
10. Normal Forms

Perturbation theory is one of the few ways that one can bridge the gap be-
tween the behavior of a real nonlinear system and its linear approximation.
Because the theory of linear systems is so much simpler, investigators are
tempted to fit the problem at hand to a linear model without proper justi-
fication. Such a linear model may lead to quantitative as well as qualitative
errors. On the other hand, so little is known about the general behavior of a
nonlinear system that some sort of approximation has to be made.

Many interesting problems can be formulated as a system of equations
that depend on a small parameter ε with the property that when ε = 0 the
system is linear, or at least integrable. This chapter develops a very powerful
and general method for handling the formal aspects of perturbations of linear
and integrable systems, and the next two chapters contain rigorous results
that depend on these formal considerations.

10.1 Normal Form Theorems

In this section the main theorems about the normal form at an equilibrium
and at a fixed point developed in this chapter are summaries without proof.
Upon a first sitting a reader may want read this section, skip the details in
the rest of the chapter, and go on to other topics.

10.1.1 Normal Form at an Equilibrium Point

Consider a Hamiltonian system of the form

H#(x) =
∞∑

i=0

Hi(x). (10.1)

In order to study this system we change coordinates so that the system in the
new coordinates is simpler. The definition of simpler depends on the prob-
lem at hand. In this chapter we construct formal, symplectic, near-identity
changes of variables x = X(y) = y + · · ·, such that in the new coordinates
the Hamiltonian becomes
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H#(y) =
∞∑

i=0

Hi(y). (10.2)

If the Hamiltonian H# meets the criteria for being simple then the system
is said to be in normal form. It is important to understand the implications
of a formal transformation. Even though the original system (10.1) is a con-
vergent series for x in some domain, the series expansion for the change of
variables X(y) will not converge in general. Thus the series (10.2) does not
necessarily converge. The only way to obtain rigorous results based on this
theory is to truncate the series expansion for X at some finite order to obtain
a finite (hence convergent) series for X. In this case only the first few terms
of H# are in normal form. In general, if the series for X is truncated after
the Nth term then the series for H# will be convergent, but only the terms
up to and including the Nth will be in normal form.

Various methods for transforming a system into normal form have been
given because the middle of the nineteenth century, but we present the
method of Lie transforms because of its great generality and simplicity. The
simplicity of this method is the result of its recursive algorithmic definition
which lends itself to easy computer implementation.

Our first example is the classical theorem on the normal form for a Hamil-
tonian system at a simple equilibrium point. Consider an analytic Hamilto-
nian, H#, which has an equilibrium point at the origin in R

2n, and assume
that the Hamiltonian is zero at the origin. Then H# has a Taylor series ex-
pansion of the form (10.1) where Hi is a homogeneous polynomial in x of
degree i + 2; so, H0(x) = 1

2x
TSx, where S is a 2n × 2n real symmetric ma-

trix, and A = JS is a Hamiltonian matrix. The linearized equation about the
critical point x = 0 is

ẋ = Ax = JSx = J∇H0(x), (10.3)

and the general solution of (10.3) is φ(t, ξ) = exp(At)ξ . A traditional analysis
is to solve (10.3) by linear algebra techniques and then hope that the solutions
of the nonlinear problem are not too dissimilar from the solutions of the linear
equation. In many cases this hope is unjustifiable. The next best thing is to
put the equations in normal form and to study the solutions of the normal
form equations. This too has its pitfalls.

Theorem 10.1.1. Let A be diagonalizable. Then there exists a formal, sym-
plectic change of variables, x = X(y) = y+ · · ·, which transforms the Hamil-
tonian (10.1) to (10.2) where Hi is a homogeneous polynomial of degree i+2
such that

Hi(eAty) ≡ Hi(y), (10.4)

for all i = 0, 1, . . . , all y ∈ R
2n, and all t ∈ R.

For example consider a two degree of freedom system in the case when
the matrix A is diagonalizable and has distinct pure imaginary eigenvalues
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±iω1, ±ω2. In this case we may assume that after a symplectic change of
variables the quadratic terms are

H0(x) =
ω1

2
(x2

1 + x2
3) +

ω2

2
(x2

2 + x2
4) = ω1I1 + ω2I2, (10.5)

where in the second form we use the action–angle coordinates

I1 =
1
2
(x2

1 + x2
3), I2 =

1
2
(x2

2 + x2
4), φ1 = tan−1 x3

x1
, φ2 = tan−1 x4

x2
.

The linear equations (10.3) in action–angle coordinates become

İ1 = 0, İ2 = 0, φ̇1 = −ω1, φ̇2 = −ω2.

The condition (10.4) requires the terms in the normal form to be constant
on the solutions of the above equations. These equations have as solutions
I1 = I01 and I2 = I02 where I01 and I02 are constants. I1 = I01 and I2 = I02
where I01 > 0 and I02 > 0 defines a 2-torus with angular coordinates φ1 and
φ2. This type of flow on a torus was discussed in detail in Section 1.9.

There are two cases depending on whether the ratio ω1/ω2 is rational
or irrational. In the case when the ratio is irrational the flow on the torus
defined by the equations above is dense on the torus and so the only con-
tinuous functions defined on the torus are constants, therefore, the terms in
the normal form will depend only on the action variables I1, I2. On the other
hand, if the ratio is rational, say ω1/ω2 = p/q, then the terms in the normal
form may contain a dependence on the single angle ψ = qφ1 − pφ2.

Thus: If H0 in (10.1) is of the form (10.5) then the normal form for the
system is

H# =
∞∑

i=0

Hi(I1, I2)

when the ratio ω1/ω2 is irrational, and

H# =
∞∑

i=0

Hi(I1, I2, qφ1 − pφ2)

when ω1/ω2 = p/q.
This covers the normal form at the equilibrium point L4 of the restricted

3-body problem when 0 < μ < μ1. A multitude of interesting stability and
bifurcation results follow from simple inequalities on a finite number of terms
in this normal form.

In the case where the matrix A is not diagonalizable the only change in
the statement of Theorem 10.1.1 is that the condition (10.4) is replaced by

Hi(eA
T ty) ≡ Hi(y),

where AT is the transpose of A.
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Consider a two degree of freedom Hamiltonian system at an equilibrium
point when the exponents are ±iω with multiplicity two and the linearized
system is not diagonalizable. The normal form for the quadratic part of such
a Hamiltonian was given as

H0 = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2),

where ω 
= 0 and δ = ±1. In this case

A =

⎡
⎢⎢⎣

0 ω 0 0
−ω 0 0 0
−δ 0 0 ω

0 −δ −ω 0

⎤
⎥⎥⎦ .

The normal form in this case depends on the four quantities

Γ1 = x2y1 − x1y2, Γ2 = 1
2 (x2

1 + x2
2),

Γ3 = 1
2 (y2

1 + y2
2), Γ4 = x1y1 + x2y2.

Note that {Γ1, Γ2} = 0 and {Γ1, Γ3} = 0. The system is in Sokol’skii normal
form if the higher-order terms depend on the two quantities Γ1 and Γ3, that
is, the Hamiltonian is of the form

H# = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2) +

∞∑
k=1

H2k(x2y1 − x1y2, y
2
1 + y2

2),

where H2k is a polynomial of degree k in two variables. The first few terms
of this normal form determine the nature of the stability and bifurcations at
the equilibrium point L4 of the restricted problem when μ = μ1.

10.1.2 Normal Form at a Fixed Point

The study of the stability and bifurcation of a periodic solution of a Hamil-
tonian system of two degrees of freedom can be reduced to the study of
the Poincaré map in an energy level (i.e., level surface of the Hamiltonian).
Sometimes the value of the Hamiltonian must be treated as a parameter.

Consider a diffeomorphism of the form

F# : N ⊂ R
2 → R

2 : x→ f(x), (10.6)

where N is a neighborhood of the origin in R
2, and f is a smooth function

such that
f(0) = 0, det

∂f

∂x
(x) ≡ 1.

The origin is a fixed point for the diffeomorphism because f(0) = 0, and it is
orientation-preserving and area-preserving because det ∂f/∂x ≡ 1. This map
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should be considered as the Poincaré map associated with a periodic solution
of a two degree of freedom Hamiltonian system.

The linearization of this map about the origin is x→ Ax where A is the
2×2 matrix (∂f/∂x)(0). Because the determinant of A is 1 the product of its
eigenvalues must be 1. The eigenvalues λ, λ−1 of A are called the multipliers
of the fixed point. There are basically four cases:

1. Hyperbolic fixed point: multipliers real and λ 
= ±1
2. Elliptic fixed point: multipliers complex conjugates and λ 
= ±1
3. Shear fixed point: λ = +1, A not diagonalizable
4. Flip fixed point: λ = −1, A not diagonalizable

As before in order to study an area-preserving map we can change coor-
dinates so that the map in the new coordinates is simpler. Here we consider
a formal symplectic, near-identity change of variables x = X(y) = y + · · ·,
such that in the new coordinates the map (10.6) becomes

F# : y → g(y). (10.7)

If the map F# meets the criteria for being simple then the map is said to
be in normal form. It is important to understand the implications of a formal
transformation. Even though the original system (10.6) is a convergent series
for x in some domain, the series expansion for the change of variables X(y)
will not converge in general. Thus the series (10.7) does not converge in
general. The only way to obtain rigorous results based on this theory is to
truncate the series expansion for X at some finite order to obtain a finite
(hence convergent) series for X. In this case only the first few terms of F#

will be in normal form. In general, if the series for X is truncated after the
Nth term then the series for F# will be convergent, but only the terms up
to and including the Nth will be in normal form.

Hyperbolic fixed point. In the hyperbolic case after a change of variables
we may assume that

A =
[
λ 0
0 λ−1

]
,

with λ 
= ±1 and real. The mapping (10.7) is in normal form with F# :
(u, v) → (u′, v′) where y = (u, v) with

u′ = u
(uv)

v′ = v
(uv)−1,

where 
 is a formal series in one variable, 
(uv) = λ+ · · ·.
The map takes the hyperbolas uv = constant into themselves. The trans-

formation to normal form actually converges by a classical theorem of Moser
(1956).

Elliptic fixed point. In the elliptic case when λ is a complex number of
unit modulus certain reality conditions must be met. Consider the case when
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A has eigenvalues λ±1 = exp(±ωi) 
= ±1; i.e., the origin is an elliptic fixed
point. First assume that λ is not a root of unity. Change to action–angle
variables (I, φ); The normal form in action–angle variables in this case is
F# : (I, φ) → (I ′, φ′) where

I ′ = I, φ′ = φ+ 
(I),

where 
 has a formal expansion 
(I) = −ω+ βI · · ·. If a diffeomorphism is in
this form with β 
= 0, then the origin is called a general elliptic point, or F#

is called a twist map. This map takes circles, I = const, into themselves and
rotates each circle by an amount 
(I).

