
Chapter 14
Modeling of P2P File Sharing
with a Level-Dependent QBD Process

Sophie Hautphenne, Kenji Leibnitz, and Marie-Ange Remiche

Abstract In this chapter we propose to analyze a peer-to-peer (P2P) file sharing sys-
tem by means of a so-called level-dependent Quasi Birth-and-Death (QBD) process.
We consider the dissemination of a single file consisting of different segments and
include a model for the upload queue management mechanism with peers compet-
ing for bandwidth. By applying an efficient matrix-analytic algorithm we evaluate
the performance of P2P file diffusion in terms of the corresponding extinction prob-
ability, that is, the probability that the sharing process ends.

14.1 Introduction

With the introduction of peer-to-peer (P2P) technology in networks for file sharing
and content distribution, the volume of transported traffic has recently enormously
increased. The nodes participating in the P2P network are called peers and form log-
ical overlay structures on the application layer above the IP topology; see Fig. 14.1.
One of the main advantages of using P2P networks for content distribution is their
high scalability to a growing number of file requests, especially in the presence of
flash crowd arrivals [1]. Unlike conventional client/server architectures, all peers act
simultaneously as clients and servers, thus shifting the load from a single server to
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Fig. 14.1 A P2P network consists of peers forming a logical overlay network above the IP
topology.

several peers sharing a specific file. Additionally, because the source of a file is no
longer stored at a single location, the P2P network is more robust to failures.

However, there are also certain dangers in entirely relying on P2P networks for
file distribution. Firstly, as the data are no longer kept at a single trusted source, each
peer that hosts the file may modify the data willingly or unwillingly, thus causing the
distribution of corrupt information. This is referred to as poisoning or pollution [2].
Secondly, the existence of a sharing peer in the network cannot be guaranteed due
to churn (i.e., the process of peers entering and leaving the network). The sharing
of files is controlled by the peers’ behavior (willingness to share after downloading,
patience, etc.) and they may arbitrarily join or leave the network at any instant [3].
If the peer, which has the last part of the file, leaves the network, this information
is lost and other peers can no longer retrieve the data. For this reason, specific P2P
architectures (e.g., Chord [4]) employ mechanisms to maintain a certain number of
replicas of a file in the network.

In this chapter we study the probability that the diffusion of a file will eventually
come to a halt in an unstructured P2P file sharing network, which we define as
the extinction of the file. We extend our previous model in [5], where we used a
Markovian Binary Tree (MBT) to model the file sharing network and we formulated
an algorithm to compute the extinction probability. However, the previous model
only considered the sharing of entire files. In this chapter, we extend the model to
include the sharing of individual parts of the file to reflect a more accurate behavior.
This is achieved by using a level-dependent Quasi Birth-and-Death (QBD) process.
By adapting the logarithmic-reduction algorithm (see Latouche and Ramaswami
[6]), we actually compute the probability that file diffusion ends due to the lack of
peers sharing a part of the file.

This chapter is organized as follows. First, we briefly summarize some re-
lated work on modeling of P2P file sharing mechanisms for content distribution
in Sect. 14.2. This is followed by the formulation of our basic assumptions on the
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file sharing network in Sect. 14.3. Although we consider a P2P network that roughly
resembles the eDonkey protocol, the model is general enough to be easily applied to
other file sharing protocols as well. In Sect. 14.4 we formulate two analytical mod-
els corresponding to two different systems in which either the sharing process stops
when the entire file is lost or when any of the segments is missing. Accordingly,
we construct the corresponding level-dependent QBD process and we develop al-
gorithms necessary to obtain the extinction probability in both settings. We provide
some numerical results showing the impact of the system parameters on the perfor-
mance of the system in Sect. 14.5. Finally, conclusions are drawn in Sect. 14.6.

