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The book will prove useful to academics and
industrial scientists as well as engineers
engaged in research. It will also benefit those
involved in post-graduate courses in
communications, computer science or
engineering, who have interests in the
development and application of queueing
theory.

This book may be used as pre-requisite
reading for other more advanced courses like
network design and management which are
based on performance modeling with
example applications for modern
communication and computer networks. It
could also be used as a course book on
stochastic models in mathematics and
operations research departments.
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Preface

A considerable amount of efforts needs to be devoted to performance modeling
and analysis of emerging technologies and their applications in order to develop
proper design and operation management of future multi-service networks where
application-dependent Quality of Service (QoS) is ensured. To this end, extensive
interdisciplinary research in performance analysis and system management of com-
munication networks is essential.

Included in this book are 16 chapters of high quality. All the manuscripts were
selected, after peer-review, from among those submitted by prominent researchers
working on queueing theory and network applications. The reviewers’ reports not
only helped the editors qualify the articles for inclusion in the book, but also im-
proved the quality of the chapters.

The chapters cover a wide variety of recent topics on queueing theory and
network applications. These include single-server queues, finite-buffer queues, re-
trial/balking queues, multiple queues as well as optimization in queues. They further
present new theoretical results on timely topics related to protocols, application ser-
vices and routing algorithms in the Internet and wireless-related issues.

We believe that all of these chapters not only provide novel ideas, new analytical
models, simulation and experimental results in this field but also enhance the future
research activities in the area of Queueing Theory and Network Applications.

This book consists of five parts, which cover topics in Queueing Processes,
Single-Server Queues, Multiple Queues, Finite-Buffer Queues, and Network Ap-
plications. A brief summary of each chapter is listed as follows [Chapters 1–16, this
book].

Part I: Queueing Processes

Part I discusses Queueing Processes in two chapters, Chapters 1 and 2.
Chapter 1 considers a two-sided doubly quasi-birth-and-death process. Under a

discrete time setting, this is a two dimensional skip free random walk on the half
space whose second component is non-negative integer valued and whose first com-
ponent may take positive or negative integers. The major interest of this chapter is

ix



x Preface

in the tail decay rate of stationary distribution as one of the components goes ei-
ther to infinity or to minus infinity, provided the stationary distribution exists. Two
kinds of decay rates, called ’weak’ and ’exact’ for the doubly QBD (or DQBD) and
characterized in the previous publication by the author are extended to the two sided
DQBD, and are applied to the generalized shortest queue. This chapter shows that
a weak decay rate, that is, the decay rate in the logarithmic sense, is completely
specified in terms of the primitive data for the generalized shortest queue.

Chapter 2 proposes an analytical model based on renewal reward theory to inves-
tigate the dynamics of on-demand streaming service, deriving the average download
rate. This chapter uses a simple method, combining multicast method and unicast
method that can reduce the download rate from the streaming server effectively. By
modeling requests as Poisson arrivals, the dynamics of this streaming service are
studied and the optimal sharing of unicast and multicast methods is derived. This
chapter also shows how to estimate the fluctuation of download rates of a streaming
service.

Part II: Single-Server Queues

Part II on Single-Server Queues includes four chapters, Chapters 3–6.
In Chapter 3, a Geom/G/1 queue with a pure decrementing service policy

and multiple adaptive vacations is analyzed. The Probability Generating Func-
tion (P.G.F.) of the queue length is obtained by using an embedded Markov chain
method. The P.G.F. of the waiting time is then derived and the probabilities for the
system being in various states such as a busy state, an idle state or a vacation state,
are also derived. Finally, some special cases for the queueing model are given to
demonstrate the general properties of the queue models.

Chapter 4 investigates an M/M/1 working vacation queue with setup times, using
a quasi birth and death process and a matrix-geometric solution method to derive
the distributions for the stationary queue length and the waiting time of a customer
in the system. Also presented in this chapter are stochastic decomposition structures
of stationary Indices.

In Chapter 5, a single-machine production system with early setup and extra job
operations is considered. It is controlled by two thresholds. The first is used to con-
trol the setup starting time and the second is used to control the production starting
time. The system is modeled by the BMAP/G/1 queue and the manufacturing lead
time is analyzed. The factorization principle is used to derive its distribution and
mean value.

Chapter 6 presents an analysis of a state-dependent M/Ek/1 queue with balking
and single vacations. Customers are served at two different rates depending on the
number of customers in the system. If customers on arrival find any other customers
in the system, they decide to either enter the queue or balk with a constant proba-
bility. The server takes a single vacation when the system becomes empty. First, a
quasi-birth and death process is formulated. Then, the equilibrium condition of the
system is obtained. By using the matrix geometric solution method, the steady-state
probability vectors are obtained. The computation of the steady-state probability
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vectors is also discussed. Then, some performance measures are derived explicitly.
Based on these performance analyses, a mathematical model is developed to opti-
mize the cost of the system. Finally, some discussion on the sensitivity of the model
is given through numerical experiments.

Part III: Multiple Queues

Part III discusses Multiple Queues in two chapters, Chapters 7 and 8.
Chapter 7 considers Markovian polling systems in which a single server serves

J stations with Poisson arrivals and general service times. After a service period at
station i, the server selects station j with probability pi j and visits the station after
spending a switchover time. This chapter uses the functional method that has been
proposed in a previous research on multiclass M/G/1 type systems. The advantages
of the functional method are (1) its wide applicability to the analysis of M/G/1
type multi-class queues, and (2) its rather small computational complexity compared
with the buffer occupancy method.

Chapter 8 considers a two-station hybrid system which handles make-to-order
(MTO) and make-to-stock products (MTS). The first station represents an MTS
system producing standard products for ordinary demands, which also can be semi-
finished products for specific demands processed in the second station. The second
station performs some additional works on the standard products for the specific de-
mands. In the system considered in this chapter, the MTS system is controlled under
the base-stock policy. To evaluate the performance of the system, the fill rate of the
ordinary demands and the response time of the specific demands are considered.
The objective is to study the relation between base-stock level and the fill rate of
the ordinary demands and the response time of the specific demands. The system is
analyzed by modeling it as an inventory-queue model. Based on these analyses, one
can determine the optimal base-stock level numerically under the constraints on the
fill rate of the ordinary demands and the response time of the specific demands.

Part IV: Finite-Buffer Queues

Part IV on Finite-Buffer Queues includes four chapters, Chapters 9-12.
Chapter 9 presents an analysis of an M/M/c/N queueing system with balk-

ing, reneging and synchronous vacations of servers. By using the blocked matrix
method, the steady-state probability vector is obtained in terms of the inverse of two
matrices, whose computation is discussed. Then, the steady-state probabilities are
calculated by using the elements of the inverse of the two matrices. The conditional
stationary distribution of the queue length and waiting time is also derived.

An M/M/m queue with mixed loss and delay calls was analyzed by J.W. Cohen
half a century ago (1956), where the two types of calls had identical constant arrival
and service rates. It is straightforward to extend his analysis to an M/M/m/K queue.
In Chapter 10, the model is further generalized such that the call arrival rates depend
on the number of calls present in the system upon arrival. This model includes the
balking and the finite population size models as special cases. A method is presented
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to calculate the blocking probability for lost calls as well as the distribution of the
waiting time for accepted delayed calls.

Chapter 11 considers a feedback finite fluid queue (FFFQ, for short) with
downward jumps, where the fluid flow rate and the jump size are controlled by a
background Markov chain with a finite state space. The feedback means that the
background process may change according to the level of the buffer, which is used
for modeling TCP/IP flow. The matrix analytic technique has been successfully ap-
plied to an FFFQ without jumps. This chapter incorporates downward jumps into
this FFFQ, and shows that its loss probability decays exponentially as the buffer size
gets large under a negative drift condition.

In Chapter 12, a closed-form explicit expression is derived for the probability
density function of the length of a busy period starting with i customers in an
M/M/1/K queue, where K is the capacity of the system. The density function is
given as a weighted sum of K exponential distributions with coefficients calculated
from K distinct zeros of a polynomial that involves Chebyshev polynomials of the
second kind. The mean and second moment of the busy period are also shown ex-
plicitly.

Part V: Network Applications

Part V includes 4 chapters, Chapters 13–16 on network applications.
Chapter 13 presents a method to analyze the performance of Automatic Repeat

reQuest (ARQ) schemes in self-similar traffic. A batch arrival queueing model is
built by taking into account the self-similar nature of a massive-scale wireless mul-
timedia service and by supposing that the batch size is a random variable following
a Pareto distribution. A setup strategy in the model is built by considering the delay
in the setting up procedure of a data link. Thus a batch arrival GeomX /G/1 queueing
system with setup is built in this chapter. A discrete-time imbedded Markov chain
is used to analyze the stationary distribution of the queueing system and derive the
PGFs of the queue length and the waiting time of the system. Performance measures
are given in terms of the response time of data frames, setup ratios and offered loads
for different ARQ schemes. Numerical results are given to evaluate the performance
of the system and to show the influence of the self-similar degree and the delay of
the setup procedure on these performance measures

Chapter 14 analyzes a peer-to-peer (P2P) file sharing system by means of a so-
called level-dependent Quasi-Birth-and-Death (QBD) process. The dissemination of
a single file consisting of different segments is considered, and a model is proposed
for the upload queue management mechanism with peers competing for bandwidth.
By applying an efficient matrix-analytic algorithm, the performance of P2P file dif-
fusion can be evaluated in terms of the corresponding extinction probability, i.e., the
probability that the sharing process ends.

Chapter 15 considers the performance of a decentralized content delivery sys-
tem where video data is simultaneously delivered without duplication by multiple
streaming video servers, resulting in a low sending rate per video server. By focusing
on a multiple-server video streaming service reinforced by forward error correction
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(FEC), the system is modeled as a set of independent GI+M/M/1/K queues, and the
block-level loss probability is derived. Numerical results show that the decentralized
content delivery system with FEC recovery is significantly effective to guarantee
video quality even when the background traffic intensity is high.

Chapter 16 studies a mathematical model for calculating blocking probabilities
with optimal bandwidth allocation and QoS routing on multi-class communication
networks. This scheme consists of two procedures. The first step determines optimal
paths under network constraints. The second step computes the blocking probability
with predetermined optimal solutions. The blocking is due to the failure of meeting
the demand of end-to-end paths for each class.

All the above chapters highlight the scientific and technical challenges inspired
by current and future networks, and enrich novel modeling and performance evalu-
ation techniques.

We are deeply indebted to many people for their great help during the multiple
phases of publishing this book. We first would like to express our sincere grati-
tude to all reviewers for their valuable comments concerning all the chapters. The
reviewers’ reports not only helped us qualify the articles in the book, but also im-
proved their quality in presentation. Then we are heartily grateful to all the authors
for their contribution to the book. Their tremendous efforts in providing excellent
chapters made the book very attractive and informative. We would like to express
our appreciation to the staff members Loew, Elizabeth, Kostant, AnnBelanger, Jes-
sica and others at Springer Publishers, Inc. for their excellent support to complete
our editorial works. Last but not the least, we thank Dr. Mark S. K. Lau for assisting
us in a part of editorial work of this book.

Japan, Wuyi Yue
October 2008 Yutaka Takahashi

Hideaki Takagi
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Chapter 1
Two Sided DQBD Process and Solutions
to the Tail Decay Rate Problem
and Their Applications to the Generalized Join
Shortest Queue

Masakiyo Miyazawa

Abstract We are concerned with a two sided doubly quasi-birth-and-death process.
Under a discrete time setting, this is a two dimensional skip free random walk on
the half space whose second component is a nonnegative integer valued while its
first component may take positive or negative integers. Our major interest is in the
tail decay rate of the stationary distribution of this two sided process as either one of
the components goes either to infinity or to minus infinity, provided the stationary
distribution exists. The author [1] recently obtained two kinds of decay rates, called
weak and exact for the doubly QBD, DQBD for short, in terms of the transition
kernel of the DQBD. We extends those results to the two sided DQBD, and apply to
the generalized shortest queue. The tail decay rate problem for this queueing model
has been only partially answered in the literature. We show that a weak decay rate,
that is, the decay rate in the logarithmic sense, is completely specified in terms of the
primitive data for the generalized shortest queue. This refines results in Miyazawa
[2] and corrects some results in Li, Miyazawa and Zhao [3].

1.1 Introduction

A quasi birth-and-death process, QBD process for short, is a continuous time
Markov chain which has a main state, called level, and a background state in such a
way that the level is nonnegative integer valued, and its increments are ±1 at most
and controlled by the background state. This model has been well studied when the
background state space is finite (see, e.g. [4], [5]).

We are concerned with the case that the background space is infinite. Li,
Miyazawa and Zhao [3] recently proposed a double sided QBD process for the
generalized join shortest queue with two waiting lines, by extending the level of

Masakiyo Miyazawa
Department of Information Sciences, Tokyo University of Sciences, Chiba 278-8510, Japan
e-mail: miyazawa@is.noda.tus.ac.jp

W. Yue et al. (eds.), Advances in Queueing Theory and Network Applications, 3
c© Springer Science+Business Media LLC 2009



4 M. Miyazawa

such a QBD process to be integer valued. This queue is a service system with two
parallel queues that have three arrival streams, two of which are dedicated to each
queue and the other of which chooses the shortest queue with tie breaking. Assume
that those arrival streams are independent and subject to Poisson processes, and
service times are independently, identically and exponentially distributed at each
queue. Then, this queue can be formulated as the QBD process or the two sided
QBD process. In particular, the latter model is required when we take the difference
of the two queues as level.

It is notable that the transition structure may change in the double sided QBD
when the level process goes through zero. This is crucial to formulate the general-
ized join shortest queue as the double sided QBD. In this chapter, we specialize this
double sided QBD in such a way that its background process is birth-and-death. We
refer to this process as a two sided doubly quasi birth-and-death process, a two sided
DQBD for short. Since those QBD and DQBD can be formulated as discrete time
Markov chains, we are only concerned with the discrete time processes throughout
the chapter.

We are interested in the asymptotic behaviors of the stationary distributions of the
level and background state as their values go to infinity, provided it exists. Due to the
special structure of the two sided DQBD, the QBD structure is preserved when the
level and background are exchanged. So, we mainly consider the asymptotics for the
level. We are concerned with two types of the asymptotic decays of the stationary
probabilities as the level goes to infinity.

One type is called a weak decay, which is meant that the logarithm of the sta-
tionary probability dived by the level n converges to a constant, say −a, as n goes to
infinity. Then, e−a is simply referred to as a weak decay rate. Another type is called
an exactly geometric decay, which is meant that the stationary probability multi-
plied by a power constant to the level n, say αn, converges to an another constant as
n goes to infinity. Then, α−1 is referred to as an exactly geometric decay rate. In [1],
more general types of exact decay rates are considered, but we are only concerned
with these two types of decay rates in this chapter.

The purpose of this chapter is twofold. We first study the decay rate problem
for the two sided DQBD process, by extending the approach for the DQBD process
in [1]. We completely characterize the weak decay rates in terms of the transition
probabilities (Theorems 1.3 and 1.4). For the exactly geometric decay, we find suf-
ficient conditions, which are close to necessary conditions (Theorem 1.3). We sec-
ondly apply these results to find the decay rates of the stationary distributions of
the minimum of the two queues and their difference in the generalized join shortest
queue with two waiting lines.

The decay rates for this queue have been studied in [3] and [6], but they are
obtained only for certain limited cases, e.g., under a so called strongly pooled con-
dition. We completely answer to this problem for the weak decay rates, and give
weaker sufficient conditions for the exactly geometric decay rates (Theorem 1.5 and
Corollary 1.2). In particular, it turns out that the strongly pooled condition still plays
an important role for finding the decay rate for the minimum of two queues, which
may not be the square of the total traffic intensity in general.
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The two sided DQBD is a special case of the double sided QBD introduced in [3]
since the latter allows the background process to be a general Markov chain. The
exactly geometric decays are studied in [3], but only sufficient conditions are ob-
tained. Furthermore, those sufficient conditions require the stationary probabilities
at the boundaries, i.e., at level 0, so they are not easy to verify. Not for the two sided
DQBD but for the DQBD, Miyazawa [1] completely solves the decay rate problem
recently, developing the ideas in [2].

We here extend this approach in [1]. Thus, many arguments are parallel to those
in [1]. Namely, the approach heavily depends on the QBD structure and the Wiener
Hopf factorization for the Markov additive process that generate the QBD process,
and the key idea is to formulate the decay rate problem as a multidimensional op-
timization problem. However, the level and background states are not symmetric in
the two sided DQBD while they are symmetric in the DQBD. So, we need some
further effort to get the decay rates, which is a main contribution of this chapter for
a general QBD model.

For the join shortest queue and its generalized versions, the decay rate problem
has been widely studied in the literature. One possible approach is to use the large
deviation principle. Puhalskii and Vladimirov [7] recently obtained the weak de-
cay rates as the solutions of the variational problem for a much more general class
of the generalized join shortest queue with an arbitrary number of parallel queues.
However, this variational problem is very hard to not only analytically but also nu-
merically solve even for the case of two queues.

Another approach is either to use the random walk structure or the QBD formu-
lation. For example, Foley and McDonald [6] took the former formulation while Li,
Miyazawa and Zhao [3] took the latter formulation. An interesting sufficient condi-
tion, i.e., so called strongly pooled condition, is found in [6]. However, those papers
mainly consider the decay rate under this limited condition for the case of the two
queues. So far, the decay rate problem has not been well answered for the general-
ized join shortest queue. In this chapter, we completely solve this problem for the
case of the two queues (Theorem 1.5 and Corollary 1.2). For simpler arrival pro-
cesses, there are many other studies on the join shortest queues and the decay rate
problem has been relatively well answered (see references in [3], [6]).

This chapter is made up by seven sections. In Sect. 1.2, we introduce the two
sided DQBD process formally, and consider its basic property, particularly on the
rate matrices for representing the stationary distribution in a matrix geometric form.
In Sect. 1.3, we characterize the set of positive eigenvectors of the rate matrices
using the moment generating functions of the transition kernels insides and on the
boundaries. The weak decay rates are completely answered in Sect. 1.4. We also
give sufficient conditions for those decay rates to be exactly geometric. In Sect. 1.5,
we consider the generalized join the shortest queue with two queues, and answer to
the decay rate problems. We finally give some remarks on the existence results in
Sect. 1.6. Conclusions are drawn in Sect. 1.7.
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1.2 Two Sided DQBD Process

Let {(L1t ,L2t); t = 0,1, . . .} be a two dimensional Markov chain taking values in
S ≡ Z×Z+, where Z is the set of all integers and Z+ = {� ∈ Z;� ≥ 0}, with the
following transition probabilities (see Fig. 1.1).

P(L1(t+1) = i′,L2(t+1) = j′|L1t = i,L2t = j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p+
(i′−i)( j′− j), i ≥ 1, j ≥ 1, i′ − i, j′ − j = 0,±1

p−(i′−i)( j′− j), i ≤−1, j ≥ 1, i′ − i, j′ − j = 0,±1

p(1+)
(i′−i) j′ , i ≥ 1, j = 0, i′ − i = 0,±1, j′ = 0,1

p(1−)
(i′−i) j′ , i ≤−1, j = 0, i′ − i = 0,±1, j′ = 0,1

p(2)
i′( j′− j), i = 0, j ≥ 1, i′ = 0,1, j′ − j = 0,±1

p(0)
i′ j′ , i = j = 0, i′ = 0,±1, j′ = 0,1

0, otherwise,

where ∑i, j pi j = ∑i, j p(k)
i j = 1 for k = 0,±,1±,2. Thus, {(L1t ,L2t)} is a skip free

random walk in all directions, and reflected at the boundary ∂S1 ≡{(i, j)∈ S; j = 0}
and has discontinuous statistics at ∂S2 ≡ {(i, j) ∈ S; i = 0}.

We first take L1t as level, and L2t as background state, and refer to this Markov
chain as a discrete-time two sided DQBD (doubly quasi-birth-and-death) process.
In the random walk terminology, this process is two dimensional reflected random
walk on the half space {(m,n) ∈ Z

2;n ≥ 0} with discontinuous statistics at the
boundaries where either one of components vanishes. We also note that this model
is a special case of the double sided QBD in [3] whose background process is not
necessary to be birth-and-death.

To present the transition probability matrix of this Markov chain, we first intro-
duce the following matrices. For k = 0,±1 and s = ±,

Fig. 1.1 State transitions for the two sided DQBD process.
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A(s)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(1s)
k0 p(1s)

k1 0 . . .

p(s)
k(−1) p(s)

k0 p(s)
k1 0 . . .

0 p(s)
k(−1) p(s)

k0 p(s)
k1 0 . . .

0 0 p(s)
k(−1) p(s)

k0 p(s)
k1 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and for k = 0,±1,

B(1)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(0)
k0 p(0)

k1 0 . . .

p(2)
k(−1) p(2)

k0 p(2)
k1 0 . . .

0 p(2)
k(−1) p(2)

k0 p(2)
k1 0 . . .

0 0 p(2)
k(−1) p(2)

k0 p(2)
k1 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, the two sided DQBD has the following tridiagonal transition matrix P(1).

P(1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 A(−)
−1 A(−)

0 A(−)
1 0 . . .

. . . 0 A(−)
−1 A(−)

0 A(−)
1 0 . . .

. . . 0 B(1)
−1 B(1)

0 B(1)
1 0 . . .

. . . 0 A(+)
−1 A(+)

0 A(+)
1 0 . . .

. . . 0 A(+)
−1 A(+)

0 A(+)
1 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Throughout this chapter, we assume that P(1) is irreducible and aperiodic, and
positive recurrent. The unique stationary distribution of P is denoted by probability
row vector:

ν = (. . . ,ν−1,ν0,ν1, . . .),

where νn for n ∈ Z are row vectors for background states in level n. We also write
ν as {νi j; i ∈ Z, j ∈ Z+}. We assume that

(i) For each s = ±,2, A(s) ≡ A(s)
−1 +A(s)

0 +A(s)
1 is irreducible and aperiodic;

(ii) For each s =±,2, Markov additive process driven by kernel {A(s)
n ;n = 0,±1} is

1-arithmetic in the sense that for every pair (i, j)∈ S1×S1, the greatest common
divisor of {n ∈ Z;A(s)

n (i, j) > 0} is one, where Z is the set of all integers (see,
e.g., [8]).

Remark 1.1. The irreducibility of A(s) in (i) is satisfied by many applications, but it is
stronger than the irreducibility of P. Our arguments in this chapter can be modified
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so as to be valid without that irreducibility, and the same results are obtained. How-
ever, proofs becomes complicated just because we need to consider each case sep-
arately depending on the irreducibility or the non irreducibility. So, we here do not
consider the non irreducible case, which will be detailed in a technical note.

It is well-known that, for each s = ±, there exists a nonnegative matrix R(s)

uniquely determined as a minimal nonnegative solution of the matrix equation:

R(−) = A(−)
−1 +R(−)A(−)

0 +
(
R(−))2A(−)

1 , (1.1)

R(+) =
(
R(+))2A(+)

−1 +R(+)A(+)
0 +A(+)

1 , (1.2)

and the stationary distribution has the following matrix geometric form.

νn =

{
ν1
(
R(+))n−1

, n ≥ 1
ν−1

(
R(−))−n−1

, n ≤−1.
(1.3)

Note that R(s) may not be irreducible, but has a single irreducible class due to (i)
and (ii).

We also consider the case that L2 is taken as level. In this case, the transition
matrix is denoted by P(2), and given by

P(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

B(2)
0 B(2)

1 0 . . .

A(2)
−1 A(2)

0 A(2)
1 0 . . .

0 A(2)
−1 A(2)

0 A(2)
1 0 . . .

0 0 A(2)
−1 A(2)

0 A(2)
1 0 . . .

...
. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where, for k = 0,±1,

A(2)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 p(−)
(−1)k p(−)

0k p(−)
1k 0 . . .

. . . 0 p(−)
(−1)k p(−)

0k p(−)
1k 0 . . .

. . . 0 p(2)
−1k p(2)

0k p(2)
1k 0 . . .

. . . 0 p(+)
(−1)k p(+)

0k p(+)
1k 0 . . .

. . . 0 p(+)
(−1)k p(+)

0k p(+)
1k 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and for k = 0,1,
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B(2)
k =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 p(1−)
(−1)k p(1−)

0k p(1−)
1k 0 . . .

. . . 0 p(1−)
(−1)k p(1−)

0k p(1−)
1k 0 . . .

. . . 0 p(2)
−1k p(2)

0k p(2)
1k 0 . . .

. . . 0 p(1+)
(−1)k p(1+)

0k p(1+)
1k 0 . . .

. . . 0 p(1+)
(−1)k p(1+)

0k p(1+)
1k 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In this case, the stationary distribution ν = {νi j} is partitioned as

ν =
(
ν(2)

0 ,ν(2)
1 , . . .

)
,

where ν(2)
n = {νin; i ∈Z}. Viewing L1t as the background process, we have the stan-

dard process. Then, as is well known, there exists a minimal nonnegative solution
R(2) of

R(2) =
(
R(2))2A(2)

−1 +R(2)A(2)
0 +A(2)

1 , (1.4)

and the stationary distribution ν has the following form:

ν(2)
n = ν(2)

1

(
R(2))n−1

, n ≥ 1. (1.5)

We are interested in the geometric decay behaviors of the stationary vector νn as
n →±∞ and ν(2)

n as n →∞. We are interested in two different types of asymptotics.
If there are constant α+ > 1 and constant positive vector c+ such that

lim
n→∞

αn
+νn = c+,

then νn is said to asymptotically have exactly geometric decay rate α−1
+ as n → ∞.

Another decay rate is of logarithmic type, which is defined through

logr+(i) = lim
n→∞

1
n

logνni, i ∈ Z+, (1.6)

where r+(i) ≤ 1. If r+(i) does not depend on i, we write it as r+. In this case, νn
is said to asymptotically have weak geometric decay rate r+. Those decay rates are
also defined for νn as n →−∞ and for ν(2)

n as n → ∞, which are denoted by r− and
r2, respectively. Since those decay rates may not exist, we also use the following
notation:

logr+(i) = liminf
n→∞

1
n

logνni, logr+(i) = limsup
n→∞

1
n

logνni, i ∈ Z+.
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Similarly, rs(i) and rs(i) are defined for s = −,2. These decay rates are referred to
as the weak lower and weak upper decay rates, respectively.

It is noticed that r+(i) in (1.6) is bounded as

r+(i)−1 ≤ sup

{

z ≥ 1;
∞

∑
n=0

znνni < ∞

}

, i ∈ Z+.

Then, from (1.3) and (1.5), it might be expected that the weak decay rate r−1
+ is

obtained as the reciprocal of the convergence parameter cp(R(+)) of R(+), which is
defined as

cp(R(+)) = sup

{

z ≥ 0;
∞

∑
n=0

zn(R(+))n
< ∞

}

.

This is true under certain situations, but generally not true. In general, we only have
the following lower bounds for the decay rates from this information.

Lemma 1.1. The decay rates are bounded below by the corresponding convergence
parameters of the rate matrices. That is, we have

rs(i) ≥ cp(R(s))−1, s = ±,2, i ∈ Zs,

where Z2 = Z.

The proof of this lemma is exactly the same as Lemma 2.1 of [1], so it is omitted.
This lemma just gives the lower bounds, but it turns out that they are very useful to
identify the decay rates as well as to prove their existence.

We next prepare some useful facts for the convergence parameters.

Proposition 1.1 (Theorem 6.3 of [9]). For a nonnegative square matrix T , let X be
the set of all nonnegative and nonzero row vectors whose size is the same as that of
T . Then we have

cp(T ) = sup{z ≥ 0;zxT ≤ x,x ∈ X}.

We will consider all eigenvectors of R(s), s =±,2, to find the decay rate. For this,
we use the Markov additive process generated by {A(s)

k ;k = 0,±1}. Note that (1.1)
and (1.2) and the corresponding equations of R(−) and R(2) are equivalent to

I −A(s)
∗ (zu(s)) = (I − zR(s))(I −G(s)

∗ (z)), z 	= 0,s = ±,2, (1.7)

where u(s) = −1 for s = −, u(s) = 1 for s = +,2, and A∗(z) and G(s)
∗ (z) are defined

as

A(s)
∗ (z) = z−1A(s)

−1 +A(s)
0 + zA(s)

1 , G(s)
∗ (z) = A(s)

0 +R(s)A(s)
−1 + z−1A(s)

−1.
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The decomposition formula (1.7) is known as the Wiener Hopf factorization (see,
e.g. [8]). Then Proposition 1.1 concludes

Lemma 1.2. cp(R(s)) = sup{z ≥ 1;xA(s)
∗ (z) ≤ x,x ∈ X(s)} for s = ±,2, where X(s)

is the set of all nonnegative and nonzero vectors in RZ+ for s = ± and RZ for s = 2.

Remark 1.2. The proof that xA(s)
∗ (z) ≤ x implies z ≤ cp(R(s)) is immediate from

(1.7). However, it is not so obvious to find z such that cp(R(s)) ≤ z and xA(s)
∗ (z) ≤ x.

The proof of this can be found in [1].

Similarly to the case of the doubly QBD process in [1], we compute each entry
of A(s)

∗ (z) using the following notations. Let (X1,X2) be a random vector subject
to distribution {pi j}, and let (X (s)

1 ,X (s)
2 ) be those subject to distribution {p(s)

i j } for
s = 0,±,1±,2. Define generating functions as

p(s)
∗∗ (u,v) = E[uX(s)

1 vX(s)
2 ], p(1s)

∗ j (u) = E[uX(1s)
1 1(X (1s)

2 = j)], s = ±, j = 0,1,

p(s)
i∗ (v) = E[vX(s)

2 1(X (s)
1 = i)], s = ±, i, j = 0,±1,

p(s)
∗ j (u) = E[uX(s)

1 1(X (s)
2 = j)], s = ±, i, j = 0,±1,

p(2)
i∗ (u) = E[vX(2)

2 1(X (2)
1 = i)], i = 0,±1.

Then, A(s)
∗ (z) for s = ± has the following QBD structure.

A(s)
∗ (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p(1s)
∗0 (z) p(1s)

∗1 (z) 0 . . .

p(s)
∗(−1)(z) p(s)

∗0 (z) p(s)
∗1 (z) 0 . . .

0 p(s)
∗(−1)(z) p(s)

∗0 (z) p(s)
∗1 (z) 0 . . .

0 0 p(s)
∗(−1)(z) p(s)

∗0 (z) p(s)
∗1 (z) 0 . . .

...
...

. . . . . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.8)

Similarly, we have

A(2)
∗ (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . . . . . . . . . . . . . . . . .

. . . 0 p(−)
(−1)∗(z) p(−)

0∗ (z) p(−)
1∗ (z) 0 . . .

. . . 0 p(−)
(−1)∗(z) p(−)

0∗ (z) p(−)
1∗ (z) 0 . . .

. . . 0 p(2)
−1∗(z) p(2)

0∗ (z) p(2)
1∗ (z) 0 . . .

. . . 0 p(+)
(−1)∗(z) p(+)

0∗ (z) p(+)
1∗ (z) 0 . . .

. . . 0 p(+)
(−1)∗(z) p(+)

0∗ (z) p(+)
1∗ (z) 0 . . .

. . .
. . . . . . . . . . . . . . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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1.3 Eigenvectors of Rate Matrices

If we take L1 as level, then the background process {L2t} is the birth and death
process in each half lie [1,∞) or (−∞,−1]. Hence, this case is easier, so we consider
R(s) with s = ± first. In what follows, we use the following notations for s = ±,2.

V
(s)

R =
{

(z,x);zxR(s) = x,z ≥ 1,x ∈ X(s)
}

,

V
(s)

A =
{

(z,x);xA(s)(z) = x,z ≥ 1,x ∈ X(s)
}

.

We first note the following facts, which are easily concluded by the Wiener Hopf
factorization.

Lemma 1.3. Let s be either one of −, + or 2. For z > 1, (z,x) ∈ V
(s)

R if and only if
(z,x) ∈ V

(s)
A . If there is no (z,x) in V

(s)
A with z > 1, then cp(R(s)) = 1.

Then, the following result is immediate from Theorem 3.1 in [1].

Theorem 1.1. Let D
(−)
1 denote the subset of all (−θ1,θ2) in R

2 such that

E
[

eθ1X(−)
1 +θ2X(−)

2

]

= 1, (1.9)

ϕ(1−)
0 (θ1)+ϕ(1−)

1 (θ1)eθ2 ≤ 1, (1.10)
θ1 ≤ 0,θ2 ∈ R,

where ϕ(1−)
i (θ1) = E

[
eθ1X(1−)

1 ;X (1−)
2 = j

]
for j = 0,1. Similarly, let D

(+)
1 denote

the subset of all (θ1,θ2) in R
2 such that

E
[

eθ1X(+)
1 +θ2X(+)

2

]

= 1, (1.11)

ϕ(1+)
0 (θ1)+ϕ(1+)

1 (θ1)eθ2 ≤ 1, (1.12)
θ1 ≥ 0,θ2 ∈ R,

where ϕ(1+)
i (θ1) = E

[
eθ1X(1+)

1 ;X (1+)
2 = j

]
for j = 0,1. Then, for each s = ±, there

exists a (z,x) ∈ V
(s)

A if and only if there exists a (θ1,θ2) ∈ D
(s)
1 . Furthermore, we

have the following facts.

(1a) For this (θ1,θ2), (z,x) ∈ V
(−)

A

(
res., V

(+)
A

)
is given by z = eθ1 and x = {xn}:

xn =
{

c1e−θ2(n−1) + c2e−θ2(n−1), θ 2 	= θ 2,

(c′1 + c′2(n−1))e−θ2(n−1), θ 2 = θ 2,
n ≥ 1, (1.13)

where θ 2,θ 2 are the two solutions of (1.9) (res., (1.11)) for the given θ1 such
that θ 2 ≤ θ 2, and ci,c′i are nonnegative constants satisfying c1 +c2 	= 0 and c′1 +
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c′2 	= 0. Furthermore, both of c1 and c2 are positive only if the strict inequality
holds in (1.9) (res., (1.11)).

(1b) The convergence parameter cp(R(s)) is obtained as the supremum of eθ1 over
D

(s)
1 for each s = ±.

Similarly to Theorem 1.1, we can prove the following theorem for R(2). Since
this result is the core of our arguments, we give its detailed proof in Appendix A.

Theorem 1.2. Let D2 denote the subset of all (−η(−)
1 ,η(+)

1 ,η2) in R
3 such that

E
[

eη
(−)
1 X(−)

1 +η2X(−)
2

]

= 1, (1.14)

E
[

eη
(+)
1 X(+)

1 +η2X(+)
2

]

= 1, (1.15)

ϕ(2)
−1 (η2)e−η

(−)
1 +ϕ(2)

0 (η2)+ϕ(2)
1 (η2)eη

(+)
1 ≤ 1, (1.16)

η2 ≥ 0,η(−)
1 ,η(+)

1 ∈ R,

where ϕ(2)
i (η2) = E

[
eη2X(2)

2 ;X (2)
1 = i

]
for i = 0,±1. Then, there exists a (z,x) ∈

V
(2)

A if and only if there exists a (−η(−)
1 ,η(+)

1 ,η2) ∈ D2. Furthermore, we have the
following facts.

(2a) For this (−η(−)
1 ,η(+)

1 ,η2), (z,x) ∈ V
(2)

A is given by z = eη2 and x = {xn}:

x(s)
n =

⎧
⎨

⎩

c(s)
1 e−η

(s)
1 (n−1) + c(s)

2 e−η
(s)
1 (n−1), η(s)

1 	= η(s)
1 ,

(
d(s)

1 +d(s)
2 |n−1|

)
e−η

(s)
1 (n−1), η(s)

1 = η(s)
1

n ≥ 1,s = ±, (1.17)

where η(−)
1 ,η(−)

1 (res., η(+)
1 ,η(+)

1 ) are the two solutions of (1.14) (res., (1.15))

for the given η2 such that η(−)
1 ≤ η(−)

1 (res., η(+)
1 ≤ η(+)

1 ), and for each s =±,

c(s)
i ,d(s)

i are nonnegative constants satisfying c(s)
1 +c(s)

2 	= 0 and d(s)
1 +d(s)

2 	= 0.
Furthermore, both of c(s)

1 and c(s)
2 are positive only if the strict inequality holds

in (1.16).
(2b) The convergence parameter cp(R(2)) is obtained as the supremum of eη2 over

D2.

For convenience, we also introduce the following projections of D2, which will
be used in Lemma 1.7.

D
(−)
2 = {(η(−)

1 ,η2);(η
(−)
1 ,η(+)

1 ,η2) ∈ D2},
D

(+)
2 = {(η(+)

1 ,η2);(η
(−)
1 ,η(+)

1 ,η2) ∈ D2}.

An important observation in these theorems is that z satisfying (z,x) ∈ V (R(s))
can be found through θ1 or η2 in sets D

(−)
1 , D (+)

1 and D2, which are in the boundary
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of convex sets. Furthermore, D
(s)
1 , D

(2)
2 and D2 are compact and connected sets for

s = ±. This observation is expected to extend Corollary 3.1 of [1] for the two sided
DQBD process. However, we have to check the two sided version of Proposition 3.1
of [1]. That is, we need the following lemmas. For convenience, we denote the set
of non-positive integers by Z−.

Lemma 1.4. For s =±, if there exist a positive vector x(s) = {x(s)
n ;n ∈Zs} such that

(αs,x(s)) ∈ V
(s)

A and some finite ds(x),ds(x) ≥ 0 such that

liminf
n→∞

νsn

x(s)
n

= ds(x
(s)), limsup

n→∞

νsn

x(s)
n

= ds(x(s)),

then, for any nonnegative column vector u(s) satisfying x(s)u(s) <∞, there are noneg-
ative and finite d†

s (x(s)) and d
†
s (x(s)) such that

αsd†
s (x

(s))x(s)u(s) ≤ liminf
n→s∞

α |n|
s νnu(s)

≤ limsup
n→s∞

α |n|
s νnu(s) ≤ αsd

†
s (x

(s))x(s)u(s). (1.18)

In particular, if d†
s (x(s)) = d

†
s (x(s)) and 0 ≤ d†

s ≡ d†
s (x(s)) < ∞, then

lim
n→s∞

αn
s νnu(s) = αsd†

s x(s)u(s). (1.19)

That is, νnu(s)
decays geometrically with rate α−1

s as n → s∞.

Lemma 1.5. If there exist a positive vector x = {xn;n ∈ Z} such that (α,x) ∈ V
(2)

A

and some finite d−(x),d−(x),d+(x),d+(x) ≥ 0 such that

liminf
n→−∞

νn1

xn
= d−(x), limsup

n→−∞

νn1

xn
= d

−(x),

liminf
n→+∞

νn1

xn
= d+(x), limsup

n→+∞

νn1

xn
= d

+(x),

then, for any nonnegative column vector u satisfying xu < ∞, there are nonegative
and finite d†(x) and d

†(x) such that

αd†(x)xu ≤ liminf
n→∞

αnν(2)
n u ≤ limsup

n→∞
αnν(2)

n u ≤ αd
†(x)xu. (1.20)

In particular, if d†(x) = d
†(x) and 0 ≤ d† ≡ d†(x) < ∞, then

lim
n→∞

αnν(2)
n u = αd†xu. (1.21)

That is, ν(2)
n u decays geometrically with rate α−1 as n goes to infinity.
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Since this lemma can be proved in a similar way to Proposition 3.1 of [1], we
omit its proof. For each n ≥ 0, let

ν(−)
−n = {ν(−n)k;k ≥ 0}, ν(+)

n = {νnk;k ≥ 0}, ν(2)
n = {νkn;k ∈ Z}.

Then, the next corollary follows from Theorem 1.1, Theorem 1.2 and Lemmas 1.4
and 1.5 similarly to Corollary 3.1 of [1].

Corollary 1.1. Define βs for s±,2 as

β− = sup
{

θ1; limsup
n→∞

ν(−1)neθ2n < ∞,(θ1,θ2) ∈ D
(−)
1

}

,

β+ = sup
{

θ1; limsup
n→∞

ν1neθ2n < ∞,(θ1,θ2) ∈ D
(+)
1

}

,

β2 = sup

{

η2; limsup
n→∞

ν(−n)1eη
(−)
1 n < ∞,

limsup
n→∞

νn1eη
(+)
1 n < ∞,(η(−)

1 ,η(+)
1 ,η2) ∈ D2

}

.

Then, the weak upper decay rates r−(i), r+(i) and r2( j) of ν−ni, νni and ν jn, respec-
tively, as n → ∞ are uniformly bounded by e−β− , e−β+and e−β2 . In particular, for
each s = ±,2, if βs = logcp(R(s)), then the weak decay rate rs exists and rs = e−βs .
Furthermore, if the asymptotic decay of ν1n, ν(−1)n or νn1 and ν−n(−1) is exactly
geometric as n → ∞, then the corresponding stationary level distribution asymptoti-
cally decays in the exactly geometric form.

1.4 Answers to Decay Rate Problem

We are now in a position to answer to the decay rate problem. Since D
(s)
1 for s = ±

and D2 are compact sets, we can define, for s = ±,

θ (sc)
1 = max{θ1;(θ1,θ2) ∈ D

(s)
1 }, θ (sc)

2 = min{θ2;(θ (sc)
1 ,θ2) ∈ D

(s)
1 },

η(c)
2 = max{η2;(η(−)

1 ,η(+)
1 ,η2) ∈ D2},

η(sc)
1 = max{η(s)

1 ;(η(−)
1 ,η(+)

1 ,η(c)
2 ) ∈ D2}.

Note that θ (sc)
1 = logcp(R(s)) for s = ± and η(c)

2 = logcp(R(2)). Furthermore,
(η(−c)

1 ,η(+c)
1 ,η(c)

2 ) and (θ (sc)
1 ,θ (sc)

2 ) are in D2 and D
(s)
1 for s = ±, respectively.

Similarly to Theorem 4.1 of [1], we consider the following nonlinear optimiza-
tion problems. Let, for s = ±,
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αs = sup{eθ
(s)
1 ;θ (s)

2 ≤ η2,η
(−)
1 ≤ θ (−)

1 ,η(+)
1 ≤ θ (+)

1 ,

(θ (−)
1 ,θ (−)

2 ) ∈ D
(−)
1 ,(θ (+)

1 ,θ (+)
2 ) ∈ D

(+)
1 ,(η(−)

1 ,η(+)
1 ,η2) ∈ D2}, (1.22)

α2 = sup{eη2 ;θ (−)
2 ≤ η2,θ

(+)
2 ≤ η2,η

(−)
1 ≤ θ (−)

1 ,η(+)
1 ≤ θ (+)

1 ,

(θ (−)
1 ,θ (−)

2 ) ∈ D
(−)
1 ,(θ (+)

1 ,θ (+)
2 ) ∈ D

(+)
1 ,(η(−)

1 ,η(+)
1 ,η2) ∈ D2}. (1.23)

We can find solutions αs for s = ±,2 in the following way.

Lemma 1.6. For the two sided DQBD process satisfying the assumptions (i) and
(ii), suppose that its stationary distribution exists, which denoted by ν = {νi j}. Then,
we have

rs ≡ sup
i

rs(i) ≤ α−1
s , s = ±,2. (1.24)

Proof. We define the following functions of u,u−,u+ ≥ 0.

f−(u) = sup
{
θ1;θ2 ≤ u,(θ1,θ2) ∈ D

(−)
1

}
,

f+(u) = sup
{
θ2;θ1 ≤ u,(θ1,θ2) ∈ D

(+)
1

}
,

f2(u−,u+) = sup
{
η2;η(−)

1 ≤ u−,η(−)
1 ≤ u+,(η(−)

1 ,η(+)
2 ,η2) ∈ D2

}
.

For convenience, let σs = − logrs for s = ±,2. Suppose that 0 ≤ us ≤ σs, which
implies that rs(1) ≤ e−us and r2(s) ≤ e−u2 for s = ±. Then, Corollary 1.1 leads that

f−(u2) ≤ σ−, f+(u2) ≤ σ+, f2(u−,u+) ≤ σ2. (1.25)

We next inductively define u(n)
s for n = 0,1, . . . and s = ±,2 in the following way.

Let u(0)
s = 0, and

u(n+1)
− = f−

(
u(n)

2

)
, u(n+1)

+ = f+
(

u(n)
2

)
, u(n+1)

2 = f2

(
u(n+1)
− ,u(n+1)

+

)
.

Then, it is easy to see that u(n)
s is non decreasing in n, and satisfies (1.25) for us = u(n)

s
for s = ±,2. Hence, Corollary 1.1 concludes

u(n)
s ≤ σs, n = 0,1, . . . , s = ±,2.

On the other hand, from the definitions of αs, it is easy to prove by induction that

u(∞)
s ≡ lim

n→∞
u(n)

s ≤ logαs, s = ±,2.

Then, it can be shown that the limits u(∞)
s are attained in finitely many steps. The

detailed proof of this can be found in the proof of Theorem 4.1 of [1]. Hence, we
have
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logαs = lim
n→∞

u(n)
s ≤ σs, s = ±,2.

Thus, we get (1.24). 
�

For each s = ±, define the following four sets of conditions.

(sC1) η(sc)
1 < θ (sc)

1 and θ (sc)
2 < η(c)

2 , (sC2) η(sc)
1 < θ (sc)

1 and η(c)
2 ≤ θ (sc)

2 ,

(sC3) θ (sc)
1 ≤ η(sc)

1 and θ (sc)
2 < η(c)

2 , (sC4) θ (sc)
1 ≤ η(sc)

1 and η(c)
2 ≤ θ (sc)

2 .

These conditions are exclusive and cover all the cases for each s = ±. Furthermore,
(sC4) is impossible since θ (sc)

1 ≤ η(sc)
1 implies that η(c)

2 > θ (sc)
2 due to the convexity

of the set with boundary (1.9) and (1.11). For the other three cases for each s = ±,
we have to consider their combinations, so nine cases in total. For convenience, we
denote the condition that (−Ci) and (+C j) hold by C(i, j) for i, j = 1,2,3.

The next lemma shows how we can compute αs for s = ±,2.

Lemma 1.7. Under the assumptions of Lemma 1.6, the α−, α+ and α2 of (1.22) and
(1.23) are obtained in either one of the following nine ways.

(c1) If C(1,1) holds, then α− = exp(θ (−c)
1 ), α+ = exp(θ (+c)

1 ) and α2 = exp(η(c)
2 ).

(c2) If C(1,2) holds, then α− = exp(θ (−c)
1 ), α2 = exp(η(c)

2 ) and α+ is the maximum
value satisfying (logα+,η(c)

2 ) ∈ D
(+)
1 .

(c3) If C(2,1) holds, then α+ = exp(θ (+c)
1 ), α2 = exp(η(c)

2 ) and α− is the maximum
value satisfying (logα−,η(c)

2 ) ∈ D
(−)
1 .

(c4) If C(1,3) holds, then α+ = exp(θ (+c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(+)
2 with θ1 ≤ θ (+c)

1 , and α− is the maximal value satisfying
(logα−,θ2) ∈ D

(−)
1 with θ2 ≤ α2.

(c5) If C(3,1) holds, then α− = exp(θ (−c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(−)
2 with θ1 ≤ θ (−c)

1 , and α+ is the maximal value satisfying
(logα+,θ2) ∈ D

(+)
1 with θ2 ≤ α2.

(c6) If C(2,2) holds, then α2 = exp(η(c)
2 ) and αs is the maximum value satisfying

(logαs,η
(c)
2 ) ∈ D

(s)
1 for s = ±.

(c7) If C(2,3) holds, then α+ = exp(θ (+c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(+)
2 with θ1 ≤ θ (+c)

1 , and α− is the maximum value satisfying
(logα−, logα2) ∈ D

(−)
1 .

(c8) If C(3,2) holds, then α− = exp(θ (−c)
1 ), α2 is the maximum value satisfying

(θ1, logα2) ∈ D
(−)
2 with θ1 ≤ θ (−c)

1 , and α+ is the maximum value satisfying
(logα+, logα2) ∈ D

(+)
1 .

(c9) If C(3,3) holds, then α− = exp(θ (−c)
1 ), α− = exp(θ (+c)

1 ) and
α2 is the maximum value satisfying (θ (−)

1 ,θ (+)
1 , logα2)∈D2 with θ (−)

1 ≤ θ (−c)
1

and θ (+)
1 ≤ θ (+c)

1 .
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This theorem can be proved in the same way as Lemma 4.2 of [1]. So, instead of
proving it, we give figures to explain how those decay rates are obtained. They can
be found in Figs. 1.2, 1.3 and 1.4. Since cases (c3), (c5) and (c7) are symmetric with
(c2), (c4) and (c6), respectively, we omit their figures. We shall see more figures for
specific examples in Sect. 1.5.

Theorem 1.3. Under the assumptions of Lemma 1.6, we have rs = α−1
s for s =

±,2. Namely, α−1
− , α−1

+ and α−1
2 are the weak decay rates of ν(−)

−n , ν(+)
n and ν(2)

n ,
respectively, as n → ∞. Furthermore, the marginal probabilities, ν(−)

−n 1, ν(+)
n 1 and

ν(2)
n 1, have the same decay rates α−1

− , α−1
+ and α−1

2 , respectively, if they are less
than 1, respectively.

Proof. We first consider rs(1) for s = ±,2, which are the weak upper decay rates of
ν−n1,νn1 and ν1n as n → ∞, respectively, are obtained by (1.24). Hence, Lemmas
1.1, 1.4 and 1.5 yield

(q(+c)
1 , q(+c)

2 )
(−q(−c)

1 , q(−c)
2 )

(−h(−c)
1 , h(c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9) Equation (11)

(c1)

(q(+c)
1 , q(+c)

2 )

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)
Equation (11)

(c2)

(10) with equality (10) with equality(12) with equality (12) with equality

Fig. 1.2 Typical examples for (c1) and (c2).

(q(+c)
1 , q(+c)

2 )

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 ) (h(+c)
1 , h(c)

2 )

Equation (11)

(10) with equality (12) with equality

Equation (9)

(c4)

(q(+c)
1 , q(+c)

2 )(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)

Equation (11)

(c6)

(12) with equality(10) with equality

Fig. 1.3 Typical examples for (c4) and (c6).
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(q(+c)
1 , q(+c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)

Equation (11)

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(10) with equality (12) with equality

(c9)

(q(+c)
1 , q(+c)

2 )

(h(+c)
1 , h(c)

2 )

Equation (9)

Equation (11)

(−q(−c)
1 , q(−c)

2 )

(−h(−c)
1 , h(c)

2 )

(c7)

(12) with equality(10) with equality

Fig. 1.4 Typical examples for (c7) and (c9).

cp

(
R(s)

)−1
≤ rs(i) ≤ rs(i) ≤ α−1

s , i ∈ Z+ for s = ± and i ∈ Z for s = 2.

From Lemma 1.7, at least one of α−,α+ and α2 agree with the corresponding con-
vergence parameter cp(R(s)). Hence, we have rs = α−1

s at least for one s. This to-
gether with Corollary 1.1 and Lemmas 1.4 and 1.5 conclude that the same equality
must hold for the other s’s. This completes the proof. 
�

We can refine the decay rates in this theorem from weak to exact ones in a similar
way as Theorem 4.2 of [1] using Proposition 3.1 of [1] and Lemmas 1.4 and 1.5 for
the case that the decay rates are exactly geometric. However, for the other cases,
we can not directly use Theorem 5 of [10] which was used in [1] since the level or
background state is two sided. Thus, we here only present the case that the exactly
geometric decay occurs. We omit its proof since it is similar to Theorem 4.2 of [1].

Theorem 1.4. Under the assumptions of Theorem 1.3 with α− > 1, α+ > 1 or α2 >
1, let, for s = ±,

D
(s)
0 =

{

(sθ1,θ2) ∈ R
2;E

[

eθ1X(s)
1 +θ2X(s)

2

]

= 1
}

,

θ smax
i = arg max

(θ1,θ2)∈D
(s)
0

{θi}, i = 1,2.

Then, we have the exactly geometric decay rates for the following cases.

(d1) If either (-C2) or (-C3) holds, then both asymptotic decays of {ν(−n)k} and
{ν�n} as n → ∞ are exactly geometric with the decay rates α−1

− and α−1
2 , re-

spectively.
(d2) If either (+C2)) or (+C3) holds, then both asymptotic decays of {νnk} and {ν�n}

as n→∞ are exactly geometric with the decay rates α−1
+ and α−1

2 , respectively.
(d3) If (C1) holds and if θ smax

1 	∈ D
(s)
1 and η(c)

1 < θ (sc)
1 , then the asymptotic decay

of {ν(sn)k} ({ν�n}) as n → ∞ is exactly geometric with the rate α−1
s (α−1

2 ) for
s = ±.
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1.5 Generalized Join Shortest Queue

Let us apply Theorems 1.3 and 1.4 to the generalized join shortest queue which is
studied in [3], [6] and explained in Sect. 1.1. We first introduce notations for this
model. It has two parallel queues, numbered as queues 1 and 2. For each i = 1,2,
queue i serves customers in the First-Come First-Served manner with i.i.d. service
times subject to the exponential distribution with rate μi. There are three exogenous
Poisson arrival streams. The first and second streams go to queues 1 and 2 with
the mean arrival rate λ1 and λ2, respectively, while arriving customers in the third
stream with the mean rate δ choose the shorter queue with tie breaking. The decay
rates does not depend on the probability that customer with tie breaking choose
queue 1, so we simply assume it to be 1/2.

We are interested to see how the stationary tail probabilities of the shorter queue
lengths and the difference of the two queues decay. Due to the dedicated stream to
each queue, this problem is much harder than the one for the standard joining the
shortest queue. Since we only consider the stationary distribution, we can formulate
this continuous time model as a discrete time Markov chain. For this, we assume
without loss of generality that

λ1 +λ2 +μ1 +μ2 +δ = 1.

Let Q1t and Q2t be the queue lengths including customers being served at time
t = 0,1, . . ., and let L1t = Q2t −Q1t and L2t = min(Q1t ,Q2t). It is not hard to see
that (L1t ,L2t) is a skip free random walk on each region (Z+ ∪\{0})× (Z+ \{0})
reflected at the boundary Z×{0} and has different transitions at {0}×Z+ (see
Fig. 1.5).

