
3. Linear Hamiltonian Systems

3.1 Preliminaries

In this chapter we study Hamiltonian systems that are linear differential
equations. Many of the basic facts about Hamiltonian systems and symplectic
geometry are easy to understand in this simple context. The basic linear
algebra introduced in this chapter is the cornerstone of many of the later
results on nonlinear systems. Some of the more advanced results which require
a knowledge of multilinear algebra or the theory of analytic functions of a
matrix are relegated to the appendices or to references to the literature. These
results are not important for the main development.

We assume a familiarity with the basic theory of linear algebra and linear
differential equations. Let gl(m,F) denote the set of all m×m matrices with
entries in the field F (R or C) and Gl(m,F) the set of all nonsingular m×m
matrices with entries in F. Gl(m,F) is a group under matrix multiplication
and so is called the general linear group. I = Im and 0 = 0m denote the
m ×m identity and zero matrices, respectively. In general, the subscript is
clear from the context.

In this theory a special role is played by the 2n× 2n matrix

J =
[

0 I
−I 0

]
. (3.1)

Note that J is orthogonal and skew-symmetric; i.e.,

J−1 = JT = −J. (3.2)

Let z be a coordinate vector in R
2n, I an interval in R, and S : I →

gl(2n,R) be continuous and symmetric. A linear Hamiltonian system is the
system of 2n ordinary differential equations

ż = J
∂H

∂z
= JS(t)z = A(t)z, (3.3)

where

H = H(t, z) =
1
2
zTS(t)z, (3.4)
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46 3. Linear Hamiltonian Systems

A(t) = JS(t). H, the Hamiltonian, is a quadratic form in the zs with coeffi-
cients that are continuous in t ∈ I ⊂ R. If S, and hence H, is independent of
t, then H is an integral for (3.3) by Theorem 1.3.1.

Let t0 ∈ I be fixed. From the theory of differential equations, for each
z0 ∈ R

2n, there exists a unique solution φ(t, to, z0) of (3.3) for all t ∈ I

that satisfies the initial condition φ(t0, t0, z0) = z0. Let Z(t, t0) be the 2n ×
2n fundamental matrix solution of (3.3) that satisfies Z(t0, t0) = I. Then
φ(t, t0, z0) = Z(t, t0)z0.

In the case where S and A are constant, we take t0 = 0 and

Z(t) = eAt = expAt =
∞∑

i=1

Antn

n!
. (3.5)

A matrix A ∈ gl(2n,F) is called Hamiltonian (or infinitesimally symplec-
tic), if

ATJ + JA = 0. (3.6)

The set of all 2n× 2n Hamiltonian matrices is denoted by sp(2n,R).

Theorem 3.1.1. The following are equivalent: (i) A is Hamiltonian, (ii)
A = JR where R is symmetric, and (iii) JA is symmetric.

Moreover, if A and B are Hamiltonian, then so are AT , αA (α ∈ F),
A±B, and [A,B] ≡ AB −BA .

Proof. A = J(−JA) and (3.6) is equivalent to (−JA)T = (−JA); thus (i) and
(ii) are equivalent. Because J2 = −I, (ii) and (iii) are equivalent. Thus the
coefficient matrix A(t) of the linear Hamiltonian system (3.1) is a Hamiltonian
matrix.

The first three parts of the next statement are easy. Let A = JR and
B = JS, where R and S are symmetric. Then [A,B] = J(RJS − SJR)
and (RJS − SJR)T = STJTRT − RTJTST = −SJR + RJS so [A,B] is
Hamiltonian.

In the 2× 2 case,

A =
[
α β
γ δ

]

and so,

ATJ + JA =
[

0 α+ δ
−α− δ 0

]
.

Thus, a 2× 2 matrix is Hamiltonian if and only if its trace, α+ δ, is zero. If
you write a second-order equation ẍ + p(t)ẋ + q(t)x = 0 as a system in the
usual way with ẋ = y, ẏ = −q(t)x − p(t)y, then it is a linear Hamiltonian
system when and only when p(t) ≡ 0. The p(t)ẋ is usually considered the
friction term.
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Now let A be a 2n× 2n matrix and write it in block form

A =
[
a b
c d

]

and so

ATJ + JA =
[
c− cT aT + d
−a− dT −b+ bT

]
.

Therefore, A is Hamiltonian if and only if aT + d = 0 and b and c are
symmetric. In higher dimensions, being Hamiltonian is more restrictive than
just having trace zero.

The function [·, ·] : gl(m,F) × gl(m,F) → gl(m,F) of Theorem 3.1.1 is
called the Lie product. The second part of this theorem implies that the set
of all 2n× 2n Hamiltonian matrices, sp(2n,R), is a Lie algebra. We develop
some interesting facts about Lie algebras of matrices in the Problem section.

A 2n× 2n matrix T is called symplectic with multiplier μ if

TTJT = μJ, (3.7)

where μ is a nonzero constant. If μ = +1, then T is simply symplectic. The
set of all 2n× 2n symplectic matrices is denoted by Sp(2n,R).

Theorem 3.1.2. If T is symplectic with multiplier μ, then T is nonsingular
and

T−1 = −μ−1JTTJ. (3.8)

If T and R are symplectic with multiplier μ and ν, respectively, then TT , T−1,
and TR are symplectic with multipliers μ, μ−1, and μν, respectively.

Proof. Because the right-hand side, μJ , of (3.7) is nonsingular, T must be
also. Formula (3.8) follows at once from (3.7). If T is symplectic, then from
(3.8) one gets TT = −μJT−1J ; so, TJTT = TJ(−μJT−1J) = μJ . Thus TT

is symplectic with multiplier μ. The remaining facts are proved in a similar
manner.

This theorem implies that Sp(2n,R) is a group, a subgroup of Gl(2n,R).
Weyl says that originally he advocated the name “complex group” for
Sp(2n,R), but it became an embarrassment due to the collisions with the
word “complex” in the connotation of complex number. “I therefore pro-
posed to replace it by the corresponding Greek adjective ‘symplectic.’ ” See
page 165 in Weyl (1948).

In the 2× 2 case

T =
[
α β
γ δ

]

and so
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TTJT =
[

0 αδ − βγ
−αδ + βγ 0

]
.

So a 2 × 2 matrix is symplectic (with multiplier μ) if and only if it has
determinant +1 (respectively μ). Thus a 2 × 2 symplectic matrix defines a
linear transformation which is orientation-preserving and area-preserving.

Now let T be a 2n× 2n matrix and write it in block form

T =
[
a b
c d

]
(3.9)

and so

TTJT =
[
aT c− cTa aT d− cT b
bT c− dTa bT d− dT b

]
.

Thus T is symplectic with multiplier μ if and only if aT d − cT b = μI and
aT c and bT d are symmetric. Being symplectic is more restrictive in higher
dimensions. Formula (3.8) gives

T−1 = μ−1

[
dT −bT
−cT aT

]
. (3.10)

This reminds one of the formula for the inverse of a 2× 2 matrix!

Theorem 3.1.3. The fundamental matrix solution Z(t, t0) of a linear Hamil-
tonian system (3.3) is symplectic for all t, t0 ∈ I. Conversely, if Z(t, t0) is a
continuously differential function of symplectic matrices, then Z is a matrix
solution of a linear Hamiltonian system.

Proof. Let U(t) = Z(t, t0)TJZ(t, t0). Because Z(t0, t0) = I, it follows that
U(t0) = J . U̇ t) = ŻTJZ + ZTJŻ = ZT (ATJ + JA)Z = 0; so, U(t) ≡ J .