14.2 Related Work

A growing number of studies can be found dealing with the modeling and perfor-
mance evaluation of P2P file sharing networks. In this section we only highlight
a few of them that we consider relevant to this chapter. Most studies on the eval-
uation of P2P systems as content distribution networks rely on measurements or
simulations of existing P2P networks. For example, Saroiu et al. [7] conducted mea-
surement studies of content delivery systems that were accessed by the University
of Washington. The authors distinguish between traffic from P2P, WWW, and the
Akamai content distribution network, and they found that the majority of volume
is transported over P2P. In [8], a measurement-based traffic profile of the eDonkey
network is provided and reveals that there is a strong distinction between download
flows and nondownload streams. Similar studies exist for the Gnutella network [9]
and BitTorrent [10], as well. Hoßfeld et al. [11] provide a simulation study of the
eDonkey network and examine the file diffusion properties under constant and flash
crowd arrivals.

An analytical model for performance evaluation of a generalized P2P system is
given by Ge et al. [12]. On the other hand, other published work mostly consid-
ers specific existing applications. For example, Qiu and Srikant [13] used a fluid
model for BitTorrent and investigate the performance in steady state. They studied
the effectiveness of the incentive mechanism in BitTorrent and proved the existence
of a Nash equilibrium. Rubenstein and Sahu [1] mathematically showed that un-
structured P2P networks have good scalability and are well suited to cope with flash
crowd arrivals. A fluid-diffusive P2P model from statistical physics is presented by
Carofiglio et al. [14]. Both the user and the content dynamics are included, but this
is only done on the file level and without pollution. All these studies show that by
providing incentives to the peers for sharing a file, the diffusion properties are im-
proved. Yang and de Veciana [15] investigated the service capacity of P2P networks
by considering two models, one for the transient state with flash crowds and one in
steady state.

Christin, Weigend and Chuang [2] measured content availability of popular P2P
file sharing networks and used these measurement data for simulating different pol-
lution and poisoning strategies. They show that only a small number of fake peers
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can seriously affect the user’s perception of content availability. In [16], a diffu-
sion model for modeling eDonkey-like P2P networks is presented based on a model
from mathematical biology. This model includes pollution and a patience threshold
at which a peer aborts its download attempt and retries again later. It is shown that
an evaluation of the diffusion process is not accurate enough when steady state is as-
sumed or the model only considers the transmission of the complete file, especially
in the presence of flash crowd arrivals. That model is extended in [17] to analyti-
cally compare the performance of P2P file sharing networks to that of client/server
systems.

14.3 Peer-to-Peer File Sharing Model

Let us now define the assumptions we make on the P2P file sharing model in this
chapter. We assume an unstructured P2P network operating similar to the eDon-
key network. However, our model is not restricted to eDonkey, but can in fact be
applied to other file sharing networks as well. The sharing of a file with size F is
performed in units of chunks, which are further split into smaller units called blocks;
see Fig. 14.2. In eDonkey, a chunk has the size of 9.28 MB and a block is 180 kB.
After each chunk has been downloaded, it is checked for errors and if the hash value
is incorrect, all blocks of the chunk are discarded and downloaded again. After all
chunks of a file have been successfully downloaded, the peer may decide to keep
the file as a seeder in the network for other peers to download or to remove the file
from sharing (leecher or free rider). In this work, we assume that the file consists
only of a single chunk, corresponding, for example, to a single mp3 audio file, as
this is enough to capture the basic characteristics of the diffusion behavior.

14.3.1 Upload Queue Management and File Segmentation

In order to manage the bandwidth for other peers requesting the file, an upload
queue mechanism is maintained. A peer requests individual blocks from other peers

1 i Nc

1 j Ns

1 k Nb

Fig. 14.2 File structure consisting of chunks, segments, and blocks.
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sharing the chunk that contains the desired block. All requests are appended to the
waiting list of the sharing peer and a weighting mechanism handles the scheduling
of the upload queue requests for transmission. The detailed procedure of the queue
management takes several features into account that depend on the individual set-
tings of the sharing peer such as upload bandwidth and number of simultaneous
uploads.

In our model, an approximative assumption simplifies the upload queue manage-
ment behavior [11]. If a peer downloads a block from another peer, additional blocks
might be of interest, if the providing peer is not already sharing the complete file.
The weighting mechanism takes this into account by giving higher priority to peers
from which blocks had been previously downloaded. We include this interaction by
considering that not individual blocks, but rather a series of blocks is downloaded
at a time after moving from the waiting list to the uploading list. The waiting list is
modeled as a FIFO (first-in-first-out) queue and the number of consecutively down-
loaded blocks can be obtained from measurements [8] through the average data
volume downloaded per sharing peer.