Now consider the case when the diffeomorphism has an elliptic fixed point
whose multiplier is a root of unity. Let λ be a kth root of unity; so, λk = 1,
k > 2, and λ = exp(h2πi/k), where h is an integer. The origin is called
a k-resonance elliptic point in this case. The normal form in action–angle
variables in this case is F# : (I, φ) → (I ′, φ′) where

I ′ = I + 2αIk/2 sin(kφ) + · · · ,

φ′ = φ+ (2πh/k) + αI(k−2)/2 cos(kφ) + βI + · · · .
(10.8)

Shear fixed point. Consider the cases where the multiplier is +1. If A = I,
the identity matrix, the system is so degenerate that there is no normal form
in general. Otherwise, by a coordinate change we have

A =
[

1 ±1
0 1

]
. (10.9)

The important terms of the normal form F# : (u, v) → (u′, v′) are

u′ = u± v − · · · ,

v′ = v − βu2 + · · · .
(10.10)

The ellipsis may contain other quadratic terms and higher-order terms.
Flip periodic point. Now consider the case when A has eigenvalue −1. In

this case the generic form for A is

A =
[
−1 ±1
0 −1

]
.

The quadratic terms can be eliminated and the important terms of the normal
form F# : (u, v) → (u′, v′) are

u′ = −u− v + · · · ,

v′ = −v + βu3 + · · · .
(10.11)

The ellipsis may contain other cubic terms and higher-order terms.
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10.2 Forward Transformations

One of the most general methods of mathematics is to simplify a problem
by a change of variables. The method of Lie transforms developed by Deprit
(1969) and extended by Kamel (1970) and Henrard (1970b) is a general
procedure to change variables in a system of equations that depend on a
small parameter. Deprit’s original method was for Hamiltonian systems only,
but the extensions by Kamel and Henrard handle non-Hamiltonian equations.
Only the Hamiltonian case is treated here.

10.2.1 Near-Identity Symplectic Change of Variables

The general idea of this method is to generate a symplectic change of variables
depending on a small parameter as the general solution of a Hamiltonian
system of differential equations; see Theorem 6.1.2. X(ε, y) is said to be
a near-identity symplectic change of variables (or transformation ), if X is
symplectic for each fixed ε and is of the formX(ε, y) = y+O(ε); i.e.,X(0, y) =
y. Because X(0, y) = y, ∂X(ε, y)/∂y is nonsingular for small ε so by the
inverse function theorem, the map y → X(ε, y) has a differentiable inverse
for small ε. Both X and its inverse are symplectic for fixed ε.

Consider the nonautonomous Hamiltonian system

dx

dε
= J∇W (ε, x) (10.12)

and the initial condition
x(0) = y, (10.13)

where W is smooth. The basic theory of differential equations asserts that
the general solution of this problem is a smooth function X(ε, y) such that
X(0, y) ≡ y, and by Theorem 6.1.2, the function X is symplectic for fixed
ε. That is, the differential equation (10.12) and the initial condition (10.13)
define a near-identity symplectic change of variables.

Conversely, let X(ε, y) be a near-identity symplectic change of variables
with inverse function Y (ε, x) such that X(ε, Y (ε, x)) ≡ x and Y (ε,X(ε, y)) ≡
y where defined. Y is symplectic too. Differentiating Y (ε,X(ε, y)) ≡ y with
respect to ε yields

∂Y

∂x
(ε,X(ε, y))

∂X

∂ε
(ε, y) +

∂Y

∂ε
(ε,X(ε, y)) ≡ 0

or
∂X

∂ε
(ε, y) ≡

[
∂Y

∂x
(ε,X(ε, y))

]−1
∂Y

∂ε
(ε,X(ε, y)).

This means that X(ε, y) is the general solution of

dx

dε
= U(ε, x), where U(ε, x) =

[
∂Y

∂x
(ε, x)

]−1
∂Y

∂ε
(ε, x).
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This equation is Hamiltonian so, there is a function W (ε, x) such that
U(ε, x) = J∇W (ε, x). This proves the following.

Proposition 10.2.1. X(ε, y) is a near-identity symplectic change of vari-
ables if and only if it is the general solution of a Hamiltonian differential
equation of the form (10.12) satisfying initial condition (10.13).

A Hamiltonian system of equations generates symplectic transformations di-
rectly, which is in contrast to the symplectic transformations given by the
generating functions in Theorem 6.2.1, where the new and old variables are
mixed.

10.2.2 The Forward Algorithm

Let X(ε, y), Y (ε, x), and W (ε, x) be as above; so, X(ε, y) is the solution
of (10.12) satisfying (10.13). Think of x = X(ε, y) as a change of variables
x → y that depends on a parameter. Throughout this chapter, when we
change variables, we do not change the parameter ε.

Let H(ε, x) be a Hamiltonian and G(ε, y) ≡ H(ε,X(ε, y)); so, G is the
Hamiltonian H in the new coordinates. We call G the Lie transform of H
(generated by W ). Sometimes H is denoted by H∗ and G by H∗, and some-
times G is denoted by L(W )H to show that G is the Lie transform of H
generated by W . Let the function H = H∗, G = H∗, and W all have series
expansions in the small parameter ε. The forward algorithm of the method
of Lie transforms is a recursive set of formulas that relate the terms in these
various series expansions.

In particular let

H(ε, x) = H∗(ε, x) =
∞∑

i=0

(
εi

i!

)
H0

i (x), (10.14)

G(ε, y) = H∗(ε, y) =
∞∑

i=0

(
εi

i!

)
Hi

0(y), (10.15)

W (ε, x) =
∞∑

i=0

(
εi

i!

)
Wi+1(x). (10.16)

The method of Lie transforms introduces a double indexed array {Hi
j}, i, j =

0, 1, . . . which agrees with the definitions given in (10.14) and (10.15) when
either i or j is zero. The other terms are intermediary terms introduced to
facilitate the computation.

Theorem 10.2.1. Using the notation given above, the functions {Hi
j}, i =

1, 2, . . . , j = 0, 1, . . . satisfy the recursive identities

Hi
j = Hi−1

j+1 +
j∑

k=0

(
j
k

)
{Hi−1

j−k,Wk+1}. (10.17)
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Remarks. The above formula contains the standard binomial coefficient
(
j
k

)
=

j!
k!(j − k)! .

Note that because the transformation generated by W is a near identity
transformation, the first term inH∗ andH∗ is the same, namelyH0

0 . Also note
that the first term in the expansion for W starts with W1. This convention
imparts some nice properties to the formulas in (10.17). Each term in 10.17
has indices summing to i+j, and each term on the right-hand side has upper
index i− 1.

In order to construct the change of variables X(ε, y), note that X is the
transform of the identity function or X(ε, y) = L(W )(id), where id(x) = x.

The interdependence of the functions {Hi
j} can easily be understood by

considering the Lie triangle

H0
0

↓
H0

1 → H1
0

↓ ↓
H0

2 → H1
1 → H2

0 .
↓ ↓ ↓

The coefficients of the expansion of the old function H∗ are in the left column,
and those of the new function H∗ are on the diagonal. Formula (10.17) states
that to calculate any element in the Lie triangle, you need the entries in the
column one step to the left and up.

For example, to compute the series expansion for H∗ through terms of
order ε2, you first compute H1

0 by the formula

H1
0 = H0

1 + {H0
0 ,W1}, (10.18)

which gives the term of order ε, and then you compute

H1
1 = H0

2 + {H0
1 ,W1}+ {H0

0 ,W2},

H2
0 = H1

1 + {H1
0 ,W1}.

Then H∗(ε, x) = H0
0 (x) +H1

0 (x)ε+H2
0 (x)(ε2/2) + · · · .

Proof. (Theorem 10.2.1) Recall that H∗(ε, y) = G(ε, y) = H(ε,X(ε, y)),
where X(ε, y) is the general solution of (10.12). Define the differential op-
erator D = DW by

DF (ε, x) =
∂F

∂ε
(ε, x) + {F,W}(ε, x),

so that
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d

dε

(
F (ε, x)

∣∣∣
x=X(ε,y)

)
= DF (ε, x)

∣∣∣
x=X(ε,y)

.

Define new functions by H0 = H, Hi = DHi−1, i ≥ 1. Let these functions
have series expansions

Hi(ε, x) =
∞∑

k=0

(
εk

k!

)
Hi

k(x)

so,

Hi(ε, x) = D
∞∑

k=0

(
εk

k!

)
Hi−1

k (x)

=
∞∑

k=1

(
εk−1

(k − 1)!

)
Hi−1

k (x) +

{ ∞∑
k=0

(
εk

k!

)
Hi−1

k (x),
∞∑

s=0

Ws+1

}

=
∞∑

j=0

(
εj

j!

)(
Hi−1

j+1 +
j∑

k=0

(
j
k

)
{Hi−1

j−k,Wk+1}
)
.

So the functions Hi
j are related by (10.17). It remains to show that H∗ = G

has the expansion (10.15). By the above and Taylor’s theorem

G(ε, y) =
∞∑

n=0

(
εn

n!

)
dn

dεn
G(ε, y)

∣∣∣
ε=0

=
∞∑

n=0

(
εn

n!

)
dn

dεn

(
H(ε, x)

∣∣∣
x=X(ε,y)

)

ε=0

=
∞∑

n=0

(
εn

n!

)(
DnH(ε, x)

∣∣∣
x=X(ε,y)

)

ε=0

=
∞∑

n=0

(
εn

n!

)
Hn

0 (y).

10.2.3 The Remainder Function

Assume now that the Hamiltonian and hence the equations are time depen-
dent; i.e., consider

ẋ = J∇H(ε, t, x), (10.19)

where H has an expansion
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H(ε, t, x) = H∗(ε, t, x) =
∞∑

i=0

(
εi

i!

)
H0

i (t, x). (10.20)

Make a symplectic change of coordinates, x = X(ε, t, y), which transforms
(10.19) to the Hamiltonian differential equation

ẏ = J∇G(ε, t, y) + J∇R(ε, t, y) = J∇K(ε, t, y),

where G(ε, t, y) = H∗(ε, t, y) = H(ε, t,X(ε, t, y)) is the Lie transform of H,
R is the remainder function, and K = G+R is the new Hamiltonian. Let G,
R, and K have series expansions of the form

G(ε, t, y) =
∞∑

i=0

(
εi

i!

)
Hi

0(t, y), R(ε, t, y) =
∞∑

i=0

(
εi

i!

)
Ri

0(t, y)

K(ε, t, y) =
∞∑

i=0

(
εi

i!

)
Ki

0(t, y).

Let the symplectic change of variables X(ε, t, y) be the general solution of
the Hamiltonian system of equations

dx

dε
= J∇W (ε, t, x), x(0) = y,

whereW (ε, t, x) is a Hamiltonian function with a series expansion of the form

W (ε, t, x) =
∞∑

i=0

(
εi

i!

)
Wi+1(t, x).

The variable t is simply a parameter, and so the function G = H∗ can be
computed by formulas (10.17) in Theorem 10.2.1 using the Lie triangle as a
guide. The remainder term R needs further consideration.

Theorem 10.2.2. The remainder function is given by

R(ε, t, y) = −
∫ ε

0

L(W )
(
∂W

∂t

)
(s, t, y)ds. (10.21)

Proof. Making the symplectic change of variable x = X(ε, t, y) in (10.19)
directly gives

ẏ =
(
∂X

∂y

)−1

(ε, t, y)J∇xH(ε, t,X(ε, t, y))−
(
∂X

∂y

)−1

(ε, t, y)
∂X

∂t
(ε, t, y).

By the discussion in Section 6.1 the first term on the right-hand side is J∇G,
and so,



242 10. Normal Forms

J∇R(ε, t, y) = −
(
∂X

∂y
(ε, t, y)

)−1
∂X

∂t
(ε, t, y).

