutive data pairs within each iteration. In simulations carried out with
colored input signals, this algorithm presents faster convergence than all other data-
reusing algorithms for the case of two data pairs, or, equivalently, L = 1 data reuse.

In order to state the BNDR problem, one may note that the solution which
belongs to S (k) and S (k − 1) at a minimum distance from w(k − 1) is the one
characterized by

w(k) = min
w

‖w−w(k−1)‖2, (2.36)

subject to

wTx(k) = d(k), (2.37)

wTx(k−1) = d(k−1). (2.38)

Using Lagrange multipliers, the constraints above can be incorporated into Equa-
tion (2.36), resulting in the modified objective function

f [w] = ‖w−w(k−1)‖2 +λ1
[
d(k)−wTx(k)

]

+λ2
[
d(k−1)−wTx(k−1)

]
,

(2.39)

2 Introduction to Adaptive Filters 37

which, for linearly independent input-signal vectors x(k) and x(k − 1), has the
unique solution

w(k) = w(k−1)+
λ1

2
x(k)+

λ2

2
x(k−1), (2.40)

where

λ1

2
=

e(k)‖x(k−1)‖2 − ε(k−1)xT(k−1)x(k)

‖x(k)‖2‖x(k−1)‖2 − [xT(k)x(k−1)]2
, (2.41)

λ2

2
=

ε(k−1)‖x(k)‖2 − e(k)xT(k−1)x(k)

‖x(k)‖2‖x(k−1)‖2 − [xT(k)x(k−1)]2
, (2.42)

with e(k) as in Equation (2.23) and

ε(k−1) = d(k−1)−wT(k−1)x(k−1). (2.43)

The BNDR derivation presented above is valid for any w(k− 1), which may or
may not belong to S (k− 1). However, if successive optimized steps are taken for
w(k) for all k, then

wT(k−1)x(k−1) = d(k−1), (2.44)

corresponding to ε(k − 1) = 0, and a simplified version of the BNDR algorithm
results:

w(k) = w(k−1)+
λ ′

1

2
x(k)+

λ ′
2

2
x(k−1), (2.45)

where

λ ′
1

2
=

e(k)‖x(k−1)‖2

‖x(k)‖2‖x(k−1)‖2 − [xT(k)x(k−1)]2
, (2.46)

λ ′
2

2
=

−e(k)xT(k−1)x(k)

‖x(k)‖2‖x(k−1)‖2 − [xT(k)x(k−1)]2
. (2.47)

It is worth mentioning that the excess MSE for either implementation of the
BNDR-LMS algorithm, as in (2.40, 2.41, 2.42) or in (2.45, 2.46, 2.47), is close to
the observation noise power when there is no modeling error, as expected from nor-
malized algorithms. In order to control this excess MSE, a convergence parameter
μ may be introduced into the algorithm, forcing a trade-off between convergence
rate, maximized with μ = 1, and lower steady-state MSE, associated to smaller val-
ues of μ , which may be required in applications with significant measurement error.
With the introduction of μ , the coefficient vector w(k) at each iteration is not at the
exact intersection of hyperplanes S (k−1) and S (k) and, therefore, the simplified
version of the algorithm given by (2.45, 2.46, 2.47) should not be used.

If x(k) and x(k− 1) are linearly dependent, then S (k) is parallel to S (k− 1),
and w(k) = w1(k), which corresponds to the NLMS algorithm for any step-size
value μ . Particularly when μ = 1, it is also correct to say that w(k−1) is already on
the hyperplane S (k−1).

38 José A. Apolinário Jr. and Sergio L. Netto

Table 2.3 The BNDR-LMS algorithm.

BNDR-LMS
Initialize ε ≈ 0+
for each k
{ e(k) = d(k)−wH(k−1)x(k);
α = xH(k)x(k−1);
ρ(k) = xH(k)x(k);
D = ρ(k)ρ(k−1)−|α|2;
if D < ε
{ w(k) = w(k−1)+μe∗(k)x(k)/ρ(k);
}
else
{ ε(k−1) = d(k−1)−wH(k−1)x(k−1);
λ1
2 = [e∗(k)ρ(k−1)− ε∗(k−1)α]/D;
λ2
2 = [ε∗(k−1)ρ(k)− e∗(k)α∗]/D;

w(k) = w(k−1)+μ
[
λ1
2 x(k)+ λ2

2 x(k−1)
]
;

}
}

The BNDR-LMS algorithm is summarized in Table 2.3, where the denominator
D in Equations (2.46) and (2.47) is determined recursively in time.

In Figure 2.8, the updating process was represented for a two-dimensional
(N = 1) weight vector. In such a case, only one solution for w(k) was avail-
able as the intersection of two lines. In a more practical situation, the BNDR-
LMS algorithm decreases in two the degree of freedom of w(k) by choosing the
closest solution to w(k − 1), following the least perturbation property [8] or the
principle of minimal disturbance [2]. The three-dimensional case is depicted in
Figure 2.9, where the updated coefficient vector w(k) is chosen closest to w(k−1)

w(k −1)

w(k)

� (k) : wTx(k) = d(k)

� (k −1) : wTx(k −1) = d(k −1)

Fig. 2.9 Choice of the BNDR-LMS updated coefficient vector as the intersection of two hyper-
planes, according to the minimal disturbance principle, assuming that w(k−1) does not belong to
S (k−1).

2 Introduction to Adaptive Filters 39

and belonging to the intersection of the hyperplanes S (k) ∩ S (k − 1). If one
considers a third hyperplane, S (k − 2) for instance, performing normalization in
three directions, this would determine one single possibility for w(k), given by
S (k)∩S (k−1)∩S (k−2).

As a generalization of the previous idea, the AP algorithm [13–15] is among
the prominent adaptation algorithms that allow trade-off between fast conver-
gence and low computational complexity. By adjusting the number of projec-
tions, or alternatively, the number of data reuses, one obtains adaptation pro-
cesses ranging from that of the NLMS algorithm to that of the sliding-window
RLS algorithm [16, 17].

The AP algorithm updates its coefficient vector such that the new solution
belongs to the intersection of L hyperplanes defined by the present and the (L− 1)
previous data pairs. The optimization criterion used for the derivation of the AP
algorithm is given by

w(k) = min
w

‖w−w(k−1)‖2, (2.48)

subject to

dL(k) = XT
L(k)w, (2.49)

where

dL(k) = [d(k) d(k−1) . . . d(k−L+1)]T, (2.50)

XL(k) = [x(k)x(k−1) . . . x(k−L+1)]. (2.51)

The updating equations for the AP algorithm obtained as the solution to the min-
imization problem in (2.48) are presented in Table 2.4 [13, 14]. To control stability,
convergence speed, and misadjustment, a convergence factor, usually constrained to
0 < μ < 1, is introduced. In order to improve robustness, a diagonal matrix εI, with
ε > 0, is employed to regularize the inverse operation required by the AP algorithm.

Table 2.4 The AP algorithm.

APA
Initialize ε ≈ 0+
for each k
{ eL(k) = dL(k)−XT

L(k)w∗(k−1);
tk =

[
XH

L (k)XL(k)+ εI
]−1 e∗L(k);

w(k) = w(k−1)+μXL(k)tk;
}

40 José A. Apolinário Jr. and Sergio L. Netto

2.3.3 RLS-type algorithms

This subsection presents the basic versions of the RLS family of adaptive algo-
rithms. Importance of the expressions presented here cannot be overstated for they
allow an easy and smooth reading of the forthcoming chapters.

The RLS-type algorithms have a high convergence speed which is indepen-
dent of the eigenvalue spread of the input correlation matrix. These algorithms
are also very useful in applications where the environment is slowly varying.
The price of all these benefits is a considerable increase in the computational
complexity of the algorithms belonging to the RLS family.

In order to obtain the equations of the conventional RLS algorithm, the deter-
ministic correlation matrix and cross-correlation vector defined in Equations (2.18)
and (2.19), respectively, are rewritten as

R(k) = x(k)xT(k)+λR(k−1), (2.52)

p(k) = x(k)d(k)+λp(k−1). (2.53)

Using these recursive expressions into Equation (2.20), the following development
can be made:

w(k) = R−1(k) [x(k)d(k)+λp(k−1)]
= R−1(k) [x(k)d(k)+λR(k−1)w(k−1)]
= R−1(k) [x(k)d(k)+λR(k−1)w(k−1)

+ x(k)xT(k)w(k−1)−x(k)xT(k)w(k−1)
]

= R−1(k)
{

x(k)
[
d(k)−xT(k)w(k−1)

]
+R(k)w(k−1)

}

= R−1(k) [x(k)e(k)+R(k)w(k−1)] , (2.54)

and then

w(k) = w(k−1)+ e(k)R−1(k)x(k). (2.55)

In this updating expression, the computational burden for determining the inverse
matrix R−1(k) can be reduced significantly by employing the matrix inversion
lemma3 [3], which, in this case, yields that

R−1(k) =
1
λ

[
R−1(k−1)− R−1(k−1)x(k)xT(k)R−1(k−1)

λ +xT(k)R−1(k−1)x(k)

]
. (2.56)

3 For suitable matrix orders, [A+BCD]−1 = A−1 −A−1B[DA−1B+C−1]−1DA−1.

2 Introduction to Adaptive Filters 41

For convenience of notation, consider the following auxiliary vectors:

κκκ(k) = R−1(k)x(k), (2.57)

k(k) = R−1(k−1)x(k), (2.58)

which in conjunction to Equation (2.56) yield that

κκκ(k) =
k(k)

λ +xT(k)k(k)
. (2.59)

Hence, by substituting Equation (2.59) into Equation (2.56), one gets that

R−1(k) =
1
λ
[
R−1(k−1)−R−1(k)x(k)xT(k)R−1(k−1)

]

=
1
λ
[
R−1(k−1)−κκκ(k)kT(k)

]
, (2.60)

and that the conventional RLS algorithm, requiring O[N2] multiplications, can be
implemented as indicated in Table 2.5. A few RLS-type algorithms requiring only
O[N] multiplications, such as the fast transversal (FT) [18] and the lattice (L) [19]
RLS algorithms, can be found in the technical literature.

An alternative RLS implementation with good numerical properties employs the
so-called QR decomposition in the triangularization of the input data matrix com-
bined with a back-substitution procedure [3] to obtain the coefficient vector.

It is worth mentioning that matrix X(k) is (k+1)× (N +1), which means that its
order increases as the iterations progress. The QR-decomposition process applies an
orthogonal matrix Q(k) of order (k+1)×(k+1) to transform X(k) into a triangular
matrix U(k) of order (N +1)× (N +1) such that

Q(k)X(k) =
[

O
U(k)

]
(2.61)

where O is a null matrix of order (k −N)× (N + 1). Matrix Q(k) represents the
overall triangularization process and may be implemented in different ways as, for

Table 2.5 The RLS algorithm.

RLS
Initialize 0 � λ < 1, ε ≈ 1/σ2

x , and R−1(0) = εI
for each k
{ e(k) = d(k)−wH(k−1)x(k);

k(k) = R−1(k−1)x(k);
κκκ(k) = k(k)

λ+xH(k)k(k) ;

R−1(k) = 1
λ

[
R−1(k−1)− κκκ(k)κκκH(k)

λ+xH(k)k(k)

]
;

w(k) = w(k−1)+ e∗(k)κκκ(k);
}

42 José A. Apolinário Jr. and Sergio L. Netto

instance, the numerically well-conditioned Givens rotations [2, 3, 8] or the House-
holder transformation [20, 21].

The main advantages associated to the QR-decomposition RLS (QRD-RLS)
algorithms, as opposed to their conventional RLS counterpart, are the possibil-
ity of implementation in systolic arrays and the improved numerical behavior
in limited precision environment.

The basic QRD [2, 3] and the so-called inverse QR (IQR) [2, 3, 22] RLS algo-
rithms have a computational requirement of O[N2] multiplications. A number of
QR-based RLS versions requiring only O[N] multiplications, such as the fast QR
(FQR) [23–28], the fast QR-Lattice (FQR-L) [29–31], are also available in the tech-
nical literature.

Since the scope of the next chapter encompasses both the basic (or conventional)
and the inverse QRD-RLS algorithms, tables with their equations were not included
at this point but left to be presented with their derivations.

2.4 Computer Simulations

This section presents simulations of system identification using some of the adap-
tation algorithms previously presented. In this framework, a few issues, such as
misadjustment, convergence speed, tracking performance, and algorithm stability,
are addressed in a practical point of view.

In the system identification setup implemented here, the plant is described by the
transfer function H(z) =−1+3z−1, such that N = 1 and wo = [−1 3]T. An adaptive
filter of correct order (exact modeling) is employed to identify H(z). Therefore,
w(k) = [w0(k) w1(k)]T. In practical situations, under-modeling or over-modeling
is usually a problem that requires special attention of the system designer [3]. In
all cases, measurement noise n(k), consisting of a zero-mean white Gaussian noise
with variance σ2

n = 10−6 and uncorrelated to the input signal x(k), is added to the
plant output signal.

2.4.1 Example 1: Misadjustment of the LMS algorithm

In a first example, consider that a zero-mean unit-variance white Gaussian noise is
used as the input signal x(k). The average ISE over an ensemble of 400 experiments
is shown in Figure 2.10 for the LMS algorithm with μ = 0.22 and μ = 0.013. From
this figure, one clearly notices how the step-size μ controls the trade-off between
convergence speed and steady-state excess of average ISE (which approximates the
MSE if the ensemble is large enough) which characterizes the misadjustment.

2 Introduction to Adaptive Filters 43

100 200 300 400 500 600 700 800 900 1000
−70

−60

−50

−40

−30

−20

−10

0

10

20

k

M
SE

 (
dB

)

(a) (b)

Fig. 2.10 Example 1: MSE convergence (learning curve) for the LMS algorithm with: (a) μ =
0.22; (b) μ = 0.013. The larger step-size parameter yields faster convergence and higher misad-
justment.

2.4.2 Example 2: Convergence trajectories

In the previous case, since x(k) consisted of a white noise, the LMS algorithm could
achieve a very fast convergence regardless the initial position of the adaptive filter
coefficient vector. If, however, the input signal is colored, the LMS convergence
process becomes highly dependent on the initial value of w(k). Let then x(k) be
obtained by processing a zero-mean unit-variance white Gaussian noise with the
filter H(z) = 1/(1+1.2z−1 +0.81z−2). The resulting input signal autocorrelation
matrix R presents a condition number around ρ = 5.

The LMS (μ = 0.005) and RLS (λ = 0.95, ε = 1) coefficient trajectories for this
setup are seen in Figure 2.11, where the crosses indicate distinct initial conditions
for the adaptive coefficient vector and the circle indicates the optimum value wo =
[−1 3]T. From this figure, one observes how the LMS trajectories converge first to
the main axis of the elliptic MSE contour lines, whereas the RLS trajectories follow
a straight path to wo regardless the initial value of w(k).

2.4.3 Example 3: Tracking performance

In this example, the adaptive filter performance is evaluated in a non-stationary
environment. The idea is to perform an adaptive equalization of a channel, whose
impulse response is initially given by

h1(k) = e−k/5[u(k)−u(k−5)], (2.62)

44 José A. Apolinário Jr. and Sergio L. Netto

w0(k)

w0(k)

w
1(

k
)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

4

4.5

5

(a)

w
1
(k

)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Fig. 2.11 Example 2: Convergence of adaptive coefficient vector – crosses indicate the initial
position and circle indicates the MSE optimal solution: (a) LMS algorithm; (b) RLS algorithm.

where u(k) is the unitary step sequence. It is then assumed that, for iteration 3000
on, the channel impulse response suddenly changes to

h2(k) = h1(k)e jπk. (2.63)

The adaptive filter order was set to N = 49, and the delay block, as in Figure 2.4,
was set to Δ = 5. A very small amount of additive noise (zero-mean white Gaussian

2 Introduction to Adaptive Filters 45

noise with variance σ2
n = 10−8) was included in the reference signal d(k) to high-

light the performance of the equalizer. The resulting MSE (average ISE over an
ensemble of 1000 independent runs) is presented in Figure 2.12 for the NLMS, the
BNDR-LMS, the AP (with L = 5), and the RLS (with λ = 0.98) algorithms, where
in all cases the step-size was set to 1.

From Figure 2.12, one can conclude that all algorithms converge properly despite
the sudden change in the environment. As expected, the algorithms considered con-
verge with different speeds (the RLS algorithm being the fastest one) and misad-
justment levels (the AP algorithm presenting the highest misadjustment amongst
the LMS-type algorithms, since it uses L = 5, whereas the BNDR-LMS has L = 2
and the NLMS corresponds to having L = 1).

To verify the algorithm tracking ability, the channel was made to vary continu-
ously. In this case, the impulse response was set to correspond to a five-tap Rayleigh
fading channel with sampling frequency 1.25 MHz and Doppler frequency equal
to 50 Hz. The 500 transmitted symbols are equalized by the same adaptive algo-
rithms used in Figure 2.12, the only difference being that the RLS forgetting factor
was set to λ = 0.995 in the present case. The resulting time-varying channel taps
and the algorithm learning curves are shown in Figure 2.13. From this figure, one
may observe that the RLS algorithm, although presenting a fast convergence, is not
so well tuned for this application, since its MSE increases as time goes by. The
reason for this is the forgetting factor λ , which should be decreased in order for
the algorithm to remember only the most recent samples. However, this reduction
cannot be implemented for the conventional RLS algorithm, as will be verified in
Section 2.4.4.

0 1000 2000 3000 4000 5000 6000
−50

−40

−30

−20

−10

0

10

20

30

40

k

M
SE

 (
dB

)

NLMS
BNDR−LMS
APA (L = 5)
RLS

Fig. 2.12 Example 3: Resulting MSE in non-stationary channel equalization for the NLMS, BND-
LMS, AP, and RLS algorithms.

46 José A. Apolinário Jr. and Sergio L. Netto

0 100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

k

N
on

st
at

io
na

ry
 c

ha
nn

el
 c

oe
ff

ic
ie

nt
s

w0 (k)

w1 (k)

w2 (k)

w3 (k)

w4 (k)

(a)

0 100 200 300 400 500
−5

0

5

10

15

20

25

30

35

k

M
SE

 (
dB

)

NLMS
BNDR−LMS
APA (L = 5)
RLS

(b)

Fig. 2.13 Example 3: (a) Time-varying channel coefficients; (b) Resulting MSE in non-stationary
channel equalization for the NLMS, BND-LMS, AP, and RLS algorithms.

2.4.4 Example 4: Algorithm stability

Although, as previously seen, the conventional RLS algorithm is fast converg-
ing, presents low misadjustment, and is suitable for time-varying environments,
a last experiment shows its vulnerability: the lack of numerical stability. In an

2 Introduction to Adaptive Filters 47

0 50 100 150 200 250 300 350 400 450 500
−15

−10

−5

0

5

10

15

20

25
λ = 0.999
λ = 0.995
λ = 0.990
λ = 0.985
λ = 0.980
λ = 0.970

k

M
SE

 (
dB

)

Fig. 2.14 Example 4: Resulting MSE for the RLS algorithm, with different values of the forgetting
factor, illustrating how small values of λ may lead to algorithm divergence.

attempt to improve its performance in the non-stationary channel equalization of
the last experiment, the RLS algorithm was employed with different values of for-
getting factor. The associated learning curves for each value of λ within the set
{0.999,0.995,0.99,0.985,0.98,0.97} are presented in Figure 2.14. From this fig-
ure, one can conclude that decreasing the value of λ improves the RLS performance
(meaning that the algorithm can track better the channel variation) in this case. How-
ever, if one greatly reduces the value of λ , the RLS algorithm may diverge due to
the time-varying nature of this example. For instance, when λ = 0.98, the adapta-
tion process diverges a bit after 400 iterations, whereas the divergence occurs even
sooner when λ = 0.97.

This example brings to light an important issue of an adaptive algorithm: its
numerical stability. As seen above, the conventional RLS algorithm, besides its high
computational complexity, also presents numerical stabilities problems even in dou-
ble precision floating point arithmetic. This fact calls for one’s attention to the need
of a stable RLS version, as, for instance, the family of RLS algorithms based on the
QR decomposition, which constitutes an elegant and efficient answer to the algo-
rithm stability problem.

2.5 Conclusion

This chapter introduced the most basic concepts associated to adaptive filtering
establishing the notation used throughout the book. It was verified how adaptive
algorithms are employed to adjust the coefficients of a digital filter to achieve

48 José A. Apolinário Jr. and Sergio L. Netto

a desired time-varying performance in several practical situations. Emphasis was
given on the description of several adaptation algorithms. In particular, the LMS
and the NLMS algorithms were seen as iterative schemes for optimizing the ISE, an
instantaneous approximation of the MSE objective function. Data-reuse algorithms
introduced the concept of utilizing data from past time samples, resulting in a faster
convergence of the adaptive process. Finally, the RLS family of algorithms, based
on the WLS function, was seen as the epitome of fast adaptation algorithms, which
use all available signal samples to perform the adaptation process. In general, RLS
algorithms are used whenever fast convergence is necessary, for input signals with a
high eigenvalue spread, and when the increase in the computational load is tolerable.
A detailed discussion on the RLS family of algorithms based on the QR decompo-
sition, which also guarantees good numerical properties in finite-precision imple-
mentations, constitutes the main goals of this book. Practical examples of adaptive
system identification and channel equalization were presented, allowing one to visu-
alize convergence properties, such as misadjustment, speed, and stability, of several
distinct algorithms discussed previously.

References

1. B. Widrow and S. D. Stearns, Adaptive Signal Processing. Prentice-Hall, Englewood-Cliffs,
NJ, USA (1985)

2. S. Haykin, Adaptive Filter Theory. 2nd edition Prentice-Hall, Englewood Cliffs, NJ, USA
(1991)

3. P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition
Springer, New York, NY, USA (2008)

4. J. A. Apolinário Jr., M. L. R. de Campos, and P. S. R. Diniz, Convergence analysis of the
binormalized data-reusing LMS algorithm. IEEE Transactions on Signal Processing, vol. 48,
no. 11, pp. 3235–3242 (November 2000)

5. D. T. Slock, On the convergence behavior of the LMS and the normalized LMS algorithms.
IEEE Transactions on Signal Processing, vol. 41, no. 9, pp. 2811–2825 (September 1993)

6. P. S. R. Diniz, M. L. R. de Campos, and A. Antoniou, Analysis of LMS-Newton adaptive fil-
tering algorithms with variable convergence factor. IEEE Transactions on Signal Processing,
vol. 43, no. 3, pp. 617–627 (March 1995)

7. F. F. Yassa, Optimality in the choice of the convergence factor for gradient-based adaptive
algorithms. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
no. 1, pp. 48–59 (January 1987)

8. A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons, Hoboken, NJ, USA
(2003)

9. S. Roy and J. J. Shynk, Analysis of the data-reusing LMS algorithm, 32nd Midwest Sym-
posium on Circuits and Systems, MWSCAS’89, Urbana-Champaign, USA, pp. 1127–1130
(1989)

10. W. K. Jenkins, A. W. Hull, J. C. Strait, B. A. Schnaufer, and X. Li, Advanced Concepts in
Adaptive Signal Processing. Kluwer Academic Publishers, Norwell, MA, USA (1996)

11. B. A. Schnaufer, Practical Techniques for Rapid and Reliable Real-Time Adaptive Filtering.
Ph.D. thesis, Adviser: W. K. Jenkins, Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, IL, USA (1995)

12. G. C. Goodwin and S. K. Sin, Adaptive Filtering Prediction and Control. Prentice-Hall,
Englewood-Cliffs, NJ, USA (1984)

2 Introduction to Adaptive Filters 49

13. K. Ozeki and T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an
affine subspace and its properties. Transactions IECE Japan, vol. J67-A, no. 5, pp. 126–132
(1984)

14. S. L. Gay and S. Tavathia, The fast affine projection algorithm. IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, ICASSP’95, Detroit, USA, pp. 3023–3036
(May 1995)

15. S. G. Sankaran and A. A. Beex, Convergence behavior of affine projection algorithms. IEEE
Transactions on Signal Processing, vol. 48, no. 4, pp. 1086–1096 (April 2000)

16. M. L. R. de Campos, P. S. R. Diniz, and J. A. Apolinário Jr., On normalized data-reusing and
affine-projections algorithms. IEEE International Conference on Electronics, Circuits, and
Systems, ICECS’99, Pafos, Cyprus, pp. 843–846 (1999)

17. M. Montazeri and P. Duhamel, A set of algorithms linking NLMS and block RLS algorithms.
IEEE Transactions on Signal Processing, vol. 43, no. 2, pp. 444–453 (February 1995)

18. J. M. Cioffi and T. Kailath, Fast, recursive-least-squares transversal filters for adaptive filter-
ing. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-32, no. 2,
pp. 302–337 (April 1984)

19. D. L. Lee, M. Morf, and B. Friedlander, Recursive least squares ladder estimation algo-
rithms. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29, no. 3,
pp. 627–641 (June 1981)

20. J. M. Cioffi, The fast Householder filters RLS adaptive filter. IEEE International Conference
on Acoustics, Speech, and Signal Processing, ICASSP’90, Albuquerque, USA, pp. 1619–
1622 (1990)

21. K. J. R. Liu, S.-F. Hsieh, and K. Yao, Systolic block Householder transformation for RLS
algorithm with two-level pipelined implementation. IEEE Transactions on Signal Processing,
vol. 40, no. 4, pp. 946–957 (April 1992)

22. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares adaptive filtering
based upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. SP-
41, no. 1, pp. 20–30 (January 1993)

23. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-38, no. 4, pp. 631–653 (April 1990)

24. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. SP-39,
no. 4, pp. 879–891 (April 1991)

25. M. D. Miranda and M. Gerken, A hybrid QR-lattice least squares algorithm using a priori
errors. 38th Midwest Symposium on Circuits and Systems, MWSCAS’95, Rio de Janeiro,
Brazil, pp. 983–986 (August 1995)

26. A. A. Rontogiannis and S. Theodoridis, New fast inverse QR least squares adaptive
algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP’95, Detroit, USA, pp. 1412–1415 (May 1995)

27. J. A. Apolinário Jr. and P. S. R. Diniz, A new fast QR algorithm based on a priori errors. IEEE
Signal Processing Letters, vol. 4, no. 11, pp. 307–309 (November 1997)

28. J. A. Apolinário Jr., M. G. Siqueira, and P. S. R. Diniz, Fast QR algorithms based on back-
ward prediction errors: a new implementation and its finite precision performance. Birkhäuser
Circuits Systems and Signal Processing, vol. 22, no. 4, pp. 335–349 (July/August 2003)

29. F. Ling, Givens rotation based least squares lattice and related algorithms. IEEE Transactions
on Signal Processing, vol. SP-39, no. 7, pp. 1541–1551 (July 1991)

30. I. K. Proudler, J. G. McWhirter, and T. J. Shepard, Computationally efficient QR decomposi-
tion approach to least squares adaptive filtering. IEE Proceedings-F, vol. 138, no. 4, pp. 341–
353 (August 1991)

31. F. Desbouvries and P. A. Regalia, A minimal, rotation-based FRLS lattice algorithm. IEEE
Transactions on Signal Processing, vol. 45, no. 5, pp. 1371–1374 (May 1997)

Chapter 3
Conventional and Inverse QRD-RLS Algorithms

José A. Apolinário Jr. and Maria D. Miranda

Abstract This chapter deals with the basic concepts used in the recursive least-
squares (RLS) algorithms employing conventional and inverse QR decomposition.
The methods of triangularizing the input data matrix and the meaning of the internal
variables of these algorithms are emphasized in order to provide details of their
most important relations. The notation and variables used herein will be exactly the
same used in the previous introductory chapter. For clarity, all derivations will be
carried out using real variables and the final presentation of the algorithms (tables
and pseudo-codes) will correspond to their complex-valued versions.

3.1 The Least-Squares Problem and the QR Decomposition

We start by introducing the weighted least-squares (WLS) filtering problem for the
identification of a linear system [1]. To this end, we consider two sets of variables,
d(�) and x(�), and the errors ē(�), for 0 ≤ � ≤ k. The set d(�) is the response of an
unknown system at time-instant � when the input is the set of variables x(�), with
x(�)=0 for � < 0. The error at time-instant � is defined as ē(�) = d(�)−wT(k)x(�),
w(k) being the filter coefficient vector. These errors and the variables d(�) and x(�)
are attenuated by the factor λ (k−�)/2, 0 � λ < 1.

José A. Apolinário Jr.
Military Institute of Engineering (IME), Rio de Janeiro – Brazil
e-mail: apolin@ieee.org

Maria D. Miranda
University of São Paulo (USP), São Paulo – Brazil
e-mail: maria@lcs.poli.usp.br

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 51
DOI 10.1007/978-0-387-09734-3 3, c© Springer Science+Business Media, LLC 2009

apolin@ieee.org
maria@lcs.poli.usp.br

52 José A. Apolinário Jr. and Maria D. Miranda

Now, to facilitate the problem formulation, we collect the attenuated estimation
errors into a (k +1)×1 vector, written as

e(k) =
[

ē(k) λ 1/2
ē(k−1) · · · λ k/2ē(0)

]T
. (3.1)

This vector can take the form

e(k) = d(k)− d̂(k), (3.2)

where the desired response vector is given by

d(k) =
[

d(k) λ 1/2
d(k−1) · · · λ k/2d(0)

]T
, (3.3)

and its estimate, obtained from linear weighted averages of observation sequences,
is given as

d̂(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k) x(k−1) · · · x(k−N)

λ 1/2
x(k−1) λ 1/2

x(k−2)
...

λ (k−N)/2x(0)
...

... 0

λ (k−1)/2x(1) λ (k−1)/2x(0)
...

λ k/2x(0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X(k)

⎡
⎢⎢⎢⎣

w0(k)
w1(k)

...
wN(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
w(k)

. (3.4)

The input data matrix, denoted here as X(k), has dimension (k+1)×(N +1) and
can be represented in terms of its N +1 columns or its k +1 rows, that is,

X(k) =
[
x(0)(k) x(1)(k) · · ·x(N)(k)

]
=

⎡
⎢⎢⎢⎣

xT(k)
λ 1/2

xT(k−1)
...

λ k/2xT(0)

⎤
⎥⎥⎥⎦ . (3.5)

Note that x(�) = [x(�) x(�−1) · · · x(�−N)]T represents the input regression vector
at instant �, 0 ≤ � ≤ k, with N +1 elements, and x(i)(k) for (i = 0, · · · ,N) represents
the (i+1)th column of X(k).

The Euclidean norm of the weighted estimation error vector corresponds to the
deterministic cost function ξD(k), the same one used for the recursive least-squares
(RLS) algorithm, which is given by

ξD(k) = ‖e(k)‖2 = eT(k)e(k) =
k

∑
�=0

λ k−�ē2(�). (3.6)

3 Conventional and Inverse QRD-RLS Algorithms 53

The WLS filtering problem consists in determining, at instant k, the coefficient
vector w(k) that minimizes ξD(k). The optimal solution is obtained when the
coefficient vector satisfies [1, 2]

w(k) = R−1(k)p(k), (3.7)

where
R(k) = XT(k)X(k) (3.8)

is the (N +1)× (N +1) input-data deterministic autocorrelation matrix, and

p(k) = XT(k)d(k) (3.9)

is the (N +1)×1 deterministic cross-correlation vector.

The deterministic autocorrelation matrix R(k) is considered non-singular; nev-
ertheless, the inverse of R(k), used in (3.7), can become ill-conditioned, e.g., due
to loss of persistence of excitation of the input signal or due to quantization effects
[1, 2].

The WLS problem may be solved by means of a QR decomposition which is
numerically well-conditioned [3, 4]. This approach is based on the following trian-
gularization of the input data matrix:

Q(k)X(k) =

⎡
⎣

0(k−N)×(N+1)

U(k)

⎤
⎦ . (3.10)

Matrix U(k) has dimension (N + 1)× (N + 1) and a triangular structure as, for
example, shown in Figure 3.1. Q(k) is an unitary matrix with dimension (k + 1)×
(k + 1) which represents the overall triangularization process. The unicity of the
decomposition is yielded through the condition that all elements of the main anti-
diagonal of U(k) are non-negative [4].

0

0

0

0

0

0

(a) (b)

N +1

N +1

N +1

N +1
U(k) = U(k) =

Fig. 3.1 The different triangularizations of U(k): (a) UPPER and (b) LOWER.

54 José A. Apolinário Jr. and Maria D. Miranda

As X(k) is a (k + 1)× (N + 1) matrix, it is interesting to consider the following
partition of matrix Q(k):

Q(k) =

⎡
⎣

Q1(k)

Q2(k)

⎤
⎦ , (3.11)

with Q1(k) and Q2(k) having dimensions (k−N)× (k + 1) and (N + 1)× (k + 1),
respectively. Since matrix Q(k) is unitary, i.e.,

QT(k)Q(k) = Q(k)QT(k) = Ik+1, (3.12)

it follows that
QT

1 (k)Q1(k)+QT
2 (k)Q2(k) = Ik+1,

Q1(k)QT
1 (k) = Ik−N , and

Q2(k)QT
2 (k) = IN+1.

(3.13)

The pre-multiplication of (3.10) by QT(k), with (3.12) and (3.11) yields

X(k) = QT
2 (k)U(k). (3.14)

Therefore, the deterministic autocorrelation matrix satisfies

R(k) = XT(k)X(k) = UT(k)U(k), (3.15)

and matrix U(k) is referred to as the Cholesky factor of R(k) [1, 3].
The pre-multiplication of (3.2) by Q(k), i.e.,

eq(k) = Q(k)e(k) =
[

eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
O

U(k)

]
w(k), (3.16)

triangularizes X(k) and, being Q(k) a unitary matrix, it will not affect the cost func-
tion, i.e., ‖eq(k)‖2 = ‖e(k)‖2. The subscripts 1 and 2 indicate the first k−N and the
last N +1 components of the vector, respectively.

The weighted-square error (or cost function) can be minimized when, by a
proper choice of w(k), the term dq2(k)−U(k)w(k) becomes zero. The tap-
weight coefficients can then be computed as

w(k) = U−1(k)dq2(k). (3.17)

Note that (3.7) and (3.17) represent different ways to find the same WLS solu-
tion. Next, with geometric and linear algebraic arguments, we show how these two
representations are related.

When the coefficient vector w(k) satisfies (3.7), it is easy to figure out that
the estimated desired response d̂(k) = X(k)w(k) and the estimation error vector

3 Conventional and Inverse QRD-RLS Algorithms 55

e(k) = d(k)− d̂(k) can be expressed as

d̂(k) = X(k)R−1(k)p(k)︸ ︷︷ ︸
w(k)

= P(k)d(k) (3.18)

and
e(k) = [Ik+1 −P(k)]d(k), (3.19)

where P(k) = X(k)R−1(k)XT(k).
Matrix P(k) is a projection operator, responsible for projecting the desired

response vector in the space spanned by the data matrix columns of X(k). This
projection is orthogonal to the estimation error (orthogonality principle). In this
condition, e(k) is known as the optimum estimation error.

When the norm of e(k) is minimum, the coefficient vector w(k) also satisfies
(3.17). Then, vector d̂(k) = X(k)w(k) can also be rewritten using (3.17) and (3.14)
as

d̂(k) = QT
2 (k)dq2(k) = QT

2 (k)Q2(k)d(k), (3.20)

and the optimum estimation error vector is given as

e(k) =
[
Ik+1 −QT

2 (k)Q2(k)
]

d(k) = QT
1 (k)Q1(k)d(k). (3.21)

Therefore, the projection operator can be defined by matrix Q2(k) as

P(k) = QT
2 (k)Q2(k), (3.22)

and the complementary projection operator by matrix Q1(k) as

P⊥(k) = Ik+1 −P(k) = QT
1 (k)Q1(k). (3.23)

From the mathematical relationships presented so far, we can observe that matrix
Q(k) rotates the subspace spanned by the columns of matrix X(k) and by its opti-
mum estimation error e(k), which is orthogonal to the columns of X(k). In this case,
matrix Q(k) forces the subspace spanned by the columns of matrix X(k), of dimen-
sion (N + 1), to coincide with the subspace spanned by the last (N + 1) vectors of
the Euclidean space basis, of dimension (k+1)×(k+1), used in the representation.
Hence, the subspace of dimension (k−N), where the optimum estimation error e(k)
lies and which is orthogonal to the space spanned by the columns of X(k), coincides
with the subspace spanned by the other (k−N) vectors from the Euclidean basis.
Figure 3.2 illustrates these interpretations. Such transformation affects the input sig-
nal, the desired signal, and the projection operator, without modifying the autocor-
relation matrix, the cross-correlation vector, and the optimum coefficient vector.

Table 3.1 presents the relationship between the conventional LS (or WLS)
method and its QR decomposition counterpart. In the second column, the represen-
tations of the main results and the operators in the rotated domain are presented. The

56 José A. Apolinário Jr. and Maria D. Miranda

Ik−N 0

0 0N+1

Ik−N 0

0 0N+1

0k−N 0

0 IN+1

0k−N 0

0 IN+1

(a) (b)

d(k)
e(k)

d(k)
X(k)

Q(k)X(k)

Q(k)d(k)
dq1 (k)
0N+1

0k−N

dq2 (k)

Fig. 3.2 Spacial visualization of the rotated vectors. (a) Estimation of d(k) projected onto the
subspace spanned by the columns of X(k). (b) Estimation of dq(k) projected onto the Euclidean
basis space.

last three rows indicate how to calculate the results, which values will not change
due to the transformation, using whether the original or the rotated variables. It is
worth mentioning that, in the domain of the signals rotated by the matrix Q(k), the
projection operator and its complement assume very simple forms.

Table 3.1 Relationships between methods LS and QRD-LS.

Method LS QRD-LS

Data matrix X(k)
[

O
U(k)

]
= Q(k)X(k)

Desired response vector d(k)
[

dq1(k)
dq2(k)

]
= Q(k)d(k)

Projection operator X(k)R−1(k)XT(k)
[

Ok−N O
O IN+1

]

Estimated response P(k)d(k)
[

0
dq2(k)

]
=

[
O

Q2(k)

]
d(k)

Complementary projection operator P⊥(k)
[

Ik−N O
O ON+1

]

Estimation error P⊥(k)d(k)
[

dq1(k)
0

]
=

[
Q1(k)

0

]
d(k)

Autocorrelation matrix R(k) = XT(k)X(k) = UT(k)U(k)

Cross-correlation vector p(k) = XT(k)d(k) = UT(k)dq2(k)

Optimum coefficients vector w(k) = R−1(k)p(k) = U−1(k)dq2(k)

3 Conventional and Inverse QRD-RLS Algorithms 57

The solution for the least-squares problem using the QR decomposition consists
basically in the data matrix decomposition (3.10) and, depending on the particular
method employed, in executing some of the calculation indicated in (3.20), (3.17),
and (3.21). Obviously, the procedure is numerically complex due to the data matrix
QR decomposition. But, in practical adaptive filtering applications, the data matrix
can be performed recursively. Also, if U(k) and dq2(k) are available, the optimum
vector w(k) can be computed with a reduced computational complexity. This is due
to the triangular nature of matrix U(k) and the possibility to use the so-called back-
substitution procedure (if assuming a lower triangular matrix). In Appendix 1, we
present this procedure as well as the forward substitution procedure, its counterpart
for the case of an upper triangular matrix U(k). It is important to note that, apart
from the reduction in the computational burden, if the main diagonal elements are
non-zero, the existence of the inverse of U(k) is ensured [3, 4].

3.2 The Givens Rotation Method

The orthogonal triangularization process may be carried out using various
techniques such as Gram–Schmidt orthogonalization, Householder transfor-
mation, or Givens rotations. Particularly, Givens rotations leads to an efficient
algorithm whereby the triangularization process is updated recursively. As we
are interested in the iterative least-squares solution, we consider a triangular-
ization procedure carried out through Givens rotations.

In order to introduce the Givens rotation method, we consider vectors v and v′ as
shown in Figure 3.3. If we represent vector v as

v =
[

v1

v2

]
=

[
r cosθ
r sinθ

]
, (3.24)

v

v

v

v1

v2

v1

v2

θ θ

φr

r

(a) (b)

Fig. 3.3 (a) Vector v projected onto the Euclidean space; (b) Vector v rotated by φ and projected
onto the Euclidean space.

58 José A. Apolinário Jr. and Maria D. Miranda

vector v′, obtained from a plane rotation of φ degrees counterclockwise, can be
written as

v′=
[

v
′
1

v
′
2

]
=
[

r cos(θ +φ)
r sin(θ +φ)

]
=
[

cosφ −sinφ
sinφ cosφ

][
v1

v2

]
. (3.25)

For convenience, we rewrite v′ = Gv, where

G =
[

cosφ −sinφ
sinφ cosφ

]
(3.26)

is the elementary Givens rotation matrix.
When the plane rotation is clockwise, v′ is given as

v′ =
[

r cos(θ −φ)
r sin(θ −φ)

]
=

[
cosφ sinφ

−sinφ cosφ

][
v1

v2

]
. (3.27)

In this case, the elementary Givens rotation matrix takes the form

G =
[

cosφ sinφ
−sinφ cosφ

]
. (3.28)

In both cases (counterclockwise and clockwise), the rotation matrix is unitary,
that is, GT G = GGT = I, and therefore it preserves the norm r of vector v. We
consider the counterclockwise rotation throughout this chapter.

If φ +θ = π/2, then v
′
1 = 0, v

′
2 = r and

[
0
r

]
=

[
cosφ −sinφ
sinφ cosφ

][
v1

v2

]
. (3.29)

The above development suggests that it is possible to annihilate an element in a two-
dimensional vector by using plane rotation. From the relation in (3.29) and noting
that sinφ and cosφ are always constrained by the trigonometric relation

sin2 φ + cos2 φ = 1, (3.30)

we have: cosφ = v2/r, sinφ = v1/r, and r =
√

v2
1 + v2

2.

The annihilation using the Givens rotations, as seen above, can be extended to
annihilate a specific element in a vector of N + 1 elements, or a sequence of
elements in a vector or in a matrix [5]. Various choices of rotation orders can
be used to solve the problem.

In order to illustrate, for a 4×3 matrix formed by a first row and a lower triangular
matrix, the rotation angles to annihilate all elements of the first row, we consider

3 Conventional and Inverse QRD-RLS Algorithms 59

A =

⎡
⎢⎢⎣

x1,1 x1,2 x1,3

0 0 v1,3

0 v2,2 v2,3

v3,1 v3,2 v3,3

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

0 0 0
0 0 u1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ . (3.31)

In this example, we have to find a transformation matrix Qθ (k) such that B =
Qθ (k)A. Matrix Qθ (k) must annihilate all elements of the first row of A from left
to right. Three Givens rotations are shown in the following steps.

Step 1:

⎡
⎢⎢⎣

cosθ0 0 0 −sinθ0

0 1 0 0
0 0 1 0

sinθ0 0 0 cosθ0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1,1 x1,2 x1,3

0 0 v1,3

0 v2,2 v2,3

v3,1 v3,2 v3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 x̄1,2 x̄1,3

0 0 v1,3

0 v2,2 v2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ (3.32)

Step 2:

⎡
⎢⎢⎣

cosθ1 0 −sinθ1 0
0 1 0 0

sinθ1 0 cosθ1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 x̄1,2 x̄1,3

0 0 v1,3

0 v2,2 v2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 ¯̄x1,3

0 0 v1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ (3.33)

Step 3:

⎡
⎢⎢⎣

cosθ2 −sinθ2 0 0
sinθ2 cosθ2 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0 ¯̄x1,3

0 0 v1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 0
0 0 u1,3

0 u2,2 u2,3

u3,1 u3,2 u3,3

⎤
⎥⎥⎦ . (3.34)

This completes the lower triangularization of matrix A.
At this point, it is important to note that the transformation matrix Qθ (k) can be

written as a product of Givens rotation matrices given by

Qθ (k) = QθN (k) · · · Qθ1(k)Qθ0(k) =
N

∏
i=0

Qθi(k). (3.35)

If matrix U(k) is triangularized as depicted in Figure 3.1, the corresponding
Qθi(k), for 0 ≤ I ≤ N, are given as follows:

UPPER : Qθi(k) =

⎡
⎢⎢⎣

cosθi(k) 0T −sinθi(k) 0T

0 Ii 0 0 · · ·0
sinθi(k) 0T cosθi(k) 0T

0 0 · · ·0 0 IN−i

⎤
⎥⎥⎦ (3.36)

LOWER : Qθi(k) =

⎡
⎢⎢⎣

cosθi(k) 0T −sinθi(k) 0T

0 IN−i 0 0 · · ·0
sinθi(k) 0T cosθi(k) 0T

0 0 · · ·0 0 Ii

⎤
⎥⎥⎦ . (3.37)

60 José A. Apolinário Jr. and Maria D. Miranda

The row and column of each cosθi and sinθi are related with the element that we
want to annihilate. Only the elements of matrix A at a position related to the row and
column of cosθi and sinθi, respectively, are affected by the transformation imposed
by Qθi

. The angles θi(k) in (3.36) and (3.37) are not the same although written, for
the sake of simplicity, using the same notation.

3.3 The Conventional QRD-RLS Algorithm

One of the first works that used QR decomposition to solve the RLS problem was
proposed by Gentleman [6]. He used a triangular array in order to avoid matrix
inversion and proposed a pipelined sequence of Givens rotations to perform the
back-substitution process required to solve the associated system of equations.
From [6], the conventional QRD-RLS algorithm, as we know it today, was con-
ceived by McWhirter [7]. He was the first to describe a systolic array, using a
pipelined sequence of Givens rotations, performing an orthogonal triangularization
of the input data matrix and generating the estimated error without having to resort
to back-substitution. This section presents the most basic equations of the QRD-
RLS algorithms.

Let us start by using the fact that the data matrix in (3.5) can be rewritten as

X(k) =
[

xT(k)
λ 1/2

X(k−1)

]
(3.38)

and also that Q(k−1) is unitary. Thus, the product Q(k)X(k) can be written as

Q(k)
[

1 0T

0 QT(k−1)

][
1 0T

0 Q(k−1)

]

︸ ︷︷ ︸
I

[
xT(k)

λ 1/2
X(k−1)

]

︸ ︷︷ ︸
X(k)

=
[

O
U(k)

]
. (3.39)

In the above equation, if we denote the product of the first two matrices on the
left side by Q̃(k) and compute the multiplication of the remaining two matrices, we
obtain

Q̃(k)

⎡
⎣

xT(k)
0(k−N−1)×(N+1)

λ 1/2
U(k−1)

⎤
⎦ =

[
0(k−N)×(N+1)

U(k)

]
. (3.40)

From (3.40), we see that Q̃(k) is a product of Givens rotations matrices that
annihilates the current input vector. Moreover, the recursive nature of Q(k) may be
expressed by

Q(k) = Q̃(k)
[

1 0T

0 Q(k−1)

]
. (3.41)

Once Q̃(k) is responsible for zeroing xT(k), as shown in (3.40), its structure
includes a sub-matrix Ik−N−1, such that it can be represented as

3 Conventional and Inverse QRD-RLS Algorithms 61

Q̃(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 · · · 0 ∗ · · · ∗
0
...
0

Ik−N−1

0
...
0

∗
...
∗

0 · · · 0
...

. . .
...

0 · · · 0

∗ · · · ∗
...

. . .
...

∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.42)

with the asterisks (∗) corresponding to the non-zero elements. Although Q(k) is
(k + 1)× (k + 1), we can avoid the ever-increasing order characteristic rewriting
(3.40) as [

0T

U(k)

]
= Qθ (k)

[
xT(k)

λ 1/2
U(k−1)

]
, (3.43)

where Qθ (k) is (N + 2)× (N + 2) and corresponds to Q̃(k) after removing the
Ik−N−1 section along with the corresponding rows and columns.

Recalling (3.16), we see that eq1(k) = dq1(k); moreover, (3.41) shows that the
product Q(k)d(k) can be written as

Q(k)d(k) =
[

eq1(k)
dq2(k)

]
= Q̃(k)

[
1 0T

0 Q(k−1)

]

︸ ︷︷ ︸
Q(k)

[
d(k)

λ 1/2
d(k−1)

]

︸ ︷︷ ︸
d(k)

= Q̃(k)

⎡
⎢⎣

d(k)
λ 1/2

eq1(k−1)
λ 1/2

dq2(k−1)

⎤
⎥⎦

=

⎡
⎣

eq1(k)
λ 1/2

eq1(k−1)
dq2(k)

⎤
⎦ , (3.44)

where the last multiplication can be easily understood if we note in (3.40) and in
(3.42) that Q̃(k) alter only the first and the last N + 1 components of a (k + 1)× 1
vector.

From (3.44), it is also possible to remove the increasing section of Q̃(k),
resulting in the following expression:

[
eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ 1/2
dq2(k−1)

]
, (3.45)

where eq1(k) is the first element of the rotated error vector eq(k) and dq2(k) is
a vector with the last N +1 elements of the rotated desired signal vector. The

62 José A. Apolinário Jr. and Maria D. Miranda

rotated error eq1(k), with the help of a conversion factor, allows the compu-
tation of the prediction error—the difference between d(k) and its prediction
from x(k)—without computing the estimate of the desired response. This pro-
cess is usually termed joint-process estimation.

It is important to note that Qθ (k), being responsible for the update of U(k) as
in (3.43), is formed by a product of Givens rotation matrices as shown in (3.35) and
its structure will depend on the type of triangularization of U(k), i.e., whether it is
an upper or a lower triangular matrix. This choice determines two classes of fast
(reduced complexity) algorithms, as will be seen in Chapter 4. From the example of
the previous section, it is possible to obtain, using (3.35), the structure of Qθ (k) for
upper and lower triangularization of U(k); the results, for N = 2, are given by the
following two matrices:

UPPER : Qθ (k) =

⎡
⎢⎢⎣

cθ2cθ1cθ0 −cθ2cθ1sθ0 −cθ2sθ1 −sθ2

sθ0 cθ0 0 0
sθ1cθ0 −sθ1sθ0 cθ1 0

sθ2cθ1cθ0 −sθ2cθ1sθ0 −sθ2sθ1 cθ2

⎤
⎥⎥⎦ , (3.46)

and

LOWER : Qθ (k) =

⎡
⎢⎢⎣

cθ2cθ1cθ0 −sθ2 −cθ2sθ1 −cθ2cθ1sθ0

sθ2cθ1cθ0 cθ2 −sθ2sθ1 −sθ2cθ1sθ0

sθ1cθ0 0 cθ1 −sθ1sθ0

sθ0 0 0 cθ0

⎤
⎥⎥⎦ , (3.47)

where cθi = cosθi(k) and sθi = sinθi(k).
The structure of matrix Qθ (k) suggests, in both cases, that it can be partitioned

as

Qθ (k) =
[
γ(k) gT(k)
f(k) E(k)

]
, (3.48)

where the structures of vectors f(k), g(k), and matrix E(k) depend on the type of
triangularization of the data matrix. On the other hand, for both types of triangular-
ization, the scalar γ(k) denotes the product of successive cosine terms, i.e.,

γ(k) =
N

∏
i=0

cosθi(k). (3.49)

It was shown in [1], and will be detailed later in Section 3.5, that γ(k) represents the
squared root of the conversion factor between the a priori and a posteriori output
errors for the degree N +1 filtering problem.

In order to have all equations of the traditional QR algorithm, let us postmultiply
the transposed vector eT

q (k)Q(k) by the pinning vector [1 0 · · · 0]T, then

3 Conventional and Inverse QRD-RLS Algorithms 63

eT
q (k)Q(k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = eT(k)QT(k)Q(k)

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦ = ē(k), (3.50)

where ē(k) is the first element of the error vector defined in (3.1) and represents the
a posteriori estimation error ε(k), defined in Chapter 2 as

ε(k) = d(k)−xT(k)w(k) = ē(k). (3.51)

From Equations (3.41) and (3.48) and the fact that Qθ (k) is Q̃(k) after removing the
k−N − 1 increasing columns and rows, we can conclude that Q(k)[1 0 · · · 0]T =
[γ(k) 0 · · · 0 fT(k)]T. Once eq2(k) is a null vector (keep in mind that w(k) in (3.16)
was chosen in order to make it zero), it is possible to see that

ε(k) = eq1(k)γ(k). (3.52)

This equation was first noted by McWhirter in [7] and is particularly useful in
applications where the coefficients of the adaptive filter are not explicitly neces-
sary since we can obtain ε(k), the a posteriori output error, without computing
w(k). If, however, the coefficient vector w(k) is needed, it can be computed by
solving U(k)w(k) = dq2(k). In this case, due to the fact that the Cholesky matrix
U(k) is triangular, a matrix inversion can be avoided, e.g., with a forward or a back-
substitution procedure (see Appendix 1 for further details).

The equations of the conventional QR algorithm (complex version) are presented
in Table 3.2 where the type of triangularization used has no influence on the perfor-
mance of the conventional QRD-RLS algorithm. A pseudo-code of a lower triangu-
larization implementation is available in Appendix 3 (Table 3.5).

In the next section, we provide hints about the initialization of the triangulariza-
tion procedure. Appendix 2 presents ways of avoiding the square-root operation in

Table 3.2 The conventional QRD-RLS equations.

QRD-RLS
for each k
{ Obtaining Qθ (k) and updating U(k):[

0T

U(k)

]
= Qθ (k)

[
xH(k)

λ 1/2
U(k−1)

]

Obtaining γ(k):
γ(k) = ∏N

i=0 cosθi(k)
Obtaining eq1 (k) and updating dq2 (k):[

eq1 (k)
dq2 (k)

]
= Qθ (k)

[
d∗(k)

λ 1/2
dq2 (k−1)

]

Obtaining ε(k):
ε(k) = e∗q1

(k)γ(k) % a posteriori error: d(k)−wH(k)x(k)
}

64 José A. Apolinário Jr. and Maria D. Miranda

θi(k)

cosθi

cosθi

sinθi

−sinθi

λ 1/2
z−1λ 1/2

z−1

d(k) eq1(k)

θ0(k) θN(k)

[dq2(k)]u [dq2(k)]v

Fig. 3.4 McWhirter structure: Equation (3.45) implemented as a cascade of first-order orthogonal
filters.

QRD-RLS algorithms. Now, to close this section, it is worth noting that, since Qθ (k)
is a product of Givens rotation matrices, the equation system in (3.45) becomes
the cascade of first-order orthogonal filters. Figure 3.4 depicts the operation car-
ried out in (3.45). Due to the work of McWhirter [7], each orthogonal filter in [8]
was named a McWhirter structure. In this figure, when we use an upper triangu-
lar Cholesky factor, we make u = 0 and v = N; this means that we update the
elements of vector dq2(k) from the first to the last one. Otherwise, when a lower
triangular matrix is used, the updating is from the last element (u = N) to the first
one (v = 0).

3.4 Initialization of the Triangularization Procedure

In order to run the QRD-RLS algorithm at time-instant k = 0, we need vector
dq2(−1) and matrix U(−1). Assuming pre-windowing, a natural choice would be
dq2(−1) = 0N+1 and U(−1) = 0(N+1)×(N+1). In that case, the choice U(−1) =
0(N+1)×(N+1) would lead to a non-singular matrix. In order to solve this problem,
two strategies are possible: the exact initialization and the soft-start, as in the RLS
algorithm [1, 9].

The exact initialization procedure comprises a period of N + 1 samples, from
k = 0 to N, during which the estimation error is zero. At k = N +1, the initialization
period is completed and the estimation error may assume a value different than zero
by executing the steps of the algorithm in Table 3.2.

If we are interested in an upper triangularization procedure, since X(N) is already
upper triangular, nothing needs to be done. The exact initialization in this case is
carried out as detailed in [2, Chapter 9] which corresponds to the exact initialization

3 Conventional and Inverse QRD-RLS Algorithms 65

of the RLS algorithm, using back-substitution to obtain the coefficient vector. At
k = N +1, when x(N +1) is available, the matrix is no longer triangular and N +1
Givens rotations are necessary to annihilate all elements of the first row and the
QRD-RLS equations start to be used with U(N) = X(N).

If we are working with a lower triangular Cholesky factor, then the data matrix
needs to be transformed before k = N +1. The complete transformation can be car-
ried out with N +1 Givens rotations at k = N. In this case, we begin by annihilating
the elements of column one until column N. For each column i, only the elements
of row j = 1, ...(N − i + 1) are annihilated. The exact initialization procedure of a
3×3 lower triangular Cholesky matrix, that is, order N = 2, for k = 2, is described
below.

⎡
⎢⎣

c0 0 −s0

0 1 0

s0 0 c0

⎤
⎥⎦

⎡
⎢⎣

x(2) x(1) x(0)

λ 1/2x(1) λ 1/2x(0) 0

λ x(0) 0 0

⎤
⎥⎦=

⎡
⎢⎣

0 x̄(1) x̄(0)

λ 1/2x(1) λ 1/2x(0) 0

ū(3,1) ū(3,2) ū(3,3)

⎤
⎥⎦ (3.53)

⎡
⎢⎣

1 0 0

0 c1 −s1

0 s1 c1

⎤
⎥⎦

⎡
⎢⎣

0 x̄(1) x̄(0)

λ 1/2x(1) λ 1/2x(0) 0

ū(3,1) ū(3,2) ū(3,3)

⎤
⎥⎦=

⎡
⎢⎣

0 x̄(1) x̄(0)
0 ū(2,2) ū(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎥⎦ (3.54)

⎡
⎣

c2 −s2 0
s2 c2 0
0 0 1

⎤
⎦
⎡
⎣

0 x̄(1) x̄(0)
0 ū(2,2) ū(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎦ =

⎡
⎣

0 0 u(1,3)
0 u(2,2) u(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎦ (3.55)

As vector e(N) = d(N)−X(N)w(N) is (N +1)×1, then dq2(N) = Q(N)d(N) and

dq(2) =

⎡
⎣

c2 −s2 0
s2 c2 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 c1 −s1

0 s1 c1

⎤
⎦
⎡
⎣

c0 0 −s0

0 1 0
s0 0 c0

⎤
⎦

︸ ︷︷ ︸
Q(N)

⎡
⎣

d(2)
λ 1/2d(1)
λ d(0)

⎤
⎦

︸ ︷︷ ︸
d(N)

. (3.56)

The initialization of the lower triangular Cholesky factor can also be carried out
in a recursive way [1]. For this case, it is assumed that x(k) = 0 for k < 0 and, for k =
0, . . . ,N, and the same update procedures for the lower triangular U(k) and vector
dq(k) described in Table 3.2 are used. The iterative exact initialization procedure of
a 3×3 lower triangular matrix (N = 2), for k = 2 is described as follows:
At k = 0:

Qθ0
(0)︸ ︷︷ ︸

Qθ (0)

[
x(0) 0

0 0

]
=

[
0 0

x(0) 0

]
(3.57)

At k = 1:

Qθ1
(1) Qθ0

(1)︸ ︷︷ ︸
Qθ (1)

⎡
⎣

x(1) x(0)
0 0

λ 1/2x(0) 0

⎤
⎦ =

⎡
⎣

0 0
0 ¯̄x
¯̄x ¯̄x

⎤
⎦ (3.58)

66 José A. Apolinário Jr. and Maria D. Miranda

At k = 2:

Qθ2
(2) Qθ1

(2) Qθ0
(2)︸ ︷︷ ︸

Qθ (2)

⎡
⎢⎢⎣

x(2) x(1) x(0)
0 0 0
0 λ 1/2 ¯̄x 0

λ 1/2 ¯̄x λ 1/2 ¯̄x 0

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 0 0
0 0 u(1,3)
0 u(2,2) u(2,3)

u(3,1) u(3,2) u(3,3)

⎤
⎥⎥⎦ . (3.59)

It is worth mentioning that, in an infinite-precision environment, this exact ini-
tialization of the QRD-RLS algorithm is equivalent to the exact initialization of the
RLS algorithm.

For the case of the soft-start procedure, one should choose U(−1)=δJ, where
J is the reversal matrix and δ is a regularization parameter with a value proportional
to the standard deviation of the input signal. Note that Jv reverses vector v: Its first
element becomes the last one and vice-versa. The soft-start strategy is simpler than
the exact initialization and its effect becomes negligible when k increases.

Regarding the soft-constrained initialization, it is relevant to note that:

• As in the conventional RLS algorithm [1], the soft initialization causes a bias
and, if λ < 1, this bias tends to zero as k increases.

• In [10], the full quantitative analysis of the dynamic range of all internal quan-
tities of the QRD-RLS algorithm was presented; it was also shown in this ref-
erence, for the case of fixed-point arithmetics, that when the value of the regu-
larization parameter is approximately δ =σx/

√
1−λ , σ2

x being the variance of
the input signal, overflow in the internal variable with soft initialization can be
avoided.

3.5 On the Qθ (k) Matrix

Different versions of QRD-RLS algorithms can be obtained from adequate interpre-
tation of matrix Qθ (k). Below, based on (3.48), we present the key relations to allow
such interpretation.

• Observing the fact that Qθ (k) is unitary, that is,

IN+2 = Qθ (k)QT
θ (k) =

[
γ(k) gT(k)
f(k) E(k)

][
γ(k) fT(k)
g(k) ET(k)

]

= QT
θ (k)Qθ (k) =

[
γ(k) fT(k)
g(k) ET(k)

][
γ(k) g(k)T

f(k) E(k)

]
, (3.60)

then

f(k) = −γ−1(k)E(k)g(k), and (3.61)

g(k) = −γ−1(k)ET(k)f(k). (3.62)

3 Conventional and Inverse QRD-RLS Algorithms 67

• Replacing Qθ (k), as in (3.48), in (3.43), we have:

[
γ(k) gT(k)
f(k) E(k)

][
xT(k)

λ 1/2
U(k−1)

]
=

[
0T

U(k)

]
; (3.63)

then, the next two relations follow:

f(k)xT(k)+λ
1/2

E(k)U(k−1) = U(k), and (3.64)

g(k) = −γ(k)λ
−1/2

U−T(k−1)x(k). (3.65)

• Observing the fact that Qθ (k) is unitary, we see that the norm of the expression
in (3.63) obeys

UT(k)U(k) = x(k)xT(k)+λUT(k−1)U(k−1). (3.66)

If we pre-multiply (3.66) by U−T(k), and confront the result

U(k) = U−T(k)x(k)xT(k)+λU−T(k)UT(k−1)U(k−1) (3.67)

with (3.64), we see that f(k) and E(k) can be given by

f(k) = U−T(k)x(k), and (3.68)

E(k) = λ
1/2

U−T(k)UT(k−1). (3.69)

The above relations are common to both triangularization methods. Especially
(3.65), (3.68), and (3.69) are key relations for the comprehension of other algorithms
of the QR family.

With the above, we can relate some expressions of the RLS algorithm, from the
previous chapter, with their corresponding QRD-RLS counterparts. These relations,
linking both algorithms, are shown in Table 3.3 where the expressions of the first
column rise naturally from the RLS algorithm while the equations in the second
column were basically obtained from (3.60).

Table 3.3 Relating equivalent expressions from the RLS and the QRD-RLS algorithms.

RLS QRD-RLS

γ2(k) = 1−xT(k)R−1(k)x(k) γ2(k) = 1− fT(k)f(k) = 1−||f(k)||2

γ−2(k) = 1+λ−1xT(k)R−1(k−1)x(k) γ−2(k) = 1+ ||γ−1(k)g(k)||2

λ−1γ2(k)R−1(k−1)x(k) = R−1(k)x(k) g(k) = −γ−1(k)ET(k)f(k)

x(k)xT(k) = R(k)−λR(k−1) f(k)fT(k) = I−E(k)ET(k)

R−1(k)x(k)xT(k) = I−λR−1(k)R(k−1) g(k)gT(k) = I−ET(k)E(k)

68 José A. Apolinário Jr. and Maria D. Miranda

We next interpret the elements of Qθ (k) beginning with γ(k). If Qθ (k) is
regarded as in (3.48), the first element of the equation system in (3.45) can be
written as

eq1(k) = γ(k)d(k)+gT(k)λ
1/2

dq2(k−1). (3.70)

From (3.65) and using (3.17), the rotated error can be expressed as

eq1(k) = γ(k)e(k), (3.71)

where e(k) = d(k)− xT(k)w(k − 1) is the a priori estimation error as defined in
Chapter 2. With (3.52) and (3.71), it follows that

ε(k) = γ2(k)e(k), (3.72)

and γ2(k) represents the conversion factor between the a priori and the a posteriori
output errors for the degree N +1 filtering problem. Note that, this same conversion
factor is also used in the context of the RLS algorithm.

In order to interpret the other elements of Qθ (k), it is necessary to apply the
QR decomposition to the problems of forward and backward predictions. In Sec-
tions 3.5.1 and 3.5.2, we consider the scheme shown in Figure 3.5 to present
the prediction of a past sample x(k −N − 1) from vector x(k) (backward predic-
tion) and the prediction of the current sample x(k) from vector x(k− 1) (forward
prediction).

Throughout the next subsections, the (k + 1)× i input data matrix is denoted
as X(i)(k) and all variables of backward and forward predictors, related to order
i predictors (i + 1 prediction coefficients), are indicated with the superscript (i+1),

FORWARD BACKWARD

x(k)

x(k−1)

...

x(k−N)

x(k−N−1)

x(k)

db(k)

x(k −1)

d f (k)

(a)

(b)

Fig. 3.5 Signal prediction at instant k and order N. (a) Forward prediction: sample x(k) is predicted
from vector x(k−1). (b) Backward prediction: sample x(k−N −1) is predicted from vector x(k).

3 Conventional and Inverse QRD-RLS Algorithms 69

e.g., e(i+1)
b (k) and e(i+1)

f (k). However, for convenience of notation, order N pre-

dictors are indicated without the superscript (N+1), i.e., eb(k) = e(N+1)
b (k) and

e f (k) = e(N+1)
f (k).

3.5.1 The backward prediction problem

In the backward prediction problem, we try to obtain an estimate of a past sample of
a given input sequence using the more recent available information of this sequence.
In the problem of order N at instant k, the prediction of the desired backward sample
x(k−N−1) is based on vector x(k). The weighted backward prediction error vector
is defined as

eb(k)=

⎡
⎢⎢⎢⎢⎢⎣

x(k−N −1)
λ 1/2

x(k−N −2)
...

λ (k−N−1)/2x(0)
0N+1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
db(k)

−

⎡
⎢⎢⎢⎢⎢⎣

x(k) · · · x(k−N)
λ 1/2

x(k−1) · · · λ 1/2
x(k−N −1)

...
. . .

...
λ (k−1)/2x(1) · · · 0
λ k/2x(0) · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X(k)

wb(k), (3.73)

where wb(k) is the backward prediction coefficient vector and db(k) the weighted
backward desired signal vector.

In the backward prediction problem of order i−1 the weighted backward predic-
tion error vector is

e(i)
b (k) = d(i)

b (k)−X(i)(k)w(i)
b (k), (3.74)

where the weighted desired signal vector

d(i)
b (k) =

[
x(k− i) λ

1/2
x(k− i−1) · · · λ (k−i)/2x(0) 0T

i

]T
(3.75)

represents the (i+1)th column of the data matrix in (3.5) and is denoted as x(i)(k).

By differentiating e(i)
b

T
(k)e(i)

b (k) with respect to w(i)
b (k), the optimum backward

prediction coefficient vector is given by

w(i)
b (k) =

[
X(i)T

(k)X(i)(k)
]−1

X(i)T
(k)d(i)

b (k). (3.76)

From the relations used in backward prediction, it is worth noting that:

• For i = 0, e(0)
b (k) = d(0)

b (k) = x(0)(k). For {i = 1, . . . ,N}, the data matrix can be

denoted as X(i+1)(k) =
[

X(i)(k) d(i)
b (k)

]
and (3.74) can be rewritten as

e(i)
b (k) = X(i+1)(k)

[
−w(i)

b (k)
1

]
. (3.77)

70 José A. Apolinário Jr. and Maria D. Miranda

• The error vectors in (3.77) for {i = 0, . . . ,N} can be collected in matrix

G(k) = X(k)K−1(k), (3.78)

where
G(k) =

[
e(N)

b (k) e(N−1)
b (k) · · · e(0)

b (k)
]
, (3.79)

and

K−1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−w(N)
b,0 (k) −w(N−1)

b,0 (k) · · · −w(1)
b,0(k) 1

−w(N)
b,1 (k) −w(N−1)

b,1 (k) · · · 1 0
...

...
. . .

...
...

−w(N)
b,N−1(k) 1 · · · 0 0

1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.80)

• The (i + 1)th column of K−1(k) for i = 0, . . . ,N, represents the coefficients of
the backward prediction errors filters of order N − i;

• The first row of matrix G(k) in (3.78) corresponds to the a posteriori backward
prediction error (with different orders and at instant k) vector transposed, i.e.,

K−T(k)x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε(N)
b (k)

ε(N−1)
b (k)

...

ε(1)
b (k)

ε(0)
b (k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.81)

• When w(i)
b (k) fulfills (3.76) for {i = N,N − 1, . . . ,1,0}, the product D2(k) =

GT(k)G(k) is a diagonal matrix whose elements ||e(i)
b (k)||2 represent the mini-

mum backward prediction errors energy.
• If we replace first (3.76) in (3.74) and then X(i)(k) by G(i)(k)K(i)(k) (of order

i−1), we obtain the expression

e(i)
b (k) = x(i)(k)−G(k)D−2(k)GT(k)x(i)(k). (3.82)

For convenience, we rewrite the last equation as

e(i)
b (k) = x(i)(k)−

i−1

∑
j=0

e j κ ji(k), (3.83)

with e j = e(N− j)
b (k), κ ji =eT

j x(i)(k)/‖e j ‖2 and j< i.
• The set of error vectors for {i = 0, . . . ,N} can be rewritten as

3 Conventional and Inverse QRD-RLS Algorithms 71

X(k) = [e0 e1 · · ·eN]

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 1
... κ1N

0
...

1 κN1 · · · κNN

⎤
⎥⎥⎥⎥⎥⎦

= G(k)K(k). (3.84)

• Equation (3.84) represents the Gram–Schmidt orthogonalization procedure [3]
of the columns of matrix X(k) of special interest for the case of a lower trian-
gular Cholesky factor.

The rotated weighted backward prediction error vector is defined below and it
will be used, in the next chapter, in the derivation of the fast QR algorithms.

ebq(k) = Q(k)eb(k) =
[

O ebq1
(k)

U(k) dbq2
(k)

][
−wb(k)

1

]
(3.85)

By following similar procedure as the one used in the WLS estimation problem,
it is possible to show that

εb(k) = γ(k)ebq1
(k) = γ2(k)eb(k). (3.86)

3.5.2 The forward prediction problem

In the forward prediction problem, we obtain an estimate of a sample of a given
input sequence using the past available information of this sequence. In the problem
of order N at instant k, the prediction of the desired signal x(k) is based on vector
x(k−1) and the weighted forward prediction error vector is defined as

e f (k)=

⎡
⎢⎢⎢⎢⎢⎣

x(k)
λ 1/2

x(k−1)
...

λ (k−1)/2x(1)
λ k/2x(0)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
d f (k)

−

⎡
⎢⎢⎢⎢⎢⎣

x(k−1) · · · x(k−N −1)
λ 1/2

x(k−2) · · · λ 1/2
x(k−N −2)

...
. . .

...
λ (k−1)/2x(0) · · · 0

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸[
X(k−1)

0T

]
,

w f (k) (3.87)

where w f (k) is the forward prediction coefficient vector. Note that the last row of the
data matrix, which contains zeros, appears due to the fact that we assume x(k) = 0
for k < 0.

The weighted forward prediction error vector, of order i−1 and instant k, is given
as

72 José A. Apolinário Jr. and Maria D. Miranda

e(i)
f (k) = d(i)

f (k)−
[

X(i)(k−1)
0T

]
w(i)

f (k), (3.88)

where d(i)
f (k) is the weighted desired signal and represents the first column of the

data matrix denoted in (3.5) as x(0)(k), that is,

d(i)
f (k) =

[
x(k) λ

1/2
x(k−1) · · · λ k/2x(0)

]T
. (3.89)

By differentiating [e(i)
f (k)]Te(i)

f (k) with respect to w(i)
f (k) and equating the result to

zero, we find the optimum forward prediction coefficient vector of order (i−1), i.e.,

w(i)
f (k) =

{[
X(i)(k−1)

]T
X(i)(k−1)

}−1 [X(i)(k−1)
0T

]T

d(i)
f (k). (3.90)

From the relations used in forward prediction, it is relevant to note that:

• At instant � = k−N and for i = 0, the weighted forward prediction error vector

is e(0)
f (k−N) = d(0)

f (k−N) = x(0)(k−N). At instant �+ i with {i = 1, . . . ,N}
the data matrix with dimension (�+ i+1)× (i+1) can be represented as X(i+1)

(�+ i) =
[

d(i)
f (�+ i) X(i)(�+ i−1)

0T

]
, and (3.88) can be rewritten as

e(i)
f (�+ i) = X(i+1)(�+ i)

[
1

−w(i)
f (�+ i)

]
. (3.91)

• The error vectors in (3.91) for {i = 0, . . . ,N} can be collected into matrix

G(k) = X(k)K−1(k), (3.92)

where
G(k) =

[
e0 e1 · · · eN

]
, (3.93)

with

ei =

[
e(i)

f (k−N + i)
0N−i

]
, (3.94)

and

K−1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1

0 0 · · · 1 −w(N)
f ,0 (k)

...
...

. . .
...

...

0 1 · · · −w(N−1)
f ,N−3(k−1) −w(N)

f ,N−2(k)

1 −w(1)
f ,0(k−N +1) · · · −w(N−1)

f ,N−2(k−1) −w(N)
f ,N−1(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (3.95)

3 Conventional and Inverse QRD-RLS Algorithms 73

• The (i + 1)th column of K−1(k) for i = 0, . . . ,N, represents the coefficients of
the forward prediction error filters of order i at instant k−N + i.

• The first row of the system of equations in (3.92) is the a posteriori forward
prediction error vector, with different orders, and at distinct time instants, i.e.,

K−T(k)x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε(0)
f (k−N)

ε(1)
f (k−N +1)

...

ε(N)
f (k)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.96)

• When w(i)
f (k − N + i) obeys (3.90) for {i = N, . . . ,0}, the product D2(k) =

GT(k)G(k) is a diagonal matrix whose elements are the minimum forward pre-

diction error energy ||e(i)
f (k−N + i)||2.

• If we replace (3.90) in (3.88) and rewrite the data matrix X(i)(k−1) as G(i)(k−
1)K(i)(k−1), we obtain, at instant �+ i with � = k−N,

e(i)
f (�+ i) = d(i)

f (�+ i)−

⎡
⎢⎣

i−1

∑
j=0

e(j)
f (�+ j−1) κi j

0

⎤
⎥⎦ , (3.97)

where κi j =

[
e(j)

f (�+ j−1)
0

]T

d(i)
f (�+ i)/||e j

f (�+ j)||2 and j < i.

• The set of weighted forward prediction error vectors for {i = 0, . . . ,N} can be
rewritten as

X(k) = [e0 e1 · · ·eN]

⎡
⎢⎢⎢⎢⎢⎣

κ00 · · · κ0 N−1 1
... 0

κN−1 0
...

1 0 · · ·

⎤
⎥⎥⎥⎥⎥⎦

= G(k)K(k). (3.98)

• Equation (3.98) represents the Gram–Schmidt orthogonalization procedure [3]
of the columns of X(k) matrix of special interest for the case of an upper trian-
gular Cholesky factor.

The rotated weighted forward prediction error vector, obtained from (3.88) with
i = N +1, is then defined as

e fq(k) =
[

Q(k−1) 0
0T 1

]
e f (k) =

⎡
⎣

e fq1
(k) O

d fq2
(k) U(k−1)

λ k/2x(0) 0T

⎤
⎦
[

1
−w f (k)

]
. (3.99)

74 José A. Apolinário Jr. and Maria D. Miranda

By following similar procedures as the one used in the WLS estimation problem,
it is possible to show that

ε f (k) = γ(k−1)e fq1
(k) = γ2(k−1)e f (k). (3.100)

3.5.3 Interpreting the elements of Qθ (k) for a lower triangular
Cholesky factor

This subsection provides insightful information about the variables used by the QR
algorithms. To start, we observe that both representations of the input data matrix,
in (3.84) and in (3.98), can be used to rewrite the autocorrelation matrix as

R(k) = UT(k)U(k) = XT(k)X(k)

= KT(k)GT(k)G(k)K(k)

= [D(k)K(k)]T[D(k)K(k)], (3.101)

and the projection operator as

P(k) = X(k)R−1(k)XT(k) = QT
2 (k)Q2(k) = G(k)D−2(k)GT(k). (3.102)

The term D(k)K(k) may represent the Cholesky factor of the deterministic auto-
correlation matrix, defined in (3.15) as U(k), and the columns of matrix QT

2 (k) =
G(k)D−1(k) represent the prediction error vectors normalized by the prediction
error energy.

Once U(k) = D(k)K(k), using (3.48), (3.68), (3.69) and (3.65), yields the fol-
lowing expression for Qθ (k):

Qθ (k)=

[
γ(k) −γ(k)λ−1/2 [

D−1(k−1)K−T(k−1)x(k)
]T

D−1(k)K−T(k)x(k) λ 1/2
D−1(k)K−T(k)KT(k−1)DT(k−1)

]
. (3.103)

Equations (3.101, 3.102, 3.103) are valid for both types of triangularization. Nev-
ertheless, from the backward prediction problem, where the product D(k)K(k) cor-
responds to a lower triangular matrix, if we recall the physical interpretation of
K−T(k)x(k) as in (3.81) and that the elements of the diagonal matrix D(k) are given

by ‖ e(N−i)
b (k) ‖, it follows that

f(k) = D−1(k)K−T(k)x(k) =

⎡
⎢⎢⎢⎢⎢⎣

ε(N)
b (k)/ ‖ e(N)

b (k) ‖
ε(N−1)

b (k)/ ‖ e(N−1)
b (k) ‖

...

ε(0)
b (k)/ ‖ e(0)

b (k) ‖

⎤
⎥⎥⎥⎥⎥⎦

. (3.104)

3 Conventional and Inverse QRD-RLS Algorithms 75

Thus, f(k), for the case of lower triangularization of the Cholesky factor, is the a
posteriori backward prediction error vector at instant k normalized by backward
error energies at the same instant.

Moreover, from the same interpretation of D(k−1) and K−T(k−1), vector g(k),
from (3.48) and (3.65), may be given as

g(k) = −γ(k)λ
−1/2

⎡
⎢⎢⎢⎢⎣

e(N)
b (k)/ ‖ e(N)

b (k−1) ‖
e(N−1)

b (k)/ ‖ e(N−1)
b (k−1) ‖
...

e(0)
b (k)/ ‖ e(0)

b (k−1) ‖

⎤
⎥⎥⎥⎥⎦

. (3.105)

Thus, g(k) is the a priori backward prediction error vector at instant k weighted by

−γ(k)λ−1/2
and normalized by backward error energies at instant k−1.

3.5.4 Interpreting the elements of Qθ (k) for an upper triangular
Cholesky factor

For the case of an upper triangular Cholesky factor, the product D(k)K(k) comes
from the forward prediction orthogonalization procedure. It is also worth mention-
ing that (3.95) brings an interpretation of the non-zero elements of the rows of
K−T(k) as the coefficients of forward prediction filters of different orders at distinct
time instants. Recalling the physical interpretation of K−T(k)x(k) as (3.96) and that

the elements of the diagonal matrix D(k) are also given by ‖ e(i)
f (k −N + i) ‖, it

follows that

f(k) =

⎡
⎢⎢⎢⎢⎢⎣

ε(0)
f (k−N)/ ‖ e(0)

f (k−N) ‖
ε(1)

f (k−N +1)/ ‖ e(1)
f (k−N +1) ‖

...

ε(N)
f (k)/ ‖ e(N)

f (k) ‖

⎤
⎥⎥⎥⎥⎥⎦

. (3.106)

In this case, f(k) is the a posteriori forward prediction error vector normalized by
forward error energies at different time instants.

By using the same interpretation of D(k−1) and K−T(k−1), vector g(k) corre-
sponds, in the upper triangularization case, to

g(k) = −γ(k)λ
−1/2

⎡
⎢⎢⎢⎢⎢⎣

e(0)
f (k−N)/ ‖ e(0)

f (k−N −1) ‖
e(1)

f (k−N +1)/ ‖ e(1)
f (k−N) ‖

...

e(N)
f (k)/ ‖ e(N)

f (k−1) ‖

⎤
⎥⎥⎥⎥⎥⎦

. (3.107)

76 José A. Apolinário Jr. and Maria D. Miranda

Vector g(k) is then an a priori forward prediction error vector normalized by the a

posteriori forward error energies and weighted by −γ(k)λ−1/2
.

We note that, in the case of upper triangularization, the normalized errors present
in Qθ (k) are of different orders at distinct instants of time (order and time updating);
this fact seems to be the cause of the extra computational effort of the fast—or O[N]
(order of N)—algorithms derived from this type of triangularization.

With the physical interpretation of vectors g(k) and f(k) presented above and
taking into account Equations (3.61) and (3.62), matrix E(k) can be interpreted as a
conversion factor matrix between the a priori and the a posteriori prediction error
vectors.

3.6 The Inverse QRD-RLS Algorithm

An alternative approach to the conventional QRD-RLS algorithm based on the
update of the inverse Cholesky factor was presented in [11]. This algorithm, known
as the Inverse QR decomposition (IQRD-RLS) algorithm, allows the calculation of
the weight vector without back-substitution. In the following, based on the struc-
ture of Qθ (k) and on the relations (3.62), (3.65), (3.68), and (3.69), we present the
IQRD-RLS algorithm.

Starting from the RLS solution w(k) = R−1(k)p(k) with R(k) and p(k) defined
as in (3.9) and in (3.8), respectively, and using the expression in (3.38) instead of
X(k), after some manipulations, we can show that

w(k) = w(k−1)+ e(k)U−1(k)U−T(k)x(k), (3.108)

where e(k) = d(k)−xT(k)w(k−1) is the a priori error and the term multiplying this
variable is known as the Kalman Gain. Also note, knowing that R(k) = UT(k)U(k),
that (3.108) corresponds to (2.55), from the previous chapter.

Since we know that Qθ (k) is unitary, if we post-multiply this matrix by its first
row transposed, it follows that

Qθ (k)

[
γ(k)
g(k)

]
=

[
1

0

]
. (3.109)

From (3.65), we have g(k) = −γ(k)λ−1/2
U−T(k − 1)x(k). For convenience, we

define
a(k) = −γ−1(k)g(k) = λ

−1/2
U−T(k−1)x(k) (3.110)

and rewrite (3.109) as

Qθ (k)

[
1

−a(k)

]
=

[
γ−1(k)

0

]
. (3.111)

3 Conventional and Inverse QRD-RLS Algorithms 77

This expression, if we know a(k), provides Qθ (k). At this point, it is relevant

to observe that (3.69), rewritten as λ−1/2
E(k)U−T(k− 1) = U−T(k), suggests that

U−T(k− 1) can be updated with the same matrix that updates U(k− 1). In fact, if

we rotate
[

0 λ−1/2
U−1(k−1)

]T
with Qθ (k), we obtain

[
γ(k) gT(k)
f(k) E(k)

][
0T

λ−1/2
U−T(k−1)

]
=

[
λ−1/2

gT(k)U−T(k−1)
U−T(k)

]
. (3.112)

For convenience, we define u(k) = λ−1/2
U−1(k−1)g(k). Using vector a(k) from

(3.110), this vector can be expressed as

u(k) = −λ
−1/2

γ(k)U−1(k−1)a(k), (3.113)

or, using (3.62), (3.68), and (3.69), as

u(k) = −γ−1(k)U−1(k)U−T(k)x(k). (3.114)

Finally, with this last equation, (3.108) can be rewritten as

w(k) = w(k−1)− e(k)γ(k)u(k), (3.115)

where the Kalman vector is now expressed as −γ(k)u(k).
By combining (3.112) and (3.111) in one single equation, we have

[
1/γ(k) uT(k)

0 U−T(k)

]
= Qθ (k)

[
1 0T

−a(k) λ−1/2
U−T(k−1)

]
. (3.116)

Equation (3.116) is a key relation to the inverse QRD-RLS algorithm, which
equations are presented in Table 3.4. A pseudo-code of the (lower-triangularization
version) inverse QRD-RLS algorithm is available in Appendix 3 (Table 3.6).

To close this section, we note that Equation (3.45) can be added to (3.116), i.e,

[
γ−1(k) uT(k) eq1(k)

0 U−T(k) dq2(k)

]
=Qθ (k)

[
1 0T d(k)

−a(k) λ−1/2
U−T(k−1) λ 1/2

dq2(k−1)

]

(3.117)
The resulting set of equations is known as the extended QRD-RLS algorithm. It was
presented in [12], before the inverse QRD-RLS algorithm [11].

3.7 Conclusion

This chapter presented concepts and derivations of the basic algorithms belonging
to the QRD-RLS family: the conventional and the inverse QRD-RLS algorithms.
We started by noting that the QR decomposition, when applied to solve the LS

78 José A. Apolinário Jr. and Maria D. Miranda

Table 3.4 The inverse QRD-RLS equations.

IQRD-RLS
for each k
{ Obtaining a(k):

a(k) = U−H(k−1)x(k)/
√
λ

Obtaining Qθ (k) and γ(k):[
1/γ(k)

0

]
= Qθ (k)

[
1

−a(k)

]

Obtaining u(k) and updating U−H(k):[
uH(k)

U−H(k)

]
= Qθ (k)

[
0T

λ−1/2
U−H(k−1)

]

Obtaining the a priori error e(k):
e(k) = d(k)−wH(k−1)x(k)
Updating the coefficient vector:
w(k) = w(k−1)− γ(k)e∗(k)u(k)

}

problem, comprises the rotation of the space spanned by the columns of the input
data matrix. The relationship between the conventional LS and the QRD-LS meth-
ods was established and the orthogonality principle was shown in the rotate signal
domain.

