
Chapter 10
Analysis of Mixed Loss-Delay M/M/m/K
Queueing Systems with State-Dependent
Arrival Rates

Yoshinori Ozaki and Hideaki Takagi

Abstract An M/M/m queue with mixed loss and delay calls was analyzed by J. W.
Cohen half a century ago (1956) where the two types of calls had identical constant
arrival and service rates. It is straightforward to extend his analysis to an M/M/m/K
queue. In this chapter, we further generalize the model such that the call arrival
rates can depend on the number of calls present in the system at the arrival time.
This model includes the balking and the finite population size models as special
cases. We present a method of calculating the blocking probability for loss calls as
well as the distribution of the waiting time for accepted delay calls. We solve a set of
linear simultaneous equations for the state probabilities by numerical computation.
The effects of loss calls on the mean waiting time of delayed calls are discussed
based on the numerical results.

10.1 Introduction

In the traditional basic modeling of teletraffic engineering, an M/M/m loss sys-
tem is used as a model of circuit-switched traffic leading to the Erlang-B formula
for the blocking probability [1, p. 106]. An M/M/m delay system with an infinite
waiting room is used as a model of packet-switched traffic leading to the Erlang-
C formula for the waiting probability [1, p. 103]. Such models are actually used
in the methodology for the spectrum requirement calculation for the International
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Mobile Telecommunication-2000 (IMT-2000) in third-generation wireless com-
munication systems [2]. Cohen [3] analyzed an M/M/m queueing system with
mixed loss and delay calls with different arrival rates and identical service rates
(see [9], pp. 304–305).

The mixed loss–delay system could be used as a model for the performance eval-
uation of a communication channel shared by circuit-switched traffic and packet-
switched traffic. Cohen’s analysis was recently extended to an M/M/m/K queueing
system with a finite waiting room by Takagi [5], who derives explicit formulas for
the blocking probability of loss calls, the blocking probability of delay calls, and the
waiting time distribution of delay calls.

In this chapter, we consider a mixed loss–delay M/M/m/K queueing system in
which the arrival rates of loss and delay calls can depend on the number of those
calls in the system at their arrival times and the constant service rates can be dif-
ferent between the loss and delay calls. More specifically, when there are j loss
calls and k delay calls in the system, the two types of calls arrive in an independent
Poisson process with rates λ1( j,k) and λ2( j,k), respectively. Their service times are
independent of each other and exponentially distributed with constant rates μ1 and
μ2, respectively. The number of servers is denoted by m. The loss calls are lost if all
servers are busy when they arrive. The delay calls wait in the waiting room unless
the total number of calls present in the system exceeds K when they arrive. Namely,
K is the capacity of the system including m calls in service (m≤K). The assumption
of state-dependent arrival rates allows us to handle a wide range of customer arrival
processes. An example is the balking such that the arrival rate decreases as the num-
ber of customers present in the system increases. Another example is a queue with
a finite population of customers. Figure 10.1 shows a schema of our system.

The rest of the chapter is organized as follows. In Sect. 10.2, we present a set
of linear simultaneous equations for the equilibrium state probabilities. These equa-
tions are assumed to be solved numerically. In Sect. 10.3, we calculate the blocking
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Fig. 10.1 Mixed loss–delay M/M/m/K queueing system.
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probabilities for both loss and delay calls, the waiting and nonwaiting probabilities,
as well as the waiting time distribution for accepted delay calls. Numerical exam-
ples are shown in Sect. 10.4. We conclude in Sect. 10.5 with a summary of present
work and a plan for future study.

10.2 Equilibrium State Probability Equations

Let us denote the equilibrium state probability by

Pj,k := P{The number of the calls of loss system in the system = j,

The number of the calls of delay system in the system = k},
0 ≤ j ≤ m,0 ≤ j + k ≤ K. (10.1)

The number of states is

(K +1)(m+1)− m(m+1)
2

= (m+1)
(

K +1− m
2

)
.

Figure 10.2 shows the state transition rate diagram for the mixed loss–delay
M/M/m/K system we analyze now.

