
Chapter 7
Markovian Polling Systems: Functional
Computation for Mean Waiting Times
and its Computational Complexity

Tetsuji Hirayama

Abstract We consider Markovian polling systems in which a single server serves J
stations with Poisson arrivals and general service times. After completing a service
period at station i, the server selects station j with probability pi j and visits the
station after spending a switchover time. We use the functional computation for
mean waiting times that has been investigated in our previous research on multiclass
M/G/1 type systems (e.g., [1] and [2]), which is different from the buffer occupancy
method used in [3]. The advantages of the functional computation method are (1) its
wide applicability to the analysis of M/G/1 type multiclass queues, and (2) its rather
small computational complexity compared with the buffer occupancy method.

7.1 Introduction

A polling system is a multiclass queueing system in which a single server serves
customers arriving at J stations according to some scheduling algorithm. It has been
receiving much attention because of its ability to model a large variety of systems
including computer communication networks, intelligent production systems, and
transportation systems (e.g., [4] and [5]).

Several methods of analyzing various polling systems have been investigated.
The leading method is the buffer occupancy method (e.g., [6]–[8]). This method
has been used to analyze not only the standard system models but also various vari-
ants of the models that include a system with a mixture of exhaustive and gated
disciplines [9], a system with simultaneous arrivals [10], a system with customers’
feedback [11], and a nondeterministic polling system [3], and so on.

T. Hirayama
Graduate School of Systems and Information Engineering, University of Tsukuba,
Ibaraki 305-8573, Japan
e-mail: hirayama@cs.tsukuba.ac.jp

W. Yue et al. (eds.), Advances in Queueing Theory and Network Applications, 119
c© Springer Science+Business Media LLC 2009

120 T. Hirayama

The other methods have also been investigated (e.g., [2], [12]–[14]). A funda-
mental survey of the analysis of polling systems was given in [15], and a detailed
explanatory survey of these methods was given in [4]. The descendant set technique
[16] has taken another approach to obtain the moments of the buffer occupancy vari-
ables, and was used to analyze a state-dependent polling system [17]. A stochastic
decomposition was used to obtain a pseudo-conservation law for a weighted sum of
the mean waiting times under various scheduling algorithms [18]. Another type of
a decomposition theorem that relates a system with nonzero switchover times to a
system with zero switchover times was investigated in [19].

Many of the research efforts listed above were concerned with the cyclic systems.
On the other hand, various polling schemes other than cyclic have been investigated.
Random polling systems in which the server next visits station j stochastically with
probability p j were considered by Kleinrock and Levy [20]. They were used to
analyze the distributed access scheme to communication channels [4], [20].

Srinivasan [3] extended their analysis to nondeterministic polling systems (in-
cluding Markovian polling systems) in which the server moves among stations ac-
cording to general stochastic rules. Markovian polling systems with single buffers
were investigated by Chung, Un, and Jung [21]. A system in which the server visits
stations according to an arbitrary polling sequence (or table) of stations was consid-
ered by Baker and Rubin [22]. In this system, stations can be given higher priority by
being listed more frequently in the polling table. Boxma, Levy, and Weststrate [23]
found (approximate) formulas and procedures for determining the visit frequencies
that optimize the system performances.

In this chapter, we consider Markovian polling systems in which a single server
serves customers at J stations, and obtain their mean waiting times. Customers arrive
according to Poisson processes and their service time distributions are general. After
completing a service period at station i, the server selects station j with probability
pi j and visits it after spending a switchover time. The customer selection rule at each
station is either gated or exhaustive. Although the system was already solved by the
buffer occupancy method in [3], we take the other method (functional computation)
that has been investigated in our previous research on multiclass M/G/1 type systems
(e.g., [1], [2], [24], and [25]).

The key skill of our functional computation method is to consider the expected
waiting time of a customer conditioned on the system state at its arrival epoch and
represent it as a function of the system state. The advantages of the method are

(1) Its wide applicability to the analysis of mean waiting times in M/G/1 type
multiclass queues

(2) Its rather small computational complexity necessary to calculate the mean wait-
ing times for all stations as compared with the buffer occupancy method

Our method was initially applied to multiclass M/G/1 queues with priority [24],
and then extended to the systems with customers’ feedback [1]. Polling systems
were initially investigated by our method in [2], and their multiclass extensions
with customers’ feedback were investigated in [25]. In all of the models, we have
obtained the linear functional expressions for the conditional expected waiting (or

7 Markovian Polling Systems: Functional Computation 121

sojourn) times, which are the key property of our method, although the derivation
procedures themselves are distinct among the models.

As for the computational complexity for computing the mean waiting times for
all stations, our functional computation (for the Markovian polling system) requires
us to solve 2J sets of O(J) linear equations and a set of O(J2) (steady-state) linear
equations. This means that our method at most requires O(J6) numerical operations.
Furthermore a successive approximation method can be applied to solving the set
of the latter steady-state linear equations, and then it can be shown that our method
requires O(J4)+ O(J3N) numerical operations where N is the number of its itera-
tions. On the other hand, the buffer occupancy method requires us to solve the O(J3)
linear equations for deriving the mean waiting times for all stations. If a successive
approximation is applied to solving them, the method requires O(J4N′) numerical
operations where N′ is the number of its iterations.1 Numerical examples are given
in Sect. 7.6 of this chapter in order to compare the actual computational times in our
method with those in the buffer occupancy method.

The rest of this chapter is organized as follows. In Sect. 7.2 we first define the sys-
tem state that represents an evolution of the system. Its components include the num-
bers of customers and the remaining service time of a customer being served, and
so on. Then we define some types of the expected waiting times for each customer
conditioned on the system state at its arrival or relative polling instants. It is shown
that these conditional expectations satisfy the “polling equation.” In Sect. 7.3 we
obtain the explicit expressions for some of the conditional expected waiting times.
We further obtain the conditional expected numbers of customers at the next polling
instants. In Sect. 7.4 the explicit expression for the overall expected waiting time is
obtained by solving the polling equation. It can be shown that the expression has the
linear functional form. In Sect. 7.5 the mean waiting times and the mean numbers
of customers in a steady-state are obtained from the expression by using the gener-
alized Little’s formula and the PASTA property. Then we discuss the computational
complexity of our functional computation method in detail in Sect. 7.6.

7.2 Model Description

In this section, we describe our model of the Markovian polling systems. A single
server serves J groups of customers at J stations with infinite buffer capacities.
Customers arrive at station i from outside the system according to a Poisson process
with rate λi, and are called i-customers (i = 1, . . . ,J). The overall arrival rate is
denoted by λ = ∑J

i=1λi. These customers are numbered in order of arrival, and let

1 For a cyclic or random polling system, only O(J3) numerical operations are required for each iter-
ation of the approximation for the buffer occupancy equations. But for a Markovian polling system,
O(J4) operations are required for each iteration and the overall complexity becomes O(J4N′). For
more detail, see [26] and (4.14) in [3].

122 T. Hirayama

ce and τe
0 denote the eth arriving customer itself and its arrival epoch, respectively

(e = 1,2, . . .).2

Service times Si of i-customers are independently, identically, and arbitrarily dis-
tributed with mean E[Si] > 0 and second moment s2

i . Customers are served according
to a predetermined scheduling algorithm defined below. The service is nonpreemp-
tive. After receiving a service, each customer departs from the system. We define
resource utilizations ρi = λiE[Si], and put the usual assumption that ρ =∑J

i=1ρi < 1.
After completing a service period (defined below) at station i, the server selects

a station in a Markovian manner where station j is selected with probability pi j,
and then visits station j after spending an arbitrarily distributed switchover time
with mean so

i j and second moment so2
i j , (i, j = 1, . . . , J). Let P = (pi j : i, j = 1, . . . , J)

be the switching probability matrix, and assume that the Markov chain generated by
the transition probability matrix P is irreducible. Furthermore, the arrival processes,
the service times, and the server switching processes are assumed to be independent
of each other.

The system is separated into two parts which are called the “service facility” and
the “waiting room.” There is a gate at each station between its queue in the waiting
room and its queue in the service facility. And each arriving customer enters the
queue in the service facility when the gate is opened; otherwise, it enters the queue
in the waiting room. When the server visits a station, its gate is opened in order
to admit some customers at the station to the service facility. The server serves the
customers in the service facility until the server empties it, and then visits another
station. Because the gates of the stations that are not visited by the server are closed,
all customers at such stations must wait for service in the waiting room.

