
Chapter 1
Two Sided DQBD Process and Solutions
to the Tail Decay Rate Problem
and Their Applications to the Generalized Join
Shortest Queue

Masakiyo Miyazawa

Abstract We are concerned with a two sided doubly quasi-birth-and-death process.
Under a discrete time setting, this is a two dimensional skip free random walk on
the half space whose second component is a nonnegative integer valued while its
first component may take positive or negative integers. Our major interest is in the
tail decay rate of the stationary distribution of this two sided process as either one of
the components goes either to infinity or to minus infinity, provided the stationary
distribution exists. The author [1] recently obtained two kinds of decay rates, called
weak and exact for the doubly QBD, DQBD for short, in terms of the transition
kernel of the DQBD. We extends those results to the two sided DQBD, and apply to
the generalized shortest queue. The tail decay rate problem for this queueing model
has been only partially answered in the literature. We show that a weak decay rate,
that is, the decay rate in the logarithmic sense, is completely specified in terms of the
primitive data for the generalized shortest queue. This refines results in Miyazawa
[2] and corrects some results in Li, Miyazawa and Zhao [3].

1.1 Introduction

A quasi birth-and-death process, QBD process for short, is a continuous time
Markov chain which has a main state, called level, and a background state in such a
way that the level is nonnegative integer valued, and its increments are ±1 at most
and controlled by the background state. This model has been well studied when the
background state space is finite (see, e.g. [4], [5]).

We are concerned with the case that the background space is infinite. Li,
Miyazawa and Zhao [3] recently proposed a double sided QBD process for the
generalized join shortest queue with two waiting lines, by extending the level of
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such a QBD process to be integer valued. This queue is a service system with two
parallel queues that have three arrival streams, two of which are dedicated to each
queue and the other of which chooses the shortest queue with tie breaking. Assume
that those arrival streams are independent and subject to Poisson processes, and
service times are independently, identically and exponentially distributed at each
queue. Then, this queue can be formulated as the QBD process or the two sided
QBD process. In particular, the latter model is required when we take the difference
of the two queues as level.

It is notable that the transition structure may change in the double sided QBD
when the level process goes through zero. This is crucial to formulate the general-
ized join shortest queue as the double sided QBD. In this chapter, we specialize this
double sided QBD in such a way that its background process is birth-and-death. We
refer to this process as a two sided doubly quasi birth-and-death process, a two sided
DQBD for short. Since those QBD and DQBD can be formulated as discrete time
Markov chains, we are only concerned with the discrete time processes throughout
the chapter.

We are interested in the asymptotic behaviors of the stationary distributions of the
level and background state as their values go to infinity, provided it exists. Due to the
special structure of the two sided DQBD, the QBD structure is preserved when the
level and background are exchanged. So, we mainly consider the asymptotics for the
level. We are concerned with two types of the asymptotic decays of the stationary
probabilities as the level goes to infinity.

One type is called a weak decay, which is meant that the logarithm of the sta-
tionary probability dived by the level n converges to a constant, say −a, as n goes to
infinity. Then, e−a is simply referred to as a weak decay rate. Another type is called
an exactly geometric decay, which is meant that the stationary probability multi-
plied by a power constant to the level n, say αn, converges to an another constant as
n goes to infinity. Then, α−1 is referred to as an exactly geometric decay rate. In [1],
more general types of exact decay rates are considered, but we are only concerned
with these two types of decay rates in this chapter.

The purpose of this chapter is twofold. We first study the decay rate problem
for the two sided DQBD process, by extending the approach for the DQBD process
in [1]. We completely characterize the weak decay rates in terms of the transition
probabilities (Theorems 1.3 and 1.4). For the exactly geometric decay, we find suf-
ficient conditions, which are close to necessary conditions (Theorem 1.3). We sec-
ondly apply these results to find the decay rates of the stationary distributions of
the minimum of the two queues and their difference in the generalized join shortest
queue with two waiting lines.

The decay rates for this queue have been studied in [3] and [6], but they are
obtained only for certain limited cases, e.g., under a so called strongly pooled con-
dition. We completely answer to this problem for the weak decay rates, and give
weaker sufficient conditions for the exactly geometric decay rates (Theorem 1.5 and
Corollary 1.2). In particular, it turns out that the strongly pooled condition still plays
an important role for finding the decay rate for the minimum of two queues, which
may not be the square of the total traffic intensity in general.
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The two sided DQBD is a special case of the double sided QBD introduced in [3]
since the latter allows the background process to be a general Markov chain. The
exactly geometric decays are studied in [3], but only sufficient conditions are ob-
tained. Furthermore, those sufficient conditions require the stationary probabilities
at the boundaries, i.e., at level 0, so they are not easy to verify. Not for the two sided
DQBD but for the DQBD, Miyazawa [1] completely solves the decay rate problem
recently, developing the ideas in [2].

We here extend this approach in [1]. Thus, many arguments are parallel to those
in [1]. Namely, the approach heavily depends on the QBD structure and the Wiener
Hopf factorization for the Markov additive process that generate the QBD process,
and the key idea is to formulate the decay rate problem as a multidimensional op-
timization problem. However, the level and background states are not symmetric in
the two sided DQBD while they are symmetric in the DQBD. So, we need some
further effort to get the decay rates, which is a main contribution of this chapter for
a general QBD model.

For the join shortest queue and its generalized versions, the decay rate problem
has been widely studied in the literature. One possible approach is to use the large
deviation principle. Puhalskii and Vladimirov [7] recently obtained the weak de-
cay rates as the solutions of the variational problem for a much more general class
of the generalized join shortest queue with an arbitrary number of parallel queues.
However, this variational problem is very hard to not only analytically but also nu-
merically solve even for the case of two queues.

Another approach is either to use the random walk structure or the QBD formu-
lation. For example, Foley and McDonald [6] took the former formulation while Li,
Miyazawa and Zhao [3] took the latter formulation. An interesting sufficient condi-
tion, i.e., so called strongly pooled condition, is found in [6]. However, those papers
mainly consider the decay rate under this limited condition for the case of the two
queues. So far, the decay rate problem has not been well answered for the general-
ized join shortest queue. In this chapter, we completely solve this problem for the
case of the two queues (Theorem 1.5 and Corollary 1.2). For simpler arrival pro-
cesses, there are many other studies on the join shortest queues and the decay rate
problem has been relatively well answered (see references in [3], [6]).

This chapter is made up by seven sections. In Sect. 1.2, we introduce the two
sided DQBD process formally, and consider its basic property, particularly on the
rate matrices for representing the stationary distribution in a matrix geometric form.
In Sect. 1.3, we characterize the set of positive eigenvectors of the rate matrices
using the moment generating functions of the transition kernels insides and on the
boundaries. The weak decay rates are completely answered in Sect. 1.4. We also
give sufficient conditions for those decay rates to be exactly geometric. In Sect. 1.5,
we consider the generalized join the shortest queue with two queues, and answer to
the decay rate problems. We finally give some remarks on the existence results in
Sect. 1.6. Conclusions are drawn in Sect. 1.7.
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1.2 Two Sided DQBD Process

Let {(L1t ,L2t); t = 0,1, . . .} be a two dimensional Markov chain taking values in
S ≡ Z×Z+, where Z is the set of all integers and Z+ = {� ∈ Z;� ≥ 0}, with the
following transition probabilities (see Fig. 1.1).

P(L1(t+1) = i′,L2(t+1) = j′|L1t = i,L2t = j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p+
(i′−i)( j′− j), i ≥ 1, j ≥ 1, i′ − i, j′ − j = 0,±1

p−(i′−i)( j′− j), i ≤−1, j ≥ 1, i′ − i, j′ − j = 0,±1

p(1+)
(i′−i) j′ , i ≥ 1, j = 0, i′ − i = 0,±1, j′ = 0,1

p(1−)
(i′−i) j′ , i ≤−1, j = 0, i′ − i = 0,±1, j′ = 0,1

p(2)
i′( j′− j), i = 0, j ≥ 1, i′ = 0,1, j′ − j = 0,±1

p(0)
i′ j′ , i = j = 0, i′ = 0,±1, j′ = 0,1

0, otherwise,

where ∑i, j pi j = ∑i, j p(k)
i j = 1 for k = 0,±,1±,2. Thus, {(L1t ,L2t)} is a skip free

random walk in all directions, and reflected at the boundary ∂S1 ≡{(i, j)∈ S; j = 0}
and has discontinuous statistics at ∂S2 ≡ {(i, j) ∈ S; i = 0}.

We first take L1t as level, and L2t as background state, and refer to this Markov
chain as a discrete-time two sided DQBD (doubly quasi-birth-and-death) process.
In the random walk terminology, this process is two dimensional reflected random
walk on the half space {(m,n) ∈ Z

2;n ≥ 0} with discontinuous statistics at the
boundaries where either one of components vanishes. We also note that this model
is a special case of the double sided QBD in [3] whose background process is not
necessary to be birth-and-death.

To present the transition probability matrix of this Markov chain, we first intro-
duce the following matrices. For k = 0,±1 and s = ±,

Fig. 1.1 State transitions for the two sided DQBD process.
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A(s)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(1s)
k0 p(1s)

k1 0 . . .

p(s)
k(−1) p(s)

k0 p(s)
k1 0 . . .

0 p(s)
k(−1) p(s)

k0 p(s)
k1 0 . . .

