5. Exterior Algebra and Differential Forms

Differential forms play an important part in the theory of Hamiltonian sys-
tems, but this theory is not universally known by scientists and mathemati-
cians. It gives the natural higher-dimensional generalization of the results of
classical vector calculus. We give a brief introduction with some, but not all,
proofs and refer the reader to Flanders (1963) for another informal introduc-
tion but a more complete discussion with many applications, or to Spivak
(1965) or Abraham and Marsden (1978) for a more complete mathematical
discussion. The reader conversant with the theory of differential forms can
skip this chapter, and the reader not conversant with the theory should re-
alize that what is presented here is not meant to be a complete development
but simply an introduction to a few results that are used sparingly later.

In this chapter we introduce and use the notation of classical differen-
tial geometry by using superscripts and subscripts to differentiate between
a vector space and its dual. This convention helps sort out the multitude of
different types of vectors encountered.

5.1 Exterior Algebra

Let V be a vector space of dimension m over the real numbers R. The best
examples to keep in mind are the space of directed line segments in Euclidean
3-space, E?, or the space of all forces that can act at a point. Let V¥ denote
k copies of V; ie., VF =V x --- x V (k times). A function ¢ : V¥ — R is
called k-multilinear if it is linear in each argument; so,

¢(a17'"aar—17au+ﬂv7ar+la-"aak)

= a¢(a17 sy Qr—1, Uy Qpy 1,y - - '7ak) +/8¢(a17 sy Qp—1,V, Qpyp 1,y - - 7ak)

for all ay,...,ag,u,v € V, all a, 5 € R, and all arguments, r = 1,..., k. A
1-multilinear map is a linear functional that we sometimes call a covector or
I-form. In R™ the scalar product (a,b) = a’b is 2-multilinear, in R?" the
symplectic product {a,b} = aT Jb is 2-multilinear, and the determinant of an
m X m matrix is m-multilinear in its m rows (or columns). A k-multilinear
function ¢ is skew-symmetric or alternating if interchanging any two argu-
ments changes its sign. For a skew-symmetric k-multilinear ¢,
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¢(ala"'7ara"',asv"'7ak):7¢(a1,~~';as""aam"'vak)

for all ay,...,ax € V and all r,s = 1,...,k,r # s. Thus ¢ is zero if two
of its arguments are the same. We call an alternating k-multilinear function
a k-linear form or k-form for short. The symplectic product {a,b} = a*.Jb
and the determinant of an m X m matrix are alternating. Let A = R and
A% = A*(V) be the space of all k-forms for k > 1. It is easy to verify that
AF is a vector space when using the usual definition of addition of functions
and multiplication of functions by a scalar.

In E3, as we have seen, a linear functional (a 1-form or an alternating
l-multilinear function) acting on a vector v can be thought of as the scalar
project of v in a particular direction. A physical example is work. The work
done by a uniform force is a linear functional on the displacement vector of
a particle.

Given two vectors in E3, they determine a plane through the origin and
a parallelogram in that plane. The oriented area of this parallelogram is a 2-
form. Two vectors in E? determine (i) a plane, (ii) an orientation in the plane,
and (iii) a magnitude, the area of the parallelogram. Physical quantities that
also determine a plane, an orientation, and a magnitude are torque, angular
momentum, and magnetic field.

Three vectors in E3 determine a parallelepiped, and its oriented volume
is a 3-form. The flux of a uniform vector field, v, crossing a parallelogram
determined by two vectors a and b is a 3-form.
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Figure 5.1. Multilinear functions.

If ¢ is a 2-multilinear function, then ¢ defined by ¢(a,b) = {1 (a,b) —
¥(b,a)}/2 is alternating and is sometimes called the alternating part of
. If ¢ is already alternating, then ¢ = . If @ and B are 1-forms, then
@(a,b) = a(a)B(b) — a(b)B(a) is a 2-form. This construction can be general-
ized. Let Py be the set of all permutations of the k& numbers 1,2,...,k and
sign: P, — {+1, —1} the function that assigns 4+1 to an even permutation
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and —1 to an odd permutation. So if ¢ is alternating, ¢(ay(1), ..., 0ex)) =
sign(o)o(a,...,a). If ¢ is a k-multilinear function, then ¢ defined by

1 .
(b(alv oo 7ak) = H Z Slgn(a)'l/}(aa(l)a veey aa(k))
ceP

is alternating. We write ¢ = alt (¢). If ¢ is already alternating, then v =
alt (). If a € AF and 8 € A", then define a A 3 € A¥F™ by

(k+r)!

ahp= o alt (af3)
or
a/\ﬁ(a/h .. 'aak-i-T)
= ZUEP Sign(o)a(ag(l), e ,ag(k))ﬁ(ao(k+1), ey ag(k+r)).