In the original version of eDonkey, error detection is done after all blocks of a
chunk have been received and the complete chunk is discarded in the case of an
error. However, this is not very effective and in more recent versions of eDonkey
clients (e.g., eMule), the Intelligent Corruption Handling (ICH) mechanism is im-
plemented which performs an error detection on smaller data units than chunks and
that we define in the following as segments. Instead of discarding the complete
chunk when at least one corrupted block is received, only all blocks of the damaged
segment need to be requested again. The actual size of a segment depends on the
specific settings of the ICH mechanism.

With the assumptions on the upload queue mechanism and corruption handling,
it is sufficient to consider that a chunk only needs to be modeled consisting of few
segments instead of several individual blocks. In this study we assume that a chunk
consists of two segments (i.e., Ns = 2) and the size of a segment is Z = 4.64 MB.
The size of the whole file F is less than or equal to 9.28 MB.

14.3.2 Download Bandwidth

Let us define the upload and download rates as ru and rd , respectively. For the sake
of simplicity, we use the same assumption as in [16] of homogeneous users with
ADSL connections, resulting in rates of ru = 128 kbps and rd = 768 kbps. Fur-
thermore, let us denote the number of peers sharing a certain segment as S and the
peers downloading it as D. Because eDonkey employs a fair share mechanism for
the upload rates, there are on average S/D sharing peers serving a single download-
ing peer and we multiply this value with ru. This gives us the bandwidth on the
uplink.

However, because the download bandwidth could be the limiting factor,
the effective downloading rate of a segment consists of the minimum of both
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terms, that is, min(S/Dru,rd). When downloading a segment of size Z, the term
min(S/Dru,rd)/Z represents the proportion of the segment that is downloaded in
one unit of time, thus, the rate at which we may observe the arrival of new peers
that have completely downloaded the file. We call this rate the effective transition
rate. It is worth noting that in general the effective downloading rate depends on
the interaction of the peers within the system (namely the number of downloaders
and the number of peers sharing the segment) and on the size of segment that is
effectively downloaded.

14.4 Analytical P2P File Sharing Model

Let us consider a chunk to be made up of two segments: segment 1 and segment 2 of
respective sizes Z and F −Z, where F , as defined earlier, is the size of the complete
file. We end up with three categories of peers; namely, peers with segment 1 or 2
and peers that have both segments. We say that a peer is in phase i (i = 1,2) when
it possesses only segment i and in phase 3 in the case where it has both segments.
New peers are assumed to appear at random times in the system determined by
an exponential random variable whose rate depends both on the effective transition
rate we introduced above and on the current state of the system, that is, the number
of peers Si in each phase i = 1,2, or 3. For the sake of simplicity, we can assume
that the rate at which a peer stops sharing a segment is independent of the segment
number, and is equal to d. The ensuing model is now described.

Let us now define the stochastic process {(X(t),ϕ(t))}, where X(t) counts the
total number of peers present in the system at time t, and ϕ(t) = (ϕ1(t),ϕ2(t),ϕ3(t))
denotes the number of peers in each phase present in the system at time t, with
ϕ(t)1 = X(t). Here, 1 denotes a vector with ones.

We consider two views to measure the extinction probability of the file sharing
process, an optimistic and a pessimistic view. In the optimistic view, we assume that
the sharing process ends when no more segments are available in the system. In the
pessimistic case, the file sharing process ends as soon as one of the two segments is
missing. We call the latter event a catastrophe. Let us explain each resulting model
in turn.

14.4.1 Level-Dependent QBD

In this first setting, recall that the sharing process ends when there are no more seg-
ments available in the system. The stochastic process {(X(t), ϕ(t))} is an absorbing
level-dependent quasi birth-and-death process, of which the generator Q can be
written as
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Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 · · ·
A(1)

2 A(1)
1 A(1)

0 0 0 0 · · ·
0 A(2)

2 A(2)
1 A(2)

0 0 0 · · ·
0 0 A(3)

2 A(3)
1 A(3)

0 0 · · ·
...