0 0 p(s)
k(−1) p(s)

k0 p(s)
k1 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and for k = 0,±1,

B(1)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(0)
k0 p(0)

k1 0 . . .

p(2)
k(−1) p(2)

k0 p(2)
k1 0 . . .

0 p(2)
k(−1) p(2)

k0 p(2)
k1 0 . . .

0 0 p(2)
k(−1) p(2)

k0 p(2)
k1 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, the two sided DQBD has the following tridiagonal transition matrix P(1).

P(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 A(−)
−1 A(−)

0 A(−)
1 0 . . .

. . . 0 A(−)
−1 A(−)

0 A(−)
1 0 . . .

. . . 0 B(1)
−1 B(1)

0 B(1)
1 0 . . .

. . . 0 A(+)
−1 A(+)

0 A(+)
1 0 . . .

. . . 0 A(+)
−1 A(+)

0 A(+)
1 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Throughout this chapter, we assume that P(1) is irreducible and aperiodic, and
positive recurrent. The unique stationary distribution of P is denoted by probability
row vector:

ν = (. . . ,ν−1,ν0,ν1, . . .),

where νn for n ∈ Z are row vectors for background states in level n. We also write
ν as {νi j; i ∈ Z, j ∈ Z+}. We assume that

(i) For each s = ±,2, A(s) ≡ A(s)
−1 +A(s)

0 +A(s)
1 is irreducible and aperiodic;

(ii) For each s =±,2, Markov additive process driven by kernel {A(s)
n ;n = 0,±1} is

1-arithmetic in the sense that for every pair (i, j)∈ S1×S1, the greatest common
divisor of {n ∈ Z;A(s)

n (i, j) > 0} is one, where Z is the set of all integers (see,
e.g., [8]).

Remark 1.1. The irreducibility of A(s) in (i) is satisfied by many applications, but it is
stronger than the irreducibility of P. Our arguments in this chapter can be modified



8 M. Miyazawa

so as to be valid without that irreducibility, and the same results are obtained. How-
ever, proofs becomes complicated just because we need to consider each case sep-
arately depending on the irreducibility or the non irreducibility. So, we here do not
consider the non irreducible case, which will be detailed in a technical note.

It is well-known that, for each s = ±, there exists a nonnegative matrix R(s)

uniquely determined as a minimal nonnegative solution of the matrix equation:

R(−) = A(−)
−1 +R(−)A(−)

0 +
(
R(−))2A(−)

1 , (1.1)

R(+) =
(
R(+))2A(+)

−1 +R(+)A(+)
0 +A(+)

1 , (1.2)

and the stationary distribution has the following matrix geometric form.

νn =

{
ν1
(
R(+))n−1

, n ≥ 1
ν−1

(
R(−))−n−1

, n ≤−1.
(1.3)

Note that R(s) may not be irreducible, but has a single irreducible class due to (i)
and (ii).

We also consider the case that L2 is taken as level. In this case, the transition
matrix is denoted by P(2), and given by

P(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B(2)
0 B(2)

1 0 . . .

A(2)
−1 A(2)

0 A(2)
1 0 . . .

0 A(2)
−1 A(2)

0 A(2)
1 0 . . .

0 0 A(2)
−1 A(2)

0 A(2)
1 0 . . .

...
. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where, for k = 0,±1,

A(2)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 p(−)
(−1)k p(−)

0k p(−)
1k 0 . . .

. . . 0 p(−)
(−1)k p(−)

0k p(−)
1k 0 . . .

. . . 0 p(2)
−1k p(2)

0k p(2)
1k 0 . . .

. . . 0 p(+)
(−1)k p(+)

0k p(+)
1k 0 . . .

. . . 0 p(+)
(−1)k p(+)

0k p(+)
1k 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and for k = 0,1,
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B(2)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 p(1−)
(−1)k p(1−)

0k p(1−)
1k 0 . . .

. . . 0 p(1−)
(−1)k p(1−)

0k p(1−)
1k 0 . . .

. . . 0 p(2)
−1k p(2)

0k p(2)
1k 0 . . .

. . . 0 p(1+)
(−1)k p(1+)

0k p(1+)
1k 0 . . .

. . . 0 p(1+)
(−1)k p(1+)

0k p(1+)
1k 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In this case, the stationary distribution ν = {νi j} is partitioned as

ν =
(
ν(2)

0 ,ν(2)
1 , . . .

)
,

where ν(2)
n = {νin; i ∈Z}. Viewing L1t as the background process, we have the stan-

dard process. Then, as is well known, there exists a minimal nonnegative solution
R(2) of

R(2) =
(
R(2))2A(2)

−1 +R(2)A(2)
0 +A(2)

1 , (1.4)

and the stationary distribution ν has the following form:

ν(2)
n = ν(2)

1

(
R(2))n−1

, n ≥ 1. (1.5)

We are interested in the geometric decay behaviors of the stationary vector νn as
n →±∞ and ν(2)

n as n →∞. We are interested in two different types of asymptotics.
If there are constant α+ > 1 and constant positive vector c+ such that

lim
n→∞

αn
+νn = c+,

then νn is said to asymptotically have exactly geometric decay rate α−1
+ as n → ∞.

Another decay rate is of logarithmic type, which is defined through

logr+(i) = lim
n→∞

1
n

logνni, i ∈ Z+, (1.6)

where r+(i) ≤ 1. If r+(i) does not depend on i, we write it as r+. In this case, νn
is said to asymptotically have weak geometric decay rate r+. Those decay rates are
also defined for νn as n →−∞ and for ν(2)

n as n → ∞, which are denoted by r− and
r2, respectively. Since those decay rates may not exist, we also use the following
notation:

logr+(i) = liminf
n→∞

1
n

logνni, logr+(i) = limsup
n→∞

1
n

logνni, i ∈ Z+.
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Similarly, rs(i) and rs(i) are defined for s = −,2. These decay rates are referred to
as the weak lower and weak upper decay rates, respectively.

It is noticed that r+(i) in (1.6) is bounded as

r+(i)−1 ≤ sup

{

z ≥ 1;
∞

∑
n=0

znνni < ∞

}

, i ∈ Z+.

Then, from (1.3) and (1.5), it might be expected that the weak decay rate r−1
+ is

obtained as the reciprocal of the convergence parameter cp(R(+)) of R(+), which is
defined as

cp(R(+)) = sup

{

z ≥ 0;
∞

∑
n=0

zn(R(+))n
< ∞

}

.

This is true under certain situations, but generally not true. In general, we only have
the following lower bounds for the decay rates from this information.

Lemma 1.1. The decay rates are bounded below by the corresponding convergence
parameters of the rate matrices. That is, we have

rs(i) ≥ cp(R(s))−1, s = ±,2, i ∈ Zs,

where Z2 = Z.

The proof of this lemma is exactly the same as Lemma 2.1 of [1], so it is omitted.
This lemma just gives the lower bounds, but it turns out that they are very useful to
identify the decay rates as well as to prove their existence.

We next prepare some useful facts for the convergence parameters.

Proposition 1.1 (Theorem 6.3 of [9]). For a nonnegative square matrix T , let X be
the set of all nonnegative and nonzero row vectors whose size is the same as that of
T . Then we have

cp(T ) = sup{z ≥ 0;zxT ≤ x,x ∈ X}.

We will consider all eigenvectors of R(s), s =±,2, to find the decay rate. For this,
we use the Markov additive process generated by {A(s)

k ;k = 0,±1}. Note that (1.1)
and (1.2) and the corresponding equations of R(−) and R(2) are equivalent to

I −A(s)
∗ (zu(s)) = (I − zR(s))(I −G(s)

∗ (z)), z 	= 0,s = ±,2, (1.7)

where u(s) = −1 for s = −, u(s) = 1 for s = +,2, and A∗(z) and G(s)
∗ (z) are defined

as

A(s)
∗ (z) = z−1A(s)

−1 +A(s)
0 + zA(s)

1 , G(s)
∗ (z) = A(s)

0 +R(s)A(s)
−1 + z−1A(s)

−1.
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The decomposition formula (1.7) is known as the Wiener Hopf factorization (see,
e.g. [8]). Then Proposition 1.1 concludes

Lemma 1.2. cp(R(s)) = sup{z ≥ 1;xA(s)
∗ (z) ≤ x,x ∈ X(s)} for s = ±,2, where X(s)

is the set of all nonnegative and nonzero vectors in RZ+ for s = ± and RZ for s = 2.

Remark 1.2. The proof that xA(s)
∗ (z) ≤ x implies z ≤ cp(R(s)) is immediate from

(1.7). However, it is not so obvious to find z such that cp(R(s)) ≤ z and xA(s)
∗ (z) ≤ x.

The proof of this can be found in [1].

Similarly to the case of the doubly QBD process in [1], we compute each entry
of A(s)

∗ (z) using the following notations. Let (X1,X2) be a random vector subject
to distribution {pi j}, and let (X (s)

1 ,X (s)
2 ) be those subject to distribution {p(s)

i j } for
s = 0,±,1±,2. Define generating functions as

p(s)
∗∗ (u,v) = E[uX(s)

1 vX(s)
2 ], p(1s)

∗ j (u) = E[uX(1s)
1 1(X (1s)

2 = j)], s = ±, j = 0,1,

p(s)
i∗ (v) = E[vX(s)

2 1(X (s)
1 = i)], s = ±, i, j = 0,±1,

p(s)
∗ j (u) = E[uX(s)

1 1(X (s)
2 = j)], s = ±, i, j = 0,±1,

p(2)
i∗ (u) = E[vX(2)

2 1(X (2)
1 = i)], i = 0,±1.

