
Chapter 8
Performance Analysis of a Two-Station
MTO/MTS Production System

Kuo-Hwa Chang and Yang-Shu Lu

Abstract We consider a two-station hybrid MTO/MTS production system with
random ordinary and specific demands, in which the first station is a MTS sys-
tem providing the finished standard products for ordinary demands. These finished
products also serve as the semi-finished products to specific demands. The second
station performs some additional work on the standard products for specific de-
mands. In our system, the MTS system is controlled under the base-stock policy. To
evaluate the system, we consider the fill rate of the ordinary demands and the re-
sponse time of the specific demands. Our objective is to study the relation between
base-stock level and the fill rate of the ordinary demands and the response time of
the specific demands. We analyze our system by modeling it as an inventory-queue
system. Based on these analyses, we can determine the optimal base-stock level
numerically under the constraints on the fill rate of the ordinary demands and the
response time of the specific demands.

8.1 Introduction

Traditionally, a production system can be distinguished into make-to-order (MTO)
or make-to-stock (MTS) systems. MTO products are usually made to customer spec-
ifications as nonstandard and custom products, however, MTS products are standard
and delivered from inventory (stock). That is, a MTS production stocks the finished
products in advance whereas a MTO system starts producing only when it receives
orders from the demand. Assembly manufacturing plays a very important role in the
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global supply chain of consumer products, such as laptop computers. Assemblers,
in addition to fulfilling the ordinary demands for the standard products by adopt-
ing MTS production, are often asked to take care of the specific demands for the
custom products and to adopt MTO production. In usual cases, ordinary demands
are the planned orders and should be satisfied immediately, however, there is a time
window for the specific demand.

To the assembler, it is not profitable to maintain a solo MTO production line
exclusively for the specific demand. In some case, custom products share almost
all the parts of the standard products, therefore, the assembler usually considers
embedding the MTO lines into the mainstream MTS lines, which become a hybrid
production system. The corresponding design and the control issues for the hybrid
lines are important to management.

In this chapter, we assume the custom products can be made by alternating the ex-
isting standard ones with little work. We consider a two-station hybrid MTO/MTS
production system (see Fig. 8.1) with random ordinary and specific demands, in
which the first station (station 1) is a MTS system providing the finished standard
products for the ordinary demands. There is a base-stock level for the finished stan-
dard products.

These standard products also serve as semi-finished products to the specific de-
mands collected at station 2 where the additional work on the finished standard
product is performed to fulfill the corresponding specific demands.

When an ordinary demand arrives at station 1, if there are finished standard prod-
ucts, it will take one of them and leave and, at the same time, this satisfied ordinary
order will send a production order to station 1 for a new standard product; if there
are no finished products, this ordinary demand will be lost. When a specific order
arrives, it will send a request (order) to station 1 for acquiring a finished standard

Fig. 8.1 Two-station MTO/MTS hybrid system.
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product in stock and, at the same time, station 1 will also send a production or-
der to itself for producing another new standard product; if it obtains a finished
standard product, then this order along with the corresponding finished product will
become a combined order and will enter station 2 on a First-Come First-Served
(FCFS) basis for the additional work.

Among the research on hybrid systems, Soman, van Donk, and Gaalman [1]
review the studies on the hybrid MTO/MTS production and mention that such sys-
tems can often be seen in the food industry. Krishnamurthy, Suri, and Vernon [2] use
simulation to analyze a MTO/MTS hybrid system in which a base-stock controlled
MTS production system supplies finished product to multiple MTO production
systems. It also compares the performance of MRP and Kanban for a multistage,
multiproduct manufacturing system. Adan and Ven der Wal [3] present two single-
station systems.

The first system deals with MTS and MTO demands with base-stock control.
Production is pre-empted by the MTO demand. The second system deals with the
specific demands with base-stock control for the semi-finished products. Production
is in two phases. The first phase is to produce semi-finished products and the second
phase is to perform the further work on the semi-finished products in stock accord-
ing to specific demands. Nguyen [4] considers a single-station hybrid production
system for multiple MTS orders and multiple MTO orders. MTS orders are satisfied
from the inventory controlled by base-stock policy and they are lost if there is no
inventory. He models it as a mixed queueing network and approximates the perfor-
mances under heavy traffic conditions by using the corresponding limiting theorem.
Federgruen and Katalan [5] consider a single-station system producing some MTS
products and one MTO product.

