
Chapter 13
Performance Analysis of ARQ Schemes
in Self-Similar Traffic

Shunfu Jin, Wuyi Yue, and Naishuo Tian

Abstract In this chapter, we present a new method to analyze the performance of
Automatic Repeat reQuest (ARQ) schemes in self-similar traffic. Taking into ac-
count the self-similar nature of a massive-scale wireless multimedia service, we
build a batch arrival queueing model and suppose the batch size to be a random
variable following a Pareto(c,α) distribution. Considering the delay in the setting
up procedure of a data link, we introduce a setup strategy in this queueing model.
Thus a batch arrival GeomX /G/1 queueing system with setup is built in this chapter.
By using a discrete-time embedded Markov chain, we analyze the stationary dis-
tribution of the queueing system and derive the Probability Generation Functions
(P.G.Fs.) of the queueing length and the waiting time of the system. We give the for-
mula for performance measures in terms of the response time of data frames, setup
ratios, and offered loads for different ARQ schemes. Numerical results are given to
evaluate the performance of the system and to show the influence of the self-similar
degree and the delay of the setup procedure on the system performance.

13.1 Introduction

With the rapid development of wireless applications, support for Internet services
with excellent reliability is becoming more and more important [1]. In general, error
control schemes in communication systems can be classified into two categories:
Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) schemes [2].
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In addition to FEC, ARQ schemes are in most cases used to ensure the transmission
of packet data on higher layers, or are used as hybrid ARQ schemes on MAC/PHY
layers.

It is a generally accepted view that discrete-time systems may be more complex
to analyze than equivalent continuous-time systems. However, [3] has indicated that
it would be more accurate and efficient to use discrete-time queueing models than
continuous-time queueing models when analyzing and designing digital communi-
cation network systems.

The classical discrete-time queueing analyses have been presented in [3] and
[4]. Extensive research of advanced ARQ schemes, as well as some performance
analyses based on ARQ schemes have been conducted in [5]– [7]. In [5], an analysis
of the ARQ feedback types was presented, but no algorithm to select the feedback
was given. In [6], the ARQ mechanism were analyzed in the context of real-time
flows of small packets. The key features and parameters of the ARQ mechanism
were analyzed, and the ARQ block rearrangement, ARQ transmission window, and
ARQ block size were researched in [7].

However, some simplifying assumptions considered in the above studies do not
hold in practice. For example: self-similar behavior was neglected and the setting
up procedure of a data link was omitted. This ignores both the influence of the
self-similar degree as well as the delay of the setting up procedure on the system
performance in such wireless networks.

In order to satisfy the demands of massive-scale wireless multimedia services and
improve the performance of ARQ schemes, more accurate mathematical models that
can faithfully capture the self-similar behavior of computer networks and the setting
up procedure of a data link need to be constructed.

In this chapter, we avoid this unreal simplification to give a more constructed
version, closer in nature to the actual system by considering the self-similar traffic
shown in a service-oriented Internet [9]. Taking into account the delay in the set-
ting up procedure of a data link, we build a batch arrival queueing model with a
setup strategy. The results obtained in this chapter also include those in [8] for the
system having arrivals of data frames. By using a discrete-time embedded Markov
chain approach, we analyze the stationary distribution of the system, and present
the stochastic decomposition of the queueing length and the waiting time. Based on
numerical results, we evaluate the performance of ARQ schemes in terms of the re-
sponse time of data frames, setup ratio, and the system’s offered load. We also show
the influence of the delay in the setup procedure and the self-similar degree on the
system performance.

The chapter is organized as follows. In Sect. 13.2, the system model is described
and some notation definitions are given. In Sect. 13.3, the stationary distribution of
the system is derived. Correspondingly, performance measures for ARQ schemes
are presented in Sect. 13.4. Numerical results are shown in Sect. 13.5 and conclu-
sions are drawn in Sect. 13.6.
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13.2 System Model and Notation

The system under analysis in this chapter consists of a pair of nodes, namely a
transmitter and a receiver. When two adjacent nodes need to communicate with each
other, a data link must be set up. We assume the time axis to be divided into slots
of equal length and batch arrivals to follow a Bernoulli process. There are multiple
data frames in a batch.