Then, the transition probabilities are give by

p(−)
(−1)0 = λ1, p(−)

(−1)(−1) = μ2, p(−)
10 = μ1, p(−)

11 = λ2 +δ ,

p(+)
10 = λ2, p(+)

1(−1) = μ1, p(+)
(−1)0 = μ2, p(+)

(−1)1 = λ1 +δ ,

p(2)
10 = λ2 +

δ
2

, p(2)
1(−1) = μ1, p(2)

(−1)(−1) = μ2, p(2)
(−1)0 = λ1 +

δ
2

,

m1m1

m1

m1

m2

m2m2

m2

m1 + m2

l1 + d

l1 + dl2 + d

l2 + d

l2 +
d
2

l1 +
d
2

l1 +
d
2

l2 +
d
2

l1

l1

l2

l2

min(Q1,Q2)

Q2 −Q1m2

m1

Fig. 1.5 State transitions for the generalized shortest queue.
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p(1−)
(−1)0 = λ1, p(1−)

00 = μ2, p(1+)
10 = μ1, p(1−)

11 = λ2 +δ ,

p(1+)
10 = λ2, p(1+)

00 = μ1, p(1+)
(−1)0 = μ2, p(1+)

(−1)1 = λ1 +δ ,

p(0)
10 = λ2 +

δ
2

, p(0)
00 = μ1 +μ2, p(0)

(−1)0 = λ1 +
δ
2

,

where all other transitions are null. To exclude obvious cases, we assume that
δ ,μ1,μ2 are all positive.

Denote traffic intensities by

ρ1 =
λ1

μ1
, ρ2 =

λ2

μ2
, ρ =

λ1 +λ2 +δ
μ1 +μ2

.

Then, it is known that this generalized join shortest queue is stable if and only if ρ1 <
1,ρ2 < 1 and ρ < 1 (e.g., see [6]). This stability condition is assumed throughout
this section. We will also use the following notation, which were introduced and
shown to be very useful in computations in [3].

γ1 = μ1ρ2 +λ2, γ2 = μ2ρ2 +λ1.

We apply Theorem 1.3 to this model. For this, we need to compute θ (−c), θ (+c)

and η(c)
2 . In the view of Theorems 1.1 and 1.2, they are obtained if we can solve the

following three sets of equations.

E
[

eθ1X(−)
1 +θ2X(−)

2

]

= 1, ϕ(1−)
0 (θ1)+ϕ(1−)

1 (θ1)eθ2 = 1, (1.26)

E
[

eθ1X(+)
1 +θ2X(+)

2

]

= 1, ϕ(1+)
0 (θ1)+ϕ(1+)

1 (θ1)eθ2 = 1, (1.27)

E
[

eη
(−)
1 X(−)

1 +η2X(−)
2

]

= 1, E
[

eη
(+)
1 X(+)

1 +η2X(+)
2

]

= 1,

ϕ(2)
−1 (η2)e−η

(−)
1 +ϕ(2)

0 (η2)+ϕ(2)
1 (η2)eη

(+)
1 = 1. (1.28)

For convenience, let z = e−θ1 and ξ = eθ2 in (1.26). Then, we have

λ1z+μ2zξ−1 +μ1z−1 +(λ2 +δ )z−1ξ = 1, (1.29)
λ1z+μ2 +μ1z−1 +(λ2 +δ )z−1ξ = 1. (1.30)

Solving these equations for z 	= 1, we have z = ξ = ρ−1
1 . For z = ρ−1

1 , (1.29) yields
ξ = ρ−1

1 , μ2
λ2+δ ρ

−1
1 . Note that ρ−1

1 < μ2
λ2+δ ρ

−1
1 if and only if μ2 > λ2 + δ . Hence,

reminding the definitions of θ−max
i :

θ−max
1 = max{logz; (1.29) holds.}, θ−max

2 = max{logξ ; (1.29) holds.},
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we have
(
θ (−c)

1 ,θ (−c)
2

)
=
{

(logρ−1
1 , logρ−1

1 ), μ2 > λ2 +δ
(θ−max

1 ,θ−max
2 ), μ2 ≤ λ2 +δ .

(1.31)

It is also notable that θ−max
1 ≥ logρ−1

1 , so we always have that θ (−c)
1 ≥ logρ−1

1 .

Remark 1.3. The θ−max
i for i = 1,2 are computed from their definitions as

θ−max
1 = log

1
2λ1

(
1−2

√
μ2(λ2 +δ )+ζ (−)

1

)
,

θ−max
2 = log

1−4(λ1μ1 +(λ2 +δ )μ2)+ζ (−)
2

8λ1(λ2 +δ )
,

where

ζ (−)
1 =

√

1+4(μ2(λ2 +δ )−
√
μ2(λ2 +δ )−λ1μ1) ,

ζ (−)
2 =

√

(1−4(λ1μ1 +(λ2 +δ )μ2))2 −64(λ2 +δ )λ1μ1μ2 .

Similarly, letting z = eθ1 and ξ = eθ2 in (1.27),

λ2z+μ1zξ−1 +μ2z−1 +(λ1 +δ )z−1ξ = 1, (1.32)
λ2z+μ1 +μ2z−1 +(λ1 +δ )z−1ξ = 1. (1.33)

Solving these equations for z 	= 1, we have z = ξ = ρ−1
2 . For z = ρ−1

2 , (1.32) yields
ξ = ρ−1

2 , μ1
λ1+δ ρ

−1
2 . Reminding that

θ+max
1 = max{logz; (1.32) holds.}, θ+max

2 = max{logξ ; (1.32) holds.},

we have that θ (+c)
1 ≥ logρ−1

2 and

(
θ (+c)

1 ,θ (+c)
2

)
=
{

(logρ−1
2 , logρ−1

2 ), μ1 > λ1 +δ
(θ+max

1 ,θ+max
2 ), μ1 ≤ λ1 +δ .

(1.34)

We also consider to solve (1.28). In this case, let ξ = eη2 , z1 = e−η
(−)
1 and z2 =

eη
(+)
1 . Then, (1.28) becomes

λ1z1 +μ2z1ξ−1 +μ1z−1
1 +(λ2 +δ )z−1

1 ξ = 1, (1.35)

λ2z2 +μ1z2ξ−1 +μ2z−1
2 +(λ1 +δ )z−1

2 ξ = 1, (1.36)
(

λ1 +
δ
2

)

z1 +μ2z1ξ−1 +μ1z2ξ−1 +
(

λ2 +
δ
2

)

z2 = 1. (1.37)

These equations have been solved in [3]. That is, if z 	= 1, then ξ = ρ−2 and
z1 = z2 = ρ−1. For ξ = ρ−2, the first equation has solutions z1 = ρ−1, γ1+δ

γ2
ρ−1, and
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the second equation yields z2 = ρ−1, γ2+δ
γ1
ρ−1. In this case, η(c)

2 is obtained as the
maximum ξ that satisfies (1.35), (1.36) and

(

λ1 +
δ
2

)

z1 +μ2z1ξ−1 +μ1z2ξ−1 +
(

λ2 +
δ
2

)

z2 ≤ 1. (1.38)

Thus, we need to solve a convex optimization problem. We here already know
that (z1,z2,ξ ) = (1,1,1),(ρ−1,ρ−1,ρ−2) are the extreme points of the constrains.
To identify the latter point on the convex curves (1.35) and (1.36), it is convenient
to introduce the following classifications:

γ2 +δ > γ1, γ1 +δ > γ2, (1.39)
γ2 +δ ≤ γ1, γ1 +δ > γ2, (1.40)
γ2 +δ > γ1, γ1 +δ ≤ γ2, (1.41)

where we exclude the case that γ2 + δ ≤ γ1 and γ1 + δ ≤ γ2, which is impossible
since δ > 0. Note that (1.39) is equivalent to

|γ1 − γ2| < δ ,

which is introduced and called strongly pooled in [6].
We now find η(c)

2 by solving the convex optimization problem.

Lemma 1.8. If the strongly pooled condition (1.39) holds, then

η(c)
2 = logρ−2, η(−c)

1 = η(+c)
1 = logρ−1.

Otherwise, if (1.40) holds, then

(η(c)
2 ,η(−c)

1 ,η(+c)
1 ) =

(

θ−max
2 , log

eη
(c)
2

2(λ1eη
(c)
2 +μ2)

,arg max
(θ1,η(c)

2 )∈D
(+)
0

θ1

)

,

and, if (1.41) holds, then

(η(c)
2 ,η(−c)

1 ,η(+c)
1 ) =

(

θ+max
2 ,arg max

(θ1,η(c)
2 )∈D

(−)
0

θ1, log
eη

(c)
2

2(λ2eη
(c)
2 +μ1)

)

.

We defer the proof of this lemma to Appendix B.
We next consider to apply Theorem 1.3 to the generalized join shortest queue. To

this end, we introduce another classifications.

ρ1 < ρ, ρ2 < ρ, (1.42)
ρ1 ≥ ρ, ρ2 < ρ, (1.43)
ρ1 < ρ, ρ2 ≥ ρ, (1.44)
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where we do not consider the case that ρ1 ≥ ρ and ρ2 ≥ ρ , which is impossible
since δ > 0. The condition (1.42) is referred to as a weakly pooled condition in [6].

Under the conditions (1.39) and (1.42), the asymptotic decay of

P(min(Q1,Q2) = n,Q1 −Q2 = �), n → ∞

is shown to be exactly geometric with decay rate ρ2 for each fixed � in [3], [6]. This
is the only known results for the decay rate for the minimum of the two queues.
Using the two sets of the classifications, we can answer to the decay rate problem
for all the cases but for the weak decay rates.

Theorem 1.5. For the generalized join shortest queue with two queues, suppose
that the stability conditions ρ < 1, ρ1 < 1 and ρ2 < 1 are satisfied. Then, the weak
decay rate r2 exists for the minimum of the two queues in the sense of marginal
distribution as well as jointly with each fixed difference of the two queues, and one
of the following three cases occurs.

(g1) If (1.39) holds, then either one of the following cases happens.

(g1a) (1.42) implies r2 = ρ2.

(g1b) (1.43) implies r2 =
λ2 +δ
μ2

ρ1.

(g1c) (1.44) implies r2 =
λ1 +δ
μ1

ρ2.

(g2) If (1.40) holds, then either one of the following cases happens.

(g2a) (1.42) implies r2 =

⎧
⎨

⎩

e−θ
−max
2 , η(+c)

1 ≤ θ (+c)
1

λ1 +δ
μ1

ρ2, η
(+c)
1 > θ (+c)

1 .

(g2b) (1.43) implies

r2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−θ
−max
2 , η(−c)

1 < logρ−1
1 ,η(+c)

1 < θ (+c)
1

λ2 +δ
μ2

ρ1, η(−c)
1 ≥ logρ−1

1 ,η(+c)
1 < θ (+c)

1

λ1 +δ
μ1

ρ2, η(−c)
1 < logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

min
(
λ2 +δ
μ2

ρ1,
λ1 +δ
μ1

ρ2

)

, η(−c)
1 ≥ logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1 .

(g2c) (1.44) implies r2 =
λ1 +δ
μ1

ρ2.

(g3) If (1.41) holds, then either one of the following cases happens.

(g3a) (1.42) implies r2 =

⎧
⎨

⎩

e−θ
+max
2 , η(−c)

1 ≤ θ (−c)
1

λ2 +δ
μ2

ρ1, η
(−c)
1 > θ (−c)

1 .
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(g3b) (1.43) implies r2 =
λ2 +δ
μ2

ρ1.

(g3c) (1.44) implies

r2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−θ
+max
2 , η(−c)

1 < θ (−c)
1 ,η(+c)

1 < logρ−1
2

λ2 +δ
μ2

ρ1, η(−c)
1 ≥ θ (−c)

1 ,η(+c)
1 < logρ−1

2

λ1 +δ
μ1

ρ2, η(−c)
1 < θ (−c)

1 ,η(+c)
1 ≥ logρ−1

2

min
(
λ2 +δ
μ2

ρ1,
λ1 +δ
μ1

ρ2

)

, η(−c)
1 ≥ θ (−c)

1 ,η(+c)
1 ≥ logρ−1

2 .

Furthermore, the decay rates are exactly geometric for the cases (g1), (g2) unless
η(−c)

1 = θ−max
1 and (g3) unless η(+c)

1 = θ+max
1 .

Proof. This theorem is concluded applying Theorem 1.3 together with Lemma 1.7
for (θ (sc)

1 ,θ (sc)
2 ) for s =± and Lemma 1.8. We first consider case (g1a). In this case,

we suppose that the strongly pooled condition (1.39) and the weakly pooled condi-
tion (1.42) hold, then θ (sc)

1 ≥ η(sc)
1 for s = ± from (1.31), (1.34) and Lemma 1.6.

Hence, either one of C(1,1). C(1,2) or C(2,1) occurs in Lemma 1.7, which implies

that r2 = α−1
2 = e−η

(c)
2 = ρ2.

We next consider (g1b). In this case, (1.39) and (1.43) are assumed. Note that
ρ1 ≥ ρ in (1.43) implies that

μ2 ≥
μ1

λ1
(λ2 +δ ) > λ2 +δ .

Hence, we always have θ (−c)
1 = logρ−1

1 from (1.31) in this case. Since logρ−1
1 ≤

logρ−1 = η(−c)
1 and η+c

1 = logρ−1 < logρ−1
2 ≤ θ (+c)

1 , we have (g1b) from (c5) or
(c8) of Lemma 1.7.

The other cases are similarly proved. So, we omit their details. 
�

To visualize the results of Theorem 1.5, we draw equations (1.26) and (1.27)
on the (θ1,θ2) plane simultaneously for some examples. We here consider the four
cases (g1a), (g1b), (g2a) and (g2b).

These four cases are given in Figs. 1.6 and 1.7. In case (g1a) of Fig. 1.6,

λ1 =
1

16
, λ2 =

3
16

, δ =
1
8
, μ1 =

1
4
, μ2 =

3
8
,

which implies that ρ1 = 1
4 , ρ2 = 1

2 and ρ = 3
5 . In case (g1b),

λ1 =
6

29
, λ2 =

4
29

, δ =
1

29
, μ1 =

10
29

, μ2 =
8

29
,

which implies that ρ1 = 0.6, ρ2 = 0.5 and ρ = 11
18 .
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log r−2

log r−1
2− log r−1

1
− log r−1 log r−1

− log
g 2 + d
g 1

r−1

(q(+c)
1 ,q (+c)

2 )

(−q(−c)
1 ,q (−c)

2 )

(−h(−c)
1 ,h (c)

2 )

(h(+c)
1 ,h (c)

2 )

log r−2

− log r−1

− log r−1
1

(h(+c)
1 ,h (c)

2 )(−h(−c)
1 ,h (c)

2 )

log r−1 log r−1
2

(−q(−c)
1 ,q (−c)

2 )

(q(+c)
1 ,q (+c)

2 )

Equation (8)

Equation (8)

Equation (10) Equation (10)

log
m2

l2 + d
r−1
1

log r−1
1

D(+)
2

D(−)
2

D(−)
2 D(+)

2

Case (g1a) Case (g1b)

Fig. 1.6 The decay rates for strongly pooled (1.39): case (g1a) for (1.42) and case (g1b) for (1.43).

log r−2

log r−1
2− log r−1

1 − log r−1 log r−1

(q(+c)
1 ,q (+c)

2 )

(−q(−c)
1 ,q (−c)

2 )

(−h(−c)
1 , (c)

2 )
(h(+c)

1 ,h (c)
2 )

log r−2

− log r−1

− log r−1
1

(h(+c)
1 ,h (c)

2 )(−h(−c)
1 ,h (c)

2 )

log r−1 log r−1
2

(−q(−c)
1 ,q (−c)

2 )

(q(+c)
1 ,q (+c)

2 )

Equation (8) Equation (8)

Equation (10)

Equation (10)

log r−1
1

− log
g 2 + d
g 1

r−1

D(+)
2 D(+)

2
D(−)

2
D(−)

2

Case (g2a) Case (g2b)

h(c)
2 = q− max

1h(c)
2 = q− max

1

Fig. 1.7 The decay rates for not strongly pooled (1.40): case (g2a) for (1.42) and case (g2b) for
(1.43).

Figure 1.7 shows the case where the weakly pooled condition (1.39) does not
hold. In case (g2a), we set

λ1 =
9

170
, λ2 =

51
170

, δ =
1

17
, μ1 =

1
17

, μ2 =
9
17

,

which implies that ρ1 = 0.9, ρ2 = 17
30 and ρ = 0.7. This example shows that the

strongly pooled condition (1.39) does not imply the weakly pooled condition (1.42).
In case (g2b),

λ1 =
7

30
, λ2 =

2
15

, δ =
1

30
, μ1 =

10
30

, μ2 =
8

30
,

which implies that ρ1 = 0.7, ρ2 = 0.5 and ρ = 2
3 .
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Similarly to Theorem 1.5, we can get the following corollary for the decay rates
for the difference of the two queues. We omit its proof since it is parallel to the
arguments in Theorem 1.5.

Corollary 1.2. Under the assumptions of Theorem 1.5, the weak decay rates r− and
r+ for the difference Q2 −Q1 in the negative and positive directions, respectively,
exist in the sense of marginal distributions as well as jointly with each fixed mini-
mum of the two queues, and we have the following cases, where (θ (−c)

1 ,θ (−c)
2 ) and

(θ (+c)
1 ,θ (+c)

2 ) are given by (1.31) and (1.34), respectively, and

t−(v) = min{z−1; (1.29) for ξ = v−1}, t+(v) = min{z−1; (1.32) for ξ = v−1}.

(h1) If (1.39) holds, then either one of the following cases happens.

(h1a) (1.42) implies

r− =

⎧
⎨

⎩

e−θ
(−c)
1 , θ (−c)

2 ≤ logρ−2

γ2
γ1 +δ

ρ , θ (−c)
2 > logρ−2,

(1.45)

r+ =

⎧
⎨

⎩

e−θ
(+c)
1 , θ (+c)

2 ≤ logρ−2

γ1
γ2 +δ

ρ , θ (+c)
2 > logρ−2.

(1.46)

(h1b) (1.43) implies with r2 = (λ2+δ )
μ2

ρ1 that

r− = ρ1, r+ =

{

e−θ
(+c)
1 , θ (+c)

2 ≤ logr−1
2

t+(r2), θ
(+c)
2 > logr−1

2 .
(1.47)

(h1c) If (1.44) implies with r2 = (λ1+δ )
μ1

ρ2 that

r− =

{

e−θ
(−c)
1 , θ (−c)

2 ≤ logr−1
2 ,

t−(r2), θ
(−c)
2 > logr−1

2 ,
r+ = ρ2. (1.48)

(h2) If (1.40) holds, then either one of the following cases happens.

(h2a) (1.42) implies

(r−,r+) =

{(
e−θ

(−c)
1 ,min(e−θ

(+c)
1 , t+(e−η

(c)
2 ))

)
, θ (+c)

1 ≥ η(+c)
1

(
e−θ

(−c)
1 ,ρ2

)
, θ (+c)

1 < η(+c)
1 .

(1.49)

(h2b) (1.43) implies
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(r−,r+) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρ1,e−θ
(+c)
1 ), η(−c)

1 < logρ−1
1 ,η(+c)

1 < θ (+c)
1

(ρ1,min(e−θ
(+c)
1 , t+(r2)), η

(−c)
1 ≥ logρ−1

1 ,η(+c)
1 < θ (+c)

1

(min(e−θ
(−c)
1 , t−(r2),ρ2), η

(−c)
1 < logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

(ρ1,min(e−θ
(+c)
1 , t+(r2)), η

(−c)
1 ≥ logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

and
λ2 +δ
μ2

ρ1 <
λ1 +δ
μ1

ρ2

(min(e−θ
(−c)
1 , t−(r2),ρ2), η

(−c)
1 ≥ logρ−1

1 ,η(+c)
1 ≥ θ (+c)

1

and
λ2 +δ
μ2

ρ1 ≥
λ1 +δ
μ1

ρ2,

(1.50)

where t+ = max{z; (1.32) for ξ = logr−1
2 } and r2 =

(λ2 +δ )
μ2

ρ1.

(h2c) (1.44) implies with r2 =
λ1 +δ
μ1

ρ2 that

(r−,r+) =

{(
e−θ

(−c)
1 ,ρ2

)
, θ (−c)

2 < logr−1
2(

t−(r2),ρ2
)
, θ (−c)

2 ≥ logr−1
2 .

(1.51)

Furthermore, the decay rates are exactly geometric unless either r− = e−θ
(−c)
1 with

θ (−c)
1 = θ−max

1 or r+ = e−θ
(+c)
1 with θ (+c)

1 = θ+max
1 .

Remark 1.4. In this corollary, the case that (1.41) holds is not considered. However,
this case can be easily obtained by interchanging the roles of queues 1 and 2 in case
(h2).

1.6 Remarks on Existence Results

We remark how our results include the existence results. The exactly geometric rate
r2 = ρ2 is obtained under the conditions (1.39) and (1.42) in [3], [6]. Our results
cover all the possible cases although the decay rates are generally of the weak sense.
We also note that there are some errors in Theorem 3.2 of [3]. They can be corrected
by Corollary 1.2. Namely, the additional conditions (3.16) and (3.18) there are not
sufficient to get the decay rates. They are used for all the terms in the sums of (3.15)
and (3.17) to be positive. However, this is different from the corresponding eigen-
vectors to be positive. The right conditions are θ (+c)

2 ≥ logρ−2 and θ (−c)
2 ≥ logρ−2,

respectively, where θ (−c)
2 and θ (+c)

2 are given in (1.31) and (1.34), respectively.
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1.7 Conclusions

In this paper, we completely characterized the weak tail decay rates in terms of the
transition probabilities for the stationary distribution of the two sided DQBD pro-
cess (Theorems 1.3). For the exactly geometric decay, we find sufficient conditions,
which are close to necessary conditions (Theorem 1.4). We then apply those re-
sults to the generalized join shortest queue with two waiting lines, whose decay rate
problem has been only solved under some special conditions such as the weakly and
strongly pooled conditions in the literature. We completely answer to this problem
by finding the weak decay rates of the stationary distributions of the minimum of the
two queues and their difference for all cases (Theorem 1.5 and Corollary 1.2). It is
notable that the strongly and weakly pooled conditions still play the important role
for finding the decay rate for the minimum of two queues. That is, the decay rate
crucially changes according to whether or not those two conditions are satisfied.
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of this chapter and many invaluable comments. I also think Mr. Hiroyuki Yamakata for computing
some numerical values. This research is supported in part by JSPS under grant No. 18510135.

Appendix 1

We prove Theorem 1.2. Let x = (. . . ,x−1,x0,x1, . . .) be the right positive invariant
vector of A(2)

∗ (z). Then, we have

xn = p(−)
1∗ (z)xn−1 + p(−)

0∗ (z)xn + p(−)
(−1)∗(z)xn+1, n ≤−2,

x−1 = p(−)
1∗ (z)x−2 + p(−)

0∗ (z)x−1 + p(2)
(−1)∗(z)x0,

x0 = p(−)
1∗ (z)x−1 + p(2)

0∗ (z)x0 + p(+)
(−1)∗(z)x1, (1.52)

x1 = p(2)
1∗ (z)x0 + p(+)

0∗ (z)x1 + p(+)
(−1)∗(z)x2,

xn = p(+)
1∗ (z)xn−1 + p(+)

0∗ (z)xn + p(+)
(−1)∗(z)xn+1, n ≥ 2.

For s = ±, let w(s)
1 and w(s)

2 be the solutions of the following quadratic equation:

p(s)
(−1)∗(z)w

2 − (1− p(s)
0∗ (z))w+ p(s)

1∗ (z) = 0. (1.53)

Then x must have the following forms:
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xn =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x−1(w
(−)
1 )n+1 +(x−2 − x−1(w

(−)
1 )−1)

0

∑
�=−n+2

(w(−)
1 )−�(w(−)

2 )n+2+�,

n ≤−2

x1(w
(+)
1 )n−1 +(x2 − x1w(+)

1 )
n−2

∑
�=0

(w(+)
1 )�(w(+)

2 )n−2−�, n ≥ 2.

(1.54)

By the irreducibility assumption in (i), p(s)
1∗ (z) > 0 and p(s)

(−1)∗(z) > 0. Further-

more, the positivity of xn, w(s)
1 ,w(s)

2 must be real numbers. Hence, from the fact

w(s)
1 w(s)

2 =
p(s)

1∗ (z)

p(s)
(−1)∗(z)

> 0, (1.55)

w(s)
1 and w(s)

2 must be positive. This implies that x is nonnegative if and only if

x−2w(−)
1 ≥ x−1, x2 ≥ x1w(+)

1 . (1.56)

From (1.52), we have

x−2 =
1

p(−)
1∗ (z)

(
x−1 − p(−)

0∗ (z)x−1 − p(2)
(−1)∗(z)x0

)
, (1.57)

x2 =
1

p(+)
(−1)∗(z)

(
x1 − p(2)

1∗ (z)x0 − p(+)
0∗ (z)x1

)
. (1.58)

Substituting these x−2 and x2 into (1.56) yields
(
(1− p(−)

0∗ (z))w(−)
1 − p(−)

1∗ (z)
)

x−1 − p(2)
(−1)∗(z)w

(−)
1 x0 ≥ 0,

(
(1− p(+)

0∗ (z))− p(+)
(−1)∗(z)w

(+)
1

)
x1 − p(2)

1∗ (z)x0 ≥ 0.

Since w(s)
1 satisfies (1.53), we have

p(−)
(−1)∗(z)w

(−)
1 x−1 − p(2)

(−1)∗(z)x0 ≥ 0,

p(+)
1∗ (z)x1 − p(2)

1∗ (z)w(+)
1 x0 ≥ 0.

Using (1.55), this is equivalent to

p(−)
1∗ (z)x−1 − p(2)

(−1)∗(z)w
(−)
2 x0 ≥ 0, (1.59)

p(+)
(−1)∗(z)x1 − p(2)

1∗ (z)(w(+)
2 )−1x0 ≥ 0. (1.60)

Hence, letting



1 Two Sided DQBD and Solutions to the Tail Decay Rate Problem 31

η2 = logz, η(s)
1 = − logw(s)

2 ,

we have (1.14), (1.15) and (1.16).
We next show that these conditions are also sufficient. Suppose that there are

η2 ≥ 0 and η(s)
1 with s = ±1 satisfying (1.14), (1.15) and (1.16). Then, we can find

u(s) with s = ±1 such that

u(−) +ϕ(2)
0 (η2)+u(+) = 1, u(−) ≥ ϕ(2)

−1 (η2)e−η
(−)
1 , u(+) ≥ ϕ(2)

1 (η2)eη
(+)
1 .

Let x0 = 1, and define x−1 and x1 as x−1 = u(−)

p(−)
1∗ (z)

, x1 = u(+)

p(+)
(−1)∗(z)

. Hence, letting

z = eη2 and w(s)
2 = e−η

(s)
1 with s = ±1, we have (1.59) and (1.60). Then, defining

x−2, x2 and xn by (1.57), (1.58) and (1.54), respectively, we revive (1.52). Hence,
we indeed find the positive left eigenvector x of A(2)

∗ (z). This proves the first part of
the theorem. The remaining parts are obvious from (1.54) and Lemma 1.2. 
�

Appendix 2

We prove Lemma 1.8. Define the following functions on R
3
+, where R+ = (0,∞),

f (z1,z2,ξ ) = ξ ,

g1(z1,z2,ξ ) = (λ1ξ +μ2)z2
1 +μ1ξ +(λ2 +δ )ξ 2 − z1ξ ,

g2(z1,z2,ξ ) = (λ2ξ +μ1)z2
2 +μ2ξ +(λ1 +δ )ξ 2 − z2ξ ,

h(z1,z2,ξ ) =
(

λ1 +
δ
2

)

z1ξ +μ2z1 +μ1z2 +
(

λ2 +
δ
2

)

z2ξ −ξ .

Obviously, all the functions are convex. Then, Lemma 1.8 is obtained by the fol-
lowing optimization problem. In particular, η(c)

2 is obtained as the logarithm of the
maximum value of f .

miximize f (z1,z2,ξ ),
subject to
g1(z1,z2,ξ ) = 0, g2(z1,z2,ξ ) = 0, h(z1,z2,ξ ) ≤ 0, (1.61)
z1 > 0, z2 > 0, ξ ≥ 1. (1.62)

This is a convex optimization problem, and (1.61) is satisfied with equality only if
(z1,z2,ξ ) = (1,1,1) or (ρ−1,ρ−1,ρ−2) (see Lemma 3.2 of [3]). By D, we denote
the set of all feasible solutions satisfying the constraints (1.61) and (1.62). Clearly,
D is closed and bounded in R

3
+. For convenience, let

Di = {zi;(z1,z2,ξ ) ∈ D}, i = 1,2.
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Since {(zi,ξ ) ∈ R
2
+;gi(z1,z2,ξ ) ≤ 0} is a convex set, gi(z1,z2,ξ ) = 0 have two

solutions counting multiplicity for each ξ and each i = 1,2 if the solution exists.
Hence, there exist at most four points (z1,z2,ξ ) ∈ D for each ξ .

We show that D is a connected curve with end points (1,1,1) and (ρ−1,ρ−1,ρ−2)
if D has three points at least. Suppose that this is not true. Let (z◦1,z

◦
2,ξ ◦) ∈ D be the

third point other than the above end points. Then, we must have h(z◦1,z
◦
2,ξ ◦) < 0.

This implies that the point (z◦1,z
◦
2) is in the interior of the set

{(z1,z2) ∈ R
2
+;h(z1,z2,ξ ) ≤ 0},

for ξ = ξ ◦, which is a polyhedral for each ξ and its region is continuously increased
as ξ is increased. Hence, there exists a connected curve which passes through
(z◦1,z

◦
2,ξ ◦) as an inner point. This curve must have (1,1,1) and (ρ−1,ρ−1,ρ−2)

as its end points since otherwise we arrive at the contradiction that there is a point
other than those points such that h = 0 holds.

Let us consider the cases for (1.39) and (1.40) separately. Here, we do not con-
sider the case for (1.41) since it is symmetric to the case for (1.40). Denote the
solutions of gi(z1,z2,ξ ) = 0 for each ξ by zi(ξ ) and zi(ξ ), where zi(ξ ) ≤ zi(ξ ).
First, assume that (1.39) holds. Then (z1(ρ

−2),z2(ρ
2),ρ−2) = (ρ1,ρ−1,ρ−2) ∈ D

and zi(ρ−2) 	∈ Di for i = 1,2. Hence, f is maximized at (ρ−1,ρ−1,ρ−2). We next
assume (1.40). Then, we have (z1(ρ−2),z2(ρ

−2),ρ−2) = (ρ−1,ρ−1,ρ−2) ∈ D and
(z1(ρ

−2),z2(ρ
−2),ρ−2) ∈ D since z1(ρ

−2) ≤ z1(ρ−2). If z1(ρ
−2) = z1(ρ−2), we

can reduce the problem to the case for (1.39). Otherwise, D has three points at
least, so it is a connected curve with end points (1,1,1) and (ρ−1,ρ−1,ρ−2) as
shown above. This concludes that f is maximized at (z1(ξ

∗),z2(ξ
∗),ξ ∗) such that

z1(ξ
∗) = z1(ξ ∗). Since ξ ∗ must be the maximum value of ξ satisfying g1(z1,z2,ξ )=

0, η(c)
2 = θ−max

2 . This completes the proof. 
�
It may be notable that we can also solve the optimization problem by applying

Karush-Kuhn-Tucker necessary conditions (e.g., see Sect. 4.3.7 of [11]). However,
the present solution is more informative since the feasible region D is identified to
be a connected curve.
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Chapter 2
Analytical Model of On-Demand Streaming
Services Based on Renewal Reward Theory

Hiroshi Toyoizumi

Abstract We propose an analytical model based on renewal reward theory to inves-
tigate the dynamics of an on-demand streaming service. At the same time, we also
propose a simple method combining a method of multicasts and method of unicasts
that can reduce the download rate from the streaming server without causing delay.
By modeling the requests as a Poisson arrival and using renewal reward theory, we
study the dynamics of this streaming service and derive the optimal combination
of unicast and multicast methods. We even show how to estimate the fluctuation of
download rates of a streaming service.

2.1 Introduction

Streaming services have become increasingly popular in recent years. However, es-
tablishing an efficient large-scale streaming service is still a great challenge because
they demand an enormous amount of bandwidth for servers delivering contents.
Thus, it is quite important to find an efficient and reliable way to establish a large-
scale streaming service over the Internet. There is much research going on to find a
better streaming service. For example, [1], [2] proposed a streaming service based
on the sophisticated data fragment technique, whereas [3] discusses the possibility
of popularity-based delivery and [4] seeks the dynamic structure of a contents de-
livery network, both aiming to reduce bandwidth. Because there is a wide variety
of methods, it is also quite important to evaluate and compare the proposed meth-
ods and find the optimal strategy [5]. In most cases, the evaluation is based on the
study of arbitrary selected simulations. Only [6], [7] discuss theoretical analysis of
reduction of bandwidth of streaming service, but they only succeeded in giving the-
oretical bounds. In order to understand the dynamics of streaming service, we need
an analytically tractable model.

H. Toyoizumi
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In this chapter, we propose a simple method combining unicasts and multicasts
to reduce the download rate of streaming service. Assuming the arrival of requests
is Poisson arrival, we use the technique called renewal reward theory to investigate
the dynamics of streaming service. By this analysis, we show we can reduce the
download rate by the order of

√ρ , where ρ is the average download rate required
if we use the standard unicast streaming service. Renewal reward theory is one of
the fundamental and powerful tools to investigate stochastic processes (see [8], [9],
for example). We can derive not only the average overall download rate but also
its distribution. This method can be used to design the link speed of the streaming
service.

Consider setting up a streaming service (Fig. 2.1). If we use a unicast from the
streaming server on each request, users will not experience delay, because the uni-
cast delivers the data on a one-to-one basis. However, using unicasts will result in
the waste of bandwidth if users request the same content at the same time. Multicast
streaming is realized by copying the data at multicast nodes in a content delivery
network so as to reduce the bandwidth. Unlike unicast, multicast is one-to-many,
and multicast can deliver the same data to all the users efficiently when sending the
same content. However, there is a side effect in multicast streaming. Those who re-
quested later than the start of multicast miss the initial part of the stream. Thus, we
propose a simple method using both the unicast and multicast reducing download
rate without causing delay. The objective of our method is to reduce the bandwidth
required for the streaming server.

Assume there is only one content on the streaming server, for simplicity. We may
extend our model to the heterogeneous contents environment, by modeling virtual
streaming servers for each content, and treat them separately. A user (or a leaf node
of a content delivery network) submits a request for the content to the designated
streaming server. The server has two possible options:

Unicast Multicast

Fig. 2.1 Streaming service on network of unicast and multicast.
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(1) Use a multicast so that other users can listen to this content simulataneously, or
(2) Use a unicast that can be listened to by this user exclusively.

Let us see some details on how our method will work. At the time when a user
submits a request, if there is no multicast stream, the server has no choice but initi-
ates a new multicast stream. If the server has already started a multicast stream, the
server can use a unicast to reduce bandwidth. However, in some cases, the server
may save some bandwidth by starting a new multicast even if there is another multi-
cast stream. Figure 2.2 shows an example of how the requests may be handled. Each
upward arrow indicates the arrival of requests at the streaming server. The request
C1 arrives at the server when there is no stream. Thus, there is no choice, and the
server automatically starts a multicast stream (real line). The next request C2, on the
other hand, starts listening to the C1 multicast stream, as well as the unicast (dashed
line) that corresponds to the top part to which she missed listening (Figure 2.3). The
unicast C2 will be terminated when it catches up to the part that has been already
stored by listening to the C1 multicast stream. In this way, the request C2 will not
see the delay, while saving the bandwidth. At the request C3, the sever selects a new
multicast even though there is a C1 multicast. This is because even if C3 started
listening to the multicast C1, which has already been started quite some time ago,

Fig. 2.2 Streaming with unicasts and multicasts. Arrows are the arrivals of request. The vertical
line shows the amount the user has listened.

Fig. 2.3 Relationship of C1 multicast and C2 unicast.
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C3 has to listen to almost the entire contents by her own unicast. So, there is almost
no gain. Thus, instead of listening to the existing multicast, starting a new multicast
will reduce the download rate required for future requests, such as C4 and C5. In
this chapter, we assume we cannot use the information of future arrival times. So,
we need to make a decision under uncertainty.

Note that our method may be applied to a content delivery network on a Peer-to-
Peer (P2P) network [4], [10], as well as normal full-scale multicast platforms.

This chapter is organized as follows. In Sect. 2.2, we propose an analytical model
to study the optimal strategy for this streaming service, using renewal reward the-
ory. In Sect. 2.3, we present the mean download rate and the optimal strategy. In
Sect. 2.4, we derive the download rate distribution. We give some conclusions and
remarks in Sect. 2.5.

2.2 Streaming Services and Renewal Model

Assume the server has only one content of the length s, and its download rate of
each stream is 1. The arrival of requests is assumed to be a Poisson process with
the rate λ . Although this assumption is a mathematical convention, there is research
that we can observe a Poisson arrival at the multimedia server in some cases [11].

Suppose that a request arrives at the server at time 0, and the server starts a
multicast for this request. Let us assume that all requests arrived during (0,x] are
regarded as children of the parent multicast, and the server starts a unicast for each
child request. Obviously, x should be no more than the contents length s. Those
designated as child requests should listen to the parent multicast and her own unicast
simultaneously. The first request arrived after x becomes a new parent and the server
starts a new parent multicast. We call x the merging limit time. Our primary goal is
to find the optimal x minimizing the total download rate required, using the renewal
reward process argument.

Let N(t) be the number of requests arrived during (0, t], and Tn be the arrival time
of the nth request (T0 = 0). We evaluate R which is the volume downloaded from
the server for the parent and his N(x) child requests; that is,

R =
N(x)

∑
i=1

Ti + s, (2.1)

because the server has to send the part Ti, which the child request Ci missed listening
to in the parent multicast. By conditioning on N(x), we have the expectation of R as

E[R] = s+E

[
N(x)

∑
i=1

Ti

]

= s+E

[

E

[
N(x)

∑
i=1

Ti

∣
∣
∣N(x)

]]

. (2.2)
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The arrival is a Poisson process, conditioning on N(x) = n, thus the sequence
of arrivals T1,T2, . . . ,Tn is known to be equivalent to the ordered statistics of
U1,U2, . . . ,Un which is a series of independent and identical random variables uni-
formly distributed on (0,x] (e.g., see [8, Theorem 2.3.1]). Thus,

E

[
N(x)

∑
i=1

Ti

∣
∣
∣N(x) = n

]

= E

[
n

∑
i=1

Ui

]

=
nx
2

.

Using this in (2.2), we have

E[R] = s+E
[

N(x)x
2

]

= s+
λx2

2
. (2.3)

Now, let Xm be the interarrival time of the mth parent multicast. Because the
interarrival time of the Poisson process is exponentially distributed and memoryless,
the time length to the next request after the merging time limit is again exponentially
distributed with its mean 1/λ . Hence, Xm are independent and have the form of

Xm = x+Ti, (2.4)

where Ti is an exponential random variable with the mean 1/λ . Also, let Rm be
the volume downloaded by the mth parent multicast and its child unicasts. Be-
cause the arrival is a Poisson process, the sequence of the pair of random variables
(Xm,Rm)m=1,2,... is independent and identically distributed. Let S(t) be the total ac-
cumulated volume demanded by requests whose parent arrived before the time t; in
other words,

S(t) =
M(t)

∑
m=1

Rm, (2.5)

where M(t) is the number of parent multicasts in [0, t). Taking Rm as the reward,
the process S(t) is a renewal reward process (see e.g., [8], [9]). This renewal reward
representation is used in the following section to derive the average download rate.

2.3 Mean Download Rate and Optimal Strategy

We now find the optimal merging limit time x0 that minimizes the average download
rate from the streaming server. Let b(x) be the average download rate given the
merging limit time x, or

b(x) = lim
t→∞

S(t)
t

. (2.6)
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Fig. 2.4 The download rate b(x) and the merging limit time x: the request arrival rate λ = 1, and
the content size s = 100.

Theorem 2.1 (Optimal Merging Limit Time). Assume the requests to the content
of size s is a Poisson process with the rate λ . Given the merging limit time x, the
average download rate is obtained by

b(x) =
2λ s+λ 2x2

2(λx+1)
. (2.7)

The function b(x) is indeed a convex function (see Fig. 2.4), so we have x0 which
minimizes b(x) as

x0 =
(1+2λ s)1/2 −1

λ
. (2.8)

Furthermore, we can substitute (2.8) into (2.7); then we have the optimal download
rate,

b(x0) = (1+2ρ)1/2 −1, (2.9)

where ρ = λ s corresponds to the scale of this streaming service.

Proof. We know that S(t) is a renewal reward process from Sect. 2.2. Renewal re-
ward theory [8, Theorem 3.6.1] is an extension of the strong law of large numbers to
the renewal process. By the strong law of large numbers and (2.5), with probability
1, we have

S(t)
t

=
∑M(t)

m=1 Rm

M(t)
M(t)

t
→ E[R]

E[X ]
=

E[R]
x+1/λ

as t → ∞, (2.10)

where X is the interarrival time of the parent multicasts. It is easy to get (2.7) by
substituting (2.3) in (2.10).
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Figure 2.4 shows the graph of the average download rate b(x). For a smaller
merging limit time x, more requests are treated as multicast, which results in a waste
of download rate. On the contrary, for a larger x, we may miss the opportunity of
saving download rate by merging the future streams. Thus, we can see a fine balance
here. In this case the optimal merging limit time is x0 = 9.04988, well below the
content size s = 100.

Let us study in some detail the optimal merging limit. Take the optimal merging
limit time as a function of the request arrival rate λ in (2.8). Letting λ → 0, we have

x0(λ ) → s,

which means for a smaller request rate we cannot count on the following requests,
so “be a child whenever you can” is the best strategy. On the contrary, for large λ ,
we have

x0(λ ) → 0, as λ → ∞.

For a larger request rate, you can always expect the following requests. In this
case your strategy would be “be a parent and help the following children.”

If we use unicast only, instead of the combination of unicast and multicast, the
average streaming rate is ρ . The download rate (2.9) obtained by our method has the
order of

√ρ , which gives us a significant saving of download rate, especially when
the size of the streaming service is large (see Fig. 2.5). Theoretically, we could
improve (2.9) when we exploit the information of future requests. The theoretical
lower bound of the download rate given future information was obtained by [6] as

b0 = log(1+ρ), (2.11)

which is also shown in Fig. 2.5. We see that our method cannot achieve this theoret-
ical limit but still it achieves significant saving.

0 10 20 30 40 50

100

200

300

400
Download Rate

bound

unicast

optimal

λ

Fig. 2.5 Comparison of download rate: The line unicast is the scheme that uses only unicasts, and
the bound is the theoretical lower bound [6]. The contents size is set to be s = 100.
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2.4 Download Rate Distribution

Using the renewal argument further, we can evaluate the download rate distribution
of our merging method. For simplicity, in this section we set the merging limit time
x to be the size of the content s. In this case, all requests are treated as child streams
whenever they can.

Because we set the download rate of each stream to be 1, the only thing we need
to know is the number of active streams. Let L be the number of active streams
including both parent and child streams in the steady state.

Theorem 2.2. The z-transform of the number of active streams L is obtained as

E
[
zL
]

=
1

1+ρ

[
ze(ρ−1)(z−1)/2

∫ 1

e−ρ
e(z−1)y/2 dy

y
+

2
z+1

{
e−ρ(1−z)/2 − e−ρ

}
+ e−ρ

]
,

(2.12)

where we set ρ = λ s.

Proof. Let L(t) be the number of active streams at the time t, and let Ye be the
length to the arrival of the previous parent request from an arbitrary time t (Fig. 2.6).
Because Ye is the forward recurrent time of the renewal interval s + Ti, where Ti is
exponentially distributed with the mean 1/λ , we have

P{Ye ≤ u} =
1

s+1/λ

∫ u

0
(1−P{s+T ≤ y})dy. (2.13)

Thus, we obtain the probability distribution of Ye as

(1+ρ)P{Ye ≤ u} =

{
λu if u ≤ s
1+ρ− e−λ (u−s) if u > s,

(2.14)

Fig. 2.6 Sample path of streaming service: The fourth child unicast from the previous renewal
interval remains active at the time t.
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and its density as

(1+ρ)
dP{Ye ≤ u}

du
=

{
λ if u ≤ s
λe−λ (u−s) if u > s.

(2.15)

Let L1 be the number of active child streams at time t that arrived in the renewal
interval containing the time t. Furthermore, there is a chance that the child streams
started prior to the renewal time still exist after time t (see Fig. 2.6). Let L0 be the
number of those active streams that arrived in the previous renewal interval.

Then, taking into account the parent multicast of this renewal interval, we have

L(t) = 1(Ye≤s) +L0 +L1. (2.16)

Consider conditioning on Ye = u. In the case when u ≤ s, L0 and L1 are indepen-
dent, and both are Poisson random variables with the mean λ sP0(u) and λu/2, re-
spectively, where P0(u) is the probability that a child stream started in the previous
interval still exists at time t. Indeed, the arrival of child streams is Poisson with rate
λ , and given the number of arrivals, the survival of each child stream is independent
of other streams.

Suppose a child stream arrives U1 later than the parent multicast that started the
current renewal interval. The child stream should exist to cover the missing part of
the length U1, and it is alive up to 2U1 from the start of the parent multicast. The
child stream exists at time t only when 2U1 > u. Because U is uniformly distributed
on [0,u], the probability that a child stream exists at time t is P{U1 ≥ u/2} = 1/2.
Thus, L1, the number of active child streams at time t that arrived in [t − u, t], is a
Poisson random variable with the mean λu/2. Similarly, suppose a child stream in
the previous renewal interval arrives U0 after the previous parent multicast. Then,
the child stream remains active at time t only when 2U0 > s+T +u. Thus,

P0(u) = P{2U0 > s+T +u}
= {λ (s−u)− (1− e−λ (s−u))}/(2ρ), (2.17)

because U0 is a uniform random variable on [0,s]. Thus L0 is a Poisson random
variable with the mean λ sP0(u). Using this information we have

∫ s

0
E
[

zL(t)
∣
∣
∣Ye = u

]
dP{Ye ≤ u} =

∫ s

0
zeλ sP0(u)(z−1)eλu(z−1)/2dP{Ye ≤ u}

=
λ ze(ρ−1)(z−1)/2

1+ρ

∫ s

0
e(z−1)e−λ (s−u)/2du

=
ze(ρ−1)(z−1)/2

1+ρ

∫ 1

e−ρ
e(z−1)y/2 dy

y
. (2.18)

On the other hand, when s < u ≤ 2s, it is easy to see that no child streams from the
previous interval exist at time t. Thus, L0 = 0 and L1 is a Poisson random variable
with its mean λ (s−u/2). Hence we have
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∫ 2s

s
E
[
zL(t)

∣
∣
∣Ye = u

]
dP{Ye ≤ u} =

∫ 2s

s
eλ (s−u/2)(z−1)dP{Ye ≤ u}

=
2

(1+ρ)(z+1)

{
e−ρ(1−z)/2 − e−ρ

}
. (2.19)

Lastly, when u > 2s, L(t) = 0. Hence, we have
∫ ∞

2s
E
[
zL(t)

∣
∣
∣Ye = u

]
dP{Ye ≤ u} =

∫ ∞

2s
dP{Ye ≤ u}

=
1

(1+ρ)
e−ρ . (2.20)

By using all these results and by separating integral intervals appropriately, we can
get (2.12).

Corollary 2.1. The mean and variance of L are given by

E[L] =
2ρ+ρ2

2(1+ρ)
< ρ, (2.21)

V [L] = {4ρ3 −4ρ2 +11ρ+9−4(ρ2 +3ρ+2)e−ρ

− (ρ+1)e−2ρ}/{8(1+ρ)2}. (2.22)

Here we give a numerical example. If we use only unicasts for requests, L is noth-
ing but a simple M/D/∞ queueing system. Thus, L is a Poisson random variable with
its mean ρ = λ s. In Fig. 2.7, we compare the variance of L of the proposed merg-
ing method with the M/D/∞ queue. We already know that we can save the average
download rate using our proposed method. In Fig. 2.7, we also see the reduction of
the download rate fluctuation, which is another superiority of our method.

20 40 60 80 100
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Fig. 2.7 Variance of L in the unicast scheme and the proposed method (mixed).
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2.5 Conclusions

In this chapter, we proposed a simple method realizing bandwidth reduction with-
out delay. By using renewal reward theory, we succeed in estimating the download
rate, not only the average but also the variance. By using the evaluation, we find
that in an optimal case we can reduce the download rate of streaming service by√ρ , the squareroot of the streaming service size. Furthermore, we see that our pro-
posed method can also reduce the fluctuation of the download rate. The technique
used in this chapter can be adopted to design the bandwidth requirement for general
streaming services.
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Chapter 3
A Pure Decrement Service Geom/G/1 Queue
with Multiple Adaptive Vacations

Zhanyou Ma, Wuyi Yue, and Naishuo Tian

Abstract In this chapter, a Geom/G/1 queue model with a pure decrement ser-
vice policy and multiple adaptive vacations is analyzed. The Probability Generation
Function (P.G.F.) of the queue length is obtained by using an embedded Markov
chain method. The P.G.F. of the waiting time is then derived based on the inde-
pendence between the arrival process and the waiting time. The probabilities for
the system being in various states of busy, vacation, or idle, respectively, are also
derived. Finally, some special cases for the Geom/G/1 queue model with a pure
decrement service policy and multiple adaptive vacations are given to demonstrate
the general properties of the queue models.

3.1 Introduction

Tian [1] introduced a multiple adaptive vacation policy, and studied a multiple adap-
tive vacation M/G/1 queue model with an exhaustive service rule, and through this,
queue models with multiple vacations and single vacation were extended. Zhang
and Tian studied the discrete time queue model with multiple adaptive vacations,
and obtained the P.G.F. of the queue length and waiting time in [2].

However, they only researched the queue models with the exhaustive service
polity. Many researchers have studied discrete time queue models with some
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vacation policy. For example, M/G/1 queues with multiple types of feedback and
gated vacations were studied, and some important results were derived in [3].
A number of discrete time queue models were studied in [4] and [5]. Also, Wu and
Takagi studied the queue model with working vacations in [6], and extended the
general vacation polity.

The new queue model enriched the theory of the queue with vacations, and in-
volved many queue models as special cases. A discrete time GI/Geo/1 queue model
with multiple vacations was studied in [7]. A discrete time queue model with timed
vacations was analyzed in [8]–[10].

Bischof studied the queue model with vacations under six different service disci-
plines in [11], which expanded the research of the nonexhaustive service disciplines.
Performance evaluations of SVC-Based IP-Over-ATM networks were given using
discrete time queueing theory in [12]. However, these papers did not integrate multi-
ple adaptive vacations with nonexhaustive service disciplines. The authors’ purpose
for studying a new queueing model was to promote this integration.

In this chapter, we analyze a general Geom/G/1 queueing model with a pure
decrement service strategy and multiple adaptive vacations. We show that the pure
decrement service systems analyzed in [5] and [13] are special cases of our model
presented in this chapter. Furthermore, we compare the system performance for pure
decrement service strategies with multiple vacations and single vacation.

The chapter is organized as follows. Section 3.2 describes the analysis model in
detail. Section 3.3 presents analysis of system performance. Some special cases are
presented in Sect. 3.4. In Sect. 3.5, we discuss some numerical results. Concluding
remarks are given in Sect. 3.6.

3.2 Model Description

Based on the classical Geom/G/1 queueing model, we introduce the strategies of a
pure decrement service and the multiple adaptive vacations [5], [13].

A pure decrement service strategy can be described as follows. Once the service
period starts, the server will keep on working until the number of customers in the
system is one less than the number of customers at the start instant of the service
period. The server will then enter a new vacation period. If there are some customers
waiting at a vacation completion instant, the server will complete the vacation pe-
riod and start a new service period. Otherwise, the server will take some vacations
consecutively according to the assistant workload completed at that time.

The maximum number of vacations during a vacation period is denoted by H.
H is a positive integer random variable with the probability distribution h j and the
P.G.F. H(z) as follows:

P(H = j) = h j, j ≥ 1, H(z) =
∞

∑
j=1

h jz j.
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Let Vk (k = 1,2, . . . ,H) be the time length for the kth vacation. Vk is an independently
identically distributed (i.i.d.) random variable. If there is no customer in the system
at the Hth vacation completion instant, the system will enter an idle period and
wait for a new customer to arrive. If a customer arrives during the idle period, the
server will enter a service period immediately, and continue until there are waiting
customers in the system, before taking a vacation again at the completion instant of
the service. The system will continually repeat the above processes.

Specifically, (1) if H → ∞, the model corresponds to a pure decrement service
Geom/G/1 queueing model with multiple vacations [5], [10], [13]. (2) If H = 1,
the model corresponds to a pure decrement service Geom/G/1 queueing model with
a single vacation [5], [13]. (3) If H follows another distribution, the model corre-
sponds to another special queueing model.

The basic assumptions of the new model presented in this chapter are given as
follows.

(1) In order to describe the system states in the nth discrete time instants, we as-
sume that customer arrivals can only occur at discrete time instants t = n−,
n = 0, 1, . . . , the service starts and ends can only occur at discrete time instants
t = n+,n = 1,2, . . . . The model is called a late arrival system. The interarrival
time, denoted by T , is supposed to be an i.i.d. discrete random variable follow-
ing a geometric distribution with parameter p (0 < p < 1). We can write the
probability distribution of T as follows:

P(T = j) = pp̄ j−1, j = 1,2, . . . ,

where p̄ = 1− p. We denote by Cn the number of customers arriving during the
interval [0,n]; then Cn follows a binomial distribution,

P(Cn = j) =
(

n
j

)

p j p̄n− j, j = 0,1, . . . ,n.

(2) The service time S of a customer is supposed to be an i.i.d. discrete random
variable with a general distribution; the probability distribution s j and the P.G.F.
S(z) of S are given as follows:

P(Si = j) = s j, j ≥ 1, S(z) =
∞

∑
j=1

s jz j.

Let E[S] and E[S(S−1)] be the mean and the second factorial moment of S; then
we have

1
μ

= E[S] =
∞

∑
i=0

isi, E[S(S−1)] =
d2S(z)

dz2

∣
∣
∣
∣
z=1

.

(3) The time length V of a vacation is a nonnegative i.i.d. discrete random variable
with general probability distribution v j and the P.G.F. V (z) given by
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Fig. 3.1 State transition diagram of the model.