Then, A(s)
∗ (z) for s = ± has the following QBD structure.

A(s)
∗ (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(1s)
∗0 (z) p(1s)

∗1 (z) 0 . . .

p(s)
∗(−1)(z) p(s)

∗0 (z) p(s)
∗1 (z) 0 . . .

0 p(s)
∗(−1)(z) p(s)

∗0 (z) p(s)
∗1 (z) 0 . . .

0 0 p(s)
∗(−1)(z) p(s)

∗0 (z) p(s)
∗1 (z) 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.8)

Similarly, we have

A(2)
∗ (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 p(−)
(−1)∗(z) p(−)

0∗ (z) p(−)
1∗ (z) 0 . . .

. . . 0 p(−)
(−1)∗(z) p(−)

0∗ (z) p(−)
1∗ (z) 0 . . .

. . . 0 p(2)
−1∗(z) p(2)

0∗ (z) p(2)
1∗ (z) 0 . . .

. . . 0 p(+)
(−1)∗(z) p(+)

0∗ (z) p(+)
1∗ (z) 0 . . .

. . . 0 p(+)
(−1)∗(z) p(+)

0∗ (z) p(+)
1∗ (z) 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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1.3 Eigenvectors of Rate Matrices

If we take L1 as level, then the background process {L2t} is the birth and death
process in each half lie [1,∞) or (−∞,−1]. Hence, this case is easier, so we consider
R(s) with s = ± first. In what follows, we use the following notations for s = ±,2.

V
(s)

R =
{

(z,x);zxR(s) = x,z ≥ 1,x ∈ X(s)
}

,

V
(s)

A =
{

(z,x);xA(s)(z) = x,z ≥ 1,x ∈ X(s)
}

.

We first note the following facts, which are easily concluded by the Wiener Hopf
factorization.

Lemma 1.3. Let s be either one of −, + or 2. For z > 1, (z,x) ∈ V
(s)

R if and only if
(z,x) ∈ V

(s)
A . If there is no (z,x) in V

(s)
A with z > 1, then cp(R(s)) = 1.

Then, the following result is immediate from Theorem 3.1 in [1].

Theorem 1.1. Let D
(−)
1 denote the subset of all (−θ1,θ2) in R

2 such that

E
[

eθ1X(−)
1 +θ2X(−)

2

]

= 1, (1.9)

ϕ(1−)
0 (θ1)+ϕ(1−)

1 (θ1)eθ2 ≤ 1, (1.10)
θ1 ≤ 0,θ2 ∈ R,

where ϕ(1−)
i (θ1) = E

[
eθ1X(1−)

1 ;X (1−)
2 = j

]
for j = 0,1. Similarly, let D

(+)
1 denote

the subset of all (θ1,θ2) in R
2 such that

E
[

eθ1X(+)
1 +θ2X(+)

2

]

= 1, (1.11)

ϕ(1+)
0 (θ1)+ϕ(1+)

1 (θ1)eθ2 ≤ 1, (1.12)
θ1 ≥ 0,θ2 ∈ R,

where ϕ(1+)
i (θ1) = E

[
eθ1X(1+)

1 ;X (1+)
2 = j

]
for j = 0,1. Then, for each s = ±, there

exists a (z,x) ∈ V
(s)

A if and only if there exists a (θ1,θ2) ∈ D
(s)
1 . Furthermore, we

have the following facts.

(1a) For this (θ1,θ2), (z,x) ∈ V
(−)

A

(
res., V

(+)
A

)
is given by z = eθ1 and x = {xn}:

xn =
{

c1e−θ2(n−1) + c2e−θ2(n−1), θ 2 	= θ 2,

(c′1 + c′2(n−1))e−θ2(n−1), θ 2 = θ 2,
n ≥ 1, (1.13)

where θ 2,θ 2 are the two solutions of (1.9) (res., (1.11)) for the given θ1 such
that θ 2 ≤ θ 2, and ci,c′i are nonnegative constants satisfying c1 +c2 	= 0 and c′1 +
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c′2 	= 0. Furthermore, both of c1 and c2 are positive only if the strict inequality
holds in (1.9) (res., (1.11)).

(1b) The convergence parameter cp(R(s)) is obtained as the supremum of eθ1 over
D

(s)
1 for each s = ±.

Similarly to Theorem 1.1, we can prove the following theorem for R(2). Since
this result is the core of our arguments, we give its detailed proof in Appendix A.

Theorem 1.2. Let D2 denote the subset of all (−η(−)
1 ,η(+)

1 ,η2) in R
3 such that

E
[

eη
(−)
1 X(−)

1 +η2X(−)
2

]

= 1, (1.14)

E
[

eη
(+)
1 X(+)

1 +η2X(+)
2

]

= 1, (1.15)

ϕ(2)
−1 (η2)e−η

(−)
1 +ϕ(2)

0 (η2)+ϕ(2)
1 (η2)eη

(+)
1 ≤ 1, (1.16)

η2 ≥ 0,η(−)
1 ,η(+)

1 ∈ R,

where ϕ(2)
i (η2) = E

[
eη2X(2)

2 ;X (2)
1 = i

]
for i = 0,±1. Then, there exists a (z,x) ∈

V
(2)

A if and only if there exists a (−η(−)
1 ,η(+)

1 ,η2) ∈ D2. Furthermore, we have the
following facts.

(2a) For this (−η(−)
1 ,η(+)

1 ,η2), (z,x) ∈ V
(2)

A is given by z = eη2 and x = {xn}:

x(s)
n =

⎧
⎨

⎩

c(s)
1 e−η

(s)
1 (n−1) + c(s)

2 e−η
(s)
1 (n−1), η(s)

1 	= η(s)
1 ,

(
d(s)

1 +d(s)
2 |n−1|

)
e−η

(s)
1 (n−1), η(s)

1 = η(s)
1

n ≥ 1,s = ±, (1.17)

where η(−)
1 ,η(−)

1 (res., η(+)
1 ,η(+)

1 ) are the two solutions of (1.14) (res., (1.15))

for the given η2 such that η(−)
1 ≤ η(−)

1 (res., η(+)
1 ≤ η(+)

1 ), and for each s =±,

c(s)
i ,d(s)

i are nonnegative constants satisfying c(s)
1 +c(s)

2 	= 0 and d(s)
1 +d(s)

2 	= 0.
Furthermore, both of c(s)

1 and c(s)
2 are positive only if the strict inequality holds

in (1.16).
(2b) The convergence parameter cp(R(2)) is obtained as the supremum of eη2 over

D2.

For convenience, we also introduce the following projections of D2, which will
be used in Lemma 1.7.

D
(−)
2 = {(η(−)

1 ,η2);(η
(−)
1 ,η(+)

1 ,η2) ∈ D2},
D

(+)
2 = {(η(+)

1 ,η2);(η
(−)
1 ,η(+)

1 ,η2) ∈ D2}.

An important observation in these theorems is that z satisfying (z,x) ∈ V (R(s))
can be found through θ1 or η2 in sets D

(−)
1 , D (+)

1 and D2, which are in the boundary
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of convex sets. Furthermore, D
(s)
1 , D

(2)
2 and D2 are compact and connected sets for

s = ±. This observation is expected to extend Corollary 3.1 of [1] for the two sided
DQBD process. However, we have to check the two sided version of Proposition 3.1
of [1]. That is, we need the following lemmas. For convenience, we denote the set
of non-positive integers by Z−.

Lemma 1.4. For s =±, if there exist a positive vector x(s) = {x(s)
n ;n ∈Zs} such that

(αs,x(s)) ∈ V
(s)

A and some finite ds(x),ds(x) ≥ 0 such that

liminf
n→∞

νsn

x(s)
n

= ds(x
(s)), limsup

n→∞

νsn

x(s)
n

= ds(x(s)),

then, for any nonnegative column vector u(s) satisfying x(s)u(s) <∞, there are noneg-
ative and finite d†

s (x(s)) and d
†
s (x(s)) such that

αsd†
s (x

(s))x(s)u(s) ≤ liminf
n→s∞

α |n|
s νnu(s)

≤ limsup
n→s∞

α |n|
s νnu(s) ≤ αsd

†
s (x

(s))x(s)u(s). (1.18)

In particular, if d†
s (x(s)) = d

†
s (x(s)) and 0 ≤ d†

s ≡ d†
s (x(s)) < ∞, then

lim
n→s∞

αn
s νnu(s) = αsd†

s x(s)u(s). (1.19)

That is, νnu(s)
decays geometrically with rate α−1

s as n → s∞.

Lemma 1.5. If there exist a positive vector x = {xn;n ∈ Z} such that (α,x) ∈ V
(2)

A

and some finite d−(x),d−(x),d+(x),d+(x) ≥ 0 such that

liminf
n→−∞

νn1

xn
= d−(x), limsup

n→−∞

νn1

xn
= d

−(x),

liminf
n→+∞

νn1

xn
= d+(x), limsup

n→+∞

νn1

xn
= d

+(x),

then, for any nonnegative column vector u satisfying xu < ∞, there are nonegative
and finite d†(x) and d

†(x) such that

αd†(x)xu ≤ liminf
n→∞

αnν(2)
n u ≤ limsup

n→∞
αnν(2)

n u ≤ αd
†(x)xu. (1.20)

In particular, if d†(x) = d
†(x) and 0 ≤ d† ≡ d†(x) < ∞, then

lim
n→∞

αnν(2)
n u = αd†xu. (1.21)

That is, ν(2)
n u decays geometrically with rate α−1 as n goes to infinity.
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Since this lemma can be proved in a similar way to Proposition 3.1 of [1], we
omit its proof. For each n ≥ 0, let

ν(−)
−n = {ν(−n)k;k ≥ 0}, ν(+)

n = {νnk;k ≥ 0}, ν(2)
n = {νkn;k ∈ Z}.