Using the recursive structure of the data matrix, the rotated RLS solution of
(3.45) follows. It is worth mentioning that, if we apply the transformation

[
γ(k) 0T

0 U(k)

]
(3.118)

in the filtering and adaptation operations of the RLS algorithm, i.e.,

[
e(k)
w(k)

]
=

[
1 −xT(k)

R−1(k)x(k) I−R−1(k)x(k)xT(k)

][
d(k)

w(k−1)

]
, (3.119)

after some algebra, the same conventional QRD-RLS algorithm of (3.45) follows,
that is, [

eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ 1/2
dq2(k−1)

]
. (3.120)

In fact, with the change of coordinates, the system described in (3.119) can be
transformed into another system, with different internal descriptions, but with the
same input–output behavior for solving the LS problem. Although theoretically
equivalent, the resulting system may have different numerical behavior when imple-
mented in finite precision arithmetics [13]. Concerning specially the transformed
system in (3.120), it is possible to find a numerically robust algorithm, e.g., those
in [8, 14].

3 Conventional and Inverse QRD-RLS Algorithms 79

In Section 3.5, the structure of matrix Qθ (k) and the physical interpretation of
its internal variables were presented. From the known structure of matrix Qθ (k),
the IQRD-RLS algorithm was easily obtained. This algorithm, besides the inherited
numerical robustness of its family, provides the coefficient vector at every itera-
tion, without having to resort to the computationally onerous backward or forward
substitution procedures. With the interpretation of the internal variables of Qθ (k),
expressed in terms of backward and forward prediction errors, we have also pro-
vided all necessary tools to help readers understand the forthcoming chapters of this
book.

It is worth mentioning that the QRD-RLS algorithms addressed in this chapter
present a computational complexity of O[N2] and preserve the desirable fast con-
vergence property of the conventional RLS algorithm. Hence, assuming an infinite-
precision environment, the outcomes of both algorithms (the RLS and the QRD-
RLS, conventional or inverse), once initialized in an equivalent form, are identical in
terms of speed of convergence and quality of estimation. Since the solution obtained
by the QRD-RLS algorithm corresponds to the solution of the RLS algorithm from
a transformed domain, the good numerical behavior can be presumed as a direct
consequence of this transformation.

Appendix 1 - Forward and Back-Substitution Procedures

In order to show two possible procedures used to obtaining the coefficient vec-
tor with one order of magnitude less computational complexity than matrix inver-
sion [15], consider the following system of equations:

Ux = y, (3.121)

where U is a (N +1)× (N +1) triangular matrix, as illustrated in Figure 3.1, and x
is the (N +1)×1 vector we need to obtain.

When U is upper triangular, we use the forward substitution procedure:

x1 =
yN+1

UN+1,1

xi =
1

U�,i

(
y� −

i−1

∑
j=1

U�, jx j

)
(3.122)

for i = 2,3, . . . ,N +1 and � = N − i+2.
When U is lower triangular, we use the back-substitution procedure:

xN+1 =
y1

U1,N+1

xi =
1

U�,i

(
y� −

N+1

∑
j=i+1

U�, jx j

)
(3.123)

for i = N,N −1, . . . ,1 and � = N − i+2.

80 José A. Apolinário Jr. and Maria D. Miranda

Appendix 2 - Square-Root-Free QRD-RLS Algorithms

The two-dimensional vector rotations, necessary to execute the QRD-RLS algo-
rithm, can be efficiently implemented using a CORDIC (COrdinate Rotation DIg-
ital Computer) processor [16, 17]. In systems based on general-purpose program-
able DSPs, vector rotations requires a SQuare-RooT (SQRT) operation, which may
eventually represent a bottleneck due to its significant computational burden. To cir-
cumvent this problem, many authors have proposed square-root-free methods for
performing Givens rotations. Gentleman, in his pioneer work [18], shows how to
perform the plane rotations without SQRT. After that, different versions of Givens
rotations without SQRT were introduced (see, e.g. [19–23]).

Among different implementations of rotations without SQRT, for the sake of sim-
plicity, we address the version introduced in [19]. We thus start with the following
rotation. [

cosθ1 −sinθ1

sinθ1 cosθ1

][
x1 x2

u1 u2

]
=

[
0 x′2
u′1 u′2

]
(3.124)

In order to have the first element of the first column nulled, the rotation angle is

such that cosθ1 = u1/u′1, sinθ1 = x1/u′1 and u′1 =
√

x2
1 +u2

1, which requires a SQRT
operation.

The main “trick” behind this class of algorithm is to scale the rows as follows.

xi = δ 1/2

1 x̄i

ui = d
1/2

1 ūi

u′i = d
1/2

2 ū′i

(3.125)

for i = 1,2 and, also, x′2 = δ 1/2

2 x̄′2. In terms of the new quantities, the Givens rotation
in (3.124) can be rewritten as

[
cosθ1 −sinθ1

sinθ1 cosθ1

][
δ 1/2

1 0

0 d
1/2

1

][
x̄1 x̄2

ū1 ū2

]
=

[
δ 1/2

2 0

0 d
1/2

2

][
0 x̄′2
ū′1 ū′2

]
. (3.126)

By rearranging the transformations, we obtain

Ḡ

[
x̄1 x̄2

ū1 ū2

]
=

[
0 x̄′2
ū′1 ū′2

]
, (3.127)

where

Ḡ =
[

cosθ1
√

δ1/δ2 −sinθ1
√

d1/δ2

sinθ1
√

δ1/d2 cosθ1
√

d1/d2

]
. (3.128)

We now rewrite cosθ1 in terms of the new quantities:

cosθ1 =
u1

u′1
=

d
1/2

1 ū1

d
1/2

2 ū′1
. (3.129)

3 Conventional and Inverse QRD-RLS Algorithms 81

To find an adequate scale factor, we set

cosθ1 =
√

d2/d1 =
√

δ2/δ1. (3.130)

From (3.129) and (3.130), it follows that d2ū′1 = d1ū1. Therefore

sinθ1 =
x1

u′1
=

δ 1/2

1 x̄1

d
1/2

2 ū′1
=

d
1/2

2 δ 1/2

1 x̄1

d1ū1
, (3.131)

sinθ1

√
δ1/d2 =

d
1/2

2 δ 1/2

1 x̄1

d1ū1

δ 1/2

1

d
1/2

2

=
δ1x̄1

d1ū1
, and (3.132)

sinθ1

√
d1/δ2 =

d
1/2

2 δ 1/2

1 x̄1

d1ū1

d1
1/2

δ 1/2

2

=
x̄1

ū1

d
1/2

2

d
1/2

1

δ 1/2

1

δ 1/2

2

=
x̄1

ū1
. (3.133)

Thus, we can write (3.128) as

Ḡ =

[
1 − x̄1

ū1
δ2 x̄1
d2ū1

1

]
. (3.134)

From (3.130), we have

d2 = d1 cos2 θ1, and (3.135)

δ2 = δ1 cos2 θ1. (3.136)

From (3.130) and (3.131), it appears that

sin2 θ1

cos2 θ1
=

δ1x̄2
1

d1ū2
1

, (3.137)

such that cos2 θ1 can be obtained with

cos2 θ1 = (1+ sin2 θ1/cos2 θ1)−1 = (1+
δ1x̄2

1

d1ū2
1

)−1. (3.138)

As a result, the update formula in (3.127) with Ḡ as in (3.134) and their elements
computed with (3.138, 3.135, 3.136) shall avoid the use of SQRT.

Appendix 3 - Pseudo-Codes

In the following, we present the pseudo-codes for the conventional and the inverse
QRD-RLS algorithms. In both cases, we present their complex versions employing
the Cholesky vector with lower triangular matrices.

82 José A. Apolinário Jr. and Maria D. Miranda

Table 3.5 Pseudo-code for the conventional QRD-RLS algorithm.

QRD-RLS

% Initialization:
N (filter order), δ (small constant), λ (forgetting factor)
U(k−1) = δJN+1; (JN+1 being the reversal matrix)
w(k) = 0(N+1)×1; (if necessary) dq2(k−1) = 0(N+1)×1;

for k = 1,2, . . .
{ xaux = xH(k); % xaux(n) = x∗(k−n−1) for n = 1 : N +1

Uaux = λ 1/2
U(k−1); % Uaux(n,m) = λ 1/2

[U(k−1)]n,m for n,m = 1 : N +1
daux = d∗(k);
dq2aux = λ 1/2

dq2(k−1);
gamma = 1;
for n = 1 : N +1
{ % Obtaining Qθ (k) and updating U(k):

cosθn−1(k) = |Uaux(N +2−n,n)|√
|xaux(n)|2+|Uaux(N +2−n,n)|2

;

sinθn−1(k) =
(

xaux(n)
Uaux(N +2−n,n)

)∗
cosθn−1(k);

xaux(n) = 0;
Uaux(N +2−n,n) = sinθn−1(k)xaux(n)+ cosθn−1(k)Uaux(N +2−n,n);
for m = n+1 : N +1
{ oldxaux = xaux(m);

xaux(m) = cosθn−1(k)oldxaux− sin∗θn−1(k)Uaux(N +2−n,m);
Uaux(N +2−n,m)= sinθn−1(k)oldxaux+ cosθn−1(k)Uaux(N +2−n,m);

}
% Obtaining γ(k):
gamma = gamma cosθn−1(k);
% Obtaining eq1(k) and updating dq2(k):
olddaux = daux;
daux = cosθn−1(k).olddaux− sin∗θn−1(k)dq2aux(N +2−n);
dq2aux(N +2−n) = sinθn−1(k)olddaux+ cosθn−1(k)dq2aux(N +2−n);
% Back-substitution, if necessary:
summa= 0;
for m = 1 : (n−1)
{ summa = summa+Uaux(n,N +2−m)[w(k)]N+2−n;
}
[w(k)]N+2−n = (dq2aux(n)-summa)/Uaux(n,N +2−n);

}
U(k) = Uaux;
γ(k) = gamma;
dq2(k) = dq2aux;
eq1(k) = daux;
% Obtaining the estimation errors:
ε(k) = e∗q1(k)γ(k); % a posteriori error, i.e, d(k)−wH(k)x(k)
e(k) = e∗q1(k)/γ(k); % a priori error, i.e, d(k)−wH(k−1)x(k)

}

3 Conventional and Inverse QRD-RLS Algorithms 83

Table 3.6 Pseudo-code for the inverse QRD-RLS algorithm.

IQRD-RLS

% Initialization:
N (filter order), δ (small constant), λ (forgetting factor)
UH(k−1) = 1

δ JN+1; (JN+1 being the reversal matrix)
w(k) = 0(N+1)×1; dq2(k−1) = 0(N+1)×1;

for k = 1,2, . . .
{ % Obtaining a(k):

akaux = 0(N+1)×1;

xaux = λ−1/2
x(k);

for n = 1 : N +1
for m = 1 : (N +2−n)
{ akaux(n) = akaux(n)+ [U−H(k−1)]n,mxaux(m);
}

}
a(k) = akaux;
% Obtaining Qθ (k) and γ(k):
igamma = 1;
for n = 1 : N +1

aux1 =
√

|igamma|2 + |akaux(N +2−n)|2;

cosθn−1(k) = |igamma|
aux1 ;

sinθn−1(k) = akaux(N +2−n)
igamma cosθn−1(k);

igamma = aux1; % or cosθn−1(k)igamma+ sin∗θn−1(k)akaux(N +2−m);
}
γ(k) = 1/igamma;
% Obtaining u(k) and updating U−H(k):
uHaux = 0(N+1)×1;

UmHaux = λ−1/2
U−H(k−1);

for n = 1 : N +1
for m = 1 : n
{ aux2 = uHaux(m);

uHaux(m) = cosθn−1(k)aux2− sin∗θn−1(k)UmHaux(N +2−n,m);
UmHaux(N +2−n,m) = sinθn−1(k)aux2+ · · ·

· · ·+ cosθn−1(k)UmHaux(N +2−n,m);
}

}
u(k) = uHaux∗;
U−H(k) = UmHaux;
% Obtaining e(k):
e(k) = d(k)−wH(k−1)x(k); % a priori error
% Updating the coefficient vector:
w(k) = w(k−1)− γ(k)e∗(k)u(k);

}

84 José A. Apolinário Jr. and Maria D. Miranda

In order to provide a better understanding of a Givens rotation matrix, for the case
of a complex vector, we give a simple example: consider vector z = [a b]T where
a and b are complex numbers and we want to rotate this vector by pre-multiplying
matrix Qθ such that the resulting vector has the same norm but one element was
annihilated. This can be carried out as follows.

1. Qθ z =
[

cosθ −sin∗ θ
sinθ cosθ

][
a
b

]
=

[
α
0

]

For this case, the values of the cosine and the sine of θ are given by

{
cosθ = |a|√

|a|2+|b|2
, and

sinθ =
(
− b

a

)∗
cosθ .

This definition was used in the conventional QRD-RLS algorithm in order to
obtain Qθ .

2. Qθ z =
[

cosθ −sin∗ θ
sinθ cosθ

][
a
b

]
=

[
0
α

]

For this second case, the values of the cosine and the sine of θ are given by
{

cosθ = |b|√
|a|2+|b|2

, and

sinθ =
(
− a

b

)∗
cosθ .

These expressions were used in inverse QRD-RLS algorithm to obtain Qθ .

In both cases, α has the same norm of z and may be expressed as ±e jφ
√

|a|2 + |b|2
where φ is the phase of a (first case) or b (second case). Qθ can also be chosen
slightly different in order to compensate this phase and produce a real number, the
norm of z, instead of ±e jφ ||z||.

A pseudo-code for the conventional QRD-RLS algorithm is presented in
Table 3.5 while a pseudo-code for the inverse QRD-RLS algorithm is presented
in Table 3.6, both employing lower triangular Cholesky factors.

References

1. S. Haykin, Adaptive Filter Theory. 4th edition Prentice-Hall, Englewood Cliffs, NJ, USA
(2002)

2. P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition
Springer, New York, NY, USA (2008)

3. G. H. Golub and C. F. Van Loan, Matrix Computations. 2nd edition John Hopkins University
Press, Baltimore, MD, USA (1989)

4. R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, New York, NY,
USA (1986)

3 Conventional and Inverse QRD-RLS Algorithms 85

5. W. Givens, Computation of plane unitary rotations transforming a general matrix to triangular
form. Journal of the Society for Industrial and Applied Mathematics, vol. 6, no. 1, pp. 26–50
(March 1958)

6. W. H. Gentleman and H. T. Kung, Matrix triangularization by systolic arrays. SPIE Real-Time
Signal Processing IV, vol. 298, pp. 19–26 (January 1981)

7. J. G. McWhirter, Recursive least-squares minimization using a systolic array. SPIE Real-Time
Signal Processing VI, vol. 431, pp. 105–112 (January 1983)

8. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no. 4,
pp. 879–891 (April 1991)

9. N. E. Hubing and S. T. Alexander, Statistical analysis of initialization methods for RLS adap-
tive filters. IEEE Transactions on Signal Processing, vol. 39, no. 8, pp. 1793–1804 (August
1991)

10. P. S. R. Diniz and M. G. Siqueira, Fixed-point error analysis of the QR-recursive least square
algorithm. IEEE Transactions on Circuits and Systems–II: Analog and Digital Signal Pro-
cessing, vol. 42, no. 5, pp. 334–348 (May 1995)

11. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

12. J. E. Hudson and T. J. Shepherd, Parallel weight extraction by a systolic least squares algo-
rithm. SPIE Advanced Algorithms and Architectures for Signal Processing IV, vol. 1152,
pp. 68–77 (August 1989)

13. S. Ljung and L. Ljung, Error propagation properties of recursive least-squares adaptation
algorithms. Automatica, vol. 21, no. 2, pp. 157–167 (March 1985)

14. M. D. Miranda and M. Gerken, Hybrid least squares QR-lattice algorithm using a priori errors.
IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 2900–2911 (December 1997)

15. G. Strang, Computational Science and Engineering. Wellesly-Cambridge Press, Wellesley,
MA, USA (2007)

16. B. Haller, J. Götze and J. R. Cavallaro, Efficient implementation of rotation operations
for high performance QRD-RLS filtering. IEEE International Conference on Application-
Specific Systems, Architectures and Processors, ASAP’97, Zurich, Switzerland, pp. 162–174
(July 1997)

17. J. E. Volder, The CORDIC Trigonometric Computing Technique. IRE Transactions on Elec-
tronic Computers, vol. EC-8, no. 3, pp. 330–334 (September 1959)

18. W. M. Gentleman, Least squares computations by Givens transformations without square
roots. IMA Journal of Applied Mathematics, vol. 12, no. 3, pp. 329–336 (December 1973)

19. S. Hammarling, A note on modifications to the Givens plane rotation. IMA Journal of Applied
Mathematics vol. 13, no. 2, pp. 215–218 (April 1974)

20. J. L. Barlow and I. C. F. Ipsen, Scaled Givens rotations for the solution of linear least squares
problems on systolic arrays. SIAM Journal on Scientific and Statistical Computing, vol. 8,
no. 5, pp. 716–733 (September 1987)

21. J. Götze and U. Schwiegelshohn, A square root and division free Givens rotation for solving
least squares problems on systolic arrays. SIAM Journal on Scientific and Statistical Com-
puting, vol. 12, no. 4, pp. 800–807 (July 1991)

22. E. N. Frantzeskakis and K. J. R. Liu, A class of square root and division free algorithms
and architectures for QRD-based adaptive signal processing. IEEE Transactions on Signal
Processing, vol. 42, no. 9, pp. 2455–2469 (September 1994)

23. S. F. Hsieh, K. J. R. Liu, and K. Yao, A unified square-root-free approach for QRD-based
recursive-least-squares estimation. IEEE Transactions on Signal Processing, vol. 41, no. 3,
pp. 1405–1409 (March 1993)

Chapter 4
Fast QRD-RLS Algorithms

José A. Apolinário Jr. and Paulo S. R. Diniz

Abstract Although numerically robust, the QR-decomposition recursive least-
squares (QRD-RLS) algorithms studied in the previous chapter are computation-
ally intensive, requiring a number of mathematical operations in the order of N2,
or O[N2], N being the order of the adaptive filter. This chapter describes the so-
called fast QRD-RLS algorithms, i.e., those computationally efficient algorithms
that, besides keeping the attractive numerical robustness of the family, benefit from
the fact that the input signal is a delay line, reducing the complexity to O[N]. The
fast versions of the QRD-RLS algorithms using real variables are classified and
derived. For each algorithm, we present the final set of equations as well as their
pseudo-codes in tables. For the main algorithms, their descriptions are given utiliz-
ing complex variables.

4.1 Introduction

Usually the choice of a given adaptive filtering algorithm for an application relies
on a number of properties such as speed of convergence, steady-state behavior in
stationary environments, and tracking capability in non-stationary environments.
However, very often the algorithm choice is highly correlated to its computational
complexity. In the case of the recursive least-squares(RLS) family of algorithms,
their distinctive features are behavior in finite wordlength implementations and com-
putational burden.

José A. Apolinário Jr.
Military Institute of Engineering (IME), Rio de Janeiro – Brazil
e-mail: apolin@ieee.org

Paulo S. R. Diniz
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro – Brazil
e-mail: diniz@lps.ufrj.br

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 87
DOI 10.1007/978-0-387-09734-3 4, c© Springer Science+Business Media, LLC 2009

apolin@ieee.org
diniz@lps.ufrj.br

88 José A. Apolinário Jr. and Paulo S. R. Diniz

In case the application at hand has some structure related to the input signal
data vector, such as being composed by a tapped delay line, it is possible to
derive a number of algorithms with lower computational complexity collec-
tively known as fast algorithms.

From the conventional (O[N2]) QR decomposition method [1, 2], a number of
fast algorithms (O[N]) has been derived [3, 4]. These algorithms can be classified
in terms of the type of triangularization applied to the input data matrix (upper or
lower triangular) and type of error vector (a posteriori or a priori) involved in the
updating process. As it can be verified from the Gram–Schmidt orthogonalization
procedure, an upper triangularization of the data correlation matrix Cholesky factor
(in the notation adopted in this work) involves the updating of forward prediction
errors while a lower triangularization involves the updating of backward prediction
errors.

This chapter presents a classification of a family of fast QRD-RLS algorithms
along with their corresponding equations. Specifically, Table 4.1 shows how
the algorithms discussed here will be designated hereafter as well as the clas-
sification of the type of prediction problem the algorithms rely.

Table 4.1 Classification of the fast QRD-RLS algorithms.

Error Prediction
type Forward Backward

A posteriori FQR POS F [3] FQR POS B [5, 6]
A priori FQR PRI F [7] FQR PRI B [4, 8]

It is worth mentioning that the FQR PRI B algorithm was independently devel-
oped in [8] and in [4] using distinct approaches and leading to two different ver-
sions. The approach which will be used here [4] was derived from concepts used
in the inverse QRD-RLS algorithm [9]. The same algorithm (FQR PRI B) was also
derived in [10] as a lattice extension of the inverse QRD-RLS algorithm [11].

In the derivation of fast QRD-RLS algorithms, we start by applying the QR
decomposition to the backward and forward prediction problems whose predic-
tion errors were defined in the previous chapter. We aim the triangularization of the
extended order input data matrix X(N+2)(k), from the expressions involving back-
ward and forward predictions, in order to obtain Q(N+2)(k), such that

Q(N+2)(k)X(N+2)(k) =
[

0
U(N+2)(k)

]
, (4.1)

where the null matrix 0 above has dimension (k−N −1)× (N +2).

4 Fast QRD-RLS Algorithms 89

4.2 Upper Triangularization Algorithms
(Updating Forward Prediction Errors)

The first algorithms derived here are those based on forward prediction errors,
namely the FQR POS F [3] and the FQR PRI F [7] algorithms. These algorithms
are presented here for completeness, due to their historical importance, and to pave
the way for the next section which deals with a more attractive class of algorithm in
terms of complexity and stability. As such, we suggest to a reader more interested
in practical implementation to skip this section, and focus on the algorithms based
on the updating of backward prediction errors.

Let us start, from the definition of the weighted backward prediction error vector
eb(k) = db(k)−X(k)wb(k), by pre-multiplying the weighted backward desired vec-

tor db(k) =
[
x(k−N −1) · · · λ (k−N−1)/2x(0) 0T

N+1

]T
by Q(k) and use the recursive

structure of Q(k).1 As a result, two important relations follow.

‖ eb(k) ‖2 = e2
bq1

(k)+λ ‖ eb(k−1) ‖2, and (4.2)[
ebq1(k)
dbq2(k)

]
= Qθ (k)

[
db(k)

λ 1/2dbq2(k−1)

]
, (4.3)

where db(k) = x(k−N −1).
The (upper) triangularization, as seen in (4.1), of X(N+2)(k), as defined in the

previous chapter for the backward prediction problem, is achieved using three dis-
tinct matrices: Q(N+2)(k) = Q′

b(k)Qb(k)Q(k), where Qb(k) and Q′
b(k) are two sets

of Givens rotations applied to generate, respectively, ‖ eb(k) ‖ and ‖ e(0)
b (k) ‖. The

latter quantities are defined in the sequel. As a result, we have

U(N+2)(k) = Q′
θb(k)

[
0T ‖ eb(k) ‖

U(k) dbq2(k)

]

=
[

zT(k) ‖ e(0)
b (k) ‖

R(k) 0

]
, (4.4)

where Q′
θb(k) is a submatrix of Q′

b(k), [z(k)RT(k)]T is the left part of U(N+2)(k),
just excluding the last column, and ‖ e(0)

b (k) ‖ is the norm of the backward error of
a predictor whose number of coefficients is zero.

In the forward prediction problem, the pre-multiplication of the forward weighted

desired vector, d f (k) =
[
x(k) · · · λ k/2x(0)

]T
, by

[
Q(k−1) 0

0T 1

]
and the use of the

recurse expression of Q(k) in the weighted forward error vector e f (k) = d f (k)−

1 The recursive structure of Q(k) is expressed by Q(k) = Q̃(k)
[

1 0T

0 Q(k−1)

]
.

90 José A. Apolinário Jr. and Paulo S. R. Diniz

[
X(k−1)

0T

]
w f (k), leads to two other important relations given by

‖ e f (k) ‖2 = e2
f q1

(k)+λ ‖ e f (k−1) ‖2, and (4.5)[
e f q1(k)
d f q2(k)

]
= Qθ (k−1)

[
d f (k)

λ 1/2d f q2(k−1)

]
, (4.6)

where d f (k) = x(k).
The upper triangularization of U(N+2)(k) in the forward prediction problem is

implemented by pre-multiplying e f (k) by the product Q f (k)
[

Q(k−1) 0
0T 1

]
, where

Q f (k) is a set of Givens rotations generating ‖ e f (k) ‖ by eliminating the first k−N
elements of the rotated desired vector of the forward predictor. The result is

U(N+2)(k) =
[

d f q2(k) U(k−1)
‖ e f (k) ‖ 0T

]
. (4.7)

In order to avoid working with matrices of increasing dimensions, it is possible
to eliminate the identity matrices that are part of the rotation matrices and are the
source of the dimension increase. By eliminating these internal identity matrices,
one can show that [2]

Q(N+2)
θ (k) = Qθ f (k)

[
Qθ (k−1) 0

0T 1

]
, (4.8)

where Qθ f (k) is a single Givens rotation generating ‖ e f (k) ‖ as in (4.5).
If we take the inverses of (4.4) and (4.7), the results are

[U(N+2)(k)]−1 =

⎡
⎣ 0 R−1(k)

1

‖e(0)
b (k)‖

−zT(k)R−1(k)

‖e(0)
b (k)‖

⎤
⎦

=

⎡
⎣ 0T 1

‖e f (k)‖

U−1(k−1)
−U−1(k−1)d f q2

(k)
‖e f (k)‖

⎤
⎦ . (4.9)

We can use the expressions of [U(N+2)(k)]−1 given in (4.9) to obtain the vec-
tors f(N+2)(k + 1) and a(N+2)(k + 1). The choices of these vectors generate dis-
tinct algorithms, that is, updating f(k) (a posteriori forward errors) leads to the
FQR POS F algorithm [3] whereas updating a(k) (a priori forward errors) leads
to the FQR PRI F algorithm [7].

4.2.1 The FQR POS F algorithm

In the FQR POS F algorithm, vector f(N+2)(k + 1) = [U(N+2)(k + 1)]−T

x(N+2)(k + 1) is expressed in terms of the relations obtained in the forward and

4 Fast QRD-RLS Algorithms 91

backward prediction problems. We shall first use the expression for [U(N+2)(k)]−1

in (4.9) that comes from the backward prediction evaluated at instant k + 1 to cal-
culate f(N+2)(k +1). In this case, we replace x(N+2)(k +1) by [xT(k +1) x(k−N)]T

and then pre-multiply the result by Q′T
θb(k + 1). The outcome, after some alge-

braic manipulations (using Equation (4.4) to help with the simplification of the
expression), is

f(N+2)(k +1) = Q′
θb(k +1)

[
εb(k+1)

‖eb(k+1)‖
f(k +1)

]
. (4.10)

Using the expression for [U(N+2)(k)]−1 originated from the forward prediction
case, at instant k +1, and replacing x(N+2)(k +1) by [x(k +1) xT(k)]T, we obtain

f(N+2)(k +1) =

[
f(k)

ε f (k+1)
‖e f (k+1)‖

]
. (4.11)

By combining (4.10) and (4.11), it is possible to derive an expression to update
f(k), which is given by

[
εb(k+1)

‖eb(k+1)‖
f(k +1)]

]
= Q′

θb
T(k +1)

[
f(k)

ε f (k+1)
‖e f (k+1)‖

]
. (4.12)

Once we have f(k+1), we can extract the angles of Qθ (k+1) by post-multiplying
this matrix by the pinning vector [1 0 · · · 0]T. From the partitioned expression of
Qθ (k), we can see that the result is

Qθ (k +1)
[

1
0

]
=

[
γ(k +1)
f(k +1)

]
. (4.13)

However, the quantities required to compute the angles of Q′
θb

(k + 1) are not
available at instant k so that a special strategy is required. The updated Q′

θb
(k + 1)

is obtained [2, 12] with the use of vector c(k +1) defined as

c(k +1) = Q̂(N+2)
θ (k +1)Q′

θb(k)
[

1
0

]

= Q′
θb(k +1)

[
b
0

]
. (4.14)

The submatrix Q̂(N+2)
θ (k + 1) consisting of the last (N + 2)× (N + 2) elements

of Q(N+2)
θ (k +1) is available from (4.8) (forward prediction) and b does not need to

be explicitly calculated in order to obtain the angles θ ′
bi

.
Finally, the joint process estimation is calculated with the same expressions pre-

viously used for the conventional QRD-RLS algorithm. The FQR POS F equations
are presented in Table 4.2. A detailed description of this algorithm is found in
Appendix 1.

92 José A. Apolinário Jr. and Paulo S. R. Diniz

Table 4.2 The FQRD POS F equations.

FQR POS F
for each k
{ Obtaining e fq1

(k +1):[
e f q1 (k +1)
d f q2 (k +1)

]
= Qθ (k)

[
x(k +1)

λ 1/2d f q2 (k)

]

Obtaining Qθ f (k +1):
‖ e f (k +1) ‖=

√
e2

f q1
(k +1)+λ ‖ e f (k) ‖2

cosθ f (k +1) = λ 1/2 ‖ e f (k) ‖ / ‖ e f (k +1) ‖
sinθ f (k +1) = e f q1 (k +1)/ ‖ e f (k +1) ‖
Obtaining c(k +1):

Q(N+2)
θ (k +1) = Qθ f (k +1)

[
Qθ (k) 0

0T 1

]

Q̂(N+2)
θ (k +1) = last (N +2)× (N +2) elements of Q(N+2)

θ (k +1)

c(k +1) = Q̂(N+2)
θ (k +1)Q′

θb(k)
[

1
0

]

Obtaining Q′
θb(k +1):[

b
0

]
= Q′

θb
T(k +1)c(k +1)

Obtaining f(k +1):[
εb(k+1)

‖eb(k+1)‖
f(k +1)

]
= Q′

θb
T(k +1)

[
f(k)

ε f (k+1)
‖e f (k+1)‖

]

Obtaining Qθ (k +1):[
1
0

]
= QT

θ (k +1)
[
γ(k +1)
f(k +1)

]

Joint Process Estimation:[
eq1 (k +1)
dq2 (k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2 (k)

]

e(k +1) = eq1(k +1)/γ(k +1) % a priori error
ε(k +1) = eq1 (k +1)γ(k +1) % a posteriori error

}

4.2.2 The FQR PRI F algorithm

Expressing a(N+2)(k +1) = [U(N+2)(k)]−Tx(N+2)(k +1)/
√
λ in terms of the matri-

ces in (4.9) and pre-multiplying the expression for [U(N+2)(k)]−1 originated from
the backward prediction problem by Q′

θb(k)Q
′T
θb(k) yields

[
eb(k+1)√
λ‖eb(k)‖

a(k +1)

]
= Q′

θb
T(k)

[
a(k)

e f (k+1)√
λ‖e f (k)‖

]
. (4.15)

Given a(k +1), the angles of Qθ (k +1) are found through the following relation
obtained by post-multiplying QT

θ (k +1) by the pinning vector.

[
1/γ(k +1)

0

]
= Qθ (k +1)

[
1

−a(k +1)

]
(4.16)

4 Fast QRD-RLS Algorithms 93

By noting that the angles of Q′
θb

(k +1) can be updated with the same procedure
used in the FQR POS F algorithm, we already have all the necessary equations of
the fast QR-RLS algorithm as presented in Table 4.3. The detailed description of
this algorithm is also found in Appendix 1.

Table 4.3 The FQRD PRI F equations.

FQR PRI F
for each k
{ Obtaining e f (k +1):[

e f q1 (k +1)
d f q2 (k +1)

]
= Qθ (k)

[
x(k +1)

λ 1/2d f q2 (k)

]

e f (k +1) = e f q1 (k +1)/γ(k)
Obtaining a(k +1):[

eb(k+1)√
λ‖eb(k)‖

a(k +1)

]
= Q′

θb
T(k)

[
a(k)

e f (k+1)√
λ‖e f (k)‖

]

Obtaining Qθ f (k +1):
‖ e f (k +1) ‖=

√
e2

f q1
(k +1)+λ ‖ e f (k) ‖2

cosθ f (k +1) = λ 1/2 ‖ e f (k) ‖ / ‖ e f (k +1) ‖
sinθ f (k +1) = e f q1 (k +1)/ ‖ e f (k +1) ‖
Obtaining c(k +1):

Q(N+2)
θ (k +1) = Qθ f (k +1)

[
Qθ (k) 0

0T 1

]

Q̂(N+2)
θ (k +1) = last (N +2)× (N +2) elements of Q(N+2)

θ (k +1)

c(k +1) = Q̂(N+2)
θ (k +1)Q′

θb(k)
[

1
0

]

Obtaining Q′
θb(k +1):[

b
0

]
= Q′

θb
T(k +1)c(k +1)

Obtaining Qθ (k +1):[
1/γ(k +1)

0

]
= Qθ (k +1)

[
1

−a(k +1)

]

Joint Process Estimation:[
eq1 (k +1)
dq2 (k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2 (k)

]

e(k +1) = eq1(k +1)/γ(k +1) % a priori error
ε(k +1) = eq1 (k +1)γ(k +1) % a posteriori error

}

4.3 Lower Triangularization Algorithms
(Updating Backward Prediction Errors)

Following similar steps as in the upper triangularization, it is possible to obtain
the lower triangular matrix U(N+2)(k) from the forward and backward prediction
problems.

94 José A. Apolinário Jr. and Paulo S. R. Diniz

Before presenting the derivations, we remark that the fast QRD-RLS algo-
rithms with lower triangularization of the input data matrix or, equivalently,
updating backward prediction errors, are of minimal complexity and back-
ward stable under persistent excitation [5, 11].

In the backward prediction problem, the lower triangular U(N+2)(k) is obtained
through the use of Q(N+2)(k) = Qb(k)Q(k), where Qb(k) is a set of Givens rotations
applied to generate ‖ eb(k) ‖. The resulting Cholesky factor is

U(N+2)(k) =
[

0T ‖ eb(k) ‖
U(k) dbq2(k)

]
. (4.17)

On the other hand, in the forward prediction problem, the lower triangular matrix
U(N+2)(k) is formed by pre-multiplying the forward weighted error vector e f (k)

by the product Q′
f (k)Q f (k)

[
Q(k−1) 0

0T 1

]
, where Q f (k) and Q′

f (k) are two sets of

Givens rotations generating ‖ e f (k) ‖ and ‖ e(0)
f (k) ‖, respectively. The resulting

expression is

U(N+2)(k) = Q′
θ f (k)

[
d f q2(k) U(k−1)
‖ e f (k) ‖ 0T

]
=

[
0 R(k)

‖ e(0)
f (k) ‖ zT(k)

]
, (4.18)

where [RT(k) z(k)]T represents the last (N + 1) columns of U(N+2)(k). By consid-
ering the fact that (4.2), (4.3), (4.5), and (4.6) hold, ‖ e f (k) ‖ can be recursively
computed using (4.5).

Taking the inverse of (4.17) and (4.18), we have the following results:

[U(N+2)(k)]−1 =

[−U−1(k)dbq2
(k)

‖eb(k)‖ U−1(k)
1

‖eb(k)‖ 0T

]

=

⎡
⎣

−zT(k)R−1(k)

‖e(0)
f (k)‖

1

‖e(0)
f (k)‖

R−1(k) 0

⎤
⎦ . (4.19)

With the results obtained from (4.19), we can once more express vectors

f(N+2)(k + 1) and a(N+2)(k + 1) in terms of the submatrices of
[
U(N+2)(k +1)

]−1
.

If we update f(k), the resulting algorithm is the FQR POS B whereas, by updating
a(k), one generates the FQR PRI B algorithm.

4 Fast QRD-RLS Algorithms 95

4.3.1 The FQR POS B algorithm

Expressing f(N+2)(k + 1) = [U(N+2)(k + 1)]−Tx(N+2)(k + 1) in terms of the matrix
in (4.19) originating from the the forward prediction problem, and pre-multiplying
the resulting expression by Q′

θ f (k +1)Q′T
θ f (k +1) yields

[
εb(k+1)

‖eb(k+1)‖
f(k +1)

]
= Q′

θ f
(k +1)

[
f(k)

ε f (k+1)
‖e f (k+1)‖

]
. (4.20)

For this particular algorithm, we provide extra implementation details which
are similar to the other fast QRD-RLS algorithms. We start by pointing out that
matrix Q′

θ f
(k) in (4.20) corresponds to the set of rotations used in (4.18) to

eliminate d f q2(k) over ||e f (k)|| such that the resulting matrix U(N+2)(k) is lower
triangular.

Therefore, making explicit the structure of Q′
θ f

(k), the part of (4.18) given by the

product Q′
θ f

(k)
[
dT

f q2
(k) ‖ e f (k) ‖

]T
can be expressed as

[
0

‖ e(0)
f (k) ‖

]
= Q′

θ f (k)
[

d f q2(k)
‖ e f (k) ‖

]
=

⎡
⎣

IN 0 0
0T cosθ ′

fN
(k) −sinθ ′

fN
(k)

0T sinθ ′
fN

(k) cosθ ′
fN

(k)

⎤
⎦ · · ·

· · ·

⎡
⎣

cosθ ′
f0
(k) 0T −sinθ ′

f0
(k)

0 IN 0
sinθ ′

f0
(k) 0T cosθ ′

f0
(k)

⎤
⎦

⎡
⎢⎢⎢⎣

d f q21(k)
...

d f q2N+1(k)
‖ e(N+1)

f (k) ‖

⎤
⎥⎥⎥⎦ ,

︸ ︷︷ ︸⎡
⎢⎢⎢⎢⎢⎣

0
...

d f q2N+1 (k)
‖ e(N)

f (k) ‖

⎤
⎥⎥⎥⎥⎥⎦

(4.21)

where, for this first multiplication, the quantity cosθ ′
f0
(k)d f q21(k) −

sinθ ′
f0
(k) ‖ e(N+1)

f (k) ‖ was made zero and the quantity sinθ ′
f0
(k)d f q21(k) +

cosθ ′
f0
(k) ‖ e(N+1)

f (k) ‖ corresponds to ‖ e(N)
f (k) ‖.

In the ith multiplication, for i ranging from 1 to N +1, we have:

{
cosθ ′

fi−1
(k)d f q2i(k) = sinθ ′

fi−1
(k) ‖ e(N+2−i)

f (k) ‖
‖ e(N+1−i)

f (k) ‖= sinθ ′
fi−1

(k)d f q2i(k)+ cosθ ′
fi−1

(k) ‖ e(N+2−i)
f (k) ‖

(4.22)

The two expressions in (4.22) are represented graphically in Figure 4.1. From this

figure, one clearly observes that ‖ e(N+1−i)
f (k) ‖ can also be computed as follows.

96 José A. Apolinário Jr. and Paulo S. R. Diniz

e(N+2−i)
f (k)

θ fi−1
(k)

θ fi−1
(k)

d fq2i (k)

e
(N+

1−i
)

f

(k)

cosθ f i−1
(k)

e
(N+

2−i
)

f

(k)

sin
θ f i−1

(k)
d fq2

i
(k)

Fig. 4.1 Multiplication of Q′
θ fi

(k): computing cosθ ′
fi−1

(k) and sinθ ′
fi−1

(k).

‖ e(N+1−i)
f (k) ‖=

√
d2

f q2i
(k)+ ‖ e(N+2−i)

f (k) ‖2 (4.23)

After computing ‖ e(N+1−i)
f (k) ‖, the sine and the cosine are given below.

⎧
⎪⎪⎨
⎪⎪⎩

cosθ ′
fi−1

(k) =
‖e(N+2−i)

f (k)‖

‖e(N+1−i)
f (k)‖

sinθ ′
fi−1

(k) =
d f q2i

(k+1)

‖e(N+1−i)
f (k)‖

(4.24)

In the derivation of (4.20), it can be observed that the last element of f(k + 1)
is x(k+1)

‖e(0)
f (k+1)‖

. The term
ε f (k+1)

‖e f (k+1)‖ can be calculated as γ(k)sinθ f (k + 1) where

sinθ f (k +1) =
e f q1

(k+1)
‖e f (k+1)‖ is the sine of the angle of rotation matrix Q f (k +1).

Using or not this information, the prior knowledge of the last element of f(k+1),
leads to two distinct versions of the FQR POS B algorithm. The first version [6]
uses this information as following discussed. Multiplying (4.20) by Q′T

θ f , we obtain

the relation (4.25) with εb(k+1)
‖eb(k+1)‖ being represented by f0(k + 1), ε f (k+1)

‖e f (k+1)‖ by

fN+2(K), and the ith element of f(k) by fi(k), for i ranging from 1
to N +1.

4 Fast QRD-RLS Algorithms 97

[
f(k)

fN+2(k)

]
=

⎡
⎢⎢⎢⎣

f1(k)
...

fN+1(k)
fN+2(k)

⎤
⎥⎥⎥⎦ = Q′T

θ f (k)
[

f0(k +1)
f(k +1)

]

=

⎡
⎣

cosθ ′
f0
(k) 0T sinθ ′

f0
(k)

0 IN 0
−sinθ ′

f0
(k) 0T cosθ ′

f0
(k)

⎤
⎦ · · · Q′T

θ fN+1−i
(k +1) · · ·

· · ·

⎡
⎣

IN 0 0
0T cosθ ′

fN
(k) sinθ ′

fN
(k)

0T −sinθ ′
fN

(k) cosθ ′
fN

(k)

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎣

f0(k +1)
...

fN−1(k +1)
fN(k +1)

fN+1(k +1)

⎤
⎥⎥⎥⎥⎥⎦

,

︸ ︷︷ ︸
⎡
⎢⎢⎢⎢⎢⎢⎣

f0(K +1)
...

fN−1(k +1)
fN+1(k)

aux1

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.25)

In the last multiplication above, the results (as shown below the underbrace) denoted
by fN+1(k) and aux1 are such that, for the ith multiplication (with i from 1 to N +1),
we have:

fN+2−i(k) = cosθ ′
fN+1−i

(k +1) fN+1−i(k +1)

−sinθ ′
fN+1−i

(k +1)auxi−1 (4.26)

auxi = −sinθ ′
fN+1−i

(k +1) fN+1−i(k +1)

+cosθ ′
fN+1−i

(k +1)auxi−1 (4.27)

where aux0 = fN+1(k +1) is the last element of f(k +1) which is known a priori.
From (4.26), we can easily obtain fN+1−i(k + 1) as in Equation (4.28) and with

this value compute auxi in (4.27) such that fN+2(k) = auxN+1 (which is actually not
used afterwards).

fN+1−i(k +1) =
fN+2−i(k)− sinθ ′

fN+1−i
(k +1)auxi−1

cosθ ′
fN+1−i

(k +1)
(4.28)

In the second version of this algorithm [5], we compute first
e f (k+1)

‖e f (k+1)‖ =
γ(k)e f q1

(k+1)
‖e f (k+1)‖ and then (4.20) is used in a straightforward manner.

Once we have f(k + 1), we find Qθ (k + 1) with the same relation used in the
upper triangularization algorithms, (4.13). Moreover, the joint process estimation
is carried out in the same manner as in the forward prediction-based algorithms.

98 José A. Apolinário Jr. and Paulo S. R. Diniz

Table 4.4 The FQR POS B algorithm.

FQR POS B
for each k
{ Obtaining d f q2 (k +1):[

e f q1 (k +1)
d f q2 (k +1)

]
= Qθ (k)

[
x∗(k +1)

λ 1/2d f q2 (k)

]

Obtaining ‖ e f (k +1) ‖:
‖ e f (k +1) ‖=

√
|e f q1 (k +1)|2 +λ ‖ e f (k) ‖2

Obtaining Q′
θ f (k +1):[

0
‖ e(0)

f (k +1) ‖

]
= Q′

θ f (k +1)
[

d f q2 (k +1)
‖ e f (k +1) ‖

]

Obtaining f(k +1):[
εb(k+1)

‖eb(k+1)‖
f(k +1)

]
= Q′

θ f (k +1)

[
f(k)

ε f (k+1)
‖e f (k+1)‖

]

Obtaining Qθ (k +1):[
1
0

]
= QT

θ (k +1)
[
γ(k +1)
f(k +1)

]

Joint Process Estimation:[
eq1 (k +1)
dq2 (k +1)

]
= Qθ (k +1)

[
d∗(k +1)
λ 1/2dq2 (k)

]

e(k +1) = e∗q1
(k +1)/γ(k +1) % a priori error

ε(k +1) = e∗q1
(k +1)γ(k +1) % a posteriori error

}

As a result, we have now available all the required expressions composing the
FQR POS B algorithm as presented in Table 4.4. The detailed descriptions of two
different versions of this algorithm is found in Appendix 2.

4.3.2 The FQR PRI B algorithm

This last algorithm of this family is obtained by expressing vector a(N+2)(k + 1) =
[U(N+2)(k)]−Tx(N+2)(k + 1)/

√
λ in terms of the expression for

[U(N+2)(k)]−1 in (4.19) originated from the forward prediction problem. Next, by
pre-multiplying a(N+2)(k + 1) by Q′

θ f (k)Q
′T
θ f (k), the following updating equation

results. [
eb(k+1)√
λ‖eb(k)‖

a(k +1)

]
= Q′

θ f (k)

[
a(k)

e f (k+1)√
λ‖e f (k)‖

]
(4.29)

It is again important to mention that the last element of a(k + 1) in (4.29) is

already known to be equal to x(k+1)√
λ‖e(0)

f (k)‖
. This fact leads to two different versions

of the same algorithm: the same approach used in (4.20) for vector f(k) can be
employed here for vector a(k).

4 Fast QRD-RLS Algorithms 99

Table 4.5 The FQR PRI B algorithm.

FQR PRI B
for each k
{ Obtaining d f q2 (k +1):[

e f q1 (k +1)
d f q2 (k +1)

]
= Qθ (k)

[
x∗(k +1)

λ 1/2d f q2 (k)

]

Obtaining a(k +1):[
eb(k+1)√
λ‖eb(k)‖

a(k +1)

]
= Q′

θ f (k)

[
a(k)

e f (k+1)√
λ‖e f (k)‖

]

Obtaining ‖ e f (k +1) ‖:
‖ e f (k +1) ‖=

√
|e f q1 (k +1)|2 +λ ‖ e f (k) ‖2

Obtaining Q′
θ f (k +1):[

0
‖ e(0)

f (k +1) ‖

]
= Q′

θ f (k +1)
[

d f q2 (k +1)
‖ e f (k +1) ‖

]

Obtaining Qθ (k +1):[
1/γ(k +1)

0

]
= Qθ (k +1)

[
1

−a(k +1)

]

Joint Process Estimation:[
eq1 (k +1)
dq2 (k +1)

]
= Qθ (k +1)

[
d∗(k +1)
λ 1/2dq2 (k)

]

e(k +1) = e∗q1
(k +1)/γ(k +1) % a priori error

ε(k +1) = e∗q1
(k +1)γ(k +1) % a posteriori error

}

Once more, if we have a(k + 1), we can find Qθ (k + 1) using (4.16) and the
joint process estimation is carried out as seen in the previous chapter, i.e., updating
dq2(k) from d(k) and dq2(k− 1) as well as computing the error (a priori or a pos-
teriori) from the rotated error eq1(k). The FQR PRI B equations are presented in
Table 4.5. The detailed descriptions of the two versions of this algorithm is found in
Appendix 2.

In terms of computational complexity, Table 4.6 shows the comparisons among
the four fast QRD algorithms according to their detailed pseudo-codes in Appen-
dices 1 and 2. Note that p = N +1 is the number of coefficients.

Table 4.6 Comparison of computational complexity.

ALGORITHM ADD MULT. DIV. SQRT

FQR POS F [3] 10p+3 26p+10 3p+2 2p+1

FQR PRI F [7] 10p+3 26p+11 4p+4 2p+1

FQR POS B (VERSION 1) [6] 8p+1 19p+4 4p+1 2p+1
FQR POS B (VERSION 2) [5] 8p+1 20p+5 3p+1 2p+1

FQR PRI B (VERSION 1) [4] 8p-1 19p+2 5p+1 2p+1
FQR PRI B (VERSION 2) [8] 8p+1 20p+6 4p+2 2p+1

100 José A. Apolinário Jr. and Paulo S. R. Diniz

4.4 The Order Recursive Versions of the Fast QRD Algorithms

The fast QRD-RLS algorithms employing lower triangularization of the input
data matrix are known as “hybrid QR-lattice least squares algorithms”. It is clear
from previous sections that these algorithms may update the a posteriori or the
a priori backward prediction errors. Moreover, they are known for their robust
numerical behavior and minimal complexity but lack the pipelining property of the
lattice algorithms.

The main goal of this section is the presentation of the order recursive (or lat-
tice) versions of the fast QR algorithms using a posteriori and a priori back-
ward errors or FQR POS B and FQR PRI B algorithms according to our clas-
sification. The equations of these algorithms are combined in an order recur-
sive manner such that they may be represented as increasing order single-loop
lattice algorithms [13]. These order recursive versions can then be implemented
with a modular structure, which utilizes a unique type of lattice stage for each
algorithm.

Before their derivation, in order to help their understanding, let us specify in
Table 4.7 the meaning of each variable used in both algorithms. It is worth men-

Table 4.7 Summary of variables used in FQR POS B and FQR PRI B algorithms.

d f q(k) : rotated forward desired vector
d f q2(k) : last N +1 elements of d f q(k)

e f (k) : forward error vector
‖ e f (k) ‖ : norm of e f (k)

e f q(k) : rotated e f (k)
e f q1 (k) : first element of e f q(k)
Qθ (k) : Givens matrix (updates the Cholesky factor)

x(k) : input signal
λ : forgetting factor

Q′
θ f (k +1) : Givens matrix that annihilates d f q2(k +1) in (4.18)

‖ e(0)
f (k) ‖ : norm of e f (k) in a zero coefficient case

f(k) : a posteriori normalized errors
a(k) : a priori normalized errors

eb(k) : backward error vector
‖ eb(k) ‖ : norm of eb(k)

ε f (k) : a posteriori forward prediction error
e f (k) : a priori forward prediction error
εb(k) : a posteriori backward prediction error
eb(k) : a priori backward prediction error
γ(k) : product of cosines of the angles of Qθ (k)

eq(k) : rotated error vector
eq1 (k) : first element of eq(k)
dq(k) : rotated desired vector

dq2 (k) : last N +1 elements of dq(k)
d(k) : desired signal
e(k) : a priori output error

4 Fast QRD-RLS Algorithms 101

tioning here that a variable with no superscript implies in an N-th order quantity or,
equivalently, is related to an N + 1 coefficients filtering. Let us take as illustration

the norm of the forward energy: ‖ e f (k) ‖=‖ e(N+1)
f (k) ‖.

The internal variables found in fast QR algorithms are closely related to those
found in conventional lattice algorithms. This was indeed the approach used in [5, 8]
to develop these algorithms originally and the implications are well explained in
those two references. As pointed out in [5], within this framework was the solution
to the parameter identification problem first addressed using fast QR algorithms. The
work of [14] stresses the fact that sinθ ′

fi
(k) and sinθ ′

fi
(k−1) represent the reflection

coefficients of the normalized lattice RLS algorithms (a priori and a posteriori).
On the other hand, the main idea behind the generation of a lattice (or fully lat-

tice) version of the fast QR algorithms is the merging of their equations using order
updating instead of fixed order variables. This can be done when partial results pos-
sess this order updating property. This is indeed the case of the lower triangular-
ization type algorithms since the internal variables are synchronized at instant k or
k − 1 (only order updating). The same facility in obtaining lattice versions is not
observed in those algorithms employing upper triangularization (FQR POS F and
FQR PRI F) since the normalized errors present in the orthogonal matrix Qθ (k) are
of different orders at distinct instants of time (order and time updating).

We next show how to combine the equations of FQR POS B in order to obtain
its order recursive version. Starting from (4.6), we rewrite this equation evaluated
at k + 1, with an explicit form of Qθ (k) in terms of a product of N + 1 Givens

rotations Qθi(k) and with e(0)
f q1

(k +1) = x(k +1); we suggest the reader to check, in
the previous chapter, the structure of Qθi(k) for the lower triangularization case.

⎡
⎢⎢⎢⎣

e f q1(k +1)
d f q21(k +1)

...
d f q2N+1(k +1)

⎤
⎥⎥⎥⎦ =

⎡
⎣

cosθN(k) −sinθN(k) 0T

sinθN(k) cosθN(k) 0T

0 0 IN

⎤
⎦ · · ·

· · ·

⎡
⎣

cosθ0(k) 0T −sinθ0(k)
0 IN 0

sinθ0(k) 0T cosθ0(k)

⎤
⎦

⎡
⎢⎢⎢⎢⎣

e(0)
f q1

(k +1)
λ 1/2d f q21(k)

...
λ 1/2d f q2N+1(k)

⎤
⎥⎥⎥⎥⎦

(4.30)

The product of the first two terms, from right to left, results in

⎡
⎢⎢⎢⎢⎢⎢⎣

cosθ0(k)e
(0)
f q1

(k +1)− sinθ0λ 1/2d f q2N+1(k)
λ 1/2d f q21(k)

...
λ 1/2d f q2N (k)

sinθ0(k)e
(0)
f q1

(k +1)+ cosθ0(k)λ 1/2d f q2N+1(k)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.31)

102 José A. Apolinário Jr. and Paulo S. R. Diniz

The first and last terms of the above equation are, respectively, e(1)
f q1

(k + 1) and
d f q2N+1(k + 1). If the other products are computed, one can reach the following
relations:

e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)

−sinθi−1(k)λ 1/2d f q2N+2−i(k) (4.32)

d f q2N+2−i(k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)

+cosθi−1(k)λ 1/2d f q2N+2−i(k) (4.33)

where i belongs to the closed interval between 1 and N +1.

If we use a similar procedure with the equation

⎡
⎣

0

‖ e(0)
f (k +1) ‖

⎤
⎦ =

Q′
θ f (k + 1)

[
d f q2(k +1)

‖ e f (k +1) ‖

]
which is part of (4.18) used in the FQR POS B algo-

rithm, we will find

cosθ ′
fi−1

(k +1) =
‖ e(i)

f (k +1) ‖

‖ e(i−1)
f (k +1) ‖

, and (4.34)

sinθ ′
fi−1

(k +1) =
d f q2N+2−i(k +1)

‖ e(i−1)
f (k +1) ‖

. (4.35)

In the last equation, i varies from 1 to N +1 and the updating of the forward error
energy is performed by the following generalization of (4.5)

‖ e(i)
f (k +1) ‖=

√
λ ‖ e(i)

f (k) ‖2 +[e(i)
f q1

(k +1)]2. (4.36)

All other equations are combined in a single loop by computing partial results
from the partial results of the previous equations. The resulting algorithm is des-
cribed in detail in Appendix 3 and, although not identical, is similar to the one
presented in [15]. A stage of its lattice structure is depicted in Figure 4.2, where
the rotation and angle processors can be easily understood from the algorithmic
description.

Finally, the lattice version of the FQR PRI B algorithm is obtained in a way
which is very similar to the one used to derive the lattice version of the FQR POS B
algorithm [4]. The algorithm is shown in Appendix 3 and Figure 4.3 depicts one
stage of the lattice structure for this algorithm.

4 Fast QRD-RLS Algorithms 103

dfq2N+2-i(k+1),efq1(k+1)
(i)

efq1(k+1)
(i-1)

efq1(k+1)
(i)

eq1(k+1)
(i-1)

eq1(k+1)
(i)

θi-1(k+1)

γ (k+1)
(i-1)

γ (k+1)
(i)

||ef(k+1)||
(i-1)

||ef(k+1)||
(i)

θ’fi-1(k+1)

fN+2-i(k+1) fN+1-i(k+1)
auxi-1 auxi

z–1

z–1

θi-1(k+1)

θi-1(k)

Fig. 4.2 One stage of the FQR POS B lattice structure.

z–1

z–1

z–1

dfq2N+2-i(k+1),efq1(k+1)
(i)

efq1(k+1)
(i-1)

efq1(k+1)
(i)

eq1(k+1)
(i-1)

eq1(k+1)
(i)

θi-1(k+1)

1/γ (k+1)
(i-1)

1/γ (k+1)
(i)

||ef(k+1)||
(i-1)

||ef(k+1)||
(i)

θ’fi-1(k+1)

θ’fi-1(k)

aN+2-i(k+1) aN+1-i(k+1)
auxi-1 auxi

θi-1(k+1)

θi-1(k)

Fig. 4.3 One stage of the FQR PRI B lattice structure.

104 José A. Apolinário Jr. and Paulo S. R. Diniz

This section presented the order recursive or lattice versions of the fast
QRD-RLS algorithms that update a posteriori and a priori backward errors.
Results from the Gram–Schmidt orthogonalization can be used to conjec-
ture that only the fast QR algorithms using lower triangularization, i.e., those
updating backward prediction errors, would have their lattice versions easily
implementable.

It can be observed from simulation results (not shown here) that the performance
of the order recursive versions, in finite-precision implementations, is comparable
to that of the original algorithms. The lattice versions have basically the same com-
plexity as their original algorithms (FQR POS B and FQR PRI B) and lower com-
plexity than the fast QR lattice algorithms previously proposed in [16].

4.5 Conclusion

This chapter presented the so-called fast versions of the QRD-RLS family
of algorithms. In here, fast QRD-RLS algorithms using a priori and a posteri-
ori forward and backward errors (based on upper or lower triangularization of the
input data matrix) were derived. A comprehensive framework was used to classify
the four fast QRD-RLS algorithms and their presentation were based on simple
matrix equations, while detailed algorithmic descriptions were provided in appen-
dices.

For those with a suitable application at hands and willing to select a fast QRD-
RLS algorithm, as a finger rule, we stress the importance of those based on the
updating of backward prediction errors (lower triangular algorithms as per the nota-
tion adopted in this chapter). Although they all might have similar computational
complexity, the FQR PRI B and the FQR POS B algorithms present the desired
feature of proven stability. The fast QRD-RLS algorithms can be used whenever the
input signal vector consists of a delay line; in case where we have distinct signals
each consisting of a delay line, multichannel versions are appropriate; this topic is
addressed in Chapter 6.

Finally, it is worth mentioning that fast QRD-RLS algorithms do not provide the
filter coefficients (transversal form) explicitly; they are however embedded in the
internal variables. In applications where these weights are desirable, weight extrac-
tion techniques can be used as described in Chapter 11.

4 Fast QRD-RLS Algorithms 105

Appendix 1 - Pseudo-Code for the Fast QRD-RLS Algorithms
Based on Forward Prediction Errors

1. The FQR POS F algorithm:

FQR POS F [3]
Initialization:
‖ e f (k) ‖= δ = small positive value; d f q2(k) = dq2(k) = zeros(N +1,1);
cosθ(k) = cosθ ′

b(k) = ones(N +1,1); sinθ(k) = sinθ ′
b(k) = zeros(N +1,1);

γ(k) = 1; f(k) = zeros(N +1,1);
for k = 1,2, . . .

{ e(0)
f q1

(k +1) = x(k +1);
for i = 1 : N +1

{ e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k)− sinθi−1(k)λ 1/2d f q2i (k);

d f q2i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k)+ cosθi−1(k)λ 1/2d f q2i (k);
}
e f q1 (k +1) = e(N+1)

f q1
(k +1);

‖ e f (k +1) ‖=
√

e2
f q1

(k +1)+λ ‖ e f (k) ‖2;cosθ f (k +1) = λ 1/2 ‖ e f (k) ‖ / ‖ e f (k +1) ‖;

sinθ f (k +1) = e f q1 (k +1)/ ‖ e f (k +1) ‖; c(k +1) = [1; zeros(N +1,1)];
for i = 1 : N +1
{ cN+3−i(k +1) = −sinθ ′

bN+1−i
(k)c1; c1(k +1) = cosθ ′

bN+1−i
(k)c1;

}
caux = [0; c(k +1)];
for i = 1 : N +1
{ oldvalue = cauxi+1 ;

cauxi+1 = sinθi−1(k)caux1 + cosθi−1(k)cauxi+1 ;
caux1 = cosθi−1(k)caux1 − sinθi−1(k)oldvalue;

}
oldvalue = caux1 ;
caux1 = cosθ f (k +1)caux1 − sinθ f (k +1)cauxN+3 ;
cauxN+3 = sinθ f (k +1)oldvalue+ cosθ f (k +1)cauxN+3 ;
c(k +1) = caux(2 : N +3);
for i = 1 : N +1

{ oldvalue = c1; c1 =
√

c2
1 + c2

i+1;

cosθ ′
bi−1

(k +1) = oldvalue/c1; sinθ ′
bi−1

(k +1) = −ci+1/c1;
}
f(N+2)(k +1) = [f(k); sinθ f (k +1)γ(k)]; aux0 = f (N+2)

1 (k +1);
for i = 1 : N +1

{ auxi = cosθ ′
bi−1

(k +1)auxi−1 − sinθ ′
bi−1

(k +1) f (N+2)
i+1 (k +1);

fi(k +1) = sinθ ′
bi−1

(k +1)auxi−1 + cosθ ′
bi−1

(k +1) f (N+2)
i+1 (k +1);

}
γ(0)(k +1) = 1;
for i = 1 : N +1
{ sinθi−1(k +1) = fi(k +1)/γ(i−1)(k +1);

cosθi−1(k +1) =
√

1− sin2θi−1(k +1);
γ(i)(k +1) = cosθi−1(k +1)γ(i−1)(k +1);

}
γ(k +1) = γ(N+1)(k +1); e(0)

q1 (k +1) = d(k +1);
for i = 1 : N +1

{ e(i)
q1 (k +1) = cosθi−1(k +1)e(i−1)

q1 (k +1)− sinθi−1(k +1)λ 1/2dq2i (k);
dq2i (k +1) = sinθi−1(k +1)e(i−1)

q1 (k +1)+ cosθi−1(k +1)λ 1/2dq2i (k);
}
eq1 (k +1) = e(N+1)

q1 (k +1); e(k +1) = eq1 (k +1)/γ(k +1);
}

106 José A. Apolinário Jr. and Paulo S. R. Diniz

2. The FQR PRI F algorithm:

FQR PRI F [7]
Initialization:
‖ e f (k) ‖= δ = small positive value; d f q2(k) = dq2(k) = zeros(N +1,1);
cosθ(k) = cosθ ′

b(k) = ones(N +1,1); sinθ(k) = sinθ ′
b(k) = zeros(N +1,1);

1/γ(k) = 1; a(k) = zeros(N +1,1);
for k = 1,2, . . .

{ e(0)
f q1

(k +1) = x(k +1);
for i = 1 : N +1

{ e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k)− sinθi−1(k)λ 1/2d f q2i (k);

d f q2i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k)+ cosθi−1(k)λ 1/2d f q2i (k);
}
e f q1 (k +1) = e(N+1)

f q1
(k +1); e f (k +1) = e f q1 (k +1)[1/γ(k)];

a(N+2)(k +1) = [a(k);
e f (k+1)

λ1/2‖e f (k)‖
]; aux0 = a(N+2)

1 (k +1);

for i = 1 : N +1

{ auxi = cosθ ′
bi−1

(k)auxi−1 − sinθ ′
bi−1

(k)a(N+2)
i+1 (k +1);

ai(k +1) = sinθ ′
bi−1

(k)auxi−1 + cosθ ′
bi−1

(k)a(N+2)
i+1 (k +1);

}
‖ e f (k +1) ‖=

√
e2

f q1
(k +1)+λ ‖ e f (k) ‖2;

cosθ f (k +1) = λ 1/2 ‖ e f (k) ‖ / ‖ e f (k +1) ‖;
sinθ f (k +1) = e f q1 (k +1)/ ‖ e f (k +1) ‖
c(k +1) = [1; zeros(N +1,1)];
for i = 1 : N +1
{ cN+3−i(k +1) = −sinθ ′

bN+1−i
(k)c1;

c1(k +1) = cosθ ′
bN+1−i

(k)c1;
}
caux = [0; c(k +1)];
for i = 1 : N +1
{ oldvalue = cauxi+1 ;

cauxi+1 = sinθi−1(k)caux1 + cosθi−1(k)cauxi+1 ;
caux1 = cosθi−1(k)caux1 − sinθi−1(k)oldvalue;

}
oldvalue = caux1 ;
caux1 = cosθ f (k +1)caux1 − sinθ f (k +1)cauxN+3 ;
cauxN+3 = sinθ f (k +1)oldvalue+ cosθ f (k +1)cauxN+3 ;
c(k +1) = caux(2 : N +3);
for i = 1 : N +1

{ oldvalue = c1; c1 =
√

c2
1 + c2

i+1;

cosθ ′
bi−1

(k +1) = oldvalue/c1; sinθ ′
bi−1

(k +1) = −ci+1/c1;
}
1/γ(0)(k +1) = 1;
for i = 1 : N +1

{ 1/γ(i)(k +1) =
√

[1/γ(i−1)(k +1)]2 +a2
i (k +1);

cosθi−1(k +1) = 1/γ(i−1)(k+1)

1/γ(i)(k+1)
;

sinθi−1(k +1) = ai(k+1)

1/γ(i)(k+1)
;

}
γ(k +1) = 1/[1/γ(N+1)(k +1)]; e(0)

q1 (k +1) = d(k +1);
for i = 1 : N +1

{ e(i)
q1 (k +1) = cosθi−1(k +1)e(i−1)

q1 (k +1)− sinθi−1(k +1)λ 1/2dq2i (k);
dq2i (k +1) = sinθi−1(k +1)e(i−1)

q1 (k +1)+ cosθi−1(k +1)λ 1/2dq2i (k);
}
eq1 (k +1) = e(N+1)

q1 (k +1); e(k +1) = eq1 (k +1)/γ(k +1);
}

4 Fast QRD-RLS Algorithms 107

Appendix 2 - Pseudo-Code for the Fast QRD-RLS Algorithms
Based on Backward Prediction Errors

1. The FQR POS B algorithm:

The first version of this algorithm is based on the fact that the last element of
f(k +1), fN+1(k +1) = x(k+1)

‖e(0)
f (k+1)‖

, is known in advance.

FQR POS B - Version 1 [6]
Initialization:
d f q2(k) = zeros(N +1,1); dq2(k) = zeros(N +1,1);
cosθ(k) = ones(N +1,1); sinθ(k) = zeros(N +1,1);
‖ e f (k) ‖= δ = small positive value; f(k) = zeros(N +1,1);
for k = 1,2, . . .

{ e(0)
f q1

(k +1) = x∗(k +1);
for i = 1 : N +1

{ e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)− sin∗θi−1(k)λ 1/2d f q2N+2−i (k);

d f q2N+2−i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)+ cosθi−1(k)λ 1/2d f q2N+2−i (k);
}
e f q1 (k +1) = e(N+1)

f q1
(k +1); ‖ e f (k +1) ‖=

√
|e f q1 (k +1)|2 +λ ‖ e f (k) ‖2;

‖ e(N+1)
f (k +1) ‖=‖ e f (k +1) ‖;

for i = 1 : N +1

{ ‖ e(N+1−i)
f (k +1) ‖=

√
‖ e(N+2−i)

f (k +1) ‖2 +|d f q2i (k +1)|2;

cosθ ′
fi
(k +1) =‖ e(N+2−i)

f (k +1) ‖ / ‖ e(N+1−i)
f (k +1) ‖;

sinθ ′
fi
(k +1) = d∗

f q2i
(k +1)/ ‖ e(N+1−i)

f (k +1) ‖;
}
aux0 = x(k +1)/ ‖ e(0)

f (k +1) ‖; fN+1(k +1) = aux0;
for i = 1 : N

{ fN+1−i(k +1) =
fN+2−i(k)−sinθ ′∗

fN+1−i
(k+1)auxi−1

cosθ ′
fN+1−i

(k+1) ;

auxi = −sinθ ′
fN+1−i

(k +1) fN+1−i(k)+ cosθ ′
fN+1−i

(k +1)auxi−1;
}
γ(0)(k +1) = 1;
for i = 1 : N +1
{ sinθi−1(k +1) = fN+2−i(k +1)/γ(i−1)(k +1);

cosθi−1(k +1) =
√

1−|sinθi−1(k +1)|2;
γ(i)(k +1) = cosθi−1(k +1)γ(i−1)(k +1);

}
γ(k +1) = γ(N+1)(k +1); e(0)

q1 (k +1) = d∗(k +1);
for i = 1 : N +1

{ e(i)
q1 (k +1) = cosθi−1(k +1)e(i−1)

q1 (k +1)− sin∗θi−1(k +1)λ 1/2dq2N+2−i (k);
dq2N+2−i (k +1) = sinθi−1(k +1)e(i−1)

q1 (k +1)+ cosθi−1(k +1)λ 1/2dq2N+2−i (k);
}
eq1 (k +1) = e(N+1)

q1 (k +1); e(k +1) = e∗q1
(k +1)/γ(k +1);

}

108 José A. Apolinário Jr. and Paulo S. R. Diniz

The second version of the FQR POS B algorithm is based on the straightforward

computation of f(k+1) according to (4.20) and requires the calculation of
e f (k+1)

‖e f (k+1)‖ .

FQR POS B - Version 2 [5]
Initialization:
d f q2(k) = zeros(N +1,1); dq2(k) = zeros(N +1,1);
cosθ(k) = ones(N +1,1); sinθ(k) = zeros(N +1,1);
‖ e f (k) ‖= δ = small positive value; f(k) = zeros(N +1,1); γ(k) = 1
for k = 1,2, . . .

{ e(0)
f q1

(k +1) = x∗(k +1);
for i = 1 : N +1

{ e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)− sin∗θi−1(k)λ 1/2d f q2N+2−i (k);

d f q2N+2−i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)+ cosθi−1(k)λ 1/2d f q2N+2−i (k);
}
e f q1 (k +1) = e(N+1)

f q1
(k +1);

‖ e f (k +1) ‖=
√
|e f q1 (k +1)|2 +λ ‖ e f (k) ‖2;

‖ e(N+1)
f (k +1) ‖=‖ e f (k +1) ‖;

for i = 1 : N +1

{ ‖ e(N+1−i)
f (k +1) ‖=

√
‖ e(N+2−i)

f (k +1) ‖2 +|d f q2i (k +1)|2;

cosθ ′
fN+1−i

(k +1) =‖ e(N+2−i)
f (k +1) ‖ / ‖ e(N+1−i)

f (k +1) ‖;

sinθ ′
fN+1−i

(k +1) = d∗
f q2i

(k +1)/ ‖ e(N+1−i)
f (k +1) ‖;

}
aux0 =

γ(k)e∗f q1
(k+1)

‖e f (k+1)‖ ;

for i = 1 : N +1
{ fi−1(k +1) = cosθ ′

fN+1−i
(k +1) fi(k)− sinθ ′∗

fN+1−i
(k +1)auxi−1;

auxi = sinθ ′
fN+1−i

(k +1) fi(k)+ cosθ ′
fN+1−i

(k +1)auxi−1;
}
εb(k+1)

‖eb(k+1)‖ = f0(k +1);
fN+1(k +1) = auxN+1;
γ(0)(k +1) = 1;
for i = 1 : N +1
{ sinθi−1(k +1) = fN+2−i(k +1)/γ(i−1)(k +1);

cosθi−1(k +1) =
√

1−|sinθi−1(k +1)|2;
γ(i)(k +1) = cosθi−1(k +1)γ(i−1)(k +1);

}
γ(k +1) = γ(N+1)(k +1);
e(0)

q1 (k +1) = d∗(k +1);
for i = 1 : N +1

{ e(i)
q1 (k +1) = cosθi−1(k +1)e(i−1)

q1 (k +1)− sin∗θi−1(k +1)λ 1/2dq2N+2−i (k);
dq2N+2−i (k +1) = sinθi−1(k +1)e(i−1)

q1 (k +1)+ cosθi−1(k +1)λ 1/2dq2N+2−i (k);
}
eq1 (k +1) = e(N+1)

q1 (k +1); e(k +1) = e∗q1
(k +1)/γ(k +1);

}

4 Fast QRD-RLS Algorithms 109

2. The FQR PRI B algorithm:

The first version of this algorithm is based on the fact that the last element of a(k+1)
(or aN+1(k +1) = x(k+1)√

λ‖e(0)
f (k)‖

) is known in advance.

FQR PRI B - Version 1 [4]
Initialization:

‖ e(0)
f (k) ‖=‖ e f (k) ‖= δ = small positive value; a(k) = zeros(N +1,1);

d f q2(k) = zeros(N +1,1); dq2(k) = zeros(N +1,1);
cosθ(k) = ones(N +1,1); cosθ ′

f (k) = ones(N +1,1);
sinθ(k) = zeros(N +1,1); sinθ ′

f (k) = zeros(N +1,1);
for k = 1,2, . . .

{ e(0)
f q1

(k +1) = x∗(k +1);
for i = 1 : N +1

{ e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)− sin∗θi−1(k)λ 1/2d f q2N+2−i (k);

d f q2N+2−i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)+ cosθi−1(k)λ 1/2d f q2N+2−i (k);
}
e f q1 (k +1) = e(N+1)

f q1
(k +1);

aux0 = x∗(k+1)

λ 1/2‖e(0)
f (k)‖

; aN+1(k +1) = aux0;

for i = 1 : N

{ aN+1−i(k +1) =
aN+2−i(k)−sinθ ′

fi−1
(k)auxi−1

cosθ ′
fi−1

(k) ;

auxi = −sinθ ′∗
fi−1

(k)aN+1−i(k +1)+ cosθ ′
fi−1

(k)auxi−1;
}
‖ e(N+1)

f (k +1) ‖=‖ e f (k +1) ‖=
√

|e f q1 (k +1)|2 +λ ‖ e f (k) ‖2;
for i = 1 : N +1

{ ‖ e(N+1−i)
f (k +1) ‖=

√
‖ e(N+2−i)

f (k +1) ‖2 +|d f q2i (k +1)|2;

cosθ ′
fN+1−i

(k +1) =‖ e(N+2−i)
f (k +1) ‖ / ‖ e(N+1−i)

f (k +1) ‖;

sinθ ′
fN+1−i

(k +1) = d∗
f q2i

(k +1)/ ‖ e(N+1−i)
f (k +1) ‖;

}
1/γ(0)(k +1) = 1;
for i = 1 : N +1
{ 1/γ(i)(k +1) =

√
[1/γ(i−1)(k +1)]2 + |aN+2−i(k +1)|2

cosθi−1(k +1) = 1/γ(i−1)(k+1)
1/γ(i)(k+1)

;

sinθi−1(k +1) =
a∗N+2−i(k+1)
1/γ(i)(k+1)

;

}
γ(k +1) = 1/[1/γ(N+1)(k +1)]; e(0)

q1 (k +1) = d∗(k +1);
for i = 1 : N +1

{ e(i)
q1 (k +1) = cosθi−1(k +1)e(i−1)

q1 (k +1)− sin∗θi−1(k +1)λ 1/2dq2N+2−i (k);
dq2N+2−i (k +1) = sinθi−1(k +1)e(i−1)

q1 (k +1)+ cosθi−1(k +1)λ 1/2dq2N+2−i (k);
}
eq1 (k +1) = e(N+1)

q1 (k +1); e(k +1) = e∗q1
(k +1)/γ(k +1);

}

110 José A. Apolinário Jr. and Paulo S. R. Diniz

The second version of the FQR PRI B algorithm is based on the straightfor-
ward computation of a(k + 1) according to (4.29) and requires the calculation of

e′f (k+1)
√
λ‖e f (k)‖

.

FQR PRI B - Version 2 [8]
Initialization:
‖ e f (k) ‖= δ = small positive value; a(k) = zeros(N +1,1); γ(k) = 1;
d f q2(k) = zeros(N +1,1); dq2(k) = zeros(N +1,1);
cosθ(k) = ones(N +1,1); cosθ ′

f (k) = ones(N +1,1);
sinθ(k) = zeros(N +1,1); sinθ ′

f (k) = zeros(N +1,1);
for k = 1,2, . . .

{ e(0)
f q1

(k +1) = x∗(k +1);
for i = 1 : N +1

{ e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)− sin∗θi−1(k)λ 1/2d f q2N+2−i (k);

d f q2N+2−i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)+ cosθi−1(k)λ 1/2d f q2N+2−i (k);
}
e f q1 (k +1) = e(N+1)

f q1
(k +1);

aux0 =
e f q1

(k+1)

γ(k)λ 1/2‖e f (k)‖
;

for i = 1 : N +1
{ ai−1(k +1) = cosθ ′

fN+1−i
(k)ai(k)− sinθ ′

fN+1−i
(k)auxi−1;

auxi = sin∗θ ′
fN+1−i

(k)ai(k)+ cosθ ′
fN+1−i

(k)auxi−1;
}

eb(k+1)
λ 1/2‖eb(k)‖ = a0(k +1);
aN+1(k +1) = auxN+1;
‖ e f (k +1) ‖=

√
|e f q1 (k +1)|2 +λ ‖ e f (k) ‖2;

‖ e(N+1)
f (k +1) ‖=‖ e f (k +1) ‖;

for i = 1 : N +1

{ ‖ e(N+1−i)
f (k +1) ‖=

√
‖ e(N+2−i)

f (k +1) ‖2 +|d f q2i (k +1)|2;

cosθ ′
fN+1−i

(k +1) =‖ e(N+2−i)
f (k +1) ‖ / ‖ e(N+1−i)

f (k +1) ‖;

sinθ ′
fN+1−i

(k +1) = d∗
f q2i

(k +1)/ ‖ e(N+1−i)
f (k +1) ‖;

}
1/γ(0)(k +1) = 1;
for i = 1 : N +1
{ 1/γ(i)(k +1) =

√
[1/γ(i−1)(k +1)]2 + |aN+2−i(k +1)|2;

cosθi−1(k +1) = 1/γ(i−1)(k+1)
1/γ(i)(k+1)

;

sinθi−1(k +1) =
a∗N+2−i(k+1)
1/γ(i)(k+1)

;

}
γ(k +1) = 1/[1/γ(N+1)(k +1)]; e(0)

q1 (k +1) = d∗(k +1);
for i = 1 : N +1

{ e(i)
q1 (k +1) = cosθi−1(k +1)e(i−1)

q1 (k +1)− sin∗θi−1(k +1)λ 1/2dq2N+2−i (k);
dq2N+2−i (k +1) = sinθi−1(k +1)e(i−1)

q1 (k +1)+ cosθi−1(k +1)λ 1/2dq2N+2−i (k);
}
eq1 (k +1) = e(N+1)

q1 (k +1); e(k +1) = e∗q1
(k +1)/γ(k +1);

}

4 Fast QRD-RLS Algorithms 111

Appendix 3 - Pseudo-Code for the Order Recursive FQRD-RLS
Algorithms

1. Order recursive version of the FQR POS B algorithm:

LATTICE FQR POS B
Soft-constrained initialization:
ε = small positive value;
for i = 0 : N +1

{ ‖ e(i)
f (k) ‖= ε;

}
d f q2(k) = zeros(N +1,1); dq2(k) = zeros(N +1,1);
cosθ(k) = ones(N +1,1); sinθ(k) = zeros(N +1,1);
f (k) = zeros(N +1,1);
for each k

{ e(0)
f q1

(k +1) = x(k +1);

‖ e(0)
f (k +1) ‖=

√
[e(0)

f q1
(k +1)]2 +λ ‖ e(0)

f (k) ‖2;

aux0 = x(k+1)

‖e(0)
f (k+1)‖

;

fN+1(k +1) = aux0;
γ(0)(k +1) = 1;

e(0)
q1 (k +1) = d(k +1);

for i = 1 : N +1

{ d f q2N+2−i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)+
cosθi−1(k)λ 1/2d f q2N+2−i (k);

e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)−
sinθi−1(k)λ 1/2d f q2N+2−i (k);

‖ e(i)
f (k +1) ‖=

√
[e(i)

f q1
(k +1)]2 +λ ‖ e(i)

f (k) ‖2;

cosθ ′
fi−1

(k +1) =‖ e(i)
f (k +1) ‖ / ‖ e(i−1)

f (k +1) ‖;

sinθ ′
fi−1

(k +1) = d f q2N+2−i (k +1)/ ‖ e(i−1)
f (k +1) ‖;

fN+1−i(k +1) =
fN+2−i(k)−sinθ ′

fi−1
(k+1)auxi−1

cosθ ′
fi−1

(k+1) ;

auxi = −sinθ ′
fi−1

(k +1) fN+1−i(k +1)+ cosθ ′
fi−1

(k +1)auxi−1;

γ(i)(k +1) =
√

[γ(i−1)(k +1)]2 − [fN+2−i(k +1)]2;

cosθi−1(k +1) = γ(i)(k+1)
γ(i−1)(k+1)

;

sinθi−1(k +1) = fN+2−i(k+1)
γ(i−1)(k+1)

;

dq2N+2−i(k +1) = sinθi−1(k +1)e(i−1)
q1 (k +1)+

cosθi−1(k +1)λ 1/2dq2N+2−i (k);
e(i)

q1 (k +1) = cosθi−1(k +1)e(i−1)
q1 (k +1)−

sinθi−1(k +1)λ 1/2dq2N+2−i (k);
}
e(k +1) = e(N+1)

q1 (k +1)/γ(N+1)(k +1);
}

112 José A. Apolinário Jr. and Paulo S. R. Diniz

2. Order recursive version of the FQR PRI B algorithm:

LATTICE FQR PRI B
Soft-constrained initialization:
ε = small positive value;
for i = 0 : N +1

{ ‖ e(i)
f (k) ‖= ε;

}
d f q2(k) = zeros(N +1,1); dq2(k) = zeros(N +1,1);
cosθ(k) = ones(N +1,1); cosθ ′

f (k) = ones(N +1,1);
sinθ(k) = zeros(N +1,1); sinθ ′

f (k) = zeros(N +1,1);
a(k) = zeros(N +1,1);
for each k

{ aux0 = x(k+1)√
λ‖e(0)

f (k)‖
;

aN+1(k +1) = aux0;

e(0)
f q1

(k +1) = x(k +1);

‖ e(0)
f (k +1) ‖=

√
[e(0)

f q1
(k +1)]2 +λ ‖ e(0)

f (k) ‖2;

1/γ(0)(k +1) = 1;

e(0)
q1 (k +1) = d(k +1);

for i = 1 : N +1

{ aN+1−i(k +1) =
aN+2−i(k)−sinθ ′

fi−1
(k)auxi−1

cosθ ′
fi−1

(k) ;

auxi = −sinθ ′
fi−1

(k)aN+1−i(k +1)+ cosθ ′
fi−1

(k)auxi−1;

d f q2N+2−i (k +1) = sinθi−1(k)e
(i−1)
f q1

(k +1)+
cosθi−1(k)λ 1/2d f q2N+2−i (k);

e(i)
f q1

(k +1) = cosθi−1(k)e
(i−1)
f q1

(k +1)−
sinθi−1(k)λ 1/2d f q2N+2−i (k);

‖ e(i)
f (k +1) ‖=

√
[e(i)

f q1
(k +1)]2 +λ ‖ e(i)

f (k) ‖2;

cosθ ′
fi−1

(k +1) =‖ e(i)
f (k +1) ‖ / ‖ e(i−1)

f (k +1) ‖;

sinθ ′
fi−1

(k +1) = d f q2N+2−i (k +1)/ ‖ e(i−1)
f (k +1) ‖;

1/γ(i)(k +1) =
√

[1/γ(i−1)(k +1)]2 +[aN+2−i(k +1)]2;

cosθi−1(k +1) = 1/γ(i−1)(k+1)
1/γ(i)(k+1)

;

sinθi−1(k +1) = aN+2−i(k+1)
1/γ(i)(k+1)

;

dq2N+2−i(k +1) = sinθi−1(k +1)e(i−1)
q1 (k +1)+

cosθi−1(k +1)λ 1/2dq2N+2−i (k);
e(i)

q1 (k +1) = cosθi−1(k +1)e(i−1)
q1 (k +1)−

sinθi−1(k +1)λ 1/2dq2N+2−i (k);
}
e(k +1) = e(N+1)

q1 (k +1)[1/γ(N+1)(k +1)];
}

4 Fast QRD-RLS Algorithms 113

References

1. S. Haykin, Adaptive Filter Theory. 2nd edition Prentice-Hall, Englewood Cliffs, NJ, USA
(1991)

2. P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition
Springer, New York, NY, USA (2008)

3. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-38, no. 4, pp. 631–653 (April 1990)

4. A. A. Rontogiannis and S. Theodoridis, New fast inverse QR least squares adaptive
algorithms. IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP’95, Detroit, USA, pp. 1412–1415 (May 1995)

5. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. SP-39,
no. 4, pp. 879–891 (April 1991)

6. J. A. Apolinário Jr., M. G. Siqueira, and P. S. R. Diniz, On fast QR algorithms based on
backward prediction errors: New results and comparisons. First Balkan Conference on Signal
Processing, Communications, Circuits, and Systems, Istanbul, Turkey (June 2000)

7. J. A. Apolinário Jr. and P. S. R. Diniz, A new fast QR algorithm based on a priori errors. IEEE
Signal Processing Letters, vol. 4, no. 11, pp. 307–309 (November 1997)

8. M. D. Miranda and M. Gerken, A hybrid QR-lattice least squares algorithm using a priori
errors. 38th Midwest Symposium on Circuits and Systems, MWSCAS’95, Rio de Janeiro,
Brazil, pp. 983–986 (August 1995)

9. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares adaptive filtering
based upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. SP-
41, no. 1, pp. 20–30 (January 1993)

10. P. G. Park and T. Kailath, A lattice algorithm dual to the extended inverse QR algorithm.
Signal Processing, vol. 47, no. 2, pp. 115–133 (November 1995)

11. M. D. Miranda and M. Gerken, A hybrid least squares QR-lattice algorithm using a priori
errors. IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 2900–2911 (December
1997)

12. M. G. Bellanger, The FLS-QR algorithm for adaptive filtering. Signal Processing, vol. 17,
no. 4, pp. 291–304 (August 1989)

13. J. A. Apolinário Jr., New algorithms of adaptive filtering: LMS with data-reusing and fast
RLS based on QR decomposition. DSc thesis, UFRJ - Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil (1998)

14. Maria D. Miranda, Sobre algoritmos dos mı́nimos quadrados rápidos, recursivos na ordem,
que utilizam triangularização ortogonal (in Portuguese). PhD thesis, USP - University of São
Paulo, São Paulo, Brazil (1996)

15. M. Terré and M. Bellanger, A systolic QRD-based algorithm for adaptive filtering and its
implementation. IEEE International Conference on Acoustic, Speech, and Signal Processing,
ICASSP’94, Adelaide, Australia, pp. 373–376 (April 1994)

16. I. K. Proudler, J. G. McWhirter, and T. J. Shepard, Computationally efficient QR decom-
position approach to least squares adaptive filtering. IEE Proceedings-F, vol. 138, no. 4,
pp. 341–353 (August 1991)

Chapter 5
QRD Least-Squares Lattice Algorithms

Jenq-Tay Yuan

Abstract This chapter presents a full derivation of the square-root-free (SRF) QR-
decomposition-based least-squares lattice (QRD-LSL) algorithms in complex form,
based on linear interpolation (or two-sided prediction) theory as a generalization
of linear prediction theory. The conventionally adopted QRD-LSL prediction algo-
rithm can be derived directly from the QRD-LSL interpolation algorithm and then
extended to solve the joint process estimation problem. The QRD-LSL interpolation
algorithm that produces interpolation errors (residuals) of various orders may have
potential implications for some signal processing and communication problems.
Interestingly, the QRD-LSL interpolation algorithm can also be used to calculate the
Kalman gain vector to implement the widely known recursive least-squares (RLS)
algorithm in a transversal structure to generate the least-squares filter weights at
each time step. Therefore, linear interpolation theory may provide a bridge between
lattice filters and transversal filters. The chapter is organized as follows. Section 5.1
presents the fundamentals of QRD-LSL algorithms. The LSL interpolator and the
LSL predictor are briefly presented in Section 5.2. Section 5.3 presents the SRF
Givens rotation with feedback mechanism that is employed to develop the SRF
QRD-LSL algorithms. In Section 5.4, the SRF QRD-LSL interpolation algorithm
is derived, and then reduced to the SRF QRD-LSL prediction algorithm, which is
then extended to develop the SRF joint process estimation. The RLS algorithm in
the transversal structure based on the SRF QRD-LSL interpolation algorithm is pre-
sented in Section 5.5 followed by some simulation results in Section 5.6. Section 5.7
draws conclusions.