If ZTJZ = J for t ∈ I, then ŻTJZ + ZTJŻ = 0; so, (ŻZ−1)TJ +
J(ŻZ−1) = 0. This shows that A = ŻZ−1 is Hamiltonian and Ż = AZ.

Corollary 3.1.1. The (constant) matrix A is Hamiltonian if and only if eAt

is symplectic for all t.

Change variables by z = T (t)u in system (3.3). Equation (3.3) becomes

u̇ = (T−1AT − T−1Ṫ )u. (3.11)

In general this equation will not be Hamiltonian, however:

Theorem 3.1.4. If T is symplectic with multiplier μ−1, then (3.11) is a
Hamiltonian system with Hamiltonian

H(t, u) =
1
2
uT (μTTS(t)T +R(t))u,

where
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R(t) = JT−1Ṫ .

Conversely, if (3.11) is Hamiltonian for every Hamiltonian system (3.3), then
U is symplectic with constant multiplier μ.

Proof. Because TJTT = μ−1J for all t, Ṫ JTT + TJṪT = 0 or (T−1Ṫ )J +
J(T−1Ṫ )T = 0; so, T−1Ṫ is Hamiltonian. Also T−1J = μJTT ; so, T−1AT =
T−1JST = μJTTST , and so, T−1AT = J(μTTST ) is Hamiltonian also.

Now let (3.11) always be Hamiltonian. By taking A ≡ 0 we have that
T−1Ṫ = B(t) is Hamiltonian or T is a matrix solution of the Hamiltonian
system

v̇ = vB(t). (3.12)

So, T (t) = KV (t, t0), where V (t, t0) is the fundamental matrix solution of
(3.12), and K = T (t0) is a constant matrix. By Theorem 3.1.3 , V is sym-
plectic.

Consider the change of variables z = T (t)u = KV (t, t0)u as a two-stage
change of variables: first w = V (t, t0)u and second z = Kw. The first trans-
formation from u to w is symplectic, and so, by the first part of this theo-
rem, preserves the Hamiltonian character of the equations. Because the first
transformation is reversible, it would transform the set of all linear Hamilto-
nian systems onto the set of all linear Hamiltonian systems. Thus the second
transformation from w to z must always take a Hamiltonian system to a
Hamiltonian system.

If z = Kw transforms all Hamiltonian systems ż = JCz, C constant and
symmetric, to a Hamiltonian system ẇ = JDw, then JD = K−1JCK is
Hamiltonian, and JK−1JCK is symmetric for all symmetric C. Thus

JK−1JCK = (JK−1JCK)T = KTCJK−TJ,
C(KJKTJ) = (JKJKT )C,

CR = RTC,

where R = KJKTJ . Fix i, 1 ≤ i ≤ 2n and take C to be the symmetric
matrix that has +1 at the i, i position and zero elsewhere. Then the only
nonzero row of CR is the ith, which is the ith row of R and the only nonzero
column of RTC is the ith, which is the ith column of RT . Because these
must be equal, the only nonzero entry in R or RT must be on the diagonal.
So R and RT are diagonal matrices. Thus R = RT = diag(r1, . . . , r2n), and
RC−CR = 0 for all symmetric matrices C. But RC−CR = ((rj − ri)cij) =
(0). Because cij , i < j, is arbitrary, ri = rj , or R = −μI for some constant
μ. R = KJKTJ = −μI implies KJKT = μJ .

This is an example of a change of variables that preserves the Hamiltonian
character of the system of equations. The general problem of which changes of
variables preserve the Hamiltonian character is discussed in detail in Chapter
6.
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The fact that the fundamental matrix of (3.3) is symplectic means that the
fundamental matrix must satisfy the identity (3.7). There are many functional
relations in (3.7); so, there are functional relations between the solutions.
Theorem 3.1.5 given below is just one example of how these relations can be
used. See Meyer and Schmidt (1982b) for some other examples.

Let z1, z2 : I → R
2n be two smooth functions; we define the Poisson

bracket of z1 and z2 to be

{z1, z2}(t) = zT
1 (t)Jz2(t); (3.13)

so, {z1, z2} : I → R
2n is smooth. The Poisson bracket is bilinear and skew

symmetric. Two functions z1 and z2 are said to be in involution if {z1, z2} ≡ 0.
A set of n linearly independent functions and pairwise in involution functions
z1, . . . , zn are said to be a Lagrangian set. In general, the complete solution
of a 2n-dimensional system requires 2n linearly independent solutions, but
for a Hamiltonian system a Lagrangian set of solutions suffices.

Theorem 3.1.5. If a Lagrangian set of solutions of (3.3) is known, then a
complete set of 2n linearly independent solutions can be found by quadrature.
(See (3.14).)

Proof. Let C = C(t) be the 2n× n matrix whose columns are the n linearly
independent solutions. Because the columns are solutions, Ċ = AC; because
they are in involution, CTJC = 0; and because they are independent, CTC is
an n×n nonsingular matrix. Define the 2n×n matrix by D = JC(CTC)−1.
Then DTJD = 0 and CTJD = −I, and so P = (D,C) is a symplectic
matrix. Therefore,

P−1 =
[
−CTJ
DTJ

]
;

change coordinates by z = Pζ so that

ζ̇ = P−1(AP − Ṗ )ζ =
[

CTSD + CTJḊ 0
−DTSD −DTJḊ 0

]
.

All the submatrices above are n×n. The one in the upper left-hand corner is
also zero, which can be seen by differentiating CTJD = −I to get ĊTJD +
CTJḊ = (AC)TJD + CTJḊ = CTSD + CTJḊ = 0. Therefore,

u̇ = 0,
v̇ = −DT (SD + JḊ)u,

where ζ =
[
u
v

]
,

which has a general solution u = u0, v = v0 − V (t)u0, where

V (t) =
∫ t

t0

DT (SD + JḊ)dt. (3.14)

A symplectic fundamental matrix solution of (3.3) is Z = (D−CV,C). Thus
the complete set of solutions is obtained by performing the integration or
quadrature in the formula above.
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This result is closely related to the general result given in a later chapter
which says that k integrals in involution for a general Hamiltonian system
can be used to reduce the number of degrees of freedom by k and, hence, the
dimension by 2k.

Recall that a nonsingular matrix T has two polar decompositions, T =
PO = O′P ′, where P and P ′ are positive definite matrices and O and O′

are orthogonal matrices. These representations are unique. P is the unique
positive definite square root of TTT ; P ′ is the unique positive definite square
root of TTT , O = (TTT )−1/2T ; and O′ = T (TTT )−1/2.

Theorem 3.1.6. If T is symplectic, then the P,O, P ′, O′ of the polar decom-
position given above are symplectic also.

Proof. The formula for T−1 in (3.8) is an equivalent condition for T to be
symplectic. Let T = PO. Because T−1 = −JTTJ , O−1P−1 = −JOTPTJ =
(JTOTJ)(JTPTJ). In this last equation, the left-hand side is the product
of an orthogonal matrix O−1 and a positive definite matrix P−1, as is the
right-hand side a product of an orthogonal matrix J−1OJ and a positive
definite matrix JTPJ . By the uniqueness of the polar representation, O−1 =
J−1OTJ = −JOTJ and P−1 = JTPJ = −JPTJ . By (3.8) these last rela-
tions imply that P and O are symplectic. A similar argument gives that P ′

and O′ are symplectic.