...
. . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.1)

This process has been extensively studied in the past (see Latouche and
Ramaswami [6] and references therein). In this setting, the time to extinction
of the system is clearly equal to the time until absorption. In the remainder of this
section, we first elaborate on the content of the A( j)

i matrices (with i = 0,1,2 and
j ≥ 1) and then give the algorithmic procedure in order to compute the absorption
probability in this level-dependent QBD with generator Q.

14.4.1.1 Level-Dependent QBD Generator Description

When the system is in state (S1,S2,S3), it means that we have S1 peers in phase 1
(with only segment 1), S2 peers in phase 2 (with only segment 2), and S3 peers in
phase 3 (with the complete file). We define the state subspace L(k), k ∈ N, as

L(k) = {(S1,S2,S3) : S1 ≥ 0,S2 ≥ 0,S3 ≥ 0; S1 +S2 +S3 = k} ,

which gives all states of the system at level k, that is, when k peers are present in the
system. Its cardinality is clearly

|L(k)| = 1
2
(k +2)(k +1)

and we take the lexicographic order to enumerate the states of each level.
Before proceeding with the description of the transition matrix, we define two

functions of crucial interest in the following; these are

μi(S,D) =
1
Zi

min
{

S
D

ru,rd

}

, i = 1,2, (14.2)

where Z1 = Z and Z2 = F −Z are the sizes of each segment and S and D are the
number of all peers currently sharing and downloading the segment, respectively.

When the system contains a single peer (i.e., when its state is in L(1)), this peer
may stop sharing the one segment it possesses with rate d (the system then moves
to L(0)) or another peer may start downloading the segment (the system is thus in
L(2)). The first event occurs at a rate recorded by A(1)

2 ; that is,

A(1)
2 =

⎡

⎣
d
d
d

⎤

⎦ .
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The latter case occurs at a rate given by the matrix A(1)
0 as

A(1)
0 =

⎡

⎣
μ1(1,1) 0 0 0 0 0

0 0 0 μ2(1,1) 0 0
0 0 μ1(1,1) 0 μ2(1,1) 0

⎤

⎦ .

Indeed, if the system is in state (0,1,0), for example, only a new peer with segment
2 may appear; that is, the system moves towards state (0,2,0). This happens at a
rate μ2(1,1); see (14.2).

Usually, a peer may also perform a change of phase, that is, from 1 to 3 or from 2
to 3. Such a transition keeps the level at 1 because no new peer arrives in the system.
However, if a peer in phase 1 (or phase 2) is alone in the system, it will not be able
to download the missing segment and to change into phase 3. Thus, the transition
rate from phase 1 (or from phase 2) to phase 3 when the system is in level 0, is
μi(0,1) = 0 for i = 1,2 in that particular case. The diagonal elements of A(1)

1 (and
of all A(k)

1 , k ≥ 2) are such that Q1 = 0. It finally gives

A(1)
1 =

⎡

⎣
−d −μ1(1,1) 0 0

0 −d −μ2(1,1) 0
0 0 −d −μ1(1,1)−μ2(1,1)

⎤

⎦ .

The possible transitions from a state (S1,S2,S3) ∈ L(k) with k ≥ 2 are described
below.

A(k)
2 : This matrix records the rate at which the system may lose a peer. A peer

in phase i disappears with rate d. This latter is multiplied by the number of
peers in phase i, that is, Si with i = 1,2,3.

A(k)
0 : This matrix explains at which average rate a new peer may arrive in the sys-

tem. There exist two possible transitions, listed in the table below. They both
may be interpreted with a similar argumentation, so we limit our explana-
tion to only the first case of possible transitions. The effective downloading
rate of a new peer with segment 1 is determined as usual as the minimum
between its own physical downloading rate rd and a rate which depends on
the number of peers that are sharing the available total upload bandwidth.
Segment 1 is available to peers in phases 1 and 3. However, although there
are only S2 peers interested in downloading segment 1 from peers in phase
1, there are S1 +S2 peers interested in downloading segment 1 or segment 2
from peers in phase 3. It is important to take into account the S1 supplemen-
tary peers because they also share the available upload bandwidth at peers
in phase 3. This leads to an effective transition rate of

μ3(S1,S2,S3) =
1
Z

min
{(

S1

S2 +1
+

S3

S1 +S2 +1

)

ru,rd

}
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Table 14.1 Transitions and rates for matrix A(k)
0 .

