
Chapter 6
Performance Analysis of an M/Ek/1 Queue
with Balking and Two Service Rates Based
on a Single Vacation Policy

Chunyan Li, Wuyi Yue, and Dequan Yue

Abstract In this chapter, we present an analysis for an M/Ek/1 queue with balk-
ing and two service rates based on a single vacation policy. Customers are served
at two different rates depending on the number of customers in the system. If cus-
tomers on arrival find other customers in the system, they either decide to enter the
queue or balk with a constant probability. The server takes a single vacation when
the system becomes empty. We first formulate a quasi birth-and-death process for
the queueing system. Then, we obtain the equilibrium condition of the system. By
using the matrix-geometric solution method, we obtain the matrix-geometric form
solution for the steady-state probability vectors. The computation of the boundary
steady-state probability vectors is also discussed. Then, we derive explicitly perfor-
mance measures of the system. Based on this performance analysis, we develop a
cost model to determine numerically the system’s optimal cost and optimal critical
value. Finally, we perform a sensitivity analysis through numerical experiments.

6.1 Introduction

In this chapter, we consider an M/Ek/1 queueing system with balking and two ser-
vice rates based on a single vacation policy. Customers are served at two different
rates depending on the number of customers in the system. If customers on arrival
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find other customers in the system, they either decide to enter the queue or balk with
a constant probability. Balking is not only a common phenomenon in queues aris-
ing in daily activities, but is also found in applications in communication systems,
production line systems, and in various machine interference or repair models (see,
e.g., [1], [2], and references therein).

The queueing systems with balking, or reneging, or both have been studied by
many researchers. Haight [3] was the first person who considered an M/M/1 queue
with balking. An M/M/1 queue with customer reneging was also proposed by Haight
[4]. The combined effects of balking and reneging in an M/M/1 queue with limited
waiting room and unlimited waiting room have been investigated by Ancker and
Gafarian [5], [6]. They obtained the steady-state probabilities and some performance
measures of the system such as the mean number of customers in the queue, the
mean number of customers in the system, and the mean rate of customer loss.

Abou-El-Ata [7] extended the model in [5] to study a state-dependent M/M/1/N
queue with reneging and a general balk function, where the server has two ser-
vice rates depending on the number of customers in the system. They obtained
the transient solution of the state probabilities. Al-Seedy [8] extended the model
in [7] to a state-dependent M/Ek/1/N queue with balking. By solving the steady-
state probability-difference equations, Al-Seedy [8] obtained some iterative expres-
sions of the steady-state probabilities. A state-dependent M/M/1 queue with balking
was studied by Al-Seedy and Kotb [9]. Recently, Yue, Li, and Yue [10] extended
the model in [8] to a state-dependent M/Ek/1 queueing system with balking. They
formulated a quasi birth-and-death (QBD) process, and obtained the steady-state
probability vector and some performance measures of the system.

Similarly, queueing models with vacations have been studied by many re-
searchers and have been found to be applicable in analyzing numerous real-world
queueing situations such as flexible manufacturing systems, service systems, and
telecommunication systems. Excellent surveys of queueing systems with server
vacations can be found in the paper by Doshi [11] and the book by Takagi [12].
However, most of the research works on queueing systems with balking have not
considered server vacations. There were only a few papers that we know of that
considered queueing systems with balking and server vacations (see, e.g., [1], [13],
and [14]). In this chapter, we study an M/Ek/1 queueing system with balking and
single vacations.

The rest of this chapter is organized as follows. In Sect. 6.2, we formulate a QBD
process and obtain the equilibrium condition for the system. In Sect. 6.3, by us-
ing a matrix-geometric solution method, we derive the explicit expression for the
steady-state probability vector. We also discuss the computation of the boundary
steady-state probability vectors. In Sect. 6.4, we derive explicitly some performance
measures of the system such as the expected number of the customers in the sys-
tem, the expected number of customers in the queue, and the mean balking rate
of the system. Based on this performance analysis, we develop a cost model to
determine numerically the optimal cost and optimal critical value of the system.
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In Sect. 6.5, we perform sensitivity analysis through numerical experiments. Con-
clusions are given in Sect. 6.6.

6.2 System Model and Equilibrium Condition

In this chapter, we consider an M/Ek/1 queueing system with balking and two ser-
vice rates based on a single vacation policy.

