
Chapter 5
Modeling of Production System
with Nonrenewal Batch Input, Early Setup,
and Extra Jobs

Ho Woo Lee, No Ik Park, Se Won Lee, and Jung Woo Baek

Abstract In this chapter, we model and solve a very general single-machine pro-
duction system with early setup, bilevel threshold control, and extra job operations.
The first threshold is used to control the setup starting time and the second thresh-
old is used to control the production starting time. The system is modeled by the
BMAP/G/1 queue and the manufacturing lead time is analyzed. The factorization
principle is used to derive the distribution of the manufacturing lead time and the
mean value. A numerical example is provided.

5.1 Introduction

Industrial engineers have long been interested in analyzing the trade-offs between
the system setup and work-in-process (WIP) inventory in order to provide the con-
ditions under which the system operates most economically in the long run. Usually
the system setup increases the work-in-process inventory which results in a higher
holding cost. But when the system setup cost is very high, this increased holding
cost may offset the setup cost because the setup increases the manufacturing cycle
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time which will result in reduced long-run operating cost per unit time. Hence the
system setup and WIP inventory are the two most important factors in the cost-
effective operation of a production system. Queueing models have played important
roles in their analytical efforts along this line.

In most studies on production systems, it has been assumed that the feed process
into the production system follows the Poisson process, mainly due to its analyt-
ical tractability. But in many real production settings, the interarrival times of the
raw materials are correlated, and independently identically distributed (i.i.d.) expo-
nential interarrival times are rarely found. Also, in many production systems, setup
operations take several days and are very costly. One way to reduce the setup cost
per unit time is to delay the production until some number of raw materials accu-
mulates and this is the well-known N-policy in a queueing context. The N-policy
results in a longer cycle length which means fewer cycles per unit time. But at the
same time, the average WIP inventory level becomes larger. Thus, in real production
settings, the N-policy is used to reduce the overall average cost per unit time when
the setup cost is extremely high compared to the WIP holding cost.

In this chapter, we model and solve a very general single-machine production
system with early setup, bilevel threshold control, and extra job operations. The first
threshold is used to control the setup starting time and the second threshold is used to
control the production starting time. The system can be modeled by the BMAP/G/1
queue with bilevel thresholds, setup time, and multiple vacations. We are especially
interested in the manufacturing lead time (MLT), which is defined as the time from
the arrival of an order till the time the ordered production is finished. The MLT is
an important measure of the performance of the production system because whether
the manufacturer can meet the due date of an order is one of the most important
success indicators of the production system.

Because the MLT corresponds to the system sojourn time (waiting time + pro-
cessing time) of a queueing system, our objective is to derive the waiting time distri-
bution of the BMAP/G/1 queueing system under the above-mentioned mixed control
policy. The idea and basic methods that are employed in this chapter can be applied
to many exhaustive BMAP/G/1 systems with more variability.

The N-policy system was first studied by Yadin and Naor [1]. For other works on
N-policy queues, see Hersh and Brosh [2], Hofri [3], Kella [4], Lee and Srinivasan
[5], Takagi [6], Lee, and chae [7], and Lee and Ahn [8], to list a few.

Lee and Park [9] showed that the double threshold (α,N)-policy is better than
the single threshold N-policy when the setup cost is extremely high compared to
the WIP holding cost. We note Lee, Park, and Jeon [10] applied the factorization
property of the queue length to the analysis of the WIP inventory of a production
system with maintenance, setup, and thresholds.

The chapter is organized as follows. In Sects. 5.2 and 5.3, the system model is
described and some notation definitions are given. In Sects. 5.4 and 5.5, the waiting
time distribution and the mean waiting time are derived. Numerical examples are
shown in Sect. 5.6 and conclusions are drawn in Sect. 5.7.
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5.2 System Model

Our queueing system operates as follows (see Fig. 5.1). As soon as the system emp-
ties, the server leaves for a vacation of random length V with distribution function
(DF) V (x) and the Laplace–Stieltjes transform (LST) V ∗(θ) (the server attends to
extra jobs during the vacation). After it returns from the vacation, if it finds α or
more customers, it immediately starts a setup of random length H with DF H(x)
and the LST H∗(θ). Otherwise, it takes repeated i.i.d. vacations until it finds α or
more customers to start a setup. After the setup is finished, if the total number of
customers in the system (queue length) is greater than or equal to N, the server im-
mediately begins to serve the customers. If not, the server waits in the system until
the queue length reaches or exceeds N.

In our system, customers arrive according to a BMAP (Batch Markovian Arrival
Process) with parameter matrices (D0,D1,D2, . . .) with D(z) = ∑∞n=0 Dnzn as the
matrix generating function (GF) where D = D(1) = ∑∞n=0 Dn is the infinitesimal
generator of the underlying Markov chain (UMC). We assume that the service times
are i.i.d. random variables with DF S(x) and the LST S∗(θ). We also assume that
the service times, the vacation times, the setup time, and the arrival process are
independent of each other.

An excellent treatment of the BMAP and BMAP/G/1 queues can be found in
Lucantoni [11], [12]. For computational algorithms concerning BMAP queues, see
Lucantoni [11], [12], Ramaswami [13], and Latouche and Ramaswami [14].

Chang, Takine, and Chae et al. [15] studied the factorization property for a
BMAP/G/1 queue with generalized vacations. Lee, Park, and Jeon [16] applied the
factorization property to the Park, and Jeon BMAP/G/1 queue with early setup and
bilevel threshold policy.
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Fig. 5.1 The system.
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5.3 Preliminaries

Let π be the stationary vector of the UMC. Then, π can be obtained from

πD = 0, πe = 1,

where e is the column vector of 1s with appropriate dimension.
Let λg be the group arrival rate. Then, we have

λg = π
∞

∑
n=1

Dne = π(D−D0)e = −πD0e.

