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Preface to the Second Edition

This new edition expands on some old material and introduces some new sub-
jects. The expanded topics include: parametric stability, logarithms of sym-
plectic matrices, normal forms for Hamiltonian matrices, spacial Delaunay el-
ements, pulsating coordinates, Lyapunov–Chetaev stability applications and
more. There is a new section on the Maslov index and a new chapter on
variational arguments as applied to the celebrated figure-eight orbit of the
3-body problem.

Still the beginning chapters can serve as a first graduate level course on
Hamiltonian dynamical systems, but there is far too much material for a sin-
gle course. Instructors will have to select chapters to meet their interests and
the needs of their class. It will also serve as a reference text and introduction
to the literature.

The authors wish to thank their wives and families for giving them the
time to work on this project. They acknowledge the support of their universi-
ties and various funding agencies including the National Science Foundation,
the Taft Foundation, the Sloan Foundation, and the Natural Sciences and
Engineering Research Council through the Discovery Grants Program.

This second edition in manuscript form was read by many individuals who
made many valuable suggestions and corrections. Our thanks go to Hildeberto
Cabral, Scott Dumas, Vadin Fitton, Clarissa Howison, Jesús Palacián, Dieter
Schmidt, Jaume Soler, Qiudong Wang, and Patricia Yanguas.

Nonetheless, it is the readers responsibility to inform us of additional er-
rors. Look for email addresses and an errata on MATH.UC.EDU/∼MEYER/.

Kenneth R. Meyer
Glen R. Hall
Daniel Offin



Preface to the First Edition

The theory of Hamiltonian systems is a vast subject that can be studied from
many different viewpoints. This book develops the basic theory of Hamilto-
nian differential equations from a dynamical systems point of view. That is,
the solutions of the differential equations are thought of as curves in a phase
space and it is the geometry of these curves that is the important object
of study. The analytic underpinnings of the subject are developed in detail.
The last chapter on twist maps has a more geometric flavor. It was written
by Glen R. Hall. The main example developed in the text is the classical
N -body problem; i.e., the Hamiltonian system of differential equations that
describes the motion of N point masses moving under the influence of their
mutual gravitational attraction. Many of the general concepts are applied to
this example. But this is not a book about the N -body problem for its own
sake. The N -body problem is a subject in its own right that would require a
sizable volume of its own. Very few of the special results that only apply to
the N -body problem are given.

This book is intended for a first course at the graduate level. It assumes
a basic knowledge of linear algebra, advanced calculus, and differential equa-
tions, but does not assume knowledge of advanced topics such as Lebesgue
integration, Banach spaces, or Lie algebras. Some theorems that require long
technical proofs are stated without proof, but only on rare occasions. The
first draft of the book was written in conjunction with a seminar that was
attended by engineering graduate students. The interest and background of
these students influenced what was included and excluded.

This book was read by many individuals who made valuable sugges-
tions and many corrections. The first draft was read and corrected by Ri-
cardo Moena, Alan Segerman, Charles Walker, Zhangyong Wan, and Qiudong
Wang while they were students in a seminar on Hamiltonian systems. Gregg
Buck, Konstantin Mischaikow, and Dieter Schmidt made several suggestions
for improvements to early versions of the manuscript. Dieter Schmidt wrote
the section on the linearization of the equation of the restricted problem at
the five libration points. Robin Vandivier found copious grammatical errors
by carefully reading the whole manuscript. Robin deserves a special thanks.
We hope that these readers absolve us of any responsibility.



viii Preface

The authors were supported by grants from the National Science Foun-
dation, Defense Advanced Research Project Agency administered by the Na-
tional Institute of Standards and Technology, the Taft Foundation, and the
Sloan Foundation. Both authors were visitors at the Institute for Mathemat-
ics and its Applications and the Institute for Dynamics.

Kenneth R. Meyer
Glen R. Hall
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9.3 Poincaré’s Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.4 Hill’s Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.5 Comets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.6 From the Restricted to the Full Problem . . . . . . . . . . . . . . . . . . 225



xii Contents

9.7 Some Elliptic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

10. Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
10.1 Normal Form Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10.1.1 Normal Form at an Equilibrium Point . . . . . . . . . . . . . . 231
10.1.2 Normal Form at a Fixed Point . . . . . . . . . . . . . . . . . . . . . 234

10.2 Forward Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.2.1 Near-Identity Symplectic Change of Variables . . . . . . . . 237
10.2.2 The Forward Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.2.3 The Remainder Function . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10.3 The Lie Transform Perturbation Algorithm . . . . . . . . . . . . . . . . 243
10.3.1 Example: Duffing’s Equation . . . . . . . . . . . . . . . . . . . . . . . 243
10.3.2 The General Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
10.3.3 The General Perturbation Theorem . . . . . . . . . . . . . . . . . 245

10.4 Normal Form at an Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 250
10.5 Normal Form at L4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
10.6 Normal Forms for Periodic Systems . . . . . . . . . . . . . . . . . . . . . . . 259

11. Bifurcations of Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
11.1 Bifurcations of Periodic Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.1.1 Extremal Fixed Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.1.2 Period Doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.1.3 k-Bifurcation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

11.2 Duffing Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
11.2.1 k-Bifurcations in Duffing’s Equation . . . . . . . . . . . . . . . . 285

11.3 Schmidt’s Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.4 Bifurcations in the Restricted Problem . . . . . . . . . . . . . . . . . . . . 288
11.5 Bifurcation at L4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

12. Variational Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.1 The N -Body and the Kepler Problem Revisited . . . . . . . . . . . . 302
12.2 Symmetry Reduction for Planar 3-Body Problem . . . . . . . . . . . 305
12.3 Reduced Lagrangian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.4 Discrete Symmetry with Equal Masses . . . . . . . . . . . . . . . . . . . . 311
12.5 The Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
12.6 Isosceles 3-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
12.7 A Variational Problem for Symmetric Orbits . . . . . . . . . . . . . . . 317
12.8 Instability of the Orbits and the Maslov Index . . . . . . . . . . . . . 321
12.9 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

13. Stability and KAM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
13.1 Lyapunov and Chetaev’s Theorems . . . . . . . . . . . . . . . . . . . . . . . 331
13.2 Moser’s Invariant Curve Theorem . . . . . . . . . . . . . . . . . . . . . . . . 335
13.3 Arnold’s Stability Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
13.4 1:2 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342



Contents xiii

13.5 1:3 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
13.6 1:1 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
13.7 Stability of Fixed Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
13.8 Applications to the Restricted Problem. . . . . . . . . . . . . . . . . . . . 351

13.8.1 Invariant Curves for Small Mass . . . . . . . . . . . . . . . . . . . . 351
13.8.2 The Stability of Comet Orbits . . . . . . . . . . . . . . . . . . . . . 352

14. Twist Maps and Invariant Circle . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.2 Notations and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
14.3 Elementary Properties of Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 360
14.4 Existence of Periodic Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
14.5 The Aubry–Mather Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

14.5.1 A Fixed-Point Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
14.5.2 Subsets of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
14.5.3 Nonmonotone Orbits Imply Monotone Orbits . . . . . . . . 374

14.6 Invariant Circles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
14.6.1 Properties of Invariant Circles . . . . . . . . . . . . . . . . . . . . . 379
14.6.2 Invariant Circles and Periodic Orbits . . . . . . . . . . . . . . . 383
14.6.3 Relationship to the KAM Theorem . . . . . . . . . . . . . . . . . 385

14.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397



1. Hamiltonian Systems

This chapter defines a Hamiltonian system of ordinary differential equations,
gives some basic results about such systems, and presents several classical
examples. This discussion is informal. Some of the concepts introduced in
the setting of these examples are fully developed later. First, we set forth
basic notation and review some basic facts about the solutions of differential
equations.

1.1 Notation

R denotes the field of real numbers, C the complex field, and F either R or
C. F

n denotes the space of all n-dimensional vectors, and, unless otherwise
stated, all vectors are column vectors. However, vectors are written as row
vectors within the body of the text for typographical reasons. L(Fn,Fm) de-
notes the set of all linear transformations from F

n to F
m, which are sometimes

identified with the set of all m× n matrices.
Functions are real and smooth unless otherwise stated; smooth means C∞

or real analytic. If f(x) is a smooth function from an open set in R
n into R

m,
then ∂f/∂x denotes the m× n Jacobian matrix

∂f

∂x
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

· · · ∂f1
∂xn

· · ·

· · ·

∂fm

∂x1
· · · ∂fm

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

If A is a matrix, then AT denotes its transpose, A−1 its inverse, and A−T

the inverse transpose. If f : R
n → R

1, then ∂f/∂x is a row vector; let ∇f or
∇xf or fx denote the column vector (∂f/∂x)T . Df denotes the derivative of
f thought of as a map from an open set in R into L(Rn,Rm). The variable t
denotes a real scalar variable called time, and the symbol . is used for d/dt.

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 1,
c© Springer Science+Business Media, LLC 2009
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1.2 Hamilton’s Equations

Newton’s second law gives rise to systems of second-order differential equa-
tions in R

n and so to a system of first-order equations in R
2n, an even-

dimensional space. If the forces are derived from a potential function, the
equations of motion of the mechanical system have many special properties,
most of which follow from the fact that the equations of motion can be written
as a Hamiltonian system. The Hamiltonian formalism is the natural mathe-
matical structure in which to develop the theory of conservative mechanical
systems.

A Hamiltonian system is a system of 2n ordinary differential equations of
the form

q̇ = Hp, ṗ = −Hq,

q̇i =
∂H

∂pi
(t, q, p), ṗi = −∂H

∂qi
(t, q, p), i = 1, . . . , n,

(1.1)

where H = H(t, q, p), called the Hamiltonian, is a smooth real-valued func-
tion defined for (t, q, p) ∈ O, an open set in R

1 × R
n × R

n. The vectors
q = (q1, . . . , qn) and p = (p1, . . . , pn) are traditionally called the position and
momentum vectors, respectively, and t is called time, because that is what
these variables represent in the classical examples. The variables q and p are
said to be conjugate variables: p is conjugate to q. The concept of conjugate
variable grows in importance as the theory develops. The integer n is the
number of degrees of freedom of the system.

For the general discussion, introduce the 2n vector z, the 2n × 2n skew
symmetric matrix J , and the gradient by

z =
[
q
p

]
, J = Jn =

[
0 I
−I 0

]
, ∇H =

⎡
⎢⎢⎢⎣

∂H

∂z1

∂H

∂z2n

⎤
⎥⎥⎥⎦ ,

where 0 is the n × n zero matrix and I is the n × n identity matrix. The
2× 2 case is special, so sometimes J2 is denoted by K. In this notation (1.1)
becomes

ż = J∇H(t, z). (1.2)

One of the basic results from the general theory of ordinary differential
equations is the existence and uniqueness theorem. This theorem states that
for each (t0, z0) ∈ O, there is a unique solution z = φ(t, t0, z0) of (1.2) defined
for t near t0 that satisfies the initial condition φ(t0, t0, z0) = z0. φ is defined
on an open neighborhood Q of (t0, t0, z0) ∈ R

2n+2 into R
2n. The function

φ(t, t0, z0) is smooth in all its displayed arguments, and so φ is C∞ if the
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equations are C∞, and it is analytic if the equations are analytic. φ(t, t0, z0)
is called the general solution. See Chicone (1999), Hubbard and West (1990),
or Hale (1972) for details of the theory of ordinary differential equations.

In the special case when H is independent of t, so that H : O → R
1

where O is some open set in R
2n, the differential equations (1.2) are au-

tonomous, and the Hamiltonian system is called conservative. It follows that
φ(t − t0, 0, z0) = φ(t, t0, z0) holds, because both sides satisfy Equation (1.2)
and the same initial conditions. Usually the t0 dependence is dropped and
only φ(t, z0) is considered, where φ(t, z0) is the solution of (1.2) satisfying
φ(0, z0) = z0. The solutions are pictured as parameterized curves in O ⊂ R

2n,
and the set O is called the phase space. By the existence and uniqueness the-
orem, there is a unique curve through each point in O; and by the uniqueness
theorem, two such solution curves cannot cross in O.

An integral for (1.2) is a smooth function F : O → R
1 which is constant

along the solutions of (1.2); i.e., F (φ(t, z0)) = F (z0) is constant. The classi-
cal conserved quantities of energy, momentum, etc. are integrals. The level
surfaces F−1(c) ⊂ R

2n, where c is a constant, are invariant sets; i.e., they are
sets such that if a solution starts in the set, it remains in the set. In general,
the level sets are manifolds of dimension 2n − 1, and so with an integral F ,
the solutions lie on the set F−1(c), which is of dimension 2n− 1. If you were
so lucky as to find 2n− 1 independent integrals, F1, . . . , F2n−1, then holding
all these integrals fixed would define a curve in R

2n, the solution curve. In
the classical sense, the problem has been integrated.

1.3 The Poisson Bracket

Many of the special properties of Hamiltonian systems are formulated in
terms of the Poisson bracket operator, so this operator plays a central role
in the theory developed here. Let H,F , and G be smooth functions from
O ⊂ R

1 × R
n × R

n into R
1, and define the Poisson bracket of F and G by

{F,G} = ∇FTJ∇G =
∂F

∂q

T ∂G

∂p
− ∂F
∂p

T ∂G

∂q

=
n∑

i=1

(
∂F

∂qi
(t, p, q)

∂G

∂pi
(t, q, p)− ∂F

∂pi
(t, q, p)

∂G

∂qi
(t, q, p)

)
.

(1.3)

Clearly {F,G} is a smooth map from O to R
1 as well, and one can easily

verify that {·, ·} is skew-symmetric and bilinear. A little tedious calculation
verifies Jacobi’s identity:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0. (1.4)



4 1. Hamiltonian Systems

By a common abuse of notation, let F (t) = F (t, φ(t, t0, z0)), where φ is the
solution of (1.2) as above. By the chain rule,

d

dt
F (t) =

∂F

∂t
(t, φ(t, t0, z0)) + {F,H}(t, φ(t, t0, z0)). (1.5)

Hence dH/dt = ∂H/∂t.

Theorem 1.3.1. Let F,G, and H be as above and independent of time t.
Then

1. F is an integral for (1.2) if and only if {F,H} = 0.
2. H is an integral for (1.2).
3. If F and G are integrals for (1.2), then so is {F,G}.
4. {F,H} is the time rate of change of F along the solutions of (1.2).

Proof. (1) follows directly from the definition of an integral and from (1.5). (2)
follows from (i) and from the fact that the Poisson bracket is skew-symmetric,
so {H,H} = 0. (3) follows from the Jacobi identity (1.4). (4) follows from
(1.5).

In many of the examples given below, the Hamiltonian H is the total
energy of a physical system; when it is, the theorem says that energy is a
conserved quantity.

In the conservative case when H is independent of t, a critical point of H
as a function (i.e., a point where the gradient of H is zero) is an equilibrium
(or critical, rest, stationary) point of the system of differential equations (1.1)
or (1.2), i.e., a constant solution.

For the rest of this section, let H be independent of t. An equilibrium
point ζ of system (1.2) is stable if for every ε > 0, there is a δ > 0 such that
‖ζ − φ(t, z0)‖ < ε for all t whenever ‖ζ − z0‖ < δ. Note that “all t” means
both positive and negative t, and that stability is for both the future and the
past.

Theorem 1.3.2 (Dirichlet). If ζ is a strict local minimum or maximum
of H, then ζ is stable.

Proof. Without loss of generality, assume that ζ = 0 and H(0) = 0. Because
H(0) = 0 and 0 is a strict minimum for H, there is an η > 0 such that
H(z) is positive for 0 < ‖z‖ ≤ η. (In the classical literature, one says that
H is positive definite.) Let κ = min(ε, η) and M = min{H(z) : ‖z‖ = κ},
so M > 0. Because H(0) = 0 and H is continuous, there is a δ > 0 such
that H(z) < M for ‖z‖ < δ. If ‖z0‖ < δ, then H(z0) = H(φ(t, z0)) < M
for all t. ‖φ(t, z0)‖ < κ ≤ ε for all t, because if not, there is a time t′ when
‖φ(t′, z0)‖ = κ, and H(φ(t′, z0)) ≥M , a contradiction.
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1.4 The Harmonic Oscillator

The harmonic oscillator is the second-order, linear, autonomous, ordinary
differential equation

ẍ+ ω2x = 0, (1.6)

where ω is a positive constant. It can be written as a system of two first order
equations by introducing the conjugate variable u = ẋ/ω and as a Hamilto-
nian system by letting H = (ω/2)(x2 + u2) (energy in physical problems).
The equations become

ẋ = ωu =
∂H

∂u
,

u̇ = −ωx = −∂H
∂x
.

(1.7)

The variable u is a scaled velocity, and thus the x, u plane is essentially the
position-velocity plane, or the phase space of physics. The basic existence and
uniqueness theorem of differential equations asserts that through each point
(x0, u0) in the plane, there is a unique solution passing through this point at
any particular epoch t0. The general solutions are given by the formula

⎡
⎣
x(t, t0, x0, u0)

u(t, t0, x0, u0)

⎤
⎦ =

⎡
⎣

cosω(t− t0) − sinω(t− t0)

sinω(t− t0) cosω(t− t0)

⎤
⎦
[
x0

u0

]
. (1.8)

The solution curves are parameterized circles. The reason that one intro-
duces the scaled velocity instead of using the velocity itself, as is usually done,
is so that the solution curves become circles instead of ellipses. In dynamical
systems the geometry of this family of curves in the plane is of prime impor-
tance. Because the system is independent of time, it admits H as an integral
by Theorem 1.3.1 (or note Ḣ = ωxẋ + ωuu̇ = 0). Because a solution lies in
the set where H = constant, which is a circle in the x, u plane, the integral
alone gives the geometry of the solution curves in the plane. See Figure 1.1.
The origin is a local minimum for H and is stable.

Introduce polar coordinates, r2 = x2 + u2, θ = tan−1 u/x, so that equa-
tions (1.7) become

ṙ = 0, θ̇ = −ω. (1.9)

This shows again that the solutions lie on circles about the origin because,
ṙ = 0. The circles are swept out with constant angular velocity.
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Figure 1.1. Phase portrait of the harmonic oscillator.

1.5 The Forced Nonlinear Oscillator

Consider the system

ẍ+ f(x) = g(t), (1.10)

where x is a scalar and f and g are smooth real-valued functions of a scalar
variable. A mechanical system that gives rise to this equation is a spring-mass
system. Here, x is the displacement of a particle of mass 1. The particle is
connected to a nonlinear spring with restoring force −f(x) and is subject to
an external force g(t). One assumes that these are the only forces acting on
the particle and, in particular, that there are no velocity-dependent forces
acting such as a frictional force.

An electrical system that gives rise to this equation is an LC circuit with
an external voltage source. In this case, x represents the charge on a nonlinear
capacitor in a series circuit that contains a linear inductor and an external
electromotive force g(t). In this problem, assume that there is no resistance
in the circuit, and so there are no terms in ẋ .

This equation is equivalent to the system

ẋ = y =
∂H

∂y
, ẏ = −f(x) + g(t) = −∂H

∂x
, (1.11)

where

H =
1
2
y2 + F (x)− xg(t), F (x) =

∫ x

0

f(s)ds. (1.12)
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Many named equations are of this form, for example: (i) the harmonic
oscillator: ẍ + ω2x = 0; (ii) the pendulum equation: θ̈ + sin θ = 0; (iii) the
forced Duffing’s equation: ẍ+ x+ αx3 = cosωt.

In the case when the forcing term g is absent, g ≡ 0, H is an integral, and
the solutions lie in the level curves of H. Therefore, the phase portrait is easily
obtained by plotting the level curves. In fact, these equations are integrable
in the classical sense that they can be solved “up to a quadrature;” i.e., they
are completely solved after one integration or quadrature. Let h = H(x0, y0).
Solve H = h for y and separate the variables to obtain

y =
dx

dt
= ±

√
2h− 2F (x),

t− t0 = ±
∫ x

x0

dτ√
2h− 2F (τ)

.

(1.13)

Thus, the solution is obtained by performing the integration in (1.13) and
then taking the inverse of the function so obtained. In general this is quite
difficult, but when f is linear, the integral in (1.13) is elementary, and when
f is quadratic or cubic, then the integral in (1.13) is elliptic.

1.6 The Elliptic Sine Function

The next example is an interesting classical example. In an effort to extend
the table of integrable functions, the elliptic functions were introduced in the
nineteenth century. Usually the properties of these functions are developed
in advanced texts on complex analysis, but much of the basic properties
follow from the elementary ideas in differential equations. Here one example
is presented.

Let k be a constant 0 < k < 1 and sn (t, k) the solution of

ẍ+ (1 + k2)x− 2k2x3 = 0, x(0) = 0, ẋ(0) = 1. (1.14)

The function sn (t, k) is called the Jacobi elliptic sine function. Let y = ẋ.
The Hamiltonian, or integral, is

2H = y2 + (1 + k2)x2 − k2x4 (1.15)

and on the solution curve sn (t, k), 2H = 1, so

˙sn2 = (1− sn2)(1− k2sn2). (1.16)

The phase portrait of (1.14) is the level line plot of H. To find this plot,
first graph

(x) = 2h− (1 + k2)x2 + k2x4 = (2h− 1) + (1− x2)(1− k2x2).
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Then take square roots by plotting y2 = (x) to obtain the phase portrait of
(1.14) as shown in Figure 1.2.

The solution curve sn (t, k) lies in the connected component of 2H = 1
which contains x = 0, y = ẋ = 1, i.e., the closed curve encircling the origin
illustrated by the darker oval in Figure 1.2. The solution sn (t, k) lies on a
closed level line that does not contain an equilibrium point, therefore it must
be a periodic function.

Figure 1.2. Phase portrait of the elliptic sine function.

Both sn (t, k) and −sn (−t, k) satisfy (1.14), and so by the uniqueness
theorem for ordinary differential equations, sn (t, k) = −sn (−t, k), i.e., sn is
odd in t. The curve defined by sn goes through the points x = ±1, y = 0
also. As t increases from zero, sn (t, k) increases from zero until it reaches its
maximum value of 1 after some time, say a time κ . (Classically, the constant
κ is denoted by K.) Because sn (±κ, k) = ±1 and ˙sn (±κ, k) = 0 and both
sn (t+κ, k) and −sn (t−κ, k) satisfy the equation in (1.14), by uniqueness of
the solutions of differential equations it follows that sn (t + κ, k) = −sn (t −
κ, k), or that sn is 4κ periodic and odd harmonic in t. Thus the Fourier series
expansion of sn only contains terms in sin(j2πt/4κ) where j is an odd integer.

It is clear that sn is increasing for −κ < t < κ. Equation (1.14) implies
s̈n > 0 (so sn is convex) for −κ < t < 0, and it also implies s̈n < 0 (so sn is
concave) for 0 < t < κ. Thus, sn has the same basic symmetry properties as
the sine function. It is also clear from the equations that sn (t, k) → sin t and
κ→ π/2 as k → 0. The graph of sn, (t, k) has the same general form as sin t
with 4κ playing the role of 2π.

The function κ(k) is investigated in the problems. Classical handbooks
contain tables of values of the sn function, and computer algebra systems such
as Maple have these functions. Thus one knows almost as much about sn (t, k)
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as about sin t. Your list of elementary functions should contain sn (t, k). In
the problems, you are asked to solve the pendulum equation with your new
elementary function.

There are two other Jacobi elliptic functions that satisfy equations similar
to (1.14). They were introduced in order to extend the number of functions
that can be integrated. In fact, with the three Jacobi elliptic functions, all
equations of the form (1.10) with g = 0 and f(x) a quadratic or cubic polyno-
mial can be solved explicitly. A different and slightly more detailed discussion
is found in Meyer (2001), and the classic text Modern Analysis by Whittaker
and Watson (1927) has a complete discussion of the Jacobi elliptic functions.
Many of the formulas will remind one of trigonometry.

1.7 General Newtonian System

The n-dimensional analog of (1.10) is

Mẍ+∇F (x) = g(t), (1.17)

where x is an n-vector, M is a nonsingular, symmetric n× n matrix, F is a
smooth function defined on an open domain O in R

n, ∇F is the gradient of
F , and g is a smooth n-vector valued function of t, for t in some open set in
R

1. Let y = Mẋ. Then (1.17) is equivalent to the Hamiltonian system

ẋ =
∂H

∂y
= M−1y, ẏ = −∂H

∂x
= −∇F (x) + g(t), (1.18)

where the Hamiltonian is

H =
1
2
yTM−1y + F (x)− xT g(t). (1.19)

If x represents the displacement of a particle of mass m, then M = mI where
I is the identity matrix, y is the linear momentum of the particle, 1

2y
TM−1y

is the kinetic energy, g(t) is an external force, and F is the potential energy.
If g(t) ≡ 0, then H is an integral and is total energy. This terminology is
used in reference to nonmechanical systems of the form (1.17) also. In order
to write (1.18) as a Hamiltonian system, the correct choice of the variable
conjugate to x is y = Mẋ, the linear momentum, and not ẋ, the velocity.

In the special case when g ≡ 0, a critical point of the potential is a
critical point of H and hence an equilibrium point of the Hamiltonian system
of equations (1.18). In many physical examples, M is positive definite. In
this case, if x′ is a local minimum for the potential F , then (x′, 0) is a local
minimum for H and therefore a stable equilibrium point by Theorem 1.3.2.

It is tempting to think that if x′ is a critical point of F and not a minimum
of the potential, then the point (x′, 0) is an unstable equilibrium point. This
is not true. See Laloy (1976) and Chapter 13 for a discussion of stability
questions for Hamiltonian systems.
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1.8 A Pair of Harmonic Oscillators

Consider a pair of harmonic oscillators

ẍ+ ω2x = 0, ÿ + μ2y = 0,

which as a system becomes the Hamiltonian system

ẋ = ωu =
∂H

∂u
, ẏ = μv =

∂H

∂v
,

u̇ = −ωx = −∂H
∂x
, v̇ = −μy = −∂H

∂y
,

(1.20)

where the Hamiltonian is

H =
ω

2
(x2 + u2) +

μ

2
(y2 + v2).

In polar coordinates

r2 =
ω

2
(x2 + u2), θ = tan−1 u/x,

ρ2 =
μ

2
(y2 + v2), φ = tan−1 v/y,

the equations become

ṙ = 0, θ̇ = −ω,

ρ̇ = 0, φ̇ = −μ,
(1.21)

and they admit the two integrals

I1 = r2 = (ω/2)(x2 + u2), I2 = ρ2 = (μ/2)(y2 + v2). (1.22)

In many physical problems, these equations are only the first approximation.
The full system does not admit the two individual integrals (energies), but
does admit H as an integral which is the sum of the individual integrals.
Think, for example, of a pea rolling around in a bowl; the linearized system
at the minimum would be of the form (1.20). In this case, H−1(1) is an
invariant set for the flow, which is an ellipsoid and topologically a 3-sphere.

Consider the general solution through r0, θ0, ρ0, φ0 at epoch t = 0. The
solutions with r0 = 0 and ρ0 > 0 or ρ0 = 0 and r0 > 0 lie on circles and
correspond to periodic solutions of period 2π/μ and 2π/ω, respectively. These
periodic solutions are special and are usually called the normal modes.

The set where r = r0 > 0 and ρ = ρ0 > 0 is an invariant torus for (1.20)
or (1.21). Angular coordinates on this torus are θ and φ, and the equations
are
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θ̇ = −ω, φ̇ = −μ, (1.23)

the standard linear equations on a torus. See Figure 1.3.
If ω/μ is rational, then ω = pτ and μ = qτ , where p and q are relatively

prime integers and τ is a nonzero real number. In this case the solution of
(1.23) through θ0, φ0 at epoch t = 0 is θ(t) = θ0 − ωt, φ(t) = φ0 − μt,
and so if T = 2π/τ , then θ(T ) = θ0 + p2π and φ(T ) = φ0 + q2π. That is,
the solution is periodic with period T on the torus, and this corresponds to
periodic solutions of (1.20).

If ω/μ is irrational, then none of the solutions is periodic. In fact, the
solutions of (1.23) are dense lines on the torus see Section 1.9), and this
corresponds to the fact that the solutions of (1.20) are quasiperiodic but not
periodic.

Figure 1.3. Linear flow on the torus.

We can use polar coordinates to introduce coordinates on the sphere,
provided we are careful to observe the conventions of polar coordinates: (i)
r ≥ 0, (ii) θ is defined modulo 2π, and (iii) r = 0 corresponds to a point.
That is, if we start with the rectilinear strip r ≥ 0, 0 ≤ θ ≤ 2π, then identify
the θ = 0 and θ = 2π edges to get a half-closed annulus, and finally if we
identify the circle r = 0 with a point, then we have a plane (Figure 1.4).

Starting with the polar coordinates r, θ, ρ, φ for R
4, we note that on the

3-sphere, E = r2 + ρ2 = 1, so we can discard ρ and have 0 ≤ r ≤ 1. We use
r, θ, φ as coordinates on S3. Now r, θ with 0 ≤ r ≤ 1 are just polar coordinates
for the closed unit disk. For each point of the open disk, there is a circle with
coordinate φ (defined mod 2π), but when r = 1, ρ = 0, so the circle collapses
to a point over the boundary of the disk. The geometric model of S3 is given
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Figure 1.4. The polar coordinate conventions.

by two solid cones with points on the boundary cones identified as shown
in Figure 1.5a. Through each point in the open unit disk with coordinates
r, θ there is a line segment (the dashed line) perpendicular to the disk. The
angular coordinate φ is measured on this segment: φ = 0 is the disk, φ = π
is the upper boundary cone, and φ = −π is the lower boundary cone. Each
point on the upper boundary cone with coordinates r, θ, φ = π is identified
with the point on the lower boundary cone with coordinates r, θ, φ = −π.
From this model follows a series of interesting geometric facts.

For α, 0 < α < 1, the set where r = α is a 2-torus in the 3-sphere,
and for α = 0 or 1, the set r = α is a circle. Because r is an integral for
the pair of oscillators, these tori and circles are invariant sets for the flow
defined by the harmonic oscillators. The two circles r = 0, 1 are periodic
solutions, called the normal modes. The two circles are linked in S3, i.e., one
of the circles intersects a disk bounded by the other circle in an algebraically
nontrivial way. The circle where r = 1 is the boundary of the shaded disk in
Figure 1.5b, and the circle r = 0 intersects this disk once. It turns out that
the number of intersections is independent of the bounding disk provided one
counts the intersections algebraically.

Consider the special case when ω = μ = 1. In this case every solution is
periodic, and so its orbit is a circle in the 3-sphere. Other than the two special
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(a) A model of S3 (b) An orbit on S3

Figure 1.5. S3 as a circle bundle over S2.

circles, on each orbit as θ increases by 2π, so does φ. Thus each such orbit
hits the open disk where φ = 0 (the shaded disk in Figure 1.5) in one point.
We can identify each such orbit with the unique point where it intersects the
disk. One special orbit meets the disk at the center, so we can identify it with
the center. The other special orbit is the outer boundary circle of the disk
which is a single orbit. When we identify this circle with a point, the closed
disk whose outer circle is identified with a point becomes a 2-sphere.

Theorem 1.8.1. The 3-sphere, S3, is the union of circles. Any two of these
circles are linked. The quotient space obtained by identifying a circle with a
point is a 2-sphere (the Hopf fibration of S3).

Let D be the open disk φ = 0, the shaded disk in Figure 1.5. The union
of all the orbits that meet D is a product of a circle and a 2-disk, so each
point not on the special circle r = 1 lies in an open set that is the product
of a 2-disk and a circle. By reversing r and ρ in the discussion given above,
the circle where r = 1 has a similar neighborhood. So locally the 3-sphere
is the product of a disk and a circle, but the sphere is not the product of
a 2-manifold and a circle. (The sphere has a trivial fundamental group, but
such a product would not.)

When ω = p and μ = q with p and q relatively prime integers, all solutions
are periodic, and the 3-sphere is again a union of circles, but it is not locally
a product near the special circles. The nonspecial circles are p, q-torus knots.
They link p times with one special circle and q times with the other.

These links follow by a slight extension of the ideas of the previous propo-
sition. A p, q-torus knot is a closed curve that wraps around the standard
torus in R

3 in the longitudinal direction p times and in the meridional direc-
tion q times. If p and q are different from 1, the knot is nontrivial.
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Figure 1.6. The trefoil as a toral knot.

Figure 1.6 shows that the 3,2 torus knot is the classical trefoil or clover-
leaf knot. The first diagram in Figure 1.6 is the standard model of a torus:
a square with opposite sides identified. The line with slope 3/2 is shown
wrapping three times around one way and twice around the other. Think of
folding the top half of the square back and around and then gluing the top
edge to the bottom to form a cylinder. Add two extra segments of curves
to connect the right and left ends of the curve to get the second diagram in
Figure 1.6. Smoothly deform this to get the last diagram in Figure 1.6, the
standard presentation of the trefoil. See Rolfsen (1976) for more information
on knots.

1.9 Linear Flow on the Torus

In order to show that the solutions of (1.23) on the torus are dense when ω/μ
is irrational, the following simple lemmas from number theory are needed.

Lemma 1.9.1. Let δ be any irrational number. Then for every ε > 0, there
exist integers q and p such that

| qδ − p |< ε. (1.24)

Proof. Case 1: 0 < δ < 1. Let N ≥ 2 be an integer and SN = {sδ − r : 1 ≤
s, r ≤ N}. For each element of this set we have | sδ − r |< N. Because δ



1.10 Euler–Lagrange Equations 15

is irrational, there are N2 distinct members in the set SN ; so at least one
pair is less than 4/N apart. (If not, the total length would be greater than
(N2 − 1)4/N > 2N .) Call this pair sδ − r and s′δ − r′. Thus

0 <| (s− s′)δ − (r − r′) |< 4
N
<

4
| s− s′ | . (1.25)

Take N > 4/ε, q = s − s′ and p = r′ − r to finish this case. The other cases
follow from the above. If −1 < δ < 0, then apply the above to −δ; and if
| δ |> 1, apply the above to 1/δ.

Lemma 1.9.2. Let δ be any irrational number and ξ any real number. Then
for every ε > 0 there exist integers p and q such that

| qδ − p− ξ |< ε. (1.26)

Proof. Let p′ and q′ be as given in Lemma 1.9.1, so η = q′δ − p′ satisfies
0 <| η |< ε. There is a integer m such that | mη− ξ |< ε. The lemma follows
by taking q = mq′ and p = mp′.

Theorem 1.9.1. Let ω/μ be irrational. Then the solution curves defined by
Equations (1.23) are dense on the torus.

Proof. Measure the angles in revolutions instead of radians so that the angles
θ and φ are defined modulo 1 instead of 2π. The solution of equations (1.23)
through θ = φ = 0 at t = 0 is θ(t) = ωt, φ(t) = μt. Let ε > 0 and ξ be given.
Then θ ≡ ξ and φ ≡ 0 mod 1 is an arbitrary point on the circle φ ≡ 0 mod 1
on the torus. Let δ = ω/μ and p, q be as given in Lemma 2. Let τ = q/μ, so
θ(τ) = δq, φ(τ) = q. Thus, | θ(τ)−p−ξ |< ε, but because p is an integer, this
means that θ(τ) is within ε of ξ; so the solution through the origin is dense
on the circle φ ≡ 0 mod 1. The remainder of the proof follows by translation.

1.10 Euler–Lagrange Equations

Many of the laws of physics can be given as minimizing principles and this
led the theologian-mathematician Leibniz to say that we live in the best of
all possible worlds. In more modern times and circumstances, the physicist
Richard Feynman once quoted that of all mathematical-physical principles,
the principle of least action is one that he has pondered most frequently.

Under mild smoothness conditions, one shows in the calculus of variations
that minimizing the curve functional with fixed boundary constraints

F (q) =
∫ β

α

L(q(t), q̇(t)) dt, q(α) = qα, q(β) = qβ

leads to a function q : [α, β] → R
n satisfying the Euler–Lagrange equations
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d

dt

∂L

∂q̇
− ∂L
∂q

= 0. (1.27)

These equations are also known as Euler’s equations.
Here we use the symbol q̇ with two meanings. The function L is a function

of two variables and these two variables are denoted by q, q̇, so ∂L/∂q̇ denotes
the partial derivative of L with respect to its second variable. A solution of
(1.27) is a smooth function of t, denoted by q(t), whose derivative with respect
to t is q̇(t).

In particular, if q, q̇ are the position-velocity of a mechanical system sub-
ject to a system of holonomic constraints and K(q̇) is its kinetic energy, P (q)
its potential energy, and L = K − P the Lagrangian then (1.27) is the equa-
tion of motion of the system — see Arnold (1978), Siegel and Moser (1971),
or almost any advanced texts on mechanics.

More generally, any critical point of the action functional F (·) leads to the
same conclusion concerning the critical function q(·). Moreover, the boundary
conditions for the variational problem may be much more general, including
the case of periodic boundary conditions, which would replace the fixed end-
point condition with the restriction on the class of functions

q(α) = q(β)

This is an important generalization, in as much as all the periodic solutions
of the N -body problem can be realized as critical points of the action, sub-
ject to the periodic boundary condition. In fact, this observation leads one to
look for such periodic solutions directly by finding appropriate critical points
of the action functional, rather than by solving the boundary value prob-
lem connected with the Euler equations. This is called the direct method
of the calculus of variations, which is a global method in that it does not
require nearby known solutions for its application. This method has recently
helped the discovery of some spectacular new periodic solutions of the N -
body problem that are far from any integrable cases and which are discussed
in subsequent chapters. We give a very simple example of this method be-
low, together with some extensions of this method to the question of global
stability of periodic solutions.

Here are the ingredients of the argument that relates the critical points
of F to the Euler–Lagrange equations. Suppose that qε is a one parameter
curve of functions through the critical function q that satisfies the boundary
constraints. That is, q0(t) = q(t), α ≤ t ≤ β, and qε(α) = qα, qε(β) = qβ
in the case of fixed boundary conditions, or qε(α) = qε(β) in the case of
periodic conditions. In either of these cases, one would naturally infer that
the composite function g(ε) = F (qε) has a critical point at ε = 0. Assuming
that we are able to differentiate under the integral sign, and that the variation
vector field

ξ(t) =
∂

∂ε
qε(t)

∣∣∣∣
ε=0
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is smooth, we find that

dF (q) · ξ =
∂

∂ε
F (qε)

∣∣∣∣
ε=0

=
∫ β

α

(
∂L

∂x
· ξ +

∂L

∂ẋ
· ξ̇
)
dt

=
∂L

∂ẋ
· ξ
∣∣∣∣
β

α

+
∫ β

α

(
− d
dt

∂L

∂ẋ
+
∂L

∂x

)
· ξ dt.

(1.28)

The last line of (1.28) is done using an integration by parts. It is not
difficult to see that if the function q is critical for the functional F with
either set of boundary conditions, then the boundary terms and the integral
expression must vanish independently for an arbitrary choice of the variation
vector field ξ(t). This leads to two conclusions: first, that the Euler–Lagrange
equations (1.27) must vanish identically on the interval α ≤ t ≤ β and second,
that the transversality conditions

∂L

∂ẋ
· ξ
∣∣∣∣
β

α

= 0 (1.29)

should also hold for the critical function q at the endpoints α, β. In the case
of fixed boundary conditions, these transversality conditions don’t give any
additional information because ξ(α) = ξ(β) = 0. In the case of periodic
boundary conditions, they imply that

∂L

∂q̇
(α) =

∂L

∂q̇
(β), (1.30)

because ξ(α) = ξ(β). As we show below, this guarantees that a critical point
of the action functional with periodic boundary conditions, is just the con-
figuration component of a periodic solution of Hamilton’s equations.

We have shown in (1.28) that we can identify critical points of the func-
tional F (·) with solutions of the Euler equations (1.27) subject to various
boundary constraints. One powerful and important application of this is that
the Euler–Lagrange equations are invariant under general coordinate trans-
formations.

Proposition 1.10.1. If the transformation (x, ẋ) → (q, q̇) is a local diffeo-
morphism with

q = q(x), q̇ =
∂q

∂x
(x) · ẋ,

then the Euler–Lagrange equations (1.27) transform into an equivalent set of
Euler–Lagrange equations

d

ds

∂L̃

∂ẋ
− ∂L̃
∂x

= 0,

where the new Lagrangian is defined by the coordinate transformation
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L̃(x, ẋ) = L(q(x),
∂q

∂x
(x) · ẋ).

Proof. The argument rests on two simple observations. First, the condition
that F (q) take a critical value is independent of coordinates; and second, the
functional F (q) transforms in a straightforward manner

F (q(t)) =
∫ β

α

L(q(t), q̇(t))dt

=
∫ β

α

L(q(x(t)),
∂q

∂x
(x(t)) · ẋ(t))dt

=
∫ β

α

L̃(x(t), ẋ(t))dt = F̃ (x(t)).

From this, we conclude that the critical points of F (·) correspond to critical
points of F̃ (·) under the coordinate transformation. The conclusion of the
proposition follows, because we have shown in (1.28) that critical points of
F (·) are solutions of the Euler equations for the Lagrangian L, and critical
points of F̃ (·) are solutions of the Euler equations for the Lagrangian L̃.

Sometimes L depends on t and we wish to change the time variable also.
By the same reasoning, if the transformation (x, x′, s) → (q, q̇, t) is

q = q(x, s), t = t(x, s), q̇ = q̇(x, x′, s) =
qx(x, s)x′ + qs(x, s)
tx(x, s)x′ + ts(x, s)

,

then the Euler–Lagrange equations (1.27) become

d

ds

∂L̃

∂x′
− ∂L̃
∂x

= 0,

where ′ = d/ds and

L̃(x, x′, s) = L(q(x, s), q̇(x, x′, s), t(x, s)).

We consider one interesting example here, whereby the variational structure
of certain solutions is directly tied to the stability type of these solutions.
We follow this thread of an idea in later examples, especially when we ap-
ply the variational method to finding symmetric periodic solutions of the
N -body problem. The mathematical pendulum is given by specifying a con-
strained mechanical system in the plane with Cartesian coordinates (x, y).
The gravitational potential energy is U(x, y) = mgy and the kinetic energy
K(ẋ, ẏ) = 1

2 (ẋ2 + ẏ2). The constraint requires the mass m to lie at a fixed
distance l from the point (0, l) so that x2 + (y− l)2 = l2. Introducing a local
angular coordinate θ mod 2π on the circle x2 + (y − l)2 = l2 and expressing
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the Lagrangian in these coordinates we find the Lagrangian and the resulting
Euler–Lagrange equations,

L(θ, θ̇) =
1
2
ml2θ̇2 +mgl(1 + cos(θ)), ml2θ̈ = −mgl sin(θ).

The equations in θ follow by the invariance of Euler–Lagrange equations
(1.27), see Proposition (1.10.1)) The factor mgl is subtracted from the po-
tential to make the action positive, and doesn’t affect the resulting differen-
tial equations. The action of the variational problem is the integral of the
Lagrangian, so we study the periodic problem

F (q) =
∫ T

0

(
1
2
ml2q̇2 +mgl(1 + cos(q))

)
dt, q(0) = q(T ).

We make the simple observation that the absolute minimizer of the action
corresponds to a global maximum of the potential, and the global minimum
of the potential corresponds to a mountain pass critical point of the action
functional

F (±π) ≤ F (q), F (0) = min max
deg q=1

F (q).

The first inequality may be easily verified, because the kinetic energy is pos-
itive and the potential takes a maximum value at ±π. In the second case,
the maximum is taken with respect to loops in the configuration variable,
which make one circuit of the point 0 before closing. This is described by
the topological degree = 1. The minimum is then taken over all such loops,
including the limit case when the loop is stationary at the origin.

It is interesting to observe here that the global minimum of the action
functional corresponds to a hyperbolic critical point, and the stable critical
point (see Dirichlet’s theorem (1.3.2)) corresponds to a mountain pass type
critical point. This fact is not isolated, and we discuss a theory to make this
kind of prediction concerning stability and instability in much more general
settings when we discuss the Maslov index in Section 4.5.

One could consider the forced pendulum equations, as was done in Section
1.5. Here the analysis and the results become essentially more interesting,
because there are no longer any equilibrium solutions; however, the direct
method of the calculus of variations leads to some very interesting global
results for this simple problem, which we describe briefly. The Euler equation
and the action functional become

ml2θ̈ = −mgl sin(θ) + f(t), f(t+ T ) = f(t),

F (q) =
∫ T

0

(
1
2
ml2q̇2 +mgl(1 + cos(q)) + qf(t)

)
dt, q(0) = q(T ).

In this problem, the question of stable and unstable periodic solutions be-
comes an interesting nonelementary research topic. The first question one
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encounters here is the question of existence of T -periodic solutions. There
is a simple analytical condition on the forcing term f that guarantees the
existence of both minimizing and mountain pass critical points for the action
functional. This condition is that the mean value of f is zero,

∫ T

0
fdt = 0. By

our earlier discussion on the equality of periodic solutions and critical func-
tions, this guarantees nontrivial harmonic oscillations of the forced pendulum
equation (see Mawhin and Willem (1984)). The related question concerning
which forcing terms f can admit such T -periodic solutions of the Euler equa-
tions is an open problem.

The next question one might well ask is whether our earlier observation
on stability and other dynamical properties is again related to the variational
structure of minimizing and mountain pass critical points, when they can be
shown to exist. This question is pursued when we discuss the Maslov index,
but it suffices to say that the minimizing critical periodic curves continue to
represent unstable periodic motion, and mountain pass critical points can be
used to show the existence of an infinite family of subharmonic oscillations of
period kT when the minimizing solution is nondegenerate (see Offin (1990)).
There is at this time no global method of determining whether such a har-
monic oscillation is stable. The next section elaborates on this pendulum
example in a more geometrical setting.

The Euler–Lagrange equations often have an equivalent Hamiltonian for-
mulation.

Proposition 1.10.2. If the transformation (q, q̇, t) → (q, p, t) is a diffeo-
morphism, with p defined by

p =
∂L

∂q̇
,

then the Euler–Lagrange equation (1.27) is equivalent to the Hamiltonian
system

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

with H(q, p, t) = pT q̇ − L(q, q̇, t).

Proof. First,

ṗ =
d

dt

∂L

∂q̇
=
∂L

∂q
= −∂H

∂q̇
,

and second,
∂H

∂p
= q̇ + p

∂q̇

∂p
− ∂L
∂q̇

∂q̇

∂p
= q̇.

In the Hamiltonian formulation, the transversality conditions (1.29) become
p · ξ|βα = 0, which for periodic boundary conditions becomes p(α) = p(β).



1.11 The Spherical Pendulum 21

1.11 The Spherical Pendulum

In the spherical pendulum, a particle, or bob, of mass m is constrained to
move on a sphere of radius l by a massless rigid rod. The only forces acting
on the bob are the frictionless constraint force and the constant gravitational
force. This defines a holonomic system. Let the origin of the coordinate system
be at the center of the sphere, so the constraints are ‖q‖ = l, q · q̇ = 0. Thus
position space is the sphere, and phase space (position-velocity space) is the
set of all tangent vectors to the sphere, the tangent bundle of the sphere. The
Newtonian formulation of the problem is

mq̈ = −mgle3 +R(q, q̇),

where g is the acceleration due to gravity, e3 = (0, 0, 1), and R(q, q̇) is the
force of constraint. Because the constraint must be normal to the sphere, we
have R(q, q̇) = r(q, q̇)q, with r a scalar. The constraint implies that q · q̇ = 0
and q̇ · q̇ + q · q̈ = o. The latter restriction can be used to find R explicitly
yielding a very ugly system. Fortunately, we can ignore this by introducing
appropriate coordinates and using the coordinate invariance of the Euler–
Lagrange equations.

The problem is symmetric about the q3 axis, and so admits one component
of angular momentum, A3 = m(q × q̇) · e3, as an integral, because

dA3

dt
= m(q̇ × q̇) · e3 + (q ×−mge3 + r(q, q̇)q) · e3 = 0.

Lemma 1.11.1. If A3 = 0, then the motion is planar.

Proof. A3 = q1q̇2 − q2q̇1 = 0, or dq1/q1 = dq2/q2 which implies q1 = c q2.

The planar pendulum is of the form discussed in Section 1.5 and is treated
in the problems also, so we assume that A3 
= 0 and thus the bob does not
go through the north or south poles.

Because the bob does not go through the poles, there is no problem in
using spherical coordinates. A discussion of the special coordinates used in
celestial mechanics appears in Chapter 7, and Section 7.5 deals with spherical
coordinates in particular. For simplicity, let m = l = g = 1. The kinetic and
potential energies are

K =
1
2
‖q̇‖2 =

1
2
{φ̇2 + sin2 φ θ̇2}, P = {q · e3 + 1} = {1− cosφ},

and the Lagrangian is L = K − P . Instead of writing the equations in La-
grangian form, proceed to the Hamiltonian form by introducing the conjugate
variables Θ and Φ with

Θ =
∂L

∂θ̇
= sin2 φθ̇, Φ =

∂L

∂φ̇
= φ̇,
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so that

H =
1
2

{
Φ2 +

Θ2

sin2 φ

}
+ {1− cosφ},

and the equations of motion are

θ̇ =
∂H

∂Θ
=

Θ

sin2 φ
, Θ̇ = −∂H

∂θ
= 0,

φ̇ =
∂H

∂Φ
= Φ, Φ̇ = −∂H

∂φ
= Θ2 csc2 φ cotφ− sinφ.

H is independent of θ, so Θ̇ = −∂H/∂θ = 0 and Θ is an integral of motion.
This is an example of the classic maxim “the variable conjugate to an ignor-
able coordinate is an integral;” i.e., θ is ignorable, so Θ is an integral. Θ is
the component of angular momentum about the e3 axis.

The analysis starts by ignoring θ and setting Θ = c 
= 0, so the Hamilto-
nian becomes

H =
1
2
Φ2 +Ac(φ), Ac(φ) =

c2

sin2 φ
+ {1− cosφ}, (1.31)

which is the Hamiltonian of one degree of freedom with a parameter c. H is
of the form kinetic energy plus potential energy, where Ac is the potential
energy, so it can be analyzed by the methods of Sections 1.5 and 1.6. The
function Ac is called the amended potential.

This is an example of what is called reduction. The system admits a
symmetry, i.e., rotation about the e3 axis, which implies the existence of an
integral, namely (Θ). Holding the integral fixed and identifying symmetric
configurations by ignoring θ, leads to a Hamiltonian system of fewer degrees
of freedom. This is the system on the reduced space.

It is easy to see that Ac(φ) → +∞ as φ → 0 or φ → π and that Ac has
a unique critical point, a minimum, at 0 < φc < π (a relative equilibrium).
Thus φ = φc, Φ = 0 is an equilibrium solution for the reduced system, but

θ =
c

sin2 φc

t+ θ0, Θ = c, φ = φc, Φ = 0

is a periodic solution of the full system.
The level curves of (1.31) are closed curves encircling φc, and so all the

other solutions of the reduced system are periodic. For the full system, these
solutions lie on the torus which is the product of one of these curves in the
φ, Φ-space and the circle Θ = c with any θ. The flows on these tori can be
shown to be equivalent to the linear flow discussed in Section (1.9).

1.12 The Kirchhoff Problem

Mechanical problems are not the only way Hamiltonian systems arise. Kirch-
hoff (1897) derived the equations of motion of N vortices of an incompressible
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fluid moving in the plane under their mutual interaction. Let ηi be the po-
sition vector of the ith vortex whose circulation is κi; then the equations of
motion are

κj η̇j = K
∂U

∂η j

, j = 1, . . . , N, (1.32)

where

U =
∑

1≤i<j≤N

κiκj log ‖ηi − ηj‖, K =
(

0 1
−1 0

)
. (1.33)

If we set ηi = (qi, pi), p = (p1, . . . , pn), and q = (q1, . . . , qn) the equations
become

q̇ =
∂U

∂p
, ṗ = −∂U

∂q
. (1.34)

Sometimes these equations can be treated like the N -body problem to be
introduced in Chapter 2. We shall develop some of the more basic facts about
these equations in the problems.

Problems

1. Let x, y, z be the usual coordinates in R
3, r = xi+yj+zk, X = ẋ, Y = ẏ,

Z = ż , R = ṙ = Xi+ Y j + Zk.
a) Compute the three components of angular momentum mr × R.
b) Compute the Poisson bracket of any two of the components of angular

momentum and show that it is ±m times the third component of
angular momentum.

c) Show that if a system admits two components of angular momentum
as integrals, then the system admits all three components of angular
momentum as integrals.

2. A Lie algebra A is a vector space with a product ∗ : A × A → A that
satisfies
a) a ∗ b = −b ∗ a (anticommutative),
b) a ∗ (b+ c) = a ∗ b+ a ∗ c (distributive),
c) (αa) ∗ b = α(a ∗ b) (scalar associative),
d) a ∗ (b ∗ c) + b ∗ (c ∗ a) + c ∗ (a ∗ b) = 0 (Jacobi’s identity),

where a, b, c ∈ A and α ∈ R or C.
a) Show that vectors in R

3 form a Lie algebra where the product * is
the cross product.

b) Show that smooth functions on an open set in R
2n form a Lie algebra,

where f ∗ g = {f, g}, the Poisson bracket.
c) Show that the set of all n × n matrices, gl(n,R), is a Lie algebra,

where A ∗B = AB −BA, the Lie product.
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3. The pendulum equation is θ̈ + sin θ = 0.
a) Show that 2I = 1

2 θ̇
2 + (1− cos θ) = 1

2 θ̇
2 + 2 sin2(θ/2) is an integral.

b) Sketch the phase portrait.
c) Make the substitution y = sin(θ/2) to get ẏ2 = (1−y2)(I−y2). Show

that when 0 < I < 1, y = k sn (t, k) solves this equation when k2

= I. (You have solve the pendulum equation in terms of the elliptic
sine function.)

4. Use the definitions introduced in the section on Jacobi sine function.
a) Show

κ =
∫ 1

0

dτ

{(1− τ2)(1− k2τ2)}1/2
.

b) In the integral above, make the substitution τ = sinu to get

κ =
∫ π/2

0

du

{1− k2 sin2 u}1/2
.

c) Use the binomial series to expand the denominator in the above
integrand into a series in k2 sin2u. Use Wallis’s formula,

2
π

∫ π/2

0

sin2n u du =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n) ,

to integrate term by term to get

κ =
π

2

{
1 +
(

1
2

)2

k2 +
(

1 · 3
2 · 4

)2

k4 + · · ·
}
.

5. Continue the notation of the previous problem.
a) Show that κ(k) → π/2 as k → 0 and κ(k) →∞ as k → 1.
b) Show κ(k) is increasing in k.
c) Sketch a plot of κ versus k.

6. Show that the Kirchhoff problem can have equilibrium solutions.
7. Let H : R

2n → R be a globally defined conservative Hamiltonian, and
assume that H(z) → ∞ as ‖z‖ → ∞. Show that all solutions of ż =
J∇H(z) are bounded. (Hint: Think like Dirichlet.)

8. If a particle is constrained to move on a surface in R
3 without friction,

then the force of constraint acts normal to the surface. If there are no
external forces, then the particle is said to be a free particle on the surface,
and the only force acting on the particle is the force of constraint. In the
free case, acceleration is normal to the surface. In differential geometry,
a curve on a surface that minimizes distance (at least locally), is called
a geodesic, and it can be shown that geodesics are characterized by the
fact that their acceleration is normal to the surface. Thus, a free particle
moves on a geodesic.
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a) Consider a free particle on the 2-sphere S2 = {x ∈ R
3 : ‖x‖ = 1}.

It moves to satisfy an equation of the form ẍ = λx, where λ is the
scalar of proportionality. Show that λ = −‖ẋ‖2, xT ẋ = 0, and λ is
constant along a solution (i.e., dλ/dt = 0).

b) Show that if the initial velocity is nonzero, then the solutions are
great circles.

c) Show that the set of unit tangent vectors to S2, called the unit tan-
gent bundle of S2 and denoted by T1S

2, is an invariant set and is
given by {(x, y) ∈ R

3 × R
3 : ‖x‖ = 1, ‖y‖ = 1, xT y = 0}.

d) Show that the unit tangent bundle of the two sphere is the same
as SO(3,R), the special orthogonal group. SO(3,R) is the set of all
3 × 3 orthogonal matrices with determinant equal +1, or the set of
all 3 × 3 rotation matrices. (Hint: Think of the orthonormal frame
consisting of the unit tangent, normal, and binormal vectors.)

9. If the metric on a surface is given in local coordinates, x = (x1, x2),
by ds2 =

∑2
i,j=1 gij(x)dxidxj where {gij(x)} is a smooth 2 × 2 positive

definite matrix, then define the Lagrangian by

L(x, ẋ) = (1/2)
2∑

i,j=1

gij(x)ẋiẋj .

Show that the Lagrange equations are of the form

ẍk +
2∑

i,j=1

Γ k
ij(x)ẋ

iẋj = 0,

where Γ k
ij are the Christoffel symbols

Γ k
ij =

2∑
s=1

gks

(
∂gsi

∂xj
+
∂gsj

∂xi
− ∂gij

∂xs

)
,

and {gij(x)} is the inverse of {gij(x)}.



2. Equations of Celestial Mechanics

Science as we know it today started with Newton’s formulations of the three
laws of motion, the universal law of gravity, and his solution of the 2-body
problem. With a few simple principles and some mathematics, he could ex-
plain the three empirical laws of Kepler on the motion of Mars and the other
planets. The sun and one planet can be considered as a 2-body problem in
the first approximation; this was relative easy for him to solve.

Newton then turned his attention to the motion of the moon, which re-
quires three bodies: the sun, Earth, and moon, in the first approximation. His
inability to solve the 3-body problem lead him to remark to the astronomer
John Machin that “his head never ached but with his studies on the moon.”1

The 3-body problem thus became the most celebrated problem in mathemat-
ics.

2.1 The N -Body Problem

Consider N point masses moving in a Newtonian reference system, R
3, with

the only force acting on them being their mutual gravitational attraction.
Let the ith particle have position vector qi and mass mi > 0.

Newton’s second law says that the mass times the acceleration of the
ith particle, miq̈i, is equal to the sum of the forces acting on the particle.
Newton’s law of gravity says that the magnitude of force on particle i due
to particle j is proportional to the product of the masses and inversely pro-
portional to the square of the distance between them, Gmimj/‖qj − qi‖2 (G
is the proportionality constant). The direction of this force is along a unit
vector from particle i to particle j, (qj − qi)/‖qi− qj‖. Putting it all together
yields the equations of motion

miq̈i =
N∑

j=1,i �=j

Gmimj(qj − qi)
‖qi − qj‖3

=
∂U

∂qi
, (2.1)

where
1 Newton manuscript in Keynes collection, King’s College, Cambridge, UK. MSS

130.6, Book 3; 130.5, Sheet 3.

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 2,
c© Springer Science+Business Media, LLC 2009
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U =
∑

1≤i<j≤N

Gmimj

‖qi − qj‖
. (2.2)

In the above, G = 6.6732×10−11m3/ sec2kg, is the gravitational constant, U is
the self-potential or the negative of the potential. Let q = (q1, . . . , qN ) ∈ R

3N

and M = diag(m1,m1,m1, . . . ,mN ,mN ,mN ); thus Equations (2.1) are of
the form

Mq̈ − ∂U
∂q

= 0. (2.3)

Define p = (p1, . . . , pN ) ∈ R
3N by p = Mq̇, so pi = miq̇i is the momentum

of the ith particle. The equations of motion become

q̇i = pi/mi =
∂H

∂pi
, ṗi =

N∑
j=1,j �=i

Gmimj(qj − qi)
‖qi − qj‖3

= −∂H
∂qi

, (2.4)

where the Hamiltonian is

H = T − U, (2.5)

and T is kinetic energy

T =
N∑

i=1

‖pi‖2
2mi

(
=

1
2

N∑
i=1

mi‖q̇i‖2
)
. (2.6)

Here again the correct conjugate of position q is momentum p.

2.1.1 The Classical Integrals

The N -body problem is a system of 6N first-order equations; so, a complete
solution would require 6N − 1 time-independent integrals plus one time-
dependent integral. It is now fairly clear that for N > 2, it is too optimistic
to expect so many global integrals. However, we show that for all N there
are ten integrals for the system.

Let
L = p1 + · · ·+ pN

be the total linear momentum. From (2.4) it follows that L̇ = 0, because each
term in the sum appears twice with opposite sign. This gives C̈ = 0, where

C = m1q1 + · · ·mNqN

is the center of mass of the system because Ċ = L. Thus the total linear
momentum is constant, and the center of mass of the system moves with
uniform rectilinear motion. Integrating the center of mass equation gives
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C = L0t + C0, where L0 and C0 are constants of integration. L0 and C0 are
functions of the initial conditions, and thus are integrals of the motion. Thus
we have six constants of motion or integrals, namely, the three components
of L0 and the three components of C0.

Let
A = q1 × p1 + · · · qN × pN

be the total angular momentum of the system. Then

dA

dt
=
∑N

1 (q̇i × pi + qi × ṗi)

=
N∑
1

qi ×miqi +
N∑
1

N∑
1

Gmimjqi × (qj − qi)
‖qi − qj‖3

= 0.

The first sum above is zero because qi × qi = 0. In the second sum, use
qi × (qj − qi) = qi × qj and then observe that each term in the remaining
sum appears twice with opposite sign. Thus the three components of angular
momentum are constants of the motion or integrals also. Remember that
energy, H, is also an integral, so we have found the ten classical integrals of
the N -body problem.

2.1.2 Equilibrium Solutions

The N -body problem for N > 2 has resisted all attempts to be solved; indeed,
it is generally believed that the problem cannot be integrated in the classical
sense. Over the years, many special types of solutions have been found using
various mathematical techniques. In this section we find some solutions by
the time-honored method of guess and test.

The simplest type of solution one might look for is equilibrium or rest
solutions. From (2.1) or (2.3), an equilibrium solution would have to satisfy

∂U

∂q i

= 0 for i = 1, . . . , N. (2.7)

However, U is homogeneous of degree −1; and so, Euler’s theorem on homo-
geneous functions,

∑
qi
∂U

∂qi
= −U. (2.8)

Because U is the sum of positive terms, it is positive. If (2.7) were true, then
the left side of (2.8) would be zero, which gives a contradiction. Thus there
are no equilibrium solutions of the N -body problem.



30 2. Equations of Celestial Mechanics

2.1.3 Central Configurations

For a second type of simple solution to (2.1), try qi(t) = φ(t)ai, where the ais
are constant vectors and φ(t) is a scalar-valued function. Substituting into
(2.1) and rearranging yields

| φ |3 φ−1φ̈miai =
N∑

j=1,j �=i

Gmimj(aj − ai)
‖aj − ai‖3

. (2.9)

Because the right side is constant, the left side must be also; let the constant
be λ. Therefore, (2.9) has a solution if there exist a scalar function φ(t), a
constant λ, and constant vectors ai such that

φ̈ = − λφ

| φ |3 , (2.10)

− λmiai =
N∑

j=1,j �=i

Gmimj(aj − ai)
‖aj − ai‖3

, i = 1, . . . , N. (2.11)

Equation (2.10) is a simple ordinary differential equation (the one-dimensional
Kepler problem!); and so has many solutions. For example, one solution is
αt2/3, where α3 = 9λ/2. This solution goes from zero to infinity as t goes
from zero to infinity. Equation (2.11) is a nontrivial system of nonlinear alge-
braic equations. The complete solution is known only for N = 2, 3, but there
are many special solutions known for N > 3.

Now consider the planar N -body problem, where all the vectors lie in R
2.

Identify R
2 with the complex plane C by considering the qi, pi, etc., as com-

plex numbers. Seek a homographic solution of (2.1) by letting qi(t) = φ(t)ai,
where the ais are constant complex numbers and φ(t) is a time-dependent
complex-valued function. Geometrically, multiplication by a complex number
is a rotation followed by a dilation or expansion, i.e., a homography. Thus we
seek a solution such that the configuration of the particles is always homo-
graphically equivalent to a fixed configuration. Substituting this guess into
(2.1) and rearranging gives the same equation (2.9), and the same argument
gives Equations (2.10) and (2.11. Equation (2.10) is now the two-dimensional
Kepler problem. That is, if you have a solution of (2.11) where the ais are pla-
nar, then there is a solution of the N -body problem of the form qi = φ(t)ai,
where φ(t) is any solution of the planar Kepler problem, e.g., circular, elliptic,
etc. The complete analysis of (2.10) is carried out in Section 2.2.1; also see
Section 7.4.

A configuration of the N particles given by constant vectors a1, . . . , aN

satisfying (2.11) for some λ is called a central configuration (or c.c. for short).
In the special case when the ais are coplanar, a central configuration is also
called a relative equilibrium because, as we show, they become equilibrium
solutions in a rotating coordinate system. Central configurations are impor-
tant in the study of the total collapse of the system because it can be shown
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that the limiting configuration of a system as it tends to a total collapse is a
central configuration. See Saari (1971, 2005).

Note that any uniform scaling of a c.c. is also a c.c. In order to measure
the size of the system, we define the moment of inertia of the system as

I =
1
2

N∑
i=1

mi‖qi‖2. (2.12)

Then (2.11) can be rewritten as

∂U

∂q
(a) + λ

∂I

∂q
(a) = 0, (2.13)

where q = (q1, . . . , qN ) and a = (a1, . . . , aN ). The constant λ can be consid-
ered as a Lagrange multiplier; and thus a central configuration is a critical
point of the self-potential U restricted to a constant moment of inertia man-
ifold, I = I0, a constant. Fixing I0 fixes the scale.

Let a be a central configuration. Take the dot product of the vector a and
Equation (2.13) to get

∂U

∂q
(a) · a+ λ

∂I

∂q
(a) · a = 0. (2.14)

Because U is homogeneous of degree −1, and I is homogeneous of degree 2,
Euler’s theorem on homogeneous functions gives −U + 2λI = 0, or

λ =
U(a)
2I(a)

> 0. (2.15)

Summing (2.11) on i gives
∑
miai = 0, so the center of mass of a c.c. is at

the origin. If A is an orthogonal matrix, either 3×3 in general or 2×2 in the
planar case, then clearly Aa = (Aa1, . . . , AaN ) is a c.c. also with the same
λ. If τ 
= 0, then (τa1, τa2, . . . , τaN ) is a c.c. also with λ replaced by λ/τ3.
Indeed, any configuration similar to a c.c. is a c.c. When counting c.c., one
only counts similarity classes.

2.1.4 The Lagrangian Solutions

Consider the c.c. formula (2.11) for the planar 3-body problem. Then we
seek six unknowns, two components each for a1, a2, a3. If we hold the center
of mass at the origin, we can eliminate two variables; if we fix the moment
of inertia I, we can reduce the dimension by one; and if we identify two
configurations that differ by a rotation only, we can reduce the dimension by
one again. Thus in theory you can reduce the problem by four dimensions,
so that you have a problem of finding critical points of a function on a two-
dimensional manifold. This reduction is difficult in general, but there is a
trick that works well for the planar 3-body problem.
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Let ρij = ‖qi− qj‖ denote the distance between the ith and jth particles.
Once the center of mass is fixed at the origin and two rotationally equivalent
configurations are identified, then the three variables ρ12, ρ23, ρ31 are local
coordinates near a noncollinear configuration. That is, by specifying the angle
between a fixed line and q2 − q1, the location of the center of mass, and the
three variables ρ12, ρ23, ρ31, then the configuration of the masses is uniquely
specified. The function U is already written in terms of these variables because

U = G
(
m1m2

ρ12
+
m2m3

ρ23
+
m3m1

ρ31

)
. (2.16)

Let M be the total mass, i.e., M =
∑
mi, and assume that the center of

mass is at the origin; then

∑
i

∑
j mimjρ

2
ij =

∑
i

∑
j mimj‖qi − qj‖2

=
∑

i

∑
j mimj‖qi‖2 − 2

∑
i

∑
j mimj(qi, qj)

+
∑

i

∑
j mimj‖qj‖2

= 2MI − 2
∑

imi(qi,
∑

j mjqj) + 2MI

= 4MI.

Thus, if the center of mass is fixed at the origin,

I =
1

4M

∑
i

∑
j

mimjρ
2
ij . (2.17)

So, I can be written in terms of the mutual distances also. Holding I fixed
is the same as holding I∗ = 1

2 (m12ρ
2
12 +m23ρ

2
23 +m31ρ

2
31) fixed. Thus, the

conditions for U to have a critical point on the set I∗ = constant in these
coordinates is

− Gmimj

ρ2ij
+ λmimjρij = 0, (i, j) = (1, 2), (2, 3), (3, 1), (2.18)

which clearly has as its only solution ρ12 = ρ23 = ρ31 = (G/λ)−1/3. This
solution is an equilateral triangle, and λ is a scale parameter. These solutions
are attributed to Lagrange.

Theorem 2.1.1. For any values of the masses, there are two and only two
noncollinear central configurations for the 3-body problem, namely, the three
particles are at the vertices of an equilateral triangle. The two solutions cor-
respond to the two orientations of the triangle when labeled by the masses.
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It is trivial to see in these coordinates that the equilateral triangle c.c. is
a nondegenerate minimum of the self-potential U .

The above argument would also show that for any values of the masses,
there are two and only two noncoplanar c.c. for the 4-body problem, namely,
the regular tetrahedron configuration with two orientations.

2.1.5 The Euler-Moulton Solutions

Consider the collinear N -body problem, so q = (q1, . . . , qN ) ∈ R
N . Set S′ =

{q : I(q) = 1}, an ellipsoid or topological sphere of dimension N−1 in R
N ; set

G = {C(q) =
∑
miqi = 0}, a plane of dimensionN−1 in R

N ; and S = S′ ∩ G,
a sphere of dimension N − 2 in the plane G. Let Δ′

ij = {q : qi = qj} and
Δ′ = ∪Δ′

ij ; so U is defined and smooth on R
N\Δ′. Because Δ′ is a union

of planes through the origin, it intersects S in spheres of dimension N − 3,
denoted by Δ.

Let U be the restriction of U to S\Δ, so a critical point of U is a central
configuration. Note that S\Δ has N ! connected components. This is because
a component of S\Δ corresponds to a particular ordering of the qis. That
is, to each connected component there is an ordering qi1 < qi2 < · · · <
qiN

where (i1, i2, . . . , iN ) is a permutation of 1, 2, . . . , N . There are N ! such
permutations. Because U → ∞ as q → Δ, the function U has at least one
minimum per connected component. Thus there are at leastN ! critical points.

Let a be a critical point of U , so a satisfies (2.11) and λ = U(a)/2I(a).
The derivative of U at a in the direction v = (v1, . . . , vN ) ∈ TaS is

DU(a)(v) = −
∑ Gmimj(vj − vi)

‖aj − ai‖
+ λ
∑

miaivi, (2.19)

and the second derivative is

D2U(a)(v, w) = 2
∑ Gmimj

‖aj − ai‖3
((wj − wi)(vj − vi))+λ

∑
miwivi. (2.20)

From the above, D2U(a)(v, v) > 0 when v 
= 0, so the Hessian is positive
definite at a critical point and each such critical point is a local minimum of U .
Thus there can only be one critical point of U on each connected component,
or there are N ! critical points.

In counting the critical points above, we have not removed the symmetry
from the problem. The only one-dimensional orthogonal transformation is a
reflection in the origin. When we counted a c.c. and its reflection we have
counted each c.c. twice. Thus we have the following.

Theorem 2.1.2. (Euler-Moulton) There are exactly N !/2 collinear central
configurations in the N -body problem, one for each ordering of the masses on
the line.



34 2. Equations of Celestial Mechanics

These c.c. are minima of U only on the line. It can be shown that they
are saddle points in the planar problem.

2.1.6 Total Collapse

There is an interesting differential formula relating I and the various energies
of the system.

Lemma 2.1.1 (Lagrange–Jacobi formula). Let I be the moment of in-
ertia, T be the kinetic energy, U the potential energy, and h the total energy
of the system of N -bodies, then

Ï = 2T − U = T + h (2.21)

Proof. Starting with (2.12) differentiate I twice with respect to t and use
(2.3), (2.6), and (2.8) to get

Ï =
N∑
1

miq̇i · q̇i +
N∑
1

miqi · q̈i

=
N∑
1

mi‖q̇i‖2 +
N∑
1

qi ·
∂U

∂qi

= 2T − U.

This formula and its variations are known as the Lagrange–Jacobi formula
and it is used extensively in the studies of the growth and collapse of gravi-
tational systems. We give only one simple, but important application.

First we need another basic result.

Lemma 2.1.2 (Sundman’s inequality). Let c = ‖A‖ be the magnitude of
angular momentum and h = T − U the total energy of the system, then

c2 ≤ 4I(Ï − h). (2.22)

Proof. Note

c = ‖A‖ = ‖
∑
miqi × q̇i‖

≤
∑
mi‖qi‖‖q̇i‖ =

∑
(
√
mi‖qi‖)(

√
mi‖q̇i‖).

Now apply Cauchy’s inequality to the right side of the above to conclude

c2 ≤
∑

mi‖qi‖2
∑

mi‖q̇i‖ = 2I2T.

The conclusion follows at once from the Lagrange–Jacobi formula.
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Theorem 2.1.3 (Sundman’s theorem on total collapse). If total col-
lapse occurs then angular momentum is zero and it will only take a finite
amount of time. That is, if I(t) → 0 as t→ t1 then t1 <∞ and A = 0.

Proof. Let h be the total energy of the system, so by (2.21) Ï = T + h.
Assume I(t) is defined for all t ≥ 0 and I → 0 as t→∞. Then U →∞ and
because h is constant T → ∞ also. So there is a t∗ > 0 such that Ï ≥ 1 for
t ≥ t∗. Integrate this inequality to get I(t) ≥ 1

2 t
2 + at+ b for t ≥ t∗ where a

and b are constants. But this contradicts total collapse, so total collapse can
only take a finite amount of time.

Now suppose that I → 0 as t → t−1 < ∞ and so as before U → ∞ and
Ï → ∞. Thus, there is a t2 such that Ï(t) > 0 on t2 ≤ t < t1. Because
I(t) > 0, Ï > 0 on t2 ≤ t < t1, and I(t) → 0 as t → t1 it follows that İ ≤ 0
on t2 ≤ t < t1.

Now multiply both sides of Sundman’s inequality (2.22) by −İI−1 > 0 to
get

−1
4
c2İI−1 ≤ hİ − İ Ï .

Integrate this inequality to get

1
4
c2 log I−1 ≤ hI − 1

2
İ2 +K ≤ hI +K

where K is an integration constant. Thus

1
4
c2 ≤ hI +K

log I−1
.

As t → t1, I → 0 and so the right side of the above tends to zero. But this
implies c = 0

2.2 The 2-Body Problem

In Section 7.1 we introduce a new set of symplectic coordinates for the N -
body problem known as Jacobi coordinates. When N = 2, the Jacobi coor-
dinates reduce the 2-body problem to a solvable problem. For N = 2 the
Jacobi coordinates are (q, u,G, v) where

g = ν1q1 + ν2q2, G = p1 + p2,

u = q2 − q1, v = −ν2p1 + ν1p2,

where

ν1 =
m1

m1 +m2
, ν2 =

m2

m1 +m2
, ν = m1 +m2, M =

m1m2

m1 +m2
.
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So g is the center of mass, G is total linear momentum, u is the position of
particle 2 as viewed from particle 1, and v is a scaled momentum. As we show
in Section 7.1 this change of variables preserves the Hamiltonian character of
the problem.

The Hamiltonian of the 2-body problem in these Jacobi coordinates is

H =
‖G‖2
2ν

+
‖v‖2
2M

− m1m2

‖u‖ ,

and the equations of motion are

ġ =
∂H

∂G
=
G

ν
, Ġ = −∂H

∂g
= 0,

u̇ =
∂H

∂v
=
v

M
, v̇ = −∂H

∂u
= −m1m2u

‖u‖3 .

This says that total linear momentumG is an integral and the center of mass g
moves with constant linear velocity. By taking g = G = 0 as initial conditions
we are reduced to a problem in the u, v variables alone. The equations reduce
to

ü =
G(m1 +m2)u

‖u‖3 .

This is just the central forced problem or the Kepler problem discussed in
the next section. This says that the motion of one body, say the moon, when
viewed from another, say the earth, is as if the earth were a fixed body with
mass m1 +m2 and the moon were attracted to the earth by a central force.

2.2.1 The Kepler Problem

Consider a two body problem where one particle is so massive (like the sun)
that its position is fixed to the first approximation and the other particle has
mass 1. In this case, the equations describe the motion of the other body are

q̈ = − μq

‖q‖3 , (2.23)

where q ∈ R
3 is the position vector of the other body and μ is the constant

Gm where G is the universal gravitational constant and m is the mass of the
body fixed at the origin. In this case by defining p = q̇, this equation becomes
Hamiltonian with

H =
‖p‖
2

2

− μ

‖q‖ . (2.24)

Equation (2.23) or Hamiltonian (2.24) defines the Kepler problem. As
we have just seen, the 2-body problem can be reduced to this problem with
m = m1 +m2.



2.2 The 2-Body Problem 37

As before A = q × p, the angular momentum, is constant along the solu-
tions; and so, the three components of A are integrals. If A = 0, then

d

dt

(
q

‖q‖

)
=

(q × q̇)× q
‖q‖3 =

A× q
‖q‖3 = 0. (2.25)

The first equality above is a vector identity, so, if the angular momentum
is zero, the motion is collinear. Letting the line of motion be one of the
coordinate axes makes the problem a one degree of freedom problem and so
solvable by formulas (1.9). In this case the integrals are elementary, and one
obtains simple formulas (see the Problem section).

If A 
= 0, then both q and p = q̇ are orthogonal to A; and so, the motion
takes place in the plane orthogonal to A known as the invariant plane. In this
case, take one coordinate axis, say the last, to point along A, so, the motion
is in a coordinate plane. The equations of motion in this coordinate plane
have the same form as (2.23), but q ∈ R

2. In the planar problem only the
component of angular momentum perpendicular to the plane is nontrivial;
so the problem is reduced to two degrees of freedom with one integral. Such
a problem is solvable “up to quadrature.” It turns out that the problem is
solvable (well, almost) in terms of elementary functions, as we show in the
next section.

Let A = (0, 0, c) 
= 0, and q = (r cos θ, r sin θ, 0). A straightforward calcu-
lation shows that r2θ̇ = c. A standard calculus formula gives that the rate
at which area is swept out by a radius vector is just 1

2r
2θ̇; thus, the particle

sweeps out area at a constant rate of c/2. This is Kepler’s second law.

2.2.2 Solving the Kepler Problem

There are many ways to solve the Kepler problem. One way is given here and
other ways are given Section 7.4.1 and Section 7.6.1.

Multiply Equation (2.25) by −μ to get

−μ d
dt

(
q

‖q‖

)
= A× −μq‖q‖3 = A× ṗ.

Integrating this identity gives

μ

(
e+

q

‖q‖

)
= p×A, (2.26)

where e is a vector integration constant. Because q · A = 0, it follows that
e · A = 0. Thus if A 
= 0, then e lies in the invariant plane. If A = 0, then
e = −q/‖q‖ and then e lies on the line of motion and e has length 1.

Let A 
= 0 for the rest of this section. Dot both sides of (2.26) with q to
obtain

μ(e · q + ‖q‖) = q · p×A = q × p ·A = A ·A,
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and then,

e · q + ‖q‖ =
c2

μ
(2.27)

with c = ‖A‖.
If e = 0, then ‖q‖ = c2/μ, a constant. Because r2θ̇ = c where q =

(r cos θ, r sin θ, 0) we have θ̇ = μ2/c3. So when e = 0, the particle moves on a
circle with uniform angular velocity.

Now suppose that e 
= 0 and ε = ‖e‖. Let the plane of motion be illustrated
in Figure 2.1. Let r, θ be the polar coordinates of the particle with angle θ
measured from the positive q1 axis. The angle from the positive q1 axis to e
is denoted by g, and the difference of these two angles by f = θ − g. Thus,
e · q = ε r cos f and Equation (2.27) becomes

r =
c2/μ

1 + ε cos f
. (2.28)

Consider the line  illustrated in Figure 2.1 that is at a distance of c2/με
from the origin and perpendicular to e as illustrated. Equation (2.28) can be
rewritten

r = ε

(
c2

με
− r cos f

)
,

which says that the distance of the particle from the origin is equal to ε times
its distance from the line . This gives Kepler’s first law: the particle moves
on a conic section of eccentricity ε with one focus at the origin. Recall that
0 < ε < 1 is an ellipse, ε = 1 is a parabola, and ε > 1 is a hyperbola.

Equation (2.28) shows that r is at its closest approach when f = 0 and so
e points to the point of closest approach. This point is called the perihelion
if the sun is at the origin or the perigee if the earth is at the origin. We use
perigee. The angle g is called the argument of the perigee and the angle f is
called the true anomaly.

2.3 The Restricted 3-Body Problem

A special case of the 3-body problem is the limiting case in which one of the
masses tends to zero. A careful derivation of this problem is given in Chapter
7 after the transformation theory is developed.

In the traditional derivation of the restricted 3-body problem, one is asked
to consider the motion of an infinitesimally small particle moving in the plane
under the influence of the gravitational attraction of two finite particles that
revolve around each other in a circular orbit with uniform velocity. It is hard
to see the relationship this problem has to the full 3-body problem. For now
we simply give the Hamiltonian for the planar problem. Let the two finite
particles, called the primaries, have mass μ > 0 and 1−μ > 0. Let x ∈ R

2 be
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Figure 2.1. The elements of a Kepler motion.

the coordinate of the infinitesimal particle in a uniformly rotating coordinate
system and y ∈ R

2 the momentum conjugate to x. The rotating coordinate
system is so chosen that the particle of mass μ is always at (1−μ, 0) and the
particle of mass 1 − μ is at (−μ, 0). The Hamiltonian governing the motion
of the third (infinitesimal) particle in these coordinates is

H =
1
2
‖y‖2 − xTKy − U, (2.29)

where x, y ∈ R
2 are conjugate,

K = J2 =
[

0 1
−1 0

]
,

and U is the self-potential

U =
μ

d1
+

1− μ
d2

, (2.30)

with di the distance from the infinitesimal body to the ith primary, or

d21 = (x1 − 1 + μ)2 + x2
2, d22 = (x1 + μ)2 + x2

2. (2.31)

The equations of motion are
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ẋ =
∂H

∂y
= y +Kx

ẏ = −∂H
∂x

= Ky +
∂U

∂x
.

(2.32)

The term xTKy in the Hamiltonian H reflects the fact that the coordinate
system is not a Newtonian system, but a rotating coordinate system. It gives
rise to the Coriolis forces in the equations of motion (2.32). The line joining
the masses is known as the line of syzygy.

The proper definition of the restricted 3-body problem is the system of
differential equations (2.32) defined by the Hamiltonian in (2.29). It is a two
degree of freedom problem that seems simple but has defied integration. It
has given rise to an extensive body of research. We return to this problem
often in the subsequent chapters.

In much of the literature, the equations of motion for the restricted prob-
lem are written as a second-order equation in the position variable x. Elimi-
nating y from Equation (2.32) gives

ẍ− 2Kẋ− x =
∂U

∂x
, (2.33)

and the integral H becomes

H =
1
2
‖ẋ‖2 − 1

2
‖x‖2 − U. (2.34)

Usually in this case one refers to the Jacobi constant C as the integral of
motion with C = −2H + μ(1− μ); i.e.,

C = ‖x‖2 + 2U + μ(1− μ)− ‖ẋ‖2.

Sometimes one refers to

V = ‖x‖2 + 2U + μ(1− μ)

as the amended potential for the restricted 3-body problem.
The spatial restricted 3-body problem is essentially the same, but we need

to replace K = J2 by

K =

⎡
⎣

0 1 0
−1 0 0
0 0 0

⎤
⎦

throughout. Use

d21 = (x1 − 1 + μ)2 + x2
2 + x2

3, d22 = (x1 + μ)2 + x2
2 + x2

3,

in the definition of U , and note that amended potential becomes

V = x2
1 + x2

2 + 2U + μ(1− μ),

with a corresponding change in the Jacobi constant.



2.3 The Restricted 3-Body Problem 41

2.3.1 Equilibria of the Restricted Problem

The full 3-body problem has no equilibrium points, but as we have seen there
are solutions of the planar problem in which the particles move on uniformly
rotating solutions. In particular, there are the solutions in which the particles
move along the equilateral triangular solutions of Lagrange, and there are
also the collinear solutions of Euler. These solutions would be rest solutions
in a rotating coordinates system. Because the restricted 3-body problem is
a limiting case in rotating coordinates, we expect to see vestiges of these
solutions as equilibria.

From (2.32), an equilibrium solution for the restricted problem would
satisfy

0 = y +Kx, 0 = Ky +
∂U

∂x
, (2.35)

which implies

0 = x+
∂U

∂x
or 0 =

∂V

∂x
, (2.36)

where V is the amended potential

V = ‖x‖2 + 2U + μ(1− μ). (2.37)

Thus an equilibrium solution is a critical point of the amended potential.
First, seek solutions that do not lie on the line joining the primaries. As

in the discussion of the Lagrange c.c., use the distances d1, d2 given in (2.31)
as coordinates. From (2.31), we obtain the identity

x2
1 + x2

2 = μd21 + (1− μ)d22 − μ(1− μ), (2.38)

so V can be written

V = μd21 + (1− μ)d22 +
2μ
d1

+
2(1− μ)
d2

. (2.39)

The equation ∂V/∂x = 0 in these variables becomes

μd1 −
μ

d21
= 0, (1− μ)d2 −

(1− μ)
d22

= 0, (2.40)

which clearly has the unique solution d1 = d2 = 1. This solution lies at the
vertex of an equilateral triangle whose base is the line segment joining the two
primaries. Because there are two orientations, there are two such equilibrium
solutions: one in the upper half-plane denoted by L4, and one in the lower
half-plane denoted by L5. The Hessian of V at these equilibria is

∂2V

∂d2
=
[

6μ 0
0 6(1− μ)

]
,
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and so V has a minimum at each equilibrium and takes the minimum value
3.

These solutions are attributed to Lagrange. Lagrange thought that they
had no astronomical significance, but in the twentieth century, hundreds of
asteroids, the Trojans, were found oscillating around the L4 position in the
sun–Jupiter system and similar a number, the Greeks, were found oscillating
about the L5 position. That is, one group of asteroids, the sun, and Jupiter
form an equilateral triangle, approximately, and so does the other group.
With better telescopes many more asteroids have been found.

Now consider equilibria along the line of the primaries where x2 = 0. In
this case, the amended potential is a function of x1, which we denote by x
for the present, and so V has the form

V = x2 ± 2μ
(x− 1 + μ)

± 2(1− μ)
(x+ μ)

. (2.41)

In the above, one takes the signs so that each term in the above is positive.
There are three cases: (i) x < −μ, where the signs are − and −; (ii) −μ <
x < 1− μ, where the signs are − and +; and (iii) 1− μ < x, where the signs
are + and +. Clearly V → ∞ as x → ±∞, as x → −μ, or as x → 1 − μ, so
V has at least one critical point on each of these three intervals. Also

d2V

dx2
= 2± 2μ

(x− 1 + μ)3
± 2(1− μ)

(x+ μ)3
, (2.42)

where the signs are again taken so that each term is positive; so, V is a convex
function. Therefore, V has precisely one critical point in each of these inter-
vals, or three critical points. These three collinear equilibria are attributed to
Euler and are denoted by L1,L2, and L3 as shown in Figure 2.2. In classical
celestial mechanics literature, these equilibrium points are called libration
points, hence the use of the symbol L.

2.3.2 Hill’s Regions

The Jacobi constant is C = V − ‖ẋ‖, where V is the amended potential and
so V ≥ C. This inequality places a constraint on the position variable x for
each value of C, and if x satisfies this condition, then there is a solution of
the restricted problem through that point x for that value of C. The set

H(C) = {x : V (x) ≥ C}

is known as the Hill’s region for C, and its boundary where equality holds is
called the zero velocity curves.

As seen before, V has critical points at the libration points Li, i = 1, . . . , 5.
Let Ci = V (Li) be the critical values. As we have shown, the collinear points
Li, i = 1, 2, 3 are minima of V along the x1-axis, but they are saddle points
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Figure 2.2. The five equilibria of the restricted problem.

in the plane. A careful analysis shows that for 0 < μ ≤ 1/2, the critical values
satisfy

3 = C4 = C5 < C1 ≤ C2 < C3.

See Szebehely (1967) for a complete analysis of the Hill’s regions with figures.

Problems

1. Draw the complete phase portrait of the collinear Kepler problem. Inte-
grate the collinear Kepler problem.

2. Show that μ2(ε2 − 1) = 2hc for the Kepler problem .
3. The area of an ellipse is πa2(1−ε2)1/2, where a is the semi-major axis. We

have seen in Kepler’s problem that area is swept out at a constant rate
of c/2. Prove Kepler’s third law: The period p of a particle in a circular
or elliptic orbit (ε < 1) of the Kepler problem is p = (2π/

√
μ)a3/2.

4. Let

K =
[

0 1
−1 0

]
;

then

exp(Kt) =
[

cos t sin t
− sin t cos t

]
.

Find a circular solution of the two-dimensional Kepler problem of the
form q = exp(Kt)a where a is a constant vector.
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5. Assume that a particular solution of the N -body problem exists for all
t > 0 with h > 0. Show that U →∞ as t→∞. Does this imply that the
distance between one pair of particles goes to infinity? (No.)

6. Hill’s lunar problem is defined by the Hamiltonian

H =
‖y‖2

2
− xTKy − 1

‖x‖ −
1
2
(3x2

1 − ‖x‖2),

where x, y ∈ R
2.

a) Write the equations of motion.
b) Show that there are two equilibrium points on the x1-axis.
c) Sketch the Hill’s regions for Hill’s lunar problem.
d) Why did Hill say that the motion of the moon was bounded? (He

had the Earth at the origin, and an infinite sun infinitely far away
and x was the position of the moon in this ideal system. What can
you say if x and y are small?



3. Linear Hamiltonian Systems

3.1 Preliminaries

In this chapter we study Hamiltonian systems that are linear differential
equations. Many of the basic facts about Hamiltonian systems and symplectic
geometry are easy to understand in this simple context. The basic linear
algebra introduced in this chapter is the cornerstone of many of the later
results on nonlinear systems. Some of the more advanced results which require
a knowledge of multilinear algebra or the theory of analytic functions of a
matrix are relegated to the appendices or to references to the literature. These
results are not important for the main development.

We assume a familiarity with the basic theory of linear algebra and linear
differential equations. Let gl(m,F) denote the set of all m×m matrices with
entries in the field F (R or C) and Gl(m,F) the set of all nonsingular m×m
matrices with entries in F. Gl(m,F) is a group under matrix multiplication
and so is called the general linear group. I = Im and 0 = 0m denote the
m ×m identity and zero matrices, respectively. In general, the subscript is
clear from the context.

In this theory a special role is played by the 2n× 2n matrix

J =
[

0 I
−I 0

]
. (3.1)

Note that J is orthogonal and skew-symmetric; i.e.,

J−1 = JT = −J. (3.2)

Let z be a coordinate vector in R
2n, I an interval in R, and S : I →

gl(2n,R) be continuous and symmetric. A linear Hamiltonian system is the
system of 2n ordinary differential equations

ż = J
∂H

∂z
= JS(t)z = A(t)z, (3.3)

where

H = H(t, z) =
1
2
zTS(t)z, (3.4)

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 3,
c© Springer Science+Business Media, LLC 2009
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A(t) = JS(t). H, the Hamiltonian, is a quadratic form in the zs with coeffi-
cients that are continuous in t ∈ I ⊂ R. If S, and hence H, is independent of
t, then H is an integral for (3.3) by Theorem 1.3.1.

Let t0 ∈ I be fixed. From the theory of differential equations, for each
z0 ∈ R

2n, there exists a unique solution φ(t, to, z0) of (3.3) for all t ∈ I

that satisfies the initial condition φ(t0, t0, z0) = z0. Let Z(t, t0) be the 2n ×
2n fundamental matrix solution of (3.3) that satisfies Z(t0, t0) = I. Then
φ(t, t0, z0) = Z(t, t0)z0.

In the case where S and A are constant, we take t0 = 0 and

Z(t) = eAt = expAt =
∞∑

i=1

Antn

n!
. (3.5)

A matrix A ∈ gl(2n,F) is called Hamiltonian (or infinitesimally symplec-
tic), if

ATJ + JA = 0. (3.6)

The set of all 2n× 2n Hamiltonian matrices is denoted by sp(2n,R).

Theorem 3.1.1. The following are equivalent: (i) A is Hamiltonian, (ii)
A = JR where R is symmetric, and (iii) JA is symmetric.

Moreover, if A and B are Hamiltonian, then so are AT , αA (α ∈ F),
A±B, and [A,B] ≡ AB −BA .

Proof. A = J(−JA) and (3.6) is equivalent to (−JA)T = (−JA); thus (i) and
(ii) are equivalent. Because J2 = −I, (ii) and (iii) are equivalent. Thus the
coefficient matrix A(t) of the linear Hamiltonian system (3.1) is a Hamiltonian
matrix.

The first three parts of the next statement are easy. Let A = JR and
B = JS, where R and S are symmetric. Then [A,B] = J(RJS − SJR)
and (RJS − SJR)T = STJTRT − RTJTST = −SJR + RJS so [A,B] is
Hamiltonian.

In the 2× 2 case,

A =
[
α β
γ δ

]

and so,

ATJ + JA =
[

0 α+ δ
−α− δ 0

]
.

Thus, a 2× 2 matrix is Hamiltonian if and only if its trace, α+ δ, is zero. If
you write a second-order equation ẍ + p(t)ẋ + q(t)x = 0 as a system in the
usual way with ẋ = y, ẏ = −q(t)x − p(t)y, then it is a linear Hamiltonian
system when and only when p(t) ≡ 0. The p(t)ẋ is usually considered the
friction term.



3.1 Preliminaries 47

Now let A be a 2n× 2n matrix and write it in block form

A =
[
a b
c d

]

and so

ATJ + JA =
[
c− cT aT + d
−a− dT −b+ bT

]
.

Therefore, A is Hamiltonian if and only if aT + d = 0 and b and c are
symmetric. In higher dimensions, being Hamiltonian is more restrictive than
just having trace zero.

The function [·, ·] : gl(m,F) × gl(m,F) → gl(m,F) of Theorem 3.1.1 is
called the Lie product. The second part of this theorem implies that the set
of all 2n× 2n Hamiltonian matrices, sp(2n,R), is a Lie algebra. We develop
some interesting facts about Lie algebras of matrices in the Problem section.

A 2n× 2n matrix T is called symplectic with multiplier μ if

TTJT = μJ, (3.7)

where μ is a nonzero constant. If μ = +1, then T is simply symplectic. The
set of all 2n× 2n symplectic matrices is denoted by Sp(2n,R).

Theorem 3.1.2. If T is symplectic with multiplier μ, then T is nonsingular
and

T−1 = −μ−1JTTJ. (3.8)

If T and R are symplectic with multiplier μ and ν, respectively, then TT , T−1,
and TR are symplectic with multipliers μ, μ−1, and μν, respectively.

Proof. Because the right-hand side, μJ , of (3.7) is nonsingular, T must be
also. Formula (3.8) follows at once from (3.7). If T is symplectic, then from
(3.8) one gets TT = −μJT−1J ; so, TJTT = TJ(−μJT−1J) = μJ . Thus TT

is symplectic with multiplier μ. The remaining facts are proved in a similar
manner.

This theorem implies that Sp(2n,R) is a group, a subgroup of Gl(2n,R).
Weyl says that originally he advocated the name “complex group” for
Sp(2n,R), but it became an embarrassment due to the collisions with the
word “complex” in the connotation of complex number. “I therefore pro-
posed to replace it by the corresponding Greek adjective ‘symplectic.’ ” See
page 165 in Weyl (1948).

In the 2× 2 case

T =
[
α β
γ δ

]

and so
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TTJT =
[

0 αδ − βγ
−αδ + βγ 0

]
.

So a 2 × 2 matrix is symplectic (with multiplier μ) if and only if it has
determinant +1 (respectively μ). Thus a 2 × 2 symplectic matrix defines a
linear transformation which is orientation-preserving and area-preserving.

Now let T be a 2n× 2n matrix and write it in block form

T =
[
a b
c d

]
(3.9)

and so

TTJT =
[
aT c− cTa aT d− cT b
bT c− dTa bT d− dT b

]
.

Thus T is symplectic with multiplier μ if and only if aT d − cT b = μI and
aT c and bT d are symmetric. Being symplectic is more restrictive in higher
dimensions. Formula (3.8) gives

T−1 = μ−1

[
dT −bT
−cT aT

]
. (3.10)

This reminds one of the formula for the inverse of a 2× 2 matrix!

Theorem 3.1.3. The fundamental matrix solution Z(t, t0) of a linear Hamil-
tonian system (3.3) is symplectic for all t, t0 ∈ I. Conversely, if Z(t, t0) is a
continuously differential function of symplectic matrices, then Z is a matrix
solution of a linear Hamiltonian system.

Proof. Let U(t) = Z(t, t0)TJZ(t, t0). Because Z(t0, t0) = I, it follows that
U(t0) = J . U̇ t) = ŻTJZ + ZTJŻ = ZT (ATJ + JA)Z = 0; so, U(t) ≡ J .

If ZTJZ = J for t ∈ I, then ŻTJZ + ZTJŻ = 0; so, (ŻZ−1)TJ +
J(ŻZ−1) = 0. This shows that A = ŻZ−1 is Hamiltonian and Ż = AZ.

Corollary 3.1.1. The (constant) matrix A is Hamiltonian if and only if eAt

is symplectic for all t.

Change variables by z = T (t)u in system (3.3). Equation (3.3) becomes

u̇ = (T−1AT − T−1Ṫ )u. (3.11)

In general this equation will not be Hamiltonian, however:

Theorem 3.1.4. If T is symplectic with multiplier μ−1, then (3.11) is a
Hamiltonian system with Hamiltonian

H(t, u) =
1
2
uT (μTTS(t)T +R(t))u,

where
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R(t) = JT−1Ṫ .

Conversely, if (3.11) is Hamiltonian for every Hamiltonian system (3.3), then
U is symplectic with constant multiplier μ.

Proof. Because TJTT = μ−1J for all t, Ṫ JTT + TJṪT = 0 or (T−1Ṫ )J +
J(T−1Ṫ )T = 0; so, T−1Ṫ is Hamiltonian. Also T−1J = μJTT ; so, T−1AT =
T−1JST = μJTTST , and so, T−1AT = J(μTTST ) is Hamiltonian also.

Now let (3.11) always be Hamiltonian. By taking A ≡ 0 we have that
T−1Ṫ = B(t) is Hamiltonian or T is a matrix solution of the Hamiltonian
system

v̇ = vB(t). (3.12)

So, T (t) = KV (t, t0), where V (t, t0) is the fundamental matrix solution of
(3.12), and K = T (t0) is a constant matrix. By Theorem 3.1.3 , V is sym-
plectic.

Consider the change of variables z = T (t)u = KV (t, t0)u as a two-stage
change of variables: first w = V (t, t0)u and second z = Kw. The first trans-
formation from u to w is symplectic, and so, by the first part of this theo-
rem, preserves the Hamiltonian character of the equations. Because the first
transformation is reversible, it would transform the set of all linear Hamilto-
nian systems onto the set of all linear Hamiltonian systems. Thus the second
transformation from w to z must always take a Hamiltonian system to a
Hamiltonian system.

If z = Kw transforms all Hamiltonian systems ż = JCz, C constant and
symmetric, to a Hamiltonian system ẇ = JDw, then JD = K−1JCK is
Hamiltonian, and JK−1JCK is symmetric for all symmetric C. Thus

JK−1JCK = (JK−1JCK)T = KTCJK−TJ,
C(KJKTJ) = (JKJKT )C,

CR = RTC,

where R = KJKTJ . Fix i, 1 ≤ i ≤ 2n and take C to be the symmetric
matrix that has +1 at the i, i position and zero elsewhere. Then the only
nonzero row of CR is the ith, which is the ith row of R and the only nonzero
column of RTC is the ith, which is the ith column of RT . Because these
must be equal, the only nonzero entry in R or RT must be on the diagonal.
So R and RT are diagonal matrices. Thus R = RT = diag(r1, . . . , r2n), and
RC−CR = 0 for all symmetric matrices C. But RC−CR = ((rj − ri)cij) =
(0). Because cij , i < j, is arbitrary, ri = rj , or R = −μI for some constant
μ. R = KJKTJ = −μI implies KJKT = μJ .

This is an example of a change of variables that preserves the Hamiltonian
character of the system of equations. The general problem of which changes of
variables preserve the Hamiltonian character is discussed in detail in Chapter
6.
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The fact that the fundamental matrix of (3.3) is symplectic means that the
fundamental matrix must satisfy the identity (3.7). There are many functional
relations in (3.7); so, there are functional relations between the solutions.
Theorem 3.1.5 given below is just one example of how these relations can be
used. See Meyer and Schmidt (1982b) for some other examples.

Let z1, z2 : I → R
2n be two smooth functions; we define the Poisson

bracket of z1 and z2 to be

{z1, z2}(t) = zT
1 (t)Jz2(t); (3.13)

so, {z1, z2} : I → R
2n is smooth. The Poisson bracket is bilinear and skew

symmetric. Two functions z1 and z2 are said to be in involution if {z1, z2} ≡ 0.
A set of n linearly independent functions and pairwise in involution functions
z1, . . . , zn are said to be a Lagrangian set. In general, the complete solution
of a 2n-dimensional system requires 2n linearly independent solutions, but
for a Hamiltonian system a Lagrangian set of solutions suffices.

Theorem 3.1.5. If a Lagrangian set of solutions of (3.3) is known, then a
complete set of 2n linearly independent solutions can be found by quadrature.
(See (3.14).)

Proof. Let C = C(t) be the 2n× n matrix whose columns are the n linearly
independent solutions. Because the columns are solutions, Ċ = AC; because
they are in involution, CTJC = 0; and because they are independent, CTC is
an n×n nonsingular matrix. Define the 2n×n matrix by D = JC(CTC)−1.
Then DTJD = 0 and CTJD = −I, and so P = (D,C) is a symplectic
matrix. Therefore,

P−1 =
[
−CTJ
DTJ

]
;

change coordinates by z = Pζ so that

ζ̇ = P−1(AP − Ṗ )ζ =
[

CTSD + CTJḊ 0
−DTSD −DTJḊ 0

]
.

All the submatrices above are n×n. The one in the upper left-hand corner is
also zero, which can be seen by differentiating CTJD = −I to get ĊTJD +
CTJḊ = (AC)TJD + CTJḊ = CTSD + CTJḊ = 0. Therefore,

u̇ = 0,
v̇ = −DT (SD + JḊ)u,

where ζ =
[
u
v

]
,

which has a general solution u = u0, v = v0 − V (t)u0, where

V (t) =
∫ t

t0

DT (SD + JḊ)dt. (3.14)

A symplectic fundamental matrix solution of (3.3) is Z = (D−CV,C). Thus
the complete set of solutions is obtained by performing the integration or
quadrature in the formula above.
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This result is closely related to the general result given in a later chapter
which says that k integrals in involution for a general Hamiltonian system
can be used to reduce the number of degrees of freedom by k and, hence, the
dimension by 2k.

Recall that a nonsingular matrix T has two polar decompositions, T =
PO = O′P ′, where P and P ′ are positive definite matrices and O and O′

are orthogonal matrices. These representations are unique. P is the unique
positive definite square root of TTT ; P ′ is the unique positive definite square
root of TTT , O = (TTT )−1/2T ; and O′ = T (TTT )−1/2.

Theorem 3.1.6. If T is symplectic, then the P,O, P ′, O′ of the polar decom-
position given above are symplectic also.

Proof. The formula for T−1 in (3.8) is an equivalent condition for T to be
symplectic. Let T = PO. Because T−1 = −JTTJ , O−1P−1 = −JOTPTJ =
(JTOTJ)(JTPTJ). In this last equation, the left-hand side is the product
of an orthogonal matrix O−1 and a positive definite matrix P−1, as is the
right-hand side a product of an orthogonal matrix J−1OJ and a positive
definite matrix JTPJ . By the uniqueness of the polar representation, O−1 =
J−1OTJ = −JOTJ and P−1 = JTPJ = −JPTJ . By (3.8) these last rela-
tions imply that P and O are symplectic. A similar argument gives that P ′

and O′ are symplectic.

Theorem 3.1.7. The determinant of a symplectic matrix is +1.

Proof. Depending on how much linear algebra you know, this theorem is
either easy or difficult. In Section 4.6 and Chapter 5 we give alternate proofs.
Let T be symplectic. Formula (3.7) gives det(TTJT ) = detTT det J detT =
(detT )2 = detJ = 1 so detT = ±1. The problem is to show that detT = +1.