Theorem 3.1.7. The determinant of a symplectic matrix is +1.

Proof. Depending on how much linear algebra you know, this theorem is
either easy or difficult. In Section 4.6 and Chapter 5 we give alternate proofs.
Let T be symplectic. Formula (3.7) gives det(TTJT ) = detTT det J detT =
(detT )2 = detJ = 1 so detT = ±1. The problem is to show that detT = +1.

The determinant of a positive definite matrix is positive; so, by the polar
decomposition theorem it is enough to show that an orthogonal symplectic
matrix has a positive determinant. So let T be orthogonal also.

Using the block representation in (3.9) for T , formula (3.10) for T−1, and
the fact that T is orthogonal, T−1 = TT , one has that T is of the form

T =
[
a b
−b a

]
.

Define P by

P =
1√
2

[
I iI
I −iI

]
, P−1 =

1√
2

[
I I

−iI iI

]
.

Compute PTP−1 = diag((a− bi), (a + bi)), so

detT = detPTP−1 = det(a− bi) det(a+ bi) > 0.
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3.2 Symplectic Linear Spaces

What is the matrix J? There are many different answers to this question
depending on the context in which the question is asked. In this section we
answer this question from the point of view of abstract linear algebra. We
present other answers later on, but certainly not all.

Let V be an m-dimensional vector space over the field F where F = R or
C. A bilinear form is a mapping B : V×V → F that is linear in both variables.
A bilinear form is skew symmetric or alternating if B(u, v) = −B(v, u) for
all u, v ∈ V. A bilinear form B is nondegenerate if B(u, v) = 0 for all v ∈ V

implies u = 0. An example of an alternating bilinear form on F
m is B(u, v) =

uTSv, where S is any skew-symmetric matrix.
Let B be a bilinear form and e1, . . . , em a basis for V. Given any vector

v ∈ V, we write v = Σαiei and define an isomorphism Φ : V → F
m : v → a =

(α1, . . . , αm). Define sij = B(ei, ej) and S to be the m×m matrix S = (sij),
the matrix of B in the basis (e). Let Φ(u) = b = (β1, . . . , βm); then B(u, v) =
ΣΣαiβjB(ei, ej) = bTSa. So in the coordinates defined by the basis (ei), the
bilinear form is just bTSa where S is the matrix (B(ei, ej)). If B is alternating,
then S is skew-symmetric, and if B is nondegenerate, then S is nonsingular
and conversely.

If you change the basis by ei = Σqijfj and Q is the matrix Q = (qij), then
the bilinear form B has the matrix R in the basis (f), where S = QRQT .
One says that R and S are congruent (by Q). If Q is any elementary matrix
so that premultiplication of R by Q is an elementary row operation, then
postmultiplication of R by QT is the corresponding column operation. Thus
S is obtained from R by performing a sequence of row operations and the
same sequence of column operations and conversely.

Theorem 3.2.1. Let S be any skew-symmetric matrix; then there exists a
nonsingular matrix Q such that

R = QSQT = diag(K,K, . . . ,K, 0, 0, . . . , 0),

where

K =
[

0 1
−1 0

]
.

Or given an alternating form B there is a basis for V such that the matrix of
B in this basis is R.

Proof. If S = 0, we are finished. Otherwise, there is a nonzero entry that
can be transferred to the first row by interchanging rows. Preform the cor-
responding column operations. Now bring the nonzero entry in the first row
to the second column (the (1,2) position) by column operations and preform
the corresponding row operations.

Scale the first row and the first column so that +1 is in the (1,2) and so
that −1 is in the (2,1) position. Thus the matrix has the the 2× 2 matrix K
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in the upper left-hand corner. Using row operations we can eliminate all the
nonzero elements in the first two columns below the first two rows. Performing
the corresponding column operation yields a matrix of the form diag(K,S′),
where S′ is an (m− 2)× (m− 2) skew symmetric matrix. Repeat the above
argument on S′.

Note that the rank of a skew symmetric matrix is always even; thus, a
nondegenerate, alternating bilinear form is defined on an even dimensional
space.

A symplectic linear space, or just a symplectic space, is a pair, (V, ω)
where V is a 2n-dimensional vector space over the field F, F = R or F = C,
and ω is a nondegenerate alternating bilinear form on V. The form ω is called
the symplectic form or the symplectic inner product. Throughout the rest of
this section we shall assume that V is a symplectic space with symplectic
form ω. The standard example is F

2n and ω(x, y) = xTJy. In this example
we shall write {x, y} = xTJy and call the space (F2n, J) or simply F

2n, if no
confusion can arise.

A symplectic basis for V is a basis v1, . . . , v2n for V such that ω(vi, vj) =
Jij , the i, jth entry of J . A symplectic basis is a basis so that the matrix of
ω is just J . The standard basis e1, . . . , e2n, where ei is 1 in the ith position
and zero elsewhere, is a symplectic basis for (F2n, J). Given two symplectic
spaces (Vi, ωi), i = 1, 2, a symplectic isomorphism or an isomorphism is a
linear isomorphism L : V1 → V2 such that ω2(L(x), L(y)) = ω1(x, y) for all
x, y ∈ V1; that is, L preserves the symplectic form. In this case we say that
the two spaces are symplectically isomorphic or symplectomorphic.

Corollary 3.2.1. Let (V, ω) be a symplectic space of dimension 2n. Then V

has a symplectic basis. (V, ω) is symplectically isomorphic to (F2n, J), or all
symplectic spaces of dimension 2n are isomorphic.

Proof. By Theorem 3.2.1 there is a basis for V such that the matrix of ω is
diag(K, . . . ,K). Interchanging rows 2i and n+ 2i− 1 and the corresponding
columns brings the matrix to J . The basis for which the matrix of ω is J is
a symplectic basis; so, a symplectic basis exists.

Let v1, . . . , v2n be a symplectic basis for V and u ∈ V. There exist
constants αi such that u =

∑
αivi. The linear map L : V → F

2n :
u→ (α1, . . . , α2n) is the desired symplectic isomorphism.

The study of symplectic linear spaces is really the study of one canonical
example, e.g., (F2n, J). Or put another way, J is just the coefficient matrix of
the symplectic form in a symplectic basis. This is one answer to the question
“What is J?”.

If V is a vector space over F, then f is a linear functional if f : V →
F is linear, f(αu + βv) = αf(u) + βf(v) for all u, v ∈ V, and α, β ∈ F.
Linear functionals are sometimes called 1-forms or covectors. If E is the vector
space of displacements of a particle in Euclidean space, then the work done
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by a force on a particle is a linear functional on E. The usual geometric
representation for a vector in E is a directed line segment. Represent a linear
functional by showing its level planes. The value of the linear functional f
on a vector v is represented by the number of level planes the vector crosses.
The more level planes the vector crosses, the larger is the value of f on v.

