
Chapter 3
A Pure Decrement Service Geom/G/1 Queue
with Multiple Adaptive Vacations

Zhanyou Ma, Wuyi Yue, and Naishuo Tian

Abstract In this chapter, a Geom/G/1 queue model with a pure decrement ser-
vice policy and multiple adaptive vacations is analyzed. The Probability Generation
Function (P.G.F.) of the queue length is obtained by using an embedded Markov
chain method. The P.G.F. of the waiting time is then derived based on the inde-
pendence between the arrival process and the waiting time. The probabilities for
the system being in various states of busy, vacation, or idle, respectively, are also
derived. Finally, some special cases for the Geom/G/1 queue model with a pure
decrement service policy and multiple adaptive vacations are given to demonstrate
the general properties of the queue models.

3.1 Introduction

Tian [1] introduced a multiple adaptive vacation policy, and studied a multiple adap-
tive vacation M/G/1 queue model with an exhaustive service rule, and through this,
queue models with multiple vacations and single vacation were extended. Zhang
and Tian studied the discrete time queue model with multiple adaptive vacations,
and obtained the P.G.F. of the queue length and waiting time in [2].

However, they only researched the queue models with the exhaustive service
polity. Many researchers have studied discrete time queue models with some

Z. Ma
College of Science, Yanshan University, Qinhuangdao 066004, China
e-mail: mzhy55@ysu.edu.cn

W. Yue
Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan
e-mail: yue@konan-u.ac.jp

N. Tian
College of Science, Yanshan University, Qinhuangdao 066004, China
e-mail: tiannsh@ysu.edu.cn

W. Yue et al. (eds.), Advances in Queueing Theory and Network Applications, 49
c© Springer Science+Business Media LLC 2009



50 Z. Ma et al.

vacation policy. For example, M/G/1 queues with multiple types of feedback and
gated vacations were studied, and some important results were derived in [3].
A number of discrete time queue models were studied in [4] and [5]. Also, Wu and
Takagi studied the queue model with working vacations in [6], and extended the
general vacation polity.

The new queue model enriched the theory of the queue with vacations, and in-
volved many queue models as special cases. A discrete time GI/Geo/1 queue model
with multiple vacations was studied in [7]. A discrete time queue model with timed
vacations was analyzed in [8]–[10].

Bischof studied the queue model with vacations under six different service disci-
plines in [11], which expanded the research of the nonexhaustive service disciplines.
Performance evaluations of SVC-Based IP-Over-ATM networks were given using
discrete time queueing theory in [12]. However, these papers did not integrate multi-
ple adaptive vacations with nonexhaustive service disciplines. The authors’ purpose
for studying a new queueing model was to promote this integration.

In this chapter, we analyze a general Geom/G/1 queueing model with a pure
decrement service strategy and multiple adaptive vacations. We show that the pure
decrement service systems analyzed in [5] and [13] are special cases of our model
presented in this chapter. Furthermore, we compare the system performance for pure
decrement service strategies with multiple vacations and single vacation.

The chapter is organized as follows. Section 3.2 describes the analysis model in
detail. Section 3.3 presents analysis of system performance. Some special cases are
presented in Sect. 3.4. In Sect. 3.5, we discuss some numerical results. Concluding
remarks are given in Sect. 3.6.

3.2 Model Description

Based on the classical Geom/G/1 queueing model, we introduce the strategies of a
pure decrement service and the multiple adaptive vacations [5], [13].

A pure decrement service strategy can be described as follows. Once the service
period starts, the server will keep on working until the number of customers in the
system is one less than the number of customers at the start instant of the service
period. The server will then enter a new vacation period. If there are some customers
waiting at a vacation completion instant, the server will complete the vacation pe-
riod and start a new service period. Otherwise, the server will take some vacations
consecutively according to the assistant workload completed at that time.