Each time interval from when the server visits a station until the first time when
the server empties the service facility is called a service period.3 Each time interval
when the server switches from a station to another station is called a switchover
period. LetΠ = {1, . . . , J} be the set of (indices of) the service periods where i ∈Π
denotes the service period of station i. And let Π s = {(i, j) : i, j = 1, . . . , J} be the
set of (indices of) the switchover periods where (i, j) denotes a switchover period
from station i to station j.

A scheduling algorithm is specified as follows: (1) Selection order of the stations
by the server, which is the Markovian as described before, (2) customer selection
rule at each station used when the server admits customers into the service facility,
which is either gated or exhaustive, and (3) service order of customers in the service
facility, which is First-Come First-Served (FCFS).

When the server selects one of the stations with the gated rule, all customers
staying at the station just when the server visits it enter its queue in the service
facility, and then the gate is immediately closed. Hg denotes the set of stations with
the gated rule. When the server selects one of the stations with the exhaustive rule,

2 These customers arrive from outside the system according to a Poisson process with rate λ , and
each of them becomes an i-customer with probability λi/λ when it arrives (i = 1, . . . , J).
3 A time epoch when the server visits a station is called a service period beginning epoch or a
polling instant.

7 Markovian Polling Systems: Functional Computation 123

the gate of the station remains open (i.e., customers arriving at the station later may
still enter the service facility) and the server continues to serve all customers until
the station is cleared of customers for the first time. The service period of the station
finishes at this time, and its gate is closed. He denotes the set of the stations with
the exhaustive rule.

Let us consider the system operating under a specified scheduling algorithm.
For any e (e = 1,2, . . .), let {τe

k : k = 1,2, . . .} be a sequence of all polling instants
(i.e., service period beginning epochs) of all stations that occur after the ces’ ar-
rival epoch.4 Furthermore let Xe

S (t) denote the station at which ce stays at time t,
or Xe

S (t) = 0 if it does not stay in the system at time t. Let R,R+,I+ be, respec-
tively, the set of real numbers, the set of nonnegative real numbers, and the set of
nonnegative integers. For any event K , let

1{K } =
{

1, if event K is true
0, if event K is false.

Then let κ(t) denote a period that the system experiences at time t; that is
the server is in a service period of station κ(t) if κ(t) ∈ Π , or the server is in a
switchover period from station i to station j if κ(t) = (i, j) ∈ Π s. Let r(t) denote
the remaining service time of a customer being served at time t if κ(t) ∈ Π , or the
remaining length of a switchover period if κ(t) ∈Π s.

The number of i-customers in the service facility at time t (who are not being
served) is denoted by gi(t), and the number of i-customers in the waiting room
at time t is denoted by ni(t). Let g(t) = (g1(t), . . . ,gJ(t)) ∈ I J

+, and let n(t) =
(n1(t), . . . ,nJ(t)) ∈ I J

+. We also specify the other information L(t) of the system at
time t. The sample paths of these processes are assumed to be left-continuous with
right-hand limits, except for Xe

S (t),κ(t), and L(t) which are right-continuous with
left-hand limits.

Let us consider transition epochs of these processes consisting of customer arrival
epochs, service completion epochs, and switchover period completion epochs. Then
we define the stochastic process as

Q = {Y(t) = (κ(t),r(t),g(t),n(t),L(t)) : t ≥ 0} (7.1)

which represents an evolution of the system. For any scheduling algorithm defined
above, Q may embed a Markov process. Possible values of Y(t) (t ≥ 0) are called
states, and the state space of Q is denoted by E .

We define three types of the performance measures of customer ce (e = 1,2, . . .).
The first type is related to the ces’ waiting times in the waiting room. We define for
any t ≥ 0 and i = 1, . . . ,J,

Ce
Wi(t) =

{
1, if ce stays in the waiting room as an i-customer at time t
0, otherwise.

(7.2)

4 Note that τe
0 is the customer’s arrival epoch, and we assume that τe

0 < τe
1 < τe

2 < · · · .

124 T. Hirayama

The ces’ waiting time spent in the waiting rooms is defined by

W e
i =

∫ ∞

0
Ce

Wi(t)dt, (i = 1, . . . ,J). (7.3)

Then, for l = 0,1,2 . . . , the expected waiting times in the waiting room during the
time interval [τe

l ,τ
e
l+1) conditioned on the state of the system are defined by

W 0
i (Y,e, l) = E

[∫ τe
l+1

τe
l

Ce
Wi(t)dt Y(τe

l) = Y,Xe
S (τe

l) = i
]

(7.4)

for Y ∈ E , i = 1, . . . ,J.
The second type of the performance measures is related to the pieces of the ces’

waiting times in the waiting room. Let

He
i (k) =

∫ ∞

0
Ce

Wi(t)1{κ(t) = k}dt, (i = 1, . . . ,J, k ∈Π ∪Π s). (7.5)

He
i (k) denotes the ces’ waiting times in the waiting room spent while the system is

in period k. For l = 0,1,2, . . . , the expected waiting times after time τe
l conditioned

on the state of the system are defined by

Hi(Y,e, l,k) = E
[∫ ∞

τe
l

Ce
Wi(t)1{κ(t) = k}dt Y(τe

l) = Y,Xe
S (τe

l) = i
]

, (7.6)

H0
i (Y,e, l,k) = E

[∫ τe
l+1

τe
l

Ce
Wi(t)1{κ(t) = k}dt Y(τe

l) = Y,Xe
S (τe

l) = i
]

(7.7)

for i = 1, . . . ,J, k ∈Π ∪Π s, Y ∈ E . Then the following “polling equation” holds.

Hi(Y,e, l,k)

=

⎧
⎪⎪⎨

⎪⎪⎩

H0
i (Y,e, l,k)+E[Hi(Y(τe

l+1),e, l +1,k)|Y(τe
l) = Y,Xe

S (τe
l) = i],

if (κ0 	= i) or (κ0 = i ∈ Hg, l = 0)

0, if (κ0 = i ∈ He) or (κ0 = i ∈ Hg, l > 0)

(7.8)

for Y = (κ0,r,g,n,L) ∈ E , i = 1, . . . ,J, l = 0,1, . . . , k ∈Π ∪Π s.
The third type of the performance measures is related to the ces’ waiting times in

the service facility. We define for any t ≥ 0 and i = 1, . . . ,J,

Ce
Fi(t) =

⎧
⎨

⎩

1, if ce is in the service facility as an i-customer and
is not served at time t

0, otherwise.
(7.9)

The ces’ waiting time in the service facility is defined by

Fe
i =

∫ ∞

0
Ce

Fi(t)dt, (i = 1, . . . ,J). (7.10)

7 Markovian Polling Systems: Functional Computation 125

The expected waiting times in the service facility after time τe
0 conditioned on the

state of the system are defined by

Fi(Y,e) = E
[∫ ∞

τe
0

Ce
Fi(t)dt Y(τe

0) = Y,Xe
S (τe

0) = i
]

(7.11)

for Y ∈ E , i = 1, . . . ,J.

7.3 Expressions for W0
j (·),H0

j (·),Fj(·), and Related Quantities

In this section we obtain the conditional expected waiting times W 0
j (·),H0

j (·), and
Fj(·) of a j-customer (j = 1, . . . ,J). We also consider the expected number of cus-
tomers at the next polling instant. We observe a specific customer ce assuming that
it is a j-customer (e = 1,2, . . .).

7.3.1 Expressions for W0
j (·),H0

j (·), and Fj(·)

Let l = 0,1,2, . . . and let Y = (κ0,r,g,n,L) ∈ E be the system state at time τe
l where

g = (g1, . . . ,gJ) and n = (n1, . . . ,nJ). Because we assume that ce is a j-customer,
Xe

S (τe
l) = j. When we consider the ces’ expected waiting time in the waiting room

W 0
j (Y,e, l) during the time interval [τe

l ,τ
e
l+1), we consider the following cases ac-

cording to κ0 = κ(τe
l), which is the period at time τe

l . For κ0 ∈ Hg, we have

W 0
j (Y,e, l) =

⎧
⎪⎪⎨

⎪⎪⎩

nκ0 E[Sκ0]+∑
J
κ1=1 pκ0κ1so

κ0κ1 , κ0 	= j, (l > 0)

0, κ0 = j, (l > 0)

r +gκ0E[Sκ0]+∑
J
κ1=1 pκ0κ1 so

κ0κ1 , (l = 0).