The set of all linear functionals on a space V is itself a vector space
when addition and scalar multiplication are just the usual addition and scalar
multiplication of functions. That is, if f and f ′ are linear functionals on V

and α ∈ F, then define the linear functionals f + f ′ and αf by the formulas
(f + f ′)(v) = f(v) + f ′(v) and (αf)(v) = αf(v). The space of all linear
functionals is called the dual space (to V) and is denoted by V

∗.
When V is finite dimensional so is V

∗ with the same dimension. Let
u1, . . . , um be a basis for V; then for any v ∈ V, there are scalars f1, . . . , fm

such that v = f1u1 + · · ·+fmum. The f i are functions of v so we write f i(v),
and they are linear. It is not too hard to show that f1, . . . , fm forms a basis
for V

∗; this basis is called the dual basis (dual to u1, . . . , um). The defining
property of this basis is f i(uj) = δi

j (the Kronecker delta function, defined
by δi

j = 1 if i = j and zero otherwise).
If W is a subspace of V of dimension r, then define W

0 = {f ∈ V
∗ : f(e) =

0 for all e ∈ W}. W
0 is called the annihilator of W and is easily shown to be

a subspace of V
∗ of dimension m − r. Likewise, if W is a subspace of V

∗ of
dimension r then W

0 = {e ∈ V : f(e) = 0 for all f ∈ W
∗} is a subspace of

V of dimension m− r. Also W
00 = W. See any book on vector space theory

for a complete discussion of dual spaces with proofs, for example, Halmos
(1958).

Because ω is a bilinear form, for each fixed v ∈ V the function ω(v, ·) :
V → R is a linear functional and so is in the dual space V

∗. Because ω is
nondegenerate, the map � : V → V

∗ : v → ω(v, ·) = v� is an isomorphism.
Let # : V

∗ → V : v → v# be the inverse of �. Sharp, #, and flat, �, are
musical symbols for raising and lowering notes and are used here because
these isomorphisms are index raising and lowering operations in the classical
tensor notation.

Let U be a subspace of V. Define U
⊥ = {v ∈ V : ω(v,U) = 0}. Clearly

U
⊥ is a subspace, {U,U⊥} = 0 and U = U

⊥⊥.

Lemma 3.2.1. U
⊥ = U

0#. dim U + dim U
⊥ = dim V = 2n.

Proof.
U

⊥ = {x ∈ V : ω(x, y) = 0 for all y ∈ U}
= {x ∈ V : x�(y) = 0 for all y ∈ U}
= {x ∈ V : x� ∈ U

0}
= U

0#.

The second statement follows from dim U+dim U
0 = dim V and the fact that

# is an isomorphism.
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A symplectic subspace U of V is a subspace such that ω restricted to this
subspace is nondegenerate. By necessity U must be of even dimension, and
so, (U, ω) is a symplectic space.

Proposition 3.2.1. If U is symplectic, then so is U
⊥, and V = U ⊕ U

⊥.
Conversely, if V = U⊕W and ω(U,W) = 0, then U and W are symplectic.

Proof. Let x ∈ U ∩ U
⊥; so, ω(x, y) = 0 for all y ∈ U, but U is symplectic so

x = 0. Thus U ∩ U
⊥ = 0. This, with Lemma 3.2.1, implies V = U⊕ U

⊥.
Now let V = U⊕W and ω(U,W) = 0. If ω is degenerate on U, then there

is an x ∈ U, x 
= 0, with ω(x,U) = 0. Because V = U⊕W and ω(U,W) = 0,
this implies ω(x,V) = 0 or that ω is degenerate on all of V. This contradiction
yields the second statement.

A Lagrangian space U is a subspace of V of dimension n such that ω is
zero on U, i.e., ω(u,w) = 0 for all u,w ∈ U. A direct sum decomposition
V = U ⊕W where U, and W are Lagrangian spaces, is called a Lagrangian
splitting, and W is called the Lagrangian complement of U. In R

2 any line
through the origin is Lagrangian, and any other line through the origin is a
Lagrangian complement.

Lemma 3.2.2. Let U be a Lagrangian subspace of V, then there exists a
Lagrangian complement of U.

Proof. The example above shows the complement is nonunique. Let V = F
2n

and U ⊂ F
2n. Then W = JU is a Lagrangian complement to U. If x, y ∈ W

then x = Ju, y = Jv where u, v ∈ U, or {u, v} = 0. But {x, y} = {Ju, Jv} =
{u, v} = 0, so W is Lagrangian. If x ∈ U ∩ JU then x = Jy with y ∈ U. So
x, Jx ∈ U and so {x, Jx} = −‖x‖2 = 0 or x = 0. Thus U ∩W = φ.

Lemma 3.2.3. Let V = U ⊕ W be a Lagrange splitting and x1, . . . , xn

any basis for U. Then there exists a unique basis y1, ..., yn of W such that
x1, . . . , xn, y1, . . . , yn is a symplectic basis for V.

Proof. Define φi ∈ W
0 by φi(w) = ω(xi, w) for w ∈ W. If

∑
αiφi = 0,

then ω(
∑
αixi, w) = 0 for all w ∈ W or ω(

∑
αixi,W) = 0. But because

V = U⊕W and ω(U,U) = 0, it follows that ω(
∑
αixi,V) = 0. This implies∑

αixi = 0, because ω is nondegenerate, and this implies αi = 0, because
the xis are independent. Thus φ1, . . . , φn are independent, and so, they form
a basis for W

0. Let y1, . . . , yn be the dual basis in W; so, ω(xi, yj) = φi(yj) =
δij .

A linear operator L : V → V is called Hamiltonian, if

ω(Lx, y) + ω(x,Ly) = 0 (3.15)

for all x, y ∈ V. A linear operator L : V → V is called symplectic, if
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ω(Lx,Ly) = ω(x, y) (3.16)

for all x, y ∈ V. If V is the standard symplectic space (F2n, J) and L is a
matrix, then (3.15) means xT (LTJ+JL)y = 0 for all x and y. But this implies
that L is a Hamiltonian matrix. On the other hand, if L satisfies (3.16) then
xTLTJLy = xTJy for all x and y. But this implies L is a symplectic matrix.
The matrix representation of a Hamiltonian (respectively, symplectic) linear
operator in a symplectic coordinate system is a Hamiltonian (respectively,
symplectic) matrix.

Lemma 3.2.4. Let V = U ⊕ W be a Lagrangian splitting and A : V →
V a Hamiltonian (respectively, symplectic) linear operator that respects the
splitting; i.e., A : U → U and A : W → W. Choose any basis of the form
given in Lemma 3.2.3; the matrix representation of A in these symplectic
coordinates is of the form

[
BT 0
0 −B

] (
respectively,

[
BT 0
0 B−1

])
. (3.17)

Proof. A respects the splitting and the basis for V is the union of the bases for
U and W, therefore the matrix representation for A must be in block-diagonal
form. A Hamiltonian or symplectic matrix which is in block-diagonal form
must be of the form given in (3.17).

3.3 The Spectra of Hamiltonian and Symplectic
Operators

In this section we obtain some canonical forms for Hamiltonian and sym-
plectic matrices in some simple cases. The complete picture is very detailed
and would lead us too far afield to develop fully. We start with only real
matrices, but sometimes we need to go into the complex domain to finish
the arguments. We simply assume that all our real spaces are embedded in
a complex space of the same dimension.

If A is Hamiltonian and T is symplectic, then T−1AT is Hamiltonian
also. Thus if we start with a linear constant coefficient Hamiltonian system
ż = Az and make the change of variables z = Tu, then in the new coordi-
nates the equations become u̇ = (T−1AT )u, which is again Hamiltonian. If
B = T−1AT , where T is symplectic, then we say that A and B are symplec-
tically similar. This is an equivalence relation. We seek canonical forms for
Hamiltonian and symplectic matrices under symplectic similarity. In as much
as it is a form of similarity transformation, the eigenvalue structure plays an
important role in the following discussion.