The total customer arrival rate λ becomes

λ = π
∞

∑
n=1

nDne.

Let Γ be the size of an arbitrary arrival group with γk = Pr(Γ = k). Then, we
have

γk =
πDke

π ∑∞n=1 Dne
=
πDke
λg

(5.1)

and
E[Γ ] = λ/λg. (5.2)

Let δk be the probability that the test customer belongs to a group of size k. From
the theory of discrete-time renewal theory, we have, after using (5.1) and (5.2),

δk =
k · γk
E[Γ ]

=
kπDke
λ

.

Now, let us consider a “virtual customer” who arrives at an arbitrary point
of time during the busy period and sees the system state (n, i) where n is the
queue length (i.e., the number of customers including the one in service) and i is
the phase of the UMC at the arrival instance. Let the time-average probability of
this state be ybusy,n,i with vector ybusy,n = (ybusy,n,1, . . . ,ybusy,n,m) and the vector GF
Y busy(z) = ∑∞n=1 ybusy,nzn. Now, let us consider an arbitrary “actual customer” who
arrives during the busy period. If he belongs to a group of size k (with probability
δk), and is ith within his group (with probability 1/k), he has (i−1) customers pre-
ceding him in his group. Thus, the vector GF Y +

busy(z) of the number of customers
just after his arrival becomes

Y +
busy(z) =

∞

∑
k=1

k

∑
i=1
δk

1
k

zi−1Y busy(z)
Dk

πDke
= Y busy(z)

D−D(z)
λ (1− z)

, (5.3)

where Dk/πDke is multiplied to convert the virtual joint probability of the queue
length and the UMC phase to the actual joint probability (note that our test
customer belongs to a group of size k). Equation (5.3) was already stated in
Lucantoni [11], [12].
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5.4 Waiting Time Distribution

In order to obtain the vector Laplace–Stieltjes transform (LST) w∗
A(θ) of the waiting

time of an actual test customer, the first step is to find the vector LSTs w∗
vac,V (θ),

w∗
su,V (θ), w∗

sb,V (θ), and w∗
busy,V (θ) of the waiting time of the virtual customer who

arrives at an arbitrary time in each period. Once we obtain these quantities, we can
obtain the vector LSTs w∗

vac,A(θ), w∗
su,A(θ), w∗

sb,A(θ), and w∗
busy,A(θ) of the waiting

time of an actual test customer by postmultiplying appropriate quantities to convert
the virtual probabilities to actual probabilities.

To obtain w∗
busy,V (θ), we need Y ∗

busy(z,θ) which is the joint transform of the
queue length and the remaining service time at the arrival instance of the virtual
customer. Then we get

w∗
busy,V (θ) =

[
Y ∗

busy(z,θ)

z

]

z=S∗(θ)

=
Y ∗

busy[S
∗(θ),θ ]

S∗(θ)
.

Then, in the analogous manner as in (5.3), we get

w∗
busy,A(θ) =

Y ∗
busy[S

∗(θ),θ ]

S∗(θ)
D−D(S∗(θ))
λ (1−S∗(θ))

. (5.4)

Now, if we let Y idle(z) be the vector GF of the queue length at an arbitrary
idle time in a BMAP/G/1 queue with generalized vacations, it is proven by Chang
et al. [15] that Y ∗

busy(z,θ) is given by

Y ∗
busy(z,θ)[θ I +D(z)] = (1−ρ)Y idle(z)zD(z)[A(z)−S∗(θ)I][zI −A(z)], (5.5)

where ρ = λE[S] is the server utilization and A(z) is the matrix GF of the num-
ber of customers that arrive during the service time which is given by A(z) =
∫ ∞

0 eD(z)xdS(x) (Lucantoni [12]). Thus, our temporary objective is to obtain Y idle(z).

5.4.1 Obtaining Yidle(z)

In this subsection, we derive the vector GF Y idle(z) of the queue length at an arbi-
trary idle time. To this end, we first find pvac, psu, and psb which are time-average
probabilities that the system is in a vacation period, in a setup period, and in a stand-
by period, respectively, under the condition that the system is idle (see Fig. 5.1). Let
E[Tvac], E[H], and E[Tsb] be the mean length of each period. Then, we get

E[I] = E[Tvac]+E[H]+E[Tsb]

and

pvac =
E[Tvac]

E[I]
, psu =

E[H]
E[I]

, psb =
E[Tsb]
E[I]

. (5.6)
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In the sequel, we denote (F)i j as the (i, j)-element of a matrix F .
We first derive E[Tvac]. Let us define a grand vacation process as in Lee et al.

[16]. A grand vacation (GV) is the sum of i.i.d. individual vacations until there is a
change in queue length upon a return from a vacation. The first grand vacation (GV)
G1 starts from 1© (see Fig. 5.1) and lasts until the queue length differs from 0 upon
a return from a vacation. At this point, if the queue length is less than α, the second
GV G2 starts and lasts until there is a change in the queue length upon a return from
a vacation. The GV process continues in this manner until the queue length upon
return from a vacation is greater than or equal to α.

We note that a GV is equivalent to the vacation period in the simple BMAP/G/1
queue with multiple vacations. Let (Rn)i j be the probability that the GV process
visits level (queue length) n and the UMC phase is j just after the visit given that
the UMC phase is i at 1©. It was proven in Lee et al. [16] that Rn can be computed
from the following recursion,

R0 = I, Rn =
n

∑
i=1

Rn−i(I −V 0)−1V i, (n ≥ 1),

where V i is the matrix probability that i customers arrive during a vacation.
Because [(I−V 0)−1]i j is the mean number of vacations (within a GV) that starts

with phase j under the condition that the GV started with phase i, we have

E[Tvac] =

[

κ
α−1

∑
n=0

Rn(I −V 0)−1e

]

E[V ], (5.7)

where κ is the phase probability vector at 1©. Obtaining κ is discussed later.
To derive E[Tsb], let us define (Φsb

k )i j,(α ≤ k ≤ N −1) as follows:
(Φ sb

k )i j = Pr (the stand-by process visits level k and the phase of UMC is j just
after the visit | UMC phase is i at 1©).

