
Chapter 2
Analytical Model of On-Demand Streaming
Services Based on Renewal Reward Theory

Hiroshi Toyoizumi

Abstract We propose an analytical model based on renewal reward theory to inves-
tigate the dynamics of an on-demand streaming service. At the same time, we also
propose a simple method combining a method of multicasts and method of unicasts
that can reduce the download rate from the streaming server without causing delay.
By modeling the requests as a Poisson arrival and using renewal reward theory, we
study the dynamics of this streaming service and derive the optimal combination
of unicast and multicast methods. We even show how to estimate the fluctuation of
download rates of a streaming service.

2.1 Introduction

Streaming services have become increasingly popular in recent years. However, es-
tablishing an efficient large-scale streaming service is still a great challenge because
they demand an enormous amount of bandwidth for servers delivering contents.
Thus, it is quite important to find an efficient and reliable way to establish a large-
scale streaming service over the Internet. There is much research going on to find a
better streaming service. For example, [1], [2] proposed a streaming service based
on the sophisticated data fragment technique, whereas [3] discusses the possibility
of popularity-based delivery and [4] seeks the dynamic structure of a contents de-
livery network, both aiming to reduce bandwidth. Because there is a wide variety
of methods, it is also quite important to evaluate and compare the proposed meth-
ods and find the optimal strategy [5]. In most cases, the evaluation is based on the
study of arbitrary selected simulations. Only [6], [7] discuss theoretical analysis of
reduction of bandwidth of streaming service, but they only succeeded in giving the-
oretical bounds. In order to understand the dynamics of streaming service, we need
an analytically tractable model.
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In this chapter, we propose a simple method combining unicasts and multicasts
to reduce the download rate of streaming service. Assuming the arrival of requests
is Poisson arrival, we use the technique called renewal reward theory to investigate
the dynamics of streaming service. By this analysis, we show we can reduce the
download rate by the order of

√ρ , where ρ is the average download rate required
if we use the standard unicast streaming service. Renewal reward theory is one of
the fundamental and powerful tools to investigate stochastic processes (see [8], [9],
for example). We can derive not only the average overall download rate but also
its distribution. This method can be used to design the link speed of the streaming
service.

Consider setting up a streaming service (Fig. 2.1). If we use a unicast from the
streaming server on each request, users will not experience delay, because the uni-
cast delivers the data on a one-to-one basis. However, using unicasts will result in
the waste of bandwidth if users request the same content at the same time. Multicast
streaming is realized by copying the data at multicast nodes in a content delivery
network so as to reduce the bandwidth. Unlike unicast, multicast is one-to-many,
and multicast can deliver the same data to all the users efficiently when sending the
same content. However, there is a side effect in multicast streaming. Those who re-
quested later than the start of multicast miss the initial part of the stream. Thus, we
propose a simple method using both the unicast and multicast reducing download
rate without causing delay. The objective of our method is to reduce the bandwidth
required for the streaming server.

Assume there is only one content on the streaming server, for simplicity. We may
extend our model to the heterogeneous contents environment, by modeling virtual
streaming servers for each content, and treat them separately. A user (or a leaf node
of a content delivery network) submits a request for the content to the designated
streaming server. The server has two possible options:

Unicast Multicast

Fig. 2.1 Streaming service on network of unicast and multicast.
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(1) Use a multicast so that other users can listen to this content simulataneously, or
(2) Use a unicast that can be listened to by this user exclusively.

Let us see some details on how our method will work. At the time when a user
submits a request, if there is no multicast stream, the server has no choice but initi-
ates a new multicast stream. If the server has already started a multicast stream, the
server can use a unicast to reduce bandwidth. However, in some cases, the server
may save some bandwidth by starting a new multicast even if there is another multi-
cast stream. Figure 2.2 shows an example of how the requests may be handled. Each
upward arrow indicates the arrival of requests at the streaming server. The request
C1 arrives at the server when there is no stream. Thus, there is no choice, and the
server automatically starts a multicast stream (real line). The next request C2, on the
other hand, starts listening to the C1 multicast stream, as well as the unicast (dashed
line) that corresponds to the top part to which she missed listening (Figure 2.3). The
unicast C2 will be terminated when it catches up to the part that has been already
stored by listening to the C1 multicast stream. In this way, the request C2 will not
see the delay, while saving the bandwidth. At the request C3, the sever selects a new
multicast even though there is a C1 multicast. This is because even if C3 started
listening to the multicast C1, which has already been started quite some time ago,

Fig. 2.2 Streaming with unicasts and multicasts. Arrows are the arrivals of request. The vertical
line shows the amount the user has listened.