P(V = j) = v j, j ≥ 1, V (z) =
∞

∑
j=1

v jz j,

where the mean E[V ] and the second factorial moment E[V (V −1)] of V exist.
Suppose that there is a single server in this system, and its buffer capacity is

infinite. The interarrival time, the service time, and the time length of a vacation are
mutually independent. The service order is First-Come First-Served (FCFS). The
model is denoted by Geom/G/1 (PD, MAVs), where PD and MAVs represent the
Pure Decrement and the Multiple Adaptive Vacations, respectively. Let SP represent
the service period, V P represent the vacation period, and I represent the idle period,
respectively. The state transition diagram of the model is shown in Fig. 3.1.

Let Lv represent the stationary queue length at the departure instant of a customer,
and let Q(n)

b represent the number of customers in the system at the nth vacation

completion instant, the P.G.F. of Q(n)
b is denoted by Q(n)

b (z). Lv is supposed to follow
an identical distribution for the new model in the service orders of FCFS or Last-
Come First-Served (LCFS). For simplification, we assume that the service of the
model presented in this chapter follows a LCFS strategy.

3.3 Analysis of System Performance Measures

3.3.1 Number of Customers at the Beginning of a Service Period

Let J be the number of consecutive vacations taken by the server after the end of a
service period when the system is empty. J is a random variable, and we have

J = min{H,k : V1 + · · ·+Vk−1 < T < V1 + · · ·+Vk}.
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We define two events as follows:

AI = { Service period starts with the end of an idle period
if there are no customers at the end of the last SP};

Av = { Service period starts with the end of a vacation period
if there are no customers at the end of the last SP}.

Then, we have P(AI), the probability of AI and P(Av), the probability of Av as

P(AI) = Q(n)
b (0)H(V (p̄)), P(Av) = Q(n)

b (0)(1−H(V (p̄))).

According to a pure decrement service order, if a service period with zero du-
ration is allowed, Q(n)

b is the number of customers in the system at the next start

instant of the service period. If Q(n)
b is greater than zero, the service period starts im-

mediately and keeps on working until the number of customers in the system is one
less than the number of customers at the start instant of the service period. Then the
server will take a vacation. Q(n+1)

b is equal to the sum of Q(n)
b −1 plus the number of

customers arriving during the vacation. If Q(n)
b = 0, there are two cases as follows:

(1) If there are customer arrivals during the kth (1 ≤ k ≤ H) vacation, a service
period starts at the instant where the kth (1 ≤ k ≤ H) vacation completes. The
number of customers in the system at the start instant of the service period
Q(n+1)

b is equal to the number of customers arriving during the vacation.
(2) If no customers arrive during the Hth vacation, an idle period will begin at

the end of the vacation and continue until a new customer arrives. In this case,
Q(n+1)

b is equal to 1. Therefore,

Q(n+1)
b (z) = Q(n)

b (0)H(V (p̄))z+
Q(n)

b (z)−Q(n)
b (0)

z
V (1− p(1− z))

+ Q(n)
b (0)(1−H(V (p̄)))V (1− p(1− z)). (3.1)

If the system is in a steady state, the P.G.F. Qb(z) of Q(n+1)
b does not depend on

n in (3.1). If we let limn→∞Q(n+1)
b (z) = Qb(z), we can obtain Qb(z) as follows:

Qb(z) =
Qb(0)

(
(1− z(1−H(V (p̄))))×V (1− p(1− z))−H(V (p̄))z2

)

V (1− p(1− z))− z
. (3.2)

Because Qb(1) = 1, we have that

Qb(0) =
1− pE[V ]

1+H(V (p̄))(1− pE[V ])
. (3.3)

According to the Foster rule (see Tian and Zhang [13]), we can prove that if
ρ = p/μ < 1 and pE[V ] < 1, the system can reach a steady state.
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3.3.2 Stationary Queue Length and Waiting Time

Theorem 3.1. If ρ = p/μ < 1 and pE[V ] < 1, the stationary queue length Lv in the
Geom/G/1 (PD, MAVs) queue can be decomposed into three independent random
variables:

Lv = L+Ld +Lr,

where L is the stationary queue length in a classical Geom/G/1 queue [5], [13]. The
P.G.F. L(z) of L is

L(z) =
(1−ρ)(1− z)S(1− p(1− z))

S(1− p(1− z))− z
. (3.4)

The additional queue length Ld is the number of customers arriving during a va-
cation or is equal to zero, and the additional queue length Lr is the number of
customers in the system at the start instant of a vacation. P.G.F.s Ld(z) and Lr(z) of
additional queue lengths Ld and Lr are given by

Ld(z) =
1−V (1− p(1− z))+H(V (p̄))V (1− p(1− z))−H(V (p̄))z

(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)
,

Lr(z) =
(1− pE[V ])(1− z)
V (1− p(1− z))− z

. (3.5)

Proof. Qb is the number of customers in the system at the start instant of a service.
In the pure decrement service rule and LCFS order, a nonzero service period in the
system is exactly the same as a standard busy period in a Geom/G/1 queue. So there
are two kinds of customers in the system at a departure instant as follows:

(1) If Qb > 0, only the customer who initiates the new service period can be served,
and the residual Qb − 1 customers wait to be served during the next service
period. The P.G.F. of the number of these customers is given by

Qb(z)−Qb(0)
(1−Qb(0))z

. (3.6)

(2) The number of customers (sub generation) who arrive during the service period
and cannot be served is equivalent to the number of customers in a classical
Geom/G/1 queue; the P.G.F. is given by

(1−ρ)(1− z)S(1− p(1− z))
S(1− p(1− z))− z

. (3.7)

Because the two kinds of customers are mutually independent, we have that

Lv(z) =
(1−ρ)(1− z)S(1− p(1− z))

S(1− p(1− z))− z
× Qb(z)−Qb(0)

(1−Qb(0))z
. (3.8)

Substituting (3.2) and (3.3) into (3.8), we have that
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Lv(z) =
(1−ρ)(1− z)S(1− p(1− z))

S(1− p(1− z))− z

×1−V (1− p(1− z))+H(V (p̄))V (1− p(1− z))−H(V (p̄))z
(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)

× (1− pE[V ])(1− z)
V (1− p(1− z))− z

= L(z)Ld(z)Lr(z). (3.9)

Therefore, Lv(z) is also the P.G.F. of the system queue length in the FCFS service
strategy. 
�

Simplifying Ld(z) in Theorem 3.1, we have that

Ld(z) =
H(V (p̄))

H(V (p̄))+ pE[V ](1−H(V (p̄)))

+
pE[V ](1−H(V (p̄)))

H(V (p̄))+ pE[V ](1−H(V (p̄)))
× 1−V (1− p(1− z))

pE[V ](1− z)
. (3.10)

Therefore, the additional queue length Ld is equal to zero with the following proba-
bility,

H(V (p̄))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

and is equal to the number of customers arriving before an arbitrary time instant
during a vacation with the following probability,

pE[V ](1−H(V (p̄)))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

.

Differentiating the two sides of (3.9) and using L’Hospital’s rule, we can obtain
the mean E[Lv] of the number of customers at steady state for a Geom/G/1 (PD,
MAVs) queue system as follows:

E[Lv] = ρ+
p2E[S(S−1)]

2(1−ρ)
+

p2E[V (V −1)](1−H(V (p̄)))
2(H(V (p̄))+ pE[V ](1−H(V (p̄))))

+
p2E[V (V −1)]
2(1− pE[V ])

. (3.11)

Theorem 3.2. If ρ = p/μ < 1 and pE[V ] < 1, the stationary waiting time Wv
of a customer can be decomposed into three independent random variables in a
Geom/G/1 (PD, MAVs) queue as follows:

Wv = W +Wd +Wr,

where W is the stationary waiting time in a classical Geom/G/1 queue [5], [13].
The P.G.F. W (z) of the stationary waiting time W is given by
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W (z) =
(1−ρ)(1− z)

(1− z)− p(1−S(z))
. (3.12)

The additional delay Wd is a vacation or is equal to zero, and the additional delay Wr
is the time delay caused by the existing customers at the start instant of a vacation.
P.G.F.s Wd(z) and Wr(z) of additional delays Wd and Wr are given by

Wd(z) =
p(1−H(V (p̄)))(1−V (z))+H(V (p̄))(1− z)

(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)
,

Wr(z) =
(1− pE[V ])(1− z)

(1− z)− p(1−V (z))
. (3.13)

Proof. In a Geom/G/1 (PD, MAVs) queue, the waiting time is independent of the
customers’ inputting process after the arrival instant of the customers in the FCFS
service strategy. The queue length of the system at a customer’s service completion
instant is composed of the number of other customers arriving during the waiting
time and the service time of the customer. Therefore, we have that

Lv(z) = Wv(1− p(1− z))S(1− p(1− z)). (3.14)

Substituting the result of Theorem 3.1 into (3.14), we have that

Wv(z) =
(1−ρ)(1− z)

(1− z)− p(1−S(z))

× p(1−H(V (p̄)))(1−V (z))+H(V (p̄))(1− z)
(H(V (p̄))+ pE[V ](1−H(V (p̄))))(1− z)

× (1− pE[V ])(1− z)
(1− z)− p(1−V (z))

= W (z)Wd(z)Wr(z). (3.15)


�

From Theorem 3.2, we can obtain the P.G.F. Wd(z) of the stationary waiting time
Wd as follows:

Wd(z) =
H(V (p̄))

H(V (p̄))+ pE[V ](1−H(V (p̄)))

+
pE[V ](1−H(V (p̄)))

H(V (p̄))+ pE[V ](1−H(V (p̄)))
× 1−V (z)

E[V ](1− z)
. (3.16)

Therefore, the additional delay Wd is equal to zero with the following probability,

H(V (p̄))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

and is equal to a vacation time with the following probability,
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pE[V ](1−H(V (p̄)))
H(V (p̄))+ pE[V ](1−H(V (p̄)))

.

Differentiating the two sides of (3.15) and using L’Hospital’s rule, we can get the
mean waiting time E[Wv] of a customer during a steady state for a Geom/G/1 (PD,
MAVs) queue system as follows:

E[Wv] =
pE[S(S−1)]

2(1−ρ)
+

pE[V (V −1)](1−H(V (p̄)))
2(H(V (p̄))+ pE[V ](1−H(V (p̄))))

+
pE[V (V −1)]
2(1− pE[V ])

.

3.3.3 Analysis of Service Cycle

According to the number J of consecutive vacations [1], [13], we have

P(J ≥ 1) = 1,

P(J ≥ j) = P(H ≥ j)P(V1 + · · ·+Vj−1 < T ) = (V (p̄)) j−1
∞

∑
k= j

hk, j ≥ 2; (3.17)

thus the P.G.F. J(z) of J can be given as

J(z) = 1− 1− z
1−V (p̄)z

(1−H(V (p̄)z)). (3.18)

Vacation time lengths in the following two cases are: (1) if a customer is present
at a vacation start instant, the total time length is the time of a vacation; (2) if there
are no customers present at a vacation start instant, the total vacation time length is
the sum of the time lengths of a random number of vacations. Concluding from the
two cases above, we can get P.G.F. VG(z) of the total time length VG for consecutive
vacations as follows:

VG(z) =
1− (1−H(V (p̄)))(1− pE[V ])

1+H(V (p̄))(1− pE[V ])
V (z)+

1− pE[V ]
1+H(V (p̄))(1− pE[V ])

×
(

1− 1−V (z)
1−V (p̄)V (z)

(1−H(V (p̄)V (z)))
)

. (3.19)

Therefore, the mean total time length of a vacation can be obtained as

E[VG] =
1− (1−H(V (p̄)))(1− pE[V ])

1+H(V (p̄))(1− pE[V ])
E[V ]

+
1− pE[V ]

1+H(V (p̄))(1− pE[V ])
× 1−H(V (p̄))

1−V (p̄)
E[V ]. (3.20)

In a Geom/G/1 (PD, MAVs) queue model, the server is usually in an idle state.
If there are customers in the system at the start instant of the vacation, the idle
period will be zero after the completion of a vacation. If there are no customers
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in the system at the start instant of the vacation, and there are still no customers
at the Jth vacation completion instant, the time length Iv of the server’s idle period
is the inter-arrival time following a nonnegative exponential distribution. We can
give the mean E[Iv] of Iv as

E[Iv] =
1
p

(1− pE[V ])H(V (p̄))
1+H(V (p̄))(1− pE[V ])

. (3.21)

According to a pure decrement service strategy, we know that the service period
in the new model presented in this chapter is identical to the busy period in a clas-
sical Geom/G/1 queue system. This means the P.G.F. Sp(z) of the service period Sp
in the queue models of [5] and [13] satisfies the following and the mean length of
the service period is given by

Sp(z) = S(zSp((1− p(1− z)))), E[Sp] =
1

μ− p
.

We call the intermediate time between two continuous start instants of the ser-
vice a service cycle, denoted by C. The mean of the service cycle E[C] can thus be
obtained as follows:

E[C] = E[Sp]+E[VG]+E[Iv]

=
1−V (p̄)+V (p̄)(1− pE[V ])(1−H(V (p̄)))

(1+H(V (p̄)))(1− pE[V ])(1−V (p̄))
E[V ]

+
1
p

(1− pE[V ])H(V (p̄))
1+H(V (p̄))(1− pE[V ])

+
1

μ− p
. (3.22)

Let pB, pV , and pI be the probabilities that the server is in a busy, vacation, or idle
state, respectively. We can give that

pB =
E[Sp]
E[C]

=
1

E[C](μ− p)
,

pV =
E[V ](1−V (p̄)+V (p̄)(1− pE[V ])(1−H(V (p̄))))

E[C](1+H(V (p̄)))(1− pE[V ])(1−V (p̄))
,

pI =
(1− pE[V ])H(V (p̄))

pE[C](1+H(V (p̄))(1− pE[V ]))
. (3.23)

3.4 Special Cases

If the random variable H is supposed to have different probability distributions, we
can derive some vacation queueing systems with a pure decrement service as special
cases of the model presented in this chapter as follows:

Example 3.1. Pure decrement service Geom/G/1 queue with multiple vacations—
Geom/G/1 (PD, MV).
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If H → ∞, the queue turns into a pure decrement service Geom/G/1 queue with
multiple vacations. There is no idle state in the system, and H(z) = 0. Then the
P.G.F.s of the additional queue lengths Ld , Lr and the additional delays Wd , Wr are
respectively given by

Ld(z) =
1−V (1− p(1− z))

pE[V ](1− z)
, Lr(z) =

(1− pE[V ])(1− z)
V (1− p(1− z))− z

,

Wd(z) =
1−V (z)

pE[V ](1− z)
, Wr(z) =

(1− pE[V ])(1− z)
(1− z)− p(1−V (z))

. (3.24)

Equation (3.24) corresponds with the results given in [5], [10] and [13].

Example 3.2. Pure decrement service Geom/G/1 queue with single vacation—
Geom/ G/1 (PD, SV).

If H = 1, the system turns into a pure decrement service Geom/G/1 queue with a
single vacation. There is an idle state in the system, and H(z) = z. Then the P.G.Fs. of
the additional queue lengths Ld , Lr and the additional delays Wd , Wr are respectively
given by

Ld(z) =
1−V (p̄)z− (1−V (p̄))V (1− p(1− z))

(V (p̄)+ pE[V ](1−V (p̄)))(1− z)
,

Lr(z) =
(1− pE[V ])(1− z)
V (1− p(1− z))− z

,

Wd(z) =
p(1−V (p̄))(1−V (z))+V (p̄)(1− z)

(V (p̄)+ pE[V ](1−V (p̄)))(1− z)
,

Wr(z) =
(1− pE[V ])(1− z)

(1− z)− p(1−V (z))
. (3.25)

Equation (3.25) corresponds with the results given in [5] and [13].

Example 3.3. The number of vacations H follows a Poisson distribution in a
Geom/G/1 queue with a pure decrement service strategy—Geom/G/1 (PD, PV).

If the number of vacations follows a Poisson distribution with a parameter λ ,
namely P(H = i) = (λ i/i!)e−λ ,λ > 0, i = 0,1,2, . . . , then H(z) = eλ (z−1). Substi-
tuting H(V (p̄)) = eλ (V (p̄)−1) into (3.5) and (3.13), the P.G.Fs. of the additional queue
lengths Ld , Lr and the additional delays Wd , Wr are given by

Ld(z) =
1−V (1− p(1− z))+ eλ (V (p̄)−1)V (1− p(1− z))− eλ (V (p̄)−1)z

(eλ (V (p̄)−1) + pE[V ](1− eλ (V (p̄)−1)))(1− z)
,

Lr(z) =
(1− pE[V ])(1− z)
V (1− p(1− z))− z

,

Wd(z) =
p(1− eλ (V (p̄)−1))(1−V (z))+ eλ (V (p̄)−1)(1− z)

(eλ (V (p̄)−1) + pE[V ](1− eλ (V (p̄)−1)))(1− z)
,

Wr(z) =
(1− pE[V ])(1− z)

(1− z)− p(1−V (z))
. (3.26)
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The special cases mentioned above correspond to different probability distribu-
tions of H, and we can obtain different pure decrement service queue models with
vacations. From these analyses, we can conclude that the model presented in this
chapter is a general model including many special queue models.

3.5 Numerical Results

In this section, we present some numerical results that provide insight into the sys-
tem behavior. Using the equations presented in Sect. 3.3, we can numerically com-
pare the performance measures of the systems for three different Geom/G/1 (PD,
MAVs) queue models: the pure decrement service Geom/G/1 queue with multiple
vacations, the pure decrement service Geom/G/1 queue with single vacation and the
model where the number of vacations H follows a Poisson distribution in Geom/G/1
queue with a pure decrement service strategy.

Here we assume that the service time S and the time length V of a vacation
follow geometric distributions; that is, S follows a geometric distribution with mean
1/μ = 10. V follows a geometric distribution with mean E[V ] = 10. As we presented
in Sect. 3.2, if H → ∞, the model corresponds to a Geom/G/1 (PD, MV) queue. If
H = 1, the model corresponds to Geom/G/1 (PD, SV) queue. If H follows a Poisson
distribution, the model corresponds to a Geom/G/1 (PD, PV) queue. Parameter λ =
0.1, traffic intensity ρ range from 0.1 to 0.8.

Figure 3.2 shows the mean queue length E[Lv] as a function of the the traffic
intensity ρ with three cases of H; that is, H → ∞ for a Geom/G/1 (PD, MV) queue,
H = 1 for a Geom/G/1 (PD, SV) queue, and H follows a Poisson distribution for a
Geom/G/1 (PD, PV) queue. We can find that when ρ increases, E[Lv] increases to a
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high level for all the cases. This is because the larger ρ is, the higher the possibility
that there will be customers arriving during the server cycle C. We also note that the
mean queue length E[Lv] of Geom/G/1 (PD, MV) is larger than that of Geom/G/1
(PD, SV) and Geom/G/1 (PD, PV). This is because the longer the vacation times
are, the larger the mean queue length E[Lv] will be.

Figure 3.3 shows how the mean waiting time E[Wv] changes with the traffic inten-
sity ρ for the three different cases of H; that is, H → ∞ for a Geom/G/1 (PD, MV)
queue, H = 1 for a Geom/G/1 (PD, SV) queue, and H follows a Poisson distribution
for a Geom/G/1 (PD, PV) queue. We can find that when ρ increases, E[Wv] increases
to a high level. This is because the greater ρ is, the higher the possibility that there
will be customers arriving during the server cycle C; then the mean waiting time
will be greater. We also note that the mean waiting time E[Wv] of Geom/G/1 (PD,
MV) is longer than that of Geom/G/1 (PD, SV) and Geom/G/1 (PD, PV). This is
because the longer the vacation time lengths are, the greater the mean waiting time
E[Wv] will be.

In Fig. 3.4, we can observe that, for the Geom/G/1 (PD, MV) queue, when ρ
increases, the mean service cycle E[C] of Geom/G/1 (PD, MV) increases, too. It can
also be noted that the curves of the mean service cycle E[C] for the Geom/G/1 (PD,
SV) queue and Geom/G/1 (PD, PV) queue follow two stages. In the first stage, the
heavier the traffic intensity ρ is, the lower the mean service cycle E[C] will be. In the
second stage, the heavier the traffic intensity ρ is, the higher the mean service cycle
E[C] will be.

In Fig. 3.5, we plot the probability for the system being at the various states as
a function of the traffic intensity ρ in Geom/G/1 (PD, PV). It can be observed that
when ρ increases, the probability for the system being either in a busy or vacation
state increases, whereas the probability of the system being in an idle state decreases
and limits to zero. This is because the greater ρ is, the more customers will arrive,
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and so the probability of the system being in a busy or a vacation state will increase,
whereas the probability for the system being in an idle state will be smaller.

3.6 Conclusions

In this chapter, we presented a detailed description of a Geom/G/1 queue model
with a pure decrement service strategy and multiple adaptive vacations. By using
the method of an embedded Markov chain, we derived the P.G.F.s of the queue
length and the customers’ waiting time. Furthermore, we presented the stochastic
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decompositions for the additional queue length and the additional delay. Lastly, we
obtained the probabilities of the server being in the various states of busy, vacation,
or idle, respectively. The model is an extension for many special multiple adaptive
vacation queue models with a pure decrement service strategy. When applying to
communication networks, it is especially useful for solving problems associated
with network flow.
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Chapter 4
Performance Analysis of an M/M/1 Working
Vacation Queue with Setup Times

Xiuli Xu and Naishuo Tian

Abstract We investigate an M/M/1 working vacation queue with setup times, using
a quasi birth-and-death process and a matrix-geometric solution method to derive
the distributions for the stationary queue length and the waiting time of a customer
in the system. Furthermore, we get stochastic decomposition structures of stationary
indices, and obtain the distributions of the additional queue length and additional
delay. Finally, numerical examples are presented.

4.1 Introduction

The vacation queue models have been investigated extensively in view of their appli-
cation in computer systems, communication networks, and production managing. In
a classical vacation queue, the server completely stops serving customers and may
do some additional work or maintain servers during a vacation. Various vacation
policies provide more flexibility for optimal design and operating control of the sys-
tem. The details can be seen in the monographs of Takagi [1], Tian and Zhang [2].

Servi and Finn [3] introduced a class of semi-vacation policies: the server works
at a lower rate rather than completely stopping service during a vacation. Such a
vacation is called a working vacation (WV). Part of the service ability keeps the
system operating at a lower speed during a vacation. If service speed degenerates to
zero in a working vacation, the working vacation queue becomes a classical vacation
queue model. Therefore, the working vacation queue is the generalization of the
classical vacation queue and the analysis of this kind of model is more complicated
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than the previous work. In view of partly utilizing service ability during a vacation,
the working vacation policy of the queue with a single server is similar to the partial
servers’ vacation policy in a multiserver queue; for the details see Tian and Zhang
[4] and Xu and Zhang [5].

Servi and Finn [3] studied an M/M/1 queue with multiple working vacations, and
obtained the probability generating function (P.G.F.) of the number of customers in
the system and the Laplace–Stieltjes transform (LST) of the waiting time distribu-
tion, and applied the results to performance analysis of a gateway router in fiber
communication networks.

On the basis of [3], Liu, Xu, and Tian [6] gave simple explicit expressions of
distributions for the stationary queue length and waiting time that have an intuitive
probability interpretation. Furthermore, the authors got stochastic decomposition
structures of stationary indices, derived an expected regular busy period, and an
expected busy cycle. Moreover, Kim, Choi, and Chae [7] and Wu and Takagi [8]
generalized the work of [3] to an M/G/1 queue with multiple working vacations.
Li and Tian [9] examined a discrete time GI/Geom/1 queue with working vacation
and service interruption. Baba [10] discussed a GI/M/1 queue with multiple work-
ing vacations. Banik, Gupta, and Pathak [11] studied a GI/M/1/N working vacation
queue with limited waiting space.

In this chapter, we investigate an M/M/1 queue with single working vacation and
setup times. If the setup time equals zero, our model becomes an M/M/1 queue with
a single working vacation. Furthermore, if the working vacation time equals zero at
the same time, this model boils down to a classical M/M/1 queue. Therefore, our
model has a more comprehensive application background.

The rest of this chapter is organized as follows. In Sect. 4.2 we describe the quasi
birth-and-death process model of the system and get the explicit expression of the
rate matrix which assures that various system indices have an analytic solution. Sec-
tion 4.3 and Sect. 4.4, respectively, discuss the number of customers in the system
and the waiting time of a customer, give their stochastic decomposition structures,
and obtain the distributions of additional queue length and additional delay. Further-
more, Sect. 4.5 includes some numerical examples in order to give changing curves
of performance indices with the change of system parameters. Concluding remarks
are given in Sect. 4.6.

4.2 Model Description and Preliminary

A policy of single working vacation and setup times is introduced into a classical
M/M/1 queue with arrival rate λ and service rate μb. The server begins a working
vacation of random length at the instants when the queue becomes empty, and va-
cation duration V follows an exponential distribution with parameter θ . During a
working vacation arriving customers are served at a rate of μv (μv < μb) accord-
ing to arrival order. When a vacation ends, if there are customers in the queue,
the server changes the service rate from μv to μb, and a regular busy period starts.
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Otherwise, the server begins a closed-down period. During a closed-down period,
an arriving customer cannot be served immediately and has to experience a period
of setup time, setup duration S follows an exponential distribution with parameter
α , a regular busy period starts after a setup period.

Working vacation V is an operating period at a lower speed. When the number of
customers in the system is relatively few, we set a lower speed operating period and
a closed-down period in order to economize operating cost together with serving
customers; these two periods have essential differences because customers can be
served in the former period and not in the latter period. Therefore, this working
vacation and setup time policy has practical significance in the optimal design of
the system. Similar to previous denotation, this queue is referred to as an M/M/1
queue with single working vacation and setup times.

We assume that interarrival times, service times, working vacation times, and
setup times are mutually independent. In addition, the service order is first-in-first
out (FIFO).

Let Q(t) be the number of customers in the system at time t and

J(t) =

⎧
⎨

⎩

0, the system is in a working vacation period at time t
1, the system is in a setup period or closed-down period at time t
2, the system is in a regular busy period at time t,

then {Q(t), J(t)} is a Markov process with the state space

Ω =
{

(0,0),(0,1)
}⋃{

(k, j) : k ≥ 1, j = 0,1,2
}

.

Using the lexicographical sequence for the states, the infinitesimal generator can
be written as follows:

Q̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A00 A01
B10 A C

B A C
B A C

...
...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where

A00 =
[
−(λ +θ) θ

0 −λ

]

, A01 =
[
λ 0 0
0 λ 0

]

, B10 =

⎡

⎣
μv 0
0 0
μb 0

⎤

⎦ ,

and

A =

[−(λ +θ +μv) 0 θ
0 −(λ +α) α
0 0 −(λ +μb)

]

,
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B =

⎡

⎣
μv 0 0
0 0 0
0 0 μb

⎤

⎦ , C =

⎡

⎣
λ 0 0
0 λ 0
0 0 λ

⎤

⎦ .

The matrix Q̃ has a block-tridiagonal structure which indicates that {Q(t),
J(t)} is a quasi birth-and-death (QBD) process, see Neuts [12] or Latouche and
Ramaswami [13]. To analyze this QBD process, it is necessary to solve for the
minimal nonnegative solution of the matrix quadratic equation as follows:

R2B+RA+C = 0 (4.1)

and this solution is called the rate matrix and denoted by R. Obviously, we have the
following lemma.

Lemma 4.1. If ρ = λ (μb)−1 < 1, the matrix equation (4.1) has the minimal non-
negative solution

R =

⎡

⎢
⎢
⎢
⎢
⎣

r 0
θ r

μb(1− r)

0
λ

λ +α
ρ

0 0 ρ

⎤

⎥
⎥
⎥
⎥
⎦

, (4.2)

where

r =
1

2μv

(

λ +θ +μv −
√

(λ +θ +μv)
2 −4λμv

)

and 0 < r < 1.

Because r satisfies the equation

μv r2 − (λ + θ +μv)r +λ = 0,

dividing both sides of this equation by r, we get

λ + θ +μv(1− r) =
λ
r
.

Equivalently, we have
θ

1− r
+μv =

λ
r
. (4.3)

Lemma 4.2. The QBD process {Q(t),J(t)} is positive recurrent if and only if ρ < 1.

Proof. Based on Theorem 3.1.1 of Neuts [12], the QBD process {Q(t),J(t)} is
positive recurrent if and only if the spectral radius SP(R) of the rate matrix R is less
than 1, and set of equations (x0,x1,x2,x3,x4,x5)B[R] = 0 has a positive solution,
where
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B[R] =
[

A00 A01
B10 RB+A

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

−(λ +θ) θ λ 0 0
0 −λ 0 λ 0

μv 0 −λ
r

0
θ

1− r
0 0 0 −(λ +α) λ +α
μb 0 0 0 −μb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(4.4)

B[R] is an irreducible and aperiodic generator with finite state. Therefore, (x0,x1,x2,
x3,x4,x5)B[R] = 0 has a positive solution (e.g., the equilibrium probability vector
of B[R] is a positive solution). Thus, process {Q(t),J(t)} is positive recurrent if and
only if

SP(R) = max
(

r,
λ

λ +α
,ρ
)

< 1.

Note that 0 < r < 1 and 0 < λ/(λ +α) < 1, the above relation means that ρ < 1.

4.3 Queue Length Distribution

If ρ < 1, let (Q,J) be the stationary limit of the QBD process {Q(t),J(t)}. Let

πk =
{

(π00,π01), k = 0
(πk0,πk1,πk2), k ≥ 1,

π k j = P{Q = k,J = j} = lim
t→∞

P{Q(t) = k,J(t) = j}, (k, j) ∈Ω .

Theorem 4.1. If ρ < 1, the stationary probability distribution of (Q,J) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk0 = Krk, k ≥ 0

πk1 = K
θ
λ

( λ
λ +α

)k
, k ≥ 0

πk2 = K

[
θr

μb(1− r)

k−1

∑
j=1

r jρk−1− j +
θ

λ +α

k−1

∑
j=1
ρ j
( λ
λ +α

)k−1− j

+
θ

μb(1− r)
ρk−1

]

, k ≥ 1,

(4.5)

where we assume that the null sum is equal to zero and

K =
[

1
1− r

+
θ
λ

+
θ

α(1−ρ)
+

θ(1− r + r2)
μb(1− r)2(1−ρ)

]−1

.

Proof. With the matrix-geometric solution method (see Neuts [12]), we have
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(πk0,πk1,πk2) = (π10,π11,π12)Rk−1, k ≥ 1 (4.6)

and (π00,π01,π10,π11,π12) satisfies the set of equations as follows:

(π00,π01,π10,π11,π12)B[R] = 0.

Substituting B[R] into the above equation, we obtain the set of equations as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−(λ +θ)π00 +μvπ10 +μbπ12 = 0
θπ0,0 −λπ01 = 0

λπ0,0 −
λ
r
π10 = 0

λπ01 − (λ +α)π11 = 0
θ

1− r
π10 +(λ +α)π1,1 −μbπ12 = 0.

Taking π00 = K, we get

(π00,π01,π10,π11,π12) = K
(

1,
θ
λ

,r,
θ

λ +α
,

θ
μb(1− r)

)

.

From (4.2), utilizing the rule of matrix multiplication and iterative method, we
can easily get the expression of Rk as

Rk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

rk 0
θ

μb(1− r)

k

∑
j=1

r jρk− j

0
( λ
λ +α

)k k

∑
j=1
ρ j
( λ
λ +α

)k− j

0 0 ρk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, k ≥ 1.

Furthermore, substituting (π10,π11,π12) and Rk−1 into (4.6), we obtain (4.5). Fi-
nally, the constant factor K can be determined by the normalization condition.

With (4.5), the probabilities that the system is in a working vacation period, a
closed-down period, a setup period, and a regular busy period in steady-state are as
follows, respectively.

P{J = 0} =
∞

∑
k=0
πk0 = K

1
1− r

,

P{the server is in a closed-down period} = π01 = K
θ
λ

,

P{the server is in a setup period} =
∞

∑
k=1
πk1 = K

θ
α

,

P{J = 2} =
∞

∑
k=1
πk2 = K

[
θρ

α(1−ρ)
+

θ(1− r + r2)
μb(1− r)2(1−ρ)

]

. (4.7)
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Theorem 4.2. If ρ < 1 and μb > μv, the number of customers Q in the system can
be decomposed into the sum of two independent random variables: Q = Q0 + Qd,
where Q0 is the number of customers of a classical M/M/1 queue in steady state
and follows a geometric distribution with parameter 1−ρ . An additional number
of customers Qd has a modified geometric distribution as follows:

P{Qd = k} =

⎧
⎨

⎩

K∗δ1, k = 0
K∗δ2, k = 1
K∗δ3(1− r)rk−1 +K∗δ4(1−β )β k−1, k ≥ 2,

(4.8)

where

β =
λ

λ +α
,

δ1 = (1− r)(1−β )
λ +θ
λ

,

δ2 =
[ θ
μb

+(r−ρ)(1− r)+
θ(1− r)(β −ρ)

λ

]
(1−β ),

δ3 =
[
(r−ρ)+

θr
μb(1− r)

]
(1−β ),

δ4 =
θ(1− r)
λ +α

,

K∗ =
{

(1−β )(1−ρ)+
θ(1−ρ)(1− r)(1−β )

λ
+
θ(1− r)
λ +α

+
θ(1−β )(1− r + r2)

μb(1− r)

}−1

.

Proof. Denote λ/(λ +α) = β and with (4.5), the Probability Generation Function
(P.G.F.) of Q can be written as follows:

Q(z) =
∞

∑
k=0

zkπk0 +
∞

∑
k=0

zkπk1 +
∞

∑
k=1

zkπk2

= K
{

1
1− rz

+
θ
λ

1
1−β z

+
θr2

μb(1− r)(ρ− r)

[ z
1−ρz

− z
1− rz

]

+
θρ

λ − (λ +α)ρ

[ z
1−β z

− z
1−ρz

]
+

θ
μb(1− r)

z
1−ρz

}

=
1−ρ
1−ρz

K∗
{

(1−β )
1− r
1− rz

(1−ρz)+
θ(1− r)
λ

1−β
1−β z

(1−ρz)

+
θ
μb

(1−β )z+
θr(1−β )
μb(1− r)

r(1− r)z2

1− rz
+
θρ(1− r)

λ
β (1−β )z2

1−β z

}

.
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Note that

1− r
1− rz

(1−ρz) = (1− r)+(r−ρ)
(1− r)z
1− rz

,

1−β
1−β z

(1−ρz) = (1−β )+(β −ρ)
(1−β )z
1−β z

.

Q(z) can be rewritten as

Q(z) =
1−ρ
1−ρz

K∗
{

δ1 +δ2z+δ3
r(1− r)z2

1− rz
+δ4

β (1−β )z2

1−β z

}

=
1−ρ
1−ρz

Qd(z)

and we can prove that δ1 + δ2 + rδ3 +βδ4 = (K∗)−1. Therefore, Qd(z) is a P.G.F.
Expanding Qd(z) into the power series of z, we get the distribution of an additional
number of customers Qd . Thus, we can get (4.8).

With the stochastic decomposition structure in Theorem 4.2, we can easily get
the means as follows:

E[Qd ] = K∗
[

δ2 +
2r− r2

1− r
δ3 +

2β −β 2

1−β δ4

]

, E[Q] =
ρ

1−ρ +E[Qd ].

4.4 Waiting Time Analysis

Denoting the waiting time of a customer in the system by W , we have the following
stochastic decomposition results.

Theorem 4.3. If ρ < 1 and μb > μv, the waiting time W can be decomposed into the
sum of two independent random variables: W = W0 +Wd where W0 is the waiting
time of a customer in a corresponding classical M/M/1 queue and has an exponen-
tial distribution with parameter μb(1− ρ). Additional delay Wd has the modified
exponential distribution and LST as follows:

W ∗
d (s) = K∗

[

σ1 +σ2
γ
γ+ s

+σ3
α
α+ s

]

, (4.9)

where

γ =
λ (1− r)

r
, σ1 = δ1 +δ2 −

1− r2

r
δ3 −

(1−β )(2λ +α)
λ

δ4,

σ2 =
1
r
δ3, σ3 =

1
β
δ4.

Proof. The classical relationship between the P.G.F. of Q and the LST of waiting
time W (see [6]) is
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Q(z) = W ∗(λ (1− z)
)
.

From Theorem 4.2, the P.G.F. of the number of customers Q is

Q(z) =
1−ρ
1−ρz

K∗
{

δ1 +δ2z+δ3
r(1− r)z2

1− rz
+δ4

β (1−β )z2

1−β z

}

. (4.10)

Taking z = 1− s/λ in (4.10) and denoting λ (1− r)/r = γ , we have

W ∗(s) =
μb(1−ρ)
μb(1−ρ)+ s

K∗

⎧
⎪⎨

⎪⎩
δ1 +δ2

(
1− s

λ

)
+δ3

1− r
λ

⎡

⎢
⎣

(λ
r

)2

γ+ s
− γ+ s

⎤

⎥
⎦

+δ4
1−β
λ

[
(λ +α)2

α+ s
− (2λ +α)+ s

]}

=
μb(1−ρ)
μb(1−ρ)+ s

K∗
{

σ1 +σ2
γ
γ+ s

+σ3
α
α+ s

}

=
μb(1−ρ)
μb(1−ρ)+ s

W ∗
d (s).

It is easy to verify that σ1 +σ2 +σ3 = δ1 +δ2 + rδ3 +βδ4 = (K∗)−1. Therefore,
W ∗

d (s) is a LST.

We can easily get means as follows:

E[Wd ] = K∗
(

σ2
1
γ

+σ3
1
α

)

, E[W ] =
1

μb(1−ρ)
+E[Wd ].

4.5 Numerical Results

Consider an asynchronous transfer mode (ATM) network, where cell arrivals in
a switched virtual channel (SVC) form a Poisson process with parameter λ ; cell
transmission time is an exponential distributed random variable with rate μb. When
a SVC finishes cell transmission and becomes empty, we set a period of working
vacation, during which arriving cells can be transmitted at a lower rate μv (μv < μb)
immediately. If there are no cells in the SVC after a working vacation, we close
down the SVC in order to save the operating cost and need to rebuild a SVC when
a cell arrives. The policy of working vacation both takes over cell transmission and
saves switching cost. Therefore, our model is fitter for modeling practical situations
than [6].

Now, we illustrate the results obtained above numerically and discuss the effect
of system parameters on system performance indices. We assume that the service
rate μb in a regular busy period equals 0.5 and arrival rate λ equals 0.3; at the same
time, we assume that setup time is an exponential distributed random variable with
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Fig. 4.1 Mean queue length E[Q] versus service rate μv in working vacation period.
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Fig. 4.2 Mean waiting time E[W ] versus service rate μv in working vacation period.

mean α = 0.8. We respectively plot the values of mean queue length E[Q] and mean
waiting time E[W ] by changing the service rate μv in a vacation period, meanwhile,
in order to investigate the influence of the mean length 1/θ of a vacation, we show
the results for three values of θ . For comparison, we have Figs. 4.1 and 4.2.

On the other hand, we assume that the service times in a service period and in a
vacation are exponentially distributed with rate μb = 0.7 and μv = 0.5, respectively.
Moreover, we assume that arrival rate λ is equal to 0.3. We respectively plot the
values of mean queue length E[Q] and mean waiting time E[W ] by changing setup
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Fig. 4.3 Mean queue length E[Q] versus setup rate α .
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Fig. 4.4 Mean waiting time E[W ] versus setup rate α .

rate α; meanwhile, in order to investigate the influence of the mean length 1/θ .
of a vacation, we show the results for three values of θ . For comparison, we have
Figs. 4.3 and 4.4.

4.6 Conclusions

We proposed a new queueing model with setup times and single working vacation
in this chapter, using a quasi birth-and-death process and matrix-geometric solution
method to derive the distributions for the stationary queue length and waiting time of
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a customer in the system. Furthermore, we got stochastic decomposition structures
of stationary indices, and obtained the distributions of the additional queue length
and additional delay. The numerical results were presented.
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Chapter 5
Modeling of Production System
with Nonrenewal Batch Input, Early Setup,
and Extra Jobs

Ho Woo Lee, No Ik Park, Se Won Lee, and Jung Woo Baek

Abstract In this chapter, we model and solve a very general single-machine pro-
duction system with early setup, bilevel threshold control, and extra job operations.
The first threshold is used to control the setup starting time and the second thresh-
old is used to control the production starting time. The system is modeled by the
BMAP/G/1 queue and the manufacturing lead time is analyzed. The factorization
principle is used to derive the distribution of the manufacturing lead time and the
mean value. A numerical example is provided.

5.1 Introduction

Industrial engineers have long been interested in analyzing the trade-offs between
the system setup and work-in-process (WIP) inventory in order to provide the con-
ditions under which the system operates most economically in the long run. Usually
the system setup increases the work-in-process inventory which results in a higher
holding cost. But when the system setup cost is very high, this increased holding
cost may offset the setup cost because the setup increases the manufacturing cycle
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time which will result in reduced long-run operating cost per unit time. Hence the
system setup and WIP inventory are the two most important factors in the cost-
effective operation of a production system. Queueing models have played important
roles in their analytical efforts along this line.

In most studies on production systems, it has been assumed that the feed process
into the production system follows the Poisson process, mainly due to its analyt-
ical tractability. But in many real production settings, the interarrival times of the
raw materials are correlated, and independently identically distributed (i.i.d.) expo-
nential interarrival times are rarely found. Also, in many production systems, setup
operations take several days and are very costly. One way to reduce the setup cost
per unit time is to delay the production until some number of raw materials accu-
mulates and this is the well-known N-policy in a queueing context. The N-policy
results in a longer cycle length which means fewer cycles per unit time. But at the
same time, the average WIP inventory level becomes larger. Thus, in real production
settings, the N-policy is used to reduce the overall average cost per unit time when
the setup cost is extremely high compared to the WIP holding cost.

In this chapter, we model and solve a very general single-machine production
system with early setup, bilevel threshold control, and extra job operations. The first
threshold is used to control the setup starting time and the second threshold is used to
control the production starting time. The system can be modeled by the BMAP/G/1
queue with bilevel thresholds, setup time, and multiple vacations. We are especially
interested in the manufacturing lead time (MLT), which is defined as the time from
the arrival of an order till the time the ordered production is finished. The MLT is
an important measure of the performance of the production system because whether
the manufacturer can meet the due date of an order is one of the most important
success indicators of the production system.

Because the MLT corresponds to the system sojourn time (waiting time + pro-
cessing time) of a queueing system, our objective is to derive the waiting time distri-
bution of the BMAP/G/1 queueing system under the above-mentioned mixed control
policy. The idea and basic methods that are employed in this chapter can be applied
to many exhaustive BMAP/G/1 systems with more variability.

The N-policy system was first studied by Yadin and Naor [1]. For other works on
N-policy queues, see Hersh and Brosh [2], Hofri [3], Kella [4], Lee and Srinivasan
[5], Takagi [6], Lee, and chae [7], and Lee and Ahn [8], to list a few.

Lee and Park [9] showed that the double threshold (α,N)-policy is better than
the single threshold N-policy when the setup cost is extremely high compared to
the WIP holding cost. We note Lee, Park, and Jeon [10] applied the factorization
property of the queue length to the analysis of the WIP inventory of a production
system with maintenance, setup, and thresholds.

The chapter is organized as follows. In Sects. 5.2 and 5.3, the system model is
described and some notation definitions are given. In Sects. 5.4 and 5.5, the waiting
time distribution and the mean waiting time are derived. Numerical examples are
shown in Sect. 5.6 and conclusions are drawn in Sect. 5.7.
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5.2 System Model

Our queueing system operates as follows (see Fig. 5.1). As soon as the system emp-
ties, the server leaves for a vacation of random length V with distribution function
(DF) V (x) and the Laplace–Stieltjes transform (LST) V ∗(θ) (the server attends to
extra jobs during the vacation). After it returns from the vacation, if it finds α or
more customers, it immediately starts a setup of random length H with DF H(x)
and the LST H∗(θ). Otherwise, it takes repeated i.i.d. vacations until it finds α or
more customers to start a setup. After the setup is finished, if the total number of
customers in the system (queue length) is greater than or equal to N, the server im-
mediately begins to serve the customers. If not, the server waits in the system until
the queue length reaches or exceeds N.

In our system, customers arrive according to a BMAP (Batch Markovian Arrival
Process) with parameter matrices (D0,D1,D2, . . .) with D(z) = ∑∞n=0 Dnzn as the
matrix generating function (GF) where D = D(1) = ∑∞n=0 Dn is the infinitesimal
generator of the underlying Markov chain (UMC). We assume that the service times
are i.i.d. random variables with DF S(x) and the LST S∗(θ). We also assume that
the service times, the vacation times, the setup time, and the arrival process are
independent of each other.

An excellent treatment of the BMAP and BMAP/G/1 queues can be found in
Lucantoni [11], [12]. For computational algorithms concerning BMAP queues, see
Lucantoni [11], [12], Ramaswami [13], and Latouche and Ramaswami [14].

Chang, Takine, and Chae et al. [15] studied the factorization property for a
BMAP/G/1 queue with generalized vacations. Lee, Park, and Jeon [16] applied the
factorization property to the Park, and Jeon BMAP/G/1 queue with early setup and
bilevel threshold policy.

N t( )

N

a

t
Setup

period(Tsu)
Stand-by
period(Tsb)

Busy periodVacation
period(Tvac)

Idle period(I )

1 2 3 4 5

Fig. 5.1 The system.
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5.3 Preliminaries

Let π be the stationary vector of the UMC. Then, π can be obtained from

πD = 0, πe = 1,

where e is the column vector of 1s with appropriate dimension.
Let λg be the group arrival rate. Then, we have

λg = π
∞

∑
n=1

Dne = π(D−D0)e = −πD0e.

The total customer arrival rate λ becomes

λ = π
∞

∑
n=1

nDne.

Let Γ be the size of an arbitrary arrival group with γk = Pr(Γ = k). Then, we
have

γk =
πDke

π ∑∞n=1 Dne
=
πDke
λg

(5.1)

and
E[Γ ] = λ/λg. (5.2)

Let δk be the probability that the test customer belongs to a group of size k. From
the theory of discrete-time renewal theory, we have, after using (5.1) and (5.2),

δk =
k · γk
E[Γ ]

=
kπDke
λ

.

Now, let us consider a “virtual customer” who arrives at an arbitrary point
of time during the busy period and sees the system state (n, i) where n is the
queue length (i.e., the number of customers including the one in service) and i is
the phase of the UMC at the arrival instance. Let the time-average probability of
this state be ybusy,n,i with vector ybusy,n = (ybusy,n,1, . . . ,ybusy,n,m) and the vector GF
Y busy(z) = ∑∞n=1 ybusy,nzn. Now, let us consider an arbitrary “actual customer” who
arrives during the busy period. If he belongs to a group of size k (with probability
δk), and is ith within his group (with probability 1/k), he has (i−1) customers pre-
ceding him in his group. Thus, the vector GF Y +

busy(z) of the number of customers
just after his arrival becomes

Y +
busy(z) =

∞

∑
k=1

k

∑
i=1
δk

1
k

zi−1Y busy(z)
Dk

πDke
= Y busy(z)

D−D(z)
λ (1− z)

, (5.3)

where Dk/πDke is multiplied to convert the virtual joint probability of the queue
length and the UMC phase to the actual joint probability (note that our test
customer belongs to a group of size k). Equation (5.3) was already stated in
Lucantoni [11], [12].
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5.4 Waiting Time Distribution

In order to obtain the vector Laplace–Stieltjes transform (LST) w∗
A(θ) of the waiting

time of an actual test customer, the first step is to find the vector LSTs w∗
vac,V (θ),

w∗
su,V (θ), w∗

sb,V (θ), and w∗
busy,V (θ) of the waiting time of the virtual customer who

arrives at an arbitrary time in each period. Once we obtain these quantities, we can
obtain the vector LSTs w∗

vac,A(θ), w∗
su,A(θ), w∗

sb,A(θ), and w∗
busy,A(θ) of the waiting

time of an actual test customer by postmultiplying appropriate quantities to convert
the virtual probabilities to actual probabilities.

To obtain w∗
busy,V (θ), we need Y ∗

busy(z,θ) which is the joint transform of the
queue length and the remaining service time at the arrival instance of the virtual
customer. Then we get

w∗
busy,V (θ) =

[
Y ∗

busy(z,θ)

z

]

z=S∗(θ)

=
Y ∗

busy[S
∗(θ),θ ]

S∗(θ)
.

Then, in the analogous manner as in (5.3), we get

w∗
busy,A(θ) =

Y ∗
busy[S

∗(θ),θ ]

S∗(θ)
D−D(S∗(θ))
λ (1−S∗(θ))

. (5.4)

Now, if we let Y idle(z) be the vector GF of the queue length at an arbitrary
idle time in a BMAP/G/1 queue with generalized vacations, it is proven by Chang
et al. [15] that Y ∗

busy(z,θ) is given by

Y ∗
busy(z,θ)[θ I +D(z)] = (1−ρ)Y idle(z)zD(z)[A(z)−S∗(θ)I][zI −A(z)], (5.5)

where ρ = λE[S] is the server utilization and A(z) is the matrix GF of the num-
ber of customers that arrive during the service time which is given by A(z) =
∫ ∞

0 eD(z)xdS(x) (Lucantoni [12]). Thus, our temporary objective is to obtain Y idle(z).

5.4.1 Obtaining Yidle(z)

In this subsection, we derive the vector GF Y idle(z) of the queue length at an arbi-
trary idle time. To this end, we first find pvac, psu, and psb which are time-average
probabilities that the system is in a vacation period, in a setup period, and in a stand-
by period, respectively, under the condition that the system is idle (see Fig. 5.1). Let
E[Tvac], E[H], and E[Tsb] be the mean length of each period. Then, we get

E[I] = E[Tvac]+E[H]+E[Tsb]

and

pvac =
E[Tvac]

E[I]
, psu =

E[H]
E[I]

, psb =
E[Tsb]
E[I]

. (5.6)
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In the sequel, we denote (F)i j as the (i, j)-element of a matrix F .
We first derive E[Tvac]. Let us define a grand vacation process as in Lee et al.

[16]. A grand vacation (GV) is the sum of i.i.d. individual vacations until there is a
change in queue length upon a return from a vacation. The first grand vacation (GV)
G1 starts from 1© (see Fig. 5.1) and lasts until the queue length differs from 0 upon
a return from a vacation. At this point, if the queue length is less than α, the second
GV G2 starts and lasts until there is a change in the queue length upon a return from
a vacation. The GV process continues in this manner until the queue length upon
return from a vacation is greater than or equal to α.

We note that a GV is equivalent to the vacation period in the simple BMAP/G/1
queue with multiple vacations. Let (Rn)i j be the probability that the GV process
visits level (queue length) n and the UMC phase is j just after the visit given that
the UMC phase is i at 1©. It was proven in Lee et al. [16] that Rn can be computed
from the following recursion,

R0 = I, Rn =
n

∑
i=1

Rn−i(I −V 0)−1V i, (n ≥ 1),

where V i is the matrix probability that i customers arrive during a vacation.
Because [(I−V 0)−1]i j is the mean number of vacations (within a GV) that starts

with phase j under the condition that the GV started with phase i, we have

E[Tvac] =

[

κ
α−1

∑
n=0

Rn(I −V 0)−1e

]

E[V ], (5.7)

where κ is the phase probability vector at 1©. Obtaining κ is discussed later.
To derive E[Tsb], let us define (Φsb

k )i j,(α ≤ k ≤ N −1) as follows:
(Φ sb

k )i j = Pr (the stand-by process visits level k and the phase of UMC is j just
after the visit | UMC phase is i at 1©).

Noting that (i, j)-element of the matrix (−D0)−1 is the mean time the UMC stays
in phase j until the next arrival given that the current phase is in i (see, e.g., Latouche
and Ramaswami [14]), we have

E[Tsb] = κ
N−1

∑
k=α
Φ sb

k (−D0)−1e. (5.8)

Thus, the mean length of an arbitrary idle period is given by

E[I] = κ

[
α−1

∑
n=0

Rn(I −V 0)−1E[V ]+E[H]I +
N−1

∑
k=α
Φ sb

k (−D0)−1

]

e. (5.9)

Then pvac, psu, and psb can be obtained from (5.6)–(5.9).
Computation of κ and {Φ sb

k ,(α ≤ k ≤ N −1)} is discussed later.
Let pvac(z), psu(z), and psb(z) be the vector GFs of the queue length at an arbi-

trary epoch in each period under the condition that the system is idle. We first obtain
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pvac(z). Consider an arbitrary time point t∗ during the vacation period. At the start
of the vacation that contains t∗, the queue length is n and the UMC phase is j with
probability

[κRn(I −V 0)−1] j

κ
α−1

∑
n=0

Rn(I −V 0)−1e

,

where the denominator is the mean number of individual vacations during the vaca-
tion period. Now, the matrix GF V ∗(z) of the number of customers that arrive during
the elapsed vacation is given by

V ∗(z) =
∫ ∞

0
eD(z)x

[
1−V (x)

E[V ]

]

dx =
[V (z)− I]

E[V ]
D(z)−1,

where V (z) is the GF of {V i}. Thus, we get

pvac(z) = pvac

κ
α−1

∑
n=0

Rn[I −V 0]−1zn

κ
α−1

∑
n=0

Rn[I −V 0]−1e

[V (z)− I]
E[V ]

D(z)−1. (5.10)

Now, to derive psu(z), let us define H−
α (z) =∑∞k=α H−

k(α)z
k as the GF of the matrix

probability H−
k(α) that there are k customers at the start of the setup period (point

2©). Noticing that H−
α (z) is equivalent to the queue length GF at the start of the

busy period in the simple BMAP/G/1 queue with α-policy and multiple vacation,
we have from Lee et al. [16],

H−
α (z) = I +

α−1

∑
j=0

R j[I −V 0]−1z j[V (z)− I]. (5.11)

Then, we get
psu(z) = psu ·κH−

α (z)H∗(z), (5.12)

where

H∗(z) =
[H(z)− I]

E[H]
D(z)−1

is the GF of the number of customers that arrive during the elapsed setup time in
which H(z) is the matrix GF of the number of customers that arrive during a setup
time.

Under the condition that the system is in a stand-by period, the queue length is k
and the UMC phase is j with probability
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(
κΦ sb

k (−D0)−1
)

j

κ
N−1

∑
n=α
Φ sb

n (−D0)−1e

.