(7.12)

For κ0 ∈ He, we have

W 0
j (Y,e, l)

=

⎧
⎪⎪⎨

⎪⎪⎩

(nκ0 E[Sκ0])/(1−ρκ0)+∑J
κ1=1 pκ0κ1so

κ0κ1 , κ0 	= j, (l > 0)

(r +gκ0E[Sκ0])/(1−ρκ0)+∑J
κ1=1 pκ0κ1 so

κ0κ1 , κ0 	= j, (l = 0)

0, κ0 = j, (l ≥ 0).

(7.13)

For κ0 ∈Π s, we have

W 0
j (Y,e, l) =

{
0, (l > 0)
r, (l = 0). (7.14)

126 T. Hirayama

Because H0
j (Y,e, l,k) is a piece of the expected waiting time W 0

j (Y,e, l), it is
given by appropriately choosing the parts of W 0

j (·). For κ0 ∈ Hg, we have

H0
j (Y,e, l,k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nκ0 E[Sκ0], k = κ0, (κ0 	= j, l > 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (κ0 	= j, l > 0)

0, (κ0 = j, l > 0)

r +gκ0E[Sκ0], k = κ0, (l = 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (l = 0)

0, otherwise,

(7.15)

where κ1 = 1, . . . ,J. And for κ0 ∈ He, we have

H0
j (Y,e, l,k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(nκ0 E[Sκ0])/(1−ρκ0), k = κ0, (κ0 	= j, l > 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (κ0 	= j, l > 0)

(r +gκ0E[Sκ0])/(1−ρκ0), k = κ0, (κ0 	= j, l = 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (κ0 	= j, l = 0)

0, (κ0 = j, l ≥ 0)

0, otherwise,

(7.16)

where κ1 = 1, . . . ,J. For κ0 ∈Π s, we have

H0
j (Y,e, l,k) =

⎧
⎨

⎩

0, (l > 0)
r, k = κ0, (l = 0)
0, otherwise, (l = 0).

(7.17)

Because Fj(Y,e) is the expected waiting time in the service facility, it is equal to
the expected (remaining) service times of customers at station j at the ces’ arrival
epoch τe

0. Then we have

Fj(Y,e) =

⎧
⎨

⎩

n jE[S j], j ∈ Hg
n jE[S j], j ∈ He and j 	= κ0
r +g jE[S j], j ∈ He and j = κ0.

(7.18)

7 Markovian Polling Systems: Functional Computation 127

7.3.2 System State at the Next Polling Instant

Let l = 0,1,2, . . . and let Y = (κ0,r,g,n,L) ∈ E be the system state at time τe
l where

g = (g1, . . . ,gJ) and n = (n1, . . . ,nJ). We consider the system state at the next polling
instant τe

l+1.
When we consider the system state (especially, the numbers of customers) at the

next polling instant, we consider the following cases according to κ0 = κ(τe
l), which

is the period at time τe
l . For κ0 ∈ Hg, we can show that

E[nm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l) = Y,Xe

S (τe
l) = j]

=

⎧
⎪⎨

⎪⎩

nm +λm{nκ0 E[Sκ0]+ so
κ0κ1}, m 	= κ0, (l > 0)

λκ0{nκ0 E[Sκ0]+ so
κ0κ1}, m = κ0, (l > 0)

nm +1m j +λm{r +gκ0 E[Sκ0]+ so
κ0κ1}, (l = 0)

(7.19)

for any m, j,κ1 ∈Π , where 1m j = 1{m = j}. For κ0 ∈ He, we have

E[nm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l) = Y,Xe

S (τe
l) = j]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nm +λm{(nκ0 E[Sκ0])/(1−ρκ0)+ so
κ0κ1}, m 	= κ0, (l > 0)

nm +1m j +λm{(r +(gκ0 +1κ0 j)E[Sκ0])/(1−ρκ0)+ so
κ0κ1},

m 	= κ0, (l = 0)

λκ0so
κ0κ1 , m = κ0, (l ≥ 0)

(7.20)

for any m, j,κ1 ∈Π . For κ0 ∈Π s, we have

E[nm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l) = Y,Xe

S (τe
l) = j]

=
{

0, (l > 0)
nm +1m j +λmr, (l = 0). (7.21)

Furthermore for any m, j,κ1 ∈Π , we obviously have

E[gm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l) = Y,Xe

S (τe
l) = j] = 0. (7.22)

7.3.3 Unified Forms: Linear Functional Expressions

From the analysis in this section, we can easily see the following important
properties.

• The component (κ0,r,g,n) of state Y = (κ0,r,g,n,L) ∈ E at epoch τe
l is suffi-

cient to derive W 0
i (Y,e, l),H0

j (Y,e, l,k),Fj(Y,e), and the conditional expected
numbers of customers at time τe

l+1.
• These quantities are linear with respect to r and (g,n) = (g1, . . . ,gJ ,n1, . . . ,nJ).

128 T. Hirayama

For convenience, let e j = (0, . . . ,0, 1︸︷︷︸
jth place

,0, . . . ,0) ∈ R1×J , and let pk = pκ0,κ1 for

k = (κ0,κ1) ∈Π s. Then we have the following.

Proposition 7.1. Let Y = (κ0,r,g,n,L)∈ E , j = 1, . . . ,J, e = 1,2, . . . , l = 0,1,2, . . .
and k ∈Π ∪Π s. Then we have

H0
j (Y,e, l,k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(g,n)h0
10(κ0, j,k), κ0 ∈Π , l > 0, k ∈Π

pkh0
11(κ0, j,k), κ0 ∈Π , l > 0, k ∈Π s

rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k), κ0 ∈Π , l = 0, k ∈Π

pkh0
01(κ0, j,k), κ0 ∈Π , l = 0, k ∈Π s

0, κ0 ∈Π s, l > 0, k ∈Π ∪Π s

0, κ0 ∈Π s, l = 0, k ∈Π
rϕ0(κ0, j,k), κ0 ∈Π s, l = 0, k ∈Π s,

(7.23)

Fj(Y,e) = rψ(κ0, j)+(g,n)f(κ0, j), (7.24)

where the above coefficients

h0
a0(κ0, j,k) ∈ R2J×1, h0

a1(κ0, j,k) ∈ R, (a = 0,1),
ϕ0(κ0, j,k) ∈ R, ψ(κ0, j) ∈ R, f(κ0, j) ∈ R2J×1

can be determined from the given system parameters through the expressions ob-
tained in this section. Furthermore we have

E[(g(τe
l+1),n(τe

l+1))|κ(τe
l+1) = κ1,Y(τe

l) = Y,Xe
S (τe

l) = j]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(g,n)U1(κ0)+u1(κ0,κ1), κ0 ∈Π , l > 0

rυ(κ0)+(g,n)U0(κ0)+u0(j,κ0,κ1), κ0 ∈Π , l = 0

0, κ0 ∈Π s, l > 0

rυ+(g,n)U0 +(0,e j), κ0 ∈Π s, l = 0

(7.25)

for κ1 ∈Π . The above coefficients

U1(κ0) ∈ R2J×2J, u1(κ0,κ1) ∈ R1×2J , υ(κ0) ∈ R1×2J,

U0(κ0) ∈ R2J×2J, u0(j,κ0,κ1) ∈ R1×2J , υ ∈ R1×2J , U0 ∈ R2J×2J

can be determined from the given system parameters through the expressions ob-
tained in this section.

7 Markovian Polling Systems: Functional Computation 129

Note 1. We can simplify the expression for H0
j (·) as follows:

H0
j (Y,e, l,k) =

{
(g,n)h0

10(κ0, j,k)+ pkh0
11(κ0, j,k), l > 0

rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)+ pkh0

01(κ0, j,k), l = 0.

Because this expression introduces much labor into the numerical calculation, we
adopt the above somewhat complicated expression. A similar result holds for the
expression in Equation (7.25).
�
Note 2. It should be noted from Equations (7.15) and (7.16) that

H0
j (Y,e, l,k) = 0,

(j ∈Π , Y = (κ0,r,g,n,L) ∈ E , e = 1,2, . . . , l ≥ 0, k ∈Π ∪Π s)

if (κ0 = j ∈ He) or (κ0 = j ∈ Hg and l > 0).
�

7.4 The Linear Functional Expression

In this section we obtain the expression for the performance measure Hj(·) by solv-
ing the polling equation. It can be shown that it has the linear functional form.