Noting that (i, j)-element of the matrix (−D0)−1 is the mean time the UMC stays
in phase j until the next arrival given that the current phase is in i (see, e.g., Latouche
and Ramaswami [14]), we have

E[Tsb] = κ
N−1

∑
k=α
Φ sb

k (−D0)−1e. (5.8)

Thus, the mean length of an arbitrary idle period is given by

E[I] = κ

[
α−1

∑
n=0

Rn(I −V 0)−1E[V ]+E[H]I +
N−1

∑
k=α
Φ sb

k (−D0)−1

]

e. (5.9)

Then pvac, psu, and psb can be obtained from (5.6)–(5.9).
Computation of κ and {Φ sb

k ,(α ≤ k ≤ N −1)} is discussed later.
Let pvac(z), psu(z), and psb(z) be the vector GFs of the queue length at an arbi-

trary epoch in each period under the condition that the system is idle. We first obtain
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pvac(z). Consider an arbitrary time point t∗ during the vacation period. At the start
of the vacation that contains t∗, the queue length is n and the UMC phase is j with
probability

[κRn(I −V 0)−1] j

κ
α−1

∑
n=0

Rn(I −V 0)−1e

,

where the denominator is the mean number of individual vacations during the vaca-
tion period. Now, the matrix GF V ∗(z) of the number of customers that arrive during
the elapsed vacation is given by

V ∗(z) =
∫ ∞

0
eD(z)x

[
1−V (x)

E[V ]

]

dx =
[V (z)− I]

E[V ]
D(z)−1,

where V (z) is the GF of {V i}. Thus, we get

pvac(z) = pvac

κ
α−1

∑
n=0

Rn[I −V 0]−1zn

κ
α−1

∑
n=0

Rn[I −V 0]−1e

[V (z)− I]
E[V ]

D(z)−1. (5.10)

Now, to derive psu(z), let us define H−
α (z) =∑∞k=α H−

k(α)z
k as the GF of the matrix

probability H−
k(α) that there are k customers at the start of the setup period (point

2©). Noticing that H−
α (z) is equivalent to the queue length GF at the start of the

busy period in the simple BMAP/G/1 queue with α-policy and multiple vacation,
we have from Lee et al. [16],

H−
α (z) = I +

α−1

∑
j=0

R j[I −V 0]−1z j[V (z)− I]. (5.11)

Then, we get
psu(z) = psu ·κH−

α (z)H∗(z), (5.12)

where

H∗(z) =
[H(z)− I]

E[H]
D(z)−1

is the GF of the number of customers that arrive during the elapsed setup time in
which H(z) is the matrix GF of the number of customers that arrive during a setup
time.

Under the condition that the system is in a stand-by period, the queue length is k
and the UMC phase is j with probability
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(
κΦ sb

k (−D0)−1
)

j

κ
N−1

∑
n=α
Φ sb

n (−D0)−1e

.

Thus we get

psb(z) = psb ·
κ

N−1

∑
k=α
Φ sb

k (−D0)−1zk

κ
N−1

∑
n=α
Φ sb

n (−D0)−1e

. (5.13)

Combining (5.10), (5.12), and (5.13), we get

Y idle(z) = pvac(z)+ psu(z)+ psb(z)

=
κ

E[I]

{
α−1

∑
n=0

Rn[I −V 0]−1zn[V (z)− I]D(z)−1

+ H−
α (z)[H(z)− I]D(z)−1 +

N−1

∑
n=α
Φ sb

n (−D0)−1zn

}

. (5.14)

Now, we need to devise a scheme to compute the probability Φ sb
k ,(α ≤ k ≤

N − 1) that the stand-by process visits level k. This depends on the queue length
probability at 3©. By conditioning on the queue length at 2©, the probability H+

k(α)
at the end of the setup period becomes

H+
k(α) =

k

∑
i=α

H−
i(α)Hk−i (5.15)

and

Φ sb
k =

k

∑
i=0

H+
i(α)D

∗
k−i, (α ≤ k ≤ N −1),

where D∗
n is the probability matrix that the idle period process of the BMAP/G/1/α-

policy queueing system (without vacations and setup) visits level n and Hk is the
probability that k customers arrive during a setup time. We note, by conditioning on
the level visited prior to level n, that we have a recursion,

D∗
0 = I, D∗

n =
n−1

∑
l=0

D∗
l (−D0)−1Dn−l .

Now, κ can be computed from

κK = κ, κe = 1,

where K is the phase transition probability between 1© and 5© and can be obtained
from
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K = K(z)|z=1,

in which K(z) is the matrix GF of the mean number of customers that are served
between 1© and 5©. To obtain K(z), we need the GF Q(α,N)(z) of the queue length
at the start of the busy period ( 4©). We can show that (see Appendix 3):

Q(α,N)(z) = H−
α (z)H(z)+

[
N−1

∑
n=α
Φsb

n (−D0)−1zn

]

D(z), (5.16)

where H(z) is the matrix GF of the number of customers that arrive during the setup
time. Using (5.11) in (5.16), we get

K(z) = Q(α,N)(z)|z=G(z) =
α−1

∑
n=0

Rn[I −V 0]−1[G(z)]n[V (G(z))− I]H(G(z))

+H(G(z))+
N−1

∑
n=α
Φ sb

n (−D0)−1[G(z)]nD(G(z)).

Thus we have

K = K(z)|z=1 =
α−1

∑
n=0

Rn[I −V 0]−1Gn[V (G)− I]H(G)

+ H(G)+
N−1

∑
n=α
Φ sb

n (−D0)−1GnD(G).