The operator A : A¥ x A™ — AF*" is called the exterior product or wedge
product.

Lemma 5.1.1. For all k-forms «, r-forms 3 and 0, and s-forms ~:

1. aN(B+0)=aAB+aNd.

2. aN(BAY)=(aAp)Ay.
3. anB=(-1FBAa.

Proof. The first two parts are fairly easy and are left as exercises. Let 7 be
the permutation 7 : (1,...,kk+1,...;k+r) — (k+1,...,k+n1,..., k);
i.e 7 interchanges the first k entries and the last r entries. By thinking of 7
as being the sequence

(1. . kk+1,. . k+r)— (k+1,1,...)k,k+2,...)k+7)
— (k+1,k+2,1,...,k+3,...)k+r)— - — (k+1,...)k+r1,... k),

it is easy to see that sign(7) = (—1)**. Now

oA ﬁ(ah s aa/k-‘rT‘)
= dep Sign(o—)a(ao(l), ey ao(k))ﬂ(aa(k-i-l)v s 7aa'(k+r))
=D sepsign(o o T)a(Asor(1)s - - - 5 Goor(k)) B(Aoor(kt1)s - - - s oor(ktr))

= sepsign(o)sign(7)B(ax(1), - - - Go(r)) (Ao (ra1)s - - - 5 Ao (ktr))
= (1) B A .

Let eq,...,en be a basis for V and f!,..., f™ be the dual basis for the
dual space V*; so, fi(e;) = 6; where



120 5. Exterior Algebra and Differential Forms

sio 1 ifi=j
7710 ifi#g.

This is our first introduction to the subscript-superscript convention of dif-
ferential geometry and classical tensor analysis.

Lemma 5.1.2. dim A* = <TIZ) In particular a basis for A* is

{fil/\fiz/\.../\fik;1§i1<i2<"'<7;}c§m}-

Proof. Let I denote the set {(i1,...,1x) 1 4; € Z,1 < iy < -+ < i < m}
and fi = f4 A--- A f* when i € I. From the definition, f* A fi2 A -2 A
f*(ejy,...,e; ) equals 1if 4, j € I and i = j and equals 0 otherwise; in short,
fiej) = d;.

Let ¢ be a k-form and define

= Bleis e )T ANLEN A fE = (e [

i€l iel

Let v; = Za{ejJ =1,...,k, be k arbitrary vectors. By the multilinearity
of ¢ and 1), one sees that ¢(vy,...,v5) = ¥(v1,...,v;); so, they agree on all
vectors and, therefore, are equal. Thus the set {f?:i € I'} spans A*.
Assume that

D i i fPANFEA A fE =0,

icl
For a fixed set of indices sq, ..., s, let rgq1,...,7y be a complementary set;
i€, S1y..vySkyThal,---sTm 1S just a permutation of the integers 1,...,m.
Take the wedge product of (5.1) with f™+t A+ A f™™ to get

N G infUASEN A AN T =0, (5.1)

iel

The only term in the above sum without a repeated f in the wedge is the
one with i1 = s1,...,9; = s, and so it is the only nonzero term. Because
S1ye-ySkyTht1,---,Tm IS just a permutation of the integers 1,...,m, f*1 A
FO2N A [N fTRRUA A fTm = £ LA A ™ Thus applying the sum
in (5.1) to e1,...,em gives +as, s, = 0. Thus the fi,i € I, are independent.

In particular, the dimension of V™ is 1, and the space has as a basis the
single element f1 A --- A f™.

Lemma 5.1.3. Letg',...,g" € V*. Then g',---,g" are linearly independent
if and only if g A--- A g" # 0.
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Proof. If the gs are dependent, then one of them is a linear combination of the
others, say g" = 37" g% Then g' A---Ag" =31 agg' A---Ag" ' Ags.
Each term in this last sum is a wedge product with a repeated entry, and so
by the alternating property, each term is zero. Therefore g' A--- A g" = 0.

Conversely, if g',..., ¢g" are linearly independent, then extend them to a
basis ¢g',...,¢",...,¢™. By Lemma 5.1.2, g' A---Ag" A--- A g™ # 0, so
gt A Agt#0.