Fig. 2.3 Relationship of C1 multicast and C2 unicast.
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C3 has to listen to almost the entire contents by her own unicast. So, there is almost
no gain. Thus, instead of listening to the existing multicast, starting a new multicast
will reduce the download rate required for future requests, such as C4 and C5. In
this chapter, we assume we cannot use the information of future arrival times. So,
we need to make a decision under uncertainty.

Note that our method may be applied to a content delivery network on a Peer-to-
Peer (P2P) network [4], [10], as well as normal full-scale multicast platforms.

This chapter is organized as follows. In Sect. 2.2, we propose an analytical model
to study the optimal strategy for this streaming service, using renewal reward the-
ory. In Sect. 2.3, we present the mean download rate and the optimal strategy. In
Sect. 2.4, we derive the download rate distribution. We give some conclusions and
remarks in Sect. 2.5.

2.2 Streaming Services and Renewal Model

Assume the server has only one content of the length s, and its download rate of
each stream is 1. The arrival of requests is assumed to be a Poisson process with
the rate λ . Although this assumption is a mathematical convention, there is research
that we can observe a Poisson arrival at the multimedia server in some cases [11].

Suppose that a request arrives at the server at time 0, and the server starts a
multicast for this request. Let us assume that all requests arrived during (0,x] are
regarded as children of the parent multicast, and the server starts a unicast for each
child request. Obviously, x should be no more than the contents length s. Those
designated as child requests should listen to the parent multicast and her own unicast
simultaneously. The first request arrived after x becomes a new parent and the server
starts a new parent multicast. We call x the merging limit time. Our primary goal is
to find the optimal x minimizing the total download rate required, using the renewal
reward process argument.

Let N(t) be the number of requests arrived during (0, t], and Tn be the arrival time
of the nth request (T0 = 0). We evaluate R which is the volume downloaded from
the server for the parent and his N(x) child requests; that is,

R =
N(x)

∑
i=1

Ti + s, (2.1)

because the server has to send the part Ti, which the child request Ci missed listening
to in the parent multicast. By conditioning on N(x), we have the expectation of R as

E[R] = s+E

[
N(x)

∑
i=1

Ti

]

= s+E

[

E

[
N(x)

∑
i=1

Ti

∣
∣
∣N(x)

]]

. (2.2)
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The arrival is a Poisson process, conditioning on N(x) = n, thus the sequence
of arrivals T1,T2, . . . ,Tn is known to be equivalent to the ordered statistics of
U1,U2, . . . ,Un which is a series of independent and identical random variables uni-
formly distributed on (0,x] (e.g., see [8, Theorem 2.3.1]). Thus,

E

[
N(x)

∑
i=1

Ti

∣
∣
∣N(x) = n

]

= E

[
n

∑
i=1

Ui

]

=
nx
2

.

Using this in (2.2), we have

E[R] = s+E
[

N(x)x
2

]

= s+
λx2

2
. (2.3)

Now, let Xm be the interarrival time of the mth parent multicast. Because the
interarrival time of the Poisson process is exponentially distributed and memoryless,
the time length to the next request after the merging time limit is again exponentially
distributed with its mean 1/λ . Hence, Xm are independent and have the form of

Xm = x+Ti, (2.4)

where Ti is an exponential random variable with the mean 1/λ . Also, let Rm be
the volume downloaded by the mth parent multicast and its child unicasts. Be-
cause the arrival is a Poisson process, the sequence of the pair of random variables
(Xm,Rm)m=1,2,... is independent and identically distributed. Let S(t) be the total ac-
cumulated volume demanded by requests whose parent arrived before the time t; in
other words,

S(t) =
M(t)

∑
m=1

Rm, (2.5)

where M(t) is the number of parent multicasts in [0, t). Taking Rm as the reward,
the process S(t) is a renewal reward process (see e.g., [8], [9]). This renewal reward
representation is used in the following section to derive the average download rate.

2.3 Mean Download Rate and Optimal Strategy

We now find the optimal merging limit time x0 that minimizes the average download
rate from the streaming server. Let b(x) be the average download rate given the
merging limit time x, or

b(x) = lim
t→∞

S(t)
t

. (2.6)
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Fig. 2.4 The download rate b(x) and the merging limit time x: the request arrival rate λ = 1, and
the content size s = 100.