6.2.1 System Model

The assumptions of the system model are as follows:

(1) Customers arrive according to a Poisson process with arrival rate λ . There is
one server in the system. If customers on arrival find other customers in the
system, they either decide to enter the queue with a probability β or balk with
a probability 1−β .

(2) Customers are served on a First-Come First-Served (FCFS) basis. Once service
commences, it always proceeds to completion. The service times are assumed
to be distributed according to an Erlang distribution with mean k/μn; that is,
the service time is made up of k independent and identical exponential stages,
each with mean 1/μn, given by

μn =
{
μ1, n = 1,2, . . . ,r
μ2, n = r +1,r +2, . . . .

This means that the server at each service stage has two rates, say “slow and
fast,” depending on the number of customers n in the system. When the number
of customers n in the system is less than or equal to the critical value r, the
server has a slow service rate μ1; otherwise, the server has a fast service rate
μ2 (0 < μ1 < μ2 < ∞).

(3) When the system is empty, the server goes on a vacation. If the server returns
from a vacation to find customers waiting, it begins to serve those waiting cus-
tomers; otherwise, the server is idle and begins serving whenever customers
arrive. This type of vacation is called “single vacation”. The server’s vacation
time follows an exponential distribution with the vacation rate η (η > 0).

(4) The interarrival times, service times, and vacations are mutually independent.
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6.2.2 Equilibrium Condition

In the following, we first formulate a QBD process. Then, we provide the equilib-
rium condition of the system.

Let N(t) denote the number of customers in the system at time t, and let J(t)
denote the service stage for the customer being served at time t(t ≥ 0). A customer
goes into the first stage of the service, then progresses through the remaining stages,
and must complete the last stage. Let J(t) = 0, if the server goes on vacation at time
t; J(t) = i, if the server is servicing the customer and the customer goes into the ith
service stage at time t; and J(t) = −1, if the server is idle at time t. The state space
of the two-dimensional process {(N(t),J(t)); t ≥ 0} is given by

S = {(0, j); j = −1,0}∪{(i, j); i = 0,1, . . . , j = 1,2, . . . ,k}.

All states of this two-dimensional process are labeled in lexicographic order as
follows:

(0,0);(0,−1);(1,0),(1,1), . . . ,(1,k);(2,0),(2,1), . . . ,(2,k); . . . .

By probability analysis, the process {(N(t),J(t)); t ≥ 0} has the following in-
finitesimal generator.

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 C0
A0 B1 C1

A1 B1 C1
· · · · · · · · ·

A1 B1 C1
A2 B2 C1

· · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· · · 0
· · · 1
· · · 2

... ,
· · · r
· · · r +1

...

where

B0 =
(
−(λ +η) η

0 −λ

)

, C0 =
(
λ 0 0 · · · 0
0 λ 0 · · · 0

)

,

A0 =

⎛

⎜
⎜
⎜
⎝

0 0
...

...
0 0
μ1 0

⎞

⎟
⎟
⎟
⎠

, A1 =

⎛

⎜
⎜
⎜
⎝

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
0 μ1 0 · · · 0

⎞

⎟
⎟
⎟
⎠

,
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B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(βλ +η) η 0 · · · 0 0
0 −(βλ +μ1) μ1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −(βλ +μ1) μ1
0 0 0 · · · 0 −(βλ +μ1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

C1 =

⎛

⎜
⎜
⎜
⎝

βλ 0 · · · 0
0 βλ · · · 0
...

...
...

0 0 · · · βλ

⎞

⎟
⎟
⎟
⎠

, A2 =

⎛

⎜
⎜
⎜
⎝

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
0 μ2 0 · · · 0

⎞

⎟
⎟
⎟
⎠

,

B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(βλ +η) η 0 · · · 0 0
0 −(βλ +μ2) μ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · −(βλ +μ2) μ2
0 0 0 · · · 0 −(βλ +μ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where B0 is a 2× 2 matrix, C0 is a 2× (k + 1) matrix, A0 is a (k + 1)× 2 matrix,
and the other matrices are (k +1)× (k +1) matrices.