A(ε) = ∂X(ε, t, y)/∂y is the fundamental matrix solution of the variational
equation; i.e., it is the matrix solution of

dA

dε
=
(
J
∂2W

∂x2
(ε, t,X(ε, t, y))

)
A, A(0) = I.

Differentiating ∂X(ε, t, y)/∂ε = J∇W (ε, t,X(ε, t, y)) with respect to t shows
that B(ε) = ∂X(ε, t, y)/∂t satisfies

dB

dε
=
(
J
∂2W

∂x2
(ε, t,X(ε, t, y))

)
B + J

∂2W

∂x∂t
(ε, t,X(ε, t, y)).

Because X(0, t, y) ≡ y, B(0) = 0, and so, by the variation of constants
formula,

B(ε) =
∫ ε

0

A(ε)A(s)−1J
∂2W

∂x∂t
(s, t,X(s, t, y))ds;

therefore,

J∇R(ε, t, y) = −
(
∂X

∂y
(ε, t, y)

)−1
∂X

∂t
(ε, t, y) = −A(ε)−1B(ε)

= −
∫ ε

0

A(s)−1J
∂2W

∂x∂t
(s, t,X(s, t, y))ds

= −
∫ ε

0

JA(s)T ∂
2W

∂x∂t
(s, t,X(s, t, y))ds

= −J ∂
∂y

∫ ε

0

∂W

∂t
(s, t,X(s, t, y))ds

= −J ∂
∂y

∫ ε

0

L(W )
(
∂W

∂t

)
(s, t, y)ds.

In the above, the fact that A is symplectic is used to make the substitution
A−1J = JAT .

Thus, to compute the remainder function, first compute the transform
of −∂W/∂t, and then integrate it. That is, let S∗(ε, t, x) =

∑
(εi/i!)S0

i (t, x),
where S0

i (t, x) = −∂Wi−1(t, x)/∂t. Compute the Lie transform of S∗ by the
previous algorithms to get L(W )(S) = S∗(ε, t, x) =

∑
(εi/i!)Si

0(t, x). Then
Ri

0 = Si−1
0 .

For example, to compute the series expansion for K = G + R, the new
Hamiltonian, through terms of order ε2, set K0

0 = H0
0 , then compute K1

0 by
the formulas
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H1
0 = H0

1 + {H0
0 ,W1}, R1

0 = −∂W1

∂t
, K1

0 = H1
0 +R1

0,

which gives the term of order ε, and then compute

H1
1 = H0

1 + {H0
1 ,W1}+ {H0

0 ,W2}, H2
0 = H1

1 + {H1
0 ,W1},

R2
0 = −∂W2

∂t
−
{
∂W1

∂t
,W1

}
, K2

0 = H2
0 +R2

0.

Then K∗(ε, x) = K0
0 (x) + εK1

0 (x) + ε2

2 K
2
0 (x) + · · ·.

10.3 The Lie Transform Perturbation Algorithm

In many of the cases of interest, the Hamiltonian is given, and the change
of variables is sought to simplify it. When the Hamiltonian, and hence the
equations, are in sufficiently simple form, they are said to be in “normal
form,” an expression whose meaning is discussed in detail later.

10.3.1 Example: Duffing’s Equation

In (6.15) the Hamiltonian of Duffing’s equation was given as

H =
1
2
(q2 + p2) +

γ

4
q4 (10.22)

in rectangular coordinates, (q, p), and in action–angle variables, (I, φ), it was
given as

H = I +
γ

8
I2(3 + 4 cos 2φ+ cos 4φ). (10.23)

The Hamiltonian is analytic in rectangular coordinates, and so has the
d’Alembert character. Consider γ as a small parameter by setting ε = γ/8;
so, H(ε, I, φ) = H∗(ε, I, φ) = H0

0 (I, φ) + εH0
1 (I, φ), where

H0
0 = I, H0

1 = I2(3 + 4 cos 2φ+ cos 4φ).

By formula (10.18),
H1

0 = H0
1 + {H0

0 ,W1};
so,

H1
0 = I2(3 + 4 cos 2φ+ cos 4φ)− ∂W1

∂φ
.

Choose W1 so that H1
0 contains as few terms as possible (one definition of

normal form). For the transformation generated by W1 to be analytic in
rectangular coordinates, W must be a Poisson series with the d’Alembert
character. Thus the simplest form for H1

0 is
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H1
0 = 3I2,

which is accomplished taking

W1 = I2(2 sin 2φ+
1
4

sin 4φ).

With this W1, the Hamiltonian in the new coordinates, (J, θ), would be

H∗(ε, J, θ) = J +
3γ
8
J2 +O(γ2),

and the equations of motion would be

J̇ = O(γ2), θ̇ = −1− 3γ
4
J +O(γ2).

In these coordinates, up to terms O(γ2), the solutions move on circles J =
constant with uniform angular frequency −1− (3γ/4)J .

Let us do this simple example again, but this time in complex coordinates
z = q + ip, z̄ = q − ip. This change of variables is symplectic with multiplier
2i; so, the Hamiltonian becomes

H(z, z̄) = izz̄ +
γi

32
(z4 + 4z3z̄ + 6z2z̄2 + 4zz̄3 + z̄4).

H is real in the rectangular coordinates (q, p), so H is conjugated by inter-
changing z and z̄; i.e., H(z, z̄) = H(z̄, z). This is the reality condition in these
variables. Let ε = γ/32 and

H0
0 = izz̄, H0

1 = i(z4 + 4z3z̄ + 6z2z̄2 + 4zz̄3 + z̄4);

so Equation (10.18) becomes

H1
0 = i(z4 + 4z3z̄ + 6z2z̄2 + 4zz̄3 + z̄4) +

1
2

(
z
∂W

∂z
− z̄ ∂W

∂z̄

)
.

Try W = azαz̄β ; then (z∂W/∂z + z̄∂W/∂z̄)/2 = a(α− β)zαz̄β/2; so, all the
terms in H0

1 can be eliminated except those with α = β. That is, if we take

W = −i(z4/2 + 4z3z̄ − 4zz̄3 − z̄4/2),

then
H∗ = H0

0 +H0
1 = izz̄ + (3γi/16)(zz̄)2 +O(ε2).

Notice that both W and H∗ satisfy the reality condition and so are real
functions in the original coordinates (q, p). The two methods of solving the
problem (action–angle variables and complex variables) give the same results
when written in rectangular coordinates.
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10.3.2 The General Algorithm

The main Lie transform algorithm starts with a given Hamiltonian that de-
pends on a small parameter ε, and constructs a change of variables so that
the Hamiltonian in the new variables is simple. The algorithm is built around
the following observation.

Consider the HamiltonianH∗(ε, x) with series expansion as given in Equa-
tion (10.14); so, all the H0

i are known. Assume that all the entries in the Lie
triangle are known down to the Nth row; so, the Hi

j are known for i+j ≤ N ,
and assume that the Wi are known for i ≤ N . Let Li

j , i+j ≤ N , be computed
from the same initial Hamiltonian, but with U1, . . . , UN where Ui = Wi for
i = 1, 2, . . . , N − 1 and UN = 0. Then

Hi
j = Li

j for i+ j < N

Hi
j = Li

j + {H0
0 ,WN} for i+ j = N.

(10.24)

This is easily seen from the recursive formulas in Theorem 10.2.1. Recall the
remark that the sum of all the indices must add to the row number; so, WN

does not affect the terms in the first N − 1 rows. The second equation in
(10.24) follows from a simple induction across the Nth row.

From this observation, the algorithm is as follows. Assume all the rows
in the Lie triangle have been computed down to the (N − 1)st row, that
W1, . . . ,WN−1 have been determined, and that the terms H1

0 , . . . , H
N−1
0 are

in normal form; i.e., simple in some sense. Now it is time to compute WN so
that HN

0 is in normal form. To compute the Nth row do the following.
Step 1: Compute the Nth row from the formulas in Theorem 10.2.1 assuming
that WN = 0, and call these terms Li

j , i+ j = N .

Step 2: Solve the equation HN
0 = LN

0 + {H0
0 ,WN} for WN and HN

0 , so that
HN

0 is in normal form or simple.
Step 3: Add {H0

0 ,WN} to each term in the Nth row; i.e., calculate Hi
j =

Li
j + {H0

0 ,WN} for all i+ j = N .
Step 4: Repeat for the next row.

Of course the definition of normal form and simple depends on the equa-
tion HN

0 = LN
0 + {H0

0 ,WN}, which in turn depends on H0
0 . This equation is

called the Lie equation or the homology equation.

10.3.3 The General Perturbation Theorem

The algorithm can be used to prove a general theorem that includes almost
all applications. Use the notation of Section 10.2.

Theorem 10.3.1. Let {Pi}∞i=0, {Qi}∞i=1, and {Ri}∞i=1 be sequences of linear
spaces of smooth functions defined on a common domain O in R

2n with the
following properties.
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1. Qi ⊂ Pi, i = 1, 2, . . . .
2. H0

i ∈ Pi, i = 0, 1, 2, . . . .
3. {Pi,Rj} ⊂ Pi+j , i+ j = 1, 2, . . . .
4. for any D ∈ Pi, i = 1, 2, . . . , there exist B ∈ Qi and C ∈ Ri such that

B = D + {H0
0 , C}. (10.25)

Then there exists a W with a formal Hamiltonian of the form (10.16) with
Wi ∈ Ri, i = 1, 2, . . . , which generates a near-identity symplectic change of
variables x→ y such that the Hamiltonian in the new variables has a series
expansion given by (10.15) with Hi

0 ∈ Qi, i = 1, 2, . . ..

Remarks. The Lie equation (10.25) is the heart of a perturbation prob-
lem. H0

0 defines the unperturbed system when ε = 0, so it is supposed to
be well understood. For example, it might be the harmonic oscillator or the
2-body problem. Equation (10.25) can be rewritten

B = D + F(C)

where F = {H0
0 , ·} is a linear operator on functions. One must analyze this

operator to determine in what linear spaces the equation (10.25) is solv-
able. Roughly speaking the Hamiltonian (10.14) starts with terms in the
P-spaces (H0

i ∈ Pi), and the equation in normal form has terms in the Q-
space (Hi

0 ∈ Qi). The Q-spaces are smaller than the P-spaces (Qi ⊂ Pi). So
the normal form is “simpler.” The transformation is generated by a Hamil-
tonian differential equation with Hamiltonian W in the R-spaces (Wi ∈ Ri).
D is an old term, B is a new term, and C is a generator.

Proof. Use induction on the rows of the Lie triangle.
Induction hypothesis In: Let Hi

j ∈ Pi+j for 0 ≤ i+ j ≤ n and Wi ∈ Ri,H
i
0 ∈

Qi for 1 ≤ i ≤ n.
I0 is true by assumption, and so assume In−1. By Equation (10.17)

H1
n−1 = H0

n +
n−2∑
k=0

(
n− 1
k

)
{H0

n−1−k,Wk+1}+ {H0
0 ,Wn}.