For the MTS products the base-stock policies with general periodic sequence
are considered. By using an M/G/1 model with vacations, the impacts of various
priority rules for the MTO products are studied. Carr and Duenyas [6] consider a
single-station hybrid production system for the MTS order and MTO order. The
MTS orders are satisfied from the finished-product inventory. There is no backorder
for the MTS order and unsatisfied MTS orders are lost. They apply admission con-
trol on the MTO orders and sequencing on jobs at the workstation. They use the
Markov decision process to find an optimal policy to maximize the average profit
rate and obtain the corresponding switching curves. Arreola-Risa and DeCroix [7]
consider a single-station system producing multiple products with base-stock in-
ventory policies. They study the optimality conditions to decide which products are
make-to-stock and which are make-to-order (with base-stock level zero) in order to
have the minimum average cost per unit and minimum average cost rate per unit, re-
spectively. Rajagopalan [8] also considers a single-station system for the MTS order
and MTO order.

The inventory control policy for the MTS products is a (q,r) policy. Production
orders for both MTS and MTO items are served on a FCFS basis. The objective is
to partition the MTO/MTS items in order to minimize the inventory costs of MTS
products while satisfying the constraint that the percentage of orders of MTO prod-
ucts fulfilled within lead time must be over a prespecified service level. The system
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is modeled as an M/G/1 system. The corresponding optimization problem is mod-
eled as a nonlinear integer program and is solved by a heuristic procedure.

To evaluate our system, we consider the fill rate (on the other side, the loss rate)
of the ordinary demands and the in-time rates for the specific demands. In-time
rates are defined as the probability that the waiting times of specific demands in the
system, called the response times, are less than the predetermined lead time. Our
system is analyzed by modeling it as an inventory-queue system. For studying the
fill rate of the ordinary demands, we consider station 1 separately. We model it as
an inventory queue with two classes of demands: ordinary demands and specific de-
mands. By assuming the Markovian property, the limiting probabilities are obtained
and the corresponding fill rate under base-stock control policy can also be obtained.
For studying the response time for the specific demand, we study the recursive equa-
tions for approximating the response times. From these recursive equations, we can
express the response times from their preceding demands and, furthermore, we can
estimate the approximated distribution of the response time of specific demands.
Combining the above analyses, we can further determine the optimal base-stock
level under the constraints on the fill rate of the ordinary demands and the in-time
rates for the specific demands according to some cost structure. We call the require-
ments on the fill rate for ordinary demands and the in-time rate for specific demands
the corresponding required qualities of services.

The remainder of this chapter is organized as follows. In Sect. 8.2, we present
the inventory-queue model of our hybrid system. Our model is analyzed and the
closed-form expressions for the fill rate and the distribution of the response times
are obtained. In Sect. 8.3, we verify our approximations obtained in Sect. 8.2 and
present some numerical examples. We conclude our study in Sect. 8.4.

8.2 Model Description

We consider a two-station hybrid production system in which the ordinary demands
arrive at station 1 according to a Poisson process with rate λo and specific demands
arrive at station 2 according to a Poisson process with λs. We assume the exponential
service times at each station with respective rates μ1 and μ2. Station 1 (MTS system)
is controlled under the base-stock policy with base-stock level S.

Let B1 be the number of production orders for standard products in the queue or
under processing at station 1; B2 be the number of orders from specific demands at
the end of station 1; B3 be the number of specific demands waiting in the demand
queue at the end of station 2; N1 be the number of finished standard products in
stock at station 1; and N2 be the number of combined orders in the queue or under
processing at station 2. Note that only one of N1 and B2 can be positive. We have
the following relations.
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Proposition 8.1.
B3 = B2 +N2, (8.1)

B1 +N1 −B2 = S. (8.2)

Proof. Relation (8.1) is well-known for a base-stock system. In fact, (8.2) is true
for a base-stock system with only one kind of demand. Before we prove (8.2) by
induction, we discuss the changes on B1, B2, and N2 after any state transition. We
first consider the case when N1 > 0 (B2 = 0). In this case, if a demand arrives,
whether it is a specific demand or an ordinary demand, N1 will be decreased by
1 and B1 will be increased by 1, however, B2 is still zero and (8.2) still holds; if a
standard product is produced, then B1 will be decreased by 1 but N1 will be increased
by 1.