Then, the next corollary follows from Theorem 1.1, Theorem 1.2 and Lemmas 1.4
and 1.5 similarly to Corollary 3.1 of [1].

Corollary 1.1. Define βs for s±,2 as

β− = sup
{

θ1; limsup
n→∞

ν(−1)neθ2n < ∞,(θ1,θ2) ∈ D
(−)
1

}

,

β+ = sup
{

θ1; limsup
n→∞

ν1neθ2n < ∞,(θ1,θ2) ∈ D
(+)
1

}

,

β2 = sup

{

η2; limsup
n→∞

ν(−n)1eη
(−)
1 n < ∞,

limsup
n→∞

νn1eη
(+)
1 n < ∞,(η(−)

1 ,η(+)
1 ,η2) ∈ D2

}

.

Then, the weak upper decay rates r−(i), r+(i) and r2( j) of ν−ni, νni and ν jn, respec-
tively, as n → ∞ are uniformly bounded by e−β− , e−β+and e−β2 . In particular, for
each s = ±,2, if βs = logcp(R(s)), then the weak decay rate rs exists and rs = e−βs .
Furthermore, if the asymptotic decay of ν1n, ν(−1)n or νn1 and ν−n(−1) is exactly
geometric as n → ∞, then the corresponding stationary level distribution asymptoti-
cally decays in the exactly geometric form.

1.4 Answers to Decay Rate Problem

We are now in a position to answer to the decay rate problem. Since D
(s)
1 for s = ±

and D2 are compact sets, we can define, for s = ±,

θ (sc)
1 = max{θ1;(θ1,θ2) ∈ D

(s)
1 }, θ (sc)

2 = min{θ2;(θ (sc)
1 ,θ2) ∈ D

(s)
1 },

η(c)
2 = max{η2;(η(−)

1 ,η(+)
1 ,η2) ∈ D2},

η(sc)
1 = max{η(s)

1 ;(η(−)
1 ,η(+)

1 ,η(c)
2 ) ∈ D2}.

Note that θ (sc)
1 = logcp(R(s)) for s = ± and η(c)

2 = logcp(R(2)). Furthermore,
(η(−c)

1 ,η(+c)
1 ,η(c)

2 ) and (θ (sc)
1 ,θ (sc)

2 ) are in D2 and D
(s)
1 for s = ±, respectively.

Similarly to Theorem 4.1 of [1], we consider the following nonlinear optimiza-
tion problems. Let, for s = ±,
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αs = sup{eθ
(s)
1 ;θ (s)

2 ≤ η2,η
(−)
1 ≤ θ (−)

1 ,η(+)
1 ≤ θ (+)

1 ,

(θ (−)
1 ,θ (−)

2 ) ∈ D
(−)
1 ,(θ (+)

1 ,θ (+)
2 ) ∈ D

(+)
1 ,(η(−)

1 ,η(+)
1 ,η2) ∈ D2}, (1.22)

α2 = sup{eη2 ;θ (−)
2 ≤ η2,θ

(+)
2 ≤ η2,η

(−)
1 ≤ θ (−)

1 ,η(+)
1 ≤ θ (+)

1 ,

(θ (−)
1 ,θ (−)

2 ) ∈ D
(−)
1 ,(θ (+)

1 ,θ (+)
2 ) ∈ D

(+)
1 ,(η(−)

1 ,η(+)
1 ,η2) ∈ D2}. (1.23)

We can find solutions αs for s = ±,2 in the following way.

Lemma 1.6. For the two sided DQBD process satisfying the assumptions (i) and
(ii), suppose that its stationary distribution exists, which denoted by ν = {νi j}. Then,
we have

rs ≡ sup
i

rs(i) ≤ α−1
s , s = ±,2. (1.24)

Proof. We define the following functions of u,u−,u+ ≥ 0.

f−(u) = sup
{
θ1;θ2 ≤ u,(θ1,θ2) ∈ D

(−)
1

}
,

f+(u) = sup
{
θ2;θ1 ≤ u,(θ1,θ2) ∈ D

(+)
1

}
,

f2(u−,u+) = sup
{
η2;η(−)

1 ≤ u−,η(−)
1 ≤ u+,(η(−)

1 ,η(+)
2 ,η2) ∈ D2

}
.

For convenience, let σs = − logrs for s = ±,2. Suppose that 0 ≤ us ≤ σs, which
implies that rs(1) ≤ e−us and r2(s) ≤ e−u2 for s = ±. Then, Corollary 1.1 leads that

f−(u2) ≤ σ−, f+(u2) ≤ σ+, f2(u−,u+) ≤ σ2. (1.25)

We next inductively define u(n)
s for n = 0,1, . . . and s = ±,2 in the following way.

Let u(0)
s = 0, and

u(n+1)
− = f−

(
u(n)

2

)
, u(n+1)

+ = f+
(

u(n)
2

)
, u(n+1)

2 = f2

(
u(n+1)
− ,u(n+1)

+

)
.

Then, it is easy to see that u(n)
s is non decreasing in n, and satisfies (1.25) for us = u(n)

s
for s = ±,2. Hence, Corollary 1.1 concludes

u(n)
s ≤ σs, n = 0,1, . . . , s = ±,2.

On the other hand, from the definitions of αs, it is easy to prove by induction that

u(∞)
s ≡ lim

n→∞
u(n)

s ≤ logαs, s = ±,2.

Then, it can be shown that the limits u(∞)
s are attained in finitely many steps. The

detailed proof of this can be found in the proof of Theorem 4.1 of [1]. Hence, we
have
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logαs = lim
n→∞

u(n)
s ≤ σs, s = ±,2.

Thus, we get (1.24). 
�

For each s = ±, define the following four sets of conditions.

(sC1) η(sc)
1 < θ (sc)

1 and θ (sc)
2 < η(c)

2 , (sC2) η(sc)
1 < θ (sc)

1 and η(c)
2 ≤ θ (sc)

2 ,

(sC3) θ (sc)
1 ≤ η(sc)

1 and θ (sc)
2 < η(c)

2 , (sC4) θ (sc)
1 ≤ η(sc)

1 and η(c)
2 ≤ θ (sc)

2 .

These conditions are exclusive and cover all the cases for each s = ±. Furthermore,
(sC4) is impossible since θ (sc)

1 ≤ η(sc)
1 implies that η(c)

2 > θ (sc)
2 due to the convexity

of the set with boundary (1.9) and (1.11). For the other three cases for each s = ±,
we have to consider their combinations, so nine cases in total. For convenience, we
denote the condition that (−Ci) and (+C j) hold by C(i, j) for i, j = 1,2,3.

The next lemma shows how we can compute αs for s = ±,2.

Lemma 1.7. Under the assumptions of Lemma 1.6, the α−, α+ and α2 of (1.22) and
(1.23) are obtained in either one of the following nine ways.

(c1) If C(1,1) holds, then α− = exp(θ (−c)
1 ), α+ = exp(θ (+c)

1 ) and α2 = exp(η(c)
2 ).

(c2) If C(1,2) holds, then α− = exp(θ (−c)
1 ), α2 = exp(η(c)

2 ) and α+ is the maximum
value satisfying (logα+,η(c)

2 ) ∈ D
(+)
1 .

(c3) If C(2,1) holds, then α+ = exp(θ (+c)
1 ), α2 = exp(η(c)

2 ) and α− is the maximum
value satisfying (logα−,η(c)

2 ) ∈ D
(−)
1 .

(c4) If C(1,3) holds, then α+ = exp(θ (+c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(+)
2 with θ1 ≤ θ (+c)

1 , and α− is the maximal value satisfying
(logα−,θ2) ∈ D

(−)
1 with θ2 ≤ α2.

(c5) If C(3,1) holds, then α− = exp(θ (−c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(−)
2 with θ1 ≤ θ (−c)

1 , and α+ is the maximal value satisfying
(logα+,θ2) ∈ D

(+)
1 with θ2 ≤ α2.

(c6) If C(2,2) holds, then α2 = exp(η(c)
2 ) and αs is the maximum value satisfying

(logαs,η
(c)
2 ) ∈ D

(s)
1 for s = ±.

(c7) If C(2,3) holds, then α+ = exp(θ (+c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(+)
2 with θ1 ≤ θ (+c)

1 , and α− is the maximum value satisfying
(logα−, logα2) ∈ D

(−)
1 .

(c8) If C(3,2) holds, then α− = exp(θ (−c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(−)
2 with θ1 ≤ θ (−c)

1 , and α+ is the maximum value satisfying
(logα+, logα2) ∈ D

(+)
1 .

(c9) If C(3,3) holds, then α− = exp(θ (−c)
1 ), α− = exp(θ (+c)

1 ) and
α2 is the maximum value satisfying (θ (−)

1 ,θ (+)
1 , logα2)∈D2 with θ (−)

1 ≤ θ (−c)
1

and θ (+)
1 ≤ θ (+c)

1 .