The last term is singled out because it is the only term that contains an ele-
ment,Wn, which is not covered by the induction hypothesis or the hypothesis
of the theorem. All the other terms are in Pn by In−1 and (3). Thus

H1
n−1 = E1 + {H0

0 ,Wn},

where E1 ∈ Pn is known. A simple induction on the columns of the Lie
triangle using (10.17) shows that

Hs
n−s = Es + {H0

0 ,Wn},
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where Es ∈ Pn for s = 1, 2, . . . , n, and so

H0
n = En + {H0

0 ,Wn}.

By (4), solve for Wn ∈ Rn and Hn
0 ∈ Qi. Thus In is true.

The theorem given above is formal in the sense that the convergence of
the various series is not discussed. In interesting cases the series diverge, but
useful information can be obtained in the first few terms of the normal form.
One can stop the process at any order N to obtain a W that is a polynomial
in ε and so converges. From the proof given above, it is clear that the terms
in the series for H∗ up to order N are unaffected by the termination. Thus
the more useful form of Theorem 10.3.1 is the following.

Corollary 10.3.1. Let N ≥ 1 be given, and let {Pi}N
i=0, {Qi}N

i=1, and
{Ri}N

i=1 be sequences of linear spaces of smooth functions defined on a com-
mon domain O in R

2n with the following properties.

1. Qi ⊂ Pi, i = 1, 2, . . . , N .
2. H0

i ∈ Pi, i = 0, 1, 2, . . . , N .
3. {Pi,Rj} ⊂ Pi+j , i+ j = 1, 2, . . . , N .
4. For any D ∈ Pi, i = 1, 2, . . . , N , there existB ∈ Qi and C ∈ Ri such that

B = D + {H0
0 , C}. (10.26)

Then there exists a polynomial W ,

W (ε, x) =
N−1∑
i=0

(
εi

i!

)
Wi+1(x), (10.27)

with Wi ∈ Ri, i = 1, 2, . . . , N , such that the change of variables x = X(ε, y)
where X(ε, y) is the general solution of dx/dε = J∇W (ε, x), x(0) = y, trans-
forms the convergent Hamiltonian

H(ε, x) = H∗(ε, x) =
∞∑

i=0

(
εi

i!

)
H0

i (x) (10.28)

to the convergent Hamiltonian

G(ε, x) = H∗(ε, y) =
N∑

i=0

(
εi

i!

)
Hi

0(y) +O(εN+1), (10.29)

with Hi
0 ∈ Qi, i = 1, 2, . . . , N.

The nonautonomous case. In the nonautonomous case, the algorithm is
slightly different. The remainder function, R(ε, t, y), is the indefinite integral
of S∗(ε, t, y), where S∗(ε, t, y) = −L(W )(∂W/∂t)(s, t, y), the Lie transform
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of S∗ = −∂W/∂t. One constructs two Lie triangles, one for the Hamiltonian
H and one for the function S. Because R is the indefinite integral of S∗, if
you want the new Hamiltonian up to terms of order εN , then you need all
the Lie triangle for H∗ down to the Nth row, but only down to the (N −1)st
for S. One simply works down the two triangles together, but with the S
triangle one row behind.

Assume that all the entries in the Lie triangle for H are known down to
the Nth row (Hi

j , i + j ≤ N) and that all the entries in the Lie triangle for
S∗ are known down to the (N − 1)st row (Si

j , i + j ≤ N − 1) using the Wi

for i ≤ N . Let Gi
j , i + j ≤ N , be computed from the same Hamiltonian; so,

G0
i = H0

i for all i, but with U1, . . . , UN , where Ui = Wi for i = 1, 2, . . . , N−1
and UN = 0. Let Qi

j be the terms in the Lie triangle for the remainder using
the U ′

is. Then

Hi
j = Gi

j for i+ j < N, Si
j = Qi

j for i+ j < N − 1,

Hi
j = Gi

j + {H0
0 ,WN} for i+ j = N, Si

j = Qi
j −

∂WN

∂t
for i+ j = N − 1.

(10.30)
This is easily seen from the recursive formulas in Theorem 10.2.1.

From this observation, the algorithm is as follows. Assume that all the
rows in the Lie triangle for H have been computed down to the (N − 1)st
row, that all the rows in the Lie triangle for S∗ have been computed down
to the (N − 2)nd row and that W1, . . . ,WN−1 have been determined, and
that the H1

0 , . . . , H
N−1
0 are in normal form. Now it is time to compute WN

so that HN
0 is in normal form.

Step 1: Compute the Nth row for H and the (N −1)st row for the remainder
assuming that WN = 0, and call these terms Gi

j , i+ j = N , and Qi
j , i+ j =

N − 1, respectively.
Step 2: Solve the equation HN

0 = GN
0 + QN−1

0 + {H0
0 ,WN} − ∂WN/∂t for

WN and HN
0 so that HN

0 is in normal form or simple.
Step 3: Add {H0

0 ,WN} to each term in the Nth row for H, and add ∂WN/∂t
to each term in the (N − 1)st row for S.
Step 4: Repeat.

The nonautonomous version of Theorem 10.3.1 is as follows.

Theorem 10.3.2. Let {Pi}∞i=0, {Qi}∞i=1, and {Ri}∞i=1 be sequences of linear
spaces of smooth functions defined on a common domain O in R

1×R
2n. Let

Ṙi be the space of all derivatives of functions in Ri. Assume the following:

1. Qi ⊂ Pi, i = 1, 2, . . . .
2. H0

i ∈ Pi, i = 0, 1, 2, . . . .
3. {Pi,Rj} ⊂ Pi+j and {Pi, Ṙj} ⊂ Pi+j. for i+ j = 1, 2, . . . .
4. For any D ∈ Pi, i = 1, 2, . . ., there exists B ∈ Qi and C ∈ Ri such that
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B = D + {H0
0 , C} −

∂C

∂t
. (10.31)

Then there exists a W with a formal Hamiltonian of the form (10.16) with
Wi ∈ Ri, i = 1, 2, . . ., that generates a near-identity symplectic change of
variables x→ y such that the Hamiltonian in the new variables has a series
expansion given by (10.15) with Hi

0 ∈ Qi, i = 1, 2, . . . .

Duffing’s equation revisited. Consider the Hamiltonian (10.23) of Duff-
ing’s equation as written in action–angle variables. The operator {H0

0 , C} =
∂C/∂φ is very simple to understand. Equation (10.31) becomes

B = D +
∂C

∂φ
.

If D is a finite Poisson series with d’Alembert character, then by taking B to
be the term of D that is independent of the angle φ and C =

∫
(B−D)dφ,B

and C satisfy this equation. This leads us to the following definitions of the
spaces.

Let Pi be the space of all finite Poisson series with d’Alembert character
corresponding to homogeneous polynomials of degree 2i + 2 in rectangular
coordinates. So an element in Pi is of the form Ii+1 times a finite Fourier
series in φ. Let Qi be the space of all polynomials of the form AIi+1, where
A is a constant. Let Ri be the subspace of Pi of Poisson series without a
term independent of φ. So Pi = Qi ⊕ Ri. Because the Poisson bracket of
homogeneous polynomials of degree 2i+ 2 and degree 2j + 2 is a polynomial
of degree 2(i+j)+2, and because symplectic changes of coordinates preserve
Poisson brackets, we have {Pi,Rj} ⊂ Pi+j . Thus by Corollary 10.3.1, there
exists a formal, symplectic transformation that transforms the Hamiltonian
of Duffing’s equation into the form

H∗(ε, J) =
∞∑

i=0

(
εi

i!

)
Hi

0(J)

and the equations of motion become

J̇ = 0, φ̇ = −∂H
∂φ

(ε, J) = −ω(ε, J).

Thus formally, the solutions move on circles with a uniform frequency
ω(ε, J), which depends on ε and J . By the theorems of Poincaré (1885) and
Rüssman (1959) the series converges in this simple case.

Uniqueness of normal forms: One of the important special cases where
Theorem 10.3.1 applies is when the operator Fi = {H0

0 , ·} : Pi → Pi is
simple; i.e., when Pi = Qi ⊕ Ri, Qi = kernel (Fi), and Ri = range (Fi). In
this case, the Lie equation (10.25) has a unique solution. This is not enough
to assure uniqueness of the normal form. One needs one extra condition.
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Theorem 10.3.3. Let {Pi}∞i=0, be sequences of linear spaces of smooth func-
tions defined on a common domain O in R

2n. Let Fi = {H0
0 , ·} : Pi → Pi be

simple; so, Pi = Qi ⊕Ri, Qi = kernel(Fi), Ri = range (Fi). Assume

1. H0
i ∈ Pi, i = 0, 1, 2, . . . .

2. {Pi,Rj} ⊂ Pi+j , i+ j = 1, 2, . . . .

Then there exists a W with a formal expansion of the form (10.16) with Wi ∈
Ri, i = 1, 2, . . ., such that W generates a near-identity symplectic change of
variables x → y which transforms the Hamiltonian H∗(ε, x) with the formal
series expansion given in Equation (10.14) to the Hamiltonian H∗(ε, y) with
the formal series expansion given by Equation (10.15) with Hi

0 ∈ Qi, i =
1, 2, . . . .

Moreover, if
{Qi,Qj} = 0, i, j = 1, 2, . . . ,

then the terms in the normal form are unique.

Remark. All the obvious remarks about the time-dependent cases hold
here also. The normal form is unique, but the transformation taking the
equation need not be unique. Clearly this theorem applies to the Duffing
example. We do not need this theorem in our development. See Liu (1985)
for a proof or see the Problems section.

10.4 Normal Form at an Equilibrium

Consider an analytic Hamiltonian H that has an equilibrium point at the
origin in R

2n, and assume that the Hamiltonian is zero at the origin. Then
H has a Taylor series expansion of the form

H(x) = H#(x) =
∞∑

i=0

Hi(x), (10.32)

where Hi is a homogeneous polynomial in x of degree i + 2; so, H0(x) =
1
2x

TSx, where S is a 2n × 2n real symmetric matrix, and A = JS is a
Hamiltonian matrix. The linearized equations about the critical point x = 0
are

ẋ = Ax = JSx = J∇H0(x), (10.33)

and the general solution of (10.33) is φ(t, ξ) = exp(At)ξ .
The classical case. The matrix A is simple if it has 2n linearly indepen-

dent eigenvectors that may be real or complex. The matrix A being simple is
equivalent to A being similar to a diagonal matrix by a real or complex sim-
ilarity transformation. This is why A is sometimes said to be diagonalizable.
The classical theorem on normal forms is as follows.
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Theorem 10.4.1. Let A be simple. Then there exists a formal symplectic
change of variables,

x = X(y) = y + · · · , (10.34)

that transforms the Hamiltonian (10.32) to

H#(y) =
∞∑

i=0

Hi(y), (10.35)

where Hi is a homogeneous polynomial of degree i+ 2 such that

Hi(eAty) ≡ Hi(y), (10.36)

for all i = 0, 1, . . ., all y ∈ R
2n, and all t ∈ R.

Remark. Formula (10.36) is the classical definition of normal form for
a Hamiltonian near an equilibrium point with a simple linear part. Formula
(10.36) says that Hi is an integral for the linear system (10.33); so, by The-
orem 1.3.1, (10.36) is equivalent to

{Hi,H0} = 0 (10.37)

for all i.

Proof. In order to study the solutions near the origin, scale the variables
by x → εx. This is a symplectic transformation with multiplier ε−2; so, the
Hamiltonian becomes

H(ε, x) = H∗(ε, x) =
∞∑

i=0

(
εi

i!