We define constants h10(κ0, j,k) ∈ R2J×1 and h11(κ0, j,k) ∈ R that satisfy the
following equations:

h10(κ0, j,k) =

⎧
⎪⎨

⎪⎩

h0
10(κ0, j,k)+U1(κ0) ∑

κ1∈Π\{ j}
pκ0κ1h10(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π
0, otherwise,

(7.26)

h11(κ0, j,k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
κ1∈Π\{ j}

pκ0κ1u1(κ0,κ1)h10(κ1, j,k)

+ ∑
κ1∈Π\{ j}

pκ0κ1h11(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π
pkh0

11(κ0, j,k)+ ∑
κ1∈Π\{ j}

pκ0κ1h11(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π s

0, otherwise

(7.27)

for j ∈Π . Furthermore for k ∈Π , κ0 ∈Π ∪Π s, and j ∈Π , let5

5 Case 1: (κ0 	= j or j ∈ Hg) and (κ0 ∈Π); Case 2: κ0 = j ∈ He; Case 3: κ0 = (k0,k1) ∈Π s.

130 T. Hirayama

ϕ(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ0(κ0, j,k)+υ(κ0) ∑
κ1∈Π\{ j}

pκ0κ1h10(κ1, j,k), case 1

0, case 2
υh10(k1, j,k), case 3,

h00(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

h0
00(κ0, j,k)+U0(κ0) ∑

κ1∈Π\{ j}
pκ0κ1h10(κ1, j,k), case 1

0, case 2
U0h10(k1, j,k), case 3,

h01(κ0, j,k)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑
κ1∈Π\{ j}

pκ0κ1{u0(j,κ0,κ1)h10(κ1, j,k)+h11(κ1, j,k)}, case 1

0, case 2
(0,e j)h10(k1, j,k)+h11(k1, j,k), case 3.

And for k ∈Π s, κ0 ∈Π ∪Π s and j ∈Π , let

ϕ(κ0, j,k) =
{

0, κ0 ∈Π
ϕ0(κ0, j,k), κ0 ∈Π s,

h00(κ0, j,k) = 0,

h01(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

pkh0
01(κ0, j,k)+ ∑

κ1∈Π\{ j}
pκ0κ1h11(κ1, j,k), case 1

0, case 2
h11(k1, j,k), case 3.

Now we define the following function, and show that it gives the linear functional
expression for the performance measure Hj(·) defined by (7.6).

Definition 7.1. The linear function is defined by

Ĥ j(Y,e, l,k)

=

⎧
⎪⎪⎨

⎪⎪⎩

rϕ(κ0, j,k)+(g,n)h00(κ0, j,k)+h01(κ0, j,k), l = 0, k ∈Π
rϕ(κ0, j,k)+h01(κ0, j,k), l = 0, k ∈Π s

(g,n)h10(κ0, j,k)+h11(κ0, j,k), l > 0, k ∈Π
h11(κ0, j,k), l > 0, k ∈Π s

(7.28)

for any j ∈Π ; Y = (κ0,r,g,n,L) ∈ E ; e = 1,2, . . . ; l = 0,1,2, . . . and k ∈Π ∪Π s.

Proposition 7.2. The function Ĥ·(·, ·, ·,k) (k ∈ Π ∪Π s) defined by (7.28) satisfies
the “polling equation” (7.8).

Proof. See the appendix.
�

7 Markovian Polling Systems: Functional Computation 131

Proposition 7.3. The solution of the “polling equation” (7.8) is unique and hence

Hj(Y,e, l,k) = Ĥ j(Y,e, l,k),
(j ∈Π ; Y ∈ E ; e = 1,2, . . . ; l = 0,1,2, . . . ; k ∈Π ∪Π s).

Proof. Because the proof of this proposition is similar to the proof of uniqueness of
the solution for the feedback equation given in [1], it is omitted.
�

7.5 Steady-State Values

We would like to obtain the steady-state values of the performance measures. We
define the mean waiting time of j-customers6 as follows:

w̄ j = lim
N→∞

1
N

N

∑
e=1

E[W e
j +Fe

j |Xe
S (τe

0) = j], j = 1, . . . ,J. (7.29)

In order to obtain the quantity, we define the following interim quantities:

H̄ j(κ0,k) = lim
N→∞

1
N

N

∑
e=1

E[He
j (k)1{κ(τe

0) = κ0}|Xe
S (τe

0) = j], (7.30)

F̄j(κ0) = lim
N→∞

1
N

N

∑
e=1

E[Fe
j 1{κ(τe

0) = κ0}|Xe
S (τe

0) = j] (7.31)

for j ∈ Π and κ0,k ∈ Π ∪Π s. The time average values of the system state are
defined by

Ỹk = (kq̃k, r̃k, g̃k, ñk, L̃k) = lim
t→∞

1
t

∫ t

0
E[Y(s)1{κ(s) = k}]ds (7.32)

for k ∈Π ∪Π s where g̃k = (g̃k
1, . . . , g̃

k
J), ñ

k = (ñk
1, . . . , ñ

k
J).

For k ∈ Π , the steady-state value q̃k, which is the long-run fraction of time that
the system is in period k, is calculated as

q̃k = lim
t→∞

1
t

∫ t

0
E[1{κ(s) = k}]ds = λkE[Sk]. (7.33)

For k ∈ Π s, the steady-state value q̃k can be obtained in the following manner. Let
πi be the steady-state probability that the server selects station i at a polling instant.
It can be easily shown that π = (π1, . . . ,πJ) is the steady-state probability of the
Markov chain with the transition probability matrix P. We can obtain it by solving
πP = π and π1 = 1. Then the long-run fraction of time that the server is moving
from station i to station j given that the system is in a switchover period is given by

6 The time average values and the customer average values defined in this section are assumed to
exist.

132 T. Hirayama

πi pi jso
i j

J

∑
i=1

J

∑
j=1
πi pi jso

i j

, (i, j) ∈Π s. (7.34)

Furthermore the long-run fraction of time that the system is in a switchover period
is 1−ρ . Hence we obtain

q̃(i, j) = (1−ρ)
πi pi jso

i j
J

∑
i=1

J

∑
j=1
πi pi jso

i j

, (i, j) ∈Π s. (7.35)

The expected remaining service time of a customer being served given that the cur-
rent period is k ∈Π is equal to s2

k/(2E[Sk]), and the expected value of the remaining
switchover period given that the current period is (i, j) ∈ Π s is equal to so2

i j /(2so
i j).

Then we have

r̃k =

(
s2

k
2E[Sk]

)

q̃k =
λks2

k
2

, k ∈Π , (7.36)

r̃(i, j) =

(
so2

i j

2so
i j

)

q̃(i, j) = (1−ρ)
πi pi jso2

i j

2
J

∑
i=1

J

∑
j=1
πi pi jso

i j

, (i, j) ∈Π s. (7.37)

From the results in the previous sections and the PASTA property, we have

H̄ j(κ0,k)

=
{

r̃κ0ϕ(κ0, j,k)+(g̃κ0 , ñκ0)h00(κ0, j,k)+ q̃κ0h01(κ0, j,k), k ∈Π
r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k), k ∈Π s,

(7.38)

F̄j(κ0) = r̃κ0ψ(κ0, j)+(g̃κ0 , ñκ0)f(κ0, j) (7.39)

for j ∈ Π and κ0 ∈ Π ∪Π s. Then from the generalized version of Little’s formula
(H = λG) [27], we have

ñk
j = λ j ∑

κ0∈Π∪Π s
H̄ j(κ0,k),

g̃ j = λ j ∑
κ0∈Π∪Π s

F̄j(κ0),
j ∈Π and k ∈Π ∪Π s, (7.40)

where g̃ j = ∑
k∈Π∪Π s

g̃k
j . Furthermore it can be shown that

g̃k
j =

{
g̃ j, k = j,
0, k 	= j, j ∈Π and k ∈Π ∪Π s. (7.41)

7 Markovian Polling Systems: Functional Computation 133

Then we obtain the following set of linear equations for the average numbers of
customers in the system.

ñk
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ j ∑
κ0∈Π∪Π s

{r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k)

+(g̃κ0 , ñκ0)h00(κ0, j,k)} , k ∈Π

λ j ∑
κ0∈Π∪Π s

{r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k)} , k ∈Π s,

(7.42)

g̃k
j =

⎧
⎨

⎩

λ j ∑
κ0∈Π∪Π s

{r̃κ0ψ(κ0, j)+(g̃κ0 , ñκ0)f(κ0, j)} , k = j

0, k 	= j or k ∈Π s
(7.43)

for j ∈Π and k ∈Π ∪Π s. Then we finally obtain the following proposition.

Proposition 7.4. The mean waiting time of j-customers (j = 1, . . . , J) is given by

w̄ j = ∑
κ0∈Π∪Π s

{

∑
k∈Π∪Π s

H̄ j(κ0,k)+ F̄j(κ0)

}

=
1
λ j

(

g̃ j
j + ∑

k∈Π∪Π s
ñk

j

)

, (7.44)

where g̃ j
j and ñk

j (j ∈ Π ; k ∈ Π ∪Π s) can be obtained by solving the set of (7.42)
and (7.43).

