
Chapter 9
Analysis of an M/M/c/N Queueing System
with Balking, Reneging, and Synchronous
Vacations

Dequan Yue and Wuyi Yue

Abstract In this chapter, we present an analysis for an M/M/c/N queueing sys-
tem with simultaneous balking, reneging, and synchronous vacations of servers. By
using the blocked matrix method, we obtain the steady-state probability vector pre-
sented by the inverses of two matrices. The computing of the inverses of the two
matrices is discussed. Then, we calculate the steady-state probabilities by using the
elements of the inverses of the two matrices. We also derive the conditional station-
ary distribution of the queue length and waiting time.

9.1 Introduction

Many practical queueing systems, especially those with balking and reneging, have
been widely applied to many real-life problems such as situations involving impa-
tient telephone switchboard customers, hospital emergency rooms’ handling of crit-
ical patients, and perishable goods storage inventory systems. Balking and reneging
are not only common phenomena in queues arising in daily activities, but also in
telecommunication networks and in various machine repair models.

Ke [1] gave an example of the occurrence of balking in the operational model of
WWW servers. An interesting example of the occurrence of balking and reneging
in air defense systems was given in Ancker and Gafarian [2]. For other examples of
articles that address queueing systems which use balking and reneging, interested
readers may refer to [1]– [3], and the references therein.
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Haghighi, Medhi, and Mohanty [4] derived the steady-state probabilities for
multiserver M/M/c queues with balking and reneging. Abou-El-Ata and Hariri [5]
analyzed multiserver M/M/c/N queues where balking and reneging were applied
and derived the steady-state probabilities. Wang and Chang [6] extended this work
to study an M/M/c/N queue with balking, reneging, and server breakdowns. They
derived the steady-state probabilities in matrix form and developed a cost model to
determine the optimal number of servers.

In many real-world queueing systems, servers may become unavailable for a
random period of time when there are no customers waiting in line at a service com-
pletion instant. This random period of server absence, often called a server vacation,
can represent the time when the server is performing some secondary task. Single-
server queueing models with vacations have been studied by many researchers and
have been found to be applicable in analyzing numerous real-world queueing situ-
ations, such as flexible manufacturing systems, service systems, and telecommuni-
cation systems. Several excellent surveys on these vacation models have been done
by Doshi [7], [8] and Takagi [9].

Multiple-server vacation models are more flexible and applicable in practice than
their single-server counterparts. However, there are only a few studies on multiple-
server vacation models in the vacation model literature due to the complexity of
the systems. The M/M/c queue with exponentially distributed vacations was first
studied by Levy and Yechiali [10]. In the system of [10], all the servers take a
vacation together when the system is completely empty. Because all these servers
take vacations simultaneously, these vacations are called “synchronous vacations”.

Tian, Li, and Cao [11] modeled the M/M/c vacation systems of [10] as a
quasi birth-and-death (QBD) process, and presented a more detailed analysis. They
proved several conditional stochastic decomposition results for the queue length and
the customer waiting time. Recently, Zhang and Tian [12] extended the model pre-
sented in [11] by studying an M/M/c queueing system with synchronous vacations
of partial servers. In the system of [12], some servers take vacations when they
become idle and other servers are always available for serving arriving customers.
They call this type of model the “partial server vacation model”.

It may be remarked here that all the studies on multiple-server vacation models
mentioned above assume availability of infinite buffer space in front of the servers.
However, finite buffer queues are more common in certain practical applications.
Yue, Yue, and Sun [13] considered the balking and reneging phenomena in a finite
buffer M/M/c/N queueing system with the same vacation policy as in [12]. They
obtained the steady-state probability vector presented by the inverses of three matri-
ces. However, they did not obtain the explicit expressions for the inverses of these
three matrices.