Now we consider the case when N1 = 0 (B2 ≥ 0). In this case, there will be no
arriving ordinary demands that can be satisfied. If a specific demand arrives, both
B1 and B2 will be increased by 1; if a standard product is produced and B2 = 0 then
B1 will be decreased by 1 but N1 will be increased by 1; if a standard product is
produced and B2 > 0 then B1 will be decreased by 1 but B2 will decrease by 1, and
N1 is still zero. All the changes mentioned above still make (8.2) hold.

We now prove (8.2) by induction on state transitions. Initially, N1 = S, B1 = 0,
and B2 = 0. After the first transition, (8.2) still holds from the assertion for the case
N1 > 0. Suppose that, after the kth transition (8.2) holds, then (8.2) will still hold
after the (k +1)st transition based on the above assertions.

For the fill rate of the ordinary demands, we consider the subsystem correspond-
ing to station 1. Let the state be (m,n) where m denotes the number of finished
standard products at station 1 and n denotes the number of orders from specific
demands in stock at the end of station 1. That is, m = N1 and n = B2. The possible
states are actually (m,0) where 0≤m≤ S and (0,n) for all n≥ 0. The corresponding
transition rate diagram is shown in Fig. 8.2. Note that if l is the number of produc-
tion orders for the standard products in the queue or under processing, then, from
(8.2), we have l = n−m + S. Our objective here is to find the fill rate, denoted by
Pf , for the ordinary demands and the corresponding effective arrival rate, denoted
by λe, where λe = Pfλo.

Define P(m,n) to be the limiting probability of state (m,n); then the balance
equations are as follows:

(λs +λo)P(S,0) = μ1P(S−1,0) ,

(λs +λo +μ1)P(m,0) = μ1P(m−1,0)+(λs +λo)P(m+1,0) , 1 ≤ m ≤ S−1,

(λs +μ1)P(0,0) = (λs +λo)P(1,0)+μ1P(0,1) ,
(λs +μ1)P(0,n) = λsP(0,n−1)+μ1P(0,n+1) , 1 ≤ n ≤ ∞.
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Fig. 8.2 State transition diagram for a two-station MTO/MTS hybrid system.

We have the further expressions for any P(m,n).

P(m,0) =
(
λs +λo
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P(S,0) , 0 ≤ m ≤ S−1,
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P(S,0) , 1 ≤ n ≤ ∞.

By the law of total probabilities,
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Let LN1 denote the expected number of finished standard products in stock and
LB2 be the expected number of orders from specific orders at the end of station 1;
then Pf , LN1 , and LB2 can be obtained as follows:
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Because we want to find the base-stock levels where the predetermined qualities
of services can be satisfied, we should look at the limiting behaviors of the fill rate,
LN1 and LB2 as S goes to infinity. We need to study them in two cases: λs +λo < μ1
and λs + λo ≥ μ1. After some algebra, the limits are found and presented in the
following theorem.
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Proposition 8.2. As S → ∞,

(a) If λs +λo < μ1, then

Pf → 1, (8.7)
LN1 → ∞, (8.8)
LB2 → 0. (8.9)

(b) If λs +λo ≥ μ1, then

Pf →
μ1 −λs

λo
, (8.10)

LN1 →

λs +λo

μ1(
λs +λo

μ1
−1

)((
λs +λo

μ1

)

+
(

λs

μ1 −λs

)(
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μ1
−1

)) , (8.11)

LB2 →
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)

((
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)

−
(
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))(
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(
λs

μ1

)) . (8.12)

Proof. The proofs for the results in part (a) are straightforward and they are omit-
ted. For part (b), we only prove the convergence of (8.10). The proofs on the con-
vergences of the other two can be conducted in the similar way. The term on the
right side of (8.4) can be rewritten in terms of ρ = (λo +λs)/μ1 and ρs = λs/μ1 as
follows:

(1−ρS)/(1−ρ)
(1−ρS+1)/(1−ρ)+ρsρS/(1−ρs)

. (8.13)

After applying l’Hôpital’s rule, it can be shown that (8.13) converges to

−1/(1−ρ)
−ρ/(1−ρ)+ρs/(1−ρs)

(8.14)

which can be simplified to (μ1 −λs)/λo.