Transitions Rates

(S1,S2,S3) → (S1 +1,S2,S3) μ3(S1,S2,S3)
(S1,S2,S3) → (S1,S2 +1,S3) μ4(S1,S2,S3)

Table 14.2 Transitions and rates for matrix A(k)
1 .

Transitions Rates

(S1,S2,S3) → (S1 −1,S2,S3 +1) μ2(S2 +S3,S1)
(S1,S2,S3) → (S1,S2 −1,S3 +1) μ1(S1 +S3,S2)
Diagonal element Parameter of the exponential
(S1,S2,S3) → (S1,S2,S3) −k d −μ3(S1,S2,S3)−μ4(S1,S2,S3)

−μ2(S2 +S3,S1)−μ1(S1 +S3,S2)

and accordingly to

μ4(S1,S2,S3) =
1

F −Z
min

{(
S2

S1 +1
+

S3

S1 +S2 +1

)

ru,rd

}

for the case of a new peer appearing in phase 2. Table 14.1 summarizes the
transitions and their corresponding rates.

A(k)
1 : A peer in phase 1 turns into a peer in phase 3 with the rate μ2(S2 + S3,S1),

because S1 peers are competing for the (S2 +S3)ru available bandwidth. The
same argument holds for a peer in phase 2 changing into a peer in phase 3.
Let us recall that the diagonal elements are such that Q1 = 0. The corre-
sponding transitions and rates are shown in Table 14.2.

14.4.1.2 Probability of Extinction

Our interest lies in computing the probability that the sharing process in the partic-
ular system setting described in the previous section will terminate at some point.
Let γ(0) be the first time the system is in level 0; that is no segment is available.
Let ei be a unit vector with a 1 at the ith entry and 0 elsewhere. In this chapter, an
empty product is, by convention, equal to the identity matrix (for l = 0 in (14.3), for
instance). We define (G1)i as the probability that the system starting in level 1 with
ϕ(0) = ei will eventually reach level 0; that, is,

(G1)i = P [γ(0) < ∞ |ϕ(0) = ei] i = 1,2,3.

It was proven in [19] that this vector is explicitly given by

G1 =
∞

∑
l=0

[
l−1

∏
i=0

Ui
2i

]

Dl
2l , (14.3)
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where

Ui
2i = P

[
γ(2i+1) < γ(0) ∧ ϕ(γ(2i+1)) |X(0) = 2i] ,

Dl
2l = P

[
γ(0) < γ(2l+1) ∧ ϕ(γ(0)) |X(0) = 2l

]

and where γ(k) is defined as the first passage time to level k; that is,

γ(k) = inf{t ≥ 0 : X(t) = k}

with k ≥ 0. Accordingly, we have
[

l−1

∏
i=0

Ui
2i

]

Dl
2l = P[γ(2l) < γ(0) < γ(2l+1) ∧ ϕ(γ(0)) |X(0) = 1], (14.4)

that is, the probability that the process starting from level 1, first visits level 2l , then
visits level 0 before visiting level 2l+1. Summing (14.4) over l = 0 to infinity clearly
gives G1.

The matrices Ul
k and Dl

k, respectively, of dimensions |L(k)| × |L(k + 2l)| and
|L(k)|× |L(k−2l)|, are given by the following recursive equations:

U0
k =

(
−A(k)

1

)−1
A(k)

0 , (14.5)

D0
k =

(
−A(k)

1

)−1
A(k)

2 , (14.6)

Ul
k =

[
I −Ul−1

k Dl−1
k+2l−1 −Dl−1

k Ul−1
k−2l−1

]−1
Ul−1

k Ul−1
k+2l−1 , l ≥ 1, (14.7)

Dl
k =

[
I −Ul−1

k Dl−1
k+2l−1 −Dl−1

k Ul−1
k−2l−1

]−1
Dl−1

k Dl−1
k−2l−1 , l ≥ 1. (14.8)

Note that for k = 2l the matrix Dl
k will become a vector. A clear proof is given

in [19]. The sum in (14.3) needs to be truncated in order to numerically evaluate
G1. This matter is discussed by Latouche and Ramaswami in [6] and is addressed
in our context in Sect. 14.5.