In this chapter, we consider a special case of the partial-server vacation model
in [13]. We study a finite buffer M/M/c/N queueing system with balking, reneging,
and the same synchronous vacation policy as in [11]. The Markov chain underly-
ing the queueing system in this chapter is a level-dependent quasi birth-and-death
(LDQBD) process. The matrix-geometric solution method applied in [11] and [12]
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cannot be used to obtain the stationary probabilities of the system in this chapter.
The prevailing method applied to obtain the stationary probabilities of a LDQBD
process is to develop some approximations to diminish the level dependence at
higher levels. However, in this chapter, we present a different approach to obtain
the stationary probabilities of the system.

The rest of this chapter is organized as follows. In Sect. 9.2, we give a description
of the queueing model. In Sect. 9.3, we derive the steady-state equations and obtain
the steady-state probability vector presented by the inverses of two matrices with the
blocked matrix method. We also discuss the computing of the inverses of the two
matrices. Then, we calculate the steady-state probabilities by using the elements of
the inverses of the two matrices. In Sect. 9.4, we derive the conditional stationary
distribution of the queue length and waiting time. Conclusions are given in Sect. 9.5.

9.2 System Model

In this chapter, we consider a finite buffer M/M/c/N queueing system with balking,
reneging, and synchronous vacations in all servers. The system capacity is finite N.
The assumptions of the system model are as follows:

(1) Customers arrive according to a Poisson process with arrival rate λ . There are
c servers in the system. The service time for each server is assumed to be dis-
tributed according to an exponential distribution with service rate μ .

(2) If some servers are busy, and some servers are idle, then a customer who on
arrival joins the system will be serviced immediately. If all servers are either
busy or taking a vacation, then a customer who on arrival finds n customers in
the system, either decides to enter the queue with probability bn or balks with
probability 1−bn, 0 ≤ bn+1 ≤ bn < 1, 0 ≤ n ≤ N −1, bN = 0.

(3) All servers take synchronous vacations when the system is completely empty at
a service completion instant. At a vacation completion instant, if the system is
still empty, all the servers take another vacation together; otherwise, they return
to serve the queue. The vacation time is assumed to be exponentially distributed
with mean 1/η .

(4) After joining the queue, in the case where all the servers are occupied each
customer will wait a certain length of time Tr for service to begin before he
gets impatient and leaves the queue without receiving service. This time Tr is
assumed to be distributed according to an exponential distribution with mean
1/α .

(5) The service order is assumed to be on a First-Come First-Served (FCFS)
basis and the interarrival times, service times, and vacations are mutually
independent.



168 D. Yue and W. Yue

9.3 Steady-State Probability

In this section, we first develop steady-state probability equations by using the
Markov process. Then, we derive the steady-state probabilities by using the blocked
matrix method.

9.3.1 Steady-State Equations

Let L(t) be the number of customers in the system at time t and let

J(t) =
{

0, servers are on vacation at time t
1, servers are not on vacation at time t.

Then, {L(t),J(t)} is a Markov process with state space:

Ω = {(i,0) : i = 0,1, . . . ,N}∪{(i,1) : i = 1,2, . . . ,N}.

The steady-state probabilities of the system are defined as follows:

P0(n) = lim
t→∞

P{L(t) = n,J(t) = 0}, n = 0,1, . . . ,N,

P1(n) = lim
t→∞

P{L(t) = n,J(t) = 1}, n = 1,2, . . . ,N.

By applying the Markov process theory, we can obtain the following set of steady-
state probability equations:

s1P1(1)+ v1P0(1) = u0P0(0),

un−1P0(n−1)+ vn+1P0(n+1) = wnP0(n), n = 1,2, . . . ,N −1,

uN−1P0(N −1) = wNP0(N),

ηP0(1)+ s2P1(2) = (s1 + t1)P1(1),

ηP0(n)+ tn−1P1(n−1)+ sn+1P1(n+1) = (sn + tn)P1(n), n = 2,3, . . . ,N −1,

ηP0(N)+ tN−1P1(N −1) = sNP1(N),

N

∑
n=0

P0(n)+
N

∑
n=1

P1(n) = 1,
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where

ui = λbi, i = 0,1, . . . ,N −1,

vi = iα, i = 1,2, . . . ,N,

wi =
{

vi +η+ui, i = 1,2, . . . ,N −1
η+ vN , i = N,

si =
{

iμ , i = 1,2, . . . ,c
cμ+(i− c)α, i = c+1,c+2, . . . ,N,

ti =
{
λ , i = 1,2, . . . ,c−1
λbi, i = c,c+1, . . . ,N −1.