The maximum number of vacations during a vacation period is denoted by H.
H is a positive integer random variable with the probability distribution h j and the
P.G.F. H(z) as follows:

P(H = j) = h j, j ≥ 1, H(z) =
∞

∑
j=1

h jz j.
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Let Vk (k = 1,2, . . . ,H) be the time length for the kth vacation. Vk is an independently
identically distributed (i.i.d.) random variable. If there is no customer in the system
at the Hth vacation completion instant, the system will enter an idle period and
wait for a new customer to arrive. If a customer arrives during the idle period, the
server will enter a service period immediately, and continue until there are waiting
customers in the system, before taking a vacation again at the completion instant of
the service. The system will continually repeat the above processes.

Specifically, (1) if H → ∞, the model corresponds to a pure decrement service
Geom/G/1 queueing model with multiple vacations [5], [10], [13]. (2) If H = 1,
the model corresponds to a pure decrement service Geom/G/1 queueing model with
a single vacation [5], [13]. (3) If H follows another distribution, the model corre-
sponds to another special queueing model.

The basic assumptions of the new model presented in this chapter are given as
follows.

(1) In order to describe the system states in the nth discrete time instants, we as-
sume that customer arrivals can only occur at discrete time instants t = n−,
n = 0, 1, . . . , the service starts and ends can only occur at discrete time instants
t = n+,n = 1,2, . . . . The model is called a late arrival system. The interarrival
time, denoted by T , is supposed to be an i.i.d. discrete random variable follow-
ing a geometric distribution with parameter p (0 < p < 1). We can write the
probability distribution of T as follows:

P(T = j) = pp̄ j−1, j = 1,2, . . . ,

where p̄ = 1− p. We denote by Cn the number of customers arriving during the
interval [0,n]; then Cn follows a binomial distribution,

P(Cn = j) =
(

n
j

)

p j p̄n− j, j = 0,1, . . . ,n.

(2) The service time S of a customer is supposed to be an i.i.d. discrete random
variable with a general distribution; the probability distribution s j and the P.G.F.
S(z) of S are given as follows:

P(Si = j) = s j, j ≥ 1, S(z) =
∞

∑
j=1

s jz j.

Let E[S] and E[S(S−1)] be the mean and the second factorial moment of S; then
we have

1
μ

= E[S] =
∞

∑
i=0

isi, E[S(S−1)] =
d2S(z)

dz2

∣
∣
∣
∣
z=1

.

(3) The time length V of a vacation is a nonnegative i.i.d. discrete random variable
with general probability distribution v j and the P.G.F. V (z) given by
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Fig. 3.1 State transition diagram of the model.

P(V = j) = v j, j ≥ 1, V (z) =
∞

∑
j=1

v jz j,

where the mean E[V ] and the second factorial moment E[V (V −1)] of V exist.
Suppose that there is a single server in this system, and its buffer capacity is

infinite. The interarrival time, the service time, and the time length of a vacation are
mutually independent. The service order is First-Come First-Served (FCFS). The
model is denoted by Geom/G/1 (PD, MAVs), where PD and MAVs represent the
Pure Decrement and the Multiple Adaptive Vacations, respectively. Let SP represent
the service period, V P represent the vacation period, and I represent the idle period,
respectively. The state transition diagram of the model is shown in Fig. 3.1.

Let Lv represent the stationary queue length at the departure instant of a customer,
and let Q(n)

b represent the number of customers in the system at the nth vacation

completion instant, the P.G.F. of Q(n)
b is denoted by Q(n)

b (z). Lv is supposed to follow
an identical distribution for the new model in the service orders of FCFS or Last-
Come First-Served (LCFS). For simplification, we assume that the service of the
model presented in this chapter follows a LCFS strategy.

3.3 Analysis of System Performance Measures

3.3.1 Number of Customers at the Beginning of a Service Period

Let J be the number of consecutive vacations taken by the server after the end of a
service period when the system is empty. J is a random variable, and we have

J = min{H,k : V1 + · · ·+Vk−1 < T < V1 + · · ·+Vk}.
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We define two events as follows:

AI = { Service period starts with the end of an idle period
if there are no customers at the end of the last SP};

Av = { Service period starts with the end of a vacation period
if there are no customers at the end of the last SP}.