Considering the number of loss and delay calls present in the system simultane-
ously, we can write the balance equations for the equilibrium state probabilities as
follows:

First, we consider the empty state (0,0). The system goes out of this state when
a call arrives, and comes into this state when the service finishes at state (1,0) and
(0,1). Thus we have
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Fig. 10.2 State transition rate diagram for the mixed loss–delay M/M/m/K system.
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[λ1(0,0)+λ2(0,0)]P0,0 = μ1P1,0 +μ2P0,1. (10.2)

Second, we consider the state ( j,k) such that 0 ≤ j ≤ m− 1, 1 ≤ j + k ≤ m− 1 in
which there are calls being served and some free servers, and find

[λ1(0,k)+λ2(0,k)+ kμ2]P0,k = λ2(0,k−1)P0,k−1 +μ1P1,k +(k +1)μ2Pj,1,

1 ≤ k ≤ m−1, (10.3)

[λ1( j,k)+λ2( j,k)+ jμ1 + kμ2]Pj,k = λ1( j−1,k)Pj−1,k +λ2( j,k−1)Pj,k−1

+ ( j +1)μ1Pj+1,k +(k +1)μ2Pj,k+1,

1 ≤ j ≤ m−1, 1 ≤ k ≤ m−1, 2 ≤ j + k ≤ m−1, (10.4)

[λ1( j,0)+λ2( j,0)+ jμ1]Pj,0 = λ1( j−1,0)Pj−1,0 +( j +1)μ1Pj+1,0 +μ2Pj,1,

1 ≤ j ≤ m−1. (10.5)

Third, we consider the state ( j,k) such that 0 ≤ j ≤m, j+k = m in which all servers
are busy and all waiting positions are available for delay calls, and find

[λ2(0,m)+mμ2]P0,m = λ2(0,m−1)P0,m−1 +μ1P1,m +mμ2P0,m+1, (10.6)

[λ2( j,k)+ jμ1 + kμ2]Pj,k = λ1( j−1,k)Pj−1,k +λ2( j,k−1)Pj,k−1

+ ( j +1)μ1Pj+1,k +(m− j)μ2Pj,k+1,

1 ≤ j ≤ m−1, 1 ≤ k ≤ m−1, j + k = m, (10.7)

[λ2(m,0)+mμ1]Pm,0 = λ1(m−1,0)Pm−1,0. (10.8)

Fourth, we consider the state ( j,k) such that 0 ≤ j ≤ m, m + 1 ≤ j + k ≤ K − 1 in
which all servers are busy and there is at least one waiting position available for a
delay call, and find

[λ2(0,k)+mμ2]P0,k = λ2(0,k−1)P0,k−1 +μ1P1,k +mμ2P0,k+1,

m+1 ≤ k ≤ K −1, (10.9)

[λ2( j,k)+ jμ1 +(m− j)μ2]Pj,k = λ2( j,k−1)Pj,k−1

+ ( j +1)μ1Pj+1,k +(m− j)μ2Pj,k+1,

1 ≤ j ≤ m−1, m+1 ≤ j + k ≤ K −1, (10.10)

[λ2(m,k)+mμ1]Pm,k = λ2(m,k−1)Pm,k−1, 1 ≤ k ≤ K −m−1. (10.11)
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Finally, we consider the state ( j,k) such that 0 ≤ j ≤ m, j + k = K in which all
servers are busy and all waiting positions are occupied, and find

mμ2P0,K = λ2(0,K −1)P0,K−1, (10.12)

[ jμ1 +(m− j)μ2]Pj,k = λ2( j,k−1)Pj,k−1,

1 ≤ j ≤ m−1, j + k = K, (10.13)

mμ1Pm,K−m = λ2(m,K −m−1)Pm,K−m−1. (10.14)

The total number of equations is given by

1+(m−1)+
(m−1)(m−2)

2
+(m−1)+1+(m−1)+1+(K−m−1)

+ (K −m−1)(m−1)+(K −m−1)+1+(m−1)+1 = (m+1)
(

K +1− m
2

)
,

which equals the number of all states. One of the equations is redundant. The nor-
malization condition is given by

m

∑
j=0

K− j

∑
k=0

Pj,k = 1. (10.15)

Hence we have a set of linear simultaneous equations with respect to the unknowns
{Pj,k; 0 ≤ j ≤ m, 0 ≤ j + k ≤ K}. It is assumed that they are solved numerically.

10.3 Analysis of Blocking Probability and Waiting Time

We are now in a position to calculate the blocking probability of loss calls, the block-
ing probability of delay calls, the waiting and nonwaiting probabilities of accepted
delay calls, and the waiting time distribution of accepted delay calls.

10.3.1 Blocking Probability of Loss Calls

Loss calls are blocked if all servers are busy upon their arrival. If the population of
loss calls is infinite, the blocked loss calls are simply lost for good. If the population
of loss calls is finite, the blocked loss calls are assumed to return to their source
without being served.