Jenq-Tay Yuan
Fu Jen Catholic University, Taipei, Taiwan – R.O.C.
e-mail: yuan@ee.fju.edu.tw

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 115
DOI 10.1007/978-0-387-09734-3 5, c© Springer Science+Business Media, LLC 2009

yuan@ee.fju.edu.tw

116 Jenq-Tay Yuan

5.1 Fundamentals of QRD-LSL Algorithms

An Nth-stage lattice filter, displayed in Figure 5.1, automatically generates all N
of the outputs that would be provided by N separate transversal filters of length
1,2, . . . ,N [1–6]. In Figure 5.1, ε f ,m(k) and εb,m(k) are the forward and backward
prediction errors of order m; π f ,1(k), . . . ,π f ,N(k) and πb,1(k), . . . ,πb,N(k) are the for-
ward reflection coefficients and backward reflection coefficients, respectively, which
can be obtained by minimizing the sum of weighted prediction error squares at each
stage. Optimum higher order lattice filters can be constructed from lower order ones
by simply adding more lattice stages, leaving the original stages unchanged. This
property is called the order-recursive property (or decoupling property) and follows
from the fact that lattice filters essentially perform the Gram–Schmidt orthogonal-
ization recursively such that each stage as effectively as possible decorrelates (or
orthogonalizes) the inputs that enter it. This order-recursive property of a lattice fil-
ter along with its good numerical property is also shared by the QR-decomposition
(QRD)-based algorithms. Accordingly, a combination of both the QRD-based algo-
rithm and the least-squares lattice (LSL) filter can be reasonably expected to be
a powerful algorithm, known as the QR-decomposition-based least-squares lattice
(QRD-LSL) algorithm, for solving the adaptive least-squares (LS) filtering prob-
lem when the corresponding filter weights are not required. The order-recursive
property of the QRD-LSL algorithms allows a variable-length filter to be designed,
since it permits dynamic assignment, and rapid automatic determination of the most
effective filter length. Consequently, in many LS applications, such as acoustic echo
cancelation [7], in which only the LS errors of various orders are required to reduce

Stage NStage1

()x k

,1()b k

,0 ()f k

,0 ()b k
1z

,1()b k

,1()f k

1z
, 1()b N k

, 1()f N k , ()f N k

, ()b N k

, ()b N k

, ()f N k,1()f k

0 ()p k ()Np k1()Np k1 ()p k

1()N k()N k2()k1()k()d k

-s
ta

ge
la

tti
ce

 fi
lte

r
N

Fig. 5.1 Joint process estimation based on an Nth-stage lattice filter.

5 QRD Least-Squares Lattice Algorithms 117

effectively near-end speech distortion and improve noise robustness without explic-
itly computing the corresponding filter weights, the QRD-LSL prediction algorithm
along with the joint process estimation may play an important role. Even when the
corresponding filter weights are required in applications such as system identifica-
tion, the QRD-LSL interpolation algorithm that is developed in this chapter can still
be applied to implement efficiently the well-known recursive least-squares (RLS)
algorithm.

A recursive fast QRD-based LS filtering algorithm (or known as the QRD-based
fast Kalman algorithm) of O[N] complexity was developed by Cioffi [8], where N
is the number of taps in the adaptive filter. Although this algorithm is of a fixed-
order transversal filter type and thus lacks the flexibility of order recursiveness, it
presents for the first time the idea of a fast QRD-based algorithm for RLS esti-
mation. Proudler et al. [9] developed a QRD-LSL prediction algorithm of O[N]
complexity recursively in time and order. They then extended this QRD-LSL pre-
diction algorithm to solve the joint process estimation problem. A similar fast
LS lattice algorithm based on Givens rotations was developed independently by
Ling [10]. Regalia and Bellanger [11] developed a hybrid QR-lattice algorithm that
is closely related to the algorithms of Cioffi [8], Proudler et al. [9], and Ling [10],
but they emphasized the relationship between fast QR algorithms and lattice fil-
ters. Other related works can also be found in Rontogiannis and Theodoridis [12],
who proposed a unified approach for deriving fast QRD algorithms. The QRD-LSL
algorithm is now well-known to provide many desirable features such as compu-
tational efficiency, fast rate of convergence and fast tracking capability, robustness
against and insensitivity to round-off noise, and suitability for very large scale inte-
gration (VLSI) implementations. According to the simulations conducted by Yang
and Bohme [13], the joint process estimation based on the QRD-LSL prediction
algorithm is numerically more stable than the fixed order fast QR algorithms such as
those developed by Cioffi [8] and Regalia and Bellanger [11]. The unstable behav-
iors exhibited by some fast Kalman algorithms may further justify the use of the
order-recursive QRD-LSL algorithms.

Almost all of the QRD-LSL algorithms discussed in the literature are designed
to solve the linear prediction problem recursively in time and order. This chapter
addresses the QRD-LSL problem differently, and presents a complete derivation
of the square-root-free (SRF) QRD-LSL algorithms from the perspective of lin-
ear interpolation. The derivation of the QRD-LSL interpolation algorithm is moti-
vated by three main considerations. First, the QRD-LSL interpolation algorithm has
potential implications for signal processing and communication problems, including
data compression, coding and restoration of speech and images, and narrowband
interference suppression in spread spectrum communications [14–18]. Secondly,
the QRD-LSL prediction algorithm is in effect a special case of the QRD-LSL
interpolation algorithm. As will be demonstrated in Section 5.4, the widely known
QRD-LSL prediction algorithm can be developed directly from the QRD-LSL inter-
polation algorithm, because linear interpolation theory is a generalization of lin-
ear prediction theory and the former provides a broader interpretation and a more
thorough understanding of the latter. Studies [19–22] have demonstrated that linear

118 Jenq-Tay Yuan

interpolation may substantially outperform linear prediction in terms of minimum
mean squared error, because interpolation makes better use of the correlation
between the nearest neighboring samples than does prediction. Thirdly, linear
interpolation turns out to form a bridge between an order-recursive lattice filter
that generates filter output only and the RLS algorithm, which also generates the
adaptive filter weights. Skidmore and Proudler [23] first realized the crucial fact
that the Kalman gain vector that is used to compute the RLS algorithm can be
calculated as a particular set of normalized LS interpolation errors (residuals).
The SRF QRD-LSL interpolation algorithm that produces interpolation errors of
various orders can thus be adopted to implement the RLS algorithm. Although
the resulting RLS algorithm of O[N log2 N] complexity may exhibit linear error
growth with time in a limited-precision environment, it may offer a favorable
compromise between some computationally efficient fast transversal filter algo-
rithms of O[N] complexity, which may exhibit exponential error growth with time
in a limited-precision environment, and some numerically stable algorithms of
O[N2] complexity, which may not be computationally feasible for some real-time
applications.

5.2 LSL Interpolator and LSL Predictor

Linear interpolation estimates an unknown data sample based on a weighted sum
of surrounding data samples. In one-dimensional signal processing, (p, f)th-order
linear interpolation is the linear estimation of present input data samples x(i) from
its p past and f future neighboring data samples with the pre-windowing condition
on the data (i.e., x(i) = 0, for i ≤−1), which is

x̂p, f (i) = −
f

∑
n=−p
n�=0

b∗(p, f),n(k− f)x(i+n), − f ≤ i ≤ k− f , (5.1)

where b(p, f),n(k − f) is the interpolation coefficient at time k. The (p, f)th-order
interpolation error at each time unit can thus be written as

ε I
p, f (i) = x(i)− x̂p, f (i) = bH

p, f (k− f)xN+1(i+ f), − f ≤ i ≤ k− f , (5.2)

where bH
p, f (k− f) = [b∗(p, f), f (k− f), . . . ,b∗(p, f),1(k− f),1,b∗(p, f),−1(k− f), . . . , b∗(p, f),−p(k− f)] is

the interpolation coefficient vector at time k and the (N +1)×1 input vector is given
as xN+1(i) = [x(i),x(i−1), . . . ,x(i−N)]T in which N = p+ f is assumed implicitly.
Notably, the notations used in this chapter are somewhat different from those used
in the four previous chapters. In this chapter, we refer to any interpolation filter that
operates on the present data sample as well as p past and f future data samples
to produce the (p, f)th-order interpolation errors at its output as a (p, f)th-order
interpolator. If the most recent data sample used is x(k), then (5.2) can be written
in a matrix form as

5 QRD Least-Squares Lattice Algorithms 119

εεε I
p, f (k− f) = XN+1(k)bp, f (k− f), (5.3)

where εεεI
p, f (k− f)=

[
ε I∗

p, f (− f) . . . ε I∗
p, f (−1) ε I∗

p, f (0) ε I∗
p, f (1) . . . ε I∗

p, f (k− f)
]T

, bp, f (k− f)=

[b(p, f), f (k− f) . . . b(p, f),1(k− f) 1 b(p, f),−1(k− f) . . . b(p, f),−p(k− f)]T, and the (k + 1)×
(N +1) matrix XN+1(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗(0) 0 · · · 0

x∗(1) x∗(0)
. . .

.

.

.

x∗(2) x∗(1)
. . .

.

.

.
.
.
.

.

.

.
. . . 0

.

.

.
.
.
.

. . . x∗(0)
.
.
.

.

.

.
. . . x∗(1)

.

.

.
.
.
.

. . . x∗(2)
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

x∗(k) x∗(k−1) · · · x∗(k− f +1)︸ ︷︷ ︸
f future data samples

0
.
.
.
.
.
.
.
.
.

0

x∗(0)

x∗(1)
.
.
.
.
.
.
.
.
.

x∗(k− f)︸ ︷︷ ︸
data sample

to be estimated

0 · · · 0
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

0
. . .

.

.

.

x∗(0)
. . .

.

.

.
.
.
.

. . . 0
.
.
.

. . . x∗(0)
.
.
.

. . .
.
.
.

x∗(k− f −1) · · · x∗(k−N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

︸ ︷︷ ︸
p past

data samples

5.2.1 LSL interpolator

The LS solution of the interpolation coefficients can be determined by minimizing

the sum of interpolation error squares ξ (k) =∑k− f
i=− f |ε I

p, f (i)|2 =
[
εεε I

p, f (k− f)
]H

εεε I
p, f

(k − f) =
[
XN+1(k)bp, f (k− f)

]H [
XN+1(k)bp, f (k− f)

]
= bH

p, f (k − f)R(k)bp, f

(k− f) subject to the constraint hHbp, f (k− f) = 1, where R(k) = XH
N+1(k)XN+1(k)

is the (N + 1)× (N + 1) time-average correlation matrix of the input data samples
x(i) and hH =

[
0T

f 1 0T
p

]
. Using the method of Lagrange, the interpolation coef-

ficient vector can be computed to be bp, f (k − f) =
(
hTR−1(k)h

)−1
R−1(k)h and

the minimum sum of interpolation error squares of order (p, f) can be computed to

be Ip, f (k− f) = ξmin(k) =
(
hTR−1(k)h

)−1
. The resulting augmented asymmetric

interpolation normal equations can thus be written as

R(k)bp, f (k− f) = ip, f (k− f), (5.4)

where ip, f (k− f) = [0T
f Ip, f (k− f) 0T

p]T is the (N + 1)×1 vector in which 0 f and
0p are column vectors of f and p zeros, respectively. A computationally efficient

120 Jenq-Tay Yuan

LSL interpolator developed in [22] requiring only O[N] operations via “intermedi-
ate predictions” can be employed to compute the exact order-updated interpolation
errors.

The LSL interpolator computes the order-recursive interpolation errors as an
additional past data sample [i.e., (p, f) → (p+1, f)] and an additional future
data sample [i.e., (p, f) → (p, f + 1)] are taken into account, respectively, as
follows:

ε I
p+1, f (k− f) = ε I

p, f (k− f)− k∗p+1, f (k)εb,N+1(k,k− f), (5.5)

ε I
p, f +1(k− f −1) = ε I

p, f (k− f −1)− k∗p, f +1(k)ε f ,N+1(k,k− f −1), (5.6)

where both kp+1, f (k) and kp, f +1(k) are the complex-valued coefficients of the inter-
polator;

ε f ,N+1(i, i− f −1) = x(i)+
N+1

∑
n=1

n�= f +1

a∗N+1,n(k)x(i−n), 0 ≤ i ≤ k (5.7)

is referred to as the (N + 1)th-order intermediate forward prediction (IFP) error,
as it is the prediction error of x(i) based on a weighted linear combination of
its (N + 1) previous data samples [i.e., x(i− 1), . . . ,x(i− f),x(i− f − 2), . . . ,x(i−
N −1)] without considering present data sample x(i− f −1), where aN+1,n(k),n =
1,2, . . . , f , f +2, . . . ,N +1 are (N +1)th-order IFP coefficients. Similarly, the (N +
1)th-order intermediate backward prediction (IBP) error is defined as the predic-
tion error of x(i−N −1) based on a weighted linear combination of x(i−N),x(i−
N + 1), . . . ,x(i− f − 1),x(i− f + 1), . . . ,x(i) without considering the data sample
x(i− f):

εb,N+1(i, i− f) = x(i−N −1)+
N+1

∑
n=1

n�=p+1

c∗N+1,n(k)x(i+n−N −1), 0 ≤ i ≤ k, (5.8)

where cN+1,n(k), n = 1,2, . . . , p, p + 2, . . . ,N + 1 are (N + 1)th-order intermediate
backward prediction coefficients. It is worth pointing out that two special cases arise
when f = 0 and when p = N, and, as a result, the Nth-order IFP error, ε f ,N(k,k− f),
is reduced to ε f ,N(k) and ε f ,N−1(k), which are the conventional forward prediction
(FP) errors of order N and order (N−1), respectively. Similarly, when p = 0 and f =
N, the Nth-order intermediate backward prediction error, εb,N(k,k− f), is reduced
to εb,N−1(k−1) and εb,N(k), which are the conventional backward prediction (BP)
errors of order (N −1) and order N, respectively.

5 QRD Least-Squares Lattice Algorithms 121

5.2.2 Orthogonal bases for LSL interpolator

To construct an LSL interpolator of order (p, f), Equations (5.5) and (5.6) must
be applied p and f times, respectively. However, any sequencing between these
two equations is permissible. Consequently, an LSL interpolator of order (p, f)
has Cp

N = C f
N = N!

p! f ! permissible realizations. For instance, to construct a (2,2)th-

order interpolator, a total of C2
4 = 6 permissible realizations may be identified by the

sequences BFBF, FBFB, BBFF, FFBB, FBBF, and BFFB of intermediate backward
(B) and intermediate forward (F) prediction errors that are used in (5.5) and (5.6),
respectively. Six possible order-recursive realizations for a (2,2)th-order LSL inter-
polator can thus be constructed by employing the six orthogonal bases. As an exam-
ple, the orthogonal basis identified by BFBF sequence may be verified as follows.
The sequence BFBF reveals that, to estimate the data sample x(k−2), the data sam-
ple immediately prior to x(k−2)(i.e., x(k−3)) is considered first corresponding to
a B followed by the consideration of the data sample immediately future to x(k−2)
(i.e., x(k− 1)) corresponding to an F. The above two operations are then followed
by the consideration of one additional past data sample, x(k−4), corresponding to
a B, and one additional future data sample, x(k), corresponding to an F. The inter-
mediate prediction error basis, which is an orthogonal basis set, can therefore be
generated by

[εb,1(k−2,k−2) ε f ,2(k−1,k−2) εb,3(k−1,k−2) ε f ,4(k,k−2) ε I
2,2(k−2)]T

=

⎡
⎢⎢⎢⎣

1 0 0 0 0
a∗2,2(k) 1 0 0 0
c∗3,1(k) c∗3,3(k) 1 0 0
a∗4,3(k) a∗4,1(k) a∗4,4(k) 1 0

b∗(2,2),−1(k−2) b∗(2,2),1(k−2) b∗(2,2),−2(k−2) b∗(2,2),2(k−2) 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

x(k−3)
x(k−1)
x(k−4)

x(k)
x(k−2)

⎤
⎥⎥⎦ , (5.9)

The above transformation is known as the Gram–Schmidt orthogonalization pro-
cedure. The other five orthogonal basis vectors identified by the sequences FBFB,
BBFF, FFBB, FBBF, and BFFB, can be similarly verified. Each of the orthogonal
bases identified by the six sequences can be used to construct an order-recursive
realization for a (2,2)th-order LSL interpolator.

Both IFP and IBP errors must be computed before the order-updated interpo-
lation errors in (5.5) and (5.6) can be computed. They can be computed using
the conventional BP and FP errors, as follows.

εb,N+1(k,k− f) = εb,N+1(k)+ l∗b,N+1(k)ε
I
p, f (k− f), (5.10)

ε f ,N+1(k,k− f −1) = ε f ,N+1(k)+ l∗f ,N+1(k)ε I
p, f (k− f −1), (5.11)

122 Jenq-Tay Yuan

where lb,N+1(k) and l f ,N+1(k) are complex-valued coefficients; εb,N+1(k) and
ε f ,N+1(k), which are conventional BP and FP errors, respectively, are directly
accessible from an (N + 1)th-order LSL predictor that can be embedded into
an LSL interpolator.

Notably, both ε I
p, f (k − f) and ε I

p, f (k − f − 1) are already computed from the
previous interpolation lattice stage of the LSL interpolator. Equations (5.5), (5.6),
(5.10), and (5.11) together with the well-known LSL predictor, constitute an order-
recursive LSL interpolator.

5.2.3 LSL predictor

The well-known exact decoupling property of the LSL predictor can be
readily demonstrated to be a special case of the orthogonal basis of the LSL
interpolator corresponding to sequence BB. . .B. By setting (p, f) = (N,0)
(i.e., an Nth-order LSL predictor), there is one unique orthogonal basis set for use in
an LSL interpolator of order (N,0) (since C0

N = 1), which is[
εb,1(k,k),εb,2(k,k), . . . ,εb,N(k,k),ε I

N,0(k)
]
. This orthogonal basis set is clearly

equivalent to [εb,0(k−1),εb,1(k−1), . . . ,εb,N−1(k−1),ε f ,N(k)], which, in turn, cor-
responds to [εb,0(k),εb,1(k), . . . ,εb,N−1(k)] that consists of a sequence of N uncor-
related backward prediction errors at all instants of time and forms a unique
orthogonal basis set [5].

The widely known LSL predictor can also be derived directly from the LSL
interpolator by setting (p, f) = (N,0) and (p, f) = (0,N) in (5.10) and (5.11),
respectively, and yields

εb,N+1(k) = εb,N(k−1)− l∗b,N+1(k)ε f ,N(k) (5.12)

ε f ,N+1(k) = ε f ,N(k)− l∗f ,N+1(k)εb,N(k−1). (5.13)

Notably, we have used the fact that εb,N+1(k,k) = εb,N(k−1), ε I
N,0(k) = ε f ,N(k),

ε f ,N+1(k,k − N − 1) = ε f ,N(k), and ε I
0,N(k − N − 1) = εb,N(k − 1). Interestingly,

(5.12) and (5.13) can also be reduced directly from (5.6) and (5.5) by setting
(p, f) = (0,N) and (p, f) = (N,0), respectively.

5 QRD Least-Squares Lattice Algorithms 123

5.3 SRF Givens Rotation with Feedback Mechanism

Consider first a Givens rotation matrix given by

[
c s∗

−s c

]
, where the two parameters

of the Givens rotation are the real cosine parameter c and the complex sine parameter
s, such that c2 + |s|2 = 1. A Givens rotation used to zero out the element at the (2,1)
location is an elementary transformation of the form

[
c s∗

−s c

][
α1 α2 . . . αp

β1 β2 . . . βp

]
=

[
α ′

1 α ′
2 . . . α ′

p

0 β ′
2 . . . β ′

p

]
, (5.14)

where α1 and α ′
1 are defined to be real and non-negative, whereas α2 . . .αp, α ′

2 . . .α ′
p,

β1 . . .βp, β ′
2 . . .β ′

p are all complex. Substituting s = cβ1/α1 into c2 + |s|2 = 1 yields

c = α1/α ′
1, where α ′

1 �
√

α2
1 + |β1|2. Accordingly,

c =
α1

α ′
1

and s =
β1

α ′
1
, (5.15)

(
α ′

1

)2 = α2
1 + |β1|2, (5.16)

(
α ′

i

)∗ = cα∗
i + sβ ∗

i , i = 2, . . . , p, (5.17)
(
β ′

i

)∗ = cβ ∗
i − s∗α∗

i , i = 2, . . . , p. (5.18)

Equations (5.15), (5.16), (5.17), and (5.18) summarize the square-root (SR) Givens
rotation of a complex version since it requires a SR operation in the generic formu-
lation. The SR operation may occupy a large area in a VLSI chip and many cycles
may be required to complete such computations; consequently, the operation is slow.
Proudler et al. [24] demonstrated that a finite-precision implementation of an SRF
lattice algorithm achieved better numerical results than that of the conventional SR
Givens rotation. Hsieh et al. [25] thus proposed a systematic way of generating a
unified SRF Givens rotation to avoid the SR operation. In the remaining part of this
section, the SRF Givens rotation developed in [25] is generalized to a complex form
and extended to include a feedback mechanism, which is known to have a stabi-
lizing effect when errors are made in the QRD-based RLS estimation, because of
finite-precision effects [26, 27]. The generalized SRF Givens rotation with a feed-
back mechanism is then applied to develop the SRF QRD-LSL algorithms that are
presented in Section 5.4.

By taking out a scaling factor from each row of the matrices on both sides
of (5.14), the two rows, before and after the Givens rotation, are denoted, respec-
tively, by

[
α1 α2 . . . αp

β1 β2 . . . βp

]
=

[√
ka 0

0
√

kb

][
a1 a2 . . . ap

b1 b2 . . . bp

]
(5.19)

and

124 Jenq-Tay Yuan

[
α ′

1 α ′
2 . . . α ′

p

0 β ′
2 . . . β ′

p

]
=

[√
k′a 0

0
√

k′b

][
a′1 a′2 . . . a′p
0 b′2 . . . b′p

]
, (5.20)

where ka, kb, k′a, and k′b are the scaling factors resulting in SRF operations, and α ′
i

and β ′
i are the updated αi and βi when β1 is zeroed out. Replacing αi =

√
kaai,

α ′
i =

√
k′aa′i, βi =

√
kbbi, i = 1, . . . , p and β ′

i =
√

k′bb′i, i = 2, . . . , p, in (5.15),
(5.16), (5.17), and (5.18) leads to c =

√
kaa1/α ′

1, s =
√

kbb1/α ′
1, a′1 = α ′

1/
√

k′a,

a′i = kaa1ai + kbb∗1bi/
√

k′aα ′
1, i = 2, . . . , p, and b′i =

√
kakb[a1bi−b1ai]√

k′bα
′
1

, i = 2, . . . , p,

where α ′
1 =

√
kaa2

1 + kb|b1|2. Clearly, if k′a = (α ′
1)

2/μ2 and k′b = kakb/ν2 (α ′
1)

2 =

kakb/μ2ν2k
′
a are chosen, then the computation of a′1, a′i, and b′i can avoid SR

operation; μ and ν are parameters to be determined later. Substituting the cho-
sen k′a and k′b into c, s, a′1, a′i, and, b′i shown above yields c = a1/μ ·

√
ka/k′a,

s = b1/μ ·
√

kb/k′a, a′1 = μ , a′i = (kaa1ai + kbb∗1bi)/μk′a, i = 2, . . . , p, and, b′i =
ν [a1bi −b1ai], i = 2, . . . , p. Evidently, the SR operations in a′1, a′i, and b′i are elimi-
nated, regardless of the values μ and ν .

Throughout this section, μ = 1 (or a′1 = 1), ν = 1, and a1 = 1 were set such that
the SRF results would be consistent with those of Gentleman [28] and McWhirter
[29]. Accordingly, we have

k′a = ka + kb|b1|2, (5.21)

k′b =
kakb

k′a
= c · kb, (5.22)

a′i = cai + s∗bi, i = 2, . . . , p, (5.23)

b′i = bi −b1ai, i = 2, . . . , p, (5.24)

where

c =
ka

k′a
and s = b1 ·

kb

k′a
(5.25)

are the defined generalized rotational parameters. Since ka = α2
1 and |β1|2 corre-

sponds to β1 ·β ∗
1 = kb|b1|2, we have k′a = ka +kb|b1|2 = α2

1 + |β1|2 = (α ′
1)

2. There-
fore,

c =
ka

k′a
=

ka(
α ′

1

)2 = c2 (5.26)

and s =
√

kb
k′a
·b1 =

√
b1 · s. The SRF Givens rotation with feedback mechanism can

be derived by substituting (5.24) into (5.23):

a′i = ai (c+ s∗b1)+ s∗b′i = ai + s∗b′i, (5.27)

5 QRD Least-Squares Lattice Algorithms 125

which is obtained using c + s∗b1 = ka
k′a

+ kbb∗1
k′a

b1 = 1. For notational convenience,
taking the complex conjugate of both sides of (5.24) and (5.27) yields

(
b′i
)∗ = b∗i −b∗1a∗i , i = 2, . . . , p, (5.28)(

a′i
)∗ = a∗i + s ·

(
b′i
)∗

, i = 2, . . . , p. (5.29)

Equations (5.21), (5.22), (5.25), (5.28), and (5.29) summarize the complex ver-
sion of the SRF Givens rotation with a feedback mechanism.

5.4 SRF QRD-LSL Algorithms

This section develops the SRF QRD-LSL interpolation algorithm and the SRF
QRD-LSL prediction algorithm. The latter algorithm is then extended to develop
the SRF joint process estimation that utilizes information from the prediction lattice
filter to generate the LS filtering estimate. More specifically, the joint process esti-
mation problem displayed in Figure 5.1 is the optimal LS estimation of a process
d(k), called the desired response, from a related process x(k), called the observa-
tions [2, 5].

The SRF QRD-LSL interpolation algorithm comprises six blocks: (a) FP
block and BP block (summarized in Table 5.1); (b) IFP block and interpo-
lation [Int(F)] block (summarized in Table 5.2); (c) IBP block and interpola-
tion [Int(P)] block (summarized in Table 5.2) [30]. Overall, the SRF QRD-
LSL interpolation algorithm has O[N] computational complexity per iteration
without any SR operation. Notably, both FP and BP blocks, which constitute
the SRF QRD-LSL prediction algorithm, are portions of the SRF QRD-LSL
interpolation algorithm and must be used to compute both the conventional
forward and backward prediction errors of order m [i.e., e f ,m(k) and eb,m(k)].

The SRF QRD-LSL interpolation algorithm performs adaptive filtering recur-
sively in order and time. As an additional “future” stage is increased [i.e., (p, f) →
(p, f +1)], then both the IFP block and the Int(F) block, which are the QRD imple-
mentations of (5.11) and (5.6), respectively, must be used to compute the a priori
interpolation error, eI

p, f +1(k− f −1). As an additional “past” stage is increased [i.e.,
(p, f) → (p + 1, f)], then both the IBP block and the Int(P) block, which are the
QRD implementations of (5.10) and (5.5), respectively, must be used to compute
the a priori interpolation error, eI

p+1, f (k− f). Throughout the chapter, the terms “ε”
and “e” represent the a posteriori and a priori versions of estimation errors, respec-
tively, whereas the term “ε” represents the “angle-normalized” estimation error.

126 Jenq-Tay Yuan

Table 5.1 SRF QRD-LSL algorithm and joint process estimation.

SRF QRD-LSL prediction and filtering
Initialization:

π f ,m(−1) = πb,m(−1) = eb,m−1(−1) = 0, for order m = 1,2, . . . ,N,
pm−1(−1) = 0, for order m = 1,2, . . . ,N +1,
Bm(−2) = Bm(−1) = Fm(−1) = δ , for order m = 0,1 . . . ,N,
For k = 0,1,2 . . ., set e f ,0(k) = eb,0(k) = x(k), e0(k) = d(k)
For k = −1,0,1,2 . . ., set γ0(k) = 1

Prediction: For time k = 0,1, . . ., and prediction order m = 1,2, . . . ,N.
FP block:

Bm−1(k−1) = λBm−1(k−2)+ γm−1(k−1)|eb,m−1(k−1)|2

cb,m−1(k−1) = λBm−1(k−2)
Bm−1(k−1)

sb,m−1(k−1) = γm−1(k−1)
e∗b,m−1(k−1)
Bm−1(k−1)

e f ,m(k) = e f ,m−1(k)− eb,m−1(k−1)π∗
f ,m(k−1)

π∗
f ,m(k) = π∗

f ,m(k−1)+ sb,m−1(k−1)e f ,m(k)

γm(k−1) = cb,m−1(k−1)γm−1(k−1)
BP block:

Fm−1(k) = λFm−1(k−1)+ γm−1(k−1)|e f ,m−1(k)|2

s f ,m−1(k) = γm−1(k−1)
e∗f ,m−1(k)
Fm−1(k)

eb,m(k) = eb,m−1(k−1)− e f ,m−1(k)π∗
b,m(k−1)

π∗
b,m(k) = π∗

b,m(k−1)+ s f ,m−1(k)eb,m(k)
Joint process estimation: For time k = 0,1, . . ., and m = 1,2, . . . ,N +1.

Bm−1(k) = λBm−1(k−1)+ γm−1(k)|eb,m−1(k)|2

cb,m−1(k) = λBm−1(k−1)
Bm−1(k)

sb,m−1(k) = γm−1(k)
e∗b,m−1(k)
Bm−1(k)

em(k) = em−1(k)− eb,m−1(k)p∗m−1(k−1)

p∗m−1(k) = p∗m−1(k−1)+ sb,m−1(k)em(k)

γm(k) = cb,m−1(k)γm−1(k)

5.4.1 QRD based on interpolation

Before deriving the SRF QRD-LSL interpolation algorithm, we briefly describe
a modified QR-decomposition for interpolation. It can be shown that a (k + 1)×
(k + 1) orthogonal matrix Q(k) can always be constructed from one of the C f

N
orthogonal basis sets described in Section 5.2 such that it applies a generalized
orthogonal triangularization to XN+1(k) in (5.3)

Q(k)XN+1(k) =
[

Qp, f (k)
S(k)

]
XN+1(k) =

[
Rp, f (k)

O(k−N)×(N+1)

]
, (5.30)

5 QRD Least-Squares Lattice Algorithms 127

Table 5.2 Summary of SRF QRD-LSL interpolation algorithm.

SRF QRD-LSL interpolation algorithm
Initialization:

Δ f ,m(−1) = Δ b,m(−1) = 0, for order m = 1,2, . . . ,N +1,
ρ p, f (−1) = 0, for all p and f ,
Ip, f (k) = δ , for k ≤−1 and all p and f ,
Bm(−1,k) = Fm(−1,k) = δ , for k ≤−1 and order m = 1,2, . . . ,N +1
eI

p, f (k) = 0 for k ≤−1 and all p and f , and γ0,0(k) = 1 for k ≤−1,
For k = 0,1,2, . . ., set eI

0,0(k) = x(k).
For time k = 0,1, . . ., starting with p = f = 0.
As (p, f) → (p, f +1):

IFP block:
Ip, f (k− f −1) = λ Ip, f (k− f −2)+ γp, f (k− f −1)|eI

p, f (k− f −1)|2

cI,N(k−1) = λ Ip, f (k− f−2)
Ip, f (k− f−1) (needed only for deriving QRD-LSL prediction)

sI,N(k−1) = γp, f (k− f −1)
eI∗

p, f (k− f−1)
Ip, f (k− f−1)

e f ,N+1(k,k− f −1) = e f ,N+1(k)+ eI
p, f (k− f −1)Δ ∗

f ,N+1(k−1)

Δ ∗
f ,N+1(k) = Δ ∗

f ,N+1(k−1)+ sI,N(k−1)e f ,N+1(k)
Int(F) block:

FN+1(k,k− f −1) = λFN+1(k−1,k− f −2)
+γp, f (k− f −1)|e f ,N+1(k,k− f −1)|2

c′f ,N+1(k) = λFN+1(k−1,k− f−2)
FN+1(k,k− f−1)

s′f ,N+1(k) = γp, f (k− f −1)
e∗f ,N+1(k,k− f−1)
FN+1(k,k− f−1)

eI
p, f +1(k− f −1) = eI

p, f (k− f −1)− e f ,N+1(k,k− f −1)ρ∗
p, f +1(k−1)

ρ∗
p, f +1(k) = ρ∗

p, f +1(k−1)+ s′f ,N+1(k)e
I
p, f +1(k− f −1)

γp, f +1(k− f −1) = c′f ,N+1(k)γp, f (k− f −1)
As (p, f) → (p+1, f):

IBP block:
Ip, f (k− f) = λ Ip, f (k− f −1)+ γp, f (k− f)|eI

p, f (k− f)|2

sI,N(k) = γp, f (k− f)
eI∗

p, f (k− f)
Ip, f (k− f)

eb,N+1(k,k− f) = eb,N+1(k)+ eI
p, f (k− f)Δ∗

b,N+1(k−1)

Δ ∗
b,N+1(k) = Δ ∗

b,N+1(k−1)+ sI,N(k)eb,N+1(k)
Int(P) block:

BN+1(k,k− f) = λBN+1(k−1,k− f −1)+ γp, f (k− f)|eb,N+1(k,k− f)|2

c′b,N+1(k) = λBN+1(k−1,k− f−1)
BN+1(k,k− f)

s′b,N+1(k) = γp, f (k− f)
e∗b,N+1(k,k− f)
BN+1(k,k− f)

eI
p+1, f (k− f) = eI

p, f (k− f)− eb,N+1(k,k− f)ρ∗
p+1, f (k−1)

ρ∗
p+1, f (k) = ρ∗

p+1, f (k−1)+ s′b,N+1(k)e
I
p+1, f (k− f)

γp+1, f (k− f) = c′b,N+1(k)γp, f (k− f)

128 Jenq-Tay Yuan

where Qp, f (k) contains the first (N + 1) rows of Q(k), whereas S(k) contains the

remaining rows; O(k−N)×(N+1) is a null matrix of order (k−N)× (N +1). Since C f
N

possible sequences can be used, the (N +1)× (N +1) matrix Rp, f (k) in (5.30) can

display C f
N different forms, all of which contain one f × f lower triangular matrix

(upper-left submatrix of Rp, f (k)) and one p× p upper triangular matrix (lower-right
submatrix of Rp, f (k)) with zero elements filling the (f + 1)st row, except for the
(f + 1, f + 1)st element. More specifically, our results indicate that Rp, f (k) using
the BFBFBF. . . sequence can be shown to be

Rp, f (k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γF,1 0 . . . 0 × × ×

×
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . .

.

.

.

.

.

.
. . . γF,2 0

.

.

.
.
.
.

. . .
. . .

.

.

.
× γF,3 × × ×

0 0 I
1
2

p, f (k− f) 0 0
× ·· · · · · × × γB,1 × . . . ×
.
.
.

. . .
. . .

.

.

.
.
.
. 0 γB,2

. . .
.
.
.

.

.

.
. . .

. . .
.
.
.

.

.

.
.
.
.

. . .
. . . ×

× × × 0 . . . 0 γB,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.31)

in which γF,1 = F
1
2

N (k,k− f), γF,2 = F
1
2

4 (k− f +2,k− f), γF,3 = F
1
2

2 (k− f +1,k− f),

γB,1 = B
1
2
1 (k− f ,k− f), γB,2 = B

1
2
3 (k− f +1,k− f), γB,3 = B

1
2
N−1(k−1,k− f), where

F
1
2

m (k− j,k− f) and B
1
2
m(k− j,k− f) are the square roots of the minimum sum of

mth-order intermediate forward and backward prediction error squares, respectively,

whereas I
1
2
p, f (k− f) is the square root of the minimum sum of (p, f)th-order inter-

polation error square; the symbol × denotes an element whose value is not of direct
interest. We refer to the result in (5.30) as the modified QR-decomposition for inter-
polation and refer to the form in Rp, f (k) of (5.31) as the standard lower/upper (LU)
triangular form for a (p, f)th-order interpolator based on the QR-decomposition.
For example, a special case of (5.31) identified by sequence BFBF for a (2,2)th-
order LSL interpolator can be expressed as

R2,2(k) =

⎡
⎢⎢⎢⎢⎣

F
1
2

4 (k,k−2) 0 × × ×

× F
1
2

2 (k−1,k−2) × × ×

0 0 I
1
2

2,2(k−2) 0 0

× × × B
1
2
1 (k−2,k−2) ×

× × × 0 B
1
2
3 (k−1,k−2)

⎤
⎥⎥⎥⎥⎦

(5.32)

Moreover, setting (p, f) = (N,0), the lower-right p× p upper triangular submatrix
of Rp, f (k) in (5.31) yields the following well-known upper triangular matrix after
an unitary matrix is used to develop the QRD-LSL prediction algorithm.

5 QRD Least-Squares Lattice Algorithms 129

RN,0(k−1) =

⎡
⎢⎢⎢⎢⎢⎣

B
1
2
0 (k−1) × × . . . ×

B
1
2
1 (k−1) × . . . ×

B
1
2
2 (k−1) . . . ×

O . . .
.
.
.

B
1
2
N−1(k−1)

⎤
⎥⎥⎥⎥⎥⎦

(5.33)

5.4.2 SRF QRD-LSL interpolation algorithm

The SRF QRD-LSL interpolation algorithm is derived according to the following
seven stages. In each stage, either a single Givens rotation or a sequence of Givens
rotations is applied. In the derivation, matrices are represented in uppercase boldface
type and column vectors in lowercase boldface type, whereas scalars appear in plain
text type. The dimensions of matrices and vectors appear as subscripts. For example,
Am×k and pm represent a m× k matrix and a m×1 column vector, respectively.

1. We first write (5.3), at time k−2, as εεε I
p, f (k− f −2) = XN+1(k−2)bp, f (k− f −

2) and pre-multiply both sides of the equation by ΛΛΛ
1
2 (k−2), where ΛΛΛ(k−2) =

diag[λ k−2,λ k−3, . . . ,1] is the (k − 1)× (k − 1) exponential weighting matrix
in which 0 � λ ≤ 1 is the forgetting factor. Next, we apply a sequence of N
Givens rotations that define the (k−1)× (k−1) orthogonal matrix Q(k−2) =[

Qp, f (k−2)
S(k−2)

]
such that matrix Qp, f (k−2) transforms data matrix XN+1(k−2)

into matrix

Rp, f (k−2) =

⎡
⎣

L f× f (k−2) p f (k−2) B f×p(k−2)

0T
f I

1
2
p, f (k− f −2) 0T

p

Ap× f (k−2) pp(k−2) Up×p(k−2)

⎤
⎦ , (5.34)

which is in the standard LU triangular form for a (p, f)th-order interpolator as
shown in (5.31) with x(k−2) being the most recent data sample used. Notably,
L f× f (k− 2) is the f × f lower triangular matrix and Up×p(k− 2) is the p× p
upper triangular matrix. We may thus write

ΛΛΛ
1
2 (k−2)Q(k−2)εεε I

p, f (k− f −2)

=ΛΛΛ
1
2 (k−2)

[
Rp, f (k−2)

O(k−N−2)×(N+1)

]
bp, f (k− f −2). (5.35)

2. We may apply the transformations produced by

[
1

Q(k−2)

]
and Q(k−2) to

the data vectors xk(k−1) = [x∗(0),x∗(1), . . . ,x∗(k−1)]T and xk−1(k−N−3) =
[0, . . . ,0,x∗(0), . . . ,x∗(k−N −3)]T, respectively. The two data vectors contain-
ing the next future and next past data samples for consideration, respectively,
will serve the purpose of deriving the order-updated recursions for the interpo-
lation error in the later stages. We may thus write

130 Jenq-Tay Yuan

[
1

Q(k−2)

]
ΛΛΛ

1
2 (k−1)xk(k−1)

= [λ
k−1

2 x∗(0), fT
f (k−1),Δ f ,N+1(k−1), fT

p(k−1), fT
k−N−2(k−1)]T (5.36)

and

Q(k−2)ΛΛΛ
1
2 (k−2)xk−1(k−N −3)

= [bT
f (k−2),Δb,N+1(k−2),bT

p(k−2),bT
k−N−2(k−2)]T, (5.37)

where Δ f ,N+1(k − 1) and Δb,N+1(k − 2) are auxiliary parameters which will
be used later to obtain the intermediate prediction errors. All vectors appear-
ing on the right-hand-side of (5.36) and (5.37) are defined merely for conve-
nience of presentation; their elements are not of direct interest. By appending
both transformed data vectors obtained in (5.36) and (5.37), respectively, as

the leftmost column and rightmost column of the matrix defined by ΛΛΛ
1
2 (k−2)[

Rp, f (k−2)
O(k−N−2)×(N+1)

]
in (5.35) [see the box in (5.38)], together with the new data

sample vector for time k at the bottom row, we obtain the following expanded
matrix D(k), which can be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

λ
k
2 x∗(0) 0T

f 0 0T
p 0

λ
1
2 f f (k−1) λ

1
2 L f× f (k−2) λ

1
2 p f (k−2) λ

1
2 B f×p(k−2) λ

1
2 b f (k−2)

λ
1
2 Δ f ,N+1(k−1) 0T

f λ
1
2 I

1
2
p, f (k− f −2) 0T

p λ
1
2 Δb,N+1(k−2)

λ
1
2 fp(k−1) λ

1
2 Ap× f (k−2) λ

1
2 pp(k−2) λ

1
2 Up×p(k−2) λ

1
2 bp(k−2)

λ
1
2 fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ

1
2 bk−N−2(k−2)

x∗(k) . . . x∗(k− f −1) . . . x∗(k−N −2)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.38)

3. Next, we apply a sequence of Givens rotations to annihilate all elements in the
bottom row of the matrix D(k) except for the (k + 1,1)th, (k + 1, f + 2)th, and
(k+1,N +3)th elements. These rotations include an appropriate combination of
a sequence of f Givens rotations proceeding leftwards from the (k +1, f +1)th
element to the (k + 1,2)th element and a sequence of p Givens rotations pro-
ceeding rightwards from the (k+1, f +3)th element to the (k+1,N +2)th ele-
ment with the order in which the elements are annihilated in accordance with
the sequencing chosen (e.g., BFBFBF. . .) to preserve the standard LU triangu-
lar form for interpolator in the transformed matrix. Note that any sequencing
between F and B is permissible. Accordingly, there are C f

N possible sequences.
For example, if the sequence BFBFBF. . . is chosen, then the elements at the
bottom row of D(k) in the following order: (k + 1, f + 3), (k + 1, f + 1),
(k+1, f +4), (k+1, f), (k+1, f +5), (k+1, f −1), . . . , (k+1,N+2), (k+1,2)
will be annihilated successively. Such a sequence of N Givens rotations defines
the (k +1)× (k +1) orthogonal matrix L(k) that transforms the matrix D(k) to
the matrix E(k) as follows:

L(k)D(k) = E(k), (5.39)

5 QRD Least-Squares Lattice Algorithms 131

where E(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ
k
2 x∗(0) 0T

f 0 0T
p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

λ
1
2 Δ f ,N+1(k−1) 0T

f λ
1
2 I

1
2
p, f (k− f −2) 0T

p λ
1
2 Δb,N+1(k−2)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

λ
1
2 fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ

1
2 bk−N−2(k−2)

ε∗f ,N+1(k,k− f −1) 0T
f ε∗ 0T

p ε∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Since x∗(k − f − 1) at the bottom row of D(k) is the present data sample to
be estimated by its p past and f future neighboring data samples, it was not
annihilated by L(k) in the above transformation. Consequently, a non-zero
quantity, ε∗, was generated at the bottom row of E(k). By using the fact that
orthogonal rotations are norm preserving, one can show that ε∗ is actually the
complex conjugate of the (p, f)th-order angle-normalized interpolation error,
ε I∗

p, f (k− f −1), with x(k−1) being the most recent data sample used. Notably,
due to the non-zero quantity ε∗ at the bottom row of E(k), the (k + 1,1)th
and (k + 1,N + 3)th elements of E(k) in (5.39) are ε∗f ,N+1(k,k − f − 1) and
ε∗b,N+1(k− 1,k− f − 1), which are the angle-normalized intermediate forward
and backward prediction errors of order N +1, respectively.

4. Both the conventional angle-normalized FP error, ε f ,N+1(k), and the angle-
normalized backward prediction error, εb,N+1(k− 1), appear if the (k + 1, f +
2)th element of E(k) is annihilated. This can be accomplished by applying a
single Givens rotation to E(k). We may thus write

JI,N(k−1)E(k) = F(k), (5.40)

where JI,N(k−1) =

[I f +1
cI,N(k−1) s∗I,N(k−1)

Ik− f−2
−sI,N(k−1) cI,N(k−1)

]
and F(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
k
2 x∗(0) 0T

f 0 0T
p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

Δ f ,N+1(k) 0T
f I

1
2

p, f (k− f −1) 0T
p Δb,N+1(k−1)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

λ
1
2 fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ

1
2 bk−N−2(k−2)

ε∗f ,N+1(k) 0T
f 0 0T

p ε∗b,N+1(k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5. The annihilation in (5.40) has the effect of computing both the intermediate for-
ward and backward prediction errors from the conventional forward and back-
ward prediction errors. By taking out a scaling factor [i.e., the square root term
of each row of E(k) and F(k)] from each row of matrices E(k) and F(k) [31], the
rows before and after the Givens rotation in (5.40) is denoted, respectively, by

132 Jenq-Tay Yuan

E(k) = E1(k)E2(k)

= diag

[√
λ k, . . . ,

√
λ Ip, f (k− f −2), . . . ,

√
γp, f (k− f −1)

]

⎡
⎢⎢⎢⎢⎣

x∗(0) 0T
f 0 0T

p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

Δ f ,N+1(k−1) 0T
f 1 0T

p Δb,N+1(k−2)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p bk−N−2(k−2)

e∗f ,N+1(k,k− f −1) 0T
f eI∗

p, f (k− f −1) 0T
p e∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎦

, (5.41)

and

F(k) = F1(k)F2(k)

= diag

[√
λ k, . . . ,

√
Ip, f (k− f −1), . . . ,

√
γ ′p, f (k− f −1)

]

⎡
⎢⎢⎢⎢⎢⎣

x∗(0) 0T
f 0 0T

p 0

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

Δ f ,N+1(k) 0T
f 1 0T

p Δ b,N+1(k−1)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

fk−N−2(k−1) O(k−N−2)× f 0k−N−2 O(k−N−2)×p bk−N−2(k−2)

e∗f ,N+1(k) 0T
f 0 0T

p e∗b,N+1(k−1)

⎤
⎥⎥⎥⎥⎥⎦

. (5.42)

Some elements of the matrices in (5.41) and (5.42) and the corresponding ele-
ments of the matrices in (5.19) and (5.20), respectively, can be related as fol-
lows: ka = λ Ip, f (k− f − 2), kb = γp, f (k− f − 1), a1 = 1, a2 = Δ f ,N+1(k− 1),
a3 = Δ b,N+1(k − 2), b1 = eI∗

p, f (k − f − 1), b2 = e∗f ,N+1(k,k − f − 1), b3 =
e∗b,N+1(k−1,k− f −1), and k′a = Ip, f (k− f −1), k′b = γ ′p, f (k− f −1), a′1 = 1,

a′2 =Δ f ,N+1(k), a′3 =Δ b,N+1(k−1), b′1 = 0, b′2 = e∗f ,N+1(k), b′3 = e∗b,N+1(k−1).
Notably, “e” represents the a priori estimation error. Substituting ka, k′a, kb, b1,
a2, a′2, b2, b′2, a3, a′3, b3, and b′3 into (5.21), (5.25), (5.28), and (5.29) (by letting
i = 2 and i = 3) yields

Ip, f (k− f −1) = λ Ip, f (k− f −2)+ γp, f (k− f −1)|eI
p, f (k− f −1)|2, (5.43)

sI,N(k−1) = γp, f (k− f −1)
eI∗

p, f (k− f −1)

Ip, f (k− f −1)
, (5.44)

e f ,N+1(k) = e f ,N+1(k,k− f −1)− eI
p, f (k− f −1)Δ ∗

f ,N+1(k−1), (5.45)

Δ ∗
f ,N+1(k) = Δ ∗

f ,N+1(k−1)+ sI,N(k−1)e f ,N+1(k), (5.46)

eb,N+1(k) = eb,N+1(k,k− f)− eI
p, f (k− f)Δ∗

b,N+1(k−1), (5.47)

Δ ∗
b,N+1(k) = Δ ∗

b,N+1(k−1)+ sI,N(k)eb,N+1(k). (5.48)

5 QRD Least-Squares Lattice Algorithms 133

Note that the a priori IFP error e f ,N+1(k,k− f − 1) in (5.45) is still unknown
whereas the a priori FP error e f ,N+1(k) in (5.45) has already been computed
by using the SRF QRD-LSL prediction algorithm (see Table 5.1), which will
be derived in Section 5.4.3. In order to compute the a priori IFP error, we
“reverse” (5.45) in formulation such that, given the a priori FP error, the a
priori IFP error can be computed as

e f ,N+1(k,k− f −1) = e f ,N+1(k)+ eI
p, f (k− f −1)Δ ∗

f ,N+1(k−1). (5.49)

Similarly, (5.47) can be reformulated as

eb,N+1(k,k− f) = eb,N+1(k)+ eI
p, f (k− f)Δ ∗

b,N+1(k−1), (5.50)

which also corresponds to the “reversed” formulation. Notably, (5.49) and (5.50)
correspond to (5.11) and (5.10), respectively, and these computed intermediate
prediction errors are then used to compute the order-updated interpolation errors
in the following stages, as (p, f) → (p, f +1) and as (p, f) → (p+1, f).

6. To obtain the order-updated interpolation error of order (p, f + 1) from that of
the current order (p, f) as an additional future data sample is used, we proceed
with by transforming the matrix E(k) into the standard LU triangular form for a
(p, f +1)st-order interpolator. This transformation can be achieved by initially
applying an (k + 1)× (k + 1) orthogonal matrix P(k) to E(k). The matrix P(k)
represents the combined transformation produced by a sequence of (k −N −
2) Givens rotations, which has the effect of annihilating all the (k − N − 2)
elements of vector λ 1

2 fk−N−2(k−1) in the first column of matrix E(k). We may
thus write

P(k)E(k) = G(k), (5.51)

where G(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
1
2 F

1
2

N+1(k−1) 0T
f 0 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

λ
1
2 Δ f ,N+1(k−1) 0T

f λ
1
2 I

1
2
p, f (k− f −2) 0T

p λ
1
2 Δb,N+1(k−2)

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ
1
2 b′k−N−2(k−2)

ε∗f ,N+1(k,k− f −1) 0T
f εI∗

p, f (k− f −1) 0T
p ε∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where λFN+1(k − 1) = λ k|x(0)|2 + ‖λ 1
2 fk−N−2(k − 1)‖2 is the minimum

weighted sum of the FP error square. This transformation is followed by rotat-
ing the element λ 1

2 Δ f ,N+1(k − 1) in the first column of matrix G(k) into the
(1, f + 2)th element of the matrix such that the resulting matrix C(k) in (5.52)
will be in standard LU triangular form that can be used to compute the order-
updated interpolation error. We may thus write

134 Jenq-Tay Yuan

⎡
⎢⎢⎢⎣

cΔ (k−1) s∗Δ (k−1)

I f

−sΔ (k−1) cΔ (k−1)

Ik− f−1

⎤
⎥⎥⎥⎦G(k) = C(k), (5.52)

where C(k) can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γF 0T
f λ

1
2 ρp, f +1(k−1) 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f γI 0T

p ×

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ
1
2 b′k−N−2(k−2)

ε∗f ,N+1(k,k− f −1) 0T
f εI∗

p, f (k− f −1) 0T
p ε∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

in which γI = λ 1
2 I

1
2
p, f +1(k− f −2); the (1,1)th element of C(k), γF = λ 1

2 F
1
2

N+1
(k − 1,k − f − 2), is the square root of the minimum weighted sum of the
IFP error square and ρp, f +1(k−1) is the interpolation auxiliary parameter that
will be used in stage 7. Notably, the (f + 2, f + 2)th element of C(k) becomes

λ 1
2 I

1
2
p, f +1(k− f −2). Clearly, the upper-left (N +2)×(N +2) submatrix of C(k)

denotes the standard LU triangular form for a (p, f +1)st order interpolator and
is used in the next stage to compute the order-updated interpolation error of
order (p, f +1).

7. We are now positioned to obtain the order-updated recursion (p, f)→ (p, f +1)
for the interpolation error as an additional future data sample is used by applying
one single Givens rotation to C(k) so as to annihilate ε∗f ,N+1(k,k− f −1) at the
bottom row of C(k). We thus obtain

J′F,N+1(k)C(k) = J(k), (5.53)

where J′F,N+1(k) =

⎡
⎢⎣

c′f ,N+1(k) s′
∗
f ,N+1(k)

Ik−1

−s′f ,N+1(k) c′f ,N+1(k)

⎤
⎥⎦ and J(k) is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F
1
2

N+1(k,k− f −1) 0T
f ρp, f +1(k) 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f λ

1
2 I

1
2
p, f +1(k− f −2) 0T

p ×

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p λ
1
2 b′k−N−2(k−2)

0 0T
f εI∗

p, f +1(k− f −1) 0T
p ε∗b,N+2(k,k− f −1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similar to the procedure in (5.41) and (5.42), scalar factors in the first row and
the bottom row in matrices C(k) and J(k) can be taken out:

5 QRD Least-Squares Lattice Algorithms 135

C(k) = C1(k)C2(k)

= diag

[√
λFN+1(k−1,k− f −2), . . . ,

√
γp, f (k− f −1)

]

⎡
⎢⎢⎢⎢⎣

1 0T
f ρ p, f +1(k−1) 0T

p ×

f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f × 0T

p ×

fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p b′k−N−2(k−2)

e∗f ,N+1(k,k− f −1) 0T
f eI∗

p, f (k− f −1) 0T
p e∗b,N+1(k−1,k− f −1)

⎤
⎥⎥⎥⎥⎦

, (5.54)

and

J(k) = J1(k)J2(k)

= diag

[√
FN+1(k,k− f −1), . . . ,

√
γp, f +1(k− f −1)

]

⎡
⎢⎢⎢⎢⎢⎣

1 0T
f ρ p, f +1(k) 0T

p ×
f f (k) L f× f (k−1) p f (k−1) B f×p(k−1) b f (k−1)

0 0T
f × 0T

p ×
fp(k) Ap× f (k−1) pp(k−1) Up×p(k−1) bp(k−1)

0k−N−2 O(k−N−2)× f 0k−N−2 O(k−N−2)×p b
′
k−N−2(k−2)

0 0T
f eI∗

p, f +1(k− f −1) 0T
p e∗b,N+2(k,k− f −1)

⎤
⎥⎥⎥⎥⎥⎦

. (5.55)

Some elements of matrices C1(k) and C2(k) in (5.54) and matrices J1(k)
and J2(k) in (5.55) and the corresponding elements of the matrices in (5.19)
and (5.20), respectively, can be related as follows: ka = λFN+1(k−1,k− f −2),
kb = γp, f (k − f − 1), a1 = 1, a2 = ρ p, f +1(k − 1), b1 = e∗f ,N+1(k,k − f − 1),
b2 = eI∗

p, f (k− f −1), and k′a = FN+1(k,k− f −1), k′b = γp, f +1(k− f −1), a′1 = 1,

a′2 = ρ p, f +1(k), b′1 = 0, b′2 = eI∗
p, f +1(k− f − 1). Substituting ka, k′a, kb, b1, a2,

a′2, b2, and b′2 into (5.21), (5.22), (5.25), (5.28), and (5.29) (by letting i = 2)
yields

FN+1(k,k− f −1) = λFN+1(k−1,k− f −2)

+ γp, f (k− f −1)|e f ,N+1(k,k− f −1)|2, (5.56)

c′f ,N+1(k) =
λFN+1(k−1,k− f −2)

FN+1(k,k− f −1)
, (5.57)

s′f ,N+1(k) = γp, f (k− f −1)
e∗f ,N+1(k,k− f −1)

FN+1(k,k− f −1)
, (5.58)

eI
p, f +1(k− f −1) = eI

p, f (k− f −1)− e f ,N+1(k,k− f −1)ρ∗
p, f +1(k−1),

(5.59)

ρ∗
p, f +1(k) = ρ∗

p, f +1(k−1)+ s′f ,N+1(k)e
I
p, f +1(k− f −1), (5.60)

γp, f +1(k− f −1) = c′f ,N+1(k)γp, f (k− f −1). (5.61)

136 Jenq-Tay Yuan

Equations (5.43), (5.44), (5.49), (5.46) (summarized in the IFP block of
Table 5.2) and (5.56), (5.57), (5.58), (5.59), (5.60), and (5.61) (summarized in
the Int(F) block of Table 5.2) constitute the SRF QRD-LSL interpolation algo-
rithm as (p, f) → (p, f + 1). However, eI

p, f +1(k− f − 1) computed in (5.59)
is actually the a priori interpolation error of order (p, f +1). The a posteriori
interpolation error of order (p, f +1) can then be computed by

ε I
p, f +1(k− f −1) = γp, f +1(k− f −1)eI

p, f +1(k− f −1). (5.62)

The derivation of the order-updated interpolation error of order (p, f) → (p +
1, f) can be similarly obtained.

5.4.3 SRF QRD-LSL prediction algorithm and SRF joint process
estimation

The widely known SRF QRD-LSL prediction algorithm, which consists of both
forward prediction (FP) block and backward prediction (BP) block summarized in
Table 5.1, is actually a special case of the SRF QRD-LSL interpolation algorithm.
The SRF QRD-LSL prediction algorithm in FP block and BP block can be directly
derived by setting (p, f) = (0,N) in the IFP block and (p, f) = (N,0) in the IBP
block, respectively. In deriving the SRF QRD-LSL prediction algorithm, the fol-
lowing results have been used. eI

0,N(k−N−1) = eb,N(k−1), e f ,N+1(k,k−N−1) =
e f ,N(k), I0,N(k−N −1) = BN(k−1), eI

N,0(k) = e f ,N(k), eb,N+1(k,k) = eb,N(k−1),
IN,0(k) = FN(k). The FP block and the BP block can also be reduced directly from
Int(P) block and Int(F) block by setting (p, f) = (N,0) and (p, f) = (0,N), respec-
tively.

The SRF QRD-LSL prediction algorithm provides the mathematical founda-
tion for the joint process estimation displayed in Figure 5.1 and is used as
a sub-system to solve the joint process estimation problem where two opti-
mal estimations are performed jointly. The two optimal estimations are (a)
the forward reflection coefficients π f ,m(k) in the FP block and the backward
reflection coefficients πb,m(k) in the BP block both of which characterize a
multistage lattice predictor with input x(k) in the LS sense; (b) the regression
coefficients pm(k) that characterize a LS estimator of d(k) to be developed
below.

The SRF joint process estimation is developed by first considering a special case
of (5.30) by setting (p, f) = (m,0), which transforms the data matrix Xm(k − 1)

5 QRD Least-Squares Lattice Algorithms 137

into the following upper triangular form that clearly is related to the QRD-LSL
prediction, with x(k−1) being the most recent data sample used,

Q(k−1)ΛΛΛ
1
2 (k−1)Xm(k−1) =

⎡
⎣

Rm−1,0(k−1) pb,m−1(k−1)

0T λ 1
2 B

1
2
m−1(k−1)

O(k−m)×(m−1) 0

⎤
⎦ , (5.63)

where Rm−1,0(k − 1) is a (m − 1) × (m − 1) upper triangular matrix as shown
in (5.33) and pb,m−1(k−1) is a (m−1)×1 vector whose elements are not of direct
interest. The same k×k unitary matrix Q(k−1) is also applied to a weighted desired
signal vector to obtain

Q(k−1)ΛΛΛ
1
2 (k−1)d(k−1) =

[
p(k−1)

pm−1(k−1)
v(k−1)

]
, (5.64)

where dT(k−1) = [d∗(0),d∗(1), . . . ,d∗(k−1)], pT(k−1) = [p0(k−1), p1(k−1),
. . . , pm−2(k−1)], and v(k − 1) is a vector containing the remaining (k −m) ele-
ments. Subtracting (5.64) from (5.63), the latter of which has been first post-
multiplied by a m×1 tap weight vector w(k−1), yields the following transformed
estimation error vector

Q(k−1)ΛΛΛ
1
2 (k−1)εεε(k−1)

=

[
p(k−1)

pm−1(k−1)
v(k−1)

]
−

⎡
⎣

Rm−1,0(k−1) pb,m−1(k−1)

0T λ 1
2 B

1
2
m−1(k−1)

O(k−m)×(m−1) 0

⎤
⎦w(k−1), (5.65)

where εεε(k−1) = [ε∗(0),ε∗(1), . . . ,ε∗(k−1)]T = d(k−1)−Xm(k−1) ·w(k−1) is
the error vector whose element ε∗(k−1) is the error in estimating d∗(k−1) of the
desired response from a linear combination of x∗(k−m), . . . ,x∗(k− 1) when using
the tap weight vector w(k−1) at time (k−1).

The optimum tap weight vector, if desired, can be obtained from

[
p(k−1)

pm−1(k−1)

]

=

[
Rm−1,0(k−1) pb,m−1(k−1)

0T λ 1
2 B

1
2
m−1(k−1)

]
wo(k − 1) using back-substitution and this

choice of wo(k−1) gives a minimized error vector as

min
wo(k−1)

‖εεε(k−1)‖ = ‖v(k−1)‖. (5.66)

Given new observation x∗(k) along with the new desired response d∗(k)
received at time k and by appending the transformed desired data vector in (5.64)
as the rightmost column of (5.63) followed by a sequence of (m − 1) Givens
rotations proceeding rightwards from the (k + 1,1)th element to the
(k + 1,m − 1)th element that are used to annihilate the bottom row vector
xH

m−1(k) = [x∗(k),x∗(k−1), . . . , x∗(k−m+2)] yields

138 Jenq-Tay Yuan

Tm−1(k)

⎡
⎢⎢⎢⎣

λ 1
2 Rm−1,0(k−1) pb,m−1(k−1) λ 1

2 p(k−1)

0T λ 1
2 B

1
2
m−1(k−1) λ 1

2 pm−1(k−1)
O 0 λ 1

2 v(k−1)
xH

m−1(k) x∗(k−m+1) d∗(k)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

Rm−1,0(k) pb,m−1(k) p(k)

0T λ 1
2 B

1
2
m−1(k−1) λ 1

2 pm−1(k−1)
O 0 λ 1

2 v(k−1)
0T ε∗b,m−1(k) ε∗m−1(k)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
L(k)

, (5.67)

where the sequence of Givens rotations used in Tm−1(k) = J0(k) ·J1(k) · . . . ·Jm−2(k)
turns out to be the same cosine and sine parameters used in the FP block. As a
result of this transformation, both the (m− 1)th-order angle-normalized backward
prediction error ε∗b,m−1(k) and the (m− 1)th-order angle-normalized joint process
estimation error ε∗m−1(k) are produced.

The order-updated angle-normalized joint process estimation error ε∗m(k) can be
obtained by applying the following Givens rotation to matrix L(k) to annihilate the
(k +1,m)th element and yields

[
Im−1

cb,m−1(k) s∗b,m−1(k)
Ik−m

−sb,m−1(k) cb,m−1(k)

]
L(k) =

⎡
⎢⎢⎢⎢⎢⎣

Rm−1,0(k) pb,m−1(k) p(k)

0T B
1
2
m−1(k) pm−1(k)

O 0 λ
1
2 v(k−1)

0T 0 ε∗m(k)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H(k)

. (5.68)

By taking out a scaling factor from each row of matrices L(k) and H(k), the rows
before and after the Givens rotation in (5.68) is denoted, respectively, by

L(k) = L1(k)L2(k) = diag
[
. . . ,

√
λBm−1(k−1), . . . ,

√
γm−1(k)

]

⎡
⎣

Rm−1,0(k) pb,m−1(k) p(k)
0T 1 pm−1(k−1)

O 0 λ
1
2 v(k−1)

0T e∗b,m−1(k) e∗m−1(k)

⎤
⎦ , (5.69)

and

H(k) = H1(k)H2(k) = diag
[
. . . ,

√
Bm−1(k), . . . ,

√
γm(k)

]
⎡
⎣

Rm−1,0(k) pb,m−1(k) p(k)
0T 1 pm−1(k)

O 0 λ
1
2 v(k−1)

0T 0 e∗m(k)

⎤
⎦ . (5.70)

Some elements of the matrices in (5.69) and (5.70) and the corresponding ele-
ments of the matrices in (5.19) and (5.20), respectively, can be related as fol-
lows: ka = λBm−1(k−1), kb = γm−1(k), a1 = 1, a2 = pm−1(k−1), b1 = e∗b,m−1(k),
b2 = e∗m−1(k), k′a = Bm−1(k), k′b = γm(k), a′1 = 1, a′2 = pm−1(k), b′1 = 0, and

5 QRD Least-Squares Lattice Algorithms 139

b′2 = e∗m(k). Substituting ka, k′a, kb, b1, a2, a′2, b2, and b′2 into (5.22), (5.25), (5.28),
and (5.29) (by letting i = 2) yields the following SRF joint process estimation, which
is also summarized in Table 5.1.

SRF joint process estimation:

em(k) = em−1(k)− eb,m−1(k)p∗m−1(k−1), (5.71)

p∗m−1(k) = p∗m−1(k−1)+ sb,m−1(k)em(k), (5.72)

where cb,m−1(k) = λBm−1(k−1)
Bm−1(k) and sb,m−1(k) = γm−1(k)

e∗b,m−1(k)
Bm−1(k) in which

γm(k) = γm−1(k)cb,m−1(k). The a posteriori estimation error can be computed
by εm(k) = γm(k)em(k).

5.5 SRF (QRD-LSL)-Based RLS Algorithm

For many applications such as system identification, adaptive equalization, and
active noise control, wherein the filter weights of the corresponding LS algorithm
are required. The SRF QRD-LSL interpolation algorithm can be applied to imple-
ment the RLS algorithm in the transversal structure that generates the desired weight
vector and the resulting algorithm is referred to as the SRF (QRD-LSL)-based RLS
algorithm. The (N + 1)st-order RLS algorithm with the tap weight vector at time
k, wN+1(k), can be calculated recursively in time using wN+1(k) = wN+1(k− 1)+
kN+1(k)e∗(k) (see Table 2.5 in Chapter 2), where kN+1(k) = R−1(k) ·xN+1(k) is the
Kalman gain vector.

The Kalman gain vector can also be calculated as a particular set of normal-
ized least-squares interpolation errors [23]:

kT
N+1(k) =

[
ε I

N,0(k)
IN,0(k)

, . . . ,
ε I

p+1, f−1(k− f +1)

Ip+1, f−1(k− f +1)
,
ε I

p, f (k− f)

Ip, f (k− f)
,

ε I
p−1, f +1(k− f −1)

Ip−1, f +1(k− f −1)
, . . . ,

ε I
0,N(k−N)

I0,N(k−N)

]
. (5.73)

Equation (5.73) can be proved as follows. From (5.4), we have bp, f (k − f) =
R−1(k)ip, f (k− f) = Ip, f (k− f) ·R−1(k)

[
0T

f 1 0T
p

]T
. Taking the Hermitian on both

sides of the above equation and realizing that the correlation matrix is Hermitian
[i.e., RH(k) = R(k)], we have

140 Jenq-Tay Yuan

[
0T

f 1 0T
p

]
·R−1(k) =

1
Ip, f (n− f)

·bH
p, f (n− f). (5.74)

We then post-multiply both sides of the (5.74) by xN+1(k). Using kN+1(k) =
R−1(k) · xN+1(k) and (5.2) [by setting i = k− f in (5.2)] yields the (f + 1)st ele-
ment of the Kalman gain vector.

[kN+1(k)] f +1 =
[

0T
f 1 0T

p

]
·R−1(k) ·xN+1(k) (5.75)

=
1

Ip, f (k− f)
·bH

p, f (k− f) ·xN+1(k) =
ε I

p, f (k− f)

Ip, f (k− f)
(5.76)

By adjusting the values of p and f with p + f = N, all the elements of the Kalman
gain vector in (5.73) can be calculated. Equation (5.74) reveals the connection
between linear interpolation and the inverse of the time-average correlation matrix
that is required to obtain the Kalman gain vector.

The Kalman gain vector is the most decorrelated version of the normalized input
vector, because each element of the Kalman gain vector in (5.73) is the optimum
two-sided prediction residual of each corresponding element of the input vector
xN+1(k). Accordingly, the Kalman gain vector corresponds to the least redundant
version of the input vector. Therefore, the elements of kN+1(k) may be responsi-
ble for the fast convergence of the RLS algorithm. The SRF QRD-LSL interpo-
lation algorithm can be used to calculate kN+1(k) in (5.73) in an order-recursive
manner through a divide and conquer method [23]; the resulting SRF (QRD-LSL)-
based RLS algorithm requires O[N log2 N] operations for a transversal filter of
order N.

5.6 Simulations

All simulations were run on a PC, in a floating-point environment, with 10-tap
weights. The effective number of mantissa bits in the floating-point representa-
tion is reduced to observe the finite-precision effects by truncating the mantissa
at a predefined position without affecting the exponent. Three algorithms were
applied to perform adaptive prediction of an autoregressive (AR) process that
closely follows the one presented in [13], and their numerical robustness were eval-
uated in this scenario. The observation is x(k) = xAR(k) + w1(k), where xAR(k) =
−∑10

i=1 aixAR(k− i)+w2(k) is an AR process of order 10 with an eigenvalue spread
approximately 1020. Both w1(k) and w2(k) are independent white noise processes
with zero mean. The variance of w2(k) is set to cause xAR(k) to have a variance
of 0 dB, whereas the variance of w1(k) is chosen such that the signal-to-noise
ratio is 30 dB. The desired response is therefore x(k) while the observations are
[x(k−1),x(k−2), . . . ,x(k−10)].

Figure 5.2 compares three learning curves obtained by ensemble-averaging the
prediction error squares over 200 independent experimental trials. The three learning

5 QRD Least-Squares Lattice Algorithms 141

0 0.5 1 1.5 2

x 10
6

−30

−20

−10

0

10

20

30

40

iterations (k)

20
0

en
se

m
bl

e−
av

er
ag

ed
 s

qu
ar

e
er

ro
r

(d
B

)
(A) Conventional RLS (15 bits)
(B) SRF (QRD−LSL)−based RLS algorithm (12 bits)
(C) SRF joint process estimation (5 bits)

(A)
(C)

(B)

Fig. 5.2 Learning curves of three algorithms in a finite-precision environment.

curves are the results of using a conventional RLS algorithm of O[N2] complexity in
Table 2.5 (in Chapter 2), the SRF (QRD-LSL)-based RLS algorithm of O[N log2 N]
complexity, and the joint process estimation of O[N] complexity in Table 5.1
without computing the optimal tap weight vector, all with a forgetting factor of
λ = 0.996 and a regularization parameter δ = 0.004. Our simulations demonstrated
that when exact arithmetic is used, all three algorithms yielded exactly the same
result, but they exhibited various unstable behaviors with finite-precision compu-
tation. While the conventional RLS algorithm became unacceptable for less than
16 mantissa bits, the SRF (QRD-LSL)-based RLS algorithm with 12 mantissa bits
ran successfully for two million iterations (at which point the experiment was ter-
minated). Although the mean square error produced by the joint process estima-
tion based on the QRD-LSL prediction algorithm is a little higher than that of the
SRF (QRD-LSL)-based RLS algorithm, it still produces useful results with only five
mantissa bits. This is because the joint process section is subordinate to the predic-
tion section, and the numerical stability of the joint process estimation thus depends
on the SRF QRD-LSL prediction algorithm. It can be shown that the computations
of the conventional forward and backward prediction errors in the SRF QRD-LSL
prediction algorithm involve the error feedback mechanism described in Section 5.3,
and therefore their error growth in a finite-precision environment is always bounded.
For example, the computation of the forward prediction error summarized in the FP
block in Table 5.1 is rewritten as

142 Jenq-Tay Yuan

e f ,m(k) = e f ,m−1(k)− eb,m−1(k−1)π∗
f ,m(k−1), (5.77)

π∗
f ,m(k) = π∗

f ,m(k−1)+ sb,m−1(k−1)e f ,m(k). (5.78)

A unique feature of the error feedback mechanism is that the a priori prediction error
e f ,m(k) computed in (5.77) is fed back to time-update the forward reflection coef-
ficient π∗

f ,m(k) whose cumulative error is bounded for all time in a finite-precision
environment. However, as mentioned in Section 5.4, the computations of the inter-
mediate forward and backward prediction errors from the conventional forward and
backward prediction errors in the two equation pairs using (5.49), (5.46) and (5.50),
(5.48) in the QRD-LSL interpolation algorithm, correspond to the reversed formula-
tions. These reversed formulations no longer involve an error feedback mechanism,
potentially causing numerical instability in the QRD-LSL interpolation algorithm
in a finite-precision environment. It has been shown by Skidmore and Proudler [23]
that the error growth in this reversed formulation is linear with time in nature in
a finite-precision environment (i.e., the errors accumulate but are not amplified by
each iteration). This linear error growth may have resulted in the divergence of the
SRF (QRD-LSL)-based RLS algorithm before two million iterations are completed
when less than 12 mantissa bits is used. However, this linear error growth should be
contrasted to the exponential error growth with time exhibited by the fast transver-
sal filter (FTF) algorithm [32] that may much more rapidly diverge from the correct
solution.

5.7 Conclusion

This chapter develops the SRF QRD-LSL interpolation algorithm, which is then
reduced to the SRF QRD-LSL prediction algorithm, which is in turn extended to
develop the SRF joint process estimation. As described in [32, 33], no exact-RLS
algorithm, whether in lattice or transversal filter, can always be stable, because of
limited-precision instabilities. The RLS algorithm based on the SRF QRD-LSL
interpolation algorithm is no exception, and it may diverge in a finite-precision
environment due to error accumulation. Simulations indicated that the SRF (QRD-
LSL)-based RLS algorithm using only eight mantissa bits, started to diverge from
the correct solution around k = 2× 105 in the computer experiment conducted in
Section 5.6, because of the two equation pairs, (5.49), (5.46) and (5.50), (5.48),
computed in the QRD-LSL interpolation algorithm. In contrast, the computations
of the forward and backward prediction errors in the SRF QRD-LSL prediction
algorithm involve an error feedback mechanism, and therefore the corresponding
error growth in a finite-precision environment is always bounded. Consequently,
the joint process estimation based on the SRF QRD-LSL prediction algorithm still
exhibits well-conditioned behaviors with only five mantissa bits. However, the joint
process estimation does not generate the filter weights, which are required in some
applications.

5 QRD Least-Squares Lattice Algorithms 143

Skidmore and Proudler [23] employed exactly the same concept as demonstrated
by the two equation pairs, (5.49), (5.46) and (5.50), (5.48), to implement an SRF
QR-RLS algorithm, referred to as the KaGE RLS algorithm. Although the KaGE
RLS algorithm, like the SRF (QRD-LSL)-based RLS algorithm, may exhibit lin-
ear error growth with time in a finite-precision environment owing to the computa-
tion of the two equation pairs described above, simulation results presented in [23]
reveal that the KaGE RLS algorithm can run reliably for many millions of iterations
using single precision arithmetic and is inherently much more stable than the stabi-
lized FTF algorithm proposed by Maouche and Slock [34]. Therefore, as suggested
in [23], to generate the transversal filter weights, the KaGE algorithm as well as the
SRF (QRD-LSL)-based RLS algorithm presented in this chapter, both employing
interpolation residuals and both of O[N log2 N] complexity, may offer a favorable
compromise between the computationally efficient FTF algorithms of O[N] com-
plexity and the stable algorithms of O[N2] complexity, such as the Inverse QRD-
RLS algorithm proposed by Alexander and Ghirnikar [35]. The Inverse QRD-RLS
algorithm may not be computationally feasible for some real-time implementations
of long adaptive filters.

References

1. D. T. Lee, M. Morf, and B. Friedlander, Recursive least squares ladder estimation algo-
rithms. IEEE Transactions on Acoustic, Speech, and Signal Processing, vol. ASSP-29, no. 3,
pp. 627–641 (June 1981)

2. L. J. Griffiths, An adaptive lattice structure for noise-cancelling applications. IEEE Inter-
national Conference on Acoustic, Speech, and Signal Processing, ICASSP’78, Tulsa, USA,
pp. 873–90 (April 1978)

3. J. Makhoul, A class of all-zero lattice digital filters: Properties and applications. IEEE Trans-
actions on Acoustic, Speech, and Signal Processing, vol. ASSP-26, pp. 304–314 (August
1978)

4. P. Strobach, Linear Prediction Theory – A Mathematical Basis for Adaptive Systems.
Springer-Verlag, Berlin, Germany (1990)

5. S. Haykin, Adaptive Filter Theory. 4th edition Prentice-Hall, Englewood Cliffs, NJ, USA
(2002)

6. A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley, NJ, USA (2003)
7. F. Capman, J. Boudy, and P. Lockwood, Acoustic echo cancellation using a fast QR-RLS

algorithm and multirate schemes. IEEE International Conference on Acoustic, Speech, and
Signal Processing, ICASSP’95, Detroit, USA, pp. 969–972 (May 1995)

8. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustic,
Speech, and Signal Processing, vol. ASSP-38, no. 4, pp. 631–653 (April 1990)

9. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, QRD-based lattice filter algorithms. SPIE
Conference on Advanced Algorithms and Architectures for Signal Processing, San Diego,
USA, vol. 1152, pp. 56–67 (August 1989)

10. F. Ling, Givens rotation based least squares lattice and related algorithms. IEEE Transactions
on Signal Processing, vol. 39, no. 7, pp. 1541–1551 (July 1991)

11. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no.
4, pp. 879–891 (April 1991)

144 Jenq-Tay Yuan

12. A. A. Rontogiannis and S. Theodoridis, New fast QR decomposition least squares adaptive
algorithms. IEEE Transactions on Signal Processing, vol. 46, no. 8, pp. 2113–2121 (August
1998)

13. B. Yang and J. F. Böhme, Rotation-based RLS algorithms: unified derivations, numerical
properties, and parallel implementations. IEEE Transactions on Signal Processing, vol. 40,
no. 5, pp. 1151–1167 (May 1992)

14. A. K. Jain, Image coding via a nearest neighbors image model. IEEE Transactions on Com-
munications, vol. COMM-23, no. 3, pp. 318–331 (March 1975)

15. E. A. Gifford, B. R. Hunt, and M. W. Marcellin, Image coding using adaptive recursive
interpolative DPCM. IEEE Transactions on Image Processing, vol. 4, no. 8, pp. 1061–1069
(August 1995)

16. G. Yang, H. Leich, and R. Boite, Voiced speech coding at very low bit rates based on forward–
backward waveform prediction. IEEE Transactions on Speech and Audio Processing, vol. 3,
no. 1, pp. 40–47 (January 1995)

17. E. Masry, Closed-form analytical results for the rejection of narrow-band interference in PN
spread spectrum systems-Part II: linear interpolation filters. IEEE Transactions on Commu-
nications, vol. COMM-33, no. 1, pp. 10–19 (January 1985)

18. J.-T. Yuan and J.-N. Lee, Narrowband interference rejection in DS/CDMA systems using
adaptive (QRD-LSL)-based nonlinear ACM interpolators. IEEE Transactions on Vehicular
Technology, vol. 52, no. 2, pp. 374–379 (March 2003)

19. S. Kay, Some results in linear interpolation theory. IEEE Transactions on Acoustic, Speech,
and Signal Processing, vol. ASSP-31, no. 3, pp. 746–749 (June 1983)

20. B. Picinobono and J. M. Kerilis, Some properties of prediction and interpolation errors. IEEE
Transactions on Acoustic, Speech, and Signal Processing, vol. ASSP-36, no. 4, pp. 525–531
(April 1988)

21. C. K. Coursey and J. A. Stuller, Linear interpolation lattice. IEEE Transactions on Signal
Processing, vol. 39, no. 4, pp. 965–967 (April 1991)

22. J.-T. Yuan, QR-decomposition-based least-squares lattice interpolators. IEEE Transactions on
Signal Processing, vol. 48, no. 1, pp. 70–79 (January 2000)

23. I. D. Skidmore and I. K. Proudler, The KaGE RLS algorithm. IEEE Transactions on Signal
Processing, vol. 51, no. 12, pp. 3094–3104 (December 2003)

24. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, The QRD-based least squares lattice algo-
rithm: Some computer simulations using finite wordlengths. IEEE International Symposium
on Circuits and Systems, ISCAS’90, New Orleans, USA, pp. 258–261 (May 1990)

25. S. F. Hsieh, K. J. R. Liu, and K. Yao, A unified square-root-free approach for QRD-based
recursive least squares estimation. IEEE Transactions on Signal Processing, vol. 41, no. 3,
pp. 1405–1409 (March 1993)

26. F. Ling, D. Manolakis, and J. G. Proakis, Numerically robust least-squares lattice-ladder algo-
rithms with direct updating of the reflection coefficients. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-34, no. 4, pp. 837–845 (August 1986)

27. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Computationally efficient QR-
decomposition approach to least squares adaptive filtering. IEE Proceedings-F, vol. 138, no.
4, pp. 341–353 (August 1991)

28. W. M. Gentleman, Least squares computations by Givens transformations without square
roots. IMA Journal of Applied Mathematics, vol. 12. pp. 329–336 (December 1973)

29. J. G. McWhirter, Recursive least-squares minimization using a systolic array. SPIE Real-Time
Signal Processing VI, vol. 431, pp. 105–112 (January 1983)

30. J.-T. Yuan, C.-A. Chiang, and C.-H. Wu, A square-root-free QRD-LSL interpolation
algorithm. IEEE International Conference on Acoustic, Speech, and Signal Processing,
ICASSP’2008, Las Vegas, USA, pp. 3813–3816 (April 2008)

31. C.-A. Chiang, A recursive least-squares (RLS) algorithm based on interpolation lattice recur-
sive structure. M.S. thesis, Adviser: J.-T. Yuan, Fu Jen Catholic University, Taipei, Taiwan,
R.O.C. (April 2006)

5 QRD Least-Squares Lattice Algorithms 145

32. J. M. Cioffi and T. Kailath, Fast, recursive-least-squares transversal filters for adaptive filter-
ing. IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-32, no. 2,
pp. 304–337 (April 1984)

33. S. Ljung, Fast algorithms for integral equations and least-squares identification problems.
Ph.D. thesis, Linkoping University, Sweden (1983)

34. K. Maouche and D. T. M. Slock, Fast subsampled-updating stabilized fast transversal filter
(FSU SFTF) RLS algorithm for adaptive filtering. IEEE Transactions on Signal Processing,
vol. 48, no. 8, pp. 2248–2257 (August 2000)

35. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

Chapter 6
Multichannel Fast QRD-RLS Algorithms

António L. L. Ramos and Stefan Werner

Abstract When considering multichannel adaptive implementations, it is often
possible to directly apply standard single-channel algorithms to the multichannel
problem, e.g., the numerically stable and fast converging QR decomposition recur-
sive least-square (QRD-RLS) algorithm. Even though such a solution would provide
fast convergence, it may be computationally too complex due to a large number of
coefficients. In order to obtain a computationally efficient solution, RLS-type algo-
rithms specially tailored for the multichannel setup are a good option. This chapter
introduces various multichannel fast QRD-RLS (MC-FQRD-RLS) algorithms that
can be seen as extensions of the basic single-channel FQRD-RLS algorithms to the
case of a multichannel input vector, where it can be assumed that each channel has
a time-shift structure. We provide, in a general framework, a comprehensive and
up-to-date discussion of the MC-FQRD-RLS algorithms, addressing issues such as
derivation, implementation, and comparison in terms of computational complexity.