Then, we have P(AI), the probability of AI and P(Av), the probability of Av as

P(AI) = Q(n)
b (0)H(V (p̄)), P(Av) = Q(n)

b (0)(1−H(V (p̄))).

According to a pure decrement service order, if a service period with zero du-
ration is allowed, Q(n)

b is the number of customers in the system at the next start

instant of the service period. If Q(n)
b is greater than zero, the service period starts im-

mediately and keeps on working until the number of customers in the system is one
less than the number of customers at the start instant of the service period. Then the
server will take a vacation. Q(n+1)

b is equal to the sum of Q(n)
b −1 plus the number of

customers arriving during the vacation. If Q(n)
b = 0, there are two cases as follows:

(1) If there are customer arrivals during the kth (1 ≤ k ≤ H) vacation, a service
period starts at the instant where the kth (1 ≤ k ≤ H) vacation completes. The
number of customers in the system at the start instant of the service period
Q(n+1)

b is equal to the number of customers arriving during the vacation.
(2) If no customers arrive during the Hth vacation, an idle period will begin at

the end of the vacation and continue until a new customer arrives. In this case,
Q(n+1)

b is equal to 1. Therefore,

Q(n+1)
b (z) = Q(n)

b (0)H(V (p̄))z+
Q(n)

b (z)−Q(n)
b (0)

z
V (1− p(1− z))

+ Q(n)
b (0)(1−H(V (p̄)))V (1− p(1− z)). (3.1)

If the system is in a steady state, the P.G.F. Qb(z) of Q(n+1)
b does not depend on

n in (3.1). If we let limn→∞Q(n+1)
b (z) = Qb(z), we can obtain Qb(z) as follows:

Qb(z) =
Qb(0)

(
(1− z(1−H(V (p̄))))×V (1− p(1− z))−H(V (p̄))z2

)

V (1− p(1− z))− z
. (3.2)

Because Qb(1) = 1, we have that

Qb(0) =
1− pE[V ]

1+H(V (p̄))(1− pE[V ])
. (3.3)

According to the Foster rule (see Tian and Zhang [13]), we can prove that if
ρ = p/μ < 1 and pE[V ] < 1, the system can reach a steady state.
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3.3.2 Stationary Queue Length and Waiting Time

Theorem 3.1. If ρ = p/μ < 1 and pE[V ] < 1, the stationary queue length Lv in the
Geom/G/1 (PD, MAVs) queue can be decomposed into three independent random
variables:

Lv = L+Ld +Lr,

where L is the stationary queue length in a classical Geom/G/1 queue [5], [13]. The
P.G.F. L(z) of L is

L(z) =
(1−ρ)(1− z)S(1− p(1− z))

S(1− p(1− z))− z
. (3.4)

The additional queue length Ld is the number of customers arriving during a va-
cation or is equal to zero, and the additional queue length Lr is the number of
customers in the system at the start instant of a vacation. P.G.F.s Ld(z) and Lr(z) of
additional queue lengths Ld and Lr are given by

Ld(z) =
1−V (1− p(1− z))+H(V (p̄))V (1− p(1− z))−H(V (p̄))z

(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)
,

Lr(z) =
(1− pE[V ])(1− z)
V (1− p(1− z))− z

. (3.5)

Proof. Qb is the number of customers in the system at the start instant of a service.
In the pure decrement service rule and LCFS order, a nonzero service period in the
system is exactly the same as a standard busy period in a Geom/G/1 queue. So there
are two kinds of customers in the system at a departure instant as follows:

(1) If Qb > 0, only the customer who initiates the new service period can be served,
and the residual Qb − 1 customers wait to be served during the next service
period. The P.G.F. of the number of these customers is given by

Qb(z)−Qb(0)
(1−Qb(0))z

. (3.6)

(2) The number of customers (sub generation) who arrive during the service period
and cannot be served is equivalent to the number of customers in a classical
Geom/G/1 queue; the P.G.F. is given by

(1−ρ)(1− z)S(1− p(1− z))
S(1− p(1− z))− z

. (3.7)

Because the two kinds of customers are mutually independent, we have that

Lv(z) =
(1−ρ)(1− z)S(1− p(1− z))