Because symplectic similarity is more restrictive than ordinary similarity,
one should expect more canonical forms than the usual Jordan canonical
forms. Consider, for example, the two Hamiltonian matrices
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A1 =
[

0 1
−1 0

]
and A2 =

[
0 −1
1 0

]
(3.18)

both of which could be the coefficient matrix of a harmonic oscillator.
In fact, they are both the real Jordan forms for the harmonic oscillator.
The reflection T = diag(1,−1) defines a similarity between these two; i.e.,
T−1A1T = A2. The determinant of T is not +1, therefore T is not symplec-
tic. In fact, A1 and A2 are not symplectically equivalent. If T−1A1T = A2,
then T−1 exp(A1t)T = exp(A2t), and T would take the clockwise rotation
exp(A1t) to the counterclockwise rotation exp(A2t). But, if T were symplec-
tic, its determinant would be +1 and thus would be orientation preserving.
Therefore, T cannot be symplectic.

Another way to see that the two Hamiltonian matrices in (3.18) are not
symplectically equivalent is to note that A1 = JI and A2 = J(−I). So
the symmetric matrix corresponding to A1 is I, the identity, and to A2 is
−I. I is positive definite, whereas −I is negative definite. If A1 and A2 where
symplectically equivalent, then I and −I would be congruent, which is clearly
false.

A polynomial p(λ) = amλ
m + am−1λ

m−1 + · · · + a0 is even if p(−λ) =
p(λ), which is the same as ak = 0 for all odd k. If λ0 is a zero of an even
polynomial, then so is −λ0; therefore, the zeros of a real even polynomial
are symmetric about the real and imaginary axes. The polynomial p(λ) is a
reciprocal polynomial if p(λ) = λmp(λ−1), which is the same as ak = am−k

for all k. If λ0 is a zero of a reciprocal polynomial, then so is λ−1
0 ; therefore,

the zeros of a real reciprocal polynomial are symmetric about the real axis
and the unit circle (in the sense of inversion).

Proposition 3.3.1. The characteristic polynomial of a real Hamiltonian
matrix is an even polynomial. Thus if λ is an eigenvalue of a Hamiltonian
matrix, then so are −λ, λ, −λ.

The characteristic polynomial of a real symplectic matrix is a reciprocal
polynomial. Thus if λ is an eigenvalue of a real symplectic matrix, then so
are λ−1, λ, λ

−1

Proof. Recall that detJ = 1. Let A be a Hamiltonian matrix; then p(λ) =
det(A − λI) = det(JATJ − λI) = det(JATJ + λJJ) = detJ det(A +
λI) detJ = det(A+ λI) = p(−λ).

Let T be a symplectic matrix; by Theorem 3.1.7 detT = +1. p(λ) =
det(T −λI) = det(TT −λI) = det(−JT−1J −λI) = det(−JT−1J +λJJ) =
det(−T−1+λI) = detT−1 det(−I+λT ) = λ2n det(−λ−1I+T ) = λ2np(λ−1).

Actually we can prove much more. By (3.6), Hamiltonian matrix A sat-
isfies A = J−1(−AT )J ; so, A and −AT are similar, and the multiplicity of
the eigenvalues λ0 and −λ0 are the same. In fact, the whole Jordan block
structure will be the same for λ0 and −λ0.
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By (3.8), symplectic matrix T satisfies T−1 = J−1TTJ ; so, T−1 and TT

are similar, and the multiplicity of the eigenvalues λ0 and λ−1
0 are the same.

The whole Jordan block structure will be the same for λ0 and λ−1
0 .

Consider the linear constant coefficient Hamiltonian system of differential
equations

ẋ = Ax, (3.19)

where A is a Hamiltonian matrix and Z(t) = eAt is the fundamental matrix
solution. By the above it is impossible for all the eigenvalues of A to be in
the left half-plane, and, therefore, it is impossible for all the solutions to be
exponentially decaying. Thus the origin cannot be asymptotically stable.

Henceforth, let A be a real Hamiltonian matrix and T a real symplectic
matrix. First we develop the theory for Hamiltonian matrices and then the
theory of symplectic matrices. Because eigenvalues are sometimes complex,
it is necessary to consider complex matrices at times, but we are always be
concerned with the real answers in the end.

First consider the Hamiltonian case. Let λ be an eigenvalue of A, and
define subspaces of C

2n by ηk(λ) = kernel (A− λI)k, η†(λ) = ∪2n
1 ηk(λ). The

eigenspace of A corresponding to the eigenvalue λ is η(λ) = η1(λ), and the
generalized eigenspace is η†(λ). If {x, y} = xTJy = 0, then x and y are
J-orthogonal.

Lemma 3.3.1. Let λ and μ be eigenvalues of A with λ + μ 
= 0, then
{η(λ), η(μ)} = 0. That is, the eigenvectors corresponding to λ and μ are
J-orthogonal.

Proof. Let Ax = λx, and Ay = μy, where x, y 
= 0. λ{x, y} = {Ax, y} =
xTATJy = −xTJAy = −{x,Ay} = −μ{x, y}; and so, (λ+ μ){x, y} = 0.

Corollary 3.3.1. Let A be a 2n×2n Hamiltonian matrix with distinct eigen-
values λ1, . . . , λn,−λ1, . . . ,−λn; then there exists a symplectic matrix S (pos-
sibly complex) such that S−1AS = diag(λ1, . . . , λn,−λ1, . . . ,−λn).

Proof. Let U = η1(λ1) ∪ · · · ∪ η1(λn) and W = η1(−λ1) ∪ · · · ∪ η1(−λn); by
the above, V = U⊕W is a Lagrange splitting, and A respects this splitting.
Choose a symplectic basis for V by Lemma 3.2.3. Changing to that basis is
effected by a symplectic matrix G; i.e., G−1AG = diag(BT,−B), where B has
eigenvalues λ1, . . . , λn. Let C be such that C−TBTCT = diag(λ1, . . . , λn) and
define a symplectic matrix by Q = diag(CT,C−1). The required symplectic
matrix is S = GQ.

If complex transformations are allowed, then the two matrices in (3.18)
can both be brought to diag(i,−i) by a symplectic similarity, and thus one is
symplectically similar to the other. However, they are not similar by a real
symplectic similarity. Let us investigate the real case in detail.
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A subspace U of C
n is called a complexification (of a real subspace) if U

has a real basis. If U is a complexification, then there is a real basis x1, . . . , xk

for U, and for any u ∈ U, there are complex numbers α1, . . . , αk such that
u = α1x1 + · · ·+ αnxn. But then u = α1x1 + · · ·+ αnxn ∈ U also.

Conversely, if U is a subspace such that u ∈ U implies u ∈ U, then U is a
complexification. Because if x1, . . . , xk is a complex basis with xj = uj + vji,
then uj = (xj + xj)/2 and vj = (xj − xj)/2i are in U, and the totality of
u1, . . . , uk, v1, . . . , vk span U. From this real spanning set, one can extract a
real basis. Thus U is a complexification if and only if U = U (i.e., u ∈ U

implies u ∈ U).
Until otherwise said let A be a real Hamiltonian matrix with distinct

eigenvalues λ1, . . . , λn,−λ1, . . . ,−λn so 0 is not an eigenvalue. The eigenval-
ues of A fall into three groups: (1) the real eigenvalues ±α1, . . . ,±αs, (2) the
pure imaginary±β1i, . . . ,±βri, and (3) the truly complex±γ1±δ1i, . . . ,±γt±
δti. This defines a direct sum decomposition

V = (⊕jUj)⊕ (⊕jWj)⊕ (⊕jZj) , (3.20)

where

Uj = η(αj)⊕ η(−αj)

Wj = η(βji)⊕ η(−βji)

Zj = {η(γj + δji)⊕ η(γj − δji)} ⊕ {η(−γj − δji)⊕ η(−γj + δji)}.