6.1 Introduction

Multichannel signal processing can be found in various applications such as color
image processing, multispectral remote sensing imagery, biomedicine, channel
equalization, stereophonic echo cancelation, multidimensional signal processing,
Volterra-type non-linear system identification, and speech enhancement [1, 2].
When choosing among the adaptive algorithms that can cope with multichannel
signals, the choice is more than often based on stability, convergence speed, and

António L. L. Ramos
Buskerud University College, Kongsberg – Norway
e-mail: antonio.ramos@hibu.no

Stefan Werner
Helsinki University of Technology, Helsinki – Finland
e-mail: stefan.werner@tkk.fi

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 147
DOI 10.1007/978-0-387-09734-3 6, c© Springer Science+Business Media, LLC 2009

antonio.ramos@hibu.no
stefan.werner@tkk.fi

148 António L. L. Ramos and Stefan Werner

computational complexity. The standard QR decomposition recursive least-squares
(QRD-RLS) algorithm stands out as potential good option because of its well-known
fast convergence property and excellent numerical behavior. However, its O[P2]
computational complexity makes its use prohibitive when higher order filters are
required.

The FQRD-RLS algorithms, in general, offer the same fast converging feature as
the standard QRD-RLS algorithm, while attaining a lower computational complex-
ity, which is achieved by exploiting the underlying time-shift structure of the input
signal vector. Historically, the first solutions were presented for the case where the
input signal is just a “tapped-delay” line, i.e., a single-channel signal, and multi-
channel fast QRD-RLS (MC-FQRD-RLS) algorithms arise as a natural extensions
of basic FQRD-RLS algorithms making them useful also in multichannel applica-
tions. The MC-FQRD-RLS algorithms can be classified into three distinct ways,
according to [3]: (1) which error vector is being updated (a priori or a posteri-
ori); (2) the type of prediction used (forward or backward),1 and; (3) the approach
taken for the derivation (sequential- or block-type). The first two are inherited from
the single-channel case, whereas the last one, specific for multichannel algorithms,
determines how new multichannel input samples are processed. These three con-
cepts are combined in Table 6.1 for the case of MC-FQRD-RLS algorithms based
on backward prediction errors, which are the ones addressed in this work. The struc-
ture parameter introduced in this table simply denotes the way a particular algorithm
is implemented.

Table 6.1 Classification of the MCFQRD-RLS algorithms.

Error Approach Structure References Algorithm
type and order

Equal Lattice [4] 1
BLOCK-CHANNEL Order Transversal [4–6] 2

Multiple Lattice — 3
MCFQR Order Transversal [7, 8] 4
POS B Equal Lattice Implicit in [9] 5

SEQUENTIAL-CHANNEL Order Transversal Suggested in [5] 6
Multiple Lattice [9] 7
Order Transversal [8, 10] 8
Equal Lattice [11] 9

BLOCK-CHANNEL Order Transversal [4, 6, 11] 10
Multiple Lattice — 11

MCFQR Order Transversal [7] 12
PRI B Equal Lattice Implicit in [11] 13

SEQUENTIAL-CHANNEL Order Transversal Implicit in [11] 14
Multiple Lattice [11] 15
Order Transversal [11] 16

1 This chapter does not consider FQRD-RLS algorithms based on the updating of the forward error
vector. As pointed out in Chapter 4, and still holding for the multichannel case, these algorithms are
reported to be unstable, in contrast with their backward error vector updating-based counterparts.

6 Multichannel Fast QRD-RLS Algorithms 149

Depending on the approach taken for the derivation, the O[P2] computational
complexity of the standard QRD-RLS implementation can be reduced to O[MP]
and O[M2P], for sequential- and block-channel processing algorithms, respectively;
with P being the total number of filter coefficients and M the number of channels.
Although the computational cost of block-channel algorithms is slightly higher than
sequential-channel algorithms, they are more suitable for parallel processing imple-
mentations.

After reformulating the problem for the multichannel case, most of the equa-
tions are turned into matrix form, with some involving matrix inversion operations.
Beside being potential sources of numerical instability, the computational burden is
also greatly increased contrasting with desirable low-complexity feature of single-
channel FQRD-RLS algorithms that rely on scalar operations only. Nevertheless,
many good solutions to these problems exist and are addressed in the following.

The reminder of this chapter is organized as follows. In Section 6.2, we
introduce the standard MC-FQRD-RLS problem formulation along with a new def-
inition of the input vector that allows for a more general setup where the various
channels may have different orders. The sequential- and block-type algorithms are
discussed in Sections 6.3 and 6.4, respectively, while order-recursive implementa-
tions are addressed in Section 6.5. An application example and computational com-
plexity issues are presented in Sections 6.6.1 and 6.6.2, respectively. Finally, closing
remarks are given in Section 6.7.

6.2 Problem Formulation

The MC-FQRD-RLS problem for channels of equal orders was addressed in early
90’s, in [5], where the sequential approach was introduced to avoid complicated
matrix operations, and in [12] where both sequential and block approaches were
addressed. Later, multiple-order block-multichannel algorithms comprising scalar
operations only were introduced in [3, 8, 11, 13].

For the multichannel problem, the weighted least-squares (WLS) objective func-
tion, introduced in Chapter 2, is given as

ξ (k) =
k

∑
i=0

λ k−i[d(i)−xT
P(i)wP(k)]2 = eT(k)e(k), (6.1)

where e(k) is the weighted error vector defined as

e(k) =

⎡
⎢⎢⎢⎣

d(k)
λ 1/2d(k−1)

...
λ k/2d(0)

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

xT
P(k)

λ 1/2xT
P(k−1)
...

λ k/2xT
P(0)

⎤
⎥⎥⎥⎦wP(k)

= d(k)−XP(k)wP(k), (6.2)

150 António L. L. Ramos and Stefan Werner

and
xT

P(k) =
[
xT

k xT
k−1 · · · xT

k−N+1

]
, (6.3)

where xT
k = [x1(k) x2(k) · · · xM(k)] is the input signal vector at instant k. As

illustrated in Figure 6.1, N is the number of filter coefficients per channel, M is the
number of input channels, and wP(k) is the P× 1 coefficient vector at time instant
k, P = MN being the total number of elements for the case of channels with equal
orders.

The good numerical behavior of the QR-decomposition-based RLS algorithms is
due to the fact that they make use of the square root UP(k) of the input-data auto-
correlation matrix XT

P(k)XP(k). The lower triangular matrix UP(k) is also known as
the Cholesky factor of XT

P(k)XP(k) and can be obtained by applying a set of Givens
rotations QP(k) onto XP(k). Hence, pre-multiplying both sides of (6.2) by unitary
matrix QP(k) does not alter its norm yielding

eq(k) = QP(k)e(k) =
[

eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0

UP(k)

]
wP(k). (6.4)

Again, minimizing ‖eq(k)‖2 is equivalent to minimizing the cost function of (6.1).
In other words, Equation (6.1) is minimized by choosing wP(k) in (6.4) such that
dq2(k)−UP(k)wP(k) equals zero, i.e.,

wP(k) = U−1
P (k)dq2(k). (6.5)

x1(k)
x2(k)

xM(k)

y(k)

d(k)

e(k)

wP

xk

xk−1

xk−N+1

xP(k)

z−1

z−1

−

+

∑

Fig. 6.1 Multichannel adaptive filter: case of equal order.

6 Multichannel Fast QRD-RLS Algorithms 151

In many applications, we may come across the need of dealing with different
channel orders which is referred to as the multiple-order case. In such a scenario,
the elements of the input vector are arranged in a slightly different manner than for
the equal-order case treated above. Below we explain how to build the input vector
such that we can cope with both equal- and multiple-order channels.

6.2.1 Redefining the input vector

Let us define N1,N2, . . . ,NM as the number of taps in each of the M channels tapped
delay lines. Thus, the total number of taps in the input vector is P =∑M

r=1 Nr. Without
loss of generality, we will assume N1 ≥ N2 ≥ ·· · ≥ NM .

Figure 6.2 shows an example of a multichannel scenario with M = 3 channels of
unequal orders, where N1 = 4, N2 = 3, N3 = 2, i.e., P = 4+3+2 = 9. The following
approach to construct the input vector, xP(k), was considered in [11] first channel
are chosen to be the leading elements of xP(k), followed by N2–N3 pairs of samples
from the first and second channels, followed by N3–N4 triples of samples of the first
three channels and so on till the NM−NM+1 M-tuples of samples of all channels. It
is assumed that NM+1 = 0.

Alternatively, consider the N1 ×M matrix X̃(k) whose ith row contains the Ni

input data samples of channel i, i.e.,

x1(k) x1(k)

x1(k−1)

x1(k−2)

x1(k−3)

x2(k)

x2(k)

x2(k−1)

x2(k−2)x3(k)

x3(k)

x3(k−1)

xP(k)

z−1

z−1

z−1

z−1

z−1

z−1

N1 −N2 samples from
the first channel.

N2 −N3 pairs of samples
from the first and
second channels.

N3 −N4 triplets of
samples from the
first, second, and
third channels.

Fig. 6.2 Example of input vector defined as in [11].

152 António L. L. Ramos and Stefan Werner

X̃(k) =

⎡
⎢⎢⎢⎣

x1(k) x1(k−1) x1(k−2) . . . x1(k−N1 +1)
01×(N1−N2) x2(k) x2(k−1) . . . x2(k−N2 +1)

...
...

...
01×(N1−NM) xM(k) . . . xM(k−NM +1)

⎤
⎥⎥⎥⎦ (6.6)

where the zero-vectors appearing to the left in each row are of proper size to main-
tain the dimension of X̃(k) (if N1 = N2 = · · · = NM , the zeros will disappear). The
multichannel input vector xP(k) is obtained by simply stacking the columns of
matrix X̃(k) and excluding the zeros that were inserted in (6.6). We see from (6.6)
that the last M samples of vector xP(k) are {xl(k−Ni)}M

i=1. As a result, updating
the input vector from one time instant to the next, i.e., from xP(k) to xP(k + 1),
becomes particularly simple. This is because we know that, by construction, the
last M samples of xP(k) are to be removed when shifting in the new input samples
{xi(k +1)}M

i=1.
The procedure detailed above gives rise to two distinct ways of obtaining the

expanded input vector, xP+M(k + 1): (1) The new samples from each channel are
shifted one-by-one and processed recursively, from the first to the last channel and;
(2) All new samples from the different channels are shifted in together and processed
simultaneously.

The first approach leads to sequential-type multichannel algorithms and the sec-
ond one results in block-type multichannel algorithms. Before presenting the dif-
ferent algorithms, we take a closer look at the sequential- and block-type input
vectors.

6.2.2 Input vector for sequential-type multichannel algorithms

For the sequential-channel case, the extended input vector, xP+M(k + 1), is con-
structed from xP(k) in M successive steps as

xT
P+1(k +1) =

[
x1(k +1) xT

P(k)
]
, (6.7)

xT
P+i(k +1) =

[
xi(k +1) xP+i−1T(k+1)

]
Pi, (6.8)

where Pi is a permutation matrix which takes the most recent sample xi(k+1) of the
ith channel to position pi and left shifts the first pi − 1 elements of xT

P+i−1(k + 1),
where

pi =
i−1

∑
r=1

r(Nr −Nr+1)+ i, i = 1, 2, . . . , M. (6.9)

After processing all M channels, the first P elements of the updated extended
input vector constitute the input vector of the next iteration, i.e., xT

P+M(k + 1) =
[xT

P(k +1) x1(k−N1 +1) · · · xM(k−NM +1)].

6 Multichannel Fast QRD-RLS Algorithms 153

6.2.3 Input vector for block-type multichannel algorithms

For the case of block-channel multichannel algorithms, the expanded input vector,
xP+M(k +1), is given by

xT
P+M(k +1) =

[
x1(k +1) x2(k +1) · · · xM(k +1) xT

P(k)
]

P

=
[
xT

k+1 xT
P(k)

]
P, (6.10)

where P = PMPM−1 · · ·P1 is a product of M permutation matrices that moves the
most recent sample of the ith channel (for i = 1,2, . . . ,M) to position pi (given by
Equation (6.9)) in vector xP+M(k +1).

After the above process is terminated, we have xT
P+M(k+1) = [xT

P(k+1) x1(k−
N1 +1) · · · xM(k−NM +1)], such that the first P elements of xT

P+M(k+1) provide
the input vector for the next iteration. In order to illustrate the role of the permutation
matrix P, let us return to the example depicted in Figure 6.2. In this example, the
expanded input vector xP+M(k + 1) is obtained by inserting the new samples in
positions p1 = 1, p2 = 3, and p3 = 6, respectively, i.e.,

PT

⎡
⎢⎢⎣

x1(k +1)
x2(k +1)
x3(k +1)

xP(k)

⎤
⎥⎥⎦ = PT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k +1)
x2(k +1)
x3(k +1)

x1(k)
x1(k−1)

x2(k)
x1(k−2)
x2(k−1)

x3(k)
x1(k−3)
x2(k−2)
x3(k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k +1)
x1(k)

x2(k +1)
x1(k−1)

x2(k)
x3(k +1)
x1(k−2)
x2(k−1)

x3(k)
x1(k−3)
x2(k−2)
x3(k−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

xP(k +1)
x1(k−3)
x2(k−2)
x3(k−1)

⎤
⎥⎥⎦ . (6.11)

6.3 Sequential-Type MC-FQRD-RLS Algorithms

In this section, we consider algorithms that process the channels sequentially. In
the following, we shall derive the a priori [11] and the a posteriori [3] versions of
sequential MC-FQRD-RLS algorithms based on updating backward error vectors.

Due to close similarities with the single-channel case, basic concepts on how
to solve the backward and forward prediction problems are omitted. Indeed, the
sequential processing of multichannel signals corresponds to solving the single-
channel algorithm M times, with M being the number of channels. Moreover, from
the forward prediction problem, the extended input data matrices used in sequential-
channel algorithms are defined as

154 António L. L. Ramos and Stefan Werner

XP+i(k) =

⎡
⎢⎢⎢⎣

xT
P+i(k)

λ 1/2xT
P+i(k−1)

...
λ k/2xT

P+i(0)

⎤
⎥⎥⎥⎦ , i = 1,2, . . . ,M, (6.12)

where vector xP+i(k) is the extended input vector defined in Equation (6.8).

6.3.1 Triangularization of the information matrix

Equation (6.12) suggests that the updating of the information matrix is performed
in M forward steps for each iteration.

First step (i = 1)

XP+1(k) can be defined as

XP+1(k) =

⎡
⎢⎢⎢⎣

x1(k)
λ 1/2x1(k−1) XP(k−1)

...
λ k/2x1(0) 0T

⎤
⎥⎥⎥⎦ =

[
d(1)

f (k)
XP(k−1)

0T

]
, (6.13)

where d(1)
f 1 (k) = [x1(k) λ 1/2x1(k−1) · · · λ k/2x1(0)].

Let Q(1)
P (k) be the orthogonal matrix associated with the Cholesky factor UP

(k−1) of matrix XT
P(k−1)XP(k−1). Then, from (6.13), we can write

[
Q(1)

P (k) 0
0 I1×1

][
d(1)

f (k)
XP(k−1)

0T

]
=

⎡
⎢⎣

e(1)
f q1(k) 0

d(1)
f q2(k) UP(k−1)

λ k/2x1(0) 0T

⎤
⎥⎦ . (6.14)

To complete the triangularization process of XP+1(k) leading to UP+1(k), we
pre-multiply (6.14) by two other Givens rotation matrices as follows:

[
0

UP+1(k)

]
= Q′

f
(1)(k)Q f

(1)(k)

⎡
⎢⎣

e(1)
f q1(k) 0

d(1)
f q2(k) UP(k−1)

λ k/2x1(0) 0T

⎤
⎥⎦

= Q′
f
(1)(k)

⎡
⎢⎣

0 0

d(1)
f q2(k) UP(k−1)

e(1)
f P (k) 0T

⎤
⎥⎦ . (6.15)

6 Multichannel Fast QRD-RLS Algorithms 155

In the previous equation, Q f
(1)(k) is the orthogonal matrix zeroing e(1)

f q1(k) gen-

erating e(1)
f P (k). Matrix Q′

f
(1)(k) completes the triangularization process by zeroing

d(1)
f q2(k) from (6.15) in a top down procedure against e(1)

f P (k). Removing the resulting
null section in the upper part of (6.15) gives

UP+1(k) = Q′
θ f

(1)(k)

[
d(1)

f q2(k) UP(k−1)

e(1)
f P (k) 0T

]
. (6.16)

From (6.16), we get the following relation that is useful for the updating of aP(k)
and fP(k), the a priori and the a posteriori error vectors, respectively.

[UP+1(k +1)]−1 =⎡
⎢⎣

0T 1

e(1)
f P (k+1)

U−1
P (k) − 1

e(1)
f P (k+1)

U−1
P (k)d(1)

f q2(k +1)

⎤
⎥⎦
[
Q′

θ f
(1)(k +1)

]T
(6.17)

Also from (6.16), we see that Q′
θ f

(1)(k) is the Givens rotation matrix responsible

for zeroing d(1)
f q2(k) against e(1)

f P (k), i.e.,

[
0

e(1)
f 0 (k +1)

]
= Q′

θ f
(1)(k +1)

[
d(1)

f q2(k +1)

e(1)
f P (k +1)

]
. (6.18)

The updating of d(1)
f q2(k) is performed according to

[
ẽ(1)

f q1(k +1)

d(1)
f q2(k +1)

]
= Q(0)

θP
(k)

[
x1(k +1)

λ 1/2d(1)
f q2(k)

]
, (6.19)

where Q(0)
θP

(k) = Q(M)
θP

(k − 1), i.e., the values obtained after processing the Mth

channel on last iteration. For 1 < i ≤ M, d(i)
f q2(k) is updated according to

[
ẽ(i)

f q1(k +1)

d(i)
f q2(k +1)

]
= Q(i−1)

θP+i−1
(k +1)

[
xi(k +1)

λ 1/2d(i)
f q2(k)

]
. (6.20)

Following steps (i > 1)

The input information matrix XP+i(k) is related to XP+i−1(k) according to

156 António L. L. Ramos and Stefan Werner

XP+i(k) =

⎡
⎢⎢⎢⎣

xi(k)
λ 1/2xi(k−1)

...
λ k/2xi(0)

XP+i−1(k)

⎤
⎥⎥⎥⎦Pi. (6.21)

As in the first step, matrix XP+i(k) must be triangularized to obtain UP+i(k)
(Cholesky factor of XT

P+i(k)XP+i(k)). This process is detailed in the following. Let
QθP+i−1(k) denotes the orthogonal matrix associated with the QR decomposition of
XP+i−1(k). From (6.21), we can write

Q(i)
f (k)

[
QP+i−1(k) 0

0T 1

][
XP+i(k)

0T

]
=

Q(i)
f (k)

⎡
⎢⎣

e(i)
f q1P+i−1

(k) 0

d(i)
f q2(k) UP+i−1(k)

λ k/2xi(0) 0T

⎤
⎥⎦Pi =

⎡
⎢⎣

0 0

d(i)
f q2(k) UP+i−1(k)

e(i)
fP+i−1

(k) 0T

⎤
⎥⎦Pi.

(6.22)

Equation (6.22) is obtained by annihilating e(i)
f q1P+i−1

(k) into the first element

of the last row of the matrix using an appropriate orthogonal matrix, Q(i)
f (k), and

thereafter removing the resulting null section.
The existence of the permutation matrix Pi in (6.22) prevents us from directly

annihilating d(i)
f q2(k) into e(i)

fP+i−1
(k) to complete the triangularization of matrix

XP+i(k) (i.e., generating UP+i(k)). Figure 6.3 illustrates the application of Givens
rotations under these circumstances. The process is summarized as follows. The per-

mutation factor, Pi, right shifts d(i)
f q2(k) to the ith position as shown in the first part of

the figure. Then, the set of P + i− pi Givens rotation matrices, Q′
θ f

(i), nullifies the

first P+ i− pi elements of d(i)
f q2(k) by rotating them against e(i)

fP+i−1
(k) in a top down

procedure. The desired triangular structure is finally reached using another permu-

I II III IV

Pi PiQ (i)
θ f (k)

Fig. 6.3 Obtaining the lower triangular factor UP+i(k). The lighter color tone on top of parts III
and IV represents the matrix elements that have been rotated against the bottom line by the set of

Givens rotations in Q′(i)
θ f (k).

6 Multichannel Fast QRD-RLS Algorithms 157

tation factor that moves the last row of the matrix to the P− pi + 1 position, after
downshifting the previous P− pi rows. This permutation factor coincides with Pi.

Remark 1. The lower triangular matrix UP+i(k), obtained as described above
must be positive definite. That is guaranteed if its diagonal elements and

e(i)
fP+i−1

(k) are positive. Recalling that e(i)
fP+i−1

(k) is the absolute value of the
forward error, UP+i(k) will be positive definite if it is initialized properly.

The procedure above can be written in a more compact form as

UP+i(k) = PiQ′
θ f

(i)(k)

[
d(i)

f q2(k) UP+i−1(k)

e(i)
fP+i−1

(k) 0T

]
Pi. (6.23)

From (6.23), the following relation can be derived

[UP+i(k +1)]−1 = PT
i

×

⎡
⎢⎢⎣

0T 1

e(i)
fP+i−1

(k+1)

U−1
P+i−1(k +1) −U−1

P+i−1(k+1)d(i)
f q2(k+1)

e(i)
fP+i−1

(k+1)

⎤
⎥⎥⎦×Q′T

θ f
(i)

(k +1)PT
i . (6.24)

From (6.23), we realize that Q′
θ f

(i)(k) is the Givens rotation matrix responsible

for zeroing d(i)
f q2(k) against e(i)

f P(k), which yields

[
0

e(i)
f 0(k +1)

]
= Q′

θ f
(i)(k +1)

[
d(i)

f q2(k +1)

e(i)
f P(k +1)

]
. (6.25)

6.3.2 A priori and A posteriori versions

The a priori and the a posteriori versions of the sequential-channel algorithm are
based on updating expanded vectors aP+i(k +1) or fP+i(k +1) given by

aP+i(k +1) = λ−1/2U−T
P+i(k +1)xP+i(k +1) =

[
a(i)(k +1)
aP(k +1)

]
, and (6.26)

fP+i(k +1) = U−T
P+i(k +1)xP+i(k +1) =

[
f(i)(k +1)
fP(k +1)

]
, (6.27)

for i = 1,2, . . . ,M.

158 António L. L. Ramos and Stefan Werner

In (6.26) and (6.27), a(i)(k + 1) and f(i)(k + 1) are vectors containing the first i
elements of aP+i(k +1) fP+i(k +1), respectively. Recall that for i = 1, U−1

P+i(k +1)
in (6.26) and (6.27) equals U−1

P+1(k) as defined in (6.17).
The updating of aP+i(k +1) and fP+i(k +1) is accomplished in M forward steps

at each instant k:

aP(k) → aP+1(k +1) → ·· · → aP+M(k +1),
fP(k) → fP+1(k +1) → ·· · → fP+M(k +1).

From (6.24), (6.8), and (6.27), we get the following recursive expression for
fP+i(k +1):

fP+i(k +1) = PiQ′
θ f

(i)(k +1)
[

fP+i−1(k +1)
p(i)

P+i−1(k +1)

]
, (6.28)

where

p(i)
P+i−1(k +1) =

e(i)
P+i−1(k +1)

|e(i)
fP+i−1

(k +1)|
, for i = 1,2, . . . ,M. (6.29)

The scalar quantity e(i)
P+i−1(k+1) is the a posteriori forward prediction error for the

ith channel, and |e(i)
fP+i−1

(k +1)| is given by

|e(i)
fP+i−1

(k +1)| =
√(

λ 1/2|e(i)
fP+i−1

(k)|
)2

+ |e(i)
f q1P+i−1

(k +1)|2. (6.30)

For i = 1, rather than (6.8), we would use (6.7) in obtaining (6.28), which simply
means that P1 = I, i.e,

fP+1(k +1) = Q′
θ f

(1)(k +1)
[

fP(k)
p(1)(k +1)

]
, (6.31)

with eP
(1)(k+1) denoting the a posteriori forward prediction error of the first chan-

nel, and |e(1)
fP

(k +1)| is given by

|e(1)
fP

(k +1)| =
√(

λ 1/2|e(1)
fP

(k)|
)2

+ |(e(i)
f q1P

(k +1)|2. (6.32)

Similarly, using (6.24), (6.8), and (6.26), we get the following recursive expres-
sion for aP+i(k +1):

aP+i(k +1) = λ−1/2PiQ′
θ f

(i)(k +1)
[

aP+i−1(k +1)
r(i)

P+i−1(k +1)

]
, (6.33)

6 Multichannel Fast QRD-RLS Algorithms 159

where

r(i)
P+i−1(k +1) =

e′(i)P+i−1(k +1)

γ(i−1)
√
λ |e(i)

fP+i−1
(k)|

, for i = 1,2, . . . ,M, (6.34)

and scalar quantity e(i)
P+i−1(k) is the a priori forward prediction error for the ith

channel. Again, for i = 1, we use (6.7) in obtaining (6.33) instead of (6.8), yielding

aP+1(k +1) = λ−1/2Q′
θ f

(1)(k +1)
[

aP(k)
r(1)(k +1)

]
. (6.35)

Remark 2. Examining (6.28) and recalling the definitions of Q′
θ f

(i)(k+1) and
Pi, we realize that the last pi−1 elements of fP+i(k+1) and fP+i−1(k+1) are
identical. Indeed, Givens rotations in Q′

θ f
(i)(k+1) are such that they act on a

smaller portion of fP+i(k+1) at each i; then Pi shifts down the unchanged ele-
ments which remain unchanged for next i. This fact reduces the computational
cost. The same observation holds for vectors aP+i(k +1) and aP+i−1(k +1).

For the algorithm based on updating the a posteriori backward errors, the Givens
rotations matrices QθP+i(k +1) needed in the next forward steps are obtained from

Q(i)
θP+i

(k +1)
[

1
0

]
=

[
γ(i)

P+i(k +1)
fP+i(k +1)

]
, for i ≥ 1. (6.36)

For the a priori case, the equivalent relations are

[
1/γ(i)

P+i(k +1)
0

]
= Q(i)

θP+i
(k +1)

[
1

aP+i(k +1)

]
, for i ≥ 1. (6.37)

After the Mth channel is processed, the joint process estimation is performed
according to [

eq1(k +1)
dq2(k +1)

]
= Q(0)

θ (k +1)
[

eq1(k)
dq2(k)

]
. (6.38)

The a posteriori and the a priori multiple order sequential algorithms are sum-
marized in Tables 6.2 and 6.3, respectively.

6.3.3 Alternative implementations

As observed before, when all channels are of equal order, matrix Pi in (6.23) degen-
erates to identity and, after carrying out the multiplication by Q′

θ f
(i)(k) on the right

side of that equation, UP+i(k) can be partitioned as follows.

160 António L. L. Ramos and Stefan Werner

Table 6.2 Algorithm number 8 of Table 6.1 [10].

The multiple order sequential-type MC-FQRD POS B
Initializations:

d(i)
f q2 = zeros(P,1); f(M)

j (0) = 0; dq2 = 0; γ(0)
P (0) = 1;

e(i)
fP

(0) = μ; i = 1,2, · · · ,M, all cosines = 1, and all sines = 0.
for k = 1,2, · · ·
{ γ(1)

0 = 1; e(0)
q1 (k +1) = d(k +1);

for i = 1 : M,

{ e(i)
f q10

(k +1) = xi(k +1);

for j = 1 : P, % Obtaining e(i)
f q1(k +1) and d(i)

f q2(k +1):

{e(i)
f q1 j

(k +1) = cos
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1)+λ 1/2 sin
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k);

d(i)
f q2P− j+1

(k +1) = λ 1/2 cos
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k)− sin∗
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1);
}

‖e(i)
fP

(k +1)‖ =

√(
λ 1/2‖e(i)

fP
(k)‖

)2
+‖e(i)

f q1P
(k +1)‖2;

for j = P : −1 : pi, % Obtaining Q′
θ f

(i)(k +1):

{‖e(i)
f j−1

(k +1)‖ =
√
‖e(i)

f j
(k +1)‖2 +‖d(i)

f q2P− j+1
(k +1)‖2;

cosθ ′
f
(i)
j

(k +1) = ‖e(i)
f j

(k +1)‖/‖e(i)
f j−1

(k +1)‖;

sinθ ′
f
(i)
j

(k +1) =
[
cosθ ′

f
(i)
j

(k +1) d(i)
f q2P− j+1

(k +1)/e(i)
f j

(k +1)
]∗

;

}
p(i)

P (k +1) = γ(i−1)
P (k)

[
e(i)

f q1P
(k +1)

]∗
/‖e(i)

fP
(k +1)‖;

for j = P : −1 : pi, % Obtaining f(i)(k +1):

{f(i)P− j+1(k +1) = cosθ ′
f
(i)
j

(k +1)f(i−1)
P− j+2(k +1)−

[
sinθ ′

f
(i)
j

(k +1)
]∗

p(i)
j (k +1);

p(i)
j−1(k +1) = sinθ ′

f
(i)
j

(k +1)f(i−1)
P− j+2(k +1)+ cosθ ′

f
(i)
j

(k +1)p(i)
j (k +1);

}
f(i)P+1−pi+1(k +1) = p(i)

pi−1(k +1);

for j = pi : P, % Obtaining Q(i)
θ (k):

{sinθ (i)
j (k) = −

[
f(i)P− j+2(k +1)

]∗
/γ(i)

j−1(k);

cosθ (i)
j (k) =

√
1−‖sinθ (i)

j (k)‖2;

γ(i)
j (k) = cosθ (i)

j (k)γ(i)
j−1(k);

}
} for i
for j = 1 : P, % Joint process estimation:

{e(j)
q1 (k +1) = cosθ (0)

j (k +1)e(j−1)
q1 (k +1)+λ 1/2 sinθ (0)

j (k +1)d(P− j+1)
q2 (k);

d(P− j+1)
q2 (k +1) = λ 1/2 cosθ (0)

j (k +1)d(P− j+1)
q2 (k)−

[
sinθ (0)

j (k +1)
]∗

e(j−1)
q1 (k +1);

}
e(k +1) =

[
e(P)

q1 (k +1)
]∗

/γ(0)
P (k);

} for k

Obs.: θ (M)
j (k) = θ (0)

j (k +1) and f(M)
P− j+2(k) = f(0)

P− j+2(k +1). The asterisk (∗) denotes complex conjugation.

UP+i(k +1) =

[
0 B

e(i)
f 0(k +1) C

]
, for i = 1,2, . . . ,M. (6.39)

Taking the inverse of (6.39) yields

[UP+i(k +1)]−1 =

[
−
[
e(i)

f 0(k +1)
]−1

CB−1
[
e(i)

f 0(k +1)
]−1

B−1 0

]
. (6.40)

6 Multichannel Fast QRD-RLS Algorithms 161

Table 6.3 Algorithm number 16 of Table 6.1 [11].

The multiple order sequential-type MC-FQRD PRI B
Initializations:

d(i)
f q2 = zeros(P,1); a(M)

j (0) = 0; dq2 = 0; γ(0)
P (0) = 1;

e(i)
fP

(0) = μ; i = 1,2, · · · ,M, all cosines = 1, and all sines = 0.
for k = 1,2, · · ·
{ γ(1)

0 = 1; e(0)
q1 (k +1) = d(k +1);

for i = 1 : M,

{ e(i)
f q10

(k +1) = xi(k +1);

for j = 1 : P, % Obtaining e(i)
f q1(k +1) and d(i)

f q2(k +1):

{e(i)
f q1 j

(k +1) = cos
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1)+λ 1/2 sin
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k);

d(i)
f q2P− j+1

(k +1) = λ 1/2 cos
[
θ (i−1)

j (k)
]

d(i)
f q2P− j+1

(k)− sin∗
[
θ (i−1)

j (k)
]

e(i)
f q1 j−1

(k +1);
}
r(i)

P (k +1) = λ−1/2[e(i)
f q1 j

(k +1)]∗/
[
γ(i−1)

P (k)‖e(i)
fP

(k)‖
]

;

for j = P : −1 : pi, % Obtaining a(i)(k +1):

{a(i)
P− j+1(k +1) = cosθ ′

f
(i)
j

(k)a(i−1)
P− j+2(k +1)−

[
sinθ ′

f
(i)
j

(k)
]∗

r(i)
j (k +1);

r(i)
j−1(k +1) = sinθ ′

f
(i)
j

(k)a(i−1)
P− j+2(k +1)+ cosθ ′

f
(i)
j

(k)r(i)
j (k +1);

}
a(i)

P+1−pi+1(k +1) = r(i)
pi−1(k +1);

‖e(i)
fP

(k +1)‖ =

√(
λ 1/2‖e(i)

fP
(k)‖

)2
+‖e(i)

f q1P
(k +1)‖2;

for j = P : −1 : pi, % Obtaining Q′
θ f

(i)(k +1):

{‖e(i)
f j−1

(k +1)‖ =
√
‖e(i)

f j
(k +1)‖2 +‖d(i)

f q2P− j+1
(k +1)‖2;

cosθ ′
f
(i)
j

(k +1) = ‖e(i)
f j

(k +1)‖/‖e(i)
f j−1

(k +1)‖;

sinθ ′
f
(i)
j

(k +1) =
[
cosθ ′

f
(i)
j

(k +1) d(i)
f q2P− j+1

(k +1)/‖e(i)
f j

(k +1)‖
]∗

;

}
for j = pi : P, % Obtaining Q(i)

θ (k):

{γ(i)
j (k) = 1/

√
(1/γ(i)

j−1(k))2 +(a(i)
P− j+2(k +1))2

cosθ (i)
j (k) = γ(i)

j (k)/γ(i)
j−1(k);

sinθ (i)
j (k) =

[
a(i)

P− j+2(k +1)cosθ (i)
j (k)/γ(i)

j−1(k)
]∗

;

}
} for i
for j = 1 : P, % Joint process estimation:

{e(j)
q1 (k +1) = cosθ (0)

j (k +1)e(j−1)
q1 (k +1)+λ 1/2 sinθ (0)

j (k +1)d(P− j+1)
q2 (k);

d(P− j+1)
q2 (k +1) = λ 1/2 cosθ (0)

j (k +1)d(P− j+1)
q2 (k)−

[
sinθ (0)

j (k +1)
]∗

e(j−1)
q1 (k +1);

}
e(k +1) =

[
e(P)

q1 (k +1)
]∗

/γ(0)
P (k +1);

} for k

Obs.: θ (M)
j (k) = θ (0)

j (k +1) and a(M)
P− j+2(k) = a(0)

P− j+2(k +1). The asterisk (∗) denotes complex conjugation.

Using (6.40), and recalling (6.26), (6.27), and the definition of the input vector
given in (6.8), we can now write vectors aP+i(k+1) and fP+i(k+1), respectively, as

aP+i(k +1) =

[
∗

xi(k +1)/
[√

λe(i)
f 0(k)

]
]

, and (6.41)

fP+i(k +1) =

[
∗

xi(k +1)/e(i)
f 0(k).

]
(6.42)

162 António L. L. Ramos and Stefan Werner

As we can see from (6.41) and (6.42), the last element of aP+i(k+1) and fP+i(k+1)
are known at each iteration i (for i = 1,2, . . . ,M) prior to the updating process. That
observation is the key step leading to two alternative implementations of these algo-
rithms for the special case when the channels are of the same order. Thus, the recur-
sive updating of vectors aP+i(k + 1) and fP+i(k + 1) are performed now based on
this assumption.

6.4 Block-Type MC-FQRD-RLS Algorithms

This section discusses a general framework for block-type multichannel algorithms
using the extended input signal vector xP+M(k + 1) defined in Section 6.2.3. These
algorithms, despite exhibiting a higher computational burden as compared to the
sequential-type ones, have some attractive features, e.g., suitability for parallel
implementation.

To begin with, in Section 6.4.1 we shall revisit the backward and forward predic-
tion problems applied to a block-multichannel scenario from where some fundamen-
tal equations are derived. The a priori and the a posteriori versions are discussed in
Section 6.4.2 followed by a brief overview of some alternative implementations in
Section 6.4.3.

6.4.1 The backward and forward prediction problems

Using the definition of the input vector for the multiple order channels case as given
by (6.10), define the input data matrix XP+M(k +1) as follows.

XP+M(k +1) =

⎡
⎢⎢⎢⎣

xT
P+M(k +1)

λ 1/2xT
P+M(k)
...

λ (k+1)/2xT
P+M(0)

⎤
⎥⎥⎥⎦ (6.43)

The above matrix can be partitioned into two distinct ways, depending onto the
prediction problem, backward or forward, to be solved.

Define the backward prediction error matrix for block processing of equal order
channels as

Eb(k +1) = Db(k +1)−XP(k +1)Wb(k +1)

=
[

XP(k +1) Db(k +1)
][−Wb(k +1)

I

]
(6.44)

where Db(k + 1) and Wb(k + 1) are the respective desired response and coefficient
vector matrices of the backward prediction problem.

6 Multichannel Fast QRD-RLS Algorithms 163

Using the relation in (6.44), and assuming that the post-multiplication by permu-
tation matrix P is already carried out, XP+M(k +1) can be partitioned as

XP+M(k +1) =
[

XP(k +1) Db(k +1)
]
. (6.45)

The process of obtaining lower triangular matrix UP+M(k+1) from XP+M(k+1)
is performed as follows:

Qb(k +1)Q(k)XP+M(k +1) = Qb(k +1)
[

0 Ebq1(k +1)
UP(k +1) Dbq2(k +1)

]

=

⎡
⎣

0 0
0 Eb(k +1)

UP(k +1) Dbq2(k +1)

⎤
⎦ , (6.46)

where Q(k) contains QP(k+1) as a submatrix which triangulates XP(k+1), gener-
ating UP(k+1). Matrix Qb(k+1) is responsible for generating the lower triangular
matrix Eb(k +1) from Ebq1(k +1).

By removing the ever-increasing null section in (6.46), UP+M(k + 1) can be
finally written as follows:

UP+M(k +1) =
[

0 Eb(k +1)
UP(k +1) Dbq2(k +1)

]
. (6.47)

The inverse of UP+M(k+1) as given by (6.47) will be useful in further steps and
is defined as

[UP+M(k +1)]−1 =
[
−U−1

P (k +1)Dbq2(k +1)E−1
b (k +1) U−1

P (k +1)
E−1

b (k +1) 0

]
. (6.48)

Now, define forward prediction error matrix E f (k +1) as

E f (k +1) = D f (k +1)−
[

XP(k)
0

]
W f (k +1) =

[
D f (k +1)

XP(k)
0T

]

×
[

I
W f (k +1)

]
= XP+M(k +1)

[
I

W f (k +1)

]
, (6.49)

where D f (k + 1) and W f (k + 1) are the desired response and the coefficient vec-
tor matrix of the backward prediction problem, respectively. A modified input data
matrix X̄P+M(k + 1) incorporating permutation matrix P is defined as
follows.2

2 Note that X̄P+M(k + 1) is formed by adding M − 1 rows of zeros to XP+M(k + 1) such that
UP+M(k +1) has the correct dimension in (6.55), i.e., (P+M)× (P+M).

164 António L. L. Ramos and Stefan Werner

X̄P+M(k +1) =

⎡
⎢⎢⎢⎢⎢⎣

xT
P+M(k +1)

λ 1/2xT
P+M(k)
...

λ (k+1)/2xT
P+M(0)

0(M−1)×(P+M)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎣D f (k +1)

XP(k)
0T

0(M−1)×(P+M)

⎤
⎦P (6.50)

In order to triangulate X̄P+M(k + 1) in (6.50) and obtain UP+M(k + 1), three sets
of Givens rotation matrices Q(k), Q f (k + 1), and Q′

f (k + 1) are needed [4, 5, 11].
The role of each matrix in the triangulation process is illustrated in the following
equation.

Q′
f (k +1)Q f (k +1)Q(k)X̄P+M(k +1) = Q′

f (k +1)Q f (k +1)

×

⎡
⎢⎢⎣

E f q1(k +1) 0
D f q2(k +1) UP(k)
λ (k+1)/2xT

0 0T

0(M−1)×(P+M)

⎤
⎥⎥⎦P = Q′

f (k +1)

⎡
⎣

0 0
D f q2(k +1) UP(k)
E f (k +1) 0

⎤
⎦P (6.51)

In (6.51), Q(k) contains QP(k) as a sub-matrix which triangulates XP(k), gener-
ating UP(k). Matrix Q f (k +1) is responsible for the zeroing of matrix E f q1(k +1).
Note that, when working with fixed-order (or fixed-dimension, as opposed to the
ever-increasing dimension of QP(k)), this is equivalent to annihilating eT

f q1(k + 1),
the first row of E f q1(k+1), against the diagonal of λ 1/2E f (k), generating E f (k+1),
as shown in (6.54).

Removing the ever-increasing null section in (6.51) and using the fixed-order
matrix Q′

θ f (k +1) embedded in Q′
f (k +1), we obtain

ŪP+M(k +1) = Q′
θ f (k +1)

[
D f q2(k +1) UP(k)
E f (k +1) 0

]
P. (6.52)

Also starting from (6.51) and by using the fixed-order matrices Qθ (k) embedded
in QP(k) and Q f (k + 1) embedded in Q f (k + 1), we obtain after some algebraic
manipulations the following equations:

[
eT

f q1(k +1)
D f q2(k +1)

]
= Qθ (k)

[
xT

k+1
λ 1/2D f q2(k)

]
, (6.53)

where xT
k+1 = [x1(k + 1) x2(k + 1) · · ·xM(k + 1)] is the forward reference signal

and eT
f q1(k +1) is the rotated forward error, and

[
0T

E f (k +1)

]
= Q f (k +1)

[
eT

f q1(k +1)
λ 1/2E f (k)

]
. (6.54)

6 Multichannel Fast QRD-RLS Algorithms 165

Let E f
x (k+1) = [E f (k+1)]TE f (k+1) be the forward prediction error covari-

ance matrix, where E f (k + 1) is the forward prediction error matrix defined
in (6.49). Using ŪP+M(k + 1) as defined in (6.52) instead of X̄P+M(k + 1), it
is straightforward to show that E f

x (k+1) = ET
f (k+1)E f (k+1). Thus, M×M

lower triangular matrix E f (k + 1) in (6.52) and (6.54) can be interpreted as
the Cholesky factor of the forward prediction error covariance matrix.

Note that the permutation matrix P in (6.52) prevents a direct annihilation of

the first M columns – corresponding to matrix D f q2(k +1) = [d(1)
f q2(k +1) d(2)

f q2(k +

1) · · · d(M)
f q2(k + 1)] – against the anti-diagonal of E f (k + 1) using the set of Givens

rotations Q′
θ f (k + 1) = Q′

θ f
(N)(k + 1) · · ·Q′

θ f
(2)(k + 1)Q′

θ f
(1)(k + 1). From (6.52)

it can be seen that this permutation factor, P = PMPM−1 · · ·P1, will right-shift the
first M columns to position pi, for i = M to 1, in this order. Thus, only the first

P + i− pi elements of each d(i)
f q2(k + 1) will be rotated against the anti-diagonal of

E f (k+1) using the set of Givens rotations in Q′
θ f (k+1). It is straightforward to see

that, when the position pi = i, the corresponding permutation factor Pi degenerates
to an identity matrix. If this is true for all M channels, this formulation leads to the
equal-order algorithms of [4–6, 11].

The process explained above is illustrated in Figure 6.4 (parts I–III) for a three-
channel case with the first two channels having equal length, i.e., p1 = 1 and p2 = 2;
consequently, P1 = P2 = I. Part I of this figure shows the initial state as in (6.52)
but with reduced dimension, and the operations involving matrices Q′

θ f (k + 1) and
P are illustrated in parts II and III, respectively. As we can see, the resulting matrix
ŪP+M(k +1) in (6.52) does not have the desired lower triangular shape, as depicted
in part III of this figure. Hence, another permutation factor, P, is needed for up-
shifting the (P+M− i+1)th row to the (P+M− pi +1)th position (see Figure 6.4 –
parts III–IV) leading to

I II III IV

P PQθ f (k +1)

Fig. 6.4 Obtaining the lower triangular UP+M(k +1). The lighter color tone on top of parts II–IV
denotes the matrix elements that have been rotated against the third line from the bottom by the
third (and last) set of Givens rotations embedded in Q′

θ f (k +1).

166 António L. L. Ramos and Stefan Werner

UP+M(k +1) = PQ′
θ f (k +1)

[
D f q2(k +1) UP(k)
E f (k +1) 0

]
P, (6.55)

where permutation matrix P = P1P2 · · ·PM .
From (6.55), it is possible to obtain

[UP+M(k +1)]−1 = PT

×
[

0 E−1
f (k +1)

U−1
P (k) −U−1

P (k)D f q2(k +1)E−1
f (k +1)

]
Q′T

θ f (k +1)PT
, (6.56)

which will be used in the next section to derive the a priori and the a posteriori
versions of the algorithm. Also from (6.55), we can write

⎡
⎣

0
∗

E0
f (k +1)

⎤
⎦ = Q′

θ f (k +1)
[

D f q2(k +1)
E f (k +1)

]
, (6.57)

where E0
f (k + 1) is the Cholesky factor of the zero-order error covariance matrix.3

The asterisk ∗ denotes possible non-zero elements according to the process
explained above.

6.4.2 A priori and A posteriori versions

If matrix UP+M(k) is used to denote the Cholesky factor of XT
P+M(k)XP+M(k), we

can define the a priori and a posteriori backward error vectors, aP+M(k + 1) and
fP+M(k +1), as follows:

aP+M(k +1) = λ−1/2U−T
P+M(k)xP+M(k +1), and (6.58)

fP+M(k +1) = U−T
P+M(k +1)xP+M(k +1). (6.59)

Vectors aP(k +1) and fP(k +1) are contained within matrix Qθ (k +1) [5, 11].
From (6.10), (6.56), and (6.58), we can write

aP+M(k +1) = Pλ−1/2Q′
θ f (k)

[
aP(k)

r(k +1)

]
, (6.60)

3 The term is coined due to the fact that, in the single-channel case, the corresponding scalar

‖e(0)
f (k + 1)‖ = ∑k+1

i=0 λ (k+1−i)x2(i) is the norm of the zero-order forward prediction error which
is an estimate (albeit biased) of the input variance. Also note that, for zero-order prediction, the

forward prediction error vector equals its backward counterpart, and ‖e(0)
f (k)‖ = ‖e(0)

b (k)‖.

6 Multichannel Fast QRD-RLS Algorithms 167

where

r(k +1) = λ−1/2E−T
f (k)

[
xk+1 −WT

f (k)xP(k)
]

= λ−1/2E−T
f (k)e′f (k +1), (6.61)

with e′f (k + 1) being the a priori forward error vector. Thus, r(k + 1) can be inter-
preted as the Nth-order normalized a priori forward error vector. Matrix, W f (k)
given by

W f (k) = U−1
P (k−1)D f q2(k), (6.62)

contains the coefficient vectors of the forward prediction problem. The matrix inver-
sion operation in (6.61) can be avoided using the solution in [11], i.e.,

[
∗
0

]
= Q f (k +1)

[
1/γ(k)

−r(k +1)

]
. (6.63)

Combining (6.48), (6.58), and the definition of the input vector in (6.10), aP+M

(k +1) can be expressed as

aP+M(k +1) =
[

a(N)(k +1)
aP(k +1)

]
, (6.64)

where the M×1 element vector of aP+M(k +1), a(N)(k +1), is given by

a(N)(k +1) = λ−1/2E−T
b (k)

[
xk−N+1 −WT

b (k)xP(k +1)
]

= λ−1/2E−T
b (k)e′b(k +1), (6.65)

with e′b(k+1) being the Nth-order a priori backward error vector and matrix Wb(k)
contains the coefficient vectors of the backward prediction problem. From the last
equation, a(N)(k+1) can be thought as the Nth-order normalized a priori backward
error vector. 4

Using similar procedure, combining Equations (6.10), (6.56), and (6.59), yields

fP+M(k +1) = PQ′
θ f (k +1)

[
fP(k)

p(k +1)

]
, (6.66)

where

p(k +1) = E−T
f (k +1)

[
xk+1 −WT

f (k +1)xP(k)
]

= E−T
f (k +1)e f (k +1), (6.67)

4 As shall be seen in Section 6.5, this argument can be taken further to demonstrate that aP+M(k+1)
is actually a nesting of vectors a(j)(k+1) of size M×1, for j = 0,1, ..,N. Similar observation holds
for vector fP+M(k +1).

168 António L. L. Ramos and Stefan Werner

with e f (k + 1) being the a posteriori forward error vector. Therefore, p(k + 1) is
interpreted as the Nth-order normalized a posteriori forward error vector. Matrix
W f (k +1) contains the coefficient vectors of the forward prediction problem.

Now, from (6.48), (6.59), and the definition of the input vector in (6.10), fP+M(k+
1) can be partitioned as

fP+M(k +1) =
[

f(N)(k +1)
fP(k +1)

]
, (6.68)

where vector f(N)(k +1) is given by

f(N)(k +1) = E−T
b (k +1)

[
xk−N+1 −WT

b (k +1)xP(k +1)
]

= E−T
b (k +1)eb(k +1), (6.69)

with eb(k + 1) being the Nth-order a posteriori backward error vector and matrix
Wb(k + 1) contains the coefficient vectors of the backward prediction problem.
Hence, f(N)(k + 1) can be regarded as the Nth-order normalized a posteriori back-
ward error vector.

To solve for p(k +1) avoiding the matrix inversion in (6.67), we can use

Q f (k +1)
[
γ(k)

0

]
=

[
∗

p(k +1)

]
. (6.70)

Proof. From (6.54), it is clear that E f (k +1) is the Cholesky factor of

[ẽ f q1 λ 1/2ET
f (k)][ẽ f q1 λ 1/2ET

f (k)]
T. (6.71)

Hence, (6.54) can be written in a product form as follows [14]:

ET
f (k +1)E f (k +1) = ẽ f q1(k +1)ẽT

f q1(k +1)+λET
f (k)E f (k). (6.72)

Pre-multiply and post-multiply (6.72) by E−T
f (k + 1)γ2(k) and E−1

f (k + 1), respec-
tively. After some algebraic manipulations, we have

γ2(k)I = p(k +1)pT(k +1)+Ψ (6.73)

whereΨ = λγ2(k)E−T
f (k +1)ET

f (k)E f (k)E−1
f (k +1).

Finally, after pre-multiplying and post-multiplying (6.73) by pT(k + 1) and
p(k +1), respectively, and dividing the result by pT(k +1)p(k +1), we obtain

γ2(k) = pT(k +1)p(k +1)+
pT(k +1)Ψp(k +1)
pT(k +1)p(k +1)

= pT(k +1)p(k +1)+∗2. (6.74)

6 Multichannel Fast QRD-RLS Algorithms 169

The expression in (6.74) can be regarded as a Cholesky product. Hence, it can be
factored as [

γ(k)
0

]
= Q

[
∗

p(k +1)

]
, (6.75)

where Q is an orthogonal matrix.
If we recall our starting point in (6.54), we can see that Q is related to Q f (k +

1). Moreover, from the knowledge of the internal structure of Q f (k + 1), we can

conclude that Q = Q
T
f (k + 1) satisfies (6.75) leading to (6.70). Vector p(k + 1) can

be easily obtained from (6.70) because γ(k) and Q f (k + 1) are known quantities.
The reader can use similar arguments in order to prove (6.63).

The rotation angles in matrix Qθ (k) are obtained using

Qθ (k +1)
[

1
0

]
=

[
γ(k +1)
fP(k +1)

]
, (6.76)

for the a posteriori case, and
[

1/γ(k +1)
0

]
= Qθ (k +1)

[
1

−aP(k +1)

]
, (6.77)

for the a priori case.
Finally, the joint process estimation is performed as

[
eq1(k +1)
dq2(k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2(k)

]
, (6.78)

and the a priori error is given by [5, 11]

e(k +1) = eq1(k +1)/γ(k +1). (6.79)

The a posteriori and a priori block-MC-FQRD-RLS algorithms are summarized
in Tables 6.4 and 6.5, respectively. In these tables, the common equations are in gray
in order to highlight the difference between both algorithms.

6.4.3 Alternative implementations

Similar to their sequential-channel processing counterparts, alternative implemen-
tations for the block-channel algorithms are available when the M channels are of
equal order, i.e., Ni = N and P = MN. In this particular case, the last M elements
of vectors aP+M(k + 1) and fP+M(k + 1) are known prior to their updating through
Equations (6.58) and (6.59), respectively [6].

170 António L. L. Ramos and Stefan Werner

Table 6.4 Equations of the a posteriori block-MCFQRD based on the update of backward predic-
tion errors [5–7].

MCFQRD POS B
For each k, do
{ 1. Obtaining D f q2(k +1) and e f q1(k +1)[

eT
f q1(k +1)

D f q2(k +1)

]
= Qθ (k)

[
xT

k+1
λ 1/2D f q2(k)

]
(6.53)

2. Obtaining E f (k +1) and Q f (k +1)[
0T

E f (k +1)

]
= Q f (k +1)

[
eT

f q1(k +1)
λ 1/2E f (k)

]
(6.54)

3. Obtaining p(k +1)[
∗

p(k +1)

]
= Q f (k +1)

[
γ(k)

0

]
implements (6.67)

4. Obtaining Q′
θ f (k +1)⎡

⎣
0
∗

E0
f (k +1)

⎤
⎦ = Q′

θ f (k +1)
[

D f q2(k +1)
E f (k +1)

]
(6.57)

5. Obtaining fP(k +1)

fP+M(k +1) = PQ′
θ f (k +1)

[
fP(k)

p(k +1)

]
(6.66)

6. Obtaining Qθ (k +1) and γ(k +1)

Qθ (k +1)
[

1
0

]
=

[
γ(k +1)
fP(k +1)

]
(6.76)

7. Joint estimation[
eq1(k +1)
dq2(k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2(k)

]
(6.78)

8. Obtaining the a priori error

e(k +1) = eq1(k +1)/γ(k +1) (6.79)
}

Assuming P = P = I, after the multiplication by Q′
θ f (k + 1) is carried out in

(6.55), matrix UP+M(k +1) can be partitioned as

UP+M(k +1) =
[

0 B
E0

f (k +1) C

]
(6.80)

and by taking its inverse, yields

[UP+M(k +1)]−1 =

[
−
[
E0

f (k +1)
]−1

CB−1
[
E0

f (k +1)
]−1

B−1 0

]
. (6.81)

If we now use (6.81) together with (6.58), (6.59), and (6.10), vectors aP+M(k+1)
and fP+M(k +1) can be written, respectively, as

aP+M(k +1) =

[∗
λ−1/2

[
E0

f (k)
]−T

xk+1

]
, and (6.82)

6 Multichannel Fast QRD-RLS Algorithms 171

Table 6.5 Equations of the a priori block-MCFQRD based on the update of backward prediction
errors [6, 7, 11].

MCFQRD PRI B
For each k, do
{ 1. Obtaining D f q2(k +1) and e f q1(k +1)[

eT
f q1(k +1)

D f q2(k +1)

]
= Qθ (k)

[
xT

k+1
λ 1/2D f q2(k)

]
(6.53)

2. Obtaining E f (k +1) and Q f (k +1)[
0T

E f (k +1)

]
= Q f (k +1)

[
eT

f q1(k +1)
λ 1/2E f (k)

]
(6.54)

3. Obtaining r(k +1)[
∗
0

]
= Q f (k +1)

[
1/γ(k)

−r(k +1)

]
implements (6.61)

4. Obtaining aP(k +1)

aP+M(k +1) = PQ′
θ f (k)

[
aP(k)

r(k +1)

]
(6.60)

5. Obtaining Q′
θ f (k +1)⎡

⎣
0
∗

E0
f (k +1)

⎤
⎦ = Q′

θ f (k +1)
[

D f q2(k +1)
E f (k +1)

]
(6.57)

6. Obtaining Qθ (k +1) and γ(k +1)[
1/γ(k +1)

0

]
= Qθ (k +1)

[
1

−aP(k +1)

]
(6.77)

7. Joint estimation[
eq1(k +1)
dq2(k +1)

]
= Qθ (k +1)

[
d(k +1)

λ 1/2dq2(k)

]
(6.78)

8. Obtaining the a priori error

e(k +1) = eq1(k +1)/γ(k +1) (6.79)
}

fP+M(k +1) =

[∗[
E0

f (k +1)
]−T

xk+1

]
. (6.83)

From (6.82) and (6.83), we can see that the last M elements of aP+M(k + 1) and
fP+M(k + 1) are known quantities. The alternative implementations of these algo-
rithms arise when the recursive updating of these vectors is performed based on this
a priori knowledge.

6.5 Order-Recursive MC-FQRD-RLS Algorithms

Block multichannel algorithms are more suitable for order-recursive implementa-
tions and parallel processing as compared to their sequential-channel counterparts.
Therefore, only the formers shall be addressed in this section. Sequential-channel
processing algorithms can also be implemented order-recursively up to a certain

172 António L. L. Ramos and Stefan Werner

degree [9, 11], however, adding order-recursiveness to the already existing channel
recursive nature, leads to more complicated structures.

For sake of simplicity, the special case of all M channels having equal orders, i.e.,
Ni = N, is considered. We shall start by revisiting the definitions of Cholesky fac-
tor of the information matrix, UP+M(k + 1), given by Equations (6.47) and (6.55),
obtained from solving the backward and the forward prediction problems, respec-
tively, and reproduced below assuming channels of equal orders.

UP+M(k +1) = UN+1(k +1) =
[

0 EN
b (k +1)

UN(k +1) DN
bq2(k +1)

]
(6.84)

= Q′
θ f (k +1)

[
DN

f q2(k +1) UN(k)
EN

f (k +1) 0

]
(6.85)

The superscript N added to variables Eb(k + 1), Dbq2, D f q2(k + 1), and E f (k + 1)
emphasizes that these quantities are related to the Nth-order prediction problem.5

The last two equations can be written in a generalized form as

U j+1(k +1) =

[
0 E(j)

b (k +1)
U j(k +1) D(j)

bq2(k +1)

]
(6.86)

= Q′(j)
θ f (k +1)

[
D(j)

f q2(k +1) U j(k)

E(j)
f (k +1) 0

]
, (6.87)

for j = 0,1, . . . ,N. This property is the key to derive the order-recursive versions of
the algorithms. Indeed, the information provided by (6.86) and (6.87) justifies the
generalization of Equations (6.65) and (6.69) from Section 6.4.2, respectively, as

a(j)(k +1) = λ−1/2[E(j)
b (k)]

−T
e′(j)

b (k +1) (6.88)

and

f(j)(k +1) = [E(j)
b (k +1)]

−T
e(j)

b (k +1) (6.89)

where e′(j)
b (k +1) and e(j)

b (k +1) are, respectively, the jth-order a priori and a pos-
teriori backward error vectors, for j = 0,1, . . . ,N. Therefore, vectors aP+M(k + 1)
and fP+M(k+1) can be regarded as a nesting of N +1 subvectors of size M×1, i.e.,

aN+1(k +1) =

⎡
⎢⎢⎢⎣

a(N)(k +1)
a(N−1)(k +1)

...
a(0)(k +1)

⎤
⎥⎥⎥⎦ =

[
a(N)(k +1)
aN(k +1)

]
(6.90)

5 Note that the subscripts P+M and N+1 are interchangeable and N+1 is used whenever the order
of the prediction problems needs to be highlighted, whereas P+M emphasizes vectors or matrices
dimensions.

6 Multichannel Fast QRD-RLS Algorithms 173

and

fN+1(k +1) =

⎡
⎢⎢⎢⎣

f(N)(k +1)
f(N−1)(k +1)

...
f(0)(k +1)

⎤
⎥⎥⎥⎦ =

[
f(N)(k +1)
fN(k +1)

]
. (6.91)

Recalling that Q′
θ f (k) and Q′

θ f (k + 1) are used to update aN+1(k) and fN+1(k),
respectively, we can finally rewrite Equations (6.60) and (6.66) into an order-
recursive form, i.e., for j = 1,2, . . . ,N, as

⎡
⎢⎢⎣

0M(N− j)
a(j)(k +1)

0M(j−1)
r j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
(j)(k)

⎡
⎢⎢⎣

0M(N− j)
a(j−1)(k)
0M(j−1)

r j(k +1)

⎤
⎥⎥⎦ , (6.92)

where r j(k +1) is the jth-order normalized a priori forward error vector, and

⎡
⎢⎢⎣

0M(N− j)
f(j)(k +1)

0M(j−1)
p j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
(j)(k +1)

⎡
⎢⎢⎣

0M(N− j)
f(j−1)(k)
0M(j−1)

p j(k +1)

⎤
⎥⎥⎦ (6.93)

where p j(k +1) is the jth-order normalized a posteriori forward error vector.
Equation (6.93) implements the order-recursive counterpart of step 5 (Table 6.4)

of the a posteriori version of the MC-FQRD-RLS algorithm, whereas (6.92) stands
for corresponding order-recursive implementation of step 4 (Table 6.5) of the a pri-
ori version.

Now we shall see how to compute the set of Givens rotations in Q′
θ f

(j)(k + 1).
Specifically, we shall find a way to carry out steps 4 and 5 of algorithms in Tables 6.4
and 6.5, respectively, in an order-recursive manner. We begin with noting that previ-
ous arguments support the partitioning of matrix D f q2(k +1) into N M×M-blocks
as follows:

D f q2(k +1) =

⎡
⎢⎢⎣

D(1)
f q2(k +1)

...

D(N)
f q2(k +1)

⎤
⎥⎥⎦ . (6.94)

Now, recalling (6.87), we realize that (6.57) can be rewritten as

⎡
⎢⎣

0M(N− j+1)×M

0M(j−1)×M

E(j−1)
f (k +1)

⎤
⎥⎦ = Q′

θ f
(j)(k +1)

⎡
⎢⎢⎢⎣

0M(j−1)×M

D(j)
f q2(k +1)

0M(N− j)×M

E(j)
f (k +1)

⎤
⎥⎥⎥⎦ (6.95)

174 António L. L. Ramos and Stefan Werner

for j = 1,2, . . . ,N. Moreover, the inherent order-recursiveness of previous equation
leads us to conclude that matrix Q′

θ f (k + 1) in (6.57) can be regarded as a product
of the form:

Q′
θ f (k +1) = Q′

θ f
(N)(k +1)Q′

θ f
(N−1)(k +1) · · · Q′

θ f
(1)(k +1), (6.96)

where each Q′
θ f

(j)(k + 1), for j = 1,2, . . . ,N, is a product itself of M2 elementary
Givens rotation matrices.

As for step 6 (Tables 6.4 and 6.5), it is straightforward to see that the rotation

angles Q(j)
θ (k +1) are now obtained through

Table 6.6 Algorithm number 1 of Table 6.1 [4].

Lattice block-MCFQRD POS B
Initializations:
fP(0) = 0; D f q2(0) = 0; γ0(0) = 1; dq2(0) = 0; E j

f (0) = μI,
μ = small number, all cosines = 1, and all sines = 0;
For each k, do

{ ẽ(0)
f q1

T
(k +1) = xT

k+1;

Obtaining E(0)
f (k +1) and p0(k +1):[

0T ∗
E(0)

f (k +1) p0(k +1)

]
= Q

(0)
f (k +1)

[
ẽ(0)

f q1

T
(k +1) γ0(k)

λ 1/2E(0)
f (k) 0

]
;

f(N+1)(k +1) = p0(k +1); γ0(k +1) = 1;
eq1(k +1) = d(k +1);
for j = 1 : N

{ 1. Obtaining D(j)
f q2(k +1) and e(j)

f q1(k +1):[
ẽ(j)

f q1

T
(k +1)

D(j)
f q2(k +1)

]
= Q(j)

θ (k)

[
ẽ(j−1)

f q1

T
(k +1)

λ 1/2D(j)
f q2(k)

]
;

2. Obtaining E(j)
f (k +1) and p j(k +1):[

0T ∗
E(j)

f (k +1) p j(k +1)

]
= Q

(j)
f (k +1)

[
ẽ(j)

f q1

T
(k +1) γ j(k)

λ 1/2E(j)
f (k) 0

]
;

3. Obtaining Q′
θ f

(j)(k +1):
⎡
⎣

0M(N− j+1)×M
0M(j−1)×M

E(j−1)
f (k +1)

⎤
⎦ = Q′

θ f
(j)(k +1)

⎡
⎢⎢⎢⎣

0M(j−1)×M

D(j)
f q2(k +1)

0M(N− j)×M

E(j)
f (k +1)

⎤
⎥⎥⎥⎦ ;

4. Obtaining f(j)(k +1):⎡
⎢⎢⎣

0M(N− j)
f(j)(k +1)

0M(j−1)
p j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
(j)(k +1)

⎡
⎢⎢⎣

0M(N− j)
f(j−1)(k)
0M(j−1)

p j(k +1)

⎤
⎥⎥⎦ ;

5. Obtaining Q(j)
θ (k +1) and γ j(k +1):

Q(j)
θ (k +1)

[
γ j−1(k +1)

0

]
=

[
γ j(k +1)

f(j−1)(k +1)

]
;

6. Joint estimation:[
e(j)

q1 (k +1)
d(j)

q2 (k +1)

]
= Q(j)

θ (k +1)

[
e(j−1)

q1 (k +1)
λ 1/2d(j)

q2 (k)

]
;

7. Obtaining the a priori error:

e j(k +1) = e(j)
q1 (k +1)/γ j(k +1);

} % for j
} % for k

6 Multichannel Fast QRD-RLS Algorithms 175

[
1/γ j(k +1)

0

]
= Q(j)

θ (k +1)
[

1/γ j−1(k +1)
−a(j−1)(k +1)

]
(6.97)

for the a priori algorithm, and

Q(j)
θ (k +1)

[
γ j−1(k +1)

0

]
=

[
γ j(k +1)

f(j−1)(k +1)

]
(6.98)

for the a posteriori case. The joint estimation (step 7) is performed according to

[
e(j)

q1 (k +1)

d(j)
q2 (k +1)

]
= Q(j)

θ (k +1)

[
e(j−1)

q1 (k +1)

λ 1/2d(j)
q2 (k)

]
. (6.99)

Table 6.7 Algorithm number 9 of Table 6.1 [11].

Lattice block-MCFQR PRI B
Initializations:
aP(0) = 0; D f q2(0) = 0; γ0(0) = 1; dq2(0) = 0; E j

f (0) = μI,
μ = small number, all cosines = 1, and all sines = 0;
For each k, do

{ ẽ(0)
f q1

T
(k +1) = xT

k+1;

Obtaining E(0)
f (k +1) and r0(k +1):[

0T ∗
E(0)

f (k +1) 0

]
= Q

(0)
f (k +1)

[
ẽ(0)

f q1

T
(k +1) 1/γ0(k)

λ 1/2E(0)
f (k) −r0(k +1)

]
;

a(0)(k +1) = r0(k +1); γ0(k +1) = 1;
eq1(k +1) = d(k +1);
for j = 1 : N

{ 1. Obtaining D(j)
f q2(k +1) and e(j)

f q1(k +1):[
ẽ(j)

f q1

T
(k +1)

D(j)
f q2(k +1)

]
= Q(j)

θ (k)

[
ẽ(j−1)

f q1

T
(k +1)

λ 1/2D(j)
f q2(k)

]
;

2. Obtaining E(j)
f (k +1) and p j(k +1):[

0T ∗
E(j)

f (k +1) 0

]
= Q

(j)
f (k +1)

[
ẽ(j)

f q1

T
(k +1) 1/γ j(k)

λ 1/2E(j)
f (k) −r j(k +1)

]
;

3. Obtaining a(j)(k +1):⎡
⎢⎢⎣

0M(N− j)
a(j)(k +1)

0M(j−1)
r j−1(k +1)

⎤
⎥⎥⎦ = Q′

θ f
(j)(k)

⎡
⎢⎢⎣

0M(N− j)
a(j−1)(k)
0M(j−1)

r j(k +1)

⎤
⎥⎥⎦ ;

4. Obtaining Q′
θ f

(j)(k +1):
⎡
⎣

0M(N− j+1)×M
0M(j−1)×M

E(j−1)
f (k +1)

⎤
⎦ = Q′

θ f
(j)(k +1)

⎡
⎢⎢⎢⎣

0M(j−1)×M

D(j)
f q2(k +1)

0M(N− j)×M

E(j)
f (k +1)

⎤
⎥⎥⎥⎦ ;

5. Obtaining Q(j)
θ (k +1) and γ j(k +1):[

1/γ j(k +1)
0

]
= Q(j)

θ (k +1)
[

1/γ j−1(k +1)
−a(j−1)(k +1)

]
;

6. Joint estimation:[
e(j)

q1 (k +1)
d(j)

q2 (k +1)

]
= Q(j)

θ (k +1)

[
e(j−1)

q1 (k +1)
λ 1/2d(j)

q2 (k)

]
;

7. Obtaining the a priori error:

e j(k +1) = e(j)
q1 (k +1)/γ j(k +1);

} % for j
} % for k

176 António L. L. Ramos and Stefan Werner

Finally, in order to adjust the equations of steps 1–3 of the algorithms in
Tables 6.4 and 6.5 to this formulation, it suffices to observe that they can be split up
into blocks that will be processed in an order-recursive way. The resulting lattice (or
order-recursive) versions of the block-type MC-FQRD-RLS algorithms based on a
posteriori and a priori backward prediction errors are summarized in Tables 6.6
and 6.7, respectively.

6.6 Application Example and Computational Complexity Issues

In this section, the effectiveness of the algorithms addressed in this work is illus-
trated in a non-linear filtering problem. In addition, we provide a brief discussion
on computational complexity issues.

6.6.1 Application example

The computer experiment consists of a non-linear system identification. The plant
is a simple truncated second-order Volterra system [2] which can be summarized as

d(k) =
L−1

∑
n1=0

wn1(k)x(k−n1)+
L−1

∑
n1=0

L−1

∑
n2=0

wn1,n2(k)x(k−n1)x(k−n2)+ρ(k).(6.100)

Equation (6.100) can be easily reformulated as a multichannel problem with M =
L+1 channels, where the most recent sample of the ith channel is

xi(k) =
{

x(k), i = 1,
x(k)x(k− i+2), i = 2, . . . ,L+1,

and the ith channel order is

Ni =
{

L, i = 1,2,
L− i+2, i = 3, . . . ,L+1.

In the experiment, we have used L = 4 and the resulting multichannel sys-
tem is depicted in Figure 6.5. The forgetting factor was set to λ = 0.98, and the
power of the observation noise ρ(k) was chosen such that the signal-to-noise-
ratio (SNR) is 60 dB. The learning curves of the multichannel FQRD-RLS algo-
rithms are compared to the normalized least-mean-squares6 (NLMS) [15–17] and
the result is plotted in Figure 6.6 for an average of 100 independent runs. The trade-

6 The updating of the coefficient vector for the NLMS algorithm was performed according to

w(k) = w(k−1)+
μ

σ +‖x(k)‖2 x(x)e∗(k),

where x(k) is the input signal vector, σ is a small constant, and parameter μ was set equal to 1.

6 Multichannel Fast QRD-RLS Algorithms 177

x(k) x2(k) x(k)x(k −1) x(k)x(k −2) x(k)x(k −3)

w1 w2

w3

w4

w5

d(k)

z−1

z−1

z−1

z−1z−1

z−1 z−1

z−1z−1

∑

Fig. 6.5 Multichannel set-up for a truncated second order Volterra system, L = 4.

0 100 200 300 400 500 600 700 800 900 1000
−70

−60

−50

−40

−30

−20

−10

0

10

20

M
SE

 (
dB

)

k

NLMS Algorithm

MC-FQRD-RLS Algorithms

Fig. 6.6 Learning curves of the non-linear system identification experiment.

178 António L. L. Ramos and Stefan Werner

off between computational complexity and speed of convergence is also illustrated
in that figure.

6.6.2 Computational complexity issues

The computational complexity of the MC-FQRD-RLS algorithms, in terms of mul-
tiplication, divisions, and square roots per input sample, is summarized in Table 6.8,
according to the classification introduced earlier in Table 6.1. Generally speaking,
when the same structure and approach are considered, algorithms based on the a
posteriori backward prediction errors updating have lower computational burden
when compared to their a priori counterparts.

The suitability of the lattice structure for real-time implementations comes at the
cost of a slight increase in the computational burden of the algorithms. On the other
hand, sequential-type algorithms O[MP] computational complexity is lower by one
order as compared to the O[M2P] block-type multichannel algorithms computa-
tional complexity. It is also evident that the MC-FQRD-RLS algorithms outperform
the conventional QRD-RLS and inverse QRD-RLS algorithms, O[P2], in terms of
computational costs, while maintaining the good numerical stability features. The
computational advantage of block-type MC-FQRD-RLS algorithms is increasing
for larger number of coefficients per channel, N, (P = MN for channels of equal
orders).

Table 6.8 Computational complexity of MC-FQRD-RLS algorithms, according to Table 6.1.

Algorithm Multiplications Divisions Squared roots

Algs. 2, 4 [5–7], 4NM2 +11NM+ 2NM +2M +N− 2NM +M +N−
summarized 5M2 +6M +7N− 2M∑M

i=1(pi − i) 2M∑M
i=1(pi − i)

in Table 6.4 (4M2 +6M)∑M
i=1(pi − i)

Algs. 10, 12 [6, 7, 11], 4NM2 +11NM+ 2NM +3M +2N− 2NM +M +N−
summarized 5M2 +6M +9N− 2M∑M

i=1(pi − i)+2 2M∑M
i=1(pi − i)

in Table 6.5 (4M2 +6M)∑M
i=1(pi − i)

Alg. 1 [4], sum- 4M3N +17M2N+ 2M2N +3MN +2M M2N +2MN +M
marized in Table 6.6 12MN +5M2 +5M

Alg. 9 [11] sum- 4M3N +17M2N+ 2M2N +5MN +3M M2N +2MN +M
marized in Table 6.7 14MN +5M2 +6M

Algs. 6, 8 [10], sum- 14NM +13M+ 3NM +4M− 2NM +3M−
marized in Table 6.2 5N −9∑M

i=1 pi 3∑M
i=1 pi 2∑M

i=1 pi

Algs. 14, 16 [11] sum- 15NM +14M+ 4NM +5M− 2NM +3M−
marized in Table 6.3 5N −10∑M

i=1 pi 4∑M
i=1 pi 2∑M

i=1 pi

Algs. 5, 7 [9] 14NM +13M+ 4NM +5M− 2NM +3M−
5N −9∑M

i=1 pi 4∑M
i=1 pi 2∑M

i=1 pi

Algs. 13, 15 [11] 15NM +14M+ 5NM +6M− 2NM +3M−
5N −10∑M

i=1 pi 5∑M
i=1 pi 2∑M

i=1 pi

6 Multichannel Fast QRD-RLS Algorithms 179

6.7 Conclusion

The MC-FQRD-RLS algorithms exploit the time-shift structure in each channel
to reduce the computational complexity of the conventional QRD-RLS algorithm
which is of order O[P2], P being the number of coefficients. This chapter introduced
various MC-FQRD-RLS algorithms based on the updating of the backward predic-
tion error vector. Channels are allowed to have arbitrary orders, which enables us to
deal with more general multichannel systems, e.g., Volterra systems. The algorithms
presented in this chapter were derived using two distinct approaches: (1) sequential
approach where channels are processed individually in a sequential manner, and
(2) block approach that jointly processes all channels. Considering the case of M
channels, the computational complexities associated with block and sequential algo-
rithms are O[MP] and O[M2P], respectively. That is, taking a sequential approach
will render the lowest complexity. The main advantages of the block algorithms are
that they favor parallel processing implementations and can easily be turned into an
order-recursive form. To clarify the differences among the many versions available
in the literature, we provided a classification of these algorithms and their associated
computational complexities.

Acknowledgements This work was partially funded by the Academy of Finland, Smart and
Novel Radios (SMARAD) Center of Excellence and by the Buskerud University College (HIBU),
Department of Technology (ATEK), Norway.

References

1. N. Kalouptsidis and S. Theodoridis, Adaptive Systems Identification and Signal Processing
Algorithms. Prentice-Hall, Upper Saddle River, NJ, USA (1993)

2. V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing. Wiley-Intercience: John
Wiley & Sons, New York, NY, USA (2000)

3. A. L. L. Ramos, J. A. Apolinário Jr., and S. Werner, Multichannel fast QRD-LS adaptive
filtering: Block-channel and sequential-channel algorithms based on updating backward pre-
diction errors. Signal Processing, vol. 87, no. 7, pp. 1782–1798 (July 2007)

4. A. L. L. Ramos and J. A. Apolinário Jr., A lattice version of the multichannel FQRD algo-
rithm based on a posteriori backward errors. 11th International Conference on Telecommu-
nications, ICT’2004 (LNCS3124), Fortaleza, Brazil, vol. 1, pp. 488–497 (August 2004)

5. M. G. Bellanger and P. A. Regalia, The FLS-QR algorithm for adaptive filtering: the case of
multichannel signals. Signal Processing (EURASIP), vol. 22, no. 2, pp. 115–126 (February
1991)

6. C. A. Medina S., J. A. Apolinário Jr., and M. G. Siqueira, A unified framework for multichan-
nel fast QRD-LS adaptive filters based on backward prediction errors. 45th Midwest Sympo-
sium on Circuits and Systems, MWSCAS’2002, vol. 3, pp. 668–671, Tulsa, USA (August
2002)

7. A. L. L. Ramos, J. A. Apolinário Jr., and S. Werner, A general approach to the derivation
of block multichannel fast QRD-RLS algorithms. European Signal Processing Conference,
EUSIPCO’2005, Antalya, Turkey, vol. 1, pp. 1–4 (September 2005)

180 António L. L. Ramos and Stefan Werner

8. M. A. Syed and V. J. Mathews, QR-decomposition based algorithms for adaptive Volterra fil-
tering. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 40, no. 6, pp. 372–382 (June 1993)

9. A. L. L. Ramos, J. A. Apolinário Jr., and M. G. Siqueira, A new order recursive multiple order
multichannel fast QRD algorithm. 38th Midwest Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, USA, vol. 1, pp. 965–969 (November 2004)

10. A. L. L. Ramos and J. A. Apolinário Jr., A new multiple order multichannel fast QRD algo-
rithm and its application to non-linear system identification. XXI Simpósio Brasileiro de
Telecomunicações, SBT’2004, Belém, Brazil, vol. 1, pp. 1–4 (Setember 2004)

11. A. A. Rontogiannis and S. Theodoridis, Multichannel fast QRD-LS adaptive filtering: new
technique and algorithms. IEEE Transactions on Signal Processing, vol. 46, no. 11, pp. 2862–
2876 (November 1998)

12. M. A. Syed, QRD-based fast multichannel adaptive algorithms. International Conference on
Acoustics, Speech, and Signal Processing, ICASSSP’91, Toronto, Canada, vol. 3, no. 6, pp.
1837–1840 (April 1991)

13. M. Harteneck, J. G. McWhirter, I. K. Proudler, and R. W. Stewart, Algorithmically engineered
fast multichannel adaptive filter based QR-RLS. IEE Proceedings Vision, Image and Signal
Processing, vol. 146, no. 1, pp. 7–13 (February 1999)

14. G. H. Golub and C. F. Van Loan, Matrix Computations. 3rd edition The Johns Hopkins Uni-
versity Press, Baltimore, MD, USA (1996)

15. P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition
Springer, New York, NY, USA (2008)

16. S. Haykin, Adaptive Filter Theory. 4th Edition Prentice-Hall, Englewood-Cliffs, NJ, USA
(2002)

17. A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons, Hoboken, NJ, USA
(2003)

Chapter 7
Householder-Based RLS Algorithms

Athanasios A. Rontogiannis and Sergios Theodoridis

Abstract This chapter presents recursive least-squares (RLS) algorithms, which are
based on numerically robust Householder transformations. Section 7.1 introduces
the conventional orthogonal Householder transform and provides its geometrical
interpretation. The hyperbolic Householder and the row (orthogonal and hyperbolic)
Householder transforms are also briefly described. In Section 7.2, the Householder
RLS (HRLS) algorithm is presented, its relation with the other known square-root
RLS algorithms is discussed, and two applications, where the HRLS algorithm has
been successfully applied, are presented. By considering a block-by-block update
approach to the RLS problem, the block exact Householder QRD-RLS algorithm
is developed in Section 7.3, which constitutes a generalization of the conventional
QRD-RLS algorithm. Section 7.4 presents an inverse QRD-RLS algorithm, which
employs block updating via the application of appropriate row orthogonal House-
holder transformations. Finally, a sliding window block RLS algorithm, which com-
prises a pair of row Householder transforms, is introduced in Section 7.5.

7.1 Householder Transforms

The Householder transform is an orthogonal matrix transform, named after Alston
S. Householder, who has discovered it in the late 1950s [1]. It defines a norm-
preserving transformation on a vector as the reflection of the vector with respect
to a properly selected hyperplane. More specifically, let x and y be M × 1 vectors.
The projection of x onto y is then defined as follows:

Athanasios A. Rontogiannis
National Observatory of Athens, Athens – Greece
e-mail: tronto@space.noa.gr

Sergios Theodoridis
University of Athens, Athens – Greece
e-mail: stheodor@di.uoa.gr

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 181
DOI 10.1007/978-0-387-09734-3 7, c© Springer Science+Business Media, LLC 2009

tronto@space.noa.gr
stheodor@di.uoa.gr

182 Athanasios A. Rontogiannis and Sergios Theodoridis

Py(x) =
xTy
||y||2 y (7.1)

By denoting with P⊥
y (x) the projection of x onto the hyperplane, which is perpen-

dicular to y, we may write
x = P⊥

y (x)+Py(x). (7.2)

The Householder transform of x with respect to y is then given by [2]

Ty(x) = P⊥
y (x)−Py(x) (7.3)

or, from (7.1) and (7.2),

Ty(x) =
(

I−2
yyT

||y||2
)

x. (7.4)

The matrix
H = I−βyyT (7.5)

where β = 2/||y||2 is easily seen to be orthogonal and symmetric. It is called House-
holder matrix and consists a rank-1 update to the identity matrix. The Householder
transform is illustrated graphically in Figure 7.1. It can be seen from Figure 7.1 that
multiplication of x with the Householder matrix H is equivalent to reflecting x with
respect to the hyperplane, which is perpendicular to y.

In many signal processing applications, it turns out to be convenient to transform
an initial set of data to a sparse one, which is equivalent to the initial dataset in terms
of a certain type of invariance. Mobilizing the Householder transformation in (7.5)
and a suitable choice of y in terms of x, it is possible to compress all the energy of
x in just one element of Ty(x). Indeed, it can be easily verified from (7.4) that, by

x

y
Py(x)

y⊥

−Py(x)

Ty(x)

P⊥
y (x)

Fig. 7.1 Geometrical representation of the orthogonal Householder transform.

7 Householder-Based RLS Algorithms 183

setting
y = x+ ||x||ai, (7.6)

then
Ty(x) = Hx = −||x||ai, (7.7)

where ai is the ith column of the M ×M identity matrix.1 That is, a Householder
matrix can be designed so that to annul a block of elements by reflecting a vector
onto a coordinate axis. This procedure is illustrated in Figure 7.2.

The Householder transformation is a numerically robust approach to produce
sparsity in data. Compared to the Givens rotations approach, which is used to
zero one vector element at a time, multiple vector elements are zeroed with
the application of one Householder reflection. Thus, an M ×M Householder
reflection can be considered equivalent to a succession of M−1 Givens rota-
tions, requiring less computations.

Due to its special form, a Householder matrix need not be computed explicitly.
For instance, multiplication of H with an M×M matrix A is expressed as

HA = A−2
y

||y||2 (yTA) (7.8)

and thus a matrix-by-matrix multiplication is replaced by matrix-by-vector and
vector-by-vector operations.

x
y= x+ ||x||a1

Py(x)

y⊥

−Py(x)

Ty(x) = −||x||a1

P⊥
y (x)

Fig. 7.2 The Householder transform that zeroes entries of vector x.

1 One could also choose y = x−||x||ai, which results in Hx = ||x||ai.

184 Athanasios A. Rontogiannis and Sergios Theodoridis

7.1.1 Hyperbolic Householder transforms

A slightly different matrix that can be used to introduce zeros in a vector or a col-
umn of a matrix is the hyperbolic Householder transform [3]. Let ΦΦΦ be an M ×M
diagonal matrix with entries +1 and −1. Then, the hyperbolic norm of a vector x is
defined as follows:

xTΦΦΦx =
M

∑
i=1

φi|xi|2 (7.9)

where we assumed that xTΦΦΦx > 0, φi is the ith diagonal element of ΦΦΦ and xi the ith
element of x.

An M×M matrix Q satisfying

QTΦΦΦQ = ΦΦΦ , (7.10)

is called hypernormal matrix with respect to ΦΦΦ and has the property to preserve the
hyperbolic norm of a vector, i.e., if z = QTx then zTΦΦΦz = xTΦΦΦx.

A matrix H defined as
H = ΦΦΦ−βyyT, (7.11)

where β = 2/(yTΦΦΦy), is called hyperbolic Householder transform. It is not difficult
to verify that H is symmetric and hypernormal with respect to ΦΦΦ . Similarly to the
orthogonal Householder transforms, y can be properly selected so that application
of H in (7.11) annihilates all but one entries of a vector. Indeed, by setting

y = ΦΦΦx+
(

xi

|xi|
√

xTΦΦΦx
)

ai (7.12)

and assuming that xTΦΦΦx > 0 and φi = 1, then

Hx = −
(

xi

|xi|
√

xTΦΦΦx
)

ai (7.13)

and all hyperbolic energy of x, i.e., xTΦΦΦx, is compressed to its ith entry.