The determinant of a positive definite matrix is positive; so, by the polar
decomposition theorem it is enough to show that an orthogonal symplectic
matrix has a positive determinant. So let T be orthogonal also.

Using the block representation in (3.9) for T , formula (3.10) for T−1, and
the fact that T is orthogonal, T−1 = TT , one has that T is of the form

T =
[
a b
−b a

]
.

Define P by

P =
1√
2

[
I iI
I −iI

]
, P−1 =

1√
2

[
I I

−iI iI

]
.

Compute PTP−1 = diag((a− bi), (a + bi)), so

detT = detPTP−1 = det(a− bi) det(a+ bi) > 0.
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3.2 Symplectic Linear Spaces

What is the matrix J? There are many different answers to this question
depending on the context in which the question is asked. In this section we
answer this question from the point of view of abstract linear algebra. We
present other answers later on, but certainly not all.

Let V be an m-dimensional vector space over the field F where F = R or
C. A bilinear form is a mapping B : V×V → F that is linear in both variables.
A bilinear form is skew symmetric or alternating if B(u, v) = −B(v, u) for
all u, v ∈ V. A bilinear form B is nondegenerate if B(u, v) = 0 for all v ∈ V

implies u = 0. An example of an alternating bilinear form on F
m is B(u, v) =

uTSv, where S is any skew-symmetric matrix.
Let B be a bilinear form and e1, . . . , em a basis for V. Given any vector

v ∈ V, we write v = Σαiei and define an isomorphism Φ : V → F
m : v → a =

(α1, . . . , αm). Define sij = B(ei, ej) and S to be the m×m matrix S = (sij),
the matrix of B in the basis (e). Let Φ(u) = b = (β1, . . . , βm); then B(u, v) =
ΣΣαiβjB(ei, ej) = bTSa. So in the coordinates defined by the basis (ei), the
bilinear form is just bTSa where S is the matrix (B(ei, ej)). If B is alternating,
then S is skew-symmetric, and if B is nondegenerate, then S is nonsingular
and conversely.

If you change the basis by ei = Σqijfj and Q is the matrix Q = (qij), then
the bilinear form B has the matrix R in the basis (f), where S = QRQT .
One says that R and S are congruent (by Q). If Q is any elementary matrix
so that premultiplication of R by Q is an elementary row operation, then
postmultiplication of R by QT is the corresponding column operation. Thus
S is obtained from R by performing a sequence of row operations and the
same sequence of column operations and conversely.

Theorem 3.2.1. Let S be any skew-symmetric matrix; then there exists a
nonsingular matrix Q such that

R = QSQT = diag(K,K, . . . ,K, 0, 0, . . . , 0),

where

K =
[

0 1
−1 0

]
.

Or given an alternating form B there is a basis for V such that the matrix of
B in this basis is R.

Proof. If S = 0, we are finished. Otherwise, there is a nonzero entry that
can be transferred to the first row by interchanging rows. Preform the cor-
responding column operations. Now bring the nonzero entry in the first row
to the second column (the (1,2) position) by column operations and preform
the corresponding row operations.

Scale the first row and the first column so that +1 is in the (1,2) and so
that −1 is in the (2,1) position. Thus the matrix has the the 2× 2 matrix K
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in the upper left-hand corner. Using row operations we can eliminate all the
nonzero elements in the first two columns below the first two rows. Performing
the corresponding column operation yields a matrix of the form diag(K,S′),
where S′ is an (m− 2)× (m− 2) skew symmetric matrix. Repeat the above
argument on S′.

Note that the rank of a skew symmetric matrix is always even; thus, a
nondegenerate, alternating bilinear form is defined on an even dimensional
space.

A symplectic linear space, or just a symplectic space, is a pair, (V, ω)
where V is a 2n-dimensional vector space over the field F, F = R or F = C,
and ω is a nondegenerate alternating bilinear form on V. The form ω is called
the symplectic form or the symplectic inner product. Throughout the rest of
this section we shall assume that V is a symplectic space with symplectic
form ω. The standard example is F

2n and ω(x, y) = xTJy. In this example
we shall write {x, y} = xTJy and call the space (F2n, J) or simply F

2n, if no
confusion can arise.

A symplectic basis for V is a basis v1, . . . , v2n for V such that ω(vi, vj) =
Jij , the i, jth entry of J . A symplectic basis is a basis so that the matrix of
ω is just J . The standard basis e1, . . . , e2n, where ei is 1 in the ith position
and zero elsewhere, is a symplectic basis for (F2n, J). Given two symplectic
spaces (Vi, ωi), i = 1, 2, a symplectic isomorphism or an isomorphism is a
linear isomorphism L : V1 → V2 such that ω2(L(x), L(y)) = ω1(x, y) for all
x, y ∈ V1; that is, L preserves the symplectic form. In this case we say that
the two spaces are symplectically isomorphic or symplectomorphic.

Corollary 3.2.1. Let (V, ω) be a symplectic space of dimension 2n. Then V

has a symplectic basis. (V, ω) is symplectically isomorphic to (F2n, J), or all
symplectic spaces of dimension 2n are isomorphic.

Proof. By Theorem 3.2.1 there is a basis for V such that the matrix of ω is
diag(K, . . . ,K). Interchanging rows 2i and n+ 2i− 1 and the corresponding
columns brings the matrix to J . The basis for which the matrix of ω is J is
a symplectic basis; so, a symplectic basis exists.

Let v1, . . . , v2n be a symplectic basis for V and u ∈ V. There exist
constants αi such that u =

∑
αivi. The linear map L : V → F

2n :
u→ (α1, . . . , α2n) is the desired symplectic isomorphism.

The study of symplectic linear spaces is really the study of one canonical
example, e.g., (F2n, J). Or put another way, J is just the coefficient matrix of
the symplectic form in a symplectic basis. This is one answer to the question
“What is J?”.

If V is a vector space over F, then f is a linear functional if f : V →
F is linear, f(αu + βv) = αf(u) + βf(v) for all u, v ∈ V, and α, β ∈ F.
Linear functionals are sometimes called 1-forms or covectors. If E is the vector
space of displacements of a particle in Euclidean space, then the work done
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by a force on a particle is a linear functional on E. The usual geometric
representation for a vector in E is a directed line segment. Represent a linear
functional by showing its level planes. The value of the linear functional f
on a vector v is represented by the number of level planes the vector crosses.
The more level planes the vector crosses, the larger is the value of f on v.

The set of all linear functionals on a space V is itself a vector space
when addition and scalar multiplication are just the usual addition and scalar
multiplication of functions. That is, if f and f ′ are linear functionals on V

and α ∈ F, then define the linear functionals f + f ′ and αf by the formulas
(f + f ′)(v) = f(v) + f ′(v) and (αf)(v) = αf(v). The space of all linear
functionals is called the dual space (to V) and is denoted by V

∗.
When V is finite dimensional so is V

∗ with the same dimension. Let
u1, . . . , um be a basis for V; then for any v ∈ V, there are scalars f1, . . . , fm

such that v = f1u1 + · · ·+fmum. The f i are functions of v so we write f i(v),
and they are linear. It is not too hard to show that f1, . . . , fm forms a basis
for V

∗; this basis is called the dual basis (dual to u1, . . . , um). The defining
property of this basis is f i(uj) = δi

j (the Kronecker delta function, defined
by δi

j = 1 if i = j and zero otherwise).
If W is a subspace of V of dimension r, then define W

0 = {f ∈ V
∗ : f(e) =

0 for all e ∈ W}. W
0 is called the annihilator of W and is easily shown to be

a subspace of V
∗ of dimension m − r. Likewise, if W is a subspace of V

∗ of
dimension r then W

0 = {e ∈ V : f(e) = 0 for all f ∈ W
∗} is a subspace of

V of dimension m− r. Also W
00 = W. See any book on vector space theory

for a complete discussion of dual spaces with proofs, for example, Halmos
(1958).

Because ω is a bilinear form, for each fixed v ∈ V the function ω(v, ·) :
V → R is a linear functional and so is in the dual space V

∗. Because ω is
nondegenerate, the map � : V → V

∗ : v → ω(v, ·) = v� is an isomorphism.
Let # : V

∗ → V : v → v# be the inverse of �. Sharp, #, and flat, �, are
musical symbols for raising and lowering notes and are used here because
these isomorphisms are index raising and lowering operations in the classical
tensor notation.

Let U be a subspace of V. Define U
⊥ = {v ∈ V : ω(v,U) = 0}. Clearly

U
⊥ is a subspace, {U,U⊥} = 0 and U = U

⊥⊥.

Lemma 3.2.1. U
⊥ = U

0#. dim U + dim U
⊥ = dim V = 2n.

Proof.
U

⊥ = {x ∈ V : ω(x, y) = 0 for all y ∈ U}
= {x ∈ V : x�(y) = 0 for all y ∈ U}
= {x ∈ V : x� ∈ U

0}
= U

0#.

The second statement follows from dim U+dim U
0 = dim V and the fact that

# is an isomorphism.
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A symplectic subspace U of V is a subspace such that ω restricted to this
subspace is nondegenerate. By necessity U must be of even dimension, and
so, (U, ω) is a symplectic space.

Proposition 3.2.1. If U is symplectic, then so is U
⊥, and V = U ⊕ U

⊥.
Conversely, if V = U⊕W and ω(U,W) = 0, then U and W are symplectic.

Proof. Let x ∈ U ∩ U
⊥; so, ω(x, y) = 0 for all y ∈ U, but U is symplectic so

x = 0. Thus U ∩ U
⊥ = 0. This, with Lemma 3.2.1, implies V = U⊕ U

⊥.
Now let V = U⊕W and ω(U,W) = 0. If ω is degenerate on U, then there

is an x ∈ U, x 
= 0, with ω(x,U) = 0. Because V = U⊕W and ω(U,W) = 0,
this implies ω(x,V) = 0 or that ω is degenerate on all of V. This contradiction
yields the second statement.

A Lagrangian space U is a subspace of V of dimension n such that ω is
zero on U, i.e., ω(u,w) = 0 for all u,w ∈ U. A direct sum decomposition
V = U ⊕W where U, and W are Lagrangian spaces, is called a Lagrangian
splitting, and W is called the Lagrangian complement of U. In R

2 any line
through the origin is Lagrangian, and any other line through the origin is a
Lagrangian complement.

Lemma 3.2.2. Let U be a Lagrangian subspace of V, then there exists a
Lagrangian complement of U.

Proof. The example above shows the complement is nonunique. Let V = F
2n

and U ⊂ F
2n. Then W = JU is a Lagrangian complement to U. If x, y ∈ W

then x = Ju, y = Jv where u, v ∈ U, or {u, v} = 0. But {x, y} = {Ju, Jv} =
{u, v} = 0, so W is Lagrangian. If x ∈ U ∩ JU then x = Jy with y ∈ U. So
x, Jx ∈ U and so {x, Jx} = −‖x‖2 = 0 or x = 0. Thus U ∩W = φ.

Lemma 3.2.3. Let V = U ⊕ W be a Lagrange splitting and x1, . . . , xn

any basis for U. Then there exists a unique basis y1, ..., yn of W such that
x1, . . . , xn, y1, . . . , yn is a symplectic basis for V.

Proof. Define φi ∈ W
0 by φi(w) = ω(xi, w) for w ∈ W. If

∑
αiφi = 0,

then ω(
∑
αixi, w) = 0 for all w ∈ W or ω(

∑
αixi,W) = 0. But because

V = U⊕W and ω(U,U) = 0, it follows that ω(
∑
αixi,V) = 0. This implies∑

αixi = 0, because ω is nondegenerate, and this implies αi = 0, because
the xis are independent. Thus φ1, . . . , φn are independent, and so, they form
a basis for W

0. Let y1, . . . , yn be the dual basis in W; so, ω(xi, yj) = φi(yj) =
δij .

A linear operator L : V → V is called Hamiltonian, if

ω(Lx, y) + ω(x,Ly) = 0 (3.15)

for all x, y ∈ V. A linear operator L : V → V is called symplectic, if
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ω(Lx,Ly) = ω(x, y) (3.16)

for all x, y ∈ V. If V is the standard symplectic space (F2n, J) and L is a
matrix, then (3.15) means xT (LTJ+JL)y = 0 for all x and y. But this implies
that L is a Hamiltonian matrix. On the other hand, if L satisfies (3.16) then
xTLTJLy = xTJy for all x and y. But this implies L is a symplectic matrix.
The matrix representation of a Hamiltonian (respectively, symplectic) linear
operator in a symplectic coordinate system is a Hamiltonian (respectively,
symplectic) matrix.

Lemma 3.2.4. Let V = U ⊕ W be a Lagrangian splitting and A : V →
V a Hamiltonian (respectively, symplectic) linear operator that respects the
splitting; i.e., A : U → U and A : W → W. Choose any basis of the form
given in Lemma 3.2.3; the matrix representation of A in these symplectic
coordinates is of the form

[
BT 0
0 −B

] (
respectively,

[
BT 0
0 B−1

])
. (3.17)

Proof. A respects the splitting and the basis for V is the union of the bases for
U and W, therefore the matrix representation for A must be in block-diagonal
form. A Hamiltonian or symplectic matrix which is in block-diagonal form
must be of the form given in (3.17).

3.3 The Spectra of Hamiltonian and Symplectic
Operators

In this section we obtain some canonical forms for Hamiltonian and sym-
plectic matrices in some simple cases. The complete picture is very detailed
and would lead us too far afield to develop fully. We start with only real
matrices, but sometimes we need to go into the complex domain to finish
the arguments. We simply assume that all our real spaces are embedded in
a complex space of the same dimension.

If A is Hamiltonian and T is symplectic, then T−1AT is Hamiltonian
also. Thus if we start with a linear constant coefficient Hamiltonian system
ż = Az and make the change of variables z = Tu, then in the new coordi-
nates the equations become u̇ = (T−1AT )u, which is again Hamiltonian. If
B = T−1AT , where T is symplectic, then we say that A and B are symplec-
tically similar. This is an equivalence relation. We seek canonical forms for
Hamiltonian and symplectic matrices under symplectic similarity. In as much
as it is a form of similarity transformation, the eigenvalue structure plays an
important role in the following discussion.

Because symplectic similarity is more restrictive than ordinary similarity,
one should expect more canonical forms than the usual Jordan canonical
forms. Consider, for example, the two Hamiltonian matrices
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A1 =
[

0 1
−1 0

]
and A2 =

[
0 −1
1 0

]
(3.18)

both of which could be the coefficient matrix of a harmonic oscillator.
In fact, they are both the real Jordan forms for the harmonic oscillator.
The reflection T = diag(1,−1) defines a similarity between these two; i.e.,
T−1A1T = A2. The determinant of T is not +1, therefore T is not symplec-
tic. In fact, A1 and A2 are not symplectically equivalent. If T−1A1T = A2,
then T−1 exp(A1t)T = exp(A2t), and T would take the clockwise rotation
exp(A1t) to the counterclockwise rotation exp(A2t). But, if T were symplec-
tic, its determinant would be +1 and thus would be orientation preserving.
Therefore, T cannot be symplectic.

Another way to see that the two Hamiltonian matrices in (3.18) are not
symplectically equivalent is to note that A1 = JI and A2 = J(−I). So
the symmetric matrix corresponding to A1 is I, the identity, and to A2 is
−I. I is positive definite, whereas −I is negative definite. If A1 and A2 where
symplectically equivalent, then I and −I would be congruent, which is clearly
false.

A polynomial p(λ) = amλ
m + am−1λ

m−1 + · · · + a0 is even if p(−λ) =
p(λ), which is the same as ak = 0 for all odd k. If λ0 is a zero of an even
polynomial, then so is −λ0; therefore, the zeros of a real even polynomial
are symmetric about the real and imaginary axes. The polynomial p(λ) is a
reciprocal polynomial if p(λ) = λmp(λ−1), which is the same as ak = am−k

for all k. If λ0 is a zero of a reciprocal polynomial, then so is λ−1
0 ; therefore,

the zeros of a real reciprocal polynomial are symmetric about the real axis
and the unit circle (in the sense of inversion).

Proposition 3.3.1. The characteristic polynomial of a real Hamiltonian
matrix is an even polynomial. Thus if λ is an eigenvalue of a Hamiltonian
matrix, then so are −λ, λ, −λ.

The characteristic polynomial of a real symplectic matrix is a reciprocal
polynomial. Thus if λ is an eigenvalue of a real symplectic matrix, then so
are λ−1, λ, λ

−1

Proof. Recall that detJ = 1. Let A be a Hamiltonian matrix; then p(λ) =
det(A − λI) = det(JATJ − λI) = det(JATJ + λJJ) = detJ det(A +
λI) detJ = det(A+ λI) = p(−λ).

Let T be a symplectic matrix; by Theorem 3.1.7 detT = +1. p(λ) =
det(T −λI) = det(TT −λI) = det(−JT−1J −λI) = det(−JT−1J +λJJ) =
det(−T−1+λI) = detT−1 det(−I+λT ) = λ2n det(−λ−1I+T ) = λ2np(λ−1).

Actually we can prove much more. By (3.6), Hamiltonian matrix A sat-
isfies A = J−1(−AT )J ; so, A and −AT are similar, and the multiplicity of
the eigenvalues λ0 and −λ0 are the same. In fact, the whole Jordan block
structure will be the same for λ0 and −λ0.
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By (3.8), symplectic matrix T satisfies T−1 = J−1TTJ ; so, T−1 and TT

are similar, and the multiplicity of the eigenvalues λ0 and λ−1
0 are the same.

The whole Jordan block structure will be the same for λ0 and λ−1
0 .

Consider the linear constant coefficient Hamiltonian system of differential
equations

ẋ = Ax, (3.19)

where A is a Hamiltonian matrix and Z(t) = eAt is the fundamental matrix
solution. By the above it is impossible for all the eigenvalues of A to be in
the left half-plane, and, therefore, it is impossible for all the solutions to be
exponentially decaying. Thus the origin cannot be asymptotically stable.

Henceforth, let A be a real Hamiltonian matrix and T a real symplectic
matrix. First we develop the theory for Hamiltonian matrices and then the
theory of symplectic matrices. Because eigenvalues are sometimes complex,
it is necessary to consider complex matrices at times, but we are always be
concerned with the real answers in the end.

First consider the Hamiltonian case. Let λ be an eigenvalue of A, and
define subspaces of C

2n by ηk(λ) = kernel (A− λI)k, η†(λ) = ∪2n
1 ηk(λ). The

eigenspace of A corresponding to the eigenvalue λ is η(λ) = η1(λ), and the
generalized eigenspace is η†(λ). If {x, y} = xTJy = 0, then x and y are
J-orthogonal.

Lemma 3.3.1. Let λ and μ be eigenvalues of A with λ + μ 
= 0, then
{η(λ), η(μ)} = 0. That is, the eigenvectors corresponding to λ and μ are
J-orthogonal.

Proof. Let Ax = λx, and Ay = μy, where x, y 
= 0. λ{x, y} = {Ax, y} =
xTATJy = −xTJAy = −{x,Ay} = −μ{x, y}; and so, (λ+ μ){x, y} = 0.

Corollary 3.3.1. Let A be a 2n×2n Hamiltonian matrix with distinct eigen-
values λ1, . . . , λn,−λ1, . . . ,−λn; then there exists a symplectic matrix S (pos-
sibly complex) such that S−1AS = diag(λ1, . . . , λn,−λ1, . . . ,−λn).

Proof. Let U = η1(λ1) ∪ · · · ∪ η1(λn) and W = η1(−λ1) ∪ · · · ∪ η1(−λn); by
the above, V = U⊕W is a Lagrange splitting, and A respects this splitting.
Choose a symplectic basis for V by Lemma 3.2.3. Changing to that basis is
effected by a symplectic matrix G; i.e., G−1AG = diag(BT,−B), where B has
eigenvalues λ1, . . . , λn. Let C be such that C−TBTCT = diag(λ1, . . . , λn) and
define a symplectic matrix by Q = diag(CT,C−1). The required symplectic
matrix is S = GQ.

If complex transformations are allowed, then the two matrices in (3.18)
can both be brought to diag(i,−i) by a symplectic similarity, and thus one is
symplectically similar to the other. However, they are not similar by a real
symplectic similarity. Let us investigate the real case in detail.
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A subspace U of C
n is called a complexification (of a real subspace) if U

has a real basis. If U is a complexification, then there is a real basis x1, . . . , xk

for U, and for any u ∈ U, there are complex numbers α1, . . . , αk such that
u = α1x1 + · · ·+ αnxn. But then u = α1x1 + · · ·+ αnxn ∈ U also.

Conversely, if U is a subspace such that u ∈ U implies u ∈ U, then U is a
complexification. Because if x1, . . . , xk is a complex basis with xj = uj + vji,
then uj = (xj + xj)/2 and vj = (xj − xj)/2i are in U, and the totality of
u1, . . . , uk, v1, . . . , vk span U. From this real spanning set, one can extract a
real basis. Thus U is a complexification if and only if U = U (i.e., u ∈ U

implies u ∈ U).
Until otherwise said let A be a real Hamiltonian matrix with distinct

eigenvalues λ1, . . . , λn,−λ1, . . . ,−λn so 0 is not an eigenvalue. The eigenval-
ues of A fall into three groups: (1) the real eigenvalues ±α1, . . . ,±αs, (2) the
pure imaginary±β1i, . . . ,±βri, and (3) the truly complex±γ1±δ1i, . . . ,±γt±
δti. This defines a direct sum decomposition

V = (⊕jUj)⊕ (⊕jWj)⊕ (⊕jZj) , (3.20)

where

Uj = η(αj)⊕ η(−αj)

Wj = η(βji)⊕ η(−βji)

Zj = {η(γj + δji)⊕ η(γj − δji)} ⊕ {η(−γj − δji)⊕ η(−γj + δji)}.

Each of the summands in the above is an invariant subspace for A. By Lemma
3.3.1, each space is J-orthogonal to every other, and so by Proposition 3.2.1
each space must be a symplectic subspace. Because each subspace is invariant
under complex conjugation, each is the complexification of a real space. Thus
we can choose symplectic coordinates for each of the spaces, and A in these
coordinates would be block diagonal. Therefore, the next task is to consider
each space separately.

Lemma 3.3.2. Let A be a 2 × 2 Hamiltonian matrix with eigenvalues ±α,
α real, α 
= 0. Then there exists a real 2× 2 symplectic matrix S such that

S−1AS =
[
α 0
0 −α

]
. (3.21)

Proof. Let Ax = αx, and Ay = −αy, where x and y are nonzero. Because
x and y are eigenvectors corresponding to different eigenvalues, they are in-
dependent. Thus {x, y} 
= 0. Let u = {x, y}−1y: so, x, u is a real symplectic
basis, S = (x, u) is a real symplectic matrix, and S is the matrix of the
lemma.

Lemma 3.3.3. Let A be a real 2 × 2 Hamiltonian matrix with eigenvalues
±βi, β 
= 0. Then there exists a real 2× 2 symplectic matrix S such that
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S−1AS =
[

0 β
−β 0

]
, or S−1AS =

[
0 −β
β 0

]
. (3.22)

Proof. Let Ax = iβx, and x = u + vi 
= 0. So Au = −βv and Av = βu.
Because u + iv and u − iv are independent, u and v are independent. Thus
{u, v} = δ 
= 0. If δ = γ2 > 0, then define S = (γ−1u, γ−1v) to get the first
option in (3.22), or if δ = −γ2 < 0, then define S = (γ−1v, γ−1u) to get the
second option.

Sometimes it is more advantageous to have a diagonal matrix than to have
a real one; yet you want to keep track of the real origin of the problem. This
is usually accomplished by reality conditions as defined in the next lemma.

Lemma 3.3.4. Let A be a real 2 × 2 Hamiltonian matrix with eigenvalues
±βi, β 
= 0. Then there exist a 2× 2 matrix S and a matrix R such that

S−1AS =
[
iβ 0
0 −iβ

]
, R =

[
0 1
1 0

]
, STJS = ±2iJ, S = SR. (3.23)

Proof. Let Ax = iβx, where x 
= 0. Let x = u + iv as in the above lemma.
Compute {x, x} = 2i{v, u} 
= 0. Let γ = 1/

√
| {v, u} | and S = (γx, γx).

If S satisfies (3.23), then S is said to satisfy reality conditions with respect
to R. The matrix S is no longer a symplectic matrix but is what is called
a symplectic matrix with multiplier ±2i. We discuss these types of matrices
later. The matrix R is used to keep track of the fact that the columns of
S are complex conjugates. We could require STJS = +2iJ by allowing an
interchange of the signs in (3.23).

Lemma 3.3.5. Let A be a 4×4 Hamiltonian matrix with eigenvalue ±γ±δi,
γ 
= 0, δ 
= 0. Then there exists a real 4× 4 symplectic matrix S such that

S−1AS =
[
BT 0
0 −B

]
,

where B is a real 2× 2 matrix with eigenvalues +γ ± δi.

Proof. U = η(γj + δji)⊕η(γj − δji) is the complexification of a real subspace
and by Lemma 3.3.1 is Lagrangian. A restricted to this subspace has eigen-
values +γ ± δi. A complement to U is W = η(−γj + δji) ⊕ η(−γj − δji).
Choose any real basis for U and complete it by Lemma 3.2.4. The result
follows from Lemma 3.2.4.

In particular you can choose coordinates so that B is in real Jordan form;
so,

B =
[
γ δ
−δ γ

]
.
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This completes the case when A has distinct eigenvalues. There are many
cases when A has eigenvalues with zero real part; i.e., zero or pure imaginary.
These cases are discussed in detail in Section 4.7. In the case where the
eigenvalue zero is of multiplicity 2 or 4 the canonical forms are the 2× 2 and
4× 4 zero matrices and

[
0 ±1
0 0

]
,

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 1 0 0
0 0 0 ±1
0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦ . (3.24)

The corresponding Hamiltonians are

±η2
1/2, ξ2η1, ξ2η1 ± η2

2/2.

In the case of a double eigenvalue ±αi, α 
= 0, the canonical forms in the
4× 4 case are

⎡
⎢⎢⎣

0 0 α 0
0 0 0 ±α
−α 0 0 0
0 ∓α 0 0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0 α 0 0
−α 0 0 0
±1 0 0 α
0 ±1 −α 0

⎤
⎥⎥⎦ . (3.25)

The corresponding Hamiltonians are

(α/2)(ξ21 + η2
1)± (α/2)(ξ22 + η2

2), α(ξ2η1 − ξ1η2)∓ (ξ21 + ξ22)/2.

Next consider the symplectic case. Let λ be an eigenvalue of T , and de-
fine subspaces of C

2n by ηk(λ) = kernel (T − λI)k, η†(λ) = ∪2n
1 ηk(λ). The

eigenspace of T corresponding to the eigenvalue λ is η(λ) = η1(λ), and the
generalized eigenspace is η†(λ). Because the proof of the next set of lemmas
is similar to those given just before, the proofs are left as problems.

Lemma 3.3.6. If λ and μ are eigenvalues of the symplectic matrix T such
that λμ 
= 1; then {η(λ), η(μ)} = 0. That is, the eigenvectors corresponding
to λ and μ are J-orthogonal.

Corollary 3.3.2. Let T be a 2n×2n symplectic matrix with distinct eigenval-
ues λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n ; then there exists a symplectic matrix S (possibly
complex) such that

S−1TS = diag(λ1, . . . , λn, λ
−1
1 , . . . , λ−1

n ).

If complex transformations are allowed, then the two matrices
[
α β
−β α

]
, and

[
α −β
β α

]
, α2 + β2 = 1,
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can both be brought to diag(α + βi, α − βi) by a symplectic similarity, and
thus, one is symplectically similar to the other. However, they are not similar
by a real symplectic similarity. Let us investigate the real case in detail.

Until otherwise said, let T be a real symplectic matrix with distinct eigen-
values λ1, . . . , λn, λ

−1
1 , . . . , λ−1

n , so 1 is not an eigenvalue. The eigenvalues of
T fall into three groups: (1) the real eigenvalues, μ±1

1 , . . . , μ±1
s , (2) the eigen-

values of unit modulus, α±β1i, . . . , αr±βri, and (3) the complex eigenvalues
of modulus different from one, (γ1 ± δ1i)±1, . . . , (γt ± δti)±1. This defines a
direct sum decomposition

V = (⊕jUj)⊕ (⊕jWj)⊕ (⊕jZj) , (3.26)

where

Uj = η(μj)⊕ η(μ−1
j )

Wj = η(αj + βji)⊕ η(αj − βJ i)

Zj = {η(γj + δji)⊕ η(γj − δji)} ⊕ {η(γj + δji)−1 ⊕ η(γj − δji)−1}.

Each of the summands in (3.26) is invariant for T . By Lemma 3.3.6 each
space is J-orthogonal to every other, and so each space must be a symplectic
subspace. Because each subspace is invariant under complex conjugation,
each is the complexification of a real space. Thus we can choose symplectic
coordinates for each of the spaces, and T in these coordinates would be block
diagonal. Therefore, the next task is to consider each space separately.

Lemma 3.3.7. Let T be a 2 × 2 symplectic matrix with eigenvalues μ±1, μ
real, and μ 
= 1. Then there exists a real 2× 2 symplectic matrix S such that

S−1TS =
[
μ 0
0 μ−1

]
.

Lemma 3.3.8. Let T be a real 2 × 2 symplectic matrix with eigenvalues
α ± βi, α2 + β2 = 1, and β 
= 0. Then there exists a real 2 × 2 symplectic
matrix S such that

S−1TS =
[
α β
−β α

]
or S−1TS =

[
α −β
β α

]
. (3.27)

Sometimes it is more advantageous to have a diagonal matrix than to have
a real one; yet you want to keep track of the real origin of the problem. This
is usually accomplished by reality conditions as defined in the next lemma.

Lemma 3.3.9. Let T be a real 2 × 2 symplectic matrix with eigenvalues
α ± βi, α2 + β2 = 1, and β 
= 0. Then there exists a 2 × 2 matrix S and a
matrix R such that
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S−1TS =
[
α+ βi 0

0 α− βi

]
, R =

[
0 1
1 0

]
,

STJS = ±2iJ , and S = SR.

Lemma 3.3.10. Let T be a 4 × 4 symplectic matrix with eigenvalues (γ ±
δi)±1, γ2 +δ2 
= 1, and δ 
= 0. Then there exists a real 4×4 symplectic matrix
S such that

S−1TS =
[
BT 0
0 B−1

]
,

where B is a real 2× 2 matrix with eigenvalues +γ ± δi.

In particular you can choose coordinates so that B is in real Jordan form;
so,

B =
[
γ δ
−δ γ

]
.

This completes the case when T has distinct eigenvalues.

3.4 Periodic Systems and Floquet–Lyapunov Theory

In this section we introduce some of the vast theory of periodic Hamiltonian
systems. A detailed discussion of periodic systems can be found in the two-
volume set by Yakubovich and Starzhinskii (1975).

Consider a periodic, linear Hamiltonian system

ż = J
∂H

∂z
= JS(t)z = A(t)z, (3.28)

where

H = H(t, z) =
1
2
zTS(t)z, (3.29)

and A(t) = JS(t). Assume that A and S are continuous and T -periodic; i.e.

A(t+ T ) = A(t), S(t+ T ) = S(t) for all t ∈ R

for some fixed T > 0. The Hamiltonian, H, is a quadratic form in the zs
with coefficients which are continuous and T -periodic in t ∈ R. Let Z(t) be
the fundamental matrix solution of (3.28) that satisfies Z(0) = I.

Lemma 3.4.1. Z(t+ T ) = Z(t)Z(T ) for all t ∈ R.

Proof. Let X(t) = Z(t + T ) and Y (t) = Z(t)Z(T ). Ẋ(t) = Ż(t + T ) =
A(t + T )Z(t + T ) = A(t)X(t); so, X(t) satisfies (3.28) and X(0) = Z(T ).
Y (t) also satisfies (3.28) and Y (t) = Z(T ). By the uniqueness theorem for
differential equations, X(t) ≡ Y (t).
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The above lemma only requires (3.28) to be periodic, not necessarily
Hamiltonian. Even though the equations are periodic the fundamental ma-
trix need not be so, and the matrix Z(T ) is the measure of the nonperodicity
of the solutions. Z(T ) is called the monodromy matrix of (3.28), and the
eigenvalues of Z(T ) are called the (characteristic) multipliers of (3.28). The
multipliers measure how much solutions are expanded, contracted, or rotated
after a period. The monodromy matrix is symplectic by Theorem 3.1.3, and
so the multipliers are symmetric with respect to the real axis and the unit
circle by Proposition 3.3.1. Thus the origin cannot be asymptotically stable.

In order to understand periodic systems we need some information on
logarithms of matrices. The complete proof is long, therefore the proof has
been relegated to Section 4.3. Here we shall prove the result in the case when
the matrices are diagonalizable.

A matrix R has a logarithm if there is a matrix Q such that R = expQ,
and we write Q = logR. The logarithm is not unique in general, even in the
real case, because I = expO = exp 2πJ . If R has a logarithm, R = expQ,
then R is nonsingular and has a square root R1/2 = exp(Q/2). The matrix

R =
[
−1 1
0 −1

]

has no real square root and hence no real logarithm.

Theorem 3.4.1. Let R be a nonsingular matrix; then there exists a matrix
Q such that R = expQ. If R is real and has a square root, then Q may be
taken as real. If R s symplectic, then Q may be taken as Hamiltonian.

Proof. We only prove this result in the case when R is symplectic and has
distinct eigenvalues because in this case we only need consider the canonical
forms of Section 3.3. See Section 4.3 for a complete discussion of logarithms
of symplectic matrices.

Consider the cases. First

log
[
μ 0
0 μ−1

]
=
[

log μ 0
0 − log μ

]

is a real logarithm when μ > 0 and complex when μ < 0. A direct computa-
tion shows that diag(μ, μ−1) has no real square root when μ < 0.

If α and β satisfy α2 +β2 = 1, then let θ be the solution of α = cos θ and
β = sin θ so that

log
[
α β
−β α

]
=
[

0 θ
−θ 0

]
.

Lastly, log diag(BT,B−1) = diag(log BT,− log B) where

B =
[
γ δ
−δ γ

]
,
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and

logB = log ρ
[

1 0
0 1

]
+
[

0 θ
−θ 0

]
,

is real where ρ =
√

(γ2 + δ2), and γ = ρ cos θ and δ = ρ sin θ.

The monodromy matrix Z(T ) is nonsingular and symplectic so there ex-
ists a Hamiltonian matrix K such that Z(T ) = exp(KT ). Define X(t) by
X(t) = Z(t) exp(−tK) and compute

X(t+ T ) = Z(t+ T ) expK(−t− T )
= Z(t)Z(T ) exp(−KT ) exp(−Kt)
= Z(t) exp(−Kt)
= X(t).

Therefore, X(t) is T -periodic. Because X(t) is the product of two symplectic
matrices, it is symplectic. In general, X and K are complex even if A and Z
are real. To ensure a real decomposition, note that by Lemma 3.4.1, Z(2T ) =
Z(T )Z(T ); so, Z(2T ) has a real square root. Define K as the real solution of
Z(2T ) = exp(2KT ) and X(t) = Z(t) exp(−Kt). Then X is 2T periodic.

Theorem 3.4.2. (The Floquet–Lyapunov theorem) The fundamental matrix
solution Z(t) of the Hamiltonian (3.28) that satisfies Z(0) = I is of the form
Z(t) = X(t) exp(Kt), where X(t) is symplectic and T -periodic and K is
Hamiltonian. Real X(t) and K can be found by taking X(t) to be 2T -periodic
if necessary.

Let Z,X, and K be as above. In Equation (3.28) make the symplectic,
periodic change of variables z = X(t)w; so,

ż = Ẋw +Xẇ = (Że−Kt − Ze−KtK)w + Ze−Ktẇ

= AZe−Ktw − Ze−KtKw + Ze−Ktẇ

= Az = AXw = AZe−Ktw

and hence
−Ze−KtKw + Ze−Ktẇ = 0

or
ẇ = Kw. (3.30)

Corollary 3.4.1. The symplectic periodic change of variables z = X(t)w
transforms the periodic Hamiltonian system (3.28) to the constant Hamilto-
nian system (3.30). Real X and K can be found by taking X(t) to be 2T -
periodic if necessary.

The eigenvalues of K are called the (characteristic) exponents of (3.28)
where K is taken as log(Z(T )/T ) even in the real case. The exponents are
the logarithms of the multipliers and so are defined modulo 2πi/T .
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Problems

1. Supply proofs to the lemmas and corollaries 3.3.6 to 3.3.10.
2. Prove that the two symplectic matrices in formula (3.27) in Lemma 3.3.8

are not symplectically similar.
3. Consider a quadratic form H = (1/2)xTSx, where S = ST is a real

symmetric matrix. The index of the quadratic form H is the dimension
of the largest linear space where H is negative. Show that the index of
H is the same as the number of negative eigenvalues of S. Show that
if S is nonsingular and H has odd index, then the linear Hamiltonian
system ẋ = JSx is unstable. (Hint: Show that the determinant of JS is
negative.)

4. Consider the linear fractional (or Möbius transformation)

Φ : z → w =
1 + z
1− z , Φ

−1 : w → z =
w − 1
w + 1

.

a) Show that Φ maps the left half plane into the interior of the unit
circle. What are Φ(0), Φ(1), Φ(i), Φ(∞)?

b) Show that Φ maps the set of m×m matrices with no eigenvalue +1
bijectively onto the set of m×m matrices with no eigenvalue −1.

c) Let B = Φ(A) where A and B are 2n×2n. Show that B is symplectic
if and only if A is Hamiltonian.

d) Apply Φ to each of the canonical forms for Hamiltonian matrices to
obtain canonical forms for symplectic matrices.

5. Consider the system (*) Mq̈ + V q = 0, where M and V are n× n sym-
metric matrices and M is positive definite. From matrix theory there is
a nonsingular matrix P such that PTMP = I and an orthogonal matrix
R such that RT (PTV P )R = Λ = diag(λ1, . . . , λn). Show that the above
equation can be reduced to p̈+Λp = 0. Discuss the stability and asymp-
totic behavior of these systems. Write (*) as a Hamiltonian system with
Hamiltonian matrix A = Jdiag(V,M−1). Use the above results to obtain
a symplectic matrix T such that

T−1AT =

⎡
⎣

0 I

−Λ 0

⎤
⎦ .

(Hint: Try T = diag(PR,P−TR)).
6. Let M and V be as in Problem 4.

a) Show that if V has one negative eigenvalue, then some solutions of
(*) in Problem 4 tend to infinity as t→ ±∞.

b) Consider the system (**) Mq̈ + ∇U(q) = 0, where M is positive
definite and U : R

n → R is smooth. Let q0 be a critical point of U
such that the Hessian of U at q0 has one negative eigenvalue (so q0
is not a local minimum of U). Show that q0 is an unstable critical
point for the system (**).
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7. Let H(t, z) = 1
2z

TS(t)z and ζ(t) be a solution of the linear system with
Hamiltonian H. Show that

d

dt
H =

∂

∂t
H;

i.e.,
d

dt
H(t, ζ(t)) =

∂

∂t
H(t, ζ(t)).

8. LetG be a set. A product onG is a function fromG×G intoG. A product
is usually written using infix notation; so, if the product is denoted by
◦ then one writes a ◦ b instead of ◦(a, b). Addition and multiplication
of real numbers define products on the reals, but the inner product of
two vectors does not define a product because the inner product of two
vectors is a scalar not a vector.
A group is a set G with a product ◦ on G that satisfies (i) there is a unique
element e ∈ G such that a ◦ e = e ◦ a = a for all a ∈ G, (ii) for every
a ∈ G there is a unique element a−1 ∈ G such that a◦a−1 = a−1 ◦a = e,
(iii) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈ G. e is called the identity, a−1

the inverse of a, and the last property is the associative law.
Show that the following are groups.
a) G = R, the reals, and ◦ = +, addition of real numbers. (What is e?

Ans. 0.)
b) G = C, the complex numbers, and ◦ = +, addition of complex num-

bers. (What is a−1? Ans -a.)
c) G = R\{0}, the nonzero reals, and ◦ = ·, multiplication of reals.
d) G = Gl(n,R), the set of all n × n real, nonsingular matrices, and
◦ = · matrix multiplication.

9. Using the notation of the previous problem show that the following are
not groups.
a) G = E

3, 3-dimensional geometric vectors, and ◦ = ×, the vector
cross product.

b) G = R
+, the positive reals, and ◦ = +, addition.

c) G = R, and ◦ = ·, real multiplication.
10. A subgroup of a group G is a subset H ⊂ G, which is a group with the

same product. A matrix Lie group is a closed subgroup of Gl(m,F). Show
that the following are matrix Lie groups.
a) Gl(m,F) = general linear group = all n× n nonsingular matrices
b) Sl(m,F) = special linear group = set of all A ∈ Gl(m,F) with

detA = 1.
c) O(m,F) = orthogonal group = set of all m×m orthogonal matrices.
d) So(m,F) = special orthogonal group = O(m,F) ∩ Sl(m,F).
e) Sp(2n,F) = symplectic group = set of all 2n×2n symplectic matrices.

11. Show that the following are Lie subalgebras of gl(m,F), see Problem 2
in Chapter 1.
a) sl(m,F) = set ofm×m matrices with trace = 0. (sl = special linear.)
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b) o(m,F) = set of m×m skew symmetric matrices. (o = orthogonal.)
c) sp(2n,F) = set of all 2n× 2n Hamiltonian matrices.

12. Let Q(n,F) be the set of all quadratic forms in 2n variables with coef-
ficients in F, so q ∈ Q(n,R), if q(x) = 1

2x
TSx, where S is a 2n × 2n

symmetric matrix and x ∈ F
2n.

a) Prove that Q(n,F) is a Lie algebra, where the product is the Poisson
bracket.

b) Prove that Ψ : Q(n,F) → sp(2n,F) : q(x) = 1
2x

TSx → JS is a Lie
algebra isomorphism.

13. Show that the matrices
⎡
⎣
−1 1

0 −1

⎤
⎦ and

⎡
⎣
−2 0

0 −1/2

⎤
⎦

have no real logarithm.
14. Prove the theorem: eAt ∈ G for all t if and only if A ∈ A in the following

cases:
a) When G = Gl(m,R) and A = gl(m,R)
b) When G = Sl(m,R) and A = sl(m,R)
c) When G = O(m,R) and A = so(m,R)
d) When G = Sp(2n,R) and A = sp(2n,R)

15. Consider the map Φ : A → G : A �→ eA =
∑∞

0 An/n!. Show that Φ is
a diffeomorphism of a neighborhood of 0 ∈ A onto a neighborhood of
I ∈ G in the following cases:
a) When G = Gl(m,R) and A = gl(m,R)
b) When G = Sl(m,R) and A = sl(m,R)
c) When G = O(m,R) and A = so(m,R)
d) When G = Sp(2n,R) and A = sp(2n,R)

(Hint: The linearization of Φ is A �→ I + A. Think implicit function
theorem.)

16. Show that Gl(m,R) (respectively Sl(m,R), O(m,R), Sp(2n,R)) is a
differential manifold of dimension m2 (respectively, m2, m(m − 1)/2,
(2n2 + n)). (Hint: Use the problem above and group multiplication to
move neighborhoods around.)



4. Topics in Linear Theory

This chapter contains various special topics in the linear theory of Hamil-
tonian systems. Therefore, the chapter can be skipped on first reading and
referred back to when the need arises. Sections 4.1, 4.2, 4.4, and 4.5 are
independent of each other.

4.1 Critical Points in the Restricted Problem

In Section 2.3.1 it was shown that the restricted problem of three bodies has
five equilibrium points. They are the three collinear points L1, L2, and L3,
and the two triangular points L4 and L5. We use the methods developed in
this chapter to investigate the behavior of solutions near these equilibria. Only
if the corresponding linearized system has periodic solutions can we hope to
find solutions of the full nonlinear system that will liberate near one of these
equilibrium points. In Chapter 13 we investigate the nonlinear stability of
these points. The presentation given in this section is due to Professor Dieter
Schmidt.

The Hamiltonian function of the restricted problem of three bodies is

H =
1
2
(y2

1 + y2
2) + x2y1 − x1y2 − U, (4.1)

where U is the self-potential given by

U =
1− μ
d1

+
μ

d2

with
d21 − (x1 + μ)2 + x2

2 and d22 − (x1 + μ− 1)2 + x2
2.

If x1, x2 is a critical point of the amended potential,

V =
1
2
(x2

1 + x2
2) + U(x1, x2), (4.2)

then x1, x2, y1 = −x2, y2 = x1 is an equilibrium point. Let ξ1 and ξ2 be
one of the five critical points of (4.2). In order to study the motion near this
equilibrium point, we translate to new coordinates by

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 4,
c© Springer Science+Business Media, LLC 2009
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u1 = x1 − ξ1, v1 = y1 + ξ2,

u2 = x2 − ξ2, v2 = y2 − ξ1.
This translation to the new coordinates (u1, u2, v1, v2) is obviously symplec-
tic; so, we can perform this change of coordinates in the Hamiltonian (4.1)
and preserve its structure. Expanding through second-order terms in the new
variables, we obtain

H =
1
2
(v21 + v22) + u2v1 − u1v2 −

1
2
(
Ux1x1u

2
1 + 2Ux1x2u1u2 + Ux2x2u

2
2

)
+ · · · .

There are no linear terms because the expansion is performed at an equilib-
rium and the constant term has been omitted because it contributes noth-
ing in forming the corresponding system of differential equations. The above
quadratic Hamiltonian function gives rise to the following Hamiltonian ma-
trix ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0

−1 0 0 1

Ux1x1 Ux1x2 0 0

Ux1x2 Ux2x2 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3)

The eigenvalues of this matrix determine the behavior of the linearized sys-
tem. The characteristic equation is

λ4 + (4− Vx1x1 − Vx2x2)λ
2 + Vx1x1Vx2x2 − V 2

x1x2
= 0.

The partial derivatives are

Vx1x1 = 1 + (1− μ)
3(x1 + μ)2 − d21

d51
+ μ

3(x1 + μ− 1)2 − d22
d52

,

Vx1x2 = 3x1x2(
1− μ
d51

+
μ

d52
),

Vx2x2 = 1 + (1− μ)
3x2

2 − d21
d51

+ μ
3x2

2 − d22
d52

.

They have to be evaluated at the critical points. Thus we have to consider
the collinear points and the triangular points separately.

Lemma 4.1.1. At the collinear points, the matrix (4.3) has two real eigen-
values and two purely imaginary eigenvalues.
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Proof. By direct computation one finds that for the collinear points

Vx1x1 = 1 + 2(1− μ)d−3
1 + 2μd−3

2 > 0
Vx1x2 = 0
Vx2x2 = 1 − (1 − μ)d−3

1 μd−3
2 < 0.

Only the last statement requires some additional work. We present it for L1

and leave the other cases as exercises.
If (ξ1, 0) are the coordinates of the Eulerian point L1, then d1 = ξ1 + μ,

d2 = ξ1 − 1 + μ, and ξ1 is the real solution of Vx1 = 0, that is, of a quintic
polynomial

ξ1 − (1− μ)d−2
1 − μd−2

2 = 0.

We use this relationship in the form

(1− μ)d−2
1 = d1 − μd−2

2 − μ

when we evaluate the second derivative of V at (ξ1, 0); that is, we get

Vx2x2 = 1− 1
d1

(d1 − μd−2
2 − μ)− μd−3

2

=
μ

d1
(1 + d−2

2 − d1d−3
2 )

=
μ

d1
(1− d−3

2 ) < 0.

The last equality follows from d1 = 1 + d2 and the inequality follows then
from the fact that 0 < d2 < 1.

Setting A = 2 − 1
2 (Vx1x1 + Vx2x2) and B = Vx1x1Vx2x2 the characteristic

equation for the collinear points takes on the form

λ4 + 2Aλ2 −B = 0

with the solutions
λ2 = −A±

√
A2 +B.

Because B > 0 the statement of the lemma follows. It also means that the
collinear points of Euler are unstable. Therefore, some solutions that start
near the Euler points will tend away from these points as time tends to
infinity.

Lemma 4.1.2. At the triangular equilibrium points, the matrix (4.3) has
purely imaginary eigenvalues for values of the mass ratio μ in the interval
0 < μ < μ1, where μ1 = 1

2 (1 −
√

69/9). For μ = μ1 the matrix has the
repeated eigenvalues ±i

√
2/2 with nonelementary divisors. For μ1 < μ ≤ 1

2 ,
the eigenvalues are off the imaginary axis. (μ1 is called Routh’s critical mass
ratio.)
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Proof. Because the coordinates for the Lagrangian point L4 have been found
to be ξ1 = 1

2 −μ and ξ2 = 1
2

√
3, the second derivatives of V can be computed

explicitly. They are

Vx1x1 =
3
4
, Vx1x2 = −3

√
3

4
(1− 2μ) , Vx2x2 =

9
4
.

The characteristic equation for (4.3) is then

λ4 + λ2 +
27
4
μ(1− μ) = 0. (4.4)

It has the roots

λ2 =
1
2
{−1±

√
1− 27μ(1− μ)}. (4.5)

When the above square root is zero, we have the double eigenvalues ±i
√

2/2.
This occurs for μ = μ1 = 1

2 (1−
√

69/9), that is, for Routh’s critical mass ratio
(and due to symmetry also for 1− μ1). It can be seen that the matrix (4.3)
has nonsimple elementary divisors, which means it is not diagonalizable. We
return to this case later on.

For μ1 < μ < 1− μ1, the square root in (4.5) produces imaginary values,
and so λ will be complex with nonzero real part. The eigenvalues of (4.3)
lie off the imaginary axis, and the triangular Lagrangian points cannot be
stable. In this case the equilibrium is said to be hyperbolic.

This leaves the interval 0 < μ < μ1 (and 1 − μ1 < μ < 1) where the
matrix (4.3) has purely imaginary eigenvalues of the form ±iω1 and ±iω2.
We adopt the convention that ω1 will be the larger of the two values so that
ω1 and ω2 are uniquely defined by the conditions that follow from (4.4),

0 < ω2 <
√

2
2 < ω1,

ω2
1 + ω2

2 = 1,

ω2
1ω

2
2 =

27μ(1− μ)
4

.

(4.6)

We restrict now our attention to the case when the mass ratio μ is smaller
than Routh’s critical value μ1. The quadratic part of the Hamiltonian func-
tion near L4 is

Q =
1
2
(v21 + v22) + u2v1 − u1v2 +

1
8
u2

1 −
3
√

3
4
μ(1− μ)u1u2 −

5
8
u2

2.

We construct the symplectic linear transformation which brings this Hamil-
tonian function into its normal form. In terms of complex coordinates, this
normal form turns out to be
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K = −iω1z1z1 + iω2z2z2.

It is the Hamiltonian function for two harmonic oscillators with frequencies
ω1 and ω2. Because the original Hamiltonian was indefinite, the two terms
do not have the same sign.

When we perform these calculations it is not very convenient to work
with the parameter μ. It hides the symmetry of the problem with respect to
μ = 1

2 . The calculations are simpler if we use 1− 2μ as a parameter instead
of μ. At the same time we can simplify the calculations further by absorbing
the factor 3

√
3 into this parameter. We thus introduce

γ = 3
√

3(1− 2μ).

The other difficulty in performing the calculations by hand and even more
so by machine has to do with the fact that the expressions for ω1 and ω2 are
rather lengthy and it is easier to express everything in terms of these variables
instead of μ. But ω1 and ω2 are not independent as (4.6) shows. Indeed, in
order to simplify intermediate results, one has to use these relationships. One
strategy is to replace ω2

2 by 1 − ω2
1 whenever it occurs and thus restrict the

exponents of ω2 to 0 and 1. But most expressions are shorter if the symmetry
between the frequencies ω1 and ω2 is preserved within the formulas.

Our approach reduces the problem so that it has the minimum number
of essential parameters. We divide the Hamiltonian function by ω1, and set
ω = ω2/ω1. Due to our previous convention for ω1 and ω2 one sees that ω
lies in 0 < ω < 1. We use the second formula in (4.5) to express the terms
containing ω1 and ω2 as a function of ω. The third relationship in (4.5) then
reads

16ω2

(1 + ω2)2
= 27− γ2

or

γ2 =
27 + 38ω2 + 27ω4

(1 + ω2)2
.

The last form is used to limit the exponent of γ to 0 and 1 in all intermediate
expressions.

The Hamiltonian matrix derived from (4.3) is

A =
1
ω1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0

−1 0 0 1

−1/4 γ/4 0 1

γ/4 5/4 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.7)

Its eigenvalues are ±i and ±iω. The eigenvectors belonging to +i and to +iω
are denoted by α1 and α2, respectively. They are given by
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α1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−(ω2 + 1)γ + 8i
√
ω2 + 1

9ω2 + 13

(ω2 + 1)γ + i(ω2 + 5)/
√
ω2 + 1

9ω2 + 13

9ω2 + 5− iγ
√
ω2 + 1

9ω2 + 13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

α2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−(ω2 + 1)γ + 8iω
√
ω2 + 1

13ω2 + 9

(ω2 + 1)γ + iω(5ω2 + 1)/
√
ω2 + 1

13ω2 + 9

5ω2 + 9− iγω
√
ω2 + 1

13ω2 + 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Because αT
1 Jᾱ1 = −ir21/2 and αT

2 Jᾱ2 = ir22/2, where r1 and r2 are the
positive real roots of

r21 =
16(1− ω2)√

ω2 + 1(9ω2 + 13)
and r22 =

16(1− ω2)√
ω2 + 1(13ω2 + 9)

,

respectively, we create the transformation matrix T to the new set of complex-
valued variables (z1, z2, z1, z2) by

T = (α1/r1, α2/r2, α1/r1, α2/r2).

Because we have TTJT = 1
2 iJ , the transformation is symplectic with multi-

plier 1
2 i. The old and new Hamiltonians are related by

K(z1, z2, z1, z2) = −2iQ(u1, u2, v1, v2),

which leads to
K = −iz1z1 + iωz2z2. (4.8)

We remark in passing that T is not the only symplectic matrix that accom-
plishes the transformation to this complex normal form. The matrix

(α1/r
2
1, α2/r

2
2, α1, α2)

would do the same and at the same time has a simpler form than T . On the
other hand, the reality conditions for it are more complicated. The advantage
of a simpler form is lost when we want to go back to real coordinates.
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Therefore, we stay with the above form for T and introduce a new set of
real variables (ξ1, ξ2, η1, η2) by zj = ξj + iηj , j = 1, 2. It is a symplectic trans-
formation with multiplier −2i, and the transformed Hamiltonian becomes

H =
1
2
(ξ21 + η2

1)− ω
2

(ξ22 + η2
2). (4.9)

The transformation from the original coordinates to these new coordinates is
then given by ⎡

⎢⎢⎣
x1

x2

y1
y2

⎤
⎥⎥⎦ =

1
2
√

1− ω2
RS

⎡
⎢⎢⎣
ξ1
ξ2
η1
η2

⎤
⎥⎥⎦ ,

where R is the matrix

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

9ω2 + 13 13ω2 + 9 0 0

−γ(ω2 + 1) −γ(ω2 + 1) 8(ω2 + 1) −8(ω2 + 1)

γ(ω2 + 1) γ(ω2 + 1) ω2 + 5 −5(ω2 − 1)

9ω2 + 5 5ω2 + 9 −γ(ω2 + 1) γ(ω2 + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and S is the diagonal matrix

S = diag

(
4
√
ω2 + 1√

9ω2 + 13
,

4
√
ω2 + 1√

ω(13ω2 + 9
,

1
4
√
ω2 + 1

√
9ω2 + 13

,

√
ω

4
√
ω2 + 1

√
9ω2 + 13

)
.

The matrix A in (4.7) and the subsequent Hamiltonian H in (4.9) have
been scaled. The true matrix of the restricted problem at L4 is ω1A.
The transformations given above will diagonalize ω1A also. In fact K in
(4.8) becomes K = −iω1z1z1 + iω2z2z2, and H in (4.9) becomes H =
(ω1/2)(ξ21 + η2

1)− (ω2/2)(ξ22 + η2
2).

The above transformation becomes singular when ω = 1. This is due to the
fact that the Hamiltonian matrix (4.7) is not diagonalizable when γ =

√
23

or when μ = μ1. We construct the linear transformation which brings

A =
√

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0

−1 0 0 1

−1/4
√

23/4 0 1

√
23/4 5/4 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)
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into its complex normal form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−i 0 0 0

0 i 0 0

0 −1 i 0

−1 0 0 −i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.11)

and afterwards we convert it into the corresponding real normal form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

−1 0 0 0

−1 0 0 1

0 −1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.12)

For the eigenvalue +i of the matrix A, we calculate the eigenvector α and
the generalized eigenvector β. They are given by

α = r

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
√

23 + 8i
√

2

−10

2 + i
√

46

2
√

23 + 3i
√

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, β = sα+

r

5

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−8
√

2− 8i
√

23

0

−
√

46− 48i

17
√

2− 8i
√

23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where r and s are complex-valued constants that have to be determined so
that the transformation is symplectic. Due to the form of C the transforma-
tion matrix T from real coordinates to the new complex coordinates has to
be T = (β, β, α, α).

The only terms that are nonzero in TTJT are βTJβ, βTJα, and those
directly related to them. We compute

βTJα = (80
√

2)rr and βTJβ = i16
√

2{10�(rs)− rr}.

In order to get a symplectic transformation to the new complex coordi-
nates (z1, z2, z3, z4), we set r = 1/

√
80
√

2 and s = −ir/10. From the form of
the matrix C, it also follows that the reality conditions have to be z1 = z2
and z3 = z4. It requires that the transformation to real position coordinates
ξ1, ξ2 and their conjugate momenta η1, η2 has to be set up in the following
special way
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z1 = ξ1 + iξ2,

z2 = ξ1 − iξ2,

z3 = η1 − iη2,

z4 = η1 + iη2.

This form is forced upon us if we want to preserve the two-form; that is,
dz1 ∧ dz3 + dz2 ∧ dz4 = 2(dξ1 ∧ dη1 + dξ1 ∧ dη2). (It is shown in Chapter 6
that this ensures the transformation is symplectic.)

Summarizing, we first transformed the original Hamiltonian function√
2H into the complex normal form

K = −iz1z3 + iz2z4 + z1z2,

which we then transformed into the real normal form

H = −ξ1η2 + ξ2η1 +
1
2
(ξ21 + ξ22).

The composite transformation from the original to the new real coordinates
is given by
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

y1

y2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

√
5
√

2
100

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
√

2 9
√

23 −10
√

23 −40
√

2

0 −5 50 0

√
46/2 49 −10 −5

√
46

−37
√

2/2 9
√

23 −10
√

23 −15
√

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ1

ξ2

η1

η2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.13)

The transformations given above take the matrix A in (4.10) to its normal
form but A =

√
2B where B is the true matrix at L4. Similarly the transfor-

mations take
√

2Q to normal form where Q is the true quadratic Hamiltonian
at L4. The transformations take Q to K = (

√
2/2){−iz1z3+iz2z4+z1z2} and

H = (
√

2/2){−ξ1η2 + ξ2η1 + (ξ21 + ξ22)/2}. In order to get Q into its true nor-
mal form, one additional scaling, ξi → 4

√
2ξi, ηi → 1/ 4

√
2ηi, is required. This

scaling is symplectic, and the Q becomes (
√

2/2){−ξ1η2 +ξ2η1}+(ξ21 +ξ22)/2.

Problem

1. Hill’s lunar problem is defined by the Hamiltonian

H =
‖y‖2

2
− xTKy − 1

‖x‖ −
1
2
(3x2

1 − ‖x‖2),

where x, y ∈ R
2.



78 4. Topics in Linear Theory

a) Write the equations of motion.
b) Show that it has two equilibrium points on the x1-axis.
c) Show that the linearized system at these equilibrium points are

saddle-centers; i.e., it has one pair of real eigenvalues and one pair of
imaginary eigenvalues.

4.2 Parametric Stability

Stability questions for Hamiltonian systems have been studied because the
time of Newton. Is the solar system stable? This is an easy question to ask
with obvious consequences, but it difficult to answer. We have seen some sim-
ple results for linear systems, some positive and some negative. A satisfactory
stability theory for Hamiltonian systems exists for linear autonomous and pe-
riodic systems only. The richness of this theory in this simplest of all cases
foreshadows the complexity of the nonlinear problem discussed in Chapter
13. We present all the essential features of this theory and the reader will find
an extensive discussion of periodic systems with examples in the two-volume
set by Yakubovich and Starzhinskii (1975).

Consider a periodic Hamiltonian system

ż = P (t)z, P (t+ T ) ≡ P (t). (4.14)

Recall that if Z(t) is the fundamental matrix solution of (4.14), then Z(t)
is symplectic, Z(T ) is called the monodromy matrix of the system, and the
eigenvalues of Z(T ) are called the (characteristic) multipliers of the system.
By the Floquet–Lyapunov theory and Corollary 3.4.1 there is a periodic sym-
plectic change of variables z = Q(t)w which reduces the periodic Hamiltonian
system (4.14) to the constant system

ẇ = Aw. (4.15)

The period of Q is either T or 2T and either

eAT = Z(T ) or e2AT = Z(2T ) = Z(T )2.

(Recall, this result depends on the existence of a Hamiltonian logarithm of a
symplectic matrix which was only established in the case when the symplectic
matrix was diagonalizable in Chapter 3. We do not need the full result here.
A complete treatment of the logarithm is given in Section 4.3.)

The eigenvalues of A are called the (characteristic) exponents of the sys-
tems (4.14) and (4.15). The exponents of a periodic system are defined mod-
ulo 2πi because in this case the matrix A is the logarithm of the monodromy
matrix.
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A linear periodic Hamiltonian system is stable if all solutions are bounded
for all t ∈ R. (For linear Hamiltonian systems stability is equivalent to the
origin is positively and negatively stable; see the Problems).

If Equation (4.14) is the mathematical model of a physical problem, then
the coefficients in the equation, i.e., the matrix P (t), may not be known
exactly. Is the question of stability sensitive to small changes in the Hamilto-
nian matrix P (t)? This question gives rise to the following concept. A linear
periodic Hamiltonian system is parametrically stable or strongly stable if it
and all sufficiently small periodic linear Hamiltonian perturbations of it are
stable. That is, (4.14) is parametrically stable if there is an ε > 0 such that
ż = R(t)z is stable, where R(t) is any periodic Hamiltonian matrix with the
same period such that ‖Q(t)−R(t)‖ < ε for all t. For a constant system the
definition is the same except that the perturbations remain in the constant
class.

Autonomous Systems. Now consider the constant system (4.15) only. So-
lutions of the constant system (4.15) are linear combinations of the basic
solutions of the form tk exp(λt)a, where k is a nonnegative integer, a is a
constant vector, and λ is an eigenvalue of A. All solutions of (4.15) will tend
to 0 as t→∞ (the origin is asymptotically stable) if and only if all the eigen-
values of A have negative real parts. By Proposition 3.3.1 this never happens
for a Hamiltonian system. All solutions of (4.15) are bounded for t > 0 if and
only if (i) all the eigenvalues of A have nonpositive real parts and (ii) if λ is
an eigenvalue of A with zero real part (pure imaginary), then the k in the
basic solutions, tk exp(λt)a, is zero. This last condition, (ii), is equivalent to
the condition that the Jordan blocks for all the pure imaginary eigenvalues
of A in the Jordan canonical form for A are diagonal. That is, there are no
off-diagonal terms in the Jordan blocks for pure imaginary eigenvalues of A.
For Hamiltonian systems by Proposition 3.3.1 if all the eigenvalues have non-
positive real parts, then they must be pure imaginary. Thus if a Hamiltonian
system has all solutions bounded for t > 0, then all solutions are bounded for
all time. This is why for linear Hamiltonian systems, the meaningful concept
of stability is that all solutions are bounded for all t ∈ R.

Proposition 4.2.1. The linear constant Hamiltonian system (4.15) is sta-
ble if and only if (i) A has only pure imaginary eigenvalues and (ii) A is
diagonalizable (over the complex numbers).

Let A = JS, where S is a 2n × 2n constant symmetric matrix, and
H(z) = 1

2z
TSz is the Hamiltonian.

Lemma 4.2.1. If the Hamiltonian H is positive (or negative) definite, then
the system (4.15) is parametrically stable.

Proof. Let H be positive definite. Because H is positive definite, the level
set H = h where h is a positive constant is an ellipsoid in R

2n and hence a
bounded set. Because H is an integral, any solution that starts on H = h
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remains on H = h and so is bounded. So H being positive definite implies
(4.15) is stable. (This is just a special case of Dirichlet’s Theorem 1.3.2.)

Any sufficiently small perturbation of a positive definite matrix is positive
definite, and so any sufficiently small perturbation of (4.15) is stable also.

Lemma 4.2.2. If (4.15) is parametrically stable, then the eigenvalues of A
must be pure imaginary, and A must be diagonalizable.

Proof. If (4.15) is parametrically stable, then it is stable.

Recall that η(λ) denotes the eigenspace and η†(λ) denotes the generalized
eigenspace of A corresponding to the eigenvalue λ.

Lemma 4.2.3. If (4.15) is parametrically stable, then zero is not an eigen-
value of A.

Proof. Assume not; so, A is parametrically stable and η(0) = η†(0) is not
trivial. By the discussion in Section 3.4, the subspace η(0) is an A-invariant
symplectic subspace; so, A restricted to this subspace, denoted by A′, is
Hamiltonian. Because A is diagonalizable so is A′. But a diagonalizable ma-
trix all of whose eigenvalues are zero is the zero matrix; i.e., A′ = 0. Let B be
a Hamiltonian matrix of the same size as A′ with real eigenvalues ±1; then
εB is a small perturbation of A′ = 0 for small ε and has eigenvalues ±ε. Thus
by perturbing A along the subspace η†(0) by εB and leaving A fixed on the
other subspaces gives a small Hamiltonian perturbation that is not stable.

Let system (4.15) be stable and let A have distinct eigenvalues

±β1i, . . . ,±βsi,

with βj 
= 0. The space η(+βji) ⊕ η(−βji) is the complexification of a real
space Vj of dimension 2nj and A restricted to Vj is denoted by Aj . Vj is
a symplectic linear space, and Aj is invariant. Aj is a real diagonalizable
Hamiltonian matrix with eigenvalues ±βji. Define the symmetric matrix Sj

by Aj = JSj and Hj the restriction of H to Vj .

Lemma 4.2.4. The system (4.15) is parametrically stable if and only if the
restriction of (4.15) to each Vj is parametrically stable, i.e. if and only if
each Hamiltonian system with Hamiltonian Hj and coefficient matrix Aj is
parametrically stable.

Theorem 4.2.1 (Krein–Gel’fand). Using the notation given above, the
system (4.15) is parametrically stable if and only if

1. All the eigenvalues of A are pure imaginary.
2. A is nonsingular.
3. The matrix A is diagonalizable over the complex numbers.
4. The Hamiltonian Hj is positive or negative definite for each j.
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Thus for example, the systems defined by the Hamiltonians

2H = (x2
1 + y2

1)− 4(x2
2 + y2

2) and 2H = (x2
1 + y2

1) + (x2
2 + y2

2)

are parametrically stable, whereas the system defined by the Hamiltonian

2H = (x2
1 + y2

1)− (x2
2 + y2

2)

is not parametrically stable.

Proof. First, the if part. GivenA let V be the decomposition into the invariant
symplectic subspaces V1, . . . ,Vs, as defined above. Then there is an ε so small
that if B is any Hamiltonian ε-perturbation of A, then there are B-invariant
symplectic spaces W1, . . . ,Ws with Wj close to Vj . Moreover, dim Vj =
dim Wj , the eigenvalues of B restricted to Wj are close to ±βji, and the
Hamiltonian H̃j of B restricted to Wj is positive or negative definite. Because
H̃j is positive or negative definite on each Wj all the solutions of the system
with coefficient matrix B are bounded, and hence the system is stable.

Second, the only if part. What we need to show is that if the Hamilto-
nian is not definite on one of the spaces Aj , then some perturbation will be
unstable. We know that Aj is diagonalizable and all its eigenvalues are ±βj

thus by a linear symplectic change of variables

Hj =
1
2

nj∑
s=1

±βj(x2
s + y2

s).

We must show that if Hj is not positive or negative definite then the system
is not parametrically stable. So there must be one plus sign and one minus
sign in the form for Hj .

Without loss of generality we may assume βj = 1 and the first term
is positive and the second term is negative and forget all the other terms.
That is, there is no loss in generality in considering the Hamiltonian of two
harmonic oscillators with equal frequencies; namely

2H = (x2
1 + y2

1)− (x2
2 + y2

2).

Then the perturbation

2Hε = (x2
1 + y2

1)± (x2
2 + y2

2) + εy1y2

is unstable for small ε, because the characteristic equation of the above system
is (λ2 + 1)2 + ε2; and so, the eigenvalues are ±

√
(−1± εi), which has real

part nonzero for ε 
= 0.
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Periodic Systems. One way to reduce the parametric stability questions
of the periodic system (4.14) to the corresponding question for the constant
system is to use the Floquet–Lyapunov theorem which states that there is a
T or 2T -periodic (hence bounded) change of variables that takes the periodic
system (4.14) to the constant system (4.15). The system (4.14) is paramet-
rically stable if and only if the system (4.15) is parametrically stable. This
approach requires a detailed analysis of the logarithm function applied to
symplectic matrices given later in this chapter. A simpler and more direct
approach using a simple Möbius transform is given here.

Consider the periodic system (4.14) with fundamental matrix solution
Y (t) and monodromy matrix M = Y (T ).

Lemma 4.2.5. Y (t) is bounded for all t if and only if Mk is bounded for all
integers k. That is, the periodic system (4.14) is stable if and only if Mk is
bounded for all k.

Proof. Both Y (kT + t) and Y (t)Mk satisfy Equation (4.14) as functions of t
and they satisfy the same initial condition when t = 0, so by the uniqueness
theorem for differential equations Y (kT + t) = Y (t)Mk. Because Y (t) is
bounded for 0 ≤ t ≤ T the result follows from this identity. Thus the stability
analysis is reduced to a study of the matrix M under iteration.

The next two results are proved in a manner similar to the corresponding
results for the constant coefficient case.

Proposition 4.2.2. The periodic Hamiltonian system (4.14) is stable if and
only if (i) the monodromy matrix Y (T ) has only eigenvalues of unit modulus
and (ii) Y (T ) is diagonalizable (over the complex numbers).

Lemma 4.2.6. If (4.14) is parametrically stable then ±1 are not multipliers
of the monodromy matrix Y (T ).

The particular Möbius transformation

φ : z → w = (z − 1)(z + 1)−1, φ−1 : w → z = (1 + w)((1− w)−1

is known as the Cayley transformation. One checks that φ(1) = 0, φ(i) =
i, φ(−1) = ∞ and so φ takes the unit circle in the z-plane to the imaginary
axis in the w-plane, the interior of the unit circle in the z-plane to the left
half w-plane etc. φ can be applied to any matrix B that does not have −1
as an eigenvalue and if λ is an eigenvalue of B then φ(λ) is an eigenvalue of
φ(B).

Lemma 4.2.7. Let M be a symplectic matrix that does not have the eigen-
value −1; then C = φ(M) is a Hamiltonian matrix. Moreover, if M has only
eigenvalues of unit modulus and is diagonalizable, then C = φ(M) has only
pure imaginary eigenvalues and is diagonalizable.
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Proof. Because M is symplectic MTJM = MJMT = J and C = φ(M) =
(M−I)(M+I)−1 = (M+I)−1(M−I). We must show that JC is symmetric.

(JC)T = (M + I)−T (M − I)TJT

= −(MT + I)−1(MT − I)J
= −(JM−1J−1 + JJ−1)−1(JM−1J−1 − JJ−1)J
= −J(M−1 + I)−1J−1J(M−1 − I)J−1J
= −J(M−1 + I)−1(M−1 − I)
= −J(I +M)−1(I −M) = JC.

Assume the monodromy matrix M = Y (T ) is diagonalizable and ±1 are
not eigenvalues. Then C = φ(M) is defined and Hamiltonian. Let C have
distinct eigenvalues

±β1i, . . . ,±βsi,

with βj 
= 0. The space η(+βji) ⊕ η(−βji) is the complexification of a real
space Vj of dimension 2nj and C restricted to Vj is denoted by Cj . Vj is
a symplectic linear space, and Cj is invariant. Cj is a real diagonalizable
Hamiltonian matrix with eigenvalues ±βi. Define the symmetric matrix Sj

by Cj = JSj and Hj(u) = 1
2u

TSju where u ∈ Vj .

Theorem 4.2.2 (Krein–Gel’fand). Using the notation given above, the
system (4.14) is parametrically stable if and only if

1. All the multipliers have unit modulus.
2. ±1 are not multipliers.
3. The monodromy matrix M = Y (T ) is diagonalizable over the complex

numbers.
4. The Hamiltonian Hj is positive or negative definite for each j.

Problems

1. Let φ(t, ζ) be the solution to the linear periodic Hamiltonian system
(4.14) such that φ(0, ζ) = ζ. The zero solution (the origin) for (4.14)
is stable if for every ε > 0 there is a δ > 0 such that ‖ζ‖ < δ implies
‖φ(t, ζ)‖ < ε for all t ∈ R. Prove that all solutions of (4.14) are bounded
(i.e. the system is stable) if and only if the origin is stable.

4.3 Logarithm of a Symplectic Matrix.

The simplest proof that a symplectic matrix has a Hamiltonian logarithm
uses the theory of analytic functions of a matrix. This theory is not widely
known therefore we give a cursory introduction here. This proof and some
of the background material are found in Yakubovich and Stazhinskii (1975).
See Sibuya (1960) for a more algebraic, but not necessarily simpler proof.
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4.3.1 Functions of a Matrix

Let A be any square matrix and f(z) =
∑∞

0 akz
k a convergent power series.

We define f(A) by

f(A) =
∞∑

k=0

akA
k.

Use any norm on matrices you like, e.g., ‖A‖ = sup |aij |, and you will find that
f(A) has essentially the same radius of convergence as f(z). The theory of
analytic functions of a matrix proceeds just as the standard theory: analytic
continuation, persistence of formulas, integral formulas, etc. For example

eAeA = e2A, (sinA)2 + (cosA)2 = I

still hold, but there is one major cavitate. Namely, formulas such as

eAeB = eA+B, sin(A+B) = sinA cosB + sinB cosA

only hold if A and B commute. Any formula that can be proved by rearrang-
ing series is valid as long as the matrices involved commute.

The definition behaves well with respect to similarity transformations.
Because

(P−1AP )k = P−1APP−1AP · · ·P−1AP = P−1AkP

it follows that
f(P−1AP ) = P−1f(A)P.

Hence, if λ is an eigenvalue of A then f(λ) is an eigenvalue of f(A).
If N is a Jordan block then f(N) has a triangular form:

N =

⎡
⎢⎢⎢⎢⎢⎣

λ 0 · · · 0 0
1 λ · · · 0 0
...

...
...

...
0 0 · · · λ 0
0 0 · · · 1 λ

⎤
⎥⎥⎥⎥⎥⎦
, f(N) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(λ) 0 · · · 0 0
f ′(λ) f(λ) · · · 0 0

...
...

...
...

f (k−2)(λ)
(k − 2)!

f (k−3)(λ)
(k − 3)!

· · · f(λ) 0

f (k−1)(λ)
(k − 1)!

f (k−2)(λ)
(k − 2)!

· · · f ′(λ) f(λ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The integral calculus extends also. The integral formula

f(A) =
1

2πi

∮

Γ

(ζI −A)−1f(ζ)dζ, (4.16)

holds provided the domain of analyticity of f contains the spectrum of A
in its interior and Γ encloses the spectrum of A. One checks that the two
definitions agree using residue calculus.
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In particular

I =
1

2πi

∮

Γ

(ζI −A)−1dζ, A =
1

2πi

∮

Γ

(ζI −A)−1ζdζ,

which seem uninteresting until one writes Γ =
∑
Γj , where Γj is a contour

encircling just one eigenvalue λj . Then I =
∑
Pj and A =

∑
Aj where

Pj =
1

2πi

∮

Γj

(ζI −A)−1dζ, Aj =
1

2πi

∮

Γj

(ζI −A)−1ζdζ.

Pj is the projection on the generalized eigenspace corresponding to λj and
Aj = APj is the restriction of A to this generalized eigenspace.

4.3.2 Logarithm of a Matrix

Let A be nonsingular and let log be any branch of the logarithm function
that contains the spectrum of A in the interior of its domain. Then

B = log(A) =
1

2πi

∮

Γ

(ζI −A)−1 log(ζ)dζ (4.17)

is a logarithm of A. Of course this logarithm may not be real even if A is
real. The logarithm is not unique in general, even in the real case, in as much
as I = expO = exp 2πJ .

Lemma 4.3.1. Let A be a real nonsingular matrix with no negative eigen-
values. Then A has a real logarithm.

Proof. Let A have distinct eigenvalues λ1, . . . , λk, with λi not a negative
number for all i. The set of eigenvalues of A is symmetric with respect to
the real axis. Let Γ1, . . . , Γk be small nonintersecting circles in the complex
plane centered at λ1, . . . , λk, respectively, which are symmetric with respect
to the real axis. Thus conjugation, z → z̄, takes the set of circles Γ1, . . . , Γk

into itself (possibly permuting the order).
Let Log be the branch of the logarithm function defined by slitting the

complex plane along the negative real axis and −π < arg(Log z) < π. Then
a logarithm of A is given by

B = logA =
1

2πi

k∑
j=1

∮

Γj

(ζI − T )−1Log ζdζ. (4.18)

Let conjugation take Γj to −Γs = Γ̄j (the minus indicates that conjugation
reverses orientation). Then
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1
2πi

∮

Γj

(ζI − T )−1Log ζdζ = − 1
2πi

∮

Γ̄j

(ζ̄I − T )−1Log ζ̄dζ̄

= − 1
2πi

∮

−Γs

(ζI − T )−1Log ζdζ

=
1

2πi

∮

Γs

(ζI − T )−1Log ζdζ

(4.19)

So conjugation takes each term in (4.18) into another, which implies that B
is real.

If A has a real logarithm, A = expB, then A is nonsingular and has a real
square root A1/2 = exp(B/2). A straightforward computation shows that the
matrix

R =
[
−1 1
0 −1

]

has no real square root and hence no real logarithm. But, the matrix

S =
[
−1 0
0 −1

]
=
[

cosπ sinπ
− sinπ cosπ

]
= e

⎡
⎣ 0 π
−π 0

⎤
⎦

has a real logarithm even though it has negative eigenvalues. This can be
generalized.

We say that a real nonsingular matrix C has negative eigenvalues in pairs
if it is similar to a matrix of the form diag(A,D,D) where A is real and has no
negative eigenvalues and D is a matrix with only negative eigenvalues. That
is, the number of Jordan blocks for C of any particular size for a negative
eigenvalue must be even.

Theorem 4.3.1. A nonsingular matrix C that has negative eigenvalues in
pairs has a real logarithm.

Proof. The logarithm of A is given by Lemma 4.3.1, so we need to consider
the case when C = diag(D,D). The matrix −D has only positive eigenvalues,
so log(−D) exists as a real matrix by Lemma 4.3.1. Let

E =
[

log(−D) πI
−πI log(−D)

]
=
[

0 πI
−πI 0

]
+
[

log(−D) 0
0 log(−D)

]
.

Notice that in the above E is the sum of two commuting matrices. So

eE = e

⎡
⎣ 0 πI
−πI 0

⎤
⎦
e

⎡
⎣ log(−D) 0

0 log(−D)

⎤
⎦

=
[
D 0
0 D

]
.
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4.3.3 Symplectic Logarithm

Turn now to the symplectic case.

Lemma 4.3.2. Let A be a real symplectic matrix with no negative eigenval-
ues; then A has a real Hamiltonian logarithm.

Proof. Let A have distinct eigenvalues λ1, . . . , λ2k, with λi not a negative
number for all i. The set of eigenvalues of A is symmetric with respect to
the real axis and the unit circle by Proposition 3.3.1. Let Γ1, . . . , Γ2k be
small nonintersecting circles in the complex plane centered at λ1, . . . , λ2k,
respectively, which are symmetric with respect to the real axis and the unit
circle. Thus conjugation, z → z̄, and inversion, z → 1/z, take the set of circles
Γ1, . . . , Γ2k into itself (possibly permuting the order).

As before let Log be the branch of the logarithm function defined by
slitting the complex plane along the negative real axis and−π < arg(Log z) <
π. Then a logarithm of A is given by

B = logA =
1

2πi

2k∑
j=1

∮

Γj

(ζI −A)−1Log ζdζ. (4.20)

The matrix B is real by the argument in the proof of Lemma 4.3.1 so it
remains to show that B is Hamiltonian.

Let inversion take Γj into Γs (inversion is orientation-preserving). Make
the change of variables ζ = 1/ξ in the integrals in (4.20) and recall that
A−1 = −JATJ . Then

(ζ −A)−1Log ζdξ = {(1/ξ)I −A}−1(−Log ξ)(−dξ/ξ2)

= (I − ξA)−1ξ−1Log ξdξ

= {A(I − ξA)−1 + ξ−1I}Log ξdξ

= {(A−1 − ξI)−1 + ξ−1I}Log ξdξ

= {(−JABTAJ − ξI)−1 + ξ−1I}Log ξdξ

= −J(AT − ξI)−1JLog ξdξ + ξ−1Log ξdξ.

(4.21)

The circle Γj does not enclose the origin, thus
∮
ξ−1Log ξdξ = 0 on Γj for

all j. Making the substitution ζ = 1/ξ in (4.20) and using (4.21) shows that
B = JBTJ or JBT +BJ = 0. Thus B is Hamiltonian.

We say that a symplectic matrix G has negative eigenvalues in pairs if
it is symplectically similar to a matrix of the form diag(A,C,C) where A is
symplectic and has no negative eigenvalues and C is symplectic and has only
negative eigenvalues. The symplectic matrix J is replaced by diag(J, J, J).
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Theorem 4.3.2. A real symplectic matrix that has negative eigenvalues in
pairs has a real Hamiltonian logarithm.1

Proof. The proof proceeds just as the proof of Theorem 4.3.1.

Problems

1. Discuss the question of finding a real, skew-symmetric logarithm of an
orthogonal matrix

4.4 Topology of Sp(2n, R)

The group Sp(2n,R) is a manifold also and in this section we discuss some
of its topology following the class notes of Larry Markus (ca. 1968). A cru-
cial element in this analysis is the existence of the polar decomposition of a
symplectic matrix found in Theorem 3.1.6. In particular this theorem says
that

Sp(2n,R) = PSp(2n,R)×OSp(2n,R)

as manifolds (not groups) where PSp(2n,R) is the set of all positive definite,
symmetric, symplectic matrices and OSp(2n,R) = Sp(2n,R) ∩ O(2n,R) is
the group of orthogonal symplectic matrices.

Proposition 4.4.1. PSp(2n,R) is diffeomorphic to R
n(n+1). OSp(2n,R) is

a strong deformation retract of Sp(2n,R).

Proof. Let psp(2n,R) be the set of all symmetric Hamiltonian matrices. If
A ∈ psp(2n,R) then eA is symmetric and symplectic. Because A is symmetric
its eigenvalues are real and eA has positive eigenvalues so eA is positive
definite. Any T ∈ PSp(2n,R) has a real Hamiltonian logarithms, so the
map Φ : psp(2n,R) → PSp(2n,R) : A �→ eA is a global diffeomorphism.

It is easy to see that M ∈ psp(2n,R) if and only if

M =
[
A B
B −A

]
,

where A and B are symmetric n × n matrices. And so PDSp(2n,R) is a
diffeomorphism to R

n(n+1).

Proposition 4.4.2. OSp(2n,R) is isomorphic to U(n,C) the group of n×n
unitary matrices.
1 The statement of the theorem on logarithms of symplectic matrices in Meyer

and Hall (1991) is wrong.
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Proof. If T ∈ Sp(2n,R) then in block form

T =
[
a b
c d

]
, T−1 =

[
dT −bT
−cT dT

]
,

with aT d− cT b = I and aT c and bT d both symmetric; see Section 3.1.
If T ∈ OSp(2n,R), then by the equation T−1 = TT we have that

T =
[
a b
−b a

]

with aTa+ bT b = I and aT b symmetric.
The map Φ : OSp(2n,R) → U(n,C) given by

Φ :
[
a b
−b a

]
�−→ a+ bi

is the desired isomorphism.

Because O(1,C) is just the set of complex numbers of unit modulus, we
have

Corollary 4.4.1. Sp(2,R) is diffeomorphic to S1 × R
2.

Let us turn to the topology of U(n,C), for which we follow Chevally
(1946).

Proposition 4.4.3. U(n,C) is homeomorphic to S1 × SU(n,C).

Proof. Let G be the subgroup of U(n,C) of matrices of the form G(φ) =
diag(eiφ, 1, 1, . . . , 1) where φ is just an angle defined mod 2π. Clearly, G is
homeomorphic to S1.

Let P ∈ U(n,C) and detP = eiφ; then P = G(φ)Q where Q ∈ SU(n,C).
Because G ∩ SU(n,C) = {I} the representation is unique. Thus the map
G × SU(n,C) → U(n,C) : (G,Q) �→ GQ is continuous, one-to-one and onto
a compact space so it is a homeomorphism.

Lemma 4.4.1. Let H ⊂ G be a closed subgroup of a topological group G. If
H and the quotient space G/H are connected then so is G.

Proof. Let G = U ∪ V where U and V are nonempty open sets. Then π : G →
G/H maps U and V onto open sets U ′ and V ′ of G/H and G/H = U ′ ∪ V ′.
G/H is connected so there is a gH ∈ U ′ ∩ V ′. gH = (gH∩U)∪ (gH∩ V ),

but because H is connected so is gH. Therefore there is a point common to
(gH ∩ U) ∪ (gH ∩ V ) and hence to U and V . Thus G is connected.

Lemma 4.4.2. U(n,C)/U(n − 1,C) and SU(n,C)/SU(n − 1,C) are home-
omorphic to S2n−1.
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Proof. Let H be the subgroup of U(n,C) of matrices of the form H =
diag(1,H′) where H ′ is a (n − 1) × (n − 1) unitary matrix. This H has a
1 in the 1,1 position and 0 in the rest of the first row and column. Clearly H
is isomorphic to U(n− 1,C).

Let φ : U(n,C) → C
n : Q �→ (the first column of Q). φ is continuous and

because Q is unitary its columns are of unit length so φ maps onto S2n−1. If
φ(Q) = φ(P ) then Q = PH where H ∈ H. φ is constant on the cosets and so

φ̃ : U(n,C)/H → S2n−1 : (QH) �→ φ(Q)

is well defined, continuous, one-to-one and onto. The spaces involved are
compact thus φ̃ is the desired homeomorphism. The same proof works for
SU(n,C)/SU(n− 1,C).

Proposition 4.4.4. The spaces SU(n,C), U(n,C), and Sp(2n,R) are con-
nected topological spaces.

Proof. SU(1,C), U(1,C) are, respectively, a singleton and a circle so con-
nected. By Lemmas 4.4.1 and 4.4.2, SU(2,C), U(2,C) are connected. Proceed
with the induction to conclude that SU(n,C), U(n,C) are connected.

Propositions 4.4.1 and 4.4.2 imply that Sp(2n,R) is connected.

Corollary 4.4.2. The determinant of a symplectic matrix is +1.

Proof. From TTJT = J follows detT = ±1. The corollary follows from the
proposition because det is continuous.

Proposition 4.4.5. SU(n,C) is simply connected. The fundamental groups
π1(U(n,C)) and π1(Sp(2n,R)) are isomorphic to Z.

Proof. To prove SU(n,C) is simply connected, we use induction on n.
SU(1,C) = {1} and so is simply connected which starts the induction. As-
sume n > 1 and SU(n − 1,C) is simply connected. Using the notation of
Lemma 4.4.2, φ : SU(n,C) → S2n−1 and φ−1(p) = H where p ∈ S2n−1 and
H is homeomorphic to SU(n− 1,C) and thus simply connected.

Let K1 = {c ∈ C
n : �c1 ≥ 0}, K2 = {c ∈ C

n : �c1 ≤ 0}, and K3 =
{c ∈ C

n : �c1 = 0} (think northern hemisphere, southern hemisphere, and
equator). K1 and K2 are 2n− 1 balls and K12 is a 2n− 2 sphere. We write

SU(n,C) = X1 ∪X2,

where Xi = {φ−1(p) : p ∈ Ki}. X1 and X2 are bundles over balls and thus
products; i.e.,Xi = K1×H for i = 1, 2. Therefore by the induction hypothesis
they are simply connected. X1,X2,X3 = X1∩X2 are all connected. So by van
Kampen’s theorem X1 ∪ X2 = SU(n,C) is simply connected. See Crowell
and Fox (1963).

That the fundamental groups π1(U(n,C)) and π1(Sp(2n,R)) are isomor-
phic to Z follows from Propositions 4.4.1, 4.4.2, and 4.4.3.
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Problems

1. Let u and v be any two nonzero vectors in R
2n. Show that there is a

2n × 2n symplectic matrix A such that Au = v. (The symplectic group
acts transitively on R

2n \ {0}.)

4.5 Maslov Index and the Lagrangian Grassmannian

We have seen earlier how the dynamics of subspaces of initial conditions of
Lagrangian type for the Hamiltonian flow may be important and useful to
discuss the full dynamics of the linear vector field XH . We look at another
facet of such subspaces here when we consider the collection of all Lagrangian
subspaces of a given symplectic space. Our goal is to explain recent applica-
tions to the study of stability for periodic integral curves of XH . Further as-
pects of those ideas we touch upon here may be found in Arnold (1985,1990),
Cabral and Offin (2008), Conley and Zehnder (1984), Contreras et al. (2003),
Duistermaat (1976), Morse (1973), Offin (2000). We work initially in the non-
linear case to describe a geometric setting for these ideas before specializing
our computations in the case of linear vector fields along periodic solutions
of XH .

The symplectic form ω on R
2n is a closed nondegenerate two form

ω =
n∑

i=1

dqi ∧ dpi.

A Lagrange plane in a symplectic vector space such as R
2n is a maximal

isotropic subspace, therfore an n-dimensional subspace λ ⊂ R
2n with ω|λ = 0

is a Lagrangian subspace. For example

λ = {(0, q2, . . . , qn, p1, 0, . . . , 0)}

is a Lagrange plane in R
2n. Note that a symplectic transformations P ∈

Sp(2n) map Lagrange planes to Lagrange planes because ω|Pλ = 0 whenever
ω|λ = 0.

Let M denote a manifold with metric tensor 〈·, ·〉 , and H : T ∗M → R a
smooth function convex on the fibers. We denote local coordinates (q1, . . . , qn)
on M , and (p1, . . . , pn) on the fiber T ∗

qM . An n-dimensional submanifold
i : L → T ∗M is called Lagrangian if i∗ω = 0. An interesting and important
example of a Lagrangian manifold is the graph of �S(x), x ∈ R

n. This is
the manifold L = {(x,�S(x))|x ∈ R

n}, for which we have the property that
the line integral with the canonical one form

∑
pidqi on a closed loop γ in L

is zero. This follows easily from the fact that the path integral of a gradient in
R

n is path independent. An application of Stokes theorem then implies that
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L is a Lagrangian manifold because
∫

σ
ω = 0 for any surface σ ⊂ L spanned

by γ. For this example, that L is a Lagrangian manifold may be seen in an
equivalent way, using the symmetric Hessian of the function S(x), as a direct
computation in the tangent plane to L by showing that the symplectic form
ω vanishes on an arbitrary pair of vectors which are tangent to L.

In applications, the Lagrange manifolds considered will belong to an in-
variant energy surface, although it is not necessary to make this restriction.
Given the Hamiltonian vector field XH on T ∗M , we consider the energy sur-
face Eh = H−1(h) which is invariant under the flow of XH . The canonical
projection π : H−1(h) → M has Lagrangian singularities on the Lagrangian
submanifold i : L → H−1(h) when d(i∗π) is not surjective. Notice that the
mapping i∗π is a smooth mapping of manifolds of the same dimension. At a
nonsingular point, this mapping is a local diffeomeorphism. Thus Lagrangian
singularities develop when the rank of this mapping drops below n. As an
example, we observe that the graph of �S(x) denoted L above, has no La-
grangian singularities, the projection π is always surjective on L. On the other
hand if λ = {(0, q2, . . . , qn, p1, 0, . . . , 0)} and γ = {(q1, 0, . . . , 0, 0, p2, . . . , pn)}
then L = graphB, is a Lagrange plane when B : λ → γ, and ω(λ,Bλ) is a
symmetric quadratic form on the Lagrange plane λ. Moreover the singular set
on L consists exactly of the codimension one two-sided surface ∂q1/∂p1 = 0.
The fact that this surface is two sided comes from the fact that as a curve
crosses the singular set where ∂q1/∂p1 = 0, the derivative changes sign from
positive to negative or vice versa. This is the typical case for singular sets
of the projection map π. Another example is afforded by the embedded La-
grangian torus T n which will almost always develop Lagrangian singularities
when projected into the configuration manifold M . The following result of
Bialy (1991) is easy to state and illustrates several important facts mentioned
above

H : T ∗M × S1 → R, M = R, or M = S1

H is smooth and convex on the fibers of the bundle

π : T ∗M × S1 →M × S1.

Let λ→ T ∗M × S1 be an embedded invariant 2-torus without closed orbits,
and such that π|λ is not a diffeomorphism. Then the set of all singular points
of π|λ consists of exactly two different smooth nonintersecting simple closed
curves not null homotopic on λ. This result illustrates the general fact that
the singular set in L is a codimension one manifold without boundary. This
singular set is called the Maslov cycle. We will develop the theory of this
counting of Lagrangian singularities along a given curve in L, which is also
called the Maslov index. This counting argument can be seen clearly in the
case of the embedded torus whose singular set consists of two closed curves. A
given closed curve γ on L intersects the Maslov cycle in a particular way, with
a counting of these intersections independent of the homology class which γ
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belongs to. The Maslov index then is the value of a cohomology class on a
closed curve γ within a given homology class.

In addition this result indicates that the kind of Lagrangian singularities
developed may be a topological invariant for the Lagrangian submanifold L
which while true will not be pursued here. This idea is at the root of the
method to determine stability type of periodic orbits utilizing the counting
of Lagrangian singularities along a given closed integral curve Γ .

As a first step, we mention that in general the singular set on L consists
of points where the rank of the mapping i∗π is less than n. Thus the singular
set can be decomposed into subsets where the rank is constant and less than
n. The simple component of the singular set corresponds to the case where
rank = n − 1. The boundary of this set consists of points where rank <
n− 1. The singular set is a manifold of codimension 1, whose boundary has
codimension bigger or equal to 3. Thus the generic part of the singular set
is a two sided codimension one variety whose topological boundary is empty.
A given closed phase curve z(t) ⊂ L intersects this cycle transversely, and
we may therefore count the algebraic intersection number of such a closed
curve with positive contributions as the curve crosses the singular set from
negative to positive and negative contributions coming as the curve crosses
from positive to negative. This counting is known as the Maslov index of
z(t), 0 ≤ t ≤ T , where T denotes the period of z(t).

To classify these singularities, it is sometimes helpful to project the locus
of singular points into the configuration manifold M . This geometric no-
tion allows us to define caustic singularities which are the locus of projected
singular points i∗π : L → M . Suppose that L is an invariant Lagrangian
submanifold, and that Γ ⊂ L is a region which is foliated by phase curves of
the vector field XH . Caustics occur along envelopes of projected extremals
γe = πΓe which foliate L.

Caustic singularities have been studied in geometric optics for a long time.
The analogy here is that integral curves of XH correspond to light rays in
some medium. Now the focusing of projected integral curves on manifold M ,
corresponds to the focusing of light rays. A caustic is the envelope of rays
reflected or refracted by a given curve they are curves of light of infinite
brightness consisting of points through which infinitely many reflected or
refracted light rays pass. In reality they often can be observed as a pattern
of pieces of very bright curves; e.g., on a sunny day at the seashore on the
bottom beneath a bit of wavy water .

The caustic singularities play an important role in the evaluation of
the Morse index for the second variation of the action functional A(q) =∫ T

0
L(q, q̇)dt, q(t) = πz(t) which we discussed earlier with various types of

boundary conditions. The Morse index turns out to be a special case of the
Maslov index, which is an important technique for evaluation of the Maslov
index. We shall discuss these details more fully below and in the Chapter 12.
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In the discussion above, the Lagrangian singularities arise from the sin-
gularities of the Lagrangian map i∗π. In this setting, the vertical distribution
Vz = kernel dπ(z), z ∈ T ∗M plays an important role. In effect, the Maslov
index as described above may be calculated by counting the number of in-
tersections of the tangent plane Tz(t)L with the vertical Vz(t) along a curve
z(t) ∈ L. In the following we abstract this and consider the intersections with
an arbitrary Lagrange plane λ however the case above is the setting for our
applications. To make precise the considerations above, we turn to the linear
theory of Lagrange planes in a given symplectic vector space such as R

2n.
The following result in Duistermaat (1976) is very useful for understanding
Lagrange planes in the neighborhood of a given one.

Lemma 4.5.1. If λ and γ are transverse Lagrange planes in R
2n so that

λ ∩ γ = 0 ,and B : λ → γ is linear, then α = graph B = {l + Bl|l ∈ λ} is a
Lagrange plane if and only if ω(λ,Bλ) is a symmetric quadratic form on λ.

Proof. First assume that α is a Lagrange plane. Then for a pair of vectors
l1, l2 in λ, we have ω(l1 +Bl1, l2 +Bl2) = 0 and

ω(l1, Bl2)− ω(l2, Bl1) = ω(l1, Bl2) + ω(Bl1, l2)
= ω(l1 +Bl1, Bl2) + ω(Bl1, l2)
= ω(l1 +Bl1, l2 +Bl2)− ω(l1 +Bl1, l2) + ω(Bl1, l2)
= −ω(Bl1, l2) + ω(Bl1, l2)
= 0.

On the other hand, if ω(λ,Bλ) is a symmetric quadratic form, then the
computation above shows that ω(l1+Bl1, l2+Bl2) = 0 for every pair l1, l2 ∈ λ.
Therefore α is a Lagrange plane.

If we denote by Λn the topological space of all Lagrange planes in R
2n, called

the Lagrangian Grassmannian, then the set of Lagrange planes Λ0(γ) which
are transverse to a given one γ, Λ0(γ) = {λ ∈ Λn|λ∩γ = 0}, is an open set in
Λn. The Lemma above gives a parameterization for all Lagrange planes in the
open set Λ0(γ), in terms of symmetric forms on a given subspace λ ∈ Λ0(γ).
Moreover, the set of Lagrange planes in a neighborhood of λ which do not
intersect λ is diffeomorphic with the space of nondegenerate quadratic forms
on λ. We can think of this map α �→ ω(λ,Bλ), where α = graph B, as
a coordinate mapping on the chart Λ0(γ), and the dimension of the kernel
ker ω(λ,Bλ) equals the dimension of the intersection graphB ∩ λ.

Definition 4.5.1. If α, λ ∈ Λ0(γ) and α = graph B, then the symmetric
form on λ associated with α is denoted Q(λ, γ;α) = ω(λ,Bλ).

From these considerations it is easy to see that the dimension of Λn is
1
2n(n + 1). Moreover, it is also easy to understand why the Maslov cycle
of a Lagrange plane λ is a topological cycle, and that its codimension is
one on its relative interior where it is a smooth submanifold. Recall that
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the Maslov cycle consists of the Lagrange planes which intersect the given
Lagrangian plane λ in a subspace with dimension larger than or equal to 1
(Arnold refers to this set as the train of the Lagrange plane λ). Therefore if
Λk(γ) = {β ∈ Λ(n)|dim β ∩ λ = k}, then the Maslov cycle of λ is

M(λ) =
⋃
k≥1

Λk(λ)

However we can compute the codimension of M(λ) quite nicely using the
quadratic forms Q(λ, γ;β), where β ∈ Λk(λ). It is clear on a moments reflec-
tion that if dimension of the kernel of Q(λ, γ;β) = k, then Q(λ, γ;β) must
have a k-dimensional 0 block, and therefore that the submanifold Λk(λ) is
codimension 1

2k(k + 1) in Λn. In conclusion, Λ1(λ) is an open submanifold
of codimension one, and its boundary consists of the closure of Λ2(λ) which
has codimension 3 in Λn. Thus the closure of the submanifold Λ1(λ) is an
oriented, codimension one topological cycle.

To describe the index of a path of Lagrange planes λt in a neighborhood
of a given plane λ, when the endpoints of λt are transverse to λ we observe
that the space of nondegenerate quadratic forms is partitioned into n+ 1 re-
gions depending on the number of positive eigenvalues of the quadratic form
ω(λ,Bλ), the so called positive inertia index. The singular set of Lagrange
planes Σ(λ) which intersect λ is a codimension one manifold in ΛN given
by the condition det ω(λ,Bλ) = 0. We map the curve λt = graph Bt to the
corresponding curve of symmetric operators on λ denoted Q(λ, γ;λt). This
curve has real eigenvalues which are continuous functions of the parameter
t. These eigenvalues may cross the zero eigenvalue which signals an intersec-
tion of the curve λt with the fixed plane λ. Such crossings may occur either
from − to + or from + to −. We count the algebraic number of crossings
with multiplicity with the crossing from − to + as a positive contribution,
and from + to − as a negative contribution. The Maslov index then for a
curve λt whose endpoints do not intersect λ, denoted [λt;λ], is the sum of
the positive contributions minus the negative contributions. If on the other
hand the endpoints of the curve λt are not transverse to λ we use the conven-
tion specified by Arnold (1985) and stipulate the Maslov index in this case is
obtained by considering a nearby path in ΛN , say αt, so that the correspond-
ing eigenvalues of Q(λ, γ;αt) which are perturbations of the eigenvalues of
Q(λ, γ;λt) are nonzero at the endpoints. Moreover on the right endpoint, all
zero eigenvalues are moved to the right of zero (positive domain) , while at
the left hand endpoint, all zero eigenvalues are moved to the left.

It should be mentioned explicitly, that the Maslov index as here described
is a homotopy invariant, with fixed endpoints for the path λt due to the fact
thatM(λ) is a cycle in Λn. This remark implies in particular that the Maslov
index of a curve λt can be computed from a nearby path which crosses the
Maslov cycle M(λ) transversely, and only intersects the simple part of the
cycle, where the intersection number is +1 or −1.
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There are several translations of the Maslov index which are important
in applications. Two of these are the Conley–Zehnder index, and the Morse
index which we alluded to above. Roughly, the Maslov index of the vertical
space is equivalent to the Morse index when the curve λt is a positive curve, in
the sense that it intersects the Maslov cycle of the vertical space transversely
and only in the positive sense. An important case arises when the curve
λt = dzφtλ, where φt denotes the flow of a Hamiltonian vector field XH

in R
2n with the Hamiltonian convex in the momenta ∂2H/∂p2 > 0. Then

the curve λt ∈ Λn intersects the vertical distribution only in the positive
sense and this condition also implies that the flow direction is transverse to
the vertical distribution Duistermaat (1976), Offin (2000). In the following
discussion we let φt denote the flow of the Hamiltonian vector field XH with
convex Hamiltonian ∂2H/∂p2 > 0. Recall that the action functional with
fixed boundary conditions

F (q) =
∫ T

0

L(q(t), q̇(t))dt, q(0) = q0, q(T ) = q1

leads to consideration of the critical curves q(t) = πz(t), 0 ≤ t ≤ T where
z(t) is an integral curve of the Hamiltonian vector field XH such that q(0) =
q0, q(T ) = q1. For such a critical curve q(t), the second variation is the
quadratic form d2F (q)·ξ, where ξ(t) is a variation vector field along q(t) which
satisfies the boundary conditions ξ(0) = ξ(T ) = 0. These boundary conditions
arise as natural with the fixed endpoint problem discussed earlier. The second
variation measures second order variations in the action along the tangent
directions given by the variation vector field ξ(t). It is shown in textbooks
on the calculus of variations that the number of negative eigenvalues of the
second variation is a finite number provided that the Legendre condition
holds ∂2L/∂v2 > 0, which is equivalent to the condition of convexity of the
Hamiltonian; see Hestenes (1966). This finite number is the Morse index of
the critical curve q(t) for the fixed endpoint problem. It is known that this
index depends crucially on the boundary conditions but in the case of fixed
endpoint it is the number of conjugate points (counted with multiplicity)
along the critical arc q(t).