18 M. Miyazawa

This theorem can be proved in the same way as Lemma 4.2 of [1]. So, instead of
proving it, we give figures to explain how those decay rates are obtained. They can
be found in Figs. 1.2, 1.3 and 1.4. Since cases (c3), (c5) and (c7) are symmetric with
(c2), (c4) and (c6), respectively, we omit their figures. We shall see more figures for
specific examples in Sect. 1.5.

Theorem 1.3. Under the assumptions of Lemma 1.6, we have rs = α−1
s for s =

±,2. Namely, α−1
− , α−1

+ and α−1
2 are the weak decay rates of ν(−)

−n , ν(+)
n and ν(2)

n ,
respectively, as n → ∞. Furthermore, the marginal probabilities, ν(−)

−n 1, ν(+)
n 1 and

ν(2)
n 1, have the same decay rates α−1

− , α−1
+ and α−1

2 , respectively, if they are less
than 1, respectively.

Proof. We first consider rs(1) for s = ±,2, which are the weak upper decay rates of
ν−n1,νn1 and ν1n as n → ∞, respectively, are obtained by (1.24). Hence, Lemmas
1.1, 1.4 and 1.5 yield

(q(+c)
1 , q(+c)

2 )
(−q(−c)

1 , q(−c)
2 )

(−h(−c)
1 , h(c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9) Equation (11)

(c1)

(q(+c)
1 , q(+c)

2 )

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)
Equation (11)

(c2)

(10) with equality (10) with equality(12) with equality (12) with equality

Fig. 1.2 Typical examples for (c1) and (c2).

(q(+c)
1 , q(+c)

2 )

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 ) (h(+c)
1 , h(c)

2 )

Equation (11)

(10) with equality (12) with equality

Equation (9)

(c4)

(q(+c)
1 , q(+c)

2 )(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)

Equation (11)

(c6)

(12) with equality(10) with equality

Fig. 1.3 Typical examples for (c4) and (c6).
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(q(+c)
1 , q(+c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)

Equation (11)

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(10) with equality (12) with equality

(c9)

(q(+c)
1 , q(+c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)

Equation (11)

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(c7)

(12) with equality(10) with equality

Fig. 1.4 Typical examples for (c7) and (c9).

cp

(
R(s)

)−1
≤ rs(i) ≤ rs(i) ≤ α−1

s , i ∈ Z+ for s = ± and i ∈ Z for s = 2.

From Lemma 1.7, at least one of α−,α+ and α2 agree with the corresponding con-
vergence parameter cp(R(s)). Hence, we have rs = α−1

s at least for one s. This to-
gether with Corollary 1.1 and Lemmas 1.4 and 1.5 conclude that the same equality
must hold for the other s’s. This completes the proof. 
�

We can refine the decay rates in this theorem from weak to exact ones in a similar
way as Theorem 4.2 of [1] using Proposition 3.1 of [1] and Lemmas 1.4 and 1.5 for
the case that the decay rates are exactly geometric. However, for the other cases,
we can not directly use Theorem 5 of [10] which was used in [1] since the level or
background state is two sided. Thus, we here only present the case that the exactly
geometric decay occurs. We omit its proof since it is similar to Theorem 4.2 of [1].

Theorem 1.4. Under the assumptions of Theorem 1.3 with α− > 1, α+ > 1 or α2 >
1, let, for s = ±,

D
(s)
0 =

{

(sθ1,θ2) ∈ R
2;E

[

eθ1X(s)
1 +θ2X(s)

2

]

= 1
}

,

θ smax
i = arg max

(θ1,θ2)∈D
(s)
0

{θi}, i = 1,2.

Then, we have the exactly geometric decay rates for the following cases.

(d1) If either (-C2) or (-C3) holds, then both asymptotic decays of {ν(−n)k} and
{ν�n} as n → ∞ are exactly geometric with the decay rates α−1

− and α−1
2 , re-

spectively.
(d2) If either (+C2)) or (+C3) holds, then both asymptotic decays of {νnk} and {ν�n}

as n→∞ are exactly geometric with the decay rates α−1
+ and α−1

2 , respectively.
(d3) If (C1) holds and if θ smax

1 	∈ D
(s)
1 and η(c)

1 < θ (sc)
1 , then the asymptotic decay

of {ν(sn)k} ({ν�n}) as n → ∞ is exactly geometric with the rate α−1
s (α−1

2 ) for
s = ±.
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1.5 Generalized Join Shortest Queue

Let us apply Theorems 1.3 and 1.4 to the generalized join shortest queue which is
studied in [3], [6] and explained in Sect. 1.1. We first introduce notations for this
model. It has two parallel queues, numbered as queues 1 and 2. For each i = 1,2,
queue i serves customers in the First-Come First-Served manner with i.i.d. service
times subject to the exponential distribution with rate μi. There are three exogenous
Poisson arrival streams. The first and second streams go to queues 1 and 2 with
the mean arrival rate λ1 and λ2, respectively, while arriving customers in the third
stream with the mean rate δ choose the shorter queue with tie breaking. The decay
rates does not depend on the probability that customer with tie breaking choose
queue 1, so we simply assume it to be 1/2.

We are interested to see how the stationary tail probabilities of the shorter queue
lengths and the difference of the two queues decay. Due to the dedicated stream to
each queue, this problem is much harder than the one for the standard joining the
shortest queue. Since we only consider the stationary distribution, we can formulate
this continuous time model as a discrete time Markov chain. For this, we assume
without loss of generality that

λ1 +λ2 +μ1 +μ2 +δ = 1.

Let Q1t and Q2t be the queue lengths including customers being served at time
t = 0,1, . . ., and let L1t = Q2t −Q1t and L2t = min(Q1t ,Q2t). It is not hard to see
that (L1t ,L2t) is a skip free random walk on each region (Z+ ∪\{0})× (Z+ \{0})
reflected at the boundary Z×{0} and has different transitions at {0}×Z+ (see
Fig. 1.5).

Then, the transition probabilities are give by

p(−)
(−1)0 = λ1, p(−)

(−1)(−1) = μ2, p(−)
10 = μ1, p(−)

11 = λ2 +δ ,

p(+)
10 = λ2, p(+)

1(−1) = μ1, p(+)
(−1)0 = μ2, p(+)

(−1)1 = λ1 +δ ,

p(2)
10 = λ2 +

δ
2

, p(2)
1(−1) = μ1, p(2)

(−1)(−1) = μ2, p(2)
(−1)0 = λ1 +

δ
2

,

m1m1

m1

m1

m2

m2m2

m2

m1 + m2

l1 + d

l1 + dl2 + d

l2 + d

l2 +
d
2

l1 +
d
2

l1 +
d
2

l2 +
d
2

l1

l1

l2

l2

min(Q1,Q2)

Q2 −Q1m2

m1

Fig. 1.5 State transitions for the generalized shortest queue.
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p(1−)
(−1)0 = λ1, p(1−)

00 = μ2, p(1+)
10 = μ1, p(1−)

11 = λ2 +δ ,

p(1+)
10 = λ2, p(1+)

00 = μ1, p(1+)
(−1)0 = μ2, p(1+)

(−1)1 = λ1 +δ ,

p(0)
10 = λ2 +

δ
2

, p(0)
00 = μ1 +μ2, p(0)

(−1)0 = λ1 +
δ
2

,

where all other transitions are null. To exclude obvious cases, we assume that
δ ,μ1,μ2 are all positive.

Denote traffic intensities by

ρ1 =
λ1

μ1
, ρ2 =

λ2

μ2
, ρ =

λ1 +λ2 +δ
μ1 +μ2

.

Then, it is known that this generalized join shortest queue is stable if and only if ρ1 <
1,ρ2 < 1 and ρ < 1 (e.g., see [6]). This stability condition is assumed throughout
this section. We will also use the following notation, which were introduced and
shown to be very useful in computations in [3].

γ1 = μ1ρ2 +λ2, γ2 = μ2ρ2 +λ1.

We apply Theorem 1.3 to this model. For this, we need to compute θ (−c), θ (+c)

and η(c)
2 . In the view of Theorems 1.1 and 1.2, they are obtained if we can solve the

following three sets of equations.

E
[

eθ1X(−)
1 +θ2X(−)

2

]

= 1, ϕ(1−)
0 (θ1)+ϕ(1−)

1 (θ1)eθ2 = 1, (1.26)

E
[

eθ1X(+)
1 +θ2X(+)

2

]

= 1, ϕ(1+)
0 (θ1)+ϕ(1+)

1 (θ1)eθ2 = 1, (1.27)

E
[

eη
(−)
1 X(−)

1 +η2X(−)
2

]

= 1, E
[

eη
(+)
1 X(+)

1 +η2X(+)
2

]

= 1,

ϕ(2)
−1 (η2)e−η

(−)
1 +ϕ(2)

0 (η2)+ϕ(2)
1 (η2)eη

(+)
1 = 1. (1.28)

For convenience, let z = e−θ1 and ξ = eθ2 in (1.26). Then, we have

λ1z+μ2zξ−1 +μ1z−1 +(λ2 +δ )z−1ξ = 1, (1.29)
λ1z+μ2 +μ1z−1 +(λ2 +δ )z−1ξ = 1. (1.30)

Solving these equations for z 	= 1, we have z = ξ = ρ−1
1 . For z = ρ−1

1 , (1.29) yields
ξ = ρ−1

1 , μ2
λ2+δ ρ

−1
1 . Note that ρ−1

1 < μ2
λ2+δ ρ

−1
1 if and only if μ2 > λ2 + δ . Hence,

reminding the definitions of θ−max
i :

θ−max
1 = max{logz; (1.29) holds.}, θ−max

2 = max{logξ ; (1.29) holds.},
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we have
(
θ (−c)

1 ,θ (−c)
2

)
=
{

(logρ−1
1 , logρ−1

1 ), μ2 > λ2 +δ
(θ−max

1 ,θ−max
2 ), μ2 ≤ λ2 +δ .