From the book written by Neuts [15], we know that {(N(t),J(t)); t ≥ 0} is a QBD
process. Let H = A2 +B2 +C1, then H can be given by

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η η 0 · · · 0 0
0 −μ2 μ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · −μ2 μ2
0 μ2 0 · · · 0 −μ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is readily known that H is an irreducible generator. Let π = (π0,π1, . . . ,πk) be a
(k+1)-dimensional row vector of the steady-state probability of H. Then, π satisfies
the linear equations: πH = 0 and πe = 1, where e = (1,1, . . . ,1) is a column vector
with (k +1) elements. Solving the linear equations, we get

π0 = 0, πi =
1
k
, i = 1,2, . . . ,k. (6.1)

By Theorem 3.1.1 in [15], the equilibrium condition of the system is given by
πA2e > πC1e. Substituting π with (6.1), we then have the equilibrium condition
for the system given by

kβλ
μ2

< 1. (6.2)
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6.3 Steady-State Probability Vector

From the discussion in Sect. 6.2, we know that the steady-state probability vector of
Q exists under the equilibrium condition given by (6.2). In this section, we derive
the explicit expression for the steady-state probability vector.

Let X = (X0,X1, . . . ,Xr,Xr+1, . . .), where X0 = (x0,x−1) is a row vector with
two elements, and Xi= (xi0, xi1, xi2, ..., xik) is a row vector with (k + 1) elements,
i = 1,2, . . .. By applying the matrix-geometric solution method, the stationary prob-
ability vector is given by

Xi = XrRi−r, i = r,r +1, ..., (6.3)

where R is the minimal nonnegative solution to the equation R2A2 +RB2 +C1 = 0,
and the boundary steady-state probability vectors X0,X1, . . . ,Xr are given by solv-
ing the following equations:

X0B0 +X1A0 = 0, (6.4)

X0C0 +X1B1 +X2A1 = 0, (6.5)

XiC1 +Xi+1B1 +Xi+2A1 = 0, i = 1,2, . . . ,r−2, (6.6)

Xr−1C1 +Xr(B1 +RA2) = 0, (6.7)

x0 + x−1 +
r−1

∑
i=1

Xie+Xr(I−R)−1e = 1, (6.8)

where e = (1,1, . . . ,1) is a column vector with (k + 1) elements. In order to solve
(6.4)–(6.8), we define the following matrices:

Mr = I, (6.9)

Mr−1 = − 1
βλ

(B1 +RA2) , (6.10)

Mi = − 1
βλ

(Mi+1B1 +Mi+2A1) , i = 1,2, . . . ,r−2, (6.11)

M0 = −(M1B1 +M2A1) , (6.12)

where I is the (k +1)× (k +1) identity matrix.
Let ε1 = (1,0,0, . . . ,0) and ε2 = (0,1,0, . . . ,0) be column vectors with (k + 1)

elements, respectively. Let B̃0 = (ε1,ε2)B0 be the (k+1)× (k+1) matrix. We have
the following theorem.

Theorem 6.1. The solutions of (6.4)–(6.8) are given by
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Xi = XrMi, i = 1,2, . . . ,r, (6.13)

x0 =
1
λ

XrM0ε1, (6.14)

x−1 =
1
λ

XrM0ε2 (6.15)

and Xr satisfies the following equations:

Xr

(
1
λ

M0B̃0 +M1A0

)

= 0, (6.16)

Xr

[
1
λ

M0(ε1 + ε2)+
r−1

∑
i=1

Mie+(I−R)−1e

]

= 1. (6.17)

Proof. Note that C1 is invertible and C−1
1 = 1/(βλ )I. We have from (6.7) that

Xr−1 = XrMr−1. (6.18)

This indicates that (6.13) holds for i = r−1. It is obvious that (6.13) holds for i = r.
Suppose that (6.13) holds for i = k +2,k +1; then we have from (6.6) that

Xk = −(Xk+1B1 +Xk+2A1)C−1
1

= − 1
βλ

Xr(Mk+1B1 +Mk+2A1)

= XrMk. (6.19)

Thus, by the inductive method, we conclude that (6.13) holds for i = 1,2, . . . ,r.
From (6.5), we have

X0C0 = −Xr(M1B1 +M2A1)

= XrM0. (6.20)

Note that C0ε1 = (λ ,0) and C0ε2 = (0,λ ) are column vectors with two elements,
respectively, we get (6.14) and (6.15). Substituting (6.14) and (6.15) into (6.4) and
(6.8), we get (6.16) and (6.17). 
�

In general, it is difficult to give an exact expression of R except for a few special
cases. However, the matrix R can be approximately calculated by the following
iterative procedure:

(1) R(0) = 0,

(2) R(n+1) = −(C1 +R2(n)A2)B−1
2 , n ≥ 0.
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The proof of the convergence for this iterative algorithm is given in [15]. The matrix
B−1

2 in the above algorithm exists, and can be explicitly given by

B−1
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a ab(−η) ab2(−η)(−μ2) · · · abk−1(−η)(−μ2)k−2 abk(−η)(−μ2)k−1

0 b b2(−μ2) · · · bk−1(−μ2)k−2 bk(−μ2)k−1

0 0 b · · · bk−2(−μ2)k−3 bk−1(−μ2)k−2

...
...

...
...

...
0 0 0 · · · b b2(−μ2)
0 0 0 · · · 0 b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where a = −1/(βλ +η) and b = −1/(βλ +μ2).

6.4 Performance Measures and Cost Model

In this section, we give some useful performance measures of the system. Based
on these performance measures, we develop a cost model to determine the optimal
critical value to minimize the total expected cost per unit time.

6.4.1 Performance Measures

Using the steady-state probability vector X presented in Sect. 6.3, we can obtain
some performance measures of the system.

Theorem 6.2.

(1) The expected number of customers in the queue is given by

E[Nq] = Xr

{
r−1

∑
n=1

nMn+1 +R[(r−1)(I−R)−1 +(I−R)−2]

}

e. (6.21)

(2) The expected number of customers in the system is given by

E[N] = Xr

{
r

∑
n=1

nMn +R[r(I−R)−1 +(I−R)−2]

}

e. (6.22)

(3) The mean balking rate of the system is given by

BR = (1−β )λ (1−X0e), (6.23)

where e = (1,1, . . . ,1) is a column vector with (k +1) elements.
(4) The probability that the server is busy is given by
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PB = Xr

{
r−1

∑
n=1

Mn +(I−R)−1

}

δ , (6.24)

where δ = (0,1, . . . ,1) is a column vector with (k +1) elements.
(5) The probability that the server goes on vacation is given by

PV = 1−PB − x−1. (6.25)

(6) The probability that the server is idle is given by

PI = x−1. (6.26)

Proof. The expected number of customers in the queue is given by

E[Nq] =
∞

∑
n=1

k

∑
i=0

nxn+1,i =
r−1

∑
n=1

nXrMn+1e+
∞

∑
n=r

nXrRn−r+1e. (6.27)

Hence, we obtain (6.21) by a summation of series. The expected number of cus-
tomers in the system is given by

E[N] =
∞

∑
n=1

k

∑
i=0

nxn,i =
r

∑
n=1

nXrMne+
∞

∑
n=r+1

nXrRn−re. (6.28)

Hence, we get (6.22) by a summation of series. Using the concept of Ancker and
Gafarian [5], the average balking rate of the system is given by

BR =
∞

∑
n=1

(1−β )λXne = (1−β )λ (1−X0e). (6.29)

The processes of the proofs for (6.24)–(6.26) are obvious, hence the proofs for
(6.24)–(6.26) have been omitted. 
�

6.4.2 Cost Model

In this subsection, we develop a steady-state expected cost function where the crit-
ical value r is a decision variable. Our objective is to determine the critical value r
to minimize the total expected cost per unit time.

Let C1 be the cost per unit time when there are customers waiting for service, C2
be the cost per unit time when the server is busy, C3 be the cost per unit time when
the server goes on vacation, C4 be the lost cost per unit time when customers balk,
and C5 be the cost per unit time when the server is idle.

According to the definition of each of the cost parameters listed above, the total
expected cost function per unit time is given by

F(r) = C1E[Nq]+C2PB +C3PV +C4BR+C5PI , (6.30)
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where E[Nq], PB, PV , BR, and PI are given in (6.21) and (6.23)–(6.26). The first item
is the cost incurred by the customer’s waiting. The fourth item is the cost incurred
by the loss of a customer. The second, the third, and the last items are the costs
incurred by the server.

6.5 Sensitivity Analysis

In this section, we perform a sensitivity analysis on the optimal critical value r∗ and
its expected cost F(r∗) based on changes in values of the system parameters such as
the arrival rate λ , the slow service rate μ1, the fast service rate μ2, the vacation rate
η , and the entering probability β . Let the distribution of the service time be a two-
stage Erlang distribution, and the employed cost parameters C1 = 150, C2 = 250,
C3 = 200, C4 = 300 and C5 = 100. The numerical results of the optimal critical
value r∗ and its expected minimum cost F(r∗) are illustrated in Figs. 6.1–6.5.