Each of the summands in the above is an invariant subspace for A. By Lemma
3.3.1, each space is J-orthogonal to every other, and so by Proposition 3.2.1
each space must be a symplectic subspace. Because each subspace is invariant
under complex conjugation, each is the complexification of a real space. Thus
we can choose symplectic coordinates for each of the spaces, and A in these
coordinates would be block diagonal. Therefore, the next task is to consider
each space separately.

Lemma 3.3.2. Let A be a 2 × 2 Hamiltonian matrix with eigenvalues ±α,
α real, α 
= 0. Then there exists a real 2× 2 symplectic matrix S such that

S−1AS =
[
α 0
0 −α

]
. (3.21)

Proof. Let Ax = αx, and Ay = −αy, where x and y are nonzero. Because
x and y are eigenvectors corresponding to different eigenvalues, they are in-
dependent. Thus {x, y} 
= 0. Let u = {x, y}−1y: so, x, u is a real symplectic
basis, S = (x, u) is a real symplectic matrix, and S is the matrix of the
lemma.

Lemma 3.3.3. Let A be a real 2 × 2 Hamiltonian matrix with eigenvalues
±βi, β 
= 0. Then there exists a real 2× 2 symplectic matrix S such that
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S−1AS =
[

0 β
−β 0

]
, or S−1AS =

[
0 −β
β 0

]
. (3.22)

Proof. Let Ax = iβx, and x = u + vi 
= 0. So Au = −βv and Av = βu.
Because u + iv and u − iv are independent, u and v are independent. Thus
{u, v} = δ 
= 0. If δ = γ2 > 0, then define S = (γ−1u, γ−1v) to get the first
option in (3.22), or if δ = −γ2 < 0, then define S = (γ−1v, γ−1u) to get the
second option.

Sometimes it is more advantageous to have a diagonal matrix than to have
a real one; yet you want to keep track of the real origin of the problem. This
is usually accomplished by reality conditions as defined in the next lemma.

Lemma 3.3.4. Let A be a real 2 × 2 Hamiltonian matrix with eigenvalues
±βi, β 
= 0. Then there exist a 2× 2 matrix S and a matrix R such that

S−1AS =
[
iβ 0
0 −iβ

]
, R =

[
0 1
1 0

]
, STJS = ±2iJ, S = SR. (3.23)

Proof. Let Ax = iβx, where x 
= 0. Let x = u + iv as in the above lemma.
Compute {x, x} = 2i{v, u} 
= 0. Let γ = 1/

√
| {v, u} | and S = (γx, γx).

If S satisfies (3.23), then S is said to satisfy reality conditions with respect
to R. The matrix S is no longer a symplectic matrix but is what is called
a symplectic matrix with multiplier ±2i. We discuss these types of matrices
later. The matrix R is used to keep track of the fact that the columns of
S are complex conjugates. We could require STJS = +2iJ by allowing an
interchange of the signs in (3.23).

Lemma 3.3.5. Let A be a 4×4 Hamiltonian matrix with eigenvalue ±γ±δi,
γ 
= 0, δ 
= 0. Then there exists a real 4× 4 symplectic matrix S such that

S−1AS =
[
BT 0
0 −B

]
,

where B is a real 2× 2 matrix with eigenvalues +γ ± δi.

Proof. U = η(γj + δji)⊕η(γj − δji) is the complexification of a real subspace
and by Lemma 3.3.1 is Lagrangian. A restricted to this subspace has eigen-
values +γ ± δi. A complement to U is W = η(−γj + δji) ⊕ η(−γj − δji).
Choose any real basis for U and complete it by Lemma 3.2.4. The result
follows from Lemma 3.2.4.

In particular you can choose coordinates so that B is in real Jordan form;
so,

B =
[
γ δ
−δ γ

]
.
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This completes the case when A has distinct eigenvalues. There are many
cases when A has eigenvalues with zero real part; i.e., zero or pure imaginary.
These cases are discussed in detail in Section 4.7. In the case where the
eigenvalue zero is of multiplicity 2 or 4 the canonical forms are the 2× 2 and
4× 4 zero matrices and

[
0 ±1
0 0

]
,

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1 0 0
0 0 0 ±1
0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦ . (3.24)

The corresponding Hamiltonians are

±η2
1/2, ξ2η1, ξ2η1 ± η2

2/2.

In the case of a double eigenvalue ±αi, α 
= 0, the canonical forms in the
4× 4 case are

⎡
⎢⎢⎣

0 0 α 0
0 0 0 ±α
−α 0 0 0
0 ∓α 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 α 0 0
−α 0 0 0
±1 0 0 α
0 ±1 −α 0

⎤
⎥⎥⎦ . (3.25)

The corresponding Hamiltonians are

(α/2)(ξ21 + η2
1)± (α/2)(ξ22 + η2

2), α(ξ2η1 − ξ1η2)∓ (ξ21 + ξ22)/2.

Next consider the symplectic case. Let λ be an eigenvalue of T , and de-
fine subspaces of C

2n by ηk(λ) = kernel (T − λI)k, η†(λ) = ∪2n
1 ηk(λ). The

eigenspace of T corresponding to the eigenvalue λ is η(λ) = η1(λ), and the
generalized eigenspace is η†(λ). Because the proof of the next set of lemmas
is similar to those given just before, the proofs are left as problems.

Lemma 3.3.6. If λ and μ are eigenvalues of the symplectic matrix T such
that λμ 
= 1; then {η(λ), η(μ)} = 0. That is, the eigenvectors corresponding
to λ and μ are J-orthogonal.

Corollary 3.3.2. Let T be a 2n×2n symplectic matrix with distinct eigenval-
ues λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n ; then there exists a symplectic matrix S (possibly
complex) such that

S−1TS = diag(λ1, . . . , λn, λ
−1
1 , . . . , λ−1

n ).

If complex transformations are allowed, then the two matrices
[
α β
−β α

]
, and

[
α −β
β α

]
, α2 + β2 = 1,
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can both be brought to diag(α + βi, α − βi) by a symplectic similarity, and
thus, one is symplectically similar to the other. However, they are not similar
by a real symplectic similarity. Let us investigate the real case in detail.

Until otherwise said, let T be a real symplectic matrix with distinct eigen-
values λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n , so 1 is not an eigenvalue. The eigenvalues of
T fall into three groups: (1) the real eigenvalues, μ±1

1 , . . . , μ±1
s , (2) the eigen-

values of unit modulus, α±β1i, . . . , αr±βri, and (3) the complex eigenvalues
of modulus different from one, (γ1 ± δ1i)±1, . . . , (γt ± δti)±1. This defines a
direct sum decomposition

V = (⊕jUj)⊕ (⊕jWj)⊕ (⊕jZj) , (3.26)

where

Uj = η(μj)⊕ η(μ−1
j )

Wj = η(αj + βji)⊕ η(αj − βJ i)

Zj = {η(γj + δji)⊕ η(γj − δji)} ⊕ {η(γj + δji)−1 ⊕ η(γj − δji)−1}.