Let us consider a long time τ . The mean number of loss calls that arrive in τ is
given by product of the arrival rate λ1( j,k) of loss calls and the time interval Pj,kτ
in which the system is in state ( j,k) during τ summed over all possible states as
follows:
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m

∑
j=0

K− j

∑
k=0
λ1( j,k)Pj,kτ. (10.16)

The mean number of loss calls blocked during τ is given by the product of the arrival
rate λ1( j,k) of loss calls and the time interval Pj,kτ summed over all states in which
all servers are busy:

m

∑
j=0

K− j

∑
k=m− j

λ1( j,k)Pj,kτ. (10.17)

Thus the blocking probability PB of loss calls is given by the ratio of the above two
equations:

PB =

m

∑
j=0

K− j

∑
k=m− j

λ1( j,k)Pj,k

m

∑
j=0

K− j

∑
k=0
λ1( j,k)Pj,k

. (10.18)

10.3.2 Blocking Probability of Delay Calls

Delay calls are blocked if all servers are busy and all waiting positions are occupied
upon their arrival. If the population of delay calls is infinite, the blocked delay calls
are simply lost. If the population of delay calls is finite, the blocked delay calls are
assumed to return to their source without being served. The mean number of arrivals
of delay calls during time τ is given by

m

∑
j=0

K− j

∑
k=0
λ2( j,k)Pj,kτ. (10.19)

The mean number of delay calls blocked during τ is given by the product of the
arrival rate λ2( j,k) of delay calls and the time interval Pj,K− jτ summed over all
states 0 ≤ j ≤ m in which all servers are busy and all waiting positions are occupied:

m

∑
j=0
λ2( j,K − j)Pj,K− jτ. (10.20)

Thus the blocking probability P′
B of delay calls is given by the ratio of the two:

P′
B =

m

∑
j=0
λ2( j,K − j)Pj,K− j

m

∑
j=0

K− j

∑
k=0
λ2( j,k)Pj,k

. (10.21)
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10.3.3 Waiting and Nonwaiting Probabilities of Accepted
Delay Calls

We now consider the delay calls that are accepted upon arrival. The mean number
of delay calls accepted during τ is given by the product of the arrival rate λ2( j,k) of
delay calls and the time interval Pj,kτ summed over all states 0 ≤ j ≤ m, 0 ≤ j+k ≤
K −1 in which there is at least one waiting position available:

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,kτ. (10.22)

Therefore the probability that there are j loss calls and k delay calls present in the
system immediately before the arrival of an arbitrary delay call that is to be accepted
is given by

P̂j,k =
λ2( j,k)Pj,k

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

, 0 ≤ j ≤ m, 0 ≤ j + k ≤ K −1. (10.23)

Let us denote by W the waiting time of an accepted delay call. The probability that
accepted delay calls do not wait is given by the probability that there is at least one
server available upon their arrival:

P{W = 0} =
m−1

∑
j=0

m− j−1

∑
k=0

P̂j,k =

m−1

∑
j=0

m− j−1

∑
k=0

λ2( j,k)Pj,k

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

. (10.24)

The probability that accepted delay calls wait is given by the probability that all the
servers are busy but that there is at least one waiting position available upon their
arrival:

P{W > 0} =
m

∑
j=0

K− j−1

∑
k=m− j

P̂j,k =

m

∑
j=0

K− j−1

∑
k=m− j

λ2( j,k)Pj,k

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

. (10.25)

10.3.4 Waiting Time Distribution of Accepted Delay Calls

Let us denote by R∗
j,k, j+k−m(s) the Laplace–Stieltjes transform (LST) of the distri-

bution function (DF) of the waiting time of a delay call that arrives when there are j
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loss calls and k delay calls in the system, where j +k ≥ m. This is the time until the
total number of calls in the system decreases to m−1, at which point the service to
that call is started. Then the LST of the DF for the waiting time W (>0) of accepted
delay calls that are to wait is given by

F∗
W (s |W > 0) =

m

∑
j=0

K− j−1

∑
k=m− j

λ2( j,k)Pj,kR∗
j,k, j+k−m(s)

m

∑
j=0

K− j−1

∑
k=m− j

λ2( j,k)Pj,k

. (10.26)

The LST of the DF for the waiting time W (≥0) of all accepted delay calls is
given by

F∗
W (s) = P{W = 0}+F∗

W (s |W > 0)P{W > 0}

=

m

∑
j=0

[
m− j−1

∑
k=0

λ2( j,k)Pj,k +
K− j−1

∑
k=m− j

λ2( j,k)Pj,kR∗
j,k, j+k−m(s)

]

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

. (10.27)

We can obtain R∗
j,k, j+k−m(s) (m ≤ j + k ≤ K −1) as follows. Note that the third

subscript of R∗
j,k, j+k−m(s) denotes the number of calls present in the waiting room.