14.4.2 Level-Dependent QBD with Catastrophes

The model in the previous section considered that the file dissemination terminates
when no more segments are available for sharing in the system. However, in reality
when only an individual segment or an incomplete file remains in the network, no
peer is able to retrieve the file completely anymore. Therefore, we now consider that
a file is not available for sharing as soon as one of its segments is lost. In this case,
the process ends in an absorbing state defined as belonging to L(0) which is defined
in this new setting as
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L(0) = {(0,0,0),(n,0,0),(0,n,0); n ∈ N0} ,

where N (respectively, N0) is the set of natural numbers (respectively, strictly
positive natural numbers). We propose not to differentiate for any n ∈ N0 be-
tween the states (n,0,0) and (0,n,0), but instead define a kind of metastate la-
beled (k,0,0) and (0,k,0) that gathers all of these states (n,0,0) and (0,n,0) for
n ∈ N0, respectively. The subspace L(0) is, thus, composed of three states, that is
{(0,0,0),(k,0,0),(0,k,0)} and is an absorbing level. Other level state-spaces are
for k ≥ 1:

L(k) = {(i, j, l) | i, j ∈ N, l ∈ N0, i+ j + l = k}∪{(i, j,0) | i, j ∈ N0, i+ j = k} .
(14.9)

The time to extinction is still equal to the time to absorption and the generator of
this new level-dependent QBD is given in (14.10) as follows:

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 · · ·
A(1)

2 A(1)
1 A(1)

0 0 0 0 · · ·
A(2)

3 A(2)
2 A(2)

1 A(2)
0 0 0 · · ·

A(3)
3 0 A(3)

2 A(3)
1 A(3)

0 0 · · ·
...

...
. . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.10)

The rates of catastrophe, determined by matrix A(k)
3 , are given by the transitions

and corresponding rates in Table 14.3. Accordingly, matrix A(k)
2 becomes as shown

in Table 14.4.
The other transitions in matrices A(k)

0 and A(k)
1 stay the same as previously de-

scribed in Sect. 14.4.1.1 for the first model, taking care of the states that now belong
to the subspace L(k), as defined in (14.9).

Table 14.3 Transitions and rates for matrix A(k)
3 .

Transitions Rates

S2 > 0 : (0,S2,1) → (0,k,0) d
S2 > 0 : (1,S2,0) → (0,k,0) d
S1 > 0 : (S1,0,1) → (k,0,0) d
S1 > 0 : (S1,1,0) → (k,0,0) d

(0,0,1) → (0,0,0) d

Table 14.4 Transitions and rates for matrix A(k)
2 with catastrophes.

Transitions Rates

S1 > 1 or S3 > 0 : (S1,S2,S3) → (S1 −1,S2,S3) S1 d
S2 > 1 or S3 > 0 : (S1,S2,S3) → (S1,S2 −1,S3) S2 d
(S1 > 0 and S2 > 0) or S3 > 1 : (S1,S2,S3) → (S1,S2,S3 −1) S3 d
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The extinction probability can now be computed by extending the results by Bean
and Latouche [18] to the level-dependent case. The authors in [18] analyze QBD
processes with catastrophes as defined in our setting. However, their phase state-
space is of infinite size, whereas in our setting this is no longer the case and makes
the problem easier to handle from a numerical viewpoint.