)
H0

i (x), (10.38)

where H0
i = i!Hi. Because we are working formally, we can set ε = 1 at the

end, or we can rescale by x→ ε−1x.
Let Pi be the linear space of all real homogeneous polynomials of degree

i + 2; so, H0
i ∈ Pi. Because A is simple, A has 2n linearly independent

eigenvectors s1, . . . , s2n corresponding to the eigenvalues λ1, . . . , λ2n. The si
are row eigenvectors; so, siA = λisi. Let 2r of the eigenvalues be complex,
and number them so that λi = λ̄n+i for i = 1, . . . , r. Choose the eigenvectors
so that si = s̄n+i for i = 1, . . . , r. The other eigenvalues and eigenvectors
are real. Let K ∈ Pi; so, K is a homogeneous polynomial of degree i + 2.
Because the si are independent, K may be written in the form

K =
∑

κm1m2...m2n
(s1x)m1(s2x)m2 · · · (s2nx)m2n , (10.39)

where the sum is over all m1 + · · ·+m2n = i+ 2. So the monomials in

B = {(s1x)m1(s2x)m2 · · · (s2nx)m2n : m1 + · · ·+m2n = i+ 2} (10.40)
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span Pi. It is also clear that they are independent; so, form a basis for Pi. The
coefficients in (10.39) may be complex but must satisfy the reality condition
that interchanging the subscripts mi and mn+i for i = 1, . . . , r in the κ
coefficients is the same as conjugation.

Now let F = Fi : Pi → Pi be the linear operator of Theorem 10.3.3 as
it applies to Hamiltonian systems, that is, define F by F(G) = {H0

0 , G} =
−(∂G/∂x)Ax; so,

F((s1x)m1(s2x)m2 · · · (s2nx)m2n)

= −(m1λ1 + · · ·+m2nλ2n)(s1x)m1(s2x)m2 · · · (s2nx)m2n .

So the elements of B are eigenvectors of F and the eigenvalues are −(m1λ1 +
· · · + m2nλ2n), m1 + · · · + m2n = i + 2. Thus we can define F-invariant
subspaces

Ki = span{(s1x)m1(s2x)m2 · · · (s2nx)m2n : m1 + · · ·+m2n = i+ 2,
m1λ1 + · · ·+m2nλ2n = 0},

Ri = {(s1x)m1(s2x)m2 · · · (s2nx)m2n : m1 + · · ·+m2n = i+ 2,
m1λ1 + · · ·+m2nλ2n 
= 0}.

In summary, Ki = kernel (F), Ri = range (F), and Pi = Ki ⊕Ri. Thus this
classical theorem follows from the first part of Theorem 10.3.3 because we
have shown that the operators Fi : Pi → Pi are simple. However, the extra
condition in Theorem 10.3.3 is not satisfied in general; so, the normal form
may not be unique.

Birkhoff (1927) considered a special case of the above.

Corollary 10.4.1. Assume that the quadratic part of (10.32) is of the form

H0(x) =
n∑

j=1

λjxjxn+j , (10.41)

where the λjs are independent over the integers; i.e., there is no nontrivial
relation of the form

n∑
i=1

kjλj = 0, (10.42)

where the kj are integers. Then there exists a formal symplectic change of
variables x = X(y) = y + · · · that transforms the Hamiltonian (10.32)
to the Hamiltonian (10.35), where Hj(y) is a homogeneous polynomial of
degree j + 1 in the n products y1yn+1, . . . , yny2n. So, H#(y1, . . . , y2n) =
H#(y1yn+1, . . . , yny2n) where H# is a function of n variables. Moreover,
in this case, the normal form is unique.
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Remark. Formally the equations of motion for the system in normal form
are

ẏj = yjDjH
#(y1yn+1, . . . , yny2n),

ẏj+n = −yj+nDjH
#(y1yn+1, . . . , yny2n).

Here Dj stands for the partial derivative with respect to the jth variable.
In this form, the system of equations has n formal integrals in involution,
I1 = y1yn+1, . . . , In = yny2n.

In the case when the λj = iωj are pure imaginary and the yj are the
complex coordinates discussed in Lemma 3.3.4, then we can switch to action–
angle variables by yj =

√
Ij/2eiφj , yn+j =

√
Ij/2e−iφj . The Hamiltonian in

normal form is a function of the action variables only; so, the Hamiltonian is
H†(I1, . . . , In), and the equations of motion are

İj =
∂H

∂φj

†
= 0, φ̇j = −∂H

∂Ij

†
= ωj(I1, . . . , In).

Here ωi(I1, . . . , In) = ±ωi + · · ·, and the sign is determined by the cases in
Lemma 3.3.2. Setting the action variables equal to nonzero constants, I1 =
c1, . . . , In = cn, defines an invariant set which is an n-torus with n angular
coordinates φ1, . . . , φn. On each torus the angular frequencies ωj(I1, . . . , In),
are constant, and so, define a linear flow on the torus as discussed in Section
1.2. The frequencies vary from torus to torus in general.

Notation. For this proof, and subsequent discussions, some notation is
useful. Let Z = Z

2n
+ denote the set of all 2n-tuples of nonnegative integers; so,

k ∈ Z means k = (k1, . . . , k2n), ki ≥ 0, ki an integer. Let |k| = k1 + · · ·+ k2n.
If x ∈ R

2n and k ∈ Z, then define xk = xk1
1 x

k2
2 · · ·xk2n

2n .

Proof. The linear part is clearly simple. Let Hi(y) =
∑
hky

k, where the
sum is over k ∈ Z, |k| = i + 2. The general solution of the linear system is
yi = yi0 exp(λit), yi+n = yi+n,0 exp(−λit) for i = 1, . . . , n. Formula (10.36)
implies that

∑
hk exp t{(k1−kn+1)λ1+ · · ·+(kn−k2n)λn}yk is constant in t,

and this implies that {(k1−kn+1)λ1+ · · ·+(kn−k2n)λn = 0. But because the
λ′is are independent over the integers, this implies k1 = kn+1, . . . , kn = k2n.
That is, Hi is a function of the products y1yn+1, . . . , yny2n only.

By the remark above, the kernel consists of those functions that depend
only on I1, . . . , In and not on the angles in action–angle variables. Therefore,
the extra condition of Theorem 10.3.3 holds, and the normal form is unique.

Remark. If the condition (10.42) only holds for |k1| + · · · + |kn| ≤ N ,
then the terms in the Hamiltonian up to the terms of order N can be put in
normal form, and these terms are unique.

The general equilibria. In the 1970s, the question of the stability of the
Lagrange triangular point L4 was studied intensely. For Hamiltonian systems,
it is not enough to look at the linearized system alone, because the higher-
order terms in the normalized equations can change the stability (see the
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discussion in Chapter 11). The matrix of the linearization of the equations
at L4 when μ = μ1 is not simple as was seen in Section 4.1. The normal form
for this case, and other similar cases was carried out by the Russian school;
see Sokol’skij (1978). First Kummer (1976,1978) and then Cushman, Deprit,
and Mosak (1983), used group representation theory. Representation theory
is very helpful in understanding the general case, but there are simpler ways
to understand the basic ideas and examples. In Meyer (1984b) a theorem
like Theorem 10.4.1 above was given for non-Hamiltonian systems but A was
replaced by AT in (10.36); so, the terms in the normal form are invariant
under the flow exp(AT t) . A far better proof can be found in Elphick et al.
(1987), which is what we present here.

The proof of Theorem 10.4.1 rested on the fact that for a simple matrix, A,
the vector space R

2n is the direct sum of the range and kernel of A, and this
held true for the operator F = {H0

0 , ·} defined on homogeneous polynomials
as well. The method of Elphick et al. is based on the following simple lemma
in linear algebra known as the Fredholm alternative and an inner product
defined on homogeneous polynomials given after the lemma.

Lemma 10.4.1. Let V be a finite-dimensional inner product space with inner
product (·, ·). Let A : V → V be a linear transformation, and A∗ its adjoint
(so (Ax, y) = (x,A∗y) for all x, y ∈ V). Then V = R ⊕ K∗ where R is the
range of A and K∗ is the kernel of A∗.

Proof. Let x ∈ R; so, there is a u ∈ V such that Au = x. Let y ∈ K∗; so,
A∗y = 0. Because 0 = (u, 0) = (u,A∗y) = (Au, y) = (y, x), it follows that
R and K∗ are orthogonal subspaces. Let K be the kernel of A. In a finite
dimensional space, dim V = dimR + dimK and dimK = dimK∗. Because
R and K∗ are orthogonal, dim(R + K∗) = dimR + dimK∗ = dim V; so,
V = R⊕K∗.

Let P = Pj be the linear space of all homogeneous polynomials of degree
j in 2n variables x ∈ R

2n. So if P ∈ P, then

P (x) =
∑
|k|=j

pkx
k =

∑
|k|=j

pk1k2...k2n
xk1

1 x
k2
2 · · ·xk2n

2n .

Define P (∂) to be the differential operator

P (∂) =
∑
|k|=j

pk
∂k

∂xk
,

where we have introduced the notation

∂k

∂xk
=
∂k1

∂xk1
1

∂k2

∂xk2
2

· · · ∂
k2n

∂xk2n
2n

.

Let Q ∈ P, Q(x) =
∑
qhx

h be another homogeneous polynomial, and define
an inner product < ·, · > on P by
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< P,Q >= P (∂)Q(x).

To see that this is indeed an inner product, note that ∂kxh/∂xk = 0 if k 
= h
and ∂kxh/∂xk = k! = k1!k2! · · · k2n! if k = h; so,

< P,Q >=
∑
|k|=j

k!pkqk.

Let A = JS be a Hamiltonian matrix where S is a symmetric matrix of the
quadratic Hamiltonian H0; so, H0(x) = 1

2x
TSx. From Theorem 10.3.1 and

the proof of Theorem 10.4.1, the operator of importance is F(A) : P → P,
where

F(A)P = {H0
0 , P} = −∂P

∂x
Ax =

d

dt
P (eAtx)

∣∣
t=0
. (10.43)

Lemma 10.4.2. Let A : R
2n → R

2n be as above and AT its transpose (so
AT is the adjoint of A with respect to the standard inner product in R

2n).
Then for all P,Q ∈ P,

< P (x), Q(Ax) >=< P (ATx), Q(x) > (10.44)

and
< P,F(A)Q >=< F(AT )P,Q > . (10.45)

That is, the adjoint of F(A) with respect to < ·, · > is F(AT ).

Proof. Equation (10.44) follows from (10.43) because (10.43) implies

< P (x), Q(eAtx) >=< P (eA
T tx), Q(x) > .

Differentiating this last expression with respect to t and setting t = 0 gives
(10.45).

Let y = Ax (i.e., yi =
∑

j A
i
jx

j) and F (y) = F (Ax). Inasmuch as

∂F (y)
∂xj

=
∑

i

∂F (y)
∂yi

∂yi

∂xj
=
∑

i

∂F (y)
∂yi

Ai
j ,

it follows that ∂/∂x = AT∂/∂y.

< P (x), Q(Ax) >= P (∂x)Q(Ax) = P (AT∂y)Q(y) =< P (AT y), Q(y) > .