S(1− p(1− z))− z
× Qb(z)−Qb(0)

(1−Qb(0))z
. (3.8)

Substituting (3.2) and (3.3) into (3.8), we have that
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Lv(z) =
(1−ρ)(1− z)S(1− p(1− z))

S(1− p(1− z))− z

×1−V (1− p(1− z))+H(V (p̄))V (1− p(1− z))−H(V (p̄))z
(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)

× (1− pE[V ])(1− z)
V (1− p(1− z))− z

= L(z)Ld(z)Lr(z). (3.9)

Therefore, Lv(z) is also the P.G.F. of the system queue length in the FCFS service
strategy. 
�

Simplifying Ld(z) in Theorem 3.1, we have that

Ld(z) =
H(V (p̄))

H(V (p̄))+ pE[V ](1−H(V (p̄)))

+
pE[V ](1−H(V (p̄)))

H(V (p̄))+ pE[V ](1−H(V (p̄)))
× 1−V (1− p(1− z))

pE[V ](1− z)
. (3.10)

Therefore, the additional queue length Ld is equal to zero with the following proba-
bility,

H(V (p̄))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

and is equal to the number of customers arriving before an arbitrary time instant
during a vacation with the following probability,

pE[V ](1−H(V (p̄)))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

.

Differentiating the two sides of (3.9) and using L’Hospital’s rule, we can obtain
the mean E[Lv] of the number of customers at steady state for a Geom/G/1 (PD,
MAVs) queue system as follows:

E[Lv] = ρ+
p2E[S(S−1)]

2(1−ρ)
+

p2E[V (V −1)](1−H(V (p̄)))
2(H(V (p̄))+ pE[V ](1−H(V (p̄))))

+
p2E[V (V −1)]
2(1− pE[V ])

. (3.11)

Theorem 3.2. If ρ = p/μ < 1 and pE[V ] < 1, the stationary waiting time Wv
of a customer can be decomposed into three independent random variables in a
Geom/G/1 (PD, MAVs) queue as follows:

Wv = W +Wd +Wr,

where W is the stationary waiting time in a classical Geom/G/1 queue [5], [13].
The P.G.F. W (z) of the stationary waiting time W is given by
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W (z) =
(1−ρ)(1− z)

(1− z)− p(1−S(z))
. (3.12)

The additional delay Wd is a vacation or is equal to zero, and the additional delay Wr
is the time delay caused by the existing customers at the start instant of a vacation.
P.G.F.s Wd(z) and Wr(z) of additional delays Wd and Wr are given by

Wd(z) =
p(1−H(V (p̄)))(1−V (z))+H(V (p̄))(1− z)

(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)
,

Wr(z) =
(1− pE[V ])(1− z)

(1− z)− p(1−V (z))
. (3.13)

Proof. In a Geom/G/1 (PD, MAVs) queue, the waiting time is independent of the
customers’ inputting process after the arrival instant of the customers in the FCFS
service strategy. The queue length of the system at a customer’s service completion
instant is composed of the number of other customers arriving during the waiting
time and the service time of the customer. Therefore, we have that

Lv(z) = Wv(1− p(1− z))S(1− p(1− z)). (3.14)

Substituting the result of Theorem 3.1 into (3.14), we have that

Wv(z) =
(1−ρ)(1− z)

(1− z)− p(1−S(z))

× p(1−H(V (p̄)))(1−V (z))+H(V (p̄))(1− z)
(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)

× (1− pE[V ])(1− z)
(1− z)− p(1−V (z))

= W (z)Wd(z)Wr(z). (3.15)


�

From Theorem 3.2, we can obtain the P.G.F. Wd(z) of the stationary waiting time
Wd as follows:

Wd(z) =
H(V (p̄))

H(V (p̄))+ pE[V ](1−H(V (p̄)))

+
pE[V ](1−H(V (p̄)))

H(V (p̄))+ pE[V ](1−H(V (p̄)))
× 1−V (z)

E[V ](1− z)
. (3.16)

Therefore, the additional delay Wd is equal to zero with the following probability,

H(V (p̄))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

and is equal to a vacation time with the following probability,
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pE[V ](1−H(V (p̄)))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

.