A time value t0 is said to be conjugate to 0 if there is a solution ζ(t) =
dz(t)φtζ(0), 0 ≤ t ≤ T of the linearized Hamiltonian equations along z(t),
such that πζ(0) = 0 = πζ(t0). Of course the projected vector field πζ(t)
is just one example of a variation vector field ξ(t) along q(t), however it
plays a crucial role in determining the Morse index. We observe that the
condition for existence of conjugate points can be equivalently described by
allowing the vertical plane V (z) at t = 0 to move with the linearized flow
dzφt, and to watch for the intersections of this curve of Lagrange planes with
the fixed vertical plane V (z(t0)) at z(t0). The Morse index formula for the
fixed endpoint problem can be now stated
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conjugate index =
∑

0<t≤T

dim [dzφV (z) ∩ V (φtz)]

which is a special case of the intersection number for the curve of Lagrangian
planes dzφtV (z) with the fixed distribution V (φtz).

An important generalization of the fixed endpoint example is the case
of periodic boundary conditions which will play an important role in the
applications to periodic solutions of the N-body problem

F (q) =
∫ T

0

L(q(t), q̇(t))dt, q(0) = q(T ). (4.22)

The second variation of the action functional for critical curves q(t) = πz(t)
may be calculated easily from equation (1.28) by differentiating the first
variation along the variation vector field ξ(t). We will denote the second vari-
ation by d2F (q(t)) · ξ whose domain consists of absolutely continuous vari-
ation vector fields ξ(t) which satisfy the same periodic boundary conditions
ξ(T ) = ξ(0). In this case the Maslov–Morse index is modified slightly from
the fixed endpoint case to include the case of periodic boundary conditions
for variation vector fields.

index d2F (q(t)) =
∑

0<t≤T

dim [dzφV (z) ∩ V (φtz)] + index d2F (q(t))|W ,

(4.23)
where W denotes the subspace of variation vector fields ζ(t) = dφtζ(0) along
z(t) which are periodic in the configuration component

W =
{
ζ = ξ

∂

∂q
+ η

∂

∂p
|πζ(T ) = πζ(0)

}
. (4.24)

We refer to the variation vector fields ξ(t) = πζ(t), ζ(t) = dφtζ(0) as Jacobi
fields along the phase curve z(t) = φtz. The second variation restricted to
the subspace of Jacobi fields, periodic in the configuration component has
a simpler form due to the fact that they are integral curves of the linear
vector field DXH(z(t)), 0 ≤ t ≤ T , the integral term in the second variation
vanishes, leaving only the endpoint contribution. Using the periodic boundary
conditions of the Jacobi fields associated with the subspace W yields

d2F (q(t))|W = 〈ζ(T ), ξ(T )〉 − 〈η(0), ξ(0)〉
= 〈ζ(T ), ξ(0)〉 − 〈η(0), ξ(T )〉
= ω(ζ(0), ζ(T ))
= ω(W,dφTW ).

An application of this formula to the case when n = 1 yields the case studied
by Morse for scalar variational problems with periodic boundary conditions

index d2F (q(t)) = conjugate index +
{

0 if (η(T )− η(0))ξ(0) ≥ 0
1 if (η(T )− η(0))ξ(0) < 0,
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where η(t) denotes the Jacobi field which satisfies the periodic boundary
condition ξ(T ) = ξ(0). The correction term to the conjugate index was called
the concavity by Morse (1973). Incidentally, it is easy to see that the subspace
W is always contains nonzero terms, because we have the useful formula

(dzφT − id)W = V (z),

where V (z) denotes the vertical space at z. This implies in particular that
if the linearized flow along z(t) has no T-periodic solutions, then W has
dimension n.

To tie some of these ideas together, we mention a theorem of Bondarchuk
(1984) which describes a typical case of the Maslov index for hyperbolic
periodic orbits of a Hamiltonian vector field XH with convex Hamiltonian H.
It is easy to see that the stable and unstable manifolds of z(t) are Lagrangian
submanifolds because the symplectic form must vanish for any pair of tangent
vectors along z(t). The Lagrangian singularities of the stable or unstable
manifold relative to the canonical projection π : H−1(h) →M occur at those
moments along z(t) when the tangent space to the stable or unstable manifold
becomes vertical. If λ denotes the tangent plane to the stable manifold for
example at the point z(0), then the t parameter values of the singularities
of the moving plane dzφtλ are called focal points for the Lagrange plane λ.
Counting these singularities along z(t) for one period will yield the Maslov
index of the stable or unstable manifolds in H−1(h).

Theorem 4.5.1. If z(t) is T-periodic and hyperbolic on its invariant energy
surface H−1(h) (the Poincaré map on H−1(h) has eigenvalues which lie off
the unit circle) , then the Morse index of the second variation d2F (πz(t)) with
periodic boundary conditions, is equal to the Maslov index of the local stable or
unstable manifolds W s

loc(z(t)),W
u
loc(z(t)). In particular, if [dzφtλ;V (z(t)] =

k ∈ Z
+ where 0 ≤ t ≤ T then [dzφtλ;V (z(t)] = mk over m covers of the

periodic phase curve 0 ≤ t ≤ mT .

In special circumstances, the subspaceW (see equation (4.24)) is Lagrangian:
for example in the case described above in Bondarchuk’s theorem or in the
time reversing case Offin (2000), or in case the orbit is symmetric under
an Abelian group of symplectic symmetries Cabral and Offin (2008), or in
case the periodic orbit lies on an invariant energy surface H−1(h) for a two
degree of freedom Hamiltonian system. This last case is equivalent to the
one-dimensional case described above for the periodic problem of the calculus
of variations. This Lagrangian property of the subspace W will be shown to
lead to an interesting possibility to analyze the orbits for qualitative behavior
based only the values of the Maslov index. This opens the door to predict-
ing analytically the stability type of the periodic orbit, without recourse to
numerical techniques. It has been shown that in the one dimensional case
considered by Morse, the stability type of an underlying periodic orbit can
be deduced solely from the parity of the Maslov index Offin (2001). We shall
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use these formulas for the Maslov–Morse index of the second variation in
applications, and exploit the properties of the iterated Maslov index when
we can show that the subspace W is Lagrange.

The other important translation of the Maslov index is the Conley–
Zehnder (1984), which concerns a curve of symplectic matrices in Sp(2n)
rather than a curve of Lagrange planes. Because the topology of Sp(2n) is
similar to the topology of Λn, it is not surprising that the two theories are by
and large equivalent. The role of the singular cycle is played in the Conley–
Zehnder theory by codimension one cycles which are essentially submanifolds
of symplectic matrices having eigenvalues ±1. The Conley–Zehnder index has
been extensively studied by Long (2002) and we will refer the reader to this
source to investigate further the Maslov index in this case. We shall detail
how to compute the Maslov index for the case of critical curves of variational
problems further in the chapter on applications.

4.6 Spectral Decomposition

In this section we complete the spectral analysis of a Hamiltonian matrix A
and a symplectic matrix T . Here we drop the assumption that these matrices
are diagonalizable. The material in this section is be used in Sections 4.7
and 4.3 and to some extent in Sections 4.2 and 4.1. The main references on
Hamiltonian matrices discussed in this section and in Section 4.7 are still
Williamson (1936,1937,1939), but we follow the presentation in Laub and
Meyer (1974).

Recall the definition of the generalized eigenspace. Let λ be an eigenvalue
of A, and define subspaces of C

2n by ηk(λ) = kernel (A − λI)k. From ele-
mentary linear algebra ηk(λ) ⊂ ηk+1(λ) and for each eigenvalue λ there is a
smallest k′, 1 ≤ k′ ≤ 2n, such that

ηk′(λ) = ηk′+1(λ) = ηk′+2(λ) = · · · .

Let η†(λ) = ηk′(λ). The eigenspace of A corresponding to the eigenvalue λ is
η(λ) = η1(λ), and the generalized eigenspace is η†(λ). The same definitions
hold for any matrix including T .

Also recall that if {x, y} = xTJy = 0, then x and y are J-orthogonal.

Proposition 4.6.1. Let A (respectively T ) be any 2n× 2n real Hamiltonian
(respectively, symplectic) matrix with eigenvalues λ and μ, λ+μ 
= 0 (respec-
tively, λμ 
= 1). Then {η†(λ), η†(μ)} = 0; i.e., the generalized eigenspaces are
J-orthogonal.

Proof. Let A be Hamiltonian with eigenvalues λ and μ, λ + μ 
= 0. By
Lemma 3.3.1, {η1(λ), η1(μ)} = 0; so, make the induction assumption that
{ηk(λ), ηk(μ)} = 0. We first show that {ηk+1(λ), ηk(μ)} = 0. Recall that
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{Ax, y} = −{x,Ay} for all x, y ∈ V. Let u ∈ ηk+1(λ) and v ∈ ηk(μ); so,
(A− λI)k+1u = 0 and (A− μI)kv = 0. Then

0 = {u, (A− μI)kv}

= {u, (A+ λI + [−λ− μ]I)kv}

=
k∑

j=0

(
k
j

)
(−λ− μ)k−j{u, (A+ λI)jv}

=
k∑

j=0

(
k
j

)
(−λ− μ)k−j{(−A+ λI)ju, v}.

Because u ∈ ηk+1(λ), we have (−A+λI)ju ∈ ηk(λ) for j = 1, 2, . . . ; so all the
terms in the last sum above are zero except the term with j = 0. Therefore
(−λ − μ)k{u, v} = 0. This proves {ηk+1(λ), ηk(μ)} = 0. A similar argument
shows that {ηk+1(λ), ηk(μ)} = 0 implies {ηk+1(λ), ηk+1(μ)} = 0; thus by
induction the lemma holds for Hamiltonian matrices.

Let T be symplectic and Tx = λx, Ty = μy, where x, y 
= 0 and λμ 
= 0.
Then

λ{x, y} = {Tx, y} = xTTTJy = xTJT−1y = xTJμ−1y = μ−1{x, y},

so {x, y} = 0 or {η(λ), η(μ)} = 0. This is the initial step in the induction
which proceeds just as in the Hamiltonian case. See Laub and Meyer (1974).

Let A be a real Hamiltonian matrix. The eigenvalues of A fall into four
groups:

(i) The eigenvalue 0
(ii) The real eigenvalues ±α1, . . . ,±αs

(iii) The pure imaginary ±β1i, . . . ,±βri
(iv) The truly complex ±γ1 ± δ1i, . . . ,±γt ± δti

This defines a direct sum decomposition

V = X⊕ (⊕jUj)⊕ (⊕jWj)⊕ (⊕jZj) ,

where

X = η†(0),

Uj = η†(αj)⊕ η†(−αj),

Wj = η†(βji)⊕ η†(−βji),

Zj = {η†(γj + δji)⊕ η†(γj − δji)} ⊕ {η†(−γj − δji)⊕ η†(−γj + δji)}.
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Each of the spaces given above is an invariant subspace for A. By Lemma 4.6.1
each space is J-orthogonal to every other, and so by Proposition 3.2.1, each
space must be a symplectic subspace. Because each subspace is invariant
under complex conjugation, each is the complexification of a real space. Thus
we can choose symplectic coordinates for each of the spaces so that A in these
coordinates is block diagonal. Therefore, the next task would be to consider
each space separately.

For the discussion assume that the αj and γj are positive. Regroup the
spaces as follows.

V = I⊕ N⊕ P,

I = X⊕ (⊕jWj) ,

N =
(
⊕jη

†(−αj)
)
⊕
(
⊕j{η†(−γj − δji)⊕ η†(−γj + δji)}

)

P =
(
⊕jη

†(+αj)
)
⊕
(
⊕j{η†(+γj − δji)⊕ η†(+γj + δji)}

)
.

(4.25)

All these spaces are real and A invariant. I is symplectic and the restriction of
A to I has only pure imaginary eigenvalues. All the eigenvalues of A restricted
to N (respectively, P) have negative (respectively, positive) real parts. N⊕ P

is symplectic and the splitting is Lagrangian. The following lemma is a direct
result of Lemma 3.2.4.

Proposition 4.6.2. Let A be a real, 2n × 2n, Hamiltonian matrix all of
whose eigenvalues have nonzero real parts; i.e., I = 0. Then there exists a
real 2n× 2n symplectic matrix P such that P−1AP = diag (BT ,−B), where
B is a real n×n matrix, all of whose eigenvalues have negative real parts. In
particular, B could be taken in real Jordan form.

It remains to consider the restriction of A to I. The detailed and lengthy
discussion of these normal forms is given in Section 4.7.

Let T be a real symplectic matrix. The eigenvalues of T fall into five
groups:

(i) +1
(ii) −1
(iii) The real eigenvalues μ±1

1 , . . . , μ±1
s

(iv) The eigenvalues of unit modulus α1 ± β1i, . . . , αr ± βri
(v) The eigenvalues of modulus different from one

(γ1 ± δ1i)±1, . . . , (γt ± δti)±1.
This defines a direct sum decomposition

V = X⊕ Y⊕ (⊕jUj)⊕ (⊕jWj)⊕ (⊕jZj) (4.26)

where
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X = η†(+1), Y = η†(−1),

Uj = η†(νj)⊕ η†(ν−1
j ),

Wj = η†(αj + βji)⊕ η†(αj − βji),

Zj = {η†(γj + δji)⊕ η†(γj − δji)} ⊕ {η†((γj − δji)−1)⊕ η†((γj + δji)−1)}.
Each of the summands in the above is an invariant subspace for T . By Lemma
4.6.1, each space is J-orthogonal to every other, and so each space must be
a symplectic subspace. Because each subspace is invariant under complex
conjugation, each is the complexification of a real space. Thus we can choose
symplectic coordinates for each of the spaces so that T in these coordinates is
block diagonal. Because each of the spaces in the above is symplectic it must
be even-dimensional and so, the multiplicity of the eigenvalue −1 is even.
The restriction of T to η†(−1) has determinant +1. This gives another proof
of Theorem 3.1.7.

Corollary 4.6.1. The determinant of a symplectic matrix is +1.

Again we can group these spaces together, as follows.

V = I⊕ N⊕ P,

I = X⊕ Y⊕ (⊕jWj),

N = {η†(γj + δji)⊕ η†(γj − δji)},

P = {η†((γj + δji)−1 ⊕ η†((γj − δji)−1)}.
All these spaces are real and T invariant. I is symplectic and the restriction
of T to I has only eigenvalues with unit modulus. All the eigenvalues of T
restricted to N (respectively, P) have modulus less than (respectively, greater
than) one. N⊕P is symplectic and the splitting is Lagrangian. The following
lemma is a direct result of Lemma 3.2.4.

Proposition 4.6.3. Let T be a real, 2n×2n, symplectic matrix all of whose
eigenvalues have modulus different from one; i.e., I = 0. Then there exists a
real 2n× 2n symplectic matrix P such that P−1TP = diag(BT,B−1), where
B is a real n×n matrix, all of whose eigenvalues have negative real parts. In
particular, B could be taken in real Jordan form.

It remains to consider the restriction of T to I. For this discussion we refer
the reader to Laub and Meyer (1974).

Problems

1. Prove Lemma 3.4.1 for the symplectic matrix T by using induction on
the formula {ηk(λ), ηk(μ)} = 0, where ηk(λ) = kernel (T k − λI).
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4.7 Normal Forms for Hamiltonian Matrices

By the discussion of Section 4.6 it remains to study a Hamiltonian matrix
where all the eigenvalues have zero real part. We further subdivide this into
the case when the matrix has only the eigenvalue zero and to the case when
the matrix has a pair of pure imaginary eigenvalues. These two cases are
covered in the next two subsections.

4.7.1 Zero Eigenvalue

Throughout this subsection V is a real symplectic linear space with Poisson
bracket {·, ·} ({x, y} = xTJy), and A : V → V is a real Hamiltonian linear
operator (or matrix) whose sole eigenvalue is zero; i.e., A is nilpotent.

Theorem 4.7.1. V = ⊕jUj where Uj is an A-invariant symplectic subspace
and there is a special symplectic basis for Uj. Let the dimension of Uj be
2s× 2s and Bδ the matrix of the restriction of A to Uj in this basis. Then

Bδ =

⎡
⎣
N 0

D −NT

⎤
⎦ ,

where

N =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0

· · ·
0 0 0 · · · 0 0
0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, D =

⎡
⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
0 0 0 · · · 0 0

· · ·
0 0 0 · · · 0 0
0 0 0 · · · 0 δ

⎤
⎥⎥⎥⎥⎦
,

and δ = 0 or 1 or −1.
The Hamiltonian is

Hδ =
s−1∑
j=1

xjyj+1 −
δ

2
x2

s.

Remarks: B0 has rank 2s− 2 whereas B±1 has rank 2s− 1 so they are not
similar. The Hessian of H+1 (respectively. of H−1) has index s (respectively,
s− 1) so B+1 and B−1 are not symplectically similar.

B0 is the coefficient matrix of the pair of nth-order equations

dsx

dts
= 0,

dsy

dts
= 0

written as a system and B±1 is the coefficient matrix of the 2nth-order equa-
tion equations

d2sx

dt2s
= 0
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written as a system. The exponential of Bδ is easy to compute because the
series expansion terminates due to the fact that Bδ is nilpotent. For example,
if s = 2 we compute

eBδt =

⎡
⎢⎢⎣

1 0 0 0
t 1 0 0

−δt3/3! −δt2/2! 1 −t
δt2/2! δt 0 1

⎤
⎥⎥⎦ .

The proof of this proposition requires a series of lemmas and some defini-
tions. The general ideas are used over and over. Let A have nilpotent index
k + 1; i.e., Ak 
= 0, Ak+1 = 0. By the Jordan canonical form theorem, V has
a basis of the form

v1, Av1, . . . , A
s1v1

v2, Av2, . . . , A
s2v2

· · ·
vr, Avr, . . . , A

srvr,

where Asi+1vi = 0, i = 1, . . . , r. However, this basis is not symplectic.
Let A be the commutative algebra,

A = {α0I + α1A+ α2A
2 + · · ·+ αkA

k : αi ∈ R}

and V be V considered as a module over A. Note that v1, . . . , vr is a basis for
V. Given a set of vectors S let L(S) denote the linear span of this set in the
module sense.

Let Φ = α0I + α1A+ α2A
2 + · · ·+ αkA

k and define

Φ∗ = α0I − α1A+ α2A
2 − · · ·+ (−1)kαkA

k,
Λ(Φ) = αk,
Ω(x, y) = {Akx, y}I + {Ak−1x, y}A+ · · ·+ {x, y}Ak.

Lemma 4.7.1. For all β1, β2 ∈ R, Φ,Φ1, Φ2 ∈ A, and x, x1, x2, y, y1, y2 ∈ V,

1. Ω(x, y) = (−1)k+1Ω(y, x)∗,
2. Ω(β1Φ1x1 + β2Φ2x2, y) = β1Φ1Ω(x1, y) + β2Φ2Ω(x2, y),
3. Ω(x, β1Φ1y1 + β2Φ2y2) = β1Φ

∗
1Ω(x, y1) + β2Φ

∗
2Ω(x, y2),

4. Ω(x, y) = 0 for all y implies x = 0,
5. {Φx, y} = Λ(ΦΩ(x, y)).

Proof. A is Hamiltonian so {Ax, y} = −{x,Ay} which yields the first
statement. By the linearity of the Poisson bracket Ω(β1x1 + β2x2, y1) =
β1Ω(x1, y1) + β2Ω(x2, y1). Note that

AΩ(x, y) = A{0 + {Akx, y}I + · · ·+ {Ax, y}Ak−1 + {x, y}Ak

= 0 + {Akx, y}A+ · · ·+ {Ax, y}Ak + {x, y}Ak+1

= {AkAx, y}I + {Ak−1Ax, y}+ · · ·+ {Ax, y}Ak + 0
= Ω(Ax, y).
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Thus AΩ(x, y) = Ω(Ax, y) and with the linearity this implies the second
statement. The third statement follows from the first two. The nondegeneracy
of Ω follows at once from the nondegeneracy of the Poisson bracket. The last
statement is just a computation.

Lemma 4.7.2. Φ = α0I + α1A + α2A
2 + · · · + αkA

k is nonsingular if and
only if α0 
= 0. If Φ is nonsingular then it has a nonsingular square root Ψ
such that Ψ2 = sign (α0)Φ.

Proof. Let Ψ =
∑k

j=0 βkA
k. Then ΨΦ =

∑k
l=0{

∑l
j=0 αjβl−j}Al so to find

an inverse we must solve

α0β0 = 1 and
l∑

j=0

αjβl−j = 0 for l = 1, . . . , k.

The first equation has as its solution β0 = 1/α0. The remaining equation can
be solved recursively for βj , j = 1, . . . , k.

Assume α0 > 0, then to solve Ψ2 = Φ leads to αl =
∑l

j=0 βjβl−j . For
l = 0 the formula is α0 = β2

0 which has a solution β0 =
√
α0. The remaining

βj are again found by recursion. If α0 < 0 then solve Ψ2 = −Φ as above.

Lemma 4.7.3. Let W ⊂ V be an A-invariant subspace and let the subscript
W indicate the restriction of all the various objects to this subspace. That is,
AW = A|W; the nilpotent index of AW is kW + 1 ≤ k+ 1; AW is the algebra
generated by AW ; ΩW = Ω|(W ×W ); and let W denote W considered as an
module over AW .

Let ξ1, . . . , ξγ be a basis for W. By relabeling if necessary suppose that
Ω(ξ1, ξ1) is nonsingular.

Then there exist a basis eW , ξ′2, . . . , ξ
′
γ for W with ΩW (eW , eW ) = ±I,

ΩW (eW , ξ′j) = 0 for j = 2, . . . , γ, and W = L(eW ) ⊕ L(ξ′2, . . . , ξ
′
γ). Also

eW , AW eW , . . . , A
kW

W eW is a basis for L(eW ) as a vector space over R.

Proof. For notional convenience in this proof we drop the subscript W .
Note that k must be odd for from Lemma 4.7.1 we have Ω(ξ1, ξ1) =
(−1)k+1Ω(ξ1, ξ1)∗. The coefficient α0 of I in Ω(ξ1, ξ1) must be nonzero by
Lemma 4.7.2 and is invariant under the ∗-operation so α0 = (−1)k+1α0 
= 0
because k is odd. Thus Φ = Ω(ξ1, ξ1) = Ω(ξ1, ξ1)∗ so that Φ must be of the
form α0I + α2A

2 + · · ·+ αk−1A
k−1. We say that Φ is even.

Because Φ = Φ∗ is nonsingular, by Lemma 4.7.2 there exists a square
root Ψ such that Ψ2 = sign (α0)Φ. Moreover, from the proof of Lemma 4.7.2,
it is clear that Φ∗ is even; i.e., Ψ = Ψ∗. Suppose that α0 > 0. (A precisely
analogous proof works when α0 < 0.) Let e be defined by ξ1 = Ψe (or
e = Ψ−1ξ1). Then

ΨΨ∗ = Ψ2 = Φ = Ω(ξ1, ξ1) = Ω(Ψe, Ψe) = ΨΨ∗Ω(e, e).
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Thus Ω(e, e) = I (or Ω(e, e) = −I when α0 < 0).
Now, for j = 2, . . . , γ, let ξ′j = ξj −Ω(e, ξj)∗e. Then

Ω(e, ξ′j) = Ω(e, ξj)−Ω(e,Ω(e, ξi)∗e)
= Ω(e, ξj)−Ω(e, ξj)Ω(e, e)
= Ω(e, ξj)−Ω(e, ξj)
= 0.

The transformation from the basis ξ1, ξ2, . . . , ξγ to e, ξ′2, . . . , ξ
′
γ is invertible,

thus the latter set of vectors is also a basis for W.

Lemma 4.7.4. Let W, W, AW , ΩW be as in Lemma 4.7.3 (except now AW

is nilpotent of index mW +1 ≤ k+1). Suppose again that ξ1, . . . , ξγ is a basis
for W, but now ΩW (ξj , ξj) is singular for all j = 1, . . . , γ and by relabeling
if necessary ΩW (ξ1, ξ2) is nonsingular.

Then there exists a basis fW , gW , ξ
′
3, . . . , ξ

′
γ for W such that

ΩW (fW , gW ) = I,

ΩW (fW , fW ) = ΩW (gW , gW ) = ΩW (fW , ξ
′
j) = ΩW (gW , ξ

′
j) = 0,

and W = L(fW , gW ) ⊕ L(ξ′3, . . . , ξ
′
γ) where L(fW , gW ) has a vector space

basis fW , . . . , A
mW

W fW , gW , . . . , A
mW

W gW .

Proof. Again for notational convenience we drop the W subscript. Also we
may assume that Ω(ξ1, ξ2) = I; if not, simply make a change of variables.
There are two cases to consider.

Case 1: m is even. By Lemma 4.7.1, Ω(ξj , ξj) = (−1)m+1Ω(ξj , ξj)∗ =
−Ω(ξj , ξj)∗ thus Ω(ξj , ξj) is of the form α1A + α3A

3 + · · · + αm−1A
m−1

which we call odd. Also by Lemma 4.7.1, Ω(ξ2, ξ1) = −I. Let f = ξ1 + Φξ2
where Φ is to be found so that Ω(f, f) = 0 and Φ is odd.

0 = Ω(f, f) = Ω(ξ1, ξ1) +Ω(ξ1, Φξ2) +Ω(Φξ2, ξ1) +Ω(Φξ2, Φξ2)
= Ω(ξ1, ξ1) + Φ∗ − Φ+ ΦΦ∗Ω(ξ2, ξ2).

Because we want Φ = −Φ∗, we need to solve

Φ =
1
2
[Ω(ξ1, ξ1) + Φ2Ω(ξ2, ξ2)].

Notice that the product of three odd terms is again odd, so the right hand
side is odd. Clearly, we may solve recursively for the coefficients of Φ starting
with the coefficient of A in Φ.

Case 2: m is odd. By Lemma 4.7.1 Ω(ξi, ξi) is even and because it is
singular α0 = 0. Also Ω(ξ2, ξ1) = I. Set f = ξ1 +Φξ2 and determine an even
Φ so that Ω(f, f) = 0. We need to solve

Φ =
1
2
[Ω(ξ1, ξ1) + Φ2Ω(ξ2, ξ2)].
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The right hand side is even and we can solve the equation recursively starting
with the coefficient of A2.

In either case f, ξ2, . . . , ξγ is a basis and we may assume that Ω(f, ξ2) = I
(and Ω(ξ2, f) = ±I accordingly as m is odd or even). Let h = ξ2 −
1
2Ω(ξ2, ξ2)f . One can check that Ω(h, h) = 0 whether m is even or odd. Let g
be defined by h = Ω(f, h)∗g. Then Ω(g, g) = 0 and Ω(f, h) = Ω(f, h)Ω(f, g)
so Ω(f, g) = I. Finally, note that Ω(g, h) = I if m is odd and −I if m is even.
Let ξ′j = ξj∓Ω(g, ξj)∗f−Ω(f, ξj)∗g (minus sign when m is odd and plus sign
when m is even). One checks that Ω(f, ξ′j) = Ω(g, ξ′j) = 0 for j = 3, . . . , γ.

Proposition 4.7.1. Let A : V → V be nilpotient, then V has a symplectic
decomposition

V = U1 ⊕ · · · ⊕ Uα ⊕ V1 ⊕ · · · ⊕ Vβ

into A-invariant subspaces. Furthermore, Uj has a basis ej , . . . , Akjej (A|Uj

is nilpotent with index kj + 1 ≤ k + 1) with

{Asej , ej} =
{
±1 if s = kj

0 otherwise,

and Yj has a basis fj , Afj , . . . , A
mjfj , gj , Agj , . . . , A

mjgj (A|Yj is nilpotent
of index mj + 1 ≤ k + 1) with

{Asfj , gj} =
{

1 if s = mj

0 otherwise

and
{Asfj , fj} = {Asgj , gj} = 0 for all s.

Proof. Let ξ1, . . . , ξγ be a basis for V. First we need to show that Ω(ξi, ξj) is
nonsingular for some i and j (possibly equal). Suppose to the contrary that
Ω(ξi, ξj) is singular for all i and j. By Lemma 4.7.2, the coefficient of I must
be 0; i.e., {Akξi, ξj} = 0. Furthermore, {Ak+l1+l2ξi, ξj} = 0 for all nonnega-
tive integers l1, l2 by the nilpotence of A. Fix l1. Then {Ak(Al1ξj), Al2ξj} = 0
for all l2 ≥ 0. Because {Al2ξj : l2 ≥ 0} forms a basis for V and {·, ·} is non-
degenerate, we conclude that Ak(Al1ξj) = 0. But l1 is arbitrary so Ak = 0,
which contradicts the hypothesis of k + 1 as the index of nilpotence of A.

By relabeling if necessary, we may assume that eitherΩ(ξ1, ξ1) orΩ(ξ1, ξ2)
is nonsingular. In the first case apply Lemma 4.7.3 and in the second case
Lemma 4.7.4. We have either V = L(eW )⊕Z, where Z = L(ξ′2, . . . , ξ

′
γ) or V =

L(fW , gW ) ⊕ Z where Z = L(ξ′2, . . . , ξ
′
γ). In the first case call U1 = L(eW );

in the second case call Y1 = L(fW , gW ). In either case repeat the process on
Z.

Proof (Theorem 4.7.1). All we need to do is construct a symplectic basis for
each of the subspaces in Proposition 4.7.1.

Case 1: A|Uj . Let A|Uj be denoted by A, U denote Uj and k + 1 the
index of nilpotence of A. Then there is an e ∈ U such that {Ake, e} = ±1
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and {Ase, e} = 0 for s 
= k. Consider the case when {Ake, e} = +1 first and
recall that k must be odd. Let l = (k + 1)/2. Define

qj = Aj−1e, pj = (−1)k+1−jAk+1−je for j = 1, . . . , l.

Then for i, j = 1, . . . , l,

{qi, qj} = {Ai−1e,Aj−1}
= (−1)j−1{Ai+j−2e, e}
= 0 because i+ j − 2 ≤ k − 1,

{pi, pj} = {(−1)k+1−iAk+1−ie, (−1)k+1−jAk+1−je}
= (−1)k+1−i{A2k−i−je, e}
= 0 because 2(k + 1)− i− j > k + 1,

{qi, pj} = {Ai−1e, (−1)k+1−jAk+1−je}
= {Ak+i−je, e}
=
{

1 if i = j
0 if i 
= j.

Thus q1, . . . , pl is a symplectic basis. With respect to this basis A has the
matrix form Bδ given in Proposition 4.7.1 with δ = (−1)l.

In the case {Ake, e} = −1 define

qj = Aj−1e, pj = (−1)k−jAk+1−je for j = 1, . . . , l.

to find that A in these coordinates is Bδ with δ = (−1)l+1.
Case 2: A|Yj . Let A|Yj be denoted by A, Y denote Yj and m+1 the index

of nilpotence of A. Then there are f, g ∈ Y such that {Asf, f} = {Asg, g} =
0, {Amf, g} = 1, and {Asf, g} = 0 for s 
= m. Define

qj = Aj−1f, pj = (−1)m+1−jAm+1−jg,

and check that q1, . . . , pm is a symplectic basis for U . The matrix represen-
tation of A in this basis is the B0 of Theorem 4.7.1.

4.7.2 Pure Imaginary Eigenvalues

Throughout this section let A : V → V be a real Hamiltonian linear operator
(or matrix) that has a single pair of pure imaginary eigenvalues ±iν, ν 
= 0.
It is necessary to consider V as a vector field over C the complex numbers so
that we may write V = η†(iν)⊕ η†(−iν).

Theorem 4.7.2. V = ⊕jWj whereWj is an A-invariant symplectic subspace
and there is a special symplectic basis for Wj. If C is the matrix of the
restriction of A to Wj in this basis, then C has one of the complex forms
(4.27), (4.32) or one of the real forms (4.29), (4.30),(4.31), or (4.33).
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This case is analogous to the nilpotent case. Let B = A|η†(iν) − iνI
and suppose that B is nilpotent of index k + 1 ≤ n. Let A be the algebra
generated by B, i.e., A = {α0I + α1B + · · · + αkB

k : αj ∈ C} and let V be
η†(iν) considered as a modual over A.

Let Φ = α0I + α1B + α2B
2 + · · ·+ αkB

k and define

Φ∗ = ᾱ0I − ᾱ1B + ᾱ2B
2 − · · ·+ (−1)kᾱkB

k,
Λ(φ) = αk,
Ω(x, y) = {Bkx, ȳ}I + {Bk−1x, ȳ}B + · · ·+ {x, ȳ}Bk.

The next three lemmas are proved as are the analogous lemmas for the
nilpotent case.

Lemma 4.7.5. For all β1, β2 ∈ C, Φ,Φ1, Φ2 ∈ A, and x, x1, x2, y, y1, y2 ∈ V

we have

1. Ω(x, y) = (−1)k+1Ω(y, x)∗,
2. Ω(β1Φ1x1 + β2Φ2x2, y) = β1Φ1Ω(x1, y) + β2Φ2Ω(x2, y),
3. Ω(x, β1Φ1y1 + β2Φ2y2) = β̄1Φ

∗
1Ω(x, y1) + β̄2Φ

∗
2Ω(x, y2).

4. Ω(x, y) = 0 for all y implies x = 0,
5. {Φx, ȳ} = Λ(ΦΩ(x, y)).

Lemma 4.7.6. Φ = α0I + α1B + α2B
2 + · · · + αkB

k is nonsingular if and
only if α0 
= 0.

Lemma 4.7.7. Let Φ = α0I + α1B + α2B
2 + · · · + αkB

k be nonsingular
and satisfy Φ = (−1)k+1Φ∗. If k is even (respectively, odd), then Φ has
a nonsingular square root Ψ such that ΨΨ∗ = i sign (α0/i)Φ (respectively,
ΨΨ∗ = sign (α0)Φ). Moreover, Ψ = (−1)k+1Ψ∗.

Proposition 4.7.2. Let A : V → V have only the pure imaginary eigenval-
ues ±iν and B = A − iνI. Then V has a symplectic decomposition into the
A-invariant of the form

V = (U1 ⊕ Ū1)⊕ · · · ⊕ (Uα ⊕ Ūα)⊕ (Y1 ⊕ Ȳ1)⊕ · · · ⊕ (Yβ ⊕ Ȳβ)

where Uj and Yj are subspaces of η†(iν).
Uj has a basis ej , Bej , . . . , Bkjej where B|Uj is nilpotent of index kj + 1,

Ūj has a basis ēj , B̄ēj , . . . , B̄kj ēj, and

{Bsej , ēj} =

⎧
⎨
⎩
±1 if s = kj , kj odd,
±i if s = kj , kj even,
0 otherwise.

Yj has a basis fj , Bfj , . . . , B
kjfj , gj , Bgj , . . . , B

kjgj where B|Yj is nilpo-
tent of index kj + 1, Ȳj has a basis f̄j , . . . , B̄

kj ḡj , . . . , B̄
kj ḡj, and

{Bsfj , ḡj} =
{

1 if s = kj ,
0 otherwise ,

{Bsfj , f̄j} = 0 all s,
{Bsgj , ḡj} = 0 all s.
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Proof. The proof of this proposition is essentially the same as the proof of
Proposition 4.7.1 and depends on extensions of lemmas like Lemma 4.7.3 and
Lemma 4.7.4. See Theorem 14 and Lemmas 15 and 16 of Laub and Meyer
(1974).

Proof (Theorem 4.7.2). The real spaces Wj of the theorem have as their
complexification either one of (Uj⊕Ūj) or one of (Yj⊕Ȳj). Using Lemma 4.7.2
we construct a symplectic basis for each of these subspaces.

Case 1: Let us consider (Uj ⊕ Ūj) first and drop the subscript. Indeed,
for the moment let V = (Uj ⊕ Ūj) and A = A|(Uj ⊕ Ūj), etc. Then there
is a complex basis e,Be, . . . , Bke, ē, B̄ē, . . . , B̄kē and {Bke, ē} = a where
a = ±1,±i. Consider the complex basis

uj = Bj−1e, vj = a−1(−1)k−j+1B̄k−j+1ē, j = 1, . . . , k + 1.

Because (Uj ⊕ Ūj) is a Lagrangian splitting {uj , us} = {vj , vs} = 0.

{uj , vs} = {Bj−1e, a−1(−1)k−s+1B̄k−s+1ē}
= a−1{Bk+j−se, ē}
=
{

1 if j = s,
0 otherwise

Thus the basis is symplectic and in this basis A has the form

⎡
⎣
N 0

0 −NT

⎤
⎦ , where N =

⎡
⎢⎢⎢⎢⎢⎢⎣

iν 0 0 · · · 0 0
1 iν 0 · · · 0 0
0 1 iν · · · 0 0

· · ·
0 0 0 · · · iν 0
0 0 0 · · · 1 iν

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.27)

and the reality condition is uj = ā(−1)k−j+2v̄k−j+2. The real normal forms
depend on the parity of k.

Case k odd: The reality condition is uj = a(−1)j−1v̄k−j+2 where a = ±1.
Consider the following real basis

qj =

⎧
⎪⎨
⎪⎩

√
2�uj =

1√
2
(uj + a(−1)j−1vk−j+2), j odd,

√
2�uj =

1√
2i

(uj − a(−1)j−1vk−j+2), j even,

pj =

⎧
⎪⎨
⎪⎩

√
2�vj =

1√
2
(vj − a(−1)j−1uk−j+2), j odd,

−
√

2�vj =
1√
2i

(−vj − a(−1)j−1uk−j+2), j even.

(4.28)

A direct computation verifies that {qj , qs} = {pj , pj} = 0 for j, s = 1, . . . , n
and {qj , ps} = 0 for j, s = 1, . . . , n and j 
= s. If j is odd
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{qj , pj} = 1
2{uj + a(−1)j−1vk−j+2, vj − a(−1)j−1uk−j+2}

= 1
2 [{uj , vj} − {vk−j+2, uk−j+2}] = 1

and if j is even

{qj , pj} = − 1
2{uj − a(−1)j−1vk−j+2,−vj − a(−1)j−1uk−j+2}

= − 1
2 [−{uj , vj}+ {vk−j+2, uk−j+2}] = 1.

Thus (4.28) defines a real symplectic basis and the matrix A in this basis is

[
0 aN

−aNT 0

]
, where N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 ν
0 0 0 · · · 0 ν 1
0 0 0 · · · ν −1 0

...
...

0 0 ν · · · 0 0 0
0 ν −1 · · · 0 0 0
ν 1 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.29)

For example, when k = 1 and a = 1,

A =

⎡
⎢⎢⎣

0 0 0 ν
0 0 ν 1
−1 −ν 0 0
−ν 0 0 0

⎤
⎥⎥⎦ .

The Hamiltonian is

H = ν(x1x2 + y1y2) +
1
2
(x2

1 + y2
2).

Noting that A is the sum of two commuting matrices, one semisimple and
one nilpotent, we have

aAt =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 t
−t 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

cos νt 0 0 sin νt
0 cos νt sin νt 0
0 − sin νt cos νt 0

− sin νt 0 0 cos νt

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

cos νt 0 0 sin νt
−t sin νt cos νt sin νt t cos νt
−t cos νt − sin νt cos νt −t sin νt
− sin νt 0 0 cos νt

⎤
⎥⎥⎦ .

Normal forms are not unique. Here is another normal form when k = 1;
consider the following basis
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q1 =
√

2�u1 =
1√
2
(u1 + ū1) = 1√

2
(u1 + av2)

q2 =
√

2�u1 =
1√
2i

(u1 − ū1) = 1√
2i

(u1 − av2)

p1 =
√

2�v1 =
1√
2
(v1 + v̄1) = − 1√

2
(v1 − au2)

p2 = −
√

2�v1 =
−1√
2i

(v1 − v̄1) = 1√
2i

(v1 + au2).

This is a symplectic basis. In this basis

A =

⎡
⎢⎢⎣

0 ν 0 0
−ν 0 0 0
a 0 0 ν
0 a −ν 0

⎤
⎥⎥⎦ , (4.30)

the Hamiltonian is

H = ν(x2y1 − x1y2)−
a

2
(x2

1 + x2
2),

and the exponential is

eAt =

⎡
⎢⎢⎣

cos νt sin νt 0 0
− sin νt cos νt 0 0
at cos νt at sin νt cos νt sin νt
−at sin νt at cos νt − sin νt cos νt

⎤
⎥⎥⎦ ,

where a = ±1.
Case k even: In this case a = ±i and the reality condition is uj =

ā(−1)j v̄k−j+2. Consider the following real basis

qj =
√

2�uj =
1√
2
(uj + a(−1)jvk−j+2),

pj = (−1)j
√

2�uj =
1√
2
(vj + ā(−1)j+1uk−j+2),

for j = 1, . . . , k + 1. By inspection {qj , qs} = {pj , ps} = 0, {qj , ps} = 0 for
j 
= s and

{qj , pj} = 1
2{uj + a(−1)jvk−j+2, ā(−1)j+1uk−j+2 + vj}

= 1
2 ({uj , vj} − aā{vk−j+2, uk−j+2} = 1.

Thus the basis is symplectic and A in this basis is

A =
[

N M
−M −NT

]
, (4.31)
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where

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0

· · ·
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, M = ±

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0 −ν
0 0 0 · · · 0 ν 0
0 0 0 · · · −ν 0 0

· · ·
0 0 −ν · · · 0 0 0
0 ν 0 · · · 0 0 0
−ν 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the Hamiltonian is

H = ±ν
k+1∑
j=1

(−1)j(xjxk−j+1 + yjyk−j+1) +
k∑

j=1

(xjyj+1 + xj+1yj).

The matrix A is the sum of commuting matrices

A = B + C, B =
[
N 0
0 −NT

]
, C =

[
0 M

−M 0

]
,

so eAt = eBteCt where

eBt = B +Bt+B2 t
2

2
+ · · ·+Bk t

k

k!
, eCt =

[
cosMt ± sinMt

∓ sinMt cosMt

]
.

In particular when k = 2

eBt =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
t 1 0 0 0 0

t2

2 t 1 0 0 0
0 0 0 1 −t t2

2
0 0 0 0 1 −t
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
,

eCt =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos νt 0 0 0 0 ± sin νt
0 cos νt 0 0 ∓ sin νt 0
0 0 cos νt ± sin νt 0 0
0 0 ∓ sin νt cos νt 0 0
0 ± sin νt 0 0 cos νt 0

∓ sin νt 0 0 0 0 cos νt

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Case 2: Now let us consider (Yj ⊕ Ȳj) and drop the subscript. Because
Ω(f, f̄) = Ω(g, ḡ) = 0 and Ω(f, ḡ) = I, by definition of Ω we have

{Bsf, f̄} = {Bsg, ḡ} = 0, for all s, {Bsf, ḡ} =
{

1 if s = k
0 otherwise

Let
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uj =
{
Bj−1f for j = 1, . . . , k + 1
(−1)j−k−1Bj−k−2g for j = k + 2, . . . , 2k + 2

and

vj =
{

(−1)k−j+1B̄k−j+1ḡ for j = 1, . . . , k + 1
B̄2k−j+2f̄ for j = k + 2, . . . , 2k + 2.

One can verify that this is a symplectic basis and with respect to this basis

A =

⎡
⎢⎢⎣
N 0 0 0
0 −N̄ 0 0
0 0 −NT 0
0 0 0 N̄T

⎤
⎥⎥⎦ , where N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

iν 0 0 · · · 0 0
1 iν 0 · · · 0 0
0 1 iν · · · 0 0
...

...
...

...
...

0 0 0 · · · iν 0
0 0 0 · · · 1 iν

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.32)

with the reality conditions

uj =
{

v̄2k−j+3 for j = 1, . . . , k + 1
−v̄2k−j+3 for j = k + 2, . . . , 2k + 2.

Define the following real symplectic basis

qj =
{ √

2�uj for j = 1, . . . , k + 1
−
√

2�u2k−j+3 for j = k + 2, . . . , 2k + 2

pj =
{
±
√

2�u2k−j+3 for j = 1, . . . , k + 1
−
√

2�uj for j = k + 2, . . . , 2k + 2

with respect to this basis

A =

⎡
⎢⎢⎣
N −M 0 0
M NT 0 0
0 0 −NT −M
0 0 M −N

⎤
⎥⎥⎦ , (4.33)

where

N =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦
, M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 ν
0 0 0 · · · ν 0
...

...
...

...
...

0 0 ν · · · 0 0
0 ν 0 · · · 0 0
ν 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4.34)

The matrix A = B + C where B and C are the commuting matrices

B =

⎡
⎢⎢⎣
N 0 0 0
0 NT 0 0
0 0 −NT 0
0 0 0 −N

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

0 −M 0 0
M 0 0 0
0 0 0 −M
0 0 M 0

⎤
⎥⎥⎦
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so eAt = eBteCt where

eBt = B +Bt+B2 t
2

2
+ · · ·+Bk t

k

k!
,

eCt =

⎡
⎢⎢⎣

cosMt − sinMt 0 0
sinMt cosMt 0 0

0 0 cosMt − sinMt
0 0 sinMt cosMt

⎤
⎥⎥⎦ .

When k = 1 the Hamiltonian is

H = ν(x1y4 + x2y3 − x3y2 − x4y1) + (x1y2 + x4y3)

Problems

1. Prove Lemma 3.4.1 for the symplectic matrix T by using induction on
the formula {ηk(λ), ηk(μ)} = 0, where ηk(λ) = kernel (T k − λI). (See
Laub and Meyer (1974).)

2. Write the 4th-order equation x(4) = 0 as a Hamiltonian system. (Hint:
See the canonical forms in Section 4.6.)

3. Compute expAt for each canonical form given in Section 4.7.



5. Exterior Algebra and Differential Forms

Differential forms play an important part in the theory of Hamiltonian sys-
tems, but this theory is not universally known by scientists and mathemati-
cians. It gives the natural higher-dimensional generalization of the results of
classical vector calculus. We give a brief introduction with some, but not all,
proofs and refer the reader to Flanders (1963) for another informal introduc-
tion but a more complete discussion with many applications, or to Spivak
(1965) or Abraham and Marsden (1978) for a more complete mathematical
discussion. The reader conversant with the theory of differential forms can
skip this chapter, and the reader not conversant with the theory should re-
alize that what is presented here is not meant to be a complete development
but simply an introduction to a few results that are used sparingly later.

In this chapter we introduce and use the notation of classical differen-
tial geometry by using superscripts and subscripts to differentiate between
a vector space and its dual. This convention helps sort out the multitude of
different types of vectors encountered.

5.1 Exterior Algebra

Let V be a vector space of dimension m over the real numbers R. The best
examples to keep in mind are the space of directed line segments in Euclidean
3-space, E

3, or the space of all forces that can act at a point. Let V
k denote

k copies of V; i.e., V
k = V × · · · × V (k times). A function φ : V

k −→ R is
called k-multilinear if it is linear in each argument; so,

φ(a1, . . . , ar−1, αu+ βv, ar+1, . . . , ak)

= αφ(a1, . . . , ar−1, u, ar+1, . . . , ak) + βφ(a1, . . . , ar−1, v, ar+1, . . . , ak)

for all a1, . . . , ak, u, v ∈ V, all α, β ∈ R, and all arguments, r = 1, . . . , k. A
1-multilinear map is a linear functional that we sometimes call a covector or
1-form. In R

m the scalar product (a, b) = aT b is 2-multilinear, in R
2n the

symplectic product {a, b} = aTJb is 2-multilinear, and the determinant of an
m ×m matrix is m-multilinear in its m rows (or columns). A k-multilinear
function φ is skew-symmetric or alternating if interchanging any two argu-
ments changes its sign. For a skew-symmetric k-multilinear φ,

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 5,
c© Springer Science+Business Media, LLC 2009
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φ(a1, . . . , ar, . . . , as, . . . , ak) = −φ(a1, . . . , as, . . . , ar, . . . , ak)

for all a1, . . . , ak ∈ V and all r, s = 1, . . . , k, r 
= s. Thus φ is zero if two
of its arguments are the same. We call an alternating k-multilinear function
a k-linear form or k-form for short. The symplectic product {a, b} = aTJb
and the determinant of an m ×m matrix are alternating. Let A

0 = R and
A

k = A
k(V) be the space of all k-forms for k ≥ 1. It is easy to verify that

A
k is a vector space when using the usual definition of addition of functions

and multiplication of functions by a scalar.
In E

3, as we have seen, a linear functional (a 1-form or an alternating
1-multilinear function) acting on a vector v can be thought of as the scalar
project of v in a particular direction. A physical example is work. The work
done by a uniform force is a linear functional on the displacement vector of
a particle.

Given two vectors in E
3, they determine a plane through the origin and

a parallelogram in that plane. The oriented area of this parallelogram is a 2-
form. Two vectors in E

3 determine (i) a plane, (ii) an orientation in the plane,
and (iii) a magnitude, the area of the parallelogram. Physical quantities that
also determine a plane, an orientation, and a magnitude are torque, angular
momentum, and magnetic field.

Three vectors in E
3 determine a parallelepiped, and its oriented volume

is a 3-form. The flux of a uniform vector field, v, crossing a parallelogram
determined by two vectors a and b is a 3-form.

Figure 5.1. Multilinear functions.

If ψ is a 2-multilinear function, then φ defined by φ(a, b) = {ψ(a, b) −
ψ(b, a)}/2 is alternating and is sometimes called the alternating part of
ψ. If ψ is already alternating, then φ = ψ. If α and β are 1-forms, then
φ(a, b) = α(a)β(b)− α(b)β(a) is a 2-form. This construction can be general-
ized. Let Pk be the set of all permutations of the k numbers 1, 2, . . . , k and
sign:Pk −→ {+1,−1} the function that assigns +1 to an even permutation
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and −1 to an odd permutation. So if φ is alternating, φ(aσ(1), . . . , aσ(k)) =
sign(σ)φ(a1, . . . , ak). If ψ is a k-multilinear function, then φ defined by

φ(a1, . . . , ak) =
1
k!

∑
σ∈P

sign(σ)ψ(aσ(1), . . . , aσ(k))

is alternating. We write φ = alt (ψ). If ψ is already alternating, then ψ =
alt (ψ). If α ∈ A

k and β ∈ A
r, then define α ∧ β ∈ A

k+r by

α ∧ β =
(k + r)!
k!r!

alt (αβ)

or
α ∧ β(a1, . . . , ak+r)

=
∑

σ∈P sign(σ)α(aσ(1), . . . , aσ(k))β(aσ(k+1), . . . , aσ(k+r)).

The operator ∧ : A
k × A

r −→ A
k+r is called the exterior product or wedge

product.

Lemma 5.1.1. For all k-forms α, r-forms β and δ, and s-forms γ:

1. α ∧ (β + δ) = α ∧ β + α ∧ δ.
2. α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.
3. α ∧ β = (−1)krβ ∧ α.

Proof. The first two parts are fairly easy and are left as exercises. Let τ be
the permutation τ : (1, . . . , k, k+ 1, . . . , k+ r) −→ (k+ 1, . . . , k+ r, 1, . . . , k);
i.e τ interchanges the first k entries and the last r entries. By thinking of τ
as being the sequence

(1, . . . , k, k + 1, . . . , k + r) −→ (k + 1, 1, . . . , k, k + 2, . . . , k + r)
−→ (k + 1, k + 2, 1, . . . , k + 3, . . . , k + r) −→ · · · −→ (k + 1, . . . , k + r, 1, . . . , k),

it is easy to see that sign(τ) = (−1)rk. Now

α ∧ β(a1, . . . , ak+r)

=
∑

σ∈P sign(σ)α(aσ(1), . . . , aσ(k))β(aσ(k+1), . . . , aσ(k+r))

=
∑

σ∈P sign(σ ◦ τ)α(aσ◦τ(1), . . . , aσ◦τ(k))β(aσ◦τ(k+1), . . . , aσ◦τ(k+r))

=
∑

σ∈P sign(σ)sign(τ)β(aσ(1), . . . , aσ(r))α(aσ(r+1), . . . , aσ(k+r))

= (−1)rkβ ∧ α.

Let e1, . . . , em be a basis for V and f1, . . . , fm be the dual basis for the
dual space V

∗; so, f i(ej) = δi
j where
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δi
j =
{

1 if i = j
0 if i 
= j.

This is our first introduction to the subscript-superscript convention of dif-
ferential geometry and classical tensor analysis.

Lemma 5.1.2. dim A
k =

(
m
k

)
. In particular a basis for A

k is

{f i1 ∧ f i2 ∧ · · · ∧ f ik : 1 ≤ i1 < i2 < · · · < ik ≤ m}.

Proof. Let I denote the set {(i1, . . . , ik) : ij ∈ Z, 1 ≤ i1 < · · · < ik ≤ m}
and f i = f i1 ∧ · · · ∧ f ik when i ∈ I. From the definition, f i1 ∧ f i2 ∧ · · · ∧
f ik(ej1 , . . . , ejk

) equals 1 if i, j ∈ I and i = j and equals 0 otherwise; in short,
f i(ej) = δi

j .
Let φ be a k-form and define

ψ =
∑
i∈I

φ(ei1 , . . . , eik
)f i1 ∧ f i2 ∧ · · · ∧ f ik =

∑
i∈I

φ(ei)f i.

Let vi =
∑
aj

iej , i = 1, . . . , k, be k arbitrary vectors. By the multilinearity
of φ and ψ, one sees that φ(v1, . . . , vk) = ψ(v1, . . . , vk); so, they agree on all
vectors and, therefore, are equal. Thus the set {f i : i ∈ I} spans A

k.
Assume that ∑

i∈I

ai1...ik
f i1 ∧ f i2 ∧ · · · ∧ f ik = 0.

For a fixed set of indices s1, . . . , sk, let rk+1, . . . , rm be a complementary set;
i.e., s1, . . . , sk, rk+1, . . . , rm is just a permutation of the integers 1, . . . ,m.
Take the wedge product of (5.1) with frk+1 ∧ · · · ∧ frm to get

∑
i∈I

ai1...ik
f i1 ∧ f i2 ∧ · · · ∧ f ik ∧ frk+1 ∧ · · · ∧ frm = 0. (5.1)

The only term in the above sum without a repeated f in the wedge is the
one with i1 = s1, . . . , ik = sk, and so it is the only nonzero term. Because
s1, . . . , sk, rk+1, . . . , rm is just a permutation of the integers 1, . . . ,m, fs1 ∧
fs2 ∧ · · · ∧ fsk ∧ frk+1 ∧ · · · ∧ frm = ±f1 ∧ · · · ∧ fm. Thus applying the sum
in (5.1) to e1, . . . , em gives ±as1...sk

= 0. Thus the f i, i ∈ I, are independent.

In particular, the dimension of V
m is 1, and the space has as a basis the

single element f1 ∧ · · · ∧ fm.

Lemma 5.1.3. Let g1, . . . , gr ∈ V
∗. Then g1, · · · , gr are linearly independent

if and only if g1 ∧ · · · ∧ gr 
= 0.
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Proof. If the gs are dependent, then one of them is a linear combination of the
others, say gr =

∑r−1
s=1 αsg

s. Then g1∧· · ·∧gr =
∑r−1

s=1 αsg
1∧· · ·∧gr−1∧gs.

Each term in this last sum is a wedge product with a repeated entry, and so
by the alternating property, each term is zero. Therefore g1 ∧ · · · ∧ gr = 0.

Conversely, if g1, . . . , gr are linearly independent, then extend them to a
basis g1, . . . , gr, . . . , gm. By Lemma 5.1.2, g1 ∧ · · · ∧ gr ∧ · · · ∧ gm 
= 0, so
g1 ∧ · · · ∧ gr 
= 0.

A linear map L : V −→ V induces a linear map Lk : A
k −→ A

k by the
formula Lkφ(a1, . . . , ak) = φ(La1, . . . , Lak). If M is another linear map
of V onto itself, then (LM)k = MkLk, because (LM)kφ(a1, . . . , ak) =
φ(LMa1, . . . , LMak) = Lkφ(Ma1, . . . ,Mak) = MkLkφ(a1, . . . , ak). Recall
that A

1 = V
∗ is the dual space, and L1 = L∗ is called the dual map.

If V = R
m (column vectors), then we can identify the dual space V

∗ = A
1

with R
m by the convention f ←→ f̂ , where f ∈ V

∗, f̂ ∈ R
m, and f(x) = f̂Tx.

In this case, L is an m × m matrix, and Lx is the usual matrix product.
L1f is defined by L1f(x) = f(Lx) = f̂TLx = (LT f̂)Tx; so, the matrix
representation of L1 is the transpose of L; i.e., L1(f) = LT f̂ . The matrix
representation of Lk is discussed in Flanders (1963).

By Lemma 5.1.2, dim A
m = 1, and so every element in A

m is a scalar
multiple of a single element. Lm is a linear map; so, there is a constant 
such that Lmf = f for all f ∈ A

m. Define the determinant of L to be this
constant , and denote it by det(L); so, Lmf = det(L)f for all f ∈ A

m.

Lemma 5.1.4. Let L and M : V −→ V be linear. Then

1. det(LM) = det(L) det(M).
2. det(I) = 1, where I : V −→ V is the identity map.
3. L is invertible if and only if det(L) 
= 0, and, if L is invertible,

det(L−1) = det(L)−1.

Proof. Part (1) follows from (LM)m = MmLm which was established above.
(2) follows from the definition. Let L be invertible; so, LL−1 = I, and by
(1) and (2), det(L) det(L−1) = 1; so, det(L) 
= 0 and det(L−1) = 1/det(L).
Conversely assume L is not invertible so there is an e ∈ V with e 
= 0 and
Le = 0. Extend e to a basis,e1 = e, e2, . . . , em. Then for any m-form φ,
Lmφ(e1, . . . , em) = φ(Le1, . . . , Lem) = φ(0, . . . , Lem) = 0. So det(L) = 0.

Let V = R
m, e1, e2, . . . , em be the standard basis of R

m, and let L be the
matrix L = (Lj

i ); so, Lei =
∑

j L
j
iej . Let φ be a nonzero element of A

m.

det(L)φ(e1, . . . , em) = Lmφ(e1, . . . , em) = φ(Le1, . . . , Lem)

=
∑

j1
· · ·
∑

jm
φ(Lj1

1 ej1 , . . . , L
jm
m ejm

)

=
∑

j1
· · ·
∑

jm
Lj1

1 · · ·Ljm
m φ(ej1 , . . . , ejm

)

=
∑

σ∈P sign(σ)Lσ(1)
1 · · ·Lσ(m)

m φ(e1, . . . , em).
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In the second to last sum above the only nonzero terms are the ones with
distinct es. Thus the sum over the nonzero terms is the sum over all permu-
tations of the es. From the above,

det(L) =
∑
σ∈P

sign(σ)Lσ(1)
1 · · ·Lσ(m)

m ,

which is one of the classical formulas for the determinant of a matrix.

5.2 The Symplectic Form

In this section, let (V, ω) be a symplectic space of dimension 2n. Recall
that in Chapter 3 a symplectic form ω (on a vector space V) was defined to
be a nondegenerate, alternating bilinear form on V, and the pair (V, ω) was
called a symplectic space.

Theorem 5.2.1. There exists a basis f1, . . . , f2n for V
∗ such that

ω =
n∑

i=1

f i ∧ fn+i. (5.2)

Proof. By Corollary 3.2.1, there is a symplectic basis e1, . . . , e2n so that
the matrix of the form ω is the standard J = (J) or Jij = ω(ei, ej). Let
f1, . . . , f2n ∈ V

∗ be the basis dual to the symplectic basis e1, . . . , e2n. The
2-form given on the right in (5.2) above agrees with ω on the basis e1, . . . , e2n.

The basis f1, . . . , f2n is a symplectic basis for the dual space V
∗. By the

above, ωn = ω ∧ ω ∧ · · · ∧ ω (n times ) = ±n!f1 ∧ f2 ∧ · · · ∧ f2n, where the
sign is plus if n is even and minus if n is odd. Thus ωn is a nonzero element
of A

2n. Because a symplectic linear transformation preserves ω, it preserves
ωn, and therefore, its determinant is +1. (This is the second of four proofs
of this fact.)

Corollary 5.2.1. The determinant of a symplectic linear transformation (or
matrix) is +1.

Actually, using the above arguments and the full statement of Theorem
3.2.1, we can prove that a 2-form ν on a linear space of dimension 2n is
nondegenerate if and only if νn is nonzero.

5.3 Tangent Vectors and Cotangent Vectors

Let O be an open set in an m-dimensional vector space V over R, e1, . . . , em
a basis for V, and f1, . . . , fm the dual basis. Let x = (x1, . . . , xm) be coor-
dinates in V relative to e1, . . . , em and also coordinates in V ∗ relative to the
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dual basis. Let I = (−1, 1) ⊂ R
1, and let t be a coordinate in R

1. Think of
V as R

m. (We use the more general notation because it is helpful to keep a
space and its dual distinct.) R

m and its dual are often identified with each
other which can lead to confusion.

Much of analysis reduces to studying maps from an interval in R
1 into O

(curves, solutions of differential equations, etc.) and the study of maps from
O into R

1 (differentials of functions, potentials, etc.). The linear analysis of
these two types of maps is, therefore, fundamental. The linearization of a
curve at a point gives rise to a tangent vector, and the linearization of a
function at a point gives rise to a cotangent vector. These are the concepts
of this section.

A tangent vector at p ∈ O is to be thought of as the tangent vector to
a curve through p. Let g, g′ : I −→ O ⊂ V be smooth curves with g(0) =
g′(0) = p. We say g and g′ are equivalent at p if Dg(0) = Dg′(0). Because
Dg(0) ∈ L(R,V), we can identify L(R,V) with V by letting Dg(0)(1) =
dg(0)/dt ∈ V. Being equivalent at p is an equivalence relation on curves,
and an equivalence class (a maximal set of curves equivalent to each other)
is defined to be a tangent vector or a vector to O at p. That is, a tangent
vector, {g}, is the set of all curves equivalent to g at p; i.e., {g} = {g′ : I −→
O : g′(0) = p and dg(0)/dt = dg′(0)/dt}. In the x coordinates, the derivative
is dg(0)/dt = (dg1(0)/dt, . . . , dgm(0)/dt) = (γ1, . . . , γm); so, (γ1, . . . , γm) are
coordinates for the tangent vector {g} relative to the x coordinates. The set
of all tangent vectors to O at p is called the tangent space to O at p and
is denoted by TpO. This space can be made into a vector space by using
the coordinate representation given above. The curve ξi : t −→ p + tei has
dξi(0)/dt = ei which is (0, . . . , 0, 1, 0, . . . , 0) (1 in the ith position) in the x
coordinates. The tangent vector consisting of all curves equivalent to ξi at p
is denoted by ∂/∂xi. The vectors ∂/∂x1, . . . , ∂/∂xm form a basis for TpO .
A typical vector vp ∈ TpO can be written vp = γ1∂/∂x1 + · · · + γm∂/∂xm.
In classical tensor notation, one writes vp = γi∂/∂xi; it was understood
that a repeated index, one as a superscript and one as a subscript, was to
be summed over from 1 to m. This was called the Einstein convention or
summation convention.

A cotangent vector (or covector for short) at p is to be thought of as the
differential of a function at p. Let h, h′ : O −→ R

1 be two smooth functions.
We say h and h′ are equivalent at p if Dh(p) = Dh′(p). (Dh(p) is the same
as the differential dh(p).) This is an equivalence relation. A cotangent vector
or a covector to O at p is by definition an equivalence class of functions.
That is, a covector {h} is the set of functions equivalent to h at p; i.e.,
{h} = {h′ : O −→ R

1 : Dh′(p) = Dh(p)}. In the x coordinate, Dh(p) =
(∂h(p)/∂x1, . . . , ∂h(p)/∂xm) = (η1, . . . , ηm); so, (η1, . . . , ηm) are coordinates
for the covector {h}. The set of all covectors at p is called the cotangent
space to O at p and is denoted by T ∗

pO. This space can be made into a
vector space by using the coordinate representation given above. The function
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xi : O −→ R
1 defines a cotangent vector at p, which is (0, . . . , 1, . . . 0) (1 in

the ith position). The covector consisting of all functions equivalent to xi

at p is denoted by dxi. The covectors dx1, . . . , dxm form a basis for T ∗
pO. A

typical covector vp ∈ T ∗
pO can be written η1dx1 + · · ·+ηmdx

m or ηidx
i using

the Einstein convention.
In the above two paragraphs there is clearly a parallel construction being

carried out. If fact they are dual constructions. Let g and h be as above; so,
h ◦ g : I ⊂ R

1 −→ R
1. By the chain rule, D(h ◦ g)(0)(1) = Dh(p) ◦Dg(0)(1)

which is a real number; so, Dh(p) is a linear functional on tangents to curves.
In coordinates, if

{g} = vp =
dg1

dt
(0)

∂

∂x1
+ · · ·+ dgm

dt
(0)

∂

∂xm
= γ1 ∂

∂x1
+ · · ·+ γm ∂

∂xm

and

{h} = vp =
∂h

∂x1
(p)dx1 + · · ·+ ∂h

∂xm
(p)dxm = η1dx

1 + · · ·+ ηmdx
m,

then
vp(vp) = D(h ◦ g)(0)(1)

=
dg1

dt
(0)

∂h

∂x1
(p) + · · ·+ dgm

dt
(0)

∂h

∂xm
(p)

= γ1η1 + · · ·+ γmηm

= γiηi ( Einstein convention).

Thus TpO and T ∗
pO are dual spaces.

At several points in the above discussion the coordinates x1, . . . , xm were
used. The natural question to ask is to what extent do these definitions
depend on the choice of coordinates. Let y1, . . . , ym be another coordinate
system that may not be linearly related to the xs. Assume that we can change
coordinates by y = φ(x) and back by x = ψ(y), where φ and ψ are smooth
functions with nonvanishing Jacobians, Dφ and Dψ. In classical notation,
one writes xi = xi(y), yj = yj(x), and Dφ = {∂yj/∂xi},Dψ = {∂xi/∂yj}.

Let g : I −→ O be a curve. In x coordinates let g(t) = (a1(t), . . . , am(t))
and in y coordinates let g(t) = (b1(t), . . . , bm(t)). The x coordinate for the
tangent vector vp = {g} is a = (da1(0)/dt, . . . , dam(0)/dt) = (α1, . . . , αm),
and the y coordinate for vp = {g} is b = (db1(0)/dt, . . . , dbm(0)/dt) =
(β1, . . . , βm). Recall that we write vectors in the text as row vectors, but they
are to be considered as column vectors. Thus a and b are column vectors. By
the change of variables, a(t) = ψ(b(t)); so, differentiating gives a = Dψ(p)b.
In classical notation ai(t) = xi(b(t)); so, dai/dt =

∑
i(∂x

i/∂yj)dbj/dt or

αi =
m∑

j=1

∂xi

∂yj
βj (=

∂xi

∂yj
βj Einstein convention). (5.3)
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This formula tells how the coordinates of a tangent vector are transformed.
In classical tensor jargon, this is the transformation rule for a contravariant
vector.

Let h : O −→ R
1 be a smooth function. Let h be a(x) in x coordinates

and b(y) in y coordinates. The cotangent vector vp = {h} in x coordinates
is a = (∂a(p)/∂x1, . . . , ∂a(p)/∂xm) = (α1, . . . , αm) and in y coordinates it is
b = (∂b(p)/∂y1, . . . , ∂b(p)/∂ym) = (β1, . . . , βm). By the change of variables
a(x) = b(φ(x)); so, differentiating gives a = Dφ(p)T b. In classical notation
a(x) = b(y(x)); so, αi = ∂a/∂xi =

∑
j(∂b/∂y

j)(∂yj/∂xi) =
∑

j βj(∂yj/∂xi)
or

αi =
m∑

j=1

∂yj

∂xi
βj (=

∂yj

∂xi
βj Einstein convention). (5.4)

This formula tells how the coordinates of a cotangent vector are transformed.
In classical tensor jargon this is the transformation rule for a covariant vector.

5.4 Vector Fields and Differential Forms

Continue the notation of the last section. A tangent (cotangent) vector field
on O is a smooth choice of a tangent (cotangent) vector at each point of O.
That is, in coordinates, a tangent vector field, V , can be written in the form

V = V (x) =
m∑

i=1

vi(x)
∂

∂xi
(= vi(x)

∂

∂xi
), (5.5)

where the vi : O −→ R
1, i = 1, . . . ,m, are smooth functions, and a cotangent

vector field U can be written in the form

U = U(x) =
m∑

i=1

ui(x)dxi (= ui(x)dxi), (5.6)

where ui : O −→ R
1, i = 1, . . . ,m, are smooth functions.

A tangent vector field V gives a tangent vector V (p) ∈ TpO which was
defined as the tangent vector of some curve. A different curve might be used
for each point of O; so, a natural question to ask is whether there exist a
curve g : I ⊂ R −→ O such that dg(t)/dt = V (g(t)). In coordinates this is

dgi(t)
dt

= vi(g(t)).

This is the same as asking for a solution of the differential equation ẋ = V (x).
Thus a tangent vector field is an ordinary differential equation. In classical
tensor jargon it is also called a contravariant vector field.

A cotangent vector field U gives a cotangent vector U(p) ∈ T ∗
pO which

was defined as the differential of a function at p. A different function might
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be used for each point of O; so, a natural question to ask is whether there
exists a function h : O −→ R

1 such that dh(x) = U(x). The answer to this
question is no in general. Certain integrability conditions discussed below
must be satisfied before a cotangent vector field is a differential of a function.
If this cotangent vector field is a field of work elements; i.e., a field of forces,
then if dh = −U , the h would be a potential and the force field would be
conservative. But, as we show, not all forces are conservative.

Let p ∈ O, and denote by A
k
pO the space of k-forms on the tangent space

TpO. A k-differential form or k-form on O is a smooth choice of a k-linear
form in A

k
pO for all p ∈ O. That is, a k-form, F , can be written

F =
∑

1≤i1<···<ik≤m

fi1i2...ik
(x1, x2, . . . , xm)dxi1 ∧ · · · ∧ dxik

=
∑
i∈I

fi(x)dxi,

(5.7)

where the functions fi1...ik
: O −→ R are smooth. In the last expression in

(5.7), I denotes the set {(i1, . . . , ik) : ij ∈ Z, 1 ≤ i1 < · · · < ik ≤ m},
and dxi = dxi1 ∧ · · · ∧ dxik . Because A

0
pO = R, 0-forms are simply smooth

functions, and because A
1
pO = T ∗

pO, 1-forms are covector fields.
In classical analysis, everything was a vector. In R

3, 1-forms are often
identified with (or confused with) vector fields. For example, the differential
of a function, df = fxdx+ fydy+ fzdz, is treated as a vector field by writing
∇f = grad f = fxi + fyj + fzk. That is why one calls a force a vector and
not a covector even when it is the gradient of a potential function.

Also, because the dimension of the space of 2-linear forms in a 3 dimen-
sional space is (

3
2

)
= 3

classically 2-forms in R
3 were identified with (or confused with) vector fields.

Usually one identifies a(j∧k)+ b(k∧ i)+ c(i∧ j) with the vector ai+ bj+ ck.
Think about the cross product of vectors. This is why angular momentum
and magnetic fields are sometimes misrepresented as vectors.

Given a 0-form F , (i.e., a function) dF is a 1-form. The natural gener-
alization is the exterior derivative operator d which converts a k-form F as
given in (5.7) into a (k + 1)-form dF by the formula

dF =
m∑

j=1

∑
1≤i1<···<ik≤m

∂fi1···ik

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik

=
∑

i∈I dfi ∧ dxi.

(5.8)

Lemma 5.4.1. Let F and G be smooth forms defined on an open set O.
Then
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1. d(F +G) = dF + dG.
2. d(F ∧G) = dF ∧G+ (−1)deg(F )F ∧ dG.
3. d(dF ) = 0 for all F .
4. If F is a function, then dF agrees with the standard definition of the

differential of F ,
5. The operator d is uniquely defined by the properties given above.

Proof. Part (4) is obvious, and parts (1), (2), and (5) are left as exercises.
Only part (3) is proved here. Let i be a multiple index, and so the summations
on i range over I. Let F =

∑
i fidx

i. Then

d(dF ) =
∑

i

m∑
j=1

m∑
k=1

(
∂2fi

∂xj∂xk

)
dxk ∧ dxj ∧ dxi

=
∑

i

∑
1≤j<k≤m

(
∂2fi

∂xj∂xk
− ∂2fi

∂xk∂xj

)
dxk ∧ dxj ∧ dxi

= 0.

The last sum is zero by the equality of mixed partial derivatives.

Remark: The first four parts of this lemma can be used as a coordinate-
free definition of the operator d. Formula (5.8) shows its existence, and part
(v) shows its uniqueness.

Let (x, y, z) be the standard coordinates in R
3 and i, j,k the usual unit

vectors. If F (x, y, z) is a function, then

dF =
∂F

∂x
dx+

∂F

∂y
dy +

∂F

∂z
dz

is the usual differential. The classical approach is to make the differential a
vector field by defining

∇F = gradF =
∂F

∂x
i +

∂F

∂y
j +

∂F

∂z
k.

Next consider a 1-form F = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz; then

dF =
(
∂c

∂y
− ∂b

∂z

)
dy ∧ dz +

(
∂a

∂z
− ∂c

∂x

)
dz ∧ dx+

(
∂b

∂x
− ∂a
∂y

)
dx ∧ dy.

The classical approach is to make this F a vector field F = ai + bj + ck and
to define a new vector field by

∇× F = curlF =
(
∂c

∂y
− ∂b

∂z

)
i +
(
∂a

∂z
− ∂c

∂x

)
j +
(
∂b

∂x
− ∂a
∂y

)
k.
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Now let F be a 2-form so F = a(x, y, z)dy ∧ dz + b(x, y, z)dz ∧ dx +
c(x, y, z)dx ∧ dy and

dF =
(
∂a

∂x
+
∂b

∂y
+
∂c

∂z

)
dx ∧ dy ∧ dz.

The classical approach would have considered F as a vector field F = ai +
bj + ck and defined a scalar function

∇ · F = divF =
(
∂a

∂x
+
∂b

∂y
+
∂c

∂z

)
.

The statement that d(dF ) = 0, or d2 = 0, contains the two classical state-
ments curl (gradF ) = 0 and div (curlF ) = 0.

A k-form F is closed if dF = 0. A k-form F is exact if there is a (k − 1)-
form G such that F = dG. Part (iii) of Lemma 5.4.1 says that an exact form
is closed. A partial converse is also true.

Theorem 5.4.1 (Poincaré’s lemma). Let O be a ball in R
m and F a

k -form such that dF = 0. Then there is a (k − 1)-form g on O such that
F = dg.

Remark: This is a partial converse to d(dg) = 0. Note that the domain of
definition,O, of the form F is required to be a ball. The theorem says that in a
ball, a closed form is exact. The 1-form, F = (xdy − ydx)/(x2 + y2), satisfies
dF = 0, but there does not exist a function, g, defined on all of R

2\(0, 0) such
that dg = F . The form F is the differential of the polar angle θ = arctan(y/x)
that is not a single-valued function defined on all of R

2\(0, 0). However, it
can be made single valued in a neighborhood of any point in R

2\(0, 0), e.g.,
for any point not on the negative x-axis, one can take −π < θ < π, and for
points on the negative x-axis, one can take 0 < θ < 2π. Because F locally
defines a function we have dF = 0.

Poincaré’s lemma contains classical theorems: (i) if F is a vector field
defined on a ball in R

3 with curlF = 0, then there is a smooth function g
such that F = grad (g), and (ii) if F is a smooth vector field defined on a
ball such that divF = 0, then there is a smooth vector field g such that
F = curl g.

Proof. The full statement of the Poincaré lemma is not needed here; only the
case when k = 1 is used in subsequent chapters. Therefore, only that case is
proved here. The proof of the full theorem can be found in Flanders (1963),
or Spivak (1965) or Abraham and Marsden (1978).

Let F =
∑

i fi(x)dxi be a given 1-form.

dF =
∑

i

∑
j

(
∂fi

∂xj

)
dxj ∧ dxi =

∑
i<j

(
∂fi

∂xj
− ∂fj

∂xi

)
dxj ∧ dxi.
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So dF = 0 if and only if ∂fi/∂x
j = ∂fj/∂x

i. Define

g(x) =
∫ 1

0

∑
i

fi(tx)xidt.

So

∂g(x)
∂xj

=
∫ 1

0

{∑
i

∂fi(tx)
∂xj

txi + fj(tx)

}
dt

=
∫ 1

0

{
tdfj(tx)
dt

+ fj(tx)
}
dt

=
∫ 1

0

d

dt
{tfj(tx)} dt

= tfj(tx)
∣∣∣
1

0
= fj(x).

Thus dg = F.

Note that the function g defined in the proof given above is a line integral
and the condition dF = 0 is the condition that a line integral be independent
of the path.

Corollary 5.4.1. Let F = (F 1, . . . , Fm) be a vector valued function defined
in a ball O in R

m. Then a necessary and sufficient condition for F to be the
gradient of a function g : O −→ R is that the Jacobian matrix (∂F i/∂xj) be
symmetric.

Proof. First, to see that it is a corollary, consider F as the differential form
F = F 1dx1 + · · ·+ Fmdxm. Then by the above,

dF =
∑
i<j

(
∂F i

∂xj
− ∂F

j

∂xi

)
dxi ∧ dxj .

So dF = 0 if and only if the Jacobian (∂F i/∂xj) is symmetric. The corollary
follows from part (iii) of Lemma 5.4.1 and Theorem 5.4.1.

5.5 Changing Coordinates and Darboux’s Theorem

To change coordinates for vector fields or differential forms, simply trans-
form the coordinates as was done in Section 5.3 using the Jacobian of the
transformation. In particular, let x and y be coordinates on O, and assume
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that the change of coordinates is given by x = ψ(y) and the change back
by y = φ(x), or in classical notation x = x(y) and y = y(x). Assume the
Jacobians, Dφ = (∂yj/∂xi) and Dψ = (∂xi/∂yj), are nonsingular.

If a vector field V is given by

V =
m∑

i=1

αi(x)
∂

∂xi
=

m∑
i=1

βi(x)
∂

∂yi
,

and we set a(x) = (α1(x), . . . , αm(x)), b(y) = (β1(y), . . . , βm(y)), then

a = Dψ(b) or αi =
m∑

j=1

∂xi

∂yj
βj . (5.9)

If a differential 1-form is given by

F =
m∑

i=1

αi(x)dxi =
m∑

i=1

βi(y)dyi,

and we set a(x) = (α1(x), . . . , αm(x)), b(y) = (β1(y), . . . , βm(y)), then

a = bDφ or αi =
m∑

j=1

∂yj

∂xi
βj . (5.10)

If a differentiable 2-form F is given by

F =
m∑

i=1

m∑
j=1

αij(x)dxi ∧ dxj =
m∑

i=1

m∑
j=1

βij(y)dyi ∧ dyj , (5.11)

and we set A = (αij), B = (βij) (A and B are skew-symmetric matrices),
then

A = DψT BDψ or αij =
m∑

s=1

m∑
r=1

∂ys

∂xi

∂yr

∂xj
βsr. (5.12)

Let O be an open set in R
2n. A 2-form F on O is nondegenerate if Fn =

F ∧ F ∧ · · · ∧ F (n times) is nonzero. As we saw above, the coefficients in
a coordinate system of a 2-form can be represented as a skew-symmetric
matrix. As we saw in Section 5.2, a linear 2-form is nondegenerate if and
only if the coefficient matrix is nonsingular. Thus the 2-form F in (5.11) is
nondegenerate if and only if A (or B) is nonsingular on all of O. A symplectic
structure or symplectic form on O is a closed nondegenerate 2-form. The
standard symplectic structure in R

2n is

Ω =
n∑

i=1

dzi ∧ dzi+n =
n∑

i=1

dqi ∧ dpi. (5.13)
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where z = (z1, . . . , z2n) = (q1, . . . , qn, p1, . . . , pn) are coordinates in R
2n. The

coefficient matrix of Ω is just J. By Corollary 3.2.1, there is a linear change of
coordinates so that the coefficient matrix of a nondegenerate 2-form is J at
one point. A much more powerful result that is not needed in the subsequent
chapters is the following.

Theorem 5.5.1 (Darboux’s theorem). If F is a symplectic structure on
an open ball in R

2n , then there exists a coordinate system z such that F in
this coordinate system is the standard symplectic structure Ω.

Proof. See Abraham and Marsden (1978).

A coordinate system for which a symplectic structure is Ω is called a sym-
plectic coordinate (for this form). A symplectic transformation, φ, is one that
preserves the form Ω or preserves the coefficient matrix J ; i.e.,DφTJDφ = J .

5.6 Integration and Stokes’ Theorem

We do not need any result from integration theory on manifolds, and so we do
not develop the theory here. To tease the reader into learning more about this
subject, consider a weak form of the general Stokes’ theorem. It illustrates the
power and beauty of differential forms. Let M be an n-dimensional oriented
manifold with an (n− 1)-dimensional boundary ∂M . Let the boundary ∂M
be oriented consistently with M . Let ω be an (n − 1)-form on M ; so, dω is
an n-form on M. One can define the integral of an n-form on an n-manifold
in a logical way, and then one has:

∫

∂M

ω =
∫

M

dω (Stokes’ theorem).

This one general theorem contains Green’s theorem, the divergence theo-
rem, and the classical Stokes’ theorem of classical vector calculus. See Spivak
(1965) for a complete discussion of the general Stokes’ theorem and all its
ramifications.

Problems

1. Show that if f1, . . . , fk are 1-forms, then

f1 ∧ · · · ∧ fk(a1, . . . , ak) = det

⎡
⎢⎢⎢⎢⎢⎣

f1(a1) · · · fk(a1)

...
...

f1(ak) · · · fk(ak)

⎤
⎥⎥⎥⎥⎥⎦
.
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2. Show that the mapping (f1, f2) −→ f1∧f2 is a skew-symmetric bilinear
map from V

∗ × V
∗ −→ A

2.
3. Let F and G be 0-, 1- or 2-forms in R

3. Verify Lemma 5.4.1 in this case.
4. a) Let F = adx+ bdy+ cdz be a 1-form in R

3 such that dF = 0. Verify
that ∂a/∂y = ∂b/∂x, ∂a/∂z = ∂c/∂x, ∂c/∂y = ∂b/∂z. Also verify
that if

f(x, y, z) =
∫ 1

0

(a(tx, ty, tz)x+ b(tx, ty, tz)y + c(tx, ty, tz)z)dt,

then F = df .
b) Let F be a 2-form in R

3 such that dF = 0. Verify that if F =
ady ∧ dz + bdz ∧ dx + cdx ∧ dy, then ∂a/∂x + ∂b/∂y + ∂c/∂z = 0.
Also verify that F = df where

f =
(∫ 1

0
a(tx, ty, tz)tdt

)
(ydz − zdy)

+
(∫ 1

0
b(tx, ty, tz)tdt

)
(zdx− xdz)

+
(∫ 1

0
c(tx, ty, tz)tdt

)
(xdy − ydx).

5. Prove that the ∧ operator is bilinear and associative. (See Lemma 5.1.1.)
6. a) Show that the operator d which operates on smooth forms is linear,

i.e., d(F +G) = dF + dG.
b) Show that d satisfies a product rule, d(F∧G) = dF∧G+(−1)deg(F )F∧
dG.

c) Show that if δ is a mapping which takes smooth k-forms to (k + 1)-
forms and satisfies

i. δ(F +G) = δF + δG,
ii. δ(F ∧G) = δF ∧G+ (−1)deg(F )F ∧ δG,
iii. δ(δF ) = 0 for all F ,
iv. If F is a function, then δF agrees the standard definition of the

differential of F , then δ is the same as the operator d given by
the formula in (5.8).

7. Let Q(q, p) and P (q, p) be smooth functions defined on an open set in R
2.

Consider the four differential forms Ω1 = PdQ− pdq, Ω2 = PdQ+ qdp,
Ω3 = QdP + pdq, Ω4 = QdP − qdp.
a) Show that Ωi is exact if and only if Ωj is exact for i 
= j.
b) Show that Ωi is closed if and only if Ωj is closed for i 
= j.
c) Show that if Ωi is exact (or closed) then so is Θ = (Q− q)d(P + p)−

(P − p)d(Q+ q). (Hint: d(qp) = qdp+ pdq is exact.)



6. Symplectic Transformations

The form of Hamilton’s equations is very special, and the special form is
not preserved by an arbitrary change of variables; so, the change of variables
that preserve that special form is very important in the theory. This chapter
sets forth the basic theory of such changes of variables and thus presents
the introduction to the local theory of underlying geometry of Hamiltonian
mechanics: symplectic geometry. Some examples and applications are given
in this chapter and many more specialized examples are given in Chapter 7.

6.1 General Definitions

Let Ξ : O → R
2n : (t, z) → ζ = Ξ(t, z) be a smooth function where O is

some open set in R
2n+1; Ξ is called a symplectic function (or transformation

or map etc.) if the Jacobian of Ξ with respect to z, D2Ξ(t, z) = ∂Ξ/∂z, is a
symplectic matrix at every point of (t, z) ∈ O. Sometimes we use the notation
D2Ξ for the Jacobian of Ξ, and sometimes the notation ∂Ξ/∂z is used. In
the first case we think of the Jacobian D2Ξ as a map from O into the space
L(R2n,R2n) of linear operators from R

2n to R
2n, and in the second case, we

think of ∂Ξ/∂z as the matrix

∂Ξ

∂z
=

⎡
⎢⎢⎢⎢⎣

∂Ξ1

∂z1
· · · ∂Ξ1

∂z2n
...

...
∂Ξ2n

∂z1
· · · ∂Ξ2n

∂z2n

⎤
⎥⎥⎥⎥⎦
.

Thus Ξ is symplectic if and only if

∂Ξ

∂z
J
∂Ξ

∂z

T

= J. (6.1)

Recall that if a matrix is symplectic then so is its transpose, therefore we
could just as easily transpose the first factor in (6.1). Because the product
of two symplectic matrices is symplectic, the composition of two symplectic
maps is symplectic by the chain rule of differentiation. Because a symplectic
matrix is invertible, and its inverse is symplectic, the inverse function theorem

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 6,
c© Springer Science+Business Media, LLC 2009
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implies that a symplectic map is locally invertible and its inverse, Z(t, ζ), is
symplectic where defined. Because the determinant of a symplectic matrix is
+1, the transformation is orientation and volume-preserving.

If the transformation z → ζ = Ξ(t, z) is considered a change of variables,
then one calls ζ symplectic or canonical coordinates. Consider a nonlinear
Hamiltonian system

ż = J∇zH(t, z), (6.2)

where H is defined and smooth in some open set O ⊂ R
2n+1. Make a sym-

plectic change of variables from z to ζ by

ζ = Ξ(t, z) with inverse z = Z(t, ζ) (6.3)

(so ζ ≡ Ξ(t, Z(t, ζ)), z ≡ Z(t, Ξ(t, z))). Let O ∈ R
2n+1 be the image of O

under this transformation. Then the Hamiltonian H(t, z) transforms to the
function Ĥ(t, ζ) = H(t, Z(t, ζ)). Later we abuse notation and write H(t, ζ)
instead of introducing a new symbol, but now we are careful to distinguish
H and Ĥ. The equation (6.2) transforms to

ζ̇ =
∂Ξ

∂t
(t, z) +

∂Ξ

∂z
(t, z)ż

=
∂Ξ

∂t
(t, z) +

∂Ξ

∂z
(t, z)J

(
∂H

∂z
(t, z)

)T

=
∂Ξ

∂t
(t, z) +

∂Ξ

∂z
(t, z)J

(
∂Ĥ

∂ζ
(t, ζ)

∂Ξ

∂z
(t, z)

)T

=
∂Ξ

∂t
(t, z) + J

(
∂Ĥ

∂ζ

)T

=
∂Ξ

∂t
(t, z)

∣∣∣∣
z=Z(t,ζ)

+ J∇ζĤ(t, ζ).

(6.4)

The notation in the second to last term in (6.4) means that you are to take
the partial derivative with respect to t first and then substitute in z = Z(t, ζ).
If the change of coordinates, Ξ, is independent of t, then the term ∂Ξ/∂t
is missing in (6.4) ; so, the equation in the new coordinates is simply ζ̇ =
J∇ζĤ, a Hamiltonian system with Hamiltonian Ĥ. In this case one simply
substitutes the change of variables into the Hamiltonian H to get the new
Hamiltonian Ĥ. The Hamiltonian character of the equations is preserved.
Actually the system (6.4) is still Hamiltonian even if Ξ depends on t, provided
O is a nice set, as we show.

For each fixed t, let the set Ot = {ζ : (t, ζ) ∈ O} be a ball in R
2n. We

show that there is a smooth function R : O → R
1 such that
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∂Ξ

∂t
(t, z)

∣∣∣∣
z=Z(t,ζ)

= J∇ζR(t, ζ). (6.5)

R is called the remainder function. Therefore, in the new coordinates, the
equation (6.4) is Hamiltonian with Hamiltonian R(t, ζ) + H(t, ζ). (In the
case where Ot is not a ball, the above holds locally; i.e., at each point of
p ∈ O there is a function R defined in a neighborhood of p such that (6.5)
holds in the neighborhood, but R may not be globally defined as a single-
valued function on all of O.) By Corollary 5.4.1, we must show that J times
the Jacobian of the left-hand side of (6.5) is symmetric. That is, we must
show

Γ = ΓT ,

where

Γ (t, ζ) = J
∂2Ξ

∂t∂z
(t, z)

∣∣∣∣
z=Z(t,ζ)

∂Z

∂ζ
(t, ζ).

Differentiating (6.1) with respect to t gives

∂2ΞT

∂t∂z
(t, z)J

∂Ξ

∂z
(t, z) +

∂ΞT

∂z
(t, z)J

∂2Ξ

∂t∂z
(t, z) = 0

∂Ξ−T

∂z
(t, z)

∂2ΞT

∂t∂z
(t, z)J + J

∂2Ξ

∂t∂z
(t, z)

∂Ξ−1

∂z
(t, z) = 0.

(6.6)

Substituting z = Z(t, ζ) into (6.6) and noting that (∂Ξ−1/∂z)(t, Z(t, ζ)) =
∂Z(t, ζ) yields −ΓT + Γ = 0. Thus we have shown the following.

Theorem 6.1.1. A symplectic change of variables on O takes a Hamiltonian
system of equations into a Hamiltonian system.

A partial converse is also true. If a change of variables preserves the
Hamiltonian form of all Hamiltonian equations, then it is symplectic. We do
not need this result and leave it as an exercise.

6.1.1 Rotating Coordinates

Let

K =
[

0 1
−1 0

]
, exp(ωKt) =

[
cosωt sinωt

− sinωt cosωt

]
(6.7)

be 2× 2 matrices, and consider the planar N -body problem; so, the vectors
qi, pi in Section 2.1 are 2-vectors. Introduce a set of coordinates that uniformly
rotate with frequency ω by

ui = exp(ωKt)qi, vi = exp(ωKt)pi. (6.8)

Because K is skew symmetric, exp(ωKt) is orthogonal for all t; so, the change
of variables is symplectic. The remainder function is −ΣωuT

i Kvi, and so the
Hamiltonian of the N -body problem in rotating coordinates is
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H =
N∑

i=1

‖vi‖2
2mi

−
N∑

i=1

ωuT
i Kvi −

∑
1≤i<j≤N

mimj

‖ui − uj‖
. (6.9)

The remainder term gives rise to extra terms in the equations of motion that
are sometimes called Coriolis forces.

6.1.2 The Variational Equations

Let φ(t, τ, ζ) be the general solution of (6.2); so, φ(τ, τ, ζ) = ζ, and let
X(t, τ, ζ) be the Jacobian of φ with respect to ζ; i.e.,

X(t, τ, ζ) =
∂φ

∂ζ
(t, τ, ζ).

X(t, τ, ζ) is called the monodromy matrix. Substituting φ into (6.2) and dif-
ferentiating with respect to ζ gives

Ẋ = JS(t, τ, ζ)X, S(t, τ, ζ) =
∂2H

∂x2
(t, φ(t, τ, ζ)). (6.10)

Equation (6.10) is called the variational equation and is a linear Hamiltonian
system. Differentiating the identity φ(τ, τ, ζ) = ζ with respect to ζ gives
X(τ, τ, ζ) = I, the 2n × 2n identity matrix; so, X is a fundamental matrix
solution of the variational equation. By Theorem 3.1.3, X is symplectic.

Theorem 6.1.2. Let φ(t, τ, ζ) be the general solution of the Hamiltonian
system (6.2). Then for fixed t and τ , the map ζ → φ(t, τ, ζ) is symplectic.
Conversely, if φ(t, τ, ζ) is the general solution of a differential equation ż =
f(t, z), where f is defined and smooth on I × O, I an interval in R and
O a ball in R

2n, and the map ζ → φ(t, τ, ζ) is always symplectic, then the
differential equation ż = f(t, z) is Hamiltonian.

Proof. The direct statement was proved above; now consider the converse.
Let φ(t, τ, ζ) be the general solution of ż = f(t, z), and let X(t, τ, ζ) be the
Jacobian of φ. Differentiate (6.1) (with Ξ replaced by X) with respect to t to
show that Ẋ is Hamiltonian, and thus −JẊ is symmetric. But X(t, τ, ζ) =
∂f/∂z(t, φ(t, τ, ζ)); so,−J∂f/∂z is symmetric. Because O is a ball, −Jf is a
gradient of a function H by Corollary 5.4.1. Thus f(t, z) = J∇H(t, z).

This theorem says that the flow defined by an autonomous Hamiltonian
system is volume-preserving. So, in particular, there cannot be an asymp-
totically stable equilibrium point, periodic solution, etc. This makes the sta-
bility theory of Hamiltonian systems difficult and interesting. In general, it
is difficult to construct a symplectic transformation with nice properties us-
ing definition (6.1). The theorem above gives one method of assuring that
a transformation is symplectic, and this is the basis of the method of Lie
transforms explored in Chapter 9.
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6.1.3 Poisson Brackets

Let F (t, z) and G(t, z) be smooth, and recall the definition of the Pois-
son bracket {F,G}z(t, z) = ∇zF (t, z)TJ∇zG(t, z). Here we subscript the
bracket to remind us it is a coordinate dependent definition. Let F̂ (t, ζ) =
F (t, Z(t, ζ)) and Ĝ(t, ζ) = G(t, Z(t, ζ)) where Z(t, ζ) is symplectic for fixed
t; so,

{F̂ , Ĝ}ζ(t, ζ) = ∇ζF̂ (t, ζ)TJ∇ζĜ(t, ζ)

=
(
∂ZT

∂ζ
(t, ζ)∇zF (t, Z(t, ζ))

)T

J
∂ZT

∂ζ
∇zG(t, Z(t, ζ))

= ∇zF (t, Z(t, ζ))T ∂Z

∂ζ
J
∂ZT

∂ζ
(t, ζ)∇zG(t, Z(t, ζ))

= ∇zF (t, Z(t, ζ))TJ∇zG(t, Z(t, ζ))

= {F,G}z(t, Z(t, ζ)).

This shows that the Poisson bracket operation is invariant under symplectic
changes of variables. That is, you can commute the operations of computing
Poisson brackets and making a symplectic change of variables.

Theorem 6.1.3. Poisson brackets are preserves by a symplectic change of
coordinates.

Let ζi = Ξi(t, z) be the ith component of the transformation. In compo-
nents, Equation (6.1) says

{Ξi, Ξj} = Jij , (6.11)

where J = (Jij).
If the transformation (6.3) is given in the classical notation

Qi = Qi(q, p), Pi = Pi(q, p), (6.12)

then (6.11) becomes

{Qi, Qj} = 0, {Pi, Pj} = 0, {Qi, Pj} = δij , (6.13)

where δij is the Kronecker delta.

Theorem 6.1.4. The transformation (6.3) is symplectic if and only if (6.11)
holds, or the transformation (6.12) is symplectic if and only if (6.13) holds.
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6.2 Differential Forms and Generating Functions

Definition (6.1) is easy to check a posteriori, but it is difficult to use this
definition to generate a symplectic transformation with desired properties.
This section contains only a local analysis; so,we assume that everything is
defined in some ball about the origin in R

2n.

6.2.1 The Symplectic Form

Recall that in Chapter 5 we defined the (standard) symplectic form to be

Ω =
1
2

n∑
i=1

n∑
j=1

Jijdz
i∧dzj =

n∑
i=1

dzi∧dzi+n =
n∑

i=1

dqi∧dpi = dq∧dp. (6.14)

Here we have used the notation of differential geometry and Chapter 5 by
using superscripts for components instead of subscripts. Also we have z =
(z1, . . . , z2n) = (q1, . . . , qn, p1, . . . , pn) as usual. Ω is closed, dΩ = 0, but, in
fact, it is exact because

Ω = dα, α =
n∑

i=1

qidpi = qdp. (6.15)

In short, Ω is a closed nondegenerate (the coefficient matrix is nonsingular)
2-form. By Darboux’s theorem discussed in Chapter 5, for any closed, non-
degenerate 2-form, there are local coordinates such that in these coordinates
the 2-form is given by (6.14). This says that J is simply the coefficient matrix
of a closed, nondegenerate 2-form in Darboux coordinates. The left-hand side
of (6.1) is just the transformation law for a 2-form with coefficient matrix J ;
so, a symplectic transformation is a transformation that preserves the special
form of the differential form Ω. In two-dimensions Ω = dq ∧ dp, the area
form in R

2, and so we see again that a two-dimensional symplectic transfor-
mation is area-preserving. In higher dimensions, being symplectic is far more
restrictive than simply volume-preserving.

6.2.2 Generating Functions

Use classical notation z = (q, p) so that the standard symplectic form is

Ω =
n∑

i=1

dqi ∧ dpi = dq ∧ dp.

Let Q = Q(q, p), P = P (q, p) be a change of variables, and assume the func-
tions Q and P are defined in a ball in R

2n. This change of variables is sym-
plectic if and only if
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dq ∧ dp = dQ ∧ dP.
This is equivalent to d(qdp−QdP ) = 0 or that σ1 = qdp−QdP is exact. σ1

is exact if and only if σ2 = σ1 + d(QP ) = qdp + PdQ is exact. In a similar
manner the change of variables Q = Q(q, p), P = P (q, p) is symplectic if and
only if any one of the following forms is exact.

σ1 = qdp−QdP, σ2 = qdp+ PdQ,

σ3 = pdq − PdQ, σ4 = pdq +QdP.
(6.16)

Because the functions Q and P are defined in a ball, exact forms are closed
by Poincaré’s lemma; so, the change of variables is symplectic if and only if
one of the functions S1, S2, S3, S4 exists and satisfies

dS1(p, P ) = σ1, dS2(p,Q) = σ2,

dS3(q,Q) = σ3, dS4(q, P ) = σ4.

In the above formulas, there is an implied summation over the components.
These statements give an easy way to construct a symplectic change of

variables. Assume that there exists a function S1(p, P ) such that dS1 = σ1;
so,

dS1 =
∂S1

∂p
dp+

∂S1

∂P
dP = qdp−QdP.

So if
q =

∂S1

∂p
(p, P ), Q = −∂S1

∂P
(p, P ) (6.17)

defines a change of variables from (q, p) to (Q,P ), then it is symplectic. By
the implicit function theorem, the equations in (6.17) are solvable for P as a
function of q and p and for p as a function of Q and P when the Hessian of
S1 is nonsingular. Thus in a similar manner we have the following.

Theorem 6.2.1. The following define a local symplectic change of variables:

q =
∂S1

∂p
(p, P ), Q = −∂S1

∂P
(p, P ) when

∂2S1

∂p∂P
is nonsingular;

q =
∂S2

∂p
(p,Q), P =

∂S2

∂Q
(p,Q) when

∂2S2

∂p∂Q
is nonsingular;

p =
∂S3

∂q
(q,Q), P = −∂S3

∂Q
(q,Q) when

∂2S3

∂q∂Q
is nonsingular;

p =
∂S4

∂q
(q, P ), Q =

∂S4

∂P
(q, P ) when

∂2S4

∂q∂P
is nonsingular.

(6.18)
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The functions Si are called generating functions. For example, if S2(p,Q) =
pQ, then the identity transformation Q = q, P = p is symplectic, or if
S1(p, P ) = pP , then the switching of variables Q = −p, P = q is symplectic.

6.2.3 Mathieu Transformations

If you are given a point transformation Q = f(q), with ∂f/∂q invertible,
then the transformation can be extended to a symplectic transformation by
defining S4(q, P ) = f(q)TP and

Q = f(q), p =
∂f

∂q
(q)P.

One can also add a function F (q) to S4 to get S4(q, P ) = f(q)TP +F (q) and

Q = f(q), p =
∂f

∂q
(q)P +

∂F

∂q
(q).

These transformations were studied by Mathieu(1874).

6.3 Symplectic Scaling

If instead of satisfying (6.1) a transformation ζ = Ξ(t, z) satisfies

J = μ
∂Ξ

∂z
J
∂Ξ

∂z

T

,

where μ is some nonzero constant, then ζ = Ξ(t, z) is called a symplectic
transformation (map, change of variables, etc.) with multiplier μ. Equations
(6.2) become

ζ̇ = μJ∇ζH(t, ζ) + J∇ζR(t, ζ),

where all the symbols have the same meaning as in Section 6.1. In the time-
independent case, you simply multiply the Hamiltonian by μ.

As an example consider scaling the universal gravitational constant G.
When the N -body problem was introduced in Section 2.1, the equations
contained the universal gravitational constant G. Later we set G = 1. This
can be accomplished by a symplectic change of variables with multiplier. The
change of variables q = αq′, p = αp′ is symplectic with multiplier α−2, and
so the Hamiltonian of the N -body problem, (2.5), becomes

H =
N∑

i=1

‖p′i‖2
2mi

−
∑

1≤i<j≤N

G

α3

mimj

‖q′i − q′j‖
.
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If we take α3 = G, then in the prime coordinates the gravitational constant
will be 1. q has the dimensions of distance, and p has the dimensions of
distance-mass/time; and so the change of variables can be done by changing
the units of distance only. A better way to make the universal gravitational
constant unity is to change the unit of mass. The scaling given here is simply
an example.

6.3.1 Equations Near an Equilibrium Point

Consider a Hamiltonian that has a critical point at the origin; so,

H(z) =
1
2
zTSz +K(z),

where S is the Hessian of H at z = 0, and K vanishes along with its first
and second partial derivatives at the origin. The change of variables z = εw
is a symplectic change of variables with multiplier ε−2; so, the Hamiltonian
becomes

H(w) =
1
2
wTSw + ε−2K(εw) =

1
2
wTSw +O(ε).

In the above, the classical notation, O(ε), of perturbation theory is used.
Because K is at least third order at the origin, there is a constant C such
that

∣∣ε−2K(εw)
∣∣ ≤ Cε for w in a neighborhood of the origin and ε small,

which is written ε−2K(εw) = O(ε). The equations of motion become

ẇ = Aw +O(ε), A = JS. (6.19)

If ‖w‖ is about 1 and ε is small, then z is small. Thus the above transformation
is useful in studying the equations near the critical point. To the lowest order
in ε the equations are linear; so, close to the critical point the linear terms
are the most important terms. This is an example of what is called scaling
variables, and ε is called the scale parameter. To avoid the growth of symbols,
one often says: scale by z → εz which means replace z by εz everywhere.
This would have the effect of changing w back to z in (6.19). It must be
remembered that scaling is really changing variables.

6.3.2 The Restricted 3-Body Problem

In the traditional derivation of the restricted 3-body problem, one is asked
to consider the motion of a particle of infinitesimal mass moving in the plane
under the influence of the gravitational attraction of two finite particles that
move around each other on a circular orbit of the Kepler problem. Although
this description is picturesque, it hardly clarifies the relationship between the
restricted 3-body problem and the full problem. Consider the 3-body problem
in rotating coordinates (6.9) with N = 3 and ω = 1. Let the third mass be
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small by setting m3 = ε2 and considering ε as a small positive parameter.
Making this substitution into (6.9) and rearranging terms gives

H3 =
‖v3‖2
2ε2

− uT
3Kv3 −

2∑
i=1

ε2mi

‖ui − u3‖
+H2.

Here H2 is the Hamiltonian of the 2-body problem in rotating coordinates;
i.e., (6.9) with N = 2. ε is a small parameter that measures the smallness
of one mass. A small mass should make a small perturbation on the other
particles, thus, we should attempt to make ε measure the deviation of the
motion of the two finite particles from a circular orbit. That is, ε should
measure the smallness of the mass and how close the two finite particles
orbits are to circular. To accomplish this we must prepare the Hamiltonian
so that one variable represents the deviation from a circular orbit.