Each of the summands in (3.26) is invariant for T . By Lemma 3.3.6 each
space is J-orthogonal to every other, and so each space must be a symplectic
subspace. Because each subspace is invariant under complex conjugation,
each is the complexification of a real space. Thus we can choose symplectic
coordinates for each of the spaces, and T in these coordinates would be block
diagonal. Therefore, the next task is to consider each space separately.

Lemma 3.3.7. Let T be a 2 × 2 symplectic matrix with eigenvalues μ±1, μ
real, and μ 
= 1. Then there exists a real 2× 2 symplectic matrix S such that

S−1TS =
[
μ 0
0 μ−1

]
.

Lemma 3.3.8. Let T be a real 2 × 2 symplectic matrix with eigenvalues
α ± βi, α2 + β2 = 1, and β 
= 0. Then there exists a real 2 × 2 symplectic
matrix S such that

S−1TS =
[
α β
−β α

]
or S−1TS =

[
α −β
β α

]
. (3.27)

Sometimes it is more advantageous to have a diagonal matrix than to have
a real one; yet you want to keep track of the real origin of the problem. This
is usually accomplished by reality conditions as defined in the next lemma.

Lemma 3.3.9. Let T be a real 2 × 2 symplectic matrix with eigenvalues
α ± βi, α2 + β2 = 1, and β 
= 0. Then there exists a 2 × 2 matrix S and a
matrix R such that
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S−1TS =
[
α+ βi 0

0 α− βi

]
, R =

[
0 1
1 0

]
,

STJS = ±2iJ , and S = SR.

Lemma 3.3.10. Let T be a 4 × 4 symplectic matrix with eigenvalues (γ ±
δi)±1, γ2 +δ2 
= 1, and δ 
= 0. Then there exists a real 4×4 symplectic matrix
S such that

S−1TS =
[
BT 0
0 B−1

]
,

where B is a real 2× 2 matrix with eigenvalues +γ ± δi.

In particular you can choose coordinates so that B is in real Jordan form;
so,

B =
[
γ δ
−δ γ

]
.

This completes the case when T has distinct eigenvalues.

3.4 Periodic Systems and Floquet–Lyapunov Theory

In this section we introduce some of the vast theory of periodic Hamiltonian
systems. A detailed discussion of periodic systems can be found in the two-
volume set by Yakubovich and Starzhinskii (1975).

Consider a periodic, linear Hamiltonian system

ż = J
∂H

∂z
= JS(t)z = A(t)z, (3.28)

where

H = H(t, z) =
1
2
zTS(t)z, (3.29)

and A(t) = JS(t). Assume that A and S are continuous and T -periodic; i.e.

A(t+ T ) = A(t), S(t+ T ) = S(t) for all t ∈ R

for some fixed T > 0. The Hamiltonian, H, is a quadratic form in the zs
with coefficients which are continuous and T -periodic in t ∈ R. Let Z(t) be
the fundamental matrix solution of (3.28) that satisfies Z(0) = I.

Lemma 3.4.1. Z(t+ T ) = Z(t)Z(T ) for all t ∈ R.

Proof. Let X(t) = Z(t + T ) and Y (t) = Z(t)Z(T ). Ẋ(t) = Ż(t + T ) =
A(t + T )Z(t + T ) = A(t)X(t); so, X(t) satisfies (3.28) and X(0) = Z(T ).
Y (t) also satisfies (3.28) and Y (t) = Z(T ). By the uniqueness theorem for
differential equations, X(t) ≡ Y (t).
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The above lemma only requires (3.28) to be periodic, not necessarily
Hamiltonian. Even though the equations are periodic the fundamental ma-
trix need not be so, and the matrix Z(T ) is the measure of the nonperodicity
of the solutions. Z(T ) is called the monodromy matrix of (3.28), and the
eigenvalues of Z(T ) are called the (characteristic) multipliers of (3.28). The
multipliers measure how much solutions are expanded, contracted, or rotated
after a period. The monodromy matrix is symplectic by Theorem 3.1.3, and
so the multipliers are symmetric with respect to the real axis and the unit
circle by Proposition 3.3.1. Thus the origin cannot be asymptotically stable.

In order to understand periodic systems we need some information on
logarithms of matrices. The complete proof is long, therefore the proof has
been relegated to Section 4.3. Here we shall prove the result in the case when
the matrices are diagonalizable.

A matrix R has a logarithm if there is a matrix Q such that R = expQ,
and we write Q = logR. The logarithm is not unique in general, even in the
real case, because I = expO = exp 2πJ . If R has a logarithm, R = expQ,
then R is nonsingular and has a square root R1/2 = exp(Q/2). The matrix

R =
[
−1 1
0 −1

]

has no real square root and hence no real logarithm.

Theorem 3.4.1. Let R be a nonsingular matrix; then there exists a matrix
Q such that R = expQ. If R is real and has a square root, then Q may be
taken as real. If R s symplectic, then Q may be taken as Hamiltonian.

Proof. We only prove this result in the case when R is symplectic and has
distinct eigenvalues because in this case we only need consider the canonical
forms of Section 3.3. See Section 4.3 for a complete discussion of logarithms
of symplectic matrices.

Consider the cases. First

log
[
μ 0
0 μ−1

]
=
[

log μ 0
0 − log μ

]

is a real logarithm when μ > 0 and complex when μ < 0. A direct computa-
tion shows that diag(μ, μ−1) has no real square root when μ < 0.

If α and β satisfy α2 +β2 = 1, then let θ be the solution of α = cos θ and
β = sin θ so that

log
[
α β
−β α

]
=
[

0 θ
−θ 0

]
.

Lastly, log diag(BT,B−1) = diag(log BT,− log B) where

B =
[
γ δ
−δ γ

]
,
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and

logB = log ρ
[

1 0
0 1

]
+
[

0 θ
−θ 0

]
,

is real where ρ =
√

(γ2 + δ2), and γ = ρ cos θ and δ = ρ sin θ.

The monodromy matrix Z(T ) is nonsingular and symplectic so there ex-
ists a Hamiltonian matrix K such that Z(T ) = exp(KT ). Define X(t) by
X(t) = Z(t) exp(−tK) and compute

X(t+ T ) = Z(t+ T ) expK(−t− T )
= Z(t)Z(T ) exp(−KT ) exp(−Kt)
= Z(t) exp(−Kt)
= X(t).

Therefore, X(t) is T -periodic. Because X(t) is the product of two symplectic
matrices, it is symplectic. In general, X and K are complex even if A and Z
are real. To ensure a real decomposition, note that by Lemma 3.4.1, Z(2T ) =
Z(T )Z(T ); so, Z(2T ) has a real square root. Define K as the real solution of
Z(2T ) = exp(2KT ) and X(t) = Z(t) exp(−Kt). Then X is 2T periodic.

Theorem 3.4.2. (The Floquet–Lyapunov theorem) The fundamental matrix
solution Z(t) of the Hamiltonian (3.28) that satisfies Z(0) = I is of the form
Z(t) = X(t) exp(Kt), where X(t) is symplectic and T -periodic and K is
Hamiltonian. Real X(t) and K can be found by taking X(t) to be 2T -periodic
if necessary.

Let Z,X, and K be as above. In Equation (3.28) make the symplectic,
periodic change of variables z = X(t)w; so,

ż = Ẋw +Xẇ = (Że−Kt − Ze−KtK)w + Ze−Ktẇ

= AZe−Ktw − Ze−KtKw + Ze−Ktẇ

= Az = AXw = AZe−Ktw

and hence
−Ze−KtKw + Ze−Ktẇ = 0

or
ẇ = Kw. (3.30)

Corollary 3.4.1. The symplectic periodic change of variables z = X(t)w
transforms the periodic Hamiltonian system (3.28) to the constant Hamilto-
nian system (3.30). Real X and K can be found by taking X(t) to be 2T -
periodic if necessary.