7.6 Computational Complexity

We now evaluate the computational complexity to calculate the mean waiting times.
In Sect. 7.4 calculation of the coefficients h10(κ0, j,k) (κ0, j,k ∈ Π) takes much
time. Then from (7.26) we have

⎛

⎜
⎜
⎜
⎝

h10(1, j,k)
h10(2, j,k)

...
h10(J, j,k)

⎞

⎟
⎟
⎟
⎠

= (I− I(j)UQ)−1I(j)

⎛

⎜
⎜
⎜
⎝

h0
10(1, j,k)

h0
10(2, j,k)

...
h0

10(J, j,k)

⎞

⎟
⎟
⎟
⎠

,

where I ∈ R2J2×2J2
and I0 ∈ R2J×2J are identity matrices, and where

I(j) = diag(I0, . . . ,I0, O︸︷︷︸
jth place

,I0, . . . ,I0) ∈ R2J2×2J2
,

Q = (pi, jI0 : i, j = 1, . . . ,J) ∈ R2J2×2J2
,

U = diag(U1(j) : j = 1, . . . ,J) ∈ R2J2×2J2
.

134 T. Hirayama

The calculation of the J inverse matrices (I− I(j)UQ)−1I(j) ∈ R2J2×2J2
, (j ∈ Π)

takes J×O(J6) numerical operations,7 and the whole calculation of the products of
the inverse matrices and the right end vectors of vectors {h0

10(κ0, j,k) : κ0 ∈ Π},
(j,k ∈ Π) take O(J6) numerical operations. The calculations of the other constants
in Sect. 7.4 take at most O(J5) numerical operations. In Sect. 7.5 it takes much time
to solve (7.42) and (7.43). Because the set of these equations essentially has J(J +1)
unknowns, O(J6) numerical operations are required in order to solve them. The
other calculations in this section take at most O(J5) numerical operations. Hence
the overall complexity of our method is primarily O(J7) numerical operations.

The primal algorithm has somewhat excessive computational complexity, there-
fore we would like to reduce it. As noted above, much of the computational
complexity comes from the calculations of the constants h10(κ0, j,k) and the
calculations of the steady-state values from (7.42) and (7.43).

7.6.1 Reduction of Calculations of h10(·)

This reduction has three steps.

First Reduction Step:

We can reduce the computational complexity by checking the following facts. Be-
cause it can be shown from (7.15) and (7.16) that H0

j (Y,e, l,k) for κ0,k ∈ Π and
l > 0 is not affected by the vector g of the numbers of customers in the service facil-
ity, the elements in the upper half of h0

10(κ0, j,k) in (7.23) are 0. Similarly, because
it can be shown from (7.19) and (7.20) that the conditional expectation of n(τe

l+1)
for κ0 ∈Π and l > 0 is not affected by g, and because g(τe

l+1) = 0, the elements in
the upper half and the left half of U1(κ0) in (7.25) are 0. That is, we have

h0
10(κ0, j,k) =

(
0

h0∗
10(κ0, j,k)

)

, U1(κ0) =
(

O O
O U∗

1(κ0)

)

,

where h0∗
10(κ0, j,k) ∈ RJ×1, U∗

1(κ0) ∈ RJ×J , and then the size of (7.26) can be
reduced by half. Let h∗

10(κ0, j,k) ∈ RJ×1 be the vector composed of the lower half
elements of h10(κ0, j,k), and we have the following reduced version of (7.26).

h∗
10(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

h0∗
10(κ0, j,k)+U∗

1(κ0) ∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π
0, otherwise

(7.45)

for κ0,k ∈Π ∪Π s and j ∈Π .

7 For simplicity, we estimate that an n×n matrix can be inverted in O(n3) numerical operations.

7 Markovian Polling Systems: Functional Computation 135

Second Reduction Step:

We reduce the calculations by using sparsity of the constants h0∗
10(κ0, j,k) and

U∗
1(κ0) in (7.45). From (7.15), (7.16), and (7.23), for κ0 ∈ Π , l > 0, k ∈ Π , we

have

h0∗
10(κ0, j,k) =

{
e′κ0
δ (κ0), κ0 = k, κ0 	= j

0, otherwise
(j ∈Π), (7.46)

where e′κ0
is the transpose of eκ0 = (0, . . . ,0, 1︸︷︷︸

κth
0 place

,0, . . . ,0) defined in Sect. 7.3, and

where

δ (κ0) =
{

E[Sκ0], κ0 ∈ Hg
E[Sκ0]/(1−ρκ0), κ0 ∈ He.

From (7.19), (7.20), and (7.25), it can be shown that

U∗
1(κ0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 0 0 · · · 0
u∗1(κ0) · · · u∗κ0−1(κ0) u∗κ0

(κ0) u∗κ0+1(κ0) · · · u∗J(κ0)
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where u∗m(κ0) = λmδ (κ0)1{m 	= κ0 or κ0 ∈ Hg}, (m,κ0 ∈Π).
Let

ξ ∗10(κ0, j,k) =

⎧
⎨

⎩

∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k), κ0 	= j

0, κ0 = j
(κ0, j,k ∈Π).

Then from (7.45) and (7.46), we have

h∗
10(κ0, j,k) = e′κ0

δ (κ0)1{κ0 = k,κ0 	= j}+U∗
1(κ0)ξ ∗10(κ0, j,k)

for κ0, j,k ∈Π . Now we define the following notation.

• For any vector a, let a|m be its mth element.

Then we have

h∗
10(κ0, j,k)|m (7.47)

=

⎧
⎪⎨

⎪⎩

ξ ∗10(κ0, j,k)|m, m 	= κ0

δ (κ0)1{κ0 = k, κ0 	= j}+
J

∑
l=1

u∗l (κ0)ξ ∗10(κ0, j,k)|l , m = κ0,

136 T. Hirayama

ξ ∗10(κ0, j,k)|m (7.48)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
κ1∈Π\{ j,m}

pκ0κ1ξ
∗
10(κ1, j,k)|m + pκ0mh∗

10(m, j,k)|m, m 	= j, κ0 	= j

∑
κ1∈Π\{ j}

pκ0κ1ξ
∗
10(κ1, j,k)| j, m = j, κ0 	= j

0, κ0 = j

for m = 1, . . . ,J, κ0, j,k ∈Π . Let

ξ ∗10(j,k)m =

⎛

⎜
⎝

ξ ∗10(1, j,k)|m
...

ξ ∗10(J, j,k)|m

⎞

⎟
⎠ ∈ RJ×1, p(j)m =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1,m
...

p j−1,m
0

p j+1,m
...

pJ,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ RJ×1,

I0(m) = diag(1, · · · ,1, 0︸︷︷︸
mth place

,1, · · · ,1) ∈ RJ×J,

P(j) =
(
p(j)1, · · · ,p(j) j−1,0,p(j) j+1, · · · ,p(j)J

)
∈ RJ×J

for m = 1, . . . ,J, j,k ∈Π . Then from (7.48), we have

ξ ∗10(j,k)m =

{
P(j)I0(m)ξ ∗10(j,k)m +p(j)mh∗

10(m, j,k)|m, m 	= j
P(j)ξ ∗10(j,k) j, m = j

or

ξ ∗10(j,k)m =

{
(I−P(j)I0(m))−1p(j)mh∗

10(m, j,k)|m, m 	= j
0, m = j.

(7.49)

Now let

η∗
10(j,k) =

⎛

⎜
⎝

h∗
10(1, j,k)|1

...
h∗

10(J, j,k)|J

⎞

⎟
⎠ ∈ RJ×1,

U∗(j)m = diag(u∗m(1), · · · ,u∗m(j−1),0,u∗m(j +1), · · · ,u∗m(J)) ∈ RJ×J,

δ (k) = (0, · · · ,0,δ (k)
︸︷︷︸
kth place

,0, · · · ,0)′ ∈ RJ×1.