Let Z = (u1, u2, v1, v2); so, H2 is a function of the 8-vector Z. A circular
solution of the 2-body problem is a critical point of the Hamiltonian of the
2-body problem in rotating coordinates; i.e., H2. Let Z∗ = (a1, a2, b1, b2) be
such a critical point (later we specify Z∗). By Taylor’s theorem

H2(Z) = H2(Z∗) +
1
2
(Z − Z∗)TS(Z − Z∗) +O(‖Z − Z∗‖3),

where S is the Hessian of H2 at Z∗. Because the equations of motion do
not depend on constants, drop the constant term in the above. If the motion
of the two finite particles were nearly circular, the Z − Z∗ would be small;
so this suggests that one should change variables by Z − Z∗ = εU , but to
make the change of variables symplectic, you must also change coordinates by
u3 = ξ, v3 = ε2η, which gives a symplectic change of variables with multiplier
ε−2. The Hamiltonian becomes

H3 =

{
‖η‖2

2
− ξTKη −

2∑
i=1

mi

‖ξ − ai‖

}
+

1
2
UTSU +O(ε).

The quantity in the braces in the above is the Hamiltonian of the restricted
3-body problem, if we take m1 = μ,m2 = 1 − μ, a1 = (1 − μ, 0), and a2 =
(−μ, 0). The quadratic term above is simply the linearized equations about
the circular solutions of the 2-body problem in rotating coordinates. Thus to
first order in ε the Hamiltonian of the full 3-body problem is the sum of the
Hamiltonian for the restricted problem and the Hamiltonian of the linearized
equations about the circular solution. So, to first-order, the equations of the
full 3-body problem decouples into the equations for the restricted problem
and the linearized equations about the circular solution.

In Chapter 9, this scaled version of the restricted problem is used to
prove that nondegenerate periodic solutions of the restricted problem can be
continued into the full 3-body problem for small mass.
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6.3.3 Hill’s Lunar Problem

One of Hill’s major contributions to celestial mechanics was his reformula-
tion of the main problem of lunar theory: he gave a new definition for the
equations of the first approximation for the motion of the moon. Because
his equations of the first approximation contained more terms than the older
first approximations, the perturbations were smaller and he was able to ob-
tain series representations for the position of the moon that converge more
rapidly than the previously obtained series. Indeed, for many years lunar
ephemerides were computed from the series developed by Brown, who used
the main problem as defined by Hill. Even today, most of the searchers for
more accurate series solutions for the motion of the moon use Hill’s definition
of the first approximation.

Before Hill, the first approximation consisted of two Kepler problems: one
describing the motion of the earth and moon about their center of mass, and
the other describing the motion of the sun and the center of mass of the
earth-moon system. The coupling terms between the two Kepler problems
are neglected at the first approximation. Delaunay used this definition of the
first approximation for his solution of the lunar problem, but after 20 years
of computation he was unable to meet the observational accuracy of his time.

In Hill’s definition of the main problem, the sun and the center of mass
of the earth-moon system still satisfy a Kepler problem, but the motion of
the moon is described by a different system of equations known as Hill’s
lunar equations. Using heuristic arguments about the relative sizes of various
physical constants, he concluded that certain other terms were sufficiently
large that they should be incorporated into the main problem. This heuristic
grouping of terms does not lead to a precise description of the relationship
between the equations of the first approximation and the full problem.

In a popular description of Hill’s lunar equations, one is asked to consider
the motion of an infinitesimal body (the moon) which is attracted to a body
(the earth) fixed at the origin. The infinitesimal body moves in a coordinate
system rotating so that the positive x axis points to an infinite body (the
sun) infinitely far away. The ratio of the two infinite quantities is taken so
that the gravitational attraction of the sun on the moon is finite.

Here we give a derivation of Hill’s lunar problem as a limit of the re-
stricted problem following these heuristics. To see this we make a sequence
of symplectic coordinate changes and scaling.

Start with the restricted problem given in Section (2.3) in x, y coordinates
and move one primary to the origin by the change of coordinates

x1 → x1 + 1− μ, x2 → x2,
y1 → y1, y2 → y2 + 1− μ,

so that the Hamiltonian becomes

H =
1
2
(
y2
1 + y2

2

)
− y2x1 + y1x2 −

1− μ
r1

− μ

r2
− (1− μ)x1, (6.20)
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where
r21 = (x1 + 1)2 + x2

2, r22 = x2
1 + x2

2.

(Here we drop all constants from the Hamiltonian.) By Newton’s binomial
series

{1 + u}−1/2 = 1− 1
2
u+

3
8
u2 + · · ·

so
− 1− μ√

(x1 + 1)2 + x2
2

= −(1− μ){1− x1 + x2
1 −

1
2
x2

2 + · · ·}

and the Hamiltonian becomes

H =
1
2
(
y2
1 + y2

2

)
− y2x1 + y1x2 −

μ

r2
− (1− μ){x2

1 −
1
2
x2

2 + · · ·}. (6.21)

We consider the mass μ as a small parameter and distance to the primary to
be small by scaling

x→ μ1/3x, y → μ1/3y

which is symplectic with multiplier μ−2/3 so the Hamiltonian becomes

H = L+O(μ1/3), (6.22)

where L is the Hamiltonian of Hill’s lunar problem

L =
1
2
(
y2
1 + y2

2

)
− y2x1 + y1x2 −

1
‖x‖ − x

2
1 +

1
2
x2

2. (6.23)

The Hamiltonian L has an equilibrium point at

(x1, x2, y1, y2) = (−3−1/3, 0, 0,−3−1/3),

which is the limit of the equilibrium point L2 as μ → 0 in the scaling given
above. The exponents at this equilibrium point are ±i

√
2
√

7− 1,
√

2
√

7 + 1.

Problems

1. Show that if you scale time by t→ μt, then you should scale the Hamil-
tonian by H → μ−1H.

2. Scale the Hamiltonian of the N -body problem in rotating coordinates,
so that ω is 1.

3. Consider the restricted 3-body problem (see Section 2.3). To investigate
solutions near∞, scale by x→ ε−2x, y → εy. Show that the Hamiltonian
becomes H = −xTKy + ε3{‖y‖2/2− 1/‖x‖}+O(ε2). Justify this result
on physical grounds.

4. Consider the restricted 3-body problem (see Section 2.3). To investigate
solutions near one of the primaries first shift the origin to one primary
as was done in Section 6.3.3. Then scale by x→ ε2x, y → ε−1y, t→ ε3t.
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5. Give an example of a linear symplectic transformation that is not given
by a generating function as given in Theorem 6.2.1.

6. Let T : (q, p) → (Q,P ) = (Q(q, p), P (q, p)) be a symplectic transforma-
tions defined on an open set in R

2.
a) Show that ω = (Q− q)d(P + p)− (P − p)d(Q+ q) is closed.
b) Assume that the domain of definition of Q and P is such that

Poincaré’s lemma applies, so ω = dS. Assume also that ξ = P + p,
η = Q+q is a valid change of coordinates (not necessarily symplectic).
Show that the critical points of S are fixed points of transformation
T : (q, p) → (Q,P ).

c) Let S = q2/2 + μp + p3/3 where μ is a parameter. Find the critical
points of S as μ varies. Compute the map T corresponding to this
S. What can you say about T’s fixed points as μ varies? (See Meyer
(1970) for an application of this generating function to bifurcation
theory.)



7. Special Coordinates

The classical subject of celestial mechanics is replete with special coordinate
systems some of which bear the names of the greatest mathematicians. We
consider some these special coordinates in this chapter. Because the topics
of this chapter are special in nature the reader is advised to selectively read
a few sections first and then refer back to this chapter when the need calls.

7.1 Jacobi Coordinates

Jacobi coordinates are ideal coordinates for investigations of the N -body
problem. First, one coordinate locates the center of mass of the system, and
so it can be set to zero and ignored in subsequent considerations. Second,
one coordinates is the vector from one particle to another, and this is useful
when studying the case when two particles are close together. Third, another
coordinate is the vector from the center of mass of N − 1 particles to the
Nth, and this is useful when studying the case when one particle is far from
the others.

Let qi, pi ∈ R
3 for i = 1, . . . , N be the coordinates of the N -body problem

as discussed in Section 2.1. Define a sequence of transformations starting with
g1 = q1 and μ1 = m1 and proceed inductively by

Tk :

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uk = qk − gk−1,

gk = (1/μk)(mkqk + μk−1gk−1),

μk = μk−1 +mk

(7.1)

for k = 2, . . . , N . μk is the total mass, and gk is the position vector of the
center of mass of the system of particles with indices 1, 2, . . . , k. The vector uk

is the position of the kth particle relative to the center of mass of the previous
k− 1 particles (see Figure 7.1). Consider Tk as a change of coordinates from
gk−1, u2, . . . , uk−1, qk, . . . , qN to gk, u2, . . . , uk, qk+1, . . . , qN or simply from
gk−1, qk to gk, uk+1. The inverse of Tk is

T−1
k :

⎧
⎨
⎩
qk = (μk−1/μk)uk + gk,

gk−1 = (−mk/μk)uk + gk.
(7.2)

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 7,
c© Springer Science+Business Media, LLC 2009
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This is a linear transformation on the q variables only, i.e., on a Lagrangian
subspace; so, Lemma 3.2.4 forces the transformation on the p variables in or-
der to have a symplectic transformation. To make the symplectic completion
of Tk, define G1 = p1 and

Qk :

⎧
⎨
⎩
vk = (μk−1/μk)pk − (mk/μk)Gk−1,

Gk = pk +Gk−1,
(7.3)

Q−1
k :

⎧
⎨
⎩
pk = vk + (mk/μk)Gk,

Gk−1 = −vk + (μk−1/μk)Gk.
(7.4)

If we denote the coefficient matrix in (7.1) by A, then the coefficient matrices
in (7.2), (7.3), and (7.4) are A−1, A−T , and AT , respectively; so,the pair
Tk, Qk is a symplectic change of variables. Thus the composition of all these
changes is symplectic, and the total set gN , u2, . . . , uN , GN , v2, . . . , vN forms
a symplectic coordinate system known as the Jacobi coordinates.

Figure 7.1. Jacobi coordinates for the 3-body problem.

These variables satisfy the identities

gk−1 ×Gk−1 + qk × pk = gk ×Gk + uk × vk

and
‖Gk−1‖2
2μk−1

+
‖pk‖2
2mk

=
‖Gk‖2
2μk

+
‖vk‖2
2Mk

,

where Mk = mkμk−1/μk. Thus kinetic energy is

KE =
N∑

k=1

‖pk‖2
2mk

=
‖GN‖2
2μN

+
N∑

k=2

‖vk‖2
2Mk

,
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and total angular momentum is

A =
N∑
1

qk × pk = gN ×GN +
N∑
2

uk × vk. (7.5)

Also, gN is the center of mass of the system, and GN is the total linear
momentum.

Unfortunately, the formulas for the variables uk and vk are not simply
expressed in terms of the variables qk and pk. Note that

u2 = q2 − q1.
Let dij = qi − qj and so the Hamiltonian of the N -body problem in Jacobi
coordinates is

H =
‖GN‖2
2μN

+
N∑

k=2

‖vk‖2
2Mk

−
∑

1≤i<j≤N

mimj

‖dij‖
. (7.6)

Note that the Hamiltonian is independent of gN , and so, ĠN = 0 or GN is
an integral of the system. When a variable does not appear in the Hamilto-
nian, it is called ignorable, and its conjugate variable is an integral. Because
ġN = GN/μN , the center of gravity moves with uniform rectilinear motion.
In general, one may assume that the center of mass is fixed at the origin of
the system and so sets gN = GN = 0, which reduces the problem by three
degrees of freedom in the spatial problem.

In the planar problem, one verifies
N∑
1

qT
kKpk = gT

NKGN +
N∑
2

uT
kKvk,

which is the same as the formula for angular momentum given above. So the
Hamiltonian of the planar N -body problem in rotating coordinates with the
center of mass fixed at the origin is

H =
N∑

k=2

‖vk‖2
2Mk

+
N∑
2

uT
kKvk −

∑
1≤i<j≤N

mimj

‖dij‖
. (7.7)

7.1.1 The 2-Body Problem in Jacobi Coordinates

When N = 2, then (7.6) with g2 = G2 = 0 takes the simple form

H =
‖v‖2
2M

− m1m2

‖u‖ , (7.8)

where v = v2, u = u2 = q2 − q1,M = m1m2/(m1 + m2). This is just the
Kepler problem, and so in Jacobi coordinates the 2-body problem is just the
Kepler problem. This says that the motion of one body, say the moon, when
viewed from another, say the earth, is as if the earth were a fixed body and
the moon were attracted to the earth by a central force.



150 7. Special Coordinates

7.1.2 The 3-Body Problem in Jacobi Coordinates

In the 3-body problem the distances between the bodies, and hence the po-
tential, are not too complicated in Jacobi coordinates. Moreover, the Hamil-
tonian of the 3-body problem in Jacobi coordinates is transformed to polar
coordinates in Section 6.2, which is used in Chapter 8 to understand reduc-
tion of the 3-body problem and to establish the existence of periodic solutions
for two small masses (Poincaré’s periodic solutions of the first kind).

Let

M2 =
m1m2

m1 +m2
, M3 =

m3(m1 +m2)
m1 +m2 +m3

,

α0 =
m2

m1 +m2
, α1 =

m1

m1 +m2
;

(7.9)

then the Hamiltonian of the 3-body problem with center of mass fixed at the
origin and zero linear momentum in Jacobi coordinates is

H =
‖v2‖2
2M2

+
‖v3‖2
2M3

− m1m2

‖u2‖
− m1m3

‖u3 + α0u2‖
− m2m3

‖u3 − α1u2‖
. (7.10)

See Figure 7.1. Sometimes one numbers the N -bodies from 0 to N−1. In this
case all the subscripts in (7.10) except the subscripts of the α′s are reduced
by 1, which looks nicer to some people.

7.2 Action–Angle Variables

The change from rectangular coordinates q, p to polar coordinates r, φ is not
symplectic, but because

dq ∧ dp = rdr ∧ dφ = d(r2/2) ∧ dφ

the following define a symplectic change of variables.

I = 1
2 (q2 + p2) = r2/2, φ = arctan(p/q),

q =
√

2I cosφ, p =
√

2I sinφ.
(7.11)

Therefore, I, φ are symplectic (or canonical) coordinates called action–angle
coordinates. In Chapter 3, we saw that the harmonic oscillator could be
written as a Hamiltonian system with Hamiltonian

H =
ω

2
(q2 + p2) = ωI,

and in action–angle coordinates, the equations of motion are

İ =
∂H

∂φ
= 0, φ̇ = −∂H

∂I
= −ω.
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So the solutions move on the circles I = constant with uniform angular
frequency ω in a counterclockwise direction.

Action–angle variables are used quite often in perturbation theory, for
example, Duffing’s equation has a Hamiltonian

H =
1
2
(q2 + p2) +

γ

4
q4,

where γ is a constant. Writing Duffing’s Hamiltonian in action–angle variables
gives

H = I + γI2 cos4 φ = I +
γ

8
I2{3 + 4 cos 2φ+ cos 4φ}.

The last term in the braces in the above formula is an example of a Poisson.
A Poisson series in r =

√
2I and φ is a Fourier series in φ with coefficients

that are polynomials in r. Such series arise from substituting action–angle
variables into a power series expansion in q and p, but not all Poisson series
come about in this manner. Action–angle variables are used and misused so
often in celestial mechanics that we investigate this point next.

7.2.1 d’Alembert Character

Consider a Poisson series

g(r, φ) =
∑

i

ai0r
i +
∑∑

(aijr
i cos jφ+ bijri sin jφ).

The Poisson series g(r, φ) comes from a power series f(q, p) =
∑
fijq

ipj if
g(r, θ) = f(r cosφ, r sinφ).

The Poisson series g has the d’Alembert character if aij = 0, bij = 0 unless
i ≥ j, and i ≡ j mod 2 (i.e., i and j have the same parity).

Theorem 7.2.1. The Poisson series g comes from a power series if and only
if it has the d’Alembert character.

Proof. xiyj = ri+j cosi φ sinj φ. Claim: cosi φ sinj φ has a Fourier polynomial
of the form a0 +Σ{ak cos kφ+ bk sin kφ}, where ak = bk = 0 unless k ≤ i+ j
and k ≡ i + j mod 2. The claim is clearly true for i + j = 1; so, assume it’s
true for i+ j < N , and let i+ j = N. Let i 
= 0; then

cosi φ sinj φ = cosφ[cosi−1 φ sinj φ]

= cosφ[α0 +
∑
{αk cos kφ+ βk sin kφ}]

= α0 cosφ+
∑

(αk/2)[cos(k + 1)φ+ cos(k − 1)φ]

+
∑

(βk/2)[sin(k + 1)φ+ sin(k − 1)φ].
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The induction hypothesis gives αk = 0, βk = 0 unless k ≤ i + j − 1, and
k ≡ i + j − 1 mod 2. The last polynomial above shows that the induction
hypothesis is true for i + j = N . Similar formulas hold when j 
= 0. So a
power series gives rise to a Poisson series with the d’Alembert character.

Conversely, if ra cos bφ satisfies a ≥ b and a ≡ b mod 2, then cos bφ =
�(exp iφ)b = a sum of terms like cos(b− 2s)φ sin 2sφ. The d’Alembert char-
acter gives a = b + 2p so ra cos bφ = a sum of terms like r2p{rb−2p cos(b −
2pφ)}{r2p sin(2pφ)} = (x2 + y2)pxb−2py2.

Perturbation analysis is often done in action–angle variables. Keeping
track of the d’Alembert character of the change of variables in action–angle
variables is important in order to keep track of the fact that the change of
variables is analytic in rectangular variables.

Say you want an analytic Hamiltonian with a fivefold symmetry. In polar
coordinates the functions rk, cos 5θ, sin 5θ are all invariant under the rotation
θ → θ + 2π/5 but are not analytic in rectangular coordinates. The functions
r2k, r2k+5 cos 5θ, and r2k+5 sin 5θ all are invariant under the rotation θ → θ +
2π/5 and have the d’Alembert character; therefore, any linear combination
(finite or uniformly convergent for r < ρ, ρ > 0) gives an analytic function
in rectangular coordinates with a fivefold symmetry.

7.3 General Action–Angle Coordinates

Consider a Hamiltonian H(x, y) defined in a neighborhood of the origin in
R

2, such that the origin is a center for the Hamiltonian flow. Thus the origin
is encircled by periodic orbits. Assume that the origin is a local minimum of
H, and H(0, 0) = 0. We seek symplectic action–angle variables (L, ) where
 is an angle defined mod 2π and the Hamiltonian is to be of the form
H(L, ) = Ω(L).

Let R(h) = the component of {(x, y) ∈ R
2 : H(x, y) ≤ h} that contains

the origin. Because dx ∧ dy = dL ∧ d we must have
∫ ∫

R(h)

dx ∧ dy =
∫ ∫

R(h)

dL ∧ d = 2πL

or
L =

1
2π

∫ ∫

R(h)

dx ∧ dy =
1
2π

∮

∂R(h)

xdy.

Thus the variable L is just the area of the region R(h). The last integral in
the formula for L is classically called the action. The equations of motion in
the new coordinates are

L̇ = 0, ̇ = −Ω′(L), (7.12)

therefore L is a constant and  = 0−Ω′(L)t. Thus  is a scaled time, scaled
so that it is 2π-periodic.
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Let the period of the orbit be p(h). We wish to find symplectic variables
(L, ) defined in a neighborhood of the origin with  an angle defined mod
2π and L is its conjugate momentum so that the Hamiltonian becomes a
function of L alone. With H = Ω(L) the equations become (7.12). Thus the
period of the orbit is 2π/ | Ω′(L) |. Therefore, we must have

2π
Ω′(L)

= ±p(Ω(L))

or
Ω′ = ± 2π

p(Ω)
.

The differential equation above defines the function Ω(L) in terms of p(h).
The sign is chosen so that ±2π/Ω′(L) is positive (the period).

In the Kepler problem H = −1/2a, P = 2πa3/2 where a is the semi-major
axis. So p(h) = π2−1/2(−h)−3/2. Thus the equation to solve is

Ω′ = 23/2(−Ω)3/2.

Separating variables gives

(−Ω)−3/2dΩ = 23/2dL

(−Ω)−1/2 = 21/2L.

Thus the Hamiltonian must be

Ω = − 1
2L2

. (7.13)

Now consider the Hamiltonian system

H =
1
2
y2 + F (x), F (x) =

∫ x

0

f(τ)dτ,

where xf(x) > 0 for 0 < x < x0, so the origin is a center. So for small
positive h the set H = h is a closed orbit. Because ̇ is constant,  is a
constant multiple of time t, in particular  = 0 − Ω′(L0)t. In order to fix
initial conditions, let t and  be measured from the positive x-axis. A one
degree of freedom Hamiltonian system is integrable up to quadurature. To
this end, let a denote the point on the positive x-intercept of H = h, so
F (a) = Ω(L). From the equation

1
2
y2 + F (x) = h,

solve for y,

y =
dx

dt
= ±{2h− 2F (x)}1/2,
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separate variables
dt = ±{2h− 2F (x)}−1/2dx,

and so

t = ±
∫ x

a

dξ

{2h− 2F (ξ)}1/2
. (7.14)

The angle  is −Ω′(L0)t. The orbit is swept out in a clockwise direction, so
if the angle  is to be measured in the usual counterclockwise direction for
small  and t, the minus sign should be used in (7.14).

To construct the symplectic change of variables consider the generating
function

W (x,L) =
∫ x

a

{2Ω(L)− 2F (ξ)}1/2dξ

with
y =

∂W

∂x
= {2Ω(L)− 2F (x)}1/2

so
1
2
y2 + F (x) = Ω(L)

and

 =
−∂W
∂L

= −{2Ω(L)− 2F (a)}1/2 da

dL
−
∫ x

a

Ω′(L)dξ
{2Ω(L0)− 2F (ξ)}1/2

= −tΩ′(L).

(The first term in the formula for  is zero by the definition of a.) Thus
the change of variables is symplectic. We call these variables action–angle
variables (for the Hamiltonian) H. If H = (x2 + y2)/2, the usual harmonic
oscillator, then  = tan−1(y/x) and L = (x2 + y2)/2. A more interesting
example is given in Section 7.7, Delaunay elements.

7.4 Polar Coordinates

Let x, y be the usual coordinates in the plane and X,Y their conjugate mo-
menta. Suppose we wish to change to polar coordinates, r, θ in the x−, y-
plane and to extend this point transformation to a symplectic change of vari-
ables. Let R,Θ be conjugate to r, θ. Use the generating function S = S2 =
Xr cos θ + Y r sin θ, and so

x =
∂S

∂X
= r cos θ, y =

∂S

∂Y
= r sin θ,

R =
∂S

∂r
= X cos θ + Y sin θ =

xX + yY
r

Θ =
∂S

∂θ
= −Xr sin θ + Y r cos θ = xY − yX.
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If we think of a particle of mass m moving in the plane, then X = mẋ and
Y = mẏ are linear momenta in the x and y directions; so, R = mṙ is the
linear momentum in the r direction, and Θ = mxẏ − myẋ = mr2θ̇ is the
angular momentum. The inverse transformation is

X = R cos θ −
(
Θ

r

)
sin θ,

Y = R sin θ +
(
Θ

r

)
cos θ.

7.4.1 Kepler’s Problem in Polar Coordinates

The Hamiltonian of the planar Kepler’s problem in polar coordinates is

H =
1
2
(X2 + Y 2)− μ

(x2 + y2)
=

1
2
(R2 +

Θ2

r2
)− μ

r
. (7.15)

Because H is independent of θ, it is an ignorable coordinate, and Θ is an
integral. The equations of motion are

ṙ = R, θ̇ =
Θ

r2
,

Ṙ =
Θ2

r3
− μ

r2
, Θ̇ = 0.

(7.16)

These equations imply that Θ, angular momentum, is constant, say c; so,

r̈ = Ṙ =
c2

r3
− μ

r2
. (7.17)

This is a one degree of freedom equation for r; so, it is solvable by the method
discussed in Section 1.5. Actually, this equation for r can be solved explicitly.

Assume c 
= 0; so, the motion is not collinear. In (7.17) make the changes
of variables u = 1/r and dt = (r2/c)dθ so

r̈ =
c

r2
d

dθ

{
c

r2
dr

dθ

}
= c2u2 d

dθ

{
u2 du

−1

dθ

}
= −c2u2u′ ′

=
c2

r3
− μ

r2
= c2u3 − μu2,

or
u′ ′ + u = μ/c2, (7.18)

where ′ = d/dθ. Equation (7.18) is just the nonhomogeneous harmonic oscil-
lator which has the general solution u = (μ/c2)(1+e cos(θ−g)), where e and
g are integration constants. Let f = θ − g; so,
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r =
(c2/μ)

1 + e cos f
. (7.19)

Equation (7.19) is the equation of a conic section in polar coordinates. Con-
sider a line  in Figure 7.2 that is perpendicular to the ray at angle g through
the origin and at a distance c2/μ. Rewrite (7.19) as

r = e

(
c2

eμ
− r cos f

)
,

which says that the distance of the particle to the origin r is equal to e times
the distance of the particle to the line , c2/(eμ) − r cos f . This is one of
the many definitions of a conic section. One focus is at the origin. e is the
eccentricity, and the locus is a circle if e = 0, an ellipse if 0 < e < 1, a
parabola if e = 1, and a hyperbola if e > 0.

Figure 7.2. The elements of a Kepler motion.

The point of closest approach in Figure 7.2 is called the perihelion if the
sun is the attractor at the origin or the perigee if the earth is. The angle f is
called the true anomaly and g the argument of the perihelion (perigee).

7.4.2 The 3-Body Problem in Jacobi–Polar Coordinates

Consider the 3-body problem in Jacobi coordinates with center of mass at
the origin and linear momentum zero; i.e., the Hamiltonian (7.10). Introduce
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polar coordinates for u2 and u3 as discussed above. That is, let

u2 = (r1 cos θ1, r1 sin θ1), u3 = (r2 cos θ2, r2 sin θ2),

v2 =
(
R1 cos θ1 −

(
Θ1

r1

)
sin θ1, R1 sin θ1 +

(
Θ1

r1

)
cos θ1

)
,

v3 =
(
R2 cos θ2 −

(
Θ2

r2

)
sin θ2, R2 sin θ2 +

(
Θ2

r2

)
cos θ2

)
,

so, the Hamiltonian (7.10) becomes

H =
1

2M2

{
r21 +

(
Θ2

1

r21

)}
+

1
2M3

{
r22 +

(
Θ2

2

r22

)}
− m0m1

r1

− m0m2√
r22 + α2

0r
2
1 − 2α0r1r2 cos(θ2 − θ1)

− m1m2√
r22 + α2

1r
2
1 − 2α1r1r2 cos(θ2 − θ1)

.

(7.20)

The constants are the same as in (7.9), but here we number the masses
m0,m1,m2. Note that the Hamiltonian only depends on the difference of the
polar angles, θ2 − θ1.

7.5 Spherical Coordinates

Sometimes the discussion of a spatial problem is easier in spherical coor-
dinates. This section is used to define the three-dimensional Delaunay and
Poincaré elements which in turn are used to establish three-dimensional pe-
riodic solutions of the restricted problem.

Let x, y, z be the usual coordinates in space and X,Y,Z their conjugate
momenta. We wish to change to spherical coordinates (ρ, θ, φ), the radius,
longitude, and colatitude and their conjugate momenta P,Θ,Φ. The standard
definition of spherical coordinates is

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ. (7.21)

To extend this point transformation use the Mathieu generating function

S = S2 = Xρ sinφ cos θ + Y ρ sinφ sin θ + Zρ cosφ,

so
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P =
∂S

∂ρ
= X sinφ cos θ + Y sinφ sin θ + Z cosφ

= (xX + yY + zZ)/ρ = ρ̇,

Θ =
∂S

∂θ
= −Xρ sinφ sin θ + Y ρ sinφ cos θ = −Xy + Y x = ρ2θ̇

Φ =
∂S

∂φ
= Xρ cosφ cos θ + Y ρ cosφ sin θ − Zρ sinφ = ρ2 cos2 φφ̇.

(7.22)

Thus R is the radial momentum, and Θ is the z-component of angular mo-
mentum. From these expressions compute

Z = P cosφ− (Φ/ρ) sinφ,

P sinφ+ (Φ/ρ) cosφ = X cos θ + Y sin θ,

Θ/(ρ sinφ) = −X sin θ + Y cos θ.

From the last two formulas compute X2 + Y 2 without computing X and
Y . You will find that the Hamiltonian of the Kepler problem in spherical
coordinates is

H =
1
2

{
P 2 +

Φ2

ρ2
+

Θ2

ρ2 sin2 φ

}
− 1
ρ

(7.23)

and the equations of motion are

ρ̇ = HP = P, Ṗ = −Hρ =
Φ2

ρ3
+

Θ2

ρ3 sin2 φ
− 1
ρ2
,

θ̇ = HΘ =
Θ

ρ2 sin2 φ
, Θ̇ = −Hθ = 0

φ̇ = HΦ =
Φ

ρ2
, Φ̇ = −Hφ =

(
Θ2

ρ2

)
cosφ
sin3 φ

.

(7.24)

Clearly, Θ, the z-component of angular momentum, is an integral, but so
is G defined by

G2 =
(
Θ2

sin2 φ
+ Φ2

)
. (7.25)

We show that G is the magnitude of total angular momentum after we in-
vestigate the invariant plane in spherical coordinates.

The equation of a plane through the origin is of the form αx+βy+γz = 0
or in spherical coordinates

α sinφ cos θ + β sinφ sin θ + γ cosφ = 0
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or

a sin(θ − θ0) = b cotφ. (7.26)

Let the plane meet the x−, y-plane in a line through the origin with polar
angle θ = Ω (the longitude of the node) and be inclined to the x, y-plane by
an angle i (the inclination).

When θ = Ω,φ = π/2 so we may take θ0 = Ω. Let φm be the minimum φ
takes on the plane, so φm+i = π/2. φm gives the maximum value of cotφ and
sin has its maximum value of +1. Thus from (7.26) a = b cotφm or a sinφm =
b cosφm. Take a = cosφm = sin i and b = sinφm = cos i. Therefore, the
equation of a plane in spherical coordinates with the longitude of the node
Ω and inclination i is

sin i sin(θ −Ω) = cos i cotφ. (7.27)

Use (7.25) to solve for Φ and substitute it into the equation for φ̇, then
eliminate ρ2 from the equations for φ̇ and θ̇, to obtain

φ̇ =
Φ

ρ2
=
{
G2 − Θ2

sin2 φ

}1/2 1
ρ2

=
{
G2 − Θ2

sin2 φ

}1/2
{

sin2 φθ̇

Θ

}
.

Separate variables and let θ = Ω when φ = π/2, so that Ω is the longitude
of the node. Thus

∫ φ

0

{
G2 − Θ2

sin2 φ

}−1/2

sin−2 φdφ =
∫ θ

Ω

Θ−1dθ = (θ −Ω)/Θ

−
∫ u

0

{G2 −Θ2(1 + u2)}−1/2du =

−Θ−1

∫ u

0

{β2 − u2}−1/2du =

Θ−1 sin−1(u/β) =

(7.28)

The first substitution is u = cotφ and β is defined by β2 = (G2−Θ2)/Θ2.
Therefore,

− cotφ = ±β sin(θ −Ω).

Finally

cos i cotφ = sin i sin(θ −Ω), (7.29)

where
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β2 =
G2 −Θ2

Θ2
= tan2 i =

sin2 i

cos2 i
. (7.30)

Equation (7.29) is the equation of the invariant plane. The above gives Θ =
±G cos i. Because i is the inclination and Θ is the z-component of angular
momentum this means that G is the magnitude of total angular momentum.
In the above take θ0 to be Ω the longitude of the node.

7.6 Complex Coordinates

There are many different conventions used with complex coordinates in
Hamiltonian mechanics. We present two of them here.

First, we look at a one degree of freedom problem defined in the plane
R

2 with coordinates x, y. Here x and y are conjugate variables in the sense
of Hamiltonian mechanics.

Because the real numbers are a subset of the complex numbers now we
think of x, y as coordinates in C

2. Consider the change of coordinates from
x, y to z, w given by

z = x− iy, w = x+ iy,

x =
z + w

2
, y =

w − z
2i

.
(7.31)

If x, y are real numbers then z and w are conjugate complex numbers and
conversely. That is, the real plane {(x, y) : x, y ∈ R} ⊂ C

2 is mapped linearly
by (7.31) onto the plane {(z, w) : z, w ∈ C

2, w = z̄} and conversely.
Consider a formal or convergent series

f(x, y) =
∑

i

∑
j

aijx
iyj

and

g(z, w) = f

(
z + w

2
,
w − z

2i

)
=
∑
m

∑
n

Amnz
mwn;

i.e., g is obtained from f by the change of variables (7.31). It is easy to see
that f is a real series (i.e., all aij are real) if and only if

Amn = Ānm.

In other words f(x, y) ≡ f(x̄, ȳ) if and only if g(z, w) ≡ ḡ(w, z). These
restrictions on g are called reality conditions.

The transformation (7.31) is symplectic with multiplier 2i and so the
HamiltonianH(x, y) is replaced by 2iH((z+w)/2, (w−z)/(2i)). (To eliminate
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the multiplier some people divide some of the terms in (7.31) by 2i or even√
2i.)

As an example consider the Hamiltonian of the harmonic oscillator

H =
1
2
(x2 + y2),

which is transformed by (7.31) to

H = izw

and the equations of motion become

ż =
∂H

∂w
= iz, ẇ = −∂H

∂z
= −iw.

Because we are interested in real problems with real x and y we are only
interested in z and w with w = z̄. Thus we eliminate the proliferation of
symbols by using z and z̄.

For example, the Hamiltonian of the harmonic oscillator is written H =
izz̄ and the equation of motion is ż = iz.

Second, consider a two degree of freedom problem defined in R
4 with

coordinates x, y where x = (x1, x2) and y = (y1, y2) are real 2-vectors and
are conjugate in the sense of Hamiltonian mechanics. Consider the change of
coordinates from (x1, x2, y1, y2) to (z, z̄, w, w̄) given by

z = x1 + ix2, w = 1
2 (y1 − iy2)

z̄ = x1 − ix2, w̄ = 1
2 (y1 + iy2) .

(7.32)

This is a symplectic change of variables in as much as

dx1 ∧ dy1 + dx2 ∧ dy2 = dz ∧ dw + dz̄ ∧ dw̄.

A prime example of the use of these coordinates is the regularization of
collisions in the Kepler problem.

7.6.1 Levi–Civita Regularization

The Kepler problem has a removable singularity, namely the collision. The
process of removing the singularity has become known as Levi–Civita regu-
larization. Consider the planar Kepler problem with Hamiltonian

H =
1
2
|y|2 − 1

|x| +
d2

2
,

where now x, y are to be considered as complex numbers. The additive con-
stant d2/2 does not affect the equations of motion and its use becomes clear
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shortly. Note that H = 0 corresponds to the traditional Hamiltonian equal
to −d2/2; i.e., |y|2/2− 1/|x| = −d2/2.

First make a symplectic change of variables from x, y to z, w using the
generating function

S(y, z) = yz2

x =
∂S

∂y
= z2, w =

∂S

∂z
= 2yz.

The Hamiltonian becomes

H =
1

8|z|2
{
|w|2 + 4d2|z|2 − 8

}
.

The expression in the braces above is the Hamiltonian of two harmonic os-
cillators with equal frequencies. To remove the multiplicative factor we use a
trick of Poincaré to change the time scale and yet still keep the Hamiltonian
character of the problem.

The Poincaré trick applies to a general Hamiltonian of the form H(x) =
φ(x)L(x) where φ(x) is a positive function. The equations of motion are
ẋ = J∇H = φJ∇L + LJ∇φ. On the level set L = 0 the equations of
motion become ẋ = φJ∇L or x′ = J∇L where we reparimeterize the time
by dτ = φ(x)dt and ′ = d/dτ . Thus the flow defined by L on L = 0 is a
reparameterization of the flow defined by H on H = 0.

Returning to the Kepler problem we change time by

4|z|2dτ = dt

and consider the Hamiltonian

L =
1
2
(|w|2 + 4d2|z|2).

By the above remarks the flow defined by H on the set H = 0 (energy equal
to −d2) and the flow defined by L on the set L = 4 are simply reparimeteri-
zations of each other.

Notice that the change has x = z2 so z and −z are mapped to the same
x. The change becomes one-to-one if one identifies the antidotal points (z, w)
and (−z,−w). The set where L = 4 is a 3-sphere, S3, and the 3-sphere with
antidotal points identified is real projective three space RP 3. The flow defined
by L on L = 4 does not have a singularity and so a collision orbit is carried
to a regular orbit of the system defined by L.

The flow defined by L is two harmonic oscillators. One can think of it as
the Hamiltonian of a particle of mass 1 that moves in the w-plane which is
subjected to the force of a linear spring attached to the origin with spring
constant 4d2. This is a super-integrable system that admits the three inde-
pendent integrals

E1 =
1
2
(w2

1 + 4d2z21), E2 =
1
2
(w2

2 + 4d2z22), A = z1w2 − z2w1,
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which are energy in the z1 direction plane, energy in the z2 direction, and
angular momentum.

7.7 Delaunay and Poincaré Elements

There is an old saying in celestial mechanics that “no set of coordinates
is good enough.” Indeed, classical and modern literatures are replete with
endless coordinate changes. There are two sets of coordinates that make the 2-
body problem particularly simple and thus simplify perturbation arguments.
The first set of variables, the Delaunay elements, are valid for the elliptic
orbits, and the second set, the Poincaré elements, are valid near the circular
orbits of the Kepler problem

7.7.1 Planar Delaunay Elements

Here the ideas discussed in Section 7.3 are used to create action–angle vari-
ables for the Kepler problem. These variables are called Delaunay elements,
named after the French astronomer of the 19th century who used these coor-
dinates to develop his theory of the moon. Delaunay elements are valid only
in the domain in phase space where there are elliptic orbits for the Kepler
problem.

The Hamiltonian of the Kepler problem in symplectic polar coordinates
(r, θ,R,Θ) is

H =
1
2

{
R2 +

Θ2

r2

}
− 1
r
. (7.33)

Angular momentum, Θ, is an integral, so for fixed Θ 
= 0 this is a one degree
of freedom system of the form discussed in Section 7.3, except the origin of
the center is at r = Θ (the circular orbit). Set H = −1/2L2 and solve for the
r value of perigee (when R = 0) to get that a = L[L − (L2 − Θ2)1/2]. Note
that L2 ≥ Θ2 and L = ±Θ correspond to the circular orbits of the Kepler
problem.

To change to Delaunay variables (, g, L,G) we use the generating function

W (r, θ, L,G) = θG+
∫ r

a

{
−G

2

ξ2
+

2
ξ
− 1
L2

}1/2

dξ,

where a = a(L,G) = L[L− (L2 −G2)1/2]. Thus
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R =
∂W

∂r
=
{
−G

2

r2
+

2
r
− 1
L2

}1/2

,

Θ =
∂W

∂θ
= G,

 =
∂W

∂L
= −

{
−G

2

a2
+

2
a
− 1
L2

}1/2
∂a

∂L
+
∫ r

a

{
−G

2

ξ2
+

2
ξ
− 1
L2

}−1/2

dξL−3

= t/L3,

g =
∂W

∂G
= θ +

∫ r

a

{
−G

2

ξ2
+

2
ξ
− 1
L2

}−1/2(
−G
ξ2

)
dξ = θ − f

(7.34)
G = Θ, so G is angular momentum. Solving for −1/2L2 in the expression for
R and using (7.33) yields H = −1/2L2 as is expected.

The first quantity in the definition of  is zero by the definition of a and
the integral in the second quantity is just time, t. So  = −t/L3 where t is
measured from perigee, so , is measured from perigee also. Recall that to
change independent variable from t (time) to f (true anomaly) in the solution
of the Kepler problem we set df = (Θ/r2)dt = (G/r2)dt. Thus because dt =
(−G2/ξ2 + 2/ξ − 1/L2)−1/2dξ the integrand in the definition of g is just
df , and the integral gives the true anomaly, f , measured from perigee. Thus
g = θ − f is the argument of the perigee.

 is known as the mean anomaly and it is an angular variable in that it is
defined modulo 2π, but it is not measured in radians as is true anomaly f .
Radian measure of an angle is the ratio of the arc length subtended by the
angle to the circumference of the circle normalized by 2π. Because the time
derivative of  is constant it measures the area swept out by Kepler’s second
law. Thus a definition of the measure of  is the ratio of the area sector swept
to the total area normalized by 2π. That is,

 = 2π
area of sector swept out from perigee

area of ellipse
.

See Figure 7.3.
One says that the Kepler problem is solved, but that is true only up to

a certain point. From the initial conditions one can easily compute the orbit
of the solution, but not where the particle is on that orbit as a function of
time. What if you ask the station master, “Where is the train?” and all he
says is, “It’s on this track.” Refer to any classical text on celestial mechanics
for a discussion of the relations between true anomaly f and mean anomoly
.
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Figure 7.3. Delaunay angles.

7.7.2 Planar Poincaré Elements

The argument of the perihelion is clearly undefined for circular orbits; so,
Delaunay elements are not valid coordinates in a neighborhood of the circular
orbits. To overcome this problem Poincaré introduced what he called Kepler
variables but which have become known as Poincaré elements. Make the
symplectic change of variables from the Delaunay variables (, g, L,G) to the
Poincare variables (Q1, Q2, P1, P2) by

Q1 = + g, Q2 = [2(L−G)]1/2 cos ,

P1 = L, P2 = [2(L−G)]1/2 sin .

The Hamiltonian of the Kepler problem (2.24) becomes

H =
1
2
(X2 + Y 2)− 1

(x2 + y2)
= − 1

2P 2
1

,

and the Hamiltonian of the Kepler problem in rotating coordinates becomes

H =
1
2
(X2 + Y 2)− (xY − yX)− 1

(x2 + y2)
= − 1

2P 2
1

− P1 +
1
2
(Q2

2 + P 2
2 ).

Q1 is an angular coordinate defined modulo 2π, and the remaining coor-
dinates Q2, P1, and are rectangular variables. Q2 = P2 = 0 correspond to the
circular orbits of the 2-body problem. Even though these new coordinates are
defined from the Delaunay elements, which are not defined on the circular
orbits, it can be shown that these are valid coordinates in a neighborhood of
the direct circular orbits. There is a similar set for the retrograde orbits.
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7.7.3 Spatial Delaunay Elements

We change from spherical coordinates (ρ, θ, φ, P,Θ, Φ) to Delaunay elements
(, g, k, L,G,K) where the first three variables are angles defined mod2π.
Consider the generating function

W (ρ, θ, φ, L,G,K) = θK +
∫ φ

π/2

{
G2 − K2

sin2 ζ

}1/2

dζ+

∫ ρ

a

{
−G

2

ξ2
+

2
ξ
− 1
L2

}1/2

dξ,

(7.35)

where a = a(L,G) = L[l − (L2 −G2)]. The change of coordinates is

P =
∂W

∂ρ
=
{
−G

2

ρ2
+

2
ρ
− 1
L2

}1/2

Θ =
∂W

∂θ
= K

Φ =
∂W

∂φ
=
{
G2 − K2

sin2 φ

}1/2

 =
∂W

∂L
=
∫ r

a

{
−G

2

ξ2
+

2
ξ
− 1
L2

}−1/2

dξL−3 = −t/L3

g =
∂W

∂G
= −

∫ φ

π/2

{
G2 − K2

sin2 ζ

}−1/2

Gdζ

−
∫ r

a

{
−G

2

ξ2
+

2
ξ
− 1
L2

}−1/2(
G

ξ2

)
dξ

= σ − f

k =
∂W

∂K
= θ −

∫ φ

π/2

{
G2 − K2

sin2 ζ

}−1/2(
K

sin2 ζ

)
dζ = Ω.

(7.36)

Because Θ = K, K is the z-component of angular momentum, the expres-
sion for Φ gives that G is the magnitude of total angular momentum, and the
expression for P ensures that H = −1/2L2.  = −t/L3 where t is measured
from perigee, and so  is the mean anomaly. The integral in the definition of
k is the first integral in (7.28), so k = θ − (θ − Ω) = Ω the longitude of the
node.
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The first integral in the formula for g is integrated as follows.

∫ φ

π/2

{
G2 − K2

sin2 ζ

}−1/2

Gdζ =
∫ φ

π/2

{
1− cos2 i

sin2 ζ

}−1/2

dζ

=
∫ φ

π/2

sin ζdζ√
sin2 ζ − cos2 i

= −
∫ cos φ

0

du√
1− u2 − cos2 i

, (u = cos ζ)

= −
∫ cos φ

0

du√
sin2 i− u2

= − sin−1

(
cosφ
sin i

)

= −σ.

Therefore,

sinσ =
sin(π/2− φ)

sin i
=

sinψ
sin i

.

The angle σ is defined by the spherical triangle with sides (arcs measured
in radians) θ, ψ = π/2− φ, σ, and spherical angle i. Recall the law of sines
for spherical triangles and see Figure 7.4.

Thus σ measures the position of the particle in the invariant plane. Be-
cause f is the true anomaly measured from the perigee in the invariant plane
g = σ − f is the argument of the perigee measured in the invariant plane.

7.8 Pulsating Coordinates

A generalization of rotating coordinates is pulsating coordinates. These are
coordinates that rotate and scale in with a solution of the Kepler problem.
These coordinates are the natural coordinates to use when discussing the
elliptic restricted 3-body problem.

Let us recall some basic formulas from the Kepler problem and its solution.
Let φ = (φ1, φ2) be any solution of the planar Kepler problem, r the length
of φ, and c its angular momentum, so that

φ̈ = − φ

‖φ‖3 , r =
√
φ2

1 + φ2
2, c = φ1φ̇2 − φ2φ̇1, (7.37)

where the independent variable is t, time, and ˙ = d/dt,¨= d2/dt2. Rule out
collinear solutions by assuming that c 
= 0 and then scale time so that c = 1.
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Figure 7.4. The definition of σ.

The units of distance and mass are chosen so that all other constants are 1.
In polar coordinates (r, θ), the equations become

r̈ − rθ̇2 = −1/r2, d(r2θ̇)/dt = dc/dt = rθ̇ + 2ṙθ̇ = 0. (7.38)

The fact that c = r2θ̇ = 1 is a constant of motion yields

r̈ − 1/r3 = −1/r2. (7.39)

Equation (7.39) is reduced to a harmonic oscillator u′′ + u = 1 by letting
u = 1/r and changing from time t to f the true anomaly of the Kepler
problem, by dt = r2df and ′ = d/df . The general solution is then

r = r(f) = 1/(1 + e cos(f − ω)), (7.40)

where e and ω are integration constants, e being the eccentricity and ω the
argument of the pericenter. When e = 0, the orbit is a circle, when 0 < e < 1,
an ellipse, when e = 1, a parabola, and when e > 1, a hyperbola. There is no
harm in assuming that the argument of the pericenter is zero, so henceforth
ω = 0.

Define a 2× 2 matrix by

A =

⎡
⎣
φ1 −φ2

φ2 φ1

⎤
⎦ , (7.41)

so A−1 = (1/r2)AT and A−T = (AT )−1 = (1/r2)A, where AT denotes the
transpose of A.
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Consider the planar 3-body problem in fixed rectangular coordinates (q, p)
given by the Hamiltonian

H = H3 =
3∑

i=1

‖pi‖2
2mi

− U(q), U(q) =
∑

1≤i<j≤3

mimj

‖qi − qj‖
. (7.42)

Pulsating coordinates are the symplectic coordinates defined below by
two symplectic coordinate changes. First, make the symplectic change of
coordinates

qi = AXi, pi = A−TYi = (1/r2)AYi for i = 1, 2, 3. (7.43)

Recall that if H(z) is a Hamiltonian and z = T (t)u is a linear symplectic
change of coordinates, then the Hamiltonian becomes H(u)+(1/2)uTW (t)u,
where W is the symmetric matrix W = JT−1Ṫ . Compute

W =
[

0 I
−I 0

] [
r−2AT 0

0 AT

] [
Ȧ 0
0 (r−2Ȧ− 2r−3ṙA)

]

=
[

0 −r−2(AT Ȧ)T

−r−2AT Ȧ 0

]
.

(7.44)

Recall that W is symmetric or use ATA = r2I to get the 1,2 position. Now

− r−2AT Ȧ = r−2

[
−rṙ 1
−1 −rṙ

]
. (7.45)

Note that ‖AX‖ = r‖X‖, so the Hamiltonian becomes

H =
1
r2

N∑
i=1

‖Yi‖2
2mi

− 1
r
U(X)− ṙ

r

N∑
i=1

XT
i Yi −

1
r2

N∑
i=1

XT
i JYi. (7.46)

Change the independent variable from time t to f the true anomaly of the
Kepler problem by dt = r2df, ′ = d/df, H → r2H so that

H =
N∑

i=1

‖Yi‖2
2mi

− rU(X)− r
′

r

N∑
i=1

XT
i Yi −

N∑
i=1

XT
i JYi. (7.47)

The second symplectic change of variables changes only the momentum by
letting

Xi = Qi, Yi = Pi + αiQi, (7.48)

where the αi = αi(f) are to be determined. This defines the pulsating coor-
dinates (Qi, Pi) for i = 1, . . . , N . To compute the remainder term, consider

Ri =
[

0 I
−I 0

] [
I 0

−αiI I

] [
0 0
α′

i 0

]
=
[
α′

i 0
0 0

]
. (7.49)
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Thus the remainder term is (1/2)
∑
α′

i(f)Q
T
i Qi and the Hamiltonian be-

comes

H =
N∑

i=1

‖Pi‖2
2mi

− rU(Q) +
(
αi

mi
− r

′

r

) N∑
i=1

QT
i Pi

−
N∑

i=1

QT
i JPi +

N∑
i=1

(
1
2
α′

i +
1
2
α2

i

mi
− r

′

r
αi

)
QT

i Qi.

(7.50)

Choose αi so that the third term on the right in (7.50) vanishes; i.e., take
αi = mir

′/r. To compute the coefficient of QT
i Qi in the last sum in (7.50),

note that

(
r′

r

)′
−
(
r′

r

)2

=
rr′′ − 2r(r′)2

r2
= r

d

df

(
r′

r2

)
= r

dṙ

df
= r3r̈ = 1− r, (7.51)

where the last equality comes from the formula (7.39). Thus the Hamiltonian
of the N -body problem in pulsating coordinates is

H =
N∑

i=1

‖Pi‖2
2mi

− rU(Q)−
N∑

i=1

QT
i JPi +

(1− r)
2

N∑
i=1

miQ
T
i Qi, (7.52)

and the equations of motion are

Q′
i =

Pi

mi
− JQi,

P ′
i = r

∂U

∂Qi
− JPi − (1− r)miQi.

(7.53)

These are particularly simple equations considering the complexity of the
coordinate change.

7.8.1 The elliptic restricted 3-body problem

Consider the 3-body problem in pulsating coordinates but index from 0 to
2. Recall that a central configuration of the 3-body problem is a solution
(Q0, Q1, Q2) of the system of nonlinear algebraic equations

∂U

∂Qi
+ λmiQi = 0 for i = 0, 1, 2 (7.54)

for some scalar λ. By scaling the distance, λmay be taken as 1. Thus a central
configuration is a geometric configuration of the three particles so that the
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force on the ith particle is proportional to mi times the position. This is
the usual definition of a central configuration. Define a relative equilibrium
as a critical point of the Hamiltonian of the N -body problem in pulsating
coordinates. This is slightly different from the usual definition of a relative
equilibrium.

Lemma 7.8.1. The relative equilibria are central configurations.

Proof. The critical points of (7.52) satisfy

∂H

∂Qi
= −r ∂U

∂Qi
+ JPi + (1− r)miQi = 0,

∂H

∂Pi
=
Pi

mi
− JQi = 0.

From the second equation Pi = miJQi. Plugging this into the first equation
gives

−r∂U/∂Qi −miQi + (1− r)miQi = −r {∂U/∂Qi +miQi} = 0.

Because r is positive, this equation is satisfied if and only if ∂U/∂Qi+miQi =
0.

Let H3 and U3 be the Hamiltonian and self-potential of the 3-body prob-
lem written in pulsating coordinates. Consider also the 2-body problem with
particles indexed from 1 to 2 with H2 and U2 the Hamiltonian and self-
potential of the 2-body problem written in pulsating coordinates. We have

H3 =
2∑

i=0

‖Pi‖2
mi

− rU2(Q)−
2∑

i=0

QT
i JPi +

(1− r)
2

N∑
i=0

miQ
T
i Qi

=
‖P0‖2
2m0

− r
N∑

j=1

m0mj

‖Q0 −Qj‖
−QT

0 JP0 +
(1− r)

2
m0Q

T
0Q0 +H2.

(7.55)

Assume that one mass is small by setting m0 = ε2. The zeroth body is known
as the infinitesimal and the other two bodies are known as the primaries. Let
Z be the coordinate vector for the 2-body problem, so Z = (Q1, Q2, P1, P2),
and let Z∗ = (a1, a2, b1, b2) be any central configuration for the 2-body prob-
lem. By Lemma 7.8.1, ∇H2(Z∗) = 0. The Taylor expansion for H2 is

H2(Z) = H2(Z∗) +
1
2
(Z − Z∗)TS(f)(Z − Z∗) + · · · ,

where S(f) is the Hessian of HN at Z∗. Forget the constant term H(Z∗).
Change coordinates by
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Q0 = ξ, P0 = ε2η, Z − Z∗ = εV. (7.56)

This is a symplectic transformation with multiplier ε−2. Making this change
of coordinates in (7.55) yields

H3 = R+
1
2
V TS(f)V +O(ε), (7.57)

where R is the Hamiltonian of the conic (i.e., circular, elliptic, etc.) restricted
3-body problem given by

R =
1
2
‖η‖2 − r

N∑
i=1

mi

‖ξ − ai‖
− ξTJη +

(1− r)
2

ξT ξ. (7.58)

To the zeroth order, the equations of motion are

ξ′ = η + Jξ,

η′ = −r
N∑

i=1

mi(ξ − ai)
‖ξ − ai‖3

+ Jη − (1− r)ξ,
(7.59)

V ′ = D(f)V, D(f) = JS(f). (7.60)

The equations in (7.59) are the equations of the conic restricted problem
and those in (7.60) are the linearized equations of motion about the relative
equilibrium.

When e = 0, Equations (7.59) and (7.60) are time-independent and (7.58)
is the Hamiltonian of the circular restricted 3-body problem. When 0 < e < 1,
Equations (7.59) and (7.60) are 2π-periodic in f and (7.58) is the Hamiltonian
of the elliptic restricted 3-body problem.

In the classical elliptic restricted 3-body problem the masses of the pri-
maries are m1 = 1 − μ > 0,m2 = μ > 0, and they are located at
a1 = (−μ, 0), a2 = (1 − μ, 0). The parameter μ is called the mass ratio
parameter. Thus the Hamiltonian of the classical elliptic 3-body problem is

R =
1
2
‖η‖2 − r

(
1− μ
d1

+
μ

d2

)
− ξTJη +

(1− r)
2

ξT ξ, (7.61)

where

d1 = {(ξ1 + μ)2 + ξ22}1/2, d2 = {(ξ1 − 1 + μ)2 + ξ22}1/2,

r = r(f) = 1/(1 + e cos f), 0 < e < 1.
(7.62)
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Problems

1. Write the functions r2k, r2k+5 cos 5θ, and r2k+5 sin 5θ in rectangular co-
ordinates. Sketch the level curves of r2 + r5 cos 5θ.

2. In Section 7.4.1, the equations for the Kepler problem were written in
polar coordinates. Because angular momentum, Θ, is a constant set Θ =
c, investigate the equation for r, r̈ = Ṙ = −c2/r3 +μ/r2, using geometric
methods.

3. In Section 7.6.1 the three integrals E1, E2, A of the regularized Kepler
problem were given. Compute the total algebra of integrals of the regu-
larized Kepler problem.



8. Geometric Theory

This chapter gives an introduction to the geometric theory of autonomous
Hamiltonian systems by studying some local questions about the nature of the
solutions in a neighborhood of a point or a periodic solution. The dependences
of periodic solutions on parameters are also presented in the case when no
drastic changes occur; i.e., when there are no bifurcations. Bifurcations are
addressed in Chapter 11. Several applications to the 3-body problem are
given. The chapter ends with a brief introduction to hyperbolic objects and
homoclinic phenomena.

The geometric theory of Hamiltonian systems is vast and far from com-
plete. Some of the basic definitions and results from the theory of dynami-
cal systems are given to put the topic in context. In most cases, the back-
ground theory for ordinary (non-Hamiltonian) equations is given first. The
non-Hamiltonian theory is fairly well documented in the literature, there-
fore the more lengthy proofs are given by referral. See, for example, Chicone
(1999).

8.1 Introduction to Dynamical Systems

Consider an autonomous system of ordinary differential equations of the form

ẋ = f(x), (8.1)

where f : O → R
m is smooth and O is an open set in R

m. Let ψ(t) be
a solution of (8.1) defined for t ∈ (α, ω). A geometric representation of a
solution (for a nonautonomous as well as an autonomous system) is the graph
of ψ, {(t, ψ(t)) : t ∈ (α, ω)}, in O × (α, ω) ⊂ R

m+1, position–time space. See
Figure 8.1. The fundamental existence and uniqueness theorem for differential
equations asserts that there is one and only one solution through a point
ξ ∈ O when t = t0; so, there is one and only one graph of a solution through
a point (ξ, t0) ∈ O × R.

Because (8.1) is independent of any t, the translate of a solution, ψ(t−τ),
is a solution also. (There is no clock for an autonomous equation and so no
initial epoch.) If one thinks of ψ as a curve in O ⊂ R

m, then all translates of
the solution ψ give the same curve in R

m. The parameterized curve ψ(t) in

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 8,
c© Springer Science+Business Media, LLC 2009
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Figure 8.1. Solutions and orbits of ẋ = −x.

R
n is called a trajectory, and the oriented but unparameterized curve ψ(t)

is called an orbit. An orbit is the set {ψ(t) : t ∈ (α, ω)} with the orientation
coming from the orientation of (α, ω) in R, and a trajectory is the map
ψ : (α, ω) → R. In dynamical systems, the geometry of the trajectories/orbits
in R

m is the object of study.
If ψi(t), i = 1, 2, are two solutions with ψ1(t1) = ψ2(t2), then χ(t) =

ψ2(t − t1 + t2) is also a solution of (8.1) with χ(t1) = ψ2(t2) = ψ1(t1); so,
by the uniqueness theorem for differential equations, χ(t) = ψ2(t− t1 + t2) ≡
ψ1(t). So if two solutions meet, they are simply time translates of each other
and have the same orbit in O. Thus orbits never cross in O.

Let φ(t, ξ) denote the general solution of (8.1) that is the maximal solution
of (8.1) which satisfies φ(0, ξ) = ξ for ξ ∈ O.

Lemma 8.1.1. If t and τ are such that φ(τ, ξ) and φ(t + τ, ξ) are defined,
then

φ(t, φ(τ, ξ)) = φ(t+ τ, ξ). (8.2)

Proof. Both sides of (8.2) are solutions of (8.1) and are equal to φ(τ, ξ) when
t = 0. Thus by the uniqueness theorem for differential equations, they are
equal where defined.

Lemma 8.1.2. Let ξ0 ∈ O be an equilibrium point; so, f(ξ0) = 0. If
φ(t, ξ′) → ξ0 as t → t′+ (respectively, t → t′−) and ξ′ 
= ξ0, then t′ = +∞
(respectively, t′ = −∞.) It takes an infinite amount of time to come to rest!

Proof. Assume not, so t′ is finite. Then η(t) ≡ ξ0 is one solution through ξ0
at time t′ and so is ψ(t), where ψ(t) = φ(t, ξ′) for t < t′ and ψ(t) = ξ0 for
t ≥ t′. But this contradicts the uniqueness theorem for differential equations.

Let g : O → R be smooth and positive, then a reparameterization of the
solutions of (8.1) is defined by
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dt = g(x)dτ, (8.3)

and if ′ = d/dτ , then Equation (8.1) becomes

x′ = f(x)g(x). (8.4)

The solution curves of (8.1) and (8.2) are the same, only their parameteriza-
tions are different.

Lemma 8.1.3. There exists a reparameterization of (8.1) such that all so-
lutions are defined for all t.

Proof. We only prove this theorem when O = R
m. Let g(x) = 1/(1+‖f(x)‖).

The equation x′ = f(x)g(x) = h(x) satisfies ‖h(x)‖ ≤ 1 for all x. A solution
ψ(t) is either defined for all time or tends to ∞ in finite-time. But ‖ψ(t)‖ ≤ 1
implies ‖ψ(t)‖ ≤ ‖ψ(0)‖+ t; so, ψ must be defined for all t.

In the general case when O 
= R
m, one can construct a smooth function

g : O → R such that g(x) → 0 and f(x)g(x) → 0 as x→ ∂O where ∂O is the
boundary ofO. By the above argument, the solutions of x′ = h(x) = f(x)g(x)
will be defined for all t. By defining h(x) = 0 for x 
∈ O, the equations and
solutions would be defined for all x ∈ R

m also.
Assume that the function f(x) in (8.1) is defined and smooth on all of O

and that all the solutions of (8.1) are defined for all t ∈ R. By the discussion
given above, these assumptions are always valid after a reparameterization,
so these assumptions do not limit the discussion of the geometry of the orbits.
Let φ(t, ξ) be the solution of (8.1) that satisfies φ(0, ξ) = ξ and define φt(ξ) =
φ(t, ξ). By this definition and Lemma 8.1.1, the family {φt} satisfies

φ0 = id = the identity map on O, (8.5)
φt ◦ φτ = φt+τ .

This implies φt has an inverse φ−t and so φt is a homeomorphism for all t. Any
family of smooth mappings satisfying (8.5) defines a dynamical system or a
flow on O. If (8.1) is a Hamiltonian system of equations, then φt is symplectic
for all t by Theorem 6.1.2. In this case, the family of smooth maps φt defines
a Hamiltonian dynamical system or a Hamiltonian flow. Sometimes the name
dynamical system is used even if the solutions are not defined for all t.

A trajectory φt(ξ0) = φ(t, ξ0) is periodic if there is a T 
= 0 such that
φ(t+T, ξ0) = φ(t, ξ0) for all t ∈ R. The number T is called a period, and the
least positive T is called the period.

Two dynamical systems φt : O → O and ψt : Q → Q are (topologically)
equivalent if there is a homeomorphism h : O → Q that carries orbits of φt

onto orbits of ψt and vice versa. Usually it is required to preserve the sense or
orientation of the orbits also. Thus two dynamical systems are equivalent if
the geometry of their orbits is the same, but the timing may not be the same.
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The homeomorphism will take equilibrium points to equilibrium points and
periodic orbits to periodic orbits. The dynamical systems defined by the two
harmonic oscillators ẋ = ωiy, ẏ = −ωix, i = 1, 2 ω1 > ω2 > 0 are equivalent,
because the identity map takes orbits to orbits, but because their periods
are in general unequal, they would not be equivalent if the parameterization
were required to be preserved.

Lemma 8.1.4. φt(ξ0) is periodic with period T if and only if φT (ξ0) = ξ0.

Proof. If φt(ξ0) is periodic, then set t = 0 in φ(t + T, ξ0) = φ(t, ξ0) to get
φ(T, ξ0) = φ(0, ξ0) = ξ0. If φT (ξ0) = ξ0, then apply φt to both sides and
apply (8.5) to get φ(t+ T, ξ0) = φt ◦ φT (ξ0) = φt(ξ0) = φ(t, ξ0).

An invariant set is a subset Q ⊂ O such that if ξ ∈ Q, then φ(t, ξ) ∈ Q
for all t. That is an invariant set is a union of orbits.

A linear equation ẋ = Ax, A a constant m ×m matrix, defines a linear
dynamical system ψt(x) = eAtx on R

m. If A is a Hamiltonian matrix, then
the map is a symplectomorphism. The origin is an equilibrium point. If x0 =
u0 + iv0 is an eigenvector corresponding to a pure eigenvalue λ = iω, ω 
= 0,
then eAtu is a 2π/ω periodic solution. In fact, the two-dimensional real linear
space span {u, v} is filled with 2π/ω periodic solutions.

If none of the eigenvalues of the matrix A are pure imaginary, then the
matrix A is called hyperbolic, and the equilibrium point at the origin is
called hyperbolic also. If all the eigenvalues of A have real parts less (greater)
than zero, then the eAtx → 0 as t → +∞ (respectively as t → −∞) for
all x. Neither of these cases happens for a Hamiltonian matrix A because
the eigenvalues of a Hamiltonian matrix are symmetric with respect to the
imaginary axis. If A has k eigenvalues with negative real parts and m −
k eigenvalues with positive real parts, then by the Jordan canonical form
theorem there is a nonsingular m ×m matrix P such that P−1AP = A′ =
diag(B,C), where B is a k × k matrix with eigenvalues with negative real
parts, and C is an (m− k)× (m− k) matrix with eigenvalues with positive
real parts. The matrix P can be thought of as the matrix of a change of
variables, so that in the new variables, A has the form A′ = diag(B,C). Thus
in this case A preserves the splitting R

m = R
k × R

m−k; i.e., the coordinate
planes R

k × {0} and {0} × R
m−k are invariant sets. If x ∈ R

k × {0}, then
eA

′tx → 0 as t → +∞, and if x ∈ {0} × R
m−k, then eA

′tx → 0 as t → −∞.
Figure 8.2a indicates the orbit structure for the hyperbolic, symplectic matrix
A′ = diag(−1,+1).

If all the eigenvalues of the matrix A are pure imaginary and A is simple
(diagonalizable), then A is called elliptic, and the equilibrium point at the ori-
gin is called elliptic. By the Jordan canonical form theorem, there is a nonsin-
gular, m×m matrix P such that P−1AP = A′ = diag(ω1J, . . . , ωkJ, 0, . . . , 0)
where J is the 2× 2 matrix

J =
[

0 1
−1 0

]
.
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Then eA
′t = diag(R(ω1t), . . . ,R(ωkt), 1, . . . , 1), where R(θ) is the rotation

matrix

R(θ) =
[

cos θ sin θ
− sin θ cos θ

]
.

Figure 8.2b indicates the orbit structure for the elliptic, symplectic matrix
R(θ).

(a) hyperbolic (b) elliptic

Figure 8.2. Linear dynamical systems.

If p is an equilibrium point for the nonlinear equation (8.1), then the
equation ẋ = Ax, where A = Df(p) = ∂f(p)/∂x, is called the linearization
of (8.1) at p. The equilibrium point p is called hyperbolic or elliptic as matrix
A is called.

A famous theorem of Hartman (1964) says that the flow near a hyperbolic
equilibrium point is equivalent to a linear flow. That is, if p is a hyperbolic
equilibrium for (8.1), then there are neighborhoods O of p and Q of the
0 ∈ R

m and a homeomorphism h : O → Q such that h maps orbits of (8.1)
onto orbits of ẋ = Ax. No such theorem is true for elliptic equilibrium points.

8.2 Discrete Dynamical Systems

Closely related to differential equations are diffeomorphisms that define dis-
crete dynamical systems. Because discrete dynamical systems are first intro-
duced in this section, several examples are given.

8.2.1 Diffeomorphisms and Symplectomorphisms

A map ψ : O → R
m,O open in R

m, is a diffeomorphism if ψ is differentiable
and has a differentiable inverse. In particular a diffeomorphism is a homeo-
morphism of O onto ψ(O). In many cases it is required that ψ take O into
O, ψ(O) = O, in which case ψ is said to be a diffeomorphism of O. Let k be a
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positive integer, and let ψk = ψ ◦ψ ◦ . . . ◦ψ, k times, be the kth composition
of ψ with itself. So ψ1 = ψ. Define ψ0 = id, the identity map (id(x) = x) and
ψ−k = ψ−1 ◦ ψ−1 ◦ · · · ◦ ψ−1, k times, be the kth composition of ψ−1, the
inverse of ψ. If ψ is a diffeomorphism of O, then ψk is defined for all k and is
a diffeomorphism of O for all k. In general ψk may be defined for some k and
on only a part of O. In either case, it is easy to verify that ψk+s = ψk ◦ ψs

whenever the two sides are defined. If ψ is a symplectic diffeomorphism, then
ψ is called a symplectomorphism.

A discrete dynamical system is simply a diffeomorphism ψ of a set O. A
discrete Hamiltonian dynamical system is simply a symplectomorphism of a
set O. If we let Z be the integers and Ψ(k, ξ) = ψk(ξ), then Ψ : Z×R

m → R
m

is analogous to the general solution of a differential equation. In fact Ψ(k, ξ)
is the general solution of the difference equation x(k+1) = ψ(x(k)), x(0) = ξ.

The set {ψn(p) : −∞ < n < +∞} is called the orbit of the point p. A
point p ∈ O such that ψ(p) = p is called a fixed point (of ψ), and a point
p ∈ O such that ψk(p) = p, for some positive integer k, is called a periodic
point (of ψ), and k is called a period. The least positive integer k such that
ψk(p) = p is called the period.

Two discrete dynamical systems φ : O → O and ψ : Q → Q are (topolog-
ically) equivalent if there is a homeomorphism h : O → Q that carries orbits
of φ onto orbits of ψ and vice versa. This is the same as h ◦ φ = ψ ◦ h.

A nonsingular linear map x → Ax, A a constant m ×m matrix, defines
a discrete dynamical system ψ(x) = Ax on R

m. If A is a symplectic matrix,
then the map is a symplectomorphism. The origin is a fixed point. If x0 is
an eigenvector corresponding to an eigenvalue λ which is a kth root of unity,
λk = 1, then x0 is a period point of period k, because Akx0 = λkx0 = x0.

If none of the eigenvalues of the matrix A have modulus 1, then the matrix
A is called hyperbolic, and the fixed point at the origin is called hyperbolic
also. If all the eigenvalues of A have modulus less (respectively, greater) than
one, then Anx→ 0 as n→ +∞ (respectively, as n→ −∞) for all x. Neither
of these cases happens for a symplectic matrix A. If A has k eigenvalues with
modulus less than 1 and m − k eigenvalues with modulus greater than 1,
then by the Jordan canonical form theorem, there is a nonsingular, m ×m
matrix P such that P−1AP = A = diag(B,C), where B is a k×k matrix with
eigenvalues of modulus less than 1, and C is an (m−k)×(m−k) matrix with
eigenvalues of modulus greater than 1. The matrix P can be thought of as the
matrix of a change of variables, so that in the new variables, A has the form
A = diag(B,C). Thus in this case, A preserves the splitting R

m = R
k×R

m−k;
i.e., A carries the coordinate plane R

k × {0} into itself and the coordinate
plane {0} × R

m−k into itself. If x ∈ R
k × {0}, then Anx → 0 as n → +∞

and if x ∈ {0}×R
m−k, then Anx→ 0 as n→ −∞. Figure 8.2a indicates the

orbit structure for the hyperbolic, symplectic matrix A = diag(1/2, 2), but
now remember that an orbit is a sequence of discrete points not a continuous
curve.
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If all the eigenvalues of the matrix A have modulus 1 and A is diago-
nalizable, then A is called elliptic and the fixed point at the origin is called
elliptic. By the Jordan canonical form theorem there, is a nonsingular, m×m
matrix P such that P−1AP = A = diag(R(θ1), . . . ,R(θk),±1, . . . ,±1) where
R(θ) is the rotation matrix

R(θ) =
[

cos θ sin θ
− sin θ cos θ

]

or the reflection matrix

R(θ) =
[

cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

A is the direct sum of rotations and reflections. Figure 8.2b indicates the
orbit structure for the elliptic, symplectic matrix R(θ), but now remember
that an orbit is a sequence of discrete points not a continuous curve.

If ψ is a general nonlinear diffeomorphism with fixed point p (respectively,
periodic point p of period k), then p is called hyperbolic or elliptic as matrix
Dψ(p) (respectively, Dψk(p)) is called.

A famous theorem of Hartman (1964) says that near a hyperbolic fixed
point, a diffeomorphism is equivalent to its linear part. That is, if p is a
hyperbolic point for ψ, then there are neighborhoods O of p and Q of the
0 ∈ R

m and a homeomorphism h : O → Q such that h maps orbits of ψ onto
orbits of x→ Ax. No such theorem is true for elliptic fixed points.

8.2.2 The Henon Map

The Henon map is the quadratic map of R
2 into itself defined by H : (x, y) →

(x′, y′), where

x′ = α− y − x2, x = y′,

y′ = x, y = α− x′ + y′2,
(8.6)

and α is simply a parameter. The map is one-to-one and onto because its
inverse is a quadratic map also. The Jacobian of this map is clearly +1, so the
map is area-preserving, and (8.6) defines a discrete Hamiltonian dynamical
system.

The Henon map has fixed points at
(
1±

√
1− α), 1±

√
1− α

)
. The one

at
(
1 +

√
1− α, 1 +

√
1− α

)
is hyperbolic for all α < 1, and the one at(

1−
√

1− α, 1−
√

1− α
)

is elliptic for 0 < α < 1 and hyperbolic for α < 0.
The Henon map has been extensively studied by computer simulation.
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8.2.3 The Time τ Map

If φ(t, ξ) is the general solution of the autonomous differential equation ẋ =
f(x), then for a fixed τ the map ψ : ξ → φ(τ, ξ) is a diffeomorphism because
its inverse is ψ−1 : ξ → φ(−τ, ξ). It is called the time τ map. If the differential
equation is Hamiltonian, then ψ is a symplectomorphism.

Let p be a fixed point of ψ, ψ(p) = φ(τ, p) = p. Then by Lemma 8.1.4
p is an initial condition for a periodic solution of period τ . In a like manner
a periodic point of period k is an initial condition for a periodic solution of
period kτ . This example is somewhat artificial because the choice of τ was
arbitrary. There is no clock in an autonomous system.

The harmonic oscillator q̇ = ∂H/∂ṗ = ωp, p = −∂H/∂q = −ωq, H =
(ω/2)(q2 + p2) defines the discrete Hamiltonian system

[
q
p

]
→
[

cosωτ sinωτ
− sinωτ cosωτ

] [
q
p

]
, (8.7)

a rotation of the plane by an angle ωτ . The origin is an elliptic fixed point
for this system.

8.2.4 The Period Map

Consider a periodic differential equation

ẋ = f(t, x), f(t+ τ, x) ≡ f(t, x), τ > 0. (8.8)

Let φ(t, ξ) be the general solution; so, φ(0, ξ) = ξ. The mapping ψ : ξ →
φ(τ, ξ) is called the period map (sometimes the Poincaré map). If Equation
(8.8) is defined for all x ∈ R

m and the solutions for all t, 0 ≤ t ≤ τ , then ψ
defines a discrete dynamical system; and if the equation is Hamiltonian, then
ψ defines a discrete Hamiltonian system. By the same argument as above, a
fixed point of ψ is the initial condition of a periodic solution of period τ , and
a periodic point of period k is the initial condition of a periodic solution of
period kτ .

A natural question to ask is whether all diffeomorphisms and symplec-
tomorphisms are time τ -maps of autonomous equations or period maps of
periodic systems. Later we show that time τ -maps are much simpler than
general diffeomorphisms but that period maps are essentially the same as
diffeomorphisms.

A diffeomorphism ψ : R
m → R

m is isotopic to the identity through dif-
feomorphisms if there exists a smooth function Φ : [0, τ ] × R

m → R
m such

that for each t ∈ [0, τ ] the map Φ(t, ·) : R
m → R

m is a diffeomorphism and
Φ(0, ξ) ≡ ξ and Φ(τ, ξ) ≡ ψ(ξ) for all ξ ∈ R

m. There is a similar definition
where diffeomorphism and m are replaced by symplectomorphism and 2n
throughout. The period map ψ(ξ) = φ(τ, ξ) of a periodic system is clearly
isotopic to the identity through diffeomorphisms. In fact:
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Theorem 8.2.1. A necessary and sufficient condition for a diffeomorphism
ψ : R

m → R
m to be isotopic to the identity through diffeomorphisms is that

ψ is the period map of a periodic system of the form (8.8). Also if ψ is
isotopic to the identity through symplectomorphisms, then Equation (8.8) is
Hamiltonian.

Proof. First a little trickery with smooth functions. The function α defined
by α(t) = 0 for t ≤ 0 and α(t) = exp(−1/t) for t > 0 is a smooth function. (It
is an easy argument to show that the right and left derivatives of α are zero
at t = 0 by l’Hôpital’s rule.) The function β(t) = α(t − τ/3)/(α(t − τ/3) +
α(2τ/3− t)) is smooth, and β(t) ≡ 0 for t ≤ τ/3, and β(t) ≡ 1 for t ≥ 2τ/3.

Let Φ : [0, τ ] × R
m → R

m be the isotopy. Define Ξ(t, ξ) = Φ(β(t), ξ); so,
Ξ(t, ·) is the identity map for 0 ≤ t ≤ τ/3 and is the diffeomorphism ψ for
2τ/3 ≤ t ≤ τ . Let X(t, η) be the inverse of Ξ(t, ξ); so, X(t, Ξ(t, ξ)) ≡ ξ. Now

∂Ξ

∂t
(t, ξ) =

∂Ξ

∂t
(t,X(t, Ξ(t, ξ))) = F (t, Ξ(t, ξ)),

where
F (t, x) =

∂Ξ

∂t
(t,X(t, x)).

So Ξ(t, ξ) is the general solution of ẋ = F (t, x). Because Ξ is constant in t
for 0 ≤ t ≤ τ/3 and 2τ/3 ≤ t ≤ τ , F is identically zero for 0 ≤ t ≤ τ/3 and
2τ/3 ≤ t ≤ τ . Therefore, the τ−periodic extension of F is smooth. Thus Ξ is
the general solution of a τ−periodic system, and ψ is a period map because
ψ(ξ) = Ξ(τ, ξ). If Φ is symplectic, then F is Hamiltonian by Theorem 6.1.2.

For example, let ψ(x) = Ax + g(x), where g(0) = ∂g(0)/∂x = 0; so, the
origin is a fixed point. If A has a logarithm, so A = expB, then Φ(t, x) =
exp(Bt) + tg(x) is an isotopy through diffeomorphisms near the origin.

For a symplectic map you must be a little more careful. First, if ψ′(x) =
x+ g′(x), where g′(0) = ∂g′(0)/∂x = 0, then by Theorem 6.2.1, ψ : (q, p) →
(Q,P ), where q = ∂S(p,Q)/∂p, P = ∂S(p,Q)/∂Q, S(p,Q) = pTQ+ s(p,Q),
where s is second order at the origin. Then S(t, p,Q) = pTQ+ ts(p,Q) gen-
erates an isotopy to the identity through symplectomorphisms for ψ, Φ′(t, x);
(i.e., Φ(1, ·) = ψ and Φ(0, ·) = identity). Now if ψ(x) = Ax + g(x) write
ψ(x) = A(x+ g′(x)), and an isotopy for ψ is Φ(t, x) = exp(Bt)Φ′(t, x), where
B is a Hamiltonian logarithm of A.

8.2.5 The Convex Billiards Table

Let Γ be a smooth, closed, convex curve in the plane. Imagine a point moving
in the interior of Γ like a billiard ball on a table with boundary Γ . In the
interior, the point moves on a straight line and is reflected off the boundary
by Snell’s law of reflection: the angle of incidence is equal to the angle of
reflection. Let the curve Γ be parameterized by arc length s measured from
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a fixed point on the curve in the counterclockwise direction. Because the
curve is closed, the parameter s can be considered as an angle. A contact
of the moving point (the billiard ball) with the boundary curve Γ can be
coordinatized by s, the point of contact, and α, the angle of incidence. The
angle of incidence α is measured by the sign convention shown in Figure 8.4;
so, 0 < α < π. Thus the contacts are parameterized by the points (s, α) in
the annulus A = Γ × (0, π). Define a map B : A → A that takes a contact
(s, α) to the next contact (s′, α′) as shown in Figure 8.4. Let  be the length of
the path of the moving point between successive contacts (s, α) and (s′, α′).
Then d = cosα ds− cosα′ ds′. Because d2 = 0, sinαdα∧ ds = sinα′α∧ ds′
or dc∧ ds = dc′ ∧ ds′, where c = cosα and c′ = cosα′. Thus if we use the arc
length s and the cosine of the angle of incidence, c = cosα, as coordinates,
the billiards map B is area-preserving and defines a discrete Hamiltonian
system on the annulus Γ × (−1, 1). A periodic point of this map corresponds
to a closed path of the billiard ball.

Figure 8.3. The billiard table.

8.2.6 A Linear Crystal Model

The following mechanical system was suggested as a model for a one-
dimensional crystal. Consider an infinite wire bent into the shape of the
sine curve {(x, y) ∈ R

2 : y = (k/2π) sin(2πx)}, where k > 0 is simply a
parameter. The wire is placed parallel to the ground, the x−axis, so that
the force of gravity acts in the negative y−direction as shown in Figure 8.4.
On this wire there are a countable number of beads (atoms) that can slide
freely without friction, but each is subjected to the force of gravity and a
linear attractive force to its nearest neighbors. The attractive force is not
proportional to the distance between the beads, but to the projection of the
distance on the x−axis. The problem is to find the equilibrium states of the
system.

Let (xi, yi), yi = (k/2π) sin(2πxi) be the position of the ith bead, and
so the sequence {xi}∞−∞ represents the state of the system. The physical
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Figure 8.4. Crystal model.

assumptions imply that the total force on the ith bead, fi, is

fi = (xi−1 − xi) + (xi+1 − xi) + k cos(2πxi). (8.9)

The three terms in (8.9) are the forces on the ith bead due to the bead on
the left, the bead on the right, and the force due to gravity, in that order. At
an equilibrium state fi+1 = fi or

(xi − xi+1) + (xi+2 − xi+1) + k cos(2πxi+1) (8.10)
= (xi−1 − xi) + (xi+1 − xi) + k cos(2πxi).

Define the local energy or generating function by

h(xi, xi+1) =
1
2
(xi+1 − xi) +

k

2π
sin(2πxi) (8.11)

and the total energy by the formal sum

H =
∞∑
−∞

h(xi, xi+1). (8.12)

The formal condition for a critical point of H, ∇H = 0, gives

−D1h(xi, xi+1) +D2h(xi−1, xi) = 0, (8.13)
−(xi+1 − xi)− k cos(2πxi) + (xi − xi−1) = 0,

for all i. Here, and below, Di, i = 1, 2 denotes the partial derivative with
respect to the ith argument. Subtracting one of the equations in (8.13) from
the next gives (8.10). So a formal solution of ∇H = 0 is an equilibrium state.
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Consider h as a generating function defining an area-preserving mapping
(see Theorem 6.2.1) T : R× R → R× R : (x, y) → (x′, y′), where

y = −D1h(x, x′), (8.14)
y′ = D2h(x, x′).

From the form of h, it follows that if T (x, y) = (x′, y′), then T (x + 1, y) =
(x′ + 1, y′) and vice versa. So T is well defined when the first argument is
defined modulo 1, or we can consider T as a map of S

1×R, where S
1 = R/Z.

It can be shown that T is one-to-one and onto.
The interesting fact about T is that a T -orbit defines an equilibrium state

for the crystal model. In fact we have:

Theorem 8.2.2. {xi}∞−∞ is an equilibrium state; i.e., satisfies (8.9), if and
only if {(xi, yi)}∞−∞ is a T -orbit.

Proof. T (xi, yi) = (xi+1, yi+1) for all i if and only if yi = −D1h(xi, xi+1) and
yi+1 = D2h(xi, xi+1) for all i if and only if −D1h(xi, xi+1) = yi = D2h(xi−1,
xi) for all i if and only if {xi}∞−∞ satisfies (8.13) or {xi}∞−∞ is an equilibrium
state.

These last two examples are area-preserving mappings of the annulus
S

1 × R, where S
1 = R/Z. The rich theory of these maps is the topic of the

Chapter 14.

8.3 The Flow Box Theorem

This section investigates the local flow and local integrals near a nonequilib-
rium point. Consider first an ordinary differential equation

ẋ = f(x), (8.15)

where f is smooth on O, an open set in R
m, and let φ(t, ξ) be the solution

of (8.15) such that φ(0, ξ) = ξ. The analogous results for diffeomorphism are
developed in the Problem section. A point r ∈ O is an ordinary point for
(8.15) if f(r) 
= 0, otherwise r is a critical point, an equilibrium point or a
rest point.

Theorem 8.3.1 (The flow box theorem). Let r ∈ O be an ordinary point
for (8.15), then there exists a change of coordinates y = ψ(x) defined near r
such that in the new coordinates, Equations (8.15) define a parallel flow; in
particular, the equations become

ẏ1 = 1, ẏi = 0, i = 2, . . . ,m. (8.16)
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Proof. Let r be the origin in R
m. Because f(0) = a 
= 0, one component

of a is nonzero, say a1 
= 0. The solutions cross the hyperplane x1 = 0
transversely, and so the new coordinates will be the time from the crossing
of this hyperplane and the n − 1 coordinates where the solution hits the
hyperplane; see Figure 8.5. That is, define the change of variables by

x = φ(y1, 0, y2, y3, . . . , yn). (8.17)

Inasmuch as φ(0, ξ) = ξ,
∂φ

∂x
(0, 0) = I, and so

∂x

∂y
(0) =

⎡
⎢⎢⎢⎣

a1 0 · · · 0
a2 1 · · · 0
...

...
...

an 0 · · · 1

⎤
⎥⎥⎥⎦ , (8.18)

which is nonsingular because a1 
= 0. Thus (8.17) defines a valid change of
coordinates near 0. The first variable, y1, is time; so, ẏ1 = 1 and the variables
y2, . . . , yn are initial conditions; so, ẏ2 = ẏ3 = · · · = ẏn = 0.

Figure 8.5. The flow box.

A set of smooth functions F1, . . . , Fk defined on O ⊂ R
m are independent

at r ∈ O if the vectors ∇F1(r), . . . ,∇Fk(r) are linearly independent.

Corollary 8.3.1. Near an ordinary point, the system (8.15) has m − 1 in-
dependent integrals.

Proof. In the y coordinates, y2, . . . , ym are constants of the motion and clearly
independent.

Assume that (8.15) admits an integral F (x), where F : O → R is smooth
and I is nondegenerate at r ∈ O; i.e., ∇F (r) 
= 0.
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Theorem 8.3.2. If (8.15) admits a nondegenerate integral F at r ∈ O,
where r is an ordinary point for (8.15), then the flow box coordinates given
in Theorem 8.3.1 can be chosen so that F (y) = y2.

Proof. Let y′ be the coordinate system given by Theorem 8.3.1. Because
F is an integral, F is independent of y′1, and because F is nondegenerate
∂F (0)/∂yi 
= 0, for some i = 2, . . . ,m, say for i = 2. Change coordinates by
yi = y′i for i = 1, 3, 4, . . . ,m and y2 = F (y′2, . . . , y

′
m).

Consider a Hamiltonian system

ż = J∇H(z), or (8.19)
q̇ = Hp, ṗ = −Hq,

where z = (q, p) andH is a smooth function defined on the open set O ⊂ R
2n.

Theorem 8.3.3 (The Hamiltonian flow box theorem). Let r ∈ O ⊂
R

2n be an ordinary point for (8.19), then there exist symplectic coordinates
{y} defined near r such that the Hamiltonian becomes H(y) = yn+1, and the
equations of motion become

ẏ1 =
∂H

∂yn+1
= 1, ẏi = 0 for i = 2, . . . , 2n. (8.20)

Proof. Again let r be the origin in R
2n. Make a linear symplectic coordinates

change so that J∇H(0) = (1, 0, . . . , 0) (see the Problems section). Let q =
q(t, ξ, η), p = p(t, ξ, η) be the general solution of (8.19) with q(0, ξ, η) = ξ and
q(0, ξ, η) = η. For small values of t, these functions can be inverted to give
ξ = ξ(t, q, p), η = η(t, q, p). Because J∇H(0) = (1, 0, . . . , 0), we can solve the
equation ξ1(t, q, p) = 0 for t to give t = t(q, p).

Define the new coordinates by

y1 = t(q, p), yn+1 = H(q, p),

yi = ξi(t(q, p), q, p), yn+i = ηi(t(q, p), q, p), i = 2, . . . , n.
(8.21)

By Theorems (6.1.2) and (6.1.3), for fixed t, {ξi, ξj} = {ηi, ηj} = 0 and
{ξi, ηj} = δij . Now check that (8.21) is symplectic. Let 2 ≤ i, j ≤ n.

{yi, yj} =
n∑

k=1

(
∂yi

∂qk

∂yj

∂pk
− ∂yi

∂pk

∂yj

∂qk

)
(8.22)

=
n∑

k=1

[(
∂ξi

∂t

∂t

∂qk
+
∂ξi

∂qk

)(
∂ξj

∂t

∂t

∂pk
+
∂ξj

∂pk

)

−
(
∂ξi

∂t

∂t

∂pk
+
∂ξi

∂pk

)(
∂ξj

∂t

∂t

∂qk
+
∂ξj

∂qk

)]
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= {ξi, ξj}+
n∑

k=1

[
∂ξi

∂t

(
∂t

∂qk

∂ξj

∂pk
− ∂t

∂pk

∂ξj

∂qk

)

−
∂ξj

∂t

(
∂t∂ξi

∂qk∂pk
− ∂t

∂pk

∂ξi

∂qk

)]

= {ξi, ξj} −
[
∂ξi

∂t
{ξ1, ξj} −

∂ξj

∂t
{ξ1, ξi}

](
∂ξ1
∂t

)−1

= 0.

The simplification from the second to last line, follows by the identities
∂t/∂qk = −(∂ξ1/∂qk)/(∂ξ1/∂t) and ∂t/∂pk = −(∂ξ1/∂pk)/(∂ξ1/∂t). In a
similar way, {yi, yj} = 0 when n + 2 ≤ i, j ≤ 2n and {yi, yn+j} = δij for
i = 1, . . . , n.
{y1, y1+n} = {t,H} = 1 because the time rate of change of t along a

solution is 1. Because ξi and ηi are integrals and y1+n = H, it follows that
{yi, y1+n} = 0 for i = 2, . . . , 2n.

Let 2 ≤ i ≤ n. Then

{y1, yi} =
n∑

k=1

(
∂t

∂qk

∂yi

∂pk
− ∂t

∂pk

∂yi

∂qk

)

=
n∑

k=1

[
∂t

∂qk

(
∂ξi

∂t

∂t

∂pk
+
∂ξi

∂pk

)
− ∂t

∂pk

(
∂ξi

∂t

∂t

∂qk
+
∂ξi

∂qk

)]

=
n∑

k=1

(
∂t

∂qk

∂ξi

∂pk
− ∂t

∂pk

∂ξi

∂qk

)
= {ξ1, ξi}

(
∂ξ1
∂t

)−1

= 0.

(8.23)

In a similar manner {y1, yi} = 0 for i = n+ 2, . . . , 2n.

For an alternate proof see Moser and Zehnder (2005).
A set of smooth functions F1, . . . , Fk defined on O ⊂ R

2n are in involution
if {Fi, Fj} ≡ 0 for 1 ≤ i, j ≤ k.

Corollary 8.3.2. Near an ordinary point in the Hamiltonian system (8.19)
has n independent integrals in involution.

Proof. In the coordinates of Theorem 8.3.2, the coordinates η1, . . . , ηn are
independent integrals in involution.

Return to the ordinary Equation (8.15) for the moment. The construction
of the coordinate system of Theorem 8.3.1 requires the complete solution of
the equations. In this case, m − 1 integrals are known. In many cases some
but not all the integrals are known, in which case some simplification of the
system is possible.

Theorem 8.3.4. Assume that Equation (8.15) has k, 1 ≤ k < m, integrals
that are independent at some point r ∈ O ⊂ R

n. Then locally the equations
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can be reduced to an (m− k)-dimensional system that depends on k parame-
ters. Moreover, this reduction does not require the complete knowledge of the
solutions as in Theorem 8.3.1.

Proof. Let r be the origin and F1, . . . , Fk be the integrals. Because they are
independent, the Jacobian (∂Fi/∂xj) has a nonzero subdeterminant of size
k × k; assume that it is the subdeterminant with 1 ≤ i, j ≤ k. Change
variables by

yi = Fi(x) for i = 1, . . . , k

yi = xi for i = k + 1, . . . , n.
(8.24)

It is clear that this transformation has a nonsingular Jacobian at the origin
and so defines a valid change of coordinates. Because y1, . . . , yk are integrals,
the equations in the new coordinates are of the form

ẏi = 0 for i = 1, . . . , k

ẏi = gi(y1, . . . , ym) for i = k + 1, . . . ,m.
(8.25)

The first k equations integrate to give yi = αi, a constant, for i = 1, . . . , k.
Substituting these constants into the remaining equations gives an (m− k)-
dimensional system with k parameters.

Consider the Hamiltonian system (8.19) again. If H is independent of one
coordinate, say qi, then ṗi = ∂H/∂qi = 0 or pi is an integral. Similarly if
H is independent of pi, then qi is an integral. If H is independent of one
coordinate, then it is called an ignorable coordinate, and its conjugate is an
integral.

Let q1 be ignorable; so, p1 is an integral, and p1 = α, a constant. When the
variable p1 is replaced by the parameter α in (8.19), the equations in (8.19)
are independent of q1 and p1. The equations for q2, . . . , qn, p2, . . . , pn are the
equations of a Hamiltonian system of n − 1 degrees of freedom that depend
on a parameter α. If these equations are solved explicitly in terms of t, these
solutions can be substituted into the q1 equation and q1 can be determined
by a single integration or quadrature. Thus an ignorable coordinate reduces
the equations to a system of equations of n−1 degrees of freedom containing
a parameter and a quadrature.

In Hamiltonian systems, an integral gives rise to an ignorable coordinate
and many integrals in involution give rise to many ignorable coordinates.

Theorem 8.3.5. Let F1, . . . , Fk, 1 ≤ k ≤ n, be smooth functions on O,
which are in involution and independent at a point r ∈ O ⊂ R

2n. Then there
exist symplectic coordinates (ξ, η) at r such that in these coordinates Fi = ηi

for i = 1, . . . , k.

Proof. This theorem is left as an exercise. Use induction on k, the number of
functions.
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Theorem 8.3.6. Assume that the Hamiltonian system (8.19) has k integrals
F1, . . . , Fk, in involution which are independent at some point r ∈ O. Then
there exist symplectic coordinates ξ, η such that ξ1, . . . , ξk are ignorable. So
the system can be reduced locally to a Hamiltonian system with n− k degrees
of freedom depending on k parameters and k quadratures.

For the N -body problem in Jacobi coordinates (see Section 5.3) the three
components of the center of mass g = (m1q1 + · · · + mNqN )/M are ignor-
able, and the conjugate momenta are the three components of total linear
momentum, G = p1 + · · · + pN . Jacobi coordinates effect a reduction in the
number of degrees of freedom by 3.

The planar Kepler problem admits the z component of angular momen-
tum as an integral. In polar coordinates r, θ,R,Θ of Section 5.3, θ is an
ignorable coordinate, and its conjugate momentum, Θ, angular momentum,
is an integral.

8.4 Noether’s Theorem and Reduction

The last section discussed integrals in involution, but the classic three com-
ponents of angular momentum are not in involution. Also all the results are
local results. A complete discussion of the general case where there are global
integrals that are not in involution requires a lot of symplectic geometry that
would require a long premature digression. Therefore, only the classical cases
are considered here.

8.4.1 Symmetries Imply Integrals

Let ψt be a Hamiltonian flow on R
2n; so,

i) For fixed t, the map ψt : R
2n → R

2n is symplectic.
ii) ψ0 = id, the identity of R

2n.
iii) ψt ◦ ψs = ψt+s for all t, s ∈ R.

By Theorem 6.1.2, ψ(t, ξ) = ψt(ξ) is the general solution of a Hamiltonian
system ẋ = J∇F (x), where F : R

2n → R is smooth.
Consider a Hamiltonian H(x). Then ψt is a symplectic symmetry for the

Hamiltonian H if
H(x) = H(ψ(t, x)) = H(ψt(x)) (8.26)

for all x ∈ R
2n and all t ∈ R.

Theorem 8.4.1 (Noether’s theorem). Let ψt be a symplectic symmetry
for the Hamiltonian (8.26). Then F is an integral for the Hamiltonian system
with Hamiltonian H.
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Proof. Differentiate (8.26) with respect to t to get

0 =
∂H(ψ(t, x))

∂x

∂ψ(t, x)
∂t

=
∂H(ψ(t, x))

∂x
J
∂F (ψ(t, x))

∂x

= {H,F}(ψ(t, x)).

Consider the N -body problem with coordinates z = (q, p) ∈ R
6N . The

Hamiltonian 2.5 is invariant under translations. That is, if b ∈ R
3, then ψt :

(q1, . . . , qN , p1, . . . , pN ) → (q1 + tb, . . . , qN + tb, p1, . . . , pN ) is a symplectic
symmetry for the N -body problem. The Hamiltonian that generates ψt is
F = bT (p1 + · · · + pN ). So by Noether’s theorem, F = bT (p1 + · · · + pN )
is an integral for all b, and so linear momentum, L = p1 + · · · + pN , is an
integral for the N -body problem. In general translational invariance implies
the conservation of linear momentum.

Let G be the subgroup of Sp(6N,R) consisting of all matrices of the
form T = (A, . . . , A), where A ∈ SO(3,R) (the special orthogonal group or
group of three-dimensional rotations). Then the Hamiltonian H of the N -
body problem, (2.5), has G as a symmetry group. That is, H(Tx) = H(x)
for all T ∈ G. This simply means that the equations are invariant under a
rotation of coordinates. The algebra of Hamiltonian matrices, A, for G is the
set of all Hamiltonian matrices of the form B = (C, . . . , C), where C is a 3×3
skew symmetric matrix. So eBt ∈ G, and H(x) = H(eBtx) for all x ∈ R

2n

and t ∈ R. Thus ψt(x) = eBtx is a symplectic symmetry for the Hamiltonian
of the N -body problem. The Hamiltonian that generates ψt(x) = eBtx is
F =

∑n
i=1 q

T
i Cpi, and so by Noether’s theorem it is an integral for the N -

body problem. If we take the three choices for C as follows,
⎡
⎣

0 0 0
0 0 1
0 −1 0

⎤
⎦ ,

⎡
⎣

0 0 1
0 0 0

−1 0 0

⎤
⎦ ,

⎡
⎣

0 1 0
−1 0 0

0 0 0

⎤
⎦ , (8.27)

then the corresponding integrals are the three components of angular mo-
mentum. So the fact that the Hamiltonian is invariant under all rotations
implies the law of conservation of angular momentum.

8.4.2 Reduction

Symmetries give rise to further reductions. In the first example, the Hamilto-
nian of the N -body problem is invariant under translations, and so linear mo-
mentum is invariant. Holding linear momentum fixed, say equal zero, places
three linear constraints on the system; so, the space where linear momen-
tum is fixed is a (6N − 3)-dimensional subspace of R

6N . But two configura-
tions of the N bodies that are translations each other can be identified; i.e.,
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(q1, . . . , qN , p1, . . . , pN ) and (q1 + b, . . . , qN + b, p1, . . . , pN ) can be identified,
where b is any vector in R

3. Making this identification reduces the dimension
by another three dimensions, making the total space (6N − 6)-dimensional.
This space is called the reduced space.

The easiest way to do the reduction just discussed is to use the Jacobi
coordinates given in Section 7.1. The variable gN is the center of mass, and
all the other position coordinates u1, . . . , uN are relative coordinates; so, the
identification given above gives

(gN + b, u1, . . . , uN , GN , v1, . . . , vN ) ∼ (gN , u1, . . . , uN , Gn, v1, . . . , vN ).

A representative of the equivalence class is (0, u1, . . . , uN , GN , v1, . . . , vN );
i.e., set where the center of mass is at the origin. Linear momentum, GN ,
is an integral. So the reduction discussed above is accomplished by setting
gN = 0 and fixingGN , say to zero. The problem is described by a Hamiltonian
on an even-dimensional space, the reduced space. The Hamiltonian on the
reduced space is (7.6) with gN = GN = 0. Note that the problem is not
Hamiltonian when just the integrals of linear momentum are fixed, but it is
when these integrals are fixed and points are identified by the translational
symmetry.

Now consider the SO(3,R) symmetry that gives rise to the angular mo-
mentum integrals. There are three angular momentum integrals that are in-
dependent except at the origin. Consider the subset, M ⊂ R

6N , of phase
space where angular momentum is some fixed, nonzero vector V . This is a
(6N − 3)-dimensional space (submanifold) that is invariant under the flow
defined by the N -body problem. Not all rotations leave M fixed, only those
that are rotations about V . That is, let G be the subgroups of G, and hence
of Sp(6N,R), consisting of all matrices of the form T = (A, . . . , A) where
A ∈ SO(3,R) and AV = V (rotations about V ). G is the same as (iso-
morphic to) SO(2,R), rotations of the plane. This can be seen by changing
coordinates so that V is along one of the coordinate axes. G and SO(2,R) are
one-dimensional, because they can be parameterized by the angle of rotation.

Clearly, if T ∈ G, then T leaves M invariant; so, two points, z, z′ ∈M can
be identified if Tz = z′; i.e., if one configuration can be rotated into the other
by a rotation about V . Let B be the identification space M/ ∼, where z ∼ z′
when z ∈ Tz′ for some T ∈ G. It turns out that M is (6N − 3)-dimensional,
and B is (6N − 4)-dimensional. The interesting fact is that B is symplectic,
and the flow of the N -body problem is Hamiltonian on B; i.e., there are local
coordinates on B that are symplectic, and the equations of motion of the
N -body problem are Hamiltonian. (Technically, B is a symplectic manifold.)

The two reductions can be done together. The N -body problem is a first-
order system of differential equations in a 6N -dimensional space R

6N . The
first reduction of placing the center of mass at the origin and fixing linear
momentum reduces the problem to a linear subspace of dimension 6N − 6.
Fixing angular momentum reduces the problem to a (6N − 9)-dimensional
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space, M . Identifying configurations that differ by a rotation about the an-
gular momentum reduces the problem to the reduced space B of dimension
6N − 10. This last operation is classically called the elimination of the node.
The reduced N -body problem is a time-independent Hamiltonian system
on the symplectic space B. Two further reductions can be accomplished by
holding the Hamiltonian (energy) fixed and eliminating time to get a nonau-
tonomous system of differential equations of order 6N − 12. The reduction
of the N -body problem is classical, with the elimination of the node due to
Jacobi. The general results about the symplectic nature of the reduced space
are in Meyer (1973) and Marsden and Weinstein (1974).

The proofs of all the facts about the reductions, symplectic manifolds,
etc., would require a long digression, but a treating of a special case will
whet the reader’s interest. The reader is referred to the original articles or to
Abraham and Marsden (1978) for the complete discussion. Let us consider
the planar 3-body problem. Recall from Section 7.1 that the Hamiltonian
of the 3-body problem in Jacobi coordinates with the center of mass at the
origin and linear momentum equal to zero is

H =
‖v1‖2
2M1

+
‖v2‖2
2M2

+
m0m2

‖u1‖
+

m0m2

‖u2 + α0u1‖
+

m1m2

‖u2 − α11‖
, (8.28)

where

M1 =
m1m0

m1 +m0
, M2 =

m2(m1 +m0)
m2 +m1 +m0

,

α0 =
m1

m1 +m0
, α1 =

m0

m1 +m0
.

(8.29)

This affects the first reduction. Putting this Hamiltonian in polar coordinates
gives

H =
1

2M1

{
R2

1 + (Θ2
1/r

2
1)
}

+
1

2M2

{
R2

2 + (Θ2
2/r

2
2)
}

+
m0m1

r1
(8.30)

+
m0m2√

r22 + α2
0r

2
1 − 2α0r1r2 cos(θ2 − θ1)

+
m1m2√

r22 + α2
1r

2
1 + 2α1r1r2 cos(θ2 − θ1)

.

Because the Hamiltonian depends only on the difference of the two polar
angles, make the symplectic change of coordinates

φ1 = θ2 − θ1, θ2 = −θ2 + 2θ1,

Φ1 = 2Θ2 +Θ1, Φ2 = Θ2 +Θ1,
(8.31)

so that (8.30) becomes
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H =
1

2M1

{
R2

1 + (2Φ1 − Φ2)2/r21
}

(8.32)

+
1

2M2

{
R2

2 + (Φ1 − Φ2)2/r22
}

+
m0m1

r1

+
m0m2√

r22 + α2
0r

2
1 − 2α0r1r2 cos(φ1)

+
m1m2√

r22 + α2
1r

2
1 + 2α1r1r2 cos(φ1)

.