A linear map L : V — V induces a linear map L; : A¥ — AF by the
formula Lpé(as,...,ax) = ¢(Lay,...,Lag). If M is another linear map
of V onto itself, then (LM), = MjyLy, because (LM)go(aq,...,ar) =
¢o(LMay,...,LMay) = Lydp(Maq,...,May) = MpLipd(as,...,ar). Recall
that Al = V* is the dual space, and L; = L* is called the dual map.

If V.= R™ (column vectors), then we can identify the dual space V* = A!
with R™ by the convention f «— f, where f € V¥ f e R™, and f(x) = fo.
In this case, L is an m X m matrix, and Lx is the usual matrix product.
Lif is defined by Lif(z) = f(Lz) = fTLz = (LT f)Tx; so, the matrix
representation of Ly is the transpose of L; i.e., Li(f) = LT f. The matrix
representation of Ly, is discussed in Flanders (1963).

By Lemma 5.1.2, dim A™ = 1, and so every element in A" is a scalar
multiple of a single element. L,, is a linear map; so, there is a constant ¢
such that L,,f = £f for all f € A™. Define the determinant of L to be this
constant ¢, and denote it by det(L); so, L,, f = det(L) f for all f € A™.

Lemma 5.1.4. Let L and M : V — V be linear. Then
1. det(LM) = det(L) det(M).
2. det(I) =1, where I : V — V is the identity map.
3. L is invertible if and only if det(L) # 0, and, if L is invertible,
det(L™1) = det(L) 1.

Proof. Part (1) follows from (LM),, = M,, L,, which was established above.
(2) follows from the definition. Let L be invertible; so, LL~! = I, and by
(1) and (2), det(L)det(L™!) = 1; so, det(L) # 0 and det(L~1) = 1/det(L).
Conversely assume L is not invertible so there is an ¢ € V with e # 0 and
Le = 0. Extend e to a basis,e; = e,ea,...,€e,. Then for any m-form ¢,
Lyd(er,...,em) = o(Ley,...,Ley) = &(0,..., Ley) = 0. So det(L) = 0.

Let V.=R™, ey, ea,..., 6, be the standard basis of R™, and let L be the
matrix L = (L7); so, Le; = > ; Lje;. Let ¢ be a nonzero element of A™.

det(L)p(er, ... em) = Lind(er,...,em) = ¢(Lex, ..., Ley)
=3 X, oL ey Lire;,,)
- Zjl o ij le'l o Lzﬁm(b(ejlv' €

= oep sign(o)LT(l) e Lfn(m)qb(el, ceyem).



122 5. Exterior Algebra and Differential Forms

In the second to last sum above the only nonzero terms are the ones with
distinct es. Thus the sum over the nonzero terms is the sum over all permu-
tations of the es. From the above,

det(L Zblgn VLT o) L LM
oeP

which is one of the classical formulas for the determinant of a matrix.

5.2 The Symplectic Form

In this section, let (V,w) be a symplectic space of dimension 2n. Recall
that in Chapter 3 a symplectic form w (on a vector space V) was defined to
be a nondegenerate, alternating bilinear form on V, and the pair (V,w) was
called a symplectic space.

Theorem 5.2.1. There exists a basis f',..., f?" for V* such that
w=Y_ fIAfT (5.2)
i=1

Proof. By Corollary 3.2.1, there is a symplectic basis eq,..., e, so that
the matrix of the form w is the standard J = (J) or J;; = w(e;, e;). Let
fY ..., f% € V* be the basis dual to the symplectic basis ey,...,es,. The
2-form given on the right in (5.2) above agrees with w on the basis e1, . .., eay.

The basis f!,..., f2" is a symplectic basis for the dual space V*. By the
above, W = WAWA - Aw (n times ) = +n!fE A f2 A A f2", where the
sign is plus if n is even and minus if n is odd. Thus w™ is a nonzero element
of A?". Because a symplectic linear transformation preserves w, it preserves
w™, and therefore, its determinant is +1. (This is the second of four proofs
of this fact.)

Corollary 5.2.1. The determinant of a symplectic linear transformation (or
matriz) is +1.

Actually, using the above arguments and the full statement of Theorem
3.2.1, we can prove that a 2-form v on a linear space of dimension 2n is
nondegenerate if and only if ™ is nonzero.