Using (5.14) in (5.5), we get

Y ∗
busy(z,θ)[θ I +D(z)] =

{
α−1

∑
n=0

Rn[I −V 0]−1zn[V (z)− I]H(z)

+
N−1

∑
n=α
Φsb

n (−D0)−1znD(z)+H(z)− I

}

·
{
[z−S∗(θ)]A(z)[zI−A(z)]−1 −S∗(θ)I

}
.

Then, we can obtain w∗
busy,A(θ) from (5.4).

5.4.2 Obtaining the LST of the Waiting Time of the Customer
Who Arrives During the Idle Period

Now to find the vector LST w∗
vac,A(θ) of the waiting time of the actual test customer

that arrives during a vacation, we first need to know the number of customers that
arrive during the time period from the end of the current vacation to the start of the
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setup period because this determines the remaining vacation period and thereby the
remaining idle period. For this purpose, let us define the notation as follows:

T v
α−k: The remaining time until the setup starts from the end of the current

vacation at which there are k customers
A(T v

α−k): The number of customers that arrive during T v
α−k

J1: The UMC phase at the end of the current vacation
J2: The UMC phase at the start of the setup time
Let us define the (i, j)-element of the matrix transform TV∗

α−k(θ ,n) as follows:

[
TV∗
α−k(θ ,n)

]

i j =
∫ ∞

0
e−θ tPr(t < T v

α−k ≤ t +dt, A(T v
α−k) = n, J2 = j|J1 = i).

Then, we have
TV∗
α−k(0,n) = H−

n(α−k), (n ≥ α− k).

If the test customer who arrives during a vacation belongs to a group of size j
and stands ith in her group, she first has to wait that:

(i) The service times of the customers at the start of the current vacation
(ii) The service times of the customers that arrive during the elapsed vacation time

(iii) The time until the end of the current vacation
(iv) The service times of those (i−1) customers who precede her in her group
(v) The remaining vacation period (from the end of the current vacation)

(vi) The time until the busy period starts.

These quantities are dependent on each other. Let us define ψV
n as

ψV
n =

κRn[I −V 0]−1

κ
α−1

∑
k=0

Rk[I −V 0]−1e

,

which is the vector probability that the queue length at the start of the current va-
cation is n. Then the LST of the waiting time above ((ii)–(v)) contribution is as
follows:

ψV
n [S∗(θ)]nΩ ∗

V (a, j,b,θ)[S∗(θ)]a[S∗(θ)]i−1,

where Ω ∗
V (a, j,b,θ) is given in (5.34) in Appendix 1 and represents the remaining

vacation time including the probability that a customers arrive during the elapsed
vacation time; the test customer belongs to a group of size j (the virtual phase
is converted to the actual phase at this point. See (5.25) in Appendix 1. See also
Kasahara et al. [17]), and b customers arrive during the remaining vacation time.

Now, additional waiting time depends on the situation at the end of the current
vacation. Consider the group G∗ to which the test customer belongs. Let us define
the following quantities:
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Q−(G∗): The number of customers just before G∗ arrives
Q+(G∗): The number of customers just after G∗ arrives
Q+

V : The number of customers at the end of the current vacation
Q−

H : The number of customers at the start of the setup period
Q+

H : The number of customers at the end of the setup period

Then we have different cases as follows:

(Case 1) Q−(G∗) < α, Q+(G∗) ≤ α
(case 1-1) Q−(G∗) < α, Q+(G∗) ≤ α, Q+

V ≤ α, Q−
H ≤ N, Q+

H ≤ N,
(case 1-2) Q−(G∗) < α, Q+(G∗) ≤ α, Q+

V ≤ α, Q−
H ≤ N, Q+

H > N,
(case 1-3) Q−(G∗) < α, Q+(G∗) ≤ α, Q+

V ≤ α, Q−
H > N,

(case 1-4) Q−(G∗) < α, Q+(G∗) ≤ α, α < Q+
V ≤ N, Q+

H ≤ N,
(case 1-5) Q−(G∗) < α, Q+(G∗) ≤ α, α < Q+

V ≤ N, Q+
H > N,

(case 1-6) Q−(G∗) < α, Q+(G∗) ≤ α, Q+
V > N.

(Case 2) Q−(G∗) < α, α < Q+(G∗) ≤ N
(case 2-1) Q−(G∗) < α, α < Q+(G∗) ≤ N, < Q+

V ≤ N, Q+
H ≤ N,

(case 2-2) Q−(G∗) < α, α < Q+(G∗) ≤ N, < Q+
V ≤ N, Q+

H > N,
(case 2-3) Q−(G∗) < α, α < Q+(G∗) ≤ N, < Q+

V > N.

(Case 3) Q−(G∗) < α, Q+(G∗) > N.

(Case 4) α < Q−(G∗) < N
(case 4-1) α < Q−(G∗) < N, Q+(G∗) ≤ N, Q−

H ≤ N, < Q+
H ≤ N,

(case 4-2) α < Q−(G∗) < N, Q+(G∗) ≤ N, Q−
H ≤ N, < Q+

H > N,
(case 4-3) α < Q−(G∗) < N, Q+(G∗) ≤ N, Q−

H > N,
(case 4-4) α < Q−(G∗) < N, Q+(G∗) > N.

(Case 5) α < Q−(G∗) ≥ N.
Now, the waiting times in (case 1-1) and (case 1-2) are as follows:

B1 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
c=α−n−a− j−b

TV∗
α−n−a− j−b(θ ,c)

·
[

N−n−a− j−b−c

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−c−k(θ)+
∞

∑
k=N−n−a− j−b−c+1

H∗
k(θ)

]

,

where H∗
k(θ) is the matrix LST of the length of the setup time including the prob-

ability that k customers arrive during the setup, and T ∗
n(θ) is the matrix LST of

the idle period in the single-threshold BMAP/G/1 queue under n-policy (without
vacations and setup) which becomes, conditioning on the first group size,
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T ∗
n(θ) = [θ I −D0]−1

[
n−1

∑
k=1

DkT ∗
n−k(θ)+

∞

∑
k=n

Dk

]

= [θ I −D0]−1

[
n−1

∑
k=1

Dk[T ∗
n−k(θ)− I]+D−D0

]

with T ∗
0(0) = I. For the remaining cases, we have

(Case 1-3)

B2 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
∞

∑
c=N−n−a− j−b+1

TV∗
α−n−a− j−b(θ ,c)H∗(θ).