According to Proposition 8.2, when the capacity of the workstation is large
enough to handle all the traffic, the fill rate will converge to 1 and the expected
number of the order from specific demands at the end of station 1 will converge to
zero as the base-stock level increases to infinity. This implies that, in the case of
λs +λo < μ1, we are able to find a base-stock level to satisfy the predetermined ser-
vice qualities. When the capacity of the workstation is not enough to handle all the
traffic, all of these three converge to constants as we increase the base-stock level.
Equation (8.10) implies λe converges to μ1−λs. Note that the specific demands will
eventually be served. This means that the maximal capacity that the system can offer
to the ordinary demands is the residual capacity, μ1 −λs. In this case,(μ1 −λs)/λo
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can be considered as the upper bound of the fill rate and it can be used to check
the feasibility of the system. Also note that, in this case, although both LN1 and LB2
converge to constants, from (8.2) the expected number of production orders for stan-
dard products in front of station 1 will go to infinity as the base-stock increases to
infinity.

Let LB1 be the expected number of production orders for standard products in
front of station 1. From Proposition 8.1 and 8.2 we have the following limiting
results for LB1 for the case λs + λo < μ1. Note that LB1 will diverge when λs +
λo ≥ μ1.

Proposition 8.3. If λs +λo < μ1,

LB1 →
(λs +λo)/μ1

1− (λs +λo)/μ1
, as S → ∞. (8.15)

It is intuitive that the right term in (8.15) is the expected number of customers in
the system in an M/M/1 queue because all the ordinary demands will be satisfied as
the stock level becomes large and the arrival rates of the production orders from the
ordinary demands will be λo. For studying the response time of the specific demand,
we consider the case when λs +λo < μ1.

We first express the respective response times at both stations by the recursive
equations. Note that when a specific order arrives, it will wait for its custom product
by sending an order (request) to the inventory of station 1 for a finished product, and,
at the same time, station 1 will also send a production order to itself for a standard
product.

Let {An,n = 1,2, ....} be the arrival process of the specific demands, where An
denotes the arrival time of the nth specific demand. Let Un be the interarrival time
between the nth and (n−1)st arrivals; then, by our assumptions, Uns are i.i.d. expo-
nential random variables with rate λs. Note that {An,n = 1,2, ....} is also the arrival
process of orders at the end of station 1. Let {A′

n,n = 1,2, ....} be the arrival process
of production orders for the standard products in front of station 1. Note that these
orders can be initiated by either specific demands or satisfied ordinary demands. Let
U ′

n be the interarrival time between the nth and (n− 1)st arrivals and we approxi-
mate U ′

ns as i.i.d. exponential random variables with rate λs +λe. Suppose that there
are already d satisfied ordinary demands that left the system when the nth specific
order arrives; then An = A′

n+d .
If the response time at station 1 of the nth specific order is positive, then it means

that when the nth specific order arrives, there are no finished standard products avail-
able and it will wait for the product made by the n+d−S production orders for the
standard products. And, before it obtains this standard product, there will be no
other ordinary demands that can be satisfied. Therefore, in this case, the response
time of the nth specific demand at station 1, denoted by R1

n, is

R1
n = A′

n+d−S +W ′
n+d−S −A′

n+d

= W ′
n+d−S −

n+d

∑
k=n+d−S+1

U ′
n, (8.16)
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where W ′
n is the waiting time in the system of the nth production order for a stan-

dard product at station 1. We approximate the underlying queueing system of W ′
ns

by an M/M/1 queue with arrival rate λs + λe and service rate μ1. Also note that
∑n+d

k=n+d−S+1U ′
n is distributed as a gamma distribution with parameters S and λs +λe.