7 Markovian Polling Systems: Functional Computation 137

Then from (7.47) and (7.49), we have

η∗
10(j,k) = δ (k)1{k 	= j}+

J

∑
m=1

U∗(j)mξ ∗10(j,k)m

= δ (k)1{k 	= j}+ ∑
m	= j

U∗(j)mq(j)mh∗
10(m, j,k)|m,

where q(j)m = (I−P(j)I0(m))−1p(j)m. Let

U ∗(j) =
(
U∗(j)1q(j)1, . . . ,U∗(j) j−1q(j) j−1,0,

U∗(j) j+1q(j) j+1, . . . ,U∗(j)Jq(j)J
)
∈ RJ×J. (7.50)

Then we have

η∗
10(j,k) = δ (k)1{k 	= j}+U ∗(j)η∗

10(j,k), (j,k ∈Π). (7.51)

Algorithm for the second reduction: Repeat the following steps for j = 1, . . . , J.

1. Solve (I−P(j)I0(m))q(j)m = p(j)m to obtain q(j)m for m 	= j.
2. Set matrix U ∗(j) defined in (7.50).
3. Solve the set of the equations given by (7.51) to obtain η∗

10(j,k) for k 	= j.
4. From (7.49), ξ ∗10(j,k)m = q(j)mh∗

10(m, j,k)|m = q(j)mη∗
10(j,k)|m for m 	= j8.

5. From the definition of η∗
10(·) and (7.47), we have9

h∗
10(κ0, j,k)|m =

{
η∗

10(j,k)|κ0 , m = κ0
ξ ∗10(κ0, j,k)|m = q(j)m|κ0h∗

10(m, j,k)|m, m 	= κ0.
(7.52)

Third Reduction Step:

The computational effort in the algorithm for the second reduction can be further
reduced in the following manner. It can be easily shown that (I−P(j)I0(m))q(j)m =
p(j)m for m 	= j can be written as follows:

(I−P(j))q(j)m = p(j)m(1−q(j)m|m),

where q(j)m|m is the mth element of the vector q(j)m. Hence we have

q(j)m = (I−P(j))−1p(j)m(1−q(j)m|m).

Then it can be easily shown that

q(j)m|m = q′(j)m|m(1+q′(j)m|m)−1,

8 Because h∗
10(j, j,k)| j = η∗

10(j,k)| j = 0, ξ ∗10(j,k)m = q(j)mh∗
10(m, j,k)|m is also true for m = j.

9 η∗
10(j,k)|κ0 and q(j)m|κ0 are the κ0th elements of η∗

10(j,k) and q(j)m, respectively.

138 T. Hirayama

where q′(j)m|m is the mth element of the vector q′(j)m = (I−P(j))−1p(j)m. The
first step 1 of the algorithm for the second reduction then can be arranged as

1′. Solve (I−P(j))q′(j)m = p(j)m to obtain q′(j)m for m 	= j. Then set

q(j)m|m = q′(j)m|m(1+q′(j)m|m)−1, q(j)m = q′(j)m(1−q(j)m|m).

The computational complexity of the algorithm is evaluated later.

7.6.2 Reduction of Calculations of Steady-State Values

Because we cannot further reduce the number of the steady-state equations, we
would like to solve them by a successive approximation instead of directly solving
them. Because it takes much computational effort to apply the original equations
(7.42) and (7.43) to the approximation, we would like to reduce it by arranging
coefficients h00(·) as follows.

From (7.15) (7.16), and (7.23), we have

h0
00(κ0, j,k) =

(
∗
0

)

, (κ0, j,k ∈Π).

That is, H0
j (Y,e, l,k) for κ0,k ∈ Π and l = 0 is not affected by the number of

customers in the waiting room n. From (7.19), (7.20), (7.22), and (7.25), we have

U0(κ0) =
(

O ∗
O U∗

01(κ0)

)

, (κ0 ∈Π),

where

U∗
01(κ0) = diag(1, . . . ,1,1{κ0 ∈ Hg}

︸ ︷︷ ︸
κth

0 place

,1, . . . ,1) ∈ RJ×J.

Let h∗
00(κ0, j,k)∈RJ×1 be the lower half of h00(κ0, j,k) for κ0, j,k ∈Π . Then from

the definition of h00(κ0, j,k) in Sect. 7.4, we have

h∗
00(κ0, j,k) = U∗

01(κ0) ∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k), (κ0 	= j or j ∈ Hg)

and its mth element is given by

h∗
00(κ0, j,k)|m =

⎧
⎨

⎩

∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k)|m, m 	= κ0 or κ0 ∈ Hg

0, m = κ0 ∈ He

for κ0 	= j or j ∈Hg (κ0, j,k ∈Π). (h∗
00(κ0, j,k)|m = 0 for all m when κ0 = j ∈He.)

7 Markovian Polling Systems: Functional Computation 139

Furthermore from (7.52), it can be shown that

∑
κ1∈Π\{ j}

pκ0κ1h∗
10(κ1, j,k)|m = q0(κ0, j)mh∗

10(m, j,k)|m (7.53)

for κ0, j,k ∈Π , where

q0(κ0, j)m =

⎧
⎪⎨

⎪⎩

∑
κ1∈Π\{ j,m}

pκ0κ1 q(j)m|κ1 + pκ0m, m 	= j

∑
κ1∈Π\{ j}

pκ0κ1 q(j) j|κ1 , m = j.
(7.54)

Then we have the final expression for h∗
00:

h∗
00(κ0, j,k)|m = q∗(κ0, j)mh∗

10(m, j,k)|m (7.55)

for κ0, j,k,m ∈Π , where

q∗(κ0, j)m =
{

q0(κ0, j)m, (m 	= κ0 or κ0 ∈ Hg) and (κ0 	= j or j ∈ Hg)
0, otherwise. (7.56)

Then from (7.42) and (7.43), it can be easily shown that the steady-state numbers
of customers satisfy the following equations:

ñk
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ̃k
h j +λ j ∑

κ0∈Π
g̃κ0
κ0 h00(κ0, j,k)|κ0

+λ j

J

∑
m=1

ñqm(j)h∗
10(m, j,k)|m, k ∈Π

ϕ̃k
j , k ∈Π s,

(7.57)

g̃ j
j = ψ̃ f j +λ j ∑

κ0∈Π
g̃κ0
κ0 f(κ0, j)|κ0 +λ j ∑

κ0∈Π

J

∑
m=1

ñκ0
m f(κ0, j)|J+m, (7.58)

ñqm(j) = ∑
κ0∈Π

ñκ0
m q∗(κ0, j)m (7.59)

for k ∈Π ∪Π s and j,m ∈Π , where

ϕ̃k
j = λ j ∑

κ0∈Π∪Π s
{r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k)} ,

ϕ̃k =
(
ϕ̃k

j : j = 1, . . . ,J
)
∈ R1×J ,

ϕ̃k
h j = ϕ̃k

j +λ j ∑
κ0∈Π s

(0, ϕ̃κ0)h00(κ0, j,k), (k ∈Π for this case),

ψ̃ f j = λ j ∑
κ0∈Π∪Π s

{r̃κ0ψ(κ0, j)}+λ j ∑
κ0∈Π s

(0, ϕ̃κ0)f(κ0, j).

(7.60)

From the equations, we can construct a successive approximation algorithm for the
steady-state values. Note that ñk

j (k ∈ Π s, j ∈ Π) can be directly calculated in ad-
vance from the known constants.

140 T. Hirayama

Algorithm for calculating the steady-state values by successive approximation

1. Set s = 0 and the initial values of ñk(0)
j , g̃ j(0)

j , ñ(0)
qm(j) for j,k,m ∈Π .

2. Calculate ñk(s+1)
j , g̃ j(s+1)

j , ñ(s+1)
qm (j) for j,k,m ∈Π from the set of equations:

ñk(s+1)
j = ϕ̃k

h j +λ j ∑
κ0∈Π

g̃κ0(s)
κ0 h00(κ0, j,k)|κ0 + λ j

J

∑
m=1

ñ(s)
qm(j)h∗

10(m, j,k)|m,

g̃ j(s+1)
j = ψ̃ f j +λ j ∑

κ0∈Π
g̃κ0(s)
κ0 f(κ0, j)|κ0 + λ j ∑

κ0∈Π

J

∑
m=1

ñκ0(s)
m f(κ0, j)|J+m,

ñ(s+1)
qm (j) = ∑

κ0∈Π
ñκ0(s+1)

m q∗(κ0, j)m.

3. If these values are considered to converge, then stop. Otherwise, let s ← s+1
and go to step 2.

Note. We can show (1) the uniqueness of the solution of (7.42) and (7.43), and
(2) the convergence of the values obtained by the successive approximation
method to the unique solution (under the assumption that these steady-state
average values exist).