Differentiating the two sides of (3.15) and using L’Hospital’s rule, we can get the
mean waiting time E[Wv] of a customer during a steady state for a Geom/G/1 (PD,
MAVs) queue system as follows:

E[Wv] =
pE[S(S−1)]

2(1−ρ)
+

pE[V (V −1)](1−H(V (p̄)))
2(H(V (p̄))+ pE[V ](1−H(V (p̄))))

+
pE[V (V −1)]
2(1− pE[V ])

.

3.3.3 Analysis of Service Cycle

According to the number J of consecutive vacations [1], [13], we have

P(J ≥ 1) = 1,

P(J ≥ j) = P(H ≥ j)P(V1 + · · ·+Vj−1 < T ) = (V (p̄)) j−1
∞

∑
k= j

hk, j ≥ 2; (3.17)

thus the P.G.F. J(z) of J can be given as

J(z) = 1− 1− z
1−V (p̄)z

(1−H(V (p̄)z)). (3.18)

Vacation time lengths in the following two cases are: (1) if a customer is present
at a vacation start instant, the total time length is the time of a vacation; (2) if there
are no customers present at a vacation start instant, the total vacation time length is
the sum of the time lengths of a random number of vacations. Concluding from the
two cases above, we can get P.G.F. VG(z) of the total time length VG for consecutive
vacations as follows:

VG(z) =
1− (1−H(V (p̄)))(1− pE[V ])

1+H(V (p̄))(1− pE[V ])
V (z)+

1− pE[V ]
1+H(V (p̄))(1− pE[V ])

×
(

1− 1−V (z)
1−V (p̄)V (z)

(1−H(V (p̄)V (z)))
)

. (3.19)

Therefore, the mean total time length of a vacation can be obtained as

E[VG] =
1− (1−H(V (p̄)))(1− pE[V ])

1+H(V (p̄))(1− pE[V ])
E[V ]

+
1− pE[V ]

1+H(V (p̄))(1− pE[V ])
× 1−H(V (p̄))

1−V (p̄)
E[V ]. (3.20)

In a Geom/G/1 (PD, MAVs) queue model, the server is usually in an idle state.
If there are customers in the system at the start instant of the vacation, the idle
period will be zero after the completion of a vacation. If there are no customers



58 Z. Ma et al.

in the system at the start instant of the vacation, and there are still no customers
at the Jth vacation completion instant, the time length Iv of the server’s idle period
is the inter-arrival time following a nonnegative exponential distribution. We can
give the mean E[Iv] of Iv as

E[Iv] =
1
p

(1− pE[V ])H(V (p̄))
1+H(V (p̄))(1− pE[V ])

. (3.21)

According to a pure decrement service strategy, we know that the service period
in the new model presented in this chapter is identical to the busy period in a clas-
sical Geom/G/1 queue system. This means the P.G.F. Sp(z) of the service period Sp
in the queue models of [5] and [13] satisfies the following and the mean length of
the service period is given by

Sp(z) = S(zSp((1− p(1− z)))), E[Sp] =
1

μ− p
.

We call the intermediate time between two continuous start instants of the ser-
vice a service cycle, denoted by C. The mean of the service cycle E[C] can thus be
obtained as follows:

E[C] = E[Sp]+E[VG]+E[Iv]

=
1−V (p̄)+V (p̄)(1− pE[V ])(1−H(V (p̄)))

(1+H(V (p̄)))(1− pE[V ])(1−V (p̄))
E[V ]

+
1
p

(1− pE[V ])H(V (p̄))
1+H(V (p̄))(1− pE[V ])

+
1

μ− p
. (3.22)

Let pB, pV , and pI be the probabilities that the server is in a busy, vacation, or idle
state, respectively. We can give that

pB =
E[Sp]
E[C]

=
1

E[C](μ− p)
,

pV =
E[V ](1−V (p̄)+V (p̄)(1− pE[V ])(1−H(V (p̄))))