Thus we get

psb(z) = psb ·
κ

N−1

∑
k=α
Φ sb

k (−D0)−1zk

κ
N−1

∑
n=α
Φ sb

n (−D0)−1e

. (5.13)

Combining (5.10), (5.12), and (5.13), we get

Y idle(z) = pvac(z)+ psu(z)+ psb(z)

=
κ

E[I]

{
α−1

∑
n=0

Rn[I −V 0]−1zn[V (z)− I]D(z)−1

+ H−
α (z)[H(z)− I]D(z)−1 +

N−1

∑
n=α
Φ sb

n (−D0)−1zn

}

. (5.14)

Now, we need to devise a scheme to compute the probability Φ sb
k ,(α ≤ k ≤

N − 1) that the stand-by process visits level k. This depends on the queue length
probability at 3©. By conditioning on the queue length at 2©, the probability H+

k(α)
at the end of the setup period becomes

H+
k(α) =

k

∑
i=α

H−
i(α)Hk−i (5.15)

and

Φ sb
k =

k

∑
i=0

H+
i(α)D

∗
k−i, (α ≤ k ≤ N −1),

where D∗
n is the probability matrix that the idle period process of the BMAP/G/1/α-

policy queueing system (without vacations and setup) visits level n and Hk is the
probability that k customers arrive during a setup time. We note, by conditioning on
the level visited prior to level n, that we have a recursion,

D∗
0 = I, D∗

n =
n−1

∑
l=0

D∗
l (−D0)−1Dn−l .

Now, κ can be computed from

κK = κ, κe = 1,

where K is the phase transition probability between 1© and 5© and can be obtained
from
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K = K(z)|z=1,

in which K(z) is the matrix GF of the mean number of customers that are served
between 1© and 5©. To obtain K(z), we need the GF Q(α,N)(z) of the queue length
at the start of the busy period ( 4©). We can show that (see Appendix 3):

Q(α,N)(z) = H−
α (z)H(z)+

[
N−1

∑
n=α
Φsb

n (−D0)−1zn

]

D(z), (5.16)

where H(z) is the matrix GF of the number of customers that arrive during the setup
time. Using (5.11) in (5.16), we get

K(z) = Q(α,N)(z)|z=G(z) =
α−1

∑
n=0

Rn[I −V 0]−1[G(z)]n[V (G(z))− I]H(G(z))

+H(G(z))+
N−1

∑
n=α
Φ sb

n (−D0)−1[G(z)]nD(G(z)).

Thus we have

K = K(z)|z=1 =
α−1

∑
n=0

Rn[I −V 0]−1Gn[V (G)− I]H(G)

+ H(G)+
N−1

∑
n=α
Φ sb

n (−D0)−1GnD(G).

Using (5.14) in (5.5), we get

Y ∗
busy(z,θ)[θ I +D(z)] =

{
α−1

∑
n=0

Rn[I −V 0]−1zn[V (z)− I]H(z)

+
N−1

∑
n=α
Φsb

n (−D0)−1znD(z)+H(z)− I

}

·
{
[z−S∗(θ)]A(z)[zI−A(z)]−1 −S∗(θ)I

}
.

Then, we can obtain w∗
busy,A(θ) from (5.4).

5.4.2 Obtaining the LST of the Waiting Time of the Customer
Who Arrives During the Idle Period

Now to find the vector LST w∗
vac,A(θ) of the waiting time of the actual test customer

that arrives during a vacation, we first need to know the number of customers that
arrive during the time period from the end of the current vacation to the start of the
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setup period because this determines the remaining vacation period and thereby the
remaining idle period. For this purpose, let us define the notation as follows:

T v
α−k: The remaining time until the setup starts from the end of the current

vacation at which there are k customers
A(T v

α−k): The number of customers that arrive during T v
α−k

J1: The UMC phase at the end of the current vacation
J2: The UMC phase at the start of the setup time
Let us define the (i, j)-element of the matrix transform TV∗

α−k(θ ,n) as follows:

[
TV∗
α−k(θ ,n)

]

i j =
∫ ∞

0
e−θ tPr(t < T v

α−k ≤ t +dt, A(T v
α−k) = n, J2 = j|J1 = i).

Then, we have
TV∗
α−k(0,n) = H−

n(α−k), (n ≥ α− k).

If the test customer who arrives during a vacation belongs to a group of size j
and stands ith in her group, she first has to wait that:

(i) The service times of the customers at the start of the current vacation
(ii) The service times of the customers that arrive during the elapsed vacation time

(iii) The time until the end of the current vacation
(iv) The service times of those (i−1) customers who precede her in her group
(v) The remaining vacation period (from the end of the current vacation)

(vi) The time until the busy period starts.

These quantities are dependent on each other. Let us define ψV
n as

ψV
n =

κRn[I −V 0]−1

κ
α−1

∑
k=0

Rk[I −V 0]−1e

,

which is the vector probability that the queue length at the start of the current va-
cation is n. Then the LST of the waiting time above ((ii)–(v)) contribution is as
follows:

ψV
n [S∗(θ)]nΩ ∗

V (a, j,b,θ)[S∗(θ)]a[S∗(θ)]i−1,

where Ω ∗
V (a, j,b,θ) is given in (5.34) in Appendix 1 and represents the remaining

vacation time including the probability that a customers arrive during the elapsed
vacation time; the test customer belongs to a group of size j (the virtual phase
is converted to the actual phase at this point. See (5.25) in Appendix 1. See also
Kasahara et al. [17]), and b customers arrive during the remaining vacation time.

Now, additional waiting time depends on the situation at the end of the current
vacation. Consider the group G∗ to which the test customer belongs. Let us define
the following quantities:
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Q−(G∗): The number of customers just before G∗ arrives
Q+(G∗): The number of customers just after G∗ arrives
Q+

V : The number of customers at the end of the current vacation
Q−

H : The number of customers at the start of the setup period
Q+

H : The number of customers at the end of the setup period

Then we have different cases as follows:

(Case 1) Q−(G∗) < α, Q+(G∗) ≤ α
(case 1-1) Q−(G∗) < α, Q+(G∗) ≤ α, Q+

V ≤ α, Q−
H ≤ N, Q+

H ≤ N,
(case 1-2) Q−(G∗) < α, Q+(G∗) ≤ α, Q+

V ≤ α, Q−
H ≤ N, Q+

H > N,
(case 1-3) Q−(G∗) < α, Q+(G∗) ≤ α, Q+

V ≤ α, Q−
H > N,

(case 1-4) Q−(G∗) < α, Q+(G∗) ≤ α, α < Q+
V ≤ N, Q+

H ≤ N,
(case 1-5) Q−(G∗) < α, Q+(G∗) ≤ α, α < Q+

V ≤ N, Q+
H > N,

(case 1-6) Q−(G∗) < α, Q+(G∗) ≤ α, Q+
V > N.

(Case 2) Q−(G∗) < α, α < Q+(G∗) ≤ N
(case 2-1) Q−(G∗) < α, α < Q+(G∗) ≤ N, < Q+

V ≤ N, Q+
H ≤ N,

(case 2-2) Q−(G∗) < α, α < Q+(G∗) ≤ N, < Q+
V ≤ N, Q+

H > N,
(case 2-3) Q−(G∗) < α, α < Q+(G∗) ≤ N, < Q+

V > N.

(Case 3) Q−(G∗) < α, Q+(G∗) > N.

(Case 4) α < Q−(G∗) < N
(case 4-1) α < Q−(G∗) < N, Q+(G∗) ≤ N, Q−

H ≤ N, < Q+
H ≤ N,

(case 4-2) α < Q−(G∗) < N, Q+(G∗) ≤ N, Q−
H ≤ N, < Q+

H > N,
(case 4-3) α < Q−(G∗) < N, Q+(G∗) ≤ N, Q−

H > N,
(case 4-4) α < Q−(G∗) < N, Q+(G∗) > N.

(Case 5) α < Q−(G∗) ≥ N.
Now, the waiting times in (case 1-1) and (case 1-2) are as follows:

B1 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
c=α−n−a− j−b

TV∗
α−n−a− j−b(θ ,c)

·
[

N−n−a− j−b−c

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−c−k(θ)+
∞

∑
k=N−n−a− j−b−c+1

H∗
k(θ)

]

,

where H∗
k(θ) is the matrix LST of the length of the setup time including the prob-

ability that k customers arrive during the setup, and T ∗
n(θ) is the matrix LST of

the idle period in the single-threshold BMAP/G/1 queue under n-policy (without
vacations and setup) which becomes, conditioning on the first group size,
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T ∗
n(θ) = [θ I −D0]−1

[
n−1

∑
k=1

DkT ∗
n−k(θ)+

∞

∑
k=n

Dk

]

= [θ I −D0]−1

[
n−1

∑
k=1

Dk[T ∗
n−k(θ)− I]+D−D0

]

with T ∗
0(0) = I. For the remaining cases, we have

(Case 1-3)

B2 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
∞

∑
c=N−n−a− j−b+1

TV∗
α−n−a− j−b(θ ,c)H∗(θ).

(Case 1-4) and (Case 1-5)

B3 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

N−n−a− j

∑
b=α−n−a− j+1

Ω ∗
V (a, j,b,θ)

· [S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

·
[

N−n−a− j−b

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−k(θ)+
∞

∑
k=N−n−a− j−b+1

H∗
k(θ)

]

.

(Case 1-6)

B4 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

α−n−a

∑
j=1

∞

∑
b=N−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 2-1) and (Case 2-2)

B5 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)

· [S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

·
[

N−n−a− j−b

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−k(θ)+
∞

∑
k=N−n−a− j−b+1

H∗
k(θ)

]

.
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(Case 2-3)

B6 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

∞

∑
b=N−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 3)

B7 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
α−n−1

∑
a=0

∞

∑
j=α−n−a+1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 4-1) and (Case 4-2)

B8 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
N−n−1

∑
a=α−n

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
[

N−n−a− j−b

∑
k=0

H∗
k(θ)T ∗

N−n−a− j−b−k(θ)+
∞

∑
k=N−n−a− j−b+1

H∗
k(θ)

]

.

(Case 4-3)

B9 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
N−n−1

∑
a=α−n

N−n−a

∑
j=1

∞

∑
b=N−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 4-4)

B10 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
N−n−1

∑
a=α−n

∞

∑
j=N−n−a+1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

·
j

∑
i=1

[S∗(θ)]i−1H∗(θ).

(Case 5)

B9 =
α−1

∑
n=0
ψV

n [S∗(θ)]n
∞

∑
a=N−n

∞

∑
j=1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1H∗(θ).
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Now, combining all these, we get

w∗
vac,A(θ) = (1−ρ)pvac

11

∑
n=1

Bn. (5.17)

In the similar way, we can obtain the waiting time of the actual customer who
arrives during the setup time and we get

w∗
su,A(θ)

= (1−ρ)psuκ

[
N−1

∑
n=α

H−
n(α)[S

∗(θ)]n
{

N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)

· [S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1 [T ∗
N−n−a− j−b(θ)− I

]
(5.18)

+
∞

∑
a=0

∞

∑
j=1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

}

+
∞

∑
n=N

H−
n(α)[S

∗(θ)]n
∞

∑
a=0

∞

∑
j=1

∞

∑
b=0
Ω ∗

V (a, j,b,θ)[S∗(θ)]a
1
j

j

∑
i=1

[S∗(θ)]i−1

]

.

For the actual customer who arrives during the standby period, we get

w∗
sb,A(θ) = (1−ρ)psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n

·
{

N−k

∑
j=1

D j

λ

j

∑
i=1

[S∗(θ)]i−1(T ∗
N−k− j(θ)− I)+

D−D(S∗(θ))
λ [1−S∗(θ)]

}

, (5.19)

where

ψsb
k =

κΦs
kb(−D0)−1

κ
N−1

∑
n=α
Φ sb

n (−D0)−1e

is the vector probability that there are k customers under the condition that system
is in a standby period.

Finally the LST of the actual waiting customer can be obtained from
(5.17)–(5.19), and we get

W ∗
q (θ) = w∗

A(θ)e = w∗
vac,A(θ)e+w∗

su,A(θ)e+w∗
sb,A(θ)e+w∗

busy,A(θ)e.

For the simplicity of the subsequent analysis, let us write the LST of the waiting
time of an arbitrary actual waiting customer as

W ∗
q (θ) = w∗

N(θ)e+w∗
1(θ)e, (5.20)
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where

w∗
N(θ)e = (1−ρ)

[

pvac

α−1

∑
n=0
ψV

n [S∗(θ)]n
1−V ∗(θ)

E[V ]θ
H∗(θ)

+ psuκ
1−H∗(θ)

E[H]θ
+ psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n
]

· θ [θ I −D(S∗(θ))]−1 D−D(S∗(θ))
λ [1−S∗(θ)]

e

and

w∗
1(θ)e = (1−ρ)pvac

α−1

∑
n=0
ψV

n [S∗(θ)]n ·
5

∑
k=1

Cke

+ 1−ρ)psuκ
N−1

∑
n=α

H−
n(α)[S

∗(θ)]n ·C6e

+ (1−ρ)psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n
N−n

∑
j=1

D j

λ

j

∑
i=1

[S∗(θ)]i−1

· [T ∗
N−n− j(θ)− I]e,

where

C1 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
c=α−n−a− j−b

TV
α−n−a− j−b ∗ (θ ,c)

N−n−a− j−b−c

∑
k=0

H∗
k(θ)

· [T ∗
N−n−a− j−b−c−k(θ)− I],

C2 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

· [T ∗
N−n−a− j−b−c−k(θ)− I]H∗(θ),

C3 =
α−n−1

∑
a=0

α−n−a

∑
j=1

N−n−a− j

∑
b=α−n−a− j+1

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
k=0

H∗
k(θ)[T ∗

N−n−a− j−b−c−k(θ)− I],
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C4 =
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
k=0

H∗
k(θ)[T ∗

N−n−a− j−b−c−k(θ)− I],

C5 =
α−n−1

∑
a=α−n

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

·
N−n−a− j−b

∑
k=0

H∗
k(θ)[T ∗

N−n−a− j−b−c−k(θ)− I],

C6 =
N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

Ω ∗
V (a, j,b,θ)[S∗(θ)]a

1
j

j

∑
i=1

[S∗(θ)]i−1

· [T ∗
N−n−a− j−b−c−k(θ)− I].

5.5 Mean Waiting Time

From (5.20), the mean actual waiting time becomes

Wq = −W ∗(1)
q (0) = −w∗(1)

N (0)e−w∗(1)
1 (0)e,

where

−w∗(1)
1 (0)e = (1−ρ)pvac

α−1

∑
n=0
ψV

n

5

∑
k=1

Ek

+ 1−ρ)psuκ
N−1

∑
n=α

H−
n(α)

N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

ΩV (a, j,b)

· τN−n−a− j−b +(1−ρ)psb

N−1

∑
n=α
ψsb

n

N−n

∑
j=1

jD j

λ
τN−n− j,

where

ΩV (a, j,b) =Ω ∗
V (a, j,b,θ)|θ=0,

τn = − d
dθ

T ∗
n(θ)

∣
∣
∣
θ=0

e =
n−1

∑
k=0

D∗
k(−D0)−1e,
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E1 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

ΩV (a, j,b)
N−n−a− j−b

∑
c=α−n−a− j−b

H−
c(α−n−a− j−b)

·
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k,

E2 =
α−n−1

∑
a=0

α−n−a

∑
j=1

α−n−a− j

∑
b=0

ΩV (a, j,b)τV
α−n−a− j−b,

E3 =
α−n−1

∑
a=0

α−n−a

∑
j=1

N−n−a− j

∑
b=α−n−a− j+1

ΩV (a, j,b)
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k,

E4 =
α−n−1

∑
a=0

N−n−a

∑
j=α−n−a+1

N−n−a− j

∑
b=0

ΩV (a, j,b)
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k,

E5 =
N−n−1

∑
a=α−n

N−n−a

∑
j=1

N−n−a− j

∑
b=0

ΩV (a, j,b)
N−n−a− j−b−c

∑
k=0

HkτN−n−a− j−b−c−k

and
Hk = H∗

k(θ)
∣
∣
θ=0.

Now we need to determine w∗(1)
N (0)e. Let us rewrite w∗

N(θ)e as

w∗
N(θ)e = z∗(θ)

D−D(S∗(θ))
λ [1−S∗(θ)]

e, (5.21)

where

z∗(θ) = (1−ρ)

[

pvac

α−1

∑
n=0
ψV

n [S∗(θ)]n
1−V ∗(θ)

E[V ]θ
H∗(θ)

+ psuκ
1−H∗(θ)

E[H]θ
+ psb

N−1

∑
n=α
ψsb

n [S∗(θ)]n
]

(5.22)

·θ [θ I −D(S∗(θ))]−1.

Taking the derivative of (5.21) with respect to θ we get

−w∗(1)
N (θ)

∣
∣
∣
θ=0

e = − z∗(1)(0)D(1)e
λ

+
z∗(0)E[S]D(2)e

2λ
, (5.23)

where

D(n) =
dn

dzn D(n)(z)
∣
∣
∣
z=1

.
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The derivation of (5.23) is given in Appendix 2. Now we can show that

z∗(0) = π. (5.24)

Then from (5.23) and (5.24), the mean actual waiting time becomes

Wq = (1−ρ)pvac

α−1

∑
n=0
ψV

n

5

∑
k=1

Ek

+1−ρ)psuκ
N−1

∑
n=α

H−
n(α)

N−n−1

∑
a=0

N−n−a

∑
j=1

N−n−a− j

∑
b=0

ΩV (a, j,b)τN−n−a− j−b

+(1−ρ)psb

N−1

∑
n=α
ψsb

n

N−n

∑
j=1

jD j

λ
τN−n− j

− 1
λ

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e

+pvac

α−1

∑
n=0

nψV
n E[S]e+ pvacE[H]+ pvac

E[V 2]
2E[V ]

+psb

N−1

∑
n=α

nψsb
n E[S]e+ psu

E[H2]
2E[H]

+
λE[S2]

2(1−ρ)
+
πE2[S]D(2)e
2ρ(1−ρ)

+
1

1−ρ − πE[S]D(1)(D+ eπ)−1D(1)e
λ (1−ρ)

.

5.6 Numerical Example

In this section, we present a numerical example. We consider the parameter matrices
as follows:

D0 =

⎛

⎝
−2.05 0.1 0.45

0.4 −2.65 1.05
0.25 0.1 −1.85

⎞

⎠ , D1 =

⎛

⎝
0.2 0.4 0.2
0.5 0.3 0.2
0.3 0.6 0.1

⎞

⎠ ,

D2 =

⎛

⎝
0.15 0.1 0.15
0.1 0.1 0

0.05 0.1 0.05

⎞

⎠ , D3 =

⎛

⎝
.0.1 0 0.2
0.5 0.3 0.2
0.3 0.6 0.1

⎞

⎠ .

Then, we get

D =
3

∑
j=0

D j =

⎛

⎝
0.15 0.1 0.15
0.1 0.1 0

0.05 0.1 0.05

⎞

⎠ .
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Table 5.1 Comparison of mean performance measures with simulation.

(α,N) ρ Measure Theoretical
Value

Simulation RPE

(3,5) 0.4311 L 5.0550 5.0517 0.065
(3,5) 0.4311 Wq 2.1456 2.1461 −0.023
(3,5) 0.8622 L 11.6486 11.6616 −0.112
(3,5) 0.8622 Wq 5.0047 5.0116 −0.138
(3,7) 0.4311 L 5.2116 5.2051 0.125
(3,7) 0.4311 Wq 2.2182 2.2166 0.298
(3,7) 0.8622 L 11.8049 11.8050 0.000
(3,7) 0.8622 Wq 5.0771 5.0812 −0.081

From πD = 0, πe = 1, and λ = π ∑∞n=1 nDne, we get

π = (0.35326,0.23913,0.40761), λ = 2.1554348.

We consider two cases of thresholds: (α,N) = (3,5) and (α,N) = (3,7). For
both cases we assume that the setup time and the vacation time follow the exponen-
tial distribution with mean 1.0. For each case, we assume two Erlang service times
of order 2 with different mean service times: E[S] = 0.2 and E[S] = 0.4. Table 5.1
shows the comparison of the mean waiting times and the mean queue lengths that
can be obtained from Little’s law L = λ{Wq +E[S]} with those obtained from sim-
ulation estimates. The relative percentage error (RPE) is defined by

Theoretical value−Simulation estimate
Theoretical value

.

5.7 Conclusions and Summary

In this chapter, we applied the BMAP/G/1 queue with early setup and multiple va-
cation to the analysis of the manufacturing lead time of a production system with
extra jobs and bilevel threshold control. We employed the factorization principle to
derive the distribution of the manufacturing lead time and the mean value.

Acknowledgments This work was supported by grant No. R01-2006-000-10906-0 from the Basic
Research Program of the Korea Science & Engineering Foundation.
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Appendix 1

We define the joint matrix transform by

Ω ∗
V (z1, j,z2,θ) =

∞

∑
a=0

∞

∑
b=0

∫ ∞

0
za

1zb
2e−θydΩV (a, j,b,y).

Then, we have

Ω ∗
V (z1, j,z2,θ) =

∫ ∞

0
e−θy

∫ x

0
eD(z1)(x−y) jπD je

λ
D j

πD je
eD(z2)y x ·dV (x)

E[V ]
1
x

dy, (5.25)

which is equivalent to

Ω ∗
V (z1, j,z2,θ) =

∫ ∞

0

∫ x

0
eD(z1)t jD j

λ
eD(z2)(x−t)e−θ(x−t) dV (x)

E[V ]
dt.

Our temporary objective is to obtain the coefficient matrix Ω ∗
V (a, j,b,θ) of

Ω ∗
V (z1, j,z2,θ) such that

Ω ∗
V (z1, j,z2,θ) =

∞

∑
a=0

∞

∑
b=0

za
1zb

2Ω
∗
V (a, j,b,θ). (5.26)

To this end, we apply the well-known uniformization technique. Let us define Θ
such thatΘ = maxi(−D0)ii. First, eD(z1)t and eD(z2)(x−t) can be written as

eD(z1)t = e−Θ t eΘ(I+Θ−1D(z1))t =
∞

∑
k=0

e−Θ t(Θ t)k

k!
(I +Θ−1D(z1))k (5.27)

and

eD(z2)(x−t) = e−Θ(x−t)eΘ(I+Θ−1D(z2))(x−t)

=
∞

∑
k=0

e−Θ(x−t)[Θ(x− t)]k

k!
(I +Θ−1D(z2))k. (5.28)

Using (5.27) and (5.28) in (5.26) yields

Ω ∗
V (z1, j,z2,θ) =

∫ ∞

0
e−(Θ+θ)x

∫ x

0
eθ t

∞

∑
k=0

∞

∑
l=0

tk(x− t)l

k!l!
(Θ I +D(z1))k jD j

λ

· (Θ I +D(z2))l dV (x)
E[V ]

dt. (5.29)

In (5.29), only (Θ I +D(z1))k( jD j/λ )(Θ I +D(z2))l contains z1 and z2. To evaluate
this matrix, we define Fk,l(a, j,b), (k, l,a,b = 0,1, . . . ; j = 1,2, . . .) such that
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∞

∑
a=0

∞

∑
b=0

za
1zb

2Fk,l(a, j,b) = (Θ I +D(z1))k jD j

λ
(Θ I +D(z2))l , (5.30)

where F0,0(0, j,0) = jD j/λ , and F0,0(a, j,b) = 0, (a ≥ 1,b ≥ 1). Fk,l(a, j,b) rep-
resents the situation in which a jobs arrive from k Poisson events (with rate Θ )
during the elapsed vacation time and b jobs arrive from l Poisson events during the
remaining vacation time. Then, Fk,l(a, j,b) satisfies the following recursions:

Fk+1,l(a, j,b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Θ I +D0)Fk,l(a, j,b), (a = 0)

a−1

∑
i=0

Da−iFk,l(a, j,b)+(Θ I +D0)Fk,l(a, j,b), (a ≥ 1),
(5.31)

Fk,l+1(a, j,b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fk,l(a, j,b)(Θ I +D0), (b = 0)

b−1

∑
i=0

Fk,l(a, j, i)Db−i +Fk,l(a, j,b)(Θ I +D0), (b ≥ 1).
(5.32)

Using (5.31) and (5.32) in (5.30), we get

Ω ∗
V (z1, j,z2,θ)

=
∞

∑
a=0

∞

∑
b=0

za
1zb

2

∫ ∞

0
e−(Θ+θ)x

∫ x

0
eθ t

∞

∑
k=0

∞

∑
l=0

tk(x− t)l

k!l!
Fk,l(a, j,b)

dV (x)
E[V ]

dt.

(5.33)

The coefficient matrix of za
1zb

2 in (5.33) is given by

Ω ∗
V (a, j,b,θ) =

∫ ∞

0
e−(Θ+θ)x

∫ x

0
eθ t

∞

∑
k=0

∞

∑
l=0

tk(x− t)l

k!l!
Fk,l(a, j,b)

dV (x)
E[V ]

dt. (5.34)

If we disregard the length of the remaining vacation time, we have

ΩV (a, j,b) =Ω ∗
V (a, j,b,θ)

∣
∣
θ=0 =

∞

∑
k=0

∞

∑
l=0

fk,lFk,l(a, j,b),

where

fk,l =
1

E[V ](k + l +1)!

∫ ∞

0
xk+l+1e−ΘxdV (x).
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Appendix 2: Derivation of (5.23)

Taking a derivative of (5.22) with respect to θ , using θ = 0 and adding z∗(θ)eπ to
both sides yields

z∗(1)(0) = z∗(1)(0)eπ(D+ eπ)−1 − z∗(0)[I −E[S]D(1)](D+ eπ)−1

+(1−ρ)

[

pv

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1. (5.35)

Taking the second derivative of (5.22), using θ = 0 and postmultiplying e yields

z∗(1)(0)[I −E[S]D(1)]e

= − (1−ρ)

{

pvac

α−1

∑
n=0

nψV
n E[S]+ pvac

α−1

∑
n=0
ψV

n E[H]

+ pvac

α−1

∑
n=0
ψV

n
E[V 2]
2E[V ]

+ psuκ
E[H2]
2E[H]

+ psb

N−1

∑
n=α

nψsb
n E[S]

}

e

− π
2

[
E[S2]D(1) +E2[S]D(2)

]
e. (5.36)

From (5.36), we get

z∗(1)(0)e = z∗(1)(0)E[S]D(1)e

= −(1−ρ)

{

pvac

α−1

∑
n=0

nψV
n E[S]+ pvac

α−1

∑
n=0
ψV

n E[H]

+ pvac

α−1

∑
n=0
ψV

n
E[V 2]
2E[V ]

+ psuκ
E[H2]
2E[H]

+ psb

N−1

∑
n=α

nψsb
n E[S]

}

e

− π
2

[
E[S2]D(1) +E2[S]D(2)

]
e. (5.37)

Postmultiplying both sides of (5.35) by D(1)e, we get

z∗(1)(0)D(1)e = λ z∗(1)(0)e− z∗(0)[I −E[S]D(1)](D+ eπ)−1D(1)e

+(1−ρ)

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e.

(5.38)
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Using (5.37) in (5.38), we get

z∗(1)(0)D(1)e
λ

= −pvac

α−1

∑
n=0

nψV
n E[S]e+ pvacE[H]+ pvac

E[V 2]
2E[V ]

+ psu
E[H2]
2E[H]

+ psb

N−1

∑
n=α

nψsb
n E[S]e

− π2(1−ρ)[E[S2]D(1) +E2[S]D(2)]e

+
1
λ

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e

− πλ (1−ρ)[I −E[S]D(1)](D+ eπ)−1D(1)e.

Thus, we get

−w∗(1)
N (θ)

∣
∣
∣
θ=0

e = − z∗(1)(0)D(1)e
λ

+
E[S]z∗(0)D(2)e

2λ

= − 1
λ

[

pvac

α−1

∑
n=0
ψV

n + psuκ+ psb

N−1

∑
n=α
ψsb

n

]

(D+ eπ)−1D(1)e

+ pvac

α−1

∑
n=0

nψV
n E[S]e+ pvacE[H]+ pvac

E[V 2]
2E[V ]

+ psb

N−1

∑
n=α

nψsb
n E[S]e+ psu

E[H2]
2E[H]

+
λE[S2]

2(1−ρ)

+
πE2[S]D(2)e
2ρ(1−ρ)

+
1

1−ρ − πE[S]D(1)(D+eπ)−1D(1)e
λ

(1−ρ).

Appendix 3: Derivation of (5.16)

Let Q(α,N)
n be the matrix probability that there are n customers at the start of the

busy period. Then, we have

Q(α,N)
n =

∞

∑
n=N

H+
n(α) +

∞

∑
n=N

N−1

∑
k=α
Φ sb

k (−D0)−1Dn−k.

Taking GF and using (5.15), we have

Q(α,N)(z) =
∞

∑
n=N

H+
n(α)z

n +
N−1

∑
k=α
Φ sb

k (−D0)−1zkD(z)−
N−1

∑
k=α
Φsb

k (−D0)−1zk

·
N−k−1

∑
i=0

Dizi. (5.39)
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The last term in (5.39) becomes

N−1

∑
k=α
Φsb

k (−D0)−1zk
N−k−1

∑
i=0

Dizi

=
N−1

∑
k=α
Φ sb

k (−D0)−1zk
N−k−1

∑
i=1

Dizi +
N−1

∑
k=α
Φ sb

k (−D0)−1zkD0 (5.40)

=
N−1

∑
k=α+1

k−1

∑
i=α
Φsb

i (−D0)−1Dk−izk −
N−1

∑
k=α
Φ sb

k zk,

where we used

N−1

∑
k=α
Φsb

k (−D0)−1zk
N−k−1

∑
i=1

Dizi =
N−1

∑
k=α+1

k−1

∑
i=α
Φ sb

i (−D0)−1Dk−izk.

Using Φ sb
k = ∑k

i=α H+
i(α)D

∗
k−i in (5.40), we get

N−1

∑
k=α+1

k−1

∑
i=α
Φ sb

i (−D0)−1Dk−izk −
N−1

∑
k=α
Φ sb

k zk

=
N−1

∑
k=α+1

k−1

∑
i=α

i

∑
n=α

H+
n(α)D

∗
i−n(−D0)−1Dk−izk −

N−1

∑
k=α

k

∑
i=α

H+
i(α)D

∗
k−iz

k. (5.41)

Let us simplify (5.41). For convenience, let us define

N−1

∑
k=α+1

Γ kzk =
N−1

∑
k=α+1

k−1

∑
i=α

i

∑
n=α

H+
n(α)D

∗
i−n(−D0)−1Dk−izk. (5.42)

Then, using D∗
k = ∑k−1

l=0 D∗
l (−D0)−1Dk−l , we get

N−1

∑
k=α+1

Γ kzk =
N−1

∑
k=α+1

k−1

∑
i=α

H+
i(α)D

∗
k−iz

k. (5.43)

Using (5.43) in (5.42), we get

N−1

∑
k=α+1

k−1

∑
i=α
Φ sb

i (−D0)−1Dk−izk −
N−1

∑
k=α
Φ sb

k zk

=
N−1

∑
k=α+1

k−1

∑
i=α

H+
i(α)D

∗
k−iz

k −
[

∑
k=α

+1N−1
k−1

∑
i=α

H+
i(α)D

∗
k−iz

k +
N−1

∑
k=α

H+
k(α)z

k

]

(5.44)

= −
N−1

∑
k=α

H+
k(α)z

k.
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Using (5.44) in (5.40), we have

N−1

∑
k=α
Φ sb

k (−D0)−1zk
N−k−1

∑
i=0

Dizi = −
N−1

∑
k=α

H+
k(α)z

k.

Thus, (5.39) becomes

Q(α,N)(z) =
∞

∑
n=N

H+
n(α)z

n +
N−1

∑
n=α
Φ sb

n (−D0)−1znD(z)+
N−1

∑
n=α

H+
n(α)z

n

=
∞

∑
n=α

H+
n(α)z

n +
N−1

∑
n=α
Φ sb

n (−D0)−1znD(z).

Now, using ∑∞n=α H+
n(α)z

n = ∑∞n=α H−
n(α)z

nH(z) finishes the proof.
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Chapter 6
Performance Analysis of an M/Ek/1 Queue
with Balking and Two Service Rates Based
on a Single Vacation Policy

Chunyan Li, Wuyi Yue, and Dequan Yue

Abstract In this chapter, we present an analysis for an M/Ek/1 queue with balk-
ing and two service rates based on a single vacation policy. Customers are served
at two different rates depending on the number of customers in the system. If cus-
tomers on arrival find other customers in the system, they either decide to enter the
queue or balk with a constant probability. The server takes a single vacation when
the system becomes empty. We first formulate a quasi birth-and-death process for
the queueing system. Then, we obtain the equilibrium condition of the system. By
using the matrix-geometric solution method, we obtain the matrix-geometric form
solution for the steady-state probability vectors. The computation of the boundary
steady-state probability vectors is also discussed. Then, we derive explicitly perfor-
mance measures of the system. Based on this performance analysis, we develop a
cost model to determine numerically the system’s optimal cost and optimal critical
value. Finally, we perform a sensitivity analysis through numerical experiments.

6.1 Introduction

In this chapter, we consider an M/Ek/1 queueing system with balking and two ser-
vice rates based on a single vacation policy. Customers are served at two different
rates depending on the number of customers in the system. If customers on arrival
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find other customers in the system, they either decide to enter the queue or balk with
a constant probability. Balking is not only a common phenomenon in queues aris-
ing in daily activities, but is also found in applications in communication systems,
production line systems, and in various machine interference or repair models (see,
e.g., [1], [2], and references therein).

The queueing systems with balking, or reneging, or both have been studied by
many researchers. Haight [3] was the first person who considered an M/M/1 queue
with balking. An M/M/1 queue with customer reneging was also proposed by Haight
[4]. The combined effects of balking and reneging in an M/M/1 queue with limited
waiting room and unlimited waiting room have been investigated by Ancker and
Gafarian [5], [6]. They obtained the steady-state probabilities and some performance
measures of the system such as the mean number of customers in the queue, the
mean number of customers in the system, and the mean rate of customer loss.

Abou-El-Ata [7] extended the model in [5] to study a state-dependent M/M/1/N
queue with reneging and a general balk function, where the server has two ser-
vice rates depending on the number of customers in the system. They obtained
the transient solution of the state probabilities. Al-Seedy [8] extended the model
in [7] to a state-dependent M/Ek/1/N queue with balking. By solving the steady-
state probability-difference equations, Al-Seedy [8] obtained some iterative expres-
sions of the steady-state probabilities. A state-dependent M/M/1 queue with balking
was studied by Al-Seedy and Kotb [9]. Recently, Yue, Li, and Yue [10] extended
the model in [8] to a state-dependent M/Ek/1 queueing system with balking. They
formulated a quasi birth-and-death (QBD) process, and obtained the steady-state
probability vector and some performance measures of the system.

Similarly, queueing models with vacations have been studied by many re-
searchers and have been found to be applicable in analyzing numerous real-world
queueing situations such as flexible manufacturing systems, service systems, and
telecommunication systems. Excellent surveys of queueing systems with server
vacations can be found in the paper by Doshi [11] and the book by Takagi [12].
However, most of the research works on queueing systems with balking have not
considered server vacations. There were only a few papers that we know of that
considered queueing systems with balking and server vacations (see, e.g., [1], [13],
and [14]). In this chapter, we study an M/Ek/1 queueing system with balking and
single vacations.

The rest of this chapter is organized as follows. In Sect. 6.2, we formulate a QBD
process and obtain the equilibrium condition for the system. In Sect. 6.3, by us-
ing a matrix-geometric solution method, we derive the explicit expression for the
steady-state probability vector. We also discuss the computation of the boundary
steady-state probability vectors. In Sect. 6.4, we derive explicitly some performance
measures of the system such as the expected number of the customers in the sys-
tem, the expected number of customers in the queue, and the mean balking rate
of the system. Based on this performance analysis, we develop a cost model to
determine numerically the optimal cost and optimal critical value of the system.
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In Sect. 6.5, we perform sensitivity analysis through numerical experiments. Con-
clusions are given in Sect. 6.6.

6.2 System Model and Equilibrium Condition

In this chapter, we consider an M/Ek/1 queueing system with balking and two ser-
vice rates based on a single vacation policy.

6.2.1 System Model

The assumptions of the system model are as follows:

(1) Customers arrive according to a Poisson process with arrival rate λ . There is
one server in the system. If customers on arrival find other customers in the
system, they either decide to enter the queue with a probability β or balk with
a probability 1−β .

(2) Customers are served on a First-Come First-Served (FCFS) basis. Once service
commences, it always proceeds to completion. The service times are assumed
to be distributed according to an Erlang distribution with mean k/μn; that is,
the service time is made up of k independent and identical exponential stages,
each with mean 1/μn, given by

μn =
{
μ1, n = 1,2, . . . ,r
μ2, n = r +1,r +2, . . . .

This means that the server at each service stage has two rates, say “slow and
fast,” depending on the number of customers n in the system. When the number
of customers n in the system is less than or equal to the critical value r, the
server has a slow service rate μ1; otherwise, the server has a fast service rate
μ2 (0 < μ1 < μ2 < ∞).

(3) When the system is empty, the server goes on a vacation. If the server returns
from a vacation to find customers waiting, it begins to serve those waiting cus-
tomers; otherwise, the server is idle and begins serving whenever customers
arrive. This type of vacation is called “single vacation”. The server’s vacation
time follows an exponential distribution with the vacation rate η (η > 0).

(4) The interarrival times, service times, and vacations are mutually independent.
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6.2.2 Equilibrium Condition

In the following, we first formulate a QBD process. Then, we provide the equilib-
rium condition of the system.

Let N(t) denote the number of customers in the system at time t, and let J(t)
denote the service stage for the customer being served at time t(t ≥ 0). A customer
goes into the first stage of the service, then progresses through the remaining stages,
and must complete the last stage. Let J(t) = 0, if the server goes on vacation at time
t; J(t) = i, if the server is servicing the customer and the customer goes into the ith
service stage at time t; and J(t) = −1, if the server is idle at time t. The state space
of the two-dimensional process {(N(t),J(t)); t ≥ 0} is given by

S = {(0, j); j = −1,0}∪{(i, j); i = 0,1, . . . , j = 1,2, . . . ,k}.

All states of this two-dimensional process are labeled in lexicographic order as
follows:

(0,0);(0,−1);(1,0),(1,1), . . . ,(1,k);(2,0),(2,1), . . . ,(2,k); . . . .

By probability analysis, the process {(N(t),J(t)); t ≥ 0} has the following in-
finitesimal generator.

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

B0 C0
A0 B1 C1

A1 B1 C1
· · · · · · · · ·

A1 B1 C1
A2 B2 C1

· · · · · · · · ·

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· · · 0
· · · 1
· · · 2

... ,
· · · r
· · · r +1

...

where

B0 =
(
−(λ +η) η

0 −λ

)

, C0 =
(
λ 0 0 · · · 0
0 λ 0 · · · 0

)

,

A0 =

⎛

⎜
⎜
⎜
⎝

0 0
...

...
0 0
μ1 0

⎞

⎟
⎟
⎟
⎠

, A1 =

⎛

⎜
⎜
⎜
⎝

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
0 μ1 0 · · · 0

⎞

⎟
⎟
⎟
⎠

,
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B1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(βλ +η) η 0 · · · 0 0
0 −(βλ +μ1) μ1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −(βλ +μ1) μ1
0 0 0 · · · 0 −(βλ +μ1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

C1 =

⎛

⎜
⎜
⎜
⎝

βλ 0 · · · 0
0 βλ · · · 0
...

...
...

0 0 · · · βλ

⎞

⎟
⎟
⎟
⎠

, A2 =

⎛

⎜
⎜
⎜
⎝

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0
0 μ2 0 · · · 0

⎞

⎟
⎟
⎟
⎠

,

B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(βλ +η) η 0 · · · 0 0
0 −(βλ +μ2) μ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · −(βλ +μ2) μ2
0 0 0 · · · 0 −(βλ +μ2)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where B0 is a 2× 2 matrix, C0 is a 2× (k + 1) matrix, A0 is a (k + 1)× 2 matrix,
and the other matrices are (k +1)× (k +1) matrices.

From the book written by Neuts [15], we know that {(N(t),J(t)); t ≥ 0} is a QBD
process. Let H = A2 +B2 +C1, then H can be given by

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η η 0 · · · 0 0
0 −μ2 μ2 · · · 0 0
...

...
...

...
...

0 0 0 · · · −μ2 μ2
0 μ2 0 · · · 0 −μ2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is readily known that H is an irreducible generator. Let π = (π0,π1, . . . ,πk) be a
(k+1)-dimensional row vector of the steady-state probability of H. Then, π satisfies
the linear equations: πH = 0 and πe = 1, where e = (1,1, . . . ,1) is a column vector
with (k +1) elements. Solving the linear equations, we get

π0 = 0, πi =
1
k
, i = 1,2, . . . ,k. (6.1)

By Theorem 3.1.1 in [15], the equilibrium condition of the system is given by
πA2e > πC1e. Substituting π with (6.1), we then have the equilibrium condition
for the system given by

kβλ
μ2

< 1. (6.2)
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6.3 Steady-State Probability Vector

From the discussion in Sect. 6.2, we know that the steady-state probability vector of
Q exists under the equilibrium condition given by (6.2). In this section, we derive
the explicit expression for the steady-state probability vector.

Let X = (X0,X1, . . . ,Xr,Xr+1, . . .), where X0 = (x0,x−1) is a row vector with
two elements, and Xi= (xi0, xi1, xi2, ..., xik) is a row vector with (k + 1) elements,
i = 1,2, . . .. By applying the matrix-geometric solution method, the stationary prob-
ability vector is given by

Xi = XrRi−r, i = r,r +1, ..., (6.3)

where R is the minimal nonnegative solution to the equation R2A2 +RB2 +C1 = 0,
and the boundary steady-state probability vectors X0,X1, . . . ,Xr are given by solv-
ing the following equations:

X0B0 +X1A0 = 0, (6.4)

X0C0 +X1B1 +X2A1 = 0, (6.5)

XiC1 +Xi+1B1 +Xi+2A1 = 0, i = 1,2, . . . ,r−2, (6.6)

Xr−1C1 +Xr(B1 +RA2) = 0, (6.7)

x0 + x−1 +
r−1

∑
i=1

Xie+Xr(I−R)−1e = 1, (6.8)

where e = (1,1, . . . ,1) is a column vector with (k + 1) elements. In order to solve
(6.4)–(6.8), we define the following matrices:

Mr = I, (6.9)

Mr−1 = − 1
βλ

(B1 +RA2) , (6.10)

Mi = − 1
βλ

(Mi+1B1 +Mi+2A1) , i = 1,2, . . . ,r−2, (6.11)

M0 = −(M1B1 +M2A1) , (6.12)

where I is the (k +1)× (k +1) identity matrix.
Let ε1 = (1,0,0, . . . ,0) and ε2 = (0,1,0, . . . ,0) be column vectors with (k + 1)

elements, respectively. Let B̃0 = (ε1,ε2)B0 be the (k+1)× (k+1) matrix. We have
the following theorem.

Theorem 6.1. The solutions of (6.4)–(6.8) are given by
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Xi = XrMi, i = 1,2, . . . ,r, (6.13)

x0 =
1
λ

XrM0ε1, (6.14)

x−1 =
1
λ

XrM0ε2 (6.15)

and Xr satisfies the following equations:

Xr

(
1
λ

M0B̃0 +M1A0

)

= 0, (6.16)

Xr

[
1
λ

M0(ε1 + ε2)+
r−1

∑
i=1

Mie+(I−R)−1e

]

= 1. (6.17)

Proof. Note that C1 is invertible and C−1
1 = 1/(βλ )I. We have from (6.7) that

Xr−1 = XrMr−1. (6.18)

This indicates that (6.13) holds for i = r−1. It is obvious that (6.13) holds for i = r.
Suppose that (6.13) holds for i = k +2,k +1; then we have from (6.6) that

Xk = −(Xk+1B1 +Xk+2A1)C−1
1

= − 1
βλ

Xr(Mk+1B1 +Mk+2A1)

= XrMk. (6.19)

Thus, by the inductive method, we conclude that (6.13) holds for i = 1,2, . . . ,r.
From (6.5), we have

X0C0 = −Xr(M1B1 +M2A1)

= XrM0. (6.20)

Note that C0ε1 = (λ ,0) and C0ε2 = (0,λ ) are column vectors with two elements,
respectively, we get (6.14) and (6.15). Substituting (6.14) and (6.15) into (6.4) and
(6.8), we get (6.16) and (6.17). 
�

In general, it is difficult to give an exact expression of R except for a few special
cases. However, the matrix R can be approximately calculated by the following
iterative procedure:

(1) R(0) = 0,

(2) R(n+1) = −(C1 +R2(n)A2)B−1
2 , n ≥ 0.
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The proof of the convergence for this iterative algorithm is given in [15]. The matrix
B−1

2 in the above algorithm exists, and can be explicitly given by

B−1
2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

a ab(−η) ab2(−η)(−μ2) · · · abk−1(−η)(−μ2)k−2 abk(−η)(−μ2)k−1

0 b b2(−μ2) · · · bk−1(−μ2)k−2 bk(−μ2)k−1

0 0 b · · · bk−2(−μ2)k−3 bk−1(−μ2)k−2

...
...

...
...

...
0 0 0 · · · b b2(−μ2)
0 0 0 · · · 0 b

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where a = −1/(βλ +η) and b = −1/(βλ +μ2).

6.4 Performance Measures and Cost Model

In this section, we give some useful performance measures of the system. Based
on these performance measures, we develop a cost model to determine the optimal
critical value to minimize the total expected cost per unit time.

6.4.1 Performance Measures

Using the steady-state probability vector X presented in Sect. 6.3, we can obtain
some performance measures of the system.

Theorem 6.2.

(1) The expected number of customers in the queue is given by

E[Nq] = Xr

{
r−1

∑
n=1

nMn+1 +R[(r−1)(I−R)−1 +(I−R)−2]

}

e. (6.21)

(2) The expected number of customers in the system is given by

E[N] = Xr

{
r

∑
n=1

nMn +R[r(I−R)−1 +(I−R)−2]

}

e. (6.22)

(3) The mean balking rate of the system is given by

BR = (1−β )λ (1−X0e), (6.23)

where e = (1,1, . . . ,1) is a column vector with (k +1) elements.
(4) The probability that the server is busy is given by
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PB = Xr

{
r−1

∑
n=1

Mn +(I−R)−1

}

δ , (6.24)

where δ = (0,1, . . . ,1) is a column vector with (k +1) elements.
(5) The probability that the server goes on vacation is given by

PV = 1−PB − x−1. (6.25)

(6) The probability that the server is idle is given by

PI = x−1. (6.26)

Proof. The expected number of customers in the queue is given by

E[Nq] =
∞

∑
n=1

k

∑
i=0

nxn+1,i =
r−1

∑
n=1

nXrMn+1e+
∞

∑
n=r

nXrRn−r+1e. (6.27)

Hence, we obtain (6.21) by a summation of series. The expected number of cus-
tomers in the system is given by

E[N] =
∞

∑
n=1

k

∑
i=0

nxn,i =
r

∑
n=1

nXrMne+
∞

∑
n=r+1

nXrRn−re. (6.28)

Hence, we get (6.22) by a summation of series. Using the concept of Ancker and
Gafarian [5], the average balking rate of the system is given by

BR =
∞

∑
n=1

(1−β )λXne = (1−β )λ (1−X0e). (6.29)

The processes of the proofs for (6.24)–(6.26) are obvious, hence the proofs for
(6.24)–(6.26) have been omitted. 
�

6.4.2 Cost Model

In this subsection, we develop a steady-state expected cost function where the crit-
ical value r is a decision variable. Our objective is to determine the critical value r
to minimize the total expected cost per unit time.

Let C1 be the cost per unit time when there are customers waiting for service, C2
be the cost per unit time when the server is busy, C3 be the cost per unit time when
the server goes on vacation, C4 be the lost cost per unit time when customers balk,
and C5 be the cost per unit time when the server is idle.

According to the definition of each of the cost parameters listed above, the total
expected cost function per unit time is given by

F(r) = C1E[Nq]+C2PB +C3PV +C4BR+C5PI , (6.30)
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where E[Nq], PB, PV , BR, and PI are given in (6.21) and (6.23)–(6.26). The first item
is the cost incurred by the customer’s waiting. The fourth item is the cost incurred
by the loss of a customer. The second, the third, and the last items are the costs
incurred by the server.

6.5 Sensitivity Analysis

In this section, we perform a sensitivity analysis on the optimal critical value r∗ and
its expected cost F(r∗) based on changes in values of the system parameters such as
the arrival rate λ , the slow service rate μ1, the fast service rate μ2, the vacation rate
η , and the entering probability β . Let the distribution of the service time be a two-
stage Erlang distribution, and the employed cost parameters C1 = 150, C2 = 250,
C3 = 200, C4 = 300 and C5 = 100. The numerical results of the optimal critical
value r∗ and its expected minimum cost F(r∗) are illustrated in Figs. 6.1–6.5.

In Fig. 6.1, we fix μ1 = 0.2, μ2 = 0.8, η = 0.5, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying the
arrival rate λ . Figure 6.1 shows that: (i) the optimal critical value r∗ decreases as λ
increases from 0.05 to 0.1, and it does not change at all when λ varies from 0.1 to
0.3; (ii) the minimum expected cost F(r∗) increases as λ increases. Intuitively, λ
affects r∗ slightly and affects F(r∗) significantly.

In Fig. 6.2, we fix λ = 0.1, μ2 = 0.8, η = 0.5, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying the
slow service rate μ1. Figure 6.2 shows that: (i) the optimal critical value r∗ increases
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Fig. 6.1 Optimal critical value r∗ and optimal cost F(r∗) versus arrival rate λ for μ1 = 0.2, μ2 =
0.8, η = 0.5, and β = 0.5.
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Fig. 6.2 Optimal critical value r∗ and optimal cost F(r∗) versus slow service rate μ1 for λ = 0.1,
μ2 = 0.8, η = 0.5, and β = 0.5.
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Fig. 6.3 Optimal critical value r∗ and optimal cost F(r∗) versus fast service rate μ2 for λ = 0.1,
μ1 = 0.2, η = 0.5, and β = 0.5.

as μ1 increases; (ii) its minimum expected cost F(r∗) decreases as μ1 increases.
Intuitively, μ1 affects r∗ and F(r∗) significantly.

In Fig. 6.3, we fix λ = 0.1, μ1 = 0.2, η = 0.5, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying the
fast service rate μ2. Figure 6.3 shows that: (i) the optimal critical value r∗ decreases
as μ2 increases from 0.3 to 0.5, whereas it does not change at all when μ2 varies from
0.5 to 0.8; (ii) the minimum expected cost F(r∗) rarely changes when μ2 varies from
0.3 to 0.8. Intuitively, μ2 affects r∗ slightly and affects F(r∗) rarely.
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Fig. 6.4 Optimal critical value r∗ and optimal cost F(r∗) versus vacation rate η for λ = 0.1,
μ1 = 0.2, μ2 = 0.8, and β = 0.5.
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Fig. 6.5 Optimal critical value r∗ and the optimal cost F(r∗) versus the probability β for λ = 0.1,
μ1 = 0.2, μ2 = 0.8, and η = 0.5.

In Fig. 6.4, we fix λ = 0.1, μ1 = 0.2, μ2 = 0.8, and β = 0.5, and display the
optimal critical value r∗ as well as its expected minimum cost F(r∗) by varying
the vacation rate η . Figure 6.4 shows that: (i) the optimal critical value r∗ changes
slightly when η varies from 0.1 to 0.8; (ii) the minimum expected cost F(r∗) de-
creases slightly as η increases. Intuitively, η affects r∗ and F(r∗) slightly.

In Fig. 6.5, we fix λ = 0.1, μ1 = 0.2, μ2 = 0.8, and η = 0.5, and display the
optimal critical value r∗ and its expected minimum cost F(r∗) by varying the enter-
ing probability β . Figure 6.5 shows that: (i) the optimal critical value r∗ does not
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change at all when β varies from 0.3 to 0.8; and (ii) the minimum expected cost
F(r∗) increases slightly as β increases. Intuitively, the optimal critical value r∗ and
its expected minimum cost F(r∗) are insensitive to changes in β .

It appears from Figs. 6.1–6.5 that: (a) λ affects r∗ slightly, and affects F(r∗)
significantly; (b) μ1 affects r∗ and F(r∗) significantly; and (c) the optimal critical
value r∗ and its expected minimum cost F(r∗) are insensitive to changes in μ2, η ,
and β .

6.6 Conclusions

We considered an M/Ek/1 queueing system with balking and two service rates based
on a single vacation policy. By using a matrix-geometric solution, we obtained the
matrix solution of the steady-state probability distribution and the explicit expres-
sions for some performance measures of the system. Based on these performance
measures, we developed a cost model to determine the optimal critical value to min-
imize the total expected cost per unit time. Furthermore, we performed sensitivity
analysis for the optimal critical value and its expected minimum cost with various
parameters.
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Chapter 7
Markovian Polling Systems: Functional
Computation for Mean Waiting Times
and its Computational Complexity

Tetsuji Hirayama

Abstract We consider Markovian polling systems in which a single server serves J
stations with Poisson arrivals and general service times. After completing a service
period at station i, the server selects station j with probability pi j and visits the
station after spending a switchover time. We use the functional computation for
mean waiting times that has been investigated in our previous research on multiclass
M/G/1 type systems (e.g., [1] and [2]), which is different from the buffer occupancy
method used in [3]. The advantages of the functional computation method are (1) its
wide applicability to the analysis of M/G/1 type multiclass queues, and (2) its rather
small computational complexity compared with the buffer occupancy method.

7.1 Introduction

A polling system is a multiclass queueing system in which a single server serves
customers arriving at J stations according to some scheduling algorithm. It has been
receiving much attention because of its ability to model a large variety of systems
including computer communication networks, intelligent production systems, and
transportation systems (e.g., [4] and [5]).

Several methods of analyzing various polling systems have been investigated.
The leading method is the buffer occupancy method (e.g., [6]–[8]). This method
has been used to analyze not only the standard system models but also various vari-
ants of the models that include a system with a mixture of exhaustive and gated
disciplines [9], a system with simultaneous arrivals [10], a system with customers’
feedback [11], and a nondeterministic polling system [3], and so on.
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The other methods have also been investigated (e.g., [2], [12]–[14]). A funda-
mental survey of the analysis of polling systems was given in [15], and a detailed
explanatory survey of these methods was given in [4]. The descendant set technique
[16] has taken another approach to obtain the moments of the buffer occupancy vari-
ables, and was used to analyze a state-dependent polling system [17]. A stochastic
decomposition was used to obtain a pseudo-conservation law for a weighted sum of
the mean waiting times under various scheduling algorithms [18]. Another type of
a decomposition theorem that relates a system with nonzero switchover times to a
system with zero switchover times was investigated in [19].