Self-similarity is the property we associate with one type of fractal, that is, an ob-
ject whose appearance is unchanged regardless of the scale at which it is viewed [9].
A self-similar process may be constructed by superimposing many simple renewal
reward processes, in which the rewards are restricted to the values 0 and 1, and
the interrenewal times are heavy-tailed. The simplest heavy-tailed distribution is the
Pareto(c,α) distribution [9]. We denote by Λ the number of data frames in a batch
called batch size Λ (frames/slot), which is a random variable. The batch size fol-
lows a Pareto(c,α) distribution. When the transmission of all the data frames in the
output buffer is finished, the data link should be released.

The system works as detailed below.

(1) When a batch arrives in the system, a setup period called “setup period U” is
started, where the setup period U corresponds to a time period for setting up a
new data link using a three-handshake signaling procedure.

(2) After the setup period U finishes, a busy period called “busy periodΘ” begins.
Here we define the busy periodΘ to be a time period in which data frames are
transmitted continuously until the transmitter buffer becomes empty.

(3) When there are no data frames in the output buffer of the transmitter to be
transmitted, the data link is released and the system enters an idle period called
“idle period I”. A batch arriving during the idle period I makes the system enter
a new setup period U again.

This process is repeated.
We define a transmission period B called “transmission period B” as being the

time period taken to successfully transmit a data frame: that is, the time period from
the instant for the first transmission of a data frame to the instant for the departure
of the data frame from the transmitter buffer.

The transmission of a data frame only occurs after the correct reception of all
data frames with a lower identifier, so we can assume that data frames in batches
arriving in the buffer with an infinite capacity are transmitted using a common data
link, one by one, in a First-Come First-Served (FCFS) discipline.

The setup period U and the transmission period B are independent and identical
discrete-time random variables in slots, and are assumed to be generally distributed
with probability distribution uk and bk, Probability Generation Functions (P.G.Fs.)
U(z) and B(z) are as follows:

uk = P{U = k}, k ≥ 1, U(z) =
∞

∑
k=1

ukzk, (13.1)
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bk = P{B = k}, k ≥ 1, B(z) =
∞

∑
k=1

bkzk. (13.2)

Let E[U ] and E[B] be the averages of U and B in slots; we have that

E[U ] =
∞

∑
k=1

kuk, E[B] =
∞

∑
k=1

kbk.

Let E[Λ ] be the average of the batch size Λ . We can give the probability λk, the
P.G.F. Λ(z), and average E[Λ ] of Λ as

λk = P{Λ = k}, k ≥ 0, Λ(z) =
∞

∑
k=0
λkzk, E[Λ ] =

∞

∑
k=0

kλk, (13.3)

where λk is the probability that there are k data frames in a batch per slot. Specif-
ically, λ0 = P{Λ = 0} is the probability that there is no batch (Λ = 0) arrival in a
slot. From (13.1), we also know that the probability of no batch arrival during the
transmission period B is B(λ0) = λB

0 . The ergodic condition is ρ = E[Λ ]E[B] < 1,
where ρ is called the offered load.