(Case 1-4) and (Case 1-5)

B3 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

N−n−a− j

∑
b=α−n−a− j+1

Ω ∗
V (a, j,b,θ)

· [S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

·
[

N−n−a− j−b

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−k(θ)+
∞

∑
k=N−n−a− j−b+1

H∗
k(θ)

]

.

(Case 1-6)

B4 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

∞

∑
b=N−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 2-1) and (Case 2-2)

B5 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)

· [S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

·
[

N−n−a− j−b

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−k(θ)+
∞

∑
k=N−n−a− j−b+1

H∗
k(θ)

]

.
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(Case 2-3)

B6 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

∞

∑
b=N−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 3)

B7 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

∞

∑
j=α−n−a+1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 4-1) and (Case 4-2)

B8 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
N−n−1

∑
a=α−n

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
[

N−n−a− j−b

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−k(θ)+
∞

∑
k=N−n−a− j−b+1

H∗
k(θ)

]

.

(Case 4-3)

B9 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
N−n−1

∑
a=α−n

N−n−a

∑
j=1

∞

∑
b=N−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 4-4)

B10 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
N−n−1

∑
a=α−n

∞

∑
j=N−n−a+1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 5)

B9 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
∞

∑
a=N−n

∞

∑
j=1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1H∗(θ).
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Now, combining all these, we get

w∗
vac,A(θ) = (1−ρ)pvac

11

∑
n=1

Bn. (5.17)

In the similar way, we can obtain the waiting time of the actual customer who
arrives during the setup time and we get

w∗
su,A(θ)

= (1−ρ)psuκ

[
N−1

∑
n=α

H−
n(α)[S

∗(θ)]n
{

N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)

· [S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1 [T ∗
N−n−a− j−b(θ)− I

]
(5.18)

+
∞

∑
a=0

∞

∑
j=1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

}

+
∞

∑
n=N

H−
n(α)[S

∗(θ)]n
∞

∑
a=0

∞

∑
j=1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

]

.

For the actual customer who arrives during the standby period, we get

w∗
sb,A(θ) = (1−ρ)psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n

·
{

N−k

∑
j=1

D j

λ

j

∑
i=1

[S∗(θ)]i−1(T ∗
N−k− j(θ)− I)+

D−D(S∗(θ))
λ [1−S∗(θ)]

}

, (5.19)

where

ψsb
k =

κΦs
kb(−D0)−1

κ
N−1

∑
n=α
Φ sb

n (−D0)−1e

is the vector probability that there are k customers under the condition that system
is in a standby period.

Finally the LST of the actual waiting customer can be obtained from
(5.17)–(5.19), and we get

W ∗
q (θ) = w∗

A(θ)e = w∗
vac,A(θ)e+w∗

su,A(θ)e+w∗
sb,A(θ)e+w∗

busy,A(θ)e.

For the simplicity of the subsequent analysis, let us write the LST of the waiting
time of an arbitrary actual waiting customer as

W ∗
q (θ) = w∗

N(θ)e+w∗
1(θ)e, (5.20)
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where

w∗
N(θ)e = (1−ρ)

[

pvac

α−1

∑
n=0
ψV

n [S∗(θ)]n
1−V ∗(θ)

E[V ]θ
H∗(θ)

+ psuκ
1−H∗(θ)

E[H]θ
+ psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n
]

· θ [θ I −D(S∗(θ))]−1 D−D(S∗(θ))
λ [1−S∗(θ)]

e

and

w∗
1(θ)e = (1−ρ)pvac

α−1

∑
n=0
ψV

n [S∗(θ)]n ·
5

∑
k=1

Cke

+ 1−ρ)psuκ
N−1

∑
n=α

H−
n(α)[S

∗(θ)]n ·C6e

+ (1−ρ)psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n
N−n

∑
j=1

D j

λ

j

∑
i=1

[S∗(θ)]i−1

· [T ∗
N−n− j(θ)− I]e,

where

C1 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
c=α−n−a− j−b

TV
α−n−a− j−b ∗ (θ ,c)

N−n−a− j−b−c

∑
k=0

H∗
k(θ)

· [T ∗
N−n−a− j−b−c−k(θ)− I],

C2 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

· [T ∗
N−n−a− j−b−c−k(θ)− I]H∗(θ),

C3 =
α−n−1

∑
a=0

α−n−a

∑
j=1

N−n−a− j

∑
b=α−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
k=0

H∗
k(θ)[T ∗

N−n−a− j−b−c−k(θ)− I],
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C4 =
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
k=0

H∗
k(θ)[T ∗

N−n−a− j−b−c−k(θ)− I],

C5 =
α−n−1

∑
a=α−n

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
k=0

H∗
k(θ)[T ∗

N−n−a− j−b−c−k(θ)− I],

C6 =
N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

· [T ∗
N−n−a− j−b−c−k(θ)− I].