E[C](1+H(V (p̄)))(1− pE[V ])(1−V (p̄))
,

pI =
(1− pE[V ])H(V (p̄))

pE[C](1+H(V (p̄))(1− pE[V ]))
. (3.23)

3.4 Special Cases

If the random variable H is supposed to have different probability distributions, we
can derive some vacation queueing systems with a pure decrement service as special
cases of the model presented in this chapter as follows:

Example 3.1. Pure decrement service Geom/G/1 queue with multiple vacations—
Geom/G/1 (PD, MV).
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If H → ∞, the queue turns into a pure decrement service Geom/G/1 queue with
multiple vacations. There is no idle state in the system, and H(z) = 0. Then the
P.G.F.s of the additional queue lengths Ld , Lr and the additional delays Wd , Wr are
respectively given by

Ld(z) =
1−V (1− p(1− z))

pE[V ](1− z)
, Lr(z) =

(1− pE[V ])(1− z)
V (1− p(1− z))− z

,

Wd(z) =
1−V (z)

pE[V ](1− z)
, Wr(z) =

(1− pE[V ])(1− z)
(1− z)− p(1−V (z))

. (3.24)

Equation (3.24) corresponds with the results given in [5], [10] and [13].

Example 3.2. Pure decrement service Geom/G/1 queue with single vacation—
Geom/ G/1 (PD, SV).

If H = 1, the system turns into a pure decrement service Geom/G/1 queue with a
single vacation. There is an idle state in the system, and H(z) = z. Then the P.G.Fs. of
the additional queue lengths Ld , Lr and the additional delays Wd , Wr are respectively
given by

Ld(z) =
1−V (p̄)z− (1−V (p̄))V (1− p(1− z))

(V (p̄)+ pE[V ](1−V (p̄)))(1− z)
,

Lr(z) =
(1− pE[V ])(1− z)
V (1− p(1− z))− z

,

Wd(z) =
p(1−V (p̄))(1−V (z))+V (p̄)(1− z)

(V (p̄)+ pE[V ](1−V (p̄)))(1− z)
,

Wr(z) =
(1− pE[V ])(1− z)

(1− z)− p(1−V (z))
. (3.25)

Equation (3.25) corresponds with the results given in [5] and [13].

Example 3.3. The number of vacations H follows a Poisson distribution in a
Geom/G/1 queue with a pure decrement service strategy—Geom/G/1 (PD, PV).

If the number of vacations follows a Poisson distribution with a parameter λ ,
namely P(H = i) = (λ i/i!)e−λ ,λ > 0, i = 0,1,2, . . . , then H(z) = eλ (z−1). Substi-
tuting H(V (p̄)) = eλ (V (p̄)−1) into (3.5) and (3.13), the P.G.Fs. of the additional queue
lengths Ld , Lr and the additional delays Wd , Wr are given by

Ld(z) =
1−V (1− p(1− z))+ eλ (V (p̄)−1)V (1− p(1− z))− eλ (V (p̄)−1)z

(eλ (V (p̄)−1) + pE[V ](1− eλ (V (p̄)−1)))(1− z)
,

Lr(z) =
(1− pE[V ])(1− z)
V (1− p(1− z))− z

,

Wd(z) =
p(1− eλ (V (p̄)−1))(1−V (z))+ eλ (V (p̄)−1)(1− z)

(eλ (V (p̄)−1) + pE[V ](1− eλ (V (p̄)−1)))(1− z)
,

Wr(z) =
(1− pE[V ])(1− z)

(1− z)− p(1−V (z))
. (3.26)
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The special cases mentioned above correspond to different probability distribu-
tions of H, and we can obtain different pure decrement service queue models with
vacations. From these analyses, we can conclude that the model presented in this
chapter is a general model including many special queue models.

3.5 Numerical Results

In this section, we present some numerical results that provide insight into the sys-
tem behavior. Using the equations presented in Sect. 3.3, we can numerically com-
pare the performance measures of the systems for three different Geom/G/1 (PD,
MAVs) queue models: the pure decrement service Geom/G/1 queue with multiple
vacations, the pure decrement service Geom/G/1 queue with single vacation and the
model where the number of vacations H follows a Poisson distribution in Geom/G/1
queue with a pure decrement service strategy.