5.3 Tangent Vectors and Cotangent Vectors

Let O be an open set in an m-dimensional vector space V over R, ey, ..., e,
a basis for V, and f!,..., f™ the dual basis. Let x = (z!,...,2™) be coor-
dinates in V relative to eq, ..., e, and also coordinates in V* relative to the
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dual basis. Let I = (—1,1) C R!, and let ¢ be a coordinate in R!. Think of
V as R™. (We use the more general notation because it is helpful to keep a
space and its dual distinct.) R™ and its dual are often identified with each
other which can lead to confusion.

Much of analysis reduces to studying maps from an interval in R! into O
(curves, solutions of differential equations, etc.) and the study of maps from
O into R! (differentials of functions, potentials, etc.). The linear analysis of
these two types of maps is, therefore, fundamental. The linearization of a
curve at a point gives rise to a tangent vector, and the linearization of a
function at a point gives rise to a cotangent vector. These are the concepts
of this section.

A tangent vector at p € O is to be thought of as the tangent vector to
a curve through p. Let g,¢' : T — O C V be smooth curves with g(0) =
g'(0) = p. We say g and ¢’ are equivalent at p if Dg(0) = Dg’(0). Because
Dg(0) € L(R,V), we can identify £(R,V) with V by letting Dg(0)(1) =
dg(0)/dt € V. Being equivalent at p is an equivalence relation on curves,
and an equivalence class (a maximal set of curves equivalent to each other)
is defined to be a tangent vector or a vector to O at p. That is, a tangent
vector, {g}, is the set of all curves equivalent to g at p; i.e., {g} = {¢’ : I —
O :¢'(0) = p and dg(0)/dt = dg’(0)/dt}. In the x coordinates, the derivative
is dg(0)/dt = (dg*(0)/dt,...,dg™(0)/dt) = (},...,9™); so, (1, ...,4™) are
coordinates for the tangent vector {g} relative to the x coordinates. The set
of all tangent vectors to O at p is called the tangent space to O at p and
is denoted by 7,0. This space can be made into a vector space by using
the coordinate representation given above. The curve & : t — p + te; has
dé;(0)/dt = e; which is (0,...,0,1,0,...,0) (1 in the ith position) in the z
coordinates. The tangent vector consisting of all curves equivalent to &; at p
is denoted by 9/0z'. The vectors 9/dxz',...,8/0z™ form a basis for T,0 .
A typical vector v, € T,0 can be written v, = ¥'9/0x1 + -+ + Ym0 /0x,.
In classical tensor notation, one writes v, = 719 /0x;; it was understood
that a repeated index, one as a superscript and one as a subscript, was to
be summed over from 1 to m. This was called the Einstein convention or
summation convention.

A cotangent vector (or covector for short) at p is to be thought of as the
differential of a function at p. Let h, h’' : O — R! be two smooth functions.
We say h and b’ are equivalent at p if Dh(p) = DR/ (p). (Dh(p) is the same
as the differential dh(p).) This is an equivalence relation. A cotangent vector
or a covector to O at p is by definition an equivalence class of functions.
That is, a covector {h} is the set of functions equivalent to h at p; i.e.,
{h} = {h' : O — R! : DKW (p) = Dh(p)}. In the z coordinate, Dh(p) =
(Oh(p)/0xt, ... ,0Kh(p)/0x™) = (M1y- - Mm); 80, (M1, .., Mm) are coordinates
for the covector {h}. The set of all covectors at p is called the cotangent
space to O at p and is denoted by 77O. This space can be made into a
vector space by using the coordinate representation given above. The function



124 5. Exterior Algebra and Differential Forms

2" 1 O — R! defines a cotangent vector at p, which is (0,...,1,...0) (1 in
the ith position). The covector consisting of all functions equivalent to z°
at p is denoted by dx’. The covectors dx',...,dxz™ form a basis for ;0. A
typical covector v? € T;O can be written 7 dzt + -+ nmdz™ or n;dz’ using
the Einstein convention.