Theorem 2.1 (Optimal Merging Limit Time). Assume the requests to the content
of size s is a Poisson process with the rate λ . Given the merging limit time x, the
average download rate is obtained by

b(x) =
2λ s+λ 2x2

2(λx+1)
. (2.7)

The function b(x) is indeed a convex function (see Fig. 2.4), so we have x0 which
minimizes b(x) as

x0 =
(1+2λ s)1/2 −1

λ
. (2.8)

Furthermore, we can substitute (2.8) into (2.7); then we have the optimal download
rate,

b(x0) = (1+2ρ)1/2 −1, (2.9)

where ρ = λ s corresponds to the scale of this streaming service.

Proof. We know that S(t) is a renewal reward process from Sect. 2.2. Renewal re-
ward theory [8, Theorem 3.6.1] is an extension of the strong law of large numbers to
the renewal process. By the strong law of large numbers and (2.5), with probability
1, we have

S(t)
t

=
∑M(t)

m=1 Rm

M(t)
M(t)

t
→ E[R]

E[X ]
=

E[R]
x+1/λ

as t → ∞, (2.10)

where X is the interarrival time of the parent multicasts. It is easy to get (2.7) by
substituting (2.3) in (2.10).
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Figure 2.4 shows the graph of the average download rate b(x). For a smaller
merging limit time x, more requests are treated as multicast, which results in a waste
of download rate. On the contrary, for a larger x, we may miss the opportunity of
saving download rate by merging the future streams. Thus, we can see a fine balance
here. In this case the optimal merging limit time is x0 = 9.04988, well below the
content size s = 100.

Let us study in some detail the optimal merging limit. Take the optimal merging
limit time as a function of the request arrival rate λ in (2.8). Letting λ → 0, we have

x0(λ ) → s,

which means for a smaller request rate we cannot count on the following requests,
so “be a child whenever you can” is the best strategy. On the contrary, for large λ ,
we have

x0(λ ) → 0, as λ → ∞.

For a larger request rate, you can always expect the following requests. In this
case your strategy would be “be a parent and help the following children.”

If we use unicast only, instead of the combination of unicast and multicast, the
average streaming rate is ρ . The download rate (2.9) obtained by our method has the
order of

√ρ , which gives us a significant saving of download rate, especially when
the size of the streaming service is large (see Fig. 2.5). Theoretically, we could
improve (2.9) when we exploit the information of future requests. The theoretical
lower bound of the download rate given future information was obtained by [6] as

b0 = log(1+ρ), (2.11)

which is also shown in Fig. 2.5. We see that our method cannot achieve this theoret-
ical limit but still it achieves significant saving.
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Fig. 2.5 Comparison of download rate: The line unicast is the scheme that uses only unicasts, and
the bound is the theoretical lower bound [6]. The contents size is set to be s = 100.
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2.4 Download Rate Distribution

Using the renewal argument further, we can evaluate the download rate distribution
of our merging method. For simplicity, in this section we set the merging limit time
x to be the size of the content s. In this case, all requests are treated as child streams
whenever they can.

Because we set the download rate of each stream to be 1, the only thing we need
to know is the number of active streams. Let L be the number of active streams
including both parent and child streams in the steady state.

Theorem 2.2. The z-transform of the number of active streams L is obtained as

E
[
zL
]

=
1

1+ρ

[
ze(ρ−1)(z−1)/2

∫ 1

e−ρ
e(z−1)y/2 dy

y
+

2
z+1

{
e−ρ(1−z)/2 − e−ρ

}
+ e−ρ

]
,

(2.12)

where we set ρ = λ s.

Proof. Let L(t) be the number of active streams at the time t, and let Ye be the
length to the arrival of the previous parent request from an arbitrary time t (Fig. 2.6).
Because Ye is the forward recurrent time of the renewal interval s + Ti, where Ti is
exponentially distributed with the mean 1/λ , we have

P{Ye ≤ u} =
1

s+1/λ

∫ u

0
(1−P{s+T ≤ y})dy. (2.13)

Thus, we obtain the probability distribution of Ye as

(1+ρ)P{Ye ≤ u} =

{
λu if u ≤ s
1+ρ− e−λ (u−s) if u > s,

(2.14)

Fig. 2.6 Sample path of streaming service: The fourth child unicast from the previous renewal
interval remains active at the time t.
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and its density as

(1+ρ)
dP{Ye ≤ u}

du
=

{
λ if u ≤ s
λe−λ (u−s) if u > s.