Theorem 10.4.2. Let A be a Hamiltonian matrix. Then there exists a for-
mal symplectic change of variables, x = X(y) = y + · · ·, that transforms the
Hamiltonian (10.32) to

H#(y) =
∞∑

j=0

Hj(y), (10.46)

where Hj is a homogeneous polynomial of degree j + 2 such that

Hj(eA
T ty) ≡ Hj(y), (10.47)

for all j = 0, 1, . . . , all y ∈ R
2n, and all t ∈ R.
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Remark. Let HT
0 (x) = H0

T (x) = 1
2x

TRx be the quadratic Hamiltonian
for the adjoint linear equation; so, AT = JR. Then (10.47) is equivalent to

{Hi,H0
T } = 0

for j = 1, 2, . . . .

Proof. By Theorem 10.3.1, we must solve Equation (10.25) or F(A)C+D =
B, where D ∈ Pj = P is given, and C ∈ Qj = P, and D ∈ Qj =
kernel (F(AT )). By Lemma 10.4.2, we can write D = B − G, where B ∈
kernel(F(AT )); so, {B,H0

T } = 0, and G ∈ range (F(A)); so, G = F(A)C,
C ∈ P. With these choices, (10.30) is solved. Verification of the rest of the
hypothesis in Theorem 10.3.1 is just as in the proof of Theorem 10.4.1.

Theorem 10.4.1 is a corollary of this theorem because when A is simple, it is
diagonalizable, and so, its own adjoint. We proved Theorem 10.4.1 separately,
because the proof is constructive.

Examples of normal forms in the nonsimple case. Consider the Hamilto-
nian system (10.32), where n = 1 and x = (q, p). Let

H0(q, p) = p2/2, HT
0 (q, p) = −q2/2,

A =
[

0 1
0 0

]
AT =

[
0 0
1 0

]
.

Because

exp(AT t) =
[

1 0
1 + t 1

]
,

(10.47) implies that the higher-order terms in the normal form are inde-
pendent of p, or Hi = Hi(p, ·). Thus the Hamiltonian in normal form
is p2/2 + G(q), which is the Hamiltonian for the second-order equation
q̈ + g(q) = 0, where g(q) = ∂G(q)/∂q.

Now consider a Hamiltonian system with two degrees of freedom with a
linearized system with repeated pure imaginary roots that are nonsimple. In
Section 4.6, the normal form for the quadratic part of such a Hamiltonian
was given as

H0 = ω(ξ2η1 − ξ1η2) +
δ

2
(ξ21 + ξ22),

where ω 
= 0 and δ = ±1. The linearized equations are
⎡
⎢⎢⎣
ξ̇1
ξ̇2
η̇1
η̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 ω 0 0
−ω 0 0 0
−δ 0 0 ω
0 −δ −ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ1
ξ2
η1
η2

⎤
⎥⎥⎦ .

The transpose is defined by the Hamiltonian
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HT
0 = ω(ξ2η1 − ξ1η2)−

δ

2
(η2

1 + η2
2),

and the transposed equations are
⎡
⎢⎢⎣
ξ̇1
ξ̇2
η̇1
η̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −ω −δ 0
ω 0 0 −δ
0 0 0 −ω
0 0 ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ1
ξ2
η1
η2

⎤
⎥⎥⎦ .

Sokol’skij (1978) suggested changing to polar coordinates (see Section 6.2) to
make the transposed equations simple. That is, he changed coordinates by

η1 = r cos θ, R = (ξ1η1 + ξ2η2)/r,

η2 = r sin θ, Θ = η1ξ2 − η2ξ1.

In these coordinates,

HT
0 = −ωΘ +

δ

2
r2, H0 = ωΘ +

δ

2

(
R2 +

Θ2

r2

)
,

and the transposed equations are

ṙ = 0, θ̇ = ω, Ṙ = δr, Θ̇ = 0.

Thus the higher order terms in the normal form are independent of θ and R
and so depend only on r2 = η2

1 + η2
2 and Θ = η1ξ2 − η2ξ1.

Thus the theory of the normal form in this case depends on three qualities

Γ1 = ξ2η1 − ξ1η1, Γ2 =
1
2
(ξ21 + ξ22), Γ3 =

1
2
(η2

1 + η2
2).

The Hamiltonian H0 = ωΓ1 + Γ2 and the higher-order terms in the normal
form are functions of Γ1 and Γ3 only. This is known as Sokol’skij’s normal
form.

10.5 Normal Form at L4

Recall that in Section 4.1, we showed that the linearization of the restricted
3-body problem at the Lagrange triangular point L4 had two pairs of pure
imaginary eigenvalues, ±iω1,±iω2 when 0 < μ < μ1 = 1

2 (1 −
√

69/9), and
that there are symplectic coordinates so that the quadratic part of the Hamil-
tonian is

H2 = ω1I1 − ω2I2,

where I1, I2, φ1, φ2 are action–angle variables.
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Recall that in Section 8.5, we defined μr to be the value of μ for which
ω1/ω2 = r, and that 0 · · · < μ3 < μ2 < μ1. When 0 < μ < μ1, and μ 
= μ2, μ3

then by Corollary 10.4.1, the Hamiltonian of the restricted 3-body problem
can be normalized through the fourth-order terms; so, the Hamiltonian be-
comes

H = ω1I1 − ω2I2 +
1
2
(AI21 + 2BI1I2 + CI22 ) + · · · .

After six months of hand calculations, Deprit and Deprit-Bartholome com-
puted:

A =
1
72
ω2

2

(81− 696ω2
1 + 124ω4

1)
(1− 2ω2

1)2(1− 5ω2
1)
,

B = −1
6
ω1ω2(43 + 64ω2

1ω
2
2)

(1− 2ω2
1)2(1− 5ω2

1)
,

C(ω1, ω2) = A(ω2, ω1).

Meyer and Schmidt (1986) computed the normal form through terms of sixth-
order by computer. The results are too lengthy to reproduce here. It did serve
as an independent check of the calculations of Deprit and Deprit-Bartholome.
In Section 4.1, the quadratic part of the Hamiltonian of the restricted 3-
body problem at L4 for μ = μ1 was brought into normal form by a linear
symplectic change of coordinates. In these coordinates, the quadratic part of
the Hamiltonian is of the form

H0 = ω(ξ2η1 − ξ1η2) +
1
2
(ξ21 + ξ21) = ωΓ1 + Γ2,

where ω =
√

2/2 and δ = +1.
The normal form for the Hamiltonian of the restricted 3-body problem at

L4 for μ = μ1 is of the form

H = ωΓ1 + Γ2 + cΓ 2
1 + 2dΓ1Γ3 + 4eΓ 2

3 + · · ·

= ω(ξ2η1 − ξ1η2) + 1
2 (ξ21 + ξ21)

+c(ξ2η1 − ξ1η2)2 + d(η2
1 + η2

2)(ξ2η1 − ξ1η2) + e(η2
1 + η2

2)2 + · · ·

where c, d, e are constants. As another related problem, consider a quadratic
Hamiltonian Q(y, ε) that depends on a parameter ε, which for ε = 0 is
H0. That is, Q(y, ε) = Q0(y) + εQ1(y) + · · ·, where Q0 = H0. Then this
Hamiltonian can be brought into normal form to an order so that Q1, Q2, . . .
depend only on Γ1 and Γ3. (See Schmidt (1990) for the calculations.)

The quadratic part of the Hamiltonian of the restricted 3- body problem
at the Lagrange triangular point, L4, for values of the mass ratio parameter
μ = μ1 + ε can be brought into normal form by a linear symplectic change of
coordinates. The normal form up to order 4 looks like
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Q = ωΓ1 + Γ2 + ε{aΓ1 + bΓ3}+ · · ·
= ω(ξ2η1 − ξ1η2) + 1

2 (ξ21 + ξ21)
+ε{a(ξ2η1 − ξ1η2) + 1

2b(η1 + η2) + · · · .

Schmidt (1990) calculated that

a = 3
√

69/16, b = 3
√

69/8.

10.6 Normal Forms for Periodic Systems

This section reduces the study of the normal forms for symplectomorphisms
to the study of normal forms of periodic systems. Then as examples, the
normal forms for symplectomorphisms of the plane are given in preparation
for the study of generic bifurcations of fixed points given in Chapter 11.

The reduction. The study of a neighborhood of a periodic solution of an
autonomous Hamiltonian system was reduced to the study of the Poincaré
map in an energy surface by the discussion in Section 8.5. This Poincaré map
is a symplectomorphism with a fixed point corresponding to the periodic
orbit.

Let the origin be a fixed point for the symplectomorphism

Ψ(x) = Γx+ ψ(x), (10.48)

where Γ is a 2n × 2n symplectic matrix, and ψ is higher-order; i.e., ψ(0) =
∂ψ(0)/∂x = 0. By Theorem 8.2.1 and the discussion following that theorem,
if Γ has a logarithm, then (10.48) is the period map of a periodic Hamiltonian
system. Because Ψ2(x) = Γ 2x + · · ·, and Γ 2 always has a logarithm, if Ψ is
not a period map, then Ψ2 is. Except for one example given at the end of
this chapter, only the case when Γ has a real logarithm is treated here.

Given a periodic system, by the Floquet–Lyapunov theorem (see Theo-
rem 3.4.2 and the discussion following it), there is a linear, symplectic, peri-
odic change of variables that makes the linear part of Hamiltonian equations
constant in t. Thus the study of symplectomorphisms near a fixed point is
equivalent to studying a 2π-periodic Hamiltonian system of the form

H#(t, x) =
∞∑

i=0

Hi(t, x), (10.49)

where Hi is a homogeneous polynomial in x of degree i+ 2 with 2π-periodic
coefficients, and H0(t, x) = 1

2x
TSx where S is a 2n × 2n real constant sym-

metric matrix, and A = JS is a constant, real, Hamiltonian matrix. The
linearized equations about the critical point x = 0 are
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ẋ = Ax = JSx = J∇H0(x), (10.50)

and the general solution of (10.50) is φ(t, ξ) = exp(At)ξ.
The general periodic case. Here, the generalization of the general normal

form given in Section 10.4 is extended to periodic systems. As before, we
consider the periodic system (10.49) but no longer assume that the linear
system is simple. First let us consider the generalization of Theorem 10.4.2.

Consider the 2π-periodic equations

ẋ = A(t)x+ f(t), (10.51)

ẋ = A(t)x, (10.52)

ẏ = −A(t)T y. (10.53)

Equation (10.52) is the homogeneous equation corresponding to the nonho-
mogeneous equation (10.51), and (10.53) is the adjoint equation of (10.52).

Lemma 10.6.1. The nonhomogeneous equation (10.51) has a 2π-periodic
solution φ(t) if and only if

∫ 2π

0

yT (s)f(s)ds = 0,

for all 2π-periodic solutions y(t) of the adjoint equation (10.53).

Proof. Let x(t, x0) be the solution of (10.51) with x(0, x0) = x0. Then

x(t, x0) = X(t)x0 +
∫ t

0

X(t)Y T (s)f(s)ds,

where X(t) and Y (t) are the fundamental matrix solutions of (10.52) and
(10.53), respectively; so, X−1 = Y T . The solution is 2π-periodic if and only
if x(t, x0) = x, or

Bx0
0 = g,

where

B = I −X(2π), g =
∫ 2π

0

X(2π)Y T (s)f(s)ds.