In the above two paragraphs there is clearly a parallel construction being
carried out. If fact they are dual constructions. Let g and h be as above; so,
hog:ICR! — R By the chain rule, D(h o g)(0)(1) = Dh(p) o Dg(0)(1)
which is a real number; so, Dh(p) is a linear functional on tangents to curves.
In coordinates, if

dg? 0 dg™ 0 1 0
= :—O— “ee _0_: RS N m_—
{o} = dt ( )8;101 + dt ( )axm K ory Tt O0xym,
and
oh oh
M=o = = ()dxel + -+ ——(p)dax™ = nrdxt + - - mdx™,
{hy = vt =g @)de + -4 5= p)de™ =mda” + -+ nmdz
then
vP(vp) = D(hog)(0)(1)
dg' . Oh dg™ oh
= 22 () == AU A ) ) P
2 0) 5 (p) -+ (0 (9)
=yt
=y ( Einstein convention).
Thus 7,0 and T,;O are dual spaces.
At several points in the above discussion the coordinates z',..., 2™ were
used. The natural question to ask is to what extent do these definitions
depend on the choice of coordinates. Let y',...,y™ be another coordinate

system that may not be linearly related to the xs. Assume that we can change
coordinates by y = ¢(x) and back by x = ¥(y), where ¢ and ¢ are smooth
functions with nonvanishing Jacobians, D¢ and D). In classical notation,
one writes 2! = z%(y), v/ = y/(x), and D¢ = {dy? /0x'}, Dy = {2 /Dy’ }.

Let g : I — O be a curve. In z coordinates let g(t) = (al(t),...,a™(t))
and in y coordinates let g(t) = (b*(t),...,b™(t)). The x coordinate for the
tangent vector v, = {g} is a = (da'(0)/dt,...,da™(0)/dt) = (a*,...,a™),
and the y coordinate for v, = {g} is b = (db'(0)/dt,...,db™(0)/dt) =
(B, ..., ™). Recall that we write vectors in the text as row vectors, but they
are to be considered as column vectors. Thus a and b are column vectors. By
the change of variables, a(t) = 1(b(t)); so, differentiating gives a = D (p)b.
In classical notation a‘(t) = z*(b(t)); so, da’/dt = 3" .(9z" /0y’ )db? /dt or

. Mot . ort .
o' = Zl 8;1 (= 8; (3’ Einstein convention). (5.3)
j=
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This formula tells how the coordinates of a tangent vector are transformed.
In classical tensor jargon, this is the transformation rule for a contravariant
vector.

Let h : O — R! be a smooth function. Let h be a(x) in z coordinates
and b(y) in y coordinates. The cotangent vector v» = {h} in x coordinates
is a = (Ja(p)/0x',... 0a(p)/0x™) = (a1,...,qy) and in y coordinates it is
b = (9b(p)/oy*,...,0b(p)/Oy™) = (B1,- -, Bm). By the change of variables
a(z) = b(¢(x)); so, differentiating gives a = Dé(p)?'b. In classical notation
a(z) = b(y(z)); so, a; = da/dx' = Zj(ab/ayj)(ayj/axi) =2, B;(dy? J0x?)
or
N W

= oxt

_ oy
B (= 9

oy B; Einstein convention). (5.4)

This formula tells how the coordinates of a cotangent vector are transformed.
In classical tensor jargon this is the transformation rule for a covariant vector.

5.4 Vector Fields and Differential Forms

Continue the notation of the last section. A tangent (cotangent) vector field
on O is a smooth choice of a tangent (cotangent) vector at each point of O.
That is, in coordinates, a tangent vector field, V', can be written in the form

m
i\ 9 iy 9
V=V(z) = ;v (@) (=v(@)57), (5.5)
where the v' : O — R', i = 1,...,m, are smooth functions, and a cotangent

vector field U can be written in the form

U=Ux) =Y u(x)dr' (= u(z)dz’), (5.6)
i=1
where u; : O — R!,i = 1,...,m, are smooth functions.

A tangent vector field V' gives a tangent vector V(p) € T,0 which was
defined as the tangent vector of some curve. A different curve might be used
for each point of O; so, a natural question to ask is whether there exist a
curve g : I € R — O such that dg(t)/dt = V(g(t)). In coordinates this is

W _ (g0,

This is the same as asking for a solution of the differential equation & = V(x).
Thus a tangent vector field is an ordinary differential equation. In classical
tensor jargon it is also called a contravariant vector field.

A cotangent vector field U gives a cotangent vector U(p) € T,;O which
was defined as the differential of a function at p. A different function might
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be used for each point of O; so, a natural question to ask is whether there
exists a function h : O — R! such that dh(z) = U(z). The answer to this
question is no in general. Certain integrability conditions discussed below
must be satisfied before a cotangent vector field is a differential of a function.
If this cotangent vector field is a field of work elements; i.e., a field of forces,
then if dh = —U, the h would be a potential and the force field would be
conservative. But, as we show, not all forces are conservative.