Many of the research efforts listed above were concerned with the cyclic systems.
On the other hand, various polling schemes other than cyclic have been investigated.
Random polling systems in which the server next visits station j stochastically with
probability p j were considered by Kleinrock and Levy [20]. They were used to
analyze the distributed access scheme to communication channels [4], [20].

Srinivasan [3] extended their analysis to nondeterministic polling systems (in-
cluding Markovian polling systems) in which the server moves among stations ac-
cording to general stochastic rules. Markovian polling systems with single buffers
were investigated by Chung, Un, and Jung [21]. A system in which the server visits
stations according to an arbitrary polling sequence (or table) of stations was consid-
ered by Baker and Rubin [22]. In this system, stations can be given higher priority by
being listed more frequently in the polling table. Boxma, Levy, and Weststrate [23]
found (approximate) formulas and procedures for determining the visit frequencies
that optimize the system performances.

In this chapter, we consider Markovian polling systems in which a single server
serves customers at J stations, and obtain their mean waiting times. Customers arrive
according to Poisson processes and their service time distributions are general. After
completing a service period at station i, the server selects station j with probability
pi j and visits it after spending a switchover time. The customer selection rule at each
station is either gated or exhaustive. Although the system was already solved by the
buffer occupancy method in [3], we take the other method (functional computation)
that has been investigated in our previous research on multiclass M/G/1 type systems
(e.g., [1], [2], [24], and [25]).

The key skill of our functional computation method is to consider the expected
waiting time of a customer conditioned on the system state at its arrival epoch and
represent it as a function of the system state. The advantages of the method are

(1) Its wide applicability to the analysis of mean waiting times in M/G/1 type
multiclass queues

(2) Its rather small computational complexity necessary to calculate the mean wait-
ing times for all stations as compared with the buffer occupancy method

Our method was initially applied to multiclass M/G/1 queues with priority [24],
and then extended to the systems with customers’ feedback [1]. Polling systems
were initially investigated by our method in [2], and their multiclass extensions
with customers’ feedback were investigated in [25]. In all of the models, we have
obtained the linear functional expressions for the conditional expected waiting (or
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sojourn) times, which are the key property of our method, although the derivation
procedures themselves are distinct among the models.

As for the computational complexity for computing the mean waiting times for
all stations, our functional computation (for the Markovian polling system) requires
us to solve 2J sets of O(J) linear equations and a set of O(J2) (steady-state) linear
equations. This means that our method at most requires O(J6) numerical operations.
Furthermore a successive approximation method can be applied to solving the set
of the latter steady-state linear equations, and then it can be shown that our method
requires O(J4)+ O(J3N) numerical operations where N is the number of its itera-
tions. On the other hand, the buffer occupancy method requires us to solve the O(J3)
linear equations for deriving the mean waiting times for all stations. If a successive
approximation is applied to solving them, the method requires O(J4N′) numerical
operations where N′ is the number of its iterations.1 Numerical examples are given
in Sect. 7.6 of this chapter in order to compare the actual computational times in our
method with those in the buffer occupancy method.

The rest of this chapter is organized as follows. In Sect. 7.2 we first define the sys-
tem state that represents an evolution of the system. Its components include the num-
bers of customers and the remaining service time of a customer being served, and
so on. Then we define some types of the expected waiting times for each customer
conditioned on the system state at its arrival or relative polling instants. It is shown
that these conditional expectations satisfy the “polling equation.” In Sect. 7.3 we
obtain the explicit expressions for some of the conditional expected waiting times.
We further obtain the conditional expected numbers of customers at the next polling
instants. In Sect. 7.4 the explicit expression for the overall expected waiting time is
obtained by solving the polling equation. It can be shown that the expression has the
linear functional form. In Sect. 7.5 the mean waiting times and the mean numbers
of customers in a steady-state are obtained from the expression by using the gener-
alized Little’s formula and the PASTA property. Then we discuss the computational
complexity of our functional computation method in detail in Sect. 7.6.

7.2 Model Description

In this section, we describe our model of the Markovian polling systems. A single
server serves J groups of customers at J stations with infinite buffer capacities.
Customers arrive at station i from outside the system according to a Poisson process
with rate λi, and are called i-customers (i = 1, . . . ,J). The overall arrival rate is
denoted by λ = ∑J

i=1λi. These customers are numbered in order of arrival, and let

1 For a cyclic or random polling system, only O(J3) numerical operations are required for each iter-
ation of the approximation for the buffer occupancy equations. But for a Markovian polling system,
O(J4) operations are required for each iteration and the overall complexity becomes O(J4N′). For
more detail, see [26] and (4.14) in [3].
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ce and τe
0 denote the eth arriving customer itself and its arrival epoch, respectively

(e = 1,2, . . .).2

Service times Si of i-customers are independently, identically, and arbitrarily dis-
tributed with mean E[Si] > 0 and second moment s2

i . Customers are served according
to a predetermined scheduling algorithm defined below. The service is nonpreemp-
tive. After receiving a service, each customer departs from the system. We define
resource utilizations ρi = λiE[Si], and put the usual assumption that ρ =∑J

i=1ρi < 1.
After completing a service period (defined below) at station i, the server selects

a station in a Markovian manner where station j is selected with probability pi j,
and then visits station j after spending an arbitrarily distributed switchover time
with mean so

i j and second moment so2
i j , (i, j = 1, . . . , J). Let P = (pi j : i, j = 1, . . . , J)

be the switching probability matrix, and assume that the Markov chain generated by
the transition probability matrix P is irreducible. Furthermore, the arrival processes,
the service times, and the server switching processes are assumed to be independent
of each other.

The system is separated into two parts which are called the “service facility” and
the “waiting room.” There is a gate at each station between its queue in the waiting
room and its queue in the service facility. And each arriving customer enters the
queue in the service facility when the gate is opened; otherwise, it enters the queue
in the waiting room. When the server visits a station, its gate is opened in order
to admit some customers at the station to the service facility. The server serves the
customers in the service facility until the server empties it, and then visits another
station. Because the gates of the stations that are not visited by the server are closed,
all customers at such stations must wait for service in the waiting room.

Each time interval from when the server visits a station until the first time when
the server empties the service facility is called a service period.3 Each time interval
when the server switches from a station to another station is called a switchover
period. LetΠ = {1, . . . , J} be the set of (indices of) the service periods where i ∈Π
denotes the service period of station i. And let Π s = {(i, j) : i, j = 1, . . . , J} be the
set of (indices of) the switchover periods where (i, j) denotes a switchover period
from station i to station j.

A scheduling algorithm is specified as follows: (1) Selection order of the stations
by the server, which is the Markovian as described before, (2) customer selection
rule at each station used when the server admits customers into the service facility,
which is either gated or exhaustive, and (3) service order of customers in the service
facility, which is First-Come First-Served (FCFS).

When the server selects one of the stations with the gated rule, all customers
staying at the station just when the server visits it enter its queue in the service
facility, and then the gate is immediately closed. Hg denotes the set of stations with
the gated rule. When the server selects one of the stations with the exhaustive rule,

2 These customers arrive from outside the system according to a Poisson process with rate λ , and
each of them becomes an i-customer with probability λi/λ when it arrives (i = 1, . . . , J).
3 A time epoch when the server visits a station is called a service period beginning epoch or a
polling instant.
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the gate of the station remains open (i.e., customers arriving at the station later may
still enter the service facility) and the server continues to serve all customers until
the station is cleared of customers for the first time. The service period of the station
finishes at this time, and its gate is closed. He denotes the set of the stations with
the exhaustive rule.

Let us consider the system operating under a specified scheduling algorithm.
For any e (e = 1,2, . . .), let {τe

k : k = 1,2, . . .} be a sequence of all polling instants
(i.e., service period beginning epochs) of all stations that occur after the ces’ ar-
rival epoch.4 Furthermore let Xe

S (t) denote the station at which ce stays at time t,
or Xe

S (t) = 0 if it does not stay in the system at time t. Let R,R+,I+ be, respec-
tively, the set of real numbers, the set of nonnegative real numbers, and the set of
nonnegative integers. For any event K , let

1{K } =
{

1, if event K is true
0, if event K is false.

Then let κ(t) denote a period that the system experiences at time t; that is
the server is in a service period of station κ(t) if κ(t) ∈ Π , or the server is in a
switchover period from station i to station j if κ(t) = (i, j) ∈ Π s. Let r(t) denote
the remaining service time of a customer being served at time t if κ(t) ∈ Π , or the
remaining length of a switchover period if κ(t) ∈Π s.

The number of i-customers in the service facility at time t (who are not being
served) is denoted by gi(t), and the number of i-customers in the waiting room
at time t is denoted by ni(t). Let g(t) = (g1(t), . . . ,gJ(t)) ∈ I J

+, and let n(t) =
(n1(t), . . . ,nJ(t)) ∈ I J

+. We also specify the other information L(t) of the system at
time t. The sample paths of these processes are assumed to be left-continuous with
right-hand limits, except for Xe

S (t),κ(t), and L(t) which are right-continuous with
left-hand limits.

Let us consider transition epochs of these processes consisting of customer arrival
epochs, service completion epochs, and switchover period completion epochs. Then
we define the stochastic process as

Q = {Y(t) = (κ(t),r(t),g(t),n(t),L(t)) : t ≥ 0} (7.1)

which represents an evolution of the system. For any scheduling algorithm defined
above, Q may embed a Markov process. Possible values of Y(t) (t ≥ 0) are called
states, and the state space of Q is denoted by E .

We define three types of the performance measures of customer ce (e = 1,2, . . .).
The first type is related to the ces’ waiting times in the waiting room. We define for
any t ≥ 0 and i = 1, . . . ,J,

Ce
Wi(t) =

{
1, if ce stays in the waiting room as an i-customer at time t
0, otherwise.

(7.2)

4 Note that τe
0 is the customer’s arrival epoch, and we assume that τe

0 < τe
1 < τe

2 < · · · .
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The ces’ waiting time spent in the waiting rooms is defined by

W e
i =

∫ ∞

0
Ce

Wi(t)dt, (i = 1, . . . ,J). (7.3)

Then, for l = 0,1,2 . . . , the expected waiting times in the waiting room during the
time interval [τe

l ,τ
e
l+1) conditioned on the state of the system are defined by

W 0
i (Y,e, l) = E

[∫ τe
l+1

τe
l

Ce
Wi(t)dt Y(τe

l ) = Y,Xe
S (τe

l ) = i
]

(7.4)

for Y ∈ E , i = 1, . . . ,J.
The second type of the performance measures is related to the pieces of the ces’

waiting times in the waiting room. Let

He
i (k) =

∫ ∞

0
Ce

Wi(t)1{κ(t) = k}dt, (i = 1, . . . ,J, k ∈Π ∪Π s). (7.5)

He
i (k) denotes the ces’ waiting times in the waiting room spent while the system is

in period k. For l = 0,1,2, . . . , the expected waiting times after time τe
l conditioned

on the state of the system are defined by

Hi(Y,e, l,k) = E
[∫ ∞

τe
l

Ce
Wi(t)1{κ(t) = k}dt Y(τe

l ) = Y,Xe
S (τe

l ) = i
]

, (7.6)

H0
i (Y,e, l,k) = E

[∫ τe
l+1

τe
l

Ce
Wi(t)1{κ(t) = k}dt Y(τe

l ) = Y,Xe
S (τe

l ) = i
]

(7.7)

for i = 1, . . . ,J, k ∈Π ∪Π s, Y ∈ E . Then the following “polling equation” holds.

Hi(Y,e, l,k)

=

⎧
⎪⎪⎨

⎪⎪⎩

H0
i (Y,e, l,k)+E[Hi(Y(τe

l+1),e, l +1,k)|Y(τe
l ) = Y,Xe

S (τe
l ) = i],

if (κ0 	= i) or (κ0 = i ∈ Hg, l = 0)

0, if (κ0 = i ∈ He) or (κ0 = i ∈ Hg, l > 0)

(7.8)

for Y = (κ0,r,g,n,L) ∈ E , i = 1, . . . ,J, l = 0,1, . . . , k ∈Π ∪Π s.
The third type of the performance measures is related to the ces’ waiting times in

the service facility. We define for any t ≥ 0 and i = 1, . . . ,J,

Ce
Fi(t) =

⎧
⎨

⎩

1, if ce is in the service facility as an i-customer and
is not served at time t

0, otherwise.
(7.9)

The ces’ waiting time in the service facility is defined by

Fe
i =

∫ ∞

0
Ce

Fi(t)dt, (i = 1, . . . ,J). (7.10)
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The expected waiting times in the service facility after time τe
0 conditioned on the

state of the system are defined by

Fi(Y,e) = E
[∫ ∞

τe
0

Ce
Fi(t)dt Y(τe

0) = Y,Xe
S (τe

0) = i
]

(7.11)

for Y ∈ E , i = 1, . . . ,J.

7.3 Expressions for W0
j (·),H0

j (·),Fj(·), and Related Quantities

In this section we obtain the conditional expected waiting times W 0
j (·),H0

j (·), and
Fj(·) of a j-customer ( j = 1, . . . ,J). We also consider the expected number of cus-
tomers at the next polling instant. We observe a specific customer ce assuming that
it is a j-customer (e = 1,2, . . .).

7.3.1 Expressions for W0
j (·),H0

j (·), and Fj(·)

Let l = 0,1,2, . . . and let Y = (κ0,r,g,n,L) ∈ E be the system state at time τe
l where

g = (g1, . . . ,gJ) and n = (n1, . . . ,nJ). Because we assume that ce is a j-customer,
Xe

S (τe
l ) = j. When we consider the ces’ expected waiting time in the waiting room

W 0
j (Y,e, l) during the time interval [τe

l ,τ
e
l+1), we consider the following cases ac-

cording to κ0 = κ(τe
l ), which is the period at time τe

l . For κ0 ∈ Hg, we have

W 0
j (Y,e, l) =

⎧
⎪⎪⎨

⎪⎪⎩

nκ0 E[Sκ0 ]+∑
J
κ1=1 pκ0κ1so

κ0κ1 , κ0 	= j, (l > 0)

0, κ0 = j, (l > 0)

r +gκ0E[Sκ0 ]+∑
J
κ1=1 pκ0κ1 so

κ0κ1 , (l = 0).

(7.12)

For κ0 ∈ He, we have

W 0
j (Y,e, l)

=

⎧
⎪⎪⎨

⎪⎪⎩

(nκ0 E[Sκ0 ])/(1−ρκ0)+∑J
κ1=1 pκ0κ1so

κ0κ1 , κ0 	= j, (l > 0)

(r +gκ0E[Sκ0 ])/(1−ρκ0)+∑J
κ1=1 pκ0κ1 so

κ0κ1 , κ0 	= j, (l = 0)

0, κ0 = j, (l ≥ 0).

(7.13)

For κ0 ∈Π s, we have

W 0
j (Y,e, l) =

{
0, (l > 0)
r, (l = 0). (7.14)
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Because H0
j (Y,e, l,k) is a piece of the expected waiting time W 0

j (Y,e, l), it is
given by appropriately choosing the parts of W 0

j (·). For κ0 ∈ Hg, we have

H0
j (Y,e, l,k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nκ0 E[Sκ0 ], k = κ0, (κ0 	= j, l > 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (κ0 	= j, l > 0)

0, (κ0 = j, l > 0)

r +gκ0E[Sκ0 ], k = κ0, (l = 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (l = 0)

0, otherwise,

(7.15)

where κ1 = 1, . . . ,J. And for κ0 ∈ He, we have

H0
j (Y,e, l,k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(nκ0 E[Sκ0 ])/(1−ρκ0), k = κ0, (κ0 	= j, l > 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (κ0 	= j, l > 0)

(r +gκ0E[Sκ0 ])/(1−ρκ0), k = κ0, (κ0 	= j, l = 0)

pκ0κ1so
κ0κ1 , k = (κ0,κ1) ∈Π s, (κ0 	= j, l = 0)

0, (κ0 = j, l ≥ 0)

0, otherwise,

(7.16)

where κ1 = 1, . . . ,J. For κ0 ∈Π s, we have

H0
j (Y,e, l,k) =

⎧
⎨

⎩

0, (l > 0)
r, k = κ0, (l = 0)
0, otherwise, (l = 0).

(7.17)

Because Fj(Y,e) is the expected waiting time in the service facility, it is equal to
the expected (remaining) service times of customers at station j at the ces’ arrival
epoch τe

0. Then we have

Fj(Y,e) =

⎧
⎨

⎩

n jE[S j], j ∈ Hg
n jE[S j], j ∈ He and j 	= κ0
r +g jE[S j], j ∈ He and j = κ0.

(7.18)
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7.3.2 System State at the Next Polling Instant

Let l = 0,1,2, . . . and let Y = (κ0,r,g,n,L) ∈ E be the system state at time τe
l where

g = (g1, . . . ,gJ) and n = (n1, . . . ,nJ). We consider the system state at the next polling
instant τe

l+1.
When we consider the system state (especially, the numbers of customers) at the

next polling instant, we consider the following cases according to κ0 = κ(τe
l ), which

is the period at time τe
l . For κ0 ∈ Hg, we can show that

E[nm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l ) = Y,Xe

S (τe
l ) = j]

=

⎧
⎪⎨

⎪⎩

nm +λm{nκ0 E[Sκ0 ]+ so
κ0κ1}, m 	= κ0, (l > 0)

λκ0{nκ0 E[Sκ0 ]+ so
κ0κ1}, m = κ0, (l > 0)

nm +1m j +λm{r +gκ0 E[Sκ0 ]+ so
κ0κ1}, (l = 0)

(7.19)

for any m, j,κ1 ∈Π , where 1m j = 1{m = j}. For κ0 ∈ He, we have

E[nm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l ) = Y,Xe

S (τe
l ) = j]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nm +λm{(nκ0 E[Sκ0 ])/(1−ρκ0)+ so
κ0κ1}, m 	= κ0, (l > 0)

nm +1m j +λm{(r +(gκ0 +1κ0 j)E[Sκ0 ])/(1−ρκ0)+ so
κ0κ1},

m 	= κ0, (l = 0)

λκ0so
κ0κ1 , m = κ0, (l ≥ 0)

(7.20)

for any m, j,κ1 ∈Π . For κ0 ∈Π s, we have

E[nm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l ) = Y,Xe

S (τe
l ) = j]

=
{

0, (l > 0)
nm +1m j +λmr, (l = 0). (7.21)

Furthermore for any m, j,κ1 ∈Π , we obviously have

E[gm(τe
l+1)|κ(τe

l+1) = κ1,Y(τe
l ) = Y,Xe

S (τe
l ) = j] = 0. (7.22)

7.3.3 Unified Forms: Linear Functional Expressions

From the analysis in this section, we can easily see the following important
properties.

• The component (κ0,r,g,n) of state Y = (κ0,r,g,n,L) ∈ E at epoch τe
l is suffi-

cient to derive W 0
i (Y,e, l),H0

j (Y,e, l,k),Fj(Y,e), and the conditional expected
numbers of customers at time τe

l+1.
• These quantities are linear with respect to r and (g,n) = (g1, . . . ,gJ ,n1, . . . ,nJ).
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For convenience, let e j = (0, . . . ,0, 1︸︷︷︸
jth place

,0, . . . ,0) ∈ R1×J , and let pk = pκ0,κ1 for

k = (κ0,κ1) ∈Π s. Then we have the following.

Proposition 7.1. Let Y = (κ0,r,g,n,L)∈ E , j = 1, . . . ,J, e = 1,2, . . . , l = 0,1,2, . . .
and k ∈Π ∪Π s. Then we have

H0
j (Y,e, l,k)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(g,n)h0
10(κ0, j,k), κ0 ∈Π , l > 0, k ∈Π

pkh0
11(κ0, j,k), κ0 ∈Π , l > 0, k ∈Π s

rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k), κ0 ∈Π , l = 0, k ∈Π

pkh0
01(κ0, j,k), κ0 ∈Π , l = 0, k ∈Π s

0, κ0 ∈Π s, l > 0, k ∈Π ∪Π s

0, κ0 ∈Π s, l = 0, k ∈Π
rϕ0(κ0, j,k), κ0 ∈Π s, l = 0, k ∈Π s,

(7.23)

Fj(Y,e) = rψ(κ0, j)+(g,n)f(κ0, j), (7.24)

where the above coefficients

h0
a0(κ0, j,k) ∈ R2J×1, h0

a1(κ0, j,k) ∈ R, (a = 0,1),
ϕ0(κ0, j,k) ∈ R, ψ(κ0, j) ∈ R, f(κ0, j) ∈ R2J×1

can be determined from the given system parameters through the expressions ob-
tained in this section. Furthermore we have

E[(g(τe
l+1),n(τe

l+1))|κ(τe
l+1) = κ1,Y(τe

l ) = Y,Xe
S (τe

l ) = j]

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(g,n)U1(κ0)+u1(κ0,κ1), κ0 ∈Π , l > 0

rυ(κ0)+(g,n)U0(κ0)+u0( j,κ0,κ1), κ0 ∈Π , l = 0

0, κ0 ∈Π s, l > 0

rυ+(g,n)U0 +(0,e j), κ0 ∈Π s, l = 0

(7.25)

for κ1 ∈Π . The above coefficients

U1(κ0) ∈ R2J×2J, u1(κ0,κ1) ∈ R1×2J , υ(κ0) ∈ R1×2J,

U0(κ0) ∈ R2J×2J, u0( j,κ0,κ1) ∈ R1×2J , υ ∈ R1×2J , U0 ∈ R2J×2J

can be determined from the given system parameters through the expressions ob-
tained in this section.
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Note 1. We can simplify the expression for H0
j (·) as follows:

H0
j (Y,e, l,k) =

{
(g,n)h0

10(κ0, j,k)+ pkh0
11(κ0, j,k), l > 0

rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)+ pkh0

01(κ0, j,k), l = 0.

Because this expression introduces much labor into the numerical calculation, we
adopt the above somewhat complicated expression. A similar result holds for the
expression in Equation (7.25). 
�
Note 2. It should be noted from Equations (7.15) and (7.16) that

H0
j (Y,e, l,k) = 0,

( j ∈Π , Y = (κ0,r,g,n,L) ∈ E , e = 1,2, . . . , l ≥ 0, k ∈Π ∪Π s)

if (κ0 = j ∈ He) or (κ0 = j ∈ Hg and l > 0). 
�

7.4 The Linear Functional Expression

In this section we obtain the expression for the performance measure Hj(·) by solv-
ing the polling equation. It can be shown that it has the linear functional form.

We define constants h10(κ0, j,k) ∈ R2J×1 and h11(κ0, j,k) ∈ R that satisfy the
following equations:

h10(κ0, j,k) =

⎧
⎪⎨

⎪⎩

h0
10(κ0, j,k)+U1(κ0) ∑

κ1∈Π\{ j}
pκ0κ1h10(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π
0, otherwise,

(7.26)

h11(κ0, j,k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
κ1∈Π\{ j}

pκ0κ1u1(κ0,κ1)h10(κ1, j,k)

+ ∑
κ1∈Π\{ j}

pκ0κ1h11(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π
pkh0

11(κ0, j,k)+ ∑
κ1∈Π\{ j}

pκ0κ1h11(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π s

0, otherwise

(7.27)

for j ∈Π . Furthermore for k ∈Π , κ0 ∈Π ∪Π s, and j ∈Π , let5

5 Case 1: (κ0 	= j or j ∈ Hg) and (κ0 ∈Π ); Case 2: κ0 = j ∈ He; Case 3: κ0 = (k0,k1) ∈Π s.
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ϕ(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ0(κ0, j,k)+υ(κ0) ∑
κ1∈Π\{ j}

pκ0κ1h10(κ1, j,k), case 1

0, case 2
υh10(k1, j,k), case 3,

h00(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

h0
00(κ0, j,k)+U0(κ0) ∑

κ1∈Π\{ j}
pκ0κ1h10(κ1, j,k), case 1

0, case 2
U0h10(k1, j,k), case 3,

h01(κ0, j,k)

=

⎧
⎪⎪⎨

⎪⎪⎩

∑
κ1∈Π\{ j}

pκ0κ1{u0( j,κ0,κ1)h10(κ1, j,k)+h11(κ1, j,k)}, case 1

0, case 2
(0,e j)h10(k1, j,k)+h11(k1, j,k), case 3.

And for k ∈Π s, κ0 ∈Π ∪Π s and j ∈Π , let

ϕ(κ0, j,k) =
{

0, κ0 ∈Π
ϕ0(κ0, j,k), κ0 ∈Π s,

h00(κ0, j,k) = 0,

h01(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

pkh0
01(κ0, j,k)+ ∑

κ1∈Π\{ j}
pκ0κ1h11(κ1, j,k), case 1

0, case 2
h11(k1, j,k), case 3.

Now we define the following function, and show that it gives the linear functional
expression for the performance measure Hj(·) defined by (7.6).

Definition 7.1. The linear function is defined by

Ĥ j(Y,e, l,k)

=

⎧
⎪⎪⎨

⎪⎪⎩

rϕ(κ0, j,k)+(g,n)h00(κ0, j,k)+h01(κ0, j,k), l = 0, k ∈Π
rϕ(κ0, j,k)+h01(κ0, j,k), l = 0, k ∈Π s

(g,n)h10(κ0, j,k)+h11(κ0, j,k), l > 0, k ∈Π
h11(κ0, j,k), l > 0, k ∈Π s

(7.28)

for any j ∈Π ; Y = (κ0,r,g,n,L) ∈ E ; e = 1,2, . . . ; l = 0,1,2, . . . and k ∈Π ∪Π s.

Proposition 7.2. The function Ĥ·(·, ·, ·,k) (k ∈ Π ∪Π s) defined by (7.28) satisfies
the “polling equation” (7.8).

Proof. See the appendix. 
�
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Proposition 7.3. The solution of the “polling equation” (7.8) is unique and hence

Hj(Y,e, l,k) = Ĥ j(Y,e, l,k),
( j ∈Π ; Y ∈ E ; e = 1,2, . . . ; l = 0,1,2, . . . ; k ∈Π ∪Π s).

Proof. Because the proof of this proposition is similar to the proof of uniqueness of
the solution for the feedback equation given in [1], it is omitted. 
�

7.5 Steady-State Values

We would like to obtain the steady-state values of the performance measures. We
define the mean waiting time of j-customers6 as follows:

w̄ j = lim
N→∞

1
N

N

∑
e=1

E[W e
j +Fe

j |Xe
S (τe

0) = j], j = 1, . . . ,J. (7.29)

In order to obtain the quantity, we define the following interim quantities:

H̄ j(κ0,k) = lim
N→∞

1
N

N

∑
e=1

E[He
j (k)1{κ(τe

0) = κ0}|Xe
S (τe

0) = j], (7.30)

F̄j(κ0) = lim
N→∞

1
N

N

∑
e=1

E[Fe
j 1{κ(τe

0) = κ0}|Xe
S (τe

0) = j] (7.31)

for j ∈ Π and κ0,k ∈ Π ∪Π s. The time average values of the system state are
defined by

Ỹk = (kq̃k, r̃k, g̃k, ñk, L̃k) = lim
t→∞

1
t

∫ t

0
E[Y(s)1{κ(s) = k}]ds (7.32)

for k ∈Π ∪Π s where g̃k = (g̃k
1, . . . , g̃

k
J), ñ

k = (ñk
1, . . . , ñ

k
J).

For k ∈ Π , the steady-state value q̃k, which is the long-run fraction of time that
the system is in period k, is calculated as

q̃k = lim
t→∞

1
t

∫ t

0
E[1{κ(s) = k}]ds = λkE[Sk]. (7.33)

For k ∈ Π s, the steady-state value q̃k can be obtained in the following manner. Let
πi be the steady-state probability that the server selects station i at a polling instant.
It can be easily shown that π = (π1, . . . ,πJ) is the steady-state probability of the
Markov chain with the transition probability matrix P. We can obtain it by solving
πP = π and π1 = 1. Then the long-run fraction of time that the server is moving
from station i to station j given that the system is in a switchover period is given by

6 The time average values and the customer average values defined in this section are assumed to
exist.
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πi pi jso
i j

J

∑
i=1

J

∑
j=1
πi pi jso

i j

, (i, j) ∈Π s. (7.34)

Furthermore the long-run fraction of time that the system is in a switchover period
is 1−ρ . Hence we obtain

q̃(i, j) = (1−ρ)
πi pi jso

i j
J

∑
i=1

J

∑
j=1
πi pi jso

i j

, (i, j) ∈Π s. (7.35)

The expected remaining service time of a customer being served given that the cur-
rent period is k ∈Π is equal to s2

k/(2E[Sk]), and the expected value of the remaining
switchover period given that the current period is (i, j) ∈ Π s is equal to so2

i j /(2so
i j).

Then we have

r̃k =

(
s2

k
2E[Sk]

)

q̃k =
λks2

k
2

, k ∈Π , (7.36)

r̃(i, j) =

(
so2

i j

2so
i j

)

q̃(i, j) = (1−ρ)
πi pi jso2

i j

2
J

∑
i=1

J

∑
j=1
πi pi jso

i j

, (i, j) ∈Π s. (7.37)

From the results in the previous sections and the PASTA property, we have

H̄ j(κ0,k)

=
{

r̃κ0ϕ(κ0, j,k)+(g̃κ0 , ñκ0)h00(κ0, j,k)+ q̃κ0h01(κ0, j,k), k ∈Π
r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k), k ∈Π s,

(7.38)

F̄j(κ0) = r̃κ0ψ(κ0, j)+(g̃κ0 , ñκ0)f(κ0, j) (7.39)

for j ∈ Π and κ0 ∈ Π ∪Π s. Then from the generalized version of Little’s formula
(H = λG) [27], we have

ñk
j = λ j ∑

κ0∈Π∪Π s
H̄ j(κ0,k),

g̃ j = λ j ∑
κ0∈Π∪Π s

F̄j(κ0),
j ∈Π and k ∈Π ∪Π s, (7.40)

where g̃ j = ∑
k∈Π∪Π s

g̃k
j . Furthermore it can be shown that

g̃k
j =

{
g̃ j, k = j,
0, k 	= j, j ∈Π and k ∈Π ∪Π s. (7.41)
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Then we obtain the following set of linear equations for the average numbers of
customers in the system.

ñk
j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λ j ∑
κ0∈Π∪Π s

{r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k)

+(g̃κ0 , ñκ0)h00(κ0, j,k)} , k ∈Π

λ j ∑
κ0∈Π∪Π s

{r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k)} , k ∈Π s,

(7.42)

g̃k
j =

⎧
⎨

⎩

λ j ∑
κ0∈Π∪Π s

{r̃κ0ψ(κ0, j)+(g̃κ0 , ñκ0)f(κ0, j)} , k = j

0, k 	= j or k ∈Π s
(7.43)

for j ∈Π and k ∈Π ∪Π s. Then we finally obtain the following proposition.

Proposition 7.4. The mean waiting time of j-customers ( j = 1, . . . , J) is given by

w̄ j = ∑
κ0∈Π∪Π s

{

∑
k∈Π∪Π s

H̄ j(κ0,k)+ F̄j(κ0)

}

=
1
λ j

(

g̃ j
j + ∑

k∈Π∪Π s
ñk

j

)

, (7.44)

where g̃ j
j and ñk

j ( j ∈ Π ; k ∈ Π ∪Π s) can be obtained by solving the set of (7.42)
and (7.43).

7.6 Computational Complexity

We now evaluate the computational complexity to calculate the mean waiting times.
In Sect. 7.4 calculation of the coefficients h10(κ0, j,k) (κ0, j,k ∈ Π) takes much
time. Then from (7.26) we have

⎛

⎜
⎜
⎜
⎝

h10(1, j,k)
h10(2, j,k)

...
h10(J, j,k)

⎞

⎟
⎟
⎟
⎠

= (I− I( j)UQ)−1I( j)

⎛

⎜
⎜
⎜
⎝

h0
10(1, j,k)

h0
10(2, j,k)

...
h0

10(J, j,k)

⎞

⎟
⎟
⎟
⎠

,

where I ∈ R2J2×2J2
and I0 ∈ R2J×2J are identity matrices, and where

I( j) = diag(I0, . . . ,I0, O︸︷︷︸
jth place

,I0, . . . ,I0) ∈ R2J2×2J2
,

Q = (pi, jI0 : i, j = 1, . . . ,J) ∈ R2J2×2J2
,

U = diag(U1( j) : j = 1, . . . ,J) ∈ R2J2×2J2
.
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The calculation of the J inverse matrices (I− I( j)UQ)−1I( j) ∈ R2J2×2J2
, ( j ∈ Π )

takes J×O(J6) numerical operations,7 and the whole calculation of the products of
the inverse matrices and the right end vectors of vectors {h0

10(κ0, j,k) : κ0 ∈ Π},
( j,k ∈ Π ) take O(J6) numerical operations. The calculations of the other constants
in Sect. 7.4 take at most O(J5) numerical operations. In Sect. 7.5 it takes much time
to solve (7.42) and (7.43). Because the set of these equations essentially has J(J +1)
unknowns, O(J6) numerical operations are required in order to solve them. The
other calculations in this section take at most O(J5) numerical operations. Hence
the overall complexity of our method is primarily O(J7) numerical operations.

The primal algorithm has somewhat excessive computational complexity, there-
fore we would like to reduce it. As noted above, much of the computational
complexity comes from the calculations of the constants h10(κ0, j,k) and the
calculations of the steady-state values from (7.42) and (7.43).

7.6.1 Reduction of Calculations of h10(·)

This reduction has three steps.

First Reduction Step:

We can reduce the computational complexity by checking the following facts. Be-
cause it can be shown from (7.15) and (7.16) that H0

j (Y,e, l,k) for κ0,k ∈ Π and
l > 0 is not affected by the vector g of the numbers of customers in the service facil-
ity, the elements in the upper half of h0

10(κ0, j,k) in (7.23) are 0. Similarly, because
it can be shown from (7.19) and (7.20) that the conditional expectation of n(τe

l+1)
for κ0 ∈Π and l > 0 is not affected by g, and because g(τe

l+1) = 0, the elements in
the upper half and the left half of U1(κ0) in (7.25) are 0. That is, we have

h0
10(κ0, j,k) =

(
0

h0∗
10(κ0, j,k)

)

, U1(κ0) =
(

O O
O U∗

1(κ0)

)

,

where h0∗
10(κ0, j,k) ∈ RJ×1, U∗

1(κ0) ∈ RJ×J , and then the size of (7.26) can be
reduced by half. Let h∗

10(κ0, j,k) ∈ RJ×1 be the vector composed of the lower half
elements of h10(κ0, j,k), and we have the following reduced version of (7.26).

h∗
10(κ0, j,k) =

⎧
⎪⎪⎨

⎪⎪⎩

h0∗
10(κ0, j,k)+U∗

1(κ0) ∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k),

κ0 	= j, κ0 ∈Π , k ∈Π
0, otherwise

(7.45)

for κ0,k ∈Π ∪Π s and j ∈Π .

7 For simplicity, we estimate that an n×n matrix can be inverted in O(n3) numerical operations.
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Second Reduction Step:

We reduce the calculations by using sparsity of the constants h0∗
10(κ0, j,k) and

U∗
1(κ0) in (7.45). From (7.15), (7.16), and (7.23), for κ0 ∈ Π , l > 0, k ∈ Π , we

have

h0∗
10(κ0, j,k) =

{
e′κ0
δ (κ0), κ0 = k, κ0 	= j

0, otherwise
( j ∈Π), (7.46)

where e′κ0
is the transpose of eκ0 = (0, . . . ,0, 1︸︷︷︸

κth
0 place

,0, . . . ,0) defined in Sect. 7.3, and

where

δ (κ0) =
{

E[Sκ0 ], κ0 ∈ Hg
E[Sκ0 ]/(1−ρκ0), κ0 ∈ He.

From (7.19), (7.20), and (7.25), it can be shown that

U∗
1(κ0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 · · · 0 0 0 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 1 0 0 · · · 0
u∗1(κ0) · · · u∗κ0−1(κ0) u∗κ0

(κ0) u∗κ0+1(κ0) · · · u∗J(κ0)
0 · · · 0 0 1 · · · 0
...

. . .
...

...
...

. . .
...

0 · · · 0 0 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where u∗m(κ0) = λmδ (κ0)1{m 	= κ0 or κ0 ∈ Hg}, (m,κ0 ∈Π).
Let

ξ ∗10(κ0, j,k) =

⎧
⎨

⎩

∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k), κ0 	= j

0, κ0 = j
(κ0, j,k ∈Π).

Then from (7.45) and (7.46), we have

h∗
10(κ0, j,k) = e′κ0

δ (κ0)1{κ0 = k,κ0 	= j}+U∗
1(κ0)ξ ∗10(κ0, j,k)

for κ0, j,k ∈Π . Now we define the following notation.

• For any vector a, let a|m be its mth element.

Then we have

h∗
10(κ0, j,k)|m (7.47)

=

⎧
⎪⎨

⎪⎩

ξ ∗10(κ0, j,k)|m, m 	= κ0

δ (κ0)1{κ0 = k, κ0 	= j}+
J

∑
l=1

u∗l (κ0)ξ ∗10(κ0, j,k)|l , m = κ0,
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ξ ∗10(κ0, j,k)|m (7.48)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
κ1∈Π\{ j,m}

pκ0κ1ξ
∗
10(κ1, j,k)|m + pκ0mh∗

10(m, j,k)|m, m 	= j, κ0 	= j

∑
κ1∈Π\{ j}

pκ0κ1ξ
∗
10(κ1, j,k)| j, m = j, κ0 	= j

0, κ0 = j

for m = 1, . . . ,J, κ0, j,k ∈Π . Let

ξ ∗10( j,k)m =

⎛

⎜
⎝

ξ ∗10(1, j,k)|m
...

ξ ∗10(J, j,k)|m

⎞

⎟
⎠ ∈ RJ×1, p( j)m =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p1,m
...

p j−1,m
0

p j+1,m
...

pJ,m

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ RJ×1,

I0(m) = diag(1, · · · ,1, 0︸︷︷︸
mth place

,1, · · · ,1) ∈ RJ×J,

P( j) =
(
p( j)1, · · · ,p( j) j−1,0,p( j) j+1, · · · ,p( j)J

)
∈ RJ×J

for m = 1, . . . ,J, j,k ∈Π . Then from (7.48), we have

ξ ∗10( j,k)m =

{
P( j)I0(m)ξ ∗10( j,k)m +p( j)mh∗

10(m, j,k)|m, m 	= j
P( j)ξ ∗10( j,k) j, m = j

or

ξ ∗10( j,k)m =

{
(I−P( j)I0(m))−1p( j)mh∗

10(m, j,k)|m, m 	= j
0, m = j.

(7.49)

Now let

η∗
10( j,k) =

⎛

⎜
⎝

h∗
10(1, j,k)|1

...
h∗

10(J, j,k)|J

⎞

⎟
⎠ ∈ RJ×1,

U∗( j)m = diag(u∗m(1), · · · ,u∗m( j−1),0,u∗m( j +1), · · · ,u∗m(J)) ∈ RJ×J,

δ (k) = (0, · · · ,0,δ (k)
︸︷︷︸
kth place

,0, · · · ,0)′ ∈ RJ×1.
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Then from (7.47) and (7.49), we have

η∗
10( j,k) = δ (k)1{k 	= j}+

J

∑
m=1

U∗( j)mξ ∗10( j,k)m

= δ (k)1{k 	= j}+ ∑
m	= j

U∗( j)mq( j)mh∗
10(m, j,k)|m,

where q( j)m = (I−P( j)I0(m))−1p( j)m. Let

U ∗( j) =
(
U∗( j)1q( j)1, . . . ,U∗( j) j−1q( j) j−1,0,

U∗( j) j+1q( j) j+1, . . . ,U∗( j)Jq( j)J
)
∈ RJ×J. (7.50)

Then we have

η∗
10( j,k) = δ (k)1{k 	= j}+U ∗( j)η∗

10( j,k), ( j,k ∈Π). (7.51)

Algorithm for the second reduction: Repeat the following steps for j = 1, . . . , J.

1. Solve (I−P( j)I0(m))q( j)m = p( j)m to obtain q( j)m for m 	= j.
2. Set matrix U ∗( j) defined in (7.50).
3. Solve the set of the equations given by (7.51) to obtain η∗

10( j,k) for k 	= j.
4. From (7.49), ξ ∗10( j,k)m = q( j)mh∗

10(m, j,k)|m = q( j)mη∗
10( j,k)|m for m 	= j8.

5. From the definition of η∗
10(·) and (7.47), we have9

h∗
10(κ0, j,k)|m =

{
η∗

10( j,k)|κ0 , m = κ0
ξ ∗10(κ0, j,k)|m = q( j)m|κ0h∗

10(m, j,k)|m, m 	= κ0.
(7.52)

Third Reduction Step:

The computational effort in the algorithm for the second reduction can be further
reduced in the following manner. It can be easily shown that (I−P( j)I0(m))q( j)m =
p( j)m for m 	= j can be written as follows:

(I−P( j))q( j)m = p( j)m(1−q( j)m|m),

where q( j)m|m is the mth element of the vector q( j)m. Hence we have

q( j)m = (I−P( j))−1p( j)m(1−q( j)m|m).

Then it can be easily shown that

q( j)m|m = q′( j)m|m(1+q′( j)m|m)−1,

8 Because h∗
10( j, j,k)| j = η∗

10( j,k)| j = 0, ξ ∗10( j,k)m = q( j)mh∗
10(m, j,k)|m is also true for m = j.

9 η∗
10( j,k)|κ0 and q( j)m|κ0 are the κ0th elements of η∗

10( j,k) and q( j)m, respectively.
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where q′( j)m|m is the mth element of the vector q′( j)m = (I−P( j))−1p( j)m. The
first step 1 of the algorithm for the second reduction then can be arranged as

1′. Solve (I−P( j))q′( j)m = p( j)m to obtain q′( j)m for m 	= j. Then set

q( j)m|m = q′( j)m|m(1+q′( j)m|m)−1, q( j)m = q′( j)m(1−q( j)m|m).

The computational complexity of the algorithm is evaluated later.

7.6.2 Reduction of Calculations of Steady-State Values

Because we cannot further reduce the number of the steady-state equations, we
would like to solve them by a successive approximation instead of directly solving
them. Because it takes much computational effort to apply the original equations
(7.42) and (7.43) to the approximation, we would like to reduce it by arranging
coefficients h00(·) as follows.

From (7.15) (7.16), and (7.23), we have

h0
00(κ0, j,k) =

(
∗
0

)

, (κ0, j,k ∈Π).

That is, H0
j (Y,e, l,k) for κ0,k ∈ Π and l = 0 is not affected by the number of

customers in the waiting room n. From (7.19), (7.20), (7.22), and (7.25), we have

U0(κ0) =
(

O ∗
O U∗

01(κ0)

)

, (κ0 ∈Π),

where

U∗
01(κ0) = diag(1, . . . ,1,1{κ0 ∈ Hg}

︸ ︷︷ ︸
κth

0 place

,1, . . . ,1) ∈ RJ×J.

Let h∗
00(κ0, j,k)∈RJ×1 be the lower half of h00(κ0, j,k) for κ0, j,k ∈Π . Then from

the definition of h00(κ0, j,k) in Sect. 7.4, we have

h∗
00(κ0, j,k) = U∗

01(κ0) ∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k), (κ0 	= j or j ∈ Hg)

and its mth element is given by

h∗
00(κ0, j,k)|m =

⎧
⎨

⎩

∑
κ1∈Π\{ j}

pκ0κ1 h∗
10(κ1, j,k)|m, m 	= κ0 or κ0 ∈ Hg

0, m = κ0 ∈ He

for κ0 	= j or j ∈Hg (κ0, j,k ∈Π ). (h∗
00(κ0, j,k)|m = 0 for all m when κ0 = j ∈He.)
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Furthermore from (7.52), it can be shown that

∑
κ1∈Π\{ j}

pκ0κ1h∗
10(κ1, j,k)|m = q0(κ0, j)mh∗

10(m, j,k)|m (7.53)

for κ0, j,k ∈Π , where

q0(κ0, j)m =

⎧
⎪⎨

⎪⎩

∑
κ1∈Π\{ j,m}

pκ0κ1 q( j)m|κ1 + pκ0m, m 	= j

∑
κ1∈Π\{ j}

pκ0κ1 q( j) j|κ1 , m = j.
(7.54)

Then we have the final expression for h∗
00:

h∗
00(κ0, j,k)|m = q∗(κ0, j)mh∗

10(m, j,k)|m (7.55)

for κ0, j,k,m ∈Π , where

q∗(κ0, j)m =
{

q0(κ0, j)m, (m 	= κ0 or κ0 ∈ Hg) and (κ0 	= j or j ∈ Hg)
0, otherwise. (7.56)

Then from (7.42) and (7.43), it can be easily shown that the steady-state numbers
of customers satisfy the following equations:

ñk
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ̃k
h j +λ j ∑

κ0∈Π
g̃κ0
κ0 h00(κ0, j,k)|κ0

+λ j

J

∑
m=1

ñqm( j)h∗
10(m, j,k)|m, k ∈Π

ϕ̃k
j , k ∈Π s,

(7.57)

g̃ j
j = ψ̃ f j +λ j ∑

κ0∈Π
g̃κ0
κ0 f(κ0, j)|κ0 +λ j ∑

κ0∈Π

J

∑
m=1

ñκ0
m f(κ0, j)|J+m, (7.58)

ñqm( j) = ∑
κ0∈Π

ñκ0
m q∗(κ0, j)m (7.59)

for k ∈Π ∪Π s and j,m ∈Π , where

ϕ̃k
j = λ j ∑

κ0∈Π∪Π s
{r̃κ0ϕ(κ0, j,k)+ q̃κ0h01(κ0, j,k)} ,

ϕ̃k =
(
ϕ̃k

j : j = 1, . . . ,J
)
∈ R1×J ,

ϕ̃k
h j = ϕ̃k

j +λ j ∑
κ0∈Π s

(0, ϕ̃κ0)h00(κ0, j,k), (k ∈Π for this case),

ψ̃ f j = λ j ∑
κ0∈Π∪Π s

{r̃κ0ψ(κ0, j)}+λ j ∑
κ0∈Π s

(0, ϕ̃κ0)f(κ0, j).

(7.60)

From the equations, we can construct a successive approximation algorithm for the
steady-state values. Note that ñk

j (k ∈ Π s, j ∈ Π ) can be directly calculated in ad-
vance from the known constants.
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Algorithm for calculating the steady-state values by successive approximation

1. Set s = 0 and the initial values of ñk(0)
j , g̃ j(0)

j , ñ(0)
qm( j) for j,k,m ∈Π .

2. Calculate ñk(s+1)
j , g̃ j(s+1)

j , ñ(s+1)
qm ( j) for j,k,m ∈Π from the set of equations:

ñk(s+1)
j = ϕ̃k

h j +λ j ∑
κ0∈Π

g̃κ0(s)
κ0 h00(κ0, j,k)|κ0 + λ j

J

∑
m=1

ñ(s)
qm( j)h∗

10(m, j,k)|m,

g̃ j(s+1)
j = ψ̃ f j +λ j ∑

κ0∈Π
g̃κ0(s)
κ0 f(κ0, j)|κ0 + λ j ∑

κ0∈Π

J

∑
m=1

ñκ0(s)
m f(κ0, j)|J+m,

ñ(s+1)
qm ( j) = ∑

κ0∈Π
ñκ0(s+1)

m q∗(κ0, j)m.

3. If these values are considered to converge, then stop. Otherwise, let s ← s+1
and go to step 2.

Note. We can show (1) the uniqueness of the solution of (7.42) and (7.43), and
(2) the convergence of the values obtained by the successive approximation
method to the unique solution (under the assumption that these steady-state
average values exist).

7.6.3 Evaluation of Computational Complexity

We now evaluate the computational complexity after the reductions. After applying
the third reduction step, in order to derive h10(·), we are essentially required to solve
the J sets of the O(J) linear equations related to the equations (I−P( j))q′( j)m =
p( j)m, and required to solve the J sets of the O(J) linear equations related to (7.51).
And a careful estimation shows that the other calculations require at most O(J4)
numerical operations. Then it can be easily shown that only O(J4) numerical op-
erations are required in order to calculate the constants h∗

10(κ0, j,k) and q( j)m
(κ0, j,k,m ∈ Π). Hence if we directly solve the steady-state equations (7.42) and
(7.43) by inverting the coefficient matrix after applying the third reduction step,
O(J6) numerical operations are required in order to calculate the mean waiting times
for all stations.

Then for the successive approximation of the steady-state values (g̃k, ñk), it is
clear that O(J3) numerical operations are required in order to calculate the values
at each iterative step. And it can be shown that calculations of the other coefficients
({ϕ̃k

h j : j,k ∈Π},{ϕ̃k
j : k ∈Π ∪Π s, j ∈Π},{h00(κ0, j,k)|κ0 : κ0, j,k ∈ Π},{ψ̃ f j :

j ∈ Π},{f(κ0, j) : κ0, j ∈ Π},{q∗(κ0, j)m : κ0, j,m ∈ Π}) which appear in (7.57)–
(7.60) require O(J4) numerical operations.

Hence if we obtain the mean waiting times for all stations after applying the
third reduction step and the successive approximation for the steady-state values,
O(J4)+O(J3N) numerical operations are required where N = NJ,ρ,ε is the number
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of iterations of the approximation that depends on the number of stations J, the
resource utilization ρ , and the required accuracy ε10.

7.6.4 Comparison of Computational Times by Examples

Now we compare our functional computation method with the buffer occupancy
method by actually measuring their running times to compute the average waiting
times in the systems with J = 40 stations and J = 80 stations. Half of the stations
take the gated rule and the other stations take the exhaustive rule. In order to make
graphs for the running times in each system by changing the resource utilization ρ ,
the arrival rates are varied. The service times, the switchover times, and the switch-
ing probabilities are fixed. The algorithms that adopt the following methods are
compared.

Ours 1: Our functional computation method that calculates the steady-state values
by directly solving the equations (i.e., inverting their coefficient matrix)

Ours 2: Our functional computation method that calculates the steady-state values
by the successive approximation

B.O.: The buffer occupancy method that calculates second moments of the
buffer occupancy variables by a successive approximation.

In Figs. 7.1 and 7.2, “Ours 2-1” and “Ours 2-2” denote our second method “Ours
2” with ε = 10−4 and ε = 10−8, respectively,11 and “B.O.1” and “B.O.2” denote
the buffer occupancy method “B.O.” with ε = 10−4 and ε = 10−8, respectively.
Although the running times of “Ours 1” do not depend on the resource utilization,
they are somewhat greater than those of “Ours 2.” “Ours 2” takes almost constant
running times until the resource utilization reaches about 0.9. It results from the fact
that when ρ is less than the value, the number of iterations N is relatively small
and the computational complexity of “Ours 2” is approximately O(J4). When ρ
approaches 1, N grows rapidly and its running times also grow rapidly. The numbers
of iterations for the approximation methods are given in Tables 7.1 and 7.2. We see
from the tables that the numbers of iterations of “B.O.” are fairly (10 or more times)
greater than those of “Ours 2.” This may be caused by the difference between the
numbers of variables in the steady-state equations; that is, “Ours 2” has only O(J2)

10 As noted in Sect. 7.1, the computational complexity of the buffer occupancy method that uses
an approximation is O(J4N′) where N′ is the number of its iterations.
11 When

∣
∣
∣∑J

j=1 ρ jw̄
(s)
j −∑J

j=1 ρ jw̄
(s−1)
j

∣
∣
∣ < ε , the successive approximation methods stop, where

{w̄(s)
j } is a set of the mean waiting times obtained at their sth iterative step and ε is a required

accuracy. The used CPU is the AMD Athlon 64 X 2 4400+ with 4 GB memories, and the program-
ming language is Intel Visual FORTRAN with the IMSL Library.
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Fig. 7.1 Running times for computing the mean waiting times in the system with J = 40.
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Fig. 7.2 Running times for computing the mean waiting times in the system with J = 80.

variables in contrast to “B.O.” which has O(J3) variables. Furthermore for the buffer
occupancy method, because O(J4) operations per iteration are required, its running
times are greater than those of “Ours 2.” These differences become large as the
system is congested (i.e., when ρ is large).
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Table 7.1 Numbers of iterations (N and N′) for the system with J = 40.

Ours 2 (N) B.O. (N′)

Required Accuracies (ε) Required Accuracies (ε)

ρ 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

0.3114 5 8 11 14 86 230 399 587
0.5213 9 13 18 23 166 363 566 772
0.7574 19 29 39 49 383 755 1126 1497
0.9057 50 76 102 128 1051 1992 2934 3875
0.9568 110 167 224 281 2339 4389 6440 8490
0.9899 471 714 957 1200 10102 18844 27585 36326

Table 7.2 Numbers of iterations (N and N′) for the system with J = 80.

Ours 2 (N) B.O. (N′)

Required Accuracies (ε) Required Accuracies (ε)

ρ 10−2 10−4 10−6 10−8 10−2 10−4 10−6 10−8

0.3154 6 9 11 14 177 463 786 1152
0.5014 9 13 18 22 318 701 1092 1490
0.7405 19 28 37 46 729 1440 2152 2863
0.8986 49 73 96 119 2006 3812 5617 7423
0.9531 107 157 208 259 4428 8322 12216 16110
0.9919 617 911 1205 1499 25952 48423 70893 93364

7.7 Conclusions

In this chapter we have considered the Markovian polling systems, and have ob-
tained the mean waiting times. It can be shown that the explicit expression for the
expected waiting time of a customer conditioned on the system state at its arrival
epoch has the linear functional form, which is the representative characteristic of our
method. This form results from the linear functional forms of the basic quantities
given in Proposition 7.1. And the steady-state average values can be derived from
it by simple limiting procedures. It has been shown that the conditional expected
waiting times in many types of M/G/1 multiclass queueing systems have the similar
linear functional forms. They appear not only in the polling systems [2] but also in
the priority systems [24]. Furthermore the conditional expected sojourn times in the
systems with customers’ feedback also have the linear functional forms [1], [25].

Our functional computation for the mean waiting times in the Markovian polling
systems originally requires us to solve J + 1 sets of O(J2) linear equations for the
mean waiting times of J stations as opposed to the buffer occupancy method which
requires us to solve O(J3) linear equations. Although our original method requires
O(J7) numerical operations, we can construct the procedure with the successive
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approximation for the steady-state values which only requires O(J4)+ O(J3N) nu-
merical operations where N is the number of its iterations. When we compared our
method with the buffer occupancy method by actually computing the mean waiting
times, we found that the computation times by our method are less than those by the
buffer occupancy method; especially their differences are large when the system is
congested.