9.3.2 Matrix Solution

In the following, we derive the steady-state probabilities by using the blocked matrix
method. Let

P = (P0(0),P0(1), . . . ,P0(N),P1(1),P1(2), . . . ,P1(N))

be the steady-state probability vector. Then, the steady-state probability equations
above can be rewritten in matrix form as follows:

{
PQ = 0
Pe = 1,

(9.1)

where e = (1,1, . . . ,1)T is a (2N +1)×1 vector, and the transition rate matrix Q of
the Markov process has the blocked matrix structure:

Q =

⎛

⎝
Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎞

⎠ .

Each matrix Qlk (l,k = 1,2,3) is given as follows:

Q11 = (−u0,v1,0, . . . ,0)T , Q31 = (s1,0, . . . ,0)T ,

Q22 = (0,0, . . . ,vN ,−wN), Q23 = (0,0, . . . ,0,η),
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Q12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u0 0 0 · · · 0 0 0
−w1 u1 0 · · · 0 0 0
v2 −w2 u2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −wN−2 uN−2 0
0 0 0 · · · vN−1 −wN−1 uN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q13 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0
η 0 0 · · · 0 0
0 η 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · η 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Q33 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(s1 + t1) t1 0 · · · 0 0 0
s2 −(s2 + t2) t2 · · · 0 0 0
0 s3 −(s3 + t3) · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · sN−1 −(sN−1 + tN−1) tN−1
0 0 0 · · · 0 sN −sN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Q11 and Q31 are N × 1 vectors, Q12, Q13, and Q33 are N ×N matrices, Q22
and Q23 are 1×N vectors, Q21 = 0 is a constant, and Q32 = 0 is an N ×N matrix.

The four submatrices Q11, Q12, Q21, and Q22 give the transition rates during
the vacation period. For example, the submatrix Q12 gives the transition rates from
vacation state (0, i) to vacation state (0, j), i = 0,1, . . . ,N − 1, j = 1,2, . . . ,N. The
two submatrices Q13 and Q23 give the transition rates from a vacation state to a busy
state. For example, the submatrix Q13 gives the transition rates from vacation state
(0, i) to busy state (1, j), i = 0,1, . . . ,N−1, j = 1,2, . . . ,N. The two submatrices Q31
and Q32 give the transition rates from a busy state to a vacation state. The submatrix
Q33 gives the transition rates during the busy period.

In order to solve (9.1) by using the blocked matrix method, we consider comput-
ing the inverses of the matrices Q12 and Q33.

Let ci j be the (i j) element of the inverse matrix Q−1
12 , i, j = 1,2, . . . ,N. Let di j

be the (i j) element of the inverse matrix Q−1
33 , i, j = 1,2, . . . ,N. We then have the

following lemmas.

Lemma 9.1. The matrix Q12 is invertible. For j = 1,2, . . . ,N, the elements of the
inverse matrix Q−1

12 are given by
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ci j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 1,2, . . . , j−1

1
u j−1

, i = j

ki j
1

u j−1
, i = j +1, j +2, . . . ,N,

(9.2)

where ki j is given by the following recursive relations

ki j =
wi−1

ui−1
ki−1 j −

vi−1

ui−1
ki−2 j, i = j +1, j +2, . . . ,N, (9.3)

where k j j = 1 and k j−1 j = 0.

Proof. See Appendix. 
�
Remark 1. For the special case where α = 0 (i.e., no reneging occurs in the system)
the closed-form expression for the Q−1

12 can be obtained from Lemma 9.1. Let α = 0
in Lemma 9.1; then we have the following recursive relation:

ki j =
wi−1

ui−1
ki−1 j, i = j +1, j +2, . . . ,N.