5.5 Mean Waiting Time

From (5.20), the mean actual waiting time becomes

Wq = −W ∗(1)
q (0) = −w∗(1)

N (0)e−w∗(1)
1 (0)e,

where

−w∗(1)
1 (0)e = (1−ρ)pvac

α−1

∑
n=0
ψV

n

5

∑
k=1

Ek

+ 1−ρ)psuκ
N−1

∑
n=α

H−
n(α)

N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

ΩV (a, j,b)

· τN−n−a− j−b +(1−ρ)psb

N−1

∑
n=α
ψsb

n

N−n

∑
j=1

jD j

λ
τN−n− j,

where

ΩV (a, j,b) =Ω ∗
V (a, j,b,θ)|θ=0,

τn = − d
dθ

T ∗
n(θ)

∣
∣
∣
θ=0

e =
n−1

∑
k=0

D∗
k(−D0)−1e,
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E1 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

ΩV (a, j,b)
N−n−a− j−b

∑
c=α−n−a− j−b

H−
c(α−n−a− j−b)

·
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k,

E2 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

ΩV (a, j,b)τV
α−n−a− j−b,

E3 =
α−n−1

∑
a=0

α−n−a

∑
j=1

N−n−a− j

∑
b=α−n−a− j+1

ΩV (a, j,b)
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k,

E4 =
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

N−n−a− j

∑
b=0

ΩV (a, j,b)
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k,

E5 =
N−n−1

∑
a=α−n

N−n−a

∑
j=1

N−n−a− j

∑
b=0

ΩV (a, j,b)
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k

and
Hk = H∗

k(θ)
∣
∣
θ=0.

Now we need to determine w∗(1)
N (0)e. Let us rewrite w∗

N(θ)e as

w∗
N(θ)e = z∗(θ)

D−D(S∗(θ))
λ [1−S∗(θ)]

e, (5.21)

where

z∗(θ) = (1−ρ)

[

pvac

α−1

∑
n=0
ψV

n [S∗(θ)]n
1−V ∗(θ)

E[V ]θ
H∗(θ)

+ psuκ
1−H∗(θ)

E[H]θ
+ psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n
]

(5.22)

·θ [θ I −D(S∗(θ))]−1.

Taking the derivative of (5.21) with respect to θ we get

−w∗(1)
N (θ)

∣
∣
∣
θ=0

e = − z∗(1)(0)D(1)e
λ

+
z∗(0)E[S]D(2)e

2λ
, (5.23)

where

D(n) =
dn

dzn D(n)(z)
∣
∣
∣
z=1

.
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The derivation of (5.23) is given in Appendix 2. Now we can show that

z∗(0) = π. (5.24)

Then from (5.23) and (5.24), the mean actual waiting time becomes

Wq = (1−ρ)pvac

α−1

∑
n=0
ψV

n

5

∑
k=1

Ek

+1−ρ)psuκ
N−1

∑
n=α

H−
n(α)

N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

ΩV (a, j,b)τN−n−a− j−b

+(1−ρ)psb

N−1

∑
n=α
ψsb

n

N−n

∑
j=1

jD j

λ
τN−n− j

− 1
λ

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e

+pvac

α−1

∑
n=0

nψV
n E[S]e+ pvacE[H]+ pvac

E[V 2]
2E[V ]

+psb

N−1

∑
n=α

nψsb
n E[S]e+ psu

E[H2]
2E[H]

+
λE[S2]

2(1−ρ)
+
πE2[S]D(2)e
2ρ(1−ρ)

+
1

1−ρ − πE[S]D(1)(D+ eπ)−1D(1)e
λ (1−ρ)

.

5.6 Numerical Example

In this section, we present a numerical example. We consider the parameter matrices
as follows:

D0 =

⎛

⎝
−2.05 0.1 0.45

0.4 −2.65 1.05
0.25 0.1 −1.85

⎞

⎠ , D1 =

⎛

⎝
0.2 0.4 0.2
0.5 0.3 0.2
0.3 0.6 0.1

⎞

⎠ ,

D2 =

⎛

⎝
0.15 0.1 0.15
0.1 0.1 0

0.05 0.1 0.05

⎞

⎠ , D3 =

⎛

⎝
.0.1 0 0.2
0.5 0.3 0.2
0.3 0.6 0.1

⎞

⎠ .

Then, we get

D =
3

∑
j=0

D j =

⎛

⎝
0.15 0.1 0.15
0.1 0.1 0

0.05 0.1 0.05

⎞

⎠ .
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Table 5.1 Comparison of mean performance measures with simulation.

(α,N) ρ Measure Theoretical
Value

Simulation RPE

(3,5) 0.4311 L 5.0550 5.0517 0.065
(3,5) 0.4311 Wq 2.1456 2.1461 −0.023
(3,5) 0.8622 L 11.6486 11.6616 −0.112
(3,5) 0.8622 Wq 5.0047 5.0116 −0.138
(3,7) 0.4311 L 5.2116 5.2051 0.125
(3,7) 0.4311 Wq 2.2182 2.2166 0.298
(3,7) 0.8622 L 11.8049 11.8050 0.000
(3,7) 0.8622 Wq 5.0771 5.0812 −0.081

From πD = 0, πe = 1, and λ = π ∑∞n=1 nDne, we get

π = (0.35326,0.23913,0.40761), λ = 2.1554348.

We consider two cases of thresholds: (α,N) = (3,5) and (α,N) = (3,7). For
both cases we assume that the setup time and the vacation time follow the exponen-
tial distribution with mean 1.0. For each case, we assume two Erlang service times
of order 2 with different mean service times: E[S] = 0.2 and E[S] = 0.4. Table 5.1
shows the comparison of the mean waiting times and the mean queue lengths that
can be obtained from Little’s law L = λ{Wq +E[S]} with those obtained from sim-
ulation estimates. The relative percentage error (RPE) is defined by

Theoretical value−Simulation estimate
Theoretical value

.

5.7 Conclusions and Summary

In this chapter, we applied the BMAP/G/1 queue with early setup and multiple va-
cation to the analysis of the manufacturing lead time of a production system with
extra jobs and bilevel threshold control. We employed the factorization principle to
derive the distribution of the manufacturing lead time and the mean value.