Besides the above things, there are many advantage of our method [25]. Multi-
class queueing models are useful for analyzing the computer communication sys-
tems with many datatypes and sources, and more complicated queueing models are
necessary in order to derive the performance characteristics in the real systems. Be-
cause we can investigate complicated multiclass structures and composite schedul-
ing algorithms by our method, it may stimulate advanced analysis of these systems.

Appendix: Proof of Proposition 7.2

Proof. We prove that the polling equation (7.8) is satisfied by directly substituting
the expression for Ĥ j(Y,e, l,k) defined by (7.28) into it. Let Y = (κ0,r,g,n,L) ∈ E
be the state of the system at time τe

l (l = 0,1, . . . , e = 1,2, . . .).

Case 1 (k ∈ Π ): In the following expressions, the abbreviated condition (Y, j)e
l

means the condition Y(τe
l ) = Y and Xe

S (τe
l ) = j for l ≥ 0, e = 1,2, . . . .

For (κ0 = j, l = 0, j ∈He) or (κ0 = j, l > 0, j ∈He∪Hg), it can be easily shown
that

Ĥ j(Y,e, l,k) = 0.

For (l = 0,κ0 ∈Π ,κ0 	= j) or (l = 0,κ0 = j ∈ Hg),

H0
j (Y,e,0,k)+E[Ĥ j(Y(τe

1),e,1,k)|Y(τe
0) = Y,Xe

S (τe
0) = j]

= rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)

+E[(g(τe
1),n(τe

1))h10(κ(τe
1), j,k)+h11(κ(τe

1), j,k)|(Y, j)e
0]

= rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1 E[(g(τe
1),n(τe

1))|κ(τe
1) = κ1,(Y, j)e

0]h10(κ1, j,k)

= rϕ0(κ0, j,k)+(g,n)h0
00(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1 {rυ(κ0)+(g,n)U0(κ0)+u0( j,κ0,κ1)}h10(κ1, j,k)

= Ĥ j(Y,e,0,k).
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The first equation comes from (7.23) and (7.28). The second equation comes from
the definition of the switching probability pκ0κ1 . The third equation comes from
(7.25). The last equation comes from the definitions of the constants (in Sect. 7.4)
and (7.28).

For l = 0 and κ0 = (k0,k1) ∈Π s,

H0
j (Y,e,0,k)+E[Ĥ j(Y(τe

1),e,1,k)|Y(τe
0) = Y,Xe

S (τe
0) = j]

= E[(g(τe
1),n(τe

1))h10(κ(τe
1), j,k)+h11(κ(τe

1), j,k)|(Y, j)e
0]

= E[(g(τe
1),n(τe

1))|κ(τe
1) = k1,(Y, j)e

0]h10(k1, j,k)+h11(k1, j,k)
=
{

rυ+(g,n)U0 +(0,e j)
}

h10(k1, j,k)+h11(k1, j,k)

= Ĥ j(Y,e,0,k).

For l > 0 and κ0 	= j (κ0 ∈Π),

H0
j (Y,e, l,k)+E[Ĥ j(Y(τe

l+1),e, l +1,k)|Y(τe
l ) = Y,Xe

S (τe
l ) = j]

= (g,n)h0
10(κ0, j,k)

+E[(g(τe
l+1),n(τe

l+1))h10(κ(τe
l+1), j,k)+h11(κ(τe

l+1), j,k)|(Y, j)e
l ]

= (g,n)h0
10(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1E[(g(τe
l+1),n(τe

l+1))|κ(τe
l+1) = κ1,(Y, j)e

l ]h10(κ1, j,k)

= (g,n)h0
10(κ0, j,k)+ ∑

κ1 	= j
pκ0κ1 h11(κ1, j,k)

+ ∑
κ1 	= j

pκ0κ1 {(g,n)U1(κ0)+u1(κ0,κ1)}h10(κ1, j,k)

= Ĥ j(Y,e, l,k).

Case 2 (k ∈Π s): The proof is similar to case 1 and is omitted.
Hence the proof is completed. 
�
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Chapter 8
Performance Analysis of a Two-Station
MTO/MTS Production System

Kuo-Hwa Chang and Yang-Shu Lu

Abstract We consider a two-station hybrid MTO/MTS production system with
random ordinary and specific demands, in which the first station is a MTS sys-
tem providing the finished standard products for ordinary demands. These finished
products also serve as the semi-finished products to specific demands. The second
station performs some additional work on the standard products for specific de-
mands. In our system, the MTS system is controlled under the base-stock policy. To
evaluate the system, we consider the fill rate of the ordinary demands and the re-
sponse time of the specific demands. Our objective is to study the relation between
base-stock level and the fill rate of the ordinary demands and the response time of
the specific demands. We analyze our system by modeling it as an inventory-queue
system. Based on these analyses, we can determine the optimal base-stock level
numerically under the constraints on the fill rate of the ordinary demands and the
response time of the specific demands.

8.1 Introduction

Traditionally, a production system can be distinguished into make-to-order (MTO)
or make-to-stock (MTS) systems. MTO products are usually made to customer spec-
ifications as nonstandard and custom products, however, MTS products are standard
and delivered from inventory (stock). That is, a MTS production stocks the finished
products in advance whereas a MTO system starts producing only when it receives
orders from the demand. Assembly manufacturing plays a very important role in the
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global supply chain of consumer products, such as laptop computers. Assemblers,
in addition to fulfilling the ordinary demands for the standard products by adopt-
ing MTS production, are often asked to take care of the specific demands for the
custom products and to adopt MTO production. In usual cases, ordinary demands
are the planned orders and should be satisfied immediately, however, there is a time
window for the specific demand.

To the assembler, it is not profitable to maintain a solo MTO production line
exclusively for the specific demand. In some case, custom products share almost
all the parts of the standard products, therefore, the assembler usually considers
embedding the MTO lines into the mainstream MTS lines, which become a hybrid
production system. The corresponding design and the control issues for the hybrid
lines are important to management.

In this chapter, we assume the custom products can be made by alternating the ex-
isting standard ones with little work. We consider a two-station hybrid MTO/MTS
production system (see Fig. 8.1) with random ordinary and specific demands, in
which the first station (station 1) is a MTS system providing the finished standard
products for the ordinary demands. There is a base-stock level for the finished stan-
dard products.

These standard products also serve as semi-finished products to the specific de-
mands collected at station 2 where the additional work on the finished standard
product is performed to fulfill the corresponding specific demands.

When an ordinary demand arrives at station 1, if there are finished standard prod-
ucts, it will take one of them and leave and, at the same time, this satisfied ordinary
order will send a production order to station 1 for a new standard product; if there
are no finished products, this ordinary demand will be lost. When a specific order
arrives, it will send a request (order) to station 1 for acquiring a finished standard

Fig. 8.1 Two-station MTO/MTS hybrid system.
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product in stock and, at the same time, station 1 will also send a production or-
der to itself for producing another new standard product; if it obtains a finished
standard product, then this order along with the corresponding finished product will
become a combined order and will enter station 2 on a First-Come First-Served
(FCFS) basis for the additional work.

Among the research on hybrid systems, Soman, van Donk, and Gaalman [1]
review the studies on the hybrid MTO/MTS production and mention that such sys-
tems can often be seen in the food industry. Krishnamurthy, Suri, and Vernon [2] use
simulation to analyze a MTO/MTS hybrid system in which a base-stock controlled
MTS production system supplies finished product to multiple MTO production
systems. It also compares the performance of MRP and Kanban for a multistage,
multiproduct manufacturing system. Adan and Ven der Wal [3] present two single-
station systems.

The first system deals with MTS and MTO demands with base-stock control.
Production is pre-empted by the MTO demand. The second system deals with the
specific demands with base-stock control for the semi-finished products. Production
is in two phases. The first phase is to produce semi-finished products and the second
phase is to perform the further work on the semi-finished products in stock accord-
ing to specific demands. Nguyen [4] considers a single-station hybrid production
system for multiple MTS orders and multiple MTO orders. MTS orders are satisfied
from the inventory controlled by base-stock policy and they are lost if there is no
inventory. He models it as a mixed queueing network and approximates the perfor-
mances under heavy traffic conditions by using the corresponding limiting theorem.
Federgruen and Katalan [5] consider a single-station system producing some MTS
products and one MTO product.

For the MTS products the base-stock policies with general periodic sequence
are considered. By using an M/G/1 model with vacations, the impacts of various
priority rules for the MTO products are studied. Carr and Duenyas [6] consider a
single-station hybrid production system for the MTS order and MTO order. The
MTS orders are satisfied from the finished-product inventory. There is no backorder
for the MTS order and unsatisfied MTS orders are lost. They apply admission con-
trol on the MTO orders and sequencing on jobs at the workstation. They use the
Markov decision process to find an optimal policy to maximize the average profit
rate and obtain the corresponding switching curves. Arreola-Risa and DeCroix [7]
consider a single-station system producing multiple products with base-stock in-
ventory policies. They study the optimality conditions to decide which products are
make-to-stock and which are make-to-order (with base-stock level zero) in order to
have the minimum average cost per unit and minimum average cost rate per unit, re-
spectively. Rajagopalan [8] also considers a single-station system for the MTS order
and MTO order.

The inventory control policy for the MTS products is a (q,r) policy. Production
orders for both MTS and MTO items are served on a FCFS basis. The objective is
to partition the MTO/MTS items in order to minimize the inventory costs of MTS
products while satisfying the constraint that the percentage of orders of MTO prod-
ucts fulfilled within lead time must be over a prespecified service level. The system
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is modeled as an M/G/1 system. The corresponding optimization problem is mod-
eled as a nonlinear integer program and is solved by a heuristic procedure.

To evaluate our system, we consider the fill rate (on the other side, the loss rate)
of the ordinary demands and the in-time rates for the specific demands. In-time
rates are defined as the probability that the waiting times of specific demands in the
system, called the response times, are less than the predetermined lead time. Our
system is analyzed by modeling it as an inventory-queue system. For studying the
fill rate of the ordinary demands, we consider station 1 separately. We model it as
an inventory queue with two classes of demands: ordinary demands and specific de-
mands. By assuming the Markovian property, the limiting probabilities are obtained
and the corresponding fill rate under base-stock control policy can also be obtained.
For studying the response time for the specific demand, we study the recursive equa-
tions for approximating the response times. From these recursive equations, we can
express the response times from their preceding demands and, furthermore, we can
estimate the approximated distribution of the response time of specific demands.
Combining the above analyses, we can further determine the optimal base-stock
level under the constraints on the fill rate of the ordinary demands and the in-time
rates for the specific demands according to some cost structure. We call the require-
ments on the fill rate for ordinary demands and the in-time rate for specific demands
the corresponding required qualities of services.

The remainder of this chapter is organized as follows. In Sect. 8.2, we present
the inventory-queue model of our hybrid system. Our model is analyzed and the
closed-form expressions for the fill rate and the distribution of the response times
are obtained. In Sect. 8.3, we verify our approximations obtained in Sect. 8.2 and
present some numerical examples. We conclude our study in Sect. 8.4.

8.2 Model Description

We consider a two-station hybrid production system in which the ordinary demands
arrive at station 1 according to a Poisson process with rate λo and specific demands
arrive at station 2 according to a Poisson process with λs. We assume the exponential
service times at each station with respective rates μ1 and μ2. Station 1 (MTS system)
is controlled under the base-stock policy with base-stock level S.

Let B1 be the number of production orders for standard products in the queue or
under processing at station 1; B2 be the number of orders from specific demands at
the end of station 1; B3 be the number of specific demands waiting in the demand
queue at the end of station 2; N1 be the number of finished standard products in
stock at station 1; and N2 be the number of combined orders in the queue or under
processing at station 2. Note that only one of N1 and B2 can be positive. We have
the following relations.
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Proposition 8.1.
B3 = B2 +N2, (8.1)

B1 +N1 −B2 = S. (8.2)

Proof. Relation (8.1) is well-known for a base-stock system. In fact, (8.2) is true
for a base-stock system with only one kind of demand. Before we prove (8.2) by
induction, we discuss the changes on B1, B2, and N2 after any state transition. We
first consider the case when N1 > 0 (B2 = 0). In this case, if a demand arrives,
whether it is a specific demand or an ordinary demand, N1 will be decreased by
1 and B1 will be increased by 1, however, B2 is still zero and (8.2) still holds; if a
standard product is produced, then B1 will be decreased by 1 but N1 will be increased
by 1.

Now we consider the case when N1 = 0 (B2 ≥ 0). In this case, there will be no
arriving ordinary demands that can be satisfied. If a specific demand arrives, both
B1 and B2 will be increased by 1; if a standard product is produced and B2 = 0 then
B1 will be decreased by 1 but N1 will be increased by 1; if a standard product is
produced and B2 > 0 then B1 will be decreased by 1 but B2 will decrease by 1, and
N1 is still zero. All the changes mentioned above still make (8.2) hold.

We now prove (8.2) by induction on state transitions. Initially, N1 = S, B1 = 0,
and B2 = 0. After the first transition, (8.2) still holds from the assertion for the case
N1 > 0. Suppose that, after the kth transition (8.2) holds, then (8.2) will still hold
after the (k +1)st transition based on the above assertions.

For the fill rate of the ordinary demands, we consider the subsystem correspond-
ing to station 1. Let the state be (m,n) where m denotes the number of finished
standard products at station 1 and n denotes the number of orders from specific
demands in stock at the end of station 1. That is, m = N1 and n = B2. The possible
states are actually (m,0) where 0≤m≤ S and (0,n) for all n≥ 0. The corresponding
transition rate diagram is shown in Fig. 8.2. Note that if l is the number of produc-
tion orders for the standard products in the queue or under processing, then, from
(8.2), we have l = n−m + S. Our objective here is to find the fill rate, denoted by
Pf , for the ordinary demands and the corresponding effective arrival rate, denoted
by λe, where λe = Pfλo.

Define P(m,n) to be the limiting probability of state (m,n); then the balance
equations are as follows:

(λs +λo)P(S,0) = μ1P(S−1,0) ,

(λs +λo +μ1)P(m,0) = μ1P(m−1,0)+(λs +λo)P(m+1,0) , 1 ≤ m ≤ S−1,

(λs +μ1)P(0,0) = (λs +λo)P(1,0)+μ1P(0,1) ,
(λs +μ1)P(0,n) = λsP(0,n−1)+μ1P(0,n+1) , 1 ≤ n ≤ ∞.
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Fig. 8.2 State transition diagram for a two-station MTO/MTS hybrid system.

We have the further expressions for any P(m,n).

P(m,0) =
(
λs +λo

μ1

)S−m

P(S,0) , 0 ≤ m ≤ S−1,

P(0,n) =
(
λs

μ1

)n(λs +λo

μ1

)S

P(S,0) , 1 ≤ n ≤ ∞.

By the law of total probabilities,

S

∑
m=0

P(m,0)+
∞

∑
n=1

P(0,n) = 1. (8.3)

If λs/μ1 < 1, then limiting probabilities exist and
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Let LN1 denote the expected number of finished standard products in stock and
LB2 be the expected number of orders from specific orders at the end of station 1;
then Pf , LN1 , and LB2 can be obtained as follows:

Pf =
S
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P(m,0)

=

⎛

⎜
⎜
⎜
⎝

1−
(
λs+λo

μ1

)S

1−
(
λs+λo

μ1

)

⎞

⎟
⎟
⎟
⎠

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

1−
(
λs+λo

μ1

)S+1

1−
(
λs+λo

μ1

)

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

λs

μ1

(
λs +λo

μ1

)S

1− λs

μ1

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

−1

, (8.4)
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Because we want to find the base-stock levels where the predetermined qualities
of services can be satisfied, we should look at the limiting behaviors of the fill rate,
LN1 and LB2 as S goes to infinity. We need to study them in two cases: λs +λo < μ1
and λs + λo ≥ μ1. After some algebra, the limits are found and presented in the
following theorem.
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Proposition 8.2. As S → ∞,

(a) If λs +λo < μ1, then

Pf → 1, (8.7)
LN1 → ∞, (8.8)
LB2 → 0. (8.9)

(b) If λs +λo ≥ μ1, then

Pf →
μ1 −λs

λo
, (8.10)

LN1 →

λs +λo

μ1(
λs +λo

μ1
−1

)((
λs +λo

μ1

)

+
(

λs

μ1 −λs

)(
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μ1
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)) , (8.11)

LB2 →
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)

((
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)

−
(
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μ1

))(
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(
λs
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)) . (8.12)

Proof. The proofs for the results in part (a) are straightforward and they are omit-
ted. For part (b), we only prove the convergence of (8.10). The proofs on the con-
vergences of the other two can be conducted in the similar way. The term on the
right side of (8.4) can be rewritten in terms of ρ = (λo +λs)/μ1 and ρs = λs/μ1 as
follows:

(1−ρS)/(1−ρ)
(1−ρS+1)/(1−ρ)+ρsρS/(1−ρs)

. (8.13)

After applying l’Hôpital’s rule, it can be shown that (8.13) converges to

−1/(1−ρ)
−ρ/(1−ρ)+ρs/(1−ρs)

(8.14)

which can be simplified to (μ1 −λs)/λo.

According to Proposition 8.2, when the capacity of the workstation is large
enough to handle all the traffic, the fill rate will converge to 1 and the expected
number of the order from specific demands at the end of station 1 will converge to
zero as the base-stock level increases to infinity. This implies that, in the case of
λs +λo < μ1, we are able to find a base-stock level to satisfy the predetermined ser-
vice qualities. When the capacity of the workstation is not enough to handle all the
traffic, all of these three converge to constants as we increase the base-stock level.
Equation (8.10) implies λe converges to μ1−λs. Note that the specific demands will
eventually be served. This means that the maximal capacity that the system can offer
to the ordinary demands is the residual capacity, μ1 −λs. In this case,(μ1 −λs)/λo
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can be considered as the upper bound of the fill rate and it can be used to check
the feasibility of the system. Also note that, in this case, although both LN1 and LB2
converge to constants, from (8.2) the expected number of production orders for stan-
dard products in front of station 1 will go to infinity as the base-stock increases to
infinity.

Let LB1 be the expected number of production orders for standard products in
front of station 1. From Proposition 8.1 and 8.2 we have the following limiting
results for LB1 for the case λs + λo < μ1. Note that LB1 will diverge when λs +
λo ≥ μ1.

Proposition 8.3. If λs +λo < μ1,

LB1 →
(λs +λo)/μ1

1− (λs +λo)/μ1
, as S → ∞. (8.15)

It is intuitive that the right term in (8.15) is the expected number of customers in
the system in an M/M/1 queue because all the ordinary demands will be satisfied as
the stock level becomes large and the arrival rates of the production orders from the
ordinary demands will be λo. For studying the response time of the specific demand,
we consider the case when λs +λo < μ1.

We first express the respective response times at both stations by the recursive
equations. Note that when a specific order arrives, it will wait for its custom product
by sending an order (request) to the inventory of station 1 for a finished product, and,
at the same time, station 1 will also send a production order to itself for a standard
product.

Let {An,n = 1,2, ....} be the arrival process of the specific demands, where An
denotes the arrival time of the nth specific demand. Let Un be the interarrival time
between the nth and (n−1)st arrivals; then, by our assumptions, Uns are i.i.d. expo-
nential random variables with rate λs. Note that {An,n = 1,2, ....} is also the arrival
process of orders at the end of station 1. Let {A′

n,n = 1,2, ....} be the arrival process
of production orders for the standard products in front of station 1. Note that these
orders can be initiated by either specific demands or satisfied ordinary demands. Let
U ′

n be the interarrival time between the nth and (n− 1)st arrivals and we approxi-
mate U ′

ns as i.i.d. exponential random variables with rate λs +λe. Suppose that there
are already d satisfied ordinary demands that left the system when the nth specific
order arrives; then An = A′

n+d .
If the response time at station 1 of the nth specific order is positive, then it means

that when the nth specific order arrives, there are no finished standard products avail-
able and it will wait for the product made by the n+d−S production orders for the
standard products. And, before it obtains this standard product, there will be no
other ordinary demands that can be satisfied. Therefore, in this case, the response
time of the nth specific demand at station 1, denoted by R1

n, is

R1
n = A′

n+d−S +W ′
n+d−S −A′

n+d

= W ′
n+d−S −

n+d

∑
k=n+d−S+1

U ′
n, (8.16)
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where W ′
n is the waiting time in the system of the nth production order for a stan-

dard product at station 1. We approximate the underlying queueing system of W ′
ns

by an M/M/1 queue with arrival rate λs + λe and service rate μ1. Also note that
∑n+d

k=n+d−S+1U ′
n is distributed as a gamma distribution with parameters S and λs +λe.

Therefore, for t > 0, the density function for the response time, denoted by fR1(t),
can be obtained as

fR1 (t) =
∫ ∞

ν=0

(λs +λe)
S νS−1

(S−1)!
e−(λs+λe)υ (μ1 − (λs +λe))e−(μ1−(λs+λe))(ν+t)dν

=
(
λs +λe

μ1

)S

(μ1 − (λs +λe))e−(μ1−(λs+λe))t , t > 0.

Furthermore, the probability that the response time is zero, denoted by P(R1 = 0),
is equal to

1−
(
λs +λe

μ1

)S

. (8.17)

Let R2
n denote the response time of the nth specific demand at station 2 and W 2

n
denote the waiting time in system of the nth combined order at station 2; then

R2
n = R1

n +W 2
n .

The arrival process of the combined orders to station 2 is not a Poisson process,
thus we consider the queueing system corresponding to the combined orders at sta-
tion 2 as a GI/M/1 queue. The waiting time in system of a combined order, denoted
by W 2, has the density

fW 2(t) = μ2(1−α)e−μ2(1−α)t , t ≥ 0,

where α is a solution of α = F∗(μ2(1−α)) and F∗ is the Laplace transform of
the interarrival time of a combined order to station 2 (see Kulkarni [9]). Because
departures from station 1 may be triggered by ordinary demands or specific de-
mands and only the departing specific demands will enter station 2, we approximate
the arrival process to station 2 as the departure process of an M/M/1 base-stock
inventory-queue with arrival rate λs and service rate μ1. Form Buzacott, Price, and
Shanthikumar [10], we have

F∗(τ) =
(
1− (λs/μ1)S+1) λs

λs + τ
+(λs/μ1)S−1 μ1

μ1 + τ
− (λs/μ1)S−1

·
(
1− (λs/μ1)2) λs +μ1

λs +μ1 + τ
.

The density of the response time of a specific demand is then

fR2 (t) =
∫ t

ν=0
fR1 (ν) fW 2 (t −ν)dν+P(R1 = 0) fW 2 (t) .
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We assume the independence of the response time at station 1 and the waiting time
in the system at station 2. After some algebra we have, for t > 0,

fR2(t) =

(

1−
(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

))

· (μ2(1−α))e−μ2(1−α)t +
(
λs +λe

μ1

)S

(μ1 − (λs +λe))

· μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

e−(μ1−(λs+λe))t (8.18)

and the expected response times of specific demands

E[R2] =
∫ ∞

0
t fR2(t)dt

=
1−

(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

)

(μ2(1−α))

+

(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

)

μ1 − (λs +λe)
.

Finally, we have a closed form for the c.d.f of R2 as follows:

FR2(u) =
∫ u

0
fR2(t)dt

=

(

1−
(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

))(
1− e−μ2(1−α)u

)

+
(
λs +λe

μ1

)S( μ2(1−α)
μ2(1−α)−μ1 +(λs +λe)

)

·
(

1− e−(μ1−(λs+λe))u
)

. (8.19)

Note that if T is our maximal lead time for a specific demand, then FR2(T ) will be
the corresponding in-time rate.

8.3 Numerical Results

In this section, we conduct numerical studies to verify our results and we are then
interested in finding an optimal base-stock level to minimize the total cost subject
to the requirements on the fill rate and in-time rate. Based on our results of the
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closed-form expressions for the fill rate (8.4) and in-time rate (8.19), we first verify
our results by comparing our results and the results from simulations through exam-
ples (Examples 8.1 and 8.2). Note (8.4) can be expressed in terms of ρs = λs/μ1 and
ρo = λo/μ1. In the following example, we test our fill rate results with the results
from simulations based on various ρs and ρo.

Example 8.1. We consider four cases with ρs = 0.5 and 0.3 and ρ0 = 0.2 and 0.4
under three base-stock levels, 1, 2, and 3, to verify our results on the fill rate, Pf . The
comparison results are shown in Table 8.1. Our results (indicated by “Approx.”) and
those obtained from simulations (indicated by “Sim.”) are very close to each other.

In the next example, we verify our approximations (indicated by “Approx.”) on
in-time rates with the results from simulations (indicated by “Sim.”).

Example 8.2. Let λo = 0.05, λs = 0.02, μ1 = 0.1, and μ2 = 0.075. We assume that
the requested lead time of the specific demand is 70. The comparisons between
the results obtained from our approximations for the in-time rate and the expected
response time E[R2] on S = 1,2,3,4,5, and 6 are shown in Table 8.2.

In the following two examples, we verify our limiting results on Pf , LN1 , and LB2
obtained from Proposition 8.2. According to Proposition 8.2, we discuss this matter
in two cases: λs +λo < μ1 in Example 8.3 and λs +λo ≥ μ1 in Example 8.4.

Example 8.3 (λs +λo < μ1). Let λo = 5, λs = 3, μ1 = 10, and μ2 = 11. The results
on various base-stock levels S are shown in Table 8.3. As we can see, Pf converges
to 1; LN1 is getting large and LB2 converges to zero.

Table 8.1 Comparison results on fill rates Pf of ordinary demands on various ρs and ρo.

ρo S ρs ρo S ρs

0.5 0.3 0.5 0.3

0.2 1 Sim. 0.4153 0.5850 0.4 1 Sim. 0.3573 0.4999
Approx. 0.4167 0.5833 Approx. 0.3571 0.5000

2 Sim. 0.6342 0.8082 2 Sim. 0.5400 0.7078
Approx. 0.6343 0.8077 Approx. 0.5398 0.7083

3 Sim. 0.7670 0.9073 3 Sim. 0.6505 0.8176
Approx. 0.7615 0.9074 Approx. 0.6502 0.8172

Table 8.2 Comparison results on in-time rates and mean response times.

In-Time Rate E[R2]
S Sim. Approx. S Sim. Approx.

1 0.941 0.940 1 26.539 26.565
2 0.943 0.938 2 25.371 25.533
3 0.944 0.942 3 24.338 24.340
4 0.951 0.948 4 22.954 23.138
5 0.953 0.953 5 22.046 22.051
6 0.962 0.960 6 21.040 21.132
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Table 8.3 Pf , LN1 , and LB2 on various base-stock levels (λo = 5, λs = 3, μ1 = 10, μ2 = 11).

S Pf LN1 LB2 LB1 S Pf LN1 LB2 LB1

1 0.466 0.466 0.228 0.762 11 0.973 7.823 0.011 3.188
2 0.663 1.031 0.144 1.113 12 0.979 8.702 0.008 3.306
3 0.769 1.652 0.098 1.446 13 0.983 9.596 0.007 3.411
4 0.834 2.316 0.070 1.754 14 0.987 10.506 0.005 3.499
5 0.877 3.016 0.052 2.036 15 0.989 11.427 0.004 3.577
6 0.907 3.750 0.039 2.289 16 0.991 12.361 0.003 3.642
7 0.929 4.515 0.030 2.515 17 0.993 13.304 0.002 3.698
8 0.945 5.307 0.023 2.716 18 0.994 14.255 0.002 3.747
9 0.957 6.124 0.018 2.894 40 0.996 15.214 0.002 3.996
10 0.966 6.963 0.014 3.051 60 0.996 16.179 0.001 4.000

Table 8.4 Pf , LN1 , and LB2 on various base-stock levels (λo = 20, λs = 7, μ1 = 10, μ2 = 11).

S Pf LN1 LB2 LB1 S Pf LN1 LB2 LB1

1 0.100 0.100 2.100 3.000 11 0.150 0.238 1.983 12.745
2 0.132 0.167 2.025 3.858 12 0.150 0.238 1.983 13.745
3 0.143 0.204 1.998 4.794 13 0.150 0.238 1.983 14.745
4 0.147 0.223 1.988 5.765 14 0.150 0.238 1.983 15.745
5 0.149 0.231 1.985 6.754 15 0.150 0.238 1.983 16.745
6 0.149 0.235 1.984 7.749 16 0.150 0.238 1.983 17.745
7 0.149 0.237 1.983 8.746 17 0.150 0.238 1.983 18.745
8 0.150 0.237 1.983 9.746 18 0.150 0.238 1.983 19.745
9 0.150 0.238 1.983 10.745 19 0.150 0.238 1.983 20.745
10 0.150 0.238 1.983 11.745 20 0.150 0.238 1.983 21.745

Example 8.4 (λs +λo ≥ μ1). Let λo = 20, λs = 7, μ1 = 10, and μ2 = 11. The situa-
tions with various base-stock levels S are in Table 8.4. Pf , LN1 , and LB2 all converge
to the same constants as estimated in Proposition 8.2.

After verifying our estimations on the fill rate and in-time rate, in the next ex-
ample we implement our results in finding the feasible base-stock levels where both
requirements on the fill rate and in-time rate can be satisfied. In this example, we
consider the case when λs +λo < μ1.

Example 8.5. Consider a system with λo = 9, λs = 4, μ1 = 16, and μ2 = 15. Suppose
that the fill rate is required to be at least 0.9 and the in-time rate (with the required
lead time 0.5) at least 0.95. We first try to find the base-stock levels where these
qualities of services can be satisfied. The results on various base-stock levels are
shown in Table 8.5. We can see that these qualities of services are satisfied if S is
greater than or equal to 6.

Now, we apply some cost structure by defining the following costs. Let C1 denote
the penalty cost for each unsatisfied ordinary demand; Let C2 denote the penalty cost
for each unsatisfied specific demand and u be the maximal allowable lead time. Let
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Table 8.5 Fill rates and in-time rates on various S (λo = 9, λs = 4, μ1 = 16, and μ2 = 15).

S Pf In-Time Rate S Pf In-Time Rate

1 0.4800 0.9683 11 0.9724 0.9733
2 0.6731 0.9560 12 0.9779 0.9767
3 0.7757 0.9505 13 0.9822 0.9796
4 0.8381 0.9487 14 0.9857 0.9822
5 0.8795 0.9501 15 0.9885 0.9845
6 0.9083 0.9530 16 0.9907 0.9864
7 0.9291 0.9571 17 0.9925 0.9880
8 0.9446 0.9613 18 0.9939 0.9894
9 0.9564 0.9655 19 0.9950 0.9905
10 0.9654 0.9696 20 0.9960 0.9915

Table 8.6 TCs on various base-stock levels (λo = 9, λs = 4, μ1 = 16, μ2 = 15, C1 = $5, C2 = $15,
and C3 = $1).

S TC S TC

1 25.782 11 10.539
2 18.394 12 10.947
3 14.723 13 11.455
4 12.672 14 12.036
5 11.415 15 12.680
6 10.662 16 13.385
7 10.225 17 14.138
8* 10.049 18 14.929
9 10.067 19 15.759
10 10.236 20 16.611

C3 denote the inventory cost rate per each finished standard product in stock. Then,
the total cost rate, TC, is expressed as

TC =
(
1−Pf

)
λoC1 +(1−FR2(u))λsC2 +LC3. (8.20)

Following Example 8.5, we are interested in finding an optimal base-stock level
minimizing the total cost subject to the requirements on the fill rate and in-time rate.

Example 8.6. We consider the same case of λo = 9, λs = 4, μ1 = 16, and μ2 = 15
with C1 = $5, C2 = $15, and C3 = $1. Suppose the qualities of service are that the fill
rate must be at least 0.9 and the in-time rate (with the required lead time 0.5) must
be at least 0.95. The TCs on various base-stock levels S are shown in Table 8.6 and
the corresponding figure is Fig. 8.3. From Example 8.5, we know that the feasible
base-stock levels are those greater than or equal to 6. Among these feasible levels,
we then obtain the optimal base-stock level at S = 8 with minimum total cost rate
10.049.
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Fig. 8.3 TCs on various base-stock levels (λo = 9, λs = 4, μ1 = 16, μ2 = 15, C1 = $5, C2 = $15,
and C3 = $1).

8.4 Conclusions

In this chapter, we consider a two-station MTO/MTS hybrid production system deal-
ing with ordinary and specific demands. We are interested in determining the fill
rate of ordinary demands and response times of specific demands. By assuming the
Markovian model, for station 1, we give the closed-form for the fill rate and some
limiting results as the base-stock level increases, however, because of the intractabil-
ity in analyzing station 2, we approximate station 2 as a GI/M/1 queue. The corre-
sponding closed-form for the approximated in-time rate is obtained. These results
of the fill rate and in-time rate can assist management in determining the optimal
base-stock level efficiently. In future study, we may consider a multistation system
for both the process producing the standard products and the process performing the
additional work for the custom work.
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Chapter 9
Analysis of an M/M/c/N Queueing System
with Balking, Reneging, and Synchronous
Vacations

Dequan Yue and Wuyi Yue

Abstract In this chapter, we present an analysis for an M/M/c/N queueing sys-
tem with simultaneous balking, reneging, and synchronous vacations of servers. By
using the blocked matrix method, we obtain the steady-state probability vector pre-
sented by the inverses of two matrices. The computing of the inverses of the two
matrices is discussed. Then, we calculate the steady-state probabilities by using the
elements of the inverses of the two matrices. We also derive the conditional station-
ary distribution of the queue length and waiting time.

9.1 Introduction

Many practical queueing systems, especially those with balking and reneging, have
been widely applied to many real-life problems such as situations involving impa-
tient telephone switchboard customers, hospital emergency rooms’ handling of crit-
ical patients, and perishable goods storage inventory systems. Balking and reneging
are not only common phenomena in queues arising in daily activities, but also in
telecommunication networks and in various machine repair models.

Ke [1] gave an example of the occurrence of balking in the operational model of
WWW servers. An interesting example of the occurrence of balking and reneging
in air defense systems was given in Ancker and Gafarian [2]. For other examples of
articles that address queueing systems which use balking and reneging, interested
readers may refer to [1]– [3], and the references therein.
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Haghighi, Medhi, and Mohanty [4] derived the steady-state probabilities for
multiserver M/M/c queues with balking and reneging. Abou-El-Ata and Hariri [5]
analyzed multiserver M/M/c/N queues where balking and reneging were applied
and derived the steady-state probabilities. Wang and Chang [6] extended this work
to study an M/M/c/N queue with balking, reneging, and server breakdowns. They
derived the steady-state probabilities in matrix form and developed a cost model to
determine the optimal number of servers.

In many real-world queueing systems, servers may become unavailable for a
random period of time when there are no customers waiting in line at a service com-
pletion instant. This random period of server absence, often called a server vacation,
can represent the time when the server is performing some secondary task. Single-
server queueing models with vacations have been studied by many researchers and
have been found to be applicable in analyzing numerous real-world queueing situ-
ations, such as flexible manufacturing systems, service systems, and telecommuni-
cation systems. Several excellent surveys on these vacation models have been done
by Doshi [7], [8] and Takagi [9].

Multiple-server vacation models are more flexible and applicable in practice than
their single-server counterparts. However, there are only a few studies on multiple-
server vacation models in the vacation model literature due to the complexity of
the systems. The M/M/c queue with exponentially distributed vacations was first
studied by Levy and Yechiali [10]. In the system of [10], all the servers take a
vacation together when the system is completely empty. Because all these servers
take vacations simultaneously, these vacations are called “synchronous vacations”.

Tian, Li, and Cao [11] modeled the M/M/c vacation systems of [10] as a
quasi birth-and-death (QBD) process, and presented a more detailed analysis. They
proved several conditional stochastic decomposition results for the queue length and
the customer waiting time. Recently, Zhang and Tian [12] extended the model pre-
sented in [11] by studying an M/M/c queueing system with synchronous vacations
of partial servers. In the system of [12], some servers take vacations when they
become idle and other servers are always available for serving arriving customers.
They call this type of model the “partial server vacation model”.

It may be remarked here that all the studies on multiple-server vacation models
mentioned above assume availability of infinite buffer space in front of the servers.
However, finite buffer queues are more common in certain practical applications.
Yue, Yue, and Sun [13] considered the balking and reneging phenomena in a finite
buffer M/M/c/N queueing system with the same vacation policy as in [12]. They
obtained the steady-state probability vector presented by the inverses of three matri-
ces. However, they did not obtain the explicit expressions for the inverses of these
three matrices.

In this chapter, we consider a special case of the partial-server vacation model
in [13]. We study a finite buffer M/M/c/N queueing system with balking, reneging,
and the same synchronous vacation policy as in [11]. The Markov chain underly-
ing the queueing system in this chapter is a level-dependent quasi birth-and-death
(LDQBD) process. The matrix-geometric solution method applied in [11] and [12]
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cannot be used to obtain the stationary probabilities of the system in this chapter.
The prevailing method applied to obtain the stationary probabilities of a LDQBD
process is to develop some approximations to diminish the level dependence at
higher levels. However, in this chapter, we present a different approach to obtain
the stationary probabilities of the system.

The rest of this chapter is organized as follows. In Sect. 9.2, we give a description
of the queueing model. In Sect. 9.3, we derive the steady-state equations and obtain
the steady-state probability vector presented by the inverses of two matrices with the
blocked matrix method. We also discuss the computing of the inverses of the two
matrices. Then, we calculate the steady-state probabilities by using the elements of
the inverses of the two matrices. In Sect. 9.4, we derive the conditional stationary
distribution of the queue length and waiting time. Conclusions are given in Sect. 9.5.

9.2 System Model

In this chapter, we consider a finite buffer M/M/c/N queueing system with balking,
reneging, and synchronous vacations in all servers. The system capacity is finite N.
The assumptions of the system model are as follows:

(1) Customers arrive according to a Poisson process with arrival rate λ . There are
c servers in the system. The service time for each server is assumed to be dis-
tributed according to an exponential distribution with service rate μ .

(2) If some servers are busy, and some servers are idle, then a customer who on
arrival joins the system will be serviced immediately. If all servers are either
busy or taking a vacation, then a customer who on arrival finds n customers in
the system, either decides to enter the queue with probability bn or balks with
probability 1−bn, 0 ≤ bn+1 ≤ bn < 1, 0 ≤ n ≤ N −1, bN = 0.

(3) All servers take synchronous vacations when the system is completely empty at
a service completion instant. At a vacation completion instant, if the system is
still empty, all the servers take another vacation together; otherwise, they return
to serve the queue. The vacation time is assumed to be exponentially distributed
with mean 1/η .

(4) After joining the queue, in the case where all the servers are occupied each
customer will wait a certain length of time Tr for service to begin before he
gets impatient and leaves the queue without receiving service. This time Tr is
assumed to be distributed according to an exponential distribution with mean
1/α .

(5) The service order is assumed to be on a First-Come First-Served (FCFS)
basis and the interarrival times, service times, and vacations are mutually
independent.
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9.3 Steady-State Probability

In this section, we first develop steady-state probability equations by using the
Markov process. Then, we derive the steady-state probabilities by using the blocked
matrix method.

9.3.1 Steady-State Equations

Let L(t) be the number of customers in the system at time t and let

J(t) =
{

0, servers are on vacation at time t
1, servers are not on vacation at time t.

Then, {L(t),J(t)} is a Markov process with state space:

Ω = {(i,0) : i = 0,1, . . . ,N}∪{(i,1) : i = 1,2, . . . ,N}.

The steady-state probabilities of the system are defined as follows:

P0(n) = lim
t→∞

P{L(t) = n,J(t) = 0}, n = 0,1, . . . ,N,

P1(n) = lim
t→∞

P{L(t) = n,J(t) = 1}, n = 1,2, . . . ,N.

By applying the Markov process theory, we can obtain the following set of steady-
state probability equations:

s1P1(1)+ v1P0(1) = u0P0(0),

un−1P0(n−1)+ vn+1P0(n+1) = wnP0(n), n = 1,2, . . . ,N −1,

uN−1P0(N −1) = wNP0(N),

ηP0(1)+ s2P1(2) = (s1 + t1)P1(1),

ηP0(n)+ tn−1P1(n−1)+ sn+1P1(n+1) = (sn + tn)P1(n), n = 2,3, . . . ,N −1,

ηP0(N)+ tN−1P1(N −1) = sNP1(N),

N

∑
n=0

P0(n)+
N

∑
n=1

P1(n) = 1,
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where

ui = λbi, i = 0,1, . . . ,N −1,

vi = iα, i = 1,2, . . . ,N,

wi =
{

vi +η+ui, i = 1,2, . . . ,N −1
η+ vN , i = N,

si =
{

iμ , i = 1,2, . . . ,c
cμ+(i− c)α, i = c+1,c+2, . . . ,N,

ti =
{
λ , i = 1,2, . . . ,c−1
λbi, i = c,c+1, . . . ,N −1.

9.3.2 Matrix Solution

In the following, we derive the steady-state probabilities by using the blocked matrix
method. Let

P = (P0(0),P0(1), . . . ,P0(N),P1(1),P1(2), . . . ,P1(N))

be the steady-state probability vector. Then, the steady-state probability equations
above can be rewritten in matrix form as follows:

{
PQ = 0
Pe = 1,

(9.1)

where e = (1,1, . . . ,1)T is a (2N +1)×1 vector, and the transition rate matrix Q of
the Markov process has the blocked matrix structure:

Q =

⎛

⎝
Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎞

⎠ .

Each matrix Qlk (l,k = 1,2,3) is given as follows:

Q11 = (−u0,v1,0, . . . ,0)T , Q31 = (s1,0, . . . ,0)T ,

Q22 = (0,0, . . . ,vN ,−wN), Q23 = (0,0, . . . ,0,η),
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Q12 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u0 0 0 · · · 0 0 0
−w1 u1 0 · · · 0 0 0
v2 −w2 u2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · −wN−2 uN−2 0
0 0 0 · · · vN−1 −wN−1 uN−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q13 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 · · · 0 0
η 0 0 · · · 0 0
0 η 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · η 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Q33 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(s1 + t1) t1 0 · · · 0 0 0
s2 −(s2 + t2) t2 · · · 0 0 0
0 s3 −(s3 + t3) · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · sN−1 −(sN−1 + tN−1) tN−1
0 0 0 · · · 0 sN −sN

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where Q11 and Q31 are N × 1 vectors, Q12, Q13, and Q33 are N ×N matrices, Q22
and Q23 are 1×N vectors, Q21 = 0 is a constant, and Q32 = 0 is an N ×N matrix.

The four submatrices Q11, Q12, Q21, and Q22 give the transition rates during
the vacation period. For example, the submatrix Q12 gives the transition rates from
vacation state (0, i) to vacation state (0, j), i = 0,1, . . . ,N − 1, j = 1,2, . . . ,N. The
two submatrices Q13 and Q23 give the transition rates from a vacation state to a busy
state. For example, the submatrix Q13 gives the transition rates from vacation state
(0, i) to busy state (1, j), i = 0,1, . . . ,N−1, j = 1,2, . . . ,N. The two submatrices Q31
and Q32 give the transition rates from a busy state to a vacation state. The submatrix
Q33 gives the transition rates during the busy period.

In order to solve (9.1) by using the blocked matrix method, we consider comput-
ing the inverses of the matrices Q12 and Q33.

Let ci j be the (i j) element of the inverse matrix Q−1
12 , i, j = 1,2, . . . ,N. Let di j

be the (i j) element of the inverse matrix Q−1
33 , i, j = 1,2, . . . ,N. We then have the

following lemmas.

Lemma 9.1. The matrix Q12 is invertible. For j = 1,2, . . . ,N, the elements of the
inverse matrix Q−1

12 are given by
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ci j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, i = 1,2, . . . , j−1

1
u j−1

, i = j

ki j
1

u j−1
, i = j +1, j +2, . . . ,N,

(9.2)

where ki j is given by the following recursive relations

ki j =
wi−1

ui−1
ki−1 j −

vi−1

ui−1
ki−2 j, i = j +1, j +2, . . . ,N, (9.3)

where k j j = 1 and k j−1 j = 0.

Proof. See Appendix. 
�
Remark 1. For the special case where α = 0 (i.e., no reneging occurs in the system)
the closed-form expression for the Q−1

12 can be obtained from Lemma 9.1. Let α = 0
in Lemma 9.1; then we have the following recursive relation:

ki j =
wi−1

ui−1
ki−1 j, i = j +1, j +2, . . . ,N.

Hence, we get the closed-form expression for ki j as follows:

ki j =
wi−1wi−2 · · ·w j

ui−1ui−2 · · ·u j
, i = j +1, j +2, . . . ,N.

Lemma 9.2. The matrix Q33 is invertible. For j = 1,2, . . . ,N, the elements of the
inverse matrix Q−1

33 are given by

di j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
i

∑
k=1

tktk+1 . . .t j−1

sksk+1 . . .s j
, i = 1,2, . . . , j−1

−
j−1

∑
k=1

tktk+1 . . .t j−1

sksk+1 · · ·s j
− 1

s j
, i = j, j +1, . . . ,N.

(9.4)

The empty summation ∑0
k=1 is defined to be zero.

Proof. See Appendix. 
�
In the following, we derive the steady-state probabilities from (9.1). To accom-

modate the partitioned blocked structure of Q, we partition the steady-state proba-
bility vector into segments accordingly as follows:

P = (P0,P0(N),P1),

where

P0 = (P0(0),P0(1), . . . ,P0(N −1)),

P1 = (P1(1),P1(2), . . . ,P1(N)).
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Theorem 9.1. The segments of the steady-state probability vector are given by

P0 = −P0(N)Q22Q−1
12 , (9.5)

P1 = −P0(N)(Q23 −Q22Q−1
12 Q13)Q−1

33 , (9.6)

where

P0(N) =
{

1−Q22Q−1
12 eN − (Q23 −Q22Q−1

12 Q13)Q−1
33 eN

}−1
(9.7)

and eN = (1,1, . . . ,1)T is an N ×1 vector.

Proof. Based on the partitions of the vector P, (9.1) can be rewritten as

P0Q11 +P1Q31 = 0, (9.8)

P0Q12 +P0(N)Q22 = 0, (9.9)

P0Q13 +P0(N)Q23 +P1Q33 = 0, (9.10)

P0eN +P0(N)+P1eN = 1. (9.11)

From Lemma 9.1 and (9.9), we have

P0 = −P0(N)Q22Q−1
12 . (9.12)

Substituting (9.12) into (9.10), from Lemma 9.2, we have

P1 = −P0(N)(Q23 −Q22Q−1
12 Q13)Q−1

33 , (9.13)

where P0(N) can be obtained as the expression given in (9.7) by substituting (9.12)
and (9.13) into (9.11). This completes the proof of Theorem 9.1. 
�

Theorem 9.2. The steady-state probabilities are given by

P0( j) =
−β j+1

� , j = 0,1, . . . ,N −1, (9.14)

P0(N) = − 1
� , (9.15)

P1( j) = − η�

(

dN j −
N−1

∑
i=1

di jβi+1

)

, j = 1,2, . . . ,N, (9.16)

where

Δ = 1−
N

∑
j=1
β j −η

N

∑
j=1

(

dN j −
N−1

∑
i=1

di jβi+1

)

, (9.17)
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β j =

{
vNcN−1 j −wNcN j, j = 1,2, . . . ,N −1

−wNcNN , j = N,
(9.18)

ci j and di j are given by Lemma 9.1 and Lemma 9.2.

Proof. Define

Q22Q−1
12 = (β1,β2, . . . ,βN). (9.19)

Then, from Lemma 9.1, β j ( j = 1,2, . . . ,N) can be obtained as the expression given
in (9.18). Note that

Q22Q−1
12 Q13 = η(β2,β3, . . . ,βN ,0);

we have

Q23 −Q22Q−1
12 Q13 = −η(β2,β3, . . . ,βN ,−1). (9.20)

Then, from Theorem 9.1, (9.19) and (9.20), we can derive (9.14)–(9.17). This com-
pletes the proof of Theorem 9.2. 
�

9.3.3 Some Special Cases

In the following, we present some special cases of our model. Some of them are
existing models in the literature.

(1) If η = ∞ (i.e., the servers do not take vacations) and

bn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 0 ≤ n ≤ c

β
(

1− 1
N

(n− c+1)
)

(n− c+2)m , c ≤ n ≤ N,

then our model becomes the model studied by Abou-El-Ata and Hariri [5]:
M/M/c/N queue with balking and reneging.

(2) If α = 0 (i.e., customers do not renege), then our model becomes the model
M/M/c/N queue with balking and synchronous vacation of all servers.

(3) If N =∞, α = 0, and bi = 1, i = 0,1, . . . (i.e., customers do not balk or renege),
then our model becomes the model studied by Tian et al. [11]: M/M/c/∞ queue
with synchronous vacation of all servers.

(4) If c = 1, then our model becomes the model studied by Yue et al. [14]: M/M/1/N
queue with balking, reneging, and multiple vacations.
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9.4 Conditional Distributions of Queue Length
and Waiting Time

In an M/M/c multiple-server vacation system, Tian et al. [11] investigated the con-
ditional stationary distribution of the queue length and waiting time under the con-
dition when all servers are busy. They presented in such a system a conditional
stochastic decomposition property for steady-state queue length and waiting time.
In this section, we derive the conditional stationary distribution of the queue length
and waiting time for the system studied in this chapter.

Let P(Qc = j), j = 0,1, . . . , N − c, represent the conditional stationary distribu-
tion of the queue length given that all servers are busy. It is given in the following
theorem.

Theorem 9.3. The conditional stationary distribution of the queue length is given
by

P(Qc = j) =

dN j+c −
N−1

∑
i=1

di j+cβi+1

N

∑
j=c

(

dN j −
N−1

∑
i=1

di jβi+1

) , j = 0,1, . . . ,N − c, (9.21)

where di j and β j are given in Lemma 9.2 and (9.18), respectively.

Proof. From Theorem 9.2, the probability that all servers are busy is

N

∑
j=c

P1( j) = −η
Δ

N

∑
j=c

(

dN j −
N−1

∑
i=1

di jβi+1

)

. (9.22)

Note that

P(Qc = j) =
P1( j + c)
∑N

j=c P1( j)
, j = 0,1, . . . ,N − c (9.23)

and substituting the probability given in (9.22) and the probability P1( j) given by
Theorem 9.2 into (9.23), we can get the conditional distribution of the queue length
given by (9.21). 
�

In the following, we consider the conditional distribution of the waiting time
under the condition that all servers are busy when a customer on arrival joins the
queue.

Let B j represent the event that there are j customers in front of the new customer
who on arrival joins the queue, and all the servers are busy. Under the assumption B j,
the c customers are in service and the other j− c customers are waiting for service.
Let Tj be the time remaining until the number of customers j diminishes by j− 1
because of the completion of a customer’s service or a customer’s reneging, j = c,



9 Analysis of an M/M/c/N Queueing System 175

c+1, . . . , N −1. Because both the service time and the waiting time of a customer
before he reneges are exponentially distributed, Tj is exponentially distributed with
the distribution function given by

Hj(t) = 1− e−θ jt , t ≥ 0, j = c,c+1, . . . ,N −1 (9.24)

and the Laplace-Stieltjes transformation (LST) given by

H∗
j (s) =

θ j

θ j + s
, s ≥ 0, j = c,c+1, . . . ,N −1, (9.25)

where θ j = cμ+( j− c)α , j = c, c+1, . . . , N −1. It is easy to see that the random
variables Tc, Tc+1, . . . , TN−1 are mutually independent because of the “no memory”
property of the exponential distribution.

Let γ j = P(Tr > Tj +Tj−1 + · · ·+Tc) andΦ j(t) = P(Tj +Tj−1 + · · ·+Tc ≤ t), j =
c, c+1, . . . , N−1. Then, γ j is the probability that the new customer on arrival joins
the queue and waits in the queue until he acquires service under the condition B j.
We then have the following lemma.

Lemma 9.3.

γ j =
cμ

cμ+( j +1− c)α
, j = c,c+1, . . . ,N −1 (9.26)

and

Φ j(t) = 1−
j

∑
k=c
δ jke−δ jkt , j = c,c+1, . . . ,N −1, t ≥ 0, (9.27)

where

δ jk =
j

∏
i=c,i 	=k

θi

θi −θk
, k = c,c+1, . . . , j, j = c,c+1, . . . ,N −1. (9.28)

Proof.

γ j = P(Tr > Tj +Tj−1 + · · ·+Tc)

= P(Tr > Tj)P(Tr −Tj > Tj−1 +Tj−2+ · · ·+Tc|Tr > Tj)

= P(Tr > Tj)P(T̃r > Tj−1+Tj−2 + · · ·+Tc), j = c,c+1, . . . ,N −1, (9.29)

where T̃r = [Tr −Tj|Tr > Tj] has the same exponential distribution as Tr because of
the “no memory” property of the exponential distribution. It is easy to see that

P(Tr > Tj) =
θ j

θ j +α
. (9.30)

Hence, by the recursive relation of (9.29), we get the first result of Lemma 9.3.
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Note that the random variables Tc, Tc+1, . . . ,TN−1 are mutually independent.
Φ j(t) has the LST as follows:

Φ∗
j (s) =

j

∏
k=c

H∗
k (s). (9.31)

Substituting (9.25) into (9.31), we get

Φ∗
j (s) =

j

∏
k=c

θk

θk + s

=
j

∑
k=c
δ jk

θk

θk + s
, j = c,c+1, . . . ,N −1. (9.32)

Taking the reverse of the LST for the two sides of (9.32), we get the second result
of Lemma 9.3. 
�

Let Wc(t) represent the distribution of the conditional waiting time given that
all the servers are busy when a customer on arrival joins the queue. Let q j be the
stationary probability that there are j customers in the system under the condition
that all the servers are busy when a customer on arrival joins the queue. Note that
b jP1( j) represents the probability that there are j customers in the system when a
customer on arrival joins the queue. It is easy to see that

q j =
b jP1( j)

∑N−1
j=c b jP1( j)

, j = c,c+1, . . . ,N −1, (9.33)

where P1( j) is given by Theorem 9.2.
Next, we have the following theorem.

Theorem 9.4. The distribution of the conditional waiting time is given by

Wc(t) = 1−
N−1

∑
j=c

q jγ j

j

∑
k=c
δ jke−δ jkt −

N−1

∑
j=c

q j(1− γ j)e−αt , (9.34)

where γ j , δ jk , and q j are given by (9.26), (9.28), and (9.33), respectively.