7.6.3 Evaluation of Computational Complexity

We now evaluate the computational complexity after the reductions. After applying
the third reduction step, in order to derive h10(·), we are essentially required to solve
the J sets of the O(J) linear equations related to the equations (I−P(j))q′(j)m =
p(j)m, and required to solve the J sets of the O(J) linear equations related to (7.51).
And a careful estimation shows that the other calculations require at most O(J4)
numerical operations. Then it can be easily shown that only O(J4) numerical op-
erations are required in order to calculate the constants h∗

10(κ0, j,k) and q(j)m
(κ0, j,k,m ∈ Π). Hence if we directly solve the steady-state equations (7.42) and
(7.43) by inverting the coefficient matrix after applying the third reduction step,
O(J6) numerical operations are required in order to calculate the mean waiting times
for all stations.

Then for the successive approximation of the steady-state values (g̃k, ñk), it is
clear that O(J3) numerical operations are required in order to calculate the values
at each iterative step. And it can be shown that calculations of the other coefficients
({ϕ̃k

h j : j,k ∈Π},{ϕ̃k
j : k ∈Π ∪Π s, j ∈Π},{h00(κ0, j,k)|κ0 : κ0, j,k ∈ Π},{ψ̃ f j :

j ∈ Π},{f(κ0, j) : κ0, j ∈ Π},{q∗(κ0, j)m : κ0, j,m ∈ Π}) which appear in (7.57)–
(7.60) require O(J4) numerical operations.

Hence if we obtain the mean waiting times for all stations after applying the
third reduction step and the successive approximation for the steady-state values,
O(J4)+O(J3N) numerical operations are required where N = NJ,ρ,ε is the number

7 Markovian Polling Systems: Functional Computation 141

of iterations of the approximation that depends on the number of stations J, the
resource utilization ρ , and the required accuracy ε10.

7.6.4 Comparison of Computational Times by Examples

Now we compare our functional computation method with the buffer occupancy
method by actually measuring their running times to compute the average waiting
times in the systems with J = 40 stations and J = 80 stations. Half of the stations
take the gated rule and the other stations take the exhaustive rule. In order to make
graphs for the running times in each system by changing the resource utilization ρ ,
the arrival rates are varied. The service times, the switchover times, and the switch-
ing probabilities are fixed. The algorithms that adopt the following methods are
compared.

Ours 1: Our functional computation method that calculates the steady-state values
by directly solving the equations (i.e., inverting their coefficient matrix)

Ours 2: Our functional computation method that calculates the steady-state values
by the successive approximation

B.O.: The buffer occupancy method that calculates second moments of the
buffer occupancy variables by a successive approximation.

In Figs. 7.1 and 7.2, “Ours 2-1” and “Ours 2-2” denote our second method “Ours
2” with ε = 10−4 and ε = 10−8, respectively,11 and “B.O.1” and “B.O.2” denote
the buffer occupancy method “B.O.” with ε = 10−4 and ε = 10−8, respectively.
Although the running times of “Ours 1” do not depend on the resource utilization,
they are somewhat greater than those of “Ours 2.” “Ours 2” takes almost constant
running times until the resource utilization reaches about 0.9. It results from the fact
that when ρ is less than the value, the number of iterations N is relatively small
and the computational complexity of “Ours 2” is approximately O(J4). When ρ
approaches 1, N grows rapidly and its running times also grow rapidly. The numbers
of iterations for the approximation methods are given in Tables 7.1 and 7.2. We see
from the tables that the numbers of iterations of “B.O.” are fairly (10 or more times)
greater than those of “Ours 2.” This may be caused by the difference between the
numbers of variables in the steady-state equations; that is, “Ours 2” has only O(J2)

10 As noted in Sect. 7.1, the computational complexity of the buffer occupancy method that uses
an approximation is O(J4N′) where N′ is the number of its iterations.
11 When

∣
∣
∣∑J

j=1 ρ jw̄
(s)
j −∑J

j=1 ρ jw̄
(s−1)
j

∣
∣
∣ < ε , the successive approximation methods stop, where

{w̄(s)
j } is a set of the mean waiting times obtained at their sth iterative step and ε is a required

accuracy. The used CPU is the AMD Athlon 64 X 2 4400+ with 4 GB memories, and the program-
ming language is Intel Visual FORTRAN with the IMSL Library.

142 T. Hirayama

0

1

2

3

4

5

6

7

8

9

10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Resource Utilization

T
im

e
(s

ec
.)

Ours 1

Ours 2-1

Ours 2-2

B.O.1

B.O.2

Fig. 7.1 Running times for computing the mean waiting times in the system with J = 40.

0

20

40

60

80

100

120

140

160

180

200

Resource Utilization

T
im

e
(s

ec
.)

Ours 1

Ours 2-1

Ours 2-2

B.O.1

B.O.2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 7.2 Running times for computing the mean waiting times in the system with J = 80.

variables in contrast to “B.O.” which has O(J3) variables. Furthermore for the buffer
occupancy method, because O(J4) operations per iteration are required, its running
times are greater than those of “Ours 2.” These differences become large as the
system is congested (i.e., when ρ is large).

7 Markovian Polling Systems: Functional Computation 143

Table 7.1 Numbers of iterations (N and N′) for the system with J = 40.

Ours 2 (N) B.O. (N′)

Required Accuracies (ε) Required Accuracies (ε)

ρ 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

0.3114 5 8 11 14 86 230 399 587
0.5213 9 13 18 23 166 363 566 772
0.7574 19 29 39 49 383 755 1126 1497
0.9057 50 76 102 128 1051 1992 2934 3875
0.9568 110 167 224 281 2339 4389 6440 8490
0.9899 471 714 957 1200 10102 18844 27585 36326

Table 7.2 Numbers of iterations (N and N′) for the system with J = 80.

Ours 2 (N) B.O. (N′)

Required Accuracies (ε) Required Accuracies (ε)

ρ 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

0.3154 6 9 11 14 177 463 786 1152
0.5014 9 13 18 22 318 701 1092 1490
0.7405 19 28 37 46 729 1440 2152 2863
0.8986 49 73 96 119 2006 3812 5617 7423
0.9531 107 157 208 259 4428 8322 12216 16110
0.9919 617 911 1205 1499 25952 48423 70893 93364

7.7 Conclusions

In this chapter we have considered the Markovian polling systems, and have ob-
tained the mean waiting times. It can be shown that the explicit expression for the
expected waiting time of a customer conditioned on the system state at its arrival
epoch has the linear functional form, which is the representative characteristic of our
method. This form results from the linear functional forms of the basic quantities
given in Proposition 7.1. And the steady-state average values can be derived from
it by simple limiting procedures. It has been shown that the conditional expected
waiting times in many types of M/G/1 multiclass queueing systems have the similar
linear functional forms. They appear not only in the polling systems [2] but also in
the priority systems [24]. Furthermore the conditional expected sojourn times in the
systems with customers’ feedback also have the linear functional forms [1], [25].

Our functional computation for the mean waiting times in the Markovian polling
systems originally requires us to solve J + 1 sets of O(J2) linear equations for the
mean waiting times of J stations as opposed to the buffer occupancy method which
requires us to solve O(J3) linear equations. Although our original method requires
O(J7) numerical operations, we can construct the procedure with the successive

144 T. Hirayama

approximation for the steady-state values which only requires O(J4)+ O(J3N) nu-
merical operations where N is the number of its iterations. When we compared our
method with the buffer occupancy method by actually computing the mean waiting
times, we found that the computation times by our method are less than those by the
buffer occupancy method; especially their differences are large when the system is
congested.

Besides the above things, there are many advantage of our method [25]. Multi-
class queueing models are useful for analyzing the computer communication sys-
tems with many datatypes and sources, and more complicated queueing models are
necessary in order to derive the performance characteristics in the real systems. Be-
cause we can investigate complicated multiclass structures and composite schedul-
ing algorithms by our method, it may stimulate advanced analysis of these systems.

Appendix: Proof of Proposition 7.2

Proof. We prove that the polling equation (7.8) is satisfied by directly substituting
the expression for Ĥ j(Y,e, l,k) defined by (7.28) into it. Let Y = (κ0,r,g,n,L) ∈ E
be the state of the system at time τe

l (l = 0,1, . . . , e = 1,2, . . .).

Case 1 (k ∈ Π): In the following expressions, the abbreviated condition (Y, j)e
l

means the condition Y(τe
l) = Y and Xe

S (τe
l) = j for l ≥ 0, e = 1,2,

For (κ0 = j, l = 0, j ∈He) or (κ0 = j, l > 0, j ∈He∪Hg), it can be easily shown
that

Ĥ j(Y,e, l,k) = 0.