Note that the Hamiltonian is independent of φ2, so φ2 is an ignorable coor-
dinate, therefore, its conjugate momentum Φ2 = Θ2 +Θ1, total angular is an
integral. The reduction to the reduced space is done by holding Φ2 fixed and
ignoring φ2. The Hamiltonian (8.32) has three degrees of freedom, (r1, r2, φ1),
and one parameter Φ2.

8.5 Periodic Solutions and Cross-Sections

In view of the results of the previous sections, it would seem that the next
question to be considered is the nature of the flow near an equilibrium point.
This is one of the central and difficult questions in local geometric theory.
It turns out that many of the questions about equilibrium points are very
similar to questions about periodic solutions. This section introduces this
similarity.

8.5.1 Equilibrium Points

Consider first a general system

ẋ = f(x), (8.33)

where f : O → R
m is smooth, and O is open in R

m. Let the general solu-
tion be φ(t, ξ). An equilibrium solution φ(t, ξ′) is such that φ(t, ξ′) ≡ ξ′ for
all t. Obviously φ(t, ξ′) is an equilibrium solution if and only if f(ξ′) = 0.
So questions about the existence and uniqueness of equilibrium solutions
are finite-dimensional questions. The eigenvalues of ∂f(ξ′)/∂x are called the
(characteristic) exponents of the equilibrium point. If ∂f(ξ′)/∂x is nonsingu-
lar, or equivalently the exponents are all nonzero, then the equilibrium point
is called elementary.

Proposition 8.5.1. Elementary equilibrium points are isolated.

Proof. f(ξ′) = 0 and ∂f(ξ′)/∂x is nonsingular; so, the implicit function the-
orem applies to f ; thus, there is a neighborhood of ξ′ with no other zeros of
f .
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The analysis of stability, bifurcations, etc. of equilibrium points starts
with an analysis of the linearized equations. For this reason, one shifts the
equilibrium point to the origin, and (8.33) is rewritten

ẋ = Ax+ g(x), (8.34)

where A = ∂f(0)/∂x, g(x) = f(x) − Ax; so, g(0) = 0 and ∂g(0)/∂x = 0.
The eigenvalues of A are the exponents. The reason the eigenvalues of A are
called exponents is that the linearized equations (e.g., g(x) ≡ 0 in (8.34))
have solutions which contain terms such as exp(λt), where λ is an eigenvalue
of A.

8.5.2 Periodic Solutions

A periodic solution is a solution φ(t, ξ′), such that φ(t + T, ξ′) ≡ φ(t, ξ′)
for all t, where T is some nonzero constant. T is called a period, and the
least positive T which satisfies that relation is called the period or the least
period. In general, an equilibrium solution will not be considered as a periodic
solution; however, some statements have a simpler statement if equilibrium
solutions are considered as periodic solutions. It is easy to see that if the
solution is periodic and not an equilibrium solution, then the least period
exists, and all periods are integer multiples of it.

Lemma 8.5.1. A necessary and sufficient condition for φ(t, ξ′) to be periodic
with a period T is

φ(T, ξ′) = ξ′, (8.35)

where T is nonzero.

Proof. This is a restatement of Lemma 8.1.4.

This lemma shows that questions about the existence and uniqueness of
periodic solutions are ultimately finite-dimensional questions. The analysis
and topology of finite-dimensional spaces should be enough to answer all
such questions.

Let φ(t, ξ′) be periodic with least period T . The matrix ∂φ(T, ξ′)/∂ξ is
called the monodromy matrix, and its eigenvalues are called the (character-
istic) multipliers of the period solution. It is tempting to use the implicit
function theorem on (8.35) to find a condition for local uniqueness of a pe-
riodic solution. To apply the implicit function theorem to (8.35) the matrix
∂φ(T, ξ′)/∂ξ − I would have to be nonsingular, or +1 would not be a multi-
plier. But this will never happen.

Lemma 8.5.2. Periodic solutions of (8.33) are never isolated, and +1 is
always a multiplier. In fact, f(ξ′) is an eigenvector of the monodromy matrix
corresponding to the eigenvalue +1.
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Proof. Because (8.33) is autonomous, it defines a local dynamical system; so,
a translate of a solution is a solution. Therefore, the periodic solution is not
isolated. Differentiating the group relation φ(τ, φ(t, ξ′)) = φ(t + τ, ξ′) with
respect to t and setting t = 0 and τ = T gives

∂φ

∂ξ
(T, ξ′)φ(0, ξ′) = φ(T, ξ′),

∂φ

∂ξ
(T, ξ′)f(ξ′) = f(ξ′).

Inasmuch as the periodic solution is not an equilibrium point, f(ξ′) 
= 0.

Because of this lemma, the correct concept is “isolated periodic orbit.”
In order to overcome the difficulties implicit in Lemma 8.5.2, one introduces
a cross-section. Let φ(t, ξ′) be a periodic solution. A cross-section to the
periodic solution, or simply a section, is a hyperplane Σ of codimension one
through ξ′ and transverse to f(ξ′). For example, Σ would be the hyperplane
{x : aT (x − ξ′) = 0}, where a is a constant vector with aT f(ξ′) 
= 0. The
periodic solution starts on the section and, after a time T , returns to it. By
the continuity of solutions with respect to initial conditions, nearby solutions
do the same. See Figure 8.6. So if ξ is close to ξ′ on Σ, there is a time T (ξ)
close to T such that φ(T (ξ), ξ) is on Σ. T (ξ) is called the first return time.
The section map, or Poincaré map, is defined as the map P : ξ → φ(T (ξ), ξ)
which is a map from a neighborhood N of ξ′ in Σ into Σ.

Figure 8.6. The cross-section.

Lemma 8.5.3. If the neighborhood N of ξ′ in Σ is sufficiently small, then
the first return time, T : N → R, and the Poincaré map, P : N → Σ, are
smooth.
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Proof. Let Σ = {x : aT (x − ξ′) = 0}, where aT f(ξ′) 
= 0. Consider the
function g(t, ξ) = aT (φ(t, ξ) − ξ′). Because g(T, ξ′) = 0 and ∂g(T, ξ′)/∂t =
aTφ(T, ξ′)/∂t = aT f(ξ′) 
= 0, the implicit function theorem gives a smooth
function T (ξ) such that g(T (ξ), ξ) = 0. g being zero defines Σ so the first
return time, T , is smooth. The Poincaré map is smooth because it is the
composition of two smooth maps.

The periodic solution now appears as a fixed point of P ; indeed, any
fixed point, ξ′′, of P is the initial condition for a periodic solution of period
T (ξ′′), because (T (ξ′′), ξ′′) would satisfy (8.35). A point ξ′′ ∈ N such that
P k(ξ′′) = ξ′′ for some integer k > 0 is called a periodic point of P of period
k. The solution (8.33) through such a periodic point will be periodic with
period nearly kT .

The analysis of stability, bifurcations, etc. of fixed points starts with an
analysis of the linearized equations. For this reason, one shifts the fixed point
to the origin and writes the Poincaré map

P (y) = Ay + g(y), (8.36)

where A = ∂P (0)/∂y, g(y) = P (y) − Ay, so g(0) = 0, and ∂g(0)/∂y = 0.
The eigenvalues of A are the multipliers of the fixed point. The reason the
eigenvalues, λi, of A are called multipliers is that the linearized map (e.g.,
g(x) ≡ 0) in (8.36) takes an eigenvector to λi times itself. A fixed point is
called elementary if none of its multipliers is equal to +1.

Lemma 8.5.4. If the multipliers of the periodic solution are 1, λ2, . . . , λm,
then the multipliers of the corresponding fixed point of the Poincaré map are
λ2, . . . , λm.

Proof. Rotate and translate the coordinates so that ξ′ = 0 and f(ξ′) =
(1, 0, . . . , 0); so, Σ is the hyperplane x1 = 0. Let B = ∂φ(T, ξ′)/∂ξ, the mon-
odromy matrix. By Lemma 8.5.1, f(ξ′) is an eigenvector of B corresponding
to the eigenvalue +1. In these coordinates,

B =

⎡
⎢⎢⎢⎣

1 x x x x
0
... A
0

⎤
⎥⎥⎥⎦ . (8.37)

Clearly the eigenvalues of B are +1 along with the eigenvalues of A.

We also call the eigenvalues λ2, . . . , λn the nontrivial multipliers of the
periodic orbit. Recall that an orbit is the solution considered as a curve in
R

n, and so is unaffected by reparameterization. A periodic orbit of period T
is isolated if there is a neighborhood L of it with no other periodic orbits in L
with period near to T . There may be periodic solutions of much higher period
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near an isolated periodic orbit. A periodic orbit is isolated if and only if the
corresponding fixed point of the Poincaré map is an isolated fixed point. A
periodic orbit is called elementary if none of its nontrivial multipliers is +1.

Proposition 8.5.2. Elementary fixed points and elementary periodic orbits
are isolated.

Proof. Apply the implicit function theorem to the Poincaré map.

8.5.3 A Simple Example

Consider the system

ẋ = y + x(1− x2 − y2), (8.38)
ẏ = −x+ y(1− x2 − y2),

which in polar coordinates is

ṙ = r(1− r2), (8.39)
θ̇ = −1;

see Figure 8.7. The origin is an elementary equilibrium point, and the unit
circle is an elementary periodic orbit. To see the latter claim, consider the
cross-section θ ≡ 0 mod 2π. The first return time is 2π. The linearized
equation about r = 1 is r = −2r, and so the linearized Poincaré map is
r → r exp(−4π). The multiplier of the fixed point is exp(−4π).

Figure 8.7. Phase portrait of the example.
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8.5.4 Systems with Integrals

By Lemma 8.5.2, the monodromy matrix of a periodic solution has +1 as
a multiplier. If Equation (8.33) were Hamiltonian, the monodromy matrix
would be symplectic by Theorem 6.1.2, and so by Proposition 3.3.1, the
algebraic multiplicity of the eigenvalue +1 would be even and so at least
2. Actually, this is simply due to the fact that an autonomous Hamiltonian
system has an integral.

Throughout this subsection assume that (8.33) admits an integral F ,
where F is a smooth map from O to R, and assume that φ(t, ξ′) is a periodic
solution of period T . Furthermore assume that the integral F is nondegen-
erate on this periodic solution; i.e., ∇F (ξ′) is nonzero. For a Hamiltonian
system the Hamiltonian H is always nondegenerate on a nonequilibrium so-
lution because ∇H(ξ′) = 0 would imply an equilibrium.

Lemma 8.5.5. If F is nondegenerate on the periodic solution φ(t, ξ′), then
the multiplier +1 has algebraic multiplicity at least 2. Moreover, the row
vector ∂F (ξ′)/∂x is a left eigenvector of the monodromy matrix corresponding
to the eigenvalue +1.

Proof. Differentiating F (φ(t, ξ)) ≡ F (ξ) with respect to ξ and setting ξ = ξ′

and t = T yields
∂F (ζ ′)
∂x

∂φ(T, ξ′)
∂ζ

=
∂F (ζ ′)
∂x

, (8.40)

which implies the second part of the lemma. Choose coordinates so that
f(ξ′) is the column vector (1, 0, . . . , 0)T and ∂F (ξ′)/∂x is the row vector
(0, 1, 0, . . . , 0). Because f(ξ′) is a right eigenvector and ∂F (ξ′)/∂x is a left
eigenvector, the mondromy matrix B = ∂φ(T, ξ′)/∂ξ has the form

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 x x x . . . x
0 1 0 0 . . . 0
0 x x x . . . x
0 x x x . . . x
...

...
0 x x x . . . x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (8.41)

Expand by minors p(λ) = det(B − λI). First expand along the first column
to get p(λ) = (1− λ) det(B′ − λI), where B′ is the (m− 1)× (m− 1) matrix
obtained from B by deleting the first row and column. Expand det(B′ − λI)
along the first row to get p(λ) = (1−λ)2 det(B′′−λI) = (1−λ)2q(λ), where
B′′ is the (m− 2)× (m− 2) matrix obtained from B by deleting the first two
rows and columns.

Again there is a good geometric reason for the degeneracy implied by this
lemma. The periodic solution lies in an (m − 1)-dimensional level set of the
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integral, and typically in nearby level sets of the integral, there is a periodic
orbit. So periodic orbits are not isolated.

Consider the Poincaré map P : N → Σ, where N is a neighborhood of
ξ′ in Σ. Let u be flow box coordinates given by Theorem 8.3.2 so that ξ′

corresponds to u = 0; Equations (8.33) are u1 = 1, u2 = 0, . . . , um = 0, and
F (u) = u2. In these coordinates, we may take Σ to be u1 = 0. Because u2

is the integral in these coordinates, P maps the level sets u2 = constant into
themselves; so, we can ignore the u2 component of P . Let e = u2; let Σe be
the intersection of Σ and the level set F = e; and let y1 = u3, . . . , ym−2 = um

be coordinates in Σe. Here e is considered as a parameter (the value of the
integral). In these coordinates, the Poincaré map P is a function of y and the
parameter e. So P (e, y) + (e,Q(e, y)), where for fixed e, Q(e, ·) is a mapping
of a neighborhood Ne of the origin in Σe into Σe. Q is called the Poincaré
map in an integral surface,; see Figure 8.8. The eigenvalues of ∂Q(0, 0)/∂y
are called the multipliers of the fixed point in the integral surface or the
nontrivial multipliers. By the same argument as above, we have the following
lemma.

Figure 8.8. Poincaré map in an integral surface.

Lemma 8.5.6. If the multipliers of the periodic solution of a system with
nondegenerate integral are 1, 1, λ3, . . . , λm, then the multipliers of the fixed
point in the integral surface are λ3, . . . , λm.

Lemma 8.5.7. If the system is Hamiltonian, then the Poincaré map in an
integral surface is symplectic.

Proof. In this case, use the Hamiltonian flow box theorem (Theorem 8.3.3).
In this case, H = η1, and the equations are ξ1 = 1, ξi = 0 for i = 2, . . . , n and
ηi = 0 for i = 1, . . . , n. The cross-section is ξ1 = 0, and the integral parameter
is η1 = e. The Poincaré map in an integral surface in these coordinates is in
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terms of the symplectic coordinates ξ2, . . . , ξn, η2, . . . , ηn on Σe. Because the
total map x → φ(T, x) is symplectic (Theorem 6.1.2), the map y → Q(e, y)
is symplectic.

If none of the trivial multipliers is 1, and the integral is nondegenerate on
the periodic solution, then we say that the periodic solution (or fixed point)
is elementary.

Theorem 8.5.1 (The cylinder theorem). An elementary periodic orbit
of a system with integral lies in a smooth cylinder of periodic solutions pa-
rameterized by the integral F . (See Figure 8.9.)

Proof. Apply the implicit function theorem to Q(e, y) − y = 0 to get a one-
parameter family of fixed points y∗(e) in each integral surface F = e.

Figure 8.9. Cylinder of periodic solutions.

8.6 The Stable Manifold Theorem

In this section we discuss some important theorems about the local struc-
ture of differential equations near equilibrium and diffeomorphisms near fixed
points by introducing the concept of a hyperbolic point. These theorems are
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classical, and their proofs appear in many standard textbooks, so we do not
prove them here. In the next section we carry forth the generalization to
hyperbolic sets. In the last 50 years, the subject of hyperbolic dynamical sys-
tems has become a subject of its own. See the monographs by Szlenk (1981),
Palis and de Melo (1980), and Robinson (1999). Hamiltonian dynamics is
more the study of elliptic points than hyperbolic points, therefore we con-
centrate on the elliptic case and refer the reader to the literature for some of
the proofs for the hyperbolic theorems.

Let the equation
ẋ = f(x) (8.42)

have an equilibrium point at x = p; so, f(p) = 0. Let A = ∂f(p)/∂x; so, A
is an m×m constant matrix. The eigenvalues of A are called the exponents
of equilibrium point p. The linearization of (8.42) about x = p is y = Ay,
where y = x− p. We say that p is a hyperbolic equilibrium point for (8.42),
if A has no eigenvalues with zero real part; so, all the eigenvalues have either
positive real parts or negative real parts. Thus the solutions of the linearized
equation are sums of exponentially increasing and decreasing terms. The set
of all solutions tending to zero is a linear subspace, as is the set of all solutions
tending away from zero. The full nonlinear equations have similar sets, which
is the subject of the following theorems.

At first the results are local; so, one can shift the equilibrium point to the
origin and write (8.42) in the form

ẋ = Ax+ g(x), (8.43)

where g(x) = f(x) − Ax; so, g(0) = Dg(0) = 0, and A is an m × m real
constant matrix with no eigenvalue with zero real part. Let φ(t, ξ) be the
general solution of (8.43); so, φ(0, ξ) = ξ. Let ε > 0 be given; then the local
stable manifold is

Ws(ε) = {ξ ∈ R
m : |φ(t, ξ)| < ε for all t ≤ 0}. (8.44)

and the local unstable manifold is

Wu(ε) = {ξ ∈ R
m : |φ(t, ξ)| < ε for all t ≤ 0}. (8.45)

If the reader is not familiar with the definition of a manifold, simply read
the remark following the statement of the theorem.

Theorem 8.6.1 (Local stable manifold for equations). Let A have d
eigenvalues with negative real parts and m− d eigenvalues with positive real
parts. Let g be as above. Then for ε sufficiently small, Ws(ε) and Wu(ε) are
smooth manifolds of dimensions d and m− d, respectively. If ξ ∈ Ws(ε) (re-
spectively, ξ ∈ Wu(ε)), then φ(t, ξ) → 0 as t→ +∞ (respectively, φ(t, ξ) → 0
as t→ −∞). Actually, there is a smooth, near identity change of coordinates
that takes the stable and unstable manifolds to (different) coordinate planes.
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Proof. See Hale (1972) or Chicone (1999).

Remarks. By a linear change of coordinates, if necessary, we may assume
that

A =
[
B 0
0 C

]
,

where B is a d×d matrix with eigenvalues with negative real parts, and C is
an (m−d)×(m−d) matrix with positive real parts. Writing R

m = R
d×R

m−d,
(w, z) ∈ R

m = R
d × R

m−d; so, Equation (8.43) becomes

ż = Bz + h(z, w), (8.46)
ẇ = Cw + k(z, w),

where h, g, and their first partials vanish at the origin. One proof of the
existence of the stable manifold establishes the existence of a change of co-
ordinates of the form ξ = z, η = w − u(z), which makes the ξ coordinate
hyperplane invariant or at least locally invariant. The function u is shown
to be smooth and small with u(0) = Du(0) = 0. Thus in the new coordi-
nates, the local stable manifold is a piece of the d-dimensional linear space
η = 0. In the original coordinates, the local stable manifold is the graph of
the function u. Because u(0) = Du(0) = 0, the stable manifold is tangent to
the d-dimensional linear space z = 0. See Figure 8.10.

Figure 8.10. Local stable, and unstable manifolds.

This is a local result; so, a natural question to ask is what happens to these
manifolds. Now we show how to continue these manifolds. Assume f in (8.42)
is globally defined and let the general solution φ(t, ξ) of (8.42) be globally
defined; so, φ defines a dynamical system. The (global) stable manifold is

Ws = Ws(p) = {ξ ∈ R
m : φ(t, ξ) → p as t→ +∞}, (8.47)
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and the (global) unstable manifold is

Wu =Wu(p) = {ξ ∈ R
m : φ(t, ξ) → p as t→ −∞}. (8.48)

Theorem 8.6.2 (Global stable manifold for equations). Let p be a
hyperbolic equilibrium point with d exponents with negative real parts and m−
d exponents with positive real parts. Then the stable manifold is an immersed
d-dimensional submanifold. That is, there exists a smooth function Γ : R

d →
R

n which is globally one-to-one, and DΓ has rank d everywhere. Similarly,
the unstable manifold is an immersed m− d submanifold.

Proof. See Palis and de Melo (1980).

There are similar theorems for diffeomorphisms. Consider a diffeomor-
phism

ψ : R
m → R

m (8.49)

with a fixed point p. Let A = ∂ψ(p)/∂x; so, A is an m×m constant matrix.
The eigenvalues of A are called the multipliers of p. The linearization of (8.49)
about x = p is y → Ay, where y = x− p. We say that p is a hyperbolic fixed
point if A has no eigenvalues with absolute value equal to 1. The set of all
trajectories tending to zero is a linear subspace, as is the set of all solutions
tending away from zero.

The first theorem is local; so, shift the fixed point to the origin and con-
sider

x→ Φ(x) = Ax+ g(x), (8.50)

where g is defined and smooth in a neighborhood of the origin in R
m with

g(0) = 0, Dg(0) = 0. Define the stable manifold as

Ws(ε) = {x ∈ R
m : |Φk(x)| < ε for all k ≥ 0} (8.51)

and the unstable manifold similarly.

Theorem 8.6.3 (Local stable manifold for diffeomorphisms). Let A
have d eigenvalues with absolute value less than 1 and m − d eigenvalues
with absolute value greater than 1. Let g be as above. Then for ε sufficiently
small, Ws(ε) and Wu(ε) are smooth manifolds of dimensions d and m − d,
respectively. If ξ ∈ Ws(ε) (respectively, ξ ∈ Wu(ε)), then Φk(ξ) → 0 as k →
+∞ (respectively, Φk(ξ) → 0 as k → −∞). Actually there is a smooth, near
identity change of coordinates that takes the stable and unstable manifolds to
(different) coordinate planes.

Assume ψ in (8.49) is a global diffeomorphism; so, it defines a dynamical
system. The (global) stable manifold is

Ws =Ws(p) = {ξ ∈ R
m : ψk(ξ) → p as k → +∞}, (8.52)

and the (global) unstable manifold is similarly defined.
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Theorem 8.6.4 (Global stable manifold for diffeomorphisms). Let p
be a hyperbolic fixed point for ψ with d multipliers with absolute value less
than 1 and m − d multipliers with absolute value greater than 1. Then the
stable manifold is an immersed d-dimensional submanifold. That is, there
exists a smooth function Γ : R

d → R
n that is globally one-to-one, and DΓ

has rank d everywhere. Similarly, the unstable manifold is an immersed m−d
submanifold.

For the rest of the section let ψ in (8.49) be a diffeomorphism of R
2, p

be a hyperbolic fixed point with one multiplier greater than one and one
multiplier less than one so that the stable and unstable manifolds of p are
smooth curves. A point q ∈ Ws(p)∩Wu(p), q 
= p, is called a homoclinic point
(homoclinic to p). Because q is in both the stable and unstable manifolds of
p, ψk(q) → p as k → ±∞, the orbit of q is said to be doubly asymptotic to p.
If the curvesWs(p) andWu(p) are not tangent at q, the intersection is said to
be transversal, and q is said to be a transversal homoclinic point. Henceforth,
let q be a transversal homoclinic point, homoclinic to p; see Figure 8.11.

Figure 8.11. Transverse intersection of stable and unstable manifolds.

The stable and unstable manifolds are invariant, and so ψk(q) ∈ Ws(p)∩
Wu(p) for all k, or the whole orbit of a homoclinic point consists of homoclinic
points. In a neighborhood of the hyperbolic point p, the diffeomorphism ψ is
well approximated by its linear part, and so it contracts in the stable manifold
direction and expands in the unstable direction. This results in the following:

Theorem 8.6.5 (Palis’ lambda lemma). Let Λ be any interval in the
unstable manifold with p in its interior. Let λ be a small segment transverse
to the stable manifold. Then for any ε > 0, there is a K such that for k ≥ K,
ψk(λ) is within the ε neighborhood of Λ . Moreover, if a ∈ Λ, b ∈ ψk(λ), and
dist (a, b) < ε then the tangents to Λ and ψ(λ)k are within ε.

Proof. See Palis and de Melo (1980) and Figure 8.12.
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Figure 8.12. The lambda lemma.

This theorem says that the small segment λ of the unstable manifold
is stretched out and that C1 approximates the whole unstable manifold by
iterates of ψ.

Now let q be a transverse homoclinic point and λ a small segment of the
unstable manifold at q. Images of this small segment λ are stretched out along
the unstable manifold until the image again intersects the stable manifold as
shown in Figure 8.13. So a homoclinic point begets another homoclinic point
near the first. Repeating the argument you get the following.

Theorem 8.6.6 (Poincaré’s homoclinic theorem). A transversal homo-
clinic point is the limit of transversal homoclinic points.

Proof. See Poincaré (1899) and Figure 8.13.

Figure 8.13. The Poincaré tangle.
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8.7 Hyperbolic Systems

This section, like the last, contains an introduction to some general topics
in dynamical systems that are well documented in the literature. Therefore,
very few proofs are given.

8.7.1 Shift Automorphism and Subshifts of Finite Type

Let In = {1, 2, . . . , n} and Σ = Σ(n) = Π∞
−∞In, that is, Σ is the collection

of all infinite-bisequences on the symbols 1, 2, . . . , n. Σ is called the sequence
space. Thus if s ∈ Σ, then s = (. . . , s−1, s0, s1, s2, . . .), or more simply writ-
ten, s = . . . s−1s0 · s1s2 . . . , where the zeroth position is to the left of the
decimal point ·. Define a distance function on Σ by d(s, r) = 1/k, where
k = 1 + max{|j| : sj = rj}; so, two elements of Σ are close, if they agree
in a lot of positions around the decimal point. It can be shown that Σ is
homeomorphic to the Cantor set.

Let σ : Σ → Σ be the shift map or shift automorphism defined by σ(s)i =
si+1; i.e., σ shifts the decimal point one place to the right. Clearly σ is a
homeomorphism. The map σ : Σ → Σ defines a dynamical system, called
the full shift on n symbols. (It is not differentiable, but it is continuous.) As
a dynamical system the map has many interesting properties, among which
are those given in Proposition 8.7.1.

The shift on two symbols can be considered as flipping a fair coin and
taking 1 to mean heads and 2 to mean tails. Any infinite sequence of flipping
of a coin is represented by an element of Σ and σ can be thought of as the
action of flipping the coin.

Proposition 8.7.1. Let σ : Σ → Σ be the full shift on n symbols. Then

1. σ has periodic points of all periods.
2. The periodic points are dense.
3. Given any two periodic points p, q ∈ Σ, there is a point r ∈ Σ with
σk(r) → p as k → ∞ and σk(r) → q as k → −∞. Moreover, the set of
such orbits is dense.

Remarks. A dynamical system that has a dense orbit is called transitive.
If p 
= q, then r is called a heteroclinic point and if p = q, then r is called a
homoclinic point. One speaks of heteroclinic and homoclinic orbits also.

Proof. The proof of all these properties uses the same idea; so, all but one
(part 2) is an exercise. We show that there is a periodic point arbitrary close
to any given point. To that end, let q ∈ Σ and ε > 0 be given. Let N be so
large that 1/N < ε and let s be the finite sequence q−Nq−N+1 · · · q0q1 · · · qN .
Construct a bi-infinite sequence r by concatenating an infinite number of
times; so, r = · · · sss · · · (the decimal point is placed in one of the segments
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s to the right of q0). The points r and q agree on a block of length at least
N about the decimal point; so, d(r, q) ≤ 1/N < ε. Shifting the decimal point
2N+1 places brings the sequence r back to itself; so, r is periodic with period
2N + 1. Thus there is a periodic point, r, arbitrarily close to the arbitrary
point q.

The shift automorphism has many interesting invariant sets, and one type
of invariant set which has many nice properties is a subshift of finite-type. A
transition matrix is an n× n matrix K = {kij} with entries which are either
0 or 1. For any transition matrix K, define a subset of Σ by Σ(K) = {q ∈ Σ :
kqiqi+1 = 1 for all i}. In other words, adjacent pairs of entries in a sequence
q ∈ Σ(K) determine a nonzero entry in K. The transition matrix K serves as
a litany of which values can follow which in a sequence q ∈ Σ(K) in the sense
that qi+1 can follow qi if and only if kqiqj

= 1. In the case kqiqi+1 = 1, we
write as qi → qi+1 for short. Alternately, the zeros in the transition matrix
K rule out certain adjacent pairs in a sequence. For example, if n = 2 and

K =
[

0 1
1 1

]
,

then Σ(K) consists of all bi-infinite sequences that do not have two adjacent
1s. In general, Σ(K) is a closed invariant subset of Σ, and σ : Σ(K) → Σ(K)
is called a subshift of finite type. If all the entries of K are 1, then Σ(K) =
Σ,and for emphasis, this is called the full shift.

Subsequently we need one particular subshift. Henceforth, let L = Ln be
the transition matrix

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 · · · 0 0 0
0 0 1 0 0 · · · 0 0 0
0 0 0 1 0 · · · 0 0 0
0 0 0 0 1 · · · 0 0 0

. . .
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.53)

That is, L has 1s on the first superdiagonal as well as at the n, 1 and n, n
positions. Thus 1 → 2, 2 → 3, . . . , n − 1 → n, and n → n, n → 1. Let an
overbar on a symbol, or sequence of symbols, mean that it is to be repeated
infinitely often; so, 1̄.2345̄ = · · · 111.23455 · · ·.

Proposition 8.7.2. Consider the dynamical system σ : Σ(L) → Σ(L).

1. It has a unique fixed point.
2. It has periodic points of all periods greater than or equal to n.
3. The periodic points and the points homoclinic to them are dense.
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4. There is an invariant subspace Σ∗ ⊂ Σ(L) for σn such that σn : Σ∗ →
Σ∗ is equivalent to σ : Σ(2) → Σ(2), the full shift on two symbols.

Proof. The fixed point is f = n̄.n̄. The point n̄.123 · · · n̄ is homoclinic to f .
A periodic point of period n is 12 · · ·n · 12 · · ·n; a periodic point of period
n+ 1 is 12 · · ·nn · 12 · · ·nn; etc.

Define Σ∗ as those sequences r ∈ Σ(L) of the form · · · r−1r0 · r1r2 · · ·,
where ri is either the sequence α = 12 · · ·n or β = nn · · ·n. σn shifts the
decimal point by n positions and so moves the decimal point over a complete
block. Define a map h from Σ∗ to Σ(2) by h : · · · r−1r0 · r1r2 · · · → · · · s−1s0 ·
s1s2 · · ·, where si = 1 if ri = α, and si = 2 if ri = β. This map is a
homeomorphism and takes orbits of σk : Σ∗ → Σ∗ to orbits of σ : Σ(2) →
Σ(2). This is the equivalence referred to in part 4.

8.7.2 Hyperbolic Structures

The main result discussed in this section is the Smale–Conley theorem which
says that a homoclinic point begets an invariant set which is equivalent to
the subshift of finite-type σ : Σ(L) → Σ(L); the precise statement is given
in a subsequent subsection. But before this theorem is discussed, some pre-
liminaries are necessary. Consider a diffeomorphism

ψ : R
m → R

m. (8.54)

With this dynamical system is associated a linear dynamical system, Ψ :
R

m × R
m → R

m × R
m (the variational system) defined as follows.

Ψ(p, u) = (ψ(p),D(ψ)(p)u). (8.55)

Here R
m and its tangent space TpR

m are identified; really Ψ : R
m × TR

m →
R

m × TR
m. Write

Ψk(p, u) = (ψk(p), Y (p, k)u). (8.56)

Recall that L(Rm,Rm) is the space of linear maps from R
m into R

m (i.e.,
m×m matrices). Let Λ ⊂ R

m be a compact invariant set for ψ. A compact
invariant set Λ ⊂ R

m has a hyperbolic structure or is a hyperbolic set or
ψ admits an exponential dichotomy over Λ, if there are constants K and μ,
0 < μ < 1, and a continuous mapping P : Λ→ L(Rm,Rm) such that P (p) is
a linear projection operator that satisfies

P (ψk(p))Y (p, k) = Y (p, k)P (p) (8.57)

and

‖Y (p, k)P (p)u‖ ≤ Kμk‖u‖, p ∈ Λ, k ≥ 0, (8.58)
‖Y (p, k)[I − P (p)]u‖ ≤ Kμ−k‖u‖, p ∈ Λ, k ≤ 0.
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Define E
s
p = range (P (p)) and E

u
p = kernel (P (p)); then because P (p)

is a projection, R
m = E

s
p ⊕ E

u
p , range (P (p)) = kernel (I − P (p)), and

kernel (P (p)) = range (I − P (p)). The splitting of the tangent space given
by TpR

m = R
m = E

s
p⊕E

u
p is continuous in p ∈ Λ. Formula (8.57) states that

the linear map Y (p, k) preserves the splitting, in that

Y (p, k) : E
s
p → E

s
q, Y (p, k) : E

u
p → E

u
q , (8.59)

where q = ψk(p), and Formulas (8.58) state that the linear map ultimately
contracts vectors in E

s
p and expands vectors in E

u
p .

8.7.3 Examples of Hyperbolic Sets

(a) A hyperbolic fixed point, p, of ψ : R
m → R

m is a hyperbolic set. Let
A = Dψ(p); so, R

m = E
s⊕E

u where A|Es has eigenvalues with modulus less
than 1, and A|Eu has eigenvalues with modulus greater than 1. The operator
P (p) is the projection onto E

s, and (I−P (p)) is the projection onto E
u. The

stable (unstable) manifold is tangent to E
s(Eu) at p. Ψ(u, p) = (Au, p).

(b) Thom’s toral example (see Figure 8.14). Let

A =
[

1 1
1 2

]
, A−1 =

[
2 −1

−1 1

]
.

A has eigenvalues (3+
√

5)/2 > 1 and (3−
√

5)/2 < 1 and so is hyperbolic with
a one-dimensional stable direction and a one dimensional unstable direction.
Because these eigenvalues are irrational, the slopes of the stable and unstable
directions are irrational.

Because A and A−1 have integer entries, they map the integer lattice
Z×Z into itself and so A and A−1 can be considered as maps of the 2-torus
T

2 = R
2/Z2 into itself. Call this map of the torus A. The fixed point at the

origin becomes a hyperbolic fixed point for A, which by the same argument
as found in Section 1.2 has a stable and unstable manifold, both of which are
dense in the torus. These stable and unstable manifolds cross in a dense set;
so, the homoclinic points are dense also. Let q be a fixed positive integer and
Q = {(α/q, β/q) : 0 ≤ α, β ≤ q}. A maps Q into itself and so is a permutation
of this finite set; so, some power of A fixes Q. Thus all points with rational
coordinates are periodic points, and the set of periodic points is dense.

The whole manifold T
2 has a hyperbolic structure under A. The projec-

tion P (p) = P is the projection onto the eigenspace of A corresponding to
the eigenvalue (3 −

√
5)/2 < 1. A diffeomorphism of a manifold that has a

hyperbolic structure everywhere is called an Anosov system, after the Rus-
sian mathematician who did much of the early studies of such systems. One
of his main theorems is that a small perturbation of an Anosov system is
equivalent to the original system, and so the geometry of the orbits is not
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Figure 8.14. Thom’s torus example.

affected much by small perturbations. This property is known as structural
stability. See Palis and de Melo (1980) for more discussion of these ideas.

(c) A transversal homoclinic point (see Figure 8.15). Let ψ : R
m → R

m

have a hyperbolic fixed point at p, and let q be a transversal homoclinic point;
so, the stable and unstable manifolds (curves) of p intersect in a nontrivial
way at q. Let Λ be the closure of the orbit of q; so, Λ = {p}∪{ψk(q) : k ∈ Z}.
Λ has a hyperbolic structure. At each point of the orbit of q, the space E

s is
the tangent space to the stable manifold of p, and E

u is the tangent space to
the unstable manifold of p. At p itself, E

s and E
u are as in example (a). Under

positive and negative iterations, the orbit of q gets close to the hyperbolic
fixed point p. Careful estimations yield the inequalities in (8.57).

Figure 8.15. Transversal homoclinic point.Transversal homoclinic point.
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8.7.4 The Shadowing Lemma

A bi-infinite sequence

x = (. . . , x−1, x0, x1, . . .), xi ∈ R
m

is an α-pseudo-orbit (for ψ) if ‖xk+1 − ψ(xk)‖ ≤ α for all k. That is, an
α-pseudo-orbit differs from an actual orbit by at most a jump of distance α
at each point. A pseudo-orbit x = (. . . , x−1, x0, x1, . . .) is β-shadowed by an
orbit {ψk(y)} if ‖xk − ψk(y)‖ ≤ β. One of the most striking theorems in the
theory of hyperbolic systems is the shadowing lemma of Bowen and Anosov.
(Some say the result was known to Lamont Cranston and Margo Lane.)

Theorem 8.7.1 (The shadowing lemma). Let Λ ⊂ R
m be a compact

invariant set for ψ : R
m → R

m that has a hyperbolic structure. Then for
every β > 0, there is an α > 0 such that every α-pseudo-orbit in Λ is β-
shadowed by an orbit {ψk(y)}. Moreover, there is a β0 > 0 such that if
0 < β < β0, then the ψ-orbit is uniquely determined by the α-pseudo-orbit.

See Robinson (1999).

8.7.5 The Conley–Smale Theorem

The existence of a transverse homoclinic point for a planar diffeomorphism
implies a certain amount of chaos in the dynamical system as is seen in the
next theorem.

Theorem 8.7.2 (Conley–Smale). Let ψ : R
2 → R

2 be a diffeomorphism
with a hyperbolic fixed point at p and let q be a transverse homoclinic point
that is homoclinic to p. Then there is an invariant set Γ ⊂ R

2 and an n such
that ψ : Γ → Γ is equivalent to σ : Σ(Ln) → Σ(Ln).

Proof. This is just an outline. Refer to Figure 8.16. As discussed above, the
closure of the orbit of q, Λ = {p} ∪ {ψk(q) : k ∈ Z} has a hyperbolic structure.
Let β0 be as given in the shadowing lemma. Let β be less than β0 and also
4β < dist (q, ψk(q)) for all k 
= 0. Because ψk(q) → p and q 
= p, β can be
taken positive. The disks of radius β about p and q do not intersect. Let α be
given by the Shadowing Lemma corresponding to this β, but further require
that α is less than β. Draw a disk of radius α/2 about p and call it D. Draw
disks of radius α/2 about all points of the orbit of q that lie outside D. α
may have to be contracted slightly so that all the disks are disjoint.

Let r be the first point on the backward orbit of q which lies in D; so,
r = ψ−k(q), k > 0, r ∈ D, and ψ(r) 
∈ D. Let the forward orbit of r be denoted
by ri = ψi−1(r); so, r1 = r. Let n be such that rn is the first point on the
forward orbit of r in D; so, r1, rN ∈ D, and ri 
∈ D for i = 2, 3, . . . , n− 1. See
Figure 8.16.
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Let L = Ln be the n × n matrix given in (8.53) and Σ(L) the subshift
defined by it. An element s ∈ Σ(L) is used to define an α-pseudo orbit, and
so by the shadowing lemma, a ψ-orbit. The pseudo-orbit corresponding to
s = . . . s−1s0 · s1 . . . is p(s) = {rsi

} = . . . , rs−1 , rs0 , rs1 , . . . . This encoding
gives only one option: if the pseudo-orbit is at rn, it can either jump to r1 or
skip in place; i.e., rn may be followed by rn itself. Because r1, rn, and rN+1

are all within the disk D which has radius α/2, this jump is at most a jump
by a distance α. Every other point ri, i 
= n, on the pseudo-orbit must be
followed by ri+1 = ψ(ri), and so there is no jump there.

By the shadowing lemma, there is a unique orbit {ψ(y)} which β-shadows
the pseudo-orbit p(s). Let h(s) = y; so, h : Σ(L) → R

2. It follows from the
proof of the shadowing lemma that h is continuous. To see that h is one-to-
one, let h(s) = y and h(s′) = y′, where s 
= s′. Because s and s′ are different in
some entry, and in particular one must be at q for some j, say p(s)j = q, and
the other is not, p(s′)j 
= q. By construction, dist (p(s)j , p(s′)j) > 4β, and so
dist (h(s)j , h(s′)j) > 2β, and so h(s) 
= h(s′). Thus h is a continuous, one-to-
one mapping of a compact Hausdorff space, and thus, is a homeomorphism.

Let s ∈ Σ(L) and h(s) = y. By the above construction, the ψ-orbits of
ψ(y) and h(σ(s)) are β-shadows on each other, and so by uniqueness are
equal, thus ψ◦h = h◦σ, and ψ and σ are equivalent.

Figure 8.16. The Conley–Smale theorem.
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Problems

1. Let {φt} be a smooth dynamical system; i.e., {φt} satisfies (8.5). Prove
that φ(t, ξ) = φt(ξ) is the general solution of an autonomous differential
equation.

2. Let ψ be a diffeomorphism of R
m; so, it defines a discrete dynamical

system. A nonfixed point is called an ordinary point. So p ∈ R
m is an

ordinary point if ψ(p) 
= p. Prove that there are local coordinates x at an
ordinary point p and coordinates y at q = ψ(p) such that in these local
coordinates y1 = x1, . . . , ym = xn. (This is the analog of the flow box
theorem for discrete systems.)

3. Let ψ be as in Problem 2. Let p be a fixed point p of ψ. The eigenvalues
of ∂ψ(p)/∂x are called the (characteristic) multipliers of p. If all the
multipliers are different from +1, then p is called an elementary fixed
point of ψ. Prove that elementary fixed points are isolated.

4. a) Let 0 < a < b and ξ ∈ R
m be given. Show that there is a smooth

nonnegative function γ : R
m → R which is identically +1 on the ball

‖x− ζ‖ ≤ a and identically zero for ‖x− ξ‖ ≥ b.
b) Let O be any closed set in R

m. Show that there exists a smooth,
nonnegative function δ : R

m → R which is zero exactly on O.
5. Let H(q1, . . . , qN , p1, . . . , pN ), qi, pi ∈ R

3 be invariant under translation;
so, H(q1 + s, . . . , qN + s, p1, . . . , pN ) = H(q1, . . . , qN , p1, . . . , pN ) for all
s ∈ R

3. Show that total linear momentum, L =
∑
pi, is an integral. This

is another consequence of the Noether theorem.
6. An m ×m nonsingular matrix T is such that T 2 = I is a discrete sym-

metry of (or a reflection for) ẋ = f(x) if and only if f(Tx) = −Tf(x) for
all x ∈ R

m. This equation is also called reversible in this case.
a) Prove: If T is a discrete symmetry of (1), then φ(t, T ξ) ≡ Tφ(−t, ξ)

where φ(t, ξ) is the general solution of x = f(x).
b) Consider the 2×2 case and let T = diag(1,−1). What does f(Tx) =
−Tf(x) mean about the parity of f1 and f2? Show that Part (a)
means that a reflection of a solution in the x1 axis is a solution.

7. Let T be a discrete symmetry of Equation (8.26). Let FIX = {x ∈ R
m :

Tx = x}. Show that if φ(t) is a solution of (1) with φ(0) ∈ FIX and
φ(T ) ∈ FIX for some T 
= 0, then φ is 2T -periodic.

8. Let G be a matrix Lie group; i.e., G is a closed subgroup of the general
group GL(m,R). (See the Problem section at the end of Chapter 3.) G
is a symmetry group for ẋ = f(x) if Tf(x) = f(Tx) for all T ∈ G and
x ∈ R

m.
a) Prove: If G is a symmetry group, then φ(t, T ξ) ≡ Tφ(t, ξ), where φ

is the general solution of ẋ = f(x).
b) Consider the 2×2 case where G is SO(2,R) the group of rotations of

the plane (i.e., orthogonal matrices with determinant +1.) In polar
coordinates (r, θ), ẋ = f(x) becomes ṙ = R(r, θ), θ̇ = Θ(r, θ). Prove
that the symmetry condition implies R and Θ are independent of θ.
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9. Now let ẋ = f(x) be Hamiltonian with Hamiltonian H : R
2n → R; so,

f(x) = J∇H(x). A matrix T is antisymplectic if TTJT = −J . An anti-
symplectic matrix T such that T 2 = I is a discrete symplectic symmetry
for H if H(Tx) ≡ H(x).
a) Prove: A discrete symplectic symmetry of the Hamiltonian is a dis-

crete symmetry of the equation ẋ = f(x).
b) Consider a general Newtonian system as discussed in Section 1.2 of

the form H(x, p) = 1
2p

TM−1p + F (x) where x, p ∈ R
n and M is a

nonsingular, symmetric matrix. De fine T = diag(I,−I); so, T 2 = I,
show that T is antisymplectic and H(T (x, p)) = H(x, p).

c) Consider the restricted 3-body problem as discussed in Section 2.1.
Let T = diag(1,−1,−1, 1); show H(T (x, y)) = H(x, y) where H is
the Hamiltonian of the restricted 3-body problem (2.29).

d) What is FIX of Problem 7 for these two examples?
10. Use Problems 7 and 9.

a) Show that the solution of the restricted problem which crosses the
x1 axis (the line of syzygy) at a time t1 and later at a time t2 is a
period of period 2(t2 − t1).

b) Show that the above criterion is x2 = y1 = 0 at times t1 and t2 in
rectangular coordinates, and θ = nπ (n an integer), R = 0 in polar
coordinates.

11. Let G be a matrix Lie group of symplectic matrices; i.e., G is a closed
subgroup of the symplectic group Sp(2n,R). Let x = f(x) be Hamilto-
nian with Hamiltonian H. G is a symmetry group for the Hamiltonian
H if H(Tx) = H(x) for all T ∈ G. Prove: A symmetry group for the
Hamiltonian H is a symmetry group for the equations of motion.

12. Prove that the tangent spaces to points in a hyperbolic set can be
renormed so that the constant K in (8.58) can be taken as 1. (Hint:
If w ∈ TpΛ, Λ hyperbolic, then w = u + v, u ∈ E

s
p and v ∈ E

u
p . De-

fine the norm ‖ · ‖′p in TpΛ by ‖w‖′p = max(‖u‖p, ‖v‖p), where ‖u‖p =
sup{K−1μk‖Y (p, k)u‖ : k ≥ 0} and ‖v‖p = sup{K−1μk‖Y (p, k)v‖ : k ≤
0}.)



9. Continuation of Solutions

In the last chapter, some local results about periodic solutions of Hamilto-
nian systems were presented. These systems contain a parameter, and the
conditions under which a periodic solution can be continued in the param-
eter were discussed. Because Poincaré used these ideas extensively, it has
become known as the Poincaré’s continuation method; see Poincaré (1899).
By Lemma 8.5.1, a solution φ(t, ξ′) of an autonomous differential equation is
T -periodic if and only if φ(T, ξ′) = ξ′, where φ is the general solution. This
is a finite-dimensional problem since φ is a function defined in a domain of
R

m+1 into R
m.

This chapter presents results that depend on the finite-dimensional im-
plicit function theorem, i.e., how periodic solutions (“can be continued”).
Chapter 10 discusses the bifurcations of periodic solutions. Chapter 12 intro-
duces some infinite-dimensional results based on variational methods. Chap-
ter 14 presents a treatment of fixed point methods as they apply to Hamil-
tonian systems.

After giving some elementary general results a variety of families of pe-
riodic solutions is given in the restricted problem and the 3-body problem.
The first result is a simple proof of the Lyapunov center theorem with appli-
cations to the five libration points in the restricted problem. Then in the next
three sections, the circular orbits of Kepler’s problem are continued into the
restricted problem when one mass is small (Poincaré’s solutions), when the
infinitesimal is near a primary (Hill’s solutions), and when the infinitesimal is
near infinity (comet solutions). Lastly, a general theorem on the continuation
of periodic solutions from the restricted problem to the full 3-body problem
is given. A more complete discussion with more general results can be found
in Moulton (1920) and Meyer (1999).

9.1 Continuation Periodic Solutions

Assume that the differential equations depend on some parameters; so, con-
sider

ẋ = f(x, ν), (9.1)

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 9,
c© Springer Science+Business Media, LLC 2009



218 9. Continuation of Solutions

where f : O × Q −→ R
m is smooth, O is open in R

m, and Q is open in
R

k. The general solution φ(t, ξ, ν) is smooth in the parameter ν also. Let ξ′

be an equilibrium point when ν = ν′, f(ξ′, ν′) = 0; a continuation of this
equilibrium point is a smooth function u(ν) defined for ν near ν′ such that
u(ν′) = ξ′, and u(ν) is an equilibrium point for all ν, i.e. f(u(ν), ν) = 0.
Recall (see Section 8.5) that an equilibrium point ξ′ for (9.1) when ν = ν′,
f(ξ′, ν′) = 0, is elementary if ∂f(ξ′, ν′)/∂ξ is nonsingular, i.e., if zero is not
an exponent.

Let the solution φ(t, ξ′, ν′) be T -periodic. A continuation of this periodic
solution is a pair of smooth functions, u(ν), τ(ν), defined for ν near ν′ such
that u(ν′) = ξ′, τ(ν′) = T , and φ(t, u(ν), ν) is τ(ν)-periodic. One also says
that the periodic solution can be continued. This means that the solution
persists when the parameters are varied, and the periodic solution does not
change very much with the parameters.

The solution φ(t, ξ′, ν′) is T -periodic if and only if φ(T, ξ′, ν′) = ξ′. This
periodic solution is elementary if +1 is an eigenvalue of the monodromy
matrix ∂φ(T, ξ′, ν′)/∂ξ with multiplicity one for a general autonomous dif-
ferential equation and of multiplicity two for a system with a nondegen-
erate integral (e.g., a Hamiltonian system). Recall that the eigenvalues of
∂φ(T, ξ′, ν′)/∂ξ are called the multipliers (of the periodic solution). Drop one
+1 multiplier for a general autonomous equation, and drop two +1 multipli-
ers from the list of multipliers for an autonomous system with an integral to
get the nontrivial multipliers. If the nontrivial multipliers are not equal to
one then the periodic solution is called elementary.

Proposition 9.1.1. An elementary equilibrium point, or an elementary pe-
riodic solution, or an elementary periodic solution in a system with a nonde-
generate integral can be continued.

Proof. For equilibrium points, apply the implicit function theorem to the
function f(x, ν) = 0. By assumption, f(ξ′, ν′) = 0, and ∂f(ξ′, ν′)/∂x is non-
singular; so, the implicit function theorem asserts the existence of the function
u(ν) such that u(ν′) = ξ′ and f(u(ν), ν) ≡ 0.

Because the existence of the first return time and the Poincaré map de-
pended on the implicit function theorem these functions depend smoothly
on the parameter ν. For the rest of the proposition, apply the implicit func-
tion theorem to P (x, ν) − x = 0, where P (x, ν) is the Poincaré map of the
cross-section to the periodic solution when ν = ν′

Similarly, if the system has an integral I(x, ν), then the construction of
the Poincaré map in an integral surface depends smoothly on ν. Again apply
the implicit function theorem to the map Q(x, ν) − x = 0, where Q(x, ν) is
the Poincaré map in the integral surface of the cross-section to the periodic
solution when ν = ν′.

There is a similar definition of continuation and a similar lemma for fixed
points.
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Corollary 9.1.1. The exponents of an elementary equilibrium point, and the
multipliers of an elementary periodic solution (with or without nondegenerate
integral) vary continuously with the parameter ν.

Proof. For equilibrium points, the implicit function theorem was applied to
f(x, ν) = 0 to get a function u(ν) such that u(ν′) = ξ′ and f(u(ν), ν) ≡ 0.
The exponents of the equilibrium u(ν) are the eigenvalues of ∂f(u(ν), ν)/∂x.
This matrix varies smoothly with the parameter ν, and so its eigenvalues vary
continuously with the parameter ν. (See the Problem section for an example
where the eigenvalues are not smooth in a parameter.) The other parts of the
theorem are proved using the same idea applied to the Poincaré map.

Corollary 9.1.2. A small perturbation of an elliptic (respectively, a hyper-
bolic) periodic orbit of a Hamiltonian system of two degrees of freedom is
elliptic (respectively, hyperbolic).

Proof. If the system has two degrees of freedom, then a periodic solution has
as multipliers +1,+1, λ, λ̄ = λ−1, and so the multipliers lie either on the real
axis or the unit circle. If the periodic solution is hyperbolic, then λ and λ−1

lie on the real axis and are not 0 or ±1. A small change cannot make these
eigenvalues lie on the unit circle or take the value 0 or ±1. Thus a small
change in a hyperbolic periodic solution is hyperbolic. A similar argument
holds for elliptic periodic solutions.

9.2 Lyapunov Center Theorem

An immediate consequence of the discussion in the previous section is the
following celebrated theorem.

Theorem 9.2.1 (Lyapunov center theorem). Assume that the system

ẋ = f(x)

admits a nondegenerate integral and has an equilibrium point with exponents
±ωi, λ3, . . . , λm, where iω 
= 0 is pure imaginary. If λj/iω is never an integer
for j = 3, . . . ,m, then there exists a one-parameter family of periodic orbits
emanating from the equilibrium point. Moreover, when approaching the equi-
librium point along the family, the periods tend to 2π/ω and the nontrivial
multipliers tend to exp(2πλj/ω), j = 3, . . . ,m.

Remark. The Hamiltonian is always a nondegenerate integral.

Proof. Say that x = 0 is the equilibrium point, and the equation is

ẋ = Ax+ g(x),
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where g(0) = ∂g(0)/∂x = 0. Because we seek periodic solutions near the
origin, scale by x→ εx where ε is to be considered as a small parameter. The
equation becomes

ẋ = Ax+O(ε),

and when ε = 0, the system is linear. Because this linear system has exponents
±ωi, it has a periodic solution of period 2π/ω of the form exp(At)a, where
a is a fixed nonzero vector. The multipliers of this periodic solution are the
eigenvalues of exp(A2π/ω), or 1, 1, exp(2πλj/ω). By assumption, the non-
trivial multipliers are not +1, and so this periodic solution is elementary.
From Proposition 9.1.1, there is a periodic solution of the form exp(At)a +
O(ε). In the unscaled coordinates, the solution is of the form ε exp(At)a +
O(ε2), and the result follows.

9.2.1 Applications to the Euler and Lagrange points

In Section 4.1, the linearized equations at the five libration (equilibrium)
points of the restricted 3-body problem were analyzed. The eigenvalues at
the three collinear libration points L1, L2, L3 of Euler were shown to be a
pair of real eigenvalues and a pair of pure imaginary eigenvalues. Thus the
Lyapunov center theorem implies that there is a one-parameter family of
periodic solutions emanating from each of these libration points.

By symmetry we may assume that 0 < μ ≤ 1/2. At the equilateral tri-
angle libration points L4, L5 of Lagrange, the characteristic equation of the
linearized system was found to be

λ4 + λ2 +
27
4
μ(1− μ),

where μ is the mass ratio parameter. The roots of this polynomial satisfy

λ2 =
1
2
(−1±

√
1− 27μ(1− μ)),

which implies that for 0 < μ < μ1 = (1−
√

69/9)/2 � 0.0385, the eigenvalues
are distinct pure imaginary numbers ±ω1i,±ω2i, with 0 < ω2 < ω1. Because
iω2/iω1 is less than 1 in modulus, the Lyapunov center theorem implies that
there is a family of periodic orbits emanating from L4 with period approach-
ing 2π/ω1 for all μ, 0 < μ < μ1. This family is called the short period family.

Define μr to be the value of μ for which ω1/ω2 = r. If 0 < μ < μ1 and
μ 
= μr, r = 1, 2, . . ., then the Lyapunov center theorem implies that there
is a family of periodic orbits emanating from L4 with period approaching
2π/ω2. This family is called the long period family.

The mass ratio μr satisfies

μr =
1
2
− 1

2

{
1− 16r2

27(r2 + 1)2

}1/2

,

so, 0 · · · < μ3 < μ2 < μ1.



9.3 Poincaré’s Orbits 221

9.3 Poincaré’s Orbits

The essence of the continuation method is that the problem contains a pa-
rameter, and for one value of the parameter, there is a periodic solution whose
multipliers can be computed. The restricted 3-body problem has a parameter
μ, the mass ratio parameter, and when μ = 0, the problem is just the Kepler
problem in rotating coordinates. The Kepler problem has many periodic so-
lutions, but they all have their multipliers equal to +1 in fixed coordinates,
whereas the circular orbits have nontrivial multipliers in rotating coordinates.
Thus the circular solutions of the Kepler problem can be continued into the
restricted problem for small values of μ.

The reason that all the multipliers are +1 for the Kepler problem in fixed
coordinates is that all the periodic solutions in an energy level have the same
period and so are not isolated in an energy level (see Proposition 8.5.2).

The Hamiltonian of the restricted problem is

H =
‖y‖2

2
− xTKy − μ

d1
− 1− μ

d2
, (9.2)

where d21 = (x1 − 1 + μ)2 + x2
2, d

2
2 = (x1 + μ)2 + x2

2, and

K =
[

0 1
−1 0

]
.

Recall that xTKy is just angular momentum. Consider μ as a small pa-
rameter; so, the Hamiltonian is of the form

H =
‖y‖2

2
xTKy − 1

‖x‖ +O(μ). (9.3)

Be careful of the O(μ) term because it has terms that go to infinity near
the primaries; therefore, a neighborhood of the primaries must be excluded.
When μ = 0, this is the Kepler problem in rotating coordinates. Put this
problem in polar coordinates (see Section 6.2) to get (when μ = 0)

H =
1
2

(
R2 +

Θ2

r2

)
−Θ − 1

r
, (9.4)

ṙ = R, Ṙ =
Θ2

r3
− 1
r2
,

θ̇ =
Θ

r2
− 1, Θ̇ = 0.

(9.5)

Angular momentum Θ is an integral; so, let Θ = c be a fixed constant.
For c 
= 1, the circular orbit R = 0, r = c2 is a periodic solution with period
| 2πc3/(1 − c3) | (this is the time for θ to increase by 2π). Linearizing the r
and R equations about this solution gives



222 9. Continuation of Solutions

ṙ = R, Ṙ = −c−6r,

which has solutions of the form exp(±it/c3), and so the nontrivial multipliers
of the circular orbits are exp(±i2π/(1 − c3)) which are not +1, provided
1/(1− c3) is not an integer. Thus we have proved the following theorem.

Theorem 9.3.1 (Poincaré). If c 
= 1 and 1/(1− c3) is not an integer, then
the circular orbits of the Kepler problem in rotating coordinates with angular
momentum c can be continued into the restricted problem for small values of
μ. These orbits are elliptic.

The rotating coordinates used here rotate counterclockwise, and so in fixed
coordinates the primaries rotate clockwise. If c < 0, then θ̇ < 0, and 1/(1−c3)
is never an integer. Orbits with negative angular momentum rotate clockwise
in either coordinate system and so are called retrograde orbits.

If c > 0, c 
= 1, and 1/(1 − c3) is not an integer, then in the fixed coor-
dinates, these orbits rotate counterclockwise and so are called direct orbits.
The circular orbits of the Kepler problem when 1/(1− c3) is an integer, say
k, undergo a bifurcation when μ 
= 0, but this is too lengthy a problem to be
discussed here.

9.4 Hill’s Orbits

Another way to introduce a small parameter is to consider an infinitesimal
particle to be very near one of the primaries. This is usually referred to as
Hill’s problem because he extensively investigated the motion of the moon,
which to a first approximation is like this problem.

Consider the restricted problem where one primary is at the origin; i.e.,
replace x1 by x1 − μ and y2 by y2 − μ; so, the Hamiltonian (9.2) becomes

H =
‖y‖2

2
− xTKy − μ

d1
− 1− μ

d2
+ μx1 −

1
2
μ2,

where d21 = (x1 − 1)2 + x2
2, d

2
2 = x2

1 + x2
2. Introduce a scale parameter ε by

changing coordinates by x = ε2ξ, y = ε−1η, which is a symplectic change
of coordinates with multiplier ε−1. In the scaling, all constant terms are
dropped from the Hamiltonian because they do not affect the equations of
motion. Note that if ‖ξ‖ is approximately 1, then ‖x‖ is about ε2, or ‖x‖
is very small when ε is small. Thus ε is a measure of the distance of the
infinitesimal particle from the primary at the origin and so is considered as
the small parameter. We fix the mass ratio parameter, μ, as arbitrary (i.e.,
not small), and for simplicity we set c2 = 1 − μ, c > 0. The Hamiltonian
becomes

H = ε−3

{
‖η‖2

2
− c2

‖ξ‖

}
− ξTKη +O(ε).
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The dominant term is the Hamiltonian of the Kepler problem, and the next
most important term is the rotational term; so, this formula says that when
the infinitesimal is close to the primary that has mass c2 = 1 − μ the main
force on it is the gravitational force of that primary. The next most important
term is the Coriolis term.

Kepler’s third law says that the period of a circular orbit varies with
the radius to the 3/2 power; so, time should be scaled by t −→ ε−3t and
H −→ ε3H, and the Hamiltonian is

H =
{
‖η‖2

2
− c2

‖ξ‖

}
− ε3ξTKη +O(ε4).

Introduce polar coordinates as before; so,

H =
1
2

(
R2 +

Θ2

r2

)
− c

2

r
− ε3Θ +O(ε4),

ṙ = R, Ṙ =
Θ2

r3
− c2

r2
,

θ̇ =
Θ

r2
− ε3, Θ̇ = 0.

(9.6)

In (9.6) the terms of order ε4 have been omitted. Omitting these terms makes
Θ an integral. The two solutions, Θ = ±c,R = 0, r = 1, are periodic solutions
of (9.6) of period 2π/(c ∓ ε3). Linearizing the r and R equations about this
solution gives

ṙ = R, Ṙ = −c2r.
These linear equations have solutions of the form exp(±ict), and so the non-
trivial multipliers of the circular orbits of (9.6) are exp(±ic2π/(c ∓ ε3)) =
+1± ε32πi/c+O(ε6).

Consider the period map in a level surface of the Hamiltonian about
this circular orbit. Let u be the coordinate in this surface, with u = 0,
corresponding to the circular orbit when ε = 0. From the above, the pe-
riod map has a fixed point at the origin up to terms of order ε3 and is
the identity up to terms of order ε2, and at ε3 there is a term whose Ja-
cobian has eigenvalues ±2πi/c. That is, the period map is of the form
P (u) = u + ε3p(u) + O(ε4), where p(0) = 0, and ∂p(0)/∂u has eigenvalues
±2πi/c; so, in particular, ∂p(0)/∂u is nonsingular. Apply the implicit func-
tion theorem to G(u, ε) = (P (u)− u)/ε3 = p(u) +O(ε). Because G(0, 0) = 0
and ∂G(0, 0)/∂u = ∂p(0)/∂u, there is a smooth function ū(ε) such that
G(ū(ε), ε) = 0 for all ε sufficiently small. Thus the two solutions can be
continued from the equations in (9.6) to the full equations, where the O(ε4)
terms are included. These solutions are elliptic also.

In the scaled variables, these solutions have r � 1 and period T � 2π.
In the original unscaled variables, the periodic solution has ‖x‖ � ε2 with
period T � 2πε−3.
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Theorem 9.4.1. There exist two one-parameter families of nearly circular
elliptic periodic solutions of the restricted 3-body problem that encircle a pri-
mary for all values of the mass ratio parameter. These families of orbits tend
to the primary.

9.5 Comets

Another way to introduce a small parameter is to consider orbits that are
close to infinity. In the Hamiltonian of the restricted problem (9.2), scale the
variables by x −→ ε−2x, y −→ εy; this is symplectic with multiplier ε. The
Hamiltonian becomes

H = −xTKy + ε3
{
‖y‖2

2
− 1
‖x‖

}
+O(ε5). (9.7)

Now ε small means that the infinitesimal is near infinity, and (9.7) says that
near infinity the Coriolis force dominates, and the next most important force
looks like a Kepler problem with both primaries at the origin. Again change
to polar coordinates to get

H = −Θ + ε3
[
1
2

(
R2 +

Θ2

r2

)
− 1
r

]
+O(ε5),

ṙ = ε3R, Ṙ = ε3
(
Θ

r3
− 1
r2

)
,

θ̇ = −1 + ε3
Θ

r2
, Θ̇ = 0.

(9.8)

As before, the terms of order ε5 have been dropped from the equations in
(9.8), and to this order of approximation, Θ is a integral. A pair of circular
periodic solutions of (9.8) are Θ = ±1, R = 0, r = 1, which are periodic of
period 2π/(1∓ ε3). Linearizing the r and R equations about these solutions
gives

ṙ = ε3R, Ṙ = −ε3r.
These linear equations have solutions of the form exp(±iε3t), and so the
nontrivial multipliers of the circular orbits of (9.8) are exp(±iε32π/(1∓ε3)) =
+1±ε32πi+O(ε6). Repeat the argument given in the last section to continue
these solutions into the restricted problem.

Theorem 9.5.1. There exist two one-parameter families of nearly circular
large elliptic periodic solutions of the restricted 3-body problem for all values
of the mass ratio parameter. These orbits tend to infinity.
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9.6 From the Restricted to the Full Problem

In this chapter, four classes of periodic solutions of the restricted problem
have been established: Lyapunov centers at the libration points, Poincaré’s
orbits of the first kind, Hill’s lunar orbits, and comet orbits. All of these
families are elementary, and most are elliptic. In this section, these solutions
and more are continued into the full 3-body problem, where one of the three
particles has small mass.

Periodic solutions of the N -body problem are never elementary because
the N -body problem has many symmetries and integrals. As was shown in
Section 8.5, an integral for the system implies +1 as a multiplier of a periodic
solution. In fact, the multiplicity of +1 as a multiplier of a periodic solution
is at least 8 in the planar N -body problem and at least 12 in space. The
only way around this problem is to exploit the symmetries and integrals
themselves and to go directly to the reduced space as discussed in Section
8.4.

A solution of the N -body problem is called a (relative) periodic solution
if its projection on the reduced space is periodic. Note that it need not be
periodic in phase space; in fact, it is not usually. A periodic solution of the
N -body problem is called an elementary periodic solution, if its projection
on the reduced space is periodic and the multiplicity of the multiplier of the
periodic solution on the reduced space is exactly 2; i.e., it is elementary on
the reduced space.

The main result of this section is the following general theorem.

Theorem 9.6.1. Any elementary periodic solution of the planar restricted
3-body problem whose period is not a multiple of 2π can be continued into the
full 3-body problem with one small mass.

See Hadjidemetriou (1975). The proof is an easy consequence of two pro-
cedures that have previously been discussed: the scaling of Section 6.3 and
the reduction in Section 8.4. These facts are recalled now before the formal
proof of this theorem is given.

Recall the scaling given in Section 6.3; i.e., consider the planar 3-body
problem in rotating coordinates with one small particle,m3 = ε2. The Hamil-
tonian is then of the form

H3 =
‖v3‖2
2ε2

− uT
3Kv3 −

2∑
i=1

ε2mi

‖ui − u3‖
+H2, (9.9)

where H2 is the Hamiltonian of the 2-body problem in rotating coordinates.
ε is a small parameter that measures the smallness of one mass. A small
mass should make a small perturbation on the other particles, thus, ε should
measure the smallness of the mass and how close the two finite particles’
orbits are to circular. To accomplish this, use one variable that represents
the deviation from a circular orbit.
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Let Z = (u1, u2, v1, v2); so, H2 is a function of the 8-vector Z. A circular
solution of the 2-body problem is a critical point of the Hamiltonian of the
2-body problem in rotating coordinates, i.e., H2. Let Z∗ = (a1, a2, b1, b2) be
such a critical point (later we specify Z∗). By Taylor’s theorem

H2(Z) = H2(Z∗) +
1
2
(Z − Z∗)TS(Z − Z∗) +O(‖Z − Z∗‖3),

where S is the Hessian of H2 at Z∗. Because the equations of motion do not
depend on constants, drop the constant term in the above. Change variables
by Z − Z∗ = εU, u3 = ξ, v3 = ε2η, which is a symplectic change of variables
with multiplier ε−2. The Hamiltonian becomes

H3 = G+ 1
2U

TSU +O(ε),

G =
1
2
‖η‖2 − ξTKη −

2∑
i=1

mi

‖ξ − ai‖
.

(9.10)

G in (9.10) is the Hamiltonian of the restricted 3-body problem if we take
m1 = μ, m2 = 1 − μ, a1 = (1 − μ, 0), a2 = (−μ, 0). (Because it is necessary
to discuss several different Hamiltonians in the same section, our usual con-
vention of naming all Hamiltonians H would lead to mass confusion.) The
quadratic term above simply gives the linearized equations about the circular
solutions of the 2-body problem in rotating coordinates. Thus to first order in
ε, the Hamiltonian of the full 3-body problem decouples into the sum of the
Hamiltonian for the restricted problem and the Hamiltonian of the linearized
equations about the circular solution.

Now look at this problem on the reduced space. Let U = (q1, q2, p1, p2)
and M = ε2 + m1 + m2 = ε2 + 1 (total mass); so, ui = ai − εqi and vi =
−miKai − εpi. The center of mass C, linear momentum L, and angular
momentum A in these coordinates are

C =
1
M
{ε2ξ − ε(m1q1 +m2q2)},

L = ε2η − ε(p1 + p2),

A = ε2ξTKη − (a1 − εq1)TK(m1Ka1 + εp1)− (a2 − εq2)TK(m2Ka2 + εp2).

Note that when ε = 0, these three qualities depend only on the variables of
the 2-body problem, U = (q1, q2, p1, p2), and are independent of the variables
of the restricted problem, ξ, η. So when ε = 0, the reduction is on the 2-body
problem alone.

Look at the reduction of the 2-body problem in rotating coordinates with
masses μ and 1 − μ, and let ν = μ(1 − μ). Fixing the center of mass at the
origin and ignoring linear momentum is done by moving to Jacobi coordinates
which are denoted by (α, β); see Section 7.1. Replace (u, v) with (α, β) to get
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T =
‖β‖2
2ν

− αTKβ − ν

‖α‖ .

Put this problem in polar coordinates (see Section 6.2) to get

T =
1
2ν

(
R2 +

Θ2

r2

)
−Θ − ν

r
,

ṙ =
R

ν
, Ṙ =

Θ2

νr3
− ν

r2
,

θ̇ =
Θ

νr2
− 1, Θ̇ = 0.

The reduction to the reduced space is done by holding the angular momen-
tum, Θ, fixed and ignoring the angle θ (mod out the rotational symmetry).
The distance between the primaries has been chosen as 1; so, the relative
equilibrium must have r = 1; therefore, Θ = ν. The linearization about this
critical point is

ṙ = R/ν, Ṙ = −νr.
This linear equation is a harmonic oscillator with frequency 1 and comes from
the Hamiltonian S = 1

2 (R2/ν + νr2).
In summary, the Hamiltonian of the 3-body problem on the reduced space

when ε = 0 is
HR = G+ S = G+

1
2
(R2/ν + νr2).

Proof. Let ξ = φ(t), η = ψ(t) be a T -periodic solution of the restricted prob-
lem with multipliers 1, 1, τ, τ−1. By assumption τ 
= 1 and T 
= k2π, where k
is an integer. Now ξ = φ(t), η = ψ(t), r = 0, R = 0 is a T -periodic solution
of the system whose Hamiltonian is HR, i.e., the Hamiltonian of the 3-body
problem on the reduced space with ε = 0. The multipliers of this periodic
solution are 1, 1, τ, τ−1, exp(iT ), exp(−iT ). Because T is not a multiple of
2π, exp(±iT) 
= 1, and so this solution is elementary. By Proposition 9.1.1
this solution can be continued into the full problem with ε 
= 0, but small.

9.7 Some Elliptic Orbits

All of the multipliers of the elliptic solutions of the Kepler problem in either
fixed or rotating coordinates are +1, because they are not isolated in an
energy level; see Proposition 8.5.2. Thus there is no hope of using the methods
used previously, however, the restricted problem has a symmetry that when
exploited properly proves that some elliptic orbits can be continued from the
Kepler problem into the restricted problem. The main idea is given in the
following lemma.
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Lemma 9.7.1. A solution of the restricted 3-body problem (9.2) that crosses
the line of syzygy (the x1-axis) orthogonally at a time t = 0 and later at a
time t = T/2 > 0 is T -periodic and symmetric with respect to the line of
syzygy.

Proof. This is an easy consequence of the exercises following Chapter 8.

That is, if x = φ(t), y = ψ(t) is a solution of the restricted problem such that
x2(0) = y1(0) = x2(T/2) = y1(T/2) = 0, where T > 0, then this solution is
T -periodic and symmetric in the x1-axis.

In Delaunay coordinates (, g, L,G) (see Section 7.7), an orthogonal cross-
ing of the line of syzygy at a time t0 is

(t0) = nπ, g(t0) = mπ, n,m integers. (9.11)

These equations are solved using the implicit function theorem to yield the
following theorem.

Theorem 9.7.1. Let m, k be relatively prime integers and T = 2πm. Then
the elliptic T -periodic solution of the Kepler problem in rotating coordinates
that satisfies

(0) = π, g(0) = π, L3(0) = m/k

and does not go through x = (1, 0) can be continued into the restricted problem
for μ small. This periodic solution is symmetric with respect to the line of
syzygy.

Proof. (See Barrar (1965).) The Hamiltonian of the restricted 3-body prob-
lem in Delaunay elements for small μ is

H = − 1
2L2

−G+O(μ),

and the equations of motion are

̇ = 1/L3 +O(μ), L̇ = 0 +O(ε),

ġ = −1 +O(μ), Ġ = 0 +O(ε).
(9.12)

Let L3
0 = m/k, and let (t, Λ, μ), g(t, Λ, μ), L(t, Λ, μ), G(t, Λ, μ) be the solu-

tion that goes through  = π, g = π, L = Λ, G = anything at t = 0; so, it is
a solution with an orthogonal crossing of the line of syzygy at t = 0.

From (9.12) (t, Λ, 0) = t/Λ3 +π, g(t, Λ, 0) = −t+π. Thus (T/2, L0, 0) =
(1 + k)π and g(T/2, L0, 0) = (1−m)π, and so when μ = 0, this solution has
another orthogonal crossing at time T/2 = mπ. Also

det

⎡
⎣
∂/∂t ∂/∂Λ

∂g/∂t ∂g/∂Λ

⎤
⎦

t=T/2,L=L0,μ=0

= det

⎡
⎣
k/m −3π(k4/m)1/3

−1 0

⎤
⎦ 
= 0.

Thus the theorem follows by the implicit function theorem.
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It is not too hard to show that for a fixed m and k, only a finite number
of such elliptic orbits pass through the singularity at the other primary, x =
(1, 0). This rules out a finite number of collision orbits and a finite number
of Gs.

It is only a little more difficult to establish the existence of symmetric
elliptic periodic solutions near a primary as in Section 9.4 (see Arenstorf
(1968)). It is also easy to show the existence of symmetric elliptic periodic
solutions near infinity as in Section 9.5 (see Meyer (1981a)).

Problems

1. Consider a periodic system of equations of the form ẋ = f(t, x, ν) where
ν is a parameter, and f is T -periodic in t, f(t+ T, x, ν) = f(t, x, ν). Let
φ(t, ξ, ν) be the general solution, φ(0, ξ, ν) = ξ.
a) Show that φ(t, ξ′, ν′) is T -periodic if and only if φ(T, ξ′, ν′) = ξ′.
b) A T -periodic solution φ(t, ξ′, ν′) can be continued if there is a smooth

function x̄i(ν) such that ξ̄(ν′) = ξ′, and φ(T, ξ̄(ν′), ν′) is T -periodic.
The multipliers of the T -periodic solution φ(t, ξ′, ν′) are the eigen-
values of ∂φ(T, ξ′, ν′)/∂ξ. Show that a T -periodic solution can be
continued if all of its multipliers are different from +1.

2. Consider the classical Duffing’s equation ẍ+x+γx3 = A cosωt or ẋ = y =
∂H/∂y, ẏ = −x−γx3+A cosωt = −∂H/∂x, where H = (1/2)(y2+x2)+
γx4/4 − Ax cosωt. Show that if 1/ω 
= 0,±1,±2,±3, . . . , then for small
forcing A and small nonlinearity γ there is a small periodic solution of the
forced Duffing’s equation with the same period as the external forcing,
T = 2π/ω. In the classical literature this solution is sometimes referred
to as the harmonic. (Hint: Set the parameters γ and A to zero; then the
equation is linear and solvable. Note that zero is a T -periodic solution).

3. Show that the eigenvalues of
⎡
⎣

0 −1

μ 0

⎤
⎦

are continuous in μ but not smooth in μ.
4. Hill’s lunar problem is defined by the Hamiltonian

H =
‖y‖2

2
− xTKy − 1

‖x‖ −
1
2
(3x2

1 − ‖x‖2),

where x, y ∈ R
2. Show that it has two equilibrium points on the x1 axis.

Linearize the equations of motion about these equilibrium points, and
discuss how Lyapunov’s center and the stable manifold theorem apply.

5. Show that the scaling used in Section 9.4 to obtain Hill’s orbits for the
restricted problem works for Hill’s lunar problem (Problem 4) also. Why
doesn’t the scaling for comets work?
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6. Prove Lemma 9.7.1, and verify that (9.11) is the condition for an orthog-
onal crossing of the line of syzygy in Delaunay elements.



10. Normal Forms

Perturbation theory is one of the few ways that one can bridge the gap be-
tween the behavior of a real nonlinear system and its linear approximation.
Because the theory of linear systems is so much simpler, investigators are
tempted to fit the problem at hand to a linear model without proper justi-
fication. Such a linear model may lead to quantitative as well as qualitative
errors. On the other hand, so little is known about the general behavior of a
nonlinear system that some sort of approximation has to be made.

Many interesting problems can be formulated as a system of equations
that depend on a small parameter ε with the property that when ε = 0 the
system is linear, or at least integrable. This chapter develops a very powerful
and general method for handling the formal aspects of perturbations of linear
and integrable systems, and the next two chapters contain rigorous results
that depend on these formal considerations.

10.1 Normal Form Theorems

In this section the main theorems about the normal form at an equilibrium
and at a fixed point developed in this chapter are summaries without proof.
Upon a first sitting a reader may want read this section, skip the details in
the rest of the chapter, and go on to other topics.

10.1.1 Normal Form at an Equilibrium Point

Consider a Hamiltonian system of the form

H#(x) =
∞∑

i=0

Hi(x). (10.1)

In order to study this system we change coordinates so that the system in the
new coordinates is simpler. The definition of simpler depends on the prob-
lem at hand. In this chapter we construct formal, symplectic, near-identity
changes of variables x = X(y) = y + · · ·, such that in the new coordinates
the Hamiltonian becomes

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 10,
c© Springer Science+Business Media, LLC 2009
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H#(y) =
∞∑

i=0

Hi(y). (10.2)

If the Hamiltonian H# meets the criteria for being simple then the system
is said to be in normal form. It is important to understand the implications
of a formal transformation. Even though the original system (10.1) is a con-
vergent series for x in some domain, the series expansion for the change of
variables X(y) will not converge in general. Thus the series (10.2) does not
necessarily converge. The only way to obtain rigorous results based on this
theory is to truncate the series expansion for X at some finite order to obtain
a finite (hence convergent) series for X. In this case only the first few terms
of H# are in normal form. In general, if the series for X is truncated after
the Nth term then the series for H# will be convergent, but only the terms
up to and including the Nth will be in normal form.

Various methods for transforming a system into normal form have been
given because the middle of the nineteenth century, but we present the
method of Lie transforms because of its great generality and simplicity. The
simplicity of this method is the result of its recursive algorithmic definition
which lends itself to easy computer implementation.

Our first example is the classical theorem on the normal form for a Hamil-
tonian system at a simple equilibrium point. Consider an analytic Hamilto-
nian, H#, which has an equilibrium point at the origin in R

2n, and assume
that the Hamiltonian is zero at the origin. Then H# has a Taylor series ex-
pansion of the form (10.1) where Hi is a homogeneous polynomial in x of
degree i + 2; so, H0(x) = 1

2x
TSx, where S is a 2n × 2n real symmetric ma-

trix, and A = JS is a Hamiltonian matrix. The linearized equation about the
critical point x = 0 is

ẋ = Ax = JSx = J∇H0(x), (10.3)

and the general solution of (10.3) is φ(t, ξ) = exp(At)ξ . A traditional analysis
is to solve (10.3) by linear algebra techniques and then hope that the solutions
of the nonlinear problem are not too dissimilar from the solutions of the linear
equation. In many cases this hope is unjustifiable. The next best thing is to
put the equations in normal form and to study the solutions of the normal
form equations. This too has its pitfalls.

Theorem 10.1.1. Let A be diagonalizable. Then there exists a formal, sym-
plectic change of variables, x = X(y) = y+ · · ·, which transforms the Hamil-
tonian (10.1) to (10.2) where Hi is a homogeneous polynomial of degree i+2
such that

Hi(eAty) ≡ Hi(y), (10.4)

for all i = 0, 1, . . . , all y ∈ R
2n, and all t ∈ R.

For example consider a two degree of freedom system in the case when
the matrix A is diagonalizable and has distinct pure imaginary eigenvalues
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±iω1, ±ω2. In this case we may assume that after a symplectic change of
variables the quadratic terms are

H0(x) =
ω1

2
(x2

1 + x2
3) +

ω2

2
(x2

2 + x2
4) = ω1I1 + ω2I2, (10.5)

where in the second form we use the action–angle coordinates

I1 =
1
2
(x2

1 + x2
3), I2 =

1
2
(x2

2 + x2
4), φ1 = tan−1 x3

x1
, φ2 = tan−1 x4

x2
.

The linear equations (10.3) in action–angle coordinates become

İ1 = 0, İ2 = 0, φ̇1 = −ω1, φ̇2 = −ω2.

The condition (10.4) requires the terms in the normal form to be constant
on the solutions of the above equations. These equations have as solutions
I1 = I01 and I2 = I02 where I01 and I02 are constants. I1 = I01 and I2 = I02
where I01 > 0 and I02 > 0 defines a 2-torus with angular coordinates φ1 and
φ2. This type of flow on a torus was discussed in detail in Section 1.9.

There are two cases depending on whether the ratio ω1/ω2 is rational
or irrational. In the case when the ratio is irrational the flow on the torus
defined by the equations above is dense on the torus and so the only con-
tinuous functions defined on the torus are constants, therefore, the terms in
the normal form will depend only on the action variables I1, I2. On the other
hand, if the ratio is rational, say ω1/ω2 = p/q, then the terms in the normal
form may contain a dependence on the single angle ψ = qφ1 − pφ2.

Thus: If H0 in (10.1) is of the form (10.5) then the normal form for the
system is

H# =
∞∑

i=0

Hi(I1, I2)

when the ratio ω1/ω2 is irrational, and

H# =
∞∑

i=0

Hi(I1, I2, qφ1 − pφ2)

when ω1/ω2 = p/q.
This covers the normal form at the equilibrium point L4 of the restricted

3-body problem when 0 < μ < μ1. A multitude of interesting stability and
bifurcation results follow from simple inequalities on a finite number of terms
in this normal form.

In the case where the matrix A is not diagonalizable the only change in
the statement of Theorem 10.1.1 is that the condition (10.4) is replaced by

Hi(eA
T ty) ≡ Hi(y),

where AT is the transpose of A.
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Consider a two degree of freedom Hamiltonian system at an equilibrium
point when the exponents are ±iω with multiplicity two and the linearized
system is not diagonalizable. The normal form for the quadratic part of such
a Hamiltonian was given as

H0 = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2),

where ω 
= 0 and δ = ±1. In this case

A =

⎡
⎢⎢⎣

0 ω 0 0
−ω 0 0 0
−δ 0 0 ω

0 −δ −ω 0

⎤
⎥⎥⎦ .

The normal form in this case depends on the four quantities

Γ1 = x2y1 − x1y2, Γ2 = 1
2 (x2

1 + x2
2),

Γ3 = 1
2 (y2

1 + y2
2), Γ4 = x1y1 + x2y2.

Note that {Γ1, Γ2} = 0 and {Γ1, Γ3} = 0. The system is in Sokol’skii normal
form if the higher-order terms depend on the two quantities Γ1 and Γ3, that
is, the Hamiltonian is of the form

H# = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2) +

∞∑
k=1

H2k(x2y1 − x1y2, y
2
1 + y2

2),

where H2k is a polynomial of degree k in two variables. The first few terms
of this normal form determine the nature of the stability and bifurcations at
the equilibrium point L4 of the restricted problem when μ = μ1.

10.1.2 Normal Form at a Fixed Point

The study of the stability and bifurcation of a periodic solution of a Hamil-
tonian system of two degrees of freedom can be reduced to the study of
the Poincaré map in an energy level (i.e., level surface of the Hamiltonian).
Sometimes the value of the Hamiltonian must be treated as a parameter.

Consider a diffeomorphism of the form

F# : N ⊂ R
2 → R

2 : x→ f(x), (10.6)

where N is a neighborhood of the origin in R
2, and f is a smooth function

such that
f(0) = 0, det

∂f

∂x
(x) ≡ 1.

The origin is a fixed point for the diffeomorphism because f(0) = 0, and it is
orientation-preserving and area-preserving because det ∂f/∂x ≡ 1. This map
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should be considered as the Poincaré map associated with a periodic solution
of a two degree of freedom Hamiltonian system.

The linearization of this map about the origin is x→ Ax where A is the
2×2 matrix (∂f/∂x)(0). Because the determinant of A is 1 the product of its
eigenvalues must be 1. The eigenvalues λ, λ−1 of A are called the multipliers
of the fixed point. There are basically four cases:

1. Hyperbolic fixed point: multipliers real and λ 
= ±1
2. Elliptic fixed point: multipliers complex conjugates and λ 
= ±1
3. Shear fixed point: λ = +1, A not diagonalizable
4. Flip fixed point: λ = −1, A not diagonalizable

As before in order to study an area-preserving map we can change coor-
dinates so that the map in the new coordinates is simpler. Here we consider
a formal symplectic, near-identity change of variables x = X(y) = y + · · ·,
such that in the new coordinates the map (10.6) becomes

F# : y → g(y). (10.7)

If the map F# meets the criteria for being simple then the map is said to
be in normal form. It is important to understand the implications of a formal
transformation. Even though the original system (10.6) is a convergent series
for x in some domain, the series expansion for the change of variables X(y)
will not converge in general. Thus the series (10.7) does not converge in
general. The only way to obtain rigorous results based on this theory is to
truncate the series expansion for X at some finite order to obtain a finite
(hence convergent) series for X. In this case only the first few terms of F#

will be in normal form. In general, if the series for X is truncated after the
Nth term then the series for F# will be convergent, but only the terms up
to and including the Nth will be in normal form.

Hyperbolic fixed point. In the hyperbolic case after a change of variables
we may assume that

A =
[
λ 0
0 λ−1

]
,

with λ 
= ±1 and real. The mapping (10.7) is in normal form with F# :
(u, v) → (u′, v′) where y = (u, v) with

u′ = u(uv)

v′ = v(uv)−1,

where  is a formal series in one variable, (uv) = λ+ · · ·.
The map takes the hyperbolas uv = constant into themselves. The trans-

formation to normal form actually converges by a classical theorem of Moser
(1956).

Elliptic fixed point. In the elliptic case when λ is a complex number of
unit modulus certain reality conditions must be met. Consider the case when
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A has eigenvalues λ±1 = exp(±ωi) 
= ±1; i.e., the origin is an elliptic fixed
point. First assume that λ is not a root of unity. Change to action–angle
variables (I, φ); The normal form in action–angle variables in this case is
F# : (I, φ) → (I ′, φ′) where

I ′ = I, φ′ = φ+ (I),

where  has a formal expansion (I) = −ω+ βI · · ·. If a diffeomorphism is in
this form with β 
= 0, then the origin is called a general elliptic point, or F#

is called a twist map. This map takes circles, I = const, into themselves and
rotates each circle by an amount (I).

Now consider the case when the diffeomorphism has an elliptic fixed point
whose multiplier is a root of unity. Let λ be a kth root of unity; so, λk = 1,
k > 2, and λ = exp(h2πi/k), where h is an integer. The origin is called
a k-resonance elliptic point in this case. The normal form in action–angle
variables in this case is F# : (I, φ) → (I ′, φ′) where

I ′ = I + 2αIk/2 sin(kφ) + · · · ,

φ′ = φ+ (2πh/k) + αI(k−2)/2 cos(kφ) + βI + · · · .
(10.8)

Shear fixed point. Consider the cases where the multiplier is +1. If A = I,
the identity matrix, the system is so degenerate that there is no normal form
in general. Otherwise, by a coordinate change we have

A =
[

1 ±1
0 1

]
. (10.9)

The important terms of the normal form F# : (u, v) → (u′, v′) are

u′ = u± v − · · · ,

v′ = v − βu2 + · · · .
(10.10)

The ellipsis may contain other quadratic terms and higher-order terms.
Flip periodic point. Now consider the case when A has eigenvalue −1. In

this case the generic form for A is

A =
[
−1 ±1
0 −1

]
.

The quadratic terms can be eliminated and the important terms of the normal
form F# : (u, v) → (u′, v′) are

u′ = −u− v + · · · ,

v′ = −v + βu3 + · · · .
(10.11)

The ellipsis may contain other cubic terms and higher-order terms.
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10.2 Forward Transformations

One of the most general methods of mathematics is to simplify a problem
by a change of variables. The method of Lie transforms developed by Deprit
(1969) and extended by Kamel (1970) and Henrard (1970b) is a general
procedure to change variables in a system of equations that depend on a
small parameter. Deprit’s original method was for Hamiltonian systems only,
but the extensions by Kamel and Henrard handle non-Hamiltonian equations.
Only the Hamiltonian case is treated here.

10.2.1 Near-Identity Symplectic Change of Variables

The general idea of this method is to generate a symplectic change of variables
depending on a small parameter as the general solution of a Hamiltonian
system of differential equations; see Theorem 6.1.2. X(ε, y) is said to be
a near-identity symplectic change of variables (or transformation ), if X is
symplectic for each fixed ε and is of the formX(ε, y) = y+O(ε); i.e.,X(0, y) =
y. Because X(0, y) = y, ∂X(ε, y)/∂y is nonsingular for small ε so by the
inverse function theorem, the map y → X(ε, y) has a differentiable inverse
for small ε. Both X and its inverse are symplectic for fixed ε.

Consider the nonautonomous Hamiltonian system

dx

dε
= J∇W (ε, x) (10.12)

and the initial condition
x(0) = y, (10.13)

where W is smooth. The basic theory of differential equations asserts that
the general solution of this problem is a smooth function X(ε, y) such that
X(0, y) ≡ y, and by Theorem 6.1.2, the function X is symplectic for fixed
ε. That is, the differential equation (10.12) and the initial condition (10.13)
define a near-identity symplectic change of variables.

Conversely, let X(ε, y) be a near-identity symplectic change of variables
with inverse function Y (ε, x) such that X(ε, Y (ε, x)) ≡ x and Y (ε,X(ε, y)) ≡
y where defined. Y is symplectic too. Differentiating Y (ε,X(ε, y)) ≡ y with
respect to ε yields

∂Y

∂x
(ε,X(ε, y))

∂X

∂ε
(ε, y) +

∂Y

∂ε
(ε,X(ε, y)) ≡ 0

or
∂X

∂ε
(ε, y) ≡

[
∂Y

∂x
(ε,X(ε, y))

]−1
∂Y

∂ε
(ε,X(ε, y)).

This means that X(ε, y) is the general solution of

dx

dε
= U(ε, x), where U(ε, x) =

[
∂Y

∂x
(ε, x)

]−1
∂Y

∂ε
(ε, x).
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This equation is Hamiltonian so, there is a function W (ε, x) such that
U(ε, x) = J∇W (ε, x). This proves the following.

Proposition 10.2.1. X(ε, y) is a near-identity symplectic change of vari-
ables if and only if it is the general solution of a Hamiltonian differential
equation of the form (10.12) satisfying initial condition (10.13).

A Hamiltonian system of equations generates symplectic transformations di-
rectly, which is in contrast to the symplectic transformations given by the
generating functions in Theorem 6.2.1, where the new and old variables are
mixed.

10.2.2 The Forward Algorithm

Let X(ε, y), Y (ε, x), and W (ε, x) be as above; so, X(ε, y) is the solution
of (10.12) satisfying (10.13). Think of x = X(ε, y) as a change of variables
x → y that depends on a parameter. Throughout this chapter, when we
change variables, we do not change the parameter ε.

Let H(ε, x) be a Hamiltonian and G(ε, y) ≡ H(ε,X(ε, y)); so, G is the
Hamiltonian H in the new coordinates. We call G the Lie transform of H
(generated by W ). Sometimes H is denoted by H∗ and G by H∗, and some-
times G is denoted by L(W )H to show that G is the Lie transform of H
generated by W . Let the function H = H∗, G = H∗, and W all have series
expansions in the small parameter ε. The forward algorithm of the method
of Lie transforms is a recursive set of formulas that relate the terms in these
various series expansions.

In particular let

H(ε, x) = H∗(ε, x) =
∞∑

i=0

(
εi

i!

)
H0

i (x), (10.14)

G(ε, y) = H∗(ε, y) =
∞∑

i=0

(
εi

i!

)
Hi

0(y), (10.15)

W (ε, x) =
∞∑

i=0

(
εi

i!

)
Wi+1(x). (10.16)

The method of Lie transforms introduces a double indexed array {Hi
j}, i, j =

0, 1, . . . which agrees with the definitions given in (10.14) and (10.15) when
either i or j is zero. The other terms are intermediary terms introduced to
facilitate the computation.

Theorem 10.2.1. Using the notation given above, the functions {Hi
j}, i =

1, 2, . . . , j = 0, 1, . . . satisfy the recursive identities

Hi
j = Hi−1

j+1 +
j∑

k=0

(
j
k

)
{Hi−1

j−k,Wk+1}. (10.17)
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Remarks. The above formula contains the standard binomial coefficient
(
j
k

)
=

j!
k!(j − k)! .

Note that because the transformation generated by W is a near identity
transformation, the first term inH∗ andH∗ is the same, namelyH0

0 . Also note
that the first term in the expansion for W starts with W1. This convention
imparts some nice properties to the formulas in (10.17). Each term in 10.17
has indices summing to i+j, and each term on the right-hand side has upper
index i− 1.

In order to construct the change of variables X(ε, y), note that X is the
transform of the identity function or X(ε, y) = L(W )(id), where id(x) = x.

The interdependence of the functions {Hi
j} can easily be understood by

considering the Lie triangle

H0
0

↓
H0

1 → H1
0

↓ ↓
H0

2 → H1
1 → H2

0 .
↓ ↓ ↓

The coefficients of the expansion of the old function H∗ are in the left column,
and those of the new function H∗ are on the diagonal. Formula (10.17) states
that to calculate any element in the Lie triangle, you need the entries in the
column one step to the left and up.

For example, to compute the series expansion for H∗ through terms of
order ε2, you first compute H1

0 by the formula

H1
0 = H0

1 + {H0
0 ,W1}, (10.18)

which gives the term of order ε, and then you compute

H1
1 = H0

2 + {H0
1 ,W1}+ {H0

0 ,W2},

H2
0 = H1

1 + {H1
0 ,W1}.

Then H∗(ε, x) = H0
0 (x) +H1

0 (x)ε+H2
0 (x)(ε2/2) + · · · .

Proof. (Theorem 10.2.1) Recall that H∗(ε, y) = G(ε, y) = H(ε,X(ε, y)),
where X(ε, y) is the general solution of (10.12). Define the differential op-
erator D = DW by

DF (ε, x) =
∂F

∂ε
(ε, x) + {F,W}(ε, x),

so that
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d

dε

(
F (ε, x)

∣∣∣
x=X(ε,y)

)
= DF (ε, x)

∣∣∣
x=X(ε,y)

.

Define new functions by H0 = H, Hi = DHi−1, i ≥ 1. Let these functions
have series expansions

Hi(ε, x) =
∞∑

k=0

(
εk

k!

)
Hi

k(x)

so,

Hi(ε, x) = D
∞∑

k=0

(
εk

k!

)
Hi−1

k (x)

=
∞∑

k=1

(
εk−1

(k − 1)!

)
Hi−1

k (x) +

{ ∞∑
k=0

(
εk

k!

)
Hi−1

k (x),
∞∑

s=0

Ws+1

}

=
∞∑

j=0

(
εj

j!

)(
Hi−1

j+1 +
j∑

k=0

(
j
k

)
{Hi−1

j−k,Wk+1}
)
.

So the functions Hi
j are related by (10.17). It remains to show that H∗ = G

has the expansion (10.15). By the above and Taylor’s theorem

G(ε, y) =
∞∑

n=0

(
εn

n!

)
dn

dεn
G(ε, y)

∣∣∣
ε=0

=
∞∑

n=0

(
εn

n!

)
dn

dεn

(
H(ε, x)

∣∣∣
x=X(ε,y)

)

ε=0

=
∞∑

n=0

(
εn

n!

)(
DnH(ε, x)

∣∣∣
x=X(ε,y)

)

ε=0

=
∞∑

n=0

(
εn

n!

)
Hn

0 (y).

10.2.3 The Remainder Function

Assume now that the Hamiltonian and hence the equations are time depen-
dent; i.e., consider

ẋ = J∇H(ε, t, x), (10.19)

where H has an expansion
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H(ε, t, x) = H∗(ε, t, x) =
∞∑

i=0

(
εi

i!

)
H0

i (t, x). (10.20)

Make a symplectic change of coordinates, x = X(ε, t, y), which transforms
(10.19) to the Hamiltonian differential equation

ẏ = J∇G(ε, t, y) + J∇R(ε, t, y) = J∇K(ε, t, y),

where G(ε, t, y) = H∗(ε, t, y) = H(ε, t,X(ε, t, y)) is the Lie transform of H,
R is the remainder function, and K = G+R is the new Hamiltonian. Let G,
R, and K have series expansions of the form

G(ε, t, y) =
∞∑

i=0

(
εi

i!

)
Hi

0(t, y), R(ε, t, y) =
∞∑

i=0

(
εi

i!

)
Ri

0(t, y)

K(ε, t, y) =
∞∑

i=0

(
εi

i!

)
Ki

0(t, y).

Let the symplectic change of variables X(ε, t, y) be the general solution of
the Hamiltonian system of equations

dx

dε
= J∇W (ε, t, x), x(0) = y,

whereW (ε, t, x) is a Hamiltonian function with a series expansion of the form

W (ε, t, x) =
∞∑

i=0

(
εi

i!

)
Wi+1(t, x).

The variable t is simply a parameter, and so the function G = H∗ can be
computed by formulas (10.17) in Theorem 10.2.1 using the Lie triangle as a
guide. The remainder term R needs further consideration.

Theorem 10.2.2. The remainder function is given by

R(ε, t, y) = −
∫ ε

0

L(W )
(
∂W

∂t

)
(s, t, y)ds. (10.21)

Proof. Making the symplectic change of variable x = X(ε, t, y) in (10.19)
directly gives

ẏ =
(
∂X

∂y

)−1

(ε, t, y)J∇xH(ε, t,X(ε, t, y))−
(
∂X

∂y

)−1

(ε, t, y)
∂X

∂t
(ε, t, y).

By the discussion in Section 6.1 the first term on the right-hand side is J∇G,
and so,
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J∇R(ε, t, y) = −
(
∂X

∂y
(ε, t, y)

)−1
∂X

∂t
(ε, t, y).

A(ε) = ∂X(ε, t, y)/∂y is the fundamental matrix solution of the variational
equation; i.e., it is the matrix solution of

dA

dε
=
(
J
∂2W

∂x2
(ε, t,X(ε, t, y))

)
A, A(0) = I.

Differentiating ∂X(ε, t, y)/∂ε = J∇W (ε, t,X(ε, t, y)) with respect to t shows
that B(ε) = ∂X(ε, t, y)/∂t satisfies

dB

dε
=
(
J
∂2W

∂x2
(ε, t,X(ε, t, y))

)
B + J

∂2W

∂x∂t
(ε, t,X(ε, t, y)).

Because X(0, t, y) ≡ y, B(0) = 0, and so, by the variation of constants
formula,

B(ε) =
∫ ε

0

A(ε)A(s)−1J
∂2W

∂x∂t
(s, t,X(s, t, y))ds;

therefore,

J∇R(ε, t, y) = −
(
∂X

∂y
(ε, t, y)

)−1
∂X

∂t
(ε, t, y) = −A(ε)−1B(ε)

= −
∫ ε

0

A(s)−1J
∂2W

∂x∂t
(s, t,X(s, t, y))ds

= −
∫ ε

0

JA(s)T ∂
2W

∂x∂t
(s, t,X(s, t, y))ds

= −J ∂
∂y

∫ ε

0

∂W

∂t
(s, t,X(s, t, y))ds

= −J ∂
∂y

∫ ε

0

L(W )
(
∂W

∂t

)
(s, t, y)ds.

In the above, the fact that A is symplectic is used to make the substitution
A−1J = JAT .

Thus, to compute the remainder function, first compute the transform
of −∂W/∂t, and then integrate it. That is, let S∗(ε, t, x) =

∑
(εi/i!)S0

i (t, x),
where S0

i (t, x) = −∂Wi−1(t, x)/∂t. Compute the Lie transform of S∗ by the
previous algorithms to get L(W )(S) = S∗(ε, t, x) =

∑
(εi/i!)Si

0(t, x). Then
Ri

0 = Si−1
0 .

For example, to compute the series expansion for K = G + R, the new
Hamiltonian, through terms of order ε2, set K0

0 = H0
0 , then compute K1

0 by
the formulas
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H1
0 = H0

1 + {H0
0 ,W1}, R1

0 = −∂W1

∂t
, K1

0 = H1
0 +R1

0,

which gives the term of order ε, and then compute

H1
1 = H0

1 + {H0
1 ,W1}+ {H0

0 ,W2}, H2
0 = H1

1 + {H1
0 ,W1},

R2
0 = −∂W2

∂t
−
{
∂W1

∂t
,W1

}
, K2

0 = H2
0 +R2

0.

Then K∗(ε, x) = K0
0 (x) + εK1

0 (x) + ε2

2 K
2
0 (x) + · · ·.

10.3 The Lie Transform Perturbation Algorithm

In many of the cases of interest, the Hamiltonian is given, and the change
of variables is sought to simplify it. When the Hamiltonian, and hence the
equations, are in sufficiently simple form, they are said to be in “normal
form,” an expression whose meaning is discussed in detail later.

10.3.1 Example: Duffing’s Equation

In (6.15) the Hamiltonian of Duffing’s equation was given as

H =
1
2
(q2 + p2) +

γ

4
q4 (10.22)

in rectangular coordinates, (q, p), and in action–angle variables, (I, φ), it was
given as

H = I +
γ

8
I2(3 + 4 cos 2φ+ cos 4φ). (10.23)

The Hamiltonian is analytic in rectangular coordinates, and so has the
d’Alembert character. Consider γ as a small parameter by setting ε = γ/8;
so, H(ε, I, φ) = H∗(ε, I, φ) = H0

0 (I, φ) + εH0
1 (I, φ), where

H0
0 = I, H0

1 = I2(3 + 4 cos 2φ+ cos 4φ).

By formula (10.18),
H1

0 = H0
1 + {H0

0 ,W1};
so,

H1
0 = I2(3 + 4 cos 2φ+ cos 4φ)− ∂W1

∂φ
.

Choose W1 so that H1
0 contains as few terms as possible (one definition of

normal form). For the transformation generated by W1 to be analytic in
rectangular coordinates, W must be a Poisson series with the d’Alembert
character. Thus the simplest form for H1

0 is
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H1
0 = 3I2,

which is accomplished taking

W1 = I2(2 sin 2φ+
1
4

sin 4φ).

With this W1, the Hamiltonian in the new coordinates, (J, θ), would be

H∗(ε, J, θ) = J +
3γ
8
J2 +O(γ2),

and the equations of motion would be

J̇ = O(γ2), θ̇ = −1− 3γ
4
J +O(γ2).

In these coordinates, up to terms O(γ2), the solutions move on circles J =
constant with uniform angular frequency −1− (3γ/4)J .

Let us do this simple example again, but this time in complex coordinates
z = q + ip, z̄ = q − ip. This change of variables is symplectic with multiplier
2i; so, the Hamiltonian becomes

H(z, z̄) = izz̄ +
γi

32
(z4 + 4z3z̄ + 6z2z̄2 + 4zz̄3 + z̄4).

H is real in the rectangular coordinates (q, p), so H is conjugated by inter-
changing z and z̄; i.e., H(z, z̄) = H(z̄, z). This is the reality condition in these
variables. Let ε = γ/32 and

H0
0 = izz̄, H0

1 = i(z4 + 4z3z̄ + 6z2z̄2 + 4zz̄3 + z̄4);

so Equation (10.18) becomes

H1
0 = i(z4 + 4z3z̄ + 6z2z̄2 + 4zz̄3 + z̄4) +

1
2

(
z
∂W

∂z
− z̄ ∂W

∂z̄

)
.

Try W = azαz̄β ; then (z∂W/∂z + z̄∂W/∂z̄)/2 = a(α− β)zαz̄β/2; so, all the
terms in H0

1 can be eliminated except those with α = β. That is, if we take

W = −i(z4/2 + 4z3z̄ − 4zz̄3 − z̄4/2),

then
H∗ = H0

0 +H0
1 = izz̄ + (3γi/16)(zz̄)2 +O(ε2).