(1.31)

It is also notable that θ−max
1 ≥ logρ−1

1 , so we always have that θ (−c)
1 ≥ logρ−1

1 .

Remark 1.3. The θ−max
i for i = 1,2 are computed from their definitions as

θ−max
1 = log

1
2λ1

(
1−2

√
μ2(λ2 +δ )+ζ (−)

1

)
,

θ−max
2 = log

1−4(λ1μ1 +(λ2 +δ )μ2)+ζ (−)
2

8λ1(λ2 +δ )
,

where

ζ (−)
1 =

√

1+4(μ2(λ2 +δ )−
√
μ2(λ2 +δ )−λ1μ1) ,

ζ (−)
2 =

√

(1−4(λ1μ1 +(λ2 +δ )μ2))2 −64(λ2 +δ )λ1μ1μ2 .

Similarly, letting z = eθ1 and ξ = eθ2 in (1.27),

λ2z+μ1zξ−1 +μ2z−1 +(λ1 +δ )z−1ξ = 1, (1.32)
λ2z+μ1 +μ2z−1 +(λ1 +δ )z−1ξ = 1. (1.33)

Solving these equations for z 	= 1, we have z = ξ = ρ−1
2 . For z = ρ−1

2 , (1.32) yields
ξ = ρ−1

2 , μ1
λ1+δ ρ

−1
2 . Reminding that

θ+max
1 = max{logz; (1.32) holds.}, θ+max

2 = max{logξ ; (1.32) holds.},

we have that θ (+c)
1 ≥ logρ−1

2 and

(
θ (+c)

1 ,θ (+c)
2

)
=
{

(logρ−1
2 , logρ−1

2 ), μ1 > λ1 +δ
(θ+max

1 ,θ+max
2 ), μ1 ≤ λ1 +δ .

(1.34)

We also consider to solve (1.28). In this case, let ξ = eη2 , z1 = e−η
(−)
1 and z2 =

eη
(+)
1 . Then, (1.28) becomes

λ1z1 +μ2z1ξ−1 +μ1z−1
1 +(λ2 +δ )z−1

1 ξ = 1, (1.35)

λ2z2 +μ1z2ξ−1 +μ2z−1
2 +(λ1 +δ )z−1

2 ξ = 1, (1.36)
(

λ1 +
δ
2

)

z1 +μ2z1ξ−1 +μ1z2ξ−1 +
(

λ2 +
δ
2

)

z2 = 1. (1.37)

These equations have been solved in [3]. That is, if z 	= 1, then ξ = ρ−2 and
z1 = z2 = ρ−1. For ξ = ρ−2, the first equation has solutions z1 = ρ−1, γ1+δ

γ2
ρ−1, and
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the second equation yields z2 = ρ−1, γ2+δ
γ1
ρ−1. In this case, η(c)

2 is obtained as the
maximum ξ that satisfies (1.35), (1.36) and

(

λ1 +
δ
2

)

z1 +μ2z1ξ−1 +μ1z2ξ−1 +
(

λ2 +
δ
2

)

z2 ≤ 1. (1.38)

Thus, we need to solve a convex optimization problem. We here already know
that (z1,z2,ξ ) = (1,1,1),(ρ−1,ρ−1,ρ−2) are the extreme points of the constrains.
To identify the latter point on the convex curves (1.35) and (1.36), it is convenient
to introduce the following classifications:

γ2 +δ > γ1, γ1 +δ > γ2, (1.39)
γ2 +δ ≤ γ1, γ1 +δ > γ2, (1.40)
γ2 +δ > γ1, γ1 +δ ≤ γ2, (1.41)

where we exclude the case that γ2 + δ ≤ γ1 and γ1 + δ ≤ γ2, which is impossible
since δ > 0. Note that (1.39) is equivalent to

|γ1 − γ2| < δ ,

which is introduced and called strongly pooled in [6].
We now find η(c)

2 by solving the convex optimization problem.

Lemma 1.8. If the strongly pooled condition (1.39) holds, then

η(c)
2 = logρ−2, η(−c)

1 = η(+c)
1 = logρ−1.

Otherwise, if (1.40) holds, then

(η(c)
2 ,η(−c)

1 ,η(+c)
1 ) =

(

θ−max
2 , log

eη
(c)
2

2(λ1eη
(c)
2 +μ2)

,arg max
(θ1,η(c)

2 )∈D
(+)
0

θ1

)

,

and, if (1.41) holds, then

(η(c)
2 ,η(−c)

1 ,η(+c)
1 ) =

(

θ+max
2 ,arg max

(θ1,η(c)
2 )∈D

(−)
0

θ1, log
eη

(c)
2

2(λ2eη
(c)
2 +μ1)

)

.

We defer the proof of this lemma to Appendix B.
We next consider to apply Theorem 1.3 to the generalized join shortest queue. To

this end, we introduce another classifications.

ρ1 < ρ, ρ2 < ρ, (1.42)
ρ1 ≥ ρ, ρ2 < ρ, (1.43)
ρ1 < ρ, ρ2 ≥ ρ, (1.44)
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where we do not consider the case that ρ1 ≥ ρ and ρ2 ≥ ρ , which is impossible
since δ > 0. The condition (1.42) is referred to as a weakly pooled condition in [6].

Under the conditions (1.39) and (1.42), the asymptotic decay of

P(min(Q1,Q2) = n,Q1 −Q2 = �), n → ∞

is shown to be exactly geometric with decay rate ρ2 for each fixed � in [3], [6]. This
is the only known results for the decay rate for the minimum of the two queues.
Using the two sets of the classifications, we can answer to the decay rate problem
for all the cases but for the weak decay rates.

Theorem 1.5. For the generalized join shortest queue with two queues, suppose
that the stability conditions ρ < 1, ρ1 < 1 and ρ2 < 1 are satisfied. Then, the weak
decay rate r2 exists for the minimum of the two queues in the sense of marginal
distribution as well as jointly with each fixed difference of the two queues, and one
of the following three cases occurs.

(g1) If (1.39) holds, then either one of the following cases happens.

(g1a) (1.42) implies r2 = ρ2.

(g1b) (1.43) implies r2 =
λ2 +δ
μ2

ρ1.

(g1c) (1.44) implies r2 =
λ1 +δ
μ1

ρ2.

(g2) If (1.40) holds, then either one of the following cases happens.

(g2a) (1.42) implies r2 =

⎧
⎨

⎩

e−θ
−max
2 , η(+c)

1 ≤ θ (+c)
1

λ1 +δ
μ1

ρ2, η
(+c)
1 > θ (+c)

1 .

(g2b) (1.43) implies

r2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−θ
−max
2 , η(−c)

1 < logρ−1
1 ,η(+c)

1 < θ (+c)
1

λ2 +δ
μ2

ρ1, η(−c)
1 ≥ logρ−1

1 ,η(+c)
1 < θ (+c)

1

λ1 +δ
μ1

ρ2, η(−c)
1 < logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

min
(
λ2 +δ
μ2

ρ1,
λ1 +δ
μ1

ρ2

)

, η(−c)
1 ≥ logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1 .

(g2c) (1.44) implies r2 =
λ1 +δ
μ1

ρ2.

(g3) If (1.41) holds, then either one of the following cases happens.

(g3a) (1.42) implies r2 =

⎧
⎨

⎩

e−θ
+max
2 , η(−c)

1 ≤ θ (−c)
1

λ2 +δ
μ2

ρ1, η
(−c)
1 > θ (−c)

1 .
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(g3b) (1.43) implies r2 =
λ2 +δ
μ2

ρ1.

(g3c) (1.44) implies

r2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−θ
+max
2 , η(−c)

1 < θ (−c)
1 ,η(+c)

1 < logρ−1
2

λ2 +δ
μ2

ρ1, η(−c)
1 ≥ θ (−c)

1 ,η(+c)
1 < logρ−1

2

λ1 +δ
μ1

ρ2, η(−c)
1 < θ (−c)

1 ,η(+c)
1 ≥ logρ−1

2

min
(
λ2 +δ
μ2

ρ1,
λ1 +δ
μ1

ρ2

)

, η(−c)
1 ≥ θ (−c)

1 ,η(+c)
1 ≥ logρ−1

2 .

Furthermore, the decay rates are exactly geometric for the cases (g1), (g2) unless
η(−c)

1 = θ−max
1 and (g3) unless η(+c)

1 = θ+max
1 .

Proof. This theorem is concluded applying Theorem 1.3 together with Lemma 1.7
for (θ (sc)

1 ,θ (sc)
2 ) for s =± and Lemma 1.8. We first consider case (g1a). In this case,

we suppose that the strongly pooled condition (1.39) and the weakly pooled condi-
tion (1.42) hold, then θ (sc)

1 ≥ η(sc)
1 for s = ± from (1.31), (1.34) and Lemma 1.6.

Hence, either one of C(1,1). C(1,2) or C(2,1) occurs in Lemma 1.7, which implies

that r2 = α−1
2 = e−η

(c)
2 = ρ2.

We next consider (g1b). In this case, (1.39) and (1.43) are assumed. Note that
ρ1 ≥ ρ in (1.43) implies that

μ2 ≥
μ1

λ1
(λ2 +δ ) > λ2 +δ .