We first define G(k)
0 as a matrix whose (i, j)th element is the probability that the

process reaches level 0 for the first time in phase j, given that the process starts in
phase i of level k ≥ 1 and levels 1 to k− 1 are taboo. Let Gk be the matrix whose
(i, j)th element is the probability that the process reaches level k − 1 for the first
time in phase j, given that the process starts in phase i of level k ≥ 1. The extinction
probability is then given by G1 which is here also equal to G(1)

0 by definition of this
quantity. Moreover, we have for k ≥ 2 that Gk is given by

Gk =
(

A(k)
1

)−1
A(k)

2 +
(

A(k)
1

)−1
A(k)

0 Gk+1 Gk. (14.11)

Indeed, starting from level k, the QBD may directly move to level k−1 with proba-
bility

(
A(k)

1

)−1 A(k)
2 , or it may move up to level k +1 with probability

(
A(k)

1

)−1 A(k)
0 .

Upon arrival in level k + 1, it eventually returns to level k with probability Gk+1
and then to level k−1 with probability Gk. However, the equation for G1 is slightly
different and is given by

G1 =
(

A(1)
1

)−1
A(1)

2 +
(

A(1)
1

)−1
A(1)

0

[
G2 G1 +G(2)

0

]
.

If the process moves up to level 2 with probability
(
A(1)

1

)−1 A(1)
0 (the second term in

this sum), then to reach level 0, it may first return to level 1 with probability G2 and
then move to level 0 with probability G1. It may also be directly absorbed in level 0
this time without returning to level 1 first. This happens with probability G(2)

0 . Thus,

to compute G1, we need to know G2 and G(2)
0 . More generally, G(k)

0 satisfies the
following recursive equation:

G(k)
0 =

(
A(k)

1

)−1
A(k)

3 +
(

A(k)
1

)−1
A(k)

0

[
Gk+1 G(k)

0 +G(k+1)
0

]
. (14.12)

Its interpretation follows directly from the definition of G(k)
0 using the same argu-

ment as before. Thus, writing Q(k)
i =

(
−A(k)

1

)−1 A(k)
i , 0 ≤ i ≤ 3, we have explicitly

G(k)
0 =

[
I −Q(k)

0 Gk+1

]−1 [
Q(k)

3 +Q(k)
0 G(k+1)

0

]
. (14.13)

This implies that to obtain G(2)
0 we need G(3)

0 and so on. So, we have to truncate
the QBD after some level M to be able to start the recursion. We start computing
GM using the logarithmic-reduction algorithm as described in [19]; that is,
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GM =
∞

∑
l=0

[
l−1

∏
i=0

Ui
M−1+2i

]

Dl
M−1+2l , (14.14)

where the matrices Ul
k and Dl

k are given by (14.5)–(14.8). Accordingly, we obtain
the matrices GM−1, GM−2, . . . , G2 with (14.11). Using (14.13), we finally end up
with the following system, which provides us the extinction probability G1:

G(M)
0 = Q(M)

3 ,

G(M−1)
0 =

[
I −Q(M−1)

0 GM

]−1 [
Q(M−1)

3 +Q(M−1)
0 G(M)

0

]
,

...

G(1)
0 =

[
I −Q(1)

0 G2

]−1 [
Q(1)

2 +Q(1)
0 G(2)

0

]
= G1.

By truncating the QBD at level M, we actually compute the extinction probability
under the taboo of level M + 1, but a sufficiently large M will provide us a good
approximation of this extinction probability.

14.5 Numerical Evaluation

Let us now consider the numerical evaluation of the proposed models, starting with
the analysis of the optimistic case. We assume that initially there is a single source
sharing both segments in the network, so the system starts at state (0,0,1). The
accuracy of our proposed algorithm for computing the extinction probabilities in
Sect. 14.4.1 depends on the term l, at which the infinite sum in (14.3) is truncated.
Experiments show that in our case the accuracy for l = 3 is already sufficient.

The resulting extinction probability as a function over the death rate is illustrated
in Fig. 14.3 for file sizes of F = 9.28 MB and F = 6.8 MB, with Z = 4.64 MB
as defined earlier being the size of the first segment. The smaller file size has the
effect that the second segment is transmitted faster and thus more copies of it exist
in the network, which reduces the overall extinction probability slightly. In general,
this result can be interpreted as follows. The average death rate d corresponds to the
reciprocal of the average sharing time of a peer in the system in seconds. Thus, in
order for the content provider to keep a low extinction probability of about 0.01, he
should provide incentives that a peer remains in the system for at least 100 s.