Let p € O, and denote by A’; O the space of k-forms on the tangent space
T,0. A k-differential form or k-form on O is a smooth choice of a k-linear
form in A’;O for all p € O. That is, a k-form, F', can be written

F = Z fim,_ik(m,zg,...,xm)dx“ Ao Adzt®

1<ip <<, <m

=" fi(z)da’,

i€l

(5.7)

where the functions f;, s, : O — R are smooth. In the last expression in
(5.7), I denotes the set {(i1,...,ix) : @5 € Z,1 < iy < -+ < i < m},
and dz' = dz™' A --- A dx'*. Because Ag(’) = R, 0-forms are simply smooth
functions, and because All,(’) =T,0, l-forms are covector fields.

In classical analysis, everything was a vector. In R3, 1-forms are often
identified with (or confused with) vector fields. For example, the differential
of a function, df = fdx + f,dy + f.dz, is treated as a vector field by writing
Vf =grad f = fzi+ f,j+ f.k. That is why one calls a force a vector and
not a covector even when it is the gradient of a potential function.

Also, because the dimension of the space of 2-linear forms in a 3 dimen-

sional space is
3
() -

classically 2-forms in R3 were identified with (or confused with) vector fields.
Usually one identifies a(j Ak) +b(k A1)+ c(iAj) with the vector ai+ bj+ ck.
Think about the cross product of vectors. This is why angular momentum
and magnetic fields are sometimes misrepresented as vectors.

Given a O-form F, (i.e., a function) dF' is a 1-form. The natural gener-
alization is the exterior derivative operator d which converts a k-form F' as
given in (5.7) into a (k + 1)-form dF by the formula

G Ofiy iy 5 g ; i
dF:Z | Z dej/\dxl/\--oAd:c’*
7=1 1< <<, <m (58)

= ZiEI dfl AN dl’z

Lemma 5.4.1. Let F' and G be smooth forms defined on an open set O.
Then
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d(F+G)=dF +dG.

d(FAG)=dF NG+ (=1)%) F A dG.

d(dF) =0 for all F.

If F is a function, then dF agrees with the standard definition of the
differential of F,

5. The operator d is uniquely defined by the properties given above.

o e~

Proof. Part (4) is obvious, and parts (1), (2), and (5) are left as exercises.
Only part (3) is proved here. Let i be a multiple index, and so the summations
on ¢ range over I. Let F =3, fidx®. Then

m m 32fi ] ;
d(dF) => ") ( o, Em) dz® A da? A da
i k=1

2 r 2 . . .
:Z ( 0" fi O’ fi )dxk/\dxj/\d:nl

dx;0r),  Orpdx;

The last sum is zero by the equality of mixed partial derivatives.

Remark: The first four parts of this lemma can be used as a coordinate-
free definition of the operator d. Formula (5.8) shows its existence, and part
(v) shows its uniqueness.

Let (z,y,z) be the standard coordinates in R? and i, j, k the usual unit
vectors. If F(x,y,2) is a function, then

is the usual differential. The classical approach is to make the differential a
vector field by defining

oF, OF, OF

Next consider a 1-form F = a(x,y, z)dz + b(z,y, 2)dy + c(x,y, z)dz; then

dc  0b da  Oc b 0da
F_— -~ T T~ ~ T T~ T A .
d < ) z)dy/\dz+<iz f;v)dZ/\dx+< - y)dxAdy

The classical approach is to make this F' a vector field F' = ai + bj + ck and
to define a new vector field by

dc  Ob\ . da Oc) . ob  Oa
VXFcuﬂF<5y_(9z>l+<6z_8a:>‘]+(6x_8y)k'
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Now let F' be a 2-form so F' = a(z,y,z)dy A dz + b(x,y, z)dz A dx +
c(z,y, z)dx A dy and

da ~0b  Oc
dF = <ax+ay+az>d:c/\dy/\dz.

The classical approach would have considered F' as a vector field F' = ai +
bj + ck and defined a scalar function

V.F=divF = (a“ ob 86).

o "oy -

The statement that d(dF) = 0, or d*> = 0, contains the two classical state-
ments curl (grad F) = 0 and div (curl F) = 0.

A E-form F' is closed if dF = 0. A k-form F is exact if there is a (k — 1)-
form G such that F' = dG. Part (iii) of Lemma 5.4.1 says that an exact form
is closed. A partial converse is also true.