By Lemma 10.4.1, the linear equation Bx0 = g has a solution if and only if
vT g = 0 for all v with BT v = 0. That is, there is a 2π-periodic solution if
and only if

∫ 2π

0

vTX(2π)Y T (s)f(s)ds = 0 for all v with X(2π)T v = v.

But if X(2π)T v = v, then the integral above is
∫ 2π

0
vTY T (s)f(s)ds = 0.

But X(2π)T v = v if and only if Y (2π)v = v and if and only if Y (s)v is a
2π-periodic solution of (10.53).
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Consider the periodic Hamiltonian system (10.49). Scale by x → εx as
in the proof of Theorem 10.4.1, and use the same notation for the scaled
Hamiltonian. By Theorem 10.3.2 we must define spaces Pi,Qi, and Ri with
Qi ⊂ Pi, H

0
i ∈ Pi, H

i
0 ∈ Qi, Wi ∈ Ri. The Lie equation to be solved in this

case is
E = D + {H0

0 , C} −
∂C

∂t
,

where D is given in Pi, and we are to find E ∈ Qi and C ∈ Ri.
Let B be the adjoint of A; i.e., the transpose in the real case. Define

K(x) = (1/2)xTRx, where B = JR; so, K is the Hamiltonian of the adjoint
linear system. Let Pi be the space of polynomials in x with coefficients that
are smooth 2π-periodic functions of t. Let F = {H0

0 , ·} : Pi → Pi, and let T =
{K, ·} : Pi → Pi. T is the adjoint of F if we use the metric defined by Elphick
et al. that was used in Section 10.4. Therefore, given D, the Lie equation has
a unique 2π-periodic solution, C, where E is a 2π-periodic solution of the
homogeneous adjoint equation

0 = {K,E}+
∂E

∂t
. (10.54)

Characterizing the 2π-periodic solutions of (10.54) defines the normal form.
Expand the elements of Pi in Fourier series. Let E = d(x)eimt, and substitute
into (10.54) to get

0 = {K, d}+ imd.

Thus one characterization of the normal form is in terms of the eigenvectors
of T = {K, ·} : Pi → Pi. That is, Qi has a basis of the form {d(x)eimt : d is
an eigenvector of T corresponding to the eigenvalue im. }

Theorem 10.6.1. Let H0(x) = H0(x) = 1
2x

TSx, where A = JS is an arbi-
trary, constant Hamiltonian matrix, and let B be the adjoint of A. Then there
exists a formal, symplectic, 2π-periodic change of variables x = X(t, y) =
y+ · · · which transforms the Hamiltonian (10.49) to the Hamiltonian system

ẏ = J∇H#(t, y), H#(t, y) =
∞∑

i=0

Hi(t, y), (10.55)

where

{Hi,K}+
∂H

∂t

i

= 0 for i = 1, 2, 3, . . . , (10.56)

or equivalently,

Hi(t, eBtx) ≡ Hi(0, x) for i = 1, 2, 3, . . . . (10.57)

Corollary 10.6.1. Let A be simple and have eigenvalues ±λ1, . . . ,±λn. As-
sume that λ1, . . . , λn and i are independent over the integers; i.e. there is no
relation of the form k1λ1 + · · · + knλn = mi, where k1, . . . , kn and m are
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integers. Then there exists a formal, symplectic, 2π-periodic change of vari-
ables x = X(t, y) = y + · · · which transforms the Hamiltonian (10.49) to an
autonomous Hamiltonian system

ẏ = J∇H#(y), H#(y) =
∞∑

i=0

Hi(y), (10.58)

where H0 = H0, and
{Hi,H0} = 0, (10.59)

or equivalently,
Hi(eAty) ≡ Hi(y) (10.60)

for all i = 0, 1, 2, . . . , y ∈ R
2n, t ∈ R.

Proof. Let A = B = diag (λ1, . . . , λn,−λ1, . . . ,−λn). A typical term in the
normal form given by Theorem 10.6.1 is of the form h(t, x) = hke

imtxk.
Applying (10.57) to this term gives

hk exp{im+ (k1 − kn+1)λ1 + · · ·+ (kn − k2n)λn}t = 0.

By the assumption on the independence, this can only hold if m = 0, k1 =
kn+1, . . . , kn = k2n. Thus the Hamiltonian is in the normal form of Birkhoff
as described in Corollary 10.4.1.

Corollary 10.6.2. Let Γ be simple and have a real logarithm. Then there
exists a formal, near-identity, symplectic change of variables x→ y such that
in the new coordinates the symplectomorphism in (10.48) is of the form

Φ(y) = Γy + φ(y), (10.61)

where
φ(Γy) ≡ Γφ(y) or Φ(Γy) ≡ ΓΦ(y). (10.62)

Proof. Let Γ = exp(2πA). Because Γ is simple, so is A, and therefore it can
be taken as its own adjoint. Then by the reduction given above, the map
(10.48) is the period map of a system of Hamiltonian differential equations.
Assume that the symplectic change of coordinates has been made so that the
Hamiltonian is in normal form, and let the equations in these coordinates
be ẏ = Ay + f(t, y). Condition (10.57) implies f(t, eAtx) = eAtf(0, x), and
this implies f(t, Γx) = Γf(t, x). Let ξ(t, η) be a solution of this equation
with ξ(0, η) = η. Define ζ(t, η) = Γξ(t, Γ−1η), so ξ(0, η) = ζ(0, η) = η. ξ̇ =
Γ{Aξ + f(t, ξ)} = AΓξ + Γf(t, ξ) = AΓξ + f(t, Γ ξ) = Aζ + f(t, ζ). By
the uniqueness theorem for ordinary differential equations ξ(t, η) = ζ(t, η) =
Γξ(t, Γη); so, the period map satisfies (10.61).



10.6 Normal Forms for Periodic Systems 263

General hyperbolic and elliptic points. Consider as examples the case when
n = 1; so, Ψ in (10.48) is a symplectomorphism of the plane with a fixed
point at the origin.

First, consider the case when Γ has eigenvalues μ, μ−1, where 0 < μ <
1; i.e., the origin is a hyperbolic fixed point. By Lemma 3.3.7, there are
symplectic coordinates, say x, so that

Γ =
[
μ 0
0 μ−1

]
.

Let 2πα = lnμ; so, Γ = exp(2πA) where

A =
[
α 0
0 −α

]
.

By the discussion given above, the symplectomorphism Ψ is the period map
of the 2π-periodic system (10.49) with H0(x) = αx1x2. By Corollary 10.6.1,
there is a formal, 2π-periodic, symplectic change of variables x → y that
transforms (10.49) to the autonomous system (10.58) with (10.60) holding.
The solution of the linear system is y1(t) = y10e

αt, y2(t) = y20e
−αt, therefore

the condition (10.60) implies that the Hamiltonian (10.58) is a function of the
product y1y2 only. Let H#(y) = K#(y1y2) = αy1y2 +K(y1y2). By the above
discussion, the normal form for (10.48) is the time 2π-map of the autonomous
system whose Hamiltonian is K#. The equations defined by K# are

ẏ1 = y1(α+ k(y1y2)),

ẏ2 = −y2(α+ k(y1y2)),

where k is the derivative of K. These equations have y1y2 as an integral, and
so the equations are solvable, and the solution is

y1(t) = y10 exp(t(α+ k(y1y2))),

y2(t) = y20 exp(−t(α+ k(y1y2))).

Thus the normal form for (10.48) in this case is

Ψ(y) =

⎡
⎣
y1g(y1y2)

y2g(y1y2)−1

⎤
⎦ ,

where g has a formal expansion g(u) = μu + · · ·. If a symplectomorphism
is in this form, then the origin is called a general hyperbolic point. This
map takes the hyperbolas y1y2 = constant into themselves. In this case, the
transformation to normal form converges by a classical theorem of Moser
(1956).
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Next consider the case when A has eigenvalues λ = α + βi, λ̄ = α − βi,
where α2 +β2 = 1, β 
= 0; i.e., the origin is an elliptic fixed point. By Lemma
3.3.9 there are symplectic coordinates, say x, so that

Γ =
[
λ 0
0 λ̄

]
.

Let Γ = exp(2πA), where

A =
[
ωi 0
0 −ωi

]
.

Assume that ω is not an integer; that is, λ is not a root of unity. By the
discussion given above, the symplectomorphism Ψ is the period map of the
2π-periodic system (10.49) with H0(x) = iωx1x2. By Corollary 10.6.1, there
is a formal, 2π-periodic, symplectic change of variables, x→ y, which trans-
forms (10.49) to the autonomous system (10.58) satisfying (10.60). Equation
(10.60) implies that the Hamiltonian is a function of y1y2 only. Let H#(y) =
K#(y1y2) = iωy1y2 + iK(y1y2). By the above discussion, the normal form
for (10.48) is the time 2π-map of the autonomous system whose Hamiltonian
is K#. Change to action–angle variables (I, φ); so, the Hamiltonian becomes
H#(I, φ) = K#(I) = ωI +K(I). The equations defined by K# are

İ = 0, φ̇ = ω − k(I)

where k is the derivative of K. These equations have I as an integral, and so
the equations are solvable, and the solution is

I(t) = I0, φ(t) = φ0 + (−ω + k(I0))t.

Thus the normal form for (10.48) in action–angle variables in this case is

Ψ(I, φ) =
[
I
φ+ g(I)

]
,

where g has a formal expansion g(I) = −ω+ βI · · ·. If a symplectomorphism
is in this form with β 
= 0, then the origin is called a general elliptic point, or
Ψ is called a twist map. This map takes circles into circles and rotates each
circle by an amount g(I).

Higher resonance in the planar case. Let us consider the case when n = 1,
and the symplectomorphism Ψ has an elliptic fixed point whose multiplier is
a root of unity. Theorem 10.6.1 and Corollary 10.6.2 apply as well.

Let Γ have eigenvalues λ = α + βi, λ̄ = α − βi, where λ is a kth root
of unity; so, λk = 1, k > 2, and λ = exp(h2πi/k), where h is an integer.
The origin is called a k-resonance elliptic point in this case. By Lemma 3.3.9,
there are symplectic coordinates, say x, so that
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Γ =
[
λ 0
0 λ̄

]
.

Let Γ = exp(2πA), where

A =
[

(h/k)i 0
0 −(h/k)i

]
.

Because A is diagonal, it is its own adjoint. By the discussion given above the
symplectomorphism Ψ is the period map of the 2π-periodic system (10.49)
with H0(x) = (hi/k)(x1x2), where the reality condition is x̄1 = x2. The
normal form for the Hamiltonian is given by Theorem 10.6.1 above.

Let h(t, x) be a typical term in the normal form expansion, so

h = eistxm1
1 xm2

2 .

The term h satisfies (10.57) if and only if

(h/k)(m1 −m2)i+ si = 0;

so it is in the normal form if h is

(x1x2)m or xm1
1 xm2

2 e−rit,

where r = (m1 −m2)h/k, and m,m1,m2, r are integers.
In action–angle coordinates (I, φ), H0(I, φ) = (h/k)I, and the solution of

the linear system is I = I0, φ = φ0− (h/k)t. Thus H#(t, I, φ) is a function of
I and (kφ+ht); so, let H#(t, I, φ) = K#(I, kφ+ht) = (h/k)I+K(I, kφ+ht).