In Fig. 6.1, we fix μ1 = 0.2, μ2 = 0.8, η = 0.5, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying the
arrival rate λ . Figure 6.1 shows that: (i) the optimal critical value r∗ decreases as λ
increases from 0.05 to 0.1, and it does not change at all when λ varies from 0.1 to
0.3; (ii) the minimum expected cost F(r∗) increases as λ increases. Intuitively, λ
affects r∗ slightly and affects F(r∗) significantly.

In Fig. 6.2, we fix λ = 0.1, μ2 = 0.8, η = 0.5, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying the
slow service rate μ1. Figure 6.2 shows that: (i) the optimal critical value r∗ increases
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Fig. 6.1 Optimal critical value r∗ and optimal cost F(r∗) versus arrival rate λ for μ1 = 0.2, μ2 =
0.8, η = 0.5, and β = 0.5.
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Fig. 6.2 Optimal critical value r∗ and optimal cost F(r∗) versus slow service rate μ1 for λ = 0.1,
μ2 = 0.8, η = 0.5, and β = 0.5.
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Fig. 6.3 Optimal critical value r∗ and optimal cost F(r∗) versus fast service rate μ2 for λ = 0.1,
μ1 = 0.2, η = 0.5, and β = 0.5.

as μ1 increases; (ii) its minimum expected cost F(r∗) decreases as μ1 increases.
Intuitively, μ1 affects r∗ and F(r∗) significantly.

In Fig. 6.3, we fix λ = 0.1, μ1 = 0.2, η = 0.5, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying the
fast service rate μ2. Figure 6.3 shows that: (i) the optimal critical value r∗ decreases
as μ2 increases from 0.3 to 0.5, whereas it does not change at all when μ2 varies from
0.5 to 0.8; (ii) the minimum expected cost F(r∗) rarely changes when μ2 varies from
0.3 to 0.8. Intuitively, μ2 affects r∗ slightly and affects F(r∗) rarely.
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Fig. 6.4 Optimal critical value r∗ and optimal cost F(r∗) versus vacation rate η for λ = 0.1,
μ1 = 0.2, μ2 = 0.8, and β = 0.5.
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Fig. 6.5 Optimal critical value r∗ and the optimal cost F(r∗) versus the probability β for λ = 0.1,
μ1 = 0.2, μ2 = 0.8, and η = 0.5.

In Fig. 6.4, we fix λ = 0.1, μ1 = 0.2, μ2 = 0.8, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying
the vacation rate η . Figure 6.4 shows that: (i) the optimal critical value r∗ changes
slightly when η varies from 0.1 to 0.8; (ii) the minimum expected cost F(r∗) de-
creases slightly as η increases. Intuitively, η affects r∗ and F(r∗) slightly.

In Fig. 6.5, we fix λ = 0.1, μ1 = 0.2, μ2 = 0.8, and η = 0.5, and display the
optimal critical value r∗ and its expected minimum cost F(r∗) by varying the enter-
ing probability β . Figure 6.5 shows that: (i) the optimal critical value r∗ does not
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change at all when β varies from 0.3 to 0.8; and (ii) the minimum expected cost
F(r∗) increases slightly as β increases. Intuitively, the optimal critical value r∗ and
its expected minimum cost F(r∗) are insensitive to changes in β .

It appears from Figs. 6.1–6.5 that: (a) λ affects r∗ slightly, and affects F(r∗)
significantly; (b) μ1 affects r∗ and F(r∗) significantly; and (c) the optimal critical
value r∗ and its expected minimum cost F(r∗) are insensitive to changes in μ2, η ,
and β .

6.6 Conclusions

We considered an M/Ek/1 queueing system with balking and two service rates based
on a single vacation policy. By using a matrix-geometric solution, we obtained the
matrix solution of the steady-state probability distribution and the explicit expres-
sions for some performance measures of the system. Based on these performance
measures, we developed a cost model to determine the optimal critical value to min-
imize the total expected cost per unit time. Furthermore, we performed sensitivity
analysis for the optimal critical value and its expected minimum cost with various
parameters.
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