Theorem 5.4.1 (Poincaré’s lemma). Let O be a ball in R™ and F a
k -form such that dF = 0. Then there is a (k — 1)-form g on O such that
F=dg.

Remark: This is a partial converse to d(dg) = 0. Note that the domain of
definition, O, of the form F is required to be a ball. The theorem says that in a
ball, a closed form is exact. The 1-form, F = (zdy — ydx)/(z* + y?), satisfies
dF = 0, but there does not exist a function, g, defined on all of R?\(0,0) such
that dg = F. The form F' is the differential of the polar angle 8 = arctan(y/x)
that is not a single-valued function defined on all of R?\(0,0). However, it
can be made single valued in a neighborhood of any point in R?\(0,0), e.g.,
for any point not on the negative x-axis, one can take —m < 6 < 7, and for
points on the negative z-axis, one can take 0 < 6 < 2. Because F' locally
defines a function we have dF' = 0.

Poincaré’s lemma contains classical theorems: (i) if F' is a vector field
defined on a ball in R? with curl F = 0, then there is a smooth function g
such that F' = grad (g), and (ii) if F' is a smooth vector field defined on a
ball such that div F = 0, then there is a smooth vector field g such that
F = curlg.

Proof. The full statement of the Poincaré lemma is not needed here; only the
case when k& = 1 is used in subsequent chapters. Therefore, only that case is
proved here. The proof of the full theorem can be found in Flanders (1963),
or Spivak (1965) or Abraham and Marsden (1978).

Let F' =", fi(z)dz" be a given 1-form.

afi j i afi 8f‘ i i
dF:ZZ(azj)dx]Adx :Z<8Ij—axji>dx]/\dm.
g

i<j
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So dF = 0 if and only if 0f; /027 = df;/0x'. Define

g(z) :/0 Zfi(tx)xidt.

So
1 (tx
- /0 {mffdit) + fj(tfv)} dt
L q
_ /O = {tf, (1)} dt
= tfj(tx)’(l) = fj(@).
Thus dg = F.

Note that the function g defined in the proof given above is a line integral
and the condition dF' = 0 is the condition that a line integral be independent
of the path.

Corollary 5.4.1. Let F = (F',..., F™) be a vector valued function defined
in a ball O in R™. Then a necessary and sufficient condition for F to be the
gradient of a function g : O — R is that the Jacobian matriz (OF*/0x7) be
symmetric.

Proof. First, to see that it is a corollary, consider F' as the differential form
F = Fldg! +--- + F™dxz™. Then by the above,

i J . .
dF = <8F _oF )dxmdxﬂ.

s\ Qzi Ozt
1<J

So dF = 0 if and only if the Jacobian (9F*/0z7) is symmetric. The corollary
follows from part (iii) of Lemma 5.4.1 and Theorem 5.4.1.

5.5 Changing Coordinates and Darboux’s Theorem

To change coordinates for vector fields or differential forms, simply trans-
form the coordinates as was done in Section 5.3 using the Jacobian of the
transformation. In particular, let = and y be coordinates on O, and assume
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that the change of coordinates is given by x = ¢ (y) and the change back
by y = ¢(x), or in classical notation z = z(y) and y = y(x). Assume the
Jacobians, D¢ = (9y’ /0x') and D = (0z¢/dy’), are nonsingular.

If a vector field V is given by

and we set a(z) = (al(z),...,a™(x)), b(y) = (ﬂl(y), ..., 8™(y)), then

a=Di(b) or o' = Z W (5.9)
If a differential 1-form is given by
F= a@dst =3 Gy’
i=1 i=1
and we set a(z) = (a1(z),...,am(x)), b(y) = (61(y), ..., Bm(y)), then
a=bD¢ or ‘;ZZ (5.10)

If a differentiable 2-form F' is given by

:ii x)dz’ A da? :ZZ,BZJ )dy' A dy? (5.11)

1=1 j=1

and we set A = (oy;), B = (4;;) (A and B are skew-symmetric matrices),
then

Oy" 0y 5
oz’ Bmﬂ

A =Dy"BDy or a”—zz

s=1r=1

(5.12)

Let O be an open set in R?”. A 2-form F on O is nondegenerate if F" =
FANFA---AF (n times) is nonzero. As we saw above, the coefficients in
a coordinate system of a 2-form can be represented as a skew-symmetric
matrix. As we saw in Section 5.2, a linear 2-form is nondegenerate if and
only if the coefficient matrix is nonsingular. Thus the 2-form F in (5.11) is
nondegenerate if and only if A (or B) is nonsingular on all of O. A symplectic
structure or symplectic form on O is a closed nondegenerate 2-form. The
standard symplectic structure in R?" is

0= Z dz' Ndz = Z dq' A dp'. (5.13)
i=1 ‘
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where z = (2',...,2%") = (¢%,...,q¢",p',...,p") are coordinates in R?>". The

coefficient matrix of {2 is just J. By Corollary 3.2.1, there is a linear change of
coordinates so that the coefficient matrix of a nondegenerate 2-form is J at
one point. A much more powerful result that is not needed in the subsequent
chapters is the following.