Let AU and AB be random variables representing the numbers of data frames
arriving during U and B. We can then give the P.G.Fs. AU (z) and AB(z) of AU and
AB as follows:

AU (z) =
∞

∑
k=1

uk(Λ(z))k = U(Λ(z)),

AB(z) =
∞

∑
k=1

bk(Λ(z))k = B(Λ(z)), (13.4)

where U(Λ(z)) and B(Λ(z)) are composed functions of U(z), B(z), and Λ(z).
We also define Λ(B(z)) to be the P.G.F. of the transmission time of a batch in

slots. Λ(B(z)) can be given as

Λ(B(z)) =
∞

∑
k=0
λk(B(z))k. (13.5)

13.3 Performance Analysis

We assume that data frame arrivals and departures occur only at the boundary of a
slot. Let Qn = Q(τ+

n ) be the number of data frames in the system immediately after
the nth data frame departure. Then {Qn,n ≥ 1} forms an embedded Markov chain.
We define the state of the system by the number Q of data frames in the system at
the embedded Markov points as follows:
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Qn+1 =

{
Qn −1+A(n+1)

B , Qn ≥ 1

Λ ′
+AU +A(n+1)

B −1, Qn = 0,
(13.6)

where A(n+1)
B is the number of data frames arriving during the transmission time of

the (n + 1)th data frame, and Λ ′
denotes the number of data frames that arrive in

a slot under the condition that there is at least one data frame arriving in that slot.
Obviously, the P.G.F. Λ ′

(z) of Λ ′
can be given as

Λ
′
(z) =

Λ(z)−λ 0

1−λ 0
. (13.7)

From (13.6), we can obtain the P.G.F. Q(z) of Q as

Q(z) = P{Q ≥ 1}E
[
zQ+AB−1|Q ≥ 1

]

+P{Q = 0}E
[
zΛ

′
+AU +A(n+1)

B −1|Q = 0
]
, (13.8)

where P{Q = 0} is the probability that there are no data frames to be transmitted
in the system at the embedded Markov points, and P{Q ≥ 1} is the probability that
there is at least one data frame to be transmitted in the system at the embedded
Markov points.

Substituting (13.7) to (13.8), we can give that

Q(z) = P{Q = 0}× B(Λ(z))
B(Λ(z))− z

×
(

1− Λ(z)−λ 0

1−λ 0
U(Λ(z))

)

. (13.9)

Using the normalization condition and the L’Hospital principle in (13.9), we have
that

P{Q = 0} =
(1−ρ)(1−λ 0)

E[Λ ](1+E[U ](1−λ 0))
. (13.10)

Substituting (13.10) to (13.9), then the P.G.F. Q(z) of Q can be obtained as

Q(z) =
(1−ρ)(1−Λ(z))B(Λ(z))

E[Λ ](B(Λ(z))− z)
× 1−λ0 − (Λ(z)−λ 0)U(Λ(z))

1−Λ(z)
. (13.11)

Equation (13.11) implies that Q can be decomposed into two parts (i.e., Q =
Q0 + QU ), where Q0 corresponds to the number of data frames for the classical
queue GeomX /G/1 and QU is the number of data frames added by the setup scheme
considered in this chapter.

The P.G.F. Q0(z) of Q0 can be given as

Q0(z) =
(1−ρ)(1−Λ(z))B(Λ(z))

E[Λ ](B(Λ(z))− z)
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and the P.G.F. QU (z) of QU can be given as

QU (z) =
1−λ 0 − (Λ(z)−λ 0)U(Λ(z))

1−Λ(z)

=
1

1+(1−λ 0)E[U ]
×U(Λ(z))+

(1−λ 0)E[U ]
1+(1−λ 0)E[U ]

× 1−U(Λ(z))
E[U ](1−Λ(z))

.

Obviously, QU (z) equals the P.G.F. of the number of data frames arriving during
the setup period U with the following probability as

1
1+(1−λ 0)E[U ]

.

And QU (z) equals the P.G.F. of the number of data frames arriving during the re-
maining setup period U with the following probability as

(1−λ 0)E[U ]
1+(1−λ 0)E[U ]

.

Let E[X ] and X (2) be the first and second factorial moments of a discrete-time
random variable X by differentiating X(z) with respect to z and evaluating the result
at z = 1 as follows:

E[X ] =
dX(z)

dz

∣
∣
∣
∣
z=1

, X (2) =
d2X(z)

dz2

∣
∣
∣
∣
z=1

.