7.1.2 Row Householder transforms

The Householder transforms discussed so far are designed to introduce zeros in
a column of a matrix. As shown in [4], Householder matrices (either orthogonal
or hyperbolic) can also be constructed to zero one row of a matrix. Let A be an
(M +1)×M matrix expressed as follows:

A =
[

C
bT

]
(7.14)

7 Householder-Based RLS Algorithms 185

where the M×M matrix C is assumed to be invertible. Suppose we wish to eliminate
the last row bT of A by applying an (M + 1)× (M + 1) orthogonal Householder
transformation, as the one given in (7.5), i.e.,

H
[

C
bT

]
=

[
C̃
0T

]
. (7.15)

It has been proven in [4] that for an H to satisfy the last equation, its defining (M +
1)×1 vector y must be constructed as

y =
1

||b||

⎡
⎣

C−Tb

−1−
√

1+(C−Tb)T(C−Tb)

⎤
⎦ . (7.16)

Note that finding y requires the computation of the inverse of C.
By following a similar analysis, it can be shown [4] that a hyperbolic House-

holder matrix, defined as in (7.11), can be constructed to eliminate bT. Its defining
vector will be now given by

y =
1

||b||

⎡
⎢⎣

C−Tb

−1−
√

1+φM+1(C−Tb)TΦ̃ΦΦ(C−Tb)

⎤
⎥⎦ , (7.17)

where φM+1 is the last diagonal element of the (M +1)× (M +1) matrix ΦΦΦ and Φ̃ΦΦ
its upper left M×M diagonal block.

Remarks
In the previous analysis, matrices and vectors with real entries have been

assumed. In case of complex entries:

• The analysis of Section 7.1 remains under the condition that the ith element of
vector x is real. The orthogonal Householder transform is now given by

H = I− 2
||y||2 yyH (7.18)

• The hyperbolic Householder transform is expressed as

H = ΦΦΦ− 2
yHΦΦΦy

yyH, (7.19)

while Equations (7.12) and (7.13) still hold with the hyperbolic energy now
defined as xHΦΦΦx.

• The analysis of Section 7.1.2 still holds by replacing simple transposition with
conjugate transposition in Equations (7.14), (7.15), (7.16), and (7.17), and con-
structing Householder matrices from (7.18) and (7.19).

186 Athanasios A. Rontogiannis and Sergios Theodoridis

7.2 The Householder RLS (HRLS) Algorithm

In Chapter 3, the conventional and the inverse QR-decomposition recursive least-
squares (QRD-RLS) algorithms have been presented. The main characteristic of
these algorithms is that the triangular Cholesky factor of the input data correlation
matrix (or its inverse) is updated in each iteration based on a sequence of Givens
rotations. It is well known that a symmetric positive definite matrix has an infi-
nite number of square-roots. These can be expressed as the product of an arbitrary
orthogonal matrix with the respective Cholesky factor. In this section, we present
an RLS algorithm, which updates in time an arbitrary square-root of the input data
correlation matrix and provides naturally the LS weight vector. It will be shown
that such an update is performed by applying a properly constructed data dependent
Householder matrix.

Let S(k) be an arbitrary (not necessarily triangular) (N + 1)× (N + 1) square-
root factor of the data correlation matrix R(k) at time k. Then the following relation
holds:

R(k) = ST(k)S(k) (7.20)

Based on the new data vector x(k) and the square-root factor of the previous time
instant, we define the following vector:2

u(k) =
S−T(k−1)x(k)√

λ
(7.21)

where λ is the forgetting factor of the exponentially weighted LS cost function. Let
now P(k) be an (N +2)× (N +2) orthogonal matrix, which performs the following
transformation:

P(k)
[

1
u(k)

]
=

[
−δ (k)

0

]
, (7.22)

where δ (k) is a positive scalar. According to (7.22), matrix P(k) zeros u(k), which
coincides with the last N + 1 elements of the vector on the left-hand-side of the
equation. Due to the orthogonality of P(k) and (7.21), the positive scalar δ (k) is
given by

δ (k) =
√

1+ ||u(k)||2 =
√

1+λ−1xT(k)R−1(k−1)x(k). (7.23)

It is most interesting that the orthogonal matrix P(k), which satisfies (7.22), also
updates in time the inverse square-root factor of R(k− 1). Indeed, by formulating
the equation

P(k)
[

0T 1
λ−1/2S−T(k−1) u(k)

]
=

[
zT(k) −δ (k)
Y(k) 0

]
(7.24)

2 This vector is reminiscent of the so-called Kalman gain vector, which appears in the conventional
RLS algorithm [5]. The Kalman gain vector is obtained by replacing S−T(k − 1) in (7.21) by
R−T(k−1).

7 Householder-Based RLS Algorithms 187

and multiplying each side of (7.24) by its transpose and equating parts, z(k) and
Y(k) are obtained from the following set of expressions:

z(k) = −S−1(k−1)u(k)√
λδ (k)

= −R−1(k−1)x(k)
λδ (k)

(7.25)

and
YT(k)Y(k) = λ−1R−1(k−1)− z(k)zT(k). (7.26)

Note that, according to (7.25), z(k) is a scaled version of the Kalman gain vector [5],
which can be used to update the LS weight vector. Moreover, let us consider the
well-known LS input correlation matrix update equation

R(k) = λR(k−1)+x(k)xT(k). (7.27)

Application of the matrix inversion lemma in (7.27) leads to the expression on the
right-hand-side of (7.26). Thus, R−1(k) = YT(k)Y(k), verifying that

Y(k) = S−T(k). (7.28)

Since Equation (7.22) represents an annihilation of a block of elements in a vector,
the natural choice for P(k) is a Householder matrix. According to the analysis of
Section 7.1, a Householder matrix P(k) satisfying (7.22) is expressed as follows:

P(k) = I−β (k)y(k)yT(k), (7.29)

where

y(k) =
[

1+δ (k)
u(k)

]
, (7.30)

and

β (k) =
1

δ (k)(1+δ (k))
. (7.31)

The Householder RLS (HRLS) algorithm is completed with the formulas required
for the computation of the a priori LS error and the update of the LS weight vector,
respectively, i.e.,

e(k) = d(k)−wT(k−1)x(k), and (7.32)

w(k) = w(k−1)− e(k)
δ (k)

z(k). (7.33)

The basic steps of the HRLS algorithm are summarized in Table 7.1, where the
structure of the orthogonal matrix P(k) has not been taken into consideration. How-
ever, by exploiting the special form of the employed Householder transformation,
P(k) need not be explicitly computed. More specifically, from (7.28) to (7.31) and
(7.24), the following explicit update equation for S−1(k−1) is obtained:

188 Athanasios A. Rontogiannis and Sergios Theodoridis

Table 7.1 The basic steps of the HRLS algorithm.

HRLS
Initialize 0 � λ < 1,w(0) = 0,ε ≈ 1/σ2

x and S−1(0) =
√
εI

for each k
{ Computing u(k):

u(k) = λ−1/2S−H(k−1)x(k)
Obtaining P(k) and δ (k):

P(k)
[

1
u(k)

]
=

[
−δ (k)

0

]

Updating S−1(k−1):

P(k)
[

0T

λ−1/2S−H(k−1)

]
=

[
zH(k)

S−H(k)

]

Obtaining e(k) and w(k):
e(k) = d(k)−wH(k−1)x(k)
w(k) = w(k−1)− e∗(k)

δ (k) z(k)
}

S−1(k) = λ−1/2S−1(k−1)+
z(k)uT(k)
1+δ (k)

. (7.34)

Thus, we are led to an analytical form of the HRLS algorithm, as illustrated in
Table 7.2.

The HRLS algorithm was originally introduced in [6] and [7] and later redis-
covered independently in [8]. The main advantage of the algorithm is its numer-
ically robust behavior in a finite-precision environment. This is clearly shown in
Figure 7.3, where the mean squared error of the RLS and HRLS algorithms is
depicted for a numerically unstable situation. More specifically, we have consid-
ered a system of order N = 8 and an input signal is generated as follows:

x(k) = cos(0.05πk)+
√

2cos(0.3πk)+η(k) (7.35)

Table 7.2 Analytical form of the HRLS algorithm.

HRLS
Initialize 0 � λ < 1,w(0) = 0,ε ≈ 1/σ2

x and S−1(0) =
√
εI

for each k
{ u(k) = λ−1/2S−H(k−1)x(k)
δ (k) =

√
1+ ||u(k)||2

z(k) = − λ−1/2S−1(k−1)u(k)
δ (k)

S−1(k) = λ−1/2S−1(k−1)+ z(k)uH(k)
1+δ (k)

e(k) = d(k)−wH(k−1)x(k)
w(k) = w(k−1)− e∗(k)

δ (k) z(k)
}

7 Householder-Based RLS Algorithms 189

Fig. 7.3 (a) Mean squared error of HRLS, (b) Mean squared error of RLS.

where η(k) is zero-mean Gaussian random noise with variance equal to 10−10. Note
that the 8×8 autocorrelation matrix of the input signal is nearly singular. A forget-
ting factor λ = 0.99 has been used in both schemes. As observed from Figure 7.3,
RLS diverges after a number of iterations, while HRLS retains a numerically robust
behavior.

Concerning the computational complexity, the HRLS algorithm requires slightly
more arithmetic operations compared to the other square-root RLS schemes (con-
ventional and inverse QRD-RLS algorithms). However, as indicated in the analysis
performed in [9], the HRLS is the fastest numerically robust RLS algorithm in terms
of MATLAB execution time, irrespective of the problem size N. This is due to the
fact that the HRLS algorithm includes simple matrix-by-vector and vector-by-vector
operations, which are best suited for implementation in the MATLAB environment.

It should be emphasized that the HRLS algorithm is closely related to the
inverse QRD-RLS algorithm. In both algorithms, an orthogonal transforma-
tion is constructed by zeroing a vector quantity and then this transformation
is applied for the update of an inverse square-root factor of the input data
correlation matrix.

As shown in Chapter 3, the orthogonal transformation used in the inverse QRD-
RLS algorithm can also be applied for the update of the square-root factor itself,

190 Athanasios A. Rontogiannis and Sergios Theodoridis

leading to the QRD-RLS algorithm. It is easily verified that the same holds for the
HRLS algorithm. More specifically, as proven in [6], the Householder matrix P(k)
satisfies the following equations:

P(k)
[

−xT(k)
λ 1/2S(k−1)

]
=

[
0T(k)
S(k)

]
, and (7.36)

P(k)
[

−d(k)
λ 1/2d̂q2(k−1)

]
=

[
eq1(k)
d̂q2(k)

]
. (7.37)

where eq1(k) is the rotated estimation error defined in Chapter 3 and d̂q2(k) is an
orthogonal transformation of the rotated desired signal vector satisfying S(k)w(k) =
d̂q2(k). In the QRD-RLS algorithm, the generation of the orthogonal transforma-
tion and the update of the triangular Cholesky factor are performed jointly, without
involving the inverse Cholesky factor. Similarly, from (7.36), except for the update
of S(k−1), matrix P(k) could also be produced as an orthogonal row Householder
reflection, which zeroes row −xT(k) with respect to the matrix λ 1/2S(k−1). How-
ever, the analysis of Section 7.1.2 has shown that, in order to construct such a matrix,
the inverse of the square-root factor S(k−1) is also required (see Equation (7.16)).
Thus, it seems that a Householder-based RLS algorithm equivalent to the QRD-RLS
cannot be derived.

In the analysis presented in [10], it is shown that several variants of the RLS
family are closely related to algorithms developed for the Kalman filtering problem.
Under this framework, the QRD-RLS and the inverse QRD-RLS schemes are akin
to the so-called information and square-root covariance filters, respectively [11, 12].
In a similar way, the HRLS algorithm is related to Potter’s square-root covariance
filter, which was the first square-root Kalman filter implementation, developed in
the early 1960s [13]. It is noteworthy that Potter’s square-root filter was the variant
of the Kalman filter, which, due to its exceptional numerical properties, has been
utilized in the navigation software of the Apollo system [14].

7.2.1 Applications

In the following, we briefly review two specific applications, namely adaptive pre-
whitening and equalization in wideband code division multiple access (WCDMA)
downlink, whereby the HRLS algorithm has been successfully utilized as a compo-
nent of a larger system.

7.2.1.1 Adaptive pre-whitening

In several applications, such as blind source separation (BSS) or independent
component analysis (ICA), it is desirable that the input signal measurements are
whitened prior to applying any specific method. This procedure is known as pre-
whitening [15]. Let us assume that the signal vector x(k) is wide sense stationary

7 Householder-Based RLS Algorithms 191

with zero mean and autocorrelation matrix R = E[x(k)xT(k)], where E[·] denotes
statistical expectation. Then, to pre-whiten x(k) we need to determine a matrix trans-
formation T such that, if

v(k) = Tx(k), (7.38)

then
E[v(k)vT(k)] = TRTT = I. (7.39)

Apparently, (7.39) is satisfied if T is selected as the transpose of a square-root of
R−1. Note that, under time-varying conditions, the whitening transformation T must
be properly updated in time. Based on these two observations, a reasonable choice
for T is

T = S−T(k−1), (7.40)

i.e.,
v(k) = S−T(k−1)x(k). (7.41)

This transformation maintains the whitening property with respect to the determin-
istic autocorrelation matrix for every k, i.e.,

S−T(k−1)R(k−1)S(k−1) = I. (7.42)

From (7.41) the transformed data vector is now v(k) =
√
λu(k), with u(k) defined

in (7.21). Assuming x(k) to be wide sense stationary, v(k) enjoys the following
property [8]:

lim
k→∞

E[v(k)vT(k)] ≈ (1−λ)I. (7.43)

The adaptive whitening procedure is summarized by the first four steps of the algo-
rithm in Table 7.2. This procedure is numerically robust, as the update of the whiten-
ing transformation stems from the application of a Householder reflection.

7.2.1.2 Equalization in WCDMA downlink

Wideband code division multiple access (WCDMA) has been adopted in several
modern telecommunication standards such as the Universal Mobile Telecommuni-
cation Systems (UMTS) standard. Due to strong interference from other users, a
critical task in such systems is the design of an equalizer in the downlink. Most
often, the conventional RAKE receiver is used, which is, however, interference lim-
ited. Another solution is to employ a linear minimum mean squares error equalizer,
which provides the estimate of the kth symbol of the mth user as [16]

ŷm(k) = cT
m(k)ΘΘΘT(σ2

yΘΘΘΘΘΘT +σ2
ηI)−1x(k), (7.44)

where x(k) is the vector of the received samples, ΘΘΘ is the system channel matrix,
cT

m(k) is the spreading sequence of user k for symbol m, and σ2
y ,σ2

η are the variances
of the transmitted sequence and the receiver noise, respectively. From (7.44) we can
identify that the equalizer consists of two parts; the conventional RAKE receiver

192 Athanasios A. Rontogiannis and Sergios Theodoridis

cT
m(k)ΘΘΘT and a preceding filter (σ2

yΘΘΘΘΘΘT + σ2
ηI)−1. It can be easily shown that

this prefilter coincides with the inverse autocorrelation matrix R−1 of the received
sequence x(k). By considering a Toeplitz approximation of R, the prefilter coeffi-
cients are given by the elements of the middle row of R−1 [16]. If sT

d stands for the
middle row of the square-root factor S−1 of R−1, the prefilter coefficients will be
given by the elements of the following vector:

v = S−1sd . (7.45)

Therefore, explicit computation of the inverse autocorrelation matrix is not nec-
essary. Instead, its square-root factor only need to be computed. Moreover, in an
adaptive equalization setup, the prefilter coefficients can be updated by applying
the HRLS algorithm, which provides, for every time instant the inverse square-root
factor S−1(k) [16], as shown in Table 7.2.

7.3 The Householder Block Exact QRD-RLS Algorithm

In a block RLS algorithm, the LS weight vector is updated in a data block-by-block
basis, instead of the sample-by-sample updating as it is the case for the conventional
RLS algorithms. In [17], a block QRD-RLS algorithm has been developed, where
an exponentially block weighting was utilized. In the following, we slightly modify
this algorithm, so that the LS weight vector, obtained at each block iteration, coin-
cides with its sample-by-sample counterpart as this is computed by the conventional
QRD-RLS algorithm. Such an algorithm is called block exact QRD-RLS algorithm
and belongs to a more general class of such algorithms [18].

Let us assume a block length equal to Q. The LS error vector corresponding to
k +1 blocks can be expressed as follows:

e(k) =

⎡
⎢⎢⎢⎢⎣

ek

ek−1

...

e0

⎤
⎥⎥⎥⎥⎦

= d(k)−X(k)w(k). (7.46)

Let us define for i = 0, . . . ,k the Q× (N + 1) data block XT
i and the Q× 1 desired

response block di as follows:

XT
i =

⎡
⎢⎢⎢⎢⎣

xT((i+1)Q−1)
...

xT(iQ+1)
xT(iQ)

⎤
⎥⎥⎥⎥⎦

=
[

x0,i x1,i · · · xN,i
]

(7.47)

7 Householder-Based RLS Algorithms 193

and

di =

⎡
⎢⎢⎢⎢⎣

d((i+1)Q−1)
...

d(iQ+1)
d(iQ)

⎤
⎥⎥⎥⎥⎦

. (7.48)

Then, the input data matrix X(k) and the desired response vector d(k) in (7.46) are
expressed as follows:

X(k) =

⎡
⎢⎢⎢⎢⎢⎣

ΛΛΛXT
k

λQ/2ΛΛΛXT
k−1

...

λ kQ/2ΛΛΛXT
0

⎤
⎥⎥⎥⎥⎥⎦

(7.49)

and

d(k) =

⎡
⎢⎢⎢⎣

ΛΛΛdk

λQ/2ΛΛΛdk−1
...

λ kQ/2ΛΛΛd0

⎤
⎥⎥⎥⎦ , (7.50)

where ΛΛΛ is a Q×Q weighting matrix given by

ΛΛΛ =

⎡
⎢⎢⎢⎣

1 · · · 0 0
0 λ 1/2 · · · 0
...

...
. . .

...
0 · · · 0 λ (Q−1)/2

⎤
⎥⎥⎥⎦ . (7.51)

It is not difficult to verify from the above definitions that minimization of the norm of
e(k) given in (7.46) with respect to w(k), provides the exact exponentially weighted
LS solution for time instant (k + 1)Q− 1, i.e., w(k) minimizes the following cost
function:

J(w(k)) =
(k+1)Q−1

∑
j=0

λ (k+1)Q−1− j[d(j)−xT(j)w(k)]2. (7.52)

To see how we can obtain this solution adaptively in a block-by-block basis, we
observe that X(k) from (7.49) can be rewritten as

X(k) =
[

X̃T
k

λQ/2X(k−1)

]
, (7.53)

where X̃T
k =ΛΛΛXT

k . From the last equation, the deterministic data correlation matrix
at time (k +1)Q−1 can be expressed as follows:

194 Athanasios A. Rontogiannis and Sergios Theodoridis

R(k) = λQR(k−1)+ X̃kX̃T
k , (7.54)

where R(k−1) = XT(k−1)X(k−1) is the data correlation matrix at time kQ−1.
By expressing R(k) and R(k− 1) by the respective Cholesky factorizations, (7.54)
is written as

UT(k)U(k) = λQUT(k−1)U(k−1)+ X̃kX̃T
k , (7.55)

where U(k),U(k−1) are assumed to be (N +1)×(N +1) upper triangular matrices.
From (7.55), a block time update of the Cholesky factor of the data correlation
matrix can be realized according to the following relation:

P̃(k)
[

X̃T
k

λQ/2U(k−1)

]
=

[
OQ×(N+1)

U(k)

]
, (7.56)

where P̃(k) is an orthogonal matrix. As suggested in (7.56), P̃(k) must be prop-
erly selected to zero the Q× (N +1) block X̃T

k with respect to the triangular matrix
λQ/2U(k−1). Moreover, by following similar analysis as in Chapter 3 for the con-
ventional QRD-RLS algorithm, it can be easily shown that P̃(k) block updates in
time a rotated desired (N +1)×1 signal vector, dq2(k), as in

P̃(k)
[

d̃k

λQ/2dq2(k−1)

]
=

[
ẽk

dq2(k)

]
, (7.57)

where d̃k =ΛΛΛdk and ẽk being a Q×1 rotated error block. The exact LS weight vector
at time (k +1)Q−1 is then given by the following triangular system of equations:

U(k)w(k) = dq2(k), (7.58)

which can be easily solved using back-substitution.
As mentioned before, matrix P̃(k) must be designed to eliminate the block

X̃T
k = [x̃0,k, x̃1,k, · · · , x̃N,k], where x̃n,k = ΛΛΛxn,k, while retaining the triangular struc-

ture of the Cholesky factor. By inspecting (7.56), it is easily shown that P̃(k) can be
expressed as a product of N +1 orthogonal (N +Q+1)× (N +Q+1) Householder
matrices as follows:

P̃(k) = P̃N(k)P̃N−1(k) · · · P̃0(k). (7.59)

Matrix P̃n(k), n = 0,1, . . . ,N, zeroes the (n + 1)-th column of the input data
block with respect to the corresponding diagonal element of the upper triangular
factor, i.e.,

P̃n(k)

⎡
⎢⎣

0 · · · x̃(n)
n,k x̃(n)

n+1,k · · · x̃(n)
N,k

U(n)(k−1)

⎤
⎥⎦ =

⎡
⎢⎣

0 · · · 0 x̃(n+1)
n+1,k · · · x̃(n+1)

N,k

U(n+1)(k−1)

⎤
⎥⎦ ,

(7.60)

7 Householder-Based RLS Algorithms 195

P̃n(k)

Fig. 7.4 Application of Householder transformations in the block exact QRD-RLS algorithm.

which is also illustrated in Figure 7.4. In (7.60), U(0)(k − 1) = λQ/2U(k − 1),
U(N)(k−1) = U(k), and x̃(n)

j,k , j = n, . . . ,N is the (j +1)-th column of the data block

after the application of matrices P̃0(k), . . . , P̃n−1(k). To be more specific, P̃n(k) is an
orthogonal Householder matrix, whose defining vector, according to (7.6), is given
by3

yn(k) =

⎡
⎢⎢⎣

x̃(n)
n,k
0n

un+1,n+1 +ρn+1

0N−n

⎤
⎥⎥⎦ , (7.61)

where un+1,n+1 is the (n + 1)-th diagonal element of U(n)(k − 1) and ρ2
n+1 =

u2
n+1,n+1 + ||x̃(n)

n,k ||2.
The block exact Householder QRD-RLS algorithm is summarized in Table 7.3.

It must be noticed that block updating using Householder transforms results in
remarkable reduction in computational complexity compared to sample-by-sample
updating using Givens rotations. More specifically, the Householder-based approach
requires QN2 +O[QN] arithmetic operations, whereas the Givens rotations approach
needs 2QN2 + O[QN] operations, that is, the computational complexity is almost
halved.

Moreover, as described in [17], a slightly modified version of the block House-
holder QRD-RLS algorithm can be implemented in a systolic array archi-
tecture, providing a throughput rate similar to that of the Givens rotations
method.

3 To be precise, due to the definition of the Householder transform in (7.5), (7.6), and (7.7), the
resulting U(k) is the Cholesky factor of R(k) multiplied by −1. This, however, does not affect the
analysis of the algorithm.

196 Athanasios A. Rontogiannis and Sergios Theodoridis

Table 7.3 The basic steps of the block exact Householder QRD-RLS algorithm.

Block exact Householder QRD-RLS
Initialize 0 � λ < 1,ε ≈ 1/σ2

x and U(0) = 1/
√
εI

for each k

{ Computing P̃(k) and updating U(k−1):

P̃(k)

[
X̃H

k

λQ/2U(k−1)

]
=

[
OQ×(N+1)

U(k)

]

Updating dq2 (k−1):

P̃(k)

[
d̃∗

k

λQ/2dq2 (k−1)

]
=

[
ẽk

dq2 (k)

]

Obtaining w(k):

w(k) = U−1(k)dq2(k)

}

7.4 The Householder Block Exact Inverse QRD-RLS Algorithm

In the block exact QRD-RLS algorithm, the orthogonal matrix P̃(k) and the updated
Cholesky factor U(k) are jointly obtained from (7.56). Then, the inverse of U(k)
need to be computed in order to extract the LS weight vector according to (7.58).
Clearly, it would be more convenient to be able to work directly with the inverse of
the Cholesky factor. It is well known that if P̃(k) is orthogonal and satisfies (7.56),
then

P̃(k)
[

OQ×(N+1)
λ−Q/2U−T(k−1)

]
=

[
ET(k)

U−T(k)

]
, (7.62)

where E(k) is an (N +1)×Q matrix. To see this, let us note that we can express an
identity matrix as follows:

I =
[

O(N+1)×Q λ−Q/2U−1(k−1)
][X̃T

k
λQ/2U(k−1)

]

=
[

O(N+1)×Q λ−Q/2U−1(k−1)
]

P̃T(k)P̃(k)
[

X̃T
k

λQ/2U(k−1)

]

=
[

E(k) W
][OQ×(N+1)

U(k)

]
(7.63)

and thus W = U−1(k). From (7.62), the inverse Cholesky factor can be updated.
However, in order to compute P̃(k) we have to resort to (7.56), which requires the
Cholesky factor itself. To avoid using U(k − 1) explicitly, the following lemma,
which has been derived in [4], can be employed.

Lemma 1. Let G(k) = −λ−Q/2U−T(k−1)X̃k and let P̂(k) be an orthogonal matrix
such that

7 Householder-Based RLS Algorithms 197

P̂(k)
[

IQ

G(k)

]
=

[
ΔΔΔ(k)

O(N+1)×Q

]
, (7.64)

where IQ is the Q×Q identity matrix and ΔΔΔ(k) is a Q×Q matrix. Then

P̂(k)
[

X̃T
k

λQ/2U(k−1)

]
=

[
OQ×(N+1)

V

]
. (7.65)

If V is upper triangular, then V = U(k) and

P̂(k)
[

OQ×(N+1)
λ−Q/2U−T(k−1)

]
=

[
ET(k)

U−T(k)

]
, (7.66)

where E(k) = λ−Q/2U−1(k−1)G(k)ΔΔΔ−1(k).

The crucial task now becomes to determine the orthogonal matrix in (7.64) so that
the triangular structures are retained in (7.66). As a generalization of the procedure
for Q = 1 (inverse QRD-RLS algorithm of Chapter 3), P̂(k) can be constructed as
the product of N +1 orthogonal row Householder reflections [4], i.e,

P̂(k) = P̂N(k)P̂N−1(k) · · · P̂0(k). (7.67)

The row Householder matrix P̂n(k),n = 0,1, . . . ,N, zeros the (n+1)-th row of G(k)
as follows:

P̂n(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔΔΔ n(k)
0T

...
gT

n (k)
gT

n+1(k)
...

gT
N(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΔΔΔ n+1(k)
0T

...
0T

gT
n+1(k)

...
gT

N(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.68)

where ΔΔΔ 0(k) = IQ, ΔΔΔN(k) = ΔΔΔ(k), and gT
n (k) is the (n + 1)-th row of G(k) for

n = 0,1, . . . ,N. This procedure is also graphically illustrated in Figure 7.5. From
the analysis on row Householder matrices and (7.68), the defining vector of the row
Householder matrix P̂n(k) is given by

yn(k) =
1

||gn(k)||

⎡
⎢⎢⎢⎣

ΔΔΔ−T
n (k)gn(k)

0n

−1−
√

1+(ΔΔΔ−T
n (k)gn(k))TΔΔΔ−T

n (k)gn(k)
0N−n

⎤
⎥⎥⎥⎦ . (7.69)

Recall that P̂n(k) need not be explicitly constructed, but, instead, yn(k) is computed
from (7.69) and is properly used in (7.68). Thus, the orthogonal matrix P̂(k) can
be constructed from (7.67), (7.68), and (7.69) and then applied in (7.66) in order to

198 Athanasios A. Rontogiannis and Sergios Theodoridis

P̂n(k)

Fig. 7.5 Application of row Householder transformations in the block exact inverse QRD-RLS
algorithm.

update directly the inverse Cholesky factor. Furthermore, the LS weight vector can
be efficiently updated using the following block recursive formula [4]:

w(k) = w(k−1)−E(k)ΔΔΔ−T(k)
[
d̃k − X̃T

k w(k−1)
]
, (7.70)

where w(k) refers to the exponentially weighted LS solution at time (k +1)Q−1.
The Householder block exact inverse QRD-RLS algorithm is summarized in

Table 7.4.

As mentioned before, in the second step of the algorithm, inversion of the
Q×Q matrices ΔΔΔ n(k) is required. Note, however, that in most applications that
employ a block-type recursive scheme, the block length Q is taken to be much
smaller than the filter size N [18]. Therefore, the overall burden in complexity,
which is due to these inverse matrix calculations, is not considerable.

Table 7.4 The basic steps of the block exact Householder inverse QRD-RLS algorithm.

Block exact Householder inverse QRD-RLS
Initialize 0 � λ < 1,w(0) = 0,ε ≈ 1/σ2

x and U−1(0) =
√
εI

for each k
{ Computing G(k):

G(k) = −λ−Q/2U−H(k−1)X̃k

Computing P̂(k) and ΔΔΔ(k):

P̂(k)
[

IQ

G(k)

]
=

[
ΔΔΔ(k)

O(N+1)×Q

]

Updating U−1(k−1):

P̂(k)
[

OQ×(N+1)
λ−Q/2U−H(k−1)

]
=

[
EH(k)

U−H(k)

]

Computing w(k):
w(k) = w(k−1)−E(k)ΔΔΔ−H(k)

[
d̃∗

k − X̃H
k w(k−1)

]
}

7 Householder-Based RLS Algorithms 199

7.5 Sliding Window (SW) Householder Block Implementation

In the previous analysis, an exponentially weighted LS cost function has been con-
sidered, which is more frequently used in practice. In a time-varying environment,
an alternative popular approach is to employ a sliding window (SW) on the data.
To reduce complexity, data can be organized in blocks of size Q, and the LS weight
vector can be updated on a block-by-block basis. In a block SW formulation, the LS
error vector, whose norm is to be minimized, is given by

e(k) =

⎡
⎢⎢⎢⎢⎣

ek

ek−1

...

ek−L+1

⎤
⎥⎥⎥⎥⎦

= d(k)−X(k)w(k), (7.71)

where L is the window size,

X(k) =

⎡
⎢⎢⎢⎢⎣

XT
k

XT
k−1

...

XT
k−L+1

⎤
⎥⎥⎥⎥⎦

(7.72)

and

d(k) =

⎡
⎢⎢⎢⎢⎣

dk

dk−1

...

dk−L+1

⎤
⎥⎥⎥⎥⎦

. (7.73)

The Q× (N + 1) input data matrices XT
i and the Q×1 desired response vectors di,

i = k−L + 1, . . . ,k, are given by (7.47) and (7.48), respectively. Let us now define
the following augmented quantities:

X̄(k) =

[
X(k)
XT

k−L

]
=

[
XT

k

X(k−1)

]
, and (7.74)

d̄(k) =

[
d(k)
dk−L

]
=

[
dk

d(k−1)

]
. (7.75)

The LS problem can be solved recursively via a two-step procedure. This proce-
dure comprises an update step and a downdate step, as described in the following
representation:

w(k−1) −→ w̄(k) −→ w(k), (7.76)

200 Athanasios A. Rontogiannis and Sergios Theodoridis

where w̄(k) is the solution of the LS problem, which results by substituting in (7.71)
X(k) and d(k) by X̄(k) and d̄(k), respectively. The update step can be implemented
directly by using one of the algorithms described in Sections 7.3 and 7.4. For the
downdate step, the following relation between the involved data correlation matrices
holds:

XT(k)X(k) = X̄T(k)X̄(k)−Xk−LXT
k−L (7.77)

or
R(k) = R̄(k)−Xk−LXT

k−L. (7.78)

By expressing the correlation matrices in terms of their Cholesky factors, the last
equation is rewritten as follows:

UT(k)U(k) = ŪT(k)Ū(k)−Xk−LXT
k−L. (7.79)

In [3], it is shown that there exists a hypernormal matrix H(k) with respect to the
signature

ΦΦΦ =
[
−IQ O
O IN+1

]
(7.80)

such that

H(k)
[

XT
k−L

Ū(k)

]
=

[
OQ×(N+1)

U(k)

]
. (7.81)

Matrix H(k) can be constructed as the product of N + 1 hyperbolic Householder
matrices, which annihilate the columns of XT

k−L with respect to the diagonal ele-
ments of Ū(k). Note that Ū(k) in (7.81) has been obtained from the initial update
step, and thus (7.81) provides the Cholesky factor of the SW RLS problem at time
k. However, in order to compute the required LS solution w(k), we have to resort to
the inverse Cholesky factor. It is easily shown that H(k) can also be used to compute
U−1(k) from Ū−1(k) as in [4]

H(k)
[

OQ×(N+1)
Ū−T (k)

]
=

[
FT(k)

U−T (k)

]
, (7.82)

where F(k) is an (N + 1)×Q matrix. To compute H(k), a result similar to that of
Lemma 1 can be employed [4]. More specifically, by defining the vector Ḡ(k) =
−Ū−T(k)Xk−L, a hypernormal matrix H(k) such that

H(k)
[

IQ

Ḡ(k)

]
=

[
Δ̄ΔΔ(k)

O(N+1)×Q

]
, (7.83)

where Δ̄ΔΔ(k) is a Q×Q matrix, also satisfies (7.82). To retain the triangular structure
of the matrices in (7.82), H(k) is constructed as a sequence of N +1 row hyperbolic
Householder reflections Hn(k), n = 0,1, . . . ,N, with respect to the signature ΦΦΦ given
in (7.80). Hn(k) annihilates the (n + 1)-th row of Ḡ(k) with respect to the upper
Q×Q block of the matrix on the left-hand-side of (7.83). Thus, from the analysis
on row Householder matrices and (7.80), its defining vector can be written as

7 Householder-Based RLS Algorithms 201

Table 7.5 The basic steps of the sliding window (SW) block HRLS algorithm.

SW block Householder RLS
Run the update step L times to obtain w(L) and U−1(L)
for each k > L
{ Update Step

Computing G(k):
G(k) = −U−H(k−1)Xk
Computing Q(k):

Q(k)
[

IQ

G(k)

]
=

[
ΔΔΔ(k)

O(N+1)×Q

]

Updating U−1(k−1):

Q(k)
[

OQ×(N+1)
U−H(k−1)

]
=

[
EH(k)

Ū−H(k)

]

Computing w̄(k):
w̄(k) = w(k−1)−E(k)ΔΔΔ−H(k)

[
d∗

k −XH
k w(k−1)

]
Downdate Step
Computing Ḡ(k):
Ḡ(k) = −Ū−H(k)Xk−L
Computing H(k):

H(k)
[

IQ

Ḡ(k)

]
=

[
Δ̄ΔΔ(k)

O(N+1)×Q

]

Downdating Ū−1(k):

H(k)
[

OQ×(N+1)
Ū−H(k)

]
=

[
FH(k)

U−H(k)

]

Computing w(k):
w(k) = w̄(k)−F(k)Δ̄ΔΔ−H(k)

[
d∗

k−L −XH
k−Lw̄(k)

]
}

ȳn(k) =
1

||ḡn(k)||

⎡
⎢⎢⎢⎢⎣

Δ̄ΔΔ−T
n (k)ḡn(k)

0n

−1−
√

1− (Δ̄ΔΔ−T
n (k)ḡn(k))TΔ̄ΔΔ−T

n (k)ḡn(k)
0N−n

⎤
⎥⎥⎥⎥⎦

, (7.84)

where Δ̄ΔΔ 0(k) = IQ, Δ̄ΔΔN(k) = Δ̄ΔΔ(k), and ḡT
n (k) is the (n + 1)-th row of Ḡ(k) for

n = 0,1, . . . ,N. Furthermore, the LS weight vector is computed according to the
following recursive formula [4]:

w(k) = w̄(k)+F(k)Δ̄ΔΔ−T(k)(dk−L −XT
k−Lw̄(k)). (7.85)

The SW block HRLS algorithm is summarized in Table 7.5. The algorithm consists

of an update step, implemented with the block inverse QRD-RLS algorithm using a
row orthogonal Householder matrix Q(k), and a downdate step as described in the
previous analysis. Note that in the initialization phase the update step is executed L
times, before the algorithm switches to the two-step procedure.

202 Athanasios A. Rontogiannis and Sergios Theodoridis

7.6 Conclusion

The aim of the chapter was to present various RLS algorithms, whose recursion
procedure is based on Householder transforms. Householder transforms are known
to possess exceptional numerical properties, and thus the resulting RLS schemes
exhibit numerical robustness in finite-precision environments. The HRLS algorithm
was first presented, which updates in time an arbitrary square-root of the data cor-
relation matrix using an orthogonal Householder transformation. The algorithm is
particularly attractive in several applications, due to its low-computational complex-
ity and numerical robustness. In the sequel, three other Householder-based RLS
algorithms have been described. The common characteristic of these schemes is
that the weight vector is updated on a block-by-block basis, which calls directly
for the application of Householder reflections instead of Givens rotations. The first
two algorithms can be considered as generalizations of the conventional sample-by-
sample QRD-RLS and inverse QRD-RLS algorithms, respectively. The block exact
QRD-RLS scheme provides the per block update of the data correlation matrix
Cholesky factor, with the application of a sequence of orthogonal Householder
matrices. The block exact inverse QRD-RLS algorithm block updates the inverse
Cholesky factor through a sequence of row orthogonal Householder matrices. The
third algorithm was a SW block RLS scheme, which also manipulates the inverse
Cholesky factor. The algorithm provides the respective LS weight vector by utilizing
two Householder transformations, namely a row orthogonal and a row hyperbolic,
in order to update and downdate the inverse Cholesky factor, respectively.

References

1. A. O. Householder, The Theory of Matrices in Numerical Analysis. Dover Publications Inc.,
New York, NY, USA (1964)

2. A. O. Steinhardt, Householder transforms in signal processing. IEEE Signal Processing Mag-
azine, vol. 5, pp. 4–12 (July 1988)

3. C. M. Rader and A. O. Steinhardt, Hyperbolic Householder transformations. IEEE Transac-
tions on Acoustics Speech and Signal Processing, vol. 34, no. 6, pp. 1859–1602 (December
1986)

4. A. W. Bojanczyk, G. G. Nagy and R. J. Plemmons, Block RLS using row Householder reflec-
tions. Linear Algebra and its Applications, vol. 188–189, pp. 31–61 (1993)

5. S. Haykin, Adaptive Filter Theory. 4th edition, Prentice-Hall Inc., Upper Saddle River, NJ,
USA (2002)

6. A. A. Rontogiannis and S. Theodoridis, On inverse factorization adaptive least squares algo-
rithms. Signal Processing (Elsevier), vol. 52, pp. 35–47 (July 1996)

7. A. A. Rontogiannis and S. Theodoridis, An adaptive LS algorithm based on orthogonal
Householder transformations. IEEE International Conference on Electronics, Circuits and
Systems, ICECS’96, Rhodes, Greece, pp. 860–863 (October 1996)

8. S. C. Douglas, Numerically robust O(N2) RLS algorithms using least-squares prewhitening.
IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP ’2000,
Istanbul, Turkey (June 2000)

9. S. C. Douglas and R. Losada, Adaptive filters in Matlab: from novice to expert. IEEE Signal
Processing Education Workshop, Pine Mountain, USA, pp. 168–173 (October 2002)

7 Householder-Based RLS Algorithms 203

10. A. H. Sayed and T. Kailath, A state-space approach to adaptive RLS filtering. IEEE Signal
Processing Magazine, vol. 11, pp. 18–60 (July 1994)

11. G. J. Bierman, Factorization Methods for Discrete Sequential Estimation. Academic Press,
New York, NY, USA (1977)

12. G. J. Bierman and C. L. Thronton, Numerical comparison of Kalman filter algorithms: orbit
determination case study. Automatica, vol. 13, pp. 13–25 (January 1977)

13. R. Batin, Astronautical Guidance. McGraw-Hill Book Company, New York, NY, USA (1964)
14. L. A. McGee and S. F. Schmidt, Discovery of the Kalman filter as a practical tool for

aerospace and industry. NASA Technical Memorandum 86847, USA (November 1985)
15. S. C. Douglas, Blind source separation and independent component analysis: a crossroads of

tools and ideas. Fourth International Symposium on Independent Component Analysis and
Blind Source Separation, Napa, Japan (April 2003)

16. K. Hooli, M. Latva-aho and M. Juntti, Performance evaluation of adaptive chip-level chan-
nel equalizers in WCDMA downlink. IEEE International Conference on Communications,
ICC’2001, Helsinki, Finland (June 2001)

17. K. R. Liu, S.-F. Hsieh and K. Yao, Systolic block Householder transformation for RLS algo-
rithm with two-level pipelined implementation. IEEE Transactions on Signal Processing, vol.
40, no. 4, pp. 946–958 (April 1998)

18. G.-O. Glentis, K. Berberidis and S. Theodoridis, Efficient least squares adaptive algorithms
for FIR transversal filtering. IEEE Signal Processing Magazine, vol. 16, pp. 13–41 (July 1999)

Chapter 8
Numerical Stability Properties

Phillip Regalia and Richard Le Borne

Abstract Designers of algorithms must not only solve the problem of interest, but
do so using methods which are robust under perturbations in the data as well as the
intermediate parameters of the method. More generally, it is often the case that the
actual problem of interest is too complicated to solve directly; simplifying assump-
tions are necessary. At each stage, from problem identification, to the setup of the
problem to be solved using some method, to the ultimate algorithm to be imple-
mented in code, perturbations and their effects must be anticipated and analyzed.
Stability is the property that assesses the level of robustness to perturbations that
is required before the computed solution given by an algorithm can be used with
confidence. The origin of the perturbation can vary, as pointed out above. What is
important, however, is to have analysis that supports the premise that a small change
in the problem results in a small change to the solution.

8.1 Introduction

The use of the QR-decomposition (vs. QR-algorithm) depends greatly on its
reputation for providing consistently usable results. When an algorithm’s reputa-
tion suffers, whether deserved or not, users often seek an alternative. It is therefore
important, if not essential, to first establish the criteria in which a reliable solution
can be guaranteed. For example, the reputation of Gaussian elimination suffered
greatly in the 1940s because of its inability to always provide a usable solution.
It was not until an analysis performed by J. H. Wilkinson [1], that introduced the

Phillip Regalia
Catholic University of America, Washington, DC – USA
e-mail: regalia@cua.edu

Richard Le Borne
Tennessee Technological University, Cookeville, TN – USA
e-mail: rleborne@tntech.edu

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 205
DOI 10.1007/978-0-387-09734-3 8, c© Springer Science+Business Media, LLC 2009

regalia@cua.edu
rleborne@tntech.edu

206 Phillip Regalia and Richard Le Borne

relationship between perturbations and the conditioning of the problem, before con-
fidence in Gaussian elimination could be re-established. In this chapter, we will
focus our attention on stability and what it means in the context of the develop-
ment process that begins with the clear articulation of the problem and ends with
the computer implementation of the algorithm.

8.2 Preliminaries

The usefulness of a computed solution is a statement assessing its numerical accu-
racy. When the estimate of the desired solution is a vector, required is a means for
assessing its accuracy. The vector norm assigns a single number to a vector and this
property is very useful for assessing the error in a given quantity. There are different
vector norms, but the most often used are considered equivalent in IRN in that one
norm is within a constant factor of another. For example, the Euclidean norm, or
two-norm, is defined as the square-root of the sum of squares of vector elements.
For the vector of filter weights, w = [w1,w2, . . . ,wN]T, its Euclidean norm, ‖w‖2 is
given by

‖w‖2 =
√

w2
1 +w2

2 + · · ·+w2
N (8.1)

=
√

∑N
i=1 w2

i (8.2)

For matrices, the norm again is used to associate a single number to it but its defi-
nition is chosen to be compatible with vector norms. For example, the matrix norm
associated with the Euclidean norm is called the spectral norm. For X ∈ IRN×M , its
spectral norm, ‖X‖2, is defined as

‖X‖2 = max
‖w‖2 =1

‖Xw‖2 (8.3)

=
√

λmax(XTX) (8.4)

= σmax(X), (8.5)

where λmax(XTX) is the maximum eigenvalue of XTX and σmax(X) is the largest
singular value of the data matrix X. The singular value of a matrix will next
be defined. For a full discussion on vector and matrix norms a good source is
[2, Chapter 2].

Suppose at time index k, we are given the data matrix X(k) ∈ IR(k+1)×(N+1) of
rank r. Then there are unitary matrices U(k)∈IR(k+1)×(k+1) and V(k)∈IR(N+1)×(N+1)

where UT(k)U(k) = I ∈ IR(k+1)×(k+1) and VT(k)V(k) = I ∈ IR(N+1)×(N+1)

and a diagonal matrix ΣΣΣ(k) ∈ IR(k+1)×(N+1) where ΣΣΣ(k) = diag(σ1(k),σ2(k), . . . ,
σr(k),0, . . . ,0) = diag(ΣΣΣ+(k),0, . . . ,0) with σ1(k) ≥ σ2(k) ≥ . . . ≥ σr > 0. Then
the singular value decomposition is given by:

8 Numerical Stability Properties 207

Definition 1 (Singular Value Decomposition).

X(k) = U(k)ΣΣΣ(k)VT(k) (8.6)

= U(k)
[
ΣΣΣ+(k) 0

0 0

]
VT(k) (8.7)

Here, σi(k), i = 1, . . . ,r are the singular values of X(k) and for

U(k) = [u1(k), . . . ,uk+1(k)] (8.8)

V(k) = [v1(k), . . . ,vN+1(k)] , (8.9)

we have that the ui(k), i = 1, . . . ,k +1 and v j(k), j = 1, . . . ,N +1 are, respectively,
the left and right singular vectors associated with the singular values:

XT(k)ui(k) = σivi(k), i = 1, . . . ,r (8.10)

XT(k)ui(k) = 0, i = r +1, . . . ,k +1, (8.11)

and,

X(k)vi(k) = σiui(k), i = 1, . . . ,r (8.12)

X(k)vi(k) = 0, i = r +1, . . . ,N +1 (8.13)

It also holds that the square of the ith right singular value, σi(k), i = 1, . . . ,
N + 1 is equal to the ith eigenvalue of the correlation matrix, XT(k)X(k), that is,
λi(XT(k)X(k)) = σ2

i , and XT(k)X(k)vi(k) = λiv(k) = σ2
i vi(k), i = 1, . . . , N +1.

The pseudo-inverse, or generalized inverse, X†(k) can then be defined using the
singular value decomposition:

Definition 2 (Pseudo-Inverse).

X†(k)︸ ︷︷ ︸
(N+1)×(k+1)

= V(k)
[
ΣΣΣ−1

+ (k) 0
0 0

]

︸ ︷︷ ︸
(N+1)×(k+1)

UT(k) (8.14)

Consider the least-squares filtering problem which seeks to find the weight vector
w(k) such that

X(k)w(k) = d(k) (8.15)

208 Phillip Regalia and Richard Le Borne

with w(k) satisfying
min

w
‖d(k)−X(k)w‖2. (8.16)

It is well known [2, Chapter 3] that w(k) solves (8.15) if w(k) = X†(k)d(k)+ (I−
X†(k)X(k))z, where z ∈ IR(N+1)×1 is arbitrary. For (8.16), z must obviously be the
zero vector so that

w(k) = X†(k)d(k). (8.17)

Note that for the case that X(k) has full rank, i.e., rank(X(k)) = N + 1, then
X†(k)X(k) = I(N+1)×(N+1) and the solution is unique and can be given in terms
of the normal equations:

XT(k)X(k)w(k) = XT(k)d(k) (8.18)

w(k) =
(
XT(k)X(k)

)−1XT(k)d(k) (8.19)

w(k) = X†(k)d(k). (8.20)

Returning to our interest in whether the computed results from a recursive least-
squares method are usable, we turn to the cause for perturbations in a result that,
in theory, should not affect the convergence properties. The amount of deviation
in a computed quantity from its exact value, be it the filter weights or the filter a
posteriori residuals, can be affected from two sources: the nature of the problem
and the method chosen to solve it. For recursive least-squares, we are interested in
computing a sequence of least-squares solutions w(k), k = N, N + 1, . . . , where, at
time index k, we have the overdetermined system of equations X(k)w(k) ≈ d(k) in
which we are interested in determining either w(k), the least squares filter weights,
or the minimal-valued filter residuals, εεε(k) = d(k)−X(k)w(k). Before the stability
of a method can be assessed, however, the sensitivity of the problem to changes in
the data must be studied. Clear terminology is needed for this distinction.

8.2.1 Conditioning, forward stability, and backward stability

Depending on our purposes, we may not be interested in the determination of the
least-squares solution w(k) directly but only the least-squares residuals, ε(k). This
choice can, and in the case of recursive least-squares does, have an impact regarding
the sensitivity of the problem to perturbations in the input data. In general, this
sensitivity inherent to the problem is regarded as the conditioning of the problem
and is the first step in assessing the quality of a method.

Definition 3. A problem is well-conditioned if small changes in the data
invoke only small changes in the solution. Otherwise, the problem is con-
sidered to be ill-conditioned.

8 Numerical Stability Properties 209

For example, for linear square systems of equations in which the number of
unknowns equals the number of equations, Ax = b, for A ∈ IRn×n of full rank,
x,b ∈ IRn×1, the sensitivity of the solution, x, to changes in the elements in A is
measured through the condition number, κ2(A), of the matrix and is defined by

κ2(A) = ‖A‖2 ‖A−1‖2. (8.21)

This quantity gives a measurement to the proximity of A to a singular matrix. When
A is nearly singular, a small change in its entries could have a very profound change
in its solution x, regardless of the method chosen to solve the problem!

Suppose that because of inaccuracies whose origin is purposely left vague,
instead of determining w(k), we have computed ŵ(k). Whether it is acceptable to
use ŵ(k) in place of w(k) is often not answered through direct measurement of the
absolute or relative error, ‖w(k)− ŵ(k)‖2 or ‖w(k)− ŵ(k)‖2/‖w(k)‖2, ‖w(k)‖2 �=
0, respectively (since we would simply use w(k)!). However, through error analysis
techniques it is sometimes possible to bound this quantity by parameters that are
computable. When this is the case, the analysis bounding the absolute or relative
error is termed a forward or direct error analysis. If the bounded quantity is small
enough over general operating conditions, the computed solution ŵ(k) is deemed
usable and the method employed to solve the problem is considered forward stable.

Definition 4. A method for solving Xw = d is forward stable if it has a
small forward error. That is, the computed result ŵ satisfies the condition that
‖w−ŵ‖2
‖w‖2

(with ‖w‖2 �= 0) is small.

Often, a forward analysis is too difficult to achieve useful results. When this is
the case, an alternative approach for the error analysis, termed a backward error
analysis, may be considered. For this, the computed solution ŵ(k) is interpreted as
the exact solution to some other problem. Considering this new problem to be a
perturbation of the original problem defines the perspective for the analysis. When
the perturbed problem is near enough to the original problem, the computed solution
is considered to be backward stable. When there are many possible problems in
which ŵ(k) is the exact solution, the smallest perturbation from the original problem
is chosen.

Definition 5. A method for solving a problem is backward stable if its back-
ward error is small. That is, its computed solution is the exact solution to a
slightly perturbed problem.

210 Phillip Regalia and Richard Le Borne

The analysis to measure the effects of finite-precision is often an application of
the results found from the stability analysis of the method; the perturbations are
defined to model the effects of computer arithmetic and finite-precision represen-
tation. At this level, the implementation of the method could include variations for
handling the storage and numerical computations. The focus, then, would be to tailor
the implementation of the method to exploit the capabilities and avoid the handicaps
given by a computer representation environment.

To summarize the above, the attention is usually on the forward error since this
translates directly to the usefulness of the computed solution. When a direct anal-
ysis to bound the forward error is not possible or too difficult, a useful means for
interpreting and connecting the concepts of conditioning and forward and backward
errors, when defined in a consistent way is [3, Chapter 1, p. 10],

Forward Error
<∼ (Condition Number)×(Backward Error).

For a well-conditioned problem, a small backward error implies a small for-
ward error. But an ill-conditioned problem could lead to a misinterpretation of
a small backward error since here there could still be a large forward error. A
method is forward or backward stable if it produces a small forward or backward
error, respectively. But a backward stable method does not necessarily produce a
usable computed solution if the problem itself is sensitive to perturbations.

8.3 The Conditioning of the Least-Squares Problem

Signal processing problems, in particular least-squares problems, are recursively
updated in time as new measurement data is received. On a more abstract setting,
this can be formulated as a non-linear mapping that produces a sequence of vec-
tors that (hopefully) approximate with increasing accuracy some desired solution.
Determining the stability of this mapping, i.e., the study performed on the mapping
to determine the degree of continuity under the effect of perturbations, is the initial
goal of an analysis. Without additional specifics regarding continuity, the interpre-
tation of a stability analysis may be left to the reader; an unnecessary consequence
that should be avoided. To this end, it is often the case when analyzing the effects of
perturbations to make the following distinction: Conditioning refers to the problem
that is to be solved, while stability refers to either the method or its implementa-
tion as an algorithm. This means that it is possible to get a bad computed solution
because of the nature of the problem or because of the manner chosen to solve it. An
analysis assessing only the method/algorithm will be incomplete without an analysis
of the problem.

8 Numerical Stability Properties 211

8.3.1 The conditioning of the least-squares problem

Before we formally state the least-squares problem, we introduce the following ter-
minology. The following requires distinct notation to represent exact values from
those which have been affected by perturbations. We will denote a perturbation by
the δ symbol and the perturbed quantity by inserting a ˜ above the symbol. For
example, the presence of perturbations in the data matrix and the desired output will
be denoted and defined by X̃(k) = X(k)+δX(k) and d̃(k) = d(k)+δd(k), respec-
tively.

We now present two theorems from Golub and Wilkinson [4] that bound the
effect of perturbations in X(k) and d(k) on the solutions to the least squares problem
(8.15) and (8.16). For X(k) having full rank, we define its condition number κ2 as

κ2
(
X(k)

)
� σ1(k)

σN+1(k)
(8.22)

= ‖X(k)‖2

∥∥∥[XT(k)X(k)
]−1

XT(k)
∥∥∥

2
. (8.23)

From the singular value decomposition it follows that,

κ2(X(k))2 � ‖X(k)‖2
2

∥∥∥[XT(k)X(k)
]−1

∥∥∥
2
. (8.24)

Theorem 1. Let w(k), εεε(k), w̃(k), and ε̃εε(k) satisfy

‖X(k)w(k)−d(k)‖2 = min
w

‖εεε(k)‖2 (8.25)

‖(X(k)+δX(k)) w̃(k)− (d(k)+δd(k))‖2 = min
w̃

‖ε̃εε(k)‖2 (8.26)

where

εεε(k) = d(k)−X(k)w(k), and

ε̃εε(k) =
[
d+ d̃(k)

]
− [X(k)+δX(k)]w̃(k).

If δmax is given by

δmax = max

{
‖δX(k)‖2

‖X(k)‖2
,
‖δd(k)‖2

‖d(k)‖2

}
<

σN+1(k)
σ1(k)

(8.27)

and sin(θ) by

sin(θ) =
ρw(k)

‖d(k)‖2
�= 1, (8.28)

212 Phillip Regalia and Richard Le Borne

where ρw(k) � ‖X(k)w(k)− d(k)‖2 is the minimal least squares residual,
then

‖w̃(k)−w(k)‖2

‖w(k)‖2
≤ δmax

{
2κ2(X(k)

cos(θ)
+ tan(θ)κ2(X(k))2

}
+O(δ 2

max) (8.29)

and

‖ε̃εε(k)− εεε(k)‖2

‖d(k)‖2
≤ δmax (1+2κ2(X(k)))min(1,k−N)+O(δ 2

max). (8.30)

Theorem 1 tells us that the sensitivity of the least squares filter residuals, ε(k),
are proportional to the conditioning, κ2(X(k)). Comparatively, the sensitivity of the
filter weights to perturbations are proportional to the square of the conditioning,
κ2

2 (X(k)). This result pertains to the nature of the problem being solved and is inde-
pendent of the method employed to solve it.

Under the conditions of Theorem 1 with the data matrix X(k) having full rank
and no assumed perturbations in d(k), the conditioning of the least-squares problem,
κLS(X(k),d(k)) is defined as [5, Chapter 1],

Definition 6.

κLS(X(k),d(k)) = κ2(X(k))
(

1+κ2(X(k))
‖εεε(k)‖2

‖X(k)‖2 ‖w(k)‖2

)
. (8.31)

From (8.31) it is seen that the conditioning of the least-squares problem, that
is, the sensitivity of the least-squares problem to perturbations in the data matrix,
depends on the a posteriori residual and thus on the right-hand-side vector d(k).

8.3.2 Consistency, stability, and convergence

The recursive least-squares problem produces a sequence of solutions, x(k), k =
N + 1, . . . , and it is because of this that the issue of convergence is of interest.
Specifically, even though in a stationary environment the recursive least-squares
solution converges, perturbations may significantly alter these theoretical properties
to the extent that the computed solution may not converge.

Suppose the computed solution, ŵ(k) at time index k, is a very good approxi-
mation to the true least-squares solution w(k). Since the next computed solution,

8 Numerical Stability Properties 213

ŵ(k + 1), involves ŵ(k), it is natural to question the usefulness for our definition
of a stable method. After a large number of iterations, the accumulative effect from
each approximate solution could have disastrous consequences regarding the notion
of convergence.

To this end, there is a need for additional conditions on the method before the
sequence of computed solutions can be guaranteed to converge to a good approxi-
mation of the desired solution, be it the filter weights (the least-squares solution) or
the filter a posteriori error (residual). In a recursive environment, the update param-
eters are typically non-linearly interlaced. Abstractly, let the parameters used in the
method’s update scheme be denoted as a non-linear mapping { f : A −→ B} where
A denotes the set of input data and parameters at the current state and B denotes the
computed solution as well as the updated parameters to be used in the next recur-
sion. The mapping f is strongly associated to the least-squares problem, and as such
inherits any restrictions such as matrix structure (symmetry, close-to-Toeplitz, pos-
itive definitiveness, etc.). Any perturbations to this mapping must not interfere with
this association. We will formalize this, but first we need to define what we mean by
an equicontinuous mapping.

Definition 7. The set {B} is admissible if for all a ∈ A φ(a) = b ∈ B and a,b
are associated to a least-squares problem.

Definition 8. The mapping { f : A −→ B} is continuous at a if for all ζ > 0
there exists an η > 0, such that ‖ φ(â)−φ(a) ‖≤ ζ whenever ‖ â−a ‖≤ η .

If we are interested in the convergence properties of all members fδ in a neigh-
borhood of f then we need the notion of consistency in addition to continuity.

Definition 9. The mapping f is consistent if for some η > 0, and all â =
a+δa, ‖ δa ‖< η , it holds that φ(â) = b̂ ∈ B, B admissible.

Definition 10. Φδ = f−1
δ is called an approximation to the inverse mapping

f−1 if and only if fδ is consistent with respect to the mapping f .

214 Phillip Regalia and Richard Le Borne

Theorem 2. For φδ consistent with respect to f , a sufficient condition for con-
vergence is the equicontinuity of Φδ .

The proof of Theorem 2 can be found in ([6] p. 10).

8.4 The Recursive QR Least-Squares Methods

The QR-decomposition relies on a process that will replace selected non-zero entries
of a matrix or vector with zeros. When this process is performed using orthogonal
matrices, desirable properties concerning numerical stability result. We review first
a direct stability analysis for the full QR decomposition adaptive filtering analysis,
and then observe that the sufficient conditions for stable behavior reduce to a form
of backward consistency. We then examine fast least-squares algorithms based on
the QR decomposition. Although a direct stability analysis is considerably more
complicated (if not intractable), backward consistency conditions can be obtained
in a simple form, and relate to convergence via Theorem 2.

8.4.1 Full QR decomposition adaptive algorithm

For the full QR decomposition adaptive filtering algorithm, the time recursions
absorb a new input vector x(k) and reference sample d(k) at each time instant.
The N+1 elements of x(k), however, need not derive from a tapped delay line, and
indeed might derive from N+1 separate channels or sensor outputs, for example.

The basic update recursion for the triangular array appears as:

[
0T

U(k)

]
= Qθ (k)

[
xT(k)

λ1/2U(k−1)

]
, U(−1) = U−1, (8.32)

in which U−1 is the initial condition on the triangular array (typically the zero array
or a small multiple of the identity), and the orthogonal matrix Qθ (k) is chosen to
null the entries of the top row of the array. In practice, roundoff errors will also
contaminate the updated triangular array; if we denote by Ũ(k) the finite-precision
representation of the triangular array, the finite-precision counterpart of the basic
update recursion may be written as

[
0T

Ũ(k)

]
= Qθ̃ (k)

[
xT(k)

λ1/2Ũ(k−1)

]
+

[
0T

δU(k)

]
, Ũ(−1) = U−1, (8.33)

8 Numerical Stability Properties 215

in which Qθ̃ (k) is the product of rotations determined from the (finite-precision)
triangularization of Ũ(k), and the second term on the right-hand-side accounts for
the difference between the first term, were it calculated in exact arithmetic, and the
actual stored result on the left-hand side. We assume also that the initial condition
U−1 admits an exact representation in finite-precision.

We examine first a direct stability analysis and then illustrate the connection with
backward consistency concepts.

By squaring up either side of (8.32), we recover the familiar recursion

R(k) = [0 UT(k)]
[

0T

U(k)

]

= [x(k) λ1/2UT(k−1)]QT
θ (k)Qθ (k)︸ ︷︷ ︸

I

[
xT(k)

λ1/2U(k−1)

]

= λ UT(k−1)U(k−1)+x(k)xT(k)
= λ R(k−1)+x(k)xT(k), R(−1) = UT

−1U−1. (8.34)

A similar squaring-up operation applied to (8.33) gives

R̃(k) = λ R̃(k−1)+x(k)xT(k)+δR(k), R̃−1 = UT
−1U−1, (8.35)

in which

δR(k) = [x λ1/2ŨT(k−1)]QT
θ̃ (k)

[
0T

δU(k)

]

+ [0 δUT(k)]Qθ̃ (k)
[

xT(k)
λ1/2Ũ(k−1)

]

+ [δU(k)]TδU(k) (8.36)

accounts for the roundoff errors injected at iteration k, once expressed in the covari-
ance domain. The difference R̃(k)−R(k) thus adheres to the recursion

[R̃(k)−R(k)] = λ [R̃(k−1)−R(k−1)]+δR(k), R̃(−1)−R(−1) = 0. (8.37)

This recursion admits the explicit solution

[R̃(k)−R(k)] =
k

∑
n=0

λk−n δR(n). (8.38)

Now, if the finite-precision errors are bounded at each iteration, meaning that
‖δR(n)‖ ≤ B < ∞ for some constant B, where ‖ · ‖ denotes any valid matrix norm,
then the difference R̃(k)−R(k) is easily bounded as follows:

216 Phillip Regalia and Richard Le Borne

‖R̃(k)−R(k)‖ =
∥∥∥∥

k

∑
n=0

λ n−k δR(n)
∥∥∥∥

≤
k

∑
n=0

λ n−k ‖δR(n)‖

≤ B
k

∑
n=0

λ n−k

≤ B
1

1−λ
, for all k, (8.39)

in which the final inequality is valid for 0 < λ < 1. We observe, as expected, that
a smaller value of B (corresponding to higher precision in the calculations) results
in R̃(k) tracking its exact-arithmetic counterpart R(k) more closely. Conversely,
choosing λ closer to one results in a less favorable distance bound between R̃(k) and
R(k). This is because values of λ closer to one induce a greater effective memory of
the algorithm, so that a given arithmetic error δR(n) will linger more prominently
through successive iterations.

So what does this bound imply about the difference Ũ(k)−U(k)? To answer this,
we note that U(k) [respectively, Ũ(k)] is a Cholesky factor of R(k) [respectively,
R̃(k)]; the Cholesky factor becomes unique once we specify whether it is upper
or lower triangular, with positive elements along the diagonal.1 We note also that
the Cholesky factor is a continuous function of a positive definite matrix argument
(e.g., [7]). Thus, if R(k) and R̃(k) remain positive definite (to be addressed shortly),
there exists a constant c such that the uniform bound ‖R̃(k)−R(k)‖ ≤ B/(1−λ)
for all k implies that

‖Ũ(k)−U(k)‖ ≤ cB
1−λ

, for all k. (8.40)

Now, positive definiteness of R(k) and R̃(k) (which are never explicitly formed),
reduces to a full rank condition on U(k) and Ũ(k). In view of the triangular structure,
this reduces, in turn, to either matrix having non-zero elements in each diagonal
position, which is rather easily checked.

To summarize, the following three conditions:

1. Bounded arithmetic errors: ‖δU(n)‖ ≤ cB for all n [giving the numerator in
(8.40)];

2. Forgetting factor strictly less than one: 0 < λ < 1;
3. Full rank data: all diagonal elements of Ũ(k) remain positive;

1 One can also define a Cholesky factor with respect to the anti-diagonal, as in Chapter 3. We
revert to the more conventional approach of triangular arrays with respect to the main diagonal
in this chapter, so that the various statements to follow are more consistent with the cited refer-
ences. The conclusions concerning stability carry over to algorithms based on an anti-diagonal
Cholesky factorization as well, although the notations to describe intermediate quantities would
change somewhat.

8 Numerical Stability Properties 217

are sufficient to ensure that the finite-precision representation Ũ(k) remains within a
bounded distance from its exact arithmetic counterpart U(k) as k increases. The first
two conditions are under the designer’s control; the third condition is data depen-
dent, and is usually captured as a persistence of excitation constraint. The formal
definition, in the present context, takes the following form: Let σ1(k) and σN+1(k)
be the largest and smallest singular values, respectively, of the data matrix X(k).
The data which build X(k) are persistently exciting of order N+1 if these extremal
singular values are uniformly bounded, meaning that there exists positive constants
κa and κb such that

σ1(k) ≤ κa < ∞, and σN+1(k) ≥ κb > 0 for all k > k0 (8.41)

where k0 is some starting time. These inequalities imply that the condition number
of X(k) is bounded:

σ1(k)
σN+1(k)

≤ κa

κb
< ∞, for all k > k0 (8.42)

and thus that the least-squares problem remains well-posed. Note that the ratio
κa/κb can be shown equal to the quantity κ2(X(k)) from (8.23).

Fortunately, the persistence of excitation condition is easily checked in the
orthogonal triangularization procedure:

Result 1 If the input data are bounded, then persistent excitation holds if and
only if there exists a constant c > 0 for which

cosθi(l) ≥ c, for all i and l.

For the verification, we note that the triangular matrix U(·) becomes rank defi-
cient if and only if at least one of its diagonal elements vanishes. Thus let Uii(l)
denote the ith diagonal element of the Cholesky factor at any time l. The formula
for the rotation angles which achieve the triangularization at an arbitrary time instant
l is

cosθi(l) =
λ1/2 Uii(l−1)

Uii(l)
, i = 0,1, . . . ,N−1, (8.43)

which shows that cosθi(l) = 0 for some i if and only if Uii(l−1) = 0, i.e., if and only
if U(l−1) is rank deficient. Thus if U(l−1) has full rank for all l, then cosθi(l) > 0
for all i and l, which is to say that cosθi(l) = 0 for some i and l if and only if
the smallest singular value σN+1(l−1) = 0. By continuity arguments, bounding the
smallest singular value σN+1(l−1) away from zero for all l must likewise bound
cosθi(l) away from zero for all i and l, and vice versa.

218 Phillip Regalia and Richard Le Borne

To treat the joint-process portion, recall that the basic structure takes the form of
the orthogonal filter

[
eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ1/2dq2(k−1)

]
. (8.44)

In a practical implementation that includes roundoff errors, the recursion instead
takes the form

[
ẽq1(k)
d̃q2(k)

]
= Qθ̃ (k)

[
d(k)

λ1/2d̃q2(k−1)

]
+

[
δe(k)
δdq2(k)

]
, (8.45)

in which Qθ̃ (k) is the product of rotations determined from the (finite-precision) tri-
angularization of Ũ(k). Observe that both d̃q2(k) and d̃q2(k−1) occur in this equa-
tion, indicative of a feedback loop involving the state variables d̃q2(·). As such,
roundoff errors accumulated in d̃q2(k) will propagate in time. Similar to the devel-
opment above, provided λ < 1, the feedback loop may be shown exponentially sta-
ble, inducing bounded error growth provided the injected roundoff error (modeled
by the term δdq2(k) above) is bounded at each time instant.

For the deeper question of whether the computed d̃q2(k) has relevance to the
underlying least-squares problem, return to the unperturbed system (8.44) and par-
tition the transition matrix Qθ (k) as

Qθ (k) =
[
γ(k) gT(k)
f(k) E(k)

]
, (8.46)

in which E(k) is (N+1)× (N+1), f(k) is (N+1)×1, g(k) is (N+1)×1, and γ(k) is
a scalar. The state equation may then be solved “backwards in time” as

dq2(k) = λ (l+1)/2ΦΦΦ(k,k−l)dq2(k−l)
+
[
f(k) E(k) f(k−1) ΦΦΦ(k,k−1) f(k−2) · · · ΦΦΦ(k,k−l+1) f(k−l)

]
︸ ︷︷ ︸

C (k,k−l)

×

⎡
⎢⎢⎢⎢⎢⎣

d(k)
λ 1/2d(k−1)
λ d(k−2)

...
λ l/2d(k−l)

⎤
⎥⎥⎥⎥⎥⎦

, (8.47)

in which

ΦΦΦ(k,k−l)
�
=

{
E(k)E(k−1) · · · E(k−l+1), l ≥ 1;

I, l = 0;
(8.48)

is the state transition matrix [8] from time k−l to k, and C (k,k−l) is the controlla-
bility matrix [8] for the system, over the same time window. The system is said to be
uniformly controllable [9] provided there exists a window length L, and constants

8 Numerical Stability Properties 219

a > 0 and b < ∞, for which the Gramian of the controllability matrix C (k,k−L) is
bounded and of full rank:

aI ≤ C (k,k−L)C T(k,k−L) ≤ bI, for all k ≥ k0, (8.49)

where k0 is some starting time. [Observe that
√

a and
√

b bound the extremal sin-
gular values of C (k,k−L).] Since the controllability matrix C (k,k−L) has dimen-
sions (N+1)× (L+1), clearly we must have L ≥ N if the full rank condition is
to hold.

The relevance of this condition is that, when satisfied, an arbitrary configuration
for d̃q2(k) can be reached by an appropriate choice of the (exponentially weighted)
reference vector

[d(k),λ 1/2d(k−1), . . . ,λL/2d(k−L)]T. (8.50)

As such, even with numerical errors accumulated in d̃q2(k), the values so obtained
may be considered the exact state produced by some reference vector, as required
of admissibility defined in Section 8.3.2.

Now, since the matrix Qθ̃ (k) is orthogonal for each k, one may show (e.g., [10])

ΦΦΦ(k,k−L)ΦΦΦT(k,k−L)+C (k,k−L)C T(k,k−L) = I, for all k and L, (8.51)

so that

C (k,k−L)C T(k,k−L) = I−ΦΦΦ(k,k−L)ΦΦΦT(k,k−L)
≤ I (8.52)

providing automatic satisfaction of the upper bound from (8.49) using b = 1.
For the lower bound, we claim:

Result 2 With L = N, the joint-process section is uniformly controllable pro-
vided there exists a constant c > 0 for which

cosθi(l) ≥ c > 0, for all i and l ≥ k0. (8.53)

The proof amounts to calculating the square matrix C (k,k−N) and observing
that it becomes rank deficient if and only if cosθi(l) = 0 for any order index i and
any time index k−L ≤ l ≤ k. By continuity arguments, bounding cosθi(l) away
from zero must also bound the smallest singular value of C (k,k−L) away from
zero, proving existence of a constant a fulfilling the lower bound from (8.49). In
view of result 1 above, we see that persistence of excitation is sufficient to ensure
backward consistency of the full QR algorithm, and that this in turn suffices for
bounded error growth.

220 Phillip Regalia and Richard Le Borne

8.5 Fast QR Algorithms

Perhaps the earliest fast QR decomposition adaptive filtering algorithm (where
“fast” means having computational complexity that scales linearly with the filter
order N) was devised by Cioffi [11]. Somewhat more coherent developments of
two varieties of such fast algorithms were obtained soon thereafter by Proudler
et al. [12, 13]: The first featured order recursions in both ascending and descending
order and was later rederived in [14], while the second exhibited all order recur-
sions in ascending order, and is better known as the QRD lattice algorithm [15]. A
traditional lattice-based derivation of this latter algorithm is found also in Ling [16].

The time recursion of the prediction section of a fast least-squares algorithm is a
dynamic system of the form

ξξξ (k) = f
[
ξξξ (k−1),x(k)

]
, ξξξ (−1) = ξξξ−1, (8.54)

in which ξξξ (·) is the state vector (collecting all the quantities that must be stored
at each iteration to propagate the solution in time), the map f [·, ·] accounts for the
update equations, and ξξξ−1 is the initial condition on the state vector. In the full QR
algorithm reviewed above, the state is simply ξξξ (k) = U(k), and the map f [·, ·] per-
forms the orthogonal triangularization to update U(k−1) to U(k). Fast least-squares
algorithms exploit the shift structure of the data matrix X(k), allowing a more com-
pact representation of the state and reducing the number of operations in the update
equations f [·, ·] to a quantity linear in N. Unlike the full QR algorithm, however,
the update equations cannot readily be rewritten as a linear recurrence relation, thus
complicating considerably any attempt at a direct error analysis.

Backward consistency concepts, on the other hand, are still useful in assessing
error propagation properties in such fast least-squares algorithms [17–19]. Introduce
the set of reachable states in exact arithmetic, i.e., the set of state vector configura-
tions that may be reached as the input sequence x(0), x(1), . . . , x(k) varies over
IRk, and the initial condition ξξξ−1 varies over all “valid” initial conditions. The set
of valid initial conditions is best thought of as the set of state vector orientations
ξξξ (−1) that can be deposited by some past input sequence x(−1), x(−2), x(−3),
. . . , that may potentially extend infinitely into the past.

Now, in finite-precision, the actual prediction section behaves as

ξ̃ξξ (k) = f
[
ξ̃ξξ (k−1),x(k)

]
+δξξξ (k), (8.55)

in which δξξξ (k) accounts for the roundoff errors injected in the state vector at time k.
Provided the computed state vector ξ̃ξξ (k) remains within the set of reachable states,
it is indistinguishable from the exact state produced by a different input sequence
x̃(0), x̃(1), . . . , x̃(k) using possibly a different (but valid) initial condition ξ̃ξξ−1. If
we now drive the perturbed system and its exact arithmetic counterpart (8.54) with
the same future sequence x(k+1), x(k+2), . . . , and allow both systems to evolve
without further arithmetic errors, the perturbed trajectory ξ̃ξξ (·) will return to the
true trajectory ξξξ (·) provided λ < 1, and the future data is persistently exciting. This

8 Numerical Stability Properties 221

is because, in the absence of arithmetic errors, either system is but a rewriting of
the full QR algorithm using a different initial condition U(k) or Ũ(k) at time k, and
fed with the same input sequence from time k forward. With λ < 1, the algorithm
forgets its initial condition as time evolves. This basic argument shows that, sub-
ject to consistency of the state vector, a least-squares algorithms (fast or full) will
enjoy stable error propagation [17, 18], in which the error propagation experiment
assumes no further arithmetic errors after a perturbation is injected. (This stable
error propagation was first observed in [20] from a direct analysis, although with-
out connections to backward consistency concepts). As such, explosive error growth
must be preceded by an inconsistent value arising numerically in the state vector, a
condition therefore to be avoided if at all possible. We should note that the error
propagation experiment described here assumes a single perturbation followed by
exact arithmetic calculations. In practice, roundoff errors are injected at each time-
step, requiring due attention to error accumulation (as we did for the full QR algo-
rithm above). Although stable propagation of a single error is a necessary condition
for bounded error accumulation, it need not be sufficient. Nonetheless, provided the
error propagation properties are exponentially stable, which generically holds pro-
vided λ < 1 and the input data are persistently exciting, bounded error growth may
be expected to hold, at least for sufficiently fine numerical resolution [21]. Stronger
results, in the form of Theorem 2 from Section 8.3.2, are also applicable here ([6]
p. 10).

We first review the data structure applicable to fast least-squares algorithms and
the data consistency properties which stem from these. For notational simplicity, we
first set λ = 1 and denote the resulting data matrix as X1(k) (where the subscript 1
emphasizes that λ = 1); this assumes a pre-windowed Hankel structure:

X1(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k) x(k−1) · · · x(k−N)
x(k−1) x(k−2) · · · x(k−N−1)

... . .
.

. .
. ...

x(N) · · · x(1) x(0)
... . .

.
x(0) 0

x(1) . .
.

. .
. ...

x(0) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.56)

If we introduce the correlation lags

rn =
k−n

∑
i=0

x(i)x(i+n), n = 0,1, . . . ,N, (8.57)

and rename the most recent input samples as

q1 = x(k), q2 = x(k−1), . . . qN = x(k−N+1), (8.58)

222 Phillip Regalia and Richard Le Borne

then for any k, the correlation matrix takes the structured form

R1(k) = XT
1 (k)X1(k)

=

⎡
⎢⎢⎢⎢⎣

r0 r1 · · · rN

r1 r0
. . .

...
...

. . .
. . . r1

rN · · · r1 r0

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

0 · · · 0 0
... . .

.
0 q1

0 . .
.

. .
. ...

0 q1 · · · qN

⎤
⎥⎥⎥⎥⎦

2

. (8.59)

This is a symmetric Toeplitz matrix minus the square of a triangular Hankel matrix.

For the case λ < 1, let

ΛΛΛ(k) = diag(1,λ1/2,λ , . . . ,λk/2) (8.60)

so that the data matrix may be written as

X(k) =ΛΛΛ(k)X1(k), (8.61)

in terms of the (unweighted) data matrix X1(k) from (8.56). Let now

L = diag(1,λ1/2, . . . ,λN/2). (8.62)

Because X1(k) is a Hankel matrix, we may observe the identity

ΛΛΛ(k)X1(k) = X(k)L−1 (8.63)

in which X(k) is a Hankel matrix akin to (8.56) but built from the exponentially
weighted sequence

x(k−n) = λn/2 x(k−n), n = 0,1, . . . ,k. (8.64)

As such, a transformed correlation matrix becomes

R1(k)
�
= LR(k)L = LXT(k)X(k)L = X

T(k)X(k) (8.65)

which is the Gramian of a pre-windowed Hankel matrix X(k). It may thus be written
as a structured matrix as in (8.59), in which rn and qn are now defined from the
(exponentially weighted) sequence x(n) from (8.64). This “trick” will allow us to
examine the data consistency independently of the value of λ . We should emphasize
that the error accumulation effects, however, will still vary with λ , as illustrated in
the analysis of the full QR algorithm above.

The basic data consistency question for fast algorithms may thus be summarized
as follows:

8 Numerical Stability Properties 223

• Given a correlation matrix R1(k) = LR(k)L, under what conditions can we find

a pre-windowed Hankel matrix, call it X(n), for which R(k) = X
T(k)X(k)?

• Given the stored variables at time k in the prediction section of a fast least-
squares algorithm, under what conditions can they be considered the exact values
obtained from some input sequence?

For the first query, clearly R1(k) must be positive semi-definite, and assume the
structured form illustrated in (8.59) above. Is this sufficient as well? The following
result was first obtained in [22] in the context of digital filter design, and developed
in greater detail in [23–27]: 2

Result 3 The covariance matrix R1(k) = LXT(k)X(k)L may be factored as

R1(k) = X
T

X, (8.66)

with X a pre-windowed Hankel matrix, provided R1(k) is positive definite and
assumes the “Toeplitz minus squared Hankel” structure illustrated in (8.59).

In fact, when R1(k) is positive definite, there are infinitely many pre-windowed
Hankel matrices X fulfilling the factorization; they may all be parameterized via
inverse scattering constructions [26, 27]. We should emphasize that the number of
rows in any such factor X is not easily controlled in the constructive procedure
behind this result [27]; if we constrain the number of rows in X, the factorization
problem is considerably more difficult. In practice, the number of rows of X is not
of immediate concern to the error analysis.

We review next the constructive procedure behind past input reconstruction,
adapted from [27], and then examine consistency issues in fast QR adaptive
filters.

8.5.1 Past input reconstruction

Here we review the procedure for factoring a structured covariance matrix as in
(8.59) into a Hankel data matrix X. Let Z be the shift matrix with ones on the
subdiagonal and zeros elsewhere. The displacement structure [28] of the covariance
matrix from (8.59) becomes

2 The original claim from [22] was that such a factorization will exist even when R1(k) is positive
semi-definite, and singular. This is not true in general [26, 27], unless a certain supplementary
condition is satisfied as well. We shall sidestep this technical difficulty by focusing on the positive
definite case in what follows.

224 Phillip Regalia and Richard Le Borne

R1 −ZR1ZT =

⎡
⎢⎢⎢⎣

r0 r1 · · · rN

r1 0 · · · 0
...

...
. . .

...
rN 0 · · · 0

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

0
q1
...

qN

⎤
⎥⎥⎥⎦ [·]T

=

⎡
⎢⎢⎢⎣

√
r0

r1/
√

r0
...

rN/
√

r0

⎤
⎥⎥⎥⎦ [·]T −

⎡
⎢⎢⎢⎣

0
r1/

√
r0

...
rN/

√
r0

⎤
⎥⎥⎥⎦ [·]T −

⎡
⎢⎢⎢⎣

0
q1
...

qN

⎤
⎥⎥⎥⎦ [·]T, (8.67)

where “[·]” means “repeat the previous vector”. From the three “generator vectors”
[29] so exposed, create the 3× (N+1) array,

G =

⎡
⎢⎣
√

r0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

0 q1 q2 · · · qN

0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

⎤
⎥⎦ , (8.68)

and iterate the following procedure:

1. Shift the first row of the array one position to the right:

G Z→

⎡
⎢⎣

0
√

r0 r1/
√

r0 · · · rN−1/
√

r0

0 q1 q2 · · · qN

0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

⎤
⎥⎦ . (8.69)

2. Choose a hyperbolic rotation to annihilate the second element of the first non-
zero column. In the first pass, this appears as

⎡
⎣

1/cosθ0 sinθ0/cosθ0 0
sinθ0/cosθ0 1/cosθ0 0

0 0 1

⎤
⎦×

⎡
⎢⎣

0
√

r0 r1/
√

r0 · · · rN−1/
√

r0

0 q1 q2 · · · qN

0 r1/
√

r0 r2/
√

r0 · · · rN/
√

r0

⎤
⎥⎦

=

⎡
⎢⎣

0 y1 × ·· · ×
0 0 × ·· · ×
0 r1/

√
r0 r2/

√
r0 · · · rN/

√
r0

⎤
⎥⎦ ,(8.70)

in which y1 =
√

r0 −q2
1 and sinθ0 = −q1/

√
r0.

3. Choose a hyperbolic rotation to annihilate the third element of the first non-zero
column. In the first pass, this appears as

8 Numerical Stability Properties 225

⎡
⎣

1/cosφ0 0 sinφ0/cosφ0

0 1 0
sinφ0/cosφ0 0 1/cosφ0

⎤
⎦ ×

⎡
⎢⎣

0 y1 × ·· · ×
0 0 × ·· · ×
0 r1/

√
r0 r2/

√
r0 · · · rN/

√
r0

⎤
⎥⎦

=

⎡
⎢⎣

0 y2 × ·· · ×
0 0 × ·· · ×
0 0 × ·· · ×

⎤
⎥⎦ , (8.71)

in which y2 =
√

y2
1 − (r2

1/r0) and sinφ0 = −(r1/
√

r0)/y1.
4. Replace G with the resulting array from (8.71), and iterative the above procedure

a further N−1 times to eliminate all the elements of the second and third rows.

The above procedure will successfully terminate, and yield angles satisfying

|sinθn| < 1 and |sinφn| < 1, for all n, (8.72)

if and only if the matrix R1 is positive definite [29].
A flow graph of the basic array operations appears as Figure 8.1, in which “z”

denotes a right shift operation. Imagine now changing the flow direction of the lower
two branches of the flow graph, to obtain Figure 8.2. In doing so, each hyperbolic
rotation is converted to a planar (or orthogonal) rotation. We may now terminate the
right-hand side of the figure by a lossless load SL(z), where lossless here means:

• SL(z) is analytic in |z| < 1, thus admitting a convergent series expansion

SL(z) =
∞

∑
n=0

Sn zn, |z| < 1. (8.73)

If z−1 is the unit delay operator from digital filter design, then z is the (anti-
causal) unit advance operator, and SL(z) may be understood as a stable and anti-
causal transfer function, with {Sn} its anti-causal impulse response.

−
−

/

/

Fig. 8.1 Illustrating the successive annihilation operations applied to the rows of the G array.

226 Phillip Regalia and Richard Le Borne

−
−

√

−

Fig. 8.2 Orthogonal filter, obtained by reversing the flow direction of the lower two branches.

• Upon partitioning SL(z) =
[

SL,1(z)
SL,2(z)

]
, the radial limits along the unit circle are

power complementary:

|SL,1(e jω)|2 + |SL,2(e jω)|2 = 1, for all ω . (8.74)

The flow graph with reversed directions on the lower two branches, and incorpo-
rating the load SL(z), is sketched in Figure 8.2; the curved arrows indicate partial
transfer functions S1(z) and S2(z) which result at the left-hand-side of the figure.
Provided the resulting S2(z) satisfies the supplementary constraint

1− zS2(z) �= 0, for all |z| = 1, (8.75)

we may close the left-hand side of Figure 8.2 to obtain a stable and anti-causal
transfer function

Q(z) =
√

r0
zS1(z)

1− zS2(z)
=

∞

∑
n=1

qn zn, (8.76)

with the following property:

Property 1. Let x(k−n+1) = qn, n = 1, 2, 3, The Hankel matrix X(k) built
from this sequence is a factor of the covariance matrix R1:

R1 = X
T(k)X(k). (8.77)

All such factors may be generated in this way, as SL(z) varies over the set of
lossless transfer functions.

A proof behind this construct may be found in [27]. We should note that the
impulse response {qn} will, in general, have infinite duration. The simplest choice
for the right-hand-side load SL(z) is a constant unit norm vector of the form SL(z) =[cosφN

sinφN

]
, where φN is any convenient value.