Therefore, for t > 0, the density function for the response time, denoted by fR1(t),
can be obtained as

fR1 (t) =
∫ ∞

ν=0

(λs +λe)
S νS−1

(S−1)!
e−(λs+λe)υ (μ1 − (λs +λe))e−(μ1−(λs+λe))(ν+t)dν

=
(
λs +λe

μ1

)S

(μ1 − (λs +λe))e−(μ1−(λs+λe))t , t > 0.

Furthermore, the probability that the response time is zero, denoted by P(R1 = 0),
is equal to

1−
(
λs +λe

μ1

)S

. (8.17)

Let R2
n denote the response time of the nth specific demand at station 2 and W 2

n
denote the waiting time in system of the nth combined order at station 2; then

R2
n = R1

n +W 2
n .

The arrival process of the combined orders to station 2 is not a Poisson process,
thus we consider the queueing system corresponding to the combined orders at sta-
tion 2 as a GI/M/1 queue. The waiting time in system of a combined order, denoted
by W 2, has the density

fW 2(t) = μ2(1−α)e−μ2(1−α)t , t ≥ 0,

where α is a solution of α = F∗(μ2(1−α)) and F∗ is the Laplace transform of
the interarrival time of a combined order to station 2 (see Kulkarni [9]). Because
departures from station 1 may be triggered by ordinary demands or specific de-
mands and only the departing specific demands will enter station 2, we approximate
the arrival process to station 2 as the departure process of an M/M/1 base-stock
inventory-queue with arrival rate λs and service rate μ1. Form Buzacott, Price, and
Shanthikumar [10], we have

F∗(τ) =
(
1− (λs/μ1)S+1) λs

λs + τ
+(λs/μ1)S−1 μ1

μ1 + τ
− (λs/μ1)S−1

·
(
1− (λs/μ1)2) λs +μ1

λs +μ1 + τ
.

The density of the response time of a specific demand is then

fR2 (t) =
∫ t

ν=0
fR1 (ν) fW 2 (t −ν)dν+P(R1 = 0) fW 2 (t) .
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We assume the independence of the response time at station 1 and the waiting time
in the system at station 2. After some algebra we have, for t > 0,

fR2(t) =

(

1−
(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

))

· (μ2(1−α))e−μ2(1−α)t +
(
λs +λe

μ1

)S

(μ1 − (λs +λe))

· μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

e−(μ1−(λs+λe))t (8.18)

and the expected response times of specific demands

E[R2] =
∫ ∞

0
t fR2(t)dt

=
1−

(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

)

(μ2(1−α))

+

(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

)

μ1 − (λs +λe)
.

Finally, we have a closed form for the c.d.f of R2 as follows:

FR2(u) =
∫ u

0
fR2(t)dt

=

(

1−
(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

))(
1− e−μ2(1−α)u

)

+
(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

)

·
(

1− e−(μ1−(λs+λe))u
)

. (8.19)

Note that if T is our maximal lead time for a specific demand, then FR2(T ) will be
the corresponding in-time rate.

8.3 Numerical Results

In this section, we conduct numerical studies to verify our results and we are then
interested in finding an optimal base-stock level to minimize the total cost subject
to the requirements on the fill rate and in-time rate. Based on our results of the
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closed-form expressions for the fill rate (8.4) and in-time rate (8.19), we first verify
our results by comparing our results and the results from simulations through exam-
ples (Examples 8.1 and 8.2). Note (8.4) can be expressed in terms of ρs = λs/μ1 and
ρo = λo/μ1. In the following example, we test our fill rate results with the results
from simulations based on various ρs and ρo.

Example 8.1. We consider four cases with ρs = 0.5 and 0.3 and ρ0 = 0.2 and 0.4
under three base-stock levels, 1, 2, and 3, to verify our results on the fill rate, Pf . The
comparison results are shown in Table 8.1. Our results (indicated by “Approx.”) and
those obtained from simulations (indicated by “Sim.”) are very close to each other.

In the next example, we verify our approximations (indicated by “Approx.”) on
in-time rates with the results from simulations (indicated by “Sim.”).

Example 8.2. Let λo = 0.05, λs = 0.02, μ1 = 0.1, and μ2 = 0.075. We assume that
the requested lead time of the specific demand is 70. The comparisons between
the results obtained from our approximations for the in-time rate and the expected
response time E[R2] on S = 1,2,3,4,5, and 6 are shown in Table 8.2.