Based on the above definition, we can give the average E[Q] of Q from (13.11) as

E[Q] = ρ+
Λ (2) +B(2)E3[Λ ]

2E[Λ ](1−ρ)
+

E[Λ ]
(
(1−λ 0)U (2) +2E[U ]

)

2(1+E[U ](1−λ 0))
, (13.12)

where U (2), B(2), and Λ (2) are the second factorial moments of the setup period U ,
the transmission period B, and batch size Λ .

Now, we begin to analyze the waiting time of a data frame. We focus on an
arbitrary data frame in the system called “tagged data frame M”. We note that the
waiting time W of the tagged data frame M can be divided into two parts as follows.
One is the waiting time Wg of the batch to which the tagged data frame M belongs.
The other is the total transmission time J of the data frames before the tagged data
frame M in the same batch. Wg and J are independent random variables, so we have
the P.G.F. W (z) of the waiting time W of the tagged data frame M as follows:

W (z) = Wg(z)J(z), (13.13)

where Wg(z) and J(z) are P.G.Fs. of Wg and J.
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Applying the analysis of the single arrival Geom/G/1 queue model to the setup
in [8], we have that

Wg(z) =
(1−ρ)(1− z)
Λ(B(z))− z

× E[Λ ]+ (1− z−E[Λ ])U(z)
(1+λE [U ]) (1− z)

. (13.14)

Referencing [3], with Λ(B(z)) given in (13.5), we have that

J(z) =
1−Λ(B(z))

E[Λ ](1−B(z))
. (13.15)

Substituting (13.14) and (13.15) to (13.13), then the P.G.F. W (z) and the average
E[W ] of W can be obtained as

W (z) =
(1−ρ)(1− z)
Λ(B(z))− z

× 1−Λ(B(z))
E[Λ ](1−B(z))

× E[Λ ]+ (1− z−E[Λ ])U(z)
(1+λE [U ]) (1− z)

,

E[W ] =
Λ (2)E2[B]+E[Λ ]B(2)

2(1−ρ)
+

E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[B]

2E[Λ ]
. (13.16)

Next, we define the busy cycle called “busy cycle R” as a time period from the
instant in which a busy periodΘ is completed to the instant in which the next busy
periodΘ ends. Obviously, a busy cycle R is composed of three parts: a setup period
U , a busy periodΘ , and an idle period I. Denoted by E[R], E[Θ ], and E[I] the aver-
ages of the busy cycle R, the busy period Θ , and the idle period I, respectively, we
give that

E[R] = E[U ]+E[Θ ]+E[I], (13.17)

where E[U ] is defined in (13.1), and E[θ ] and E[I] are given below.
Let QΘ be the number of data frames at the beginning of a busy period Θ . The

P.G.F. QΘ (z) of QΘ is then given by

QΘ (z) =
Λ(z)−λ0

1−λ0
U(Λ(z)). (13.18)

Each data frame at the beginning of a busy period Θ will introduce a subbusy
period θ . A subbusy period θ of a data frame is composed of the transmission period
B of this data frame and the sum of the subbusy period θ incurred by all the data
frames arriving during the transmission period B of this data frame. All the subbusy
periods brought by the data frames at the beginning of the busy period combine to
make a system busy periodΘ , so we have that

θ = B+θ +θ + · · ·+θ
︸ ︷︷ ︸

AB

, Θ = θ +θ + · · ·+θ
︸ ︷︷ ︸

QΘ

,

where AB is the number of data frames arriving during the transmission period B
presented in Sect. 13.2.
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Considering the Bernoulli arrival process in this system, the P.G.F. θ(z) of θ can
be obtained as follows:

θ(z) = B(z(Λ(θ(z)))),

which yields the average E[θ ] of θ as follows:

E[θ ] =
E[B]
1−ρ . (13.19)