8 Numerical Stability Properties 227

This result shows, thus, that there exists a one-to-one correspondence between
the set of positive definite structured matrices of the form (8.59), and the set of
rotation angles and scale factor fulfilling the inequalities

r0 > 0 and cosθi > 0, cosφi > 0, i = 0,1, . . . ,N−1. (8.78)

Note that we end up with 2N+1 parameters, as expected, because the structured
matrix R1 [cf. (8.59)] is specified by 2N+1 values, namely r0, . . . , rN and q1, . . . ,
qN . We confirm next that 2N+1 is likewise the minimum state vector dimension of
a fast least-squares prediction algorithm.

8.5.2 Reachable states in fast least-squares algorithms

We first consider the fast least-squares algorithm from [12, 14], which is a slightly
simpler variant of the original fast QR algorithm from [11], and summarized in
Table 8.1. A flow graph of the algorithm appears as Figure 8.3; rotations with a zero
at one output represent angle solving steps (steps 2, 4 or 5 in the table), with the
angles then copied to the data rotation steps (steps 3 and 6 in the table).

We observe that the state of the algorithm is the collection of 2N+1 stored
variables

x f ,0(k), . . . ,x f ,N−1(k),
√

E f ,N(k),εb,0(k), . . . ,εb,N−1(k) (8.79)

since all other variables are calculated from these. Thus, the minimum state vector
dimension can be no larger than 2N+1. The minimum state vector dimension can
be no smaller, either, since there are 2N+1 parameters involved in reconstructing
past inputs by the procedure of Section 8.5.1, which is to say that 2N+1 is indeed
the minimum state vector dimension of a fast least-squares algorithm.

Suppose we consider now the experiment in which the input sequence {x(k)}
is allowed to vary over all sequences for which the structured matrix R1(k) from
(8.59) remains positive definite, and let us keep track of all state orientations that
may be reached in the algorithm of Table 8.1 when using exact arithmetic. This
defines the set of reachable states for the algorithm, and is characterized by the
inequalities [30]

√
E f ,N(k) > 0,

N−1

∑
i=0

ε 2
b,i(k) < 1. (8.80)

These inequalities are necessary and sufficient for the rotation angles determined in
steps 2 and 5 of Table 8.1 to satisfy

|sinθi(k)| < 1, |sinφi(k)| < 1, for all i. (8.81)

For any such state, therefore, a valid input sequence may be deduced, based on the
following property:

228 Phillip Regalia and Richard Le Borne

Table 8.1 Minimal fast QR decomposition least-squares prediction algorithm.

FQR POS B – Version 2a

Available at time k: x f ,i(k−1), i = 0,1, . . . ,N−1;√
E f ,N(k−1);

εb,i(k−1), i = 0,1, . . . ,N−1;
New datum: x(k);

1. Obtain conversion factor γN−1(k):

γN−1(k) =

√
1−

N−1

∑
i=0

ε 2
b,i(k−1) ;

2. Solve for θi(k) angles:

[
γi−1(k)

0

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][
γi(k)

εb,i(k−1)

]
, i = N−1, . . . ,1,0;

3. Update forward prediction variables. With e f ,0(k) = x(k), run

[
x f ,i(k)

e f ,i+1(k)

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][√
λ x f ,i(k−1)

e f ,i(k)

]
, i = 0,1, . . . ,N−1;

4. Update square-root forward prediction energy:
[√

E f ,N(k)
0

]
=

[
cosθN(k) sinθN(k)

−sinθN(k) cosθN(k)

][√
λ E f ,N(k−1)

e f ,N(k)

]
;

5. Solve for φi(k) angles:

[√
E f ,i(k)

0

]
=

[
cosφi(k) sinφi(k)

−sinφi(k) cosφi(k)

][√
E f ,i+1(k)
x f ,i(k)

]
, i = N−1, . . . ,1,0;

6. Update backward prediction errors: with e f ,N(k) = γN−1(k−1) sinθN(k−1), run

[
ε f ,i(k)
εb,i+1(k)

]
=

[
cosφi(k) sinφi(k)

−sinφi(k) cosφi(k)

][
ε f ,i+1(k)
εb,i(k−1)

]
, i = N−1, . . . ,1,0;

At the end of the loop, set εb,0(k) = ε f ,0(k).

a This algorithm corresponds to the one introduced in [14] and named FQR POS B–Version 2
in Chapter 4.

8 Numerical Stability Properties 229

√ − √ − √ −

√ −

− − −− =

− − −
−

− −

Fig. 8.3 Flow graph of minimal fast QR decomposition least-squares algorithm.

Property 2. Let θ0(k), . . . , θN−1(k) and φ0(k), . . . , φN−1(k) be the angles
computed in exact arithmetic from the algorithm of Table 8.1, for a given
input sequence {x(·)}. Let R1(k) be the structured matrix from (8.59) built
using this same input sequence. The angles θ0(k), . . . , θN−1(k) and φ0(k), . . . ,
φN−1(k) are precisely those which achieve the annihilation of the generator
vectors in the algorithm of Section 8.5.1.

The proof of this property involves more advanced notions of displacement gen-
erators [31], and may be found in [27, Appendix A]. The upshot is that, as long as the
computed state variables in the algorithm satisfy the inequalities (8.80), they may
be considered the exact values associated with a perturbed input sequence: From
the computed state variables (or the rotation angles which annihilate them in steps 2
and 5 of Table 8.1), a valid past input sequence that would give rise to the computed
values may be placed in evidence from the anti-causal filter of Figure 8.2. Backward
consistency is thus straightforward to ensure in this version of the algorithm.

8.5.3 QR decomposition lattice algorithm

A noted oddity of the previous fast algorithm is that the order recursions run in both
ascending and descending order, which can impede pipelined implementations. An
alternate fast QR decomposition algorithm, obtained by Proudler et al. [12, 13], and
Ling [16], runs all recursions in ascending order, and consists of the cascade of basic
sections illustrated in Figure 8.4; the resulting algorithm is summarized in Table 8.2.

We observe that the total storage is 5N variables in the state vector, which is
greater than the minimal number 2N+1. Thus, some redundancy necessarily exists

230 Phillip Regalia and Richard Le Borne

√ −

−

√ −

√ −

√ −

−

−

+

+

−

−

−

Fig. 8.4 Basic section to be cascaded to obtain the QRD-lattice algorithm.

among the elements of the state vector. For example, one may show [15] that, in
exact arithmetic,

p f ,i(k) =
∑k

j=0 ε f ,i(j)εb,i(j−1)√
Eb,i(k−1)

, and (8.82)

pb,i(k) =
∑k

j=0 ε f ,i(j)εb,i(j−1)√
E f ,i(k)

. (8.83)

From this follows easily the equality

p f ,i(k)
√

Eb,i(k−1)− pb,i(k)
√

E f ,i(k) = 0, for each k and i, (8.84)

inducing one constraint on four of the state variables from any section, so that one
variable may be deduced given the remaining three. In the same manner, redundancy
between sections may be deduced from the equality

√
E f ,i+1(k)√
E f ,i(k)

−
√

Eb,i+1(k)√
Eb,i(k−1)

= 0, for each k and i, (8.85)

since either ratio relates to the reflection coefficient from section i (e.g., [14, 29]).
The values calculated in finite precision, however, will not generally satisfy these
constraints, which is to say that consistency is not inherited by the QRD-lattice algo-
rithm (a generic problem with non-minimal realizations [17]). For this algorithm,
however, the error accumulation properties will nonetheless remain bounded pro-
vided λ < 1 and the input sequence {x(k)} is persistently exciting. This is because
the algorithm consists of rotations, and variables reinjected through the feedback
loop are all attenuated by

√
λ ; the proof of bounded error growth mimics that of

Section 8.4.1 for the full QR adaptive filtering algorithm. Alternatively, a minimal

8 Numerical Stability Properties 231

Table 8.2 QR decomposition lattice least-squares prediction algorithm.

FQRD–Lattice [12, 13, 16]

Available at time k: p f ,i(k−1), i = 0,1, . . . ,N−1; (forward prediction variables)
pb,i(k−1), i = 0,1, . . . ,N−1; (backward prediction variables)√

E f ,i(k−1), i = 0,1, . . . ,N−1;
√

forward prediction energies√
Eb,i(k−1), i = 0,1, . . . ,N−1;

√
backward prediction energies

εb,i(k−1), i = 0,1, . . . ,N−1; (backward prediction residuals)

New datum: ε f ,0(k) = εb,0(k) = x(k);

For i = 0, 1, . . . , N−1, do:

1. Solve for θi(k) angle:

[√
Eb,i(k−1)

0

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][√
λ Eb,i(k−2)
εb,i(k−1)

]
;

2. Update forward prediction variables:

[
p f ,i(k)
ε f ,i+1(k)

]
=

[
cosθi(k) sinθi(k)

−sinθi(k) cosθi(k)

][√
λ p f ,i(k−1)
ε f ,i(k)

]
;

3. Solve for ϕi(k) angle:

[√
E f ,i(k)

0

]
=

[
cosϕi(k) sinϕi(k)

−sinϕi(k) cosϕi(k)

][√
λ E f ,i(k−1)
ε f ,i(k)

]
;

4. Update backward prediction variables:

[
pb,i(k)
εb,i+1(k)

]
=

[
cosϕi(k) sinϕi(k)

−sinϕi(k) cosϕi(k)

][√
λ pb,i(k−1)
εb,i(k−1)

]
;

variant of the rotation-based lattice algorithm may also be developed [32], using
principles of spherical trigonometry. The resulting algorithm inherits the backward
consistency property of other minimal algorithms, with the resulting stable error
propagation.

8.6 Conclusion

We have reviewed how standard concepts of backward consistency and condi-
tioning intervene in the analysis of recursive least-squares algorithms, and focus-
ing in particular how these concepts play out in QR decomposition recursive

232 Phillip Regalia and Richard Le Borne

least-squares adaptive filtering algorithms. The notion of persistence of excitation
on the input sequence proves equivalent to that of a condition number remaining
uniformly bounded in time.

The full QR decomposition update equations admit a reasonably direct anal-
ysis showing bounded error accumulation, owing to the orthogonal nature of the
calculations combined with past data being attenuated via the forgetting factor λ .
The conditions for such bounded error growth may also be explained via back-
ward consistency: If numerical errors are indistinguishable from perturbation on the
past input data, then the effects of such numerical errors must be forgotten at the
same rate as the past input data. This concept proves convenient when studying fast
least-squares algorithms, which tend not to admit tractable error analyses through
other methods. Two fast QR decomposition algorithms were highlighted. The first is
minimal in its storage requirements, and admits simple checks for backward consis-
tency. The rotation angles of that algorithm were shown to have a direct connection
to past input reconstruction procedure, which serves to validate the simple descrip-
tion of the set of reachable states. The QR decomposition lattice algorithm was also
reviewed, as it offers a modular, pipelineable structure. Although the algorithm is
not minimal and thus does not offer backward consistency in general, bounded error
growth can be shown in a manner similar to that for the full QR decomposition
algorithm. This represents a noted improvement over some other fast least-squares
algorithms, notably certain fast transversal filters, which can exhibit explosive error
growth once the backward consistency conditions are violated [15, 17, 18].

References

1. J. H. Wilkinson, Error analysis of direct methods of matrix inversion. Journal of the Associa-
tion for Computing Machinery (JACM), vol. 8, no. 3, pp. 281–330 (July 1961)

2. G. W. Stewart and J. Sun, Matrix Perturbation Theory. Academic Press, San Diego, CA, USA
(1990)

3. N. J. Higham, Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

4. G. H. Golub and J. H. Wilkinson, Note on the iterative refinement of least squares solution.
Numerische Mathematik, vol. 9, pp. 139–148 (1966)

5. Å. Björck, Numerical Methods for Least Squares Problems. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

6. F. Chaitin-Chatelin and V. Frayssé, Lectures on Finite Precision Computations. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA (1996)

7. J. H. Wilkinson, A priori error analysis of algebraic processes. Proceedings of the Interna-
tional Congress of Mathematicians, Izdat. MIE, pp. 629–639, Moscow, USSR (1968)

8. T. Kailath, Linear Systems. Prentice-Hall, Englewood Cliffs, NJ, USA (1980)
9. R. R. Bitmead and B. D. O. Anderson, Lyapunov techniques for the exponential stability

of linear difference equations with random coefficients. IEEE Transactions on Automatic
Control, vol. 25, no. 4, pp. 782–787 (August 1980)

10. P. Dewilde and A.-J. van der Veen, Time-Varying Systems and Computations. Kluwer Aca-
demic Publishers, Boston, MA, USA (1998)

11. J. M. Cioffi, The fast adaptive ROTOR’s RLS algorithm. IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 38, no. 4, pp. 631–653 (April 1990)

8 Numerical Stability Properties 233

12. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Fast QRD-based algorithms for least
squares linear prediction. Mathematics in Signal Processing II (J. G. McWhirter, ed.), Insti-
tute of Mathematics and its Applications (IMA) Conference Series, Clarendon Press, no. 26,
pp. 465–488, Oxford, UK (September 1990)

13. I. K. Proudler, J. G. McWhirter, and T. J. Shepherd, Computationally efficient QR decompo-
sition approach to least squares adaptive filtering. IEE Proceedings-Part F, vol. 138, pp. 341–
353 (August 1991)

14. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no. 4,
pp. 879–891 (April 1991)

15. S. Haykin, Adaptive Filter Theory. 3rd edition Prentice-Hall, Upper Saddle River, NJ, USA
(1996)

16. F. Ling, Givens rotation based least-squares lattice and related algorithms. IEEE Transactions
on Signal Processing, vol. 39, no, 7, pp. 1541–1551 (July 1991)

17. P. A. Regalia, Numerical stability issues in fast least-squares adaptation algorithms. Optical
Engineering, vol. 31, pp. 1144–1152 (June 1992)

18. D. T. M. Slock, The backward consistency concept and round-off error propagation dynam-
ics in recursive least-squares algorithms. Optical Engineering, vol. 31, pp. 1153–1169 (June
1992)

19. J. R. Bunch, R. C. Le Borne, and I. K. Proudler, A conceptual framework for consistency, con-
ditioning, and stability issues in signal processing. IEEE Transactions on Signal Processing,
vol. 49, no. 9, pp. 1971–1981 (September 2001)

20. S. Ljung and L. Ljung, Error propagation properties of recursive least-squares adaptation
algorithms. Automatica, vol. 21, no. 2, pp. 157–167 (March 1985)

21. A. P. Liavas and P. A. Regalia, On the numerical stability and accuracy of the conventional
recursive least-squares algorithm. IEEE Transactions on Signal Processing, vol. 47, no. 1,
pp. 88–96 (January 1999)

22. C. T. Mullis and R. A. Roberts, The use of second-order information in the approximation of
discrete-time linear systems. IEEE Transactions on Acoustics, Speech and Signal Processing,
vol. ASSP-24, no. 3, pp. 226–238 (June 1976)

23. Y. Inouye, Approximation of multivariable linear systems with impulse response and auto-
correlation sequences. Automatica, vol. 19, no. 2, pp. 265–277 (May 1983)

24. A. M. King, U. B. Desai, and R. E. Skelton, A generalized approach to q-Markov covariance
equivalent realizations for discrete systems. Automatica, vol. 24, no. 4, pp. 507–515 (July
1988)

25. P. A. Regalia, M. Mboup, and M. Ashari, A class of first- and second-order interpolation prob-
lems in model reduction. Archiv für Elektronik und Ubertragungstechnik, vol. 49, no. 5/6,
pp. 332–343 (September 1995)

26. D. Alpay, V. Bolotnikov, and Ph. Loubaton, On tangential H2 interpolation with second order
norm constraints. Integral Equations and Operator Theory (Birkhäuser Basel), vol. 24, no. 2,
pp. 156–178 (June 1996)

27. P. A. Regalia, Past input reconstruction in fast least-squares algorithms. IEEE Transactions
on Signal Processing, vol. 45, no. 9, pp. 2231–2240 (September 1997)

28. T. Kailath and A. H. Sayed, Displacement structure: Theory and applications. SIAM Review,
vol. 37, no. 3, pp. 297–386 (September 1995)

29. H. Lev-Ari and T. Kailath, Lattice filter parametrization and modeling of nonstationary pro-
cesses. IEEE Transactions on Information Theory, vol. IT-30, no. 1, pp. 2–16 (January 1984)

30. P. A. Regalia, Numerical stability properties of a QR-based fast least squares algorithm. IEEE
Transactions on Signal Processing, vol. 41, no. 6, pp. 2096–109 (June 1993)

31. J. Chun, T. Kailath, and H. Lev-Ari, Fast parallel algorithms for QR and triangular factor-
ization. SIAM Journal on Scientific and Statistical Computing, vol. 8, no. 6, pp. 899–913
(November 1987)

32. F. Desbouvries and P. A. Regalia, A minimal rotation-based FRLS lattice algorithm. IEEE
Transactions on Signal Processing, vol. 45, no. 5, pp. 1371–1374 (May 1997)

Chapter 9
Finite and Infinite-Precision Properties
of QRD-RLS Algorithms

Paulo S. R. Diniz and Marcio G. Siqueira

Abstract This chapter analyzes the finite and infinite-precision properties of QR-
decomposition recursive least-squares (QRD-RLS) algorithms with emphasis on
the conventional QRD-RLS and fast QRD-lattice (FQRD-lattice) formulations. The
analysis encompasses deriving mean squared values of internal variables in steady-
state and also the mean squared error of the deviations of the same variables assum-
ing fixed-point arithmetic. In particular, analytical expressions for the excess of
mean squared error and for the variance of the deviation in the tap coefficients of the
QRD-RLS algorithm are derived, and the analysis is extended to the error signal of
the FQRD-lattice algorithm. All the analytical results are confirmed to be accurate
through computer simulations. Conclusions follow.

9.1 Introduction

The implementation of the QR-decomposition recursive least-squares (QRD-RLS)
algorithm requires the knowledge of the dynamic range of its internal variables in
order to determine their wordlengths. For the systolic array implementation of the
QRD-RLS algorithm, the steady-state values of the cosines and sines of the Givens
rotations and the bounds for the dynamic range of the processing cells contents
are known [1]. An attractive feature of the QRD-RLS algorithm is the bounded
input/bounded output stability, as proven in [1, 2].

In this chapter, we present a complete quantitative analysis of the dynamic range
of all internal quantities of the QRD-RLS and fast QRD (FQRD)-lattice algorithms.

Paulo S. R. Diniz
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro – Brazil
e-mail: diniz@lps.ufrj.br

Marcio G. Siqueira
Cisco Systems, Inc., San Jose, CA – USA
e-mail: mgs@cisco.com

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 235
DOI 10.1007/978-0-387-09734-3 9, c© Springer Science+Business Media, LLC 2009

diniz@lps.ufrj.br
mgs@cisco.com

236 Paulo S. R. Diniz and Marcio G. Siqueira

First, stability conditions for the QRD-RLS algorithm are derived by examining the
quantization error propagation in all recursive equations of the algorithm assuming
fixed-point arithmetic. In addition, the mean squared value of the errors accumulated
in all variables of the algorithm are derived and accurate expressions for the excess
of mean squared error and the mean squared value of the error in the filter coeffi-
cients are proposed for the conventional QRD-RLS algorithm. The results are later
extended to the FQRD-lattice algorithm. Simulations follow finite-precision analy-
sis. The chapter is concluded with a discussion on the derived and simulated results.

9.2 Precision Analysis of the QR-Decomposition RLS Algorithm

RLS algorithms update the adaptive filter coefficients in order to minimize the fol-
lowing objective (cost) function

ξ (k) =
k

∑
i=0

λ k−i|ē(i)|2 =
k

∑
i=0

[d(i)−wT(k)x(i)]2, (9.1)

where x(k) = [x(k) x(k − 1) · · · x(k − N)]T is the input signal vector, w(k) =
[w0(k)w1(k) · · · wN(k)]T is the coefficient vector at instant k, ē(i) is the output error
at instant i (computed with w(k)), and λ is the forgetting factor. The input signal
x(k) is considered a Gaussianly distributed white random variable with zero mean
and variance σ2

x . However, the analysis is extended for non-white inputs.
The error vector, the reference signal vector, and the input signal information

matrix can be defined, respectively, as

eT(k) Δ= [ē(k)λ 1/2ē(k−1) · · · λ k/2ē(0)], (9.2)

dT(k) Δ= [d(k)λ 1/2d(k−1) · · · λ k/2d(0)], and (9.3)

XT(k) Δ= [x(k)λ 1/2x(k−1) · · · λ k/2x(k)]

=

⎡
⎢⎢⎢⎣

x(k) λ 1/2x(k−1) · · · λ k/2x(0)
x(k−1) λ 1/2x(k−2) · · · 0

...
...

. . .
...

x(k−N) λ 1/2x(k−N −1) · · · 0

⎤
⎥⎥⎥⎦ , (9.4)

so that the objective function can be rewritten as ξ (k) = eT(k)e(k), where e(k) =
d(k)−X(k)w(k).

The input data matrix X(k) can be triangularized through Givens rotations. The
resulting triangularized matrix U(k), assuming the case of upper triangularization,
may be given by

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 237

U(k) Δ=

⎡
⎢⎢⎢⎣

u0,0(k) u0,1(k) · · · u0,N(k)
0 u1,1(k) · · · u1,N(k)
...

...
. . .

...
0 0 · · · uN,N(k)

⎤
⎥⎥⎥⎦ . (9.5)

When the orthogonal transformation denoted by Q(k) is applied to the error vector,
it follows that:

Q(k)e(k) = Q(k)d(k)−Q(k)X(k)w(k) = d̂(k)− X̂(k)w(k)

=
[

ê1(k)
ê2(k)

]
=

[
d̂1(k)
d̂2(k)

]
−

[
0k−N,N+1

U(k)

]
w(k). (9.6)

The QRD-RLS algorithm shown in Table 9.1 originates from the formulation above,
see [3–5] for details. The operator Q[·] denotes quantization and should be ignored
in the discussions of the current section. The notation fQ denotes finite-precision
version of f .1

In Equations (9.7) and (9.8), ai,i(k) (not explicitly shown) represents an interme-
diate quantity that appears in the position (1, i) of the matrix Q′

i−1(k) · · ·Q′
0(k)X

p(k)
(see (9.11)), that will be eliminated by the Givens rotation Q′

i(k). Quantities bi(k)
represent intermediate values of the first element of Q′

i−1(k) · · ·Q′
0(k)d

p
2(k).

9.2.1 Infinite-precision analysis

Let’s now derive the mean squared value of several quantities related to the QRD-
RLS algorithm, namely cosθi(k), sinθi(k), ui, j(k), ai, j(k), d̂2,i(k), bi(k), and eq(k).
These results are required to analyze the QRD algorithm implemented with finite
precision.

It is worth mentioning that the analysis is valid for averages taken as k is large.
Although the label k is redundant in most expressions it can be useful for transient
analysis.

9.2.1.1 Mean squared values of sines and cosines

From the implementation of (9.7), (9.8), (9.10), and (9.11), with infinite-precision
arithmetic, it is can be shown that

ui,i(k) =
√

λu2
i,i(k−1)+a2

i,i(k); (9.18)

therefore,

1 In practice, vectors and matrices with growing dimensions in Equations (9.7), (9.8), (9.9), (9.10),
(9.11), (9.12), (9.13), (9.14), (9.15), (9.16), and (9.17) should be replaced by fixed dimension ones.
This notation was chosen to clarify the presentation.

238 Paulo S. R. Diniz and Marcio G. Siqueira

Table 9.1 Conventional QR-decomposition RLS algorithm.

QRD-RLS

Matrix Formulation: For i = 0, . . . ,N, do

cosQ θi(k) = Q

⎡
⎣z

λ 1/2ui,i;Q(k−1)

Q
[√

Q[λu2
i,i;Q(k−1)+a2

i,i;Q(k)]
]
⎤
⎦ (9.7)

sinQ θi(k) = Q

⎡
⎣ ai,i;Q(k)

Q
[√

Q[λu2
i,i;Q(k−1)+a2

i,i;Q(k)]
]
⎤
⎦ (9.8)

Q′
i;Q(k) =

⎡
⎢⎢⎣

cosQ θi(k) −sinQ θi(k)
Ik−N+i−1

sinQ θi(k) cosQ θi(k)
IN−i

⎤
⎥⎥⎦ (9.9)

Xp
Q(k) =

⎡
⎣

xT(k)
0k−N−1,N+1

λ 1/2UQ(k−1)

⎤
⎦ (9.10)

X̂Q(k) = Q[Q′
N;Q(k)Q[Q′

N−1;Q(k) · · ·Q[Q′
0;Q(k)Xp

Q(k)] · · ·]]
= Q[Q̃Q(k)Xp

Q(k)]

=
[

0k−N,N+1
UQ(k)

]
(9.11)

dp
Q(k) =

⎡
⎣

d∗(k)
λ 1/2d̂1;Q(k−1)
λ 1/2d̂2;Q(k−1)

⎤
⎦ (9.12)

d̂Q(k) = Q[Q′
N;Q(k)Q[Q′

N−1;Q(k) · · ·Q[Q′
0;Q(k)dp

Q(k)] · · ·]]
= Q[Q̃(k)dp

Q(k)]

=

⎡
⎣

eq;Q(k)
d̂1;Q(k)
d̂2;Q(k)

⎤
⎦ (9.13)

Back-substitution: For j = 0, . . . ,N do

f j;Q(k) = Q

[
N

∑
i= j+1

wi;Q(k)u j,i;Q(k)

]
(9.14)

w j;Q(k) = Q

[
d2, j;Q(k)− f j;Q(k)

u j, j;Q(k)

]
(9.15)

Error calculation: Use one of the equations

eQ(k) = Q[eq;Q(k)Q[cosQ θ0(k) · · ·Q[cosQ θN(k)cosQ θN−1(k)] · · ·]]]
(9.16)

eQ(k) = d(k)−Q[wT
Q(k)x(k)] (9.17)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 239

cosθi(k) =
λ 1/2ui,i(k−1)

ui,i(k)
, and (9.19)

sinθi(k) =
ai,i(k)
ui,i(k)

. (9.20)

The mean squared value of cosθi(k) is then given by

E
{

cos2 θi(k)
}

= E

{
λ
∑k−1

j=0 λ
k−1− ja2

i,i(j)

∑k
j=0λ k− ja2

i,i(j)

}
≈ λ . (9.21)

whereas the mean squared value of sinθi(k) can be calculated by using the funda-
mental trigonometric identity

E{sin2 θi(k)} ≈ 1−λ , (9.22)

for k → ∞.

9.2.1.2 Mean squared value of ui, j(k)

The derivations of the mean squared values of the elements of U(k) are some-
what involved, especially when the order of the adaptive filter is high. Under the
assumption that the input signal samples are uncorrelated, it is possible to deduce
the desired formulas [6]:

E{u2
i,i(k)} ≈ σ2

x

1−λ

[
2λ

1+λ

]i

, and (9.23)

E{u2
i, j(k)} ≈ σ2

x

1+λ

[
2λ

1+λ

]i

, (9.24)

where the last equation is valid for j > i, i = 0,1, . . . ,N.

9.2.1.3 Mean squared value of ai, j(k)

From (9.18), it is possible to verify that

E[u2
i,i(k)] =

E[a2
i,i(k)]

1−λ
. (9.25)

From (9.25) and (9.23), one can show that

E{a2
i,i(k)} = σ2

x

[
2λ

1+λ

]i

, (9.26)

for i = 0, . . . ,N. Since ai, j(k) for i �= j and ai,i(k) are result of similar dynamic
equations, it is possible to show that

240 Paulo S. R. Diniz and Marcio G. Siqueira

E{a2
i, j(k)} = σ2

x

[
2λ

1+λ

]i

, (9.27)

for i = 0, . . . ,N and j > i.

9.2.1.4 Mean squared value of d̂2,i(k)

The adaptive filter coefficients are calculated using (9.6), that is

d̂2,i(k) =
N

∑
j=i

ui, j(k)w j(k). (9.28)

If ui,i(k) is considered the only element in the ith row of U(k) with non-zero mean,
and that the elements in a given row are uncorrelated, the following expression
approximation is valid.

E{d̂2
2,i(k)} ≈

N

∑
j=i

E{u2
i, j(k)}E{w2

j(k)} (9.29)

In addition, considering that the mean of wi(k) is much larger than the variance,
so that the mean squared value can be replaced by the squared mean, the equation
becomes

E{d̂2
2,i(k)} ≈

[
2λ

1+λ

]i
[

σ2
x

1−λ
w2

o,i +
σ2

x

1+λ

N

∑
j=i+1

w2
o, j

]
, (9.30)

where

w2
o,i = E{w2

i (k)}. (9.31)

9.2.1.5 Mean squared value of bi(k)

The intermediate values of the first element of d̂(k) during the application of the
Givens rotations, denoted by bi(k) for i = 0,1 . . . ,N, are given by

bi+1(k) = −λ 1/2d̂2,i(k−1)sinθi(k)+bi(k)cosθi(k). (9.32)

Since E{cosθi(k)sinθi(k)} is relatively small, it is possible to infer that

E{b2
i+1(k)} = λE{d̂2

2,i(k−1)}E{sin2 θi(k)}+E{b2
i (k)}E{cos2 θi(k)}

= λ (1−λ)E{d̂2
2,i(k−1)}+λE{b2

i (k)}

=
i+1

∑
j=1

λ i− j+2(1−λ)E{d̂2
2, j(k)}+λ i+1E{d2(k)}. (9.33)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 241

9.2.1.6 Mean squared value of eq(k)

From (9.21) and (9.16), and by assuming that the mean values of the cosines are
much larger than their variance [7], it is possible to verify that

E{e2
q(k)} ≈

E{e2(k)}
λN+1 . (9.34)

If the QRD-RLS algorithm is applied in a sufficient order identification problem,
where the desired signal can be modeled by a moving average process with a mea-
surement noise with variance σ2

r . After convergence, it is expected that

E{e2
q(k)} ≈

σ2
r

λN+1 . (9.35)

9.2.1.7 Dynamic range

The internal variables of the QRD-RLS algorithm are the elements of U(k), of d̂2(k),
and the sines and cosines. Let’s assume that all variables are represented in fixed-
point arithmetic in the range −1 to +1, in order to derive the conditions on the
input signal variance to ensure that overflow does not occur frequently in internal
variables of the algorithm.

The off-diagonal elements of U(k) have zero mean and mean squared values
much smaller than the diagonal elements. The diagonal elements usually have larger
mean squared values as λ approaches 1; as such, some strategy to control the over-
flow must be devised. Considering that for λ close to one, the mean of ui,i(k) is
large as compared to its standard deviation, one can calculate its mean squared value
through its squared mean. From (9.23), it follows that

E{ui,i(k)} ≈
σx√
1−λ

[
2λ

1+λ

]i/2

. (9.36)

As u0,0(k) has the largest energy, and if the maximum value for u0,0(k) is 1, satisfy-
ing the condition

σx√
1−λ

< 1 (9.37)

is sufficient to avoid frequent internal overflow.
The values of the entries of d̂2(k) should also be kept in the range −1 and +1.

For any k,

E{d̂2,i(k)} =
N

∑
j=i

E{ui, j(k)w j(k)}. (9.38)

Assuming that the mean of ui, j(k) is zero for i �= j, and that the standard deviations
of ui,i(k) and wi(k) are small compared to their respective mean, it is possible to

242 Paulo S. R. Diniz and Marcio G. Siqueira

verify that

E{d̂2,i(k)} = E{ui,i(k)wi(k)} ≈ E{ui,i(k)}E{wi(k)}

=
σx√
1−λ

[
2λ

1+λ

]i/2

wo,i. (9.39)

The most stringent case is i = 0, so that frequent overflows can be avoided if, the
following inequality is satisfied:

σ2
x w2

o,i < 1−λ . (9.40)

This inequality requires the mean squared value of the taps wo,i, that accounts for
the relative power of the reference signal. Although the values of wo,i are not known
in advance, a rough estimate of σ2

x w2
o,i can be obtained through the power of the

reference signal [8].

9.2.2 Stability analysis

In this section, the fixed-point quantization errors are first modeled, and the recursive
equations describing the total error in each quantity of the QRD-RLS algorithm
are derived. For that, we discuss the conditions to guarantee the stability of the
algorithm.

For the analysis results presented here, we assume that the input signal has
been properly scaled in order to avoid overflow. Two’s complement arithmetic
is used for numeric representation. It is taken for granted that no overflow
occurs so that additions and subtractions do not introduce quantization errors.

The multiplication, division, and square-root operations introduce, respectively,
quantization errors described by

ηM(a,b) Δ= ab−Q[ab], (9.41)

ηD(a,b) Δ= a/b−Q[a/b], (9.42)

ηS(a) Δ=
√

a−Q[
√

a], (9.43)

where a and b are scalars. For inner product with quantization after addition, the
errors are denoted as

ηM[(a1,b1); · · · ;(ai,bi)]
Δ=

i

∑
j=1

a jb j −Q

[
i

∑
j=1

a jb j

]
. (9.44)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 243

The quantization errors for matrix–vector and matrix–matrix products are modeled
as

ηM(A,b) Δ= Ab−Q[Ab] (9.45)

and

NM(A,B) Δ= AB−Q[AB], (9.46)

respectively.
Instantaneous quantizations are performed by rounding, for any type of arith-

metic. The quantization error has zero mean and variance 2−2B/12, where B is the
number of bits excluding the sign.

The overall quantization error in each quantity is defined as the difference
between its value in infinite-precision implementation and its value in finite-
precision implementation, that is

Δa(k) Δ= a(k)−aQ(k). (9.47)

Matrix X̂(k) is defined as

X̂(k) = Q̃(k)Xp(k) = [Q̃Q(k)+ΔQ̃(k)][Xp
Q(k)+ΔXp(k)]

= Q̃Q(k)Xp
Q(k)+ Q̃Q(k)ΔXp(k)+ΔQ̃(k)Xp

Q(k)

+ΔQ̃(k)ΔXp(k). (9.48)

From (9.11) and (9.47), it follows that

Q̃Q(k)Xp
Q(k) = Q[Q̃Q(k)Xp

Q(k)]+NM[Q̃Q(k),Xp
Q(k)]

= X̂Q(k)+NM[Q̃Q(k),Xp
Q(k)]. (9.49)

It can then be shown that

Δ X̂(k) = X̂(k)− X̂Q(k) = Q̃Q(k)ΔXp(k)+ΔQ̃(k)ΔXp(k)
+ΔQ̃(k)Xp

Q(k)+NM[Q̃Q(k),Xp
Q(k)]. (9.50)

Using (9.50), (9.10), the definition of (9.47) and considering that U(k) = UQ(k)+
ΔU(k), we find that

[
0k−N,N+1

ΔU(k)

]
= Q̃Q(k)

[
0k−N,N+1

λ 1/2ΔU(k−1)

]

+ ΔQ̃(k)

⎡
⎣

xT(k)
0k−N−1,N+1

λ 1/2U(k−1)

⎤
⎦+ NM[Q̃Q(k),Xp

Q(k)]. (9.51)

244 Paulo S. R. Diniz and Marcio G. Siqueira

The above equation represents the dynamics of the error in the input signal matrix
after triangularization. The convergence in average of U(k) can be guaranteed if the
following inequality is satisfied

λ 1/2 ‖ Q̃Q(k) ‖2≤ 1, (9.52)

where the two norm of a matrix is defined here as the square root of the largest
eigenvalue. Hence,

‖ Q̃Q(k) ‖2 = MAXi

√
cos2

Q θi(k)+ sin2
Q θi(k). (9.53)

Then, the stability condition can be rewritten as follows:

λ <
1

MAXi [cos2
Q θi(k)+ sin2

Q θi(k)]
. (9.54)

By assuming instantaneous errors term non-zero in (9.51), we can show that

‖ E{ΔU(k)} ‖ ≤ λ 1/2 ‖ E{Q̃Q(k)} ‖‖ E{ΔU(k−1)} ‖
+ ‖ E{ΔQ̃(k)} ‖‖ E{X(k)} ‖ . (9.55)

Notice that (9.54) is also sufficient to guarantee that (9.55) is stable. For λ = 1 and
E{‖Q̃Q(k)‖} = 1, the norm of E[ΔU(k)] increases indefinitely, if the input signal is
non-zero.

9.2.3 Error propagation analysis in steady-state

In this subsection, we derive the error propagation. Analytical expressions for the
mean squared value of the errors in the prediction error and in the tap coefficients
are obtained.

9.2.3.1 Mean squared value of Δai, j(k)

During the triangularization process, the intermediate value that the jth element of
the first row of Xp(k) assumes in the ith Givens rotation is denoted as ai, j(k). These
quantities are given by

ai+1, j(k) = ai, j(k)cosθi(k)−λ 1/2ui, j(k−1)sinθi(k), (9.56)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 245

where a0, j(k)
Δ= x(k− j). The equation above can be solved recursively as

ai, j(k) = x(k− j)
i−1

∏
m=0

[cosQ θm(k)+Δ cosθm(k)]

−λ 1/2
i−1

∑
m=0

[um, j;Q(k−1)+Δui, j(k−1)][sinQ θm(k)+Δ sinθm(k)] ·

i−1

∏
n=m+1

[cosQ θn(k)+Δ cosθn(k)], (9.57)

Note that in the last equality ai, j(k) is expressed as a function of the quantities in
the finite-precision implementation and their respective errors. By neglecting all
second-order and higher-order error terms, it follows that

ai, j(k) ≈ x(k− j)
i−1

∏
m=0

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k)
i−1

∏
n=m+1

cosQ θn(k)

+x(k− j)
i−1

∑
n=0

Δ cosθn(k)
i−1

∏
m=0
m�=n

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

[um, j;Q(k−1)Δ sinθm(k)

+Δum, j(k−1)sinQ θm(k)]
i−1

∏
n=m+1

cosQ θn(k)

−λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k) ·
⎧
⎪⎨
⎪⎩

i−1

∑
n=m+1

Δ cosθn(k)
i−1

∏
q=0
q �=n

cosQ θq(k)

⎫
⎪⎬
⎪⎭

. (9.58)

In finite-precision case, ai, j;Q(k) is given by

ai, j;Q(k) = x(k− j)
i−1

∏
m=0

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k)
i−1

∏
n=m+1

cosQ θn(k)

−
i−1

∑
m=0

ηai j
M (k)

i−1

∏
n=m+1

cosQ θn(k), (9.59)

246 Paulo S. R. Diniz and Marcio G. Siqueira

The quantities ηai j
M (k) = ηM[(ai, j(k),cosθi(k));(λ 1/2ui, j(k−1),sinθi(k))], for m =

0, . . . , i, represent quantization noises generated by the products.
From (9.57) and (9.59), it follows that

Δai, j(k) = x(k− j)
i−1

∑
n=0

Δ cosQ θn(k)
i−1

∏
m=0
m�=n

cosQ θm(k)

−λ 1/2
i−1

∑
m=0

[um, j;Q(k−1)Δ sinθm(k)+Δum, j(k−1)sinQ θm(k)] ·

i−1

∏
n=m+1

cosQ θn(k)λ 1/2
i−1

∑
m=0

um, j;Q(k−1)sinQ θm(k) ·

⎧
⎪⎨
⎪⎩

i−1

∑
n=m+1

Δ cosθn(k)
i−1

∏
q=m+1
n �=q

cosQ θq(k)

⎫
⎪⎬
⎪⎭

+
i−1

∑
m=0

ηai j
m (k)

i−1

∏
n=m+1

cosQ θn(k). (9.60)

We assume now that x(k), Δ cosθi(k), Δ sinθi(k), and ηai j
i (k) are all zero mean

with comparatively small cross-correlations. We also assume that E{u2
i, j;Q(k− 1)}

and E{[Δui, j(k−1)]2} can be replaced by E{u2
i, j;Q(k)} and E{[Δui, j(k)]2}, respec-

tively, by considering them stationary. Another assumption is that the mean squared
value of quantities in finite and infinite-precision coincide. Therefore, using the
assumptions (9.22) and (9.21), the resulting expression for the mean squared value
of Δai, j(k) is given by

E{[Δai, j(k)]2} = σ2
x λ i−1

i−1

∑
n=0

E{[Δ cosθn(k)]2}

+
i−1

∑
m=0

λ i−m{
E{u2

m, j(k)}E{[Δ sinθm(k)]2}+E{[Δum, j(k)]2}(1−λ)
}

+
i−1

∑
m=0

{
E{u2

m, j(k)}(1−λ)
i−1

∑
n=m+1

E{[Δ cosθn(k)]2}λ i−m−1

}

+
λ i −1
λ −1

σ2
n , (9.61)

where σ2
n is the variance of ηai j

M (k).

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 247

9.2.3.2 Mean squared value of Δbi(k)

The values bi(k) correspond to the first element of the intermediate vectors resulting
from the application of Givens rotations to vector d̂2(k). The form of deriving Δbi(k)
is similar to Δai, j(k) and the result is

Δbi(k) ≈ d(k)
i−1

∑
m=0

Δ cosθm(k)
i−1

∏
j=0
j �=m

cosθ j(k)

−λ 1/2
i−1

∑
j=0

[d̂2, j;Q(k−1)Δ sinθ j(k)+Δ d̂2, j(k−1)sinθ j(k)] ·

i−1

∏
m= j+1

cosQ θm(k)−λ 1/2
i−1

∑
j=0

d̂2, j;Q(k−1)sinQ θ j(k) ·
⎧
⎪⎨
⎪⎩

i−1

∑
p= j+1

Δ cosθp(k)
i−1

∏
m= j+1
m�=p

cosQ θm(k)

⎫
⎪⎬
⎪⎭

+
i−1

∑
j=0

ηbi
j (k)

i−1

∏
m= j+1

cosQ θm(k), (9.62)

where ηbi
j (k) = ηM[(bi−1(k),cosθi−1(k));(λ 1/2d̂2,i−1(k − 1),sinθi−1(k))]. Using

the assumption that Δ cosθi(k), Δ sinθi(k), and ηbi
j (k) are all zero mean and have

small cross-correlation with each other and also assuming that E{d̂2
2, j;Q(k− 1)} =

E{d̂2
2, j;Q(k)} and E{[Δ d̂2, j;Q(k−1)]2} = E{[Δ d̂2, j;Q(k)]2}, it can be shown that

E{[Δbi(k)]2} = σ2
x ‖wo(k)‖2λ i−1

i−1

∑
m=0

E{[Δ cosθm(k)]2}

+
i−1

∑
j=0

λ i− j {E{d̂2
2, j(k)}E{[Δ sinθ j(k)]2}+E{[Δ d̂2, j(k)]2}(1−λ)

}

+
i−1

∑
j=0

E{d̂2
2, j(k)}(1−λ)

i−1

∑
p= j+1

E{[Δ cosθp(k)]2}λ i− j−1

+
λ i −1
λ −1

σ2
n , (9.63)

where σ2
n is the variance of ηbi

j (k), whereas E{d2(k)} was approximated by

σ2
x ‖wo(k)‖2 by neglecting the effects of the measurement noise in the desired sig-

nal. Vector wo(k) represents the tap coefficients of the unknown model.

9.2.3.3 Mean squared value of Δui,i(k)

The value of Δui,i(k) can be derived from (9.18) as follows:

248 Paulo S. R. Diniz and Marcio G. Siqueira

Δui,i(k) =
√

λu2
i,i(k−1)+a2

i,i(k)

−
√

λu2
i,i;Q(k−1)+a2

i,i;Q(k)−ηM[λu2
i,i;Q(k−1),a2

i,i;Q(k)]

+ηS[λu2
i,i;Q(k−1)+a2

i,i(k)] (9.64)

Considering that the equation above has a square-root operation, the following
approximation can be used

√
r−

√
r−Δr ≈ Δr

2
√

r
; (9.65)

so that

E{[Δui,i(k)]2} ≈ λ 2E{[Δui,i(k)]2}+(1−λ)E{[Δai,i(k)]2}

+
σ2

n

4σ2
x
(1−λ)

[
1+λ

2λ

]i

+σ2
n . (9.66)

9.2.3.4 Mean square value of Δ sinθi(k)

For a division operation, the following approximation is valid for small Δr

1
r +Δr

≈ 1
r

[
1− Δr

r

]
. (9.67)

In (9.20), by replacing ai,i(k) and ui,i(k), respectively, by ai,i;Q(k) +Δai,i(k) and
ui,i;Q(k)+Δui,i(k), and using the approximation above, it is possible to show that

Δ sinθi(k) =
Δai,i(k)
ui,i(k)

+
ai,i(k)
u2

i,i(k)
Δui,i(k)+ηD(k), (9.68)

where ηD(k) represents ηD[ai,i;Q(k),ui,i;Q(k)]. Now, considering that the instan-
taneous and accumulated errors are zero mean and with relatively small cross-
correlations, and using the averaging principle, it can be demonstrated that

E{[Δ sinθi(k)]2} ≈ E{[Δai,i(k)]2}{(1−λ)3 +(1−λ)}
σ2

x

[
1+λ

2λ

]i

+
E{[Δui,i(k)]2}λ 2(1−λ)2

σ2
x

[
1+λ

2λ

]i

+
(1−λ)3σ2

n

4σ4
x

[
1+λ

2λ

]2i

+
σ2

n (1−λ)2

σ2
x

[
1+λ

2λ

]i

+σ2
n . (9.69)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 249

9.2.3.5 Mean squared value of Δ cosθi(k)

The cosines of the Givens rotations in the infinite and finite-precision implementa-
tions of the QRD-RLS algorithm are respectively expressed by

cosθi(k) =
λ 1/2ui,i;Q(k−1)

ui,i;Q(k)
+

λ 1/2Δui,i(k−1)
ui,i;Q(k)

−λ 1/2ui,i;Q(k−1)
u2

i,i;Q(k)
Δui,i(k) (9.70)

and

cosQ θi(k) =
λ 1/2ui,i;Q(k−1)

ui,i;Q(k)
−ηD(k), (9.71)

where ηD(k) represents ηD[λ 1/2ui,i;Q(k − 1),ui,i;Q(k)]. With these equations, one

can show that

Δ cosθi(k) =
λ 1/2Δui,i(k−1)

ui,i(k)
− λ 1/2ui,i(k−1)

u2
i,i(k)

Δui,i(k)+ηD(k). (9.72)

Thus, if we take the squared value of (9.72) and apply the expected value operation
to the resulting equation, we obtain

E{[Δ cosθi(k)]2} ≈ λ
E{[Δui,i(k−1)]2}

E{u2
i,i(k)}

+λ
E{[Δui,i(k)]2}

E{u2
i,i(k)}

−2λ
E{Δui,i(k−1)Δui,i(k)}

E{u2
i,i(k)}

+E{η2
D(k)}. (9.73)

It should be noted that Δui,i(k− 1) and Δui,i(k) are not uncorrelated and that the
mean of their product can be calculated as

E{Δui,i(k−1)Δui,i(k)} ≈ E{λ ui,i(k−1)
ui,i(k)

[Δui,i(k−1)]2}

≈ λE{[Δui,i(k−1)]2}

= λE{[Δui,i(k)]2}. (9.74)

From (9.73), (9.74), and (9.66) we get

250 Paulo S. R. Diniz and Marcio G. Siqueira

E{[Δ cosθi(k)]2} ≈ λ (1−λ)3E{[Δui,i(k)]2}
σ2

x

[
1+λ

2λ

]i

+
λ (1−λ)2E{[Δai,i(k)]2}

σ2
x

[
1+λ

2λ

]i

+σ2
n

+
λ (1−λ)2σ2

n

4σ4
x

[
1+λ

2λ

]2i

+
λ (1−λ)σ2

n

σ2
x

[
1+λ

2λ

]i

. (9.75)

9.2.3.6 Mean squared value of Δui, j(k)

For the infinite-precision implementation of the QRD-RLS algorithm, the elements
of the triangularized matrix U(k) are calculated by

ui, j(k) = λ 1/2ui, j(k−1)cosθi(k)+ai, j(k)sinθi(k) (9.76)

= [λ 1/2ui, j;Q(k−1)+λ 1/2Δui, j(k−1)][cosQ θi(k)+Δ cosθi(k)]
+[ai, j;Q(k)+Δai, j(k)][sinQ θi(k)+Δ sinθi(k)]

= λ 1/2ui, j;Q(k−1)cosQ θi(k)+ai, j;Q(k)sinQ θi(k)

+λ 1/2Δui, j(k−1)cosQ θi(k)

+λ 1/2ui, j;Q(k−1)Δ cosθi(k)
+ai, j;Q(k)Δ sinθi(k)+Δai, j(k)sinQ θi(k). (9.77)

In finite-precision implementation the elements of UQ(k) are given by

ui, j;Q(k) = λ 1/2ui, j;Q(k−1)cosQ θi(k)
+ai, j;Q(k)sinQ θi(k)−ηM(k), (9.78)

where ηM(k) represents ηM[(λ 1/2ui, j;Q(k − 1),cosQ θi(k));(ai, j;Q(k),sinQ θi(k))].
Subtracting (9.77) from (9.78), and replacing the quantities in finite precision by
their infinite precision counterpart, we obtain

Δui, j(k) = λ 1/2Δui, j(k−1)cosθi(k)+λ 1/2ui, j(k−1)Δ cosθi(k)
+ai, j(k)Δ sinθi(k)+Δai, j(k)sinθi(k)+ηM(k). (9.79)

Assuming that ηM(k) as well as the accumulated errors are zero mean with relatively
small cross-correlations, then

E{[Δui, j(k)]2} ≈ λE{[Δui, j(k−1)]2}E{cos2 θi(k)}
+λE{u2

i, j(k−1)}E{[Δ cosθi(k)]2}
+E{a2

i, j(k)}E{[Δ sinθi(k)]2}
+E{[Δai, j(k)]2}E{sin2 θi(k)}+E{η2

M(k)}. (9.80)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 251

Using (9.22) and (9.21), in the steady-state we get

E{[Δui, j(k)]2} ≈
λE{u2

i, j(k−1)}E{[Δ cosθi(k)]2}
1−λ 2

+
E{a2

i, j(k)}E{[Δ sinθi(k)]2}
1−λ 2

+
E{[Δai, j(k)]2}

1+λ
+

E{η2
M(k)}

1−λ 2 . (9.81)

The equation above can be simplified into two different ways. For i �= j, we can
apply (9.23) and (9.27) resulting in

E{[Δui, j(k)]2} ≈ λσ2
x E{[Δ cosθi(k)]2}
(1−λ)(1−λ 2)

[
2λ

1+λ

]i

+
σ2

x E{[Δ sinθi(k)]2}
1−λ 2

[
2λ

1+λ

]i

+
E{[Δai, j(k)]2}

1+λ
+

σ2
n

1−λ 2 , (9.82)

where σ2
n here is the variance of ηM(k). For i = j, we have to substitute (9.69),

(9.75), (9.23), and (9.24) in (9.81) in order to derive, after some manipulation

E{[Δui,i(k)]2} ≈ 2λ 2 −2λ +3
2λ 2 −λ +1

E{[Δai,i(k)]2}

+
3λ 2 −4λ +2
2λ 2 −λ +1

σ2
n

4σ2
x

[
2λ

1+λ

]i

+
(2λ 2 −2λ +2)σ2

n

(2λ 2 −λ +1)(1−λ)

+
σ2

nσ2
x

(1−λ)2(2λ 2 −λ +1)

[
1+λ

2λ

]i

. (9.83)

9.2.3.7 Mean squared value of Δ d̂2,i(k)

The elements of vector d̂2(k) are resultant of the application of N + 1 Givens rota-
tions to λ 1/2d2(k−1), that is

d̂2,i(k) = λ 1/2d̂2,i(k−1)cosθi(k)+bi(k)sinθi(k). (9.84)

252 Paulo S. R. Diniz and Marcio G. Siqueira

This equation is similar to (9.76); as a consequence, by following the same steps to
derive (9.79), we can show that

E{[Δ d̂2,i(k)]2} ≈
λE{d̂2

2,i(k)}E{[Δ cosθi(k)]2}
1−λ 2

+
E{b2

i (k)}E{[Δ sinθi(k)]2}
1−λ 2

+
E{[Δbi(k)]2}

1+λ
+

σ2
n

1−λ 2 . (9.85)

9.2.3.8 Mean squared value of Δe(k)

The error signal in the infinite- and finite-precision implementations are given by

e(k) = eq(k)cosθN(k) · · ·cosθ0(k) (9.86)

and

eQ(k) = Q[eq;Q(k)Q[cosQ θ0(k) · · ·Q[cosQ θN(k)cosQ θN−1(k)] · · ·]]], (9.87)

respectively.
From (9.47), the a posteriori error signal e(k) can be expressed as

e(k) = [eq;Q(k)+Δeq(k)][cosθN(k)+Δ cosθN(k)] · · ·
[cosQ θ1(k)+Δ cosθ1(k)][cosQ θ0(k)+Δ cosθ0(k)]

= eq;Q(k)cosQ θN(k) · · ·cosQ θ0(k)+Δeq(k)cosθN(k) · · ·cosθ0(k)

+eq,Q(k)

⎡
⎢⎣

N

∑
i=0

Δ cosQ θi(k)
N

∏
j=0
i �= j

cosθ j(k)

⎤
⎥⎦

+Δeq;Q(k)cosQ θN(k) · · ·cosQ θ0(k), (9.88)

where, in the last expression, the error terms of the second and higher order were
ignored.

The application of (9.41) to the multiplication operations of (9.16) yields

eQ(k) ≈ eq;Q(k)cosQ θN(k)cosQ θN−1(k) · · ·cosQ θ1(k)cosQ θ0(k)

−eq;Q(k)

[
N

∑
i=0

N

∏
j=i+1

cosQ θ j(k)ηe
i (k)

]
−ηe

N+1(k). (9.89)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 253

By replacing (9.88) and (9.89) in the definition (9.47), Δe(k) results in

Δe(k) ≈ eq;Q(k)

⎡
⎢⎣

N

∑
i=0

Δ cosθi(k)
N

∏
j=0
i �= j

cosθ j(k)

⎤
⎥⎦

+Δeq;Q(k)cosQ θ0(k) · · ·cosQ θN(k)

+eq;Q(k)

[
N

∑
i=0

N

∏
j=i+1

cosQ θ j(k)ηe
i (k)

]
−ηe

N+1(k). (9.90)

We assume that Δeq;Q(k), eq(k), Δ cosθi(k), and ηe
i (k), for i = 0, . . . ,N + 1, are

all zero mean with relatively small cross-correlation between each other. Also, the
variance ηe

i (k) is considered to be σ2
n (that is the variance of the quantization noise),

and E{cos2 θi(k)} ≈ λ .

With the above assumptions, one can show that the expected value of the
accumulated quantization error in the a posteriori error signal is given by

E{[Δe(k)]2} ≈ E{e2
q;Q(k)}

[
N

∑
i=0

E{[Δ cosθi(k)]2}λN

]

+E{[Δeq(k)]2}λN+1 +E{e2
q;Q(k)}

N

∑
i=0

λN−iσ2
n +σ2

n .(9.91)

In the first term of the right-hand-side of the equation above, we can substitute
E{e2

q(k)} as suggested in (9.35). In the third term, (9.35) should also be applied. In
the second term, if it is noted that eq(k) is the first element of d2(k), from (9.63), we
can determine E{[Δeq(k)]2} by setting i = N +1, i.e.,

E{[Δeq(k)]2} ≈ σ2
x ‖wo(k)‖2λN

N

∑
m=0

E{[Δ cosθm(k)]2}

+
N

∑
j=0

λN+1− j [E{d̂2
2, j(k)}E{[Δ sinθ j(k)]2}+E{[Δ d̂2, j(k)]2}(1−λ)

]

+
N

∑
j=0

E{d̂2
2, j(k)}(1−λ)

N

∑
p= j+1

E{[Δ cosθp(k)]2}λN− j

+
λN+1 −1
λ −1

σ2
n . (9.92)

254 Paulo S. R. Diniz and Marcio G. Siqueira

9.2.3.9 Mean squared value of Δwi(k)

The tap coefficients of the adaptive filter in the QRD-RLS algorithm are calculated
through the back-substitution algorithm, as illustrated in (9.14) and (9.15). After
some manipulations, it can be shown that

Δwi(k) =
d̂2,i(k)−∑N

j=i+1 wi(k)ui, j(k)
ui,i(k)

−
d̂2,i;Q(k)−∑N

j=i+1 wi;Q(k)ui, j;Q(k)+ηM(k)
ui,i;Q(k)

+ηD(k), (9.93)

where in the above equation we have

ηM(k) Δ= ηM

[
N

∑
j=i+1

wi;Q(k)ui, j;Q(k)

]
(9.94)

and

ηD(k) Δ= ηD

[(
d̂2,i;Q(k)−

N

∑
j=i+1

wi;Q(k)ui, j;Q(k)+η8(k)

)
,ui,i;Q(k)

]
. (9.95)

From the expression above and using the approximation in (9.67), we obtain

Δwi(k) ≈
Δ d̂2,i(k)−∑N

j=i+1[w j;Q(k)Δui, j(k)+Δw j(k)ui, j;Q(k)]
ui,i;Q(k)

−wi;Q(k)Δui,i(k)
ui,i;Q(k)

+
ηM(k)

ui,i;Q(k)
+ηD(k), (9.96)

where, in the last expression, we replaced the finite-precision quantities by their
infinite-precision counterparts. The introduced errors are of second order, and can
therefore be neglected. Assuming that ηM(k) and ηD(k) are uncorrelated and zero
mean; employing the averaging principle [9], it can be shown that

E{[Δwi(k)]2} ≈ E{[Δ d̂2,i(k)]2}
E{u2

i,i(k)}
+

∑N
j=i E{w2

j(k)}E{[Δui, j(k)]2}
E{u2

i,i(k)}

+
∑N

j=i+1 E{[Δw j(k)]2}E{u2
i, j(k)}

E{u2
i,i(k)}

+
σ2

n

E{u2
i,i(k)}

+σ2
n . (9.97)

In order to calculate E{[Δwi(k)]2}, it is necessary to have E{[Δui, j(k)]2} and
E{[Δd2,i(k)]2}, that in turn require the values of E{[Δai,i(k)]2}, E{[Δbi(k)]2},
E{[Δui,i(k)]2}, E{[Δ sinθi(k)]2}, and E{[Δ cosθi(k)]2}.

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 255

From (9.97), we can determine the mean of the squared norm of the deviation
in the tap coefficients as follows:

E{‖Δw(k)‖2} =
N

∑
i=0

E{[Δwi(k)]2} (9.98)

9.2.4 Simulation results

The derived equations were verified through simulations using a system identifi-
cation application where both input signal and measurement noise were pseudo-
random sequences with normal distribution and zero-mean. Four different moving-
averaging processes were utilized to emulate unknown systems with orders equal
to 4, 6, 8, and 10, respectively. In all simulations, the QRD-RLS algorithm ran for
1500 iterations and the simulation results were obtained by averaging the results
of 100 independent runs. Infinite-precision simulations were executed with 64 bits
floating-point arithmetic. In the fixed-point implementation, the quantities were rep-
resented by numbers with magnitude less than unity. Frequent overflow was avoided
by choosing the input signal variance appropriately.

The first experiment was aimed to verify the results for different moving average
processes. The input signal variance was fixed at −30 dB, while the additional noise
variance was −70 dB. The forgetting factor was λ = 0.95 and the wordlength was
15 bits. The measured and calculated results for E{‖w(k)‖2

2} and E{[Δe(k)]2} are
presented in Table 9.2, and it can be seen that simulated and calculated values are in
close agreement.

Table 9.2 Fixed-point environment: simulations for distinct MA processes with 15 bits and for-
getting factor λ = 0.95.

MA E{‖Δw(k)‖2
2} (dB) E{[Δe(k)]2} (dB)

process Simulated Calculated Simulated Calculated

MA1 −64.7 −64.3 −92.6 −92.2
MA2 −62.7 −62.2 −91.7 −91.3
MA3 −61.2 −60.7 −91.2 −90.8
MA4 −59.9 −59.2 −90.9 −90.5

The formulas (9.91) and (9.98) were tested for different values of λ , σ2
x = −25

dB and σ2
r =−70 dB. The wordlength again was 15 bits. The results are presented in

Table 9.3. Again, we observe close agreement between the calculated and simulated
values.

256 Paulo S. R. Diniz and Marcio G. Siqueira

Table 9.3 Simulations for distinct λ .

Forgetting E{‖Δw(k)‖2
2} (dB) E{[Δe(k)]2} (dB)

factor (λ) Simulated Calculated Simulated Calculated

0.90 −68.2 −67.7 −93.7 −93.2
0.93 −69.0 −68.7 −93.0 −92.6
0.95 −69.7 −69.3 −92.5 −92.2
0.97 −70.3 −70.1 −92.1 −91.8
0.99 −70.9 −70.7 −91.6 −91.3

The theoretical results were also verified for different wordlengths with σ2
x =

−30 dB, λ = 0.95 and σ2
r = −70 dB. Table 9.4 illustrates the results. As can be

noted in the current and in all previous experiments, the obtained formulas are
shown to model accurately the finite wordlength effects in the main quantities of
the QRD-RLS algorithm.

Table 9.4 Simulations for distinct precisions.

Number of E{‖Δw(k)‖2
2} (dB) E{[Δe(k)]2} (dB)

bits Simulated Calculated Simulated Calculated

12 −46.5 −46.3 −74.1 −74.1
15 −68.2 −64.3 −91.7 −92.2
20 −94.8 −94.4 −122.3 −122.3
25 −124.9 −124.6 −152.8 −152.4
30 −154.0 −154.7 −182.8 −182.5

9.3 Precision Analysis of the Fast QRD-Lattice Algorithm

This section discusses the finite-precision analysis for the FQRD-lattice algorithm
proposed by McWhirter [10]. The notation of this reference was followed. The C
Language pseudo-code for the FQRD-lattice algorithm is shown in Table 9.5, which
details all algorithmic steps labeled from step (S.1) through (S.18). It can be seen
that this algorithm takes advantage of two operations named rotor and cisor for
performing all internal computations.

Exploring the fact that only two basic operations are performed by this algo-
rithm, a very regular structure can be derived as shown in Figure 9.1. This figure
uses squares to represent rotor cells (that perform rotations) and circles to represent
cisor cells (that perform cosine/sine calculations). The small cells in the last stage
represent multipliers.

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 257

Table 9.5 C Language pseudo-code for the FQRD-lattice algorithm.

FQRD-Lattice RLS [10]

void rotor (double xin, double yin, double xout , double yout , double cin, double sin)
{

xout = Q[λ 1/2xincin + yinsin]; (S.1)
yout = Q[−λ 1/2xinsin + yincin]; (S.2)

}

void cisor (double xin, double yin, double xout , double bin, double bout , double cout ,
double sout)
{

double aux;

xout = Q[
√

Q[λx2
in + y2

in]]; (S.3)

cout = Q[λ 1/2xin/xout]; (S.4)
sout = Q[yin/xout]; (S.5)
bout = Q[bincout]; (S.6)

}

void FqrdLattice (double x(k), double d(k), double e(k))
{

int i;
double aux;

e f
0(k) = eb

0(k) = x(k); (S.7)
e0(k) = d(k); (S.8)
α0(k) = 1.0; (S.9)
for (i=1; i ≤ N+1; i++)
{

cisor (αb
i−1(k−1),eb

i−1(k),α
b
i−1(k),αi−1(k),αi(k),c

f
i (k),s f

i (k)); (S.10)

rotor (β f
i−1(k−1),e f

i−1(k),β
f

i−1(k),e
f
i (k),c f

i (k−1),s f
i (k−1)); (S.11)

rotor (βi−1(k−1),ei−1(k),βi−1(k),ei(k),c
f
i (k),s f

i (k)); (S.12)

ε f
i (k) = Q[αi(k−1)e f

i (k)]; (S.13)
εi(k) = Q[αi(k)ei(k)]; (S.14)
cisor (α f

i−1(k−1),e f
i−1(k),α

f
i−1(k),aux,aux,cb

i (k),s
b
i (k)); (S.15)

rotor (β b
i−1(k−2),eb

i−1(k),β
b
i−1(k−1),eb

i (k),c
b
i (k),s

b
i (k)); (S.16)

εb
i (k) = Q[αi(k)eb

i (k)]; (S.17)
}
e(k) = Q[αN+1(k)eN+1(k)]; (S.18)

}

258 Paulo S. R. Diniz and Marcio G. Siqueira

d(k) e(k)

x(k)

eb(k)

e f (k)

1.0

1.0

z−1

z−1

z−1

z−1

z−1

z−1

Fig. 9.1 Structure representing the FQRD-lattice algorithm.

9.3.1 Infinite-precision analysis

This section derives mean squared values of the internal variables in the FQRD-
lattice algorithm. They are of key importance for the finite-precision analysis that
will be performed in the next subsection.

9.3.1.1 Mean squared values of c f
i (k) and s f

i (k)

Previous studies [11] have shown that the mean squared values of the forward recur-
sion cosines and sines are

E{[c f
i (k)]2} = λ , and (9.99)

E{[s f
i (k)]2} = 1−λ . (9.100)

Simulations for these variables in the QRD-RLS and for the FQRD-lattice algo-
rithms indicate that these approximations are reasonable.

9.3.1.2 Mean squared values of β f
i (k), e f

i (k), and α f
i (k)

Step (S.11) of the FQRD-lattice algorithm implies that

β f
i (k) = λ 1/2c f

i (k−1)β f
i−1(k−1)+ s f

i (k−1)e f
i−1(k), and (9.101)

e f
i (k) = −λ 1/2s f

i (k−1)β f
i−1(k−1)+ c f

i (k−1)e f
i−1(k). (9.102)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 259

If it is supposed that the sines and cosines of the previous equations are uncorrelated
with each other, and that the values of the sines are zero-mean, then it is possible to
obtain the following relations:

E{[β f
i (k)]2} = λE{[c f

i (k−1)]2}E{[β f
i−1(k−1)]2}

+E{[s f
i (k−1)]2}E{[e f

i−1(k)]
2}, (9.103)

E{[e f
i (k)]2} = λE{[s f

i (k)]2}E{[β f
i−1(k)]

2}
+E{[c f

i (k)]2}E{[e f
i−1(k)]

2}. (9.104)

Substituting relations (9.99) and (9.100) in (9.103), it is possible to show that

E{[β f
i−1(k)]

2} =
E{[e f

i−1(k)]
2}

1+λ
. (9.105)

Substituting relations (9.99), (9.100), and (9.105) on (9.104), we obtain

E{[e f
i (k)]2} =

2λ
1+λ

E{[e f
i−1(k)]

2}. (9.106)

Since e f
0(k) = x(k), according to step (S.10), it follows that

E{[e f
i (k)]2} = σ2

x

[
2λ

1+λ

]i

. (9.107)

Consequently, according to (9.105),

E{[β f
i (k)]2} =

σ2
x

1+λ

[
2λ

1+λ

]i

. (9.108)

The recursion formula for α f
i−1(k) is given by

α f
i−1(k) =

√
λ [αb

i−1(k−1)]2 +[e f
i−1(k)]2, (9.109)

according to step (S.15). Supposing that α f
i−1(k) and e f

i−1(k) are stationary for k →
∞, it follows that

E{[α f
i (k)]2} =

E{[e f
i (k)]2}

1−λ
. (9.110)

260 Paulo S. R. Diniz and Marcio G. Siqueira

Using (9.107), the following expression results:

E{[α f
i (k)]2} =

σ2
x

1−λ

[
2λ

1+λ

]i

. (9.111)

9.3.1.3 Mean squared values of cb
i (k) and sb

i (k)

According to the algorithm step (S.15), it follows that sines and cosines are calcu-
lated by

cb
i (k) =

λ 1/2α f
i−1(k−1)

α f
i−1(k)

, and (9.112)

sb
i (k) =

e f
i−1(k)

α f
i−1(k)

. (9.113)

Thus, the mean squared values of the backward recursion sines and cosines are

E{[cb
i (k)]

2} =
λE{[α f

i−1(k−1)]2}
E{[α f

i−1(k)]2}
, and (9.114)

E{[sb
i (k)]

2} =
E{[e f

i−1(k)]
2}

E{[α f
i−1(k)]2}

. (9.115)

In the above equations, the averaging principle [9] was used. Considering that
α f

i−1(k) is statistically stationary as k →∞ and using the fundamental trigonometric
relation, it follows

E{[cb
i (k)]

2} = λ , (9.116)

E{[sb
i (k)]

2} = 1−λ . (9.117)

Surprisingly, these mean square values are the same as the ones for the forward
recursion sines and cosines, and different from those in the fast QRD-RLS proposed
by Bellanger [10, 12].

9.3.1.4 Mean squared values of β b
i (k), eb

i (k), and αb
i (k)

The relations for β b
i (k) and eb

i (k) derived from step (S.16) are totally analogous
to the ones for β f

i (k) and e f
i (k) shown in (9.101) and (9.102). Considering that the

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 261

mean squared values for cosines and sines are the same in the backward and forward
rotations and using the same statistical independence assumptions, it is possible to
obtain the following expressions:

E{[eb
i (k)]

2} = σ2
x

[
2λ

1+λ

]i

(9.118)

E{[β b
i (k)]2} =

σ2
x

1+λ

[
2λ

1+λ

]i

(9.119)

E{[αb
i (k)]2} =

σ2
x

1−λ

[
2λ

1+λ

]i

. (9.120)

9.3.1.5 Mean squared values of βi(k) and ei(k)

Using properties of the triangularized input signal matrix [11], a very simple rela-
tionship for the mean square value of βi(k) can be derived. It is supposed that the
reference input d(k) is an MA process added with white Gaussian measurement
noise r(k) so that d(k) = wo(k)∗ x(k)+ r(k). In this case, wo(k) is a sequence with
the coefficients of the MA process with non-zero values for k = 0, . . . ,N.

E{β 2
i (k)} =

[
2λ

1+λ

]i
[

σ2
x

1−λ
[wo

i]
2 +

σ2
x

1+λ

N

∑
j=i+1

[wo
j]

2

]
(9.121)

Using the norm conservation property of Givens rotations, a relation between
E{e2

i (k)} and E{β 2
i (k)} can be derived as follows:

E{e2
i (k)} = σ2

x ‖wo‖2 +(λ −1)
i−1

∑
j=0

E{β 2
i (k)}, (9.122)

where wo is a vector with N +1 entries with the sequence wo(k), k = 0, . . . ,N.

9.3.2 Finite-precision analysis

9.3.2.1 Mean squared value of Δαb
i (k)

According to step (S.10), the finite-precision version of αb
i (k), denoted by αb

i;Q(k),
can be modeled as

αb
i−1;Q(k) =

√
λ [αb

i−1;Q(k−1)]2 +[e f
i−1;Q(k)]2 +ηM(k)

+ηS(k), (9.123)

262 Paulo S. R. Diniz and Marcio G. Siqueira

where ηM(k) and ηS(k) are instantaneous quantization errors due to multiplica-
tion and square-root operations. Considering only first order terms, it is possible to
obtain

Δαb
i−1(k) =

λαb
i−1(k−1)Δαb

i−1(k−1)+ eb
i−1(k)Δeb

i−1(k)
αb

i−1(k)

− ηM(k)
αb

i−1(k)
+ηS(k). (9.124)

Squaring the above equation, supposing that the deviations and instantaneous quan-
tization noises are all zero mean and uncorrelated with each other, and substituting
Equations (9.118) and (9.120) it follows that

E{[Δαb
i−1(k)]

2} =
E[Δeb

i−1(k)]
2

1+λ
+

σ2
n

4σ2
x

1
1+λ

[
1+λ

2λ

]i−1

+
σ2

n

1−λ 2 . (9.125)

The averaging principle [9] was used on the derivation.

9.3.2.2 Mean squared values of Δs f
i (k) and Δc f

i (k)

Using relations derived from step (S.15) and first-order approximations it is possible
to write

E{[Δs f
i (k)]2} = E

[
Δeb

i−1(k)
αb

i−1(k)
−

eb
i−1(k)Δα

b
i−1(k)

[αb
i−1(k)]2

+ηD(k)

]2

. (9.126)

Using only first-order terms, supposing that the deviations and quantization noise
are all zero mean and uncorrelated with each other, and using the averaging princi-
ple [9], it is possible to derive

E{[Δs f
i (k)]2} =

E[Δeb
i−1(k)]

2

σ2
x

(1−λ)
[

1+λ
2λ

]i−1

+σ2
n

+E{[Δαb
i−1(k)]

2}σ2
x (1−λ)2

[
1+λ

2λ

]i−1

. (9.127)

The same methodology can be used to obtain the mean squared value of Δc f
i (k).

The result is

E{[Δc f
i (k)]2} =

2λ (1−λ 2)
σ2

x

[
1+λ

2λ

]i−1

E{[Δαb
i−1(k)]

2}+σ2
n . (9.128)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 263

9.3.2.3 Mean squared values of Δβ f
i (k) and Δe f

i (k)

The evolution of β f
i (k) is described by (9.103). If second-order errors are neglected,

it is possible to write

Δβ f
i−1(k) = λ 1/2c f

i (k−1)Δβ f
i−1(k−1)

+λ 1/2Δc f
i (k−1)β f

i−1(k−1)+Δs f
i (k−1)e f

i−1(k)

+s f
i (k−1)Δe f

i−1(k)+ηM(k). (9.129)

Supposing that all the deviations and the instantaneous quantization noise are zero
mean and uncorrelated with each other, it is possible to get

E{[Δβ f
i−1(k)]

2} =
λσ2

x

(1+λ)(1−λ 2)

[
2λ

1+λ

]i−1

E{[Δc f
i (k)]2}

+
σ2

n

1−λ 2 +
σ2

x

1−λ 2

[
2λ

1+λ

]i−1

E{[Δs f
i (k)]2}

+E{[Δs f
i (k)]2}+

E{[Δe f
i−1(k)]

2}
1+λ

. (9.130)

Using Equation (9.104) and following the same steps, it can be shown that

E{[Δe f
i (k)]2} = σ2

x

[
2λ

1+λ

]i−1

E{[Δc f
i (k)]2}+λE{[Δe f

i−1(k)]
2}

+E{[Δs f
i (k)]2}σ2

x
λ

1+λ

[
2λ

1+λ

]i−1

+λ (1−λ)E{[Δs f
i (k)]2}+σ2

n . (9.131)

9.3.2.4 Mean squared values of Δε f
i (k), Δαi(k), and Δεi(k)

According to step (S.13), it is possible to write

ε f
i (k) = αi(k−1)e f

i (k). (9.132)

Using the same methodology of previous derivations, it is possible to obtain

E{[Δε f
i (k)]2} = σ2

x

[
2λ

1+λ

]i

E{[Δαi(k)]2}+λ iE{[Δe f
i (k)]2}+σ2

n . (9.133)

Step (S.10) implies that

αi(k) = c f
i (k−1)αi−1(k). (9.134)

264 Paulo S. R. Diniz and Marcio G. Siqueira

The mean squared value for Δαi(k) can be shown to be

E{[Δαi(k)]2} = E{[Δc f
i (k)]2}λ i−1 +λE{[Δαi−1(k)]2}+σ2

n . (9.135)

It can be seen that εi(k) is described by step (S.14). The mean squared value for
Δεi(k) can be calculated as

E{[Δεi(k)]2} = E{[Δαi(k)]2}E{e2
i (k)}+σ2

n

+
σ2

x

1−λ

[
2λ

1+λ

]i−1

E{[Δei(k)]2}. (9.136)

9.3.2.5 Mean squared values of Δα f
i (k), Δsb

i (k), Δc f
i (k), Δβi(k), and Δei(k)

According to Table 9.5, these quantities have dynamic relations that are very similar
to their “dual” (forward or backward) counterparts. Using the same methodology
described in the previous sections, the following relations are derived:

E{[Δα f
i−1(k)]

2} =
E[Δe f

i−1(k)]
2

1+λ
+

σ2
n

4σ2
x

1
1+λ

[
1+λ

2λ

]i−1

+
σ2

n

1−λ 2 (9.137)

E{[Δsb
i (k)]

2} =
E[Δe f

i−1(k)]
2

σ2
x

(1−λ)
[

1+λ
2λ

]i−1

+σ2
n

+E{[Δα f
i−1(k)]

2}σ2
x (1−λ)2

[
1+λ

2λ

]i−1

(9.138)

E{[Δc f
i (k)]2} =

2λ (1−λ 2)
σ2

x

[
1+λ

2λ

]i−1

E{[Δα f
i−1(k)]

2}+σ2
n (9.139)

E{[Δeb
i (k)]

2} = σ2
x

[
2λ

1+λ

]i−1

E{[Δcb
i (k)]

2}+λE{[Δeb
i−1(k)]

2}

+E{[Δsb
i (k)]

2}σ2
x

λ
1+λ

[
2λ

1+λ

]i−1

+λ (1−λ)E{[Δsb
i (k)]

2}+σ2
n (9.140)

The other two remaining values required to compute E{[Δe(k)]2} can be derived
from step (S.12) and are shown below.

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 265

E{[Δβi−1(k)]2} =
λ

1−λ 2 E{[Δc f
i (k)]2E{β 2

i−1(k)}

+
1

1+λ
E{[Δei−1(k)]2}+E{e2

i−1(k)}+
σ2

n

1−λ 2

+
1

1−λ 2 E{[Δs f
i (k)]2} (9.141)

E{[Δei(k)]2} = λE{[Δei−1(k)]2}+E{[Δc f
i (k)]2}E{e2

i−1(k)}
+(1−λ)λE{[Δβi−1(k)]2}
+λE{[Δs f

i (k)]2}E{β 2
i−1(k)}+σ2

n (9.142)

9.3.2.6 Mean squared value of Δe(k)

Using step (S.18), the mean squared accumulated quantization error of the a
posteriori error signal is given by

E{[Δe(k)]2} = λNE{[ΔeN+1(k)]2}+E{[ΔαN+1(k)]2}
σ2

r

λ i +σ2
n . (9.143)

9.3.3 Simulation results

Intensive simulations were performed to verify the accuracy of derived relations in
both infinite and finite-precision. Different values of λ , σ2

x and different number of
bits were used. In the simulations, 2s complement rounding was used, the input was
white Gaussian noise with σ2

x = −30 dB, λ = 0.99, the measurement error signal
had variance σ2

r = −70 dB, and an MA process of order 2 was used. A total of
10,000 points were calculated in both finite-precision and infinite-precision and the
last 9000 samples were averaged. The results of simulated and calculated results for
E{[Δe(k)]2} are displayed in Table 9.6.

Simulations with different values of λ were also performed. On these simula-
tions, 15 bits were used. The input signals were the same as in the previous simula-
tions. The results are shown in Table 9.7.

Table 9.6 Simulation results of E{[Δe(k)]2} – different number of bits (λ = 0.99).

Number of Bits Simulated (dB) Calculated (dB)
10 −60.66 −59.94
15 −89.55 −90.05
20 −119.46 −120.15
30 −178.84 −180.36

266 Paulo S. R. Diniz and Marcio G. Siqueira

Table 9.7 Simulation results of E{[Δe(k)]2} – different values of λ (15 bits).

λ Simulated (dB) Calculated (dB)
0.90 −87.75 −88.96
0.95 −88.67 −89.67
0.98 −89.40 −89.98
0.99 −89.63 −90.05

9.4 Conclusion

This chapter describes propagation models for the error generated by quantization in
two important QRD-RLS algorithms, namely the conventional and the FQRD-lattice
algorithms. These algorithms are among the sub-class of algorithms that are known
to have stable behavior in finite-precision implementations. The approach presented
consists of deriving the steady-state mean squared values of all internal variables of
the algorithms as well as the mean squared values of their errors originating from
quantization.

As a rule, the analytical expressions for the internal variables allow access to
estimates of their dynamic range, which in turn should be employed in determining
their required wordlengths. In addition, the expressions related to the quantization
effects provide tools to estimate the loss in accuracy originating from error propa-
gation in the internal variables. The derived expressions are all verified to be quite
accurate through the simulations presented.

References

1. K. J. R. Liu, S.-F. Hsieh, K. Yao, and C.-T. Chiu, Dynamic range, stability, and fault-tolerant
capability of finite-precision RLS systolic array based on Givens rotations. IEEE Transactions
on Circuits and Systems, vol. 38, no. 6, pp. 625–636 (June 1991)

2. S. Leung and S. Haykin, Stability of recursive QRD-LS algorithms using finite-precision sys-
tolic array implementation. IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 5, pp. 760–763 (May 1989)

3. S. Haykin, Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs, NJ, USA (1991)
4. J. G. McWhirter, Recursive least-squares minimization using a systolic array. SPIE Real-Time

Signal Processing VI, vol. 431, pp. 105–112 (January 1983)
5. W. H. Gentleman and H. T. Kung, Matrix triangularization by systolic arrays. SPIE Real-Time

Signal Processing IV, vol. 298, pp. 19–26 (January 1981)
6. P. S. R. Diniz and M. G. Siqueira, Finite precision analysis of the QR-recursive least squares

algorithm. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Process-
ing, vol. 42, pp. 334–348 (May 1995)

7. A. Papoulis, Probability, Random Variables, and Stochastic Processes. McGraw-Hill Book
Company, New York, NY, USA (1965)

8. C. Caraiscos and B. Liu, A roundoff error analysis of the LMS adaptive algorithm. IEEE
Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-32, no, 1, pp. 34–41
(February 1984)

9 Finite and Infinite-Precision Properties of QRD-RLS Algorithms 267

9. C. G. Samson and V. U. Reddy, Fixed point error analysis of the normalized ladder algo-
rithm. IEEE Transactions on Audio, Speech, and Signal Processing, vol. ASSP-31, no. 5,
pp. 1177–1191 (October 1983)

10. N. Kalouptsidis and S. Theodoridis, Adaptive System Identification and Signal Processing
Algorithms, Prentice-Hall, Upper Saddle River, NJ, USA (1993)

11. M. G. Siqueira and P. S. R. Diniz, Infinite precision analysis of the QR-recursive least squares
algorithm. IEEE International Symposium on Circuit and Systems, ISCAS’93, Chicago,
USA, pp. 878–881 (May 1993)

12. M. G. Siqueira, P. S. R. Diniz, and A. Alwan, Infinite precision analysis of the fast QR decom-
position RLS algorithm. IEEE International Symposium on Circuits and Systems, ISCAS’94,
London, UK, vol. 2, pp. 293–296 (May–June 1994)

Chapter 10
On Pipelined Implementations of QRD-RLS
Adaptive Filters

Jun Ma and Keshab K. Parhi

Abstract This chapter discusses the pipelined systolic implementations of QR-
decomposition-based recursive least-squares (QRD-RLS) adaptive filters. The
annihilation-reording look-ahead technique is presented as an attractive technique
for pipelining of Givens rotation (or CO-ordinate Rotation DIgital Computer
(CORDIC)) based adaptive filters. It is an exact look-ahead and is based on
CORDIC arithmetic, which is known to be numerically stable. The conventional
look-ahead is based on multiply–add arithmetic. The annihilation-reording look-
ahead technique transforms an orthogonal sequential adaptive filtering algorithm
into an equivalent orthogonal concurrent one by creating additional concurrency
in the algorithm. Parallelism in the transformed algorithm is explored, and differ-
ent implementation styles including pipelining, block processing, and incremental
block processing are presented. Their complexity are also studied and compared.
The annihilation-reording look-ahead is employed to develop fine-grain pipelined
QRD-RLS adaptive filters. Both implicit and explicit weight extraction algorithms
are considered. The proposed pipelined architectures can be operated at arbitrarily
high sample rate without degrading the filter convergence behavior. Stability under
finite-precision arithmetic are studied and proved for the proposed architectures.
The complexity of the pipelined architectures are analyzed and compared.

Jun Ma
Shanghai Jiaotong University, Shanghai – China
e-mail: majun@ic.sjtu.edu.cn

Keshab K. Parhi
University of Minnesota, Minneapolis, MN – USA
e-mail: parhi@umn.edu

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 269
DOI 10.1007/978-0-387-09734-3 10, c© Springer Science+Business Media, LLC 2009

majun@ic.sjtu.edu.cn
parhi@umn.edu

270 Jun Ma and Keshab K. Parhi

10.1 QRD-RLS Systolic Architecture

Recursive least squares (RLS) [1] based adaptive filters have wide applications in
channel equalization, voiceband modem, high-definition TV (HDTV), digital audio
broadcast (DAB) system, beamforming, and speech and image processing. Histor-
ically, least mean squares (LMS) based adaptive filters are preferred in practical
applications due to their simplicity and ease of implementation. A limitation of LMS
algorithm is that it has a very slow convergence rate. The convergence of the LMS
algorithm is also very sensitive to the eigenvalue spread of the correlation matrix
of the input data. In applications such as HDTV equalizer and DAB system, there
are only limited number of data samples available. LMS-based equalizer may not
be able to reach convergence. The convergence of the RLS algorithm is an order of
magnitude faster than that of the LMS algorithm, but its complexity is an order of
magnitude higher. However, with rapid advances in scaled very large scale integra-
tion (VLSI) technologies, it is possible to implement RLS adaptive filters on single
chips which will make them attractive due to their rapid convergence behavior.

QR decomposition-based RLS (QRD-RLS) algorithm [1], also referred as Givens
rotation or COordinate Rotation DIgital Computer (CORDIC)-based RLS algorithm
in this chapter, is the most promising RLS algorithm since it possess desirable prop-
erties for VLSI implementations such as regularity, good finite word-length behav-
ior, and can be mapped onto CORDIC arithmetic-based processors [2–5]. The QRD-
RLS algorithm can be summarized as follows. The notations used in this chapter are
slightly different from those used in previous chapters, e.g. Chapters 2–4. For ease
of reading, their correspondences are summarized in Table 10.1. At each sample
time instance n, evaluate a residual (a posteriori) error:

e(n) = y(n)−uT(n)w(n), (10.1)

where u(n) and y(n) denote the p-element vector of signal samples and the reference
signal at time instance n, respectively, and w(n) is the p-element vector of weights
which minimize the quantity

ξ (n) = ‖Λ 1/2(n)e(n) ‖2

= ‖Λ 1/2(n)(y(n)−A(n)w(n)) ‖2,
(10.2)

Table 10.1 Notation correspondences between Chapter 10 and Chapters 2–4.