We start with

R∗
j,k,0(s) = r j,k(s)+ r̂ j,k(s) (10.28)

for j + k = m, where

r j,k(s) =
jμ1

jμ1 + kμ2
× jμ1 + kμ2

s+ jμ1 + kμ2
=

jμ1

s+ jμ1 + kμ2
(10.29)

is the LST of the DF for the transition time from state ( j,k) to state ( j−1,k), and

r̂ j,k(s) =
kμ2

jμ1 + kμ2
× jμ1 + kμ2

s+ jμ1 + kμ2
=

kμ2

s+ jμ1 + kμ2
(10.30)

is the LST of the DF for the transition time from state ( j,k) to state ( j,k− 1). For
j + k = m+ l, we have

R∗
j,k,l(s) = r j,k(s)R∗

j−1,k,l−1(s)+ r̂ j,k(s)R∗
j,k−1,l−1(s). (10.31)

Therefore, we can calculate R∗
j,k,l(s) recursively for l = 1,2, . . . ,K −m−1 by start-

ing with R∗
j,k,0(s) given in (10.28).
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10.4 Numerical Examples

Using the method of analysis given in Sect. 10.3, we present numerical examples
of the blocking probabilities for loss and delay calls and the mean waiting time for
accepted delay calls. The latter can be obtained from the LST of the DF for the
waiting time given in (10.27). We consider the cases of fixed arrival rates, balking
of delay calls, and the finite population size.

10.4.1 Equilibrium State Probabilities

Let us first confirm that our generalization in the above yields the same results as
the analysis in [5] for the M/M/m/K queue with constant arrival rates and identical
service rates. To do so numerically, we consider the mixed loss–delay M/M/3/5
queue with λ1 = 2, λ2 = 3, and μ1 = μ2 = 3. Table 10.1 shows the equilib-
rium state probabilities we have computed with the above method. We have con-
firmed that these values are identical with those calculated by using the formulas
in [5].

10.4.2 Blocking Probabilities of Loss and Delay Calls

We now consider the M/M/m/K queues with constant arrival rates in the case in
which the service rates are different for loss and delay calls. Figure 10.3 shows
the blocking probabilities of loss and delay calls in the M/M/4/7 queue with
μ1 = 2, μ2 = 1, λ1 = 0.005 for 0 ≤ λ2 ≤ 20. As the arrival rate of delay calls in-
creases, both blocking probabilities increase. The blocking probability of loss calls
increases faster than that of delay calls.

Table 10.1 Equilibrium state probabilties in the mixed loss–delay M/M/3/5 queue with λ1 = 2,
λ2 = 3, and μ1 = μ2 = 3.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

j = 0 0.535698 0.201639 0.038431 0.005252 0.000706 0.000088
j = 1 0.133172 0.049915 0.009509 0.001196 0.000150
j = 2 0.016282 0.005830 0.000688 0.000086
j = 3 0.001206 0.000134 0.000017
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Fig. 10.3 Blocking probabilities of loss and delay calls in the M/M/4/7 queue with fixed arrival
and service rates (μ1 = 2,μ2 = 1, λ1 = 0.005, and 0 ≤ λ2 ≤ 20).
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Fig. 10.4 Mean waiting time of delay calls in the M/M/4/7 queue with fixed arrival and service
rates (μ1 = 2, μ2 = 1, λ1 = {500,0.005}, and 0 ≤ λ2 ≤ 20).

10.4.3 Mean Waiting Time

We evaluate the mean waiting times of accepted delay calls for several cases of
state-dependent arrival rates in the M/M/4/7 queue.

1. Fixed Arrival Rates

Figure 10.4 shows numerical examples of the mean waiting time of delay calls when
μ1 = 2,μ2 = 1, λ1 = {500,0.005} for 0 ≤ λ2 ≤ 20. The mean waiting time of delay
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calls increases as their arrival rate λ2 increases. When λ2 is small, the mean waiting
time increases quickly. When λ2 is large, the mean waiting time increases slowly.
We can also observe the effects of sharing the servers with loss calls on the mean
waiting time.