Notice that both W and H∗ satisfy the reality condition and so are real
functions in the original coordinates (q, p). The two methods of solving the
problem (action–angle variables and complex variables) give the same results
when written in rectangular coordinates.
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10.3.2 The General Algorithm

The main Lie transform algorithm starts with a given Hamiltonian that de-
pends on a small parameter ε, and constructs a change of variables so that
the Hamiltonian in the new variables is simple. The algorithm is built around
the following observation.

Consider the HamiltonianH∗(ε, x) with series expansion as given in Equa-
tion (10.14); so, all the H0

i are known. Assume that all the entries in the Lie
triangle are known down to the Nth row; so, the Hi

j are known for i+j ≤ N ,
and assume that the Wi are known for i ≤ N . Let Li

j , i+j ≤ N , be computed
from the same initial Hamiltonian, but with U1, . . . , UN where Ui = Wi for
i = 1, 2, . . . , N − 1 and UN = 0. Then

Hi
j = Li

j for i+ j < N

Hi
j = Li

j + {H0
0 ,WN} for i+ j = N.

(10.24)

This is easily seen from the recursive formulas in Theorem 10.2.1. Recall the
remark that the sum of all the indices must add to the row number; so, WN

does not affect the terms in the first N − 1 rows. The second equation in
(10.24) follows from a simple induction across the Nth row.

From this observation, the algorithm is as follows. Assume all the rows
in the Lie triangle have been computed down to the (N − 1)st row, that
W1, . . . ,WN−1 have been determined, and that the terms H1

0 , . . . , H
N−1
0 are

in normal form; i.e., simple in some sense. Now it is time to compute WN so
that HN

0 is in normal form. To compute the Nth row do the following.
Step 1: Compute the Nth row from the formulas in Theorem 10.2.1 assuming
that WN = 0, and call these terms Li

j , i+ j = N .

Step 2: Solve the equation HN
0 = LN

0 + {H0
0 ,WN} for WN and HN

0 , so that
HN

0 is in normal form or simple.
Step 3: Add {H0

0 ,WN} to each term in the Nth row; i.e., calculate Hi
j =

Li
j + {H0

0 ,WN} for all i+ j = N .
Step 4: Repeat for the next row.

Of course the definition of normal form and simple depends on the equa-
tion HN

0 = LN
0 + {H0

0 ,WN}, which in turn depends on H0
0 . This equation is

called the Lie equation or the homology equation.

10.3.3 The General Perturbation Theorem

The algorithm can be used to prove a general theorem that includes almost
all applications. Use the notation of Section 10.2.

Theorem 10.3.1. Let {Pi}∞i=0, {Qi}∞i=1, and {Ri}∞i=1 be sequences of linear
spaces of smooth functions defined on a common domain O in R

2n with the
following properties.
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1. Qi ⊂ Pi, i = 1, 2, . . . .
2. H0

i ∈ Pi, i = 0, 1, 2, . . . .
3. {Pi,Rj} ⊂ Pi+j , i+ j = 1, 2, . . . .
4. for any D ∈ Pi, i = 1, 2, . . . , there exist B ∈ Qi and C ∈ Ri such that

B = D + {H0
0 , C}. (10.25)

Then there exists a W with a formal Hamiltonian of the form (10.16) with
Wi ∈ Ri, i = 1, 2, . . . , which generates a near-identity symplectic change of
variables x→ y such that the Hamiltonian in the new variables has a series
expansion given by (10.15) with Hi

0 ∈ Qi, i = 1, 2, . . ..

Remarks. The Lie equation (10.25) is the heart of a perturbation prob-
lem. H0

0 defines the unperturbed system when ε = 0, so it is supposed to
be well understood. For example, it might be the harmonic oscillator or the
2-body problem. Equation (10.25) can be rewritten

B = D + F(C)

where F = {H0
0 , ·} is a linear operator on functions. One must analyze this

operator to determine in what linear spaces the equation (10.25) is solv-
able. Roughly speaking the Hamiltonian (10.14) starts with terms in the
P-spaces (H0

i ∈ Pi), and the equation in normal form has terms in the Q-
space (Hi

0 ∈ Qi). The Q-spaces are smaller than the P-spaces (Qi ⊂ Pi). So
the normal form is “simpler.” The transformation is generated by a Hamil-
tonian differential equation with Hamiltonian W in the R-spaces (Wi ∈ Ri).
D is an old term, B is a new term, and C is a generator.

Proof. Use induction on the rows of the Lie triangle.
Induction hypothesis In: Let Hi

j ∈ Pi+j for 0 ≤ i+ j ≤ n and Wi ∈ Ri,H
i
0 ∈

Qi for 1 ≤ i ≤ n.
I0 is true by assumption, and so assume In−1. By Equation (10.17)

H1
n−1 = H0

n +
n−2∑
k=0

(
n− 1
k

)
{H0

n−1−k,Wk+1}+ {H0
0 ,Wn}.

The last term is singled out because it is the only term that contains an ele-
ment,Wn, which is not covered by the induction hypothesis or the hypothesis
of the theorem. All the other terms are in Pn by In−1 and (3). Thus

H1
n−1 = E1 + {H0

0 ,Wn},

where E1 ∈ Pn is known. A simple induction on the columns of the Lie
triangle using (10.17) shows that

Hs
n−s = Es + {H0

0 ,Wn},
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where Es ∈ Pn for s = 1, 2, . . . , n, and so

H0
n = En + {H0

0 ,Wn}.

By (4), solve for Wn ∈ Rn and Hn
0 ∈ Qi. Thus In is true.

The theorem given above is formal in the sense that the convergence of
the various series is not discussed. In interesting cases the series diverge, but
useful information can be obtained in the first few terms of the normal form.
One can stop the process at any order N to obtain a W that is a polynomial
in ε and so converges. From the proof given above, it is clear that the terms
in the series for H∗ up to order N are unaffected by the termination. Thus
the more useful form of Theorem 10.3.1 is the following.

Corollary 10.3.1. Let N ≥ 1 be given, and let {Pi}N
i=0, {Qi}N

i=1, and
{Ri}N

i=1 be sequences of linear spaces of smooth functions defined on a com-
mon domain O in R

2n with the following properties.

1. Qi ⊂ Pi, i = 1, 2, . . . , N .
2. H0

i ∈ Pi, i = 0, 1, 2, . . . , N .
3. {Pi,Rj} ⊂ Pi+j , i+ j = 1, 2, . . . , N .
4. For any D ∈ Pi, i = 1, 2, . . . , N , there existB ∈ Qi and C ∈ Ri such that

B = D + {H0
0 , C}. (10.26)

Then there exists a polynomial W ,

W (ε, x) =
N−1∑
i=0

(
εi

i!

)
Wi+1(x), (10.27)

with Wi ∈ Ri, i = 1, 2, . . . , N , such that the change of variables x = X(ε, y)
where X(ε, y) is the general solution of dx/dε = J∇W (ε, x), x(0) = y, trans-
forms the convergent Hamiltonian

H(ε, x) = H∗(ε, x) =
∞∑

i=0

(
εi

i!

)
H0

i (x) (10.28)

to the convergent Hamiltonian

G(ε, x) = H∗(ε, y) =
N∑

i=0

(
εi

i!

)
Hi

0(y) +O(εN+1), (10.29)

with Hi
0 ∈ Qi, i = 1, 2, . . . , N.

The nonautonomous case. In the nonautonomous case, the algorithm is
slightly different. The remainder function, R(ε, t, y), is the indefinite integral
of S∗(ε, t, y), where S∗(ε, t, y) = −L(W )(∂W/∂t)(s, t, y), the Lie transform
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of S∗ = −∂W/∂t. One constructs two Lie triangles, one for the Hamiltonian
H and one for the function S. Because R is the indefinite integral of S∗, if
you want the new Hamiltonian up to terms of order εN , then you need all
the Lie triangle for H∗ down to the Nth row, but only down to the (N −1)st
for S. One simply works down the two triangles together, but with the S
triangle one row behind.

Assume that all the entries in the Lie triangle for H are known down to
the Nth row (Hi

j , i + j ≤ N) and that all the entries in the Lie triangle for
S∗ are known down to the (N − 1)st row (Si

j , i + j ≤ N − 1) using the Wi

for i ≤ N . Let Gi
j , i + j ≤ N , be computed from the same Hamiltonian; so,

G0
i = H0

i for all i, but with U1, . . . , UN , where Ui = Wi for i = 1, 2, . . . , N−1
and UN = 0. Let Qi

j be the terms in the Lie triangle for the remainder using
the U ′

is. Then

Hi
j = Gi

j for i+ j < N, Si
j = Qi

j for i+ j < N − 1,

Hi
j = Gi

j + {H0
0 ,WN} for i+ j = N, Si

j = Qi
j −

∂WN

∂t
for i+ j = N − 1.

(10.30)
This is easily seen from the recursive formulas in Theorem 10.2.1.

From this observation, the algorithm is as follows. Assume that all the
rows in the Lie triangle for H have been computed down to the (N − 1)st
row, that all the rows in the Lie triangle for S∗ have been computed down
to the (N − 2)nd row and that W1, . . . ,WN−1 have been determined, and
that the H1

0 , . . . , H
N−1
0 are in normal form. Now it is time to compute WN

so that HN
0 is in normal form.

Step 1: Compute the Nth row for H and the (N −1)st row for the remainder
assuming that WN = 0, and call these terms Gi

j , i+ j = N , and Qi
j , i+ j =

N − 1, respectively.
Step 2: Solve the equation HN

0 = GN
0 + QN−1

0 + {H0
0 ,WN} − ∂WN/∂t for

WN and HN
0 so that HN

0 is in normal form or simple.
Step 3: Add {H0

0 ,WN} to each term in the Nth row for H, and add ∂WN/∂t
to each term in the (N − 1)st row for S.
Step 4: Repeat.

The nonautonomous version of Theorem 10.3.1 is as follows.

Theorem 10.3.2. Let {Pi}∞i=0, {Qi}∞i=1, and {Ri}∞i=1 be sequences of linear
spaces of smooth functions defined on a common domain O in R

1×R
2n. Let

Ṙi be the space of all derivatives of functions in Ri. Assume the following:

1. Qi ⊂ Pi, i = 1, 2, . . . .
2. H0

i ∈ Pi, i = 0, 1, 2, . . . .
3. {Pi,Rj} ⊂ Pi+j and {Pi, Ṙj} ⊂ Pi+j. for i+ j = 1, 2, . . . .
4. For any D ∈ Pi, i = 1, 2, . . ., there exists B ∈ Qi and C ∈ Ri such that
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B = D + {H0
0 , C} −

∂C

∂t
. (10.31)

Then there exists a W with a formal Hamiltonian of the form (10.16) with
Wi ∈ Ri, i = 1, 2, . . ., that generates a near-identity symplectic change of
variables x→ y such that the Hamiltonian in the new variables has a series
expansion given by (10.15) with Hi

0 ∈ Qi, i = 1, 2, . . . .

Duffing’s equation revisited. Consider the Hamiltonian (10.23) of Duff-
ing’s equation as written in action–angle variables. The operator {H0

0 , C} =
∂C/∂φ is very simple to understand. Equation (10.31) becomes

B = D +
∂C

∂φ
.

If D is a finite Poisson series with d’Alembert character, then by taking B to
be the term of D that is independent of the angle φ and C =

∫
(B−D)dφ,B

and C satisfy this equation. This leads us to the following definitions of the
spaces.

Let Pi be the space of all finite Poisson series with d’Alembert character
corresponding to homogeneous polynomials of degree 2i + 2 in rectangular
coordinates. So an element in Pi is of the form Ii+1 times a finite Fourier
series in φ. Let Qi be the space of all polynomials of the form AIi+1, where
A is a constant. Let Ri be the subspace of Pi of Poisson series without a
term independent of φ. So Pi = Qi ⊕ Ri. Because the Poisson bracket of
homogeneous polynomials of degree 2i+ 2 and degree 2j + 2 is a polynomial
of degree 2(i+j)+2, and because symplectic changes of coordinates preserve
Poisson brackets, we have {Pi,Rj} ⊂ Pi+j . Thus by Corollary 10.3.1, there
exists a formal, symplectic transformation that transforms the Hamiltonian
of Duffing’s equation into the form

H∗(ε, J) =
∞∑

i=0

(
εi

i!

)
Hi

0(J)

and the equations of motion become

J̇ = 0, φ̇ = −∂H
∂φ

(ε, J) = −ω(ε, J).

Thus formally, the solutions move on circles with a uniform frequency
ω(ε, J), which depends on ε and J . By the theorems of Poincaré (1885) and
Rüssman (1959) the series converges in this simple case.

Uniqueness of normal forms: One of the important special cases where
Theorem 10.3.1 applies is when the operator Fi = {H0

0 , ·} : Pi → Pi is
simple; i.e., when Pi = Qi ⊕ Ri, Qi = kernel (Fi), and Ri = range (Fi). In
this case, the Lie equation (10.25) has a unique solution. This is not enough
to assure uniqueness of the normal form. One needs one extra condition.
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Theorem 10.3.3. Let {Pi}∞i=0, be sequences of linear spaces of smooth func-
tions defined on a common domain O in R

2n. Let Fi = {H0
0 , ·} : Pi → Pi be

simple; so, Pi = Qi ⊕Ri, Qi = kernel(Fi), Ri = range (Fi). Assume

1. H0
i ∈ Pi, i = 0, 1, 2, . . . .

2. {Pi,Rj} ⊂ Pi+j , i+ j = 1, 2, . . . .

Then there exists a W with a formal expansion of the form (10.16) with Wi ∈
Ri, i = 1, 2, . . ., such that W generates a near-identity symplectic change of
variables x → y which transforms the Hamiltonian H∗(ε, x) with the formal
series expansion given in Equation (10.14) to the Hamiltonian H∗(ε, y) with
the formal series expansion given by Equation (10.15) with Hi

0 ∈ Qi, i =
1, 2, . . . .

Moreover, if
{Qi,Qj} = 0, i, j = 1, 2, . . . ,

then the terms in the normal form are unique.

Remark. All the obvious remarks about the time-dependent cases hold
here also. The normal form is unique, but the transformation taking the
equation need not be unique. Clearly this theorem applies to the Duffing
example. We do not need this theorem in our development. See Liu (1985)
for a proof or see the Problems section.

10.4 Normal Form at an Equilibrium

Consider an analytic Hamiltonian H that has an equilibrium point at the
origin in R

2n, and assume that the Hamiltonian is zero at the origin. Then
H has a Taylor series expansion of the form

H(x) = H#(x) =
∞∑

i=0

Hi(x), (10.32)

where Hi is a homogeneous polynomial in x of degree i + 2; so, H0(x) =
1
2x

TSx, where S is a 2n × 2n real symmetric matrix, and A = JS is a
Hamiltonian matrix. The linearized equations about the critical point x = 0
are

ẋ = Ax = JSx = J∇H0(x), (10.33)

and the general solution of (10.33) is φ(t, ξ) = exp(At)ξ .
The classical case. The matrix A is simple if it has 2n linearly indepen-

dent eigenvectors that may be real or complex. The matrix A being simple is
equivalent to A being similar to a diagonal matrix by a real or complex sim-
ilarity transformation. This is why A is sometimes said to be diagonalizable.
The classical theorem on normal forms is as follows.
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Theorem 10.4.1. Let A be simple. Then there exists a formal symplectic
change of variables,

x = X(y) = y + · · · , (10.34)

that transforms the Hamiltonian (10.32) to

H#(y) =
∞∑

i=0

Hi(y), (10.35)

where Hi is a homogeneous polynomial of degree i+ 2 such that

Hi(eAty) ≡ Hi(y), (10.36)

for all i = 0, 1, . . ., all y ∈ R
2n, and all t ∈ R.

Remark. Formula (10.36) is the classical definition of normal form for
a Hamiltonian near an equilibrium point with a simple linear part. Formula
(10.36) says that Hi is an integral for the linear system (10.33); so, by The-
orem 1.3.1, (10.36) is equivalent to

{Hi,H0} = 0 (10.37)

for all i.

Proof. In order to study the solutions near the origin, scale the variables
by x → εx. This is a symplectic transformation with multiplier ε−2; so, the
Hamiltonian becomes

H(ε, x) = H∗(ε, x) =
∞∑

i=0

(
εi

i!

)
H0

i (x), (10.38)

where H0
i = i!Hi. Because we are working formally, we can set ε = 1 at the

end, or we can rescale by x→ ε−1x.
Let Pi be the linear space of all real homogeneous polynomials of degree

i + 2; so, H0
i ∈ Pi. Because A is simple, A has 2n linearly independent

eigenvectors s1, . . . , s2n corresponding to the eigenvalues λ1, . . . , λ2n. The si
are row eigenvectors; so, siA = λisi. Let 2r of the eigenvalues be complex,
and number them so that λi = λ̄n+i for i = 1, . . . , r. Choose the eigenvectors
so that si = s̄n+i for i = 1, . . . , r. The other eigenvalues and eigenvectors
are real. Let K ∈ Pi; so, K is a homogeneous polynomial of degree i + 2.
Because the si are independent, K may be written in the form

K =
∑

κm1m2...m2n
(s1x)m1(s2x)m2 · · · (s2nx)m2n , (10.39)

where the sum is over all m1 + · · ·+m2n = i+ 2. So the monomials in

B = {(s1x)m1(s2x)m2 · · · (s2nx)m2n : m1 + · · ·+m2n = i+ 2} (10.40)
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span Pi. It is also clear that they are independent; so, form a basis for Pi. The
coefficients in (10.39) may be complex but must satisfy the reality condition
that interchanging the subscripts mi and mn+i for i = 1, . . . , r in the κ
coefficients is the same as conjugation.

Now let F = Fi : Pi → Pi be the linear operator of Theorem 10.3.3 as
it applies to Hamiltonian systems, that is, define F by F(G) = {H0

0 , G} =
−(∂G/∂x)Ax; so,

F((s1x)m1(s2x)m2 · · · (s2nx)m2n)

= −(m1λ1 + · · ·+m2nλ2n)(s1x)m1(s2x)m2 · · · (s2nx)m2n .

So the elements of B are eigenvectors of F and the eigenvalues are −(m1λ1 +
· · · + m2nλ2n), m1 + · · · + m2n = i + 2. Thus we can define F-invariant
subspaces

Ki = span{(s1x)m1(s2x)m2 · · · (s2nx)m2n : m1 + · · ·+m2n = i+ 2,
m1λ1 + · · ·+m2nλ2n = 0},

Ri = {(s1x)m1(s2x)m2 · · · (s2nx)m2n : m1 + · · ·+m2n = i+ 2,
m1λ1 + · · ·+m2nλ2n 
= 0}.

In summary, Ki = kernel (F), Ri = range (F), and Pi = Ki ⊕Ri. Thus this
classical theorem follows from the first part of Theorem 10.3.3 because we
have shown that the operators Fi : Pi → Pi are simple. However, the extra
condition in Theorem 10.3.3 is not satisfied in general; so, the normal form
may not be unique.

Birkhoff (1927) considered a special case of the above.

Corollary 10.4.1. Assume that the quadratic part of (10.32) is of the form

H0(x) =
n∑

j=1

λjxjxn+j , (10.41)

where the λjs are independent over the integers; i.e., there is no nontrivial
relation of the form

n∑
i=1

kjλj = 0, (10.42)

where the kj are integers. Then there exists a formal symplectic change of
variables x = X(y) = y + · · · that transforms the Hamiltonian (10.32)
to the Hamiltonian (10.35), where Hj(y) is a homogeneous polynomial of
degree j + 1 in the n products y1yn+1, . . . , yny2n. So, H#(y1, . . . , y2n) =
H#(y1yn+1, . . . , yny2n) where H# is a function of n variables. Moreover,
in this case, the normal form is unique.
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Remark. Formally the equations of motion for the system in normal form
are

ẏj = yjDjH
#(y1yn+1, . . . , yny2n),

ẏj+n = −yj+nDjH
#(y1yn+1, . . . , yny2n).

Here Dj stands for the partial derivative with respect to the jth variable.
In this form, the system of equations has n formal integrals in involution,
I1 = y1yn+1, . . . , In = yny2n.

In the case when the λj = iωj are pure imaginary and the yj are the
complex coordinates discussed in Lemma 3.3.4, then we can switch to action–
angle variables by yj =

√
Ij/2eiφj , yn+j =

√
Ij/2e−iφj . The Hamiltonian in

normal form is a function of the action variables only; so, the Hamiltonian is
H†(I1, . . . , In), and the equations of motion are

İj =
∂H

∂φj

†
= 0, φ̇j = −∂H

∂Ij

†
= ωj(I1, . . . , In).

Here ωi(I1, . . . , In) = ±ωi + · · ·, and the sign is determined by the cases in
Lemma 3.3.2. Setting the action variables equal to nonzero constants, I1 =
c1, . . . , In = cn, defines an invariant set which is an n-torus with n angular
coordinates φ1, . . . , φn. On each torus the angular frequencies ωj(I1, . . . , In),
are constant, and so, define a linear flow on the torus as discussed in Section
1.2. The frequencies vary from torus to torus in general.

Notation. For this proof, and subsequent discussions, some notation is
useful. Let Z = Z

2n
+ denote the set of all 2n-tuples of nonnegative integers; so,

k ∈ Z means k = (k1, . . . , k2n), ki ≥ 0, ki an integer. Let |k| = k1 + · · ·+ k2n.
If x ∈ R

2n and k ∈ Z, then define xk = xk1
1 x

k2
2 · · ·xk2n

2n .

Proof. The linear part is clearly simple. Let Hi(y) =
∑
hky

k, where the
sum is over k ∈ Z, |k| = i + 2. The general solution of the linear system is
yi = yi0 exp(λit), yi+n = yi+n,0 exp(−λit) for i = 1, . . . , n. Formula (10.36)
implies that

∑
hk exp t{(k1−kn+1)λ1+ · · ·+(kn−k2n)λn}yk is constant in t,

and this implies that {(k1−kn+1)λ1+ · · ·+(kn−k2n)λn = 0. But because the
λ′is are independent over the integers, this implies k1 = kn+1, . . . , kn = k2n.
That is, Hi is a function of the products y1yn+1, . . . , yny2n only.

By the remark above, the kernel consists of those functions that depend
only on I1, . . . , In and not on the angles in action–angle variables. Therefore,
the extra condition of Theorem 10.3.3 holds, and the normal form is unique.

Remark. If the condition (10.42) only holds for |k1| + · · · + |kn| ≤ N ,
then the terms in the Hamiltonian up to the terms of order N can be put in
normal form, and these terms are unique.

The general equilibria. In the 1970s, the question of the stability of the
Lagrange triangular point L4 was studied intensely. For Hamiltonian systems,
it is not enough to look at the linearized system alone, because the higher-
order terms in the normalized equations can change the stability (see the
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discussion in Chapter 11). The matrix of the linearization of the equations
at L4 when μ = μ1 is not simple as was seen in Section 4.1. The normal form
for this case, and other similar cases was carried out by the Russian school;
see Sokol’skij (1978). First Kummer (1976,1978) and then Cushman, Deprit,
and Mosak (1983), used group representation theory. Representation theory
is very helpful in understanding the general case, but there are simpler ways
to understand the basic ideas and examples. In Meyer (1984b) a theorem
like Theorem 10.4.1 above was given for non-Hamiltonian systems but A was
replaced by AT in (10.36); so, the terms in the normal form are invariant
under the flow exp(AT t) . A far better proof can be found in Elphick et al.
(1987), which is what we present here.

The proof of Theorem 10.4.1 rested on the fact that for a simple matrix, A,
the vector space R

2n is the direct sum of the range and kernel of A, and this
held true for the operator F = {H0

0 , ·} defined on homogeneous polynomials
as well. The method of Elphick et al. is based on the following simple lemma
in linear algebra known as the Fredholm alternative and an inner product
defined on homogeneous polynomials given after the lemma.

Lemma 10.4.1. Let V be a finite-dimensional inner product space with inner
product (·, ·). Let A : V → V be a linear transformation, and A∗ its adjoint
(so (Ax, y) = (x,A∗y) for all x, y ∈ V). Then V = R ⊕ K∗ where R is the
range of A and K∗ is the kernel of A∗.

Proof. Let x ∈ R; so, there is a u ∈ V such that Au = x. Let y ∈ K∗; so,
A∗y = 0. Because 0 = (u, 0) = (u,A∗y) = (Au, y) = (y, x), it follows that
R and K∗ are orthogonal subspaces. Let K be the kernel of A. In a finite
dimensional space, dim V = dimR + dimK and dimK = dimK∗. Because
R and K∗ are orthogonal, dim(R + K∗) = dimR + dimK∗ = dim V; so,
V = R⊕K∗.

Let P = Pj be the linear space of all homogeneous polynomials of degree
j in 2n variables x ∈ R

2n. So if P ∈ P, then

P (x) =
∑
|k|=j

pkx
k =

∑
|k|=j

pk1k2...k2n
xk1

1 x
k2
2 · · ·xk2n

2n .

Define P (∂) to be the differential operator

P (∂) =
∑
|k|=j

pk
∂k

∂xk
,

where we have introduced the notation

∂k

∂xk
=
∂k1

∂xk1
1

∂k2

∂xk2
2

· · · ∂
k2n

∂xk2n
2n

.

Let Q ∈ P, Q(x) =
∑
qhx

h be another homogeneous polynomial, and define
an inner product < ·, · > on P by
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< P,Q >= P (∂)Q(x).

To see that this is indeed an inner product, note that ∂kxh/∂xk = 0 if k 
= h
and ∂kxh/∂xk = k! = k1!k2! · · · k2n! if k = h; so,

< P,Q >=
∑
|k|=j

k!pkqk.

Let A = JS be a Hamiltonian matrix where S is a symmetric matrix of the
quadratic Hamiltonian H0; so, H0(x) = 1

2x
TSx. From Theorem 10.3.1 and

the proof of Theorem 10.4.1, the operator of importance is F(A) : P → P,
where

F(A)P = {H0
0 , P} = −∂P

∂x
Ax =

d

dt
P (eAtx)

∣∣
t=0
. (10.43)

Lemma 10.4.2. Let A : R
2n → R

2n be as above and AT its transpose (so
AT is the adjoint of A with respect to the standard inner product in R

2n).
Then for all P,Q ∈ P,

< P (x), Q(Ax) >=< P (ATx), Q(x) > (10.44)

and
< P,F(A)Q >=< F(AT )P,Q > . (10.45)

That is, the adjoint of F(A) with respect to < ·, · > is F(AT ).

Proof. Equation (10.44) follows from (10.43) because (10.43) implies

< P (x), Q(eAtx) >=< P (eA
T tx), Q(x) > .

Differentiating this last expression with respect to t and setting t = 0 gives
(10.45).

Let y = Ax (i.e., yi =
∑

j A
i
jx

j) and F (y) = F (Ax). Inasmuch as

∂F (y)
∂xj

=
∑

i

∂F (y)
∂yi

∂yi

∂xj
=
∑

i

∂F (y)
∂yi

Ai
j ,

it follows that ∂/∂x = AT∂/∂y.

< P (x), Q(Ax) >= P (∂x)Q(Ax) = P (AT∂y)Q(y) =< P (AT y), Q(y) > .

Theorem 10.4.2. Let A be a Hamiltonian matrix. Then there exists a for-
mal symplectic change of variables, x = X(y) = y + · · ·, that transforms the
Hamiltonian (10.32) to

H#(y) =
∞∑

j=0

Hj(y), (10.46)

where Hj is a homogeneous polynomial of degree j + 2 such that

Hj(eA
T ty) ≡ Hj(y), (10.47)

for all j = 0, 1, . . . , all y ∈ R
2n, and all t ∈ R.
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Remark. Let HT
0 (x) = H0

T (x) = 1
2x

TRx be the quadratic Hamiltonian
for the adjoint linear equation; so, AT = JR. Then (10.47) is equivalent to

{Hi,H0
T } = 0

for j = 1, 2, . . . .

Proof. By Theorem 10.3.1, we must solve Equation (10.25) or F(A)C+D =
B, where D ∈ Pj = P is given, and C ∈ Qj = P, and D ∈ Qj =
kernel (F(AT )). By Lemma 10.4.2, we can write D = B − G, where B ∈
kernel(F(AT )); so, {B,H0

T } = 0, and G ∈ range (F(A)); so, G = F(A)C,
C ∈ P. With these choices, (10.30) is solved. Verification of the rest of the
hypothesis in Theorem 10.3.1 is just as in the proof of Theorem 10.4.1.

Theorem 10.4.1 is a corollary of this theorem because when A is simple, it is
diagonalizable, and so, its own adjoint. We proved Theorem 10.4.1 separately,
because the proof is constructive.

Examples of normal forms in the nonsimple case. Consider the Hamilto-
nian system (10.32), where n = 1 and x = (q, p). Let

H0(q, p) = p2/2, HT
0 (q, p) = −q2/2,

A =
[

0 1
0 0

]
AT =

[
0 0
1 0

]
.

Because

exp(AT t) =
[

1 0
1 + t 1

]
,

(10.47) implies that the higher-order terms in the normal form are inde-
pendent of p, or Hi = Hi(p, ·). Thus the Hamiltonian in normal form
is p2/2 + G(q), which is the Hamiltonian for the second-order equation
q̈ + g(q) = 0, where g(q) = ∂G(q)/∂q.

Now consider a Hamiltonian system with two degrees of freedom with a
linearized system with repeated pure imaginary roots that are nonsimple. In
Section 4.6, the normal form for the quadratic part of such a Hamiltonian
was given as

H0 = ω(ξ2η1 − ξ1η2) +
δ

2
(ξ21 + ξ22),

where ω 
= 0 and δ = ±1. The linearized equations are
⎡
⎢⎢⎣
ξ̇1
ξ̇2
η̇1
η̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 ω 0 0
−ω 0 0 0
−δ 0 0 ω
0 −δ −ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ1
ξ2
η1
η2

⎤
⎥⎥⎦ .

The transpose is defined by the Hamiltonian
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HT
0 = ω(ξ2η1 − ξ1η2)−

δ

2
(η2

1 + η2
2),

and the transposed equations are
⎡
⎢⎢⎣
ξ̇1
ξ̇2
η̇1
η̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −ω −δ 0
ω 0 0 −δ
0 0 0 −ω
0 0 ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ξ1
ξ2
η1
η2

⎤
⎥⎥⎦ .

Sokol’skij (1978) suggested changing to polar coordinates (see Section 6.2) to
make the transposed equations simple. That is, he changed coordinates by

η1 = r cos θ, R = (ξ1η1 + ξ2η2)/r,

η2 = r sin θ, Θ = η1ξ2 − η2ξ1.

In these coordinates,

HT
0 = −ωΘ +

δ

2
r2, H0 = ωΘ +

δ

2

(
R2 +

Θ2

r2

)
,

and the transposed equations are

ṙ = 0, θ̇ = ω, Ṙ = δr, Θ̇ = 0.

Thus the higher order terms in the normal form are independent of θ and R
and so depend only on r2 = η2

1 + η2
2 and Θ = η1ξ2 − η2ξ1.

Thus the theory of the normal form in this case depends on three qualities

Γ1 = ξ2η1 − ξ1η1, Γ2 =
1
2
(ξ21 + ξ22), Γ3 =

1
2
(η2

1 + η2
2).

The Hamiltonian H0 = ωΓ1 + Γ2 and the higher-order terms in the normal
form are functions of Γ1 and Γ3 only. This is known as Sokol’skij’s normal
form.

10.5 Normal Form at L4

Recall that in Section 4.1, we showed that the linearization of the restricted
3-body problem at the Lagrange triangular point L4 had two pairs of pure
imaginary eigenvalues, ±iω1,±iω2 when 0 < μ < μ1 = 1

2 (1 −
√

69/9), and
that there are symplectic coordinates so that the quadratic part of the Hamil-
tonian is

H2 = ω1I1 − ω2I2,

where I1, I2, φ1, φ2 are action–angle variables.
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Recall that in Section 8.5, we defined μr to be the value of μ for which
ω1/ω2 = r, and that 0 · · · < μ3 < μ2 < μ1. When 0 < μ < μ1, and μ 
= μ2, μ3

then by Corollary 10.4.1, the Hamiltonian of the restricted 3-body problem
can be normalized through the fourth-order terms; so, the Hamiltonian be-
comes

H = ω1I1 − ω2I2 +
1
2
(AI21 + 2BI1I2 + CI22 ) + · · · .

After six months of hand calculations, Deprit and Deprit-Bartholome com-
puted:

A =
1
72
ω2

2

(81− 696ω2
1 + 124ω4

1)
(1− 2ω2

1)2(1− 5ω2
1)
,

B = −1
6
ω1ω2(43 + 64ω2

1ω
2
2)

(1− 2ω2
1)2(1− 5ω2

1)
,

C(ω1, ω2) = A(ω2, ω1).

Meyer and Schmidt (1986) computed the normal form through terms of sixth-
order by computer. The results are too lengthy to reproduce here. It did serve
as an independent check of the calculations of Deprit and Deprit-Bartholome.
In Section 4.1, the quadratic part of the Hamiltonian of the restricted 3-
body problem at L4 for μ = μ1 was brought into normal form by a linear
symplectic change of coordinates. In these coordinates, the quadratic part of
the Hamiltonian is of the form

H0 = ω(ξ2η1 − ξ1η2) +
1
2
(ξ21 + ξ21) = ωΓ1 + Γ2,

where ω =
√

2/2 and δ = +1.
The normal form for the Hamiltonian of the restricted 3-body problem at

L4 for μ = μ1 is of the form

H = ωΓ1 + Γ2 + cΓ 2
1 + 2dΓ1Γ3 + 4eΓ 2

3 + · · ·

= ω(ξ2η1 − ξ1η2) + 1
2 (ξ21 + ξ21)

+c(ξ2η1 − ξ1η2)2 + d(η2
1 + η2

2)(ξ2η1 − ξ1η2) + e(η2
1 + η2

2)2 + · · ·

where c, d, e are constants. As another related problem, consider a quadratic
Hamiltonian Q(y, ε) that depends on a parameter ε, which for ε = 0 is
H0. That is, Q(y, ε) = Q0(y) + εQ1(y) + · · ·, where Q0 = H0. Then this
Hamiltonian can be brought into normal form to an order so that Q1, Q2, . . .
depend only on Γ1 and Γ3. (See Schmidt (1990) for the calculations.)

The quadratic part of the Hamiltonian of the restricted 3- body problem
at the Lagrange triangular point, L4, for values of the mass ratio parameter
μ = μ1 + ε can be brought into normal form by a linear symplectic change of
coordinates. The normal form up to order 4 looks like
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Q = ωΓ1 + Γ2 + ε{aΓ1 + bΓ3}+ · · ·
= ω(ξ2η1 − ξ1η2) + 1

2 (ξ21 + ξ21)
+ε{a(ξ2η1 − ξ1η2) + 1

2b(η1 + η2) + · · · .

Schmidt (1990) calculated that

a = 3
√

69/16, b = 3
√

69/8.

10.6 Normal Forms for Periodic Systems

This section reduces the study of the normal forms for symplectomorphisms
to the study of normal forms of periodic systems. Then as examples, the
normal forms for symplectomorphisms of the plane are given in preparation
for the study of generic bifurcations of fixed points given in Chapter 11.

The reduction. The study of a neighborhood of a periodic solution of an
autonomous Hamiltonian system was reduced to the study of the Poincaré
map in an energy surface by the discussion in Section 8.5. This Poincaré map
is a symplectomorphism with a fixed point corresponding to the periodic
orbit.

Let the origin be a fixed point for the symplectomorphism

Ψ(x) = Γx+ ψ(x), (10.48)

where Γ is a 2n × 2n symplectic matrix, and ψ is higher-order; i.e., ψ(0) =
∂ψ(0)/∂x = 0. By Theorem 8.2.1 and the discussion following that theorem,
if Γ has a logarithm, then (10.48) is the period map of a periodic Hamiltonian
system. Because Ψ2(x) = Γ 2x + · · ·, and Γ 2 always has a logarithm, if Ψ is
not a period map, then Ψ2 is. Except for one example given at the end of
this chapter, only the case when Γ has a real logarithm is treated here.

Given a periodic system, by the Floquet–Lyapunov theorem (see Theo-
rem 3.4.2 and the discussion following it), there is a linear, symplectic, peri-
odic change of variables that makes the linear part of Hamiltonian equations
constant in t. Thus the study of symplectomorphisms near a fixed point is
equivalent to studying a 2π-periodic Hamiltonian system of the form

H#(t, x) =
∞∑

i=0

Hi(t, x), (10.49)

where Hi is a homogeneous polynomial in x of degree i+ 2 with 2π-periodic
coefficients, and H0(t, x) = 1

2x
TSx where S is a 2n × 2n real constant sym-

metric matrix, and A = JS is a constant, real, Hamiltonian matrix. The
linearized equations about the critical point x = 0 are
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ẋ = Ax = JSx = J∇H0(x), (10.50)

and the general solution of (10.50) is φ(t, ξ) = exp(At)ξ.
The general periodic case. Here, the generalization of the general normal

form given in Section 10.4 is extended to periodic systems. As before, we
consider the periodic system (10.49) but no longer assume that the linear
system is simple. First let us consider the generalization of Theorem 10.4.2.

Consider the 2π-periodic equations

ẋ = A(t)x+ f(t), (10.51)

ẋ = A(t)x, (10.52)

ẏ = −A(t)T y. (10.53)

Equation (10.52) is the homogeneous equation corresponding to the nonho-
mogeneous equation (10.51), and (10.53) is the adjoint equation of (10.52).

Lemma 10.6.1. The nonhomogeneous equation (10.51) has a 2π-periodic
solution φ(t) if and only if

∫ 2π

0

yT (s)f(s)ds = 0,

for all 2π-periodic solutions y(t) of the adjoint equation (10.53).

Proof. Let x(t, x0) be the solution of (10.51) with x(0, x0) = x0. Then

x(t, x0) = X(t)x0 +
∫ t

0

X(t)Y T (s)f(s)ds,

where X(t) and Y (t) are the fundamental matrix solutions of (10.52) and
(10.53), respectively; so, X−1 = Y T . The solution is 2π-periodic if and only
if x(t, x0) = x, or

Bx0
0 = g,

where

B = I −X(2π), g =
∫ 2π

0

X(2π)Y T (s)f(s)ds.

By Lemma 10.4.1, the linear equation Bx0 = g has a solution if and only if
vT g = 0 for all v with BT v = 0. That is, there is a 2π-periodic solution if
and only if

∫ 2π

0

vTX(2π)Y T (s)f(s)ds = 0 for all v with X(2π)T v = v.

But if X(2π)T v = v, then the integral above is
∫ 2π

0
vTY T (s)f(s)ds = 0.

But X(2π)T v = v if and only if Y (2π)v = v and if and only if Y (s)v is a
2π-periodic solution of (10.53).
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Consider the periodic Hamiltonian system (10.49). Scale by x → εx as
in the proof of Theorem 10.4.1, and use the same notation for the scaled
Hamiltonian. By Theorem 10.3.2 we must define spaces Pi,Qi, and Ri with
Qi ⊂ Pi, H

0
i ∈ Pi, H

i
0 ∈ Qi, Wi ∈ Ri. The Lie equation to be solved in this

case is
E = D + {H0

0 , C} −
∂C

∂t
,

where D is given in Pi, and we are to find E ∈ Qi and C ∈ Ri.
Let B be the adjoint of A; i.e., the transpose in the real case. Define

K(x) = (1/2)xTRx, where B = JR; so, K is the Hamiltonian of the adjoint
linear system. Let Pi be the space of polynomials in x with coefficients that
are smooth 2π-periodic functions of t. Let F = {H0

0 , ·} : Pi → Pi, and let T =
{K, ·} : Pi → Pi. T is the adjoint of F if we use the metric defined by Elphick
et al. that was used in Section 10.4. Therefore, given D, the Lie equation has
a unique 2π-periodic solution, C, where E is a 2π-periodic solution of the
homogeneous adjoint equation

0 = {K,E}+
∂E

∂t
. (10.54)

Characterizing the 2π-periodic solutions of (10.54) defines the normal form.
Expand the elements of Pi in Fourier series. Let E = d(x)eimt, and substitute
into (10.54) to get

0 = {K, d}+ imd.

Thus one characterization of the normal form is in terms of the eigenvectors
of T = {K, ·} : Pi → Pi. That is, Qi has a basis of the form {d(x)eimt : d is
an eigenvector of T corresponding to the eigenvalue im. }

Theorem 10.6.1. Let H0(x) = H0(x) = 1
2x

TSx, where A = JS is an arbi-
trary, constant Hamiltonian matrix, and let B be the adjoint of A. Then there
exists a formal, symplectic, 2π-periodic change of variables x = X(t, y) =
y+ · · · which transforms the Hamiltonian (10.49) to the Hamiltonian system

ẏ = J∇H#(t, y), H#(t, y) =
∞∑

i=0

Hi(t, y), (10.55)

where

{Hi,K}+
∂H

∂t

i

= 0 for i = 1, 2, 3, . . . , (10.56)

or equivalently,

Hi(t, eBtx) ≡ Hi(0, x) for i = 1, 2, 3, . . . . (10.57)

Corollary 10.6.1. Let A be simple and have eigenvalues ±λ1, . . . ,±λn. As-
sume that λ1, . . . , λn and i are independent over the integers; i.e. there is no
relation of the form k1λ1 + · · · + knλn = mi, where k1, . . . , kn and m are
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integers. Then there exists a formal, symplectic, 2π-periodic change of vari-
ables x = X(t, y) = y + · · · which transforms the Hamiltonian (10.49) to an
autonomous Hamiltonian system

ẏ = J∇H#(y), H#(y) =
∞∑

i=0

Hi(y), (10.58)

where H0 = H0, and
{Hi,H0} = 0, (10.59)

or equivalently,
Hi(eAty) ≡ Hi(y) (10.60)

for all i = 0, 1, 2, . . . , y ∈ R
2n, t ∈ R.

Proof. Let A = B = diag (λ1, . . . , λn,−λ1, . . . ,−λn). A typical term in the
normal form given by Theorem 10.6.1 is of the form h(t, x) = hke

imtxk.
Applying (10.57) to this term gives

hk exp{im+ (k1 − kn+1)λ1 + · · ·+ (kn − k2n)λn}t = 0.

By the assumption on the independence, this can only hold if m = 0, k1 =
kn+1, . . . , kn = k2n. Thus the Hamiltonian is in the normal form of Birkhoff
as described in Corollary 10.4.1.

Corollary 10.6.2. Let Γ be simple and have a real logarithm. Then there
exists a formal, near-identity, symplectic change of variables x→ y such that
in the new coordinates the symplectomorphism in (10.48) is of the form

Φ(y) = Γy + φ(y), (10.61)

where
φ(Γy) ≡ Γφ(y) or Φ(Γy) ≡ ΓΦ(y). (10.62)

Proof. Let Γ = exp(2πA). Because Γ is simple, so is A, and therefore it can
be taken as its own adjoint. Then by the reduction given above, the map
(10.48) is the period map of a system of Hamiltonian differential equations.
Assume that the symplectic change of coordinates has been made so that the
Hamiltonian is in normal form, and let the equations in these coordinates
be ẏ = Ay + f(t, y). Condition (10.57) implies f(t, eAtx) = eAtf(0, x), and
this implies f(t, Γx) = Γf(t, x). Let ξ(t, η) be a solution of this equation
with ξ(0, η) = η. Define ζ(t, η) = Γξ(t, Γ−1η), so ξ(0, η) = ζ(0, η) = η. ξ̇ =
Γ{Aξ + f(t, ξ)} = AΓξ + Γf(t, ξ) = AΓξ + f(t, Γ ξ) = Aζ + f(t, ζ). By
the uniqueness theorem for ordinary differential equations ξ(t, η) = ζ(t, η) =
Γξ(t, Γη); so, the period map satisfies (10.61).
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General hyperbolic and elliptic points. Consider as examples the case when
n = 1; so, Ψ in (10.48) is a symplectomorphism of the plane with a fixed
point at the origin.

First, consider the case when Γ has eigenvalues μ, μ−1, where 0 < μ <
1; i.e., the origin is a hyperbolic fixed point. By Lemma 3.3.7, there are
symplectic coordinates, say x, so that

Γ =
[
μ 0
0 μ−1

]
.

Let 2πα = lnμ; so, Γ = exp(2πA) where

A =
[
α 0
0 −α

]
.

By the discussion given above, the symplectomorphism Ψ is the period map
of the 2π-periodic system (10.49) with H0(x) = αx1x2. By Corollary 10.6.1,
there is a formal, 2π-periodic, symplectic change of variables x → y that
transforms (10.49) to the autonomous system (10.58) with (10.60) holding.
The solution of the linear system is y1(t) = y10e

αt, y2(t) = y20e
−αt, therefore

the condition (10.60) implies that the Hamiltonian (10.58) is a function of the
product y1y2 only. Let H#(y) = K#(y1y2) = αy1y2 +K(y1y2). By the above
discussion, the normal form for (10.48) is the time 2π-map of the autonomous
system whose Hamiltonian is K#. The equations defined by K# are

ẏ1 = y1(α+ k(y1y2)),

ẏ2 = −y2(α+ k(y1y2)),

where k is the derivative of K. These equations have y1y2 as an integral, and
so the equations are solvable, and the solution is

y1(t) = y10 exp(t(α+ k(y1y2))),

y2(t) = y20 exp(−t(α+ k(y1y2))).

Thus the normal form for (10.48) in this case is

Ψ(y) =

⎡
⎣
y1g(y1y2)

y2g(y1y2)−1

⎤
⎦ ,

where g has a formal expansion g(u) = μu + · · ·. If a symplectomorphism
is in this form, then the origin is called a general hyperbolic point. This
map takes the hyperbolas y1y2 = constant into themselves. In this case, the
transformation to normal form converges by a classical theorem of Moser
(1956).
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Next consider the case when A has eigenvalues λ = α + βi, λ̄ = α − βi,
where α2 +β2 = 1, β 
= 0; i.e., the origin is an elliptic fixed point. By Lemma
3.3.9 there are symplectic coordinates, say x, so that

Γ =
[
λ 0
0 λ̄

]
.

Let Γ = exp(2πA), where

A =
[
ωi 0
0 −ωi

]
.

Assume that ω is not an integer; that is, λ is not a root of unity. By the
discussion given above, the symplectomorphism Ψ is the period map of the
2π-periodic system (10.49) with H0(x) = iωx1x2. By Corollary 10.6.1, there
is a formal, 2π-periodic, symplectic change of variables, x→ y, which trans-
forms (10.49) to the autonomous system (10.58) satisfying (10.60). Equation
(10.60) implies that the Hamiltonian is a function of y1y2 only. Let H#(y) =
K#(y1y2) = iωy1y2 + iK(y1y2). By the above discussion, the normal form
for (10.48) is the time 2π-map of the autonomous system whose Hamiltonian
is K#. Change to action–angle variables (I, φ); so, the Hamiltonian becomes
H#(I, φ) = K#(I) = ωI +K(I). The equations defined by K# are

İ = 0, φ̇ = ω − k(I)

where k is the derivative of K. These equations have I as an integral, and so
the equations are solvable, and the solution is

I(t) = I0, φ(t) = φ0 + (−ω + k(I0))t.

Thus the normal form for (10.48) in action–angle variables in this case is

Ψ(I, φ) =
[
I
φ+ g(I)

]
,

where g has a formal expansion g(I) = −ω+ βI · · ·. If a symplectomorphism
is in this form with β 
= 0, then the origin is called a general elliptic point, or
Ψ is called a twist map. This map takes circles into circles and rotates each
circle by an amount g(I).

Higher resonance in the planar case. Let us consider the case when n = 1,
and the symplectomorphism Ψ has an elliptic fixed point whose multiplier is
a root of unity. Theorem 10.6.1 and Corollary 10.6.2 apply as well.

Let Γ have eigenvalues λ = α + βi, λ̄ = α − βi, where λ is a kth root
of unity; so, λk = 1, k > 2, and λ = exp(h2πi/k), where h is an integer.
The origin is called a k-resonance elliptic point in this case. By Lemma 3.3.9,
there are symplectic coordinates, say x, so that



10.6 Normal Forms for Periodic Systems 265

Γ =
[
λ 0
0 λ̄

]
.

Let Γ = exp(2πA), where

A =
[

(h/k)i 0
0 −(h/k)i

]
.

Because A is diagonal, it is its own adjoint. By the discussion given above the
symplectomorphism Ψ is the period map of the 2π-periodic system (10.49)
with H0(x) = (hi/k)(x1x2), where the reality condition is x̄1 = x2. The
normal form for the Hamiltonian is given by Theorem 10.6.1 above.

Let h(t, x) be a typical term in the normal form expansion, so

h = eistxm1
1 xm2

2 .

The term h satisfies (10.57) if and only if

(h/k)(m1 −m2)i+ si = 0;

so it is in the normal form if h is

(x1x2)m or xm1
1 xm2

2 e−rit,

where r = (m1 −m2)h/k, and m,m1,m2, r are integers.
In action–angle coordinates (I, φ), H0(I, φ) = (h/k)I, and the solution of

the linear system is I = I0, φ = φ0− (h/k)t. Thus H#(t, I, φ) is a function of
I and (kφ+ht); so, let H#(t, I, φ) = K#(I, kφ+ht) = (h/k)I+K(I, kφ+ht).

The lowest-order terms that contain t, the new terms, are xk
1e

−hit and
xk

2e
hit. In action–angle coordinates these terms are like Ik/2 cos(kφ+ht) and

Ik/2 sin(kφ + ht). Thus the normalized Hamiltonian is a function of I and
(kφ+ ht) only, and it is of the form

H#(t, I, φ) = (h/k)I + aI2 + bI3 + · · ·+
+Ik/2{α cos(kφ+ ht) + β sin(kφ+ ht)}+ · · · . (10.63)

The equations of motion are

İ = Ik/2{−α sin(kφ+ ht) + β cos(kφ+ ht)}+ · · · ,

φ̇ = −h
k
− 2aI − k

2
I(k−2)/2{α cos(kφ+ ht) + β sin(kφ+ ht)}+ · · · .

(10.64)
By a rotation, φ → φ + δ; the first sin term can be absorbed into the cos
term, so there is no loss in generality in assuming that β = 0 in (10.63) and
(10.64). Henceforth, we assume this rotation has been made, and so, β = 0.

Note that in the φ̇ equation in (10.64), there are two nonlinear terms.
When k > 4, the term that contains the angle is of higher-order in I, whereas
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k = 3 it is lower-order. When k = 4, the two terms are both of order I1. We
show in later chapters on applications that the cases when k = 3 or 4 must
be treated separately.

The 2π-map is then of the form

I = I0 − αIk/2
0 sin(kφ0) + · · · ,

φ = φ0 − (2πh/k)− 4πaI0 + απkI(k−2)/2 cos(kφ0) + · · · .
(10.65)

Normal forms when multipliers are ±1. Consider the cases where the
multiplier is +1 first. For this problem no trigonometric functions are used,
therefore assume that the periodic systems are periodic with period 1. If Γ
has the eigenvalue +1, then either Γ is the identity, and A is the zero matrix,
or there are symplectic coordinates such that

Γ = expA =
[

1 ±1
0 1

]
, where A =

[
0 ±1
0 0

]
. (10.66)

In the first case, when Γ = I and A = 0, Theorem 10.6.1 gives no information,
and this is because the situation is highly degenerate and nongeneric.

Therefore, consider the case when Γ and A are as in (10.66) with the plus
sign; so, the adjoint of A is B where

B =
[

0 0
1 0

]
, exp(Bt) =

[
1 0
t 1

]
.

Let x = (u, v). Condition (10.57) of Theorem 10.6.1 is Hi(u, v + ut, t) ≡
Hi(u, v, 0). This condition and the fact that Hi must be periodic in t implies
that Hi(u, v, t) = Ki(u). Thus the normal form is

H#(t, u, v) = v2/2 +K(u) = v2/2 + βu3/3 + · · · (10.67)

and the equations of motion are

u̇ = v + · · · ,

v̇ = −∂K
∂u

(u) = −βu2 + · · · .
(10.68)

The period map is not so easy to compute and is not so simple. Fortunately,
in applications, the critical information occurs at a very low order. By using
the Lie transform methods discussed in the Problem section one finds that
the period map is (u, v) → (u′, v′) where

u′ = u+ v − β

12
(6u2 + 4uv + v2) + · · · ,

v′ = v − β
3

(3u2 + 3uv + v2) + · · · .
(10.69)
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Now consider the case when Γ has eigenvalue −1. Consider the case when

Γ =
[
−1 0
0 −1

]

first because it has a real logarithm,

Γ = exp 2πA, A =
[

0 1/2
−1/2 0

]
.

This is almost the same as the higher-order resonance considered in the pre-
vious subsection. Corollary 10.6.2 implies that the normal form in this case
is simply an odd function. That is, Φ(y) = −y+φ(y) is in normal form when
φ(−y) = −φ(y).

Now consider the case when

Γ =
[
−1 −1
0 −1

]
.

We make two changes of coordinates to bring this case to normal form. First,
instead of the usual uniform scaling, scale by x1 → εx1, x2 → ε2x2 so that
the map (10.48) becomes Ψ(x) = −x+O(ε). This nonuniform scaling moves
the off-diagonal term to the higher-order terms, and now the lead term is the
same as discussed in the last paragraph. Thus there is a symplectic change
of coordinates z = R(x) such that in the new coordinates z, the map (10.48)
is odd; i.e., R ◦ Ψ ◦ R−1(z) = Ξ(z) = Γz + · · · is odd.

Write

Ξ(z) = −Λ(z) = −{Ωz + ζ(z)}, where Ω =
[

1 1
0 1

]
.

Now Ω is of the form discussed above, and so, there is a symplectic change
of coordinates y = S(z) which puts Λ in the normal form given by the time
1-map of a Hamiltonian system of the form (10.67), where now K(u) is even.
Because Λ is odd, the transformation S can be made odd also; see problems.
Thus S ◦ Λ ◦ S−1 = Θ is in the normal form given by the time 1-map of a
Hamiltonian system of the form

H#(t, u, v) = v2/2 +K(u) = v2/2 + βu4/4 + · · · . (10.70)

Using the method discussed in the problems gives Θ : (u, v) → (u′, v′), where

u′ = u+ v − β

20
(10u3 + 10u2v + 5uv2 + v3) + · · · ,

v′ = v − β
3

(4u3 + 6u2v + 4uv2 + v3) + · · · .
(10.71)
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Combining these changes of coordinates and using the fact that S is odd, it
follows that (S ◦ R) ◦ Ψ ◦ (S ◦ R)−1 = −Θ. That is, in the new coordinates,
the map is just the negative of (10.71), or the normal form for the map is

u′ = −u− v +
β

20
(10u3 + 10u2v + 5uv2 + v3) + · · · ,

v′ = −v +
β

3
(4u3 + 6u2v + 4uv2 + v3) + · · · .

(10.72)

Problems

1. a) The normal form for a Hamiltonian system with H0
0 (q, p) = p2/2 is

H∗(q, p) = p2/2 + Q(q). This normal form also appears in Section
10.6 when the case of multipliers equal to +1 is discussed. Carefully
draw the phase portrait for the system with Hamiltonian H(q, p) =
p2/2 + βq3 when β = +1 and −1.

b) In Section 10.6 when the multiplier −1 is discussed the normal form
is H∗(q, p) = p2/2 + Q(q) with Q even. Carefully draw the phase
portrait for the system with Hamiltonian H(q, p) = p2/2+βq4 when
β = +1 and −1.

2. a) Compute the next term in the normal form of the unforced Duffing
equation (10.22) by hand. Recall that H0

0 ,H
0
1 ,H

1
0 and W1 are given

in Section (10.3). (Hint: To get the next term you do not have to
compute all of H1

1 ,H
2
0 and W2. H2

0 is the term which is independent
of φ in H1

1 +{H0
1 ,W1}. Show that {H0

1 ,W1} has no term independent
of φ. Now H1

1 = H0
2 + {H0

1 ,W1}+ {H0
0 ,W2},H2

0 = 0, so you need to
compute the term independent of φ in {H0

1 ,W1}.)
b) Using Maple, Mathematica, etc., find the first four terms in the nor-

mal form for the unforced Duffing equation.
3. The Hamiltonian for Duffing’s equation is of the form (q2 + p2)/2+P (p)

where P is an even polynomial.
a) Show that such a Hamiltonian in action–angle variables is a Poisson

series with only cosine terms.
b) Show that the Poisson bracket of two Poisson series, one of which

is a cosine series and the other of which is a sine series, is always a
cosine series.

c) Let Hi
j andWi be from the normalization of such a Hamiltonian with

an even potential. Show thatHi
j can always be taken as a cosine series

and Wi as a sine series. (Hint: Define the spaces Pi,Qi, and Ri of
Theorem 10.3.1.)

4. Consider a Hamiltonian differential equation of the form

ẋ = εF#(ε, t, x) = εF1(t, x) + ε2F2(t, x) + · · · ,
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where F is T -periodic in t. Show that there is a formal symplectic series
expansion x = X(ε, t, y) = y+ · · · which is T -periodic in t and transforms
the equation to the autonomous Hamiltonian system ẏ = εF#(y) =
εF 1(y) + ε2F 2(y) + · · ·. Show that F 1(y) = (1/T )

∫ T

0
F1(τ, y)dτ ; i.e., F 1

is the average of F1 over a period. This is called the method of averaging.
(Hint: Use Theorem 10.6.1 and remember F 0

0 = 0.)
5. Use the notation of the previous problem. Show that if F 1(ξ) = 0 and
∂F 1(ξ)/∂x is nonsingular, then the equation ẋ = εF#(ε, t, x) has a T -
periodic solution φ(t) = ξ +O(ε).

6. Analyze the forced Duffing’s equation,

ẍ+ x = ε{δx+ γx3 +A cos t} = 0

in three different ways, and show that the seemingly different methods
give the same intrinsic results. The parameter δ is called the detuning
and is a measure of the difference between the natural frequency and
the external forcing frequency. Remember that a one degree of freedom
autonomous system has a phase portrait given by the level lines of the
Hamiltonian.
a) Write the system in action–angle coordinates, and compute the first

term in the normal form, F 1
0 , as was done for Duffing’s equation.

Analyze the truncated equation by drawing the level lines of the
Hamiltonian. (See Section 9.2. )

b) Write the system in complex coordinates and compute the first term
in the normal form, F 1

0 , as was done for Duffing’s equation in Section
10.3. Analyze the equation.

c) Make the “van der Pol” change of coordinates
[
x
y

]
=
[

cos t sin t
− sin t cos t

] [
u
v

]

and then compute the first average of the equations via Problems 4
and 5. Analyze the equations. See McGehee and Meyer (1974).

7. Consider a Hamiltonian of two degrees of freedom of the form (10.32), x ∈
R

4. Let H0(x) be the Hamiltonian of two harmonic oscillators. Change
to action–angle variables (I1, I2, φ1, φ2) and let H0 = ω1I1 + ω2I2. Use
Theorem 10.4.1 to show that the terms in the normal form are of the form
aI

p/2
1 I

q/2
2 cos(rφ1 + sφ2) or bIp/2

1 I
q/2
2 sin(rφ1 + sφ2), a and b constants, if

and only if rω1 + sω2 = 0, and the terms have the d’Alembert character.
See Henrard (1970b).

8. Consider a Hamiltonian H(x) with general solution φ(t, ξ). Observe
that the ith component of φ is the Lie transform of xi; i.e., φi(t, ξ) =
LH(xi)(ξ), where ε is replaced by t.
a) Show that φi(t, ξ) =

[
xi + {xi,H}t+ {{xi,H},H}t2/2 + · · ·

]
x=ξ

.
b) Using Maple, Mathematica, etc., write a simple function to compute

the time 1 maps given in (10.69) and (10.71) (Make sure that you
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compute the time series far enough to pick up all the quadratic and
cubic terms in the initial conditions.)

9. Prove Theorem 10.3.3, the uniqueness theorem. (Hint: Show that if the
normal form is not unique then there are two different Hamiltonians H
and K which are both in normal form and a generating function W
carrying one into the other. Show that the terms in the series expansion
for W must lie in the kernel of Qi. Then show that this implies that
W ≡ 0.)



11. Bifurcations of Periodic Orbits

This chapter and Chapter 13 use the theory of normal forms developed in
Chapter 9. They contain an introduction to generic bifurcation theory and
its applications. Bifurcation theory has grown into a vast subject with a
large literature; so, this chapter can only present the basics of the theory.
The primary focus of this chapter is the study of periodic solutions, their
existence and evolution. Periodic solutions abound in Hamiltonian systems.
In fact, a famous Poincaré conjecture is that periodic solutions are dense in
a generic Hamiltonian system, a point that was established in the C1 case by
Pugh and Robinson (1983).

11.1 Bifurcations of Periodic Solutions

Recall that in Section 8.5 the study of periodic solutions of a Hamiltonian
system was reduced to the study of a one-parameter family of symplectic
maps, the Poincaré map in an integral surface. The integral surface is in a level
set of the Hamiltonian, and the parameter is the value of the Hamiltonian on
that level set. If the Hamiltonian has n degrees of freedom, then the phase
space is 2n-dimensional, and the section in the integral surface has dimension
2n− 2. This effects a reduction of dimension by two.

A fixed point of the Poincaré map corresponds to a periodic solution
of the Hamiltonian system. The questions answered in this section are: (1)
When can a fixed point be continued? (2) What typically happens when you
cannot continue a fixed point? (3) Are there other periodic points near a
fixed point? However, to keep the notation simple, the discussion is limited
to symplectic maps of two dimensions that depend on one-parameter. This
corresponds to a two degree of freedom autonomous system or a one degree of
freedom periodic system. In two dimensions, a map is symplectic if and only
if it is area-preserving; so, henceforth that term is used. A warning should be
given: the proper generalization of the theory presented below would be to
symplectic maps not just volume-preserving maps.

Even the restriction to area-preserving maps is not enough for a complete
classification, because the number of types of bifurcations is manifold. There-
fore, only the “generic case” is considered in this section. The word “generic”
can be given a precise mathematical meaning in the context of bifurcation
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theory, but here only the intuitive meaning is given in order to avoid a long
mathematical digression. Consider the set of all smooth area-preserving map-
pings depending on some parameter; then a subset of that set is generic if
it has two properties: it is open and it is dense. A subset is open if a small
smooth perturbation of a mapping in the subset is also in the subset. So
the defining properties of elements of the subset are not sensitive to small
perturbations, or the elements are “stable” under perturbations. A subset is
dense if any element in the set can be approximated by an element of the
subset. The set of area-preserving mappings satisfying the properties listed
in the propositions given below can be shown to be generic: see Meyer (1970).

ionElementary Fixed Points Let P : O × I → O : (x, μ) → P (x, μ) be a
smooth function where I = (−μ0, μ0), μ0 > 0, is an interval in R, and O is
an open neighborhood of the origin in R

2. For fixed μ ∈ I, let Pμ = P (·, μ) :
O → O be area-preserving; so, det(∂P (x, μ)/∂x) ≡ 1. Let the origin be a fixed
point of P when μ = 0; i.e., P (0, 0) = 0. The eigenvalues of A = ∂P (0, 0)/∂x
are the multipliers of the fixed point. In two dimensions, the eigenvalues of
the symplectic matrix, A, are (1) real reciprocals, or (2) on the unit circle, or
(3) both equal to −1, or (4) both equal to +1. If the multipliers are different
from +1, the fixed point is elementary.

Proposition 11.1.1. An elementary fixed point can be continued. That is,
if x = 0 is an elementary fixed point for P when μ = 0, then there exists
a μ1 > 0 and a smooth map ξ : (−μ1, μ1) → O with P (ξ(μ), μ) ≡ ξ(μ).
Moreover, the multipliers of the fixed point ξ(μ) vary continuously with μ;
so, if x = 0 is elliptic (respectively, hyperbolic) when μ = 0, then so is ξ(μ)
for small μ.

Proof. The implicit function theorem applies to G(x, μ) = P (x, μ) − x = 0,
because G(0, 0) = 0, and ∂G(0, 0)/∂x = A − I is nonsingular; so, there is a
ξ(μ) such that G(ξ(μ), μ) = P (ξ(μ), μ) − ξ(μ) = 0. The multipliers of ξ(μ)
are the eigenvalues of ∂P (ξ(μ), μ)/∂x, and the eigenvalues of a matrix vary
continuously (not always smoothly) with a parameter.

In particular, an elliptic (respectively, hyperbolic) fixed point can be contin-
ued to an elliptic (respectively, hyperbolic) fixed point.

There are several figures in this chapter. These figures show the approxi-
mate placement of the fixed points and their type, elliptic or hyperbolic, as
parameters are varied. That is all they are meant to convey. They are drawn
as if the diffeomorphism were the time-one map of a differential equation.
Thus, for example, the drawing of an elliptic point shows concentric circles
about the fixed point. Do not assume that the circles are invariant curves
for the map. These curves suggest that the mapping approximately rotates
the points. Figure 11.1 shows two depictions of an elliptic fixed point. The
one on the left shows that the points near the elliptic point move a discrete
distance and is a more accurate depiction, whereas the figure on the right
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indicates invariant curves. The figure on the right is slightly misleading, but
is less cluttered and therefore is used in this chapter.

Figure 11.1. Rendering of elliptic fixed points.

11.1.1 Extremal Fixed Points.

Consider the case when the multipliers are equal to +1. In this case, the
simple implicit function theorem argument fails and for a good reason. Many
different things can happen depending on the nonlinear function; so, the
simple conclusions of Proposition 11.1.1 may not hold in this case. As an
extreme, consider the case when A = I and P (μ, x) = x+ μp(x), where p(x)
is an arbitrary function. The fixed points of P (μ, x) for μ 
= 0 are the zeros of
p(x); because p(x) is arbitrary, the fixed point set can be quite complicated:
in fact, it can be any closed set in R

2. In light of this potential complexity,
only the typical or generic situation for a one-parameter family is considered.

Definition. The origin is an extremal fixed point for P when μ = 0, if
there are symplectic coordinates (u, v) so that P : (μ, u, v) → (u′, v′), where

⎡
⎣
u′

v′

⎤
⎦ =

⎡
⎣

1 α

0 1

⎤
⎦
⎡
⎣
u

v

⎤
⎦+ μ

⎡
⎣
γ

δ

⎤
⎦+

⎡
⎣

· · ·

βu2 + · · ·

⎤
⎦+ · · · (11.1)

and α = ±1, β 
= 0 and δ 
= 0. First, note that it is assumed that when μ = 0
the linear mapping is already in Jordan normal, the matrix is not simple
(α = ±1), and that one nonlinear term is nonzero. Second, because δ 
= 0,
the perturbation does not leave the origin as a fixed point. We are considering
the unfolding of a shear fixed point. It is not necessary to put the full map
into normal form. However, if (11.1) is in the normal form as discussed in
Section 10.6, then the assumption that β 
= 0 means that the first nonlinear
term in the normal form appears with a nonzero coefficient.
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Proposition 11.1.2. Let 0 ∈ O ⊆ R
2 be an extremal fixed point for P when

μ = 0. Then there is a smooth curve σ : (−τ2, τ2) → I×O : τ → (μ̄(τ), ξ(τ))
of fixed points of P , P (μ̄(τ), ξ(τ)) = ξ(τ), with τ = 0 giving the extremal
fixed point, τ(0) = (0, 0).

The extremal point divides the curve of fixed points into two arcs. On one
arc the fixed points are all elliptic, and on the other, the fixed points are all
hyperbolic. Moreover, the parameter μ achieves a nondegenerate maximum
or minimum at the extremal fixed point; so, there are two fixed points when
μ has one sign and no fixed points when μ has the other. The proof contains
precise information on the relationship between the signs and the nature of
the fixed points.

Proof. The equations to be solved are

0 = u′ − u = αv + μγ + · · · ,

0 = v′ − v = μδ + βu2 + · · · .

Because α 
= 0 and δ 
= 0, these equations can be solved for v and μ as a
function of u. (Note the difference between this proof and the proof of Propo-
sition 11.1.1: one of the variables solved for in this proof is the parameter.)
The solution is of the form v̄(u) = O(u2) and μ̄(u) = (−β/δ)u2 +O(u2); so,
the map is σ : τ → (μ̄(τ), τ, v̄(τ)). The extreme point is obtained when τ = 0.
Note that if βδ > 0, then μ̄ obtains a nondegenerate maximum when τ = 0,
and if βδ < 0 then μ̄ obtains a nondegenerate minimum when τ = 0.

The Jacobian of the map along this solution is
[

1 α
2βτ 1

]
+ · · · ,

and so the multipliers are 1 ± (2αβτ)1/2 + · · · . Hence, when αβ > 0, the
fixed point is elliptic for τ < 0 and hyperbolic for τ > 0 and vice versa when
αβ < 0.

Figure 11.2 shows the curve σ in I × O. I is the horizontal axis and O is
depicted as a one-dimensional space, the vertical axis. In the case shown the
μ achieves a nondegenerate maximum on the curve at the origin. Consider
the case depicted in Figure 11.2. For μ negative there are two fixed points
in O, one elliptic and one hyperbolic, see Figure 11.3a. As μ approaches zero
through negative values these fixed points come together until they collide
and become a degenerate fixed point when μ = 0; see Figure 11.3b. For
positive μ there are no fixed points in O; see Figure 11.3c.

11.1.2 Period Doubling

The solutions given by the implicit function theorem are locally unique; so,
there is a neighborhood of an elementary or an extremal fixed point that
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Figure 11.2. The curve σ.

(a) (b) (c)

Figure 11.3. Extremal fixed point.

contains no other fixed points. But, there may be periodic points of higher
period near one of these fixed points. There are no periodic points near a
hyperbolic or extremal fixed point (see Problem section), but there may be
one near an elliptic fixed point. Let x = 0 be an elementary fixed point
for P when μ = 0; so, by Proposition 11.1.1, there is a smooth curve ξ(μ)
of fixed points. This fixed point can be shifted to the origin by considering
P ′(u, μ) = P (u+ ξ(μ), μ)− ξ(μ). Assume that this shift has been done, and
revert to the original notation; i.e., assume that P (0, μ) ≡ 0.

Let Pμ(x) = P (x, μ) = Ax+ · · ·; then

P k
μ (x) = Pμ ◦ Pμ ◦ · · · ◦ Pμ(x) = Akx+ · · · .
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A k-periodic point satisfies the equation P k
μ (x) = Akx + · · · = x which has

a unique solution, x = 0, unless Ak − I is singular, or one of the eigenvalues
of A is a kth root of unity. Thus k-periodic points may exist near a fixed
point with a multiplier that is a kth root of unity. In fact, generically they do
bifurcate from fixed points whose multipliers are kth roots of unity, in this
subsection, the case when k = 2 is considered; i.e., when the multipliers are
−1.

Let us see what the generic assumptions are for this case. The map C :
μ→ ∂P (0, μ)/∂x is a curve in Sp(2,R), the set of all 2×2 real matrices with
determinant equal to +1. Sp(2,R) is a three-dimensional space because there
is one algebraic identity among the four entries of the matrix. Let M be a
subspace of Sp(2,R). If M is a discrete set of points or a curve, then a small
perturbation of C would miss M, and if C already misses M, then a small
perturbation of C would still miss M. Thus one open and dense condition
(a generic condition) is for C to miss a discrete set or a curve in Sp(2,R).
If M is a surface in the three-dimensional space Sp(2,R), then the curve C
would in general hit M in a discrete set of points and cross the surface with
nonzero velocity. This is generic when M is a surface.

The set of matrices M2 = {A ∈ Sp(2,R) : traceA = −2} is the set
of matrices in Sp(2,R) with eigenvalue equal to −1. It is a surface because
the matrices satisfy the additional algebraic identity, traceA = −2. The
set {−I} ∈ M2 is a discrete point; thus, generically, the curve C intersects
M2\{−I} in a discrete set of points, and at these points, d(trace C(μ))/dμ 
=
0. Thus along a curve of elementary fixed points, there are isolated points
where the multipliers are −1, and the Jacobian is not simple. At these points,
the map can be put into the normal form described in Chapter 10. It is
also generic for the first term in the normal form to appear with a nonzero
coefficient. This informal discussion leads to the following definition.

Definition. The origin is a transitional periodic point for P at μ = 0 if
there are symplectic coordinates (u, v) so that P : (u, v) → (u′, v′), where

⎡
⎣
u′

v′

⎤
⎦ =

⎡
⎣
−1 α

0 −1

⎤
⎦
⎡
⎣
u

v

⎤
⎦+ μ

⎡
⎣
a b

c d

⎤
⎦
⎡
⎣
u

v

⎤
⎦+

⎡
⎣
· · ·

βu3 + · · ·

⎤
⎦+ · · · ,

and α = ±1, c 
= 0, β 
= 0.
There are three conditions in this definition. First, when μ = 0, the mul-

tipliers are −1, and the Jacobian matrix is not diagonalizable, α 
= 0. Second,
inasmuch as

det

⎧
⎨
⎩

⎡
⎣
−1 α

0 −1

⎤
⎦+ μ

⎡
⎣
a b

c d

⎤
⎦+ ·

⎫
⎬
⎭ = 1− μ(a+ d+ αc) + · · · = 1, (11.2)

c = −(a+ b)/α, and so the condition c 
= 0 implies that the derivative of the
trace of the Jacobian is nonzero. Third, β 
= 0 is the condition that the first
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term in the normal form when μ = 0 is nonzero. It is not necessary that the
map be put into normal form completely, simply eliminate all the quadratic
terms, and then assume that β 
= 0. We are considering the unfolding of a
flip fixed point.

Proposition 11.1.3. Let the origin be a transitional fixed point for P when
μ = 0. Let μ be small. If αc > 0, then the origin is a hyperbolic fixed point
when μ > 0 and the origin is an elliptic fixed point when μ < 0 (vice versa
when αc < 0).

If βc > 0 (respectively, βc < 0), then there exists a periodic orbit of period
2 for Pμ when μ < 0 (respectively μ > 0), and there does not exist a periodic
orbit for μ ≥ 0 (respectively, μ ≤ 0). As μ tends to zero from the appropriate
side, the period-2 orbit tends to the transition fixed point.

For fixed μ, the stability type of the fixed point and the period-2 orbit are
opposite. That is, if for fixed μ the origin is elliptic, then the periodic point
is hyperbolic and vice versa. (See Figure 11.4.)

Remark. The fixed point is called a transition point because the stability
type of the fixed point changes from hyperbolic to elliptic, or vice versa. At
the transition point, a new period 2 point appears on one side of μ = 0; this
is called period doubling in the literature. One says that the period-2 point
bifurcates from the transition point.

Proof. By (11.2) the trace of the Jacobian at the origin is −2+μ(a+d)+· · · =
−2−μαc+ · · · which implies the first part of the proposition. Compute that
the second iterate of the map is (u, v) → (u′′, v′′), where

u′′ = u− 2αv + · · · ,

v′′ = v − 2μcu+ μ(αc− 2d)v − 2βu3 + · · · .

Because α 
= 0, the equation u′′ − u = −2αv + · · · = 0 can be solved for v as
a function of μ and u. Call this solution v̄(u, μ). The lowest-order terms in v̄
are of the form kμu and k′u3, where k and k′ are constants. Substitute this
solution into the equation v′′ − v to get

v′′ − v = −2μcu− 2βu3 + · · · .

The origin is always a fixed point, thus u is a common factor, and therefore
the equation to solve is

(v′′ − v)/u = −2μc− 2βu2 + · · · .

Because c 
= 0, this equation can be solved for μ as a function of u; call this
solution μ̄(u) = −(β/c)u2 + · · ·. If βc > 0, then there are two real solutions,
u±(μ) = ±

√
−cμ/β + · · · for μ < 0, and none for μ ≥ 0, and vice versa when

βc < 0. Thus (u±(μ), v̄(u±(μ), μ)) are two fixed points of P 2
μ , but because
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they are not the origin, they are not fixed points of Pμ. Therefore, they are
periodic points of period 2. The Jacobian is

∂(u′′, v′′)
∂(u, v)

=
[

1 −2α
0 1

]
+
[

· · · · · ·
−2cμ− 6βu2 · · ·

]
+ · · · .

The multipliers are 1±+4
√−αcμ+ · · · because u2 = −cμ/β+ · · · along these

solutions, and so are hyperbolic if αcμ < 0 and elliptic when αcμ > 0.

There are two basic cases. Case A: the periodic point is elliptic, and case B:
the periodic point is hyperbolic. These are depicted in Figure 11.4. In the
figure it is assumed that αc > 0 and case A is when βc > 0 and case B is
when βc < 0.

Case A

(a) (b) (c)

Case B

(a) (b) (c)

Figure 11.4. Transitional point. Case A: (a) μ < 0; (b) μ = 0; (c) μ > 0. Case B:
(a) μ < 0; (b) μ = 0; (c) μ > 0.

11.1.3 k-Bifurcation Points

From the discussion of the last section, periodic points are likely near a fixed
point that has multipliers which are kth roots of unity. In the last subsection
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the generic case of a fixed point with multiplier −1, a square root of unity,
was discussed, and in this section, the remaining cases are discussed. Recall
the normal forms given in Section 10.6.

Definition. The origin is a k-bifurcation point, k ≥ 3, for P when μ = 0,
if there are symplectic action–angle coordinates (I, φ) so that P : (I, φ, μ) →
(I ′, φ′), where

I ′ = I − 2γIk/2 sin(kφ) + · · · ,

φ′ = φ+ (2πh/k) + αμ+ βI + · · ·+ γI(k−2)/2 cos(kφ) + · · · ,
(11.3)

and

α 
= 0, γ 
= 0 when k = 3.
α 
= 0, γ 
= 0, β ± γ 
= 0 when k = 4.
α 
= 0, β 
= 0, γ 
= 0 when k ≥ 5.

The linearized map is I ′ = I, φ′ = φ+ (2πh/k) + αμ. So when μ = 0, the
multipliers are exp(±2πhi/k), a kth root of unity. The assumption α 
= 0 is
the assumption that the multipliers pass through the kth root of unity with
nonzero velocity. When k ≥ 5, the terms with φ dependence are higher order,
and the map when μ = 0 is of the form I ′ = I+· · · , φ′ = φ+(2πh/k)+βI+· · ·.
The assumption that β 
= 0 is the twist assumption, and a map satisfying
this assumption is called a twist map. Twist maps are discussed in the next
section, and in Chapter 13. The assumption that γ 
= 0 is the assumption that
the first angle-dependent term in the normal form appears with a nonzero
coefficient. This term is referred to as the resonance term, and it is very
important to the bifurcation analysis given below. The resonance term is of
lower order than the twist term when k = 3 and vice versa when k ≥ 5.When
k = 4, they are both of the same order. Therefore, the case k = 3 and k = 4
is special and must be treated separately.

Proposition 11.1.4. Let the origin be a 3-bifurcation point for P when μ =
0. Let μ be small. Then there is a hyperbolic periodic orbit of period 3 that
exists for both positive and negative values of μ and the periodic point tends
to the 3-bifurcation point as μ→ 0 from either side. (See Figure 11.5.)

Proof. Compute the third iterate of the map Pμ as P 3
μ : (I, φ) → (I3, φ3),

where
I3 = I − 2γI3/2 sin(3φ) + · · · ,

φ3 = φ+ 2πh+ 3αμ+ 3γI1/2 cos(3φ) + · · · .
The origin is always a fixed point; so, I is a common factor in the formula
for I3. Because γ 
= 0, the equation (I3 − I)/(−2γI3/2) = sin(3φ) + · · ·
can be solved for six functions φj(I, μ) = jπ/3 + · · · , j = 0, 1, . . . , 5. For
even jwehave cos 3φj = +1 + · · ·, and for odd jwehave cos 3φj = −1 + · · ·.
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Substituting these solutions into the φ equation gives (φ3 − φ − 2hπ)/3 =
αμ ± γI1/2 + · · ·. The equations with a plus sign have a positive solution
for I when αγμ is negative, and the equations with the minus sign have a
positive solution for I when αγμ is positive. The solutions are of the form
I
1/2
j = ∓αμ/γ + · · ·. Compute the Jacobian along these solutions to be

∂(I3, φ3)
∂(I, φ)

=
[

1 0
0 1

]
+

[
0 ∓6γI3/2

j

(±3γ/2)I−1/2
j 0

]
+ · · ·

and so the multipliers are 1± 3|γ|I1/2
j , and the periodic points are all hyper-

bolic.

Figure 11.5. A 3-bifurcation point.

Proposition 11.1.5. Let the origin be a k-bifurcation point, k ≥ 5, for P
when μ = 0. Let μ be small. Then when αβ < 0 (respectively, αβ > 0)
there exist an elliptic and also a hyperbolic periodic orbit of period k for
μ > 0 (respectively, μ < 0) and no periodic orbit of period k when μ < 0
(respectively, μ > 0). As μ → 0 from the appropriate side, both the elliptic
and hyperbolic orbits tend to the k-bifurcation point. (See Figure 11.6.)

Remark. These periodic orbits are said to bifurcate from the fixed point
when μ = 0. Each orbit consists of k points, and there are exactly two periodic
orbits.

Proof. Compute the kth iterate of the map Pμ as P k
μ : (I, φ) → (Ik, φk),

where
Ik = I − 2γIk/2 sin(kφ) + · · · ,

φk = φ+ 2hπ + αkμ+ βkI + · · · .
(11.4)

The origin is a fixed point for all μ, thud the first equation is divisi-
ble by Ik/2. By the implicit function theorem, there are 2k solutions of
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(Ik− I)/(−2γIk/2) = sin(kφ)+ · · · = 0; call them φj(I, μ) = jπ/k+ · · ·. Sub-
stitute these solutions into the equation (φk−φ−2hπ)/k = αμ+βI+· · · = 0.
For each of the φj , this second equation has a solution Ij = −αμ/β+ · · · that
gives a positive I provided αβμ < 0.

The Jacobian at these solutions is

∂(Ik, φk)
∂(I, φ)

=
[

1 0
0 1

]
+
[

0 −2kγIk/2
j cos(kφj)

kβ 0

]
+ · · · ,

and so the multipliers are 1± k
√
±2γβIk/2

j + · · ·, where the plus sign inside
the square root is taken for even j because cos(kφj) = +1 + · · ·, and the
minus sign inside the square root is taken for odd j.

Figure 11.6. A 6-bifurcation point

The case when k = 4 is sometimes like the case when k = 3 and sometimes
like the case when k ≥ 5 depending on the relative size of the twist term and
the resonance term.

Proposition 11.1.6. Let the origin be a 4-bifurcation point for P when μ =
0. Let μ be small. Then:

Case A. If β ± γ have different signs, then there is a hyperbolic periodic
orbit of period 4 that exists for both positive and negative μ and tends to the
4-bifurcation point as μ→ 0 from either side.

Case B. If β±γ have the same sign, then when α(β±γ) < 0 (respectively,
α(β±γ) > 0), there exists an elliptic and a hyperbolic periodic orbit of period
4 for μ > 0 (respectively, μ < 0) and no periodic orbit of period 4 when μ < 0



282 11. Bifurcations of Periodic Orbits

(respectively, μ > 0). As μ → 0 from the appropriate side, both the elliptic
and hyperbolic orbits tend to the 4-bifurcation point.

Proof. Compute the fourth iterate of the map Pμ as P 4
μ : (I, φ) → (I4, φ4),

where
I4 = I − 2γI2 sin(4φ) + · · · ,

φ4 = φ+ 2hπ + 4αμ+ 4{β + γ cos(4φ)}I + · · · .
Because the origin is a fixed point for all μ, the first equation is divisible
by I2. By the implicit function theorem there are eight solutions of (I4 −
I)/(−2γI2) = sin(4φ) + · · · = 0; call them φj(I, μ) = jπ/4 + · · ·. Substitute
these solutions into the equation

(φ4 − φ− 2hπ)/4 = αμ+ {β + γ cos(4φj)}I + · · · =

αμ+ {β ± γ}I + · · · = 0.

For each of the φj , this equation has a solution Ij = −αμ/{β±γ}+ · · · which
gives a positive I provided α{β ± γ}μ < 0. So if β ± γ have different signs
then one group of four solutions exists for positive μ and the other group for
negative μ; this is Case A and is similar to Proposition 11.1.4. If β ± γ are
of the same sign, all eight solutions exist for μ on one side on 0; this is Case
B and is similar to Proposition 11.1.5. The calculation of the multipliers is
similar to the calculations given above.

11.2 Duffing Revisited

This section develops some new ideas in order to analyze two types of bifur-
cations that occur in Duffing’s equation. The first is an extremal, and the
second is a k-bifurcation.

Duffing at 1–1 resonance. Here the classical Duffing equation is consid-
ered, even though it has been discussed in many texts. Most of the classical
treatments miss the fact that there is an extremal periodic solution as de-
fined in Section 11.1, and therefore their treatment is incomplete. Consider
the classical Duffing’s equation

ẍ+ ω2
nx+ γx3 = A cosωet, (11.5)

or
ẋ = ωny =

∂H

∂y
,

ẏ = −ωnx−
γ

ωn
x3 +

A

ωn
cosωet = −∂H

∂x
,

(11.6)
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where
H =

ωn

2
(y2 + x2) +

γ

4ωn
x4 − A

ωn
x cosωet. (11.7)

When the nonlinearity is absent, γ = 0, and there is no external forcing,
A = 0. This is simply the harmonic oscillator with a frequency ωn, the natural
frequency. The general solution is φg = α cosωnt+ β sinωnt.

If the nonlinearity is absent, γ = 0, the external force is present, A 
=
0, and the two frequencies are unequal, ωe 
= ωn, then the equation has
a particular solution φp = B cosωet, B = A/(ω2

e − ω2
n). In this case, the

particular solution is the unique solution that is periodic with frequency the
same as the external frequency ωe, and period T = 2π/ωe. The variational
equation for this solution is obtained by setting A = γ = 0 in (11.6), and the
period map is computed to be (x, y) → (x′, y′), where

[
x′

y′

]
=
[

cosωnT sinωnT
− sinωnT cosωnT

] [
x
y

]
.

Thus the multipliers of this solution are exp(±2πiωn/ωe), which are not equal
to +1 provided ωn/ωe 
= 0, ±1,±2,±3, . . . . In this case, the particular solu-
tion is elliptic, hence elementary, and so it can be continued into the nonlinear
problem for small γ 
= 0.

In summary, if ωn/ωe 
= 0, ±1,±2,±3, . . . , then for small forcing and
small nonlinearity, there is a small periodic solution of (11.5) with the same
period as the external forcing. In the classical literature this solution is some-
times referred to as the harmonic.

The question is what happens when ωn/ωe = 0,±1,±2,±3, . . . . To this
end consider the case when ωn/ωe is near +1 by setting ω2

n = 1− εδ, ωe = 1,
where ε is a small parameter. The interesting things happen not just when
the ratio of the frequencies is 1, but also when the ratio is near 1; so, the
parameter δ is introduced. It is called the detuning. Assume that the nonlin-
earity and forcing are small by using the following replacements, γ → −εγ,
A→ εA. That is, consider the equation

ẍ+ x = ε{δx+ γx3 +A cos t},

or
ẋ = y = ∂H/∂y,

ẏ = −x+ ε{δx+ γx3 +A cos t} = −∂H/∂x,
where

H = (1/2)(x2 + y2)− ε{δx2/2 + γx4/4 +Ax cos t}. (11.8)

Change to action–angle variables by setting x =
√

2I cosφ, y =
√

2I sinφ, so
that the Hamiltonian becomes

H = I − ε{δI cos2 φ+ γI2 cos4 φ+A
√

2I cosφ cos t}. (11.9)
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By Theorem 10.6.1, the normal form for (11.9) depends on I and (φ+ t). To
find the first term in the normal form, substitute the identities

cos2 φ = (1 + cos 2φ)/2,
cos4 φ = (3 + 4 cos 2φ+ cos 4φ)/8,
cosφ cos t = (cos(φ+ t) + cos(φ− t))/2

into (11.9), and keep only the terms in I and (φ + t) to obtain the normal
form:

H = I − ε{(δ/2)I + (3γ/8)I2 +A(I/2)1/2 cos(φ+ t)}+ · · · . (11.10)

Integrate the normalized equations from 0 to 2π to get the period map to be
(I, φ) → (I ′, φ′), where

I ′ = I + ε{π21/2AI1/2 sinφ}+ · · · ,

φ′ = φ− 2π + επ{δ + gI + aI−1/2 cosφ}+ · · · ,
(11.11)

where g = 3γ/2 and a = (2A)−1/2. Solving the equation (I ′ − I)/ε = 0
using the implicit function theorem gives two solutions, φ+(ε, φ) = 0 + O(ε)
and φ−(ε, φ) = π + O(ε), with sinφ± = 0 + O(ε) and cosφ± = ±1 + O(ε).
Substituting these solutions into the equation (φ′−φ)/2πε = 0 gives δ+gI±
aI−1/2 +O(ε) = 0. Solve this equation for δ by the implicit function theorem
to get

δ = −gI ∓ aI−1/2 + · · · . (11.12)

Thus if ε is small, for each (I, δ) satisfying (11.12) there are two 2π-periodic
solutions of (11.10). The graph of (11.10) when ε = 0 has a maximum when
ag > 0 and a minimum when ag < 0 at | a/g |2/3. In either case, the second
derivative is nonzero at extrema, and so (11.12) has a maximum/minimum
at a point I ′ =| a/g |2/3 +O(ε), δ′ = (3/2)(2a2g)1/3 + · · · even when ε is
nonzero and small.

Consider the case when a and g are positive. The free parameter is the
detuning, δ. When δ < δ′ there are three values of I that satisfy Equation
(11.12) and hence six periodic solutions. As δ approaches δ′ from below,
two of these I values approach each other, and when δ = δ′ they collide.
For δ > δ′, there is only one I solution. This reminds one of an extremal
bifurcation where an elliptic and a hyperbolic point come together.

In order to calculate the multipliers, calculate the Jacobian to be

∂(I ′, φ′)
∂(I, φ)

=
[

1 ±ε(2I)1/2A
−επ(dδ/dI) 1

]
.

Note the term in the lower left, ∂φ′/∂I = −επdδ/dI, is exact. The character-
istic equation is (λ−1+ · · ·)2± (ε2πA(2I)1/2 + · · ·)(dδ/dI). The two solutions
near the extrema have different signs for dδ/dI; so, one is elliptic and one
is hyperbolic. Thus the extrema (11.12) correspond to an extremal periodic
points.
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11.2.1 k-Bifurcations in Duffing’s Equation

In applications it is difficult to verify the hypothesis γ 
= 0 for a k-bifurcation
point when k is large. This is difficult even with an algebraic processor, be-
cause the map must be put into normal form to very high order. In applica-
tions the period map is typically known only approximately, and it is not in
full normal form. In several examples it is easy to compute that α 
= 0 and
β 
= 0. With this information alone and an ingenious idea of Birkhoff, the
existence of a bifurcation can be detected, but the uniqueness of the periodic
orbits cannot. Refer to Equation (11.3).

Definition. The origin is a weak k-bifurcation point, k ≥ 5, for P when
μ = 0, if there are symplectic action–angle coordinates (I, φ) so that P is as
in Equation (11.3) with α 
= 0 and β 
= 0.

Proposition 11.2.1. Let the origin be a weak k-bifurcation point for P, k ≥
5, when μ = 0. Then when αβ < 0 (respectively, αβ > 0) P , has ,∞ ≥  ≥ 2,
periodic orbits for each μ, μ > 0 (respectively, μ < 0). As μ → 0 from
the appropriate side, all the periodic orbits tend to the origin (the weak k-
bifurcation point).

Remark. This is simply an existence theorem for each fixed μ. In partic-
ular, the number of periodic orbits  may depend on μ, and the orbits may
not vary continuously in μ except at μ = 0.

Proof. As in the proof of Proposition 11.1.5, compute P k
μ to be as given

in (11.4). Because α 
= 0 and β 
= 0, the equation (φk − φ − 2hπ)/k =
αμ + βI + · · · = 0 can be solved for I to give I∗(φ, μ) = −αμ/β + · · ·.
Let Γμ denote the closed curve {(I, φ) : I = I∗(φ, μ)}, the circle of zero
rotation. Because P k

μ is area-preserving, the curve Γμ and its image P k
μ (Γμ)

must intersect; i.e., Γμ ∩ P k
μ (Γμ) 
= ∅. For small μ, both Γμ and P k

μ (Γμ)
are smooth curves that meet a ray from the origin in only one point. Let
x ∈ Γμ ∩ P k

μ (Γμ). Because x ∈ Γμ, its angular coordinate does not change
under P k

μ , and because x ∈ Γμ∩P k
μ (Γμ) its radial coordinate does not change

under P k
μ ; so, x is a fixed point of P k

μ . Thus there is at least one periodic
orbit. Using the same argument as found in Birkhoff (1927) one can show that
if there are a finite number of points in the intersection then one must have
index +1, and one must have index −1; so, there are at least two periodic
orbits.

By a similar argument Birkhoff proved the following.

Proposition 11.2.2. Near a general elliptic point there are periodic points
of arbitrary high period.

In Birkhoff’s theorem there is no parameter; so, he had to make careful
estimates to show that the curve of zero rotation, Γ0, existed for large k. See
Birkhoff (1927) for the complete proof.
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Consider the forced Duffing’s equation (11.5) again; only this time, assume
that only the forcing term is small by substituting A → εA. Normalize the
time by setting ωn = 1 and ωe = ω. Thus consider the Hamiltonian

H = (1/2)(y2 + x2) + γx4/4− εAx cosωt. (11.13)

By the argument at the beginning of the previous subsection Duffing’s equa-
tion has a small, order ε, 2π/ω-periodic solution, the harmonic, provided
1/ω 
= 0,±1,±2,±3, . . .; so, assume that ω is away from these values.
When ε = 0 the harmonic is the constant zero function, and its multipli-
ers are exp(±2πi/ω). Fix k ≥ 5. By the implicit function theorem, there
is a smooth function ωh/k(ε) such that the multipliers of the harmonic are
exp(±2πhi/k) and ωh/k(ε) = k/h + · · · for small ε. Define a new parameter
μ by μ = ω − ωk(ε), the detuning parameter. When μ = 0 the harmonic
has multipliers that are kth roots of unity. When μ 
= 0 but μ and ε are
small, the multipliers of the harmonic are exp±i(2πh/k+α(ε)μ+ · · ·) where
α(0) = −2π(h/k)2 
= 0.

The period map about the harmonic can be put into normal form through
the twist term, because the low resonance cases have been excluded. When
ε = 0 and μ = 0, the computations in Section 10.3 show that in new action–
angle variables, one has

H = I + (3γ/8)I2 +O(ε).

By integrating the equations from t = 0 to t = 2πk/h, the period map is

I ′ = I +O(ε),

φ′ = φ− 2πh/k − (3πkγ/2h)I +O(ε).

So when ε = 0 and μ = 0, the twist coefficient is −(3πkγ/2h) 
= 0, and by
continuity, it is nonzero for small ε. Therefore Proposition 11.2.1 applies. For
each k ≥ 5 and small ε, Duffing’s equation with Hamiltonian (11.13) has a
small 2π-periodic solution with multipliers exp(±2πih/k) when ω = ωh/k(ε).
At least two periodic solutions of period 2kπ/ω bifurcate from the harmonic
as ω varies from ωh/k(ε). These periodic solutions occur for ω > ωh/k(ε) when
γ > 0, and they occur for ω < ωh/k(ε) when γ < 0.

These solutions are called subharmonics in the classical literature.

11.3 Schmidt’s Bridges

In Section 9.3, the circular orbits of the Kepler problem were continued into
the restricted problem to give two families of periodic solutions for small val-
ues of the mass ratio parameter μ. These families are known as the direct and
retrograde orbits, depending on whether they rotate in the same or opposite
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direction as the primaries in the fixed coordinate system. In Section 9.7, some
of the elliptic periodic solutions of the 2-body problem were continued into
the restricted problem as symmetric periodic orbits.

Schmidt (1972) showed that these elliptic periodic solutions lie on fam-
ilies of symmetric periodic solutions that connect the direct and retrograde
orbits. That is, for small μ, there is a smooth family of symmetric periodic
solutions of the restricted problem, φ(t, μ, α), where α is the parameter of the
family such that for −1 < α < +1, φ(t, 0, α) is an elliptic periodic solution,
φ(t, 0,−1) is a direct circular periodic solution, and φ(t, 0,+1) is a retrograde
circular periodic solution of the Kepler problem in rotating coordinates. Of
course, this family contains a collision orbit, but there is a natural way to
continue a family through a collision. Such a family is called a bridge of
periodic solutions (connecting the direct and retrograde orbits).

The complete justification of Schmidt’s bridges would take too much time,
but one of the bifurcations is given here. Consider the restricted problem for
small μ in Poincaré coordinates (see Section (7.7)); so, the Hamiltonian is

H = − 1
2P 2

1

− P1 +
1
2
(Q2

2 + P 2
2 ) +O(μ). (11.14)

These coordinates are valid in a neighborhood of the direct circular orbits
when μ = 0. Recall that Q2 is an angular coordinate, and when μ = 0, the
direct circular orbits are Q2 = P2 = 0. In Section 9.3 these periodic orbits
were continued into the restricted problem for small μ, and these solutions
have Q2, P2 coordinates that are O(μ). This result is reproved below.

The condition for an orthogonal crossing of the line of syzygy in these
coordinates is

Q1 = mπ, Q2 = 0,

where m is an integer.
So let Q1(t, p1, p2, μ), Q2(t, p1, p2, μ), P1(t, p1, p2, μ), P2(t, p1, p2, μ) be the

solution that satisfies Q1 = Q2 = 0, P1 = p1, P2 = p2 when t = 0. Then the
equations to solve for a symmetric T -periodic solution are

Q1(T/2, p1, p2, μ) = (1/p31 − 1)T/2−mπ +O(μ) = 0,

Q2(T/2, p1, p2, μ) = p2 sin(T/2) +O(μ) = 0.
(11.15)

The direct circular orbits correspond to m = ±1; take +1 for definiteness.
When μ = 0 these equations have a solution p−3

1 = j (arbitrary), p2 = 0,
T = 2π/(j − 1). Because

∂(Q1, Q2)
∂(t, p2)

=
[

1
2 (j − 1) 0

0 sin(π/(j − 1))

]
,

which is not zero when j 
= (s + 1)/s, s = 1, 2, 3, . . . , the implicit function
theorem implies that these solutions can be continued into the restricted
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problem for small μ. This is a second proof of the existence of the direct
circular orbits.

Assume that the Q2, P2 coordinates have been shifted so that the circular
orbits are at Q2 = P2 = 0 for all small μ. This only affects the O(μ) terms
in (11.14). Let k and n be relatively prime integers. The first equation in
(11.15) has a solution T = 2πn, p−3

1 = k/n, m = k − n when μ = 0, and
because ∂Q1/∂t = (1/p−3

1 − 1)/2 = (k − n)/2n 
= 0 it can be solved for
T = T (p1, p2, μ) = 2(k − n)π/(1/p−3

1 − 1) + O(μ). Substitute this solution
into the second equation in (11.15) to get

Q2(T/2, p1, p2, μ) = p2 sin
{

(k − n)π
(1/p31 − 1)

}
+O(μ) = 0 (11.16)

as the equation to be solved. Because the circular orbit has been shifted to
the Q2, P2 origin, Equation (11.16) is satisfied when p2 = 0; so, p2 is a factor.
Thus to solve (11.16) it is enough to solve

sin
{

(k − n)π
(1/p31 − 1)

}
+O(μ) = 0.

This equation has a solution, p1 = p1(p2, μ) = (n/k)1/3 + O(μ), again by
the implicit function theorem. This gives rise to a periodic solution for all
p2 that are small including p2 = 0. So this family is parameterized by p2,
0 ≤ p2 ≤ δ (small), for μ small. The period of the solutions in this family
is approximately 2nπ for p2 
= 0. Where p2 = 0, this periodic solution is the
direct circular orbit established before.

11.4 Bifurcations in the Restricted Problem

Many families of periodic solutions of the restricted problem have been stud-
ied and numerous bifurcations have been observed. Most of these bifurcations
are generic one-parameter bifurcations. Other bifurcations seem to be generic
in either the class of symmetric solutions or generic two parameter bifurca-
tions. We claim that these bifurcations can be carried over to the 3-body
problem mutatis mutandis using the reduction found in Section 9.6. Because
there are a multitude of different bifurcations and they are all generalized in
a similar manner we illustrate only one simple case, the 3-bifurcation.

Let p(t, h) be a smooth family of nondegenerate periodic solutions of the
restricted problem parameterized by HR; i.e., HR(p(t, h)) = h, with period
τ(h). When h = h0 let the periodic solution be p0(t) with period τ0; so
p0(t) = p(t, h0) and τ0 = τ(h0). We say that the τ0-periodic solution p0(t)
of the restricted problem is a 3-bifurcation orbit if the cross-section map
(ψ, Ψ) −→ (ψ′, Ψ ′) in the surface HR = h for this periodic orbit can be put
into the normal form
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ψ′ = ψ + (2πk/3) + α(h− h0) + βΨ1/2 cos(3ψ) + · · ·

Ψ ′ = Ψ − 2βΨ3/2 sin(3ψ) + · · ·

T = τ0 + · · ·

and k = 1, 2, and α and β are nonzero constants. In the above ψ, Ψ are nor-
malized action–angle coordinates in the cross-section and intersect HR = h,
and T is the first return time for the cross-section. The periodic solution
p(t, h) corresponds to the point Ψ = 0. The multipliers of the periodic solu-
tion p0(t) are +1,+1, e+2kπi/3, e−2kπi/3 (cube roots of unity) so the periodic
solution is a nondegenerate elliptic periodic solution. Thus this family of pe-
riodic solutions can be continued into the reduced problem provided τ0 is not
a multiple of 2π by the result of Section 9.6.

The above assumptions imply that the periodic solution p(t, h) of the
restricted problem undergoes a bifurcation. In particular, there is a one-
parameter family, p3(t, h), of hyperbolic periodic solution of period 3τ0 + · · ·
whose limit is p0(t) as h→ h0.

Theorem 11.4.1. Let p0(t) be a 3-bifurcation orbit of the restricted problem
that is not in resonance with the harmonic oscillator; i.e., assume that 3τ0 
=
2nπ, for n ∈ Z. Let p̃(t, h, ε) be the τ̃(h, ε)-periodic solution which is the
continuation into the reduced problem of the periodic solution p(t, h) for small
ε. Thus p̃(t, h, ε) −→ (p(t, h), 0, 0) and τ̃(h, ε) −→ τ(h) as ε −→ 0.

Then there is a function h̃0(ε) with h̃0(0) = h0 such that p̃(t, h̃0(ε), ε) has
multipliers

+1,+1, e+2kπi/3, e−2kπi/3, e+τi +O(ε), e−τi +O(ε);

i.e., exactly one pair of multipliers is cube roots of unity.
Moreover, there is a family of periodic solutions of the reduced problem,

p̃3(t, h, ε) with period 3τ̃(h, ε) + · · · such that p̃3(t, h, ε) −→ (p3(t, h), 0, 0) as
ε −→ 0 and p̃3(t, h, ε) −→ p̃(t, h̃0(ε), ε) as h −→ h̃0(ε). The periodic solutions
of the family p̃3(t, h, ε) are hyperbolic–elliptic; i.e., they have two multipliers
equal to +1, two multipliers that are of unit modulus, and two multipliers
that are real and not equal to ±1.

Proof. Because the Hamiltonian of the reduced problem is H = HR + 1
2 (r2 +

R2) + O(ε) we can compute the cross-section map for this periodic solution
in the reduced problem for ε = 0. Use as coordinates ψ, Ψ, r,R in this cross
section and let η = h− h0. The period map is (ψ, Ψ, r,R) −→ (ψ′, Ψ ′, r′, R′),
where
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ψ′ = ψ′(ψ, Ψ, r,R, η, ε) = ψ + (2πk/3) + αη + βΨ1/2 cos(3ψ) + · · ·

Ψ ′ = Ψ ′(ψ, Ψ, r,R, η, ε) = Ψ − 2βΨ3/2 sin(3ψ) + · · ·
[
r′

R′

]
=
[
r′(ψ, Ψ, r,R, η, ε)
R′(ψ, Ψ, r,R, η, ε)

]
= B

[
r
R

]
+ · · ·

where

B =
[

cos τ sin τ
− sin τ cos τ

]
.

The periodic solution of the restricted problem is nondegenerate therefore it
can be continued into the reduced problem and so we may transfer the fixed
point to the origin; i.e., Ψ = r = R = 0 is fixed.

Because α 
= 0 we can solve ψ′(0, 0, 0, 0, η, ε) = 2πk/3 for η as a function
of ε to get η̃(ε) = h− h̃0(ε). This defines the function h̃0.