From (13.18), we can obtain the P.G.F.Θ(z) ofΘ as

Θ(z) = QΘ (z)|z=θ(z) =
Λ(θ(z))−λ0

1−λ0
U(Λ(θ(z))). (13.20)

Differentiating (13.20) with respect to z at z = 1 and using (13.19), the average
E[Θ ] ofΘ is then obtained as

E[Θ ] =
E[Λ ](1+(1−λ0)E[U ])

(1−λ0)
× E[B]

(1−ρ)
. (13.21)

The idle period I is a residual interarrival; due to the memoryless geometrically
distributed interarrival time, we can obtain the average E[I] of I as

E[I] =
1

1−λ0
. (13.22)

Substituting (13.21) and (13.22) to (13.17), the average E[R] of the busy cycle R
can be given as

E[R] = E[U ]+
E[Λ ](1+(1−λ0)E[U ])

(1−λ0)
× E[B]

(1−ρ)
+

1
1−λ0

=
1+(1−λ0)E[U ]
(1−λ0)(1−ρ)

. (13.23)

13.4 Performance Analysis for Different Kinds of ARQ Schemes

Based on the analysis presented in Sect. 13.3, we can obtain the following perfor-
mance measurements of the system.

13.4.1 Performance Measures

Response time T is defined as the total delay of a data frame. In our analysis, T is
subdivided into two parts. One is the waiting time W of this data frame, which is
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the time spent in the buffer before its transmission. The other is the corresponding
transmission period B of this data frame. The average E[T ] of T is given as follows:

E[T ] = E[W ]+E[B]. (13.24)

Substituting (13.16) to (13.24), we have that

E[T ] =
Λ (2)E2[B]+E[Λ ]B(2)

2(1−ρ)
+

E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[B]

2E[Λ ]
+E[B]. (13.25)

The setup ratio γ is defined as the number of times that the system goes into the
setup period U in a slot. There is a setup period U in the busy cycle R. The setup
ratio γ can be given by

γ =
1

E[R]
. (13.26)

Substituting (13.23) to (13.26), we have that

γ =
(1−λ0)(1−E[Λ ]E[B])

1+(1−λ0)E[U ]
. (13.27)

We define the offered load ρ as the average number of data frames actually trans-
mitted during a transmission period B, so the offered load ρ is given by

ρ = E[Λ ]E[B]. (13.28)

13.4.2 Performance Analysis for ARQ Schemes

In this subsection, we present the performance analysis for ARQ schemes. There
are three kinds of basic ARQ schemes: Stop-and-Wait ARQ scheme, Go-Back-N
ARQ scheme, and Selective-Repeat ARQ scheme. The principles and the differ-
ences among the different ARQ schemes are shown in Figs. 13.1–13.3.

To give the formulas for the performance measures for different kinds of ARQ
schemes, the following assumptions and notions are introduced.

(1) The transmissions of the ACK frame and the NACK frame are error-free, and
the lengths of the ACK frame and the NACK frame are omitted.

1 2 3 3

1 2 3

NAKACKACK

Sender

Receiver

Fig. 13.1 The principle for a Stop-and-Wait ARQ scheme.
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Sender

Receiver

21

1

2

2

3

3

4

4

5

5

3 4 5 6 7

2 3 4 5

NAK Retransmission from the 
packet 2

Fig. 13.2 The principle for a Go-Back-N ARQ scheme.

Sender

Receiver

2 6 71 2

1 2 3 4 5 7 8

3 4 5 8 9 10

2 6

NAK Retransmission only the 
packet 2

Fig. 13.3 The principle for a Selective-Repeat ARQ scheme.

(2) The rate of the transmission error is e (0 ≤ e ≤ 1). Each data frame is correctly
transmitted with probability v = 1−e (0 ≤ v ≤ 1), and each data frame will be
transmitted or retransmitted until correct reception is achieved.

(3) The round-trip time is assumed to be d slots as a system parameter.