The eigenvalues of K are called the (characteristic) exponents of (3.28)
where K is taken as log(Z(T )/T ) even in the real case. The exponents are
the logarithms of the multipliers and so are defined modulo 2πi/T .
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Problems

1. Supply proofs to the lemmas and corollaries 3.3.6 to 3.3.10.
2. Prove that the two symplectic matrices in formula (3.27) in Lemma 3.3.8

are not symplectically similar.
3. Consider a quadratic form H = (1/2)xTSx, where S = ST is a real

symmetric matrix. The index of the quadratic form H is the dimension
of the largest linear space where H is negative. Show that the index of
H is the same as the number of negative eigenvalues of S. Show that
if S is nonsingular and H has odd index, then the linear Hamiltonian
system ẋ = JSx is unstable. (Hint: Show that the determinant of JS is
negative.)

4. Consider the linear fractional (or Möbius transformation)

Φ : z → w =
1 + z
1− z , Φ

−1 : w → z =
w − 1
w + 1

.

a) Show that Φ maps the left half plane into the interior of the unit
circle. What are Φ(0), Φ(1), Φ(i), Φ(∞)?

b) Show that Φ maps the set of m×m matrices with no eigenvalue +1
bijectively onto the set of m×m matrices with no eigenvalue −1.

c) Let B = Φ(A) where A and B are 2n×2n. Show that B is symplectic
if and only if A is Hamiltonian.

d) Apply Φ to each of the canonical forms for Hamiltonian matrices to
obtain canonical forms for symplectic matrices.

5. Consider the system (*) Mq̈ + V q = 0, where M and V are n× n sym-
metric matrices and M is positive definite. From matrix theory there is
a nonsingular matrix P such that PTMP = I and an orthogonal matrix
R such that RT (PTV P )R = Λ = diag(λ1, . . . , λn). Show that the above
equation can be reduced to p̈+Λp = 0. Discuss the stability and asymp-
totic behavior of these systems. Write (*) as a Hamiltonian system with
Hamiltonian matrix A = Jdiag(V,M−1). Use the above results to obtain
a symplectic matrix T such that

T−1AT =

⎡
⎣

0 I

−Λ 0

⎤
⎦ .

(Hint: Try T = diag(PR,P−TR)).
6. Let M and V be as in Problem 4.

a) Show that if V has one negative eigenvalue, then some solutions of
(*) in Problem 4 tend to infinity as t→ ±∞.

b) Consider the system (**) Mq̈ + ∇U(q) = 0, where M is positive
definite and U : R

n → R is smooth. Let q0 be a critical point of U
such that the Hessian of U at q0 has one negative eigenvalue (so q0
is not a local minimum of U). Show that q0 is an unstable critical
point for the system (**).
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7. Let H(t, z) = 1
2z

TS(t)z and ζ(t) be a solution of the linear system with
Hamiltonian H. Show that

d

dt
H =

∂

∂t
H;

i.e.,
d

dt
H(t, ζ(t)) =

∂

∂t
H(t, ζ(t)).

8. LetG be a set. A product onG is a function fromG×G intoG. A product
is usually written using infix notation; so, if the product is denoted by
◦ then one writes a ◦ b instead of ◦(a, b). Addition and multiplication
of real numbers define products on the reals, but the inner product of
two vectors does not define a product because the inner product of two
vectors is a scalar not a vector.
A group is a set G with a product ◦ on G that satisfies (i) there is a unique
element e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G, (ii) for every
a ∈ G there is a unique element a−1 ∈ G such that a◦a−1 = a−1 ◦a = e,
(iii) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G. e is called the identity, a−1

the inverse of a, and the last property is the associative law.
Show that the following are groups.
a) G = R, the reals, and ◦ = +, addition of real numbers. (What is e?

Ans. 0.)
b) G = C, the complex numbers, and ◦ = +, addition of complex num-

bers. (What is a−1? Ans -a.)
c) G = R\{0}, the nonzero reals, and ◦ = ·, multiplication of reals.
d) G = Gl(n,R), the set of all n × n real, nonsingular matrices, and
◦ = · matrix multiplication.

9. Using the notation of the previous problem show that the following are
not groups.
a) G = E

3, 3-dimensional geometric vectors, and ◦ = ×, the vector
cross product.

b) G = R
+, the positive reals, and ◦ = +, addition.

c) G = R, and ◦ = ·, real multiplication.
10. A subgroup of a group G is a subset H ⊂ G, which is a group with the

same product. A matrix Lie group is a closed subgroup of Gl(m,F). Show
that the following are matrix Lie groups.
a) Gl(m,F) = general linear group = all n× n nonsingular matrices
b) Sl(m,F) = special linear group = set of all A ∈ Gl(m,F) with

detA = 1.
c) O(m,F) = orthogonal group = set of all m×m orthogonal matrices.
d) So(m,F) = special orthogonal group = O(m,F) ∩ Sl(m,F).
e) Sp(2n,F) = symplectic group = set of all 2n×2n symplectic matrices.

11. Show that the following are Lie subalgebras of gl(m,F), see Problem 2
in Chapter 1.
a) sl(m,F) = set ofm×m matrices with trace = 0. (sl = special linear.)
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b) o(m,F) = set of m×m skew symmetric matrices. (o = orthogonal.)
c) sp(2n,F) = set of all 2n× 2n Hamiltonian matrices.

12. Let Q(n,F) be the set of all quadratic forms in 2n variables with coef-
ficients in F, so q ∈ Q(n,R), if q(x) = 1

2x
TSx, where S is a 2n × 2n

symmetric matrix and x ∈ F
2n.

a) Prove that Q(n,F) is a Lie algebra, where the product is the Poisson
bracket.

b) Prove that Ψ : Q(n,F) → sp(2n,F) : q(x) = 1
2x

TSx → JS is a Lie
algebra isomorphism.

13. Show that the matrices
⎡
⎣
−1 1

0 −1

⎤
⎦ and

⎡
⎣
−2 0

0 −1/2

⎤
⎦

have no real logarithm.
14. Prove the theorem: eAt ∈ G for all t if and only if A ∈ A in the following

cases:
a) When G = Gl(m,R) and A = gl(m,R)
b) When G = Sl(m,R) and A = sl(m,R)
c) When G = O(m,R) and A = so(m,R)
d) When G = Sp(2n,R) and A = sp(2n,R)

15. Consider the map Φ : A → G : A �→ eA =
∑∞

0 An/n!. Show that Φ is
a diffeomorphism of a neighborhood of 0 ∈ A onto a neighborhood of
I ∈ G in the following cases:
a) When G = Gl(m,R) and A = gl(m,R)
b) When G = Sl(m,R) and A = sl(m,R)
c) When G = O(m,R) and A = so(m,R)
d) When G = Sp(2n,R) and A = sp(2n,R)

(Hint: The linearization of Φ is A �→ I + A. Think implicit function
theorem.)

16. Show that Gl(m,R) (respectively Sl(m,R), O(m,R), Sp(2n,R)) is a
differential manifold of dimension m2 (respectively, m2, m(m − 1)/2,
(2n2 + n)). (Hint: Use the problem above and group multiplication to
move neighborhoods around.)
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