Compute the third iterate of the period map to be

(ψ, Ψ, r,R) −→ (ψ3, Φ3, r3, R3),

where
ψ3 = ψ + 2πk + 3αη + 3βΨ1/2 cos(3ψ) + · · · ,

Ψ3 = Ψ − 2βΨ3/2 sin(3ψ) + · · · ,
[
r3

R3

]
= B3

[
r
R

]
+ · · · .

Because 3τ 
= 2kπ the matrix B3 − I is nonsingular, where I is the 2 × 2
identity matrix. Thus we can solve the equations r3− r = 0, R3−R = 0 and
substitute the solutions into the equations for ψ3 − ψ = 0, Ψ3 − Ψ = 0.

The origin is always a fixed point; so, Ψ is a common factor in the formula
for Ψ3. Inasmuch as β 
= 0, the equation

(Ψ3 − Ψ)/(−2βΨ3/2) = sin(3ψ) + · · ·

can be solved for six functions ψj(Ψ, h) = jπ/3+ · · · , j = 0, 1, . . . , 5. For even
j, cos 3ψj = +1 + · · ·, and for odd j, cos 3ψj = −1 + · · ·. Substituting these
solutions into the ψ equation gives

(ψ3 − ψ − 2hπ)/3 = αη ± βΨ1/2 + · · · .

The equations with a plus sign have a positive solution for Ψ when αβη is
negative, and the equations with the negative sign have a positive solution
for Ψ when αβη is positive. The solutions are of the form Ψ

1/2
j = ∓αη/β.

Compute the Jacobian along these solutions to be
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∂(Ψ3, ψ3)
∂(Ψ, ψ)

=
[

1 0
0 1

]
+

[
0 ∓6βΨ3/2

j

±(3β/2)Ψ−1/2
j 0

]
,

and so the multipliers are 1±3|αη|, and the periodic points are all hyperbolic-
elliptic.

There are many other types of generic bifurcations, e.g., extremal, period
doubling, k-bifurcations with k > 3, etc. If such a bifurcation occurs in the
restricted problem and the period of the basic periodic orbit is not a multiple
of 2π then a similar bifurcation takes place in the reduced problem also. The
proofs are be essentially the same as the proof given above.

11.5 Bifurcation at L4

One of the most interesting bifurcations occurs in the restricted problem at
the libration point L4 as the mass ratio parameter passes through the critical
mass ratio of Routh, μ1. Recall that the linearized equations at L4 have two
pairs of pure imaginary eigenvalues, ±ω1i, ±ω2i for 0 < μ < μ1, eigenvalues
±i
√

2/2 of multiplicity two for μ = μ1, and eigenvalues ±α±βi, α 
= 0, β 
= 0
for μ1 < μ ≤ 1/2; see Section 4.1. For μ < μ1 and μ near μ1, Lyapunov’s
center theorem, 9.2.1, establishes the existence of two families of periodic
solutions emanating from the libration point L4. But for μ1 < μ ≤ 1/2, the
stable manifold theorem, 8.6.1, asserts that there are no periodic solutions
near L4. What happens to these periodic solutions as μ passes through μ1?

In a interesting paper, Buchanan (1941) proved, up to a small computa-
tion, that there are still two families of periodic solutions emanating from
the libration point L4 even when μ = μ1. This is particularly interesting, be-
cause the linearized equations have only one family. The small computation
of a coefficient of a higher-order term was completed by Deprit and Henrard
(1969), thus showing that Buchanan’s theorem did indeed apply to the re-
stricted problem. Palmore (1969) investigated the question numerically and
was led to the conjecture that the two families detach as a unit from the li-
bration point and recede as μ increases from μ1. Finally, Meyer and Schmidt
(1971) established a general theorem that established Palmore’s conjecture
using the calculation of Deprit and Deprit-Bartholomê (1969). Unfortunately,
a spurious factor of

√
2 occurred in the application of Deprit’s calculation.

Subsequently, this theorem has been proved again by several authors by es-
sentially the same method. It has become known as the Hamiltonian–Hopf
bifurcation.

By the discussion in Section 3.3, the normal form for a quadratic Hamil-
tonian (linear Hamiltonian system) with eigenvalues ±ωi, ω 
= 0, with mul-
tiplicity two, which is nonsimple, is

Q0 = ω(ξ2η1 − ξ1η2) + (δ/2)(ξ21 + ξ22), (11.17)
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where δ = ±1 which gives rise to the linear system of equations ż = A0z,
where

z =

⎡
⎢⎢⎣
ξ1
ξ2
η1
η2

⎤
⎥⎥⎦ , A0 =

⎡
⎢⎢⎣

0 ω 0 0
−ω 0 0 0
−δ 0 0 ω
0 −δ −ω 0

⎤
⎥⎥⎦ . (11.18)

Consider a smooth quadratic perturbation of Q0; i.e., a quadratic Hamilto-
nian of the formQ(ν) = Q0+νQ1+· · ·, where ν is the perturbation parameter.
By the discussion in Sections 9.3 and 9.4, there are three qualities that are
important in the theory of normal forms for this problem, namely,

Γ1 = ξ2η1 − ξ1η2, Γ2 = (ξ21 + ξ22)/2, Γ3 = (η2
1 + η2

2)/2.

The higher-order terms in Q(ν) are in normal form if they are functions of
Γ1 and Γ3 only. Assume that Q(ν) is normalized through terms in ν, so that
Q1 = aΓ1 + bΓ3 or

Q(ν) = ωΓ1 + δΓ2 + ν(aΓ1 + bΓ3) + · · · .

Change to complex coordinates at this point; so, introduce new coordinates
by

y1 = ξ1 + iξ2, y2 = ξ1 − iξ2,

y3 = η1 − iη2, y4 = η1 + iη2.

This change of coordinates is symplectic with multiplier 2. Note that the
reality conditions are y1 = ȳ2 and y3 = ȳ4. We keep the form of Q(ν) and
make the change in the Γ s; so,

Γ1 = i(y2y4 − y1y3), Γ2 = y1y2, Γ3 = y3y4.

The equations of motion are ẇ = (B0 + νB1 + · · ·)w, where

w =

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣
−ωi 0 0 0
0 ωi 0 0
0 −δ ωi 0
−δ 0 0 −ωi

⎤
⎥⎥⎦ .

B1 =

⎡
⎢⎢⎣
−ai 0 0 b
0 ai b 0
0 0 ai 0
0 0 0 −ai

⎤
⎥⎥⎦ .

The characteristic polynomial of Q(ν) is

{λ2 + (ω + νa)2}2 + 2νbδ{λ2 − (ω + νa)2}+ ν2b2δ2,

which has roots
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λ = ±(ω + νa)i±
√
−bδν + · · · . (11.19)

So the coefficient a controls the way the eigenvalues move in the imaginary
direction, and the coefficient b controls the way the eigenvalues split off the
imaginary axis. The assumption that b 
= 0 means that the eigenvalues move
off the imaginary axis when bδν < 0.

Now consider a nonlinear Hamiltonian system depending on the param-
eter ν which has Q(ν) as its quadratic part and when ν = 0 has been nor-
malized in accordance with the discussion in Section 10.4 (Sokol’skii normal
form) through the fourth-order terms; i.e., consider

H(ν) = ωΓ1 + δΓ2 + ν(aΓ1 + bΓ3) +
1
2
(cΓ 2

1 + 2dΓ1Γ3 + eΓ 2
3 ) + · · · , (11.20)

where here the ellipsis stands for terms that are at least second-order in ν or
fifth-order in the ys. Scale the variables by

y1 → ε2y1, y2 → ε2y2,

y3 → εy3, y4 → εy4,

ν → ε2ν,

(11.21)

which is symplectic with multiplier ε3; so, the Hamiltonian becomes

H = ωΓ1 + ε(δΓ2 + νbΓ3 +
1
2
eΓ 2

3 ) +O(ε2). (11.22)

The essential assumption is that all the terms shown actually appear; i.e.,
ω 
= 0, δ = ±1, b 
= 0, e 
= 0. The equations of motion are

ẏ1 = −ωiy1 + ε{νby4 + e(y3y4)y4},

ẏ2 = ωiy2 + ε{νby3 + e(y3y4)y3)},

ẏ3 = ωiy3 − εδy2,

ẏ4 = −ωiy4 − εδy1.

(11.23)

Note that the O(ε2) terms have been dropped for the time being. Equa-
tions (11.23) are of the form

u̇ = Cu+ εf(u, ν), (11.24)

where u is a 4-vector, f is analytic in all variables,

f(0, ν) = 0, C = diag(−ωi, ωi, ωi,−ωi),

exp(CT ) = I, f(eCtu, ν) = eCtf(u, ν),
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where T = 2π/ω. This last property is the characterization of the normal form
in the case where the matrix of the linear part is simple; see Theorem 10.4.1.
The scaling has achieved this property to first-order in ε. For the moment,
continue to ignore the O(ε2) terms. Let τ be a parameter (period correction
parameter or detuning); then u(t) = e(1−ετ)Ctv, v a constant vector, is a
solution if and only if

D(τ, v, ν) = τCv + f(v, ν) = 0. (11.25)

Thus if v satisfies (11.25), then e(1−ετ)Ctv is a periodic solution of (11.24) of
period T/(1 − ετ) = T (1 + ετ + · · ·). For Equations (11.23) with the O(ε2)
terms omitted, one calculates

D(τ, v, ν) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−iωτv1 + νbv4 + er2v4

iωτv2 + νbv3 + er2v3

iωτv3 − δv2

−iωτv4 − δv1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (11.26)

where r2 = v3v4. Solving for v1 from the last equation, substituting it into
the first equation, and canceling the v4 yields

ω2τ2 − δer2 = δbν. (11.27)

A solution of (11.27) gives rise to a 3-parameter family of periodic solutions
(2-parameter family of periodic orbits) of (11.23) in the following way. Choose
v3 arbitrary; i.e., v3 = α1 + iα2, where α1 and α2 are parameters. Then
v4 = α1 − iα2, r

2 = α2
1 + α2

2. Take τ arbitrary; i.e., τ = α3. Then solve
for v1 and v2 by the last two equations in (11.26). Fixing r determines a
circle of periodic solutions that corresponds to one periodic orbit; thus, the
2-parameter family of periodic orbits is parameterized by r and τ .

The analysis depends on the sign of the two quantities δe and δb, especially
δe. There are two qualitatively different cases: Case A when δe is positive,
and Case B when δe is negative.

Case A: δe > 0; see Figure 11.7.
For definiteness, let δb be positive because the contrary case is obtained

by changing the sign of ν. Figure 11.7 is drawn under this convention. For
fixed ν, the graph of (11.27) is a hyperbola (two lines through the origin
when ν = 0), but only the part where r ≥ 0 is of interest. The parameter
τ is the correction to the period. By the paragraph above, a fixed solution
of (11.27), r 
= 0, fixes the length of v3 and so fixes the special coordinates
v1, v2, v3, v4 up to a circle. Thus a point in the τ, r plane, r 
= 0, on the graph
of (11.27) corresponds to a periodic orbit of (11.23) with period T/(1− ετ).
r = 0 corresponds to the libration point at the origin.
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Figure 11.7. Graph of (11.26) when δe is positive.

By (11.19), when ν > 0 and small, the eigenvalues of the linear part,
B0 + νB1 + · · ·, are two distinct pairs of pure imaginary numbers; so, Lya-
punov’s center theorem implies that there are two families of periodic solu-
tions emanating out of the origin. When ν > 0, the graph of (11.27) is two
curves emanating out of the line r = 0. This corresponds to two families
of periodic solutions of (11.23) emanating out of the origin, and hence, it
corresponds to the two Lyapunov families.

When ν = 0, the graph of (11.27) is two lines emanating out of the origin,
which again corresponds to two families of periodic solutions emanating out
of the origin. In this case, these two families correspond to the two families
of Buchanan (1941). When ν < 0, the graph of (11.27) is a single curve that
does not pass through the origin and thus corresponds to a single family of
period orbits of (11.23) that do not pass through the origin.

Case A summary: The two Lyapunov families emanate from the origin
when δbν is positive. These families persist when ν = 0 as two distinct families
of periodic orbits emanating from the origin. As δbν becomes negative, the
two families detach from the origin as a single family and move away from
the origin.

Case B: δe < 0; See Figure 11.8.
For definiteness let δb be positive as before. Figure 11.8 is drawn under

this convention. For fixed ν > 0, the graph of (11.27) is an ellipse.
By (11.19) when ν > 0 and small, the eigenvalues of the linear part,

B0 + νB1 + · · ·, are two distinct pairs of pure imaginary numbers; so, Lya-
punov’s center theorem implies that there are two families of periodic solu-
tions emanating out of the origin. These families correspond to the upper
and lower halves of the ellipse. In this case, the two Lyapunov families are
globally connected. As ν tends to zero, this family shrinks to the origin and
disappears. For ν < 0 there are no such periodic solutions.

Case B summary: The two Lyapunov families emanate from the origin
when δbν is positive and are globally connected. These families shrink to the
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Figure 11.8. Graph of (11.26) when δe is negative.

origin as δbν tends to zero through positive values. When δbν is negative,
there are no such periodic solutions.

Now we show that these conclusions remain valid when the O(ε2) terms
in (11.23) are present. If the O(ε2) terms are included, (11.23) is of the form
u̇ = Cu + f(u, ν) + O(ε2). Let φ(t, v, ν, ε) be the general solution of this
equation with φ(0, v, ν, ε) = v. Let ψ(v, τ, ν, ε) be this solution after a time
T (1 + ετ); i.e.,

ψ(v, τ, ν, ε) = φ(T (1 + ετ), v, ν, ε) = v + εD(τ, v, ν) +O(ε2)

= v + ε{τCv + f(v, ν)}+O(ε2).

A periodic solution corresponds to a solution of ψ(v, τ, ν, ε) = v, and so the
equation to be solved is

D(v, τ, ν, ε) = (ψ(v, τ, ν, ε)− v)/ε = D(τ, v, ν) +O(ε) = 0. (11.28)

Equations (11.28) are dependent because Equations (11.23) admit H as an
integral. Because H(v + εD) = H(v), it follows by the mean value theorem
that ∇H(v∗)D = 0, where v∗ is a point between v and v + εD. Because
∇H(v∗) = (−iωy3, . . .) + · · ·, if D2 = D3 = D4 = 0, then D1 = 0, except
maybe when y3 = 0. Thus only the last three equations in (11.28) need to be
solved because the solutions sought have y3 
= 0.

From the last two equations in (11.28), one solves, by the implicit function
theorem for v1 and v2 to get v1 = −iωτδv4+· · · , v2 = iωτδv3+· · ·. Substitute
these solutions into the second equation to get

d(v3, v4, τ, ν, ε) = (ω2τ2 − eδr2 − bδν)(−δv3) + εg(v3, v4, τ, ε) = 0. (11.29)

Because the origin is always an equilibrium point, d and g vanish when v3
and v4 are zero. Let v3 = reiθ, v4 = re−iθ, and divide (11.29) by (−δr) to get
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d′(r, θ, τ, ν, ε) = (ω2τ2 − eδr2 − bδν)eiθ + εg′(r, θ, τ, ε) = 0.

Because eδ 
= 0, this equation can be solved for r2 to get r2 = R(θ, τ, ν, ε) =
(ω2τ2 − bδν)/eδ + · · · for all θ, all τ, | τ |< τ0, and all ε, | ε |< ε0. So r =

√
R

yields a real solution when R > 0. The analysis of the sign of R leads to the
same qualitative conclusions as before.

To get back to the unscaled equations, fix ε = ε0/2 for all times. The
scaling is global and so it is invertible globally. Trace back from the solution
r2 = R(θ, τ, ν, ε0/2) to get ξ1, ξ2, η1, η2 as functions of θ, τ, ν.

Theorem 11.5.1. Consider a Hamiltonian of the form (11.20) with ω 
= 0,
δ = ±1, b 
= 0, e 
= 0.

Case A: δe > 0. The two Lyapunov families emanate from the origin
when δbν is small and positive. These families persist when ν = 0 as two
distinct families of periodic orbits emanating from the origin. As δbν becomes
negative, the two families detach from the origin as a single family and recede
from the origin.

Case B: δe < 0. The two Lyapunov families emanate from the origin when
δbν is small and positive, and the families are globally connected. This global
family shrinks to the origin as δbν tends to zero through positive values. When
δbν is small and negative, there are no periodic solutions close to the origin.

One can compute the multipliers approximately to show that in Case A the
periodic solutions are elliptic. In Case B, the periodic solutions are initially
elliptic as they emanate from the origin but go through extremal bifurcations
to become hyperbolic. See the Problems section or Meyer and Schmidt (1971).

Case A occurs in the restricted problem at L4 as the mass ratio parameter
μ passes through the critical mass ratio μ1. This theorem verifies the numeric
experiments of Palmore.

Problems

1. Let Q = Q(q, p), P = P (q, p) define a smooth area-preserving diffeomor-
phism of a neighborhood of the origin q = p = 0.
a) Show that Ω = (P − p)d(Q+ q)− (Q− q)d(P + p) is a closed form

in q, p (i.e., dΩ = 0), and so by Poincaré’s lemma, there is a function
G = G(q, p) defined in a neighborhood of the origin such that dG =
Ω.

b) Let the origin be a fixed point whose multipliers are not −1; so,
ξ = Q+ q, η = P + p defines new coordinates, and ∂G/∂ξ = P − p,
∂G/∂η = Q− q. Thus a fixed point corresponds to critical points of
G. Show that if G = {αξ2 +2βξη+γη2}/2 with 4Δ = αγ−β2 
= −1,
then

∂(Q,P )
∂(q, p)

=
1

1 + 4Δ

[
(1− β2)− αγ −2γ

2α (1 + β2)− αγ

]
.
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Thus a maximum or minimum of G corresponds to an elliptic fixed
point, and a saddle point corresponds to a hyperbolic fixed point.

c) Draw the level surfaces of G = q2/2 + εp + p3/3 as the parameter
varies.

d) Show that the fixed point is an extremal fixed point if and only if
G = ∂G/∂q = ∂G/∂p = ∂2G/∂p2 = ∂2G/∂q∂p = 0 and ∂2G/∂q2 
=
0, ∂2G/∂p∂ε 
= 0, ∂3G/∂p3 
= 0. See Meyer (1970).

2. Consider the forced Duffing equation at 1–3 resonance. That is, consider

H∗ = I + ε{γI2 cos4 φ+AI1/2 cosφ cos 3t}+ (ε2/2)δI cos2φ,

which is the forced Duffing equation written in action–angle variables.
Note that the Hamiltonian is 2π/3-periodic in t. The normalized Hamil-
tonian is

H∗ = ε 3
γ/8I

2

+
ε2

64
{−2AγI3/2 cos 3(t+ φ) + 17γ2I3 + 16δI −A2}+ · · · .

a) Write the Hamiltonian, the normalized Hamiltonian, and the equa-
tions of motion in rectangular coordinates.

b) Analyze the normalized systems. Remember to bring the harmonic
to the origin.

3. The bifurcation for the forced Duffing equation at 1–2 resonance is not, as
predicted in the section, a generic bifurcation, and this is due to the fact
that this equation has additional symmetries because the Hamiltonian is
even. Consider a Hamiltonian like the forced Duffing equation, but has
a cubic term in the Hamiltonian (a quadratic in the equations). That is,
consider

H∗ = I + ε{κI3/2 cos3 φ+AI1/2 cosφ cos pt}+ (ε2/2)δI cos2 φ.

Note that the Hamiltonian is π-periodic in t. The normalized Hamiltonian
is

H∗ = I + (ε2/48){−12AκI cos 2(t+ φ) + 45κ2I2 + 24δI − 4A2}+ · · ·

a) Write the Hamiltonian, the normalized Hamiltonian, and the equa-
tions of motion in rectangular coordinates.

b) Analyze the normalized systems. Remember to bring the harmonic
to the origin.

4. Using Mathematica, Maple, or an algebraic processor of your choice,
write a normalization routine that normalizes Duffing’s equation at q − p
resonance; i.e., write a program that normalizes

H∗ = qI + ε{δI cos2 φ+ γI2 cos4 φ+AI1/2 cosφ cos pt}.
Analyze the cases p/q = 1/3, 2/3, 3/4, etc.
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5. Consider the proof in Section 11.5.
a) Show that the Jacobian of D in (11.26) is

∂D

∂v
=

⎡
⎢⎢⎣
iωτ 0 ev2 vb+ 2er2

0 iωτ vb+ 2er2 ev23
0 −δ iωτ 0
−δ 0 0 −iωτ

⎤
⎥⎥⎦ .

b) Show that because of the dependency of the equations, the Jacobian
is singular. Also show that the determinant of the minor obtained
by deleting the first row and third column is ev23 , which is nonzero if
v3 
= 0.

c) Show that the multipliers of the solutions found in Section 11.5 are
of the form 1, 1, 1+ εμ1 + · · · , 1+ εμ2 + · · ·, where μ1 and μ2 are the
nonzero eigenvalues of ∂D/∂v.

d) Show that in Case A of Section 11.5; i.e., δe > 0, that the periodic
solutions found are elliptic.

6. Use the notation of Section 11.5.
a) Show that the value of the Hamiltonian (11.22) along a solution of

(11.27) is H = −2ω2τδr2 = (2ω2/e){δbντ − ω3τ3}.
b) Show that in Case A that, the periodic solutions can be parameter-

ized by the Hamiltonian.
7. Consider a Hamiltonian of the form

H = kωI1 + ωI2 +
1
2
(AI21 + 2BI1I2 + CI22 ) + · · · ,

where Ii = (x2
i + y2

i )/2, ω > 0, k is a nonzero integer, and the ellipsis
represents terms of degree at least 5 in the xs and ys.
a) Show that Lyapunov’s center theorem implies the existence of a fam-

ily of periodic solutions (the short period family) of approximate
period 2π/kω that emanate from the origin when | k |> 1.

b) Use the ideas of Section 11.5 to show that there is a family of periodic
solutions (the long period family) of approximate period 2π/ω that
emanates from the origin when B − kC 
= 0.

c) Using the normal form calculations for the restricted problem at L4,
show that the long period family exists even when μ = μi, for i =
4, 5, 6, . . . .
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Recently, an interesting example of a highly symmetric T -periodic solution
of the Newtonian planar 3-body problem with equal masses was rediscovered
by Chenciner and Montgomery (2000). This particular family of solutions
was investigated earlier by Moore (1993) using numerical techniques, how-
ever the methods of Chenciner and Montgomery were analytical, using global
variational methods applied to families of curves which encode the 12th order
symmetry group D3 × Z2. As it turned out, the method provided a break-
through in analyzing global families of periodic orbits of theN -body problem.
Chenciner–Montgomery’s orbit is referred to as the figure eight as the con-
figuration component of the orbit is realized by the three masses chasing one
another around a fixed figure eight curve in the plane with the masses distin-
guished on the eight by a T/3 phase shift. Such solutions are now referred to
as choreographies after C. Simó coined this expression to describe the amaz-
ing dance that these particles maintain under their mutual gravitational at-
traction. Apparently the first such choreography discovered was by Lagrange
almost 240 years ago when he discovered the equilateral triangular solutions
of the 3-body problem. The uniformly rotating Lagrangian solutions are a
choreography on a circle. Many other choreographies with arbitrary number
of equal masses have been identified by numerical minimization for symmet-
ric and nonsymmetric curves; Simó (2002). The figure eight is distinguished
by its stability, as well as having a purely analytic argument for its existence.
A continuous family may be chosen so that either energy or period may be
used to parameterize the family.

The figure eight solutions are not close to any integrable cases of the 3-
body problem. Based on numerical evidence by Simó (2002), Chenciner and
Montgomery (2000) have announced orbital (elliptic) stability of this orbit
and Roberts (2007) has given a convincing numerical proof of elliptic linear
stability based on a geometric argument that factors the monodromy matrix
into the sixth power of the “first hit map”. The first hit map arises by con-
sidering the symmetry reduced monodromy matrix acting on an isoenergetic
cross-section modulo a discrete symmetry group.

The analytic variational argument constructs one twelfth of the orbit by a
reduced variational principle on a zero angular momentum level set, with the
remaining segments of the orbit constructed from reflections and rotations.

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 12,
c© Springer Science+Business Media, LLC 2009
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One of the main analytical obstacles to overcome in this argument is to show
that the orbit segment in a fundamental domain has no collision singularities.
The variational technique applied to the Newtonian action functional fairly
easily yields a minimizing curve, however the real possibility arises that the
minimizing curve includes collision as was understood already by Poincaré in
his research on the 3-body problem.

In Section 8.4 we discussed reduction by symmetries and the reduced
space that carries a symplectic structure. In the setting of the figure eight,
we have occasion to study this construction more closely. The zero momentum
level set can be realized as a cotangent bundle by projection along an SO(2)
symmetry acting diagonally on position and momenta of the phase space
resulting in the reduced space T ∗(M/SO(2)). This space gives the setting
of the variational problem. More recent methods for constructing the eight
include a topological shooting method of Moeckel (2007) based on the Conley
index. One tantalizing feature of this family is that perturbation analysis
cannot be extended from known solutions to include this family. Moreover
the stability of the orbit cannot be deduced from continuation arguments
except through numerical results; see for example Simó (2002) and Roberts
(2007).

Because this groundbreaking work, other families of symmetric peri-
odic solutions have been found using a combination of variational methods
Chenciner and Venturelli (2000), Chenciner and Montgomery (2000), Ferrario
and Terracini (2004), Cabral and Offin (2008), Chen (2001) which avoid colli-
sion singularities. Moreover there have now been hundreds of choreographies
found by numerical techniques; see Simó (2002). The question of collision
for solutions defined by variational methods in the action functional with
Newtonian potential is an important component of the analysis, that has
been resolved to large extent by a result of Marchal (2002) that was used by
Ferrario and Terracini (2004) to investigate more thoroughly the interplay
between the symmetry group and the variational method for collision-free
solutions.

Our goal in this chapter is to explain the variational construction of this
type of symmetric orbit, and to show that the variational argument can be
used to find other periodic orbits, having the same braid structure as the
orbit of Chenciner–Montgomery, but which due to the symmetry invariance
may be seen in fact to be hyperbolic (in the nondegenerate setting). This last
work brings in the ideas mentioned earlier in Section 4.5 on the Maslov index
of sections of Lagrange planes along a closed phase curve.

12.1 The N -Body and the Kepler Problem Revisited

We recall the basic ingredients of the N -body problem; see Chapter 2. We
pay particular attention to the variational aspects of the periodic solutions
of the N -body problem. The configuration r = (r1, . . . , rN ) describes spatial
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positions of N masses m1, . . . ,mN where ri ∈ R
3. Interaction between the

masses is determined by the Newtonian potential function

V (r) = −
∑
i<j

mimj

‖ri − rj‖

on the set of noncollision configurations (where ri 
= rj , i 
= j). The Hamil-
tonian for the N -body problem is the sum of kinetic plus potential

H(r1, . . . , rN , pr1 , . . . , prN
) =

N∑
i

1
2mi

‖pri
‖2 + V (r).

We study the Hamiltonian vector field XH in coordinates

ṙi =
1
mi
pri

ṗri
=
∂U(r)
∂ri

, i = 1, . . . , N (12.1)

where the function U(q) = −V (q) is called the force function or self-potential.
The vector field XH given by Equations (12.1) generates a noncomplete flow
φt on the phase space T ∗M , some solutions will have collision singularities
in finite time.

Let us recall some details from Section 8.4 on symmetries and reduction.
The Galilean group of translations in R

3, as well as the group of simultaneous
rotation of all masses about a fixed point may be lifted to the phase space
as a symplectic action that leaves H invariant. By Noether’s theorem 8.4.1,
the integrals corresponding to the group of translations of the motion are the
total linear momentum,

l = p1 + p2 + p3.

whereas those of the rotation group yield the angular momentum vector
J =

∑N
ri × pri

. Because H is translation invariant, we recognize that his
means that any periodic solutions for Equations (12.1) will occur in continu-
ous families parameterized by the elements of the group. For the variational
theory, it is convenient to remove the translation degeneracy by fixing the
total linear momentum to be zero, and identifying the configurations that
differ by a translation. This fixes the center of mass at the origin of R

3, and
we are led to consider the configuration manifold modulo translations

M =
{
r = (r1, . . . , rN )|

∑
miri = 0, ri 
= rj , i 
= j

}
. (12.2)

The angular momentum level set J−1(c) is invariant under the flow, and
the reduced space J−1(c)/Gc, where Gc = SO(2) is the subgroup of SO(3)
which fixes J−1(c), is a symplectic space equipped with the flow of the reduced
Hamiltonian vector field. For the planar 3-body problem which is discussed
more fully in the next section, this reduced space is six dimensional. After
fixing a value h of the reduced energy, we are situated on a five-dimensional
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manifold Ξ(h, c), which carries the essential dynamics of the planar 3-body
problem.

We recall the fact that the planar N -body problem always admits uni-
formly rotating solutions that generalize the circular rotational solutions of
the Kepler equation. These solutions are called relative equilibria. We re-
call the construction of these orbits from Chapter 2. We let I(q) denote the
moment of inertia of the configuration

I(q) =
N∑
mi〈ri, ri〉. (12.3)

Recall (Section 2.1.3) the configuration q0 is a central configuration if q0 is
a critical point of U(q) restricted to the level set I−1( 1

2 ). Solutions to the
N -body equations (12.1) of the form

q(t) = a(t)q0, a(t) ∈ C, q0 ∈M (12.4)

for fixed q0 = (r1, . . . , rN ) ∈M , require that

ä = − a

|a|3
U(q0)
I(q0)

= − a

|a|3
U(q0)

r2
,

where |q0|2 = I(q0) = r2. This differential equation for a(t) can be scaled as
follows (using r as scaling parameter).

rä = − ra
(r |a|)3 rU(q0) = − ra

(r |a|)3U(
q0
‖q0‖

).

Therefore a(t) must satisfy the Kepler equation

ä(t) = − a

|a|3
Ũ(q0), Ũ(q) = U(

q

‖q‖ ). (12.5)

All central configurations q0 admit homothetic solutions q(t) = a(t)q0,
a(t) ∈ R satisfies (12.5). Such homothetic solutions end in total collapse.
Ejection orbits are the time reversal of collision orbits. Coplanar central con-
figurations admit in addition homographic solutions where each of the N
masses executes a similar Keplerian ellipse of eccentricity e, 0 ≤ e ≤ 1.
When e = 1 the homographic solutions degenerate to a homothetic solution
that includes total collapse, together with a symmetric segment correspond-
ing to ejection. When e = 0, the relative equilibrium solutions are recovered
consisting of uniform circular motion for each of the masses about the com-
mon center of mass.

Turning to the variational properties of homographic solutions (12.4),
we define the action for absolutely continuous T-periodic curves q(t) in the
collision less configuration manifold M ,
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AT (q) =
∫ T

0

∑ 1
2mi

‖pri
‖2 + U(r)dt, q ∈ ΛT . (12.6)

where the function space of such curves with square integrable derivatives
is denoted by ΛT . We use the period T as a parameter in this functional,
inasmuch as we wish to compare solutions with different periods.

Because the work of Sundman (1913) on the 3-body problem, it is known
that the action AT stays finite along collision orbits of Equations (12.1).
For this reason, special care must be taken when considering the variational
problem. Due to the exclusion of collision points in M , the space ΛT is not
complete. If the action stays finite along a sequence of curves tending to
collision, then such a limiting curve on the boundary of the functional space
ΛT could provide the minimizing loop. This is exactly the situation discovered
by Gordon (1970) for the Kepler problem.

Gordon found that for fixed period T, the actual minimizing solutions are
arranged in families of ellipses, parameterized by eccentricity e, including the
degenerate ellipse when eccentricity e = 1.

All of these elliptical paths have the same action. The collision ejection
orbit appears as a limit case on the boundary of the family of curves, and in
fact realizes the minimizing action! He also found that the minimum value of
the action functional (realized by elliptical families having period T) could
be computed as

AK
T (q) =

∫ T

0

1
2
‖q̇‖2 +

μ

‖q‖dt = 3(2π)1/3 (μ)2/3
T 1/3, (12.7)

where we have added the superscript K to denote the Keplerian action inte-
gral. The homographic and homothetic solutions q(t) = a(t)q0 (see Equation
(12.5)) share the property in which the action AT (q) along such a trajec-
tory q, can be determined as uncoupled Keplerian orbits. Substituting the
homothetic curves into the action functional (12.6) we find that

AT (a(t)q0) = r2

∫ T

0

1
2
ȧ2 +

1
|a(t)|

U(q0)
r2

dt = 3(2π)1/3
(
Ũ(q0)

)2/3

T 1/3,

which we recognize as a scaled version of the Keplerian action (12.7).

12.2 Symmetry Reduction for Planar 3-Body Problem

In this section we explain the unique geometry of the variational problem
whose solutions are the figure eight choreographies. The planar 3-body prob-
lem has 6 well known integrals that reduce the dimension of the phase space
from 12 to 6. In addition the quotient by the rotational group SO(2) reduces
the dimension by one more. We discuss the topology and geometry of the
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reduced configuration space, which is crucial for the variational construction
of the figure eight.

The 3-body problem describes the dynamical system which consists of
three masses interacting through their mutual gravitational attraction. The
planar 3-body problem restricts the three masses to the coordinate plane
z = 0 in R

3. Let qi ∈ R
2 denote the position of the ith body whose mass

is mi, and whose velocity is vi. Interpreting this as a complex variable, we
set q = (q1, q2, q3) ∈ C

3 which describes the configuration of the system and
p = (m1v1,m2v2,m3v3) ∈ C

3 the momentum vector. The configuration of the
system should be thought of as an oriented triangle in the plane, with the
three masses at the vertices. The dynamical system is governed by Hamilton’s
equations (12.1) with N = 3. The force function is

U(q) =
m1m2

‖r1 − r2‖
+

m1m3

‖r1 − r3‖
+

m2m3

‖r2 − r3‖
. (12.8)

Fixing the center of mass at the origin restricts the configuration and the
momentum to 4-dimensional subspaces of C

3 respectively. The action of the
rotation group SO(2) on phase space

R · (q, p) = (Rq1, Rq2, Rq3, Rp1, Rp2, Rp3), R = eiθ (12.9)

gives a further reduction on the level set of the angular momentum vector
J−1(c).

The Hamiltonian itself is invariant under the flow, and setting the value
H = h, we reduce the dimension by one more. Finally, we quotient the re-
sulting energy-momentum level set by the action of SO(2). This reduces the
dimension by one as well, leaving the five-dimensional quotiented energy–
momentum set Ξ(h, ω), Moeckel (1988). In the quotiented manifold Ξ(h, ω),
we identify all phase points that differ by a simultaneous rotation of con-
figuration and momentum. The reduced configuration space is obtained by
projecting out the momenta. We think of a point in the reduced configuration
space as consisting of equivalence classes of oriented triangles in the plane,
up to translation and rotation. We introduce a simple geometrical model
of the reduced configuration space, that facilitates the understanding of the
variational problem.

In addition to the SO(2) invariant kinetic and potential energies, the
polar moment of inertia (12.3) can be used for understanding the reduced
configuration space. The function

√
I = r measures the size of the oriented

triangle formed by the three masses. Notice that the system undergoes triple
collision when r = 0.

The configuration space consists of all possible configurations

M = {(r, q) | r ≥ 0, I(q) = r2,
∑

miri = 0}. (12.10)

Inasmuch as we are interested in collision-free configurations only, we set
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M̃ = M/{(r, q)|qi = qj , for i 
= j}. (12.11)

The reduced configuration space is defined by identifying configurations
that differ by a fixed rotation. This gives us the quotient space M/SO(2).
Before the removal of the collisions, the space of configurations (12.10) is
homeomorphic to R

+ × S2. This can be seen from the fact that the three-
sphere, I(q) = r2, fibers as a circle bundle over the two-sphere, using the
Hopf fibration (Section 1.8). The shape sphere is defined as

S =
{
q | I(q) = 1,

∑
miri = 0

}
/S1. (12.12)

The double collisions correspond to rays emanating from the origin, and
triple collision corresponds to the origin q = 0, because we have restricted
the center of mass at the origin (Equation (12.10)). Each ray representing
double collision configurations pierces the shape sphere in only one point.
We should think of points of S describing equivalence classes of oriented
triangles, normalized so that I(q) = 1.

The most important features of the shape sphere (12.12), as described
in Moeckel (1988), are three longitudinal circles on the sphere, which meet
at the north and south poles, and the meridian circle E of the equator. The
longitudinal circles correspond to the three branches of oriented isosceles
configurations, with the ith mass on the symmetry line. We denote these
circles by Mi, i = 1, 2, 3.

At the north pole, the longitudinal circles Mi come together at the La-
grangian central configuration which is an equilateral triangle. There are two
of these equilateral configurations, one at each pole, corresponding to a choice
of orientation of the three masses. Each of the longitudinal circlesMi meet the
equator in another central configuration, the Eulerian collinear configuration
Ei, and also in a double collision point. The equator E describes the totality
of collinear configurations. On the equator there are three double collision
points, separated by three symmetric degenerate isosceles configurations Ei,
which were mentioned above. For the 3-body problem, all of the central con-
figurations, that is, solutions of the dynamical equations that correspond to a
rigid rotation of the initial configuration, were discovered by Euler (collinear)
and Lagrange (equilateral). These solutions exist for all choices of the masses
mi.

When the force function U is restricted to the shape sphere, the main fea-
tures that were described above can be given a more analytical interpretation.
The function U |I=1 takes its absolute minimum at the two Lagrange central
configurations. The Eulerian collinear points Ei are also critical points for
this function, but are now saddle points. Finally, the force function takes its
supremum +∞ at the three double collision points on the equator.

The Hill’s regions C(h, ω) of the reduced configuration space, are the
projected images of the energy–momentum sets Ξ(h, ω) onto the reduced
configuration space M/SO(2). The topological structure of these sets and
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their bifurcations give enormous insight into the kinds of orbits that can
be imagined, and sometimes proven to exist mathematically. Without any
restriction on energy, we mention here the fact that the zero momentum
set ω−1(0) projects onto the entire reduced configuration space. That is,
if we restrict the total momentum to be zero, then any possible reduced
configuration can be realized. This is not true for nonzero momentum in
general by Moeckel (1988).

Finally, we describe the reflection symmetry of the shape sphere S, which
is important. This is the reflection symmetry about the equator which can
be realized as follows. If we identify each qi as a complex variable, then

M =
{
q = (q1, q2, q3) ∈ C

3 |
∑

miqi = 0
}
. (12.13)

The reflection across the first coordinate axis on M is

σ(q) = q̄ = (q̄1, q̄2, q̄3), (12.14)

and the fixed point set of σ is

Fix σ = {q = (q1, q2, q3) | qi = q̄i} . (12.15)

When the reflection is dropped to the reduced configuration space M/SO(2),
the resulting map is called the reflection across the line of masses (also called
the syzygy axis); see Meyer (1981b) and the fixed point set (12.15) projects
onto the equatorial plane E of collinear configurations. The reduced symme-
try σ restricted to the shape sphere S fixes the equator E , and reflects the
northern hemisphere onto the southern hemisphere. Without causing confu-
sion, we refer henceforth to the reduced symmetry with the same notation as
the reflection σ.

In the inertial frame, that is, the fixed coordinate system before quoti-
enting the group SO(2), we can visualize the reduced symmetry σ by first
rotating the configuration into a position so that σ is represented by reflec-
tion across the first coordinate axis. After describing a general principle of
reduction on the zero momentum set, we need to describe how this Z2 sym-
metry generated by σ on M/SO(2) can be extended into the phase space by
describing how it should act on velocity.

12.3 Reduced Lagrangian Systems

The dynamics of the problem were described in the last section by appealing
to the Hamiltonian structure of the problem. In contrast, the variational
structure is contained on the Lagrangian side. The Lagrangian for the 3-body
problem is

L(q, v) =
1
2

3∑
i=1

miv
2
i + U(q),
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where the force function U is the same as given in equation (12.8). The
Hamiltonian equations (12.1) are equivalent to the Euler–Lagrange equations
(1.27).

As explained in Chapter 1, the Euler–Lagrange equations (1.27) are also
the equations for critical points of the action functional,

A(q) =
∫ T

0

L(q, q̇)dt, q ∈ H1[0, T ], (12.16)

where the Sobolev space H1[0, T ] consists of absolutely continuous parame-
terized arcs with values in the configuration manifold M and with L2[0, T ]
derivatives q̇. This space is the completion of the space of C2 curves that
we considered in Chapter 1, and is necessary for the existence theory we use
here. The boundary conditions are suppressed for the moment.

The variational principle can be reduced modulo translations as well as
the reduction by rotations explained in the previous section. It turns out that
a variational principle using only reduced configurations modulo translations
and rotations is equivalent to restricting the momentum value at 0. To explain
this equivalence, we make a slight detour and discuss a slightly more general
version based on a Lie group G of symmetries acting on the configuration
manifold.

Let us consider more generally, a C3 mechanical Lagrangian system on
the tangent bundle of a Riemannian manifold M ,

L : TM −→ R

L(q, v) =
1
2
Kq(v) + U(q),

where Kq(v) = ‖v‖2q is twice the kinetic energy, and U : M −→ R is the force
function. We denote the Riemannian metric on TqM associated with the
kinetic energy by Kq(v, w) for tangent vectors v, w ∈ TqM . We also assume
that there is a Lie group G acting freely and properly onM , which is denoted
g(q) = g · q, for g ∈ G. In this case we have the principal bundle

π : M −→M/G

The Lie algebra of G is denoted G, and the pairing between G and G∗ is
denoted < ·, · >. Moreover, it is assumed that the group action lifts to the
tangent bundle of M , by isometrics on TM ,

g · (q, v) = (g · q, Tg · v).

Finally, we assume that the Lagrangian L is G-invariant

g∗L = L, g ∈ G.

In this setting the equivariant momentum map, which generalizes the
angular momentum J(q,p), is given by
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J : TM −→ G∗, (12.17)

〈J(q, v), ξ〉 = Kq(v,Xξ), ξ ∈ G (12.18)

where Xξ(q) denotes the infinitesimal generator of the one-parameter sub-
group action on M , associated with the Lie algebra element ξ ∈ G. Noether’s
theorem states that Equation (12.18) is a conservation law for the system.

We use the velocity decomposition in Saari (1988), but in this more gen-
eral setting. For fixed momentum value J(q, v) = μ, the velocity decomposi-
tion is given by

vq = horqv + verqv, (12.19)

where,
verqv = Xξ, and horq = v − verqv, (12.20)

and ξ = ξq ∈ G is the unique Lie algebra element such that

J(q,Xξ) = μ. (12.21)

The uniqueness of the element ξ ∈ G given by Equation (12.21) is given in the
case of the N -body problem in Saari (1988) , and the general case considered
here may be found in Marsden (1992), Arnold (1990). or Section 8.4.

From Equations (12.18) through (12.21), it follows that the space of hor-
izontal vectors

Horq = {(q, v)|J(q, v) = 0} (12.22)

and the space of vertical vectors

V erq = ker(Tqπ) (12.23)

are orthogonal complementary subspaces with respect to the Riemannian
metric Kq. It is also clear, due to the equivariance of J, that the horizontal
vectors are invariant under the G-action on TM . The mechanical connection
of Marsden (1992) is the principal connection on the bundle π : M −→M/G,

α : TM −→ G, (q, v) �→ ξ, Xξ = verqv. (12.24)

In the setting of the planar N -body problem, the vertical component
of the velocity is that velocity which corresponds to an instantaneous rigid
rotation, and which has the angular momentum value μ.

For completeness, we summarize the argument in Arnold (1990) which
gives the description of the reduced space J−1(0)/G.

Theorem 12.3.1. The zero momentum set J−1(0), modulo the group orbits,
has a natural identification as the tangent bundle of the reduced configuration
space,

J−1(0)/G = T (M/G). (12.25)
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Proof. It suffices to notice that when μ = 0, the vertical component of velocity
is zero, verqv = 0. Thus the points of J−1(0) naturally project onto points in
T (M/G) with the projection in the velocity component along the subspace
(12.23) orthogonal to the horizontal space (12.22).

With the velocity decomposition given by Equations (12.19) through (12.21),
it is now a simple matter to see how the Lagrangian drops on the momentum
level set J−1(0). First of all, the kinetic energy decomposes naturally, because
(12.22) and (12.23) are orthogonal subspaces,

Kq(v) = Kred
q (v) +Krot

q (v), (12.26)

where
Kred

q (v) = Kq(horqv), Krot
q (v) = Kq(verqv). (12.27)

This allows us to define the reduced Lagrangian on the reduced space
J−1(0)/G,

Lred : T (M/G) −→ R, Lred(q, v) = Kred
q (ṽ) + U(q̃), (12.28)

where (q̃, ṽ) is an arbitrary element of J−1(0) that projects to (q, v) ∈
T (M/G). It is important when considering the properties of extremals to
consider the projected metric on T (M/SO(2)), which is called the reduced
metric,

Kred
q (v, w) = Kq(ṽ, w̃), (v, w) ∈ T (M/SO(2)), (ṽ, w̃) ∈ Horq. (12.29)

We have the reduced variational principle, based on the space H1[0, T ] of
parameterized curves in the reduced configuration space M/SO(2).

Ared(x) =
∫ T

0

Lred(x, ẋ), x ∈ H1
T (M/SO(2)). (12.30)

This action functional has the familiar property that critical points (with
respect to certain boundary conditions that are suppressed here) correspond
to solutions of the reduced Euler–Lagrange equations. Moreover, the action
functional (12.30) is equivariant with respect to the Z

2 symmetry generated
by σ (Equation (12.14)), as well as the dihedral symmetry which we consider
in the next section.

12.4 Discrete Symmetry with Equal Masses

The figure eight periodic orbit discovered by Chenciner and Montgomery
(2000) has the discrete symmetry group Z2×D3. This symmetry drops to the
reduced space J−1(0)/SO(2). We have already described the Z2 symmetry
on M/SO(2) generated by reflection across the syzygy axis, σ in Equation
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(12.14). The elements ofD3 on the other hand, are generated by interchanging
two of the equal masses. We explain how the symmetry σ can be extended to
a time-reversing symmetry on the reduced space T (M/SO(2)). For a general
treatment of time reversing symmetries, see Meyer (1981b). Secondly we show
that if λ ∈ D3, then the product σλ generates a time-reversing symmetry
on reduced phase space. Moreover the Z2 subgroup generated by such a
product has a fixed point set corresponding to the normal bundle of one of
the meridian circles on the shape sphere.

We extend the reflection symmetry σ by isometries on the reduced space
T (M/SO(2)),

Σ : T (M/SO(2)) −→ T (M/SO(2)), (q, v) �→ (σ(q),−dσ(v)). (12.31)

This symmetry leaves the reduced Lagrangian invariant, and reverses the
symplectic form on T (M/SO(2)). By standard arguments is possible to see
that the Hamiltonian flow φt is time reversible with respect to Σ

Σφt = φ−tΣ (12.32)

and that the fixed point set is

Fix(Σ) = {(q, v) | q ∈ E , (q, v) ⊥ E} , (12.33)

where E denotes the equatorial circle of the shape sphere (12.12).
Next, we consider the D3 symmetry, generated by interchanging two of

the masses. Using the complex notation established in Equation (12.13), we
define the reflection symmetry on the reduced configuration space M/SO(2),

λ1,2 : M/SO(2) −→M/SO(2), q = (q1, q2, q3) �→ (q2, q1, q3) ∈ C
3,
(12.34)

which effects an interchange between masses m1 and m2. When the masses
are equal this symmetry leaves the force function U (12.8) invariant, and also
extends to the reduced space by isometrics,

Λ1,2 : T (M/SO(2)) −→ T (M/SO(2)), (q, v) �→ (λ1,2(q), dλ1,2(v)).
(12.35)

The symmetry Λ1,2 on the reduced space T (M/SO(2)), leaves the reduced
Lagrangian Lred invariant, which implies that the symmetry takes orbits to
orbits. Clearly, there are three generators of this type for the 3-body problem
with equal masses. These three group elements form the generators of the
dihedral group of order three D3.

The effect of the interchange symmetry λ1,2 on the shape sphere S, Equa-
tion (12.12), can be described as follows. The meridian circle M3 intersects
the equator in the Eulerian configuration E3 (the mass m3 in the middle)
and the double collision point between masses m1 and m2. The reflection
λ1,2 rotates the shape sphere through angle π, about the axis through these
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two points, holding these two points fixed, so that the northern hemisphere
is rotated onto the southern hemisphere.

Now we want to consider the group element σλ. In the statement of the
theorem below, the condition (q, v) ⊥ M3 means that v, the principal part
of the tangent vector (q, v), is orthogonal in the reduced metric (12.29) to
TqM3.

Theorem 12.4.1. The reflection Σ · Λ1,2 is a time-reversing symmetry on
T (M/SO(2)), which leaves the Lagrangian Lred invariant and such that

Fix(Σ · Λ1,2) = {(q, v)|(q, v) ⊥M3} .

Proof. Whereas both symmetries σ and λ1,2 were lifted to the tangent space
by isometrics, only Σ is a time-reversing symmetry on T (M/SO(2)) (it re-
verses the canonical symplectic form) whereas Λ1,2 is a symplectic symmetry
(it fixes the symplectic form). The product therefore, is a time-reversing,
antisymplectic symmetry. The fixed point set of ΣΛ1,2 can be found by di-
rect calculation. Recall our earlier observation, that the meridian circle M3

is invariant under the symmetry λ1,2. This implies that M3 is fixed by the
symmetry σλ1,2, because σ takes M+

3 to M−
3 . Finally, it is not difficult to

see using (12.31),(12.33) that any tangent vector (q, v) ∈ TqM3 is reversed
by ΣΛ1,2, and any normal vector (q, v) ⊥M3 is fixed by this map.

12.5 The Variational Principle

The periodic orbit of Chenciner and Montgomery is described using the re-
duced action functional (12.30), making use of the reduced symmetries dis-
cussed in the last section.

We first consider certain boundary conditions for the variational problem.
Recall that by E1 we denote the ray of configurations emanating from the
origin, which consist of all Eulerian collinear configurations with the massm1

in the middle. The two-dimensional manifold M+
3 denotes the portion of the

meridian plane M3 that projects into the northern hemisphere of the shape
sphere S (Equation (12.12)), between rays corresponding to double collision
(of masses m1 and m2) and the Eulerian configuration E3.

The variational problem that is introduced by Chenciner–Montgomery is

Ared(α) = min
E1,2

Ared(x), E1,2 =
{
x ∈ H1[0, T ] | x(0) ∈ E1, x(T ) ∈M+

3

}
.

(12.36)
The variational problem (12.36) enjoys the advantage of a well-understood
existence theory, which is easily applied in this setting. Although our main
goal is that of describing the properties of the solution, it is convenient to in-
clude the discussion on existence, because this argument is used again below.

Summary of existence proof. The existence of a solution to the variational
problem (12.36) can be deduced using standard arguments (originally due to
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Tonelli) based on the fact that the reduced action is bounded below, coercive
on the function space E1,2, and is weakly lower-semicontinuous in the velocity.
A minimizing sequence has bounded L2 derivatives, which converge weakly
to an L2 function. The minimizing sequence can thereby be shown to be
equi-Lipschitzian, and hence has a uniformly convergent subsequence. The
limit curve provides a minimizing solution, using the property of weak lower-
semicontinuity.

Thus the existence of a solution α(t) of the reduced Euler–Lagrange equa-
tions on T (M/SO(2)) is assured which joins in an optimal way the manifolds
E1 and M3. Using the transversality property (see Section 1.10 where these
conditions are discussed for the case of periodic boundary conditions) at the
endpoints of such an arc, we deduce that

α(0) ∈ E1, (α(T ), α̇(T )) ⊥M3. (12.37)

The more difficult problem to overcome is the avoidance of collision sin-
gularities; that is, we want to ensure that α : [0, T ] −→ M̃/SO(2), where M̃
is defined as the set of configurations that exclude collisions (12.11). The dif-
ficulty with the variational construction of α(t) arises because, as explained
above for the Keplerian action, the collision orbits have finite action and could
thus compete as the limiting case of a minimizing sequence. The basic ar-
gument introduced by Chenciner–Montgomery explains how the variational
principle excludes such collision trajectories. This argument is used again
later in a different setting. Thus we can summarize this argument here.

The noncollision of minimizing curves is based on comparing the action
with a much simpler problem, that of the 2-body problem. To prepare for this
comparison, the collision action A2 of the two-body problem is introduced

A2(T ) =
inf{ action of Keplerian collision orbit in time T between two masses}.

This action is computed by using evaluations of action integrals (12.7) for
the collision trajectories in the 2-body problem; see Gordon (1970).

Now the comparison with the values of the reduced action functional can
be described following the argument from Chenciner and Montgomery (2000).
The key observation is that the reduced action can be viewed as parameter-
dependent (on the three masses mi) and the reduced action along any arc
is lowered by setting one of the masses to zero. Because A(m1,m2,m3;x) >
A(m1,m2, 0;x), it follows that if x(t) solves the variational problem (12.36),
and x(t) has a collision singularity, then A(x) > A2. Using careful numerical
length estimates, it is proven in Chenciner and Montgomery (2000) that

min
E1,2

Ared(x) < A2, (12.38)

A different argument in Chen (2001) using analytical methods , gives the
same inequality as (12.38).
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Now suppose that α which satisfies (12.36) suffers a collision in the time
interval [0, T ]. Then Ared(α) ≥ A2 which contradicts Equation (12.38). Thus
the solution of the variational problem (12.36) has no collision singularities.

At this juncture the extremal arc α(t), having been shown to be collision-
free, may be considered on its maximal interval of existence. In particular the
dynamical features of α(t) and the symmetry structure that encodes them
now come to the fore.

Using the full symmetry group Z2 × D3 , the arc α can be extended to
give a periodic solution. The first extension uses property (12.37) together
with Theorem (12.4.1), which extends the arc from E1 to E2.

Lemma 12.5.1. The arc α1(t) has a symmetric extension α2(t) to the in-
terval [0, 2T ], relative to the meridian circle M3, so that

α2(0) ∈ E1, (α2(T ), α̇2(T )) ⊥M3, α(2T ) ∈ E2.

Proof. We recall that the fixed point set of σλ1,2 is the meridian circle M3,
and σλ1,2 takes E1 to E2. It follows from (12.37) and the extension of σλ1,2

to TM , that
(α1(T ), α̇1(T )) ∈ FIX(ΣΛ1,2).

Therefore the symmetric extension α2(t), on the interval [0, 2T ] is a solu-
tion of the (reduced) Euler–Lagrange equations, and satisfies the boundary
conditions specified.

The remainder of the figure eight orbit can now be constructed by apply-
ing the interchange symmetries of D3. The extension between E2 and E3

is obtained by reparameterizing the symmetric arc λ1,3α2(t), 0 ≤ t ≤ 2T .
Recall that the endpoints of α2(t) are E1, E2 respectively, and that the sym-
metry λ1,3 fixes E2, and exchanges E1 and E3. Thus we define α3(t) =
λ1,3α2(2T − t), and α4(t) = λ2,3α2(2T − t). This last arc joins E3 = α4(0)
to E1 = α4(2T ). If we add the resulting arcs together (using the obvious
parameterization) σα1(t) + α2(t) + α3(t) + α4(t) we find an extremal that
intersects M3 orthogonally at its endpoints. Thus this combined arc can be
continued by the time-reversing symmetry σλ1,2 to give a closed orbit having
minimal period 12T .

12.6 Isosceles 3-Body Problem

In this section we discuss some global results on existence and stability for
symmetric periodic solutions of the isosceles 3-body problem, see Cabral and
Offin (2008). The isosceles 3-body problem can be described as the special
motions of the 3-body problem whose triangular configurations always de-
scribe an isosceles triangle Wintner (1944). It is known that this can only
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occur if two of the masses are the same, and the third mass lies on the sym-
metry axis described by the binary pair. The symmetry axis can be fixed or
rotating. We consider below the case where the symmetry axis is fixed.

We assume that m1 = m2 = m. The constraints for the isosceles problem
can be formulated as
∑

miri = 0, < r1 − r2, e3 >= 0, < (r1 + r2), ei >= 0, i = 1, 2,
(12.39)

where e1, e2, e3 denote the standard orthogonal unit vectors of R
3. We con-

sider the three-dimensional collisionless configuration manifoldMiso, modulo
translations

Miso = {q = (r1, r2, r3) | ri 
= rj , q satisfies(12.39)} , (12.40)

and restrict the potential V to the manifold Miso, Ṽ = V |Miso
. When

all three masses lie in the horizontal plane, the third mass must be at the
origin and the three masses are collinear. The set of collinear configurations
is two-dimensional, and is denoted by S.

There is a Z2 symmetry σ : Miso → Miso, r → σr across the plane of
collinear configurations that leaves the potential Ṽ invariant. An elementary
argument shows that orbits which cross this plane orthogonally are symmetric
with respect to σ. We can lift σ to T ∗Miso as a symplectic symmetry of H,
namely R(q, p) = (σq, σp).

We use cylindrical coordinates (r, θ, z) on the manifold Miso, where z de-
notes the vertical height of the mass m3 above the horizontal plane, and (r, θ)
denotes the horizontal position of mass m1, relative to the axis of symmetry.
The corresponding momenta in the fiber T ∗

qMiso are denoted (pr, pθ, pz). In
cylindrical coordinates, the Hamiltonian is

H =
p2r
4m

+
p2θ

4mr2
+

p2z
2m3(m3

2m + 1)
− m

2

2r
− 2mm3√

r2 + z2(1 + m3
2m )2

. (12.41)

With these coordinates, the symmetry σ takes (r, θ, z) → (r, θ,−z). The
plane of collinear configurations is now identified with the fixed-point plane
Fix σ/{z = 0, r = 0}.
Miso has an SO(2) action that rotates the binary pair around the fixed

symmetry axis and leaves Ṽ invariant, namely eiθq = (eiθr1, eiθr2, r3). Lifting
this as a symplectic diagonal action to T ∗Miso we find that H is equivariant,
which gives the angular momentum of the system as a conservation law.

The reduced space J−1(c)/SO(2) � T ∗(Miso/SO(2)) comes equipped
with a symplectic structure together with the flow of the reduced Hamiltonian
vector field obtained by projection along the SO(2) orbits; see Meyer (1973)
and Marsden (1992). Setting pθ = c and substituting in Equation (12.41)
gives Hc = H(r, 0, z, pr, c, pz) and the reduced Hamiltonian vector field XHc

on T ∗(Miso/SO(2)) is
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ṙ =
∂Hc

∂pr
, ż =

∂Hc

∂pz
, ṗr = −∂Hc

∂r
, ṗz = −∂Hc

∂z
.

12.7 A Variational Problem for Symmetric Orbits

We now turn to an analytical description of periodic orbits, using a symmetric
variational principle. In general when we consider a family of periodic orbits
parameterized by the period T , it is not possible to specify the functional
relation with the energy, nor for that matter angular momentum.

Consider the fixed time variational problem

Aiso
T (x) = inf

Λiso
AT (q),

Aiso
T (q) =

∫ T

0

∑ 1
2mi

‖pri
‖2 + U(r) dt,

Λiso =
{
q ∈ H1([0, T ],Miso) | q(T ) = σei2π/3q(0)

}
.

(12.42)

The function space Λiso contains certain paths that execute rotations and
oscillations about the fixed point plane S. It is not difficult to see that Aiso

T

is coercive on Λiso, using the boundary conditions given. Indeed if q ∈ Λiso
tends to ∞ in Miso, then the length l of q will also tend to ∞ due to the
angular separation of the endpoints q(0), q(T ). An application of Holder’s
inequality then implies that the average kinetic energy of q will tend to ∞
as well. This coercivity of the functional Aiso

T on the function space Λiso
together with the fact that Aiso

T is bounded below implies that the solution
of the variational problem (12.42) exists by virtue of Tonelli’s theorem.

We also show that the solution of (12.42) is collision-free, and can be
extended to a periodic integral curve of XH , provided that the masses satisfy
the inequality

m2 + 4mm3

3
√

2
<
(
m2 + 2mm3

)√m+ 2m3

2m+m3
. (12.43)

Theorem 12.7.1. A minimizing solution of (12.42) is collision free on the
interval 0 ≤ t ≤ T , for all choices of the masses m,m3.

Proof. The argument rests on comparing the collision–ejection homothetic
paths that also satisfy the boundary conditions of Λiso, for 3-body central
configurations. First of all, notice that collinear collision with a symmetric
congruent ejection path rotated by 2π/3 will belong to Λiso, because σ = id
on S. Moreover, symmetric homothetic equilateral paths also belong to Λiso,
provided that we ensure that the congruent ejection path is rotated by ei2π/3

so as to satisfy the conditions of Λiso.
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Denote the collinear collision–ejection curve in Λiso by q1(t), which con-
sists of the homothetic collinear collision-ejection orbit in S, with collision
at T1 = T/2, and so that q1(T ) = ei2π/3q1(0). Because this path gives the
same action as the action of an individual collision–ejection orbit in time T ,
we can compare this with the action of 1

3 the uniformly rotating collinear
relative equilibrium having period 3T . Using the concavity of (12.7) in the
period T it can easily be seen that the path q1(t), 0 ≤ t ≤ T has action that
is strictly bigger than the corresponding action of the path which consists of
1
3 collinear relative equilibrium. Thus, the collinear collision–ejection path in
Λiso is not globally minimizing. Now we let q1(t) denote the collinear relative
equilibrium.

We wish to compare this action with the action of a symmetric homoth-
etic equilateral path. In this case we let q0(t) denote a homothetic path for
the equilateral configuration q0, with collision at time T/2, together with a
congruent symmetric segment consisting of the path σei2π/3q0(t+ T/2).

We now proceed to compare the action for the two types of motion of
the 3-body problem described above, which are based on the two central
configurations consisting of the equilateral triangle, denoted q0, and that of
the collinear relative equilibrium, denoted q1. This remark is used now to
make the comparison between the two types of motion in Miso. Our first
important observation is that the symmetric homothetic collision-ejection
path q0(t) described above, has the same action as a periodic homothetic
collision–ejection path, with the same period T . In turn, the periodic homo-
thetic collision–ejection path has the same action as the uniformly rotating
equilateral configurations having the same period T , q(t) = ei2πt/T q0.

Next we compute the force function U(q), and the moment of inertia (12.3)
for the two types of configurations, equilateral and collinear. We denote the
common mutual distance for the two configurations corresponding to period
T rotation by l0 (equilateral), and l1 (collinear). A direct computation yields

U(q0) =
m2 + 2mm3

l0
, I(q0) =

m2 + 2mm3

2m+m3
l20 (12.44)

whereas for collinear configurations,

U(q1) =
m2 + 4mm3

2l1
, I(q1) = 2ml21. (12.45)

We can compute the action functional on each of the two uniformly ro-
tating configurations, equilateral and collinear. Using the expression (12.7)
for the action, we have

Aiso
T (q0) = 3(2π)1/3

(
Ũ(q0)

)2/3

T 1/3

1
3
Aiso

3T (q1) = (2π)1/3
(
Ũ(q1)

)2/3

(3T )1/3.
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We argue that q0(t) does not fulfill the requirements for a global minimizer
of the action in Λiso whenever the inequality Ũ(q1) < 3Ũ(q0) is met. This
can be tested using the expressions (12.44) and (12.45) to obtain

Ũ0 = U(q0)r0 =

√
(m2 + 2mm3)3

2m+m3
,

Ũ1 = U(q1)r1 =
(m2 + 4mm3)

√
m√

2
.

The inequality Ũ(q1) < 3Ũ(q0) is equivalent to (12.43). To analyze this in-
equality further, notice that the expression appearing on the right of the
inequality (12.43) satisfies

√
m+ 2m3

2m+m3
>

1√
2
.

It is now a simple exercise to deduce that (12.43) holds for all choices of the
masses.

Now, we make the simple argument which shows that the solution of the
isosceles variational problem outlined here cannot have any collision singu-
larities. The minimizing curve x(t) ∈ Λiso, if it does contain collision sin-
gularities, must consist of arcs of the N -body equations (12.1) which abut
on collision. But each of these arcs beginning or ending with collision, would
have to have zero angular momentum by the results of Sundman (1913). This
implies that the symmetry condition stated in the definition of Λiso could
not be fulfilled, unless x(t) were a symmetric homothetic collision–ejection
orbit. However, both the collinear and the equilateral homothetic orbits in
Λiso are not globally minimizing, provided that inequality (12.43) is fulfilled.

We now address the question of whether the solution of (12.42) gives
a new family of periodic solutions, and in particular whether the relative
equilibrium solutions might provide a solution. We employ a technique similar
to that used in Chenciner and Venturelli (2000). As was discussed in the
section on geometry of reduction above, the shape sphere

{
I = 1

2

}
describes

the similarity classes of configurations up to rotation and dilation. If q(t)
denotes such a collinear relative equilibria solution, it is possible to construct
a periodic vector field ζ(t), tangent to Λiso at q(t), and which points in the
tangent direction of the shape sphere, transverse to the equatorial plane of
collinear configurations. The fact that the collinear central configurations are
saddle points, only minimizing U(q) = −Ṽ over the collinear configurations
in the sphere

{
I = 1

2

}
, implies that d2Aiso

T (q) · ζ < 0. Hence q(t) cannot be
an absolute minimizer for the isosceles action Aiso

T .

Using the equivariance of the symmetries with respect to the flow of (12.1)
we can see the following.
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Theorem 12.7.2. The solution q(t) to the variational problem (12.42) may
be extended so as to satisfy the relation q(t + T ) = σei2π/3q(t). The corre-
sponding momentum p(t) satisfies the same symmetry p(t+T ) = σei2π/3p(t).
Together, the pair (q(t), p(t)) may be extended to a 6T periodic orbit of the
Hamiltonian vector field XH for isosceles Hamiltonian (12.41) which under-
goes two full rotations and six oscillations in each period, and which is not
the collinear relative equilibrium in S.

Proof. Critical points of Aiso
T on Λiso must satisfy the transversality condi-

tion
δAiso

T (q) · ξ = 〈ξ, p〉|T0 = 0,

where ξ(t) is a variation vector field along q(t) satisfing ξ(T ) = σei2π/3ξ(0).
Therefore

〈σe−i2π/3p(T )− p(0), ξ(0)〉 = 0,

which implies that p(T ) = σei2π/3p(0) because ξ(0) is arbitrary.
Now σei2π/3 generates a symplectic subgroup of order 6 on T ∗Miso, which

fixes the HamiltonianH. Therefore, σei2π/3(q(t), p(t)) is also an integral curve
of the Hamiltonian vector field XH . Let (x(t), y(t)) = (q(t+T ), p(t+T )) de-
note the time shifted integral curve ofXH . Then (x(0), p(0)) = (q(T ), p(T )) =
σei2π/3(q(0), p(0)). By uniqueness of the initial condition, we conclude that
(x(t), y(t)) = σei2π/3(q(t), p(t)) as stated in the theorem.

Iterating the symmetry σei2π/3 shows

(q(2T ), p(2T )) = ei4π/3(q(0), p(0)),

and

(q(T ), p(T )) = σei2π/3(q(0), p(0))
(q(2T ), p(2T )) = σei2π/3(q(T ), p(T ))
(q(3T ), p(3T )) = σei2π/3(q(2T ), p(2T ))

= σei6π/3(q(0), p(0)),

therefore q(6T ), p(6T ) = ei12π/3(q(0), p(0)) which shows as well as periodicity,
that the orbit undergoes two full rotations and six oscillations before closing.

For given integers (M,N) we can study the more general variational prob-
lem

Aiso
T (x) = inf

Λ(M,N)

AT (q), Aiso
T (q) =

∫ T

0

∑ 1
2mi

‖pri
‖2 + U(r) dt, (12.46)

Λ(M,N) =
{
q ∈ H1([0, T ],Miso) | q(T ) = σei2Mπ/Nq(0)

}
.

The function space Λ(M,N) contains certain paths that execute M rota-
tions and N oscillations about the fixed point plane S before closing. Using
similar techniques to those above, it is shown in Cabral and Offin (2008) that
the following generalization of the families of periodic orbits occur.



12.8 Instability of the Orbits and the Maslov Index 321

Theorem 12.7.3. The solution q(t) to the variational problem (12.46) is
collision-free on the interval [0, T ] provided that the inequality MŨ1 < NŨ0.
This occurs in the equal mass case, provided that M < 3

√
2

5 N , and in the
case when m3 = 0 when M < N . The solution q(t) may be extended so as to
satisfy the condition q(t + T ) = σei2Mπ/Nq(t), and together with p(t) gives
a NT -periodic integral curve of (12.1) in the case where N is even, and an
2NT -periodic integral curve in the case where N is odd.

12.8 Instability of the Orbits and the Maslov Index

In this section we discuss the application of the Maslov index of the periodic
orbits discussed above, to consider the question of stability.

Theorem 12.8.1. The σ-symmetric periodic orbit that extends the solution
q(t) to the variational problem (12.46) is unstable, and hyperbolic on the
reduced energy–momentum surface H−1(h) whenever (q, p) is nondegenerate
in the reduced energy surface.

The proof uses the second variation of the action, and symplectic properties
of the reduced space J−1(c)/SO(2) where J(q, p) = c. The Maslov index of
invariant Lagrangian curves is an essential ingredient. More complete details
on the Maslov index in this context are given in Offin (2000) and that of
symplectic reduction in Marsden (1992).

The functional and its differentials evaluated along a critical curve q(t) in
the direction ξ ∈ Tq(t)Λ(M,N) are

Aiso
T (q) =

∫ T

0

∑ 1
2mi

‖pri
‖2 + U(r)dt,

δAiso
T (q) · ξ =

∑
i

〈pri
, ξi〉|T0 +

∫ T

0

∑
i

〈− d
dt
pri

+
∂U

∂qi
, ξi〉dt,

δ2Aiso
T (q)(ξ, ξ) =

∑
i

〈ηi, ξi〉|T0 +
∫ T

0

∑
i,j

〈− d
dt
ηi +

∂2U

∂qi∂qj
ξj , ξi〉dt.

We defined the Jacobi field along q(t) as a variation of the configuration
ξ(t)∂/∂q which together with the variation in momenta η(t)∂/∂p, satisfies
the equations

dξi
dt

= miηi,
dηi

dt
=
∑

j

∂2U

∂qi∂qj
ξj . (12.47)

Such Jacobi fields are used to study stability properties of (q(t), p(t)). We
are particularly interested in the Jacobi fields ξ(t) that satisfy the boundary
relation ξ(T ) = σei2Mπ/Nξ(0), because these are natural with respect to the
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variational problem (12.46). We show below that an important subset of them
will correspond to the variations within Λ(M,N) belonging to the tangent
of this space at q(t), and moreover may be used to decide the stability of
(q(t), p(t)).

Due to symmetry invariance of the flow of the Hamiltonian vector field
XH , it is possible to see that the second variation δ2Aiso

T (q) will always have
degeneracies (zero eigenvalues) in the direction of the constant Jacobi field
ξ(t)∂/∂q = r−1∂/∂θ. Such degeneracies can be removed by considering vari-
ations in the reduced configuration space Miso/SO(2). Moreover, by conser-
vation of energy and angular momentum, further degeneracies of the second
variation are given by variations ξ(t)∂/∂q so that ζ(t) = ξ(t)∂/∂q+η(t)∂/∂p
is transverse to the energy momentum surface of the periodic orbit (q(t), p(t)).
In other words, we can only expect nondegenerate effects in the second vari-
ation if we choose variations ζ(t) = ξ(t)∂/∂q + η(t)∂/∂p which modulo their
rigid rotations by eiθ are tangent to this energy–momentum surface. To ef-
fect this kind of reduction of Jacobi fields, it is most useful to return to our
discussion of the symmetry reduced space from Section 12.2.

The reduced space is defined to be the set of equivalence classes of config-
urations and momenta on the c-level set of the angular momentum up to rigid
rotation; that is, Pc = J−1(c)/SO(2). Using the cylindrical coordinates of the
symmetric mass m1 introduced earlier, it is easily seen that Pc is a symplectic
space which is symplectomorphic to T ∗(Miso/SO(2)). The reduced symplec-
tic form on Pc is the canonical one in these coordinates. Let Hc denote the
reduced Hamiltonian on the reduced space Pc. In reduced cylindrical coor-
dinates, this can be computed by simply substituting θ = 0 and pθ = c in
the original Hamiltonian for the isosceles problem (as we mentioned earlier
in Section 12.2 on the description of the isosceles problem)

Hc(r, z, pr, pz) = H(r, 0, z, Pr, c, pz).

Now we consider the reduced energy–momentum space H−1
c (h). The direc-

tions tangent to this manifold thus becomes the natural place to look for
positive directions of the second variation.

We therefore consider an essential direction for the second variation, those
Jacobi fields in Tq(t)Λ(M,N) which together with the conjugate variations η(t)
will project along the rigid rotations to variations that are everywhere tangent
to the energy surface H−1(h) in the reduced space J−1(c)/SO(2). This means
that if

ξ(t)
∂

∂q
= ξr(t)

∂

∂r
+
ξθ(t)
r

∂

∂θ
+ ξz(t)

∂

∂z

is our Jacobi field in cylindrical coordinates, where r(t) is the radial compo-
nent of the configuration of q(t), then the symmetry reduced Jacobi field is
just

ξ(t) = ξr(t)
∂

∂r
+ ξz(t)

∂

∂z
.
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Notice in addition that ξθ(t) = 1 for all Jacobi variations. This procedure is
therefore obviously reversible, if

ξ(t) = ξr(t)
∂

∂r
+ ξz(t)

∂

∂z

is a reduced Jacobi variation then

ξ(t) = ξr(t)
∂

∂r
+

1
r(t)

∂

∂θ
+ ξz(t)

∂

∂z

is a solution to (12.47).
We need to consider the projection of the reduced space into the reduced

configuration space

π : J−1(c)/SO(2) −→Miso/SO(2),

and denote the vertical space of the projection at x = (q, p) by V |(x,p) =
ker dxπ. Recall that a subspace λ of tangent variations to J−1(c)/SO(2) is
called Lagrangian if dimλ = 2, and ω|λ = 0. We consider the invariant La-
grangian subspaces of Jacobi fields and conjugate variations ζ(t) = ξ(t)∂/∂q+
η(t)∂/∂p which are tangent everywhere to H−1(h) within J−1(c)/SO(2), and
for which ξ(t), η(t) satisfy (12.47). Because this is a three-dimensional man-
ifold, we find that every two-dimensional invariant Lagrangian curve that
is tangent to H−1

c (h) includes the flow direction XHc
and one transverse

direction field,

λt = span 〈ζ(t),XHc
(z(t))〉, dHc(ζ(t)) = 0.

A focal point of the Lagrangian plane λ0 is the value t = t0, where dxπ : λt0 →
Miso/SO(2) is not surjective. These Lagrangian singularities correspond to
the vanishing of the determinant

D(t0) = det
[
ξr(t0) pr(t0)
ξz(t0) pz(t0)

]
= 0, (12.48)

where (ξr, ξz) denotes the reduced configuration component of a reduced vari-
ational vector field along (q(t), p(t)). Now we study the invariant Lagrangian
curve λ∗t of reduced energy–momentum tangent variations

λ∗0 = {ζ(0) = ξ(0)∂/∂q + η(0)∂/∂p | ξ(T ) = σξ(0), dHc(ξ(0), η(0)) = 0} .
(12.49)

Evidently, the subspace λ∗0 is not empty, because XHc
(q(0), p(0)) ∈ λ∗0.

Lemma 12.8.1. If the periodic integral curve (q(t), p(t)) is nondegenerate on
the reduced energy-momentum manifold H−1(h) within J−1(c)/SO(2), then
λ∗0 is Lagrangian.
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Proof. We need to show that dimλ∗0 = 2, and that ω|λ∗
0

= 0. The last con-
dition follows immediately from the first and from the fact that variations
within λ∗0 are tangent to H−1(h). We prove the first condition on the di-
mension of λ∗0. The key to this is to make the following observations on the
mapping P − σ,

(P − σ)TxH
−1
c (h) ⊂ TxH

−1
c (h), x = (q(0), p(0))

ker (P − σ) = 〈XHc
)(x)〉

(P − σ)λ∗0 ⊂ ker dPxπ.

Both the Poincaré mapping and the symmetry σ lifted to the cotangent bun-
dle leave the energy surface H−1(h) invariant. The first observation then
follows by projecting from T ∗(Miso) onto the reduced energy–momentum
manifold. The second property follows exactly from the condition on nonde-
generacy of the periodic orbit (q(t), p(t)), because vectors in the kernel will
give rise to periodic solutions of the linearized equations that are tangent to
Pc. For ζ ∈ λ∗0, the last condition can be seen from the computation

dPxπ(P − σ)ζ = (ξ(T )− σξ(0))∂/∂q = 0.

From the first two conditions we see that P − σ is an isomorphism when
restricted to TxH

−1(h)/ 〈XHc
)(x)〉, and this can be used to define the trans-

verse variation ζ(0) ∈ λ∗0 modulo 〈XHc
)(x)〉 which, by virtue of the third con-

dition, must be the preimage under P − σ of a vertical vector in TxH
−1(h).

Next we state the second-order necessary conditions in terms of reduced
energy–momentum variations, in order that q(t) is a minimizing solution of
the variational problem (12.46). We recall that the symplectic form and the
symplectic symmetry σ drop to J−1(c)/SO(2), and we denote these without
confusion, respectively, by ω and σ. Similarly, we let P denote the sym-
plectic map that is the relative Poincaré map for the reduced Jacobi fields
(ξ(t), η(t)) �→ (ξ(t+ T ), η(t+ T )).

Proposition 12.8.1. If the curve q(t) is a collision-free solution of the vari-
ational problem (12.46), and when projected by π is nondegenerate as a peri-
odic integral curve of XHc

then λ∗0 has no focal points in the interval [0, T ],
and

ω(λ∗0, σλ
∗
T ) = ω(λ∗0, σPλ∗0) > 0.

Proof. The fact that λ∗0 has no focal points on [0, T ] is classical. From the
expression (12.47) for the second variation we may deduce that

δ2Aiso
T (q)(ξ, ξ) = Σi〈ηi, ξi〉|T0

= 〈σe−i2Mπ/Nηi(T )− ηi(0), ξ(0)〉
= ω(λ∗0, σe

−i2Mπ/Nλ∗T )
> 0.
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The last follows because σe−i2Mπ/NP(ξ(0), η(0)) = (ξ(0), σe−i2Mπ/Nη(T ).
Moreover, because we are working in the reduced energy–momentum space,
we can drop the action of the rotation e−i2Mπ/N and the final inequality
reads ω(λ∗0, σPλ∗0) > 0.

Now we consider the reduced Lagrangian planes λ∗0, σλ
∗
T = σPλ∗0.

Lemma 12.8.2. The Lagrange planes (σP)nλ∗0 have no focal points in the
interval 0 ≤ t ≤ T .

Proof This argument proceeds by showing that the successive iterates
(σP)nλ∗0 have a particular geometry in the reduced space of Lagrangian
planes. This geometry then allows a simple comparison between the focal
points of λ∗0 and that of Pnλ∗0.

Recall that the Lagrange planes (σP)nλ∗t are all generated by a single
tranverse variational vector field (ξ(t), η(t)), so that at t = 0 we need to
consider only the initial conditions (ξ(0), η(0)). We observe from Proposition
(12.8.1) that ω(λ∗0, σPλ∗0) > 0 that is ω((ξ(0), η(0)), σP(ξ(0), η(0))) > 0.
Recall that the reduced symplectic form ω restricted to the tangent of the
level set H−1(h) is nothing more than the signed area form in the reduced
plane of transverse vector fields (ξ(t), η(t)) for which dHc(ξ(t), η(t)) = 0.
The fact that ω > 0 on the pair λ∗0, σPλ∗0 implies an orientation of these
subspaces in the plane. In particular, σPλ∗0 is obtained from λ∗0 by rotating
counterclockwise, by an angle less than π. Moreover, σPλ∗0 must lie between
λ∗0 and the positive vertical V |(x,p), due to the fact that both Lagrange planes
have the same horizontal component ξ(0). Now, as t changes over the interval
[0, T ], the vertical Lagrange plane V |(x,p) rotates initially clockwise, and the
Lagrange plane λ∗0 cannot move through the vertical V |(x,p) due to the fact
that λ∗0 is focal point free in this interval. The comparison between λ∗0, σPλ∗0,
mentioned above, amounts to the statement that the first focal point of σPλ∗0
must come after the first focal point of λ∗0. Due to Proposition (12.8.1), we
infer that σPλ∗0 is focal point free on the interval [0, T ].

The argument given between λ∗0, σPλ∗0 can be repeated for σPλ∗0, (σP)2λ∗0
because ω(σPλ∗0, (σP)2λ∗0) > 0, by application of the symplectic mapping
σP. Moreover, as we have just shown above, σPλ∗0 is focal point free on
[0, T ] so that comparing with (σP)2λ∗0 and using the orientation supplied
by the symplectic form ω indicates that (σP)2λ∗0 is focal point free on the
interval [0, T ] as well.

This argument is applied successively to each of the interates (σP)nλ∗0.

Lemma 12.8.3. The reduced Lagrange plane λ∗0 of transverse variations is
focal point free on the interval 0 ≤ t <∞.

Proof The argument proceeds by showing that λ∗0 is focal point free on each
of the intervals [0, T ], [T, 2T ], . . . . This property holds for the first interval
[0, T ], due to the second order conditions in Proposition (12.8.1). The next
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interval and succeeding ones, can be explained because (σP)nλ∗0, is focal
point free on [0, T ]. In particular, σPλ∗0 is focal point free on [0, T ] implies
that Pλ∗0 is focal point free on [0, T ], because σV |(x,p) = V |(x,p). Therefore
λ∗0 is focal point free on [0, 2T ]. The iterates (σP)n+1λ∗0 are also focal point
free on [0, T ], together with the fact that σP = Pσ implies similarly that λ∗0
is focal point free on [0, (n+ 1)T ]. This concludes the proof.

Because there is no rotation of the Lagrange planes λ∗t (Lemma 12.8.3),
we can ask what obstruction there is to prevent this. The answer given in the
next theorem is that the Poincaré map must have real invariant subspaces.

Theorem 12.8.2. Under the assumptions of Proposition 12.8.1, there are
(real) invariant subspaces for the reduced Poincaré map P2. These subspaces
are transverse when δ2AT (q) is nondegenerate when restricted to the sub-
space in the reduced space of tangential variations Tq(t)Λ(M,N) which are also
tangent to the reduced energy surface H−1

c (h).

Proof. The proof proceeds by examining the iterates (σP)nλ∗0 of the subspace
λ∗0 of tangential Jacobi variations in the reduced energy–momentum space
H−1

c (h). By Lemma 12.8.2 and the fact that ω((σP)nλ∗0, (σP)n+1λ∗0) > 0,
the iterates (σP)nλ0 must have a limit subspace β = limn→∞(σP)nλ∗0. The
subspace β is thereby Lagrangian, and invariant for the symplectic map σP.
Therefore this implies that inasmuch as σP = Pσ,

σPβ = β

Pβ = σβ

P2β = Pσβ
= σPβ
= β.

Because λ∗0 is focal point free on the interval 0 ≤ t <∞, and V |(x,p) can
have no focal points before λ∗0, it follows that V |(x,p) can have no focal points
in 0 < t <∞. However more is true, because the forward interates of V |(x,p)

cannot cross any of the subspaces (σP)nλ∗0 it is not difficult to see that the
subspace β can be also represented as the forward limit of the iterates Pn

of the vertical space, β = limn→∞ PnV |(x,p). It follows that β represents the
reduced transverse directions of the stable manifold of (q, p).

Using Lemma 12.8.3 it follows that backward iterates of the vertical space
V |(x,p) under P cannot cross the subspace λ∗0. Therefore the unstable manifold
α may be represented as the limit in backward time, α = limn→∞ P−nV |(x,p).

Finally, to show transversality of the subspaces β, α we can use the fact
that in the case where (q, p) is nondegenerate, ω(λ∗0, σPλ∗0) > 0, by virtue of
Proposition 12.8.1. This implies that in the case of nondegeneracy ω(α, β) >
0, which implies transversality.
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12.9 Remarks

In this chapter we have chosen two simple yet interesting and complex ex-
amples from the global study of periodic solutions of the 3-body problem.
In the first example, the symmetry group of the orbit contains a dihedral
component D3 × Z2. In the second example, the symmetry group Z6 is far
simpler and consequently we can say a great deal about the stability type of
the orbit families. The Maslov theory is an ideal topic to apply in this exam-
ple. This technique for studying global stability of periodic families was first
applied to the case of Z2 symmetry generated by a time reversing symmetry
in Offin (2000). The analytic stability analysis of the figure eight at this time
remains a mystery, yet it seems tantalizingly close to resolution. Other orbits
that are noteworthy and which fall into the category of those determined by
symmetric variational principles are interesting objects of current research.
These include the “crazy eights” or figure eights with less symmetry, Fer-
rario and Terracini (2004), and the “hip-hop” family of equal mass 2N -body
problem as well as some of the fascinating examples described in Simó (2002)
and Ferrario and Terracini (2004). The hip-hop orbits, discovered initially by
Chenciner and Venturelli (2000), have spatio-temporal symmetry group Z2,
named by Chenciner as the Italian symmetry. This family has also been an-
alyzed using the Maslov theory for stability. They fall into the category of a
cyclic symmetry group without time reversal, similar to the isosceles example
we studied above. The stability type of the hip-hop family is identical to that
of the isosceles families, hyperbolic on its energy–momentum surface, when
nondegenerate. A recent result of Buono and Offin (2008) treats this case of
cyclic symmetry group in general, and again the families of periodic orbits
in this category are all hyperbolic whenever they are nondegenerate on their
energy–momentum surface. A forthcoming paper by Buono, Meyer and Offin,
analyzes the dihedral group symmetry of the crazy eights. As a final comment
we mention that other methods have been developed Dell’Antonio (1994), for
analyzing stability of periodic orbits in Hamiltonian and Lagrangian systems
that are purely convex in the phase variables.



13. Stability and KAM Theory

Questions of stability of orbits have been of interest since Newton first set
down the laws that govern the motion of the celestial bodies. “Is the universe
stable?” is almost a theological question. Even though the question is old
and important, very little is known about the problem, and much of what is
known is difficult to come by.

This chapter contains an introduction to the question of the stability and
instability of orbits of Hamiltonian systems and in particular the classical
Lyapunov theory and the celebrated KAM theory. This subject could be
the subject of a complete book; so, the reader will find only selected topics
presented here. The main example is the stability of the libration points of
the restricted problem, but other examples are touched.

Consider the differential equation

ż = f(z), (13.1)

where f is a smooth function from the open set O ⊂ R
m into R

m. Let the
equation have an equilibrium point at ζ0 ∈ O; so, f(ζ0) = 0. Let φ(t, ζ) be
the general solution of (13.1). The equilibrium point ζ0 is said to be positively
(respectively, negatively) stable, if for every ε > 0 there is a δ > 0 such that
‖φ(t, ζ)−ζ0‖ < ε for all t ≥ 0 (respectively, t ≤ 0) whenever ‖ζ−ζ0‖ < δ. The
equilibrium point ζ0 is said to be stable if it is both positively and negatively
stable. In many books “stable” means positively stable, but the above conven-
tion is the common one in the theory of Hamiltonian differential equations.
The equilibrium ζ0 is unstable if it is not stable. The adjectives “positively”
and “negatively” can be used with “unstable” also. The equilibrium ζ0 is
asymptotically stable, if it is positively stable, and there is an η > 0 such
that φ(t, ζ) → ζ0 as t→ +∞ for all ‖ζ − ζ0‖ < η.

Recall the one result already given on stability in Theorem 1.3.2, which
states that a strict local minimum or maximum of a Hamiltonian is a
stable equilibrium point. So for a general Newtonian system of the form
H = pTMp/2 + U(q), a strict local minimum of the potential U is a sta-
ble equilibrium point because the matrix M is positive definite. It has been
stated many times that an equilibrium point of U that is not a minimum is
unstable. Laloy (1976) showed that for

U(q1, q2) = exp(−1/q21) cos(1/q1)− exp(−1/q22){cos(1/q2) + q22},

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 13,
c© Springer Science+Business Media, LLC 2009
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the origin is a stable equilibrium point, and yet the origin is not a local
minimum for U . See Taliaferro (1980) for some positive results along these
lines.

Henceforth, let the equilibrium point be at the origin. A standard ap-
proach is to linearize the equations; i.e., write (13.1) in the form

ż = Az + g(z),

where A = ∂f(0)/∂z and g(z) = f(z) − Az; so, g(0) = ∂g(0)/∂z = 0.
The eigenvalues of A are called the exponents (of the equilibrium point).
If all the exponents have negative real parts, then a classical theorem of
Lyapunov states that the origin is asymptotically stable. By Proposition 3.3.1,
the eigenvalues of a Hamiltonian matrix are symmetric with respect to the
imaginary axis; so, this theorem never applies to Hamiltonian systems. In
fact, because the flow defined by a Hamiltonian system is volume-preserving,
an equilibrium point can never be asymptotically stable.

Lyapunov also proved that if one exponent has positive real part then the
origin is unstable. Thus for the restricted 3-body problem the Euler collinear
libration points, L1, L2, L3, are always unstable, and the Lagrange triangular
libration points, L4 and L5, are unstable for μ1 < μ < 1− μ1 by the results
of Section 4.1.

Thus a necessary condition for stability of the origin is that all the eigen-
values be pure imaginary. It is easy to see that this condition is not sufficient
in the non-Hamiltonian case. For example, the exponents of

ż1 = z2 + z1(z21 + z22),

ż2 = −z1 + z2(z21 + z22)

are ±i, and yet the origin is unstable. (In polar coordinates, ṙ = r3 > 0.)
However, this equation is not Hamiltonian.

In the second 1917 edition of Whittaker’s book on dynamics, the equations
of motion about the Lagrange point L4 are linearized, and the assertion is
made that the libration point is stable for 0 < μ < μ1 on the basis of this
linear analysis. In the third edition of Whittaker (1937) this assertion was
dropped, and an example due to Cherry (1928) was included. A careful look
at Cherry’s example shows that it is a Hamiltonian system of two degrees
of freedom, and the linearized equations are two harmonic oscillators with
frequencies in a ratio of 2:1. The Hamiltonian is in the normal form given in
Theorem 10.4.1; i.e., in action–angle variables, Cherry’s example is

H = 2I1 − I2 + I1I
1/2
2 cos(φ1 + 2φ2). (13.2)

Cherry explicitly solves this system, but we show the equilibrium is unstable
as a consequence of Chetaev’s theorem 13.1.2.
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13.1 Lyapunov and Chetaev’s Theorems

In this section we present the parts of classical Lyapunov stability theory as
it pertains to Hamiltonian systems. Consider the differential equation (13.1).

Return to letting ζ0 be the equilibrium point. Let V : O → R be smooth
where O is an open neighborhood of the equilibrium point ζ0. One says that
V is positive definite (with respect to ζ0) if there is a neighborhood Q ⊂ O
of ζ0 such that V (ζ0) < V (z) for all z ∈ O \ {ζ0}. That is, ζ0 is a strict local
minimum of V . Define V̇ : O → R by V̇ (z) = ∇V (z) · f(z).

Theorem 13.1.1 (Lyapunov’s Stability Theorem). If there exists a
function V that is positive definite with respect to ζ0 and such that V̇ ≤ 0 in
a neighborhood of ζ0 then the equilibrium ζ0 is positively stable.

Proof. Let ε > 0 be given. Without loss of generality assume that ζ0 = 0
and V (0) = 0. Because V (0) = 0 and 0 is a strict minimum for V , there is
an η > 0 such that V (z) is positive for 0 < ‖z‖ ≤ η. By taking η smaller if
necessary we can ensure that V̇ (z) ≤ 0 for ‖z‖ ≤ η and that η < ε also.

Let M = min{V (z) : ‖z‖ = η}. Because V (0) = 0 and V is continuous,
there is a δ > 0 such that V (z) < M for ‖z‖ < δ and δ < η. We claim that if
‖ζ‖ < δ then ‖φ(t, ζ)‖ ≤ η < ε for all t ≥ 0.

Because ‖ζ‖ < δ < η there is a t∗ such that ‖φ(t, ζ)‖ < η for all 0 ≤ t < t∗
and t∗ is the smallest such number. Assume t∗ is finite and so ‖φ(t∗, ζ)‖ = η.
Define v(t) = V (φ(t, ζ)) so v(0) < M and v̇(t) ≤ 0 for 0 ≤ t ≤ t∗ and so
v(t∗) < M . But v(t∗) = V (φ(t∗, ζ)) ≥ M which is a contradiction and so t∗

is infinite.

Consider the case when (13.1) is Hamiltonian; i.e. of the form

ż = J∇H(z), (13.3)

where H is a smooth function from O ⊂ R
2n into R. Again let z0 ∈ O be an

equilibrium point and let φ(t, ζ) be the general solution.

Corollary 13.1.1 (Dirichlet’s stability theorem 1.3.2). If zo is a strict
local minimum or maximum of H, then z0 is a stable equilibrium for (13.3).

Proof. Because ±H is an integral we may assume that H has a minimum.
Because Ḣ = 0 the system is positively stable. Reverse time by replacing t
by −t. In the new time Ḣ = 0, so the system is positively stable in the new
time or negatively stable in the original time.

For the moment consider a Hamiltonian system of two degrees of freedom
that has an equilibrium at the origin and is such that the linearized equations
look like two harmonic oscillators with distinct frequencies ω1, ω2, ωi 
= 0.
The quadratic terms of the Hamiltonian can be brought into normal form by
a linear symplectic change of variables so that the Hamiltonian is of the form
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H = ±ω1

2
(x2

1 + y2
1)± ω2

2
(x2

2 + y2
2) + · · · .

If both terms have the same sign then the equilibrium is stable by Dirichlet’s
Theorem. However, in the restricted problem at Lagrange triangular libration
points L4 and L5 for 0 < μ < μ1 the Hamiltonian is of the above form, but
the signs are opposite.

Theorem 13.1.2 (Chetaev’s theorem). Let V : O → R be a smooth
function and Ω an open subset of O with the following properties.

• ζ0 ∈ ∂Ω.
• V (z) > 0 for z ∈ Ω.
• V (z) = 0 for z ∈ ∂Ω.
• V̇ (z) = V (z) · f(z) > 0 for z ∈ Ω.

Then the equilibrium solution ζ0 of (13.1) is unstable. In particular, there is a
neighborhood Q of the equilibrium such that all solutions which start in Q∩Ω
leave Q in positive time.

Proof. Again we can take ζ0 = 0. Let ε > 0 be so small that the closed ball of
radius ε about 0 is contained in the domain O and let Q = Ω∩{‖z‖ < ε}. We
claim that there are points arbitrarily close to the equilibrium point which
move a distance at least ε from the equilibrium.

Q has points arbitrarily close to the origin, so for any δ > 0 there is a
point p ∈ Q with ‖p‖ < δ and V (p) > 0.

Let v(t) = V (φ(t, p)). Either φ(t, p) remains in Q for all t ≥ 0 or φ(t, p)
crosses the boundary of Q for the first time at a time t∗ > 0.

If φ(t, p) remains in Q then v(t) is increasing because v̇ > 0 and so v(t) ≥
v(0) > 0 for t ≥ 0. The closure of {φ(t, p) : t ≥ 0} is compact and v̇ > 0 on
this set so v̇(t) ≥ κ > 0 for all t ≥ 0. Thus v(t) ≥ v(0) + κt→∞ as t→∞.
This is a contradiction because φ(t, p) remains in an ε neighborhood of the
origin and v is continuous.

If φ(t, p) crosses the boundary of Q for the first time at a time t∗ > 0,
v̇(t) > 0 for 0 ≤ t < t∗ and so v(t∗) ≥ v(0) > 0. Because the boundary of
Q consist of the points q where V (q) = 0 or where ‖q‖ = ε, it follows that
‖v(t∗)‖ = ε.

Cherry’s counterexample in action–angle coordinates is

H = 2I1 − I2 + I1/2
1 I2 cos(φ1 + 2φ2). (13.4)

To see that the origin is unstable, consider the Chetaev function

W = −I1/2
1 I2 sin(φ1 + 2φ2),

and compute

Ẇ = 2I1I2 +
1
2
I22 .
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Let Ω be the region whereW > 0. In Ω, I2 
= 0; so, Ẇ > 0 in Ω. Ω has points
arbitrarily close to the origin, so Chetaev’s theorem show that the origin is
unstable even though the linearized system is stable.

Theorem 13.1.3 (Lyapunov’s instability theorem). If there is a smooth
function V : O → R that takes positive values arbitrarily close to ζ0 and is
such that V̇ = V · f is positive definite with respect to ζ0 then the equilibrium
ζ0 is unstable.

Proof. Let Ω = {z : V (z) > 0} and apply Chetaev’s theorem.

As the first application consider a Hamiltonian system of two degrees of
freedom with an equilibrium point and the exponents of this system at the
equilibrium point are ±ωi,±λ, ω 
= 0, λ 
= 0; i.e. one pair of pure imaginary
exponents and one pair of real exponents. For example, the Hamiltonian of
the restricted problem at the Euler collinear libration points L1, L2, and L3

is of this type. We show that the equilibrium point is unstable. Specifically,
consider the system

H =
ω

2
(x2

1 + y2
1) + λx2y2 +H†(x, y) (13.5)

whereH† is real analytic in a neighborhood of the origin in R
4 in its displayed

arguments and of at least third degree. Note that we have assumed that the
equilibrium is at the origin and that the quadratic terms are already in normal
form. As we have already seen, Lyapunov’s center theorem 9.2.1 implies that
the system admits an analytic surface called the Lyapunov center filled with
periodic solutions.

Theorem 13.1.4. The equilibrium at the origin for the system with Hamil-
tonian (13.5) is unstable. In fact, there is a neighborhood of the origin such
that any solution which begins off the Lyapunov center leaves the neighborhood
in both positive and negative time. In particular, the small periodic solutions
given on the Lyapunov center are unstable.

Proof. There is no loss in generality by assuming λ is positive. The equations
of motion are

ẋ1 = ωy1 +
∂H†

∂y1
ẏ1 = −ωx1 −

∂H†

∂x1

ẋ2 = λx2 +
∂H†

∂y2
ẏ2 = −λy2 −

∂H†

∂x2
.

We may assume that the Lyapunov center has been transformed to the co-
ordinate plane x2 = y2 = 0; i.e. ẋ2 = ẏ2 = 0 when x2 = y2 = 0. That means
that H† does not have a term of the form x2(xn

1y
m
1 ) or of the form y2(xn

1y
m
1 ).

Consider the Chetaev function V = 1
2 (x2

2 − y2
2) and compute
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V̇ = λ(x2
2 + y2

2) + x2
∂H†

∂y2
− y2

∂H†

∂y2

= λ(x2
2 + y2

2) +W (x, y).

We claim that in a sufficiently small neighborhoodQ of the origin ‖W (x, y)‖ ≤
(λ/2)(x2

2+y2
2) and so V̇ > 0 on Q\{x2 = y2 = 0}; i.e. off the Lyapunov center.

Let H† = H†
0 +H†

2 +H†
3 where H†

0 is independent of x2, y2, H
†
2 is quadratic

in x2, y2, and H†
3 is at least cubic in x2, y2. H

†
0 contributes nothing to W ;

H†
2 contributes to W a function that is quadratic in x2, y2 and at least linear

in x1, y1, and so can be estimated by O({x2
1 + y2

1}1/2)O({x2
2 + y2

2}); and H†
3

contributes to W a function that is cubic in x2, y2 and so is O({x2
2 + y2

2}3/2).
These estimates prove the claim.

Let Ω = {x2
2 > y

2
2}∩Q and apply Chetaev’s theorem to conclude that all

solutions which start in Ω leave Q in positive time. If you reverse time you
will conclude that all solutions which start in Ω− = {x2

2 < y
2
2} ∩ Q leave Q

in negative time.

Proposition 13.1.1. The Euler collinear libration points L1, L2, and L3 of
the restricted 3-body problem are unstable. There is a neighborhood of these
points such that there are no invariant sets in this neighborhood other than
the periodic solutions on the Lyapunov center manifold.

As the second application consider a Hamiltonian system of two degrees
of freedom with an equilibrium point and the exponents of this system at
the equilibrium point are ±α ± βi, α 
= 0; i.e., two exponents with positive
real parts and two with negative real parts. For example, the Hamiltonian of
the restricted problem at the Lagrange triangular points L4 and L5 is of this
type when μ1 < μ < 1− μ1. We show that the equilibrium point is unstable.
Specifically, consider the system

H = α(x1y1 + x2y2) + β(y1x2 − y2x1) +H†(x, y), (13.6)

whereH† is real analytic in a neighborhood of the origin in R
4 in its displayed

arguments and of at least third degree. Note that we have assumed that the
equilibrium is at the origin and that the quadratic terms are already in normal
form.

Theorem 13.1.5. The equilibrium at the origin for the system with Hamil-
tonian (13.6) is unstable. In fact, there is a neighborhood of the origin such
that any nonzero solution leaves the neighborhood in either positive or nega-
tive time.

Proof. We may assume α > 0. The equations of motion are
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ẋ1 = αx1 + βx2 +
∂H†

∂y1
, ẋ2 = −βx1 + αx2 +

∂H†

∂y2
,

ẏ1 = −αy1 + βy2 −
∂H†

∂x1
, ẏ2 = −βy1 − αy2 +

∂H†

∂x2
.

Consider the Lyapunov function

V =
1
2
(x2

1 + x2
2 − y2

1 − y2
2)

and compute
V̇ = α(x2

1 + x2
2 + y2

1 + y2
2) +W.

where W is at least cubic. Clearly V takes on positive values close to the
origin and V̇ is positive definite, so all solutions in {(x, y) : V (x, y) > 0}
leave a small neighborhood in positive time. Reversing time shows that all
solutions in {(x, y) : V (x, y) < 0} leave a small neighborhood in positive
time.

Proposition 13.1.2. The triangular equilibrium points L4 and L5 of the
restricted 3-body problem are unstable for μ1 < μ < 1 − μ1. There is a
neighborhood of these points such that there are no invariant sets in this
neighborhood other than the equilibrium point itself.

The classical references on stability are Lynpunov (1892) and Chetaev
(1934), but very readable account can be found in LaSalle and Lefschetz
(1961). The text by Markeev (1978) contains many of the stability results for
the restricted problem given here and below plus a discussion of the elliptic
restrict problem and other systems.

13.2 Moser’s Invariant Curve Theorem

We return to questions about the stability of equilibrium points later, but
now consider the corresponding question for maps. Let

F (z) = Az + f(z) (13.7)

be a diffeomorphism of a neighborhood of a fixed point at the origin in R
m;

so, f(0) = 0 and ∂f(0)/∂z = 0. The eigenvalues of A are the multipliers of
the fixed point.

The fixed point 0 is said to be stable if for every ε > 0 there is a δ > 0
such that ‖F k(z)‖ < ε for all ‖z‖ < δ and k ∈ Z.

We reduce several of the stability questions for equilibrium points of a
differential equation to the analogous question for fixed points of a diffeo-
morphism. Let us specialize by letting the fixed point be the origin in R

2 and
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by letting (13.7) be area-preserving (symplectic). Assume that the origin is
an elliptic fixed point; so, A has eigenvalues λ and λ−1 = λ̄, | λ |= 1. If λ = 1,
−1, 3

√
1 = e2πi/3, or 4

√
1 = i then typically the origin is unstable; see Meyer

(1971) and the Problems.
Therefore, let us consider the case when λ is not an mth root of unity for

m = 1, 2, 3, 4. In this case, the map can be put into normal form up through
terms of order three; i.e., there are symplectic action–angle coordinates, I, φ,
such that in these coordinates, F : (I, φ) → (I ′, φ′), where

I ′ = I + c(I, φ),

φ′ = φ+ ω + αI + d(I, φ),
(13.8)

and λ = exp(ωi), and c, d are O(I3/2). We do not need the general results
because we construct the maps explicitly in the applications given below.

For the moment assume c and d are zero; so, the map (13.8) takes circles
I = I0 into themselves, and if α 
= 0, each circle is rotated by a different
amount. The circle I = I0 is rotated by an amount ω+αI0. When ω+αI0 =
2πp/q, where p and q are relatively prime integers, then each point on the
circle I = I0 is a periodic point of period q.

If ω + αI0 = 2πδ, where δ is irrational, then the orbits of a point on
the circle I = I0 are dense (c = d = 0 still ). One of the most celebrated
theorems in Hamiltonian mechanics states that many of these circles persist
as invariant curves. In fact, there are enough invariant curves encircling the
fixed point that they assure the stability of the fixed point. This is the so
called “invariant curve theorem”.