Let N be the number of times of transmission needed for a data frame to be
received correctly. Then the probability distribution and the P.G.F. N(z) of N can be
given as follows:

P{N = n} = (1− v)n−1v, n = 1,2, . . . ,

N(z) =
∞

∑
n=1

P{N = n}zn =
vz

1− (1− v)z
. (13.29)

In the system with a Stop-and-Wait ARQ scheme, we denote by BSW (z), E[BSW ],
and B(2)

SW the P.G.F. B(z), the average E[B], and the second factorial moment B(2)

of the transmission period B, respectively. From (13.25), we can give the average
response time E[T ] denoted by E[TSW ] for a Stop-and-Wait ARQ scheme as follows:

E[TSW ] =
Λ (2)E2[BSW ]+E[Λ ]B(2)

SW
2(1−ρ)

+
E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[BSW ]

2E[Λ ]
+E[BSW ]. (13.30)

Each transmission in a Stop-and-Wait ARQ scheme will take 1 + d slots, no
matter whether the transmission is correct or not. So, BSW (z) [3], E[BSW ], and B(2)

SW
are given as follows:
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BSW (z) = N(z1+d) =
vz1+d

1− (1− v)z1+d , (13.31)

E[BSW ] =
1+d

v
, (13.32)

B(2)
SW =

(1+d)(vd +2(1− v)(1+d))
v2 . (13.33)

Substituting (13.32) to (13.27) and (13.28), we can give the setup ratio γSW and
the offered load ρSW as follows:

γSW =
(1−λ0)(1−E[Λ ]E[BSW ])

1+(1−λ0)E[U ]

=
(1−λ0)(v−E[Λ ](1+d))

v(1+(1−λ0)E[U ])
,

ρSW = E[Λ ]E[BSW ] =
E[Λ ](1+d)

v
.

In the system with a Go-Back-N ARQ scheme, we denote by BGBN(z), E[BGBN ],
and B(2)

GBN the P.G.F. B(z), the average E[B], and the second factorial moment B(2)

of the transmission period B, respectively. From (13.25), we can give the average
response time E[T ] denoted by E[TGBN ] for a Go-Back-N ARQ scheme as follows:

E[TGBN ] =
Λ (2)E2[BGBN ]+E[Λ ]B(2)

GBN
2(1−ρ)

+
E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[BGBN ]

2E[Λ ]
+E[BGBN ]. (13.34)

In a Go-Back-N ARQ scheme, each error transmission occupies 1+d slots, and
the last correct transmission takes one slot. So, BGBN(z) [3], E[BGBN ], and B(2)

GBN are
given as follows:

BGBN(z) =
N(z1+d)

zd =
vz

1− (1− v)z1+d , (13.35)

E[BGBN ] =
1+(1− v)d

v
, (13.36)

B(2)
GBN =

(1− v)(1+d)(2+2d− vd)
v2 . (13.37)

Substituting (13.36) to (13.27) and (13.28), we can give the setup ratio γGBN and
the offered load ρGBN as
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γGBN =
(1−λ0)(1−E[Λ ]E[BGBN ])

1+(1−λ0)E[U ]

=
(1−λ0)(v−E[Λ ](1+(1− v)d))

v(1+(1−λ0)E[U ])
,

ρGBN = E[Λ ]E[BGBN ] =
E[Λ ](1+(1− v)d)

v
.

In the system with a Selective-Repeat ARQ scheme, we denote by BSR(z), E[BSR],
and B(2)

SR the P.G.F. B(z), the average E[B], and the second factorial moment B(2)

of the transmission period B, respectively. From (13.25), we can give the average
response time E[T ] denoted by E[TSW ] for a Stop-and-Wait ARQ scheme as follows:

E[TSR] =
Λ (2)E2[BSR]+E[Λ ]B(2)

SR
2(1−ρ)

+
E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[BSW ]

2E[Λ ]
+E[BSR].