Hence, we get the closed-form expression for ki j as follows:

ki j =
wi−1wi−2 · · ·w j

ui−1ui−2 · · ·u j
, i = j +1, j +2, . . . ,N.

Lemma 9.2. The matrix Q33 is invertible. For j = 1,2, . . . ,N, the elements of the
inverse matrix Q−1

33 are given by

di j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
i

∑
k=1

tktk+1 . . .t j−1

sksk+1 . . .s j
, i = 1,2, . . . , j−1

−
j−1

∑
k=1

tktk+1 . . .t j−1

sksk+1 · · ·s j
− 1

s j
, i = j, j +1, . . . ,N.

(9.4)

The empty summation ∑0
k=1 is defined to be zero.

Proof. See Appendix. 
�
In the following, we derive the steady-state probabilities from (9.1). To accom-

modate the partitioned blocked structure of Q, we partition the steady-state proba-
bility vector into segments accordingly as follows:

P = (P0,P0(N),P1),

where

P0 = (P0(0),P0(1), . . . ,P0(N −1)),

P1 = (P1(1),P1(2), . . . ,P1(N)).
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Theorem 9.1. The segments of the steady-state probability vector are given by

P0 = −P0(N)Q22Q−1
12 , (9.5)

P1 = −P0(N)(Q23 −Q22Q−1
12 Q13)Q−1

33 , (9.6)

where

P0(N) =
{

1−Q22Q−1
12 eN − (Q23 −Q22Q−1

12 Q13)Q−1
33 eN

}−1
(9.7)

and eN = (1,1, . . . ,1)T is an N ×1 vector.

Proof. Based on the partitions of the vector P, (9.1) can be rewritten as

P0Q11 +P1Q31 = 0, (9.8)

P0Q12 +P0(N)Q22 = 0, (9.9)

P0Q13 +P0(N)Q23 +P1Q33 = 0, (9.10)

P0eN +P0(N)+P1eN = 1. (9.11)

From Lemma 9.1 and (9.9), we have

P0 = −P0(N)Q22Q−1
12 . (9.12)

Substituting (9.12) into (9.10), from Lemma 9.2, we have

P1 = −P0(N)(Q23 −Q22Q−1
12 Q13)Q−1

33 , (9.13)

where P0(N) can be obtained as the expression given in (9.7) by substituting (9.12)
and (9.13) into (9.11). This completes the proof of Theorem 9.1. 
�

Theorem 9.2. The steady-state probabilities are given by

P0( j) =
−β j+1

� , j = 0,1, . . . ,N −1, (9.14)

P0(N) = − 1
� , (9.15)

P1( j) = − η�

(

dN j −
N−1

∑
i=1

di jβi+1

)

, j = 1,2, . . . ,N, (9.16)

where

Δ = 1−
N

∑
j=1
β j −η

N

∑
j=1

(

dN j −
N−1

∑
i=1

di jβi+1

)

, (9.17)
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β j =

{
vNcN−1 j −wNcN j, j = 1,2, . . . ,N −1

−wNcNN , j = N,
(9.18)

ci j and di j are given by Lemma 9.1 and Lemma 9.2.

Proof. Define

Q22Q−1
12 = (β1,β2, . . . ,βN). (9.19)

Then, from Lemma 9.1, β j ( j = 1,2, . . . ,N) can be obtained as the expression given
in (9.18). Note that

Q22Q−1
12 Q13 = η(β2,β3, . . . ,βN ,0);

we have

Q23 −Q22Q−1
12 Q13 = −η(β2,β3, . . . ,βN ,−1). (9.20)

Then, from Theorem 9.1, (9.19) and (9.20), we can derive (9.14)–(9.17). This com-
pletes the proof of Theorem 9.2. 
�

9.3.3 Some Special Cases

In the following, we present some special cases of our model. Some of them are
existing models in the literature.