Hence, we always have θ (−c)
1 = logρ−1

1 from (1.31) in this case. Since logρ−1
1 ≤

logρ−1 = η(−c)
1 and η+c

1 = logρ−1 < logρ−1
2 ≤ θ (+c)

1 , we have (g1b) from (c5) or
(c8) of Lemma 1.7.

The other cases are similarly proved. So, we omit their details. 
�

To visualize the results of Theorem 1.5, we draw equations (1.26) and (1.27)
on the (θ1,θ2) plane simultaneously for some examples. We here consider the four
cases (g1a), (g1b), (g2a) and (g2b).

These four cases are given in Figs. 1.6 and 1.7. In case (g1a) of Fig. 1.6,

λ1 =
1

16
, λ2 =

3
16

, δ =
1
8
, μ1 =

1
4
, μ2 =

3
8
,

which implies that ρ1 = 1
4 , ρ2 = 1

2 and ρ = 3
5 . In case (g1b),

λ1 =
6

29
, λ2 =

4
29

, δ =
1

29
, μ1 =

10
29

, μ2 =
8

29
,

which implies that ρ1 = 0.6, ρ2 = 0.5 and ρ = 11
18 .
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log r−2

log r−1
2− log r−1

1
− log r−1 log r−1

− log
g 2 + d
g 1

r−1

(q(+c)
1 ,q (+c)

2 )

(−q(−c)
1 ,q (−c)

2 )

(−h(−c)
1 ,h (c)

2 )

(h(+c)
1 ,h (c)

2 )

log r−2

− log r−1

− log r−1
1

(h(+c)
1 ,h (c)

2 )(−h(−c)
1 ,h (c)

2 )

log r−1 log r−1
2

(−q(−c)
1 ,q (−c)

2 )

(q(+c)
1 ,q (+c)

2 )

Equation (8)

Equation (8)

Equation (10) Equation (10)

log
m2

l2 + d
r−1
1

log r−1
1

D(+)
2

D(−)
2

D(−)
2 D(+)

2

Case (g1a) Case (g1b)

Fig. 1.6 The decay rates for strongly pooled (1.39): case (g1a) for (1.42) and case (g1b) for (1.43).

log r−2

log r−1
2− log r−1

1 − log r−1 log r−1

(q(+c)
1 ,q (+c)

2 )

(−q(−c)
1 ,q (−c)

2 )

(−h(−c)
1 , (c)

2 )
(h(+c)

1 ,h (c)
2 )

log r−2

− log r−1

− log r−1
1

(h(+c)
1 ,h (c)

2 )(−h(−c)
1 ,h (c)

2 )

log r−1 log r−1
2

(−q(−c)
1 ,q (−c)

2 )

(q(+c)
1 ,q (+c)

2 )

Equation (8) Equation (8)

Equation (10)

Equation (10)

log r−1
1

− log
g 2 + d
g 1

r−1

D(+)
2 D(+)

2
D(−)

2
D(−)

2

Case (g2a) Case (g2b)

h(c)
2 = q− max

1h(c)
2 = q− max

1

Fig. 1.7 The decay rates for not strongly pooled (1.40): case (g2a) for (1.42) and case (g2b) for
(1.43).

Figure 1.7 shows the case where the weakly pooled condition (1.39) does not
hold. In case (g2a), we set

λ1 =
9

170
, λ2 =

51
170

, δ =
1

17
, μ1 =

1
17

, μ2 =
9
17

,

which implies that ρ1 = 0.9, ρ2 = 17
30 and ρ = 0.7. This example shows that the

strongly pooled condition (1.39) does not imply the weakly pooled condition (1.42).
In case (g2b),

λ1 =
7

30
, λ2 =

2
15

, δ =
1

30
, μ1 =

10
30

, μ2 =
8

30
,

which implies that ρ1 = 0.7, ρ2 = 0.5 and ρ = 2
3 .
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Similarly to Theorem 1.5, we can get the following corollary for the decay rates
for the difference of the two queues. We omit its proof since it is parallel to the
arguments in Theorem 1.5.

Corollary 1.2. Under the assumptions of Theorem 1.5, the weak decay rates r− and
r+ for the difference Q2 −Q1 in the negative and positive directions, respectively,
exist in the sense of marginal distributions as well as jointly with each fixed mini-
mum of the two queues, and we have the following cases, where (θ (−c)

1 ,θ (−c)
2 ) and

(θ (+c)
1 ,θ (+c)

2 ) are given by (1.31) and (1.34), respectively, and

t−(v) = min{z−1; (1.29) for ξ = v−1}, t+(v) = min{z−1; (1.32) for ξ = v−1}.

(h1) If (1.39) holds, then either one of the following cases happens.

(h1a) (1.42) implies

r− =

⎧
⎨

⎩

e−θ
(−c)
1 , θ (−c)

2 ≤ logρ−2

γ2
γ1 +δ

ρ , θ (−c)
2 > logρ−2,

(1.45)

r+ =

⎧
⎨

⎩

e−θ
(+c)
1 , θ (+c)

2 ≤ logρ−2

γ1
γ2 +δ

ρ , θ (+c)
2 > logρ−2.

(1.46)

(h1b) (1.43) implies with r2 = (λ2+δ )
μ2

ρ1 that

r− = ρ1, r+ =

{

e−θ
(+c)
1 , θ (+c)

2 ≤ logr−1
2

t+(r2), θ
(+c)
2 > logr−1

2 .
(1.47)

(h1c) If (1.44) implies with r2 = (λ1+δ )
μ1

ρ2 that

r− =

{

e−θ
(−c)
1 , θ (−c)

2 ≤ logr−1
2 ,

t−(r2), θ
(−c)
2 > logr−1

2 ,
r+ = ρ2. (1.48)

(h2) If (1.40) holds, then either one of the following cases happens.

(h2a) (1.42) implies

(r−,r+) =

{(
e−θ

(−c)
1 ,min(e−θ

(+c)
1 , t+(e−η

(c)
2 ))

)
, θ (+c)

1 ≥ η(+c)
1

(
e−θ

(−c)
1 ,ρ2

)
, θ (+c)

1 < η(+c)
1 .

(1.49)

(h2b) (1.43) implies
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(r−,r+) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρ1,e−θ
(+c)
1 ), η(−c)

1 < logρ−1
1 ,η(+c)

1 < θ (+c)
1

(ρ1,min(e−θ
(+c)
1 , t+(r2)), η

(−c)
1 ≥ logρ−1

1 ,η(+c)
1 < θ (+c)

1

(min(e−θ
(−c)
1 , t−(r2),ρ2), η

(−c)
1 < logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

(ρ1,min(e−θ
(+c)
1 , t+(r2)), η

(−c)
1 ≥ logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

and
λ2 +δ
μ2

ρ1 <
λ1 +δ
μ1

ρ2

(min(e−θ
(−c)
1 , t−(r2),ρ2), η

(−c)
1 ≥ logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

and
λ2 +δ
μ2

ρ1 ≥
λ1 +δ
μ1

ρ2,

(1.50)

where t+ = max{z; (1.32) for ξ = logr−1
2 } and r2 =

(λ2 +δ )
μ2

ρ1.

(h2c) (1.44) implies with r2 =
λ1 +δ
μ1

ρ2 that

(r−,r+) =

{(
e−θ

(−c)
1 ,ρ2

)
, θ (−c)

2 < logr−1
2(

t−(r2),ρ2
)
, θ (−c)

2 ≥ logr−1
2 .

(1.51)

Furthermore, the decay rates are exactly geometric unless either r− = e−θ
(−c)
1 with

θ (−c)
1 = θ−max

1 or r+ = e−θ
(+c)
1 with θ (+c)

1 = θ+max
1 .

Remark 1.4. In this corollary, the case that (1.41) holds is not considered. However,
this case can be easily obtained by interchanging the roles of queues 1 and 2 in case
(h2).

1.6 Remarks on Existence Results

We remark how our results include the existence results. The exactly geometric rate
r2 = ρ2 is obtained under the conditions (1.39) and (1.42) in [3], [6]. Our results
cover all the possible cases although the decay rates are generally of the weak sense.
We also note that there are some errors in Theorem 3.2 of [3]. They can be corrected
by Corollary 1.2. Namely, the additional conditions (3.16) and (3.18) there are not
sufficient to get the decay rates. They are used for all the terms in the sums of (3.15)
and (3.17) to be positive. However, this is different from the corresponding eigen-
vectors to be positive. The right conditions are θ (+c)

2 ≥ logρ−2 and θ (−c)
2 ≥ logρ−2,

respectively, where θ (−c)
2 and θ (+c)

2 are given in (1.31) and (1.34), respectively.
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1.7 Conclusions

In this paper, we completely characterized the weak tail decay rates in terms of the
transition probabilities for the stationary distribution of the two sided DQBD pro-
cess (Theorems 1.3). For the exactly geometric decay, we find sufficient conditions,
which are close to necessary conditions (Theorem 1.4). We then apply those re-
sults to the generalized join shortest queue with two waiting lines, whose decay rate
problem has been only solved under some special conditions such as the weakly and
strongly pooled conditions in the literature. We completely answer to this problem
by finding the weak decay rates of the stationary distributions of the minimum of the
two queues and their difference for all cases (Theorem 1.5 and Corollary 1.2). It is
notable that the strongly and weakly pooled conditions still play the important role
for finding the decay rate for the minimum of two queues. That is, the decay rate
crucially changes according to whether or not those two conditions are satisfied.
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Appendix 1

We prove Theorem 1.2. Let x = (. . . ,x−1,x0,x1, . . .) be the right positive invariant
vector of A(2)

∗ (z). Then, we have

xn = p(−)
1∗ (z)xn−1 + p(−)

0∗ (z)xn + p(−)
(−1)∗(z)xn+1, n ≤−2,

x−1 = p(−)
1∗ (z)x−2 + p(−)

0∗ (z)x−1 + p(2)
(−1)∗(z)x0,

x0 = p(−)
1∗ (z)x−1 + p(2)

0∗ (z)x0 + p(+)
(−1)∗(z)x1, (1.52)

x1 = p(2)
1∗ (z)x0 + p(+)

0∗ (z)x1 + p(+)
(−1)∗(z)x2,

xn = p(+)
1∗ (z)xn−1 + p(+)

0∗ (z)xn + p(+)
(−1)∗(z)xn+1, n ≥ 2.