Proof. The conditional waiting time has the following distribution:

Wc(t) =
N−1

∑
j=c

q jP(W ≤ t|B j), (9.35)

where W represents the waiting time and B j represents the event that there are j
customers in front of the new customer who on arrival joins the queue, and all the
servers are busy. Let F1 and F2 be the events that the customer either reneges or
does not renege when the customer on arrival joins the queue, respectively. Then,
we have
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P(W ≤ t|B j) = P(F1|B j)P(W ≤ t|B j,F1)+P(F2|B j)P(W ≤ t|B j,F2)

= (1− γ j)(1− e−αt)+ γ jΦ j(t). (9.36)

Thus, by Lemma 9.3, we get the result of Theorem 9.4. 
�

Remark 2. Based on Theorem 9.2, we can obtain some other performance measures
such as the expected number of customers in the system, the expected number of
servers that are busy, the average rate of customer loss due to impatience, and so on.
The stationary distribution of waiting time can also be obtained from conditioning
on every state (i, j) ∈ Ω . However, these performance measures and the stationary
distribution have very complex expressions. Hence, we have omitted the details from
this discussion.

9.5 Conclusions

In this chapter, we studied a finite buffer M/M/c/N queueing system with balking,
reneging, and the synchronous vacations of all servers. By using the blocked-matrix
method, we obtained the steady-state probabilities by using the elements of the in-
verses of two matrices and derived the conditional stationary distribution of the
queue length and waiting time.

Tian et al. [11] and Zhang and Tian [12] proved several conditional stochastic
decomposition results for the queue length and customer waiting time. These re-
sults can be used to compare the M/M/c vacation system with its classical M/M/c
queueing system. Due to the complexity of the formulas, at present, we have not
investigated the conditional stochastic decomposition for the queue length and cus-
tomer waiting time for the model in this chapter.
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Appendix

Proof of Lemma 9.1. Let X j = (c1 j,c2 j, . . . ,cN j)T , j = 1,2, . . . ,N, be the jth col-
umn vector of the inverse matrix Q−1

12 , and let ε j = (0, . . . ,1, . . . ,0)T be the jth unit
column vector; then we have

Q12X j = ε j, j = 1,2, . . . ,N. (9.37)
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For j = 1,2, . . . ,N, (9.37) can be rewritten as the following set of equations,

vi−1ci−2 j −wi−1ci−1 j +ui−1ci j = 0, i 	= j, i = 1,2, . . . ,N, (9.38)

vi−1ci−2 j −wi−1ci−1 j +ui−1ci j = 1, i = j, (9.39)

where c0 j and c−1 j are defined to be zero. Repeating the use of (9.38) gives

ci j = 0, i = 1,2, . . . , j−1. (9.40)

Substituting (9.40) into (9.39) yields

c j j =
1

u j−1
. (9.41)

From (9.38), we have

ci j =
wi−1

ui−1
ci−1 j −

vi−1

ui−1
ci−2 j, i = j +1, j +2, . . . ,N. (9.42)

In (9.42), we let

ci j = ki j
1

u j−1
, i = j +1, j +2, . . . ,N, (9.43)

and substitute (9.43) into (9.42), so we get the recursive relations given by (9.3) for
ki j. This completes the proof of Lemma 9.1. 
�
Proof of Lemma 9.2. Let Yj = (d1 j,d2 j, . . . ,dN j) be the jth column vector of the
inverse matrix Q−1

33 , then we have

Q33Y j = ε j, j = 1,2, . . . ,N. (9.44)

For j = 1,2, . . . ,N, (9.44) can be rewritten as the following set of equations:

−s1d1 j − t1(d1 j −d2 j) = 0, (9.45)

si(di−1 j −di j)− ti(di j −di+1 j) = 0, i = 1,2, . . . ,N −1, i 	= j, (9.46)

s j(d j−1 j −d j j)− t j(d j j −d j+1 j) = 1, (9.47)

sN(dN−1 j −dN j) = 0. (9.48)

Equation (9.46) can be rewritten as the following recursive relation:

di−1 j −di j =
ti
si

(di j −di+1 j), i = 1,2, . . . ,N −1, i 	= j. (9.49)

From (9.48) and (9.49), we get

di j = d j j, i = j +1, j +2, . . . ,N. (9.50)
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In (9.50), we let i = j +1 and then substitute it into (9.47), so we get

d j−1 j −d j j =
1
s j

. (9.51)

Using (9.51) and repeating the use of the recursive relation (9.49) gives

di−1 j −di j =
titi+1 · · · t j−1

sisi+1 · · ·s j
, i = 2,3, . . . , j−1. (9.52)

In (9.52), we let i = 2 and then substitute it into (9.45), so we get

d1 j = − t1t2 · · · t j−1

s1s2 · · ·s j
. (9.53)

Note that

di j = d1 j −
i

∑
k=2

(dk−1 j −dk j), i = 2,3, . . . , j−1, (9.54)

and then substituting (9.52) and (9.53) into (9.54), we get

di j = −
i

∑
k=1

tktk+1 · · · t j−1

sksk+1 · · ·s j
, i = 2,3, . . . , j−1. (9.55)

In (9.55), we let i = j−1 and then substitute it into (9.51) and use (9.50), so we get
the results of Lemma 9.2. 
�
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Chapter 10
Analysis of Mixed Loss-Delay M/M/m/K
Queueing Systems with State-Dependent
Arrival Rates

Yoshinori Ozaki and Hideaki Takagi

Abstract An M/M/m queue with mixed loss and delay calls was analyzed by J. W.
Cohen half a century ago (1956) where the two types of calls had identical constant
arrival and service rates. It is straightforward to extend his analysis to an M/M/m/K
queue. In this chapter, we further generalize the model such that the call arrival
rates can depend on the number of calls present in the system at the arrival time.
This model includes the balking and the finite population size models as special
cases. We present a method of calculating the blocking probability for loss calls as
well as the distribution of the waiting time for accepted delay calls. We solve a set of
linear simultaneous equations for the state probabilities by numerical computation.
The effects of loss calls on the mean waiting time of delayed calls are discussed
based on the numerical results.

10.1 Introduction

In the traditional basic modeling of teletraffic engineering, an M/M/m loss sys-
tem is used as a model of circuit-switched traffic leading to the Erlang-B formula
for the blocking probability [1, p. 106]. An M/M/m delay system with an infinite
waiting room is used as a model of packet-switched traffic leading to the Erlang-
C formula for the waiting probability [1, p. 103]. Such models are actually used
in the methodology for the spectrum requirement calculation for the International
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Mobile Telecommunication-2000 (IMT-2000) in third-generation wireless com-
munication systems [2]. Cohen [3] analyzed an M/M/m queueing system with
mixed loss and delay calls with different arrival rates and identical service rates
(see [9], pp. 304–305).

The mixed loss–delay system could be used as a model for the performance eval-
uation of a communication channel shared by circuit-switched traffic and packet-
switched traffic. Cohen’s analysis was recently extended to an M/M/m/K queueing
system with a finite waiting room by Takagi [5], who derives explicit formulas for
the blocking probability of loss calls, the blocking probability of delay calls, and the
waiting time distribution of delay calls.

In this chapter, we consider a mixed loss–delay M/M/m/K queueing system in
which the arrival rates of loss and delay calls can depend on the number of those
calls in the system at their arrival times and the constant service rates can be dif-
ferent between the loss and delay calls. More specifically, when there are j loss
calls and k delay calls in the system, the two types of calls arrive in an independent
Poisson process with rates λ1( j,k) and λ2( j,k), respectively. Their service times are
independent of each other and exponentially distributed with constant rates μ1 and
μ2, respectively. The number of servers is denoted by m. The loss calls are lost if all
servers are busy when they arrive. The delay calls wait in the waiting room unless
the total number of calls present in the system exceeds K when they arrive. Namely,
K is the capacity of the system including m calls in service (m≤K). The assumption
of state-dependent arrival rates allows us to handle a wide range of customer arrival
processes. An example is the balking such that the arrival rate decreases as the num-
ber of customers present in the system increases. Another example is a queue with
a finite population of customers. Figure 10.1 shows a schema of our system.

The rest of the chapter is organized as follows. In Sect. 10.2, we present a set
of linear simultaneous equations for the equilibrium state probabilities. These equa-
tions are assumed to be solved numerically. In Sect. 10.3, we calculate the blocking

Capacity of system K

Loss calls

m servers

Delay calls

Finite waiting room

λ1( j,k)

λ2( j,k)

μ1

μ2

Blocked loss calls

Blocked delay calls

Fig. 10.1 Mixed loss–delay M/M/m/K queueing system.
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probabilities for both loss and delay calls, the waiting and nonwaiting probabilities,
as well as the waiting time distribution for accepted delay calls. Numerical exam-
ples are shown in Sect. 10.4. We conclude in Sect. 10.5 with a summary of present
work and a plan for future study.

10.2 Equilibrium State Probability Equations

Let us denote the equilibrium state probability by

Pj,k := P{The number of the calls of loss system in the system = j,

The number of the calls of delay system in the system = k},
0 ≤ j ≤ m,0 ≤ j + k ≤ K. (10.1)

The number of states is

(K +1)(m+1)− m(m+1)
2

= (m+1)
(

K +1− m
2

)
.

Figure 10.2 shows the state transition rate diagram for the mixed loss–delay
M/M/m/K system we analyze now.

Considering the number of loss and delay calls present in the system simultane-
ously, we can write the balance equations for the equilibrium state probabilities as
follows:

First, we consider the empty state (0,0). The system goes out of this state when
a call arrives, and comes into this state when the service finishes at state (1,0) and
(0,1). Thus we have

k (delay calls)

j (loss calls)

0,0 0,1 0,m 0,K

1,0

j,0

m,0

j,m− j

m,K −m

j,K − j

j + k = m
j + k = K

μ1

λ2(0,0)

λ1(0,0)

λ1(1,0) μ1

λ1( j−1,0) μ1

λ1(m−1,0) μ1

μ2

μ1

λ2(0,m−1) λ2(0,K −1)

μ2 μ2 μ2 μ2

μ2

λ2( j,K − j−1)

μ2 μ2

λ2(0,1) λ2(0,m)

λ2(m,K −m−1)λ2(m,0)

λ2( j,m− j)

μ2

λ2( j,0)

μ2

λ1(0,1) μ1

μ1

μ1

μ1

λ1( j,0)

Fig. 10.2 State transition rate diagram for the mixed loss–delay M/M/m/K system.
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[λ1(0,0)+λ2(0,0)]P0,0 = μ1P1,0 +μ2P0,1. (10.2)

Second, we consider the state ( j,k) such that 0 ≤ j ≤ m− 1, 1 ≤ j + k ≤ m− 1 in
which there are calls being served and some free servers, and find

[λ1(0,k)+λ2(0,k)+ kμ2]P0,k = λ2(0,k−1)P0,k−1 +μ1P1,k +(k +1)μ2Pj,1,

1 ≤ k ≤ m−1, (10.3)

[λ1( j,k)+λ2( j,k)+ jμ1 + kμ2]Pj,k = λ1( j−1,k)Pj−1,k +λ2( j,k−1)Pj,k−1

+ ( j +1)μ1Pj+1,k +(k +1)μ2Pj,k+1,

1 ≤ j ≤ m−1, 1 ≤ k ≤ m−1, 2 ≤ j + k ≤ m−1, (10.4)

[λ1( j,0)+λ2( j,0)+ jμ1]Pj,0 = λ1( j−1,0)Pj−1,0 +( j +1)μ1Pj+1,0 +μ2Pj,1,

1 ≤ j ≤ m−1. (10.5)

Third, we consider the state ( j,k) such that 0 ≤ j ≤m, j+k = m in which all servers
are busy and all waiting positions are available for delay calls, and find

[λ2(0,m)+mμ2]P0,m = λ2(0,m−1)P0,m−1 +μ1P1,m +mμ2P0,m+1, (10.6)

[λ2( j,k)+ jμ1 + kμ2]Pj,k = λ1( j−1,k)Pj−1,k +λ2( j,k−1)Pj,k−1

+ ( j +1)μ1Pj+1,k +(m− j)μ2Pj,k+1,

1 ≤ j ≤ m−1, 1 ≤ k ≤ m−1, j + k = m, (10.7)

[λ2(m,0)+mμ1]Pm,0 = λ1(m−1,0)Pm−1,0. (10.8)

Fourth, we consider the state ( j,k) such that 0 ≤ j ≤ m, m + 1 ≤ j + k ≤ K − 1 in
which all servers are busy and there is at least one waiting position available for a
delay call, and find

[λ2(0,k)+mμ2]P0,k = λ2(0,k−1)P0,k−1 +μ1P1,k +mμ2P0,k+1,

m+1 ≤ k ≤ K −1, (10.9)

[λ2( j,k)+ jμ1 +(m− j)μ2]Pj,k = λ2( j,k−1)Pj,k−1

+ ( j +1)μ1Pj+1,k +(m− j)μ2Pj,k+1,

1 ≤ j ≤ m−1, m+1 ≤ j + k ≤ K −1, (10.10)

[λ2(m,k)+mμ1]Pm,k = λ2(m,k−1)Pm,k−1, 1 ≤ k ≤ K −m−1. (10.11)
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Finally, we consider the state ( j,k) such that 0 ≤ j ≤ m, j + k = K in which all
servers are busy and all waiting positions are occupied, and find

mμ2P0,K = λ2(0,K −1)P0,K−1, (10.12)

[ jμ1 +(m− j)μ2]Pj,k = λ2( j,k−1)Pj,k−1,

1 ≤ j ≤ m−1, j + k = K, (10.13)

mμ1Pm,K−m = λ2(m,K −m−1)Pm,K−m−1. (10.14)

The total number of equations is given by

1+(m−1)+
(m−1)(m−2)

2
+(m−1)+1+(m−1)+1+(K−m−1)

+ (K −m−1)(m−1)+(K −m−1)+1+(m−1)+1 = (m+1)
(

K +1− m
2

)
,

which equals the number of all states. One of the equations is redundant. The nor-
malization condition is given by

m

∑
j=0

K− j

∑
k=0

Pj,k = 1. (10.15)

Hence we have a set of linear simultaneous equations with respect to the unknowns
{Pj,k; 0 ≤ j ≤ m, 0 ≤ j + k ≤ K}. It is assumed that they are solved numerically.

10.3 Analysis of Blocking Probability and Waiting Time

We are now in a position to calculate the blocking probability of loss calls, the block-
ing probability of delay calls, the waiting and nonwaiting probabilities of accepted
delay calls, and the waiting time distribution of accepted delay calls.

10.3.1 Blocking Probability of Loss Calls

Loss calls are blocked if all servers are busy upon their arrival. If the population of
loss calls is infinite, the blocked loss calls are simply lost for good. If the population
of loss calls is finite, the blocked loss calls are assumed to return to their source
without being served.

Let us consider a long time τ . The mean number of loss calls that arrive in τ is
given by product of the arrival rate λ1( j,k) of loss calls and the time interval Pj,kτ
in which the system is in state ( j,k) during τ summed over all possible states as
follows:
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m

∑
j=0

K− j

∑
k=0
λ1( j,k)Pj,kτ. (10.16)

The mean number of loss calls blocked during τ is given by the product of the arrival
rate λ1( j,k) of loss calls and the time interval Pj,kτ summed over all states in which
all servers are busy:

m

∑
j=0

K− j

∑
k=m− j

λ1( j,k)Pj,kτ. (10.17)

Thus the blocking probability PB of loss calls is given by the ratio of the above two
equations:

PB =

m

∑
j=0

K− j

∑
k=m− j

λ1( j,k)Pj,k

m

∑
j=0

K− j

∑
k=0
λ1( j,k)Pj,k

. (10.18)

10.3.2 Blocking Probability of Delay Calls

Delay calls are blocked if all servers are busy and all waiting positions are occupied
upon their arrival. If the population of delay calls is infinite, the blocked delay calls
are simply lost. If the population of delay calls is finite, the blocked delay calls are
assumed to return to their source without being served. The mean number of arrivals
of delay calls during time τ is given by

m

∑
j=0

K− j

∑
k=0
λ2( j,k)Pj,kτ. (10.19)

The mean number of delay calls blocked during τ is given by the product of the
arrival rate λ2( j,k) of delay calls and the time interval Pj,K− jτ summed over all
states 0 ≤ j ≤ m in which all servers are busy and all waiting positions are occupied:

m

∑
j=0
λ2( j,K − j)Pj,K− jτ. (10.20)

Thus the blocking probability P′
B of delay calls is given by the ratio of the two:

P′
B =

m

∑
j=0
λ2( j,K − j)Pj,K− j

m

∑
j=0

K− j

∑
k=0
λ2( j,k)Pj,k

. (10.21)
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10.3.3 Waiting and Nonwaiting Probabilities of Accepted
Delay Calls

We now consider the delay calls that are accepted upon arrival. The mean number
of delay calls accepted during τ is given by the product of the arrival rate λ2( j,k) of
delay calls and the time interval Pj,kτ summed over all states 0 ≤ j ≤ m, 0 ≤ j+k ≤
K −1 in which there is at least one waiting position available:

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,kτ. (10.22)

Therefore the probability that there are j loss calls and k delay calls present in the
system immediately before the arrival of an arbitrary delay call that is to be accepted
is given by

P̂j,k =
λ2( j,k)Pj,k

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

, 0 ≤ j ≤ m, 0 ≤ j + k ≤ K −1. (10.23)

Let us denote by W the waiting time of an accepted delay call. The probability that
accepted delay calls do not wait is given by the probability that there is at least one
server available upon their arrival:

P{W = 0} =
m−1

∑
j=0

m− j−1

∑
k=0

P̂j,k =

m−1

∑
j=0

m− j−1

∑
k=0

λ2( j,k)Pj,k

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

. (10.24)

The probability that accepted delay calls wait is given by the probability that all the
servers are busy but that there is at least one waiting position available upon their
arrival:

P{W > 0} =
m

∑
j=0

K− j−1

∑
k=m− j

P̂j,k =

m

∑
j=0

K− j−1

∑
k=m− j

λ2( j,k)Pj,k

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

. (10.25)

10.3.4 Waiting Time Distribution of Accepted Delay Calls

Let us denote by R∗
j,k, j+k−m(s) the Laplace–Stieltjes transform (LST) of the distri-

bution function (DF) of the waiting time of a delay call that arrives when there are j
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loss calls and k delay calls in the system, where j +k ≥ m. This is the time until the
total number of calls in the system decreases to m−1, at which point the service to
that call is started. Then the LST of the DF for the waiting time W (>0) of accepted
delay calls that are to wait is given by

F∗
W (s |W > 0) =

m

∑
j=0

K− j−1

∑
k=m− j

λ2( j,k)Pj,kR∗
j,k, j+k−m(s)

m

∑
j=0

K− j−1

∑
k=m− j

λ2( j,k)Pj,k

. (10.26)

The LST of the DF for the waiting time W (≥0) of all accepted delay calls is
given by

F∗
W (s) = P{W = 0}+F∗

W (s |W > 0)P{W > 0}

=

m

∑
j=0

[
m− j−1

∑
k=0

λ2( j,k)Pj,k +
K− j−1

∑
k=m− j

λ2( j,k)Pj,kR∗
j,k, j+k−m(s)

]

m

∑
j=0

K− j−1

∑
k=0

λ2( j,k)Pj,k

. (10.27)

We can obtain R∗
j,k, j+k−m(s) (m ≤ j + k ≤ K −1) as follows. Note that the third

subscript of R∗
j,k, j+k−m(s) denotes the number of calls present in the waiting room.

We start with

R∗
j,k,0(s) = r j,k(s)+ r̂ j,k(s) (10.28)

for j + k = m, where

r j,k(s) =
jμ1

jμ1 + kμ2
× jμ1 + kμ2

s+ jμ1 + kμ2
=

jμ1

s+ jμ1 + kμ2
(10.29)

is the LST of the DF for the transition time from state ( j,k) to state ( j−1,k), and

r̂ j,k(s) =
kμ2

jμ1 + kμ2
× jμ1 + kμ2

s+ jμ1 + kμ2
=

kμ2

s+ jμ1 + kμ2
(10.30)

is the LST of the DF for the transition time from state ( j,k) to state ( j,k− 1). For
j + k = m+ l, we have

R∗
j,k,l(s) = r j,k(s)R∗

j−1,k,l−1(s)+ r̂ j,k(s)R∗
j,k−1,l−1(s). (10.31)

Therefore, we can calculate R∗
j,k,l(s) recursively for l = 1,2, . . . ,K −m−1 by start-

ing with R∗
j,k,0(s) given in (10.28).
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10.4 Numerical Examples

Using the method of analysis given in Sect. 10.3, we present numerical examples
of the blocking probabilities for loss and delay calls and the mean waiting time for
accepted delay calls. The latter can be obtained from the LST of the DF for the
waiting time given in (10.27). We consider the cases of fixed arrival rates, balking
of delay calls, and the finite population size.

10.4.1 Equilibrium State Probabilities

Let us first confirm that our generalization in the above yields the same results as
the analysis in [5] for the M/M/m/K queue with constant arrival rates and identical
service rates. To do so numerically, we consider the mixed loss–delay M/M/3/5
queue with λ1 = 2, λ2 = 3, and μ1 = μ2 = 3. Table 10.1 shows the equilib-
rium state probabilities we have computed with the above method. We have con-
firmed that these values are identical with those calculated by using the formulas
in [5].

10.4.2 Blocking Probabilities of Loss and Delay Calls

We now consider the M/M/m/K queues with constant arrival rates in the case in
which the service rates are different for loss and delay calls. Figure 10.3 shows
the blocking probabilities of loss and delay calls in the M/M/4/7 queue with
μ1 = 2, μ2 = 1, λ1 = 0.005 for 0 ≤ λ2 ≤ 20. As the arrival rate of delay calls in-
creases, both blocking probabilities increase. The blocking probability of loss calls
increases faster than that of delay calls.

Table 10.1 Equilibrium state probabilties in the mixed loss–delay M/M/3/5 queue with λ1 = 2,
λ2 = 3, and μ1 = μ2 = 3.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

j = 0 0.535698 0.201639 0.038431 0.005252 0.000706 0.000088
j = 1 0.133172 0.049915 0.009509 0.001196 0.000150
j = 2 0.016282 0.005830 0.000688 0.000086
j = 3 0.001206 0.000134 0.000017
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Fig. 10.3 Blocking probabilities of loss and delay calls in the M/M/4/7 queue with fixed arrival
and service rates (μ1 = 2,μ2 = 1, λ1 = 0.005, and 0 ≤ λ2 ≤ 20).
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Fig. 10.4 Mean waiting time of delay calls in the M/M/4/7 queue with fixed arrival and service
rates (μ1 = 2, μ2 = 1, λ1 = {500,0.005}, and 0 ≤ λ2 ≤ 20).

10.4.3 Mean Waiting Time

We evaluate the mean waiting times of accepted delay calls for several cases of
state-dependent arrival rates in the M/M/4/7 queue.

1. Fixed Arrival Rates

Figure 10.4 shows numerical examples of the mean waiting time of delay calls when
μ1 = 2,μ2 = 1, λ1 = {500,0.005} for 0 ≤ λ2 ≤ 20. The mean waiting time of delay
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calls increases as their arrival rate λ2 increases. When λ2 is small, the mean waiting
time increases quickly. When λ2 is large, the mean waiting time increases slowly.
We can also observe the effects of sharing the servers with loss calls on the mean
waiting time.

2. Balking

Balking in the arrival process means that the arrival rate of calls decreases as the
number of calls present in the system increases. We consider three models of balking
for delay calls in which their arrival rates λ2( j,k) for j+k > m are given as follows:

Model 1 : λ2( j,k) = ν2

(
K − j− k

K −m

)α
, 0 ≤ ν2 ≤ 20,

Model 2 : λ2( j,k) =
ν2

( j + k−m+1)α
, 0 ≤ ν2 ≤ 20,

Model 3 : λ2( j,k) = ν2e−α( j+k−m), 0 ≤ ν2 ≤ 20,

where α > 0. It is assumed that λ2( j,k) = ν2 for 0 ≤ j + k ≤ m in the three mod-
els. Model 1 is the case in which the arrival rate of delay calls decreases in power
law with the occupancy ratio of waiting positions. Model 2 is the case in which
the arrival rate of delay calls decreases in power law with the number of occupied
waiting positions. Model 3 is the case in which the arrival rate of delay calls de-
creases exponentially with the number of occupied waiting positions. See Fig. 10.5
for dependence of λ2( j,k) on the total number of calls, j + k, present in the system.

1 2 3 4 5 6 7
j k

0.05

0.1

0.15

0.2

0.25

0.3

j,k

Model 3

Model 2

Model 1

λ2

Fig. 10.5 Three models of the arrival rate of delay calls with balking (m = 4, K = 7, α = 2, ν2 =
0.3).
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Fig. 10.6 Mean waiting time of delay calls in the M/M/4/7 queue with balking of model 1
(μ1 = 2, μ2 = 1, λ1 = {500, 0.005}, α = 2, and 0 ≤ ν2 ≤ 20).
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Fig. 10.7 Mean waiting time of delay calls in the M/M/4/7 queue with balking model 2
(μ1 = 2, μ2 = 1, λ1 = {500, 0.005}, α = 2, and 0 ≤ ν2 ≤ 20).

In Figs. 10.6–10.8, we plot the mean waiting time of delay calls with balking for
models 1–3, respectively, by assuming μ1 = 2, μ2 = 1, α = 2, λ1 = {500,0.005}
for 0 ≤ ν2 ≤ 20.

3. Finite Population Size

M/M/m/K queues with finite population of loss and delay calls can be handled with
our model of state-dependent arrival rates by assuming that
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Fig. 10.8 Mean waiting time of delay calls in the M/M/4/7 queue with balking model 3
(μ1 = 2, μ2 = 1, λ1 = {500, 0.005}, α = 2, and 0 ≤ ν2 ≤ 20).
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Fig. 10.9 Mean waiting time of delay calls in the M/M/4/7 queue with finite population (μ1 =
2, μ2 = 1, n1 = n2 = 20, α = 2, ν1 = {25, 0.00025}, and 0 ≤ ν2 ≤ 1).

λ1( j,k) = (n1 − j)ν1, 0 ≤ j ≤ n1,

λ2( j,k) = (n2 − k)ν2, 0 ≤ k ≤ n2,

where n1 and n2 are the fixed total numbers of loss and delay calls, respectively. The
call arrivals then form pseudo-Poisson processes.

In Fig. 10.9, we show the mean waiting time of delay calls in the finite population
model with μ1 = 2, μ2 = 1, n1 = n2 = 20, α = 2, ν1 = {25, 0.00025} for 0 ≤
ν2 ≤ 1.
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10.5 Concluding Remarks

In this chapter, we have shown the analysis of a mixed loss–delay M/M/m/K queue-
ing system with state-dependent arrival rates and different constant service rates. We
have first presented a set of linear simultaneous equations for the equilibrium state
probabilities and the normalization condition. We have then evaluated the blocking
probabilities for loss and delay calls and the mean waiting time for accepted delay
calls.

For numerical examples, we have considered the cases of fixed arrival rates, balk-
ing of delay calls, and finite population size in the M/M/4/7 queueing system. In
these examples, we have observed how the mean waiting time of accepted delay
calls increases as their arrival rate increases when they share the servers with loss
calls.

It is our future work to extend the model to allow multiple classes of both loss
and delay calls with some scheduling discipline among them. Such a model would
be closer to the channel sharing by circuit- and packet-switched traffic in the next-
generation wireless communication systems.

References

1. L. Kleinrock, Qeueing Systems, Volume 1: Theory. New York: John Wiley & Sons, 1975.
2. ITU-R, Methodology for the calculation of IMT-2000 terrestrial spectrum requirements,

Recommendation ITU-R M.1390, 1999.
3. J. W. Cohen, Certain delay problems for a full availability trunk group loaded by two traffic

sources, Communication News, vol. 16, no. 3, pp. 105–113, 1956.
4. T. L. Saaty, Elements of Queueing Theory with Applications. New York: McGraw-Hill, 1981.

Republished by New York: Dover Publications, 1983.
5. H. Takagi, Explicit delay distribution in First-Come First-Served M/M/m/K and M/M/m/K/n

queues and a mixed loss-delay system, in Proc. Asia-Pacific Symposium on Queuing Theory
and Its Application to Telecommunication Networks, pp. 1–11, 2006. International Journal of
Pure and Applied Mathematics, vol. 40, no. 2, pp. 185–200, 2007.



Chapter 11
Asymptotic Behavior of Loss Rate for Feedback
Finite Fluid Queue with Downward Jumps

Yutaka Sakuma and Masakiyo Miyazawa

Abstract We consider a feedback fluid queue with a finite buffer and downward
jumps, where the net flow rate and the jump size for the buffer content are controlled
by a background Markov chain with a finite state space. The feedback means that
the transition structure of the background Markov chain may change when the buffer
content becomes empty or full. In this chapter, we show that the loss rate for this
fluid queue decays exponentially as the buffer size gets large under a negative drift
condition.

11.1 Introduction

We are concerned with a fluid queue, which consists of a server and a buffer. When
the input rate of the fluid flow exceeds the processing capacity of the server, the
unprocessed fluid is stored in the buffer. The input and output rates of the fluid
flow depend on the state of a background process. Assume that the background
process is a continuous time Markov chain on a finite state space. Fluid queues
have been applied in many situations, for example, real-world systems such as
petroleum and chemical industries, performance analysis of high-speed data net-
works, designing computer systems, and so on. Anick, Mitra, and Sondhi [1] study
the data-handling switch in a computer network by using a fluid queue with an in-
finite buffer. Bonald [2] and van Foreest, Mandjes, and Scheinhardt [3] study the
performance evaluation of TCP/IP (see e.g., [4]) by using fluid queues. Specifi-
cally, [3] studies the feature of Additive Increase/Multiplicative Decrease in TCP/IP
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by using a feedback fluid queue with a finite buffer. The feedback means that the
transition structure of the background Markov chain may change when the buffer
content becomes empty or full. da Silva Soares and Latouche [5] show that the sta-
tionary density of the buffer content for the feedback fluid queue with a finite buffer
is expressed as a linear combination of two exponential matrices, by using the ma-
trix analytic method. We call this fluid queue a feedback finite fluid queue (FFFQ,
for short).

In this chapter, we extend the FFFQ in such a way that an accumulated net fluid
flow may have downward jumps (i.e., instantaneous draining) when the background
state changes. The downward jump is motivated by the following observations. Con-
sider a bottleneck router connected to TCP sources in the Internet. IP packets arriv-
ing from the TCP sources enter the buffer of the router, and wait to be served. The
router sends IP packets to output links according to a routing table, which may
be updated in a timely manner. Assume that IP packets and the output links have
various sizes and capacities, respectively. When IP packets of small sizes are trans-
ferred to the output link with low capacity, the buffer content of the router slowly
decreases. On the other hand, when IP packets of large sizes are transferred to the
output link with high capacity, the buffer content rapidly decreases, which may be
regarded as downward jumps.

We aim to consider an asymptotic behavior of the loss rate �
(b)
Loss for the FFFQ

with downward jumps as the buffer size b goes to infinity. Under a negative drift
condition, we show that there exist positive constants c and α such that

lim
b→∞

eαb�
(b)
Loss = c

and we obtain α as the solution of a certain equation (see Theorem 11.1 in
Sect. 11.5 of this chapter). Note that Asmussen and Pihlsgård [6] study an asymp-
totic behavior of a Levy process with two reflecting boundaries, and generalize it to
a Markov-modulated Levy process. They show that the loss rate decays exponen-
tially as the one of the boundaries goes to infinity. However, their model does not
have the feedback mechanism.

In this chapter, we heavily use the results in [7] and [8]. In [7], a Markov-
modulated fluid queue with an infinite buffer and downward jumps is studied. And
the stationary distribution of the buffer content is given by a matrix-exponential
form, which is one of the key observations for our study (see Theorem 3.1 of [8]).
In [8], a Markov-modulated fluid queue upward jumps is studied. For this model,
the hitting probability for an upper level does not have the matrix-exponential form,
because this process is not skip-free in the upward direction. The hitting probability
is also the key observation for our study because of the two-sided reflections of our
model. Ramaswami [9] studies a fluid flow model by using a quasi birth-and-death
(QBD, for short) process, and as mentioned in [5] and [10], the FFFQ has a close
connection with a finite-level QBD process. In this sense, if there is no jump, our
results are related to those in [11], where a many-server queue with a finite buffer
is modeled by a finite-level QBD process. The loss probability for this queueing
model decays geometrically as the buffer size goes to infinity under a negative drift
condition.
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This chapter is composed of six sections. In Sect. 11.2, we introduce a Markov
additive process with downward jumps. In Sect. 11.3, we put a reflecting boundary
at level 0 for this additive process. Then we get a feedback fluid queue with an infi-
nite buffer and downward jumps. In Sect. 11.4, we further put a reflecting boundary
at level b, and get the FFFQ with downward jumps. In Sect. 11.5, we give the asymp-
totic behavior of the loss rate for the FFFQ with downward jumps. In Sect. 11.6, we
provide some numerical results. Finally, conclusions are drawn in Sect. 11.7.

11.2 MAP (Markov Additive Process) with Downward Jumps

When the two boundaries of the FFFQ with downward jumps are removed, we get
a Markov additive process (MAP, for short) with downward jumps. So we first con-
sider the MAP with downward jumps and its hitting probability for an upper level
in this section. The additive process and its hitting probabilities play key roles in
the subsequent sections. Before proceeding, we first introduce some notations for
matrices and vectors, which are used throughout the chapter. Denote an identity ma-
trix, a unit vector, and a zero vector by I, 1, and 0, respectively, where their sizes can
be identified in the contexts where they appear. For vector a, let Δa be the diagonal
matrix whose (i, i)th element is the ith element of the vector a. Denote the (i, j)th
element of matrix A by [A]i j, and the ith element of vector a by [a]i unless stated
otherwise. Let AT be the transposition of matrix A.

Let M(t) be a continuous-time Markov chain (CTMC, for short) with a finite
state space S . The transition rate matrix of M(t) is decomposed into two S ×S
matrices C and D, where C is an ML-matrix and D is a nonnegative matrix such
that (C + D)1 = 0. Throughout the chapter, assume that C + D is irreducible. Then
we have a stationary distribution π for C + D; that is, π(C + D) = 0 and π1 = 1.
Let r = (r(i); i ∈ S ), where r(·) is a real-valued function defined on S . Define an
additive process X(t) driven by M(t) as follows:

(i) When M(t) = i(∈S ), X(t) changes at rate r(i); that is, (d/dt)X(t) = r(M(t)).
(ii) When M(t) changes from i to j by [C]i j, the changing rate of X(t) changes

from r(i) to r( j).
(iii) When M(t) changes from i to j by [D]i j, the changing rate of X(t) changes from

r(i) to r( j), and X(t) jumps down with a jump size subject to a distribution Fi j.

The two-dimensional CTMC (X(t),M(t)) with a state space (−∞,∞)×S is
called a MAP with downward jumps, or simply called MAP (see [7]). We call the
first component the level process or sometimes the additive component, and call the
second component the background process.

For simplicity, assume that r takes nonzero values. Divide the state space S into
two disjoint subsets S − and S +, where S − = {i ∈ S |r(i) < 0} and S + = {i ∈
S |r(i) > 0}. To avoid the trivial case, assume that neither S − nor S + is a null set.
Then we partition π , r, C, and D according to S − and S + as
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Fig. 11.1 MAP with downward jumps, where S − = {i1, i2}, S + = { j1, j2}.

π = (π−,π+), r = (r−,r+),
(

C−− C−+

C+− C++

)

,

(
D−− D−+

D+− D++

)

(see Fig. 11.1).
For x ≥ 0, let τ+

x be a first hitting time when the level process hits x; that is,
τ+

x = inf{t > 0;X(t) ≥ x}. For x ≥ 0, define the S ×S + matrix R•+(x) whose
(i, j)th element is given by

[R•+(x)]i j = P(M(τ+
x ) = j|X(0) = 0,M(0) = i),

which is a first hitting probability for an upper-level x with a background state j,
starting from level 0 with a background state i. Divide R•+(x) into blocks R−+(x)
and R++(x) according to S − and S +. Throughout the chapter, assume the follow-
ing condition,

E[X(1)−X(0)] < 0, (11.1)

which is referred to as a negative drift condition. For x≥ 0, define the S ×S matrix
D(x) = ([D]i jFi j(x); i, j ∈ S ). Then R•+(x) has the matrix exponential form.

Proposition 11.1. (Theorem 3.1 of [8]) Under the negative drift condition (11.1),
there exist the S + ×S + defective transition rate matrix U and the S − ×S +

substochastic matrix R0 satisfying

(
R0
I

)

U = Δ−1
r

{

C
(

R0
I

)

+
∫ ∞

0
D(du)

(
R0
I

)

exp(uU)
}

. (11.2)
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And we have
(

R−+(x)
R++(x)

)

=
(

R0
I

)

exp(xU), x ≥ 0. (11.3)

Remark 11.1. R0 and U are computed by the following recursion formula:

U[0] = C++, R[0] = 0,

U[n+1] = Δ−1
r+

(

C++ +C+−R[n] +
∫ ∞

0
(D+−(du)R[n] +D++(du))exp(uU[n])

)

,

R[n+1] = −Δ−1
r−

(

C−+ +(−ηΔr− +C−−)R[n]

+
∫ ∞

0
(D−−(du)R[n] +D−+(du)) exp(uU[n])

)

(ηI −U[n])
−1, x ≥ 0,

where η(>0) is chosen so that −ηΔr− +C−− is a nonnegative matrix (see [8] and
[12]).

We next introduce the two hitting times,

τ−0 = inf{t > 0|X(t) ≤ 0}, τ+
b = inf{t > 0|X(t) ≥ b},

where b > 0. Let 0A++
0b be the S + ×S + matrix whose (i, j)th element is given by

[0A++
0b ]i j = P(M(τ+

b ) = j,τ+
b < τ−0 |X(0) = 0,M(0) = i).

This is the hitting probability that the level process hits level b with a background
state j ∈ S + before it goes below level 0, starting from level 0 with a background
state i ∈S +. Let P++

00 be the S +×S + matrix whose (i, j)th element is the proba-
bility that X(t) returns to level 0 with a background state j ∈S +, starting from level
0 with a background state i ∈ S +. That is, the (i, j)th element of P++

00 is given by

[P++
00 ]i j = P(M(ζ+

0 ) = j|X(0) = 0,M(0) = i),

where ζ+
0 = inf{t > 0;X(t−) < 0 < X(t+)}. The following result plays a key role

in our main result. We defer its proof to the Appendix.

Lemma 11.1. Let −α(< 0) be the Perron–Frobenius (P-F, for short) eigenvalue of
the defective transition rate matrix U , and q+ be the corresponding positive right
eigenvector; that is, Uq+ = −αq+. Under the negative drift condition (11.1), we
have

lim
b→∞

eαb
0A++

0b = (I −P++
00 )q+u+Δ−1

q+ ,



200 Y. Sakuma and M. Miyazawa

where u+ is the stationary distribution of the nondefective transition rate matrix
Δ−1

q+ (αI +U)Δq+ . Furthermore, −α is obtained as the solution of

χ(z) = 0, (11.4)

where χ(z) is the P-F eigenvalue of the following ML-matrix,

C +
∫ ∞

0
D(du)exp(zu)− zΔr.

By Proposition 11.1, the hitting probability for an upper level has the matrix-
exponential form. In general, the hitting probability for a lower level does not
have a similar form because of the downward jumps. However, from [7], we
know that the hitting probability for a lower level is obtained by integrating the
matrix-exponential form. In what follows, we present this result. For x > 0, let
H+•(x) = (H+−(x),H++(x)) be the S + ×S matrix whose (i, j)th element is
given by

[H+•(x)]i j = P(M(τ−0 ) = j,X(τ−0 ) ∈ (−x,0)|X(0) = 0,M(0) = i)

which is the first hitting probability for a lower level with a jump. Let H+−
0 be the

S + ×S − matrix whose (i, j)th element is given by

[H+−
0 ]i j = P(M(τ−0 ) = j,X(τ−0 ) = 0|X(0) = 0,M(0) = i)

which is the first hitting probability for a lower level without jump. These hitting
probabilities for a lower level are given as follows.

Proposition 11.2. (Lemma 3.1 of [7]) The hitting probability for a lower level with
a jump is given by

(H+−(x),H++(x)) = Δ−1
r+ Δ−1

π+

{∫ x

0
ds

∫ ∞

s
Δπ D̃(dy)

(
R̃0 exp((y− s)Ũ)
exp((y− s)Ũ)

)}T

,

where D̃(y) = Δ−1
π D(y)TΔπ . R̃0 and Ũ are the S −×S + and S + ×S + matrices,

respectively, satisfying
(

R̃0
I

)

Ũ = Δ−1
r

{

C̃
(

R̃0
I

)

+
∫ ∞

0
D̃(dy)

(
R̃0
I

)

exp(yŨ)
}

,

where C̃ = Δ−1
π CTΔπ . On the other hand, the hitting probability without jump is

given by

H+−
0 = Δ−1

r+ Δ−1
π+

∫ ∞

0
ds

∫ ∞

0

{

Δπ−K−−(s)W̃−•(dy)
(

R̃0
I

)

exp((s+ y)Ũ)
}T

,

where W̃−•(y) is the S − ×S matrix defined by Δ−1
π−W •−(y)TΔπ . W •−(y) is the

S ×S − matrix whose (i, j)th element is given by
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1{i 	= j}[C]i jδ (y)+ [D(y)]i j,

where 1A is the indicator function for event A and δ (y) is the Dirac distribution
which has a unit mass at the origin. K−−(s) is the S −×S − diagonal matrix whose
(k,k)th element is given by exp(c(k)s/r(k)), where

c(k) = −[C]kk.

Remark 11.2. R̃0 and Ũ are obtained by a similar formula as noted in Remark 11.1.

By the negative drift condition (11.1), the following S + ×S matrix

(H+−
0 +H+−,H++) (11.5)

is stochastic, where H+u = limx→∞H+u(x) for u = ±1.

11.3 FIFQ (Feedback Infinite Fluid Queue)
with Downward Jumps

In this section, we set a boundary to the MAP (X(t),M(t)) so that the additive
component is reflected at level 0. Consider a two-dimensional CTMC (Y (t),J(t))
with a state space [0,∞)×S , where its transition structure is given as follows (see
Fig. 11.2).

(i) While Y (t) > 0, (Y (t),J(t)) has the same transition structure as the MAP
(X(t),M(t)).

(ii) When Y (t) hits level 0, the transition rate matrix of J(t) immediately changes
to another S −×S matrix:

C =
(

C−− C−+ ) ,
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Fig. 11.2 FIFQ with downward jumps, where S − = {i1, i2}, and S + = { j1, j2}.
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where C−− is the S − ×S − ML-matrix, C−+ is the S − ×S + nonnegative
matrix, and C1 = 0. This modification for the transition structure of the back-
ground process J(t) is referred to as feedback. There are two types of the hitting
level 0.

(iia) If it occurs due to C−− or D−−, Y (t) stays in level 0 until J(t) changes due
to C−+. After J(t) changes due to C−+, Y (t) goes up from level 0. Then
(Y (t),J(t)) again has the same transition structure as (i).

(iib) If it occurs due to D−+, Y (t) immediately goes up from level 0. Then
(Y (t),J(t)) again has the same transition structure as (i).

We introduce a nonnegative (resp., positive) valued function rin (resp., rout) de-
fined on S . Assume that there is a fluid input (resp., output) at rate rin(i) (resp.,
rout(i)) when J(t) = i(∈ S ). In this chapter, the net flow rate r is given by the
difference of the input and output rates; that is,

r = rin − rout.

Then (Y (t),J(t)) is referred to as a feedback infinite fluid queue (FIFQ, for short)
with downward jumps, or simply referred to as FIFQ.

By the negative drift condition (11.1), there exists a stationary distribution for
(Y (t),J(t)).

Proposition 11.3. (Theorem 4.1 of [8]) For x > 0, we have

P(Y > x,J = i) =
{

[Δπ−R0 exp(xU)1]i , i ∈ S −

[Δπ+ exp(xU)1]i , i ∈ S +,

where (Y,J) means (Y (t),J(t)) in steady state.

Let p− be the S −-dimensional row vector whose ith element is given by

[p−]i = P(Y = 0,J = i).

By censoring (Y (t),J(t)) at subspace {0} ×S −, p− is obtained as a stationary
measure for Q00 = C−− +C−+(I −H++)−1(H+−

0 +H+−); that is,

p−Q00 = 0.

Note that Q00 is a nondefective transition rate matrix by the negative drift condition
(11.1). For x > 0, let p(x) be the S - dimensional row vector whose ith element is
given by

[p(x)]i = P(Y > x,J = i).

Then p− is normalized so that p−1+p(0)1 = 1; that is,

p−1+π−R01+π+1 = 1 (11.6)

by Proposition 11.3.
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11.4 FFFQ (Feedback Finite Fluid Queue)
with Downward Jumps

In this section, we put another boundary to the FIFQ with downward jumps
(Y (t),J(t)) in such a way that the additive component is also reflected at
level b, where b > 0. We further assume that the transition structure of the back-
ground process may change at level b. Denote this reflected additive process by
(Y (b)(t),J(b)(t)), which is a two-dimensional CTMC with a state space [0,b]×S .
The background process J(b)(t) has the following three types of transition structures
depending on the level Y (b)(t) (see Fig. 11.3).

(i) While Y (b)(t) stays in (0,b), (Y (b)(t),J(b)(t)) has the same transition struc-
ture as FIFQ (Y (t),J(t)); that is, J(b)(t) is a CTMC with transition rate
matrix C +D.

(ii) When Y (b)(t) hits level b, the transition rate matrix of J(b)(t) immediately
changes to another S + ×S matrix:

C +D =
(

C+− C++
)

+
(

D+− D++
)

,

where C++ is the S + × S + ML-matrix, C+−, D+− and D++ are the
S + ×S −, S + ×S −, and S + ×S + nonnegative matrices, respectively,
and (C + D)1 = 0. After Y (b)(t) hits level b, there can be the following three
cases.

(iia) If J(b)(t) changes due to C++, Y (b)(t) stays in level b.
(iib) If J(b)(t) changes due to C+−, Y (b)(t) goes below level b and (Y (b)(t),J(b)(t))

again has the same transition structure as (i).
(iic) If J(b)(t) changes due to D, Y (b)(t) jumps down below level b. The jump

size is distributed subject to D(x), where D(x) is the S +×S matrix whose
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Fig. 11.3 FFFQ with downward jumps, where S − = {i1, i2}, S + = { j1, j2}.
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(i, j)th element is [D]i jGi j(x), where Gi j(x) is a distribution function. When
the jump size is less than b, (Y (b)(t),J(b)(t)) has the same transition struc-
ture as (i). Otherwise, Y (b)(t) hits level 0 and (Y (b)(t),J(b)(t)) has the same
transition structure as (iii).

(iii) When Y (b)(t) hits level 0, the transition rate matrix of J(b)(t) changes to C =
(C−−,C−+). There are two types of the hitting level 0.

(iiia) If it occurs due to C−−, D−−, or D+−, Y (b)(t) stays in level 0 until J(b)(t)
changes due to C−+. After J(b)(t) changes due to C−+, Y (b)(t) goes up from
level 0. Then (Y (b)(t),J(b)(t)) again has the same transition structure as (i).

(iiib) If it occurs due to D−+ or D++, Y (b)(t) immediately goes up from 0. Then
(Y (b)(t),J(b)(t)) again has the same transition structure as (i).

This reflected additive process (Y (b)(t),J(b)(t)) is referred to as a feedback finite
fluid queue (FFFQ, for short) with downward jumps, or simply referred to as FFFQ.

11.5 Asymptotic Behavior of Loss Rate for FFFQ
with Downward Jumps

In this section, we study the asymptotic behavior of the loss rate �
(b)
Loss for the FFFQ

with downward jumps (Y (b)(t),J(b)(t)) as the buffer size b gets large. Let p(b) be
the S -dimensional probability vector whose ith element is given by

[p(b)]i =
{

P(Y (b) = 0,J(b) = i), i ∈ S −

P(Y (b) = b,J(b) = i), i ∈ S +,

where (Y (b),J(b)) means (Y (b)(t),J(b)(t)) in steady state. We partition p(b) according
to S − and S + such that p(b) = (p(b)−,p(b)+). Then the loss rate �

(b)
Loss is given by

�
(b)
Loss = p(b)+r+

in, (11.7)

where r+
in = (rin(i); i ∈ S +). So it is sufficient to consider the asymptotic behavior

of p(b)+ as b gets large.
Note that p(b) is a stationary measure for (Y (b)(t),J(b)(t)) censoring at subspace

S{0,b} = ({0}×S −)∪ ({b}×S +).

We introduce the following two hitting probabilities (see Fig. 11.4). Let bΨ •−
x0 be

the S ×S − matrix for x ∈ [0,b] whose (i, j)th element is given by

[bΨ •−
x0 ]i j = P(J(b)(τ(b)−

0 ) = j,τ(b)−
0 < τ(b)+

b |Y (b)(0) = x,J(b)(0) = i)
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Fig. 11.4 Hitting probabilities for FFFQ with downward jumps.

and 0Ψ •+
xb be the S ×S + matrix for x ∈ [0,b] whose (i, j)th element is given by

[0Ψ •+
xb ]i j = P(J(b)(τ(b)+

b ) = j,τ(b)+
b < τ(b)−

0 |Y (b)(0) = x,J(b)(0) = i),

where τ(b)−
0 = inf{t > 0|Y (b)(t) = 0,J(b)(t) ∈ S −} and τ(b)+

b = inf{t > 0 |
Y (b) (t) = b,J(b)(t) ∈ S +}. Partition bΨ •−

x0 and 0Ψ •+
xb into blocks according to

S − and S + such that

bΨ •−
x0 =

(
bΨ−−

x0

bΨ+−
x0

)

, 0Ψ •+
xb =

(
0Ψ−+

xb

0Ψ++
xb

)

.

Then the transition rate matrix for the censored process at subspace S{0,b} is
given by

Q =

(
Q(b)

00 Q(b)
0b

Q(b)
b0 Q(b)

bb

)

,

where the each submatrix is given by

Q(b)
00 = C−− +C−+

bΨ+−
00 , Q(b)

0b = C−+
0Ψ++

0b ,

Q(b)
b0 = C+−

bΨ−−
b0 +

∫ b

0
D+−(dx)bΨ−−

(b−x)0 +
∫ ∞

b
D+−(dx)

+
∫ b

0
D++(dx)bΨ+−

(b−x)0 +
∫ ∞

b
D++(dx)bΨ+−

00 ,

Q(b)
bb = C++ +C+−

0Ψ−+
bb +

∫ b

0
D++(dx)0Ψ++

(b−x)b +
∫ ∞

b
D++(dx)0Ψ++

0b

+
∫ b

0
D+−(dx)0Ψ−+

(b−x)b.

Then p(b)− and p(b)+ satisfy

p(b)−Q(b)
00 +p(b)+Q(b)

b0 = 0, p(b)−Q(b)
0b +p(b)+Q(b)

bb = 0. (11.8)
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By the negative drift condition (11.1), we have

lim
b→∞0Ψ++

0b = 0, lim
b→∞

Q(b)
bb = Q̂00,

where Q̂00 is a defective transition rate matrix. Because limb→∞Q(b)
0b = 0, we have

lim
b→∞

p(b)+ = 0.

Furthermore, we have

lim
b→∞ bΨ+−

00 = (I −H++)−1(H+−
0 +H+−),

because the effect of level b disappears as b gets large. Hence, (11.8) and the above
observations imply that

lim
b→∞

p(b)− = p−,

which is a stationary measure for Q00 with the normalizing condition (11.6).
By the second equation of (11.8), we have

p(b)+(−Q(b)
bb ) = p(b)−C−+

0Ψ++
0b , (11.9)

which implies that the asymptotic behavior of p(b)+ is determined by that of 0Ψ++
0b .

From Proposition 11.1, Proposition 11.2, and Lemma 11.1, we arrive at the main
result. Its proof is deferred to the appendix.

Theorem 11.1. The asymptotic behavior of the loss rate is given by

lim
b→∞

eαb�
(b)
Loss = p−C−+(I −H++)−1(I −P++

00 )(q+u+Δ−1
q+ )(−Q̂00)−1r+

in,

where −α is the solution of (11.4), and Q̂00, P++
00 q+ are obtained as follows:

(I) Q̂00 = C++ +C+−R0 +
∫ ∞

0 D++(dx)exp(xU)+
∫ ∞

0 D+−(dx)R0 exp(xU).
(II) P++

00 q+ is given by
{

H+−
0 R0 +Δ−1

r+ Δ−1
π+

∫ ∞

0

((
R̃0
I

)

exp(yŨ)V (y)
)T

ΔπD(dy)
(

R0
I

)}

q+,

where

V (y) = Δq̃+(1κ−Û)−1 (exp(−yÛ)+ y1κ− I
)
Δ−1

q̃+

and q̃+ is the P-F right eigenvector for Ũ with the P-F eigenvalue −α . κ is the
stationary distribution for Û = Δ−1

q̃+ (αI +Ũ)Δq̃+ .
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11.6 Numerical Examples

We provide some numerical examples for the FFFQ with downward jumps by com-
puting the positive constants α and c such that

lim
b→∞

eαb�
(b)
Loss = c.

This indicates that we may approximate the loss rate by ce−αb. Suppose that the
jump sizes are deterministic for each possible transition. That is, let B be the S ×S
matrix, whose (i, j)th element denotes the jump size of the buffer when the back-
ground state changes from i to j. Then D(x) is given by

[D(x)]i j = [D]i j1{x=[B]i j}.

Similarly, let B+− (resp., B++) be the S +×S − (resp., S +×S +) matrix, whose
(i, j)th element denotes the jump size when the background state changes from i to
j at level b. Then D+−(x) and D++(x) are given by

[D+−(x)]i j = [D+−]i j1{x=[B+−]i j}, [D++(x)]i j = [D++]i j1{x=[B++]i j}.

Assume the following parameter settings.

S −={0,1}, S +={2},
⎛

⎝
rin(0)
rin(1)
rin(2)

⎞

⎠=

⎛

⎝
5.5
8.0

10.0

⎞

⎠ ,

⎛

⎝
rout(0)
rout(1)
rout(2)

⎞

⎠=

⎛

⎝
6.0
8.7
6.0

⎞

⎠ ,

C =

⎛

⎝
−4.6 1.5 2.3
0.6 −2.7 1.2
0.5 0.8 −2.1

⎞

⎠ , D =

⎛

⎝
0.2 0.1 0.5
0.3 0.4 0.2
0.5 0.1 0.2

⎞

⎠ , B =

⎛

⎝
2.3 1.3 1.5
0.5 1.8 2.4
2.4 5.0 2.1

⎞

⎠ ,

C−−=
(
−3.0 1.0
1.0 −2.0

)

, C−+ =
(

2.0
1.0

)

,

C+− =
(

1.5 1.3
)
, C++ = (−4.1), D+− =

(
0.4 0.5

)
, D++ = (0.3),

B+− =
(

1.1 5.0
)
, B++ = (2.7).