Each transmission in a Selective-Repeat ARQ scheme, no matter whether it is
correct or not, takes, one slot. So, BSR(z), E[BSR], and B(2)

SR are given as follows:

BSR(z) = N(z) =
vz

1− (1− v)z
, (13.38)

E[BSR] =
1
v
, (13.39)

B(2)
SR =

2(1− v)
v2 . (13.40)

Substituting (13.39) to (13.27) and (13.28), we can also give the setup ratio γSR

and the offered load ρSR as follows:

γSR =
(1−λ0)(1−E[Λ ]E[BSR])

1+(1−λ0)E[U ]

=
(1−λ0)(v−E[Λ ])
v(1+(1−λ0)E[U ])

,

ρSR = E[Λ ]E[BSR] =
E[Λ ]

v
.

13.5 Numerical Results

In line with prevalent wireless network applications, we let the transmission rate be
50 Mbps. To ensure that the latest conflict signal is sensed by the transmitter before
a data frame is completely sent out, we assume the size of a data frame to be 1,250
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bytes and the round-triptime to be 0.1 ms. The setup period U follows a geometrical
distribution with an average value of 0.2 ms.

At the same time, taking into account the burst data shown in Internet traffic, we
suppose the batch size Λ to be a Pareto(c,α) distribution with λk = ck−(α+1), k =
0,1, . . . , where c is a normalization factor for ∑∞k=1λk = 1, and the parameter α is
related to the Hurst factor H by H = (3−α)/2,0.5 < H < 1,1 <α < 2. The smaller
the result of α is, the more the burst is shown in Internet traffic. Especially, there
is no self-similarity when α = 2. Some research shows that the transmission mode
of the browser shows self-similarity [9] with α = 1.16− 1.5 and the data of each
signal source are self-similar [10] with α = 1.2.

With these parameters, we show the setup ratio γ and offered load ρ as functions
of the batch arrival rate λg = 1−λ0 (batches/slot) with the rate of the transmission
error e = 0.1 under the burst degree of α = 1.2,1.6,2.0, respectively. For differ-
ent kinds of ARQ schemes in Figs. 13.4–13.9, where α = 2.0 means that there is
actually no self-similarity.

In Figs. 13.4–13.6, we show how the setup ratio γ changes with the batch arrival
rate λg with the rate of the transmission error e = 0.1 and with the parameter of
burst degree α = 1.2,1.6,2.0 for different ARQ schemes. It should be noted that
for all the burst degree parameters, the setup ratio γ experiences a two-stage trend.
In the first stage, the setup ratio γ will increase along with the batch arrival rate
λg. During this stage, the greater the batch arrival rate λg is, the higher the number
of data frames arriving in the idle period I will be, and the greater the number of
times needed for the setup procedure will be. In the second stage, the setup ratio
γ will decrease with the incremental batch arrival rate λg. During this period, the
greater the batch arrival rate λg is, the higher the number of data frames arriving in
the busy periodΘ will be, and these data frames can be transmitted directly without
any setup procedure.

Fig. 13.4 Setup ratio γ for a Stop-and-Wait ARQ scheme.
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Fig. 13.5 Setup ratio γ for a Go-Back-N ARQ scheme.

Fig. 13.6 Setup ratio γ for a Selective-Repeat ARQ scheme.

There is a maximal setup ratio γ for all the burst degree parameters, and it can also
be observed that the larger the burst degree parameter α is, the greater the maximal
setup ratio γ will be, and we can conclude that if we omitted any self-similar Internet
traffic, the setup ratio γ would be overevaluated.

In Figs. 13.7–13.9, we compare the offered load ρ with the rate of the transmis-
sion error e = 0.1 versus batch arrival rate λg for the parameters of burst degree
α = 1.2,1.6, 2.0 for different ARQ schemes. It can be found that with an increas-
ing batch arrival rate λg, the offered load ρ increases also for all the ARQ schemes
and all the parameters of burst degree. It should be noted that for the same batch
arrival rate λg, the lower the parameter of burst degree α is, the larger the offered
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Fig. 13.7 Offered load ρ for a Stop-and-Wait ARQ scheme.