The lowest-order terms that contain t, the new terms, are xk
1e

−hit and
xk

2e
hit. In action–angle coordinates these terms are like Ik/2 cos(kφ+ht) and

Ik/2 sin(kφ + ht). Thus the normalized Hamiltonian is a function of I and
(kφ+ ht) only, and it is of the form

H#(t, I, φ) = (h/k)I + aI2 + bI3 + · · ·+
+Ik/2{α cos(kφ+ ht) + β sin(kφ+ ht)}+ · · · . (10.63)

The equations of motion are

İ = Ik/2{−α sin(kφ+ ht) + β cos(kφ+ ht)}+ · · · ,

φ̇ = −h
k
− 2aI − k

2
I(k−2)/2{α cos(kφ+ ht) + β sin(kφ+ ht)}+ · · · .

(10.64)
By a rotation, φ → φ + δ; the first sin term can be absorbed into the cos
term, so there is no loss in generality in assuming that β = 0 in (10.63) and
(10.64). Henceforth, we assume this rotation has been made, and so, β = 0.

Note that in the φ̇ equation in (10.64), there are two nonlinear terms.
When k > 4, the term that contains the angle is of higher-order in I, whereas



266 10. Normal Forms

k = 3 it is lower-order. When k = 4, the two terms are both of order I1. We
show in later chapters on applications that the cases when k = 3 or 4 must
be treated separately.

The 2π-map is then of the form

I = I0 − αIk/2
0 sin(kφ0) + · · · ,

φ = φ0 − (2πh/k)− 4πaI0 + απkI(k−2)/2 cos(kφ0) + · · · .
(10.65)

Normal forms when multipliers are ±1. Consider the cases where the
multiplier is +1 first. For this problem no trigonometric functions are used,
therefore assume that the periodic systems are periodic with period 1. If Γ
has the eigenvalue +1, then either Γ is the identity, and A is the zero matrix,
or there are symplectic coordinates such that

Γ = expA =
[

1 ±1
0 1

]
, where A =

[
0 ±1
0 0

]
. (10.66)

In the first case, when Γ = I and A = 0, Theorem 10.6.1 gives no information,
and this is because the situation is highly degenerate and nongeneric.

Therefore, consider the case when Γ and A are as in (10.66) with the plus
sign; so, the adjoint of A is B where

B =
[

0 0
1 0

]
, exp(Bt) =

[
1 0
t 1

]
.

Let x = (u, v). Condition (10.57) of Theorem 10.6.1 is Hi(u, v + ut, t) ≡
Hi(u, v, 0). This condition and the fact that Hi must be periodic in t implies
that Hi(u, v, t) = Ki(u). Thus the normal form is

H#(t, u, v) = v2/2 +K(u) = v2/2 + βu3/3 + · · · (10.67)

and the equations of motion are

u̇ = v + · · · ,

v̇ = −∂K
∂u

(u) = −βu2 + · · · .
(10.68)

The period map is not so easy to compute and is not so simple. Fortunately,
in applications, the critical information occurs at a very low order. By using
the Lie transform methods discussed in the Problem section one finds that
the period map is (u, v) → (u′, v′) where

u′ = u+ v − β

12
(6u2 + 4uv + v2) + · · · ,

v′ = v − β
3

(3u2 + 3uv + v2) + · · · .
(10.69)
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Now consider the case when Γ has eigenvalue −1. Consider the case when

Γ =
[
−1 0
0 −1

]

first because it has a real logarithm,

Γ = exp 2πA, A =
[

0 1/2
−1/2 0

]
.

This is almost the same as the higher-order resonance considered in the pre-
vious subsection. Corollary 10.6.2 implies that the normal form in this case
is simply an odd function. That is, Φ(y) = −y+φ(y) is in normal form when
φ(−y) = −φ(y).

Now consider the case when

Γ =
[
−1 −1
0 −1

]
.

We make two changes of coordinates to bring this case to normal form. First,
instead of the usual uniform scaling, scale by x1 → εx1, x2 → ε2x2 so that
the map (10.48) becomes Ψ(x) = −x+O(ε). This nonuniform scaling moves
the off-diagonal term to the higher-order terms, and now the lead term is the
same as discussed in the last paragraph. Thus there is a symplectic change
of coordinates z = R(x) such that in the new coordinates z, the map (10.48)
is odd; i.e., R ◦ Ψ ◦ R−1(z) = Ξ(z) = Γz + · · · is odd.

Write

Ξ(z) = −Λ(z) = −{Ωz + ζ(z)}, where Ω =
[

1 1
0 1

]
.

Now Ω is of the form discussed above, and so, there is a symplectic change
of coordinates y = S(z) which puts Λ in the normal form given by the time
1-map of a Hamiltonian system of the form (10.67), where now K(u) is even.
Because Λ is odd, the transformation S can be made odd also; see problems.
Thus S ◦ Λ ◦ S−1 = Θ is in the normal form given by the time 1-map of a
Hamiltonian system of the form

H#(t, u, v) = v2/2 +K(u) = v2/2 + βu4/4 + · · · . (10.70)

Using the method discussed in the problems gives Θ : (u, v) → (u′, v′), where

u′ = u+ v − β

20
(10u3 + 10u2v + 5uv2 + v3) + · · · ,

v′ = v − β
3

(4u3 + 6u2v + 4uv2 + v3) + · · · .
(10.71)
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Combining these changes of coordinates and using the fact that S is odd, it
follows that (S ◦ R) ◦ Ψ ◦ (S ◦ R)−1 = −Θ. That is, in the new coordinates,
the map is just the negative of (10.71), or the normal form for the map is

u′ = −u− v +
β

20
(10u3 + 10u2v + 5uv2 + v3) + · · · ,

v′ = −v +
β

3
(4u3 + 6u2v + 4uv2 + v3) + · · · .

(10.72)

Problems

1. a) The normal form for a Hamiltonian system with H0
0 (q, p) = p2/2 is

H∗(q, p) = p2/2 + Q(q). This normal form also appears in Section
10.6 when the case of multipliers equal to +1 is discussed. Carefully
draw the phase portrait for the system with Hamiltonian H(q, p) =
p2/2 + βq3 when β = +1 and −1.

b) In Section 10.6 when the multiplier −1 is discussed the normal form
is H∗(q, p) = p2/2 + Q(q) with Q even. Carefully draw the phase
portrait for the system with Hamiltonian H(q, p) = p2/2+βq4 when
β = +1 and −1.

2. a) Compute the next term in the normal form of the unforced Duffing
equation (10.22) by hand. Recall that H0

0 ,H
0
1 ,H

1
0 and W1 are given

in Section (10.3). (Hint: To get the next term you do not have to
compute all of H1

1 ,H
2
0 and W2. H2

0 is the term which is independent
of φ in H1

1 +{H0
1 ,W1}. Show that {H0

1 ,W1} has no term independent
of φ. Now H1

1 = H0
2 + {H0

1 ,W1}+ {H0
0 ,W2},H2

0 = 0, so you need to
compute the term independent of φ in {H0

1 ,W1}.)
b) Using Maple, Mathematica, etc., find the first four terms in the nor-

mal form for the unforced Duffing equation.
3. The Hamiltonian for Duffing’s equation is of the form (q2 + p2)/2+P (p)

where P is an even polynomial.
a) Show that such a Hamiltonian in action–angle variables is a Poisson

series with only cosine terms.
b) Show that the Poisson bracket of two Poisson series, one of which

is a cosine series and the other of which is a sine series, is always a
cosine series.

c) Let Hi
j andWi be from the normalization of such a Hamiltonian with

an even potential. Show thatHi
j can always be taken as a cosine series

and Wi as a sine series. (Hint: Define the spaces Pi,Qi, and Ri of
Theorem 10.3.1.)

4. Consider a Hamiltonian differential equation of the form

ẋ = εF#(ε, t, x) = εF1(t, x) + ε2F2(t, x) + · · · ,
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where F is T -periodic in t. Show that there is a formal symplectic series
expansion x = X(ε, t, y) = y+ · · · which is T -periodic in t and transforms
the equation to the autonomous Hamiltonian system ẏ = εF#(y) =
εF 1(y) + ε2F 2(y) + · · ·. Show that F 1(y) = (1/T )

∫ T

0
F1(τ, y)dτ ; i.e., F 1

is the average of F1 over a period. This is called the method of averaging.
(Hint: Use Theorem 10.6.1 and remember F 0

0 = 0.)
5. Use the notation of the previous problem. Show that if F 1(ξ) = 0 and
∂F 1(ξ)/∂x is nonsingular, then the equation ẋ = εF#(ε, t, x) has a T -
periodic solution φ(t) = ξ +O(ε).

6. Analyze the forced Duffing’s equation,

ẍ+ x = ε{δx+ γx3 +A cos t} = 0

in three different ways, and show that the seemingly different methods
give the same intrinsic results. The parameter δ is called the detuning
and is a measure of the difference between the natural frequency and
the external forcing frequency. Remember that a one degree of freedom
autonomous system has a phase portrait given by the level lines of the
Hamiltonian.
a) Write the system in action–angle coordinates, and compute the first

term in the normal form, F 1
0 , as was done for Duffing’s equation.

Analyze the truncated equation by drawing the level lines of the
Hamiltonian. (See Section 9.2. )

b) Write the system in complex coordinates and compute the first term
in the normal form, F 1

0 , as was done for Duffing’s equation in Section
10.3. Analyze the equation.

c) Make the “van der Pol” change of coordinates
[
x
y

]
=
[

cos t sin t
− sin t cos t

] [
u
v

]

and then compute the first average of the equations via Problems 4
and 5. Analyze the equations. See McGehee and Meyer (1974).

7. Consider a Hamiltonian of two degrees of freedom of the form (10.32), x ∈
R

4. Let H0(x) be the Hamiltonian of two harmonic oscillators. Change
to action–angle variables (I1, I2, φ1, φ2) and let H0 = ω1I1 + ω2I2. Use
Theorem 10.4.1 to show that the terms in the normal form are of the form
aI

p/2
1 I

q/2
2 cos(rφ1 + sφ2) or bIp/2

1 I
q/2
2 sin(rφ1 + sφ2), a and b constants, if

and only if rω1 + sω2 = 0, and the terms have the d’Alembert character.
See Henrard (1970b).

8. Consider a Hamiltonian H(x) with general solution φ(t, ξ). Observe
that the ith component of φ is the Lie transform of xi; i.e., φi(t, ξ) =
LH(xi)(ξ), where ε is replaced by t.
a) Show that φi(t, ξ) =

[
xi + {xi,H}t+ {{xi,H},H}t2/2 + · · ·

]
x=ξ

.
b) Using Maple, Mathematica, etc., write a simple function to compute

the time 1 maps given in (10.69) and (10.71) (Make sure that you
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compute the time series far enough to pick up all the quadratic and
cubic terms in the initial conditions.)

9. Prove Theorem 10.3.3, the uniqueness theorem. (Hint: Show that if the
normal form is not unique then there are two different Hamiltonians H
and K which are both in normal form and a generating function W
carrying one into the other. Show that the terms in the series expansion
for W must lie in the kernel of Qi. Then show that this implies that
W ≡ 0.)
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