(1) If η = ∞ (i.e., the servers do not take vacations) and

bn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 0 ≤ n ≤ c

β
(

1− 1
N

(n− c+1)
)

(n− c+2)m , c ≤ n ≤ N,

then our model becomes the model studied by Abou-El-Ata and Hariri [5]:
M/M/c/N queue with balking and reneging.

(2) If α = 0 (i.e., customers do not renege), then our model becomes the model
M/M/c/N queue with balking and synchronous vacation of all servers.

(3) If N =∞, α = 0, and bi = 1, i = 0,1, . . . (i.e., customers do not balk or renege),
then our model becomes the model studied by Tian et al. [11]: M/M/c/∞ queue
with synchronous vacation of all servers.

(4) If c = 1, then our model becomes the model studied by Yue et al. [14]: M/M/1/N
queue with balking, reneging, and multiple vacations.
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9.4 Conditional Distributions of Queue Length
and Waiting Time

In an M/M/c multiple-server vacation system, Tian et al. [11] investigated the con-
ditional stationary distribution of the queue length and waiting time under the con-
dition when all servers are busy. They presented in such a system a conditional
stochastic decomposition property for steady-state queue length and waiting time.
In this section, we derive the conditional stationary distribution of the queue length
and waiting time for the system studied in this chapter.

Let P(Qc = j), j = 0,1, . . . , N − c, represent the conditional stationary distribu-
tion of the queue length given that all servers are busy. It is given in the following
theorem.

Theorem 9.3. The conditional stationary distribution of the queue length is given
by

P(Qc = j) =

dN j+c −
N−1

∑
i=1

di j+cβi+1

N

∑
j=c

(

dN j −
N−1

∑
i=1

di jβi+1

) , j = 0,1, . . . ,N − c, (9.21)

where di j and β j are given in Lemma 9.2 and (9.18), respectively.

Proof. From Theorem 9.2, the probability that all servers are busy is

N

∑
j=c

P1( j) = −η
Δ

N

∑
j=c

(

dN j −
N−1

∑
i=1

di jβi+1

)

. (9.22)

Note that

P(Qc = j) =
P1( j + c)
∑N

j=c P1( j)
, j = 0,1, . . . ,N − c (9.23)

and substituting the probability given in (9.22) and the probability P1( j) given by
Theorem 9.2 into (9.23), we can get the conditional distribution of the queue length
given by (9.21). 
�

In the following, we consider the conditional distribution of the waiting time
under the condition that all servers are busy when a customer on arrival joins the
queue.

Let B j represent the event that there are j customers in front of the new customer
who on arrival joins the queue, and all the servers are busy. Under the assumption B j,
the c customers are in service and the other j− c customers are waiting for service.
Let Tj be the time remaining until the number of customers j diminishes by j− 1
because of the completion of a customer’s service or a customer’s reneging, j = c,



9 Analysis of an M/M/c/N Queueing System 175

c+1, . . . , N −1. Because both the service time and the waiting time of a customer
before he reneges are exponentially distributed, Tj is exponentially distributed with
the distribution function given by

Hj(t) = 1− e−θ jt , t ≥ 0, j = c,c+1, . . . ,N −1 (9.24)

and the Laplace-Stieltjes transformation (LST) given by

H∗
j (s) =

θ j

θ j + s
, s ≥ 0, j = c,c+1, . . . ,N −1, (9.25)

where θ j = cμ+( j− c)α , j = c, c+1, . . . , N −1. It is easy to see that the random
variables Tc, Tc+1, . . . , TN−1 are mutually independent because of the “no memory”
property of the exponential distribution.

Let γ j = P(Tr > Tj +Tj−1 + · · ·+Tc) andΦ j(t) = P(Tj +Tj−1 + · · ·+Tc ≤ t), j =
c, c+1, . . . , N−1. Then, γ j is the probability that the new customer on arrival joins
the queue and waits in the queue until he acquires service under the condition B j.
We then have the following lemma.

Lemma 9.3.