Fig. 13.8 Offered load ρ for a Go-Back-N ARQ scheme.

load ρ will be for all the ARQ schemes. Therefore, we can conclude that if the
self-similarity is not considered, the offered load ρ would be underevaluated.

Due to the finite first factorial moment and the infinite second moment of a Pareto
distributed stochastic variable, some other performance measures such as the av-
erage response time E[T ] in (13.24) are difficult to calculate analytically. So we
present the change trend of average response time E[T ] by using the method of
simulation.

There is no ready Pareto function in most simulation tools such as Matlab to be
used, so we use an inverse function method to generate random number sequences
following the Pareto distribution.
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Fig. 13.9 Offered load ρ for a Selective-Repeat ARQ scheme.

Table 13.1 Response time E[T ] of different ARQ schemes for various λg with α = 1.2 and e = 0.1.

Batch Arrival Rate λg 0.001 0.02 0.04 0.06 0.08 0.10

Stop-and-Wait ARQ 2.96 39.17 41.30 517.66 1414.30 14087
Go-Back-N ARQ 5.22 77.13 113.14 731.88 4655.90 6130
Selective-Repeat ARQ 5.44 413.99 2671.40 3453.50 6645.60 24328

The general discrete distribution is characterized as follows:

pk = P{X = k}, k ≥ 0,

F(m) =
m
∑

k=0
pk, m ≥ 0.

(13.41)

By using a random numbers generation function, we generate random numbers of a
1×n vector named M whose elements are uniformly distributed in the interval (0,1).
On the other hand, following the inverse function method, we introduce another
1× n vector named N whose elements are set by N(i) = min{m : F(m) > M(i)},
where F(m) is given in (13.41) and m ≥ 1, i ≥ 1. In this way, the data in the vector
N will be Pareto distributed.

The change trend of average response time E[T ] for different ARQ schemes when
α = 1.2 and e = 0.1 with various λg is presented in Table 13.1. The measurement
of average response time E[T ] behavior for different ARQ schemes when α = 1.2
and λg = 0.04 with various error rates e is shown in Table 13.2.

From Tables 13.1 and 13.2, we can observe that with an increasing batch ar-
rival rate λg or an increasing error rate e, the average response time E[T ] increases
also and tends to be infinite for all the ARQ schemes. This is because of the self-
similarity shown in the size of the data frame batch, which is in fact the reason why
network performance deteriorates in self-similar traffic.
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Table 13.2 Response time E[T ] of different ARQ schemes for various e with α = 1.2 and λg =
0.04.

Error Rate e 0.02 0.06 0.10 0.14 0.18 0.22

Stop-and-Wait ARQ 17.065 26.081 41.30 64.139 2256.7 7957.9
Go-Back-N ARQ 15.268 63.604 113.14 173.91 686.78 778.46
Selective-Repeat ARQ 70.924 228.49 2671.40 2699.6 7813.5 9924.8

13.6 Conclusions

In this chapter, we presented a new method to analyze the performance of high-
reliability Internet systems in self-similar traffic with ARQ schemes. Considering
the self-similar nature widely shown in Internet traffic and the setting up procedure
of a data link, we built a batch arrival GeomX /G/1 queue model with a setup strat-
egy. We analyzed the stationary distribution of the system, derived the Probability
Generation Functions (P.G.Fs.) of the queueing length and the waiting time of the
system. Correspondingly, we gave the formula for performance measures in terms
of response time, setup ratio, and offered load for different kinds of ARQ schemes.
We presented numerical results to evaluate and compared these performance mea-
sures, and to show the influence of the burst degree in self-similar traffic and the
delay in the setup procedure on the system performance.
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