In this case, we have

mean drift = −0.046225 < 0, α = 0.012454, c = 2.213758.

We further consider the following two cases.

(case 1) Change the jump size due to D-transition: [B]21 = 5.0→ [B]21 = 15.0. Then
we have

mean drift = −0.546513 < 0, α = 0.077897, c = 3.469491.
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because the jump size is increased when the additive component is below
level b, the decay rate α considerably gets larger.

(case 2) Change the jump size due to D-transition: [B]1 = 5.0 → [B]1 = 15.0. Then
we have

mean drift = −0.046225, α = 0.012454, c = 1.394617.

because the jump size is increased when the additive component stays in
level b, only the prefactor c decreases.

11.7 Conclusions

In this chapter, we studied the tail behavior of the loss rate for the feedback fluid
queue with a finite buffer. By using the relations between the fluid queue and the
Markov additive process with downward jumps, we showed that the loss rate asymp-
totically decays at an exponential rate with a constant prefactor as the buffer size gets
large. This decay rate was obtained by the additive process; that is, it is irrelevant to
the boundary condition for the fluid queue.

Appendix

Proof of Lemma 11.1. Consider the S + ×S + matrix bP++
00 whose (i, j)th element

is given by

[bP++
00 ]i j = P(M(ζ (b)+

0 ) = j|X(0) = 0,M(0) = i),

where ζ (b)+
0 = inf{t > 0;X(t−) < 0 < X(t+), X(u) < b,u ∈ (0, t)} is the first

time when the MAP (X(t),M(t)) crosses level 0 from below, avoiding level b (see
Fig. 11.5). Note that limb→∞ bP++

00 = P++
00 , because the effect of level b disappears

as b gets large. By conditioning on the event that the MAP (X(t),M(t)) crosses the
initial level from below for the first time, we have R++(b) = 0A++

0b + bP++
00 R++(b).

0

b
( )taboo( )X t

0

b

( )taboo

00bP
++

0 0bA
++

( )
0

z

( )X t

Fig. 11.5 Hitting probabilities for MAP with downward jumps.
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By Proposition 11.1, we have

0A++
0b = (I − bP++

00 ) exp(bU). (11.10)

Because U is defective, there exists the P-F eigenvalue −α(< 0) and the cor-
responding positive right eigenvector q+. Note that Δ−1

q+ (αI + U)Δq+ is a non
defective transition rate matrix. So it has the stationary distribution u+; that is,
u+Δ−1

q+ (αI +U)Δq+ = 0 and u+1 = 1. By the standard Markov chain theory, we
have

lim
b→∞

exp(bΔ−1
q+ (αI +U)Δq+) = 1u+,

which is equivalent to

lim
b→∞

eαb exp(bU) = q+u+Δ−1
q+ . (11.11)

Combining (11.10) with (11.11) yields

lim
b→∞

eαb
0A++

0b = (I −P++
00 )q+u+Δ−1

q+ .

By postmultiplying q+ to (11.2), we have
(

−αI −Δ−1
r

(

C +
∫ ∞

0
exp(−αu)D(du)

))(
I

R0

)

q+ = 0,

which implies that −α is obtained as a solution of χ(z) = 0.

Proof of Theorem 11.1. Consider the hitting probability that the MAP (X(t),M(t))
jumps below level 0 with a background state in S +, starting from level 0 with a
background state in S +, avoiding level b. This is equivalent to the probability that
the FFFQ (Y (b)(t),J(b)(t)) returns to level 0 while increasing, starting from level
0 with a background state in S +, avoiding level b. Let bH++ be the S + ×S +

matrix whose (i, j)th element is given by

[bH++]i j = P(M(τ−0 ) = j,X(τ−0 ) < 0,τ−0 < τ+
b |X(0) = 0,M(0) = i).

Note that limb→∞ bH++ = H++. By conditioning on the event that (Y (b)(t),J(b)(t))
returns to level 0, we have 0Ψ++

0b = 0A++
0b + bH++

0Ψ++
0b . Because bH++ is sub-

stochastic, we have

0Ψ++
0b = (I − bH++)−1

0A++
0b . (11.12)

From (11.9) and (11.12), we have p(b)+ = p(b)−C−+(I− bH++)−1
0A++

0b (−Q(b)
bb )−1,

which implies that

lim
b→∞

eαbp(b)+ = p−C−+(I −H++)−1(I −P++
00 )(q+u+Δ−1

q+ )(−Q̂00)−1 (11.13)
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by Lemma 11.1. In the following, we compute Q̂00, p−, and P++
00 q+ in the right side

of (11.13). This completes the proof of Theorem 11.1,

Proof of (I). By the definition of Q(b)
bb and the dominated convergence theorem, we

have

Q̂00 = C++ +C+−Ψ̂−+
00 +

∫ ∞

0
D++(dx)Ψ̂++

x0 +
∫ ∞

0
D+−(dx)Ψ̂−+

x0 ,

whereΨ̂−+
00 = limb→∞ 0Ψ−+

bb ,Ψ̂++
x0 = limb→∞ 0Ψ+

(b−x)b, andΨ̂−+
x0 = limb→∞ 0Ψ−+

(b−x)b.
From Proposition 11.1 and the definition of 0Ψ •+

xb , we have

Ψ̂−+
00 = R0, Ψ̂++

x0 = exp(xU), Ψ̂−+
x0 = R0 exp(xU).

Thus we have (I).

Proof of (II). By conditioning on the event that the MAP (X(t),M(t)) crosses level
0 from below, P++

00 is given by H+−
0 R0 +

∫ ∞
0 H+•(du)R•+(u); that is,

H+−
0 R0 +Δ−1

r+ Δ−1
π+

{
∫ ∞

0
du

∫ ∞

u

(
R̃0 exp((y−u)Ũ)
exp((y−u)Ũ)

)T

ΔπD(dy)
(

R0
I

)

exp(uU)

}

by Proposition 11.2. By postmultiplying q+, changing the order of integration, and
Uq+ = αq+, we have

P++
00 q+ =

{

H+−
0 R0 +Δ−1

r+ Δ−1
π+

∫ ∞

0

(
R̃0 exp(yŨ)Δq̃+

∫ y
0 du exp(−uÛ)Δ−1

q̃+

exp(yŨ)Δq̃+
∫ y

0 du exp(−uÛ)Δ−1
q̃+

)T

· ΔπD(dy)
(

R0
I

)}

q+, (11.14)

where Û = Δ−1
q̃+ (αI + Ũ)Δq̃+ . Because Ũ also has the P-F eigenvalue −α , denote

the corresponding positive right eigenvector by q̃+; that is, Ũ q̃+ = −αq̃+. Because
Û is a nondefective transition rate matrix, denote its stationary distribution by κ .
Then we have

∫ y

0
du exp(−uÛ) = (1κ−Û)−1(exp(−yÛ)+ y1κ− I). (11.15)

From (11.7) and (11.15), we have (II).
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Chapter 12
Explicit Probability Density Function
for the Length of a Busy Period
in an M/M/1/K Queue

Hideaki Takagi and Ahmed M.K. Tarabia

Abstract A new closed-form explicit expression is derived for the probability den-
sity function of the length of a busy period starting with i customers in an M/M/1/K
queue, where K is the capacity of the system. The density function is given as a
weighted sum of K negative exponential distributions with coefficients calculated
from K distinct zeros of a polynomial that involves Chebyshev polynomials of the
second kind. The mean and second moment of the busy period are also shown ex-
plicitly. In addition, the symmetric results for the first passage time from state i to
state K are presented. We also consider the regeneration cycle of state i.

12.1 Introduction

Busy period analysis plays a significant role in the understanding of queueing
systems and their efficient management. In particular, queueing systems with fi-
nite capacity are important in the design and development of telecommunication
systems. The reader is referred to Perros and Altiok [1] for further details of such
applications. A busy period in a queueing system normally starts with the arrival of
a customer who finds the system empty, and ends with the first time at which the
system becomes empty again. One may also consider a busy period starting with
more than one customer in the system.

The transient behavior of the queue size in an M/M/1/K queue has a nice
closed-form explicit expression for the probability distribution as shown in Takács
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[2, pp. 12–21]. However, finding the explicit formula of the busy period distribution
for the M/M/1/K queue is an open problem. This is because the difficulty in obtain-
ing the exact values of eigenvalues of its transition matrix does not allow an explicit
solution.

There are a few results about the busy period of this model. Ismailov [3] ob-
tained the Laplace transform of the duration of the busy period in an M/M/1/K
queue. Srivastava and Kashyap [4, p. 61] also show the Laplace transform. Sharma
and Shobha [5] obtained a closed-form expression for the busy period density func-
tion through an elegant algebraic method. See also Sharma’s book [6, pp. 45–48].
But their solution involves the eigenvalues of a matrix. Stadje [7] determined the
joint transform of the duration of a busy period and the number of customers served
in it for the simple exponential queue with finite capacity. Kinateder and Lee [8] pro-
vided a new approach to the computation of the Laplace transform of the length of
the busy period of the M/M/1 queue with constrained workload (finite dam) without
the use of complex analysis. Reference to the studies of the busy period in non-
Markovian queues with finite capacity is omitted here.

In this chapter, our motivation is not only to drive a new modified formula for
the busy period distribution, but also to extend it to allow for any arbitrary number
of initial customers i ≥ 1. Moreover, we illustrate that the formula given in Sharma
and Shobha [5] is not valid for some values of the traffic intensity. In addition, we
refer to the first passage time from state i to K as a symmetric problem dealt with
in Saaty [9, p. 129], and derive similar results. Finally we consider the time interval
between two instants at which the system enters state i successively.

The chapter is organized as follows. Section 12.2 describes a busy period consid-
ered in this chapter in detail. First passage time to the system capacity and regener-
ation cycle are presented in Sect. 12.3 and Sect. 12.4. We conclude this chapter in
Sect. 12.5.

12.2 Busy Period

We consider an M/M/1/K queue with arrival rate λ and service rate μ , where K
denotes the capacity of the system including the one in the server. Let bi(t) be the
probability density function (pdf) of the length Bi of a busy period starting with i
customers (1 ≤ i ≤ K). This is equivalent to the first passage time from state i to
state 0 in the birth-and-death process with a reflecting barrier at state K, where the
state k means that there are k customers present in the system.

Let N(t) be the number of customers present in the system at time t, and

Pik(t) := P{N(t) = k,0 < N(u) ≤ K for 0 ≤ u < t | N(0) = i}, 1 ≤ k ≤ K.

Because bi(t)Δ t + o(Δ t) = P{t < Bi < t +Δ t} = Pi1(t) · μΔ t + o(Δ t), it follows
that

bi(t) = μPi1(t), 1 ≤ i ≤ K.
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For the Laplace transforms

P∗
ik(s) :=

∫ ∞

0
e−stPik(t)dt, B∗

i (s) :=
∫ ∞

0
e−stbi(t)dt,

we have
B∗

i (s) = μP∗
i1(s).

Equations for {P∗
ik(s),1 ≤ k ≤ K} are given by

(s+λ +μ)P∗
i1(s)−μP∗

i2(s) = δi1,

−λP∗
i,k−1(s)+(s+λ +μ)P∗

ik(s)−μP∗
i,k+1(s) = δik, 2 ≤ k ≤ K −1,

−λP∗
i,K−1(s)+(s+μ)P∗

iK(s) = δiK ,

where δik is the Kronecker delta. Defining the generating function

P∗
i (z;s) :=

K

∑
k=1

P∗
ik(s)z

k,

which is a polynomial of degree K in z, we get

P∗
i (z;s) =

zi+1 +λP∗
iK(s)(1− z)−μP∗

i1(s)z
sz− (μ−λ z)(1− z)

. (12.1)

Let ξ (s) and η(s) be the solutions to the quadratic equation

λ z2 − (s+λ +μ)z+μ = 0,

namely

ξ (s) :=
s+λ +μ−

√
(s+λ +μ)2 −4λμ
2λ

,

η(s) :=
s+λ +μ+

√
(s+λ +μ)2 −4λμ
2λ

.

It can be shown that |ξ (s)| < 1 < |η(s)| if ℜ(s) > 0.
Then the numerator in (12.1) must be null at z = ξ (s) and z = η(s), which deter-

mines P∗
i1(s). Hence we get [4, (19), p. 61]

B∗
i (s) = ρ−i [η(s)]K−i[η(s)−1]+ [ξ (s)]K−i[1−ξ (s)]

[η(s)]K [η(s)−1]+ [ξ (s)]K [1−ξ (s)]
, (12.2)

where ρ := λ/μ . The case of i = 1 is obtained by Sharma and Shobha [5] in different
notation.
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We now try to invert (12.2). To do so, let us introduce

x :=
s+λ +μ
2
√
λμ

=

{
cosθ , −1 ≤ x ≤ 1, 0 ≤ θ ≤ π
coshτ, x ≥ 1, τ ≥ 0

(12.3)

and

gK(x) := ρK/2 [η(s)]K [η(s)−1]+ [ξ (s)]K [1−ξ (s)]
η(s)−ξ (s)

=

⎧
⎪⎪⎨

⎪⎪⎩

sin(K +1)θ −√ρ sinKθ
sinθ

, −1 ≤ x ≤ 1, 0 ≤ θ ≤ π

sinh(K +1)τ−√ρ sinhKτ
sinhτ

, x ≥ 1, τ ≥ 0.

Note that the Chebyshev polynomial of the second kind is defined by

UK(x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin(K +1)θ
sinθ

=
�K/2�

∑
j=0

(−1) j
(

K − j
j

)

(2cosθ)K−2 j, 0 ≤ θ ≤ π

sinh(K +1)τ
sinhτ

=
�K/2�

∑
j=0

(−1) j
(

K − j
j

)

(2coshτ)K−2 j, τ ≥ 0

=
�K/2�

∑
j=0

(−1) j
(

K − j
j

)

(2x)K−2 j, x ≥−1,

as a polynomial of degree K, where �x� denotes the largest integer not exceeding x.
For example,

U0(x) = 1, U1(x) = 2, U2(x) = 4x2 −1, U3(x) = 8x3 −4x,
U4(x) = 16x4 −12x2 +1, U5(x) = 32x5 −32x3 +6x,
U6(x) = 64x6 −80x4 +24x2 −1, U7(x) = 128x7 −192x5 +80x3 −8x,
U8(x) = 256x8 −448x6 +240x4 −40x2 +1.

We then have
gK(x) = UK(x)−√

ρ UK−1(x), x ≥−1.

Hence we get

B∗
i (s) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ−i/2 sin(K − i+1)θ −√ρ sin(K − i)θ
sin(K +1)θ −√ρ sinKθ

, 0 ≤ θ ≤ π

ρ−i/2 sinh(K − i+1)τ−√ρ sinh(K − i)τ
sinh(K +1)τ−√ρ sinhKτ

, τ ≥ 0

= ρ−i/2 gK−i(x)
gK(x)

, x ≥−1.

Note that B∗
i (0) = 1, because gK(x)|s=0 = ρ−K/2.
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Sharma and Shobha [5] argue that gK(x) has K distinct real zeros. More specifi-
cally, by utilizing the factorization

UK(x) = 2K
K

∏
k=1

[

x− cos
(

kπ
K +1

)]

,

we see that

gK

(

cos
jπ
K

)

= UK

(

cos
jπ
K

)

= 2K
K

∏
k=1

[

cos
jπ
K

− cos
(

kπ
K +1

)]

=

{
< 0 if j is odd
> 0 if j is even

, j = 1,2, . . . ,K.

Therefore, gK(x) has K − 1 distinct real zeros between x = cos(π/K) and x =
cosπ = −1. Because

gK(1) = K +1−√
ρ K,

it follows that gK(x) has another real zero between x = cos 0 = 1 and x = cos(π/K)
if ρ < ((K +1)/K)2. If ρ > ((K +1)/K)2, then gK(1) < 0 and g(∞) =∞. Thus there
is another real zero at x = coshτ > 1, which is uniquely determined by the equation

sinh(K +1)τ−√
ρ sinhKτ = 0, τ > 0. (12.4)

Figure 12.1 shows g6(x) with ρ = 0.5 as functions in x and in θ . Figure 12.2
shows g6(x) with ρ = 2 as functions in x, in θ , and in τ .

Let the K distinct zeros of gK(x) be {α j,1 ≤ j ≤ K}. From the partial fraction
expansion

-1 -0.5 0.5 1
x

-2

2

4

g6(x)

function in x with zeros at
−0.888418, −0.579196, −0.143028
0.320606, 0.707107, and 0.936483

2 3
q

-2

2

0.5 1.5 2.51

4

6
g6(x)

function in θ with zeros at
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Fig. 12.1 g6(x) with ρ = 0.5.
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Fig. 12.2 g6(x) with ρ = 2.

B∗
i (s) = ρ−i/2 gK−i(x)

gK(x)
= ρ−i/2

K

∑
j=1

gK−i(α j)
g′K(α j)(x−α j)

= 2
√
λμ ρ−i/2

K

∑
j=1

gK−i(α j)

g′K(α j)(s+λ +μ−2
√
λμ α j)

,

we obtain the pdf

bi(t) = 2
√
λμ ρ−i/2e−(λ+μ)t

K

∑
j=1

gK−i(α j)
g′K(α j)

e2
√
λμ α jt , t ≥ 0.

Sharma and Shobha [5] note that the K−1 zeros of gK−1(x) interlace the K zeros
of gK(x). In fact, such an interlacing property is common in the transient analysis
of finite-state birth-and-death processes [10]. Therefore, gK−1(x) and g′K(x) have
the same sign at the zeros of gK(x). Figure 12.3 illustrates the situation with g5(x),
g6(x), and g7(x). Furthermore, for −1 < α j < 1 we have

λ +μ−2
√
λμ α j > λ +μ−2

√
λμ =

(√
λ −√

μ
)2

≥ 0.
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Fig. 12.3 g5(x) (dashed), g6(x) (solid), and g7(x) (dot-dashed).
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Fig. 12.4 fK(τ) = ((sinh2(K +1)τ)/(sinh2 Kτ)) + 1 − ((2sinh(K +1)τ coshτ)/(sinhKτ)) for
K = 5,6,7,10 (from above).

For α j = coshτ > 1, where τ is determined by (12.4), we can show that

λ +μ−2
√
λμ coshτ = μ

(
ρ+1−2

√ρ coshτ
)

= μ
[

sinh2(K +1)τ
sinh2 Kτ

+1− 2sinh(K +1)τ coshτ
sinhKτ

]

> 0, τ > 0

for every K ≥ 1; see Fig. 12.4. Hence, the pdf b1(t) of the busy period is a weighted
sum of negative exponential distributions.

For the limit K → ∞, because |ξ (s)/η(s)| < 1 it follows from (12.2) that

lim
K→∞

B∗
i (s) = [ξ (s)]i.

This is inverted to

lim
K→∞

bi(t) = iρ−i/2 e−(λ+μ)t

t
Ii

(
2
√
λμ t

)
, t ≥ 0,
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Fig. 12.5 bi(t) for K = 6 with λ = 0.1, 0.5, 1, 2, 5 (from above), and μ = 1.
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Fig. 12.6 b1(t) for K = 2 (rough dotted), 3 (medium dotted), 4 (fine dotted), and ∞ (solid) for
μ = 1.

where Ii(x) is the modified Bessel function of the first kind of order i. This agrees
with the result for an M/M/1 queue.

Figure 12.5 plots bi(t) for the M/M/1/6 queue with λ = 0.1, 0.5, 1, 2, 5, and
μ = 1 (1 ≤ i ≤ 6). Figure 12.6 shows b1(t) for K = 2,3,4, and ∞ for μ = 1, where
we observe that b1(t) differs significantly for different values of K when ρ is large.
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Moments of the length of a busy period are calculated directly from (12.2). The
mean is given by

E[Bi] =

⎧
⎪⎪⎨

⎪⎪⎩

i
μ(1−ρ)

− ρ
K−i+1(1−ρ i)
μ(1−ρ)2 , ρ 	= 1

i(2K − i+1)
2μ

, ρ = 1
.

Note that

E[B1] =
1−ρK

μ(1−ρ)
,

which can also be derived from the renewal relationship

lim
t→∞

P{N(t) = 0} =
1−ρ

1−ρK+1 =
1/λ

E[B1]+1/λ
.

The second moment is given by

E[(Bi)2] =
i2

μ2(1−ρ)2 +
i(1+ρ+2ρK−i+1 +2ρK+1)

μ2(1−ρ)3

−2ρK−i+1(1−ρ i)[2+2K(1−ρ)+ρK+1]
μ2(1−ρ)4

for ρ 	= 1. For ρ = 1, we have

E[(Bi)2] =
i[(i+1)(i−1)(i−2)+4K(2K2 +3K +2− i2)]

12μ2 .

In particular

E[(B1)2] =

⎧
⎪⎪⎨

⎪⎪⎩

2(1−ρK)(1+ρK+1)
μ2(1−ρ)3 − 4KρK

μ2(1−ρ)2 , ρ 	= 1

K(2K +1)(K +1)
3μ2 , ρ = 1

as given in [5].
Our solution is based on the roots of the algebraic equation gK(x) = 0, where

gK(x) is a polynomial of order K. Therefore, it can be solved algebraically only for
K = 1,2,3, and 4 in general (Abel’s theorem).

For example, we first consider the case K = 2. The polynomial

g2(x) = 4x2 −2
√
ρ x−1
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has two zeros (
√ρ ±√

ρ+4 )/4. Thus we get

B∗
1(s) =

ρ−1/2
√
ρ+4

( √
ρ+4 −√ρ

4x−√ρ −√
ρ+4

+
√
ρ+4 +

√ρ
4x−√ρ +

√
ρ+4

)

=

μ

(

1− λ
√
λ 2 +4λμ

)

2s+λ +2μ−
√
λ 2 +4λμ

+

μ

(

1+
λ

√
λ 2 +4λμ

)

2s+λ +2μ+
√
λ 2 +4λμ

and

B∗
2(s) =

2
ρ
√
ρ+4

(
1

4x−√ρ −√
ρ+4

− 1
4x−√ρ +

√
ρ+4

)

=
2μ2

√
λ 2+4λμ

(
1

2s+λ+2μ−
√
λ 2 +4λμ

− 1

2s+λ+2μ+
√
λ 2 +4λμ

)

.

The corresponding density functions are given by

b1(t) =
μ
2

(

1− λ
√
λ 2 +4λμ

)

exp

(

−λ +2μ−
√
λ 2 +4λμ

2
t

)

+
μ
2

(

1+
λ

√
λ 2 +4λμ

)

exp

(

−λ +2μ+
√
λ 2 +4λμ

2
t

)

and

b2(t) =
μ2

√
λ 2 +4λμ

[

exp

(

−λ +2μ−
√
λ 2 +4λμ

2
t

)

−exp

(

−λ +2μ+
√
λ 2 +4λμ

2
t

)]

.

12.3 First Passage Time to the System Capacity

In Problem 17 on page 129 of Saaty [9], the time elapsing before the queue grows
from size i to the system capacity K at which point the operation stops is studied
(0 ≤ i ≤ K − 1). This is the first passage time from state i to state K in the birth-
and-death process with the reflecting barrier at state 0, where the state k means that
there are k customers present in the system. This is symmetric to the busy period
studied above; just exchange the arrival and service rates and exchange i and K − i.
The Laplace transform B̂∗

i (s) of the pdf b̂i(t) for the above-mentioned first passage
time B̂i is given in [9], but no explicit inversion is shown there.
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We only present the results here. The Laplace transform B̂∗
i (s) is given by

B̂∗
i (s) =

ρ{[η(s)]i+1 − [ξ (s)]i+1}−{[η(s)]i − [ξ (s)]i}
ρ{[η(s)]K+1 − [ξ (s)]K+1}−{[η(s)]K − [ξ (s)]K} .

Using x, θ , and τ defined in (12.3), this can be written as

B̂∗
i (s) =

⎧
⎪⎪⎨

⎪⎪⎩

ρ(K−i)/2
√ρ sin(i+1)θ − sin iθ
√ρ sin(K +1)θ − sinKθ

, 0 ≤ θ ≤ π

ρ(K−i)/2
√ρ sinh(i+1)τ− sinh iτ
√ρ sinh(K +1)τ− sinhKτ

, τ ≥ 0

= ρ(K−i)/2 ĝi(x)
ĝK(x)

, x ≥−1,

where

ĝK(x) := ρ(K−1)/2 ρ{[η(s)]K+1 − [ξ (s)]K+1}−{[η(s)]K − [ξ (s)]K}
η(s)−ξ (s)

=

⎧
⎪⎪⎨

⎪⎪⎩

√ρ sin(K +1)θ − sinKθ
sinθ

, −1 ≤ x ≤ 1, 0 ≤ θ ≤ π
√ρ sinh(K +1)τ− sinhKτ

sinhτ
, x ≥ 1, τ ≥ 0

=
√ρ UK(x)−UK−1(x), x ≥−1.

We note that ĝK(x) has K distinct real zeros in −1 < x < 1 if ρ > (K − (K +1))2. If
ρ < (K − (K +1))2, ĝK(x) has K −1 distinct real zeros in −1 < x < 1 and another
real zero in x > 1.

If K zeros of ĝK(x) are denoted by {α̂ j,1 ≤ j ≤ K}, the pdf for B̂i is given by

b̂i(t) = 2
√
λμ ρ(K−i)/2e−(λ+μ)t

K

∑
j=1

ĝi(α̂ j)
ĝ′K(α̂ j)

e2
√
λμ α̂ jt , t ≥ 0.

Because ĝK(x)|s=0 = ρ(K+1)/2 it follows that B̂∗
i (0) = 1. The mean first passage

time is given by [9, p. 129]

E[B̂i] =

⎧
⎪⎪⎨

⎪⎪⎩

K − i
μ(ρ−1)

− ρ
−i −ρ−K

μ(ρ−1)2 , ρ 	= 1

(K − i)(K + i+1)
2μ

, ρ = 1
.
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The second moment is given by

E[(B̂i)2] =
(K − i)2

μ2(ρ−1)2 +
(K − i)(1+ρ+2ρ−i +2ρ−K)

μ2(ρ−1)3

−2ρ−i(1−ρ−(K−i))[2ρ+2K(ρ−1)+ρ−K ]
μ2(ρ−1)4

for ρ 	= 1. For ρ = 1, we have

E[(B̂i)2]=
(K−i){(K−i+1)(K − i−1)(K − i−2)+4K[K2 +(3+2i)K+2− i2]}

12μ2 .

12.4 Regeneration Cycle

We may also consider the time interval B̄i between two successive instants at which
the system enters state i. This is the regeneration cycle of state i in the birth-and-
death process. Let B̄∗

i (s) be the Laplace transform of the pdf for B̄i.
In order to find B̄∗

i (s) for 1 ≤ i ≤ K−1, we note that the system started with state
i goes to state i+1 with probability λ/(λ +μ) in an exponentially distributed time
with mean 1/(λ + μ). The state then behaves as the first passage from state 1 to
state 0 in an M/M/1/(K− i) queue. On the other hand, the system started with state
i goes to state i−1 with probability μ/(λ +μ) in an exponentially distributed time
with mean 1/(λ +μ). The state then behaves as the first passage from state i−1 to
state i in an M/M/1/i queue. Such consideration leads to the following results.

For 1 ≤ i ≤ K −1, we have

B̄∗
i (s) =

μ
s+λ +μ

{
[η(s)]K−i−1[η(s)−1]+ [ξ (s)]K−i−1[1−ξ (s)]

[η(s)]K−i[η(s)−1]+ [ξ (s)]K−i[1−ξ (s)]

+
[η(s)]i[1−ξ (s)]+ [ξ (s)]i[η(s)−1]

[η(s)]i+1[1−ξ (s)]+ [ξ (s)]i+1[η(s)−1]

}

=
1
2x

[
gK−i−1(x)
gK−i(x)

+
ĝi−1(x)
ĝi(x)

]

,

where x is defined in (12.3), and gK(x) and ĝK(x) are defined in the preceding sec-
tions. Therefore, we can obtain the pdf for B̄i by inverting B̄∗

i (s) similarly.
The formula for B̄∗

i (s) yields the mean

E[B̄i] =

⎧
⎪⎪⎨

⎪⎪⎩

ρ−i(1−ρK+1)
(λ +μ)(1−ρ)

, ρ 	= 1

K +1
2μ

, ρ = 1
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and the second moment

E[(B̄i)2] =
2ρ−i(1−ρK+1)
(λ +μ)2(1−ρ)

− 4ρ−i[i+(K − i)ρK+1]
(λ +μ)μ(1−ρ)2

+
2ρ−i+1(1−ρK)−2ρ−i(1−ρK+2)+2ρ−2i(1−ρ2(K+1))

(λ +μ)μ(1−ρ)3

for ρ 	= 1. For ρ = 1, we have

E[(B̄i)2] =
(K +1)[2K2 +K +3−6i(K − i)]

6μ2 .

If the state is started with the boundary (i = 0 or i = K), we have

B̄∗
0(s) =

λ
s+λ

B∗
1(s) =

μ
s+λ

· [η(s)]K−1[η(s)−1]+ [ξ (s)]K−1[1−ξ (s)]
[η(s)]K [η(s)−1]+ [ξ (s)]K [1−ξ (s)]

=
√ρ

2
√ρ x−1

· gK−1(x)
gK(x)

with

E[B̄0] =
1−ρK+1

λ (1−ρ)
for ρ 	= 1, E[B̄0] =

K +1
λ

for ρ = 1,

and

B̄∗
K(s) =

μ
s+μ

B̂∗
K−1(s) =

μ
s+μ

· [η(s)]K [1−ξ (s)]+ [ξ (s)]K [η(s)−1]
[η(s)]K+1[1−ξ (s)]+ [ξ (s)]K+1[η(s)−1]

=
1

2x−√ρ · ĝK−1(x)
ĝK(x)

with

E[B̄K ] =
ρ−ρ−K

μ(ρ−1)
for ρ 	= 1, E[B̄K ] =

K +1
μ

for ρ = 1.

12.5 Conclusions

In this chapter, we have derived closed-form explicit expressions for the pdf of the
length of a busy period, the first passage time, and the regeneration cycle in an
M/M/1/K queue. The pdf is expressed as a weighted sum of K negative exponential
distributions with coefficients calculated from K distinct zeros of a polynomial that
involves Chebyshev polynomials of the second kind.

In future work, we will study the busy period and first passage time in other
queueing systems modeled by the birth-and-death process with finite state space.
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Chapter 13
Performance Analysis of ARQ Schemes
in Self-Similar Traffic

Shunfu Jin, Wuyi Yue, and Naishuo Tian

Abstract In this chapter, we present a new method to analyze the performance of
Automatic Repeat reQuest (ARQ) schemes in self-similar traffic. Taking into ac-
count the self-similar nature of a massive-scale wireless multimedia service, we
build a batch arrival queueing model and suppose the batch size to be a random
variable following a Pareto(c,α) distribution. Considering the delay in the setting
up procedure of a data link, we introduce a setup strategy in this queueing model.
Thus a batch arrival GeomX /G/1 queueing system with setup is built in this chapter.
By using a discrete-time embedded Markov chain, we analyze the stationary dis-
tribution of the queueing system and derive the Probability Generation Functions
(P.G.Fs.) of the queueing length and the waiting time of the system. We give the for-
mula for performance measures in terms of the response time of data frames, setup
ratios, and offered loads for different ARQ schemes. Numerical results are given to
evaluate the performance of the system and to show the influence of the self-similar
degree and the delay of the setup procedure on the system performance.

13.1 Introduction

With the rapid development of wireless applications, support for Internet services
with excellent reliability is becoming more and more important [1]. In general, error
control schemes in communication systems can be classified into two categories:
Forward Error Correction (FEC) and Automatic Repeat reQuest (ARQ) schemes [2].

S. Jin
College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
e-mail: jsf@ysu.edu.cn

W. Yue
Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan
e-mail: yue@konan-u.ac.jp

N. Tian
College of Science, Yanshan University, Qinhuangdao 066004, China
e-mail: tiannsh@ysu.edu.cn

W. Yue et al. (eds.), Advances in Queueing Theory and Network Applications, 229
c© Springer Science+Business Media LLC 2009



230 S. Jin et al.

In addition to FEC, ARQ schemes are in most cases used to ensure the transmission
of packet data on higher layers, or are used as hybrid ARQ schemes on MAC/PHY
layers.

It is a generally accepted view that discrete-time systems may be more complex
to analyze than equivalent continuous-time systems. However, [3] has indicated that
it would be more accurate and efficient to use discrete-time queueing models than
continuous-time queueing models when analyzing and designing digital communi-
cation network systems.

The classical discrete-time queueing analyses have been presented in [3] and
[4]. Extensive research of advanced ARQ schemes, as well as some performance
analyses based on ARQ schemes have been conducted in [5]– [7]. In [5], an analysis
of the ARQ feedback types was presented, but no algorithm to select the feedback
was given. In [6], the ARQ mechanism were analyzed in the context of real-time
flows of small packets. The key features and parameters of the ARQ mechanism
were analyzed, and the ARQ block rearrangement, ARQ transmission window, and
ARQ block size were researched in [7].

However, some simplifying assumptions considered in the above studies do not
hold in practice. For example: self-similar behavior was neglected and the setting
up procedure of a data link was omitted. This ignores both the influence of the
self-similar degree as well as the delay of the setting up procedure on the system
performance in such wireless networks.

In order to satisfy the demands of massive-scale wireless multimedia services and
improve the performance of ARQ schemes, more accurate mathematical models that
can faithfully capture the self-similar behavior of computer networks and the setting
up procedure of a data link need to be constructed.

In this chapter, we avoid this unreal simplification to give a more constructed
version, closer in nature to the actual system by considering the self-similar traffic
shown in a service-oriented Internet [9]. Taking into account the delay in the set-
ting up procedure of a data link, we build a batch arrival queueing model with a
setup strategy. The results obtained in this chapter also include those in [8] for the
system having arrivals of data frames. By using a discrete-time embedded Markov
chain approach, we analyze the stationary distribution of the system, and present
the stochastic decomposition of the queueing length and the waiting time. Based on
numerical results, we evaluate the performance of ARQ schemes in terms of the re-
sponse time of data frames, setup ratio, and the system’s offered load. We also show
the influence of the delay in the setup procedure and the self-similar degree on the
system performance.

The chapter is organized as follows. In Sect. 13.2, the system model is described
and some notation definitions are given. In Sect. 13.3, the stationary distribution of
the system is derived. Correspondingly, performance measures for ARQ schemes
are presented in Sect. 13.4. Numerical results are shown in Sect. 13.5 and conclu-
sions are drawn in Sect. 13.6.
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13.2 System Model and Notation

The system under analysis in this chapter consists of a pair of nodes, namely a
transmitter and a receiver. When two adjacent nodes need to communicate with each
other, a data link must be set up. We assume the time axis to be divided into slots
of equal length and batch arrivals to follow a Bernoulli process. There are multiple
data frames in a batch.

Self-similarity is the property we associate with one type of fractal, that is, an ob-
ject whose appearance is unchanged regardless of the scale at which it is viewed [9].
A self-similar process may be constructed by superimposing many simple renewal
reward processes, in which the rewards are restricted to the values 0 and 1, and
the interrenewal times are heavy-tailed. The simplest heavy-tailed distribution is the
Pareto(c,α) distribution [9]. We denote by Λ the number of data frames in a batch
called batch size Λ (frames/slot), which is a random variable. The batch size fol-
lows a Pareto(c,α) distribution. When the transmission of all the data frames in the
output buffer is finished, the data link should be released.

The system works as detailed below.

(1) When a batch arrives in the system, a setup period called “setup period U” is
started, where the setup period U corresponds to a time period for setting up a
new data link using a three-handshake signaling procedure.

(2) After the setup period U finishes, a busy period called “busy periodΘ” begins.
Here we define the busy periodΘ to be a time period in which data frames are
transmitted continuously until the transmitter buffer becomes empty.

(3) When there are no data frames in the output buffer of the transmitter to be
transmitted, the data link is released and the system enters an idle period called
“idle period I”. A batch arriving during the idle period I makes the system enter
a new setup period U again.

This process is repeated.
We define a transmission period B called “transmission period B” as being the

time period taken to successfully transmit a data frame: that is, the time period from
the instant for the first transmission of a data frame to the instant for the departure
of the data frame from the transmitter buffer.

The transmission of a data frame only occurs after the correct reception of all
data frames with a lower identifier, so we can assume that data frames in batches
arriving in the buffer with an infinite capacity are transmitted using a common data
link, one by one, in a First-Come First-Served (FCFS) discipline.

The setup period U and the transmission period B are independent and identical
discrete-time random variables in slots, and are assumed to be generally distributed
with probability distribution uk and bk, Probability Generation Functions (P.G.Fs.)
U(z) and B(z) are as follows:

uk = P{U = k}, k ≥ 1, U(z) =
∞

∑
k=1

ukzk, (13.1)
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bk = P{B = k}, k ≥ 1, B(z) =
∞

∑
k=1

bkzk. (13.2)

Let E[U ] and E[B] be the averages of U and B in slots; we have that

E[U ] =
∞

∑
k=1

kuk, E[B] =
∞

∑
k=1

kbk.

Let E[Λ ] be the average of the batch size Λ . We can give the probability λk, the
P.G.F. Λ(z), and average E[Λ ] of Λ as

λk = P{Λ = k}, k ≥ 0, Λ(z) =
∞

∑
k=0
λkzk, E[Λ ] =

∞

∑
k=0

kλk, (13.3)

where λk is the probability that there are k data frames in a batch per slot. Specif-
ically, λ0 = P{Λ = 0} is the probability that there is no batch (Λ = 0) arrival in a
slot. From (13.1), we also know that the probability of no batch arrival during the
transmission period B is B(λ0) = λB

0 . The ergodic condition is ρ = E[Λ ]E[B] < 1,
where ρ is called the offered load.

Let AU and AB be random variables representing the numbers of data frames
arriving during U and B. We can then give the P.G.Fs. AU (z) and AB(z) of AU and
AB as follows:

AU (z) =
∞

∑
k=1

uk(Λ(z))k = U(Λ(z)),

AB(z) =
∞

∑
k=1

bk(Λ(z))k = B(Λ(z)), (13.4)

where U(Λ(z)) and B(Λ(z)) are composed functions of U(z), B(z), and Λ(z).
We also define Λ(B(z)) to be the P.G.F. of the transmission time of a batch in

slots. Λ(B(z)) can be given as

Λ(B(z)) =
∞

∑
k=0
λk(B(z))k. (13.5)

13.3 Performance Analysis

We assume that data frame arrivals and departures occur only at the boundary of a
slot. Let Qn = Q(τ+

n ) be the number of data frames in the system immediately after
the nth data frame departure. Then {Qn,n ≥ 1} forms an embedded Markov chain.
We define the state of the system by the number Q of data frames in the system at
the embedded Markov points as follows:
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Qn+1 =

{
Qn −1+A(n+1)

B , Qn ≥ 1

Λ ′
+AU +A(n+1)

B −1, Qn = 0,
(13.6)

where A(n+1)
B is the number of data frames arriving during the transmission time of

the (n + 1)th data frame, and Λ ′
denotes the number of data frames that arrive in

a slot under the condition that there is at least one data frame arriving in that slot.
Obviously, the P.G.F. Λ ′

(z) of Λ ′
can be given as

Λ
′
(z) =

Λ(z)−λ 0

1−λ 0
. (13.7)

From (13.6), we can obtain the P.G.F. Q(z) of Q as

Q(z) = P{Q ≥ 1}E
[
zQ+AB−1|Q ≥ 1

]

+P{Q = 0}E
[
zΛ

′
+AU +A(n+1)

B −1|Q = 0
]
, (13.8)

where P{Q = 0} is the probability that there are no data frames to be transmitted
in the system at the embedded Markov points, and P{Q ≥ 1} is the probability that
there is at least one data frame to be transmitted in the system at the embedded
Markov points.

Substituting (13.7) to (13.8), we can give that

Q(z) = P{Q = 0}× B(Λ(z))
B(Λ(z))− z

×
(

1− Λ(z)−λ 0

1−λ 0
U(Λ(z))

)

. (13.9)

Using the normalization condition and the L’Hospital principle in (13.9), we have
that

P{Q = 0} =
(1−ρ)(1−λ 0)

E[Λ ](1+E[U ](1−λ 0))
. (13.10)

Substituting (13.10) to (13.9), then the P.G.F. Q(z) of Q can be obtained as

Q(z) =
(1−ρ)(1−Λ(z))B(Λ(z))

E[Λ ](B(Λ(z))− z)
× 1−λ0 − (Λ(z)−λ 0)U(Λ(z))

1−Λ(z)
. (13.11)

Equation (13.11) implies that Q can be decomposed into two parts (i.e., Q =
Q0 + QU ), where Q0 corresponds to the number of data frames for the classical
queue GeomX /G/1 and QU is the number of data frames added by the setup scheme
considered in this chapter.

The P.G.F. Q0(z) of Q0 can be given as

Q0(z) =
(1−ρ)(1−Λ(z))B(Λ(z))

E[Λ ](B(Λ(z))− z)
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and the P.G.F. QU (z) of QU can be given as

QU (z) =
1−λ 0 − (Λ(z)−λ 0)U(Λ(z))

1−Λ(z)

=
1

1+(1−λ 0)E[U ]
×U(Λ(z))+

(1−λ 0)E[U ]
1+(1−λ 0)E[U ]

× 1−U(Λ(z))
E[U ](1−Λ(z))

.

Obviously, QU (z) equals the P.G.F. of the number of data frames arriving during
the setup period U with the following probability as

1
1+(1−λ 0)E[U ]

.

And QU (z) equals the P.G.F. of the number of data frames arriving during the re-
maining setup period U with the following probability as

(1−λ 0)E[U ]
1+(1−λ 0)E[U ]

.

Let E[X ] and X (2) be the first and second factorial moments of a discrete-time
random variable X by differentiating X(z) with respect to z and evaluating the result
at z = 1 as follows:

E[X ] =
dX(z)

dz

∣
∣
∣
∣
z=1

, X (2) =
d2X(z)

dz2

∣
∣
∣
∣
z=1

.

Based on the above definition, we can give the average E[Q] of Q from (13.11) as

E[Q] = ρ+
Λ (2) +B(2)E3[Λ ]

2E[Λ ](1−ρ)
+

E[Λ ]
(
(1−λ 0)U (2) +2E[U ]

)

2(1+E[U ](1−λ 0))
, (13.12)

where U (2), B(2), and Λ (2) are the second factorial moments of the setup period U ,
the transmission period B, and batch size Λ .

Now, we begin to analyze the waiting time of a data frame. We focus on an
arbitrary data frame in the system called “tagged data frame M”. We note that the
waiting time W of the tagged data frame M can be divided into two parts as follows.
One is the waiting time Wg of the batch to which the tagged data frame M belongs.
The other is the total transmission time J of the data frames before the tagged data
frame M in the same batch. Wg and J are independent random variables, so we have
the P.G.F. W (z) of the waiting time W of the tagged data frame M as follows:

W (z) = Wg(z)J(z), (13.13)

where Wg(z) and J(z) are P.G.Fs. of Wg and J.
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Applying the analysis of the single arrival Geom/G/1 queue model to the setup
in [8], we have that

Wg(z) =
(1−ρ)(1− z)
Λ(B(z))− z

× E[Λ ]+ (1− z−E[Λ ])U(z)
(1+λE [U ]) (1− z)

. (13.14)

Referencing [3], with Λ(B(z)) given in (13.5), we have that

J(z) =
1−Λ(B(z))

E[Λ ](1−B(z))
. (13.15)

Substituting (13.14) and (13.15) to (13.13), then the P.G.F. W (z) and the average
E[W ] of W can be obtained as

W (z) =
(1−ρ)(1− z)
Λ(B(z))− z

× 1−Λ(B(z))
E[Λ ](1−B(z))

× E[Λ ]+ (1− z−E[Λ ])U(z)
(1+λE [U ]) (1− z)

,

E[W ] =
Λ (2)E2[B]+E[Λ ]B(2)

2(1−ρ)
+

E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[B]

2E[Λ ]
. (13.16)

Next, we define the busy cycle called “busy cycle R” as a time period from the
instant in which a busy periodΘ is completed to the instant in which the next busy
periodΘ ends. Obviously, a busy cycle R is composed of three parts: a setup period
U , a busy periodΘ , and an idle period I. Denoted by E[R], E[Θ ], and E[I] the aver-
ages of the busy cycle R, the busy period Θ , and the idle period I, respectively, we
give that

E[R] = E[U ]+E[Θ ]+E[I], (13.17)

where E[U ] is defined in (13.1), and E[θ ] and E[I] are given below.
Let QΘ be the number of data frames at the beginning of a busy period Θ . The

P.G.F. QΘ (z) of QΘ is then given by

QΘ (z) =
Λ(z)−λ0

1−λ0
U(Λ(z)). (13.18)

Each data frame at the beginning of a busy period Θ will introduce a subbusy
period θ . A subbusy period θ of a data frame is composed of the transmission period
B of this data frame and the sum of the subbusy period θ incurred by all the data
frames arriving during the transmission period B of this data frame. All the subbusy
periods brought by the data frames at the beginning of the busy period combine to
make a system busy periodΘ , so we have that

θ = B+θ +θ + · · ·+θ
︸ ︷︷ ︸

AB

, Θ = θ +θ + · · ·+θ
︸ ︷︷ ︸

QΘ

,

where AB is the number of data frames arriving during the transmission period B
presented in Sect. 13.2.
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Considering the Bernoulli arrival process in this system, the P.G.F. θ(z) of θ can
be obtained as follows:

θ(z) = B(z(Λ(θ(z)))),

which yields the average E[θ ] of θ as follows:

E[θ ] =
E[B]
1−ρ . (13.19)

From (13.18), we can obtain the P.G.F.Θ(z) ofΘ as

Θ(z) = QΘ (z)|z=θ(z) =
Λ(θ(z))−λ0

1−λ0
U(Λ(θ(z))). (13.20)

Differentiating (13.20) with respect to z at z = 1 and using (13.19), the average
E[Θ ] ofΘ is then obtained as

E[Θ ] =
E[Λ ](1+(1−λ0)E[U ])

(1−λ0)
× E[B]

(1−ρ)
. (13.21)

The idle period I is a residual interarrival; due to the memoryless geometrically
distributed interarrival time, we can obtain the average E[I] of I as

E[I] =
1

1−λ0
. (13.22)

Substituting (13.21) and (13.22) to (13.17), the average E[R] of the busy cycle R
can be given as

E[R] = E[U ]+
E[Λ ](1+(1−λ0)E[U ])

(1−λ0)
× E[B]

(1−ρ)
+

1
1−λ0

=
1+(1−λ0)E[U ]
(1−λ0)(1−ρ)

. (13.23)

13.4 Performance Analysis for Different Kinds of ARQ Schemes

Based on the analysis presented in Sect. 13.3, we can obtain the following perfor-
mance measurements of the system.

13.4.1 Performance Measures

Response time T is defined as the total delay of a data frame. In our analysis, T is
subdivided into two parts. One is the waiting time W of this data frame, which is
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the time spent in the buffer before its transmission. The other is the corresponding
transmission period B of this data frame. The average E[T ] of T is given as follows:

E[T ] = E[W ]+E[B]. (13.24)

Substituting (13.16) to (13.24), we have that

E[T ] =
Λ (2)E2[B]+E[Λ ]B(2)

2(1−ρ)
+

E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[B]

2E[Λ ]
+E[B]. (13.25)

The setup ratio γ is defined as the number of times that the system goes into the
setup period U in a slot. There is a setup period U in the busy cycle R. The setup
ratio γ can be given by

γ =
1

E[R]
. (13.26)

Substituting (13.23) to (13.26), we have that

γ =
(1−λ0)(1−E[Λ ]E[B])

1+(1−λ0)E[U ]
. (13.27)

We define the offered load ρ as the average number of data frames actually trans-
mitted during a transmission period B, so the offered load ρ is given by

ρ = E[Λ ]E[B]. (13.28)

13.4.2 Performance Analysis for ARQ Schemes

In this subsection, we present the performance analysis for ARQ schemes. There
are three kinds of basic ARQ schemes: Stop-and-Wait ARQ scheme, Go-Back-N
ARQ scheme, and Selective-Repeat ARQ scheme. The principles and the differ-
ences among the different ARQ schemes are shown in Figs. 13.1–13.3.

To give the formulas for the performance measures for different kinds of ARQ
schemes, the following assumptions and notions are introduced.

(1) The transmissions of the ACK frame and the NACK frame are error-free, and
the lengths of the ACK frame and the NACK frame are omitted.

1 2 3 3

1 2 3

NAKACKACK

Sender

Receiver

Fig. 13.1 The principle for a Stop-and-Wait ARQ scheme.
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Sender

Receiver

21

1

2

2

3

3

4

4

5

5

3 4 5 6 7

2 3 4 5

NAK Retransmission from the 
packet 2

Fig. 13.2 The principle for a Go-Back-N ARQ scheme.

Sender

Receiver

2 6 71 2

1 2 3 4 5 7 8

3 4 5 8 9 10

2 6

NAK Retransmission only the 
packet 2

Fig. 13.3 The principle for a Selective-Repeat ARQ scheme.

(2) The rate of the transmission error is e (0 ≤ e ≤ 1). Each data frame is correctly
transmitted with probability v = 1−e (0 ≤ v ≤ 1), and each data frame will be
transmitted or retransmitted until correct reception is achieved.

(3) The round-trip time is assumed to be d slots as a system parameter.

Let N be the number of times of transmission needed for a data frame to be
received correctly. Then the probability distribution and the P.G.F. N(z) of N can be
given as follows:

P{N = n} = (1− v)n−1v, n = 1,2, . . . ,

N(z) =
∞

∑
n=1

P{N = n}zn =
vz

1− (1− v)z
. (13.29)

In the system with a Stop-and-Wait ARQ scheme, we denote by BSW (z), E[BSW ],
and B(2)

SW the P.G.F. B(z), the average E[B], and the second factorial moment B(2)

of the transmission period B, respectively. From (13.25), we can give the average
response time E[T ] denoted by E[TSW ] for a Stop-and-Wait ARQ scheme as follows:

E[TSW ] =
Λ (2)E2[BSW ]+E[Λ ]B(2)

SW
2(1−ρ)

+
E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[BSW ]

2E[Λ ]
+E[BSW ]. (13.30)

Each transmission in a Stop-and-Wait ARQ scheme will take 1 + d slots, no
matter whether the transmission is correct or not. So, BSW (z) [3], E[BSW ], and B(2)

SW
are given as follows:
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BSW (z) = N(z1+d) =
vz1+d

1− (1− v)z1+d , (13.31)

E[BSW ] =
1+d

v
, (13.32)

B(2)
SW =

(1+d)(vd +2(1− v)(1+d))
v2 . (13.33)

Substituting (13.32) to (13.27) and (13.28), we can give the setup ratio γSW and
the offered load ρSW as follows:

γSW =
(1−λ0)(1−E[Λ ]E[BSW ])

1+(1−λ0)E[U ]

=
(1−λ0)(v−E[Λ ](1+d))

v(1+(1−λ0)E[U ])
,

ρSW = E[Λ ]E[BSW ] =
E[Λ ](1+d)

v
.

In the system with a Go-Back-N ARQ scheme, we denote by BGBN(z), E[BGBN ],
and B(2)

GBN the P.G.F. B(z), the average E[B], and the second factorial moment B(2)

of the transmission period B, respectively. From (13.25), we can give the average
response time E[T ] denoted by E[TGBN ] for a Go-Back-N ARQ scheme as follows:

E[TGBN ] =
Λ (2)E2[BGBN ]+E[Λ ]B(2)

GBN
2(1−ρ)

+
E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[BGBN ]

2E[Λ ]
+E[BGBN ]. (13.34)

In a Go-Back-N ARQ scheme, each error transmission occupies 1+d slots, and
the last correct transmission takes one slot. So, BGBN(z) [3], E[BGBN ], and B(2)

GBN are
given as follows:

BGBN(z) =
N(z1+d)

zd =
vz

1− (1− v)z1+d , (13.35)

E[BGBN ] =
1+(1− v)d

v
, (13.36)

B(2)
GBN =

(1− v)(1+d)(2+2d− vd)
v2 . (13.37)

Substituting (13.36) to (13.27) and (13.28), we can give the setup ratio γGBN and
the offered load ρGBN as
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γGBN =
(1−λ0)(1−E[Λ ]E[BGBN ])

1+(1−λ0)E[U ]

=
(1−λ0)(v−E[Λ ](1+(1− v)d))

v(1+(1−λ0)E[U ])
,

ρGBN = E[Λ ]E[BGBN ] =
E[Λ ](1+(1− v)d)

v
.

In the system with a Selective-Repeat ARQ scheme, we denote by BSR(z), E[BSR],
and B(2)

SR the P.G.F. B(z), the average E[B], and the second factorial moment B(2)

of the transmission period B, respectively. From (13.25), we can give the average
response time E[T ] denoted by E[TSW ] for a Stop-and-Wait ARQ scheme as follows:

E[TSR] =
Λ (2)E2[BSR]+E[Λ ]B(2)

SR
2(1−ρ)

+
E[Λ ]U (2) +2E[U ]
2(1+E[Λ ]E[U ])

+
Λ (2)E[BSW ]

2E[Λ ]
+E[BSR].

Each transmission in a Selective-Repeat ARQ scheme, no matter whether it is
correct or not, takes, one slot. So, BSR(z), E[BSR], and B(2)

SR are given as follows:

BSR(z) = N(z) =
vz

1− (1− v)z
, (13.38)

E[BSR] =
1
v
, (13.39)

B(2)
SR =

2(1− v)
v2 . (13.40)

Substituting (13.39) to (13.27) and (13.28), we can also give the setup ratio γSR

and the offered load ρSR as follows:

γSR =
(1−λ0)(1−E[Λ ]E[BSR])

1+(1−λ0)E[U ]

=
(1−λ0)(v−E[Λ ])
v(1+(1−λ0)E[U ])

,

ρSR = E[Λ ]E[BSR] =
E[Λ ]

v
.

13.5 Numerical Results

In line with prevalent wireless network applications, we let the transmission rate