Theorem 13.2.1 (The invariant curve theorem). Consider the mapping
F : (I, φ) → (I ′, φ′) given by

I ′ = I + εs+rc(I, φ, ε),

φ′ = φ+ ω + εsh(I) + εs+rd(I, φ, ε),
(13.9)

where (i) c and d are smooth for 0 ≤ a ≤ I < b <∞, 0 ≤ ε ≤ ε0, and all φ,
(ii) c and d are 2π-periodic in φ, (iii) r and s are integers s ≥ 0, r ≥ 1, (iv) h
is smooth for 0 ≤ a ≤ I < b <∞, (v) dh(I)/dI 
= 0 for 0 ≤ a ≤ I < b <∞,
and (vi) if Γ is any continuous closed curve of the form Ξ = {(I, φ) : I =
Θ(φ), Θ : R → [a, b] continuous and 2π-periodic }, then Ξ ∩ F (Ξ) 
= ∅.

Then for sufficiently small ε, there is a continuous F -invariant curve Γ
of the form Γ = {(I, φ) : I = Φ(φ), Φ : R → [a, b] continuous and 2π −
periodic }.

Remarks.

1. The origin of this theorem was in the announcements of Kolmogorov who
assumed analytic maps, and the analog of the invariant curve was shown
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to be analytic. In the original paper by Moser (1962), where this theorem
was proved, the degree of smoothness required of c, d, h was very large,
C333, and the invariant curve was shown to be continuous. This spread
led to a great deal of work to find the least degree of differentiability
required of c, d, and h to get the most differentiability for the invariant
curve. However, in the interesting examples, c, d, and h are analytic, and
the existence of a continuous invariant curve yields the necessary stability.

2. The assumption (v) is the twist assumption discussed above, and the
map is a perturbation of a twist map for small ε.

3. Assumption (vi) rules out the obvious example where F maps every point
radially out or radially in. If F preserves the inner boundary I = a and
is area-preserving, then assumption (vi) is satisfied.

4. The theorem can be applied to any subinterval of [a, b], therefore the
theorem implies the existence of an infinite number of invariant curves. In
fact, the proof shows that the measure of the invariant curves is positive
and tends to the measure of the full annulus a ≤ I ≤ b as ε→ 0.

5. The proof of this theorem is quite technical. See Siegel and Moser (1971)
and Herman (1983) for a complete discussion of this theorem and related
results.

The following is a slight modification of the invariant curve theorem that
is needed later on.

Corollary 13.2.1. Consider the mapping F : (I, φ) → (I ′, φ′) given by

I ′ = I + εc(I, φ, ε),

φ′ = φ+ εh(φ)I + ε2d(I, φ, ε),
(13.10)

where (i) c and d are smooth for 0 ≤ a ≤ I < b <∞, 0 ≤ ε ≤ ε0, and all φ,
(ii) c and d are 2π-periodic in φ, (iii) h(φ) is smooth and 2π-periodic in φ,
and (iv) if Γ is any continuous closed curve of the form Ξ = {(I, φ) : I =
Θ(φ), Θ : R → [a, b] continuous and 2π-periodic, then Ξ ∩ F (Ξ) 
= ∅.

If h(φ) is nonzero for all φ then for sufficiently small ε, there is a con-
tinuous F -invariant curve Γ of the form Γ = {(I, φ) : I = Φ(φ), Φ : R →
[a, b] continuous and 2π − periodic}.

Proof. Consider the symplectic change of variables from the action–angle
variables I, φ to the action–angle variables J, ψ defined by the generating
function

S(J, φ) = JM−1

∫ φ

0

dτ

h(τ)
, M =

∫ 2π

0

dτ

h(τ)
.

So

ψ =
∂S

∂J
= M−1

∫ φ

0

dτ

h(τ)
, I =

∂S

∂φ
=
MJ

h(φ)
,

and the map in the new coordinates becomes
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J ′ = J +O(ε), ψ′ = ψ + εMJ +O(ε2).

The theorem applies in the new coordinates.

13.3 Arnold’s Stability Theorem

The invariant curve theorem can be used to establish a stability result for
equilibrium points as well. In particular, we prove Arnold’s stability theorem
using Moser’s invariant curve theorem.

As discussed above, the only way an equilibrium point can be stable is
if the eigenvalues of the linearized equations (the exponents) are pure imag-
inary. Arnold’s theorem addresses the case when exponents are pure imagi-
nary, and the Hamiltonian is not positive definite.

Consider the two degree of freedom case, and assume the Hamiltonian
has been normalized a bit. Specifically, consider a Hamiltonian H in the
symplectic coordinates x1, x2, y1, y2 of the form

H = H2 +H4 + · · ·+H2N +H†, (13.11)

where

1. H is real analytic in a neighborhood of the origin in R
4.

2. H2k, 1 ≤ k ≤ N , is a homogeneous polynomial of degree k in I1, I2, where
Ii = (x2

i + y2
i )/2, i = 1, 2.

3. H† has a series expansion that starts with terms at least of degree 2N+1.
4. H2 = ω1I1 − ω2I2, ωi nonzero constants;
5. H4 = 1

2 (AI21 + 2BI1I2 + CI22 ), A,B,C, constants.

There are several implicit assumptions in stating that H is of the above
form. Because H is at least quadratic, the origin is an equilibrium point. By
(4), H2 is the Hamiltonian of two harmonic oscillators with frequencies ω1

and ω2; so, the linearized equations of motion are two harmonic oscillators.
The sign convention is to conform with the sign convention at L4. It is not
necessary to assume that ω1 and ω2 are positive, but this is the interesting
case when the Hamiltonian is not positive definite. H2k, 1 ≤ k ≤ N , depends
only on I1 and I2; so, H is assumed to be in Birkhoff normal form (Corollary
10.4.1) through terms of degree 2N . This usually requires the nonresonance
condition k1ω1 + k2ω2 
= 0 for all integers k1, k2 with | k1 | + | k2 |≤ 2N , but
it is enough to assume that H is in this normal form.

Theorem 13.3.1 (Arnold’s stability theorem). The origin is stable for
the system whose Hamiltonian is (13.11), provided for some k, 1 ≤ k ≤ N ,
D2k = H2k(ω2, ω1) 
= 0 or, equivalently, provided H2 does not divide H2k. In
particular, the equilibrium is stable if
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D4 =
1
2
{Aω2

2 + 2Bω1ω2 + Cω2
1} 
= 0. (13.12)

Moreover, arbitrarily close to the origin in R
4, there are invariant tori

and the flow on these invariant tori is the linear flow with irrational slope.

Proof. Assume that D2 = · · · = D2N−2 = 0 but D2N 
= 0; so, there exist
homogeneous polynomials F2k, k = 2, . . . , N − 1, of degree 2k such that
H2k = H2F2k−2. The Hamiltonian (13.11) is then

H = H2(1 + F2 + · · ·+ F2N−4) +H2N +H†.

Introduce action–angle variables Ii = (x2
i + y2

i )/2, φi = arctan(yi/xi), and
scale the variables by Ii = ε2Ji, where ε is a small scale variable. This is
a symplectic change of coordinates with multiplier ε−2; so, the Hamiltonian
becomes

H = H2F + ε2N−2H2N +O(ε2N−1),

where
F = 1 + ε2F2 + · · ·+ ε2N−4F2N−4.

Fix a bounded neighborhood of the origin, say | Ji |≤ 4, and call it O so that
the remainder term is uniformly O(ε2N+1) in O. Restrict your attention to
this neighborhood henceforth. Let h be a new parameter that will lie in the
bounded interval [−1, 1]. Because F = 1 + · · ·, one has

H − ε2N−1h = KF,

where
K = H2 + ε2N−2H2N +O(ε2N−1).

Because F = 1 + · · · the function F is positive on O for sufficiently small ε
so the level set when H = ε2N−1h is the same as the level set when K = 0.
Let z = (J1, J2, φ1, φ2), and let ∇ be the gradient operator with respect to
these variables. The equations of motion are

ż = J∇H = (J∇K)F +K(J∇F ).

On the level set when K = 0, the equations become

ż = J∇H = (J∇K)F.

For small ε, F is positive; so, reparameterize the equation by dτ = Fdt, and
the equation becomes

z′ = J∇K(z),

where ′ = d/dτ .
In summary, it has been shown that in O for small ε, the flow defined by

H on the level set H = ε2N−1h is a reparameterization of the flow defined by
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K on the level set K = 0. Thus it suffices to consider the flow defined by K.
To that end, the equations of motion defined by K are

J ′
i = O(ε2N−1),

φ′1 = ω1 − ε2N−2 ∂H2N

∂J1
+O(ε2N−1),

φ′2 = +ω2 − ε2N−2 ∂H2N

∂J2
+O(ε2N−1).

(13.13)

From these equations, the Poincaré map of the section φ2 ≡ 0 mod 2π in the
level set K = 0 is computed, and then the invariant curve theorem can be
applied.

From the last equation in (13.13), the first return time T required for φ2

to increase by 2π is given by

T =
2π
ω2

(
1 +

ε2N−2

ω2

∂H2N

∂J2

)
+O(ε2N−1).

Integrate the φ1 equation in (13.13) from τ = 0 to τ = T , and let φ1(0) = φ0,
φ1(T ) = φ∗ to get

φ∗ = φ0 +
(
−ω1 − ε2N−2 ∂H

∂J1

)
T +O(ε2N−1)

= φ0 − 2π
(
ω1

ω2

)
− ε2N−2

(
2π
ω2

)(
ω2
∂H2N

∂J1
+ ω1

∂H2N

∂J2

)
+O(ε2N−1).

(13.14)
In the above, the partial derivatives are evaluated at (J1, J2). From the rela-
tion K = 0, solve for J2 to get J2 = (ω1/ω2)J1 +O(ε2). Substitute this into
(13.14) to eliminate J2, and simplify the expression by using Euler’s theorem
on homogeneous polynomials to get

φ∗ = φ0 + α+ ε2N−2βJN−1
1 +O(ε2N−1), (13.15)

where α = −2π(ω1/ω2) and β = −2π(N/ωN+1
2 )H2N (ω2, ω1). By assumption,

D2N = H2N (ω2, ω1) 
= 0; so, β 
= 0. Along with (13.15), the equation J1 →
J1+O(ε2N−1) defines an area-preserving map of an annular region, say 1/2 ≤
J1 ≤ 3 for small ε. By the invariant curve theorem for sufficiently small ε,
0 ≤ ε ≤ ε0, there is an invariant curve for this Poincaré map of the form
J1 = ρ(φ1), where ρ is continuous, 2π periodic, and 1/2 ≤ ρ(φ1, ε) ≤ 3 for
all φ1. For all ε, 0 ≤ ε ≤ ε0, the solutions of (13.13) which start on K = 0
with initial condition J1 < 1/2 must have J1 remaining less than 3 for all τ .
Because on K = 0 one has that J2 = (ω1/ω2)J1 + · · ·, a bound on J1 implies
a bound on J2. Thus there are constants c and k such that if J1(τ), J2(τ)
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satisfy the equations (13.13), start on K = 0, and satisfy | Ji(0) |≤ c, then
| Ji(τ) |≤ k for all τ and for all h ∈ [−1, 1], 0 ≤ ε ≤ ε0.

Going back to the original variables (I1, I2, φ1, φ2), and the original Hamil-
tonian H, this means that for 0 ≤ ε ≤ ε0, all solutions of the equations
defined by the Hamiltonian (13.11) which start on H = ε2N−1h and satisfy
| Ii(0) |≤ ε2c must satisfy | Ii(t) |≤ ε2k for all t and all h ∈ [−1, 1], 0 ≤ ε ≤ ε0.
Thus the origin is stable. The invariant curves in the section map sweep out
an invariant torus under the flow.

Arnold’s theorem was originally proved independent of the invariant curve
theorem; see Arnold (1963a,b), and the proof given here is taken from Meyer
and Schmidt (1986). Actually, in Arnold’s original works the stability cri-
terion was AC − B2 
= 0 which implies a lot of invariant tori, but is not
sufficient to prove stability; see the interesting example in Bruno (1987).

The coefficients A,B, and C of Arnold’s theorem for the Hamiltonian
of the restricted 3-body problem were computed by Deprit and Deprit-
Bartholomê (1967) specifically to apply Arnold’s theorem. These coefficients
were given in Section 10.5. For 0 < μ < μ1, μ 
= μ2, μ3 they found

D4 = − 36− 541ω2
1ω

2
2 + 644ω4

1ω
4
2

8(1− 4ω2
1ω

2
2)(4− 25ω2

1ω
2
2)
,

which is nonzero except for one value μc ≈ 0.010, 913, 667 which seems to
have no mathematical significance (it is not a resonance value), and has no
astronomical significance (it does not correspond to the earth–moon system,
etc.)

In Meyer and Schmidt (1986), the normalization was carried to sixth-order
using an algebraic processor, and D6 = P/Q where

P = −3105
4

+
1338449

48
σ − 48991830

1728
σ2 +

7787081027
6912

σ3

− 2052731645
1296

σ4 − 1629138643
324

σ5

+
1879982900

81
σ6 +

368284375
81

σ7,

Q = ω1ω2(ω2
1 − ω2

2)5(4− 25σ)3(9− 100σ),

σ = ω2
1ω

2
2 ,

From this expression one can see that D6 
= 0 when μ = μc (D6 ≈ 66.6). So
by Arnold’s theorem and these calculations we have the following.

Proposition 13.3.1. In the restricted 3-body problem the libration points L4

and L5 are stable for 0 < μ < μ1, μ 
= μ2, μ3.
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13.4 1:2 Resonance

In this section we consider a system when the linear system is in 1:2 resonance;
i.e., when the linearized system has exponents ±iω1 and ±iω2 with ω1 =
2ω2. Let ω = ω2. By the discussion in Section 10.5 the normal form for the
Hamiltonian is a function of I1, I2 and the single angle φ1 +2φ2. Assume the
system has been normalized through terms of degree three; i.e., assume the
Hamiltonian is of the form

H = 2ωI1 − ωI2 + δI1/2
1 I2 cosψ +H†, (13.16)

where ψ = φ1 + 2φ2, H†(I1, I2, φ1, φ2) = O((I1 + I2)2). Notice this Hamilto-
nian is just a perturbation of Cherry’s example. Lyapunov’s center theorem
assures the existence of one family of periodic solutions emanating from the
origin, the short period family with period approximately π/2ω.

Theorem 13.4.1. If in the presence of 1:2 resonance, the Hamiltonian sys-
tem is in the normal form (13.16) with δ 
= 0 then the equilibrium is unstable.
In fact, there is a neighborhood O of the equilibrium such that any solution
starting in O and not on the Lyapunov center leaves O in either positive or
negative time. In particular, the small periodic solutions of the short period
family are unstable.

Remark. If δ = 0 then the Hamiltonian can be put into normal form to
the next order and the stability of the equilibrium may be decidable on the
bases of Arnold’s theorem, Theorem 13.3.1.

Proof. The equations of motion are

İ1 = −δI1/2
1 I2 sinψ +

∂H†

∂φ1
, φ̇1 = −2ω − δ

2
I
−1/2
1 I2 cosψ − ∂H

†

∂I1
,

İ2 = −2δI1/2
1 I2 sinψ +

∂H†

∂φ2
, φ̇2 = ω − δI1/2

1 cosψ − ∂H
†

∂I2
.

Lyapunov’s center theorem ensures the existence of the short period family
with period approximately π/2ω. We may assume that this family has been
transformed to the plane where I2 = 0. So ∂H†/∂φ2 = 0 when I2 = 0.
The Hamiltonian (13.16) is a real analytic system written in action–angle
variables thus the terms in H† must have the d’Alembert character; i.e., a
term of the form I

α/2
1 I

β/2
2 cos k(φ1+2φ2) must have β ≥ 2k and β ≡ 2kmod 2

so in particular β must be even. Thus I2 does not appear with a fractional
exponent and because ∂H†/∂φ2 = 0 when I2 = 0 this means that ∂H†/∂φ2

contains a factor I2. Let ∂H†/∂φ2 = I2U1(I1, I, 2, ψ) where U1 = O(I1 + I2).
Consider the Chetaev function

V = −δI1/2
1 I2 sinψ
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and compute

V̇ = δ2
{

1
2
I22 + 2I1I2

}
+W,

where

W = −δ
{

1
2
I
−1/2
1 I2 sinψ

∂H†

∂ψ1
+ I1/2

1 sinψ
∂H†

∂ψ2

−I1/2
1 I2 cosψ

∂H†

∂I1
− 2I1/2

1 I2 cosψ
∂H†

∂I2

}

Because ∂H†/∂φ2 = I2U1, W = I2U2 where U2 = O((I1 + I2)3/2 and

V̇ = δ2I2(
1
2
I2 + 2I1 + U2).

Thus there is a neighborhood O where V̇ > 0 when I2 
= 0. Apply Chetaev’s
theorem with Ω = O ∩ {V > 0} to conclude that all solutions which start
in Ω leave O in positive time. By reversing time we can conclude that all
solutions which start in Ω′ = O ∩ {V < 0} leave O in negative time.

When

μ = μ2 =
1
2
− 1

30

√
611
3
≈ 0.0242939

the exponents of the Lagrange equilateral triangle libration point L4 of the
restricted 3-body problem are ±2

√
5i/5, ±

√
5i/5 and so the ratio of the fre-

quencies ω1/ω2 is 2. Expanding the Hamiltonian about L4 when μ = μ2 in a
Taylor series through cubic terms gives

H = 1
14

{
5x2

1 − 2
√

611x1x2 − 25x2
2 − 40x1y2 + 40x2y1 + 20y2

1 + 20y2
2

}

1
240

√
3

{
−7
√

611x3
1 + 135x2

1x2 + 33
√

611x1x
2
2 + 135x3

2

}
+ · · · .

Using Mathematica we can put this Hamiltonian into the normal form (13.16)
with

ω =
√

5
5
≈ 0.447213, δ =

11
√

11
18 4
√

5
≈ 1.35542,

and so we have the following.

Proposition 13.4.1. The libration point L4 of the restricted 3-body problem
is unstable when μ = μ2.
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13.5 1:3 Resonance

In this section we consider a system when the linear system is in 1:3 resonance;
i.e., ω1 = 3ω2. Let ω = ω2. By the discussion in Section 10.5 the normal form
for the Hamiltonian is a function of I1, I2 and the single angle φ1 + 3φ2.
Assume the system has been normalized through terms of degree four; i.e.,
assume the Hamiltonian is of the form

H = 3ωI1 − ωI2 + δI1/2
1 I

3/2
2 cosψ+

1
2
{AI21 + 2BI1I2 +CI22}+H†, (13.17)

where ψ = φ1 + 3φ2, H† = O((I1 + I2)5/2). Let

D = A+ 6B + 9C, (13.18)

and recall from Arnold’s theorem the important quantity D4 = 1
2Dω

2.

Theorem 13.5.1. If in the presence of 1:3 resonance, the Hamiltonian sys-
tem is in the normal form (13.17) and if 6

√
3|δ| > |D| then the equilibrium

is unstable, whereas, if 6
√

3|δ| < |D| then the equilibrium is stable.

Proof. Introduce the small parameter ε by scaling the variables Ii → εIi,
i = 1, 2 which is symplectic with multiplier ε−1, the Hamiltonian becomes

H = 3ωI1 − ωI2 + ε{δI1/2
1 I

3/2
2 cosψ +

1
2
(AI21 + 2BI1I2 + CI22 )}+O(ε2),

and the equations of motion are

İ1 = −εδI1/2
1 I

3/2
2 sinψ +O(ε2),

İ2 = −3εδI1/2
1 I

3/2
2 sinψ +O(ε2),

φ̇1 = −3ω − ε{1
2
δI

−1/2
1 I

3/2
2 cosψ + (AI1 +BI2)}+O(ε2)

φ̇2 = ω − ε{3
2
δI

1/2
1 I

1/2
2 cosψ + (BI1 + CI2)}+O(ε2).

Instability. Consider the Chetaev function

V = −δI1/2
1 I

3/2
2 sinψ

and compute

V̇ = ε

{
δ2
(

1
2
I32 +

9
2
I1I

2
2 )
)

− δI1/2
1 I

3/2
2 (AI1 +BI2 + 3BI1 + 3CI2) cosψ

}
+O(ε2).
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Consider the flow in the H = 0 surface. Solve H = 0 for I2 as a function of
I1, φ1, φ2 to find I2 = 3I1 +O(ε). On the H = 0 surface we find

V = −3
√

3δI21 sinψ +O(ε)

and
V̇ = ε{δ2I31 (54− δ−133/2(A+ 6B + 9C) cosψ)}+O(ε2).

If 54 > |δ−133/2D| or 6
√

3|δ| > |D| the function V̇ is positive definite in the
level set H = 0. Because V takes positive and negative values close to the
origin in the level set H = 0, Chetaev’s theorem implies that the equilibrium
is unstable.

Stability. Now we compute the cross section map in the level set H = ε2h
where −1 ≤ h ≤ 1 and the section is defined by φ2 ≡ 0mod 2π. We use
(I1, φ1) as coordinates in this cross-section. From the equation H = ε2h we
can solve for I2 to find that I2 = 3I1 +O(ε). Integrating the equation for φ2

we find that the return time T is

T =
2π

ω − ε{3
√

3/2δ cosψ + (B + 3C)}I1
+ · · ·

=
2π
ω

{
1 +

ε

ω

(
3
√

3
2
δ cosψ + (B + 3C)

)
I1

}
+ · · · .

Integrating the φ1 equation from t = 0 to t = T gives the cross-section map
of the form P : (I1, φ1) → (I ′1, φ

′
1), where

I ′1 = I1 +O(ε),

φ′1 = φ1 +
2πε
ω
{(A+ 6B + 9C)I − 6

√
3δ cos 3φ1}+O(ε2).

(13.19)

By hypothesis the coefficient of I1 in (13.19) is nonzero and so Corollary
13.2.1 implies the existence of invariant curves for the section map. The
stability of the equilibrium follows now by the same argument as found in
the proof of Arnold’s stability theorem 13.3.1.

When

μ = μ3 =
1
2
−
√

213
30

≈ 0.0135160

the exponents of the Lagrange equilateral triangle libration point L4 of the
restricted 3-body problem are ±3

√
10i/10, ±

√
10i/10 and so the ratio of the

frequencies ω1/ω2 is 3.
Using Mathematica we can put this Hamiltonian into the normal form

(13.17) with

ω =
√

10
10

≈ 0.316228, δ =
3
√

14277
80

≈ 4.48074
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A =
309
1120

, B = −1219
560

, C =
79
560

.

From this we compute

6
√

3|δ| ≈ 46.5652 > |D| ≈ 8.34107,

and so we have the following.

Proposition 13.5.1. The libration point L4 of the restricted 3-body problem
is unstable when μ = μ3.

That the Lagrange point L4 is unstable when μ = μ2, μ3 was established
in Markeev (1966) and Alfriend (1970, 1971). Hagel (1996) analytically and
numerically studied the stability of L4 in the restricted problem not only at
μ2 but near μ2 also.

13.6 1:1 Resonance

The analysis of the stability of an equilibrium in the case of 1:1 resonance is
only partially complete even in the generic case. In a one-parameter problem
such as the restricted 3-body problem generically an equilibrium point has
exponents with multiplicity two, but in this case the matrix of the linearized
system is not diagonalizable. Thus the equilibrium at L4 when μ = μ1 is
typical of an equilibrium in a one-parameter family. An equilibrium with
exponents with higher multiplicity or an equilibrium such that the linearized
system is diagonalizable is degenerate in a one-parameter family.

Consider a system in the case when the exponents of the equilibrium are
±iω with multiplicity two and the linearized system is not diagonalizable.
The normal form for the quadratic part of such a Hamiltonian was given as

H2 = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2), (13.20)

where ω 
= 0 and δ = ±1. The linearized equations are
⎡
⎢⎢⎣
ẋ1

ẋ2

ẏ1
ẏ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 ω 0 0
−ω 0 0 0
−δ 0 0 ω
0 −δ −ω 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1

x2

y1
y2

⎤
⎥⎥⎦ .

Recall that the normal form in this case depends on the four quantities

Γ1 = x2y1 − x1y2, Γ2 =
1
2
(x2

1 + x2
2),

Γ3 = 1
2 (y2

1 + y2
2), Γ4 = x1y1 + x2y2,
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and that {Γ1, Γ2} = 0 and {Γ1, Γ3} = 0. The system is in Sokol’skii normal
form if the higher-order terms depend on the two quantities Γ1 and Γ3 only;
that is, the Hamiltonian is of the form

H = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2) +

∞∑
k=2

H2k(x2y1 − x1y2, y
2
1 + y2

2), (13.21)

where here H2k is a polynomial of degree k in two variables.
Consider a system which is in Sokol’skii’s normal form up to order four;

i.e., consider the system

H = ω(x2y1 − x1y2) +
1
2
δ(x2

1 + x2
2)

+
{
A(y2

1 + y2
2)2 +B(x2y1 − x1y2)(y2

1 + y2
2) + C(x2y1 − x1y2)2

}

+H†(x1, x2, y1, y2)
(13.22)

where A, B, and C are constants and H† is at least fifth order in its displayed
arguments.

Theorem 13.6.1 (Sokol’skii’s instability theorem). If in the presence
of 1:1 resonance the system is reduced to the form (13.22) with δA < 0 then
the equilibrium is unstable. In fact, there is a neighborhood Q of the equi-
librium such that any solution other than the equilibrium solution leaves the
neighborhood in either positive or negative time.

Proof. Introduce a small parameter ε by the scaling

x1 → ε2x1, x2 → ε2x2,

y1 → εy1, y2 → εy2,
(13.23)

which is symplectic with multiplier ε−3 so the Hamiltonian (13.21) is

H = ω(x2y1 − x1y2) + ε
{
δ

2
(x2

1 + x2
2) +A(y2

1 + y2
2)2
}

+O(ε2). (13.24)

The equations of motion are

ẋ1 = ωx2 + ε4A(y2
1 + y2

2)y1 + · · · ,

ẋ2 = −ωx1 + ε4A(y2
1 + y2

2)y2 + · · · ,

ẏ1 = ωy2 − εδx1 + · · · ,

ẏ2 = −ωy1 − εδx2 + · · · .
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Consider the Lyapunov function

V = δΓ4 = δ(x1y1 + x2y2),

and compute

V̇ = ε{−δ2(x2
1 + x2

2) + 4δA(y2
1 + y2

2)2}+O(ε2).

So V takes on positive and negative values and V̇ is negative on Q′ = {0 <
x2

1+x2
2+y2

1+y2
2 < 1} and for some ε = ε0 > 0. Thus by Lyapunov’s instability

theorem 13.1.3 all solutions in {V > 0} ∩ Q′ leave the Q′ in positive time.
By reversing time we see that all solutions {V < 0}∩Q′ leave Q′ in negative
time.

In the original unscaled variables all solutions that start in

Q = {0 < ε−2
0 (x2

1 + x2
2) + ε−1

0 (y2
1 + y2

2 < 1}

leave Q is either positive or negative time.

The best we can say at this point in the case of 1:1 stability is formal
stability.

Theorem 13.6.2 (Sokol’skii’s formal stability theorem). If in the pres-
ence of 1:1 resonance the system is reduced to the form (13.22) with δA > 0
then the equilibrium is formally stable. That is, the truncated normal form at
any finite order has a positive definite Lyapunov function that satisfies the
hypothesis of Lyapunov’s stability theorem 13.1.1.

Proof. Given any N > 2 the system with Hamiltonian (13.21) can be nor-
malized by a convergent symplectic transformation up to order 2n; i.e., the
system can be transformed to

H = ω(x2y1 − x1y2) +
δ

2
(x2

1 + x2
2)

+
{
A(y2

1 + y2
2)2 +B(x2y1 − x1y2)(y2

1 + y2
2) + C(x2y1 − x1y2)2

}

+
∑N

k=3H2k(x2y1 − x1y2, y
2
1 + y2

2) +H†(x1, x2, y1, y2)
(13.25)

where H2k is a polynomial of degree k in two variables and now H† is analytic
and of order at least 2k + 3. Let HT be the truncated system obtained from
the H in (13.25) by setting H† = 0. We claim that the system defined by HT

is stable. Because HT depends only on Γ1, Γ2, and Γ3 and {Γ1, Γi} = 0 for
i = 1, 2, 3 we see that {Γ1,H

T } = 0. Thus Γ1 = x2y1−x1y2 is an integral for
the truncated system.

Let V = 2δ(HT − ωΓ1) so V̇ = {V,HT } = 0 and scale the variables by
(13.23) so that
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V = ε4{δ2(x2
1 + x2

2) + 2δA(y2
1 + y2

2)2}+O(ε5),

so V is positive definite. Thus by Lyapunov’s stability theorem 13.1.1 the
origin is a stable equilibrium point for the truncated system.

When
μ = μ1 =

1
2
(1−

√
69/9) ≈ 0.0385209

the exponents of the libration point L4 of the restricted 3-body problem are
two pair of pure imaginary numbers. Schmidt (1990) put the Hamiltonian of
the restricted 3-body problem at L4 into the normal form (13.21) with

ω =
√

2
2
, δ = 1, A =

59
864

.

The value forA agrees with the independent calculations in Niedzielska (1994)
and Goździewski and Maciejewski (1998). It differs from the numeric value
given in Markeev (1978). These quantities in a different coordinate system
were also computed by Deprit and Henrard (1968). By these considerations
and calculations we have the following.

Proposition 13.6.1. The libration point L4 of the restricted 3-body problem
is formally stable when μ = μ1.

Sokol’skii (1977) and Kovalev and Chudnenko (1977) announce that they
can prove that the equilibrium is actually stable in this case. The proof in
Sokol’skij (1977) is wrong and the proof in Kovalev and Chudnenko (1977)
is unconvincing, typical Doklady papers! It would be interesting to give a
correct proof of stability in this case, because the linearized system is not
simple, and so the linearized equations are unstable.

13.7 Stability of Fixed Points

The study of the stability of a periodic solution of a Hamiltonian system of
two degrees of freedom can be reduced to the study of the Poincaré map in
an energy level (i.e., level surface of the Hamiltonian). We summarize some
results and refer the reader to the Problems or Meyer (1971) or Cabral and
Meyer (1999) for the details. The proofs for the results given below are similar
to the proofs given above.

We consider diffeomorphisms of the form

F : N ⊂ R
2 → R

2 : z → f(z), (13.26)

where N is a neighborhood of the origin in R
2, and F is a smooth function

such that



350 13. Stability and KAM Theory

F (0) = 0, det
∂F

∂z
(z) ≡ 1.

The origin is a fixed point for the diffeomorphism because F (0) = 0, and it is
orientation-preserving and area-preserving because det ∂F/∂z ≡ 1. This map
should be considered as the Poincaré map associated with a periodic solution
of a two degree of freedom Hamiltonian system.

The fixed point 0 is stable if for every ε > 0 there is a δ > 0 such that
|F k(z)| ≤ ε for all k ∈ Z whenever |z| ≤ δ. The fixed point is unstable if it is
not stable.

The linearization of this map about the origin is z → Az where A is
the 2 × 2 matrix (∂f/∂x)(0). The eigenvalues λ, λ−1 of A are called the
multipliers of the fixed point. There are basically four cases: (i) hyperbolic
fixed point with multipliers real and λ 
= ±1, (ii) elliptic fixed point with
multipliers complex conjugates and λ 
= ±1, (iii) shear fixed point with λ =
+1 and A is not diagonalizable, (iv) flip fixed point with λ = −1 and A is
not diagonalizable.

Proposition 13.7.1. A hyperbolic fixed point is unstable.

In the hyperbolic case one need only to look at the linearization; in the
other case one must look at higher-order terms. In the elliptic case we can
change to action–angle coordinates (I, φ) so that the map F : (I, φ) → (I ′, φ′)
is in normal form up to some order. In the elliptic case the multipliers are
complex numbers of the form λ±1 = exp±ωi 
= ±1.

Proposition 13.7.2. If λ±1 = exp±2π/3 (the multipliers are cube roots of
unity) the normal form begins

I ′ = I + 2αI3/2 sin(3φ) + · · · , φ′ = φ± (π/3) + αI1/2 cos(3φ) + · · · .

If α 
= 0 the fixed point is instable.
If λ±1 = ±i (the multipliers are fourth roots of unity) the normal form

begins

I ′ = I + 2αI2 sin(4φ) + · · · , φ′ = φ± π/2 + {α cos(4φ) + β}I + · · · .

If α > β the fixed point is unstable, but if α < β the fixed point is stable.
If λ is not a cube or fourth root of unity then the normal form begins

I ′ = I + · · · , φ′ = φ± ω + βI + · · · .

If β 
= 0 then the fixed point is stable.

Proposition 13.7.3. For a shear fixed point the multipliers are both +1 and
A is not diagonalizable. The first few terms of the normal form F : (u, v) →
(u′, v′) are

u′ = u± v − · · · , v′ = v − βu2 + · · · .
If β 
= 0 then the fixed point is unstable.
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Proposition 13.7.4. For a flip fixed point the multipliers are both −1 and
A is not diagonalizable. The first few terms of the normal form F : (u, v) →
(u′, v′) are

u′ = −u− v + · · · , v′ = −v + βu3 + · · · .
If β > 0 the fixed point is stable and if β < 0 the fixed point is unstable.

13.8 Applications to the Restricted Problem

In Chapter 9, a small parameter was introduced into the restricted problem
in three ways. First the small parameter was the mass ratio parameter μ;
second the small parameter section was a distance to a primary; and third
the small parameter was the reciprocal of the distance to the primaries.

In all three cases an application of the invariant curve theorem can be
made. Only the first and third are given here, inasmuch as the computations
are easy in these cases.

13.8.1 Invariant Curves for Small Mass

The Hamiltonian of the restricted problem (2.29) for small μ is

H =
‖y‖
2

2

− xTKy − 1
‖x‖ +O(μ).

For μ = 0 this is the Hamiltonian of the Kepler problem in rotating coor-
dinates. Be careful that the O(μ) term has a singularity at the primaries.
When μ = 0 and Delaunay coordinates are used, this Hamiltonian becomes

H = − 1
2L3

−G

and the equations of motion become

̇ = 1/L3, L̇ = 0,

ġ = −1, Ġ = 0.

The variable g, the argument of the perihelion, is an angular variable. ġ = −1
implies that g is steadily decreasing from 0 to −2π and so g ≡ 0 mod 2π
defines a cross-section. The first return time is 2π. Let , L be coordinates in
the intersection of the cross-section g ≡ 0 and the level set H = constant.
The Poincaré map in these coordinates is

′ = + 2π/L3, L′ = L.

Thus when μ = 0 the Poincaré map in the level set is a twist map. By the
invariant curve theorem some of these invariant curves persist for small μ.
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13.8.2 The Stability of Comet Orbits

Consider the Hamiltonian of the restricted problem scaled as was done in
Section 9.5 in the discussion of comet orbits; i.e., the Hamiltonian 9.7. In
Poincaré variables it is

H = −P1 +
1
2
(Q2

2 + P 2
2 )− ε3 1

2P 2
1

+O(ε5),

where Q1 is an angle defined modulo 2π, P1 is a radial variable, and Q1, P1

are rectangular variables. For typographical reasons drop, but don’t forget,
the O(ε5). The equations of motion are

Q̇1 = −1 + ε3/P 3
1 , Ṗ1 = 0,

Q̇2 = P2, Ṗ2 = −Q2.

The circular solutions are Q2 = P2 = 0+O(ε5) in these coordinates. Translate
the coordinates so that the circular orbits are exactly Q2 = P2 = 0; this does
not affect the displayed terms in the equations. The solutions of the above
equations are

Q1(t) = Q10 + t(−1 + ε3/P 3
1 ), P1(t) = P10,

Q2(t) = Q20 cos t+ P20 sin t, P2(t) = −Q20 sin t+ P20 cos t.

Work near P1 = 1, Q2 = P2 = 0 for ε small. The time for Q1 to increase by
2π is

T = 2π/ | −1 + ε3/P 3
1 |= 2π(1 + ε3P−3

1 ) +O(ε6).

Thus

Q′ = Q2(T ) = Q cos 2π(1 + ε3P−3
1 ) + P sin 2π(1 + ε3P−3

1 )
= Q+ νPP−3

1 +O(ν2),

P ′ = P2(T ) = −Q sin 2π(1 + ε3P−3
1 ) + P cos 2π(1 + ε3P−3

1 )
= −νQP−3

1 + P +O(ν2),

where Q = Q20, P = P20, and ν = 2πε3. Let H = 1, and solve for P1 to get

P1 = −1 +
1
2
(Q2 + P 2) +O(ν),

and hence
P−3

1 = −1− 3
2
(Q2 + P 2) +O(ν),

Substitute this back to get

Q′ = Q+ νP (−1− 3
2 (Q2 + P 2)) +O(ν2)

P ′ = P − νQ(−1− 3
2 (Q2 + P 2)) +O(ν2).
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This is the section map in the energy surface H = 1. Change to action–angle
variables, I = (Q2 + P 2)/2, φ = tan−1(P/Q), to get

I ′ = I +O(ν2), φ′ = φ+ ν(−1− 3I) +O(ν2).

This is a twist map. Thus the continuation of the circular orbits into the
restricted problem is stable.

Problems

1. Let F be a diffeomorphism defined in a neighborhood O of the origin
in R

m, and let the origin be a fixed point for F . Let V be a smooth
real-valued function defined on O, and define ΔV (x) = V (F (x))− V (x).
a) Prove that if the origin is a minimum for V and ΔV (x) ≤ 0 on O,

then the origin is a stable fixed point.
b) Prove that if the origin is a minimum for V and ΔV (x) < 0 on
O\{0}, then the origin is an asymptotically stable fixed point.

c) State and prove the analog of Chetaev’s theorem.
d) State and prove the analog of Lyapunov’s instability theorem.

2. Let F (x) = Ax and V (x) = xTSx, where A and S are n × n matrices,
and S is symmetric.
a) Show that ΔV (x) = xTRx, where R = ATSA− S.
b) Let S be the linear space on all m × m symmetric matrices and
L = LA : S → S be the linear map L(S) = ATSA − S. Show that
L is invertible if and only if λiλj 
= 1 for all i, j = 1, . . . ,m, where
λ1, . . . , λm are the eigenvalues of A. (Hint: First prove the result when
A = diag(λ1, . . . , λm). Then prove the result when A = D + εN ,
where D is simple (diagonalizable), and N is nilpotent, Nm = 0,
SN = NS, and ε is small. Use the Jordan canonical form theorem
to show that A can be assumed to be A = D + εN.)

c) Let A have all eigenvalues with absolute value less than 1. Show that
S =

∑∞
0 (AT )iRAi converges for any fixed R. Show S is symmetric

if R is symmetric. Show S is positive definite if R is positive definite.
Show that L(S) = −R; so, L−1 has a specific formula when all the
eigenvalues of A have absolute value less than 1.

3. Let F (x) = Ax+ f(x), where f(0) = ∂f(0)/∂x = 0.
a) Show that if all the eigenvalues of A have absolute value less than 1,

then the origin is asymptotically stable. (Hint: Use Problems 1 and
2.)

b) Show that if A has one eigenvalue with absolute value greater than
1 then the origin is a positively unstable fixed point.

4. Let r = 1, s = 0, and h(I) = βI, β 
= 0 in formulas of the invariant curve
theorem.
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a) Compute F q, the qth iterate of F , to be of the form (I, φ) → (I”, φ”)
where

I ′′ = I +O(ε), φ′′ = φ+ qω + qβI +O(ε).

b) Let 2πp/q be any number between ω + βa and ω + βb, so 2πp/q =
ω + βI0 where a < I0 < b. Show that there is a smooth curve Γε =
{(I, φ) : I = Φ(φ, ε) = I0 + · · ·} such that F q moves points on Γ only
in the radial direction; i.e., Φ(φ) satisfies φ′′ − φ − 2πp = 0. (Hint:
Use the implicit function theorem.)

c) Show that because F q is area-preserving, Γ ∩ F q(Γ ) is nonempty,
and the points of this intersection are fixed points of F q or q-periodic
points of F .

5. Consider the forced Duffing’s equation with Hamiltonian

H =
1
2
(q2 + p2) +

γ

4
q4 + γ2 cosωt,

where ω is a constant and γ 
= 0 is considered as a small parameter. This
Hamiltonian is periodic with period 2π/ω for small ε. If ω 
= 1, 2, 3, 4, the
system has a small (order γ2) 2π/ω periodic solution, called the harmonic.
The calculations in Section 10.3 show the period map was shown to be

I ′ = I +O(γ),

φ′ = φ− 2π/ω − (3πγ/2ω)I +O(γ2),

where the fixed point corresponding to the harmonic has been moved to
the origin. Show that the harmonic is stable.

6. Using Poincaré elements show that the continuation of the circular orbits
established in Section 6.2 (Poincaré orbits) are of twist type and hence
stable.

7. Consider the various types of fixed points discussed in Section 11.1 and
prove the propositions in 13.7. That is:
a) Show that extremal points are unstable.
b) Show that 3-bifurcation points are unstable.
c) Show that k-bifurcation points are stable if k ≥ 5.
d) Transitional and 4-bifurcation points can be stable or unstable de-

pending on the case. Figure out which case is unstable. (The stability
conditions are a little harder.) See Meyer (1971) or Cabral and Meyer
(1999).
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14.1 Introduction

This chapter focuses on two aspects of the dynamics of Hamiltonian systems.
We show the existence of orbits with special properties (such as periodic and
quasiperiodic orbits) and we say what we can about the dynamics of large
sets of orbits (such as stability under perturbation of initial condition).

This chapter is different from the preceding ones because the techniques
used come from topology rather than analysis. Because topology is much
easier to visualize in smaller dimensions, we restrict ourselves to two degree
of freedom systems and study the iteration of maps on two-dimensional sets
that arise in these systems. To make things easier still, we add a nondegen-
eracy condition known as the monotone twist condition. This makes some
orbits of the two-dimensional maps have the same dynamics as those in one
dimensional spaces.

The advantage of the topological techniques, and the restriction to lower
dimensions, is that we can draw lots of pictures. Hence, we can “see” the
dynamics. Also, even with all these restrictions, there are many interesting
examples satisfying the hypotheses imposed (see, for example Sections 8.2
and 8.5 and Chapter 13).

The type of maps studied in this chapter are exact symplectic monotone
twist maps of the annulus and cylinder. These maps appeared first in the
work of Poincaré on the restricted 3-body problem. In examples, the exact
symplectic condition comes from the Hamiltonian structure of the problem
and the monotone twist condition is either a nondegeneracy condition or
imposed by the topology of the problem. We focus on the periodic orbits of
these maps, showing a special case of the Poincaré’s last geometric theorem
(also called the Poincaré–Birkhoff theorem) on existence of periodic orbits,
and the Aubry–Mather theorem on existence of quasiperiodic orbits. We close
with a discussion of the relationship between the periodic orbits and the KAM
invariant circles for these maps discussed in Chapter 13. The exposition that
follows owes a great deal to the work of Jungries, Golé, and particularly,
Boyland.

K.R. Meyer et al., Introduction to Hamiltonian Dynamical Systems and the N-Body
Problem, Applied Mathematical Sciences 90, DOI 10.1007/978-0-387-09724-4 14,
c© Springer Science+Business Media, LLC 2009
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14.2 Notations and Definitions

Let T = R/Z be the circle with unit circumference; i.e., T is the interval [0, 1]
with 1 and 0 identified. Let A = T × [0, 1] be the annulus and C = T × R

be the cylinder. We study diffeomorphisms of A to itself and of C to itself;
however, it is easier to state results if we have a global coordinate system
(i.e., polar coordinates). So, let A = R × [0, 1] be the strip. Then A is the
universal cover of A with natural projection

π : A→ A,

that sends points (x, y) and (x+ r, y) ∈ A to the same point of A whenever
r ∈ Z. Similarly, R

2 is the universal cover of C with natural projection

π : R
2 → C.

We letX and Y denote the projections onto x and y coordinates, respectively;
i.e.,

X
Y

}
: (x, y) →

{
x
y

(the domain is either A or R
2).

For any continuous map f̃ : A → A (or f̃ : C → C), there exists a unique
continuous map f : A → A (or f : R

2 → R
2) such X(f(0, 0)) ∈ [0, 1] and

π ◦ f = f̃ ◦ π; i.e., f is a particular lift of f̃ , or f is a polar coordinate
representation of f̃ . Conversely, if f : A → A (or f : R

2 → R
2) satisfies

∀(x, y), f(x+1, y) = f(x, y)+ (1, 0), then there exists f̃ : A → A (or f̃ : C →
C) such that π ◦ f = f̃ ◦ π.

Because it is just easier to work with global coordinates, we state all re-
sults for maps A→ A (or R

2 → R
2) and we assume the following restrictions:

All maps f : A→ A or (R2 → R
2) are assumed to satisfy:

(i) f is a C1 diffeomorphism.
(ii) X(f(0, 0)) ∈ [0, 1].
(iii) ∀(x, y), f(x+ 1, y) = f(x, y).
(iv) f is orientation-preserving.
(v) f is boundary component-preserving.

Remarks. Conditions (ii) and (iii) are that f is a particular lift of a map on
A or C. We could restate conditions (iv) and (v) by saying f is a deformation
of the identity map through diffeomorphisms, so the inside of the annulus (or
bottom of the cylinder) maps to the inside (or bottom).
Examples. (1) Let g0(x, y) = (x + y, y). This map makes sense on both A
and R

2.
(2) Let, for k ∈ R, gk : R

2 → R
2 be given by
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gk(x, y) =
(
x+ y +

k

2π
sin(2πx), y +

k

2π
sin(2πx))

)
.

This is called the standard family of maps of the cylinder. It has been exten-
sively studied both analytically and, especially, numerically. We can replace
(k/2π) sin(2πx) with any smooth function φ(x) satisfying ∀x, φ(x+1) = φ(x).
The corresponding one-parameter family of maps is given by

(x, y) → (x+ y + kφ(x), y + kφ(x)),

and is sometimes called a standard family of cylinder maps.
In order to eliminate maps that are not very interesting as dynamical

systems, we must add a condition that “keeps orbits in the annulus”. That
is, we need a condition that eliminates maps that increase the y coordinate of
every point or decrease the y coordinate of every point. Luckily, this condition
is automatically satisfied by maps that come from Hamiltonian systems.

Definition We say f : A→ A (or R
2 → R

2) is an exact symplectic map if f
is symplectic with respect to the usual symplectic structure (i.e., symplectic
form ω = dx ∧ dy) and for an embedding γ : R → A (or R → R

2) satisfying
γ(x+ 1) = γ(x) + (1, 0), we have

∫ 1

0

Y (γ(s))
d

ds
X(γ(s)) ds =

∫ 1

0

Y (f ◦ γ(s)) d
ds
X(γ(s)) ds.

Figure 14.1. Areas between γ(R) and f(γ(R)).

Remarks. (1) Because we are in two dimensions, assuming that f is sym-
plectic is the same as assuming that f is area-preserving; i.e., |Df | ≡ 1.

(2) The condition that f is exact symplectic adds to area-preservation a
condition saying that the net area between a nontrivial loop on C and its
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image under f is zero (see Figure 14.1). In particular, the condition that f
be exact symplectic is not satisfied by f : C → C given by f(x, y) = (x, y+1)
even though f is area-preserving.

For an area-preserving map f : A → A, the exact symplectic condition is
satisfied automatically (see Problems).

We introduce one more condition that is both very helpful in analysis
and very frequently satisfied, at least locally. This condition allows us to use
ideas related to the study of maps of the circle to maps of the cylinder and
annulus.

Definition A map f : A→ A (or R
2 → R

2) is called a monotone twist map
if there exists an ε > 0 such that for all (x, y) ∈ A (or R

2)
∣∣∣∣
∂X(f(x, y))

∂y

∣∣∣∣ > ε.

Figure 14.2. Monotone twist condition.

Remark. Geometrically, this condition states that the image of a segment
x = constant under f forms a graph over the x-axis (see Figure 14.2).

This condition can be expressed in a different way for exact symplectic maps.
Given f : A→ A, let B = {(x, x1) ∈ R

2 : {f(x, y) : y ∈ [0, 1]} ∩ {(x1, y) : y ∈
[0, 1]} 
= φ}}; then we have the following.

Theorem 14.2.1. Given f : A → A is an exact symplectic map, f is a
monotone twist map if and only if f has a generating function, S : B → R

such that

f(x, y) = (x1, y1) iff y = −∂S
∂x

(x, x1), y1 =
∂S

∂x1
(x, x1).



14.2 Notations and Definitions 359

Remarks. (1) That f has a “locally defined” generating function is auto-
matic (see Section 6.2.2), but that this function is defined on all of A is
a stronger condition. There is a geometrical description of the generating
function that we discuss in the Problems.

(2) The family of monotone twist maps is open in the C1 topology; i.e.,
any map sufficiently C1 close to a monotone twist map is also a monotone
twist map.

(3) Monotone twist maps are not closed under composition; i.e., if f and
g are monotone twist maps, then f ◦g might not be monotone twist. To get a
family of maps closed under composition, we need to consider “positive tilt”
maps. See Boyland (1988).

(4) The monotone twist condition has already appeared in the discussion
of the KAM theory (see Sections 13.2 to 13.8). There, the twist condition ap-
pears as a condition on higher order terms of the normal form in appropriate
variables.

Examples. (1)The standard family gk : R
2 → R

2 given above, and, in fact,
any “standard family” of maps are exact symplectic monotone twist maps as
long as

∫ 1

0
φ(x) dx = 0.

(2) Let H0 : A → R be given by H0(x, y) = 1
2y

2. Then the Hamiltonian
system associated with H0 is

ẋ = +
∂H0

∂y
= y,

ẏ = −∂H0

∂x
= 0

and the time one map of this Hamiltonian flow is (x, y) → (x + y, y), which
is an exact symplectic monotone twist map. If we let H1 : A × R → R be a
smooth function that satisfies

(i) ∀(x, y, t) ∈ A× R,H1(x+ 1, y, t) = H1(x, y, t) = H1(x, y, t+ 1),
(ii) ∀x, t ∈ R, ∂H1(x, 0, t)/∂x = 0 = ∂H1(x, 1, t)/∂x,
(iii) H1 has the form H1(x, y, t) = 1

2y
2 + P (x, y, t) = H0 + P (x, y, t) where

P is sufficiently C2 small,

then the time one map of the flow given by the Hamiltonian system with H1

as Hamiltonian is also an exact symplectic twist map of the annulus. That
the map is exact symplectic follows because the system is Hamiltonian (see
Section 6.2).

The monotone twist condition comes from the fact that this time one
map is C1 close to the time one map of the H0 system above. Knowing that
∂2H1/∂y

2 > 0 gives us an “infinitesimal” twist condition; i.e., the map that
follows the flow from time t to time t+Δt is a monotone twist map. However,
this condition does not imply the monotone twist condition for the time one
map of the flow for the same reason that compositions of monotone twist
maps need not be monotone twist maps.
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The converse of the discussion above is also true.

Theorem 14.2.2 (Moser (1986)). Given an exact symplectic monotone
twist map f : A→ A there exists a Hamiltonian H : A×R → R that satisfies

(1) ∀(x, y, t),H(x+ 1, y, t) = H(x, y, t) = H(x, y, t+ 1)
and

(2) ∀(x, y, t), ∂2H(x, y, t)/∂y2 > 0,
such that f is the time one map of the Hamiltonian system given by H.

Remark. This is close to theorem 8.2.1, the new element being condition (2)
on H; i.e., the infinitesimal twist condition or “Lagrange condition” that is
useful in variational attacks on these systems. Also note that an analogous
discussion can be given for Hamiltonians on the cylinder and maps on R

2.

14.3 Elementary Properties of Orbits

Our goal is to discuss the properties of orbits of exact symplectic monotone
twist maps. The first step is to determine which of these orbits are topologi-
cally simple. For us, “simple” means the orbit respects the ordering imposed
by the angular coordinate around the annulus or cylinder. The dynamics of
these simple orbits is the same as orbits for homeomorphisms of the circle.

We start by establishing the notation that allows us to deal with the
lifts of the annulus and cylinder maps. If f : A → A, then for n > 0, fn =
f ◦ f ◦ f ◦ . . . ◦ f (n times) and f−n = f−1 ◦ f−1 ◦ . . . ◦ f−1 (n times). If
f : A→ A and z ∈ A, then the extended orbit of z under f is

eo(z, f) = eo(z) = {f i(z) + (j, 0) : i, j ∈ Z}.

We are only working with maps f : A→ A that are lifts of maps f̃ : A →
A; then the extended orbit of z ∈ A is the lift of the orbit of the projection
of z; i.e.,

eo(z) = π−1{f̃ i(π(z)) : i ∈ Z}.
Because points translated by integers in the x-direction are sent to the same
point by π : A → A, to obtain the extended orbit of a point z ∈ A, we take
all translates of the usual orbit under f by vectors (j, 0) such that j ∈ Z.

Similarly, we must extend the usual definition of periodic point.

Definition For f : A→ A, a point z ∈ A is called a p/q-periodic point if

fq(z) = z + (p, 0).

Remarks. (1) If f̃ : A → A is the projection of f and z = π(z̃), then the
statement that z is a p/q-periodic point of f implies that z̃ is a period q
periodic point of f̃ because
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π ◦ f̃q(z̃) = fq(π(z̃) = fq(z) = z + (p, 0) = π(z̃).

The p in the definition of p/q-periodic point is, therefore, new information.
It says that the q iterates of z̃ by f̃ “go around” the annulus p times. One of
the reasons to lift to the cover is so that this notion of orbits going around
the center hole of the annulus (or cylinder) can be made precise. (See Peck-
ham(1990).)

(2) We note that a p/q-periodic point of f is also a 2p/2q-periodic point,
but that a 2p/2q-periodic point need not be a p/q-periodic point. Hence, we
make the following standing assumption.

Notation. When we write z is a p/q-periodic point, we assume, unless oth-
erwise stated, that p and q are relatively prime.

We can think of p/q-periodic points as advancing an average of p/q of a
rotation around the annulus per iterate. The notion of “average rotation per
iterate” can be generalized as follows.

Definition If f : A→ A and z ∈ A, then the rotation number of z is

ρ(z, f) = ρ(z) = lim
n→∞

X(fn(z))
n

, if it exists.

If the limit does not exist then we say ρ(z) does not exist.

Examples. (1) For f : A → A and z ∈ A, if z is a p/q-periodic point then
ρ(z) = p/q.

(2) For g0 : A → A : (x, y) → (x + y, y), we have ρ(x, y) = y for all
(x, y) ∈ A.

(3) For f : A→ A, the map f restricted to the boundary components of
A gives a map of R which are lifts of circle homeomorphisms; i.e., if we let
h0, h1 : R → R be defined by

hi(x) = X(f(x, i)) for i = 0 or 1.

We show below (see Lemma 14.3.1) and comments after it) that this implies
that ρ(x, 0) and ρ(x, 1) exist independent of x. (See also Devaney (1986),
Coddinton and Levinson (1955), Arrowsmith and Place (1990).)

Notation. For f : A→ A, we let ρ0 = ρ(x, 0) and ρ1 = ρ(x, 1).

One way to describe an orbit of an exact symplectic monotone twist map
is to verify that there is a subset of the annulus that contains the entire
orbit. Subsets with more structure give more information about the orbits
they contain. A particularly useful subset is a (one-dimensional) circle or
loop.

Definition Let γ : R → A be a continuous, one-to-one embedding satisfying
γ(x + 1) = γ(x) for all x ∈ R. Then we say that the set Γ = γ(R) is an
invariant circle for f : A→ A if f(Γ ) = Γ .
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Hence, an invariant circle for f : A→ A is a curve that is invariant under
f and which projects to a homotopically nontrivial loop in the annulus A.
(See Figure 14.3.) The boundary circles are invariant circles automatically.
An invariant circle in the interior of A separates A into two components,
one for each boundary component. Establishing conditions that imply the
existence of invariant circles is one of the fundamental problems in the study
of monotone twist maps and we return to it at the end of the chapter. (See
also Section 13.2.) For now, we note the following.

Figure 14.3. Invariant curves.

Proposition 14.3.1. If f : A→ A and Γ is an invariant circle for f , then
for each z ∈ Γ , ρ(z) exists and is independent of Γ .

Proof. The map f |Γ (f restricted to the set Γ ) is a homeomorphism of a
circle and the techniques in Lemma 14.3.1 below (and the references above)
can be applied to show the rotation number exists and is independent of the
point on Γ .

The rotation number does a great deal to characterize the behavior of an
orbit of a map of the annulus. Given a sequence of points in the annulus, it
would be very nice if the rotation number of the limit of these points turned
out to be the limit of their rotation numbers. Because the rotation number
itself is a limit, there is no reason to hope that we can “switch limits.” In
order to ensure that the rotation number of the limit of a sequence of points is
the limit of their rotation numbers, we must restrict to certain special orbits
satisfying the following condition.

Definition Suppose f : A→ A is a monotone twist map and z ∈ A. Then z
is called a monotone point and is said to have a monotone orbit if ∀z1, z2 ∈
eo(z), if X(z1) < X(z2), then X(f(z1)) < X(f(z2)).
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In other words, an orbit is monotone if f preserves the ordering on the
extended orbit imposed by the ordering of the x-coordinates. We see below
that another way to say this is that the map restricted to the orbit in the
annulus can be extended to a homeomorphism of the circle.

The definition of monotone point and orbit makes sense for arbitrary
annulus maps, but the notion is not very useful without the monotone twist
condition because the lemmas below require that the map respect the x-
coordinate ordering in some way. These lemmas state that the set of monotone
orbits is isolated from other orbits. This isolation is the property that makes
it possible to prove monotone orbits exist and that they are closed under
limits.

Lemma 14.3.1. Suppose f : A→ A is a monotone twist map and z0 ∈ A is
a monotone point for f ; then ρ(z0) exists.

Proof. The proof of this lemma is the same as the proof of the existence of
rotation numbers for orientation-preserving circle homeomorphisms.

Suppose, with no loss of generality, that X(z0) ∈ (0, 1). For any n > 0,
there is an integer r ∈ Z such that

X(z0) + r ≤ X(fn(z0)) < X(z0) + r + 1.

Because z0 is monotone and fn(z0), z0 + (r, 0), z0 + (r + 1, 0) ∈ eo(z0), we
know that f preserves the ordering of these points, so

X(f(z0)) + r ≤ X(fn+1(z0)) < X(f(z0)) + r + 1.

Applying f n-times gives

X(z0) + 2r ≤ X(fn(z0)) + r
≤ X(f2n(z0)
< X(fn(z0)) + r + 1
< X(z0) + 2(r + 1).

Repeatedly applying fn, we see (by induction) that for all m,

X(z0) +mr ≤ X(fnm(z0) < X(z0) +m(r + 1).

Dividing by nm gives

X(z0)
nm

+
r

n
≤ X(fnm(z0))

nm
<
X(z0)
nm

+
r + 1
n

for all m > 0, which gives
∣∣∣∣lim sup

m→∞

X(fnm(z0))
nm

− lim inf
m→∞

X(fnm(z0))
nm

∣∣∣∣ <
1
n
.
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Next we note that because f is periodic in the x-coordinate, for each n > 0
there is a constant Cn > 0 such that

∀i = 1, 2, . . . n, ∀z ∈ A, |X(f i(z))−X(z)| < Cn.

But then |X(fnm+i(z0) −X(fnm(z0))| < Cn for i = 1, 2, . . . , n. That is, for
iterates between the nmth and the n(m + 1)st, points can move a bounded
distance, independent of m. Hence,

lim sup
j→∞

X(f j(z0))
j

= lim sup
m→∞

X(fnm(z0))
nm

and

lim inf
j→∞

X(f j(z0))
j

= lim inf
m→∞

X(fnm(z0))
nm

so ∣∣∣∣lim sup
j→∞

X(f j(z0))
j

− lim inf
j→∞

X(f j(z0))
j

∣∣∣∣ <
1
n
.

But n was arbitrary, so limj→∞X(f j(z0))/j exists.

Lemma 14.3.2. Suppose fn : A→ A,n = 1, 2, . . . is a sequence of monotone
twist maps and limn→∞ fn = f0 with f0 also a monotone twist map. Suppose,
for each n = 1, 2, . . . there is a point zn ∈ A such that X(zn) ∈ [0, 1] and
zn has a monotone orbit for fn. If z0 = limn→∞ zn, then z0 has a monotone
orbit for f0 and ρ(z0, f0) = limn→∞ ρ(zn, fn).

Proof. Suppose, for contradiction, that z0 is not monotone for f0. Then there
exist i, j, k, and l such that

X(f i
0(z0)) + k < X(f j

0 (z0)) + l

but
X(f i+1

0 (z0)) + k ≥ X(f j+1
0 (z0)) + l.

For n sufficiently large, we must have X(f i
n(zn)) + k < X(f j

n(zn)) + l, so
X(f i+1

n (zn)) + k < X(f j+1
n (zn)) + l. Hence, by taking the limit as n → ∞,

we see that
X(f i+1

0 (z0)) + k = X(f j+1
0 (z0))) + l.

From the monotone twist condition, it follows (see Figure 14.4) that

Y (f i+1(z0)) > Y (f j+1
0 (z0)).

Hence, again by the monotone twist condition

X(f i+2
0 (z0)) + k > X(f j+2

0 (z0)) + l.

Again, this implies that for n sufficiently large
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X(f i+2
n (zn)) + k > X(f j+2

n (zn) + l,

contradicting that zn is a monotone for fn. This contradiction implies that
z0 must be a monotone point for f0.

To show that the limit of the rotation numbers is the rotation number of
the limit, we note that from Lemma 14.3.1, we know that ρ(zn, fn) exists for
each n = 0, 1, . . .. Moreover, as in the proof of Lemma 14.3.1,

r ≤ X(f i
n(zn)) < r + 1

for r, i ∈ Z implies ρ(zn, fn) ∈ [r/i, (r + 1)/i]. Hence, noting that r ≤
X(f i

0(z0)) ≤ r + 1 implies that for n sufficiently large,

r − 1 < X(f i
n(zn)) < r + 2,

we see that limn→∞ ρ(zn, fn) = ρ(z0, f0).

Figure 14.4. A nonmonotone orbit.

Lemma 14.3.3. Suppose fn : A → A,n = 0, 1, . . . , is a sequence of mono-
tone twist maps with fn → f0 in the C1 topology as n→∞. Fix p, q ∈ Z (p
and q relatively prime) and suppose that for each n = 1, 2, . . . there is a point
zn ∈ A with zn a p/q-periodic point for fn. If z0 = limn→∞ zn, then z0 is a
p/q-periodic point. Moreover, either
(1) For all n sufficiently large, zn is monotone for fn and hence z0 is mono-
tone for f0.
(2) For all n sufficiently large, zn is not monotone for fn and hence z0 is not
monotone for f0.
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Proof. First we note that because we have, for all n ≥ 0, fq
n(zn) = zn +(p, 0),

taking limits of both sides of this equation gives fq
0 (z0) = z0 + (p, 0); i.e., z0

is a p/q-periodic point for f0. (Because p and q are assumed relatively prime,
z0 cannot have a period small than q.)

If there exists a subsequence zni
→ z0 with each zni

monotone for fni
,

then z0 is monotone for f0 by Lemma 14.3.2.
On the other hand, suppose znk

→ z0 is a subsequence such that znk
is

nonmonotone for fnk
. Then for each nk there exists i, j, and l such that

X(f i
nk

(znk
)) < X(f i

nk
(znk

)) + l, (14.1)

but
X(f i+1

nk
(znk

) ≥ X(f j+1
nk

(znk
)) + l. (14.2)

Each znk
is a p/q-periodic point, thus we may assume that 0 ≤ i, j ≤ q and

0 ≤ l ≤ p. Hence, we may choose another subsequence, which we again call
znk

→ z0, such that i, j, and l are independent of znk
. But then z0 must

satisfy
X(f i

0(z0)) ≤ X(f j
0 (z0)) + l, (14.3)

X(f i+1
0 (z0)) ≥ X(f j+1

0 (z0)) + l. (14.4)

If strict inequality holds in the two equations above then z0 is not monotone.
If equality holds in either of the two equations above, then the y-coordinate
ordering must be as in Figure 14.5 and the iterates of z0 are out of order as
shown.

Hence, we see that if the sequence of zn has a subsequence which is mono-
tone for fn, then z0 is monotone for f0, whereas if it has a subsequence which
is nonmonotone, then z0 is nonmonotone for f0. So zn is monotone for fn for
all n sufficiently large, or zn is nonmonotone for fn for all n sufficiently large.

If we think of the p/q-periodic orbits of a monotone twist map as a set with
a natural topology (the Hausdorff topology), then Lemma 14.3.3 says that
the whole set is closed and that the subsets of monotone and nonmonotone
orbits are also closed subsets (see Katok (1982)). The p/q-monotone periodic
orbits are isolated from the other p/q-periodic orbits, and hence, we can hope
to use topological methods to find the monotone periodic orbits.

In the following sections, we prove the existence of many periodic points
for exact symplectic twist maps. We particularly focus on monotone periodic
orbits because they behave well with respect to limits. By taking limits of
monotone periodic orbits we can get many other interesting orbits.

14.4 Existence of Periodic Orbits

The result known as Poincaré’s last geometric theorem or the Poincaré–
Birkhoff theorem states that every exact symplectic monotone twist map
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Figure 14.5. A nonmonotone orbit.

f : A → A has two distinct periodic orbits for each rational between the
rotation numbers of f on the boundary components of A. This theorem was
originally conjectured by Poincaré in 1912 (with a weaker twist condition
than monotone twist) and was proven by Birkhoff (1913, 1925) and Brown
and von Newmann (1977) (with the weaker twist condition). Later proofs,
using more machinery from plane topology, have weakened the conditions
necessary and the interested reader should consult Franks (1988).

Even though it is not necessary for the proof of existence of periodic
orbits, we keep the strong monotone twist condition because this lets us
distinguish monotone and nonmonotone periodic orbits. The theorem we use
is the following.

Theorem 14.4.1. Suppose f : A→ A is an exact symplectic monotone twist
map with ρ0 and ρ1 the rotation numbers of f on y = 0 and y = 1 boundaries
respectively (see Proposition 14.3.1). If p/q ∈ Q is a rational (in lowest form)
with ρ0 ≤ p/q ≤ ρ1, then f has at least two distinct p/q-periodic orbits.

Remarks. (1) Thus the theorem implies that the projection of f to the
annulus A has two distinct p/q-periodic orbits.

(2) A similar statement holds for exact symplectic monotone twist maps
of the cylinder with no restriction on the rational (other than that it is in
lowest form).

The remainder of this section is devoted to a discussion of the proof of
this theorem. The existence of p/q-periodic orbits is not difficult. We follow a
proof given by LeCalvez (1988) and Casdagli (1987) which uses the monotone
twist condition (even though a weaker twist condition suffices). That there
are actually at least two p/q-periodic orbits is considerably more subtle. We
discuss the plausibility of the existence of two periodic orbits.
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Proof (Existence of p/q-periodic orbits). Fix f and p/q ∈ Q as in the theorem.
We need the following notation

Σ = {z ∈ A : X(fq(z)) = X(z) + p}. (14.5)

Let U0 be the component A ∼ Σ (where ∼ denotes subtraction of
sets) containing the y = 0 boundary of A and let V be the compo-
nent of A ∼closure(U0) containing the y = 1 boundary of A. Finally, let
U = A ∼closure(V ). Then U is open, ∂U ⊆ Σ, U is simply connected
U + (1, 0) = {z + (1, 0) : z ∈ U} = U , and U contains the y = 0 bound-
ary of A. Let Γ = ∂U .

Claim. f−1(Γ ) ∩ Γ 
= ∅.

Proof (Proof of the Claim). Suppose not. Then f−1(Γ ) ⊆ U or f−1(Γ ) ⊆
A ∼ (closure(U)), so either f−1(closure((U)) ⊆ U or closure(U) ⊆ f−1(U).
But both of these cases violate the assumption that f is exact symplectic
(i.e., area-preserving). Hence, f−1(Γ ) ∩ Γ 
= ∅ and the proof of the claim is
complete.

Claim. Every point z ∈ f−1(Γ ) ∩ Γ is a p/q-periodic point for f .

Proof (Proof of the Claim). Suppose z ∈ f−1(Γ )∩Γ , then z ∈ Γ and f(z) ∈ Γ
so X(fq(z)) = X(z) + p and X(fq+1(z)) = X(f(z)) + p. Because f is a
monotone twist map, we know that there is a unique point on the segment
{(x, y) : x = X(z) + p} such that f(x, y) ∈ {(x, y) : x = X(f(z)) + p}, but
fq(z) ∈ {(x, y) : x = X(z) + p} and fq+1(z) ∈ {(x, y) : x = X(f(z)) + p} so
fq(z) is this unique point.

However, because f is a lift of an annulus diffeomorphism, z + (p, 0) ∈
{(x, y) : x = X(z) + p} has image f(z+ (p, 0)) = f(z) + (p, 0) in {(x, y) : x =
X(f(z))+ p} (see Figure 14.6). Hence, z+(p, 0) and fq(z) must be the same
point; i.e., z is a p/q-periodic point and the proof of the claim is complete.

Combining the claims, the proof of existence of p/q-periodic points for f
is complete.

Proof (Plausability of existence of two p/q-periodic orbits). The idea is to
show that the points of intersection of f−1(Γ ) with Γ come in different types
which are invariant under the map f .

First, we may assume that the intersection points of f−1(Γ ) with Γ are
isolated, because if they were not, we would have infinitely many distinct
p/q-periodic orbits.

Unfortunately, there is no reason to believe that Γ is a smooth curve in A;
i.e., that 0 is a regular value of the function A→ R : z → X(fq(z))−X(z)−p.
However, if Γ is a smooth curve, then it is easy to divide the intersections
of f−1(Γ ) and Γ into types, e.g. “above to below” and “below to above”
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Figure 14.6. Images of radial arcs through z and fq(z).

where “above” and “below” are defined in terms of the component of the
complement of Γ (see Figure 14.7). The types of intersections are preserved
under the f−1, and hence make up different orbits.

For a complete proof of the existence of at least two p/q-periodic orbits
via the original ideas of Birkhoff (with the weaker twist condition), see Brown
and von Newmann (1977).

Figure 14.7. Intersections of Γ with its preimage.
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14.5 The Aubry–Mather Theorem

We have shown that exact symplectic monotone twist maps of the annulus
or cylinder have many periodic orbits. For each lowest form rational p/q
between the rotation numbers of the map on the boundary circles, there is a
p/q-periodic orbit. We have also shown that for monotone twist maps, certain
periodic orbits called monotone orbits behave nicely with respect to taking
limits.

In this section, we show that exact symplectic monotone twist maps have
monotone p/q-periodic orbits for every p/q between the rotation numbers
on the boundary circles. Moreover, limits of monotone periodic points give
points that have monotone orbits and irrational rotation number. This result
is known as the Aubry–Mather theorem.

Theorem 14.5.1 (Aubry–Mather theorem). For f : A → A, an exact
symplectic monotone twist map with ρ0 and ρ1 the rotation numbers of f on
the boundary circles, for every ω ∈ [ρ0, ρ1], f has a point zω with monotone
orbit and ρ(zω) = ω. Moreover, if ω = p/q, then we may choose zω to be a
monotone p/q-periodic point.

The monotone orbits with irrational rotation number are called quasiperi-
odic orbits. Precursors of this theorem were shown by Hedlund in the context
of geodesics on a torus and by Birkhoff for orbits in the billiard problem (see
Section 8.2.5). The techniques used by Aubry and Mather (independently)
were variational. They used a principle of least action and showed that the
minimizers are monotone orbits.

The proof we give below is topological in nature and relies on the two-
dimensionality of the annulus. First we discuss a fixed-point theorem for maps
in two-dimensions. We use this to show how nonmonotone periodic orbits
imply the existence of monotone periodic orbits for monotone twist maps.
We need the area-preservation or exact symplectic conditions to guarantee
the existence of periodic orbits, but given the existence of periodic orbits, the
monotone twist condition suffices to produce the monotone orbits.

14.5.1 A Fixed-Point Theorem

Suppose g : R
2 → R

2 is a continuous map and D is a topological disk in R
2

with boundary ∂D. It is convenient to think of D as a rectangle. Let S1 be
the unit circle in R

2. If g does not have any fixed-points on ∂D, we can define
g̃ : ∂D → S1 by g̃(z) = (g(z) − z)/ ‖ g(z) − z ‖ where ‖ · ‖ is the usual R

2

norm. Because ∂D is homeomorphic to S1, we can think of g̃ as a map from
the circle to itself and define the index of g a as the number of times g̃(z) goes
around S1 as z goes around ∂D once with sign used to indicate the same or
opposite directions (clockwise or counterclockwise). The fundamental lemma
we use is the following.
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Lemma 14.5.1. If g : R
2 → R

2 as above has nonzero index on the disk D ⊆
R

2, then g has a fixed-point in D. Moreover, if g1 : R
2 → R

2 is sufficiently
close to g in the sup norm topology, then g1 also has nonzero index on D.

Proof. See Milnor (1965).

Figure 14.8. Maps with index −1.

We use this lemma in situations schematically represented in Figure 14.8.
Here D is a rectangle tilted to the left and g(D) is a rectangle tilted to the
right with g mapping the boundary of D as shown. The index of g is −1
because taking z ∈ ∂D around ∂D in one direction implies g(z) goes around
S1 in the same, or the other direction. Hence, g must have a fixed-point in
D. Moreover, every map sufficiently close to g in the sup norm also has a
fixed-point in D.

14.5.2 Subsets of A

Next we define the subsets of A on which we can use the fixed-point theorem
above. This definition is annoyingly technical because we must take into
account all possible behaviors of a monotone twist map. The basic idea is
that the monotone twist condition guarantees that the strip between two
fixed-points maps in a way to give nonzero index.

Notation. For z1, z2 ∈ A with X(z1) < X(z2), we let

B(z1, z2) = {z ∈ A : X(z1) < X(z) < X(z2)}. (14.6)

Also (see Figure 14.9), we let
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I+(z1) = {z ∈ A : X(z) = X(z1) and Y (z) ≥ Y (z1)}, (14.7)

I−(z1) = {z ∈ A : X(z) = X(z1) and Y (z) ≤ Y (z1)}. (14.8)

Definition For each z1, z2 ∈ A,X(z1) < X(z2) a set C ⊆ closure(B(z1, z2))
is called a positive diagonal if it satisfies the following conditions.

(i) C is the closure of its interior and the boundary of C = ∂C is piecewise
smooth.

(ii) C is simply connected.
(iii) ∂C ∩ (I+(z1) ∪ I−(z2) ∼ {z1, z2}) = ∅.
(iv) ∂C contains a smooth arc connecting I−(z1) and I+(z2)∪{(x, 1) : x ∈ R}

and a smooth arc connecting I+(z2) and I−(z1) ∪ {(x, 0) : x ∈ R}.

We call C a negative diagonal if it satisfies (i) and (ii) above and

(iii ′) ∂C ∩ (I−(z1) ∪ I+(z2) ∼ {z1, z2}) = ∅,
(iv ′) ∂C contains a smooth arc connecting I+(z1) and I−(z2)∪ {(x, 0) : x ∈

R} and a smooth arc connecting I−(z2) and I+(z1) ∪ {(x, 1) : x ∈ R}.

If C is a positive or negative diagonal in B(z1, z2), then there is an order-
ing to the components of ∂C∪B(z1, z2); i.e., one is “above” the other. If C is
a positive diagonal, we call the component of ∂C ∩ B(z1, z2) that intersects
I+(z2) with the smallest y-coordinate the lower boundary of C and the com-
ponent of ∂C ∩B(z1, z2) that intersects I−(z1) with the largest y-coordinate
the upper boundary of C. For negative diagonals, replace I+(z2) with I+(z1)
and I−(z1) with I−(z2). (See Figure 14.10.)

Figure 14.9. The set B(z1, z2).

The property that makes these sets useful is that they are preserved by
monotone twist maps.
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Figure 14.10. Diagonals in A.

Lemma 14.5.2. Suppose f : A→ A is a monotone twist map and z1, z2 ∈ A
satisfy X(f(z1)) < X(f(z2)). If C is a positive diagonal of B(z1, z2), then
f(C)∩B(f(z1), f(z2)) contains a component C1 which is a positive diagonal
of B(f(z1), f(z2)). Moreover, if we collect the components of ∂C ∩B(z1, z2)
into two disjoint sets, α and β with α containing the upper boundary of C
and β containing the lower boundary of C, then we may choose C1 so that
its upper boundary is in f(α) and its lower boundary is in f(β).

Proof. The image of the upper boundary of C must connect f(I+(z2)) ∪
{(x, 1) : x ≥ X(f(z1))} and f(I−(z1)) without intersecting f(I+(z1)) ∪
f(I−(z2)). Similarly, the image of the lower boundary of C must connect
f(I−(z1)) ∪ {(x, 0) : x ≤ X(f(z2))} and f(I+(z2)) without intersecting
f(I+(z1))∪f(I+(z2)). Because f preserves orientation, this implies the lemma
(see Figure 14.11).

Figure 14.11. Image of a positive diagonal.
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14.5.3 Nonmonotone Orbits Imply Monotone Orbits

Finally, we show that a monotone twist map f that has a monotone p/q-
periodic orbit and a nonmonotone p/q-periodic orbit must have a second
monotone p/q-periodic orbit that appears as a fixed-point of fq in a set with
nonzero degree. This implies that every map sufficiently close to f also has
a monotone p/q-periodic orbit.

Lemma 14.5.3. Suppose f : A → A is a monotone twist map and suppose
that z1, z2, w1, w2 ∈ A satisfy:

(i) z1, z2 are p/q-periodic points for f .
(ii) For i = 0, 1, . . . , q,

X(f i(z1)) < X(f i(z2)),

X(f i(w1)) < X(f i(w2)),

X(f i(w1)) < X(f i(z2)),

X(f i(z1)) < X(f i(w2)).

(iii) X(wj) − X(zj) and X(fq(wj)) − X(fq(zj)) are the same sign for j =
1, 2.

(iv) For some i1, i2 between 0 and q, for j = 1, 2

X(f ij (wj))−X(f ij (zj)) and X(wj)−X(zj)

are opposite signs.

Then there exists a negative diagonal D such that

(iii ′) ∀ζ ∈ D for i = 0, 1, . . . , q,X(f i(z1)) < X(f i(ζ)) < X(f i(z2)),

X(f i(w1)) < X(f i(ζ)) < X(f i(w2))

.
(iv ′) The map fq − (p, 0) had index −1 on D.

Hence, fq − (p, 0) and every map sufficiently close to it has a fixed-point in
D.

Proof. We consider several cases, depending on the order of the points
z1, z2, w1, and w2 in A.

Case 1. Suppose X(w1) < X(z1) < X(z2) < X(w2). We follow the image
of B(z1, z2) in a sequence of steps.

Step 1. Note that f(B(z1, z2)) ∩ B(f(z1), f(z2)) is a positive diagonal in
B(f(z1), f(z2)); call it C1. Also, f−1(C1) is a negative diagonal of B(z1, z2).
(See Figure 14.12.)
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Figure 14.12. The diagonal C1.

Step 2. Hence, using Lemma 14.5.2, we may choose a sequence Ci of
positive diagonals of B(f i(z1), f i(z2)) such that f−1(Ci) is a nested sequence
of diagonals of B(z1, z2).

Step 3. We refine the choice of the Cis by following the orbits of the ws.
In particular, fix i1 and i2, such that 0 < i1 < i2 < q,X(f i(w1)) < X(f i(z1))
for i < i1,X(f i(w1)) > X(f i(z1)) for i1 ≤ i < i2, and X(f i2(w1)) <
X(f i2(z1)). Then, if we follow the iterates of I+(z1) under f , we must
have that f i2(I+(z1)) contains an interval that connects I−(f i2(z1) to
I+(f i2(z2)) ∪ {(x, 1) : x > X(f i2(z1))} which does not contain z1. Hence,
we may choose Ci2 so that it does not contain f i2(z1). Similarly, using the
orbit w2 we see that for some i, 0 < i ≤ q we may choose Ci so that it does
not contain f i(z2). (See Figure 14.13.)

Step 4. Because z1 and z2 are periodic, the set {ζ−(p, 0) : ζ ∈ Cq} = Cq−
(p, 0) is a positive diagonal of B(z1, z2). By construction, the setD = f−q(Cq)
is a negative diagonal of B(z1, z2). Also, z1, z2 /∈ D and the upper and lower
boundaries of Cq are contained in fq(I+(z1)) and fq(I−(z2)), respectively,
with ∂Cq∩B(fq(z1), fq(z2)) ⊆ fq(I+(z1))∪fq(I−(z2)). Hence, fq−(p, 0) on
D satisfies the conditions of Lemma 14.5.1 and has index −1 on D, so f , and
every map sufficiently close to f , has a p/q-periodic point ζ ∈ D satisfying
for i = 0, 1, . . . , q,

X(f i(w1)) < X(f i(ζ)) < X(f i(w2)),

X(f i(z1)) < X(f i(ζ)) < X(f i(z2)),

which completes Case 1. (See Figure 14.14.)

For the other cases, we need merely choose the initial box differently and
proceed as above. The argument produces a set with index −1 whose iterates
stay to the right of iterates of z1 and w1 while staying to the left of iterates
of z2 and w2.
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Remark. Other versions of the lemma are necessary if the part of condition
(ii)

∀i, X(f i(w1)) < X(f i(w2))

is not satisfied. If X(f i(w1)) and X(f i(w2)) change order once, then we
obtain a diagonal on which fq−(p, 0) has index +1. If they change order twice,
then we are back to index −1, and so on (see Figure 14.13 and Problems).

Figure 14.13. Image of I±(z1).

Figure 14.14. Diagonal Cq and its preimage.

To find new p/q−periodic orbits for a given monotone twist map, we
need to find points whose iterates change order as prescribed in the pre-
ceding lemma. For example, consider a monotone twist map f that has a
p/q-monotone periodic point z0 and a p/q-nonmonotone periodic point w1.
Because w1 is nonmonotone, there is a subset of points z ∈ eo(z0) such that
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X(f i(w1)) − X(f i(z)) changes sign for different i. Let z1 be the point of
this set with the largest x-coordinate and let z̄2 be the point of this set with
smallest x-coordinate.

Let z2 be the point in eo(z0) with smallest x-coordinate which is to the
right of z1. We must have z2 = f j(z̄2) + (r, 0) for some integers j and r. Let
w2 = f j(w1)+(r, 0). Then z2 is the point of eo(z0) with smallest x-coordinate
such that X(f i(w2))−X(f i(z2)) changes sign. If X(f i(w1)) < X(f i(w2)) for
all i, then the points z1, z2, w1, and w2 satisfy the conditions of Lemma 14.5.3.
If the iterates of w1 and w2 change order, then we can apply the remark after
the proof of Lemma 14.5.3. The resulting fixed-points ζ in the set with index
±1 produced by the lemma are p/q-monotone periodic points because they
satisfy X(f i(z1)) < X(f i(ζ)) < X(f i(z2)) for all i. Hence, we have proven
the following.

Lemma 14.5.4. Suppose f : A → A is a monotone twist map and f has a
p/q-monotone periodic orbit and a p/q-nonmonotone periodic orbit; then f
has a second monotone p/q-periodic orbit. Moreover, every map sufficiently
close to f also has a p/q-monotone periodic orbit.

One lemma remains to be proven. We need to show that if a monotone
map has a p/q-periodic orbit then it also has a p/q-monotone periodic orbit.
The idea is to construct a one-parameter family of maps starting with the
given map, ending with a map with both p/q-monotone and p/q-nonmonotone
periodic orbits such that all the intermediate maps have p/q-periodic orbits.
Lemmas 14.3.2 and 14.5.4 show that the set of parameter values for which
the corresponding map has a p/q-monotone periodic point is both open and
closed.

Lemma 14.5.5. Suppose f : A → A is a monotone twist map and f has a
p/q-periodic point, then f has a p/q-monotone periodic point.

Proof. Let f : A→ A be a monotone twist map with a p/q-periodic point w0.
If this point has a monotone orbit, then we are done, so we assume that w0

is a p/q-nonmonotone periodic orbit. We construct a one-parameter family
of maps ft, t ∈ [0, 1] with f0 = f such that the extended orbit of w0 is the
same for all the ft so f1 has a p/q-monotone periodic orbit.

To construct the family, we first choose a point z0 ∈ A and number ε > 0
such that the minimum distance between the points of {X(z0) + i/q : i ∈ Z}
and {X(z) : z ∈ eof0(w0)} is at least 2ε. For each point z1 ∈ eof0(z0) we
need that {f0((X(z1), y)) : 0 ≤ y ≤ 1} intersects {(X(z1) + p/q, y) : 0 ≤
y ≤ 1} in precisely one point. The monotone twist condition guarantees that
this intersection is at most one point. By expanding the annulus radially if
necessary, we can guarantee that there is at least one point of intersection.
By taking ε smaller than 1/(2q) we can form our one-parameter family by
altering f0 only in strips of width ε about points of {X(z0) + i/q : i ∈ Z}.
This perturbation involves changing the y-coordinates of images of points
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under f0 so that f i
1(z0) = z0 + ip/q as in Figure 14.15. The orbit of w0 is

the same for all ft for t ∈ [0, 1], therefore we have constructed the desired
one-parameter family.

Now, we note that Lemma 14.3.2 implies that the set of t ∈ [0, 1] for
which ft has a p/q-monotone periodic orbit is a closed set. On the other
hand, Lemma 14.5.4 implies that the set of t ∈ [0, 1] for which ft has a p/q-
monotone periodic orbit is an open set. Hence, f0 must have a p/q-monotone
periodic orbit.

Figure 14.15. Action of the deformation of ft as t is varied.

We are now ready to prove the Aubry–Mather theorem:

Proof (Proof of theorem 14.5.1, The Aubry–Mather theorem). Fix f : A→ A
an exact symplectic monotone twist map with ρ0 < ρ1 the rotation numbers
of f restricted to the boundaries of A. Then for every rational p/q ∈ [ρ0, ρ1]
in lowest form, f has a p/q-periodic point by Theorem 14.4.1, so it has a
p/q-monotone periodic point by Lemma 14.5.5. For an irrational ω ∈ [ρ0, ρ1],
we choose a sequence of pn/qn of rationals with limn→∞ pn/qn = ω and a
sequence zn of pn/qn-monotone periodic points with X(zn) ∈ [0, 1]. Some
subsequence of the zn’s converge to zω ∈ A and by Lemma 14.3.2, zω is
monotone with ρ(zω) = ω. Hence, every rotation number possible for f is
represented by a monotone orbit and the proof is complete.

As stated earlier, the exact symplectic assumption on f is to “keep orbits
in the interior of the annulus.” We can replace this condition with more
topological conditions such as the following.

Definition We say a map f : A→ A satisfies the circle intersection property
if for every homeomorphism γ : R → A satisfying γ(x + 1) = γ(x) + (1, 0)
(i.e., γ(R) is the lift of a homotopically nontrivial simple closed curve in the
annulus) we have f(γ(R)) ∩ γ(R) 
= ∅.
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Definition We say f satisfies Condition B (for lack of a better name) if
for every ε > 0 there exists z1, z2 ∈ A and n1, n2 > 0 such that Y (z1) <
ε, Y (z2) > 1− ε and Y (fn1(z1)) > 1− ε, Y (fn2(z2) < ε.

The Aubry–Mather theorem holds with exact symplectic replaced by ei-
ther circle intersection or condition B.

14.6 Invariant Circles

So far we have shown the existence of special orbits for exact symplectic
monotone twist maps, in particular, periodic orbits and quasiperiodic orbits.
However, all the orbits we have considered so far can (and sometimes do) form
a set of measure zero in the annulus. Happily, it turns out that the existence
or nonexistence of certain types of periodic orbits can have implications about
the qualitative behavior of all orbits.

First, we consider two simple examples. The simplest twist map g0(x, y) =
(x+ y, y) has the property that all orbits are part of invariant circles formed
by y = constant sets. We can form small perturbations of this map to either
gε(x, y) = (x+ y, y+ ε(y− y2)) on the annulus or gε(x, y) = (x+ y, y+ ε) on
the cylinder. These perturbations “break” the y = constant invariant sets of
g0 and allow the y-coordinate to vary widely over an orbit.

However, neither of these examples satisfies the exact symplectic con-
dition, the circle intersection condition, nor Condition B at the end of the
previous section for ε 
= 0. If we restrict to only exact symplectic monotone
twist maps near g0 then the situation is quite different. The KAM theorem
states that some of the y =constant invariant circles persist for small pertur-
bations (see Section 13.2).

In this section we consider the relationship between the periodic orbits
of a monotone twist map and the existence of invariant circles. As in the
previous section, the discussion uses mainly topological techniques. The area-
preservation and exact symplectic conditions are only invoked to eliminate
the examples such as those above that do not have any periodic orbits.

14.6.1 Properties of Invariant Circles

We begin by considering some properties of invariant circles for exact sym-
plectic monotone twist maps.

Definition Given f : A → A, an invariant circle for f is a set Γ ⊂ A such
that Γ is the image of a function γ : R → A which is a nonself-intersecting
curve satisfying γ(x+ 1) = γ(x) + (1, 0).

Recall from Section 14.3 that an invariant circle Γ for a map f : A → A
is the image of a one-to-one embedding γ : R → A satisfying γ(x+1) = γ(x)
for all x.
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Such an invariant curve divides the strip into two components, the com-
ponent containing y = 0 and the component containing y = 1. It turns out
that the area-preservation and the monotone twist conditions combine to put
severe restrictions on what types of invariant circles these maps can have.

Theorem 14.6.1. Suppose f : A→ A is an exact symplectic monotone twist
map with an invariant set U ⊂ A that satisfies

(i) U is simply connected.
(ii) U + (1, 0) = {(x, y) + (1, 0) : (x, y) ∈ U} = U .
(iii) U is open and contains {(x, 0) : x ∈ R} in its interior.
(iv) U ∪ {(x, 1) : x ∈ R} = ∅.
Then there exists φ : R → (0, 1), continuous and periodic with period 1 (i.e.,
φ(x + 1) = φ(x)), such that the boundary of U is the invariant circle given
by the graph of φ = {(x, φ(x)) : x ∈ R}. Moreover, there exists a constant K,
independent of U (depending only on f) such that φ is Lipschitz with constant
K (i.e., ∀x1, x2 ∈ R, |φ(x1)− φ(x2)|/|x1 − x2| < K). (See Figure 14.16.)

This remarkable theorem says that there is a one-to-one relationship be-
tween the invariant sets that separate the boundaries of A and Lipschitz
invariant circles. It was first proven by Birkhoff and a proof in modern no-
tation can be found in Herman (1983). However, the ideas involved in the
proof are both simple and elegant, so we outline them here.

Figure 14.16. Invariant circles (as graphs).

Proof (Outline of the Proof). The first step is to show that the boundary of
U is a graph. To do this, we identify three types of points in U as follows.

1. A point z ∈ U is called accessible from below if {(X(z), y) : 0 ≤ y ≤
Y (z)} ⊂ U ,
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Figure 14.17. Accessible regions.

2. A point z ∈ U is called accessible from the left if z is not accessible
from below and there exists a continuous curve ζ : [0, 1] → U such that
Y (ζ(0)) = 0, ζ(1) = z, there is an interval [0, a] such that X(ζ(t)) is
strictly increasing for t ∈ [0, a], and ζ(t) is not accessible from below for
any t > a.

3. A point z ∈ U is called accessible from the right if there exists a curve
as in (2) with “X(ζ(t)) strictly increasing” replaced by “X(ζ(t)) strictly
decreasing.” (See Figure 14.17.)

We call these three sets UB , UL, and UR, respectively. They are pairwise
disjoint, U = UB ∪UR ∪UL, and each of them is periodic (UB + (1, 0) = UB ,
etc.).

Now we note that the monotone twist condition guarantees that f(UL) ⊆
UL, but f(UL) 
= UL because any vertical boundary of a component of UL is
mapped strictly inside UL by f . This violates the area-preservation hypothesis
because the image of UL (projected to the annulus) would map inside itself.
So UL = ∅. Similarly, using f−1, we see that UR = ∅. Hence, all points of U
are accessible from below and the boundary of U is the graph of a function
from R to (0, 1). (See Figure 14.18.)

Let φ : R → (0, 1) be such that the graph of φ equals U . To show that φ
is Lipschitz, we note that if the graph of φ is too steep, that is, if

|φ(x1)− φ(x2)|
|x1 − x2|

for x1 < x2 is too large, then the points (x1, φ(x1)) and (x2, φ(x2)) are close
to a vertical line in A. The monotone twist condition implies that the image
of the graph of this vertical line must be increasing in x. The image under f
of the graph of φ would not be a graph (see Figure 14.19) contradicting that
the graph of φ is invariant. This completes the outline of the proof.
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Figure 14.18. A region accessible from the left and its image.

Figure 14.19. Effect of the twist map on an almost vertical curve.

Hence, a map f : A → A has an invariant set that contains the y = 0
boundary in its interior if and only if f has an invariant circle that is the
graph of a Lipschitz curve. We can use this to relate the existence of invariant
sets to the existence of particular orbits for f as follows.

Theorem 14.6.2. Suppose f : A→ A is an exact symplectic monotone twist
map. Then f does not have an invariant circle in the interior of A if and
only if for all ε > 0 there are points z1, z2 ∈ A and n1, n2 > 0 such that
X(z1) < ε,X(fn1(z1)) > 1 − ε and X(z2) > 1 − ε,X(fn2(z2)) < ε (i.e.,
satisfies Condition B defined above).

Proof. Fix 0 < ε < 1/2. Let U = {z ∈ A : Y (fn(z)) > 1− ε for some n ≥ 0}.
The set U is open, f−1(U) ⊆ U and U + (1, 0) = U . Because f is area-
preserving, f(closure(U)) = closure(U). So W = interior of the closure of U
is an open invariant set. Because the boundary y = 1 is contained in W ,
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either the boundary of W separates A in an interior invariant circle in A for
f or the closure of W contains points of the y = 0 boundary of A. Because
f has no interior invariant circles by hypothesis, W must intersect the set
{z ∈ A : Y (z) < ε/2}, so U intersects {z ∈ A : Y (z) < ε}. Any point z of this
intersection will serve as z1. Similarly, we can find a point to serve as z2.

A region in an annulus that contains no invariant circles for a map f is
called a zone of instability for f . Arguments similar to the theorem above
show that in a zone of instability for an exact symplectic monotone twist map,
there are orbits that move under iteration from near the inner boundary to
near the outer boundary and vice versa.

One of the basic problems in the study of exact symplectic monotone
twist maps is to estimate the width of the zones of instability and determine
the location of the invariant circles. The following theorem relates the width
of the zones of instability to the existence of certain nonmonotone periodic
orbits.

14.6.2 Invariant Circles and Periodic Orbits

We begin with a lemma stating that the rotation number exists and is unique
for points on an invariant circle.

Lemma 14.6.1. If f : A → A is an exact symplectic monotone twist map
with Γ an invariant circle for f then f |Γ can be thought of as a (lift of a)
homeomorphism of a circle and hence every orbit of f |Γ is a monotone orbit
and has a well-defined rotation number which is constant over Γ .

Proof. See Problems.

We can use the rotation number as a type of coordinate to distinguish
invariant circles, asking if a particular map has an invariant circle with a
particular rotation number. To look for an invariant circle on which the ro-
tation number is a particular irrational number ω, we study the p/q-periodic
orbits for “nearby” rationals p/q. There are lots of rationals near a particular
irrational, but certain rationals are more nearby than others as the following
standard result shows (see Hardy and Wright (1979)).

Lemma 14.6.2. Each irrational number ω ∈ [0, 1] has a unique continued
fraction representation in the form

ω =
1

a1 +
1

a2 +
1

a3 +
1

. . . ,

where ai are positive integers. The convergents of this continued fraction
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pn

qn
=

1

a1 +
1

a2 +
1

. . . +
1
an

satisfy ∣∣∣∣
pn

qn
− ω
∣∣∣∣ <

1
q2n
.

Moreover, if ∣∣∣∣
p

q
− ω
∣∣∣∣ <

1
2q2

then p/q is a convergent of ω.

Hence, the convergents of an irrational number are the “nearby” rational
numbers. This relationship extends to the behavior of monotone twist maps.

Theorem 14.6.3. (Boyland and Hall (1987)) Let f : A → A be an exact
symplectic monotone twist map. Then f has an invariant circle with irrational
rotation number ω ∈ (ρ0, ρ1) if and only if, for every convergent p/q of ω,
every p/q-periodic orbit of f is monotone.

Corollary 14.6.1. If f : A→ A is an exact symplectic monotone twist map
and f has a p/q-period orbit that is not monotone (p/q in lowest form), then f
has no invariant circles with rotation number ω whenever |ω−p/q| < 1/(2q2).

All orbits on an invariant circle are monotone, thus the fact that low
period nonmonotone periodic orbits imply nonexistence of invariant circles is
not so surprising. This theorem and corollary give an estimate on the width
of the interval of rotation numbers cleared by a given nonmonotonic periodic
orbit.

Proof (Proof of the Corollary). If f has a nonmontone p/q-periodic orbit,
then if p/q is a convergent of ω, the theorem implies f does not have an in-
variant circle with rotation number ω. As noted above, if |ω−p/q| < 1/(2q2),
then p/q is a convergent of ω and the corollary follows.

Proof (Idea of the Proof of the Theorem). Suppose f does not have an invari-
ant circle with rotation number ω. Then (see Problems) there is an interval
about ω such that f has no invariant circles with rotation number in this
interval (the set of invariant circles is closed). Hence, f has a zone of insta-
bility with boundary circles having rotation number straddling ω and hence
there are points whose orbits cross from close to the inner circle to close to
the outer circle and vice versa. By the techniques of the last section, many
nonmonotone p/q-periodic orbits can be constructed for p/q arbitrarily close
to ω.
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On the other hand, suppose f has a nonmonotone p/q-periodic point;
call it z0. Then the distance between successive iterates of z0 must some-
times be much larger than p/q and sometimes much smaller. Because f
is a monotone twist map, this means that the orbit of z0 must sometimes
have a large y-coordinate and, most importantly, the points of eo(z0) are
not arranged the same as points for rigid rotation by p/q. In particular,
there are points z1, z2, z3 ∈ eo(z0) such that X(z1) < X(z2) < X(z3) but
X(f(z1)) < X(f(z3)) < X(f(z2)). Any curve passing close to eo(z0) is
mapped into a curve that is not a graph (see Figure 14.20). To make the
quantitative comparison between p/q and the rotation numbers of the pos-
sible invariant circles, we form a circle endomorphism by considering the
x-coordinate of f on eo(z0) and comparing this circle map to f on A eo(z0).

Figure 14.20. An arc around eo(z0) and its image.

14.6.3 Relationship to the KAM Theorem

We know that the KAM theorem implies that exact symplectic monotone
twist maps near an integrable map such as f0 : (x, y) → (x + y, y) have in-
variant circles for irrationals that are badly approximated by rationals (see
Chapter 13). Combined with the theorem above, this implies that these maps
have only monotone periodic orbits for rational rotation numbers that are
convergents of irrationals that are badly approximated by rationals. Because
all orbits of f0 are monotone, we know that for each p/q, there is a neigh-
borhood of f0 such that exact symplectic maps in this neighborhood have
only nonmonotone p/q-periodic points. The KAM theorem for these maps is
equivalent to saying that the size of this neighborhood is bounded below for
rationals that are convergents of irrationals that are badly approximated by
rationals, regardless of the size of the denominator. It would be lovely if there
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were a proof of the KAM theorem using these ideas, but none is known at
this time.

14.7 Applications

The monotone orbits for an exact symplectic monotone twist map and their
closures are called Aubry–Mather sets. The x-coordinate ordering is pre-
served, therefore we can “connect” these points together on a circle in the
annulus. This circle is not invariant unless the Aubry–Mather set is dense on
it, but it can still be useful in understanding the rate at which orbits transit
the annulus under iteration by the map.

In the billiards problem of Section 8.2.5 the section map constructed that
corresponds with the billiard ball hitting the edge of the table turns out to be
an exact symplectic (i.e., area-preserving) monotone twist map. Poincaré’s
last geometric theorem implies that there are periodic orbits of every period.
The Aubry–Mather theorem implies that there are quasiperiodic orbits with
irrational rotation number. Finally, the KAM theorem implies that for billiard
tables that are sufficiently close to circular, there are billiard ball orbits whose
points of collision with the boundary are dense on the boundary. Moreover,
there is an associated “stability” statement that orbits which start close to
tangent with the boundary of the table, stay close to tangent for any table
with sufficiently smooth boundaries(see Birkhoff (1927) and Moser (1973)).

The linear crystal model of Section 8.2.6 gives an exact symplectic mono-
tone twist map on the cylinder. Poincaré’s last geometric theorem and the
Aubry–Mather theorem imply the existence of periodic and quasiperiodic
crystals for any potential function. For sufficiently flat potentials, the KAM
theorem yields one-parameter families of crystals between which there is no
“energy barrier;” i.e., the deposited layer of atoms can slide freely along the
underlying surface (see Aubry and Le Daeron(1983) and Bangert(1988)).

For more applications the reader should consult Conley (1962), Moser
(1973), Arnold and Avez (1968) and Chapter 13.

Further Reading

The study of monotone twist maps has a long history, from Poincaré to
Birkhoff, continuing through Moser, Aubry, and Mather, and many others.
Landmark discoveries such as the Aubry–Mather theorem, have led to flurries
of activity as implications, applications, and alternate views of fundamental
results are worked out. Each wave of activity is eventually distilled into texts
and the interested reader can take advantage of this process by starting with
some of these. For example, Arrowsmith and Place (1990) and Katok and
Hasselblatt (1995) cover monotone twist maps and the Aubry–Mather theo-
rem.
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Problems

1. Show that the billiard map of Section 8.2.5 satisfies the monotone twist
condition.

2. Show that the symplectic map arising in the one-dimensional crystal
model of Section 8.2.6 satisfies the monotone twist condition.

3. Show that an area-preserving map on the closed annulus A is automati-
cally exact symplectic.

4. Suppose f : A → A is an exact symplectic monotone twist map. Let
B = {(x, x′) ∈ R2 : f({(x, y) : y ∈ [0, 1]} ∩ {(x′, y) : y ∈ [0, 1]} 
= ∅}
and define h : B → R by setting h(x, x′) to be the area bounded by
y = 0, {(x′, y) : y ∈ [0, 1]} and f({(x, y) : y ∈ [0, 1]}. Show that
a) h(x+ 1, x′ + 1) = h(x, x′).
b) h is a generating function for f (see Katok (1982)).

5. For f : A → A an exact symplectic monotone twist map, show that the
set of invariant circles is closed (i.e., the union of the invariant circles for
f is a closed set).

6. Complete the proof of the other cases of Lemma 13.5.3 including the
cases noted in the remark at the end of its proof.

7. Show that if Γ is an invariant circle for an exact symplectic monotone
twist map, then all orbits on Γ are monotone.

8. Can a point in A be on more than one invariant circle for an exact
symplectic monotone twist map f : A→ A? If so, how?

9. Suppose f : A → A is an exact symplectic monotone twist map and f
has a 2/5-nonmonotone periodic point. What is the largest interval of
rotation numbers for which f is guaranteed to have no invariant circles?
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restricted 3-body problem, 38–40,
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rotating coordinates, 135–136
rotation number, 361
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self-potential, 28
shadowing lemma, 213
shift automorphism, 208–210
short period family, 220
Sokol’skii normal form, 234, 293,

347–349
spectra, 56–63
spectral decomposition, 99–102
stability/instability
– equilibrium(a), 4, 329–349
– fixed point(s), 349–351
– orbit(s), 321, 326
stable manifold, 202–207
standard family of annulus maps, 357
Stokes’ Theorem, 131
Sundaman’s theorem, 35, 319
symplectic
– basis, 53, 122
– coordinates, 133–137
– exact, 357
– form, 53, 122
– group, 47, 67, 88–91
– infinitesimally, 46
– linear space, 52–56
– matrix, 47–48
– operator, 55
– scaling, 140–144
– subspace, 55
– symmetry, 191
– transformations, 133–145
– with multiplier, 47
symplectically similar, 56
symplectomorphic, 53
symplectomorphism, 180
syzygy, 40, 216, 308

topological equivalent, 177, 180
transversal, 206
transversality conditions, 17
twist condition, 358

varational vector field, 323–325
variational equation(s), 136
variational vector field, 16, 17

wedge product, 119–122

zone of instability, 383
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