Acknowledgments This work was supported by grant No. R01-2006-000-10906-0 from the Basic
Research Program of the Korea Science & Engineering Foundation.
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Appendix 1

We define the joint matrix transform by

Ω ∗
V (z1, j,z2,θ) =

∞

∑
a=0

∞

∑
b=0

∫ ∞

0
za

1zb
2e−θydΩV (a, j,b,y).

Then, we have

Ω ∗
V (z1, j,z2,θ) =

∫ ∞

0
e−θy

∫ x

0
eD(z1)(x−y) jπD je

λ
D j

πD je
eD(z2)y x ·dV (x)

E[V ]
1
x

dy, (5.25)

which is equivalent to

Ω ∗
V (z1, j,z2,θ) =

∫ ∞

0

∫ x

0
eD(z1)t jD j

λ
eD(z2)(x−t)e−θ(x−t) dV (x)

E[V ]
dt.

Our temporary objective is to obtain the coefficient matrix Ω ∗
V (a, j,b,θ) of

Ω ∗
V (z1, j,z2,θ) such that

Ω ∗
V (z1, j,z2,θ) =

∞

∑
a=0

∞

∑
b=0

za
1zb

2Ω
∗
V (a, j,b,θ). (5.26)

To this end, we apply the well-known uniformization technique. Let us define Θ
such thatΘ = maxi(−D0)ii. First, eD(z1)t and eD(z2)(x−t) can be written as

eD(z1)t = e−Θ t eΘ(I+Θ−1D(z1))t =
∞

∑
k=0

e−Θ t(Θ t)k

k!
(I +Θ−1D(z1))k (5.27)

and

eD(z2)(x−t) = e−Θ(x−t)eΘ(I+Θ−1D(z2))(x−t)

=
∞

∑
k=0

e−Θ(x−t)[Θ(x− t)]k

k!
(I +Θ−1D(z2))k. (5.28)

Using (5.27) and (5.28) in (5.26) yields

Ω ∗
V (z1, j,z2,θ) =

∫ ∞

0
e−(Θ+θ)x

∫ x

0
eθ t

∞

∑
k=0

∞

∑
l=0

tk(x− t)l

k!l!
(Θ I +D(z1))k jD j

λ

· (Θ I +D(z2))l dV (x)
E[V ]

dt. (5.29)

In (5.29), only (Θ I +D(z1))k( jD j/λ )(Θ I +D(z2))l contains z1 and z2. To evaluate
this matrix, we define Fk,l(a, j,b), (k, l,a,b = 0,1, . . . ; j = 1,2, . . .) such that
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∞

∑
a=0

∞

∑
b=0

za
1zb

2Fk,l(a, j,b) = (Θ I +D(z1))k jD j

λ
(Θ I +D(z2))l , (5.30)

where F0,0(0, j,0) = jD j/λ , and F0,0(a, j,b) = 0, (a ≥ 1,b ≥ 1). Fk,l(a, j,b) rep-
resents the situation in which a jobs arrive from k Poisson events (with rate Θ )
during the elapsed vacation time and b jobs arrive from l Poisson events during the
remaining vacation time. Then, Fk,l(a, j,b) satisfies the following recursions:

Fk+1,l(a, j,b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Θ I +D0)Fk,l(a, j,b), (a = 0)

a−1

∑
i=0

Da−iFk,l(a, j,b)+(Θ I +D0)Fk,l(a, j,b), (a ≥ 1),
(5.31)

Fk,l+1(a, j,b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fk,l(a, j,b)(Θ I +D0), (b = 0)

b−1

∑
i=0

Fk,l(a, j, i)Db−i +Fk,l(a, j,b)(Θ I +D0), (b ≥ 1).
(5.32)

Using (5.31) and (5.32) in (5.30), we get

Ω ∗
V (z1, j,z2,θ)

=
∞

∑
a=0

∞

∑
b=0

za
1zb

2

∫ ∞

0
e−(Θ+θ)x

∫ x

0
eθ t

∞

∑
k=0

∞

∑
l=0

tk(x− t)l

k!l!
Fk,l(a, j,b)

dV (x)
E[V ]

dt.

(5.33)

The coefficient matrix of za
1zb

2 in (5.33) is given by

Ω ∗
V (a, j,b,θ) =

∫ ∞

0
e−(Θ+θ)x

∫ x

0
eθ t

∞

∑
k=0

∞

∑
l=0

tk(x− t)l

k!l!
Fk,l(a, j,b)

dV (x)
E[V ]

dt. (5.34)

If we disregard the length of the remaining vacation time, we have

ΩV (a, j,b) =Ω ∗
V (a, j,b,θ)

∣
∣
θ=0 =

∞

∑
k=0

∞

∑
l=0

fk,lFk,l(a, j,b),

where

fk,l =
1

E[V ](k + l +1)!

∫ ∞

0
xk+l+1e−ΘxdV (x).
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Appendix 2: Derivation of (5.23)

Taking a derivative of (5.22) with respect to θ , using θ = 0 and adding z∗(θ)eπ to
both sides yields

z∗(1)(0) = z∗(1)(0)eπ(D+ eπ)−1 − z∗(0)[I −E[S]D(1)](D+ eπ)−1

+(1−ρ)

[

pv

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1. (5.35)

Taking the second derivative of (5.22), using θ = 0 and postmultiplying e yields

z∗(1)(0)[I −E[S]D(1)]e

= − (1−ρ)

{

pvac

α−1

∑
n=0

nψV
n E[S]+ pvac

α−1

∑
n=0
ψV

n E[H]

+ pvac

α−1

∑
n=0
ψV

n
E[V 2]
2E[V ]

+ psuκ
E[H2]
2E[H]

+ psb

N−1

∑
n=α

nψsb
n E[S]

}

e

− π
2

[
E[S2]D(1) +E2[S]D(2)

]
e. (5.36)

From (5.36), we get

z∗(1)(0)e = z∗(1)(0)E[S]D(1)e

= −(1−ρ)

{

pvac

α−1

∑
n=0

nψV
n E[S]+ pvac

α−1

∑
n=0
ψV

n E[H]

+ pvac

α−1

∑
n=0
ψV

n
E[V 2]
2E[V ]

+ psuκ
E[H2]
2E[H]

+ psb

N−1

∑
n=α

nψsb
n E[S]

}

e

− π
2

[
E[S2]D(1) +E2[S]D(2)

]
e. (5.37)

Postmultiplying both sides of (5.35) by D(1)e, we get

z∗(1)(0)D(1)e = λ z∗(1)(0)e− z∗(0)[I −E[S]D(1)](D+ eπ)−1D(1)e

+(1−ρ)

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e.