For s = ±, let w(s)
1 and w(s)

2 be the solutions of the following quadratic equation:

p(s)
(−1)∗(z)w

2 − (1− p(s)
0∗ (z))w+ p(s)

1∗ (z) = 0. (1.53)

Then x must have the following forms:
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xn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x−1(w
(−)
1 )n+1 +(x−2 − x−1(w

(−)
1 )−1)

0

∑
�=−n+2

(w(−)
1 )−�(w(−)

2 )n+2+�,

n ≤−2

x1(w
(+)
1 )n−1 +(x2 − x1w(+)

1 )
n−2

∑
�=0

(w(+)
1 )�(w(+)

2 )n−2−�, n ≥ 2.

(1.54)

By the irreducibility assumption in (i), p(s)
1∗ (z) > 0 and p(s)

(−1)∗(z) > 0. Further-

more, the positivity of xn, w(s)
1 ,w(s)

2 must be real numbers. Hence, from the fact

w(s)
1 w(s)

2 =
p(s)

1∗ (z)

p(s)
(−1)∗(z)

> 0, (1.55)

w(s)
1 and w(s)

2 must be positive. This implies that x is nonnegative if and only if

x−2w(−)
1 ≥ x−1, x2 ≥ x1w(+)

1 . (1.56)

From (1.52), we have

x−2 =
1

p(−)
1∗ (z)

(
x−1 − p(−)

0∗ (z)x−1 − p(2)
(−1)∗(z)x0

)
, (1.57)

x2 =
1

p(+)
(−1)∗(z)

(
x1 − p(2)

1∗ (z)x0 − p(+)
0∗ (z)x1

)
. (1.58)

Substituting these x−2 and x2 into (1.56) yields
(
(1− p(−)

0∗ (z))w(−)
1 − p(−)

1∗ (z)
)

x−1 − p(2)
(−1)∗(z)w

(−)
1 x0 ≥ 0,

(
(1− p(+)

0∗ (z))− p(+)
(−1)∗(z)w

(+)
1

)
x1 − p(2)

1∗ (z)x0 ≥ 0.

Since w(s)
1 satisfies (1.53), we have

p(−)
(−1)∗(z)w

(−)
1 x−1 − p(2)

(−1)∗(z)x0 ≥ 0,

p(+)
1∗ (z)x1 − p(2)

1∗ (z)w(+)
1 x0 ≥ 0.

Using (1.55), this is equivalent to

p(−)
1∗ (z)x−1 − p(2)

(−1)∗(z)w
(−)
2 x0 ≥ 0, (1.59)

p(+)
(−1)∗(z)x1 − p(2)

1∗ (z)(w(+)
2 )−1x0 ≥ 0. (1.60)

Hence, letting



1 Two Sided DQBD and Solutions to the Tail Decay Rate Problem 31

η2 = logz, η(s)
1 = − logw(s)

2 ,

we have (1.14), (1.15) and (1.16).
We next show that these conditions are also sufficient. Suppose that there are

η2 ≥ 0 and η(s)
1 with s = ±1 satisfying (1.14), (1.15) and (1.16). Then, we can find

u(s) with s = ±1 such that

u(−) +ϕ(2)
0 (η2)+u(+) = 1, u(−) ≥ ϕ(2)

−1 (η2)e−η
(−)
1 , u(+) ≥ ϕ(2)

1 (η2)eη
(+)
1 .

Let x0 = 1, and define x−1 and x1 as x−1 = u(−)

p(−)
1∗ (z)

, x1 = u(+)

p(+)
(−1)∗(z)

. Hence, letting

z = eη2 and w(s)
2 = e−η

(s)
1 with s = ±1, we have (1.59) and (1.60). Then, defining

x−2, x2 and xn by (1.57), (1.58) and (1.54), respectively, we revive (1.52). Hence,
we indeed find the positive left eigenvector x of A(2)

∗ (z). This proves the first part of
the theorem. The remaining parts are obvious from (1.54) and Lemma 1.2. 
�

Appendix 2

We prove Lemma 1.8. Define the following functions on R
3
+, where R+ = (0,∞),

f (z1,z2,ξ ) = ξ ,

g1(z1,z2,ξ ) = (λ1ξ +μ2)z2
1 +μ1ξ +(λ2 +δ )ξ 2 − z1ξ ,

g2(z1,z2,ξ ) = (λ2ξ +μ1)z2
2 +μ2ξ +(λ1 +δ )ξ 2 − z2ξ ,

h(z1,z2,ξ ) =
(

λ1 +
δ
2

)

z1ξ +μ2z1 +μ1z2 +
(

λ2 +
δ
2

)

z2ξ −ξ .

Obviously, all the functions are convex. Then, Lemma 1.8 is obtained by the fol-
lowing optimization problem. In particular, η(c)

2 is obtained as the logarithm of the
maximum value of f .

miximize f (z1,z2,ξ ),
subject to
g1(z1,z2,ξ ) = 0, g2(z1,z2,ξ ) = 0, h(z1,z2,ξ ) ≤ 0, (1.61)
z1 > 0, z2 > 0, ξ ≥ 1. (1.62)

This is a convex optimization problem, and (1.61) is satisfied with equality only if
(z1,z2,ξ ) = (1,1,1) or (ρ−1,ρ−1,ρ−2) (see Lemma 3.2 of [3]). By D, we denote
the set of all feasible solutions satisfying the constraints (1.61) and (1.62). Clearly,
D is closed and bounded in R

3
+. For convenience, let

Di = {zi;(z1,z2,ξ ) ∈ D}, i = 1,2.
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Since {(zi,ξ ) ∈ R
2
+;gi(z1,z2,ξ ) ≤ 0} is a convex set, gi(z1,z2,ξ ) = 0 have two

solutions counting multiplicity for each ξ and each i = 1,2 if the solution exists.
Hence, there exist at most four points (z1,z2,ξ ) ∈ D for each ξ .

We show that D is a connected curve with end points (1,1,1) and (ρ−1,ρ−1,ρ−2)
if D has three points at least. Suppose that this is not true. Let (z◦1,z

◦
2,ξ ◦) ∈ D be the

third point other than the above end points. Then, we must have h(z◦1,z
◦
2,ξ ◦) < 0.

This implies that the point (z◦1,z
◦
2) is in the interior of the set

{(z1,z2) ∈ R
2
+;h(z1,z2,ξ ) ≤ 0},

for ξ = ξ ◦, which is a polyhedral for each ξ and its region is continuously increased
as ξ is increased. Hence, there exists a connected curve which passes through
(z◦1,z

◦
2,ξ ◦) as an inner point. This curve must have (1,1,1) and (ρ−1,ρ−1,ρ−2)

as its end points since otherwise we arrive at the contradiction that there is a point
other than those points such that h = 0 holds.

Let us consider the cases for (1.39) and (1.40) separately. Here, we do not con-
sider the case for (1.41) since it is symmetric to the case for (1.40). Denote the
solutions of gi(z1,z2,ξ ) = 0 for each ξ by zi(ξ ) and zi(ξ ), where zi(ξ ) ≤ zi(ξ ).
First, assume that (1.39) holds. Then (z1(ρ

−2),z2(ρ
2),ρ−2) = (ρ1,ρ−1,ρ−2) ∈ D

and zi(ρ−2) 	∈ Di for i = 1,2. Hence, f is maximized at (ρ−1,ρ−1,ρ−2). We next
assume (1.40). Then, we have (z1(ρ−2),z2(ρ

−2),ρ−2) = (ρ−1,ρ−1,ρ−2) ∈ D and
(z1(ρ

−2),z2(ρ
−2),ρ−2) ∈ D since z1(ρ

−2) ≤ z1(ρ−2). If z1(ρ
−2) = z1(ρ−2), we

can reduce the problem to the case for (1.39). Otherwise, D has three points at
least, so it is a connected curve with end points (1,1,1) and (ρ−1,ρ−1,ρ−2) as
shown above. This concludes that f is maximized at (z1(ξ

∗),z2(ξ
∗),ξ ∗) such that

z1(ξ
∗) = z1(ξ ∗). Since ξ ∗ must be the maximum value of ξ satisfying g1(z1,z2,ξ )=

0, η(c)
2 = θ−max

2 . This completes the proof. 
�
It may be notable that we can also solve the optimization problem by applying

Karush-Kuhn-Tucker necessary conditions (e.g., see Sect. 4.3.7 of [11]). However,
the present solution is more informative since the feasible region D is identified to
be a connected curve.
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