Notations Chapter 10 Chapters 2–4
Time index n k
Input signal u(n) x(k)
Input vector u(n) x(k)
Input matrix A(n) X(k)

Reference signal y(n) d(k)
Cholesky factor R(n) U(k)

Cholesky factor degree p× p (N +1)× (N +1)

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 271

where y(n) = [y(1), . . . ,y(n)]T denotes the sequence of all reference signal sam-
ples obtained up to time instance n, A(n) = [u(1), u(2), · · · ,u(n)]T is the input data
matrix, and Λ(n) = diag[λ n−1, · · · ,λ ,1] is the diagonal matrix of the forgetting fac-
tors. Here, we assume that all the data are real. The extension to the complex case
does not seem to have any particular difficulties. The optimum weight vector wls of
the QRD-RLS solution can be obtained by solving the following equation:

R(n)wls(n) = p(n), (10.3)

where R(n) and p(n) are p-by-p matrix and p-by-1 vector, respectively, which are
obtained by applying a QR decomposition to the weighted data matrix Λ 1/2(n)A(n)
and the weighted reference vector Λ 1/2(n)y(n), respectively. R(n), which is usually
referred to, in the literature [17], as the Cholesky factor, is chosen, in this chapter,
to be an upper triangular matrix.

In practice, the QR decomposition is implemented in a recursive manner. With
each incoming data sample set, a new row uT(n) is appended to the data matrix
A(n− 1) to yield A(n). An orthogonal transformation matrix Q(n) is determined
as products of p Givens rotation matrices to null the last row of A(n). Thus the
triangular matrix R(n−1) gets updated to R(n). The determined matrix Q(n) is then
used to update p(n−1) to p(n). The QR update procedure can be described by the
following equation:

[
R(n) p(n)
0T

p α(n)

]
= Q(n)

[
λ 1/2R(n−1) λ 1/2p(n−1)

uT(n) y(n)

]
. (10.4)

A systolic array-based signal flow graph (SFG) representation of the QR update
procedure is shown in Figure 10.1. In this figure, cells with symbols r and p inside
are the elements of the upper triangular matrix R and the vector p, respectively, as
shown in Equation (10.4). The recursive update relationship from time index n−1
to n, shown in Equation (10.4), is reflected by the delay element denoted by the
small square cell with symbol D inside in Figure 10.1. The input data ui(n) at the
top row of Figure 10.1 are the elements of input vector u(n) in Equation (10.4),
and the reference data y(n) in Figure 10.1 corresponds to the reference data y(n) in
Equation (10.4). In Figure 10.1, the circle and square cells denote Givens rotations
or CORDIC operations with circle cells operating in vectoring mode and square
cells operating in rotating mode. The functionality of the recursive update from
time index n− 1 to n is shown at the bottom of Figure 10.1. The c and s denote
cosθ and sinθ , respectively, which are chosen to annihilate x1(n). The determined
rotation angle is then applied to rotate the second column vector which consists of
λM/2r2(n−1) and x2(n), where M = 1 in the case of Equation (10.4). The forgetting
factor λ in Equation (10.4), for clarity purpose, is omitted in the circle and square
cell in Figure 10.1.

In practice, there are two types of QRD-RLS algorithms. One is implicit weight
extraction-based RLS algorithms, which are found useful in applications such as
adaptive beamforming. In these algorithms, the residual error e(n) is obtained with-
out the explicit computation of the weight vector w(n). A popular implicit weight

272 Jun Ma and Keshab K. Parhi

Μ/2

2

212

2 11
λλ

Μ/2

θ 1

θ 2

θ 3

θ 4

D

p

D

p

p

D

p

D

y(n)

s

r

r (n)

0

r (n)

)n(x)n(’x
=

D

r (n – 1) r (n – 1)

x (n)

D

r

D

r

D

r

D

r

D

r

D

r

D

r

D

r

D

r

u1(n) u2(n) u3(n) u4(n)

r

u(n)

θ
MD

Boundary Cell

u(n)

u’(n)

MD

r
θ

Internal Cell

c
c
s

–

Fig. 10.1 The systolic array-based signal flow graph representation of the QR update procedure.

extraction algorithm is due to McWhirter etc. [6]. The other is explicit weight
extraction-based RLS algorithms, which are found useful in applications such as
channel equalization. One such algorithm is due to Gentleman and Kung [7], which
involves a triangular update part and a linear array for triangular back-solving. The
linear array part does not make use of Givens rotations, and thus cannot be effi-
ciently combined with the triangular update part. To overcome this problem, alter-
native QRD-RLS algorithms with inverse updating have been developed to achieve
explicit weight extraction and also make use of Givens rotations. A typical structure
is the double-triangular type adaptive inverse QR algorithm [8, 9]. This algorithm
performs a QR update in an upper triangular matrix and an inverse QR update for
weight extraction in a lower triangular matrix.

One of the important ways to design efficient RLS algorithms for high-speed/
low-power applications is through pipelining [10, 11] and parallel processing [12].
Both implicit and explicit weight extraction-based QRD-RLS algorithms can be eas-
ily pipelined at cell level (also referred as coarse-grain pipelining). However, the
speed or sample rate of the algorithms is limited by the recursive operations in indi-
vidual cells as shown in Figure 10.1. In many applications, such as image coding
and beamforming, very high data rates would be required, and the sequential QRD-
RLS algorithms may not be able to operate at such high data rate. In this chapter, we
exploit the parallelism that exists in the QRD-RLS algorithm and consider pipelin-
ing at finer level such as bit or multi-bit level (also referred as fine-grain pipelining).
Notice that apart from being used to increase speed, pipelining can also be used to
reduce power dissipation in low to moderate speed applications [13].

To exploit the parallelism and increase the speed of the QRD-RLS, look-ahead
techniques [14] or block processing techniques can be applied. The look-ahead

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 273

techniques and the so called STAR rotation have been used in [15] to allow fine-
grain pipelining with little hardware overhead. However, this is achieved at the cost
of degradation of filtering performance due to the approximations in the algorithms.
Block processing was used to speed up the QRD-RLS in [16], however with large
hardware overhead. Both algorithms are based on multiply–add arithmetic. If one
insists on not using multiply–add arithmetic for their implementation, there is no
trivial extension of the look-ahead technique to the QRD-RLS algorithm.

There are other fast QRD-RLS algorithms, which are computationally more effi-
cient than the original algorithm [17, 18]. Square-root free forms of QRD-RLS are
presented in [17–22]. A unified approach to square-root QRD-RLS algorithm is pre-
sented in [19]. A low-complexity square-root free algorithm is developed in [20].
In [21], a scaled version of the fast Givens rotation [17] is developed that prevents
overflow and underflow. A division as well as square-root free algorithm has been
proposed in [23]. In [18], a fast QRD-RLS algorithm based on Givens rotations was
introduced. However, all these fast algorithms suffer the same pipelining difficulty
as the QRD-RLS algorithm, i.e., they cannot be pipelined at fine-grain level.

In this chapter, the annihilation-reording look-ahead technique [24] is presented
to achieve fine-grain pipelining in QRD-RLS adaptive filters. It is an exact look-
ahead and based on CORDIC arithmetic. One of the nice properties of this technique
is that it can transform an orthogonal sequential recursive DSP algorithm to an
equivalent orthogonal concurrent one by creating additional concurrency in the
algorithm. The resulting transformed algorithm possesses pipelinability, stability (if
the original one is stable), and good finite word-length behavior which are attractive
for VLSI implementations.

The rest of the chapter are organized as follows. The annihilation-reording look-
ahead technique is presented in Section 10.2. The derivation of pipelined CORDIC-
based RLS adaptive filters using the proposed look-ahead technique is presented
in Section 10.3. Section 10.4 draws conclusions and briefly discusses the adaptive
beamforming application. Appendix provides the derivation and proof of some key
formulas presented in the chapter.

10.2 The Annihilation-Reording Look-Ahead Technique

In this section, we introduce the annihilate-reording look-ahead technique as an
exact look-ahead based on CORDIC arithmetic. Similar to the traditional look-
ahead, it transforms a sequential recursive algorithm to an equivalent concurrent
one by creating additional parallelism in the algorithm. It is based on CORDIC
arithmetic and is suitable for pipelining of Givens rotation-based adaptive filtering
algorithms. The annihilation-reording look-ahead technique can be derived from
two aspects. One is from the block processing point of view, the other is from the
iteration point of view. The former is practical in real applications, while the latter
shows the connection with the traditional look-ahead technique. During our deriva-
tion, the forgetting factor λ is omitted for clarity purpose.

274 Jun Ma and Keshab K. Parhi

This section is organized as follows. The derivations of the annihilation-reording
look-ahead through block processing and iteration are presented in Subsection 10.2.1
and Subsection 10.2.2, respectively. The relationship with the conventional multiply–
add look-ahead is shown in Subsection 10.2.3. Subsection 10.2.4 explores the paral-
lelism in the proposed look-ahead transformed algorithm. Different implementation
styles are then presented in Subsection 10.2.5. Finally, a lemma for stability invari-
ance is stated and proved in Subsection 10.2.6.

10.2.1 Look-ahead through block processing

In this subsection, we derive the annihilation-reording look-ahead transformation
for Givens rotation-based algorithms via block-processing formulation.

The annihilation-reording look-ahead technique can be summarized as the fol-
lowing two-step procedure.

1. Formulate block updating form of the recursive operations with block size
equal to the pipelining level M.

2. Choose a sequence of Givens rotations to perform the updating in such a
way that it first operates on the block data and then updates the recursive
variables. The aim is to reduce the computational complexity of a block
update inside the feedback loop to the same complexity as a single-step
update.

Assume that a three-time speed up is desired for the QR update shown in
Figure 10.1. Consider the block update form of the QR update procedure shown
in Figure 10.2 with block size equal to the desired pipelining level 3. A sequence

(n) (n−2)(n−1)

Q
3

0 0 0 00 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

uuuu
uuuu

rr r r
r r r

r r
r

u u u u
u u u u
u u u

(n−3)

(n−2)
(n−1)
(n)

rr r r
r r r

r r
r

u u u
u u u u
u u u u

(n−3)

(n−2)
(n−1)

(n)

0

rr r r
r r r

r r
r

u u
u u u u
u u u u

(n−3)

(n−2)
(n−1)

(n)

0 0

rr r r
r r r

r r
r

u u

(n−2)
(n−1)
(n)

rr r r
r r r

r r
r

(n−2)
(n−1)

(n)

rr r r
r r r

r r
r

(n−2)
(n−1)
(n)

u

Q1 Q2

Q4Q5

u u

Fig. 10.2 QRD-RLS block update.

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 275

of Givens rotations is then chosen to annihilate the block data u(n− 2),u(n− 1),
and u(n), and update R(n− 3) to R(n). In this figure, traditional sequential update
operation is used. The sample data is annihilated in a row-by-row manner and the
diagonal r elements are involved in each update. The SFG of a typical r element
update is shown in Figure 10.3. It can be seen that the number of rotations inside
the feedback loop increases linearly with the number of delay elements in the loop.
Therefore, there is no net improvement in the sample or clock speed.

The annihilation-reording look-ahead technique is illustrated in Figure 10.4. In
this figure, the sample data is annihilated in a column-by-column manner and the
diagonal r elements are updated only at the last step. The SFG of a typical r ele-
ment update is shown in Figure 10.5. It can been seen that, without increasing the
loop computational complexity, the number of delay elements in the feedback loop
is increased from one delay element to three delay elements. These three delay ele-
ments can then be redistributed around the loop using the retiming technique [25]
to achieve fine-grain pipelining by three-level. The two CORDIC units outside the

D

r(n−1)

u(n)

r(n)

C

3D

r(n−3)

u(n−1)

u(n)

u(n−2)

r(n)

r(n−1)

r(n−2)C

C

C

(b)(a)

Fig. 10.3 (a) The sequential QR update procedure. (b) The block update procedure with block
size 3.

Q1

Q5

Q2

Q4

Q3

rr r r
r r r

r r
r

u u u u
u u u u
u u u u

(n−3)

(n−2)
(n−1)

(n)

rr r r
r r r

r r
r

u u u
u u u u

u u u

(n−3)

(n−2)
(n−1)
(n)

u

0

rr r r
r r r

r r
r

u u
u u u
u u u

(n−3)

(n−2)
(n−1)

(n)

u u
0
0

(n)

rr r r
r r r

r r
r

u u u
u u u

(n−2)
(n−1)

(n)

0
0
0

u u u

(n−3)

rr r r
r r r

r r
r

(n−2)
(n−1)
(n)

0
0

0
0

(n)(n)

0 0 u
u
u u

u
u

(n−3)

rr r r
r r r

r r
r

(n−2)
(n−1)

(n)

(n)

0 0 0 0
0 0 0 0
0 0 0 0

Fig. 10.4 QRD-RLS annihilation-reordering look-ahead.

276 Jun Ma and Keshab K. Parhi

D

r(n−1)

u(n)

r(n)

C

3D

C

C

C
r(n)

u(n−1)

u(n)

r(n−3)

u(n−2)

(b)(a)

Fig. 10.5 (a) A sequential QR update procedure. (b) The three-level pipelined architecture using
annihilation-reording look-ahead.

feedback loop are the computation overhead due to the look-ahead transformation.
Since they are feed-forward, cutset pipelining [26] can be applied to speed them up.
Furthermore, the overhead CORDIC units outside the loop can be arranged in a tree
structure to explore the parallelism and reduce overall latency.

10.2.2 Look-ahead through iteration

Alternatively, the annihilation-reording look-ahead can be derived through matrix
iterations. From Figure 10.1 and Equation (10.4), the basic QR recursion is given as
follows:

[
r(n)

0

]
=

[
c s
−s c

][
r(n−1)

u(n)

]
, (10.5)

where r(n) and u(n) correspond to the boundary element and input data to the
boundary element in Figure 10.1, respectively. A direct look-ahead by iterating
Equation (10.5) two times can be performed by the following embedding proce-
dure. Equation (10.5) can be rewritten as

⎡
⎣

r(n)
0
0

⎤
⎦ =

⎡
⎣

c1 0 s1

0 1 0
−s1 0 c1

⎤
⎦
⎡
⎣

r(n−1)
0

u(n)

⎤
⎦ . (10.6)

From Equation (10.5), we also have
⎡
⎣

r(n−1)
0

u(n)

⎤
⎦ =

⎡
⎣

c2 s2 0
−s2 c2 0

0 0 1

⎤
⎦
⎡
⎣

r(n−2)
u(n−1)

u(n)

⎤
⎦ . (10.7)

Substituting Equation (10.7) into Equation (10.6) leads to
⎡
⎣

r(n)
0
0

⎤
⎦ =

⎡
⎣

c1 0 s1

0 1 0
−s1 0 c1

⎤
⎦
⎡
⎣

c2 s2 0
−s2 c2 0

0 0 1

⎤
⎦
⎡
⎣

r(n−2)
u(n−1)

u(n)

⎤
⎦ . (10.8)

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 277

This is the one-step iterated version of Equation (10.5). Iterating (10.8) once more
leads to the following two-step iterated version of (10.5).

⎡
⎢⎢⎣

r(n)
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c1 0 0 s1

0 1 0 0
0 0 1 0

−s1 0 0 c1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c2 0 s2 0
0 1 0 0

−s2 0 c2 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

c3 s3 0 0
−s3 c3 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r(n−3)
u(n−2)
u(n−1)

u(n)

⎤
⎥⎥⎦ (10.9)

The SFG of (10.9) is shown in Figure 10.3. Notice that this transformation does
not help much, since all three CORDIC operations involve updating the r element.
Although the feedback loop contains three delays, the computation time in the loop
is also increased by a factor of three. Therefore, the overall sample rate remains
unaltered.

In order to increase the sample rates, the following transformation is consid-
ered. Notice that, in (10.9), instead of vectoring the input vector in the order of
(1,2),(1,3), and (1,4), we could apply the Givens matrix in a different order so that
the input vector is annihilated in the order of (3,4),(2,3), and (1,2), where nota-
tion (i, j) represents a pair of row indexes of input matrix in (10.9). For example,
(3,4) denotes that the Givens matrix will operate on input vector [u(n−1),u(n)]T,
According to this scheme, the input samples are pre-processed and the r elements
are updated only at the last step. This leads to the following three-level annihilation-
reording look-ahead transformation for CORDIC-based RLS adaptive filters.

⎡
⎢⎢⎣

r(n)
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

c
′
1 s

′
1 0 0

−s
′
1 c

′
1 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 c

′
2 s

′
2 0

0 −s
′
2 c

′
2 0

0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 c

′
1 s

′
1

0 0 −s
′
1 c

′
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r(n−3)
u(n−2)
u(n−1)

u(n)

⎤
⎥⎥⎦

The SFG of the above transformation is shown in Figure 10.5, which is the
same as the one derived from the block processing point of view. Therefore, with-
out increasing the loop computation time, we increase the number of delays in the
feedback loop from one delay element to three delay elements. These three delay
elements can then be redistributed around the loop to achieve pipelining by three-
level.

The above derivation is similar to the traditional multiply–add look-ahead [11]
procedure in the sense that both perform look-ahead through iteration. However, it
can be seen that the block processing derivation in Section 10.2.1 is more simple
and practical in real applications.

10.2.3 Relationship with multiply–add look-ahead

It is worth mentioning here, for the first order case, that there exists strong similarity
of the transformed flow graphs between the annihilation-reording look-ahead and

278 Jun Ma and Keshab K. Parhi

the multiply–add look-ahead. Consider the first order IIR digital filter described by
the following equation:

y(n) = ay(n−1)+u(n). (10.10)

The SFG of (10.10) is shown in Figure 10.6(a). After applying the multiply–add
look-ahead transformation with pipelining level 3, the resulting equation is given as

y(n) = a3 y(n−3)+a2 u(n−2)+au(n−1)+u(n). (10.11)

The SFG of (10.11) is shown in Figure 10.6(b). The filter sample rate can be
increased by a factor of 3 after redistributing the three delay elements in the
feedback loop using the retiming technique [25].

On the other hand, a redraw of Figure 10.5 can be carried out as in Figure 10.7.
Comparing Figures 10.7 to Figure 10.6, it is seen that the two graphs are essen-
tially the same except that the multiply–add units are replaced by the CORDIC
units. Thus, both the annihilation-reording look-ahead and the multiply–add look-
ahead explore the intra-iteration constraints in the recursive algorithms and create
additional concurrency. The differences between the two techniques lie in that the
multiply–add look-ahead is suitable for multiply–add arithmetic-based recursive
digital filters where the filter coefficients are fixed. The annihilation-reording look-
ahead is suitable for CORDIC arithmetic (or Givens rotation) based adaptive digital
filters, where the filter coefficients are adaptive to the input data.

D

a

D D

a a

3D

a

)n(y)n(u

2

u(n)

3

y(n)

(a) (b)

Fig. 10.6 (a) A first-order IIR digital filter. (b) The three-level pipelined architecture using
multiply–add look-ahead.

D DD

C

3D

CC C

u(n)

r(n)u(n) r(n)

(a) (b)

Fig. 10.7 (a) A sequential QR update procedure. (b) The three-level pipelined architecture using
annihilation-reording look-ahead.

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 279

10.2.4 Parallelism in annihilation-reording look-ahead

In this subsection, we show explicitly how the annihilation-reording look-ahead
technique explore the parallelism in the recursive algorithm and create the addi-
tional concurrency.

Consider the sequential QR update procedure shown in Figure 10.5(a). Its depen-
dence graph (DG) representation is shown in Figure 10.8. In this figure, the little cir-
cle denotes CORDIC operations. The arrows denote dependency between signals.
The k direction is the time increasing direction. The arrows along the k direction
represent the dependency between iterations. For example, r(n+1) is dependent on
r(n), r(n) is dependent on r(n−1), and so on. As we mentioned in Section 10.1, it
is this kind of dependency that limits the speed of the QR update and thus limits the
sample rate. The annihilation-reording look-ahead actually breaks this dependency
and transforms the original DG into an equivalent DG which consists of M inde-
pendent sub-DGs, where M is the desired pipelining level. Since these M sub-DGs
are independent, they can be executed in parallel. Therefore, the M independent
sub-DGs are the additional concurrency created by look-ahead transformation. For
M = 3, the three sub-DGs: DG-I, DG-II, and DG-III are shown in Figure 10.9. Fig-
ure 10.9 is the DG representation of Figure 10.5(b). From Figure 10.9, it is seen that
the computation of r(n) is not dependent on the r(n−1) anymore, instead dependent
on the r element three iterations back in time which is r(n−3). Similarly, r(n+1) is
dependent on r(n−2), and r(n+2) depends on r(n−1). Therefore, after look-ahead
transformation, the dependency between consecutive iterations are broken down
into three independent operation sequences with each sequence having a depen-
dency between every three iterations. For each sub-DGs, the dependency which is
perpendicular to the k direction does not cause problem, since index transforma-
tion [27] (which is equivalent to the cut-set pipelining for SFG) can be performed to
reveal these dependency. Therefore, the three independent sequences, which consist
of 32 = 9 independent CORDIC operations in total, are created for one iteration. In
general, for pipelining level M, M2 independent CORDIC operations are created in
the algorithm for one iteration. As M increases, infinite parallelism can be created
in the algorithm, thus can achieve arbitrarily high sample rate.

r(n–3) r(n–2) r(n–1) r(n) r(n+1) r(n+2) r(n+3) r(n+4) r(n+5)

u(n–2) u(n–1) u(n+1) u(n+2) u(n+3) u(n+4) u(n+5)u(n)

k direction (time)

Fig. 10.8 The dependence graph of the sequential QR update procedure.

280 Jun Ma and Keshab K. Parhi

u(n–2) u(n–1) u(n+1) u(n+2) u(n+3) u(n+4) u(n+5)u(n)

r(n+1) r(n+4)

r(n+2) r(n+5)

r(n–2)

r(n–1)

r(n) r(n+3)

k direction (time)

r(n–3)

DG-III

DG-II

DG-I

Fig. 10.9 The dependence graph of the pipelined QR update with pipelining level 3.

10.2.5 Pipelined and block processing implementations

In this subsection, we present three concurrent realizations of CORDIC-based RLS
adaptive filters. They are pipelining, block processing, and incremental block pro-
cessing.

10.2.5.1 Pipelined realization

Consider the three sub-DGs in Figure 10.9. If they are mapped along the k direc-
tion, we obtain the SFG representation. Since the three sub-DGs are independent,
they can be mapped onto the same CORDIC operation resources and operated
in a pipeline interleaving fashion [11]. This leads to the pipelined realization of
CORDIC-based adaptive filters shown in Figure 10.10. In this figure, the input data
samples are processed in the block manner through a tapped delay line as shown
in Figure 10.11(a). Since consecutive block samples are shift-overlapped, thus all

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 281

u(n)

r(n)
C

DD

θ 2

3θ

θ 1

C

C

3D

Boundary Cell

Fig. 10.10 Pipelined realization with pipelining level 3.

DD

u(n − 1)

u(n − 2)

u(n)u(n − 2)

u(n − 3)

u(n − 4)

u(n − 1)

u(n − 2)

u(n − 3)

u(n − 2)

u(n − 5)

u(n − 1)

u(n − 4)

u(n)

u(n − 3)

u(n − 8) u(n − 7) u(n − 6)

(a) (b)

Block (k)

Block (k − 1)

Block (k − 2)

Fig. 10.11 Serial-to-parallel conversion for (a) Pipelining and (b) Block Processing.

filtering output can be obtained consecutively. The implementation complexity in
terms of CORDIC units for pipelined realization is linear with respect to the pipelin-
ing level M which is M = 3 CORDIC units in Figure 10.10.

10.2.5.2 Block processing realization

In block processing, the three sub-DGs are mapped independently along the k direc-
tion to obtain the block processing realization shown in Figure 10.12. In block real-
izations, input samples are processed in the form of non-overlapping blocks to gen-
erate non-overlapping output samples. The block of multiple inputs is derived from
the single serial input by using a serial-to-parallel converter at the input as shown
in Figure 10.11(b), and the serial output is derived from the block of outputs by a
parallel-to-serial converter at the output. The implementation complexity in terms
of CORDIC units for block processing realization is quadratic with respect to the
pipelining level M which is M2 = 32 = 9 CORDIC units in Figure 10.12. To reduce
complexity, incremental block processing technique can be used.

282 Jun Ma and Keshab K. Parhi

Boundary Cell

r (3k + 2)

θ1(3k + 2)θ1(3k + 1)θ1(3k)

θ2(3k)

θ3(3k)

θ2(3k + 1)

θ3(3k + 1)

θ2(3k + 2)

θ2(3k + 2)

r(3k + 1)r(3k)

u(3k + 1), u(3k)

DD

D D

D

C

C

C

C

C

C

C

C

C

Fig. 10.12 Block processing realization with block size 3.

10.2.5.3 Incremental block processing realization

Consider the annihilation-reording look-ahead transformed DG shown in
Figure 10.9. Instead of using u(n+1),u(n),u(n−1), and r(n−2) to obtain r(n+1),
r(n+1) can be computed incrementally using u(n+1) and r(n) once r(n) is avail-
able. Similarly, r(n+2) can be computed incrementally using u(n+2) and r(n+1)
once r(n + 1) is available. The DG of incremental block QR update is shown in
Figure 10.13. Mapping the DG along the k direction gives us the SFG representation
of the incremental block processing realization shown in Figure 10.14. The imple-
mentation complexity in terms of CORDIC units for incremental block processing
is linear with respect to the pipelining level M which is 2M − 1 = 2× 3− 1 = 5
CORDIC units in Figure 10.14. Notice that the incremental computation parts do not
contain feedback loops, thus cutset pipelining can be employed to speed them up.

r(n – 3)
r(n – 2) r(n – 1)

r(n) r(n + 3)
r(n + 1) r(n + 2)

u(n – 2) u(n – 1) u(n + 1) u(n + 2) u(n + 3)u(n)

k direction (time)

Fig. 10.13 The dependence graph of the incremental block QR update with block size 3.

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 283

Boundary Cell

r (3k) r(3k+2)r(3k+1)
D

DD

θ1(3k)

θ3(3k+2)θ3(3k+1)

θ2(3k)

θ3(3k))

u(3k+1), u(3k)

C

C

C

C

C

Fig. 10.14 Incremental block processing realization with block size 3.

Therefore, in terms of number of CORDIC units used in the implementation,
pipelined realization is better than incremental block processing and block process-
ing, and incremental block processing is better than block processing. In practice,
the chosen of implementation styles depends on the target applications and available
hardware resources.

10.2.6 Invariance of bounded input and bounded output

In this subsection, we show a property of the annihilation-reording look-ahead trans-
formation. It will be useful in the proof of the stability of the pipelined QRD-RLS
algorithm in Section 10.3.2.

Lemma 1. Consider the compound CORDIC cell denoted by the dashed circle in
Figure 10.10. Under finite-precision arithmetic, if each individual CORDIC cell is
bounded input and bounded output (BIBO), then the compound CORDIC cell is also
BIBO.

Proof. Assume the pipelining level is M, from Figure 10.10, the look-ahead trans-
formed compound CORDIC cell consists of cascade connections of M CORDIC
units. Since each of them is BIBO under finite-precision arithmetic, therefore the
compound cell is also BIBO.

10.3 Pipelined CORDIC-Based RLS Adaptive Filters

In this section, we apply the annihilation-reording look-ahead techniques to the
CORDIC-based RLS adaptive filters and derive fine-grain pipelined topologies. We
consider both algorithms with implicit weight extraction (conventional QRD-RLS)
and explicit weight extraction (inverse QRD-RLS).

284 Jun Ma and Keshab K. Parhi

This section is organized as follows. The pipelined QRD-RLS with implicit
weight extraction is presented in Section 10.3.1. Its stability under finite-precision
arithmetic is studied and proved in Section 10.3.2. Finally, the pipelined adaptive
inverse QR algorithm for explicit weight extraction is presented in Section 10.3.3.

10.3.1 Pipelined QRD-RLS with implicit weight extraction

Consider the QRD-RLS formulation given in Equations (10.1), (10.2), (10.3), and
(10.4). After the triangular matrix R(n) and the corresponding vector p(n) are gen-
erated, the optimum weight vector w(n) can be obtained by solving Equation (10.3).
The residual error e(n) is then computed as

e(n) = y(n)−uT(n)R−1(n)p(n). (10.12)

However, for some applications such as adaptive beamforming, this proves to be
unnecessary. Since in these cases, the residual error e(n) is usually the only variable
interested, and it is not necessary to compute the weight vector w(n) explicitly. In
[6], it is shown that the estimation error e(n) may be obtained directly as the product
of two variables, the angle-normalized residual α(n) and the likelihood factor γ(n).
α(n) and γ(n) are obtained by applying the same orthogonal transformation matrix
Q(n) to the vector [p(n− 1),y(n)]T and the pinning vector πππ = [0, · · · ,0,1]T [6].
Therefore, the adaptive RLS algorithm can be summarized as

[
R(n) p(n) s(n)
0T

p α(n) γ(n)

]
= Q(n)

[
λ 1/2R(n−1) λ 1/2p(n−1) 0p

uT(n) y(n) 1

]
, (10.13)

where 0p is the p-by-1 null vector. The SFG representation of the algorithm is shown
in Figure 10.15, where problem size p is chosen to be 4. The circle and square
cells in Figure 10.15 denote CORDIC operations which follow the same notations
in Figure 10.1. The circle cell with letter G inside denotes a Gaussian rotation (or
a linear CORDIC operation). Its functionality is shown in the figure. Notice that
the converting factor cells which generate the likelihood factor γ does not contain
recursive operations.

In Figure 10.15, the recursive operation in the cell limits the throughput of the
input samples. To increase the sample rates, the annihilation-reording look-ahead
technique is applied.

The recursive updating formula for the QRD-RLS with implicit weight extraction
is given in Equation (10.13). Its block updating form with block size M is given as
follows:

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 285

u1(n) u2(n) u3(n) u4(n)

θ1

x

z

y

G

z + x y

0

0

0
D

r

γ
0

θ4

θ3

θ2

e (n)

α

D

p

D

p

p

D

p

0

D

r

D

r

D

r

D

r

D

r

D

r

D

r

D

r

D

r

D

G

y (n)1

Fig. 10.15 Signal flow graph representation for RLS minimizations.

[
R(n) p(n) s(n)

OM×p ααα(n) γγγ(n)

]
= Q(n)

[
λM/2R(n−M) λM/2p(n−M) 0p

UM(n) yM(n) δδδM

]
,

(10.14)

where UM(n) is an M-by-p matrix defined as

UM(n) = [u(n−M +1), · · · ,u(n−1),u(n)]T ,

and yM(n) is an M-by-1 vector defined as

yM(n) = [y(n−M +1), · · · ,y(n−1),y(n)]T .

In (10.14), OM×p and 0p denote M-by-p null matrix and p-by-1 null vector, respec-
tively, ααα(n) and γγγ(n) are M-by-1 vectors, and δδδM is a M-by-1 constant vector
defined as δδδM = [0, . . . ,0,1]T. The estimation error e(n) can be calculated as the
inner product of the angle-normalized residual vector ααα(n) and the likelihood vector
γγγ(n), i.e.,

e(n) = αααT(n)γγγ(n). (10.15)

The proof is given in Appendix.

286 Jun Ma and Keshab K. Parhi

We now determine a sequence of Givens rotations, whose product form the
orthogonal transformation matrix Q(n) in (10.14), to annihilate the block input data
matrix UM(n). The order of the Givens rotations is chosen such that the input data is
pre-processed and block-data update is finished in the same complexity as a single-
data update. This procedure was illustrated in detail in Figure 10.4. A three-level
fine-grain pipelined QR update topology was shown in Figure 10.5. After apply-
ing the annihilation-reording look-ahead, the concurrent QRD-RLS algorithm can
be realized using different implementation styles such as pipelining, block pro-
cessing, and incremental block processing as discussed in Section 10.2.5. In the
rest of the chapter, we only show the topologies for the pipelined realization. The
other realizations can be derived similarly. A fine-grain pipelining implementation
with pipelining level 3 of CORDIC-based QRD-RLS adaptive filter with implicit
weight extraction is shown in Figure 10.16. In this figure, all cell notations follow
the notations in Figure 10.15 except that they are compound versions. The inter-
nal structure of each compound cell is shown at the bottom part of Figure 10.16.
Compared to Figure 10.15, the three-level pipelined architecture tripled the num-
ber of CORDIC units and communication bandwidth which is linear with respect
to the pipelining level. Thus, in general, the total complexity is O[1

2 Mp2] CORDIC
units per sample time, where p is the input sample size, and M is the pipelining
level.

10.3.2 Stability analysis

It is generally recognized that the QR decomposition-based algorithms have good
numerical properties, which means that they can perform with an acceptable man-
ner in a short word-length environment. This is due to the fact that the algorithms
consist of only orthogonal transformation which leads to inherent stability under
finite-precision implementation. From Sections 10.2.1 and 10.2.2, we see that the
annihilation-reording look-ahead transformation only involves orthogonal transfor-
mation and does not alternate the orthogonality of the algorithm. This implies that
the pipelined algorithms also maintain the good numerical properties. Let’s define
the stability of the QRD-RLS algorithm in the sense of BIBO i.e., under finite-
precision arithmetic, if the input signals are bounded, then the output residual error
e(n) is also bounded. We have the following result:

Theorem 1. Under finite-precision arithmetic, given a pipelining level M, the M-
level fine-grain pipelined CORDIC-based RLS adaptive filter algorithm with implicit
weight extraction is stable.

Proof. In [28], it is shown that for the sequential QRD-RLS algorithm shown in
Figure 10.15, a CORDIC cell, operating with finite-precision arithmetic, constitutes
a BIBO subsystem of the array. From Figure 10.16, the pipelined algorithm has
the same architecture as the sequential one except that all CORDIC cells are com-
pound versions. Therefore, by Lemma 1, a compound CORDIC cell, operating with

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 287

θ1

θ2

θ3

pr r

Converting Factor Cell

3D

p

0

0

0

0

α

u1(n) u2(n) u3(n) u4(n)

y
1 2

y y
3

2x

x
1

3x

x
1

y
1 2x

2
y

3x y
3z + + +

γ

r

01 0

y(n)

Internal CellBoundary Cell Reference Cell

G

z

0 3D

r

G

r

0

r

r

p

r r r

r p

r

3D

p

3D

3D

G

3D

3D

3D

3D

3D

3D

3D

D

3D
3D

3D

3D

G

3D

G

e(n)

DD

C

C

C

C

C

C

C

C

C

C

C

C

DDDDDD D

Fig. 10.16 A three-level fine-grain pipelined CORDIC-based implicit weight extraction QRD-RLS
adaptive filter architecture.

finite-precision arithmetic, constitutes a BIBO subsystem of the array. Thus, if the
desired response y(n) and input samples u(n) in Figure 10.16 are bounded, the quan-
tized value of the input of the final linear CORDIC cell is also bounded, which leads
to the bounded residual error e(n). This completes the proof of Theorem 1.

288 Jun Ma and Keshab K. Parhi

The stability of other CORDIC-based RLS adaptive filtering algorithms pre-
sented in this chapter can also be proved using the similar approach as in Theorem 1
and will not be repeated any further.

10.3.3 Pipelined QRD-RLS with explicit weight extraction

In applications such as channel equalization, RLS-based equalization algorithms
such as, e.g., decision-directed schemes [29] and orthogonalized constant modulus
algorithms [30], require the explicit availability of the filter weight vector w(n). The
standard (Gentleman-Kung type) QRD-RLS update scheme involves two computa-
tional steps which cannot be efficiently combined on a pipelined array. To circum-
vent the difficulty, inverse updating-based algorithms are developed [30–32]. Here,
we focus on a double-triangular type adaptive inverse QR algorithm [8].

Consider the least squares formulation given in (10.1), (10.2), (10.3), and (10.4).
Define the (p+1)-by-(p+1) upper triangular compound matrix R̃(n) as

R̃(n) =
[
λ 1/2R(n) λ 1/2p(n)

0T
p γ(n)

]
,

where γ(n) is a scalar factor, and R(n),p(n),0T
p are defined as in Section 10.1. Using

Equation (10.3), R̃−1 is then given as

R̃−1(n) =
[
λ−1/2R−1(n) −R−1(n)p(n)/γ(n)

0T
p 1/γ(n)

]

=
[
λ−1/2R−1(n) −w(n)/γ(n)

0T
p 1/γ(n)

]
.

Notice that R̃−1 remains upper triangular and the optimal weight vector w(n) is
explicitly shown on the rightmost column of R̃−1 except for a scaling factor −1/γ .
Now, consider the QR update of the upper triangular compound matrix R̃. From
(10.4), we have [

R̃(n)
0T

p+1

]
= Q̃(n)

[
R̃(n−1)

ũT(n)

]
, (10.16)

where ũT(n) = [uT(n),y(n)], and Q̃(n) is determined as products of (p+1) Givens
rotation matrices to null the input sample vector ũT(n) and update matrix R̃. Extend-
ing the (p + 2)-by-(p + 1) matrix on the right-hand-side of (10.16) to the (p + 2)-
by-(p + 2) square matrix by adding an extra column vector [0T

p+1,1]T to its right
leads to [

R̃(n) v(n)
0T

p+1 d(n)

]
= Q̃(n)

[
R̃(n−1) 0p+1

ũT(n) 1

]
, (10.17)

where vector v(n) and scalar d(n) correspond to the QR update of vector 0p+1

and scalar 1. Inverting the matrix on both sides of Equation (10.17) (the matrix is

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 289

non-singular since R̃ is non-singular) and noticing that Q−1 = QT lead to

[
R̃−1(n) v′(n)
0T

p+1 d′(n)

]
=

[
R̃−1(n−1) 0p+1

−ũT(n) R̃−1(n−1) 1

]
Q̃T(n). (10.18)

Taking the transposition on both sides of (10.18), we obtain

[
R̃−T (n) 0p+1

v′T(n) d′(n)

]
= Q̃(n)

[
R̃−T (n−1) −R̃−T (n−1) ũ(n)

0T
p+1 1

]
.

Thus, we have the following inverse updating formula

[
R̃−T (n)
v′T(n)

]
= Q̃(n)

[
R̃−T (n−1)

0T
p+1

]
. (10.19)

Notice that the orthogonal transformation matrix Q̃(n), which updates the upper
triangular matrix R̃ in (10.16), also updates the lower triangular matrix R̃−T in
(10.19). Thus, the double-triangular adaptive inverse QR algorithm can be sum-
marized as follows:

[
R̃(n) R̃−T (n)
0T

p+1 v′T(n)

]
= Q̃(n)

[
R̃(n−1) R̃−T (n−1)

ũT(n) 0T
p+1

]
. (10.20)

The important point lies in noticing that the scaled weight vector −w/γ explicitly
sits on the bottom row of lower triangular matrix R̃−T or the rightmost column of
upper triangular matrix R̃−1 as shown before. Therefore, we could achieve parallel
weight extraction by taking out the last row elements of R̃−T (n) and multiply them
by the scaling factor γ(n) sitting on the lower right corner of upper triangular matrix
R̃(n).

An efficient SFG representation of the CORDIC-based double-triangular adap-
tive inverse QR algorithm is shown in Figure 10.17. In this figure, the notation fol-
lows the ones in Figure 10.1. The operation for updating r−1 elements is shown at
the bottom part of Figure 10.17. The residual error e(n) is computed according to
(10.1) as shown in the figure.

The element on the lower right corner of lower triangular matrix R̃−T contains
value 1/γ(n) and is not shown in the figure. This algorithm has complexity O[p2]
Givens rotations per sample period, where p is the size of the array.

From Figure 10.17, we see that the double-triangular adaptive inverse QR algo-
rithm can be easily pipelined at cell level after applying cut-set pipelining. The
speed or sample rates of the algorithm’s implementation is, however, limited by
recursive operations in each individual cell as described algebraically by (10.20).
We now apply the annihilation-reording look-ahead technique to derive concurrent

290 Jun Ma and Keshab K. Parhi

21

2 2

λ
−Μ/2

2

1

λ
−Μ/2

1

r

MD

u’ (n)

u(n)

Internal CellBoundary Cell

MD

θ

u(n)

r (n)

u ’(n)0

r

c
c
s u (n)

r (n – 1)
u (n)

r (n) r (n-1)=

θ

s

D

D

D

DD

D

D

/γ

D

Gy

1

1 1

D

1

w

11 1

D

1

θ

1

D

D

D

D

x

D

D

z

z + x y

D

D

D

0

G

y(n)

e (n)

33r 1
23r 1

13r

12r 1
22r 1

11r 1
1p

2

3p33

r

13r

22r

12r11r

r

23 p

γ

G G G 0

0

0

w2/γ w3/γθ4

θ3

θ2

u1(n)

u1(n) u2(n) u3(n)

u2(n) u3(n) y(n)

Fig. 10.17 Signal flow graph representation of double-triangular type adaptive inverse QR
algorithm.

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 291

adaptive inverse QR algorithm for high-speed CORDIC-based parallel RLS weight
extraction.

The block updating form with block size M of the sequential updating Equa-
tion (10.20) is given as follows:

[
R̃(n) R̃−T (n)

0M×(p+1) V (n)

]
= Q̃(n)

[
R̃(n−M) R̃−T (n−M)

ŨT
M(n) 0M×(p+1)

]
, (10.21)

where ŨT
M(n) is a M-by-(p+1) matrix defined as

ŨT
M(n) =

[
ũ(n−M +1) · · · ũ(n−1) ũ(n)

]T
,

OM×(p+1) denotes a M-by-(p+1) null matrix, and V (n) is a M-by-(p+1) matrix.
The derivation of (10.21) essentially follows the algebraic manipulation in

(10.16), (10.17), (10.18), (10.19), and (10.20) provided that we start from the fol-
lowing block update equation

[
R̃(n)

0M×(p+1)

]
= Q̃(n)

[
R̃(n−M)

ŨM(n)

]
. (10.22)

Notice that the Q̃(n) matrix in (10.22) is different from the Q̃(n) in (10.16), though
we use the same notation here.

Apply the annihilation-reording procedure described in Figure 10.4; we obtain
the concurrent architecture shown in Figure 10.5. A complete three-level fine-grain
pipelined topology for CORDIC-based QRD-RLS with explicit parallel weight
extraction is shown in Figure 10.18. In this figure, all cell notations follow the nota-
tions in Figure 10.17 except that some of them are compound versions. The inter-
nal structure of each compound cell is shown at the bottom part of Figure 10.18.
Compared to Figure 10.17, the number of CORDIC units and communication band-
width are tripled which is linear with respect to the pipelining level. In general,
the total complexity for pipelined realization of CORDIC-based QRD-RLS with
explicit weight extraction is O[Mp2], where M is the pipelining level and p is the
size of input samples.

10.4 Conclusion

In this chapter, the annihilation-reording look-ahead technique is presented to
achieve fine-grain pipelining for CORDIC-based RLS adaptive filtering algorithms.
It is an exact look-ahead and based on CORDIC arithmetic. The look-ahead trans-
formation can be derived from either the block processing or the iteration point
of view, while the former is simpler and more practical and the latter shows the

292 Jun Ma and Keshab K. Parhi

w1/γ

G

x

z

y

z + x y

D D D D D DD D

3D

3D

3D

u1(n)

u1(n) u2(n) u3(n)y(n)

e(n) 0

u2(n) u3(n)

C

C

C

C

C

C
rii(n) rij(n)

Boundary Cell Internal Cell

θ1

θ2

θ3

3D3D

G

33r 1
23r 1

13r 1

12r 1
22r 1

11r 1
1p

2

3p33

r

13r

22r

12r11r

r

23 p

γ w2/γ w3/γ

3D 3D

3D

D3D3D3

3D 3D3D

D3D3D3D3

3D3D 3D

000

000

000

Fig. 10.18 A three–level fine-grain pipelined topology of CORDIC-based double-triangular adap-
tive inverse QR algorithm.

connection with the traditional multiply–add look-ahead technique. The exploration
of the parallelism in the annihilation-reording look-ahead transformation leads to
three implementation styles namely pipelining, block processing, and incremental
block processing. The implementation complexity in terms of CORDIC units for
pipelined realization is the least, and the one for the block processing is the most.

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 293

CORDIC-based RLS filters with implicit weight extraction are found useful in
applications such as adaptive beamforming, and the ones with explicit weight extrac-
tion are found useful in applications such as channel equalization. The application
of proposed look-ahead technique to these RLS filters lead to fine-grain pipelined
topologies which can be operated at arbitrarily high sample rate. The pipelined algo-
rithms maintain the orthogonality and the stability under finite-precision arithmetic.

QRD-RLS adaptive filters can also be used for adaptive beamforming appli-
cations, e.g., the linearly constrained minimum variance (LCMV) adaptive beam-
former [33], which will be briefly discussed here. The details can be found in
[24]. The LCMV adaptive beamforming is a constrained least squares minimiza-
tion problem. Solving the constrained minimization problem directly leads to the
QRD-MVDR beamforming realization [9]. An alternative is the unconstrained refor-
mulation which leads to the QR decomposition-based generalized sidelobe canceler
(GSC) realization [34, 35]. Both MVDR and GSC beamformer can be realized
using CORDIC arithmetic. The application of the annihilation-reording look-ahead
technique to these adaptive beamforming algorithms leads to fine-grain pipelined
topologies [24]. Furthermore, they consist of only Givens rotations which can be
mapped onto CORDIC arithmetic-based processors [5].

The implementation complexity in terms of CORDIC units for various RLS-
based algorithms and implementation styles are shown in Table 10.2. The imple-
mentation complexity of QRD-MVDR and QRD-GSC is obtained from reference
[24]. From the table, we see that the pipelining level M is a dimension variable in the
complexity expressions for all algorithms and implementation styles. The pipelined
and incremental block processing realizations require a linear increasing CORDIC
units with an increasing factor of M for the pipelining and a factor of 2M − 1 for
the incremental block processing. The complexity factor for the block processing
is M2 which is quadratic with respect to the pipelining level. The adaptive inverse
QR algorithm requires approximately two times of CORDIC units as the QRD-RLS
algorithm since an extra lower triangular matrix is needed to extract the weight vec-
tor. The MVDR topology outperforms GSC topology in terms of complexity by
employing a constraint post-processor rather than a constraint pre-processor for the
GSC realization.

Table 10.2 The implementation complexity in terms of CORDIC units for various RLS-based
algorithms and implementation styles.

Implementation styles QRD-RLS Inverse QR QRD-MVDR QRD-GSC
Pipelining 1

2 Mp2 Mp2 M(1
2 p2 +K p) MK(1

2 p2 + p)
Incremental block 1

2 (2M−1)p2 (2M−1)p2 (2M−1)(1
2 p2 +K p) (2M−1)K(1

2 p2 + p)
Block processing 1

2 M2 p2 M2 p2 M2(1
2 p2 +K p) M2K(1

2 p2 + p)

294 Jun Ma and Keshab K. Parhi

Appendix

In this appendix, we derive Equations (10.14) and (10.15). At time instance (n−M),
apply the QR decomposition to the weighted data matrix Λ 1/2(n−M)A(n−M) and
the reference vector y(n) as follows:

Q(n−M)Λ 1/2(n−M)
[

A(n−M) y(n−M)
]
=

[
R(n−M) p(n−M)

O v(n−M)

]
, (10.23)

where R(n−M) is p-by-p upper triangular matrix, p(n−M) and v(n−M) are p-
by-1 and (n−M − p)-by-1 vectors, respectively. At time n, the new inputs UM(n)
and yM(n) become available processing, we have

[
A(n) y(n)

]
=

[
A(n−M) y(n−M)

UT
M(n) yM(n)

]
. (10.24)

Define

Λ̄ 1/2(n) =
[
λM/2Λ 1/2(n−M)

IM

]
, and (10.25)

Q̄(n−M) =
[

Q(n−M)
IM

]
. (10.26)

Then

Q̄(n−M)Λ̄ 1/2(n)
[

A(n) y(n)
]
=

⎡
⎣
λM/2R(n−M) λM/2p(n−M)

O λM/2v(n−M)
UT

M(n) yM(n)

⎤
⎦ . (10.27)

Notice that here we choose Λ̄ 1/2(n) instead of Λ 1/2(n). Λ 1/2(n) differs from
Λ̄ 1/2(n) in replacing IM by Λ 1/2(M). Using Λ 1/2(n) will lead to extra operations of
the input data. Conversely, using Λ̄ 1/2(n) will not and also not affect the algorithm’s
convergence behavior due to the existence of λM/2 in Λ̄ 1/2(n).

Apply the orthogonal matrix Q(n) which consists of a sequence of Givens rota-
tions to annihilate the input data UM(n) using λM/2R(n−M) in (10.27), we have

⎡
⎣

R(n) p(n)
O v(n)

OM×N ααα(n)

⎤
⎦ = Q(n)

⎡
⎣
λM/2R(n−M) λM/2p(n−M)

O λM/2v(n−M)
UM(n) yM(n)

⎤
⎦ , (10.28)

which derives the first two columns in (10.14). Next we prove Equation (10.15) and
justify the third column in (10.14). From (10.2), we have

e(n−M) = y(n−M)−A(n−M)w(n−M). (10.29)

By (10.23), we then have

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 295

Q(n−M)Λ 1/2(n−M)e(n−M) =
[

p(n−M)
v(n−M)

]
−

[
R(n−M)

O

]
w(n−M).

(10.30)
Let

εεε(n−M) = Q1/2(n−M)Λ 1/2(n−M)e(n−M)
ēM(n) = yM(n)−UT

M(n)w(n−M)
eM(n) = yM(n)−UT

M(n)w(n),
(10.31)

where εεε(n−M), ēM(n), and eM(n) are M-by-1 vectors. By (10.1), it is seen that
the last element in eM(n) is the desired residual error e(n) at time instance n. From
(10.30) and (10.31), we obtain

[
λM/2εεε(n−M)

ēM(n)

]
=

⎡
⎣
λM/2p(n−M)
λM/2v(n−M)

yM(n)

⎤
⎦−

⎡
⎣
λM/2R(n−M)

O
UT

M(n)

⎤
⎦w(n−M). (10.32)

Apply the orthogonal matrix Q(n) to both sides of (10.32) and use (10.28) result-
ing

Q(n)
[
λM/2εεε(n−M)

eM(n)

]
=

⎡
⎣

p(n)
v(n)
ααα(n)

⎤
⎦−

⎡
⎣

R(n)
O
O

⎤
⎦w(n). (10.33)

Notice that, after annihilating the input block data UT
M(n), the weight vector w(n−

M) has been updated to w(n). Correspondingly, the residual error ēM(n) becomes
eM(n) as defined in (10.31). Now, moving Q(n) to the right-hand-side of (10.33),
and noticing that Q(n) is orthogonal, we obtain

[
λM/2εεε(n−M)

eM(n)

]
= QT(n)

⎡
⎣

p(n)−R(n)w(n)
v(n)
ααα(n)

⎤
⎦ . (10.34)

Since the optimum weight vector w(n) satisfies p(n)−R(n)w(n) = 0p, (10.34)
reduces to [

λM/2εεε(n−M)
eM(n)

]
= QT(n)

⎡
⎣

0p

v(n)
ααα(n)

⎤
⎦ . (10.35)

Noticing that the last element of eM(n) is e(n), we have

e(n) =
[

0T
n−M δT

M

]
QT(n)

⎡
⎣

0p

v(n)
ααα(n)

⎤
⎦

=
[

0T
n−M δT

M

]
QT(n)

[
O(n−M)×M

IM

]
ααα(n).

(10.36)

The second equality is due to the fact that QT(n) only makes use of elements 0p

and ααα(n) in the vector [0T
p,v

T(n),αααT(n)]T. Taking the transpose on both sides of
(10.36), and noticing that e(n) is a scalar, then

296 Jun Ma and Keshab K. Parhi

e(n) = αααT(n)
[

OM×(n−M) IM
](

Q(n)
[

On−M

δM

])

= αααT(n)
[

OM×(n−M) IM
][s(n)

γγγ(n)

]

= αααT(n)γγγ(n).

(10.37)

The second equality justify the third column in (10.14). This completes the
derivation of (10.14) and (10.15).

References

1. S. Haykin, Adaptive Filter Theory. 2nd edition Prentice-Hall, Englewood Cliffs, NJ, USA
(1991)

2. J. E. Volder, The CORDIC trigonometric computing technique. IRE Transactions on Elec-
tronic Computers, vol. EC-8, no. 3, pp. 330–334 (September 1959)

3. Y. H. Hu, Cordic-based VLSI architectures for digital signal processing. IEEE Signal Pro-
cessing Magazine, no. 3, vol. 9, pp. 16–35 (July 1992)

4. G.J. Hekstra and E. F. Deprettere, Floating point CORDIC. 11th Symposium on Computer
Arithmetic, Windsor, Canada, pp. 130–137 (June 1993)

5. E. Rijpkema, G. Hekstra, E. Deprettere, and J. Ma, A strategy for determining a Jacobi spe-
cific dataflow processor. IEEE International Conference on Application-Specific Systems,
Architectures and Processors, Zurich, Switzerland, pp. 53–64 (July 1997)

6. J. G. McWhirter, Recursive least-squares minimization using a systolic array. Proc. SPIE:
Real Time Signal Processing VI, vol. 431, pp. 105–112 (January 1983)

7. W. M. Gentleman and H. T. Kung, Matrix triangularization by systolic arrays. Proceedings
SPIE: Real-Time Signal Processing IV, vol. 298, pp. 298–303 (January 1981)

8. T. J. Shepherd, J. G. McWhirter, and J. E.Hudson, Parallel weight extraction from a systolic
adaptive beamformer. Mathematics in Signal Processing II (J.G. McWhirter ed.), pp. 775–
790, Clarendon Press, Oxford (1990)

9. J. G. McWhirter and T. J. Shepherd, Systolic array processor for MVDR beamforming. IEE
Proceedings, vol. 136, pp. 75–80 (April 1989)

10. K. K. Parhi, Algorithm transformation techniques for concurrent processors. Proceedings of
the IEEE, vol. 77, pp. 1879–1895 (December 1989)

11. K. K. Parhi and D. G. Messerschmitt, Pipeline interleaving and parallelism in recursive digital
filters–Part I: Pipelining using scattered look-ahead and decomposition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 37, pp. 1118–1134 (July 1989)

12. K. K. Parhi and D. G. Messerschmitt, Pipeline interleaving and parallelism in recursive digital
filters–Part II: Pipelined incremental block filtering. IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 37, pp. 1099–1117 (July 1989)

13. A. P. Chandrakasan, S. Sheng, and R. W. Broderson, Low-power CMOS digital design. IEEE
Journal on Solid-State Circuits, vol. 27, pp. 473–484 (April 1992)

14. K. K. Parhi, VLSI Digital Signal Processing Systems, Design and Implementation. John
Wiley & Sons, New York, NY, USA (1999)

15. K. J. Raghunath and K. K. Parhi, Pipelined RLS adaptive filtering using Scaled Tangent Rota-
tions (STAR). IEEE Transactions on Signal Processing, vol. 40, pp. 2591–2604 (October
1996)

16. T. H. Y. Meng, E. A. Lee, and D. G. Messerschmitt, Least-squares computation at arbi-
trarily high speeds, International Conference on Acoustics, Speech, and Signal Processing,
ICASSP’1987, Dallas, USA, pp. 1398–1401 (April 1987)

10 On Pipelined Implementations of QRD-RLS Adaptive Filters 297

17. G. H. Golub and C. F. V. Loan, Matrix Computation. Johns Hopkins University Press, Balti-
more, MD, USA (1989)

18. J. M. Cioffi, The fast adaptive ROTOR RLS algorithm. IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 38, pp. 631–653 (April 1990)

19. S. F. Hsieh, K. J. R. Liu, and K. Yao, A unified square-root-free Givens rotation approach
for QRD-based recursive least squares estimation. IEEE Transactions on Signal Processing,
vol. 41, pp. 1405–1409 (March 1993)

20. S. Hammarling, A note on modifications to Givens plane rotation. IMA Journal of Applied
Mathematics, vol. 13, no. 2, pp. 215–218 (1974)

21. J. L. Barlow and I. C. F. Ipsen, Scaled Givens rotations for solution of linear least-squares
problems on systolic arrays. SIAM Journal on Scientific and Statistical Computing, vol. 13,
no. 5, pp. 716–733 (September 1987)

22. J. Götze and U. Schwiegelshohn, A square-root and division free Givens rotation for solving
least-squares problems on systolic arrays. SIAM Journal on Scientific and Statistical Com-
puting, vol. 12, no. 4, pp. 800–807 (July 1991)

23. E. Franrzeskakis and K. J. R. Liu, A class of square-root and division free algorithms and
architectures for QRD-based adaptive signal processing. IEEE Transactions on Signal Pro-
cessing, vol. 42, pp. 2455–2469 (September 1994)

24. J. Ma, K. K. Parhi, and E. F. Deprettere, Annihilation reordering lookahead pipelined
CORDIC based RLS adaptive filters and their application to adaptive beamforming. IEEE
Transactions on Signal Processing, vol. 48, pp. 2414–2431 (August 2000)

25. C. E. Leiserson, F. Rose, and J. Saxe, Optimizing synchronous circuitry by retiming. 3rd
Caltech Conference on VLSI, Pasadena, USA, pp. 87–116 (March 1983)

26. K. K. Parhi, High-level algorithm and architecture transformations for DSP synthesis. Journal
of VLSI Signal Processing, vol. 9, pp. 121–143 January 1995

27. E. F. Deprettere, P. Held, and P. Wielage, Model and methods for regular array design. Interna-
tional Journal of High Speed Electronics; Special issue on Massively Parallel Computing–Part
II, vol. 4(2), pp. 133–201 (1993)

28. H. Leung and S. Haykin, Stability of recursive QRD-LS algorithms using finite-precision sys-
tolic array implementation. IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, no. 5, pp. 760–763 (May 1989)

29. M. Moonen and E. F. Deprettere, A fully pipelined RLS-based array for channel equalization.
Journal of VLSI Signal Processing, vol. 14, pp. 67–74 (October 1996)

30. R. Gooch and J. Lundell, The CM array: an adaptive beamformer for constant modulus sig-
nals. International Conference on Acoustics, Speech, and Signal Processing, ICASSP’1986,
Tokyo, Japan, pp. 2523–2526 (April 1986)

31. C.-T. Pan and R. J. Plemmons, Least squares modifications with inverse factorizations: par-
allel implications. Journal of Computational and Applied Mathematics, vol. 27, pp. 109–127
(September 1989)

32. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. SP-41,
no. 1, pp. 20–30 (January 1993)

33. O. L. Frost III, An algorithm for linearly constrained adaptive array processing. Proceedings
of the IEEE, vol. 60, no. 8, pp. 926–935 (August 1972)

34. R. L. Hanson and C. L. Lawson, Extensions and applications of the Householder algorithm for
solving linear least squares problems. AMS Mathematics of Computation, vol. 23, no. 108,
pp. 787-812 (October 1969)

35. S. P. Applebaum and D. J. Chapman, Adaptive arrays with main beam constraints. IEEE
Transactions on Antennas and Propagation, vol. AP-24, no. 5, pp. 650–662 (September 1976)

Chapter 11
Weight Extraction of Fast QRD-RLS Algorithms

Stefan Werner and Mohammed Mobien

Abstract The main limitation of fast QR-decomposition recursive least-squares
(FQRD-RLS) algorithms is that they lack an explicit weight vector term. Further-
more, they do not directly provide the variables allowing for a straightforward
computation of the weight vector as is the case with the conventional QRD-RLS
algorithm, where a back-substitution procedure can be used to compute the coef-
ficients. Therefore, the applications of the FQRD-RLS algorithms are limited to
certain output-error-based applications (e.g., noise cancelation), or to applications
that can provide a decision-feedback estimate of the training signal (e.g., equalizers
operating in decision-directed mode). This chapter presents some observations that
allow us to apply the FQRD-RLS algorithms in applications that traditionally have
required explicit knowledge of the transversal weights. Section 11.1 reviews the
basic concepts of QRD-RLS and the particular FQRD-RLS algorithm that is used
in the development of the new applications. Section 11.2 describes how to identify
the implicit FQRD-RLS transversal weights. This allows us to use the FQRD-RLS
algorithm in a system identification setup. Section 11.3 applies the FQRD-RLS
algorithm to burst-trained systems, where the weight vector is updated during a
training phase and then kept fixed and used for output filtering. Section 11.4 applies
the FQRD-RLS algorithm for single-channel active noise control, where a copy of
the adaptive filter is required for filtering a different input sequence than that of the
adaptive filter. A discussion on multichannel and lattice extensions is provided in
Section 11.5. Finally, conclusions are drawn in Section 11.6.

Stefan Werner
Helsinki University of Technology, Espoo – Finland
e-mail: stefan.werner@tkk.fi

Mohammed Mobien
Helsinki University of Technology, Espoo – Finland
e-mail: mobien@ieee.org

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 299
DOI 10.1007/978-0-387-09734-3 11, c© Springer Science+Business Media, LLC 2009

stefan.werner@tkk.fi
mobien@ieee.org

300 Stefan Werner and Mohammed Mobien

11.1 FQRD-RLS Preliminaries

To aid the presentation of the new FQRD-RLS applications, this section reviews the
basic concepts of the QRD-RLS algorithm and one of the FQRD-RLS algorithms
in Chapter 4, namely the FQR POS B algorithm.

11.1.1 QR decomposition algorithms

The RLS algorithm minimizes the following cost function:

ξ (k) =
k

∑
i=0

λ k−i[d(i)−xT(i)w(k)]2 = ‖e(k)‖2, (11.1)

where λ is the forgetting factor and e(k) ∈ R
(k+1)×1 is the a posteriori error vector

given as

e(k) = d(k)−X(k)w(k), (11.2)

where d(k) ∈ R
(k+1)×1 is the desired signal vector, X(k) ∈ R

(k+1)×(N+1) is the input
data matrix, and w(k) ∈ R

(N+1)×1. The QRD-RLS algorithm uses an orthogonal
rotation matrix Q(k) ∈ R

(k+1)×(k+1) to triangularize matrix X(k) as [1]

[
0

U(k)

]
= Q(k)X(k), (11.3)

where U(k) ∈ R
(N+1)×(N+1) is the Cholesky factor of the deterministic autocorrela-

tion matrix R(k) = XT(k)X(k). Pre-multiplying (11.2) with Q(k) gives

Q(k)e(k) =
[

eq1(k)
eq2(k)

]
=

[
dq1(k)
dq2(k)

]
−

[
0

U(k)

]
w(k). (11.4)

The cost function in (11.1) is minimized by choosing w(k) such that dq2(k)−
U(k)w(k) is zero, i.e.,

w(k) = U−1(k)dq2(k). (11.5)

The QRD-RLS algorithm updates vector dq2(k) and matrix U(k) as

[
eq1(k)
dq2(k)

]
= Qθ (k)

[
d(k)

λ 1/2dq2(k−1)

]
(11.6)

11 Weight Extraction of Fast QRD-RLS Algorithms 301

and [
0

U(k)

]
= Qθ (k)

[
xT(k)

λ 1/2U(k−1)

]
, (11.7)

where Qθ (k) ∈ R
(N+2)×(N+2) is a sequence of Givens rotation matrices which anni-

hilates the input vector x(k) in (11.7) and is partitioned as [2]

Qθ (k) =
[
γ(k) gT(k)
f(k) E(k)

]
. (11.8)

The QRD-RLS algorithm is complete with the definition of the a priori error value
e(k) = eq1(k)/γ(k), where γ(k) is a scalar found in matrix Qθ (k), see (11.8).

11.1.2 FQR POS B algorithm

The idea of the FQRD-RLS algorithm is to replace the matrix update in (11.7) with
a vector update. Using (11.5), we can express the a posteriori error ε(k) of the
adaptive filter as

ε(k) = d(k)−x
T
(k)U−1(k)︸ ︷︷ ︸

fT(k)

dq2(k), (11.9)

where

f(k) = U−T(k)x(k). (11.10)

The FQR POS B algorithm, introduced in Chapter 4, updates vector f(k) by
using forward and backward prediction equations and applying rotation matrices
to triangularize the data matrix. The update is given by

[
εb(k)

‖eb(k)‖
f(k)

]
= Q′

θ f (k)

[
f(k−1)

ε f (k)
‖e f (k)‖

]
, (11.11)

where ε f (k) and εb(k) are the a posteriori forward and backward prediction errors,
defined as

ε f (k) = x(k)−wT
f (k)x(k−1), and

εb(k) = x(k−N −1)−wT
b (k)x(k),

(11.12)

which are the first elements of the corresponding forward and backward prediction
errors vectors, e f (k) and eb(k), given by (see Chapter 3)

302 Stefan Werner and Mohammed Mobien

e f (k) =

⎡
⎢⎢⎢⎣

x(k)
λ 1/2x(k−1)

...
λ k/2x(0)

⎤
⎥⎥⎥⎦−

[
X(k−1)
01×(N+1)

]
w f (k) = d f (k)−

[
X(k−1)
01×(N+1)

]
w f (k),

eb(k) =

⎡
⎢⎢⎢⎢⎢⎣

x(k−N −1)
λ 1/2x(k−N −2)

...
λ (k−N−1)/2x(0)

0(N+1)×1

⎤
⎥⎥⎥⎥⎥⎦
−X(k)wb(k) = db(k)−X(k)wb(k).

(11.13)

As seen in Chapter 4, vector w f (k) is not explicitly used for updating f(k). Instead,
the term ε f (k)/‖e f (k)‖ in (11.11) is recursively computed by the FQRD-RLS algo-
rithm. The methods presented in the following will make explicit use of vector
w f (k). Therefore, if we consider e f (k) in (11.13), then the vector w f (k) that mini-
mizes ‖e f (k)‖2 is given by

w f (k) =
[
XT(k−1)X(k−1)

]−1
[

X(k−1)
01×(N+1)

]T

d f (k). (11.14)

Let Q f (k−1) denotes the Givens rotation matrix defined as below.

[
Q(k−1) 0k×1

01×k 1

]T

︸ ︷︷ ︸
QT

f (k−1)

[
Q(k−1) 0k×1

01×k 1

]

︸ ︷︷ ︸
Q f (k−1)

= I, (11.15)

where Q(k − 1) is the matrix that triangularizes X(k − 1), see (11.4). Applying
Q(k−1) and Q f (k−1) to (11.14) yields

w f (k) =
[
XT(k−1)QT(k−1)Q(k−1)X(k−1)

]−1

×
[

X(k−1)
01×(N+1)

]T

QT
f (k−1)Q f (k−1)d f (k)

=
[
UT(k−1)U(k−1)

]−1 UT(k−1)d f q2(k)

= U−1(k−1)d f q2(k),

(11.16)

where d fq2(k) corresponds to the last N + 1 elements (not taking into account the

last element which corresponds to λ k/2x(0)) of the rotated weighted forward error
vector defined as e fq = Q f (k−1)e f (k).

Equations (11.5), (11.11), (11.12), and (11.16) are essential for the understanding
of the weight extraction (WE) mechanism and output filtering methods explained in
the following.

11 Weight Extraction of Fast QRD-RLS Algorithms 303

11.2 System Identification with FQRD-RLS

In many applications, it is necessary to identify an unknown system. Examples of
such applications are: identification of the acoustic echo path in acoustic echo can-
celation, channel identification in communications systems, and active noise control
(ANC) [1]. Figure 11.1 shows the basic structure of a system-identification applica-
tion, where x(k), y(k), d(k), and e(k) are the input, output, desired output, and error
signals of the adaptive filter, respectively, at time instant k. The adaptive filter and the
unknown system share the same input signal, usually a wideband signal in the case
of channel identification or a noisy voice signal in the case of acoustic echo cance-
lation. The adaptation algorithm compares the desired signal with the output of the
adaptive filter in order to minimize the chosen objective function. The desired signal
will, in addition to the output from the unknown system, contain some measurement
noise n(k) which will affect the variance of the estimate of the unknown system.

Let us now consider two possible approaches for identifying the unknown plant:
one using an inverse QRD-RLS (IQRD-RLS) algorithm, with complexity O[N2]
per iteration, and another one that uses an FQRD-RLS algorithm with complexity
O[N] per iteration. Obviously, the latter approach requires a mechanism in which
the transversal weights embedded in the FQRD-RLS variables can be identified at
any iteration of interest, e.g., after convergence. If the transversal weights are not
required at every iteration, which might be the case in some applications, and the
cost of extracting the FQRD-RLS weights is reasonably low, the overall computa-
tional complexity would be much lower with the second approach.

The goal of this section is to develop a WE (identification) mechanism that can
be used in tandem with the FQRD-RLS algorithm at any particular iteration of inter-
est. This would reduce the overall computational cost (and peak-complexity) of the
system identification.

x(k)

y(k)

n(k)

d(k)

e(k)

Unknown system

Adaptive filter

Adaptation

algorithm

+
−

+

+

Fig. 11.1 Schematic diagram of a system-identification application.

304 Stefan Werner and Mohammed Mobien

11.2.1 Weight extraction in the FQRD-RLS algorithm

Note that the reduced computational cost of the FQRD-RLS algorithm is due
to the fact that the matrix update Equation (11.7) is replaced with the vector
update Equation (11.11). Thus, we are no longer able to separate U−1(k) from
x(k). As a consequence, if we excite the algorithm with a unit impulse, like in
the serial weight flushing technique in [3, 4], (11.9) will not sequence out the
correct coefficients.

To approach the solution, we note from (11.5) that the ith coefficient of vector w(k)
is given by

wi(k) = dT
q2(k)ui(k), (11.17)

where ui(k) denotes the ith column of matrix U−T(k). This means that when dq2(k)
is given, the elements of the weight vector w(k) can be computed if all the columns
of matrix U−T(k) are known. In the following, we show how all the column vectors
ui(k) can be obtained in a serial manner given u0(k). The main result is that the
column vector ui(k) can be obtained from the column vector ui−1(k) using two
relations (denoted by →):

ui−1(k) → ui−1(k−1) → ui(k).

Let us first look at the relation ui−1(k−1) → ui(k). That is, assume that we are
given the (i− 1)th column of U−T(k− 1) (please note the index value k− 1). We
can then compute the ith column of U−T(k) using (11.11) as stated in Lemma 1.

Lemma 1. Let ui(k) ∈ R
(N+1)×1 denote the ith column of the upper triangu-

lar matrix U−T(k) ∈ R
(N+1)×(N+1). Given Q′

θ f (k) ∈ R
(N+2)×(N+2), d f q2(k) ∈

R
(N+1)×1, and ‖e f (k)‖ from the FQRD-RLS algorithm, then ui(k) can be

obtained from ui−1(k−1) using the following relation:

[
∗

ui(k)

]
= Q′

θ f (k)

[
ui−1(k−1)
−w f ,i−1(k)
‖e f (k)‖

]
, i = 0, . . . ,N, (11.18)

where ∗ is a “don’t-care” and

w f ,i−1(k) =
{

−1 for i = 0,
uT

i−1(k−1)d f q2(k) otherwise.
(11.19)

Equation (11.18) is initialized with u−1(k−1) = 0(N+1)×1.

11 Weight Extraction of Fast QRD-RLS Algorithms 305

The definitions in (11.10) and (11.12) allow us to rewrite (11.11) as

[
−wT

b (k)
‖eb(k)‖

1
‖eb(k)‖

U−T(k) 0

]
x(N+2)(k) = Q′

θ f (k)

[
0 U−T(k−1)
1

‖e f (k)‖
−wT

f (k)
‖e f (k)‖

]
x(N+2)(k), (11.20)

where x(N+2)(k) = [x(k) x(k−1) · · · x(k−N −1)]T.
Equation (11.20) is illustrated in Figure 11.2, where we see that (11.18) and

(11.19) are just the column description of the matrices multiplying the extended
input vector x(N+2)(k). To account for the first column of (11.20) we initialize with
u−1(k−1) = 0N×1 and w f ,−1(k) =−1, which can be clearly seen from Figure 11.2.

Consequently, the first coefficient can be computed directly following the initial-
ization as

w0(k) = dT
q2(k)u0(k). (11.21)

To proceed with the next coefficient w1(k) = dT
q2(k)u1(k), we need vector u0(k−

1) to compute u1(k) using (11.18). In general, having computed wi(k), i.e., ui(k) is
known, we need a reverse mechanism, ui(k) → ui(k− 1), in tandem with (11.18),
(11.19) to allow for the computation of the next weight wi+1(k). How to compute
ui(k−1) from ui(k) is summarized by Lemma 2.

Equations (11.22) and (11.23) are obtained directly from the update equation for
U−T(k−1), see Chapter 3.

(i)th column(i)th column

=U−T(k)

−dT
bq2(k)U−T(k)

eb(k)
1

eb(k)

0

0

u
i (k)

−dT
bq2(k)ui(k)

eb(k)

U−T(k −1)

−dT
f q2(k)U−T(k−1)

e f (k)
1

e f (k)

u
i−

1 (k−
1)

−dT
f q2(k)ui−1(k−1)

e f (k)

Corresponding vectors

x
(N

+
2)(k)

x
(N

+
2)(k)

Qθ f (k)

Fig. 11.2 Illustration of (11.18) on how to obtain the ith column of U−T(k) (denoted as ui(k)) from
the (i−1)th column of U−T(k−1) (denoted as ui−1(k−1)).

306 Stefan Werner and Mohammed Mobien

Lemma 2. Let ui(k) ∈ R
(N+1)×1 denote the ith column of the upper trian-

gular matrix U−T(k) ∈ R
(N+1)×(N+1). Given Qθ (k) ∈ R

(N+2)×(N+2), f(k) ∈
R

(N+1)×1 and γ(k) from the FQRD-RLS algorithm, then ui(k − 1) can be
obtained from ui(k) using the relation below

[
0

λ−1/2ui(k−1)

]
= QT

θ (k)
[

zi(k)
ui(k)

]
, i = 0, . . . ,N −1, (11.22)

where
zi(k) = −fT(k)ui(k)/γ(k). (11.23)

The update is given by [5]

[
zT(k)

U−T(k)

]
= Qθ (k)

[
0T

λ−1/2U−T(k−1)

]
. (11.24)

Equation (11.22) is obtained by pre-multiplying both sides of (11.24) with QT
θ (k)

and considering each column separately, zi(k) being the ith element of vector z(k).
If we now employ the standard partition of Qθ (k) in (11.8), we can directly verify
that the first element of (11.22) is equal to

0 = γ(k)zi(k)+ fT(k)ui(k), (11.25)

which gives the relation in (11.23).
In summary, (11.18) and (11.22) allow for a serial WE of the weights w(k)

embedded in the FQRD-RLS variables. The pseudo-code for the WE mechanism
is given in Table 11.1. The number of operations required to completely extract all
the coefficients is given in Table 11.2. For comparison, the computational costs of
the FQRD-RLS and the IQRD-RLS algorithms are also given.

11.2.2 Example

The FQRD-RLS and IQRD-RLS algorithms, both using λ = 0.95, were used to
identify a system of order N = 10. The input signal x(k) was a noise sequence,
colored by filtering a zero-mean white Gaussian noise sequence nx(k) through the
fourth-order IIR filter x(k) = nx(k)+ x(k−1)+1.2x(k−2)+0.95x(k−3), and the
SNR was set to 30 dB. After 1900 iterations, the internal variables that are required
for computing w(k) were saved. The transversal weight vector of the IQRD-RLS

11 Weight Extraction of Fast QRD-RLS Algorithms 307

Table 11.1 FQRD-RLS WE algorithm.

Weight extraction

Initialization:

xi = 0,∀i ∈ [1,N]
x0 = −1
u−1(k−1) = 0(N+1)×1

Available from the FQRD-RLS algorithm:

Q′
θ f (k), d f q2(k), f(k), ‖e f (k)‖, Qθ (k), γ(k), and dq2(k)

for each i = 0 to N
{

Compute ui(k) from ui−1(k−1):

w f ,i−1(k) = xi −uT
i−1(k−1)d f q2(k)[

∗
ui(k)

]
= Q′

θ f (k)

[
ui−1(k−1)
−w f ,i−1(k)
‖e f (k)‖

]

Compute ui(k−1) from ui(k):

zi(k) = −fT(k)ui(k)/γ(k)[
0

λ−1/2ui(k−1)

]
= QT

θ (k)
[

z j(k)
ui(k)

]

Compute wi(k):

wi(k) = dT
q2(k)ui(k)

}

Table 11.2 Computational complexity of WE [8].

Algorithm Mult. Div. SQRT

FQRD-RLS 19N +23 4N +5 2N +3
WE (per weight i, 0 ≤ i ≤ N) 11N +14−11i 0 0

WE (total) 5.5N2 +19.5N +7 0 0
IQRD-RLS 3N2 +8N +4 2N +2 N +1

algorithm and the weight vector extracted from the FQRD-RLS algorithm are com-
pared by taking the squared difference of each coefficient, i.e.,

Δw2
i (k) = |wFQRD,i(k)−wIQRD,i(k)|2. (11.26)

Figure 11.3 shows the learning curves and the weight difference after 1900 iter-
ations. We see that the two algorithms have identical learning curves, and that the
transversal weight vector extracted from the FQRD-RLS algorithm is identical to
that of the IQRD-RLS algorithm up to the simulation precision.

308 Stefan Werner and Mohammed Mobien

200 400 600 800 1000 1200 1400 1600 1800
−30

−25

−20

−15

−10

−5
min MSE

FQRD-RLS
IQRD-RLS

M
SE

(d
B

)

Iteration, k
0 2 4 6 8 10

−335

−330

−325

−320

−315

−310

−305

Δ
w

i2 (
k)

(d
B

)

Coefficient, i

Fig. 11.3 Learning curves of the FQRD-RLS and the IQRD-RLS algorithms (left figure), squared
difference between coefficient weights of the IQRD-RLS and the FQRD-RLS algorithms.

11.3 Burst-trained Equalizer with FQRD-RLS

In wireless communications systems, the main factors limiting the system capacity
are various kinds of interference such as intersymbol interference (ISI) due to mul-
tipath propagation in frequency selective fading channels, co-channel (or multiple
access) interference, and adjacent channel interference. ISI is the main impairment
in single-user communications and can be corrected through the use of an adap-
tive equalizer [6]. Figure 11.4 shows the structure of an adaptive equalizer, where
u(k) is the user signal of interest and i(k) is co-channel interference. The adaptive
filter will try to suppress the channel-induced ISI, and in certain applications also
the co-channel interference. The desired signal d(k) is now a delayed replica of the
transmitted signal, where the value of the delay D is chosen to compensate for the
delay introduced by the channel.

u(k)

i(k)+n(k)

z−D

x(k) y(k)

d(k)
e(k)

Adaptive filter
w(k −1)

Channel
C(z)

Adaptation

algorithm

+ −

+

+

Fig. 11.4 Schematic diagram of an adaptive equalizer.

11 Weight Extraction of Fast QRD-RLS Algorithms 309

In this section, we will examine the special case of burst-trained equalizers,
where the equalizer coefficients are periodically updated using known training sym-
bols and then used for fixed filtering of a useful data sequence.

11.3.1 Problem description

The problem under consideration is illustrated in Figure 11.5. During time instants
k ≤ k f , the equalizer operates in training mode and its coefficients are updated using
the input and desired signal pair {x(k),d(k)}. At time instant k = k f , the adaptive
process is stopped and the equalizer switches to data mode where the coefficient
vector obtained during the training mode is kept fixed. That is, the output of the
filter is given by

y(k) =
{

wT(k−1)x(k) k ≤ k f

wT(k f)x(k) k > k f
(11.27)

where w(k f) is the coefficient vector of the adaptive filter “frozen” at time instant
k = k f .

If the FQRD-RLS algorithm is employed during training, one alternative for car-
rying out the filtering during the data mode, k > k f , is to first extract the filter coef-
ficients according to Section 11.2 and, thereafter, perform the filtering of x(k) with
a simple transversal structure. To avoid the increased peak complexity O[N2] of this
solution (at time k f), we seek here alternative methods with reduced peak complex-
ity O[N] that can reproduce the output signal in (11.27) from the variables of the
FQRD-RLS algorithm available at instant k = k f [7].

11.3.2 Equivalent-output filtering

After the training of the FQRD-RLS algorithm is stopped (k = k f), filtering of the
useful signal should be carried out according to (compare with (11.27))

x(k)

w(k −1)

k

+
+

–

= k f

e(k)

y(k)

d(k)

Fig. 11.5 Operation of a burst-trained equalizer. The adaptive filter coefficients are updated during
training mode (k ≤ k f), and kept fixed and used for output filtering in data mode (k > k f). Note
that there is no weight update after k > k f .

310 Stefan Werner and Mohammed Mobien

y(k) = dT
q2(k f)U−T(k f)︸ ︷︷ ︸

wT(k f)

x(k), k > k f ,
(11.28)

where dq2(k f) and U−T(k f) are parameters of the FQRD-RLS algorithm at time
instant k = k f , respectively. Vector dq2(k f) in (11.28) is explicitly available in the
FQRD-RLS algorithm. However, knowledge of U−T(k f) is only provided through
the variable f(k f) = U−T(k f)x(k f). Thus, starting with f(k f) as an initial value,
we need to find a way to obtain vector U−T(k f)x(k) from vector U−T(k f)x(k−1),
i.e., we need to incorporate the new sample x(k) without affecting U−T(k f) in the
process.

This problem is somewhat similar to the WE problem that was treated in the
previous section. The solution exploits the following two steps:

U−T(k f)x(k−1) → U−T(k f −1)x(k−1) → U−T(k f)x(k).

The first step, summarized by Lemma 3, is obtained by pre-multiplying (11.24)
with QT

θ (k f) and post-multiplying with the vector [x(k) xT(k− 1)]T. The variable
z(k) in (11.31) is obtained in a similar manner as (11.24). That is, by employing the
partition of Qθ (k f) in (11.8), the equation describing the first element of (11.30) is
given by

0 = γ(k f)z(k)+ fT(k f)U−T(k f)x(k−1). (11.29)

Lemma 3. Let U−T(k f) ∈ R
(N+1)×(N+1) denote the upper triangular inverse

transpose Cholesky matrix corresponding to time instant k f , and x(k −
1) ∈ R

(N+1)×1 be the input vector at any instant k > k f . Given Qθ (k f) ∈
R

(N+2)×(N+2), f(k f) ∈ R
(N+1)×1, and γ(k f) from the FQRD-RLS algorithm,

then U−T(k f −1)x(k−1) is obtained from U−T(k f)x(k−1) using the relation
below

[
0

λ−1/2U−T(k f −1)x(k−1)

]
= QT

θ (k)
[

z(k)
U−T(k f)x(k−1)

]
, (11.30)

where
z(k) = −fT(k f)U−T(k f)x(k−1)/γ(k f). (11.31)

The second step, summarized by Lemma 4, is obtained from (11.20) and freezing
the FQRD-RLS variables at k = k f , i.e.,

[
−wT

b (k f)
‖eb(k f)‖

1
‖eb(k f)‖

U−T(k f) 0

]
x(N+2)(k) = Q′

θ f (k f)

[
0 U−T(k f −1)
1

‖e f (k f)‖
−wT

f (k f)
‖e f (k f)‖

]
x(N+2)(k).

(11.32)
We see that the extended input vector x(N+2)(k) multiplies both sides of (11.32).
Therefore, the time instant for x(N+2)(k) can be chosen arbitrarily.

11 Weight Extraction of Fast QRD-RLS Algorithms 311

Lemma 4. Let U−T(k f − 1) ∈ R
(N+1)×(N+1) denote the upper triangular

inverse transpose Cholesky matrix corresponding to time instant k f − 1, and
x(k−1)∈R

(N+1)×1 be the input vector at any instant k > k f . Given Q′
θ f (k f)∈

R
(N+2)×(N+2), d f q2(k f)∈R

(N+1)×1, and ‖e f (k f)‖ from the FQRD-RLS algo-
rithm and input sample x(k), then U−T(k f)x(k) is obtained from U−T(k f −
1)x(k−1) as

[
∗

U−T(k f)x(k)

]
= Q′

θ f (k f)

[
U−T(k f −1)x(k−1)

x(k)−dT
f q2(k f)U−T(k f −1)x(k−1)

‖e f (k f)‖

]
, (11.33)

where ∗ is a “don’t-care” variable.

In summary, (11.30) and (11.33) allow us to reproduce the equivalent-output
signal corresponding to (11.28) without explicit knowledge of the weights embed-
ded in the FQRD-RLS algorithm. The procedure is illustrated in Figure 11.6. The
pseudo-code of the equivalent-output filtering algorithm is provided in Table 11.3.

Eq. (11.30)

Eq. (11.30)

Eq. (11.33)

Eq. (11.33)

U−T(k f −1)x(k −1) U−T(k f)x(k)

U−T(k f −1)x(k) U−T(k f)x(k +1)

y(k) = dT
q2(k f)U−T(k f)x(k)

y(k 1) = dT
q2(k f)U−T(k f)x(k 1)

time

k :

k +

+ +

1 :

...

Fig. 11.6 Fixed filtering without explicit knowledge of weight vector embedded in the FQRD-RLS
algorithm.

11.3.3 Equivalent-output filtering with explicit weight extraction

The approach presented here is based on the observation that for k > k f we can
divide the input vector x(k) into two non-overlapping vectors c(k) ∈ C

(N+1)×1 and
v(k) ∈ C

(N+1)×1

312 Stefan Werner and Mohammed Mobien

Table 11.3 Reproducing output y(k) = wT(k f)x(k) (k > k f) from the FQRD-RLS variables.

Equivalent-output filtering

Initialization:

r(k) = f(k f) ≡ U−T(k f)x(k f)
Available from the FQRD-RLS algorithm:

Q′
θ f (k f), d f q2(k f), f(k f), ‖e f (k f)‖, Qθ (k f), γ(k f), and dq2(k f)

for each k > k f

{
Compute U−T(k f −1)x(k−1) from U−T(k f)x(k−1):[

0
λ−1/2r̃(k)

]
= QT

θ (k f)
[
−fT(k f)r(k−1)/γ(k f)

r(k−1)

]

Compute U−T(k f)x(k) from U−T(k f −1)x(k−1):
[

∗
r(k)

]
= Q′

θ f (k f)

[
r̃(k)

x(k)−dT
f q2(k f)r̃(k)

‖e f (k f)‖

]

Compute y(k) = wT(k f)x(k):

y(k) = dT
q2(k f)r(k)

}

x(k) = c(k)+v(k), k > k f , (11.34)

with initial values

c(k f) = 0

v(k f) = x(k f),
(11.35)

where c(k) contains the input-samples for k > k f and v(k) holds those remaining,
i.e., for k ≤ k f . In other words, for each time instant k the new input-sample x(k) is
shifted into c(k) and a zero is shifted into v(k). The output y(k) for k > k f can now
be written as

y(k) = yc(k)+ yv(k) = wT(k f)c(k)+wT(k f)v(k). (11.36)

Note that with the initialization in (11.35), v(k) = 0 and y(k) = yc(k) for k >
k f +N.