γ j =
cμ

cμ+( j +1− c)α
, j = c,c+1, . . . ,N −1 (9.26)

and

Φ j(t) = 1−
j

∑
k=c
δ jke−δ jkt , j = c,c+1, . . . ,N −1, t ≥ 0, (9.27)

where

δ jk =
j

∏
i=c,i 	=k

θi

θi −θk
, k = c,c+1, . . . , j, j = c,c+1, . . . ,N −1. (9.28)

Proof.

γ j = P(Tr > Tj +Tj−1 + · · ·+Tc)

= P(Tr > Tj)P(Tr −Tj > Tj−1 +Tj−2+ · · ·+Tc|Tr > Tj)

= P(Tr > Tj)P(T̃r > Tj−1+Tj−2 + · · ·+Tc), j = c,c+1, . . . ,N −1, (9.29)

where T̃r = [Tr −Tj|Tr > Tj] has the same exponential distribution as Tr because of
the “no memory” property of the exponential distribution. It is easy to see that

P(Tr > Tj) =
θ j

θ j +α
. (9.30)

Hence, by the recursive relation of (9.29), we get the first result of Lemma 9.3.
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Note that the random variables Tc, Tc+1, . . . ,TN−1 are mutually independent.
Φ j(t) has the LST as follows:

Φ∗
j (s) =

j

∏
k=c

H∗
k (s). (9.31)

Substituting (9.25) into (9.31), we get

Φ∗
j (s) =

j

∏
k=c

θk

θk + s

=
j

∑
k=c
δ jk

θk

θk + s
, j = c,c+1, . . . ,N −1. (9.32)

Taking the reverse of the LST for the two sides of (9.32), we get the second result
of Lemma 9.3. 
�

Let Wc(t) represent the distribution of the conditional waiting time given that
all the servers are busy when a customer on arrival joins the queue. Let q j be the
stationary probability that there are j customers in the system under the condition
that all the servers are busy when a customer on arrival joins the queue. Note that
b jP1( j) represents the probability that there are j customers in the system when a
customer on arrival joins the queue. It is easy to see that

q j =
b jP1( j)

∑N−1
j=c b jP1( j)

, j = c,c+1, . . . ,N −1, (9.33)

where P1( j) is given by Theorem 9.2.
Next, we have the following theorem.

Theorem 9.4. The distribution of the conditional waiting time is given by

Wc(t) = 1−
N−1

∑
j=c

q jγ j

j

∑
k=c
δ jke−δ jkt −

N−1

∑
j=c

q j(1− γ j)e−αt , (9.34)

where γ j , δ jk , and q j are given by (9.26), (9.28), and (9.33), respectively.

Proof. The conditional waiting time has the following distribution:

Wc(t) =
N−1

∑
j=c

q jP(W ≤ t|B j), (9.35)

where W represents the waiting time and B j represents the event that there are j
customers in front of the new customer who on arrival joins the queue, and all the
servers are busy. Let F1 and F2 be the events that the customer either reneges or
does not renege when the customer on arrival joins the queue, respectively. Then,
we have
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P(W ≤ t|B j) = P(F1|B j)P(W ≤ t|B j,F1)+P(F2|B j)P(W ≤ t|B j,F2)

= (1− γ j)(1− e−αt)+ γ jΦ j(t). (9.36)

Thus, by Lemma 9.3, we get the result of Theorem 9.4. 
�

Remark 2. Based on Theorem 9.2, we can obtain some other performance measures
such as the expected number of customers in the system, the expected number of
servers that are busy, the average rate of customer loss due to impatience, and so on.
The stationary distribution of waiting time can also be obtained from conditioning
on every state (i, j) ∈ Ω . However, these performance measures and the stationary
distribution have very complex expressions. Hence, we have omitted the details from
this discussion.

9.5 Conclusions

In this chapter, we studied a finite buffer M/M/c/N queueing system with balking,
reneging, and the synchronous vacations of all servers. By using the blocked-matrix
method, we obtained the steady-state probabilities by using the elements of the in-
verses of two matrices and derived the conditional stationary distribution of the
queue length and waiting time.