We now look at the more pessimistic case that the dissemination stops when
at least one segment is no longer available for sharing. In Fig. 14.4, a file size of
F = 9.28 MB is considered and the death rate d is fixed and equal to 10−2. For the
probability that none of both segments are left in the system (i.e., case (0,0,0)), we
can see that all probabilities are identical and are thus not affected by the truncation
level M. However, a slight difference can be seen when we compare the probabilities
where only one kind of segment becomes extinct.
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Fig. 14.3 Extinction probability for file sizes F = 9.28 MB and F = 6.8 MB. When the death rate
approaches 1, the extinction probability increases drastically to 1.
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Fig. 14.4 Influence of the truncation level M on the accuracy. A value of about M = 5 proves to
be accurate enough, so in the following evaluations we use this value as the truncation point.

If we plot the extinction probabilities from the second model with catastrophes
over the death rate, we can recognize in Fig. 14.5 that the probabilities to reach
(0,0,0) lie above the two curves corresponding to states (k,0,0) and (0,k,0). The
reason why they are larger can be interpreted as follows. Initially, the system starts
at state (0,0,1), that is, with exactly a single sharing peer. In order to reach the



14 P2P File Sharing with a Level-Dependent QBD Process 261

10−4 10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

Death Rate d 

E
xt

in
ct

io
n 

P
ro

ba
bi

lit
y

(0,0,0)

(0,k,0)

(k,0,0)

F= 6.8 MB
F= 9.28 MB

Fig. 14.5 Extinction probabilities with catastrophes for M = 5 and file sizes of F = 9.28 MB and
F = 6.8 MB.
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Fig. 14.6 Influence of file size F on the extinction probabilities for d = 10−2.

absorbing state (0,0,0), this peer may either make a direct transition by leaving
the system or an indirect path by first giving birth to other peers which then all
leave after time. On the other hand, in order to reach one of the other absorbing
states (k,0,0) or (0,k,0) at least one birth must take place to increment S1 or S2,
respectively. Thus, a direct transition from (0,0,1) to an absorbing state of that type
does not exist in this case, causing a reduction in the weight of the probability.
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Additionally, when we look at the shape of the curves, we can recognize that
both curves for (k,0,0) and (0,k,0) are identical, when we consider equal segment
sizes and the probability for finding and sharing both segments is equal. With F =
6.8 MB the second segment is only half in size of the first, which results in a higher
extinction probability of the first segment. The curves lie below the corresponding
curves for F = 9.28 MB when the death rate d is small. However, in both cases
we can see that when the death rate exceeds 10−1 the extinction probabilities drop
again. At this point it is more likely that the sharing process will stop before any
segment is actually downloaded at all; that is

d � μ1(1,1)+μ2(1,1),

where μ1(1,1)+μ2(1,1) corresponds to the rate of observing a first new peer with
any one of the segments.

The influence of the file size F and, thus, the different size of the second segment
is illustrated in Fig. 14.6. We can recognize firstly that for a death rate of d = 10−2

the extinction probabilities increase with the file size and, secondly, that when the
second segment size is small, the difference between the extinction probabilities of
states (k,0,0) and (0,k,0) is large. As expected, when both sizes are equal, both
curves approach the same value.

14.6 Conclusions

We provided in this chapter an algorithmically tractable analysis of a level-
dependent QBD process with and without catastrophe in terms of the absorption
probability, which corresponds to the extinction probability of a file, when we apply
the model to file diffusion in unstructured P2P file sharing networks. Numerical re-
sults have confirmed that there is a need for the content provider to offer incentives
to the peers to encourage sharing and a long sojourn time in the system in order to
maintain a sufficiently low extinction probability.

In the future we will use this model to analytically derive further performance
measures, especially transient ones such as the distribution of the number of peers
present in the system. Furthermore, we would like to enhance the model to consider
a more sophisticated peer behavior by including, for example, their willingness to
share, impatient peers, and pollution.
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