(2.15)

Let L1 be the number of active child streams at time t that arrived in the renewal
interval containing the time t. Furthermore, there is a chance that the child streams
started prior to the renewal time still exist after time t (see Fig. 2.6). Let L0 be the
number of those active streams that arrived in the previous renewal interval.

Then, taking into account the parent multicast of this renewal interval, we have

L(t) = 1(Ye≤s) +L0 +L1. (2.16)

Consider conditioning on Ye = u. In the case when u ≤ s, L0 and L1 are indepen-
dent, and both are Poisson random variables with the mean λ sP0(u) and λu/2, re-
spectively, where P0(u) is the probability that a child stream started in the previous
interval still exists at time t. Indeed, the arrival of child streams is Poisson with rate
λ , and given the number of arrivals, the survival of each child stream is independent
of other streams.

Suppose a child stream arrives U1 later than the parent multicast that started the
current renewal interval. The child stream should exist to cover the missing part of
the length U1, and it is alive up to 2U1 from the start of the parent multicast. The
child stream exists at time t only when 2U1 > u. Because U is uniformly distributed
on [0,u], the probability that a child stream exists at time t is P{U1 ≥ u/2} = 1/2.
Thus, L1, the number of active child streams at time t that arrived in [t − u, t], is a
Poisson random variable with the mean λu/2. Similarly, suppose a child stream in
the previous renewal interval arrives U0 after the previous parent multicast. Then,
the child stream remains active at time t only when 2U0 > s+T +u. Thus,

P0(u) = P{2U0 > s+T +u}
= {λ (s−u)− (1− e−λ (s−u))}/(2ρ), (2.17)

because U0 is a uniform random variable on [0,s]. Thus L0 is a Poisson random
variable with the mean λ sP0(u). Using this information we have

∫ s

0
E
[

zL(t)
∣
∣
∣Ye = u

]
dP{Ye ≤ u} =

∫ s

0
zeλ sP0(u)(z−1)eλu(z−1)/2dP{Ye ≤ u}

=
λ ze(ρ−1)(z−1)/2

1+ρ

∫ s

0
e(z−1)e−λ (s−u)/2du

=
ze(ρ−1)(z−1)/2

1+ρ

∫ 1

e−ρ
e(z−1)y/2 dy

y
. (2.18)

On the other hand, when s < u ≤ 2s, it is easy to see that no child streams from the
previous interval exist at time t. Thus, L0 = 0 and L1 is a Poisson random variable
with its mean λ (s−u/2). Hence we have
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∫ 2s

s
E
[
zL(t)

∣
∣
∣Ye = u

]
dP{Ye ≤ u} =

∫ 2s

s
eλ (s−u/2)(z−1)dP{Ye ≤ u}

=
2

(1+ρ)(z+1)

{
e−ρ(1−z)/2 − e−ρ

}
. (2.19)

Lastly, when u > 2s, L(t) = 0. Hence, we have
∫ ∞

2s
E
[
zL(t)

∣
∣
∣Ye = u

]
dP{Ye ≤ u} =

∫ ∞

2s
dP{Ye ≤ u}

=
1

(1+ρ)
e−ρ . (2.20)

By using all these results and by separating integral intervals appropriately, we can
get (2.12).

Corollary 2.1. The mean and variance of L are given by

E[L] =
2ρ+ρ2

2(1+ρ)
< ρ, (2.21)

V [L] = {4ρ3 −4ρ2 +11ρ+9−4(ρ2 +3ρ+2)e−ρ

− (ρ+1)e−2ρ}/{8(1+ρ)2}. (2.22)

Here we give a numerical example. If we use only unicasts for requests, L is noth-
ing but a simple M/D/∞ queueing system. Thus, L is a Poisson random variable with
its mean ρ = λ s. In Fig. 2.7, we compare the variance of L of the proposed merg-
ing method with the M/D/∞ queue. We already know that we can save the average
download rate using our proposed method. In Fig. 2.7, we also see the reduction of
the download rate fluctuation, which is another superiority of our method.
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Fig. 2.7 Variance of L in the unicast scheme and the proposed method (mixed).
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2.5 Conclusions

In this chapter, we proposed a simple method realizing bandwidth reduction with-
out delay. By using renewal reward theory, we succeed in estimating the download
rate, not only the average but also the variance. By using the evaluation, we find
that in an optimal case we can reduce the download rate of streaming service by√ρ , the squareroot of the streaming service size. Furthermore, we see that our pro-
posed method can also reduce the fluctuation of the download rate. The technique
used in this chapter can be adopted to design the bandwidth requirement for general
streaming services.
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