In the following two examples, we verify our limiting results on Pf , LN1 , and LB2
obtained from Proposition 8.2. According to Proposition 8.2, we discuss this matter
in two cases: λs +λo < μ1 in Example 8.3 and λs +λo ≥ μ1 in Example 8.4.

Example 8.3 (λs +λo < μ1). Let λo = 5, λs = 3, μ1 = 10, and μ2 = 11. The results
on various base-stock levels S are shown in Table 8.3. As we can see, Pf converges
to 1; LN1 is getting large and LB2 converges to zero.

Table 8.1 Comparison results on fill rates Pf of ordinary demands on various ρs and ρo.

ρo S ρs ρo S ρs

0.5 0.3 0.5 0.3

0.2 1 Sim. 0.4153 0.5850 0.4 1 Sim. 0.3573 0.4999
Approx. 0.4167 0.5833 Approx. 0.3571 0.5000

2 Sim. 0.6342 0.8082 2 Sim. 0.5400 0.7078
Approx. 0.6343 0.8077 Approx. 0.5398 0.7083

3 Sim. 0.7670 0.9073 3 Sim. 0.6505 0.8176
Approx. 0.7615 0.9074 Approx. 0.6502 0.8172

Table 8.2 Comparison results on in-time rates and mean response times.

In-Time Rate E[R2]
S Sim. Approx. S Sim. Approx.

1 0.941 0.940 1 26.539 26.565
2 0.943 0.938 2 25.371 25.533
3 0.944 0.942 3 24.338 24.340
4 0.951 0.948 4 22.954 23.138
5 0.953 0.953 5 22.046 22.051
6 0.962 0.960 6 21.040 21.132
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Table 8.3 Pf , LN1 , and LB2 on various base-stock levels (λo = 5, λs = 3, μ1 = 10, μ2 = 11).

S Pf LN1 LB2 LB1 S Pf LN1 LB2 LB1

1 0.466 0.466 0.228 0.762 11 0.973 7.823 0.011 3.188
2 0.663 1.031 0.144 1.113 12 0.979 8.702 0.008 3.306
3 0.769 1.652 0.098 1.446 13 0.983 9.596 0.007 3.411
4 0.834 2.316 0.070 1.754 14 0.987 10.506 0.005 3.499
5 0.877 3.016 0.052 2.036 15 0.989 11.427 0.004 3.577
6 0.907 3.750 0.039 2.289 16 0.991 12.361 0.003 3.642
7 0.929 4.515 0.030 2.515 17 0.993 13.304 0.002 3.698
8 0.945 5.307 0.023 2.716 18 0.994 14.255 0.002 3.747
9 0.957 6.124 0.018 2.894 40 0.996 15.214 0.002 3.996
10 0.966 6.963 0.014 3.051 60 0.996 16.179 0.001 4.000

Table 8.4 Pf , LN1 , and LB2 on various base-stock levels (λo = 20, λs = 7, μ1 = 10, μ2 = 11).

S Pf LN1 LB2 LB1 S Pf LN1 LB2 LB1

1 0.100 0.100 2.100 3.000 11 0.150 0.238 1.983 12.745
2 0.132 0.167 2.025 3.858 12 0.150 0.238 1.983 13.745
3 0.143 0.204 1.998 4.794 13 0.150 0.238 1.983 14.745
4 0.147 0.223 1.988 5.765 14 0.150 0.238 1.983 15.745
5 0.149 0.231 1.985 6.754 15 0.150 0.238 1.983 16.745
6 0.149 0.235 1.984 7.749 16 0.150 0.238 1.983 17.745
7 0.149 0.237 1.983 8.746 17 0.150 0.238 1.983 18.745
8 0.150 0.237 1.983 9.746 18 0.150 0.238 1.983 19.745
9 0.150 0.238 1.983 10.745 19 0.150 0.238 1.983 20.745
10 0.150 0.238 1.983 11.745 20 0.150 0.238 1.983 21.745

Example 8.4 (λs +λo ≥ μ1). Let λo = 20, λs = 7, μ1 = 10, and μ2 = 11. The situa-
tions with various base-stock levels S are in Table 8.4. Pf , LN1 , and LB2 all converge
to the same constants as estimated in Proposition 8.2.