Here we assume that the service time S and the time length V of a vacation
follow geometric distributions; that is, S follows a geometric distribution with mean
1/μ = 10. V follows a geometric distribution with mean E[V ] = 10. As we presented
in Sect. 3.2, if H → ∞, the model corresponds to a Geom/G/1 (PD, MV) queue. If
H = 1, the model corresponds to Geom/G/1 (PD, SV) queue. If H follows a Poisson
distribution, the model corresponds to a Geom/G/1 (PD, PV) queue. Parameter λ =
0.1, traffic intensity ρ range from 0.1 to 0.8.

Figure 3.2 shows the mean queue length E[Lv] as a function of the the traffic
intensity ρ with three cases of H; that is, H → ∞ for a Geom/G/1 (PD, MV) queue,
H = 1 for a Geom/G/1 (PD, SV) queue, and H follows a Poisson distribution for a
Geom/G/1 (PD, PV) queue. We can find that when ρ increases, E[Lv] increases to a
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Fig. 3.2 Mean queue length E[Lv] versus traffic intensity ρ .
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high level for all the cases. This is because the larger ρ is, the higher the possibility
that there will be customers arriving during the server cycle C. We also note that the
mean queue length E[Lv] of Geom/G/1 (PD, MV) is larger than that of Geom/G/1
(PD, SV) and Geom/G/1 (PD, PV). This is because the longer the vacation times
are, the larger the mean queue length E[Lv] will be.

Figure 3.3 shows how the mean waiting time E[Wv] changes with the traffic inten-
sity ρ for the three different cases of H; that is, H → ∞ for a Geom/G/1 (PD, MV)
queue, H = 1 for a Geom/G/1 (PD, SV) queue, and H follows a Poisson distribution
for a Geom/G/1 (PD, PV) queue. We can find that when ρ increases, E[Wv] increases
to a high level. This is because the greater ρ is, the higher the possibility that there
will be customers arriving during the server cycle C; then the mean waiting time
will be greater. We also note that the mean waiting time E[Wv] of Geom/G/1 (PD,
MV) is longer than that of Geom/G/1 (PD, SV) and Geom/G/1 (PD, PV). This is
because the longer the vacation time lengths are, the greater the mean waiting time
E[Wv] will be.

In Fig. 3.4, we can observe that, for the Geom/G/1 (PD, MV) queue, when ρ
increases, the mean service cycle E[C] of Geom/G/1 (PD, MV) increases, too. It can
also be noted that the curves of the mean service cycle E[C] for the Geom/G/1 (PD,
SV) queue and Geom/G/1 (PD, PV) queue follow two stages. In the first stage, the
heavier the traffic intensity ρ is, the lower the mean service cycle E[C] will be. In the
second stage, the heavier the traffic intensity ρ is, the higher the mean service cycle
E[C] will be.

In Fig. 3.5, we plot the probability for the system being at the various states as
a function of the traffic intensity ρ in Geom/G/1 (PD, PV). It can be observed that
when ρ increases, the probability for the system being either in a busy or vacation
state increases, whereas the probability of the system being in an idle state decreases
and limits to zero. This is because the greater ρ is, the more customers will arrive,
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and so the probability of the system being in a busy or a vacation state will increase,
whereas the probability for the system being in an idle state will be smaller.

3.6 Conclusions

In this chapter, we presented a detailed description of a Geom/G/1 queue model
with a pure decrement service strategy and multiple adaptive vacations. By using
the method of an embedded Markov chain, we derived the P.G.F.s of the queue
length and the customers’ waiting time. Furthermore, we presented the stochastic
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decompositions for the additional queue length and the additional delay. Lastly, we
obtained the probabilities of the server being in the various states of busy, vacation,
or idle, respectively. The model is an extension for many special multiple adaptive
vacation queue models with a pure decrement service strategy. When applying to
communication networks, it is especially useful for solving problems associated
with network flow.
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