For (l = 0,κ0 ∈Π ,κ0 	= j) or (l = 0,κ0 = j ∈ Hg),

H0
j (Y,e,0,k)+E[Ĥ j(Y(τe

1),e,1,k)|Y(τe
0) = Y,Xe

S (τe
0) = j]

= rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)

+E[(g(τe
1),n(τe

1))h10(κ(τe
1), j,k)+h11(κ(τe

1), j,k)|(Y, j)e
0]

= rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1 E[(g(τe
1),n(τe

1))|κ(τe
1) = κ1,(Y, j)e

0]h10(κ1, j,k)

= rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1 {rυ(κ0)+(g,n)U0(κ0)+u0(j,κ0,κ1)}h10(κ1, j,k)

= Ĥ j(Y,e,0,k).

7 Markovian Polling Systems: Functional Computation 145

The first equation comes from (7.23) and (7.28). The second equation comes from
the definition of the switching probability pκ0κ1 . The third equation comes from
(7.25). The last equation comes from the definitions of the constants (in Sect. 7.4)
and (7.28).

For l = 0 and κ0 = (k0,k1) ∈Π s,

H0
j (Y,e,0,k)+E[Ĥ j(Y(τe

1),e,1,k)|Y(τe
0) = Y,Xe

S (τe
0) = j]

= E[(g(τe
1),n(τe

1))h10(κ(τe
1), j,k)+h11(κ(τe

1), j,k)|(Y, j)e
0]

= E[(g(τe
1),n(τe

1))|κ(τe
1) = k1,(Y, j)e

0]h10(k1, j,k)+h11(k1, j,k)
=
{

rυ+(g,n)U0 +(0,e j)
}

h10(k1, j,k)+h11(k1, j,k)

= Ĥ j(Y,e,0,k).

For l > 0 and κ0 	= j (κ0 ∈Π),

H0
j (Y,e, l,k)+E[Ĥ j(Y(τe

l+1),e, l +1,k)|Y(τe
l) = Y,Xe

S (τe
l) = j]

= (g,n)h0
10(κ0, j,k)

+E[(g(τe
l+1),n(τe

l+1))h10(κ(τe
l+1), j,k)+h11(κ(τe

l+1), j,k)|(Y, j)e
l]

= (g,n)h0
10(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1E[(g(τe
l+1),n(τe

l+1))|κ(τe
l+1) = κ1,(Y, j)e

l]h10(κ1, j,k)

= (g,n)h0
10(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1 {(g,n)U1(κ0)+u1(κ0,κ1)}h10(κ1, j,k)

= Ĥ j(Y,e, l,k).

Case 2 (k ∈Π s): The proof is similar to case 1 and is omitted.
Hence the proof is completed.
�

References

1. T. Hirayama, Mean sojourn times in multiclass feedback queues with gated disciplines, Naval
Research Logistics, vol. 50, no. 7, pp. 719–741, 2003.

2. T. Hirayama, S. J. Hong, and M. M. Krunz, A new approach to analysis of polling systems,
Queueing Systems, vol. 48, nos. 1–2, pp. 135–158, 2004.

3. M. M. Srinivasan, Nondeterministic polling systems, Management Science, vol. 37, no. 6,
pp. 667–681, 1991.

4. H. Levy and M. Sidi, Polling systems: Applications, modeling, and optimization, IEEE Trans-
actions on Communications, vol. 38, no. 10, pp. 1750–1760, 1990.

5. H. Takagi, Analysis and application of polling models, in: G. Haring, C. Lindemann, and
M. Reiser (Eds.), Performance Evaluation: Origins and Directions, Lecture Notes in Com-
puter Science, vol. 1769, pp. 423–442. Berlin: Springer, 2000.

6. R. B. Cooper, Queues served in cyclic order: Waiting times, Bell System Technical Journal,
vol. 49, no. 3, pp. 399–413, 1970.

146 T. Hirayama

7. R. B. Cooper and G. Murray, Queues served in cyclic order, Bell System Technical Journal,
vol. 48, no. 3, pp. 675–689, 1969.

8. M. Eisenberg, Queues with periodic service and changeover time, Operations Research, vol.
20, no. 2, pp. 440–451, 1972.

9. H. Takagi, Analysis of polling systems with a mixture of exhaustive and gated service dis-
ciplines, Journal of the Operations Research Society of Japan, vol. 32, no. 4, pp. 450–461,
1989.

10. H. Levy and M. Sidi, Polling systems with simultaneous arrivals, IEEE Transactions on Com-
munications, vol. 39, no. 6, pp. 823–827, 1991.

11. M. Sidi, H. Levy and S. W. Fuhrmann, A queueing network with a single cyclically roving
server, Queueing Systems, vol. 11, nos. 1–2, pp. 121–144, 1992.

12. M. J. Ferguson and Y. J. Aminetzah, Exact results for nonsymmetric token ring systems, IEEE
Transactions on Communications, vol. 33, no. 3, pp. 223–231, 1985.

13. D. Sarkar and W. I. Zangwill, Expected waiting time for nonsymmetric cyclic queueing sys-
tems — Exact results and applications, Management Science, vol. 35, no. 12, pp. 1463–1474,
1989.

14. E. M. M. Winands, I. J. B. F. Adan, and G. J. Van Houtum, Mean value analysis for polling
systems, Queueing Systems, vol. 54, no. 1, pp. 35–44, 2006.

15. H. Takagi, Analysis of Polling Systems. Cambridge: MIT Press, 1986.
16. A. G. Konheim, H. Levy, and M. M. Srinivasan, Descendant set: An efficient approach for

the analysis of polling systems, IEEE Transactions on Communications, vol. 42, nos. 2/3/4,
pp. 1245–1253, 1994.

17. M. P. Singh and M. M. Srinivasan, Exact analysis of the state-dependent polling model,
Queueing Systems, vol. 41, no. 4, pp. 371–399, 2002.

18. O. J. Boxma, Workloads and waiting times in single-server systems with multiple customer
classes, Queueing Systems, vol. 5, nos. 1–3, pp. 185–214, 1989.

19. R. B. Cooper, S-C. Niu, and M. M. Srinivasan, A decomposition theorem for polling mod-
els: The switchover times are effectively additive, Operations Research, vol. 44, no. 4,
pp. 629–633, 1996.

20. L. Kleinrock and H. Levy, The analysis of random polling systems, Operations Research, vol.
36, no. 5, pp. 716–732, 1988.

21. H. Chung, C. K. Un, and W. Y. Jung, Performance analysis of Markovian polling systems with
single buffers, Performance Evaluation, vol. 19, no. 4, pp. 303–315, 1994.

22. J. E. Baker and I. Rubin, Polling with a general-service order table, IEEE Transactions on
Communications, vol. 35, no. 3, pp. 283–288, 1987.

23. O. J. Boxma, H. Levy, and J. A. Weststrate, Efficient visit frequencies for polling tables:
Minimization of waiting cost, Queueing Systems, vol. 9, nos. 1–2, pp. 133–162, 1991.

24. T. Hirayama, Analysis of multiclass M/G/1 queues with a mixture of 1-limited disciplines
and gated disciplines, Journal of the Operations Research Society of Japan, vol. 42, no. 3,
pp. 237–255, 1999.

25. T. Hirayama, Multiclass polling systems with Markovian feedback: Mean sojourn times in
gated and exhaustive systems with local priority and FCFS service orders, Journal of the
Operations Research Society of Japan, vol. 48, no. 3, pp. 226–255, 2005.

26. H. Levy, Delay computation and dynamic behavior of non-symmetric polling systems, Per-
formance Evaluation, vol. 10, no. 1, pp. 35–51, 1989.

27. W. Whitt, A review of L = λW and extensions, Queueing Systems, vol. 9, no. 3, pp. 235–268,
1991.

	Chapter 7
	Markovian Polling Systems: Functional Computation for MeanWaiting Times and its Computational Complexity
	7.1 Introduction
	7.2 Model Description
	7.3 Expressions for W0j(·),H0j(·),Fj(·), and Related Quantities
	7.3.1 Expressions for W0j(·),H0j(·), andFj(·)
	7.3.2 System State at the Next Polling Instant
	7.3.3 Unified Forms: Linear Functional Expressions

	7.4 The Linear Functional Expression
	7.5 Steady-State Values
	7.6 Computational Complexity
	7.6.1 Reduction of Calculations of h10(·)
	7.6.2 Reduction of Calculations of Steady-State Values
	7.6.3 Evaluation of Computational Complexity
	7.6.4 Comparison of Computational Times by Examples

	7.7 Conclusions
	Appendix: Proof of Proposition 7.2
	References