(5.38)
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Using (5.37) in (5.38), we get

z∗(1)(0)D(1)e
λ

= −pvac

α−1

∑
n=0

nψV
n E[S]e+ pvacE[H]+ pvac

E[V 2]
2E[V ]

+ psu
E[H2]
2E[H]

+ psb

N−1

∑
n=α

nψsb
n E[S]e

− π2(1−ρ)[E[S2]D(1) +E2[S]D(2)]e

+
1
λ

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e

− πλ (1−ρ)[I −E[S]D(1)](D+ eπ)−1D(1)e.

Thus, we get

−w∗(1)
N (θ)

∣
∣
∣
θ=0

e = − z∗(1)(0)D(1)e
λ

+
E[S]z∗(0)D(2)e

2λ

= − 1
λ

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e

+ pvac

α−1

∑
n=0

nψV
n E[S]e+ pvacE[H]+ pvac

E[V 2]
2E[V ]

+ psb

N−1

∑
n=α

nψsb
n E[S]e+ psu

E[H2]
2E[H]

+
λE[S2]

2(1−ρ)

+
πE2[S]D(2)e
2ρ(1−ρ)

+
1

1−ρ − πE[S]D(1)(D+eπ)−1D(1)e
λ

(1−ρ).

Appendix 3: Derivation of (5.16)

Let Q(α,N)
n be the matrix probability that there are n customers at the start of the

busy period. Then, we have

Q(α,N)
n =

∞

∑
n=N

H+
n(α) +

∞

∑
n=N

N−1

∑
k=α
Φ sb

k (−D0)−1Dn−k.

Taking GF and using (5.15), we have

Q(α,N)(z) =
∞

∑
n=N

H+
n(α)z

n +
N−1

∑
k=α
Φ sb

k (−D0)−1zkD(z)−
N−1

∑
k=α
Φsb

k (−D0)−1zk

·
N−k−1

∑
i=0

Dizi. (5.39)
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The last term in (5.39) becomes

N−1

∑
k=α
Φsb

k (−D0)−1zk
N−k−1

∑
i=0

Dizi

=
N−1

∑
k=α
Φ sb

k (−D0)−1zk
N−k−1

∑
i=1

Dizi +
N−1

∑
k=α
Φ sb

k (−D0)−1zkD0 (5.40)

=
N−1

∑
k=α+1

k−1

∑
i=α
Φsb

i (−D0)−1Dk−izk −
N−1

∑
k=α
Φ sb

k zk,

where we used

N−1

∑
k=α
Φsb

k (−D0)−1zk
N−k−1

∑
i=1

Dizi =
N−1

∑
k=α+1

k−1

∑
i=α
Φ sb

i (−D0)−1Dk−izk.

Using Φ sb
k = ∑k

i=α H+
i(α)D

∗
k−i in (5.40), we get

N−1

∑
k=α+1

k−1

∑
i=α
Φ sb

i (−D0)−1Dk−izk −
N−1

∑
k=α
Φ sb

k zk

=
N−1

∑
k=α+1

k−1

∑
i=α

i

∑
n=α

H+
n(α)D

∗
i−n(−D0)−1Dk−izk −

N−1

∑
k=α

k

∑
i=α

H+
i(α)D

∗
k−iz

k. (5.41)

Let us simplify (5.41). For convenience, let us define

N−1

∑
k=α+1

Γ kzk =
N−1

∑
k=α+1

k−1

∑
i=α

i

∑
n=α

H+
n(α)D

∗
i−n(−D0)−1Dk−izk. (5.42)

Then, using D∗
k = ∑k−1

l=0 D∗
l (−D0)−1Dk−l , we get

N−1

∑
k=α+1

Γ kzk =
N−1

∑
k=α+1

k−1

∑
i=α

H+
i(α)D

∗
k−iz

k. (5.43)

Using (5.43) in (5.42), we get

N−1

∑
k=α+1

k−1

∑
i=α
Φ sb

i (−D0)−1Dk−izk −
N−1

∑
k=α
Φ sb

k zk

=
N−1

∑
k=α+1

k−1

∑
i=α

H+
i(α)D

∗
k−iz

k −
[

∑
k=α

+1N−1
k−1

∑
i=α

H+
i(α)D

∗
k−iz

k +
N−1

∑
k=α

H+
k(α)z

k

]

(5.44)

= −
N−1

∑
k=α

H+
k(α)z

k.
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Using (5.44) in (5.40), we have

N−1

∑
k=α
Φ sb

k (−D0)−1zk
N−k−1

∑
i=0

Dizi = −
N−1

∑
k=α

H+
k(α)z

k.

Thus, (5.39) becomes

Q(α,N)(z) =
∞

∑
n=N

H+
n(α)z

n +
N−1

∑
n=α
Φ sb

n (−D0)−1znD(z)+
N−1

∑
n=α

H+
n(α)z

n

=
∞

∑
n=α

H+
n(α)z

n +
N−1

∑
n=α
Φ sb

n (−D0)−1znD(z).

Now, using ∑∞n=α H+
n(α)z

n = ∑∞n=α H−
n(α)z

nH(z) finishes the proof.
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