Tian et al. [11] and Zhang and Tian [12] proved several conditional stochastic
decomposition results for the queue length and customer waiting time. These re-
sults can be used to compare the M/M/c vacation system with its classical M/M/c
queueing system. Due to the complexity of the formulas, at present, we have not
investigated the conditional stochastic decomposition for the queue length and cus-
tomer waiting time for the model in this chapter.
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Appendix

Proof of Lemma 9.1. Let X j = (c1 j,c2 j, . . . ,cN j)T , j = 1,2, . . . ,N, be the jth col-
umn vector of the inverse matrix Q−1

12 , and let ε j = (0, . . . ,1, . . . ,0)T be the jth unit
column vector; then we have

Q12X j = ε j, j = 1,2, . . . ,N. (9.37)
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For j = 1,2, . . . ,N, (9.37) can be rewritten as the following set of equations,

vi−1ci−2 j −wi−1ci−1 j +ui−1ci j = 0, i 	= j, i = 1,2, . . . ,N, (9.38)

vi−1ci−2 j −wi−1ci−1 j +ui−1ci j = 1, i = j, (9.39)

where c0 j and c−1 j are defined to be zero. Repeating the use of (9.38) gives

ci j = 0, i = 1,2, . . . , j−1. (9.40)

Substituting (9.40) into (9.39) yields

c j j =
1

u j−1
. (9.41)

From (9.38), we have

ci j =
wi−1

ui−1
ci−1 j −

vi−1

ui−1
ci−2 j, i = j +1, j +2, . . . ,N. (9.42)

In (9.42), we let

ci j = ki j
1

u j−1
, i = j +1, j +2, . . . ,N, (9.43)

and substitute (9.43) into (9.42), so we get the recursive relations given by (9.3) for
ki j. This completes the proof of Lemma 9.1. 
�
Proof of Lemma 9.2. Let Yj = (d1 j,d2 j, . . . ,dN j) be the jth column vector of the
inverse matrix Q−1

33 , then we have

Q33Y j = ε j, j = 1,2, . . . ,N. (9.44)

For j = 1,2, . . . ,N, (9.44) can be rewritten as the following set of equations:

−s1d1 j − t1(d1 j −d2 j) = 0, (9.45)

si(di−1 j −di j)− ti(di j −di+1 j) = 0, i = 1,2, . . . ,N −1, i 	= j, (9.46)

s j(d j−1 j −d j j)− t j(d j j −d j+1 j) = 1, (9.47)

sN(dN−1 j −dN j) = 0. (9.48)

Equation (9.46) can be rewritten as the following recursive relation:

di−1 j −di j =
ti
si

(di j −di+1 j), i = 1,2, . . . ,N −1, i 	= j. (9.49)

From (9.48) and (9.49), we get

di j = d j j, i = j +1, j +2, . . . ,N. (9.50)
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In (9.50), we let i = j +1 and then substitute it into (9.47), so we get

d j−1 j −d j j =
1
s j

. (9.51)

Using (9.51) and repeating the use of the recursive relation (9.49) gives

di−1 j −di j =
titi+1 · · · t j−1

sisi+1 · · ·s j
, i = 2,3, . . . , j−1. (9.52)

In (9.52), we let i = 2 and then substitute it into (9.45), so we get

d1 j = − t1t2 · · · t j−1

s1s2 · · ·s j
. (9.53)

Note that

di j = d1 j −
i

∑
k=2

(dk−1 j −dk j), i = 2,3, . . . , j−1, (9.54)

and then substituting (9.52) and (9.53) into (9.54), we get

di j = −
i

∑
k=1

tktk+1 · · · t j−1

sksk+1 · · ·s j
, i = 2,3, . . . , j−1. (9.55)

In (9.55), we let i = j−1 and then substitute it into (9.51) and use (9.50), so we get
the results of Lemma 9.2. 
�
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