Theorem 5.5.1 (Darboux’s theorem). If F' is a symplectic structure on
an open ball in R?™ | then there exists a coordinate system z such that F in
this coordinate system is the standard symplectic structure §2.

Proof. See Abraham and Marsden (1978).

A coordinate system for which a symplectic structure is {2 is called a sym-
plectic coordinate (for this form). A symplectic transformation, ¢, is one that
preserves the form (2 or preserves the coefficient matrix .J; i.e., D¢ JD¢ = .J.

5.6 Integration and Stokes’ Theorem

We do not need any result from integration theory on manifolds, and so we do
not develop the theory here. To tease the reader into learning more about this
subject, consider a weak form of the general Stokes’ theorem. It illustrates the
power and beauty of differential forms. Let M be an n-dimensional oriented
manifold with an (n — 1)-dimensional boundary OM. Let the boundary OM
be oriented consistently with M. Let w be an (n — 1)-form on M; so, dw is
an n-form on M. One can define the integral of an n-form on an n-manifold
in a logical way, and then one has:

/ w:/ dw (Stokes’ theorem).
oM M

This one general theorem contains Green’s theorem, the divergence theo-
rem, and the classical Stokes’ theorem of classical vector calculus. See Spivak
(1965) for a complete discussion of the general Stokes’ theorem and all its
ramifications.

Problems

1. Show that if f',..., f* are 1-forms, then
fHar) - fFar)

fEA- AR, ... ar) = det

fHar) - fF(ar)
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2. Show that the mapping (f!, f2) — f! A f? is a skew-symmetric bilinear
map from V* x V¥ — A2,
3. Let F and G be 0-, 1- or 2-forms in R3. Verify Lemma 5.4.1 in this case.
4. a) Let F = adx + bdy + cdz be a 1-form in R? such that dF = 0. Verify
that da/0y = 0b/0x, Da/dz = de/Ox, Dec/Oy = Ob/Dz. Also verify
that if

1
flzyy,2z) = / (a(tx, ty, tz)x + b(tx, ty, t2)y + c(tx, ty, tz)z)dt,
0

then F' = df.

b) Let F be a 2-form in R? such that dF = 0. Verify that if I/ =
ady N dz 4+ bdz A dx + cdx A dy, then da/Ox + 9b/Oy + dc/dz = 0.
Also verify that F' = df where

=

fol a(tx, ty, tz)tdt) (ydz — zdy)
(fo (tz,ty, tz tdt) (2dx — zdz)

<f0 (tz, ty, tz tdt) (xdy — ydz).

5. Prove that the A operator is bilinear and associative. (See Lemma 5.1.1.)
6. a) Show that the operator d which operates on smooth forms is linear,
ie, d(F+G)=dF +dG.
b) Show that d satisfies a product rule, d(FAG) = dF AG+(—1)3e(F) FA
dG.
c¢) Show that if ¢ is a mapping which takes smooth k-forms to (k + 1)-
forms and satisfies
i. 6(F 4+ G)=0F + G,
ii. §(FAG)=06FAG+ (—1)%eF ASG,
iii. 6(6F) =0 for all F,
iv. If F'is a function, then §F agrees the standard definition of the
differential of F', then § is the same as the operator d given by
the formula in (5.8).

7. Let Q(q,p) and P(q,p) be smooth functions defined on an open set in R2.
Consider the four differential forms 21 = PdQ — pdq, {25 = PdQ + qdp,
23 = QAP + pdq, 24 = QdP — qdp.

a) Show that (2; is exact if and only if £2; is exact for ¢ # j.

b) Show that (2; is closed if and only if 2; is closed for i # j.

c¢) Show that if £2; is exact (or closed) then so is © = (Q — q)d(P +p) —
(P —p)d(Q + q). (Hint: d(gp) = qdp + pdq is exact.)
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