After verifying our estimations on the fill rate and in-time rate, in the next ex-
ample we implement our results in finding the feasible base-stock levels where both
requirements on the fill rate and in-time rate can be satisfied. In this example, we
consider the case when λs +λo < μ1.

Example 8.5. Consider a system with λo = 9, λs = 4, μ1 = 16, and μ2 = 15. Suppose
that the fill rate is required to be at least 0.9 and the in-time rate (with the required
lead time 0.5) at least 0.95. We first try to find the base-stock levels where these
qualities of services can be satisfied. The results on various base-stock levels are
shown in Table 8.5. We can see that these qualities of services are satisfied if S is
greater than or equal to 6.

Now, we apply some cost structure by defining the following costs. Let C1 denote
the penalty cost for each unsatisfied ordinary demand; Let C2 denote the penalty cost
for each unsatisfied specific demand and u be the maximal allowable lead time. Let
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Table 8.5 Fill rates and in-time rates on various S (λo = 9, λs = 4, μ1 = 16, and μ2 = 15).

S Pf In-Time Rate S Pf In-Time Rate

1 0.4800 0.9683 11 0.9724 0.9733
2 0.6731 0.9560 12 0.9779 0.9767
3 0.7757 0.9505 13 0.9822 0.9796
4 0.8381 0.9487 14 0.9857 0.9822
5 0.8795 0.9501 15 0.9885 0.9845
6 0.9083 0.9530 16 0.9907 0.9864
7 0.9291 0.9571 17 0.9925 0.9880
8 0.9446 0.9613 18 0.9939 0.9894
9 0.9564 0.9655 19 0.9950 0.9905
10 0.9654 0.9696 20 0.9960 0.9915

Table 8.6 TCs on various base-stock levels (λo = 9, λs = 4, μ1 = 16, μ2 = 15, C1 = $5, C2 = $15,
and C3 = $1).

S TC S TC

1 25.782 11 10.539
2 18.394 12 10.947
3 14.723 13 11.455
4 12.672 14 12.036
5 11.415 15 12.680
6 10.662 16 13.385
7 10.225 17 14.138
8* 10.049 18 14.929
9 10.067 19 15.759
10 10.236 20 16.611

C3 denote the inventory cost rate per each finished standard product in stock. Then,
the total cost rate, TC, is expressed as

TC =
(
1−Pf

)
λoC1 +(1−FR2(u))λsC2 +LC3. (8.20)

Following Example 8.5, we are interested in finding an optimal base-stock level
minimizing the total cost subject to the requirements on the fill rate and in-time rate.

Example 8.6. We consider the same case of λo = 9, λs = 4, μ1 = 16, and μ2 = 15
with C1 = $5, C2 = $15, and C3 = $1. Suppose the qualities of service are that the fill
rate must be at least 0.9 and the in-time rate (with the required lead time 0.5) must
be at least 0.95. The TCs on various base-stock levels S are shown in Table 8.6 and
the corresponding figure is Fig. 8.3. From Example 8.5, we know that the feasible
base-stock levels are those greater than or equal to 6. Among these feasible levels,
we then obtain the optimal base-stock level at S = 8 with minimum total cost rate
10.049.
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Fig. 8.3 TCs on various base-stock levels (λo = 9, λs = 4, μ1 = 16, μ2 = 15, C1 = $5, C2 = $15,
and C3 = $1).

8.4 Conclusions

In this chapter, we consider a two-station MTO/MTS hybrid production system deal-
ing with ordinary and specific demands. We are interested in determining the fill
rate of ordinary demands and response times of specific demands. By assuming the
Markovian model, for station 1, we give the closed-form for the fill rate and some
limiting results as the base-stock level increases, however, because of the intractabil-
ity in analyzing station 2, we approximate station 2 as a GI/M/1 queue. The corre-
sponding closed-form for the approximated in-time rate is obtained. These results
of the fill rate and in-time rate can assist management in determining the optimal
base-stock level efficiently. In future study, we may consider a multistation system
for both the process producing the standard products and the process performing the
additional work for the custom work.
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