2. Balking

Balking in the arrival process means that the arrival rate of calls decreases as the
number of calls present in the system increases. We consider three models of balking
for delay calls in which their arrival rates λ2( j,k) for j+k > m are given as follows:

Model 1 : λ2( j,k) = ν2

(
K − j− k

K −m

)α
, 0 ≤ ν2 ≤ 20,

Model 2 : λ2( j,k) =
ν2

( j + k−m+1)α
, 0 ≤ ν2 ≤ 20,

Model 3 : λ2( j,k) = ν2e−α( j+k−m), 0 ≤ ν2 ≤ 20,

where α > 0. It is assumed that λ2( j,k) = ν2 for 0 ≤ j + k ≤ m in the three mod-
els. Model 1 is the case in which the arrival rate of delay calls decreases in power
law with the occupancy ratio of waiting positions. Model 2 is the case in which
the arrival rate of delay calls decreases in power law with the number of occupied
waiting positions. Model 3 is the case in which the arrival rate of delay calls de-
creases exponentially with the number of occupied waiting positions. See Fig. 10.5
for dependence of λ2( j,k) on the total number of calls, j + k, present in the system.

1 2 3 4 5 6 7
j k
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0.15

0.2

0.25

0.3

j,k

Model 3

Model 2

Model 1

λ2

Fig. 10.5 Three models of the arrival rate of delay calls with balking (m = 4, K = 7, α = 2, ν2 =
0.3).
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Fig. 10.6 Mean waiting time of delay calls in the M/M/4/7 queue with balking of model 1
(μ1 = 2, μ2 = 1, λ1 = {500, 0.005}, α = 2, and 0 ≤ ν2 ≤ 20).
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Fig. 10.7 Mean waiting time of delay calls in the M/M/4/7 queue with balking model 2
(μ1 = 2, μ2 = 1, λ1 = {500, 0.005}, α = 2, and 0 ≤ ν2 ≤ 20).

In Figs. 10.6–10.8, we plot the mean waiting time of delay calls with balking for
models 1–3, respectively, by assuming μ1 = 2, μ2 = 1, α = 2, λ1 = {500,0.005}
for 0 ≤ ν2 ≤ 20.

3. Finite Population Size

M/M/m/K queues with finite population of loss and delay calls can be handled with
our model of state-dependent arrival rates by assuming that
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Fig. 10.8 Mean waiting time of delay calls in the M/M/4/7 queue with balking model 3
(μ1 = 2, μ2 = 1, λ1 = {500, 0.005}, α = 2, and 0 ≤ ν2 ≤ 20).
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Fig. 10.9 Mean waiting time of delay calls in the M/M/4/7 queue with finite population (μ1 =
2, μ2 = 1, n1 = n2 = 20, α = 2, ν1 = {25, 0.00025}, and 0 ≤ ν2 ≤ 1).

λ1( j,k) = (n1 − j)ν1, 0 ≤ j ≤ n1,

λ2( j,k) = (n2 − k)ν2, 0 ≤ k ≤ n2,

where n1 and n2 are the fixed total numbers of loss and delay calls, respectively. The
call arrivals then form pseudo-Poisson processes.

In Fig. 10.9, we show the mean waiting time of delay calls in the finite population
model with μ1 = 2, μ2 = 1, n1 = n2 = 20, α = 2, ν1 = {25, 0.00025} for 0 ≤
ν2 ≤ 1.
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10.5 Concluding Remarks

In this chapter, we have shown the analysis of a mixed loss–delay M/M/m/K queue-
ing system with state-dependent arrival rates and different constant service rates. We
have first presented a set of linear simultaneous equations for the equilibrium state
probabilities and the normalization condition. We have then evaluated the blocking
probabilities for loss and delay calls and the mean waiting time for accepted delay
calls.

For numerical examples, we have considered the cases of fixed arrival rates, balk-
ing of delay calls, and finite population size in the M/M/4/7 queueing system. In
these examples, we have observed how the mean waiting time of accepted delay
calls increases as their arrival rate increases when they share the servers with loss
calls.

It is our future work to extend the model to allow multiple classes of both loss
and delay calls with some scheduling discipline among them. Such a model would
be closer to the channel sharing by circuit- and packet-switched traffic in the next-
generation wireless communication systems.
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