The above formulation allows us to make use of our previous results and divide
the problem into two parts that can be carried out in parallel: one distributed weight

11 Weight Extraction of Fast QRD-RLS Algorithms 313

extraction that is used with c(k) to produce yc(k), and; one equivalent-output part
reproducing yv(k).

Reproducing yv(k) is straightforward. We need only to apply the results in pre-
vious subsection using vector v(k) in place of x(k). Obtaining yc(k) and w(k f) is
based on the observation that yc(k) during the first N + 1 iterations, following the
training phase (k > k f), is given by

yc(k) =
k−(k f +1)

∑
i=0

wi(k f)c(k− i), k f < k ≤ k f +N +1, (11.37)

where c(k) = x(k) ∀k > k f and c(k) = 0 ∀k ≤ k f . We see that (11.37) allows us to
extract the weights in a distributed manner, i.e., one weight per each new incoming
sample. Such “on-the-fly” extraction provides us with all the weights after N+1 iter-
ations, and still produces the correct output yc(k) before all the weights are acquired
(according to (11.37)). Invoking Lemmas 1 and 2 using a unit pulse in parallel with
(11.37) will sequence out the weights wi(k f) at the time instant they show up in
(11.37).

After the initial N +1 iterations, the output y(k) is simply given by wT(k f)x(k) =
wT(k f)c(k). In other words, it is not necessary to make all the weights available
before starting filtering in data mode (peak complexity O[N2] [8]). This distributed
weight flushing procedure ensures a peak complexity of O[N].

11.3.4 Example

The channel equalization example is taken from [9], where the channel is
given by

C(z) = 0.5+1.2z−1 +1.5z−2 − z−3.

The SNR is set to 30 dB and the order of the equalizer is N = 49. During the first 150
iterations (i.e., k f = 150), the equalizer coefficients are updated by the FQRD-RLS
algorithm. The training symbols d(k) randomly generated BPSK symbols. Follow-
ing the initial training sequence, an unknown symbol sequence consisting of 750
4-PAM symbols was transmitted over the channel, and the equalizer output was
reproduced using the approach in Section 11.3.3.

For comparison purposes, an IQRD-RLS algorithm was also implemented. Note
that the IQRD-RLS has a complexity of O[N2] during coefficient adaptation.

Figure 11.7 shows the mean squared error (MSE) curves for the FQRD-RLS and
the IQRD-RLS approaches. The results were obtained by averaging and smoothing
100 realizations of the experiment. It can be seen that both algorithms converge to
the same solution.

314 Stefan Werner and Mohammed Mobien

0 100 200 300 400 500 600 700 800 900
−30

−25

−20

−15

−10

−5

0

training mode
FQRD-RLS

IQRD-RLS

Min. MSE
M

SE
(d

B
)

Iteration, k

data mode

Fig. 11.7 Learning curves of the FQRD-RLS and the IQRD-RLS algorithms.

11.4 Active Noise Control and FQRD-RLS

In ANC, a disturbing (primary) noise is canceled by generating an “anti-noise”
signal with identical amplitude and opposite phase [10]. Figure 11.8 shows
a single-channel system consisting of one reference sensor (microphone) measur-
ing the noise signal x(k), one actuator (loudspeaker) signal y(k), and one error
sensor (microphone) measuring the residual signal e(k). In the figure, P(z) is the

x(k)

y(k) y f (k)

d(k)

e(k)
Adaptive filter

w(k−1)

Primary path
P(z)

Secondary path
S(z)

+
−

+

Fig. 11.8 Schematic diagram of an ANC system.

11 Weight Extraction of Fast QRD-RLS Algorithms 315

primary-path response, i.e., the (acoustic) response from the noise sensor to the
error sensor, and S(z) is the secondary-path response that models the acoustic path
between the actuator and error microphone as well as other imperfections like D/A
and A/D converters, reconstruction filters, and power amplifier effects [10]. Assum-
ing that S(z) is known, the task of the adaptive filter is to identify the unknown
primary path P(z).

11.4.1 Filtered-x RLS

The error signal e(k) observed by the error microphone is given by

e(k) = d(k)− y f (k) = d(k)− s(k)∗ [xT(k)w(k−1)︸ ︷︷ ︸
y(k)

],
(11.38)

where ∗ denotes convolution, s(k) is the impulse response of the secondary path
S(z), and y(k) = ∑N

i=0 x(k− i)wi(k− 1) = x(k) ∗w, wi(k− 1) being the ith element
of w(k− 1) and w representing the impulse response of the adaptive filter at k− 1.
Knowing that s(k)∗ [x(k)∗w] = [s(k)∗ x(k)]∗w, we define the filtered input signal
vector

x f (k) = [x f (k) x f (k−1) · · · x f (k−N)]T, (11.39)

whose elements are given as delayed versions of x f (k) = s(k) ∗ x(k). We can now
formulate the WLS objective function as

Jw =
k

∑
i=0

λ k−i[d(i)−x f
T(i)w(k)]2. (11.40)

Differentiating the objective function Jw with respect to w(k) and solving for the
minimum results in w(k) = R−1

f (k)p f (k), where R f (k) and p f (k) are defined by

R f (k) =
k

∑
i=0

λ k−ix f (i)xT
f (i), and

p f (i) =
k

∑
i=0

λ k−ix f (i)d(i).

(11.41)

The filtered-x RLS (FX-RLS) algorithm is then obtained in a similar manner as
the conventional RLS algorithm in Chapter 2 by substituting R f (k) and p f (k) in
R−1

f (k)p f (k) with their recursive formulations

R f (k) = λR f (k)+x f (k)x f
T(k), and (11.42)

p f (k) = λp f (k)+d(k)x f (k), (11.43)

316 Stefan Werner and Mohammed Mobien

giving the following updating expression

w(k) = w(k−1)+ e(k)R f
−1(k)x f (k). (11.44)

The inverse R−1
f (k) can be obtained recursively in terms of R−1

f (k− 1) using the

matrix inversion lemma1 [1], thus avoiding direct inversion of R f (k) at each time
instant k.

Note that x f (k) depends on the impulse response s(k) of the secondary path S(z).
For most ANC systems, an estimate Ŝ(z) of S(z) can be obtained offline during an
initial training phase [10]. Then the filtered input signal vector x f (k) used with the
FX-RLS algorithm is given by

x f (k) = ŝ(k)∗x(k), (11.45)

where ŝ(k) is the impulse response of Ŝ(z).

11.4.2 Modified filtered-x FQRD-RLS

The main problems with the FX-RLS algorithm are potential divergence behav-
ior in finite-precision environment and high-computational complexity, which is of
order N2. As an alternative, we could think of a more robust solution with reduced
complexity that employs the FQRD-RLS algorithm. However, the FQRD-RLS algo-
rithm (and also standard QRD-RLS algorithms) requires explicit knowledge of d(k)
to minimize the objective function in (11.40). This should be compared with the
FX-RLS implementation in (11.44) that directly employs the error signal e(k) mea-
sured by the error microphone. On the other hand, we see from Figure 11.8 that if
we pass the actuator signal y(k) through the estimated secondary-path filter Ŝ(z),
i.e., we obtain ŷ f (k) = ŝ(k)∗ y(k), an estimate d̂(k) can be obtained as

d̂(k) = e(k)+ ŷ f (k) = e(k)+ ŝ(k)∗ y(k). (11.46)

This leads to the realization in Figure 11.9. This structure is referred to as the
modified filtered-x structure and has been used with conventional RLS and LMS
algorithms as well as with the IQRD-RLS algorithm [11] to improve convergence
speed and robustness.

We see from Figure 11.9 that the coefficient vector embedded in the FQRD-
RLS variables is needed for reproducing the output signal y(k) = wT(k − 1)x(k).
We know from Section 11.2 that w(k−1) can be made explicitly available at every
iteration. However, as can be seen from Table 11.2, such an approach would lead
to a solution of O[N2] complexity per iteration. In other words, there is no obvious
gain of using an FQRD-RLS algorithm in place of an IQRD-RLS algorithm. One
solution to this complexity problem is to extract and copy the weights at a reduced

1 [A+BCD]−1 = A−1 −A−1B[DA−1B+C−1]−1DA−1.

11 Weight Extraction of Fast QRD-RLS Algorithms 317

x(k)

y(k) y f (k)

ŷ f (k)

x f (k)

d(k)

d̂(k)

e(k)
Adaptive filter

copy

Primary path
P(z)

Secondary path
S(z)

Ŝ(z)

Ŝ(z)
FQRD-RLS
algorithm

+
−

+

+

Fig. 11.9 FQRD-RLS in an ANC system.

rate, say once every K samples. This type of intermediate solution was considered
in [11], where a QRD least-squares lattice (QRD-LSL) algorithm was employed
in the lower branch of Figure 11.9. Obviously, such an approach will no longer
yield identical results to an IQRD-RLS algorithm, and the convergence behavior
will certainly be different.

Our goal here is to reproduce, at each iteration, the exact output y(k) associ-
ated with the weight vector w(k−1) embedded in the FQRD-RLS algorithm.
The total computational complexity for calculating y(k) and updating w(k−1)
will be O[N] per iteration. The resulting structure will yield exactly the same
result as the modified filtered-x IQRD-RLS in algorithm [11], while reducing
the computational complexity by an order of magnitude.

The solution is very similar to the problem dealt with in Section 11.3, where the
weight vector in the FQRD-RLS algorithm was used for fixed filtering. The main
difference here is that the weight vector in the lower branch is continuously updated
by the FQRD-RLS algorithm.

The output y(k) can be expressed as

y(k) = wT(k−1)x(k) = dT
q2(k−1)U−T(k−1)x(k), (11.47)

318 Stefan Werner and Mohammed Mobien

where, dq2(k−1) and U−T(k−1) are parameters of the FQRD-RLS algorithm run-
ning in the lower branch of Figure 11.9. The rotated desired signal vector dq2(k) is
directly available in the FQRD-RLS algorithm. However, the Cholesky factor matrix
U−1(k− 1) is hidden in vector f(k− 1) = UT(k− 1)x f (k− 1). On the other hand,
we know from (11.20) that matrix Q′

θ f (k− 1) provides the relation UT(k− 2) →
UT(k− 1). Since vectors x f (k) and x(k) are both initially set to zero, we can use
(11.20) for calculating y(k) for k > 0. The required computations are summarized
by Lemma 5.

Lemma 5. Let U−T(k−1)∈R
(N+1)×(N+1) denote the upper triangular inverse

transpose Cholesky matrix corresponding to the filtered autocorrelation matrix
R f (k− 1) defined in (11.41), and x(k− 1) ∈ R

(N+1)×1 be the input vector at
any instant k > 0. Given Q′

θ f (k−1)∈ R
(N+2)×(N+2), d f q2(k−1)∈R

(N+1)×1,
and ‖e f (k−1)‖ from the FQRD-RLS algorithm operating in the lower branch
of Figure 11.9, then U−T(k − 1)x(k) in (11.47) obtained from U−T(k − 2)x
(k−1) is written as

[
∗

U−T(k−1)x(k)

]
= Q′

θ f (k−1)

[
U−T(k−2)x(k−1)

x(k)−dT
f q2(k−1)U−T(k−2)x(k−1)

‖e f (k)‖

]
, (11.48)

where ∗ is a “don’t-care” variable.

The algorithm for reproducing the output y(k) in the upper branch of Figure 11.9
is summarized in Table 11.4.

Table 11.4 Modified filtered-x FQRD-RLS algorithm.

Output filtering in the upper branch of Figure 11.9

Initialization:

r(0) = UT(−1)x(0) = 0(N+1)×1

Available from FQRD-RLS algorithm:

Q′
θ f (k−1), d f q2(k−1), and ‖e f (k−1)‖

for each k
{

Compute U−T(k−1)x(k) from U−T(k−2)x(k−1):
[

∗
r(k)

]
= Q′

θ f (k−1)

[
r(k−1)

x(k)−dT
f q2(k)r(k−1)

‖e f (k−1)‖

]

Compute y(k) = wT(k−1)x(k):

y(k) = dT
q2(k)r(k)

}

11 Weight Extraction of Fast QRD-RLS Algorithms 319

11.4.3 Example

To illustrate the modified filtered-x FQRD-RLS algorithm, we consider an ANC
setup where the primary-path and secondary-path filters are given as follows:

P(z) = 0.4828z−3 −0.8690z−4 +0.0966z−5 +0.0483z−6

S(z) = 0.8909z−2 +0.4454z−3 +0.0891z−4.
(11.49)

The order of the adaptive filter is N = 19, and the input signal x(k) was a colored
noise sequence, colored by filtering a zero-mean white Gaussian noise sequence
nx(k) through the third-order IIR filter x(k) = −1.2x(k−1)−0.95x(k−2)+nx(k).
The primary signal d(k) was further disturbed by an additive noise sequence n(k),
whose variance was set such that the SNR at the error microphone was 28 dB.

For comparison purposes, we implemented the IQRD-RLS algorithm [11] and
an FQRD-RLS solution where WE is performed in the lower branch at a reduced
rate, once every K = 20 or K = 50 iterations, and the extracted coefficients are
then copied to the upper branch and kept fixed until the next WE takes place. Fig-
ure 11.10 shows the MSE curves for the FQRD-RLS and the IQRD-RLS implemen-
tations. The results were obtained by averaging and smoothing 50 realizations of the
experiment. The FQRD-RLS and the IQRD-RLS algorithms have identical converge
behavior (up to machine precision). As expected, the convergence behavior changes
when considering a solution that extracts the weights at a reduced rate. In case of a
non-stationary primary path (which may be common in practical applications), this
difference would be more relevant.

0 100 200 300 400 500
−60

−50

−40

−30

−20

−10

0
FQRD-RLS

FQRD-RLS(WE) K = 50

FQRD-RLS(WE) K = 20

IQRD-RLS

M
SE

 (
dB

)

Iteration, k

Fig. 11.10 Learning curves of the FQRD-RLS and IQRD-RLS algorithms implemented in the
modified filtered-x structure. For comparison purposes, FQRD-RLS WE solutions are shown where
the coefficients are extracted at a reduced rate, for every K = 20 (intermediary curve) or K = 50
(upper curve) iterations, and copied to the upper branch.

320 Stefan Werner and Mohammed Mobien

11.5 Multichannel and Lattice Implementations

The results presented in this chapter were based on single-channel adaptive FIR
structures. All the results can be extended to multichannel FQRD-RLS algorithms,
e.g., [9, 12–15]. This extension allows for multichannel applications such as broad-
band beamforming [16], Volterra system identification [9], Volterra predistorters
[17], burst-trained decision-feedback (DFE) and Volterra equalizers [1], multichan-
nel ANC [18], to name but a few.

The result for WE can also be extended to FQRD algorithms belonging to the
family of least-squares lattice-based algorithms, e.g., the QRD-LSL algorithms pro-
posed in [19, 20]. The problem of parameter identification in fast RLS algorithms
has been previously addressed using the duality between the FQRD-RLS algo-
rithms and the normalized lattice structure [19]. In other words, the WE for the fast
QR-decomposition can be solved by finding the reflection coefficients and the back-
ward prediction weight counterparts using duality [19]. It was shown in [4] and
indicated in [19] that, by using the least-squares lattice version of the Levinson-
Durbin recursion, the transversal weights can be obtained from the variables of the
QRD-LSL algorithm at a cost of O[N3] operations. In practice, the high cost of the
weight identification using an exact Levinson-Durbin algorithm can be avoided by
assuming algorithm convergence and infinite memory support, i.e., λ = 1 [21].The
computational complexity is then reduced at the cost of accuracy of the solution.
A modification of Lemma 1 in Section 11.2 was introduced in [22] to allow for
the transversal weight identification at any chosen iteration with a computational
complexity of O[N2] without compromising accuracy. The main observation, was
that the order-update required by the exact Levinson-Durbin algorithm can be done
in one step by exploiting the known QRD-LSL variables, reducing the number of
required operations by an order of magnitude.

11.6 Conclusion

This chapter showed how to reuse the internal variables of the fast QRD-RLS
(FQRD-RLS) algorithm to enable new applications which are different to the stan-
dard output-error type applications. We first considered the problem of system iden-
tification and showed how to extract the weights in a serial manner. Thereafter, the
WE results were extended to the case of burst-trained equalizers, where the equalizer
is periodically re-trained using pilots and then used for fixed filtering of useful data.
Finally, we considered the problem of ANC, where a modified filtered-x FQRD-
RLS structure was introduced. Simulation results were compared with those using
a design based on the IQRD-RLS algorithm. It was verified that, with the help of
the WE techniques detailed in this chapter, identical results are obtained using the
FQRD-RLS methods at a much lower computational cost.

11 Weight Extraction of Fast QRD-RLS Algorithms 321

Acknowledgements This work was partially funded by the Academy of Finland, Smart and Novel
Radios (SMARAD) Center of Excellence.

References

1. P. S. R. Diniz, Adaptive Filtering: Algorithms and Practical Implementation. 3rd edition
Springer, New York, NY, USA (2008)

2. J. A. Apolinário Jr. and P. S. R. Diniz, A new fast QR algorithm based on a priori errors.
IEEE Signal Processing Letters, vol. 4, no. 11, pp. 307–309 (November 1997)

3. C. R. Ward, A. J. Robson, P. J. Hargrave, and J. G. McWhirter, Application of a systolic
array to adaptive beamforming. IEE Proceedings, Part F – Communications, Radar and Signal
Processing, vol. 131, no. 6, pp. 638–645 (October 1984)

4. S. Haykin, Adaptive Filter Theory. 3rd edition Prentice-Hall, Englewood Cliffs, NJ, USA
(1996)

5. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

6. S. U. Qureshi, Adaptive equalization. Proceedings of the IEEE, vol. 73, no. 9, pp. 1349–1387
(September 1985)

7. M. Shoaib, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Equivalent output-filtering using
fast QRD-RLS algorithm for burst-type training applications. IEEE International Symposium
on Circuits and Systems, ISCAS’2006, Kos, Greece (May 2006)

8. M. Shoaib, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Solution to the weight extraction
problem in FQRD-RLS algorithms. IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP’2006, Toulouse, France, pp. 572–575 (May 2006)

9. M. A. Syed and V. J. Mathews, QR-decomposition based algorithms for adaptive Volterra fil-
tering. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 40, no. 6, pp. 372–382 (June 1993)

10. S. M. Kuo and D. R. Morgan, Active noise control: a tutorial review. Proceedings of the IEEE,
vol. 87, no. 6, pp. 943–973 (June 1999)

11. M. Bouchard, Numerically stable fast convergence least-squares algorithms for multichan-
nel active sound cancellation systems and sound deconvolution systems. Signal Processing,
vol. 82, no. 5, pp. 721–736 (May 2002)

12. A. A. Rontogiannis and S. Theodoridis, Multichannel fast QRD-LS adaptive filtering: new
technique and algorithms. IEEE Transactions on Signal Processing, vol. 46, no. 11, pp. 2862–
2876 (November 1998)

13. A. L. L. Ramos, J. Apolinário Jr, and M. G. Siqueira, A new order recursive multiple order
multichannel fast QRD algorithm. Thirty-Eighth Annual Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, USA, pp. 965–969 (November 2004)

14. C. A. Medina, J. Apolinário Jr., and M. G. Siqueira, A unified framework for multichannel fast
QRD-LS adaptive filters based on backward prediction errors. IEEE International Midwest
Symposium on Circuits and Systems, MWSCAS’02, Tulsa, USA, pp. 668–671 (August 2002)

15. A. L. L. Ramos, J. A. Apolinário Jr., and S. Werner, Multichannel fast QRD-LS adaptive filter-
ing: block-channel and sequential-channel algorithms based on updating backward prediction
errors. Signal Processing (Elsevier), vol. 87, pp. 1781–1798 (July 2007)

16. M. Shoaib, S. Werner, J. A. Apolinário Jr., and T. I. Laakso, Multichannel fast QR-
decomposition RLS algorithms with explicit weight extraction. European Signal Processing
Conference, EUSIPCO’2006, Florence, Italy (September 2006)

17. C. Eun and E. J. Powers, A new Volterra predistorter based on the indirect learning architec-
ture. IEEE Transactions on Signal Processing, vol. 45, no. 1, pp. 20–30 (January 1997)

322 Stefan Werner and Mohammed Mobien

18. M. Bouchard, Multichannel recursive-least-squares algorithms and fast-transversal-filter
algorithms for active noise control and sound reproduction systems. IEEE Transactions on
Speech and Audio Processing, vol. 8, no. 5, pp. 606–618 (September 2000)

19. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice meth-
ods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no. 4,
pp. 876–891 (April 1991)

20. M. D. Miranda and M. Gerken, A hybrid least squares QR-lattice algorithm using a priori
errors. IEEE Transactions on Signal Processing, vol. 45, no. 12, pp. 2900–2911 (Decem-
ber 1997)

21. A. H. Sayed, Fundamentals of Adaptive Filtering. John Wiley & Sons, Inc., Hoboken, NJ,
USA (2003)

22. M. Shoaib, S. Werner, and J. A. Apolinário Jr., Reduced complexity solution for weight
extraction in QRD-LSL algorithm. IEEE Signal Processing Letters, vol. 15, pp. 277–280
(February 2008)

Chapter 12
On Linearly Constrained QRD-Based
Algorithms

Shiunn-Jang Chern

Abstract The linearly constrained adaptive filtering (LCAF) technique has been
extensively used in many engineering applications. In this chapter, we introduce
the linearly constrained minimum variance (LCMV) filter, implemented using the
linearly constrained recursive least squares (RLS) criterion, with the inverse QR
decomposition (IQRD) approach. First, the direct form of recursively updating the
constrained weight vector of LS solution based on the IQRD is developed, which is
named as the LC-IQRD-RLS algorithm. With the IQRD approach, the parameters
related to the Kalman gain are evaluated via Givens rotations and the LS weight
vector can be computed without back-substitution. This algorithm is suitable to
be implemented using systolic arrays with very large scale integration technology
and DSP devices. For the sake of simplification, an alternative indirect approach,
referred to as the generalized sidelobe canceler (GSC), is adopted for implement-
ing the LCAF problem. The GSC structure essentially decomposes the adaptive
weight vector into constrained and unconstrained components. The unconstrained
component can then be freely adjusted to meet any criterion since the constrained
component will always ensure that the constraint equations are satisfied. The indi-
rect implementation could attain the same performance as that using the direct con-
strained approach and possesses better numerical properties. Via computer simu-
lation, the merits of the LC-IQRD-RLS algorithms over the conventional LC-RLS
algorithm and its modified version are verified.

12.1 Introduction

The linearly constrained (LC) adaptive filtering (LCAF) technique is known to
have many applications in areas such as minimum variance spectral analysis, time
delay estimation, and antenna array signal processing [1–5]. More recently, these

Shiunn-Jang Chern
National Sun Yat-Sen University, Kaohsiung City, Taiwan – R.O.C.
e-mail: chern@ee.nsysu.edu.tw

J.A. Apolinário Jr. (ed.), QRD-RLS Adaptive Filtering, 323
DOI 10.1007/978-0-387-09734-3 12, c© Springer Science+Business Media, LLC 2009

chern@ee.nsysu.edu.tw

324 Shiunn-Jang Chern

constrained approaches have been applied to wireless communication systems for
multiuser detection [6, 7]. Among the adaptive filtering algorithms, in most practi-
cal applications, the RLS algorithm has shown to offer better convergence rate and
steady-state mean-squared error (MSE) over the least mean squares (LMS)-based
algorithms. Unfortunately, the widespread acceptance of the RLS filter has been
refrained due to numerical instability problems when it is implemented in limited-
precision environments. Performance degradation is especially noticeable for the
family of techniques collectively known as “fast” RLS filters [8–10]. To circumvent
this problem, a well-known numerical stable RLS algorithm, which is called the
QR-decomposition RLS (QRD-RLS) algorithm was proposed [8, 11–13]. It com-
putes the QR decomposition (triangular orthogonalization) of the input data matrix
using Givens rotation and then solves the LS weight vector by means of the back-
substitution procedure.

The QRD-RLS algorithm can be implemented using the systolic array [14–17]
with very large scale integration (VLSI) technology and DSP devices. However,
in some practical applications, if the LS weight vector is desired in each iteration,
back-substitution steps must be performed accordingly. Due to the fact that back-
substitution is a costly operation to be performed in an array structure, the so-called
inverse QRD-RLS (IQRD-RLS) algorithm proposed in [18] is preferred, for the LS
weight vector can be computed without implementing back-substitution.

In this chapter, we first introduce the LC-RLS filtering algorithm based on an
IQRD, where a direct form of recursively updating the constrained weight vector
of LS solution is developed. The basic approach of the LC-IQRD-RLS algorithm is
very similar to that discussed in [2]. That is, based on the Kalman gain of the conven-
tional IQRD-RLS algorithm, the LC-IQRD-RLS algorithm can be developed where
the unconstrained form of the weight vector and the a priori estimation error can
be avoided. In the IQRD-RLS algorithm, the parameters related to the Kalman gain
are evaluated using the Givens rotations (QR decomposition), which is quite differ-
ent from the one discussed in [2] (using the fast RLS algorithm), yielding different
development. Usually, the IQRD-RLS algorithm has better numerical accuracy than
the “fast” RLS algorithm. Indeed, the numerical instability may cause the constraint
drift problem [19] for the constrained approach based on the conventional fast RLS
algorithm, named the constrained fast LS (CFLS) algorithm [2].

In this chapter, an alternative indirect approach, referred to as the general-
ized side-lobe canceler (GSC), is employed [6, 8, 20, 21] for various applica-
tions. The GSC structure essentially decomposes the adaptive weight vector
into constrained and unconstrained components. The unconstrained compo-
nent can then be freely adjusted to meet any criterion since the constrained
component will always ensure that the constraint equations are satisfied. The
GSC-based algorithm could attain the same performance as the direct con-
strained approach and possesses better numerical properties.

12 On Linearly Constrained QRD-Based Algorithms 325

In [22], the authors have proved that the optimal linearly constrained solution
derived with the direct and indirect (GSC structure) structures are equivalent for the
conjugate gradient and LMS-based algorithms, if the blocking matrix satisfies the
following condition, e.g., BHB = I. Furthermore, in [21] a more general proof of the
equivalency of direct and GSC structures for the LMS-based algorithms was given.

This chapter is organized as follows. First, in Section 12.2, we derive the opti-
mal linearly constrained LS weight vector solution, based on the IQRD, and discuss
the rationale behind it. After that, in Section 12.3, the LC-IQRD-RLS algorithm is
developed and applied to the linearly constrained minimum variance (LCMV) fil-
tering problems to achieve the desired performance. In Section 12.4, an alternative
indirect approach using the GSC structure is developed. To document the merits of
the proposed algorithm, in Section 12.5, two applications with computer simulations
results are given to show the efficiency in terms of fast convergence and numerical
stability of the LC-IQRD-RLS and the GSC-IQRD-RLS algorithms over the con-
strained fast RLS (CFLS) algorithm. Finally, we give a conclusion in Section 12.6
to summarize this chapter.

Notations and used symbols: Vectors and matrices are denoted by boldface
lower and upper case letters. All vectors are column vectors. (·)−1, (·)∗, (·)T, and
(·)H denote inverse, complex conjugate, transpose, and conjugate transpose, respec-
tively. ‖ ·‖ denotes Frobenius norm and IN is the N×N identity matrix. Null matrix
or vector is denoted by 0 with corresponding dimension.

12.2 Optimal Linearly Constrained QRD-LS Filter

As an introduction, we consider the configuration of the LCAF as depicted in
Figure 12.1.1 Here, x(k) = [x(k),x(k−1), ...,x(k−N)]T denotes the vector of sam-
pled input signals at the time index k and the weight vector is defined as w(k) =
[w0(k),w1(k), ...,wN(k)]T. In this chapter, we focus on the LCMV filtering prob-
lem, which uses the blind optimization approach, with the exponentially weighted
least-squares (LS) method, the cost function is defined as

JLS(w) =
k

∑
i=0

λ k−i|y(i)|2 =
k

∑
i=0

λ k−i|wHx(i)|2. (12.1)

The LS solution of w(k) is obtained by minimizing (12.1) with respect to w, subject
to multiple constraints. In (12.1), the parameter λ (0 � λ ≤ 1) is the forgetting fac-
tor that controls the speed of convergence and tracking capability of the algorithm.
For convenience, we rewrite (12.1) in a matrix form, i.e.,

JLS(w) = ‖ΛΛΛ 1/2(k)y(k)‖2 = ‖ΛΛΛ 1/2(k)X(k)w‖2 (12.2)

1 Note that the same algorithms developed in this chapter can also be employed for the case of a
constrained linear combiner, when the input signal vector does not correspond to a delay line.

326 Shiunn-Jang Chern

0 ()k 1 ()k 2 ()k 1(k)N − ()N k

()x k (1)x k − (2)x k − (1)x k N− + ()x k N−

()y k

w∗w∗w∗w∗w∗

Fig. 12.1 The structure of a linearly constrained FIR filter.

where y(k) = [y(0),y(1), ...y(k)]T is denoted as the output vector. Also, ΛΛΛ 1/2(k) =
diag[

√
λ k,

√
λ k−1, · · · ,

√
λ ,1] is a diagonal matrix and X(k) is the (k+1)× (N +1)

data matrix denoted by X(k) = [x(0),x(1), ...,x(k)]H. It can be noticed that the def-
inition of the data matrix X(k) in this chapter is slightly different from the defini-
tion found in (2.14), Chapter 2; however, this difference in the way the input data
matrix is defined results in equivalent algorithms. In the conventional QRD-RLS
algorithm, an orthogonal matrix Q(k) of order (k +1)× (k +1), is used to perform
the triangular orthogonalization of the data matrix ΛΛΛ 1/2(k)X(k) by means of Givens
rotations [8, 12], that is,

Q(k)ΛΛΛ 1/2(k)X(k) =
[

U(k)
O

]
, (12.3)

where U(k) is an (N + 1)× (N + 1) upper triangular matrix, and O is a (k−N)×
(N +1) null matrix.

We note that, in order to be consistent with the definition of the data matrix
X(k), the definition of U(k) is also slightly different from that given in introductory
chapters. Also, the Givens rotation is known to have the ability to be implemented
in parallel and systolic structure. In consequence, (12.2) can be rewritten as

JLS(w) = ‖U(k)w‖2 . (12.4)

For the linearly constrained optimization, (12.4) is minimized subjects to L lin-
ear constraints, e.g., CHw = f, where the (N + 1)×L constraint matrix is denoted
as C = [c1,c2, ...,cL] and f = [f1, f2, ..., fL]T is the L-element response column vec-
tor. Proceeding in a similar way as in [2], via Lagrange multipliers with the QR-
decomposition approach, the linearly constrained LS solution is given by [1]

w(k) =
[
UH(k)U(k)

]−1
C
{

CH [
UH(k)U(k)

]−1
C
}−1

f . (12.5)

12 On Linearly Constrained QRD-Based Algorithms 327

Based on the optimal constrained LS solution of (12.5), in next section we will
develop the recursive form of (12.5), named the LC-IQRD-RLS algorithm.

12.3 The Adaptive LC-IQRD-RLS Filtering Algorithm

To derive the recursive form of (12.5) for using in a LCAF, as depicted in
Figure 12.2, we define a new (N +1)× (N +1) matrix S(k), i.e.,

S(k) = [UH(k)U(k)]−1. (12.6)

Its inverse can be easily shown to be equivalent to the following definition:

S−1(k) = UH(k)U(k) (12.7)

= XH(k)ΛΛΛ(k)X(k)

=
k

∑
i=1

λ k−ix(i)xH(i).

For convenience, we define ΓΓΓ (k) = S(k)C and ΦΦΦ(k) = CHΓΓΓ (k) = CHS(k)C; as a
consequence, (12.5) can be expressed as

w(k) = ΓΓΓ (k)ΦΦΦ−1(k)f. (12.8)

We may view (12.8) as the LCMV weight vector solution implemented by the
LS approach with the IQRD. In what follows, based on the inverse Cholesky factor
U−1(k), the recursive form of (12.8) is developed. Also, some of the useful param-
eters and alternative recursive equations of ΓΓΓ (k) and ΦΦΦ−1(k), which are related to
the inverse Cholesky factor, are derived. Recalling from [11], the upper triangular
matrix of U(k) as defined in (12.3) can be written in a recursive form

[
U(k)
0T

]
= T(k)

[√
λU(k−1)

xH(k)

]
, (12.9)

x(k)
w(k)

y(k)

Adaptive Constrained
Algorithm

Fig. 12.2 The block diagram of the adaptive linearly constrained filter.

328 Shiunn-Jang Chern

where T(k) is the (N + 2)× (N + 2) orthogonal matrix, which annihilates the Her-
mitian of the input vector, xH(k), by rotating it into

√
λU(k−1). Thus, matrix T(k)

can be formed as the product of (N +1) Givens rotations. By multiplying both sides
of (12.9) with their respective Hermitian on the left, it gives

UH(k)U(k) = λUH(k−1)U(k−1)+x(k)xH(k). (12.10)

By using the matrix inversion lemma in (12.10), and after some mathematical
manipulation, we obtain

U−1(k)U−H(k) =
1
λ

U−1(k−1)U−H(k−1)−g(k)gH(k), (12.11)

where the intermediate vector, g(k) is defined by

g(k) =
U−1(k−1)z(k)√

λ t(k)
. (12.12)

The scalar variable t(k) and intermediate vector z(k) of (12.12) are defined, respec-
tively, by t(k) =

√
1+ zH(k)z(k) and

z(k) =
U−H(k−1)x(k)√

λ
. (12.13)

Equation (12.11) implies the existence of an (N +2)×(N +2) orthogonal matrix
P(k), which annihilates vector z(k), starting from the top, by rotating them into the

element at the bottom of the augment vector
[
zT(k) 1

]T
[1], which is given by

P(k)
[

z(k)
1

]
=

[
0

t(k)

]
. (12.14)

While updating the lower triangular matrix U−H(k) from U−H(k− 1), with the
rotation matrix P(k), we obtain the intermediate vector gH(k), i.e.,

P(k)
[
λ−1/2U−H(k−1)

0T

]
=

[
U−H(k)
gH(k)

]
. (12.15)

We note that both g(k) and z(k) just described are computed using the same set
of Givens rotations, when U−H(k) is updated from U−H(k− 1). It is of interest to
point out that vector g(k) scaled by t(k), i.e.,

k(k) =
g(k)
t(k)

, (12.16)

can be viewed as the adaptation or Kalman gain of the IQRD-RLS algorithm. Sub-
stituting (12.6) into (12.11), with definition (12.12) and (12.13), we can easily show
that

12 On Linearly Constrained QRD-Based Algorithms 329

S(k) = λ−1[S(k−1)−k(k)xH(k)S(k−1)], (12.17)

with

k(k) =
λ−1S(k−1)x(k)

1+λ−1xH(k)S(k−1)x(k)
. (12.18)

With the results of (12.17) and (12.18), we can prove that k(k) = S(k)x(k). Now,
with the recursive equation of (12.17), the (N + 1)×K matrix ΓΓΓ (k) = S(k)C can
be rewritten in a recursive form by doing the right multiplication on both sides of
(12.17) by C, i.e.

ΓΓΓ (k) = λ−1[ΓΓΓ (k−1)−k(k)xH(k)ΓΓΓ (k−1)] (12.19)

= λ−1ΓΓΓ (k−1)−g(k)ααα(k),

where ααα(k) = gH(k)C. The recursive equation of ΦΦΦ(k) = CHΓΓΓ (k), previously
defined when introducing (12.8), can be expressed as

ΦΦΦ(k) = λ−1[ΦΦΦ(k−1)−k(k)xH(k)ΦΦΦ(k−1)]. (12.20)

Applying the matrix inversion lemma to (12.20), we have

ΦΦΦ−1(k) = λ [I+
√
λq(k)ααα(k)]ΦΦΦ−1(k−1), (12.21)

where q(k) is defined as

q(k) =

√
λΦΦΦ−1(k−1)αααH(k)

1−λααα(k)ΦΦΦ−1(k−1)αααH(k)
. (12.22)

Based on (12.20) and (12.21), we can show that

q(k) = λ−1/2[ΦΦΦ−1(k)ααα(k)]. (12.23)

Indeed, (12.23) is very useful for deriving the recursive form of (12.5). Finally,
by applying the recursive equations defined in (12.19) and (12.21) to (12.8) and
after simplification, we have the recursive implementation of (12.5), named the LC-
IQRD-RLS algorithm

w(k) = w(k−1)−λ [g(k)−
√
λΓΓΓ (k)q(k)]ααα(k)ΦΦΦ−1(k−1)f. (12.24)

With the definition of (12.12) and (12.13), (12.24) can be further simplified as

w(k) = w(k−1)−ρρρ(k)e(k), (12.25)

where

ρρρ(k) = k(k)−
√
λ

t(k)
ΓΓΓ (k)q(k), and (12.26)

e(k) = wH(k−1)x(k). (12.27)

330 Shiunn-Jang Chern

In (12.27), e(k) can be viewed as the a priori output of the LCMV filter. This
completes our derivation for the adaptive LC-IQRD-RLS algorithm, which
is summarized in Table 12.1 for reference. For simplification, an alternative indi-
rect approach, within the GSC framework, of the optimal linearly constrained LS
solution, based on the IQRD-RLS algorithm, is developed in the next section.

Table 12.1 Summary of the adaptive LC-IQRD-RLS algorithm.

LC-IQRD-RLS

• Initialization (δ=small positive constant):

U−1(0) = δ−1I

ΓΓΓ (0) = U−1(0)U−H(0)C

ΦΦΦ−1(0) = [CHΓΓΓ (0)]−1

w(0) = ΓΓΓ (0)[CHΓΓΓ (0)]−1f

• For k=1,2,..., do

1. Compute the intermediate vector z(k):

z(k) =
U−H(k−1)x(k)√

λ

2. Evaluate the rotations that define P(k) which annihilates vector z(k) and compute the scalar
variable t(k):

P(k)
[

z(k)
1

]
=

[
0

t(k)

]

3. Update the lower triangular matrix U−H(k) and compute vectors g(k) and ααα(k):

P(k)
[
λ−1/2U−H(k−1)

0T

]
=

[
U−H(k)
gH(k)

]

ααα(k) = gH(k)C

4. Update the following equations and intermediate inverse matrix:

ΓΓΓ (k) = λ−1ΓΓΓ (k−1)−g(k)ααα(k)

q(k) =

√
λΦΦΦ−1(k−1)αααH(k)

1−λααα(k)ΦΦΦ−1(k)αααH(k)

ΦΦΦ−1(k) = λ
[
I+

√
λq(k)ααα(k)

]
ΦΦΦ−1(k−1)

5. Update the LS weight vector:

e(k) = wH(k−1)x(k)

ρρρ(k) = k(k)−
√
λ

t(k)
ΓΓΓ (k)q(k)

w(k) = w(k−1)−ρρρ(k)e∗(k)

12 On Linearly Constrained QRD-Based Algorithms 331

12.4 The Adaptive GSC-IQRD-RLS Algorithm

The overall weight vector with the GSC [26] structure illustrated in Figure 12.3 is
equivalent to that of Figure 12.2. With the GSC structure, an alternative indirect
approach of the optimal constrained LS weight vector can be developed. First, the
original weight vector of Figure 12.2 is decomposed into two parts, i.e.,

w(k) = wc −Bwa(k) . (12.28)

In (12.28), the weight vector of the upper path, wc, is referred to as quiescent
vector, while the (N +1)× (N +1−L) matrix B of the lower path is the rank reduc-
tion or blocking matrix. Indeed, B could be any matrix, whose columns span the left
null space of C, e.g., B is full rank and satisfies

BHC = 0 and CHB = 0 . (12.29)

Therefore, the columns of B form a basis for the null space of CH and (N +
1)× (N +1−L) matrix B can be obtained from C by any orthogonalization proce-
dures. On the other hand, the upper path vector wc simply ensures that the constraint
equations are satisfied. The overall system function with the GSC structure depicted
in Figure 12.3, ideally, should be equivalent to the direct approach of Figure 12.2;
therefore, substituting (12.28) into the definition of constraints, CHw(k) = f, yields

CHw(k) = CH [wc −Bwa(k)] = CHwc −CHBwa(k) = f . (12.30)

From (12.30), it can be easily shown that

wc = C(CHC)−1f = F . (12.31)

Based on the above discussion, we learn that the general mathematical framework
for the GSC structure relies on the unconstrained optimization. Clearly the (N +
1−L)× 1 weight vector, wa(k), is unconstrained and can be freely adapted using
any optimization criterion, while the overall weight vector will remain constrained.

Wc = F

Wa(k)B
()

B
kx

x(k)
y(k)

Adaptive Algorithm

–

+

Fig. 12.3 The block diagram of the adaptive linearly constrained filter with the GSC structure.

332 Shiunn-Jang Chern

With the GSC structure, the optimization problem becomes to choose the adaptive
weight wa(k) from any wa in lower branch, to cancel jamming (interfering) signals
in upper branch after computing wc and B. Under the condition described above, the
cost function of (12.1) to be minimized, with the GSC structure, can be rewritten as

JLS(wa) =
k

∑
i=0

λ k−i|[wc −Bwa]Hx(i)|2 (12.32)

=
k

∑
i=0

λ k−i|wH
c x(i)− [Bwa]Hx(i)|2 .

If we let d(i) be the desired component of Figure 12.3, e.g., d(i) = wH
c x(i),

(12.32) can be represented as

JLS(wa) =
k

∑
i=0

λ k−i|[d(i)−wH
a BHx(i)|2 (12.33)

=
k

∑
i=0

λ k−i|eB(i/k)|2 = ‖ΛΛΛ 1/2(k)eB(k/k)‖,

where the error vector is designated by eB(k/k) = [eB(0/k),eB(1/k), ...,eB(k/k)]T.
Correspondingly, if we denote d(k) = [d(0),d(1), ...,d(k)]T as a desired signal vec-
tor, (12.33) becomes

JLS(w) = ‖ΛΛΛ 1/2[d∗(k)−XB(k)wa]‖2. (12.34)

Accordingly, the data matrix based on the structure of GSC is given by XB(k) =
[xB(0),xB(1), · · · ,xB(k)]H, and xB(i) = BTx(i). With the approach of the conven-
tional QRD-RLS algorithm [8, 12, 18], an orthogonal matrix QB(k), is used to carry
out the triangular orthogonalization of the data matrix, ΛΛΛ 1/2(k)XB(k), via Givens
rotations, that is,

QB(k)ΛΛΛ 1/2(k)XB(k) =
[

UB(k)
0

]
, (12.35)

where UB(k) is an (N + 1− L)× (N + 1− L) upper triangular matrix, and 0 is a
(k−N +L)× (N +1−L) null matrix. Similarly, to perform the orthogonal matrix,
QB(k), on the weighted desired vector, ΛΛΛ 1/2(k)d(k), it gives

QB(k)ΛΛΛ 1/2(k)d∗(k) =
[

zB(k)
vB(k)

]
, (12.36)

where vectors zB(k) and vB(k) are with the dimensions of (N +1−L)×1 and (k−
N +L)×1, respectively. Since orthogonal matrices are length preserving, using the
results of (12.12) and (12.13), the cost function defined in (12.11) can be expressed
as

JLS(wa) =
∥∥∥∥
[

zB(k)−UB(k)wa

vB(k)

]∥∥∥∥
2

. (12.37)

12 On Linearly Constrained QRD-Based Algorithms 333

It is straightforward to see that the norm in Equation (12.37) is minimized if the
top partition of (12.37) is set to null. From (12.37), the optimum LS weight vector
wa(k) based on the QR decomposition can be obtained

UB(k)wa(k) = zB(k). (12.38)

Similarly, the LS weight vector wa(k) based on the IQRD can be represented by

wa(k) = U−1
B (k)zB(k). (12.39)

As a consequence, the IQRD-RLS algorithm for updating the LS weight vector,
wa(k), is given by [18]

wa(k) = wa(k−1)+
gB(k)
tB(k)

e∗B(k), (12.40)

with the a priori estimation error, eB(k) being defined by

eB(k) = d(k)−wH
a (k−1)xB(k). (12.41)

The scalar variable tB(k) and the (N + 1) × 1 intermediate vector gB(k) are
defined as

tB(k) =
√

1+ zH
B (k)zB(k), (12.42)

and

gB(k) =
U−1

B (k−1)zB(k)√
λ tB(k)

, (12.43)

respectively, and the intermediate vector zB(k), which provides the key to the paral-
lelization of the IQRD-RLS approach, is designated by

zB(k) =
U−H

B (k−1)xB(k)√
λ

. (12.44)

It should be noted that both gB(k) and tB(k) are evaluated entirely by rotation-
based method, using Givens rotations, when U−1

B (k) is updated from U−1
B (k− 1).

From [18], it is known that there exists a rotation matrix P′(k) such that

P′(k)
[

zB(k)
1

]
=

[
o

tB(k)

]
, (12.45)

where P′(k) successively annihilates the elements of the vector zB(k), starting from
the top, by rotating them into the element at the bottom of the augmented vector
[zT

B(k),1]T. In consequence, we can evaluate gB(k) as follows:

P′(k)
[
λ−1/2U−H

B (k−1)
0T

]
=

[
U−H

B (k)
gH

B (k)

]
. (12.46)

334 Shiunn-Jang Chern

It is of interest to point out that the scalar variable tB(k) and the intermediate vec-
tor gB(k) are evaluated based on (12.45) and (12.46). Also, gB(k) scaled by tB(k) can
be viewed as the adaptation gain of the IQRD-RLS algorithm, which is defined as

kB(k) =
gB(k)
tB(k)

. (12.47)

Equation (12.40) tells us that the LS weight vector is updated by incrementing its
old value by an amount equal to the a priori estimation error, eB(k/k−1) times the
time-varying gain vector, kB(k). Moreover, it can be shown that kB(k) = SB(k)xB(k)
with SB(k) = U−1

B (k)U−H
B (k). This completes the derivation of the GSC-IQRD-RLS

algorithm which is summarized in Table 12.2. We note that, for this case where the

Table 12.2 Summary of the adaptive GSC-based IQRD-RLS algorithm.

GSC-IQRD-RLS

• Initialization δ=small positive constant:

U−1
B (0) = δ−1I

wc = [C(CHC)−1]f

wa(0) = 0

• For k = 1, 2, ... , do

1. Compute the intermediate desired signal d(k) and input vector xB(k):

d(k) = wH
c x(k)

xB(k) = BHx(k)

2. Compute the intermediate vector zB(k):

zB(k) =
U−H

B (k−1)xB(k)√
λ

3. Evaluate the rotations that define P′(k) which annihilates vector zB(k) and compute the
scalar variable tB(k):

P′(k)
[

zB(k)
1

]
=

[
0

tB(k)

]

4. Update the lower triangular matrix U−H
B (k) and compute vector gB(k):

P′(k)
[
λ−1/2U−H

B (k−1)
0T

]
=

[
U−H

B (k)
gH

B (k)

]

5. Updating the LS weight vector:

eB(k/k−1) = d(k)−wH
a (k−1)xB(k)

wa(k) = wa(k−1)+
gB(k)
tB(k)

e∗B(k/k−1)

12 On Linearly Constrained QRD-Based Algorithms 335

adaptive part within the GSC structure is unconstrained, it is immediate to find a
direct correspondence between the variables used here and those of the IQRD-RLS
algorithm presented in Chapter 3.

12.5 Applications

Before proceeding further to conclude the advantages of the adaptive LC-IQRD-
RLS and GSC-IQRD-RLS algorithms, it is instructive to develop an appreciation
for the versatility of these important algorithms by applying them to LCMV filtering
problems.

12.5.1 Application 1: Adaptive LCMV filtering for spectrum
estimation

In the first application, we consider the spectral analysis which is very significant in
many signal processing applications, such as speech signal processing and interfer-
ence suppression. In this application, we would like to investigate the nulling capa-
bility of the LC-IQRD-RLS algorithm and compare it to the general constrained
fast LS algorithm. As described in [2], with the general fast LS algorithm (see [2],
Table 1), desired performance may not be satisfied due to round-off error during
the adaptation processes. Common to adaptive filter parameter updating algorithm,
a correction term, proportional to the quantity f−Cb f Hw(k), is an intuitively rea-
sonable form to obtain a more robust modified version, referred to as the robust con-
strained FLS (RCFLS) algorithm. To do so, the frequency response of the LCMV
filtering, for eliminating the undesired frequencies, is examined. We assume that
input signal consists of three sinusoids buried in additive white noise, i.e.,

x(k) = 10sin(0.3kπ)+100sin(0.66kπ)+ sin(0.7kπ)+b(k). (12.48)

The corresponding normalized frequencies and amplitudes are set to be 0.15,
0.33, and 0.35, and 10, 100, and 1, respectively, and b(k) denotes the additive white
noise with zero-mean and variance, σ2

b such that the signal-to-noise ratio (SNR)
is 40 dB.

Moreover, the filter is constrained to have unit response at two frequencies, viz.,
0.1 and 0.25 (normalized digital frequencies). Each of the two unit response fre-
quencies generates two-point constraints. In such case, L = 4 and (N + 1) = 11
(weight coefficients), the constraint parameters are

CT =

⎡
⎢⎢⎣

1 cos(0.2π) · · · cos((N)0.2π)
1 cos(0.5π) · · · cos((N)0.5π)
0 sin(0.2π) · · · sin((N)0.2π)
0 sin(0.5π) · · · sin((N)0.5π)

⎤
⎥⎥⎦

4×11

and fT =
[

1 1 0 0
]
. (12.49)

336 Shiunn-Jang Chern

We know that, usually, it is more difficult to separate two signals closely in adja-
cent frequency band, especially when one has relatively larger power than the other;
the signal with smaller power may be ignored and yields the wrong result.

From Figure 12.4, we observe that the learning curve of the RCFLS algorithm
might be disturbed by the inversion of the correlation matrix (while comput-
ing the adaptation gain) which is inherently numerically unstable. The nulling
capability for the undesired signal, the one with normalized frequency 0.35
and less power, is affected by the adjacent signal with frequency 0.33 and hav-
ing relatively larger power. However, the LC-IQRD-RLS algorithm has faster
convergence rate and better numerical stability than the RCFLS algorithm.
For comparison, the nulling gains, in dB, for different frequency components
using the LC-IQRD-RLS algorithm and the RCFLS algorithm, are listed in
Table 12.3.

Next, let us consider the problem of constrained drift which may be defined as
the squared norm of CTw(k)− f. Also, using the notation of functions found in
Matlab R©, the tolerance (Tol) of the numerical accuracy may be expressed as

Tol = max(size(A))×norm(A)× eps,

Fig. 12.4 Learning curve and frequency response of two algorithms after 1000 iterations with 100
independent runs.

12 On Linearly Constrained QRD-Based Algorithms 337

Table 12.3 Comparison of nulling capability of RCFLS and LC-IQRD algorithms.

Iteration Algorithms Normalized frequency of the signals

0.15 0.33 0.35

1000 RCFLS −44.05(dB) −43.50(dB) −28.35(dB)
1000 LCIQRD −44.12(dB) −44.04(dB) −49.55(dB)
10000 RCFLS −44.10(dB) −45.63(dB) −47.32(dB)
10000 LCIQRD −44.99(dB) −46.07(dB) −54.46(dB)

where eps is the floating point relative accuracy and A is denoted as the correlation
matrix. The smaller value of eps implies that a larger word-length is required to
achieve a specific Tol; for instance, if we set eps = 2−10, approximately, the word-
length will be 10 bits. From the implementation point of view, eps can also be treated
as the number of multiplication operator in the specific DSP device. Alternatively,
Tol may be used to set a limit or the precision for our simulation environment. That
is, for any singular value less than Tol will be treated as null or deriving a round-
ing error, during the computation procedure. In our simulation, the value of Tol is
chosen to be 0.9453 and the corresponding value of eps to achieve the numerical
accuracy of Tol is eps = 2−7. In Figure 12.5, the results of the RCFLS algorithm, in
terms of MSE, output power and the constrained drift, with the parameters described
above are given. The jitters phenomenon of the RCFLS algorithm are found in

Fig. 12.5 Numerical properties of the RCFLS algorithm with eps = 2−7.

338 Shiunn-Jang Chern

Fig. 12.6 Numerical properties of the LC-IQRD (LC-IQRD-RLS) algorithm with eps = 2−7.

the learning curve (MSE), output power and the constrained drift, as depicted in
Figure 12.5. However, as shown in Figure 12.6 with the same parameter as in Fig-
ure 12.5, the results of the LC-IQRD-RLS algorithm, in terms of MSE, output power
and constrained drift, are much better than those of the RCFLS algorithm.

12.5.2 Application 2: Adaptive LCMV antenna array beamformer

There are two types of antenna array beamformers, viz., broadband array structure
and narrowband array structure. In this application, the narrowband array
beamformer structure is considered for interferences (or undesired signals) sup-
pression. Basically, an array beamformer is a processor used in conjunction with
an array of sensors to provide a versatile form of spatial filtering. Since the desired
signal and the interference (or jammer) usually originate from different spatial loca-
tions, we are able to remove the jammer from the received signal by exploiting the
spatial diversity at the receiver. The LCMV beamformer is known to be one of the
most popular approaches for suppressing the undesired interference [16, 20, 23].
However, by using the adaptive array beamforming approach, the array system can
automatically adjust its directional response to null the jammers, and thus enhances
the reception of the desired signal.

The basic operation of the adaptive antenna array is usually described in terms
of a receiving system steering a null, that is, a reduction in sensitivity in a certain

12 On Linearly Constrained QRD-Based Algorithms 339

kφ

d

y(k)

x0(k)

x1(k)

xN (k)

0

1

N

Adaptive Constrained
Algorithm

w∗

w∗

w∗

Fig. 12.7 Configuration of linearly constrained uniform spaced narrowband array beamformer.

position, towards a source of interference. It consists of a number of antenna ele-
ments coupled together via some form of amplitude control and phase shifting net-
work to form a single output. The amplitude and phase control can be regarded as
a set of complex weights, as illustrated in Figure 12.7. To start our derivation, let
us consider a uniform linear array (ULA) and a wavefront, generated by a desired
source of wavelength λ , propagating in an N + 1 element array of sensors from a
direction φk off the array boresight. Now, taking the first element in the array as
the phase reference and with equal array spacing, d, the relative phase shift of the
received signal at the nth element can be expressed as φnk = 2π

λ d(k−1)sinφk. More-
over, assuming that the spacing between the array elements is set to λ/2, the array
response vector of this (N +1)-antenna ULA can be denoted by

a(φk) =
[

1, e− jπ sin(φk), · · · , e− j(N)π sin(φk)
]T

. (12.50)

Thus, we choose φk toward the direction of arrival (DOA) of the desired source
signal and suitably adjust the weights of adaptive array; the array will pass the
desired source signal from direction φ0 and steer nulls toward interference sources
located at φk for k �= 0. It can be shown that an (N +1) element array has (N +1)×1
degrees of freedom giving up to (N +1)×1 independent pattern nulls. So it has bet-
ter performance if the array has more antenna elements. We assume that the received
signal in each sensor consists of a desired source signal buried in white Gaussian
noise and three directional interferences (or jammers) incident at angles φ1,φ2, and
φ3, respectively. For convenience, the look direction of the desired source signal is
chosen to be φ1 = 0◦. In the constrained approach of beamforming algorithm, the
use of adaptive array for suppressing interference, with a look-direction constraint,
is highly dependent on the accuracy of the a priori information (DOA) to achieve

340 Shiunn-Jang Chern

the maximum signal-to-interference-plus-noise ratio (SINR). However, an error in
the steering angle, termed pointing error, would cause the adaptive array to tend to
null out the desired signal as if it were a jammer. To verify the observation described
earlier in this application, the problem of adaptive beamformer with main-beam con-
strained, associated with the pointing error, is considered. The deviation angle Δφ
is defined as the discrepancy that the constraints look-direction, φc, deviates from
the true arrival direction of the desired signal φ1, i.e., Δφ = φ1 −φc. We note that,
if pointing error exists (the look direction and the main-beam constraint is deviated
due to estimation error of arrival angle), one of the conventional approaches would
be the derivatives constraint approach [24, 25]. In such a case we may adapt the
derivative constraints (DC) into the beamformer where constraint matrix C, with L
linear constraints, is given by

C =
[

a(φc) a(1)(φc) · · · aL−1(φc)
]
, (12.51)

where ai(φc) = ∂a(φ)
∂φ i |φ=φc is defined as the ith derivative of the steering vector with

respect to φ .
Moreover, there are two design approaches to obtain the response vector f. The

first approach is to use the conventional beamformer response, i.e.,

f =
1
M

[aH(φc)a(φc),aH(φc)a(1)(φc), · · · ,aH(φc)a(L−1)(φc)]T =
1
M

[
aH(φc)C

]T
.

(12.52)

This will make the beamformer force the lobe shape of the main beam. In the sec-
ond scheme, we set the other derivatives to a zero response, i.e., f = [1,0, · · · ,0]T,
and this could make the beamformer achieve the main beam with a flat top shape.
Since we can expect that the jammer power is, in general, much larger than the
desired signal source, the SNR is set to 0 dB. In our simulations, we have used
three jammers with different jammer power ratios (JPR), e.g., JNR1 = 10 dB,
JNR2 = 20 dB, and JNR3 = 40 dB, corresponding to incident angles −30◦, 35◦,
and 40◦. First, we consider the case of main-beam constraint (single constraint)
only, and assumed that there is no pointing error, e.g., Δφ = φ1 − φc = 0◦. The
results, in terms of nulling capability, are given in Figure 12.8 for both LC-IQRD-
RLS and GSC-IQRD-RLS algorithms, with the forgetting factor λ = 0.98. These
results were evaluated after 200 snapshots and correspond to an average of 500
independent runs. From Figure 12.8, we observe that both algorithms have identi-
cal beampatterns. We have also compared the results obtained with constrained LS
algorithms with those of the linearly constrained LMS (Frost’s algorithm) [5] and its
GSC counterpart [26]. As can be seen in Figure 12.8, the LC-IQRD-RLS algorithm
outperforms, in terms of nulling capability shown in the beampatterns, the LC-LMS
and the GSC-LMS algorithms. Moreover, as described in the literature for the case
where BHB = I, the LC-LMS algorithm is identical to the GSC-LMS algorithm [21].
It is worth noting that, for the LC-IQRD-RLS algorithm, the condition BHB = I is
not required for achieving the equivalency with the GSC-IQRD-RLS algorithm.

12 On Linearly Constrained QRD-Based Algorithms 341

−80 −60 −40 −20 0 20 40 60 80
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
Desire is from 0 degree; jammers is from −30(10dB), 35(20dB) and 40(40dB) degree

Azimuth angle (degrees)

A
m

pl
itu

de
 r

es
po

ns
e

(d
B

)

LC−IQRD−RLS
GSC−IQRD−RLS
LC−LMS
GSC−LMS

Fig. 12.8 Comparison of the GSC-IQRD-RLS algorithm with other algorithms, λ = 0.98 (without
pointing error).

Next, we would like to see the effect due to pointing error, and to verify that the
equivalency is also true for multiple constraint case. To do so, we consider the case
that a pointing error, Δφ = φ1 − φc = 3◦, occurs (also known as DOA mismatch).
Under this circumstance, with and without using the derivative constraint for the
main-beam, the performance of the same algorithms are investigated. We let the
other parameters be the same as in the case without having pointing error. From
Figure 12.9, we learn that, with the single constraint (without using the derivative
constraint), the gain of main beam is attenuated due to mismatch of the true look
direction and the main-beam constraint for the LC-IQRD-RLS and the GSC-IQRD-
RLS algorithms. Although the use of the LC-LMS algorithm has less effect due to
pointing error, nulling capability is still worse than the one with the LC-IQRD-RLS
algorithm. But, with the use of derivative constraints for the main-beam constraint
(multiple constraints, e.g., the main beam and its first order constraints), the effect
due to the pointing error has been alleviated while keeping better nulling capability
than the LC-LMS algorithm. In this case, the performance of the LC-IQRD-RLS
algorithm is again identical to the GSC-IQRD-RLS algorithm. Usually, we could
use higher order derivative constraint to achieve better result of combating DOA

342 Shiunn-Jang Chern

−80 −60 −40 −20 0 20 40 60 80
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10
Desire is from 0 degree; jammers is from −30(10dB), 35(20dB) and 40(40dB) degree

Azimuth angle (degrees)

A
m

pl
itu

de
 r

es
po

ns
e(

dB
)

LC−IQRD−RLS
GSC−IQRD−RLS
LC−LMS
GSC−LMS

Fig. 12.9 Comparison of the GSC-IQRD-RLS algorithm with other algorithms, λ = 0.98 (pointing
error with derivative constraint).

mismatch. For comparison, the results of nulling capability for Figures 12.8 and
12.9 are listed in Tables 12.4 and 12.5.

From Tables 12.4 and 12.5, we observe that the use of the first order main
beam derivative constraint with the LC-LMS algorithm did not gain any ben-
efit. Conversely, a significant gain improvement has been verified for the LC-
IQRD-RLS algorithm.

From the results of the experiment carried out with this beamformer, we may
conclude that, for the multiple constraint case, both the LC-IQRD-RLS and the
GSC-IQRD-RLS algorithms did have the same performance. Although having a
similar performance, the use of the GSC-IQRD-RLS algorithm has the advantage of
requiring less computational complexity than the direct LC-IQRD-RLS
algorithm.

12 On Linearly Constrained QRD-Based Algorithms 343

Table 12.4 Comparison of nulling capability for various linearly constrained beamforming algo-
rithms with single constraint (without pointing error).

Desired signal jammer 1 jammer 2 jammer 3

SNR 0 (dB) 10 (dB) 20 (dB) 40 (dB)
Azimuth algorithm 0o −30o 35o 40o

LC-LMS algorithm −0.445(dB) −13.38(dB) −27.44(dB) −49.33(dB)
GSC-LMS algorithm −0.445(dB) −13.38(dB) −27.44(dB) −49.33(dB)
LC-IQRD-RLS algorithm −4.169(dB) −49.92(dB) −58.08(dB) −87.72(dB)
GSC-IQRD-RLS algorithm −4.169(dB) −49.92(dB) −58.08(dB) −87.72(dB)

Table 12.5 Comparison of nulling capability for various linearly constrained beamforming algo-
rithms with multiples constraint (pointing error with derivative constraint).

Desired signal jammer 1 jammer 2 jammer 3

SNR 0 (dB) 10 (dB) 20 (dB) 40 (dB)
Azimuth algorithm 0o −30o 35o 40o

LC-LMS algorithm −0.4745(dB) −12.3(dB) −27.26(dB) −47.7(dB)
GSC-LMS algorithm −0.4745(dB) −12.3(dB) −27.26(dB) −47.7(dB)
LC-IQRD-RLS algorithm −0.4773(dB) −45.58(dB) −61(dB) −87.95(dB)
GSC-IQRD-RLS algorithm −0.4773(dB) −45.58(dB) −61(dB) −87.95(dB)

12.6 Conclusion

In this chapter, we developed the direct and indirect IQRD-RLS-based constrained
adaptive filtering algorithms, named the LC-IQRD-RLS and the GSC-IQRD-RLS
algorithms, respectively, to implement the LCMV filter. The IQRD approach was
chosen such that the constrained LS weight vector solution could be updated with-
out using back-substitution, which is suitable to be implemented using a typical
VLSI technology structure termed systolic array. To verify the merits of the LC-
IQRD-RLS and the GSC-IQRD-RLS algorithms, we applied them to spectral anal-
ysis and smart antenna array beamforming problems. We have shown that, due to
the numerical stability of evaluating the adaptation (or Kalman) gain via Givens
rotations, the proposed LC-IQRD-RLS algorithm had less effect of constraint drift
compared with the CFLS algorithm and its robust version [2]. Thus, we concluded
that the LC-IQRD-RLS algorithm proposed in this chapter did perform better than
the CFLS and RCFLS algorithms developed in [2], in terms of capability to null
the undesired signal components output power as well as numerical efficiency in
practical implementation.

References

1. S. J. Chern and C. Y. Chang, Adaptive linearly constrained inverse QRD-RLS beamformer
for moving jammers suppression. IEEE Transactions on Antennas and Propagation, vol. 50,
no. 8, pp. 1138–1150 (August 2002)

344 Shiunn-Jang Chern

2. L. S. Resende, J. T. Romano, and M. G. Bellanger, A fast least-squares algorithm for lin-
early constrained adaptive filtering. IEEE Transactions on Signal Processing, vol. 44, no. 5,
pp. 1168–1174 (May 1996)

3. D. H. Johnson and Dan E. Dudgeon, Array Signal Processing Concepts and Techniques.
Prentice-Hall, Englewood Cliffs, NJ, USA (1993)

4. S. N. Lin and S. J. Chern, A new adaptive constrained LMS time delay estimation algorithm.
Signal Processing (Elsevier), vol. 71, pp. 29–44 (November 1998)

5. O. L. Frost III, An algorithm for linearly constraint adaptive array processing. Proceedings of
IEEE, vol. 60, no. 8, pp. 926–935 (August 1972)

6. S. J. Chern and C. Y. Chang, Adaptive MC-CDMA receiver with constrained constant modu-
lus IQRD-RLS algorithm for MAI suppression. Signal Processing (Elsevier), vol. 83, no. 10,
pp. 2209–2226 (October 2003)

7. J. B. Schodorf and D. W. Williams, Array processing techniques for multiuser detection. IEEE
Transactions on Communications, vol. 45, no. 11, pp. 1375–1378 (November 1997)

8. S. Haykin, Adaptive Filter Theory. 3rd edition Prentice-Hall, Inc. Englewood Cliffs, NJ, USA
(1996)

9. J. M. Cioffi and T. Kailath, Fast RLS transversal filters for adaptive filtering. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, vol. 32, pp. 304–337 (June 1984)

10. J. M. Cioffi, Limited precision effects for adaptive filtering. IEEE Transactions on Circuits
and Systems, vol. 34, pp. 821–833 (July 1987)

11. P. A. Regalia and M. G. Bellanger, On the duality between fast QR methods and lattice
methods in least squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39,
pp. 879–891 (April 1991)

12. G. H. Golub and C. F. Van Load, Matrix Computation. 3rd edition John Hopkins University
Press, Baltimore, MD, USA (1996)

13. Z. S. Liu, QR Method of O(N) complexity in adaptive parameter estimation. IEEE Transac-
tions on Signal Processing, vol. 43, no. 3, pp. 720–729 (March 1995)

14. J. M. Cioffi, High speed systolic implementation of fast QR adaptive filters. IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, ICASSP’88, New York,
pp. 1584–1587 (April 1988)

15. H. Leung and S. Haykin, Stability of recursive QRD-RLS algorithm using finite precision sys-
tolic array implementation. IEEE Transactions on Acoustics, Speech, and Signal Processing,
vol. 37, pp. 760–763 (May 1989)

16. M. Moonen, Systolic MVDR Beamforming with inverse updating. Proceedings IEE Pt F,
vol. 140, no. 3, pp. 175–178 (March 1993)

17. C.-F. T. Tang, Adaptive Array Systems Using QR-Based RLS and CRLS Techniques with Sys-
tolic Array Architectures. Ph.D. thesis - Department of Electrical Engineering, University of
Maryland, College Park, MD, USA (1991)

18. S. T. Alexander and A. L. Ghirnikar, A method for recursive least squares filtering based
upon an inverse QR decomposition. IEEE Transactions on Signal Processing, vol. 41, no. 1,
pp. 20–30 (January 1993)

19. D. T. M. Slock and T. Kailath, Numerical stable fast transversal filters for recursive least
squares adaptive filtering. IEEE Transactions on Signal Processing, vol. 39, no. 1, pp. 92–114
(January 1991)

20. M. Moonen and I. K. Proudler, MVDR beamforming and generalized sidelobe cancellation
based on inverse updating with residual extraction. IEEE Transactions on Circuit and System
II, vol. 47, no. 4, pp. 352–358 (April 2000)

21. B. R. Breed and J. Strauss, A short proof of the equivalence of LCMV and GSC beamforming.
IEEE Signal Processing Letters, vol. 9, no. 6, pp. 168–169 (June 2002)

22. J. A. Apolinário Jr. and M. L. R. de Campos, The constrained conjugate gradient algorithm.
IEEE Signal Processing Letters, vol. 7, no. 12, pp. 351–354 (December 2000)

23. R. A. Games, W. L. Estman, and M. J. Sousa, Fast algorithm and architecture for constrained
adaptive side-lobe cancellation. IEEE Transactions on Antennas and Propagation, vol. 41,
no. 5, pp. 683–686 (May 1993)

12 On Linearly Constrained QRD-Based Algorithms 345

24. C. Y. Chang and S. J. Chern, Derivative constraint narrowband array beamformer with new
IQML algorithm for wideband and coherent jammers suppression. IEICE Transactions on
Communications, vol. E86-B, no. 2, pp. 829–837 (February 2003)

25. W. G. Najm, Constrained least squares in adaptive, imperfect arrays. IEEE Transactions on
Antennas and Propagation, vol. 38, no. 11, pp. 1874–1878 (November 1990)

26. L. J. Griffiths and C. W. Jim, An alternative approach to linearly constrained adaptive beam-
forming. IEEE Transactions on Antennas and Propagation, vol. AP-30, no. 1, pp. 27–34 (Jan-
uary 1982)

Index

accumulated quantization error, 243
active noise control, 314
adaptive equalization, 191
adaptive filter

applications, 25
basic configuration, 25
concept of an, 24
main characteristics, 27

adaptive prewhitening, 190
Affine Projection Algorithm, 39
algorithm stability, 286
ANC, see active noise control
annihilation-reording look-ahead, 273
APA, see Affine Projection Algorithm
application(s), 147, 151

example, 149, 176

back-substitution, 79
backward error analysis, 209
backward prediction, 69

error, 148, 176, 178
matrix, 162
vector, 179

problem, 162, 163, 167, 168
backward stability, 209
beamforming

adaptive beamformer, 338
BIBO, see Bounded Input Bounded Output
binormalized data-reusing LMS algorithm, 36,

38
block processing realization, 281
block updating, 192
BNDR-LMS, see binormalized data-reusing

LMS algorithm
bounded distance, 217
Bounded Input Bounded Output, 283
burst-trained equalizer, 308

channel equalization, 26
Cholesky factor, 54, 186

inverse, 190
Cioffi, J. M., 16
coarse-grain pipelining, 272
computational complexity, 178, 195, 293, 320
concurrent algorithm, 273
condition number, 33, 43
controllability matrix, 218
conventional QRD-RLS algorithm, 60, 63, 238

dynamic range of internal variables, 241
conventional RLS algorithm, 41
convergence factor, 31
conversion factor, 68
Coordinate Rotation Digital Computer, 270
CORDIC, see Coordinate Rotation Digital

Computer
arithmetic, 269

cost function, 52

Data-reusing LMS algorithm, 34
decoupling property, 116

exact decoupling of the LSL predictor, 122
deterministic cross-correlation vector, 53
distributed weight extraction, 313
downdate, 199
DR-LMS, see Data-reusing LMS algorithm

eigenvalue, 2
eigenvector, 2
equalizer, 308
equicontinuity, 213
equivalent-output filtering, 309
error accumulation, 230
error feedback mechanism, 123, 142
error propagation, 244
Euclidean norm, 206

347

348 Index

Euclidean space, 56
exact initialization, 64

fast algorithms, 88, 220, 301
Fast QRD-Lattice algorithm

finite precision analysis, 261
infinite precision analysis, 258

Fast QRD-lattice algorithm, 257
Fast QRD-RLS, 16
Fast QRD-RLS algorithms based on a

posteriori backward prediction errors, 95
Fast QRD-RLS algorithms based on a

posteriori forward prediction errors, 90
Fast QRD-RLS algorithms based on a priori

backward prediction errors, 98
Fast QRD-RLS algorithms based on a priori

forward prediction errors, 92
fast transversal filter, 118, 142

stabilized FTF algorithm, 143
filter

information, 190
Potter’s square-root, 190
square-root covariance, 190

filtered-x
RLS algorithm, 315

fine-grain pipelining, 269, 272, 286
finite precision analysis of the QRD-RLS

algorithm, 236
finite-precision, 283, 284, 286

environment, 141
forgetting factor, 29
forward prediction, 71

error, 158, 159, 166
covariance matrix, 165
matrix, 165
vector, 166

error matrix, 163
problem, 153, 167, 168
problems, 162, 172

forward stability, 209
forward substitution, 79
FQR POS B, see Fast QRD-RLS algorithms

based on a posteriori backward
prediction errors

matrix equations, 98
FQR POS F, see Fast QRD-RLS algorithms

based on a posteriori forward prediction
errors

matrix equations, 92
FQR PRI B, see Fast QRD-RLS algorithms

based on a priori backward prediction
errors

matrix equations, 99

FQR PRI F, see Fast QRD-RLS algorithms
based on a priori forward prediction
errors

matrix equations, 93
FQRD-RLS, see QRD-RLS, fast algorithms

classification of algorithms, 88
computational complexity, 99

Francis, J. G. F., 4
FTF, see fast transversal filter

Generalized Sidelobe Canceler, 331
Gentleman, W. M., 14
Givens rotation, 10, 57, 123, 150, 156, 159,

165, 183, 271, 274, 286, 293
complex version, 84
matrices, 59, 159

Gram-Schmidt procedure, 71, 73, 121
classical, 6
modified, 8

GSC, see Generalized Sidelobe Canceler

Hankel matrix, 222
Householder

matrix, 182
reflections, 9
transforms, 181

hyperbolic, 184
row, 184

hyperbolic norm, 184
hypernormal matrix, 184

IBP, see (intermediate backward) prediction
error

IFP, see (intermediate forward) prediction error
infinite precision analysis of the QRD-RLS

algorithm, 237
initialization procedure, 64
input data matrix, 52

triangularization of the, 53
input vector, 147, 149, 151, 152
input-data deterministic autocorrelation

matrix, 53
Instantaneous Square Error, 29
interference cancelation, 26
interpolation, 117, 118

error, 118, 121
modified QR-decomposition for, 126

Inverse QRD-RLS algorithm, 76, 78, 143
Constrained IQRD-RLS algorithm, 330
GSC-based IQRD-RLS algorithm, 334

IQRD, see Inverse QRD-RLS algorithm
ISE, see Instantaneous Square Error

Index 349

Jacobi, C. G. J., 2
joint-process estimation, 62, 126, 139

KaGE RLS algorithm, 143
Kalman

filtering, 190
gain, 186
gain vector, 139

Kublanovskaya, V. N. , 4
Kung, H. T., 14

Lagrange multipliers, 36
lattice filter, 116
LCAF, see linearly constrained adaptive filter
LCMV, see linearly constrained minimum

variance
Least-Mean Square algorithm, 32
least-squares, 116
least-squares lattice, 116, 117
linear interpolation, 117, 118
linear prediction, 117
linearly constrained adaptive filter, 323
linearly constrained minimum variance, 323
LMS, see Least-Mean Square algorithm
lookahead techniques, 272
lower triangular matrix, 62
lower triangularization algorithms (updating

backward prediction errors), 93
LR algorithm, 3
LS, see least-squares
LSL, see least-squares lattice

interpolator, 118–120
orthogonal bases for LSL interpolator, 121
predictor, 118, 122

matrix inversion lemma, 40
McWhirter structure, 64
McWhirter, J. G., 16
Mean-Square Error, 28
misadjustment, 33, 42
modified filtered-x

FQRD-RLS, 316, 318
structure, 316

MSE, see Mean-Square Error

NDR-LMS, see Normalized Data-reusing
algorithm

NLMS, see Normalized LMS algorithm
nonstationary environment, 43
Normalized Data-reusing algorithm, 35
Normalized LMS algorithm, 33
numerical robustness, 183, 188
numerical stability, 205, 336

optimal solution, 53, 54
order recursive FQRD-RLS algorithms, 100
order-recursive, 176

implementations, 149
MC-FQRD-RLS algorithms, 171
property, 116

orthogonal triangularization, 57
orthogonal-projections algorithm, 36
orthogonality principle, 55
overflow, 242

parallelism, 279
persistence of excitation, 53, 217
perturbation, 211
pipelinability, 273
pipelined implementation, 269
pipelined QRD-RLS adaptive filter, 284, 288
pipelined realization, 280
prediction error, 121

backward, 121
intermediate, 120, 121

forward, 121
intermediate, 120, 121

problem conditioning, 208
projection operator, 55
pseudo-inverse, 207

QR algorithm, 4
QR decomposition, 5, 41, 116, 300
QR-decomposition-based least-squares lattice

algorithm, 116
QRD, see QR decomposition
QRD lattice algorithm, 229
QRD-based fast Kalman algorithm, 117
QRD-LSL, see QR-decomposition-based

least-squares lattice algorithm
QRD-LSL prediction, 126
QRD-LSL prediction algorithm, 126
QRD-RLS

fast algorithms, 87
Householder block exact inverse QRD-RLS

algorithm, 196
Householder block exact QRD-RLS

algorithm, 192
quantization

effects, 53
error, 242

Recursive Least-Squares algorithm, 40, 41,
117, 139, 186

reflection coefficients, 116
regression coefficients, 136
retiming technique, 278

350 Index

RLS, see Recursive Least-Squares algorithm,
see Recursive Least Squares

Householder RLS algorithm, 186
sliding window, 199

rotated vector, 56
rotating mode, 271
rotation matrix, 58
Rutishauser, H., 3

sequential algorithm, 273
SFG, see signal flow graph
signal flow graph, 271
signal prediction, 27
Singular Value Decomposition, 207
soft-start procedure, 66
spectral analysis, 335
spectral norm, 206
square-root factor, 186
square-root-free, 115

QRD-RLS algorithm, 80
SRF, see square-root-free

(QRD-LSL)-based RLS algorithm, 139
Givens rotation, 123
Givens rotation with a feedback mechanism,

123, 125
QRD-LSL interpolation algorithm, 125, 127
QRD-LSL prediction algorithm, 136

stability, 46
analysis, 242

state transition matrix, 218
state vector, 227
steepest-descent algorithm, 32
step-size, 31
SVD, see Singular Value Decomposition
system identification, 25, 303
systolic architecture, 270
systolic array, 272

Toeplitz matrix, 222
tracking performance, 43
transversal filters, 116

upper triangular matrix, 62
upper triangularization algorithms (updating

forward prediction errors), 89

vector norm, 206
vectoring mode, 271

weight extraction, 272, 299
explicit, 272
implicit, 272
in FQRD-RLS algorithm, 304

Weighted Least-Squares, 29, 51
Wiener solution, 29
WLS, see Weighted Least-Squares, see

Weighted Least-Squares

	Foreword
	Preface
	Contents
	List of Contributors
	QR Decomposition: An Annotated Bibliography
	Marcello L. R. de Campos and Gilbert Strang
	Preamble
	Eigenvalues and Eigenvectors
	Iterative Methods for the Solution of the Eigenproblem
	The LR algorithm
	The QR algorithm

	QR Decomposition for Orthogonalization
	The classical Gram--Schmidt orthogonalizationmethod
	The modified Gram--Schmidt orthogonalizationmethod
	Triangularization via Householder reflections
	Triangularization via Givens plane rotations

	QR Decomposition for Linear Least Squares Problems
	QR Decomposition by systolic arrays

	QR Decomposition for Recursive Least Squares AdaptiveFilters
	Fast QR decomposition RLS adaptation algorithms

	Conclusion
	References

	Introduction to Adaptive Filters
	José A. Apolinário Jr. and Sergio L. Netto
	Basic Concepts
	Error Measurements
	The mean-square error
	The instantaneous square error
	The weighted least-squares

	Adaptation Algorithms
	LMS and normalized-LMS algorithms
	Data-reusing LMS algorithms
	RLS-type algorithms

	Computer Simulations
	Example 1: Misadjustment of the LMS algorithm
	Example 2: Convergence trajectories
	Example 3: Tracking performance
	Example 4: Algorithm stability

	Conclusion
	References

	Conventional and Inverse QRD-RLS Algorithms
	José A. Apolinário Jr. and Maria D. Miranda
	The Least-Squares Problem and the QR Decomposition
	The Givens Rotation Method
	The Conventional QRD-RLS Algorithm
	Initialization of the Triangularization Procedure
	On the Q(k) Matrix
	The backward prediction problem
	The forward prediction problem
	Interpreting the elements of Q(k) for a lower triangular Cholesky factor
	Interpreting the elements of Q(k) for an upper triangular Cholesky factor

	The Inverse QRD-RLS Algorithm
	Conclusion
	Appendix 1
	Appendix 2
	Appendix 3
	References

	Fast QRD-RLS Algorithms
	José A. Apolinário Jr. and Paulo S. R. Diniz
	Introduction
	Upper Triangularization Algorithms (Updating Forward Prediction Errors)
	The FQR_POS_F algorithm
	The FQR_PRI_F algorithm

	Lower Triangularization Algorithms (Updating Backward Prediction Errors)
	The FQR_POS_B algorithm
	The FQR_PRI_B algorithm

	The Order Recursive Versions of the Fast QRD Algorithms
	Conclusion
	Appendix 1
	Appendix 2
	Appendix 3
	References

	QRD Least-Squares Lattice Algorithms
	Jenq-Tay Yuan
	Fundamentals of QRD-LSL Algorithms
	LSL Interpolator and LSL Predictor
	LSL interpolator
	Orthogonal bases for LSL interpolator
	LSL predictor

	SRF Givens Rotation with Feedback Mechanism
	SRF QRD-LSL Algorithms
	QRD based on interpolation
	SRF QRD-LSL interpolation algorithm
	SRF QRD-LSL prediction algorithm and SRF joint process estimation

	SRF (QRD-LSL)-Based RLS Algorithm
	Simulations
	Conclusion
	References

	Multichannel Fast QRD-RLS Algorithms
	António L. L. Ramos and Stefan Werner
	Introduction
	Problem Formulation
	Redefining the input vector
	Input vector for sequential-type multichannelalgorithms
	Input vector for block-type multichannel algorithms

	Sequential-Type MC-FQRD-RLS Algorithms
	Triangularization of the information matrix
	A priori and A posteriori versions
	Alternative implementations

	Block-Type MC-FQRD-RLS Algorithms
	The backward and forward prediction problems
	A priori and A posteriori versions
	Alternative implementations

	Order-Recursive MC-FQRD-RLS Algorithms
	Application Example and Computational Complexity Issues
	Application example
	Computational complexity issues

	Conclusion
	References

	Householder-Based RLS Algorithms
	Athanasios A. Rontogiannis and Sergios Theodoridis
	Householder Transforms
	Hyperbolic Householder transforms
	Row Householder transforms

	The Householder RLS (HRLS) Algorithm
	Applications

	The Householder Block Exact QRD-RLS Algorithm
	The Householder Block Exact Inverse QRD-RLS Algorithm
	Sliding Window (SW) Householder Block Implementation
	Conclusion
	References

	Numerical Stability Properties
	Phillip Regalia and Richard Le Borne
	Introduction
	Preliminaries
	Conditioning, forward stability, and backwardstability

	The Conditioning of the Least-Squares Problem
	The conditioning of the least-squares problem
	Consistency, stability, and convergence

	The Recursive QR Least-Squares Methods
	Full QR decomposition adaptive algorithm

	Fast QR Algorithms
	Past input reconstruction
	Reachable states in fast least-squares algorithms
	QR decomposition lattice algorithm

	Conclusion
	References

	Finite and Infinite-Precision Properties of QRD-RLS Algorithms
	Paulo S. R. Diniz and Marcio G. Siqueira
	Introduction
	Precision Analysis of the QR-Decomposition RLS Algorithm
	Infinite-precision analysis
	Stability analysis
	Error propagation analysis in steady-state
	Simulation results

	Precision Analysis of the Fast QRD-Lattice Algorithm
	Infinite-precision analysis
	Finite-precision analysis
	Simulation results

	Conclusion
	References

	On Pipelined Implementations of QRD-RLS Adaptive Filters
	Jun Ma and Keshab K. Parhi
	QRD-RLS Systolic Architecture
	The Annihilation-Reording Look-Ahead Technique
	Look-ahead through block processing
	Look-ahead through iteration
	Relationship with multiply--add look-ahead
	Parallelism in annihilation-reording look-ahead
	Pipelined and block processing implementations
	Invariance of bounded input and bounded output

	Pipelined CORDIC-Based RLS Adaptive Filters
	Pipelined QRD-RLS with implicit weight extraction
	Stability analysis
	Pipelined QRD-RLS with explicit weight extraction

	Conclusion
	Appendix
	References

	Weight Extraction of Fast QRD-RLS Algorithms
	Stefan Werner and Mohammed Mobien
	FQRD-RLS Preliminaries
	QR decomposition algorithms
	FQR_POS_B algorithm

	System Identification with FQRD-RLS
	Weight extraction in the FQRD-RLS algorithm
	Example

	Burst-trained Equalizer with FQRD-RLS
	Problem description
	Equivalent-output filtering
	Equivalent-output filtering with explicit weightextraction
	Example

	Active Noise Control and FQRD-RLS
	Filtered-x RLS
	Modified filtered-x FQRD-RLS
	Example

	Multichannel and Lattice Implementations
	Conclusion
	References

	On Linearly Constrained QRD-Based Algorithms
	Shiunn-Jang Chern
	Introduction
	Optimal Linearly Constrained QRD-LS Filter
	The Adaptive LC-IQRD-RLS Filtering Algorithm
	The Adaptive GSC-IQRD-RLS Algorithm
	Applications
	Application 1: Adaptive LCMV filtering for spectrum estimation
	Application 2: Adaptive LCMV antenna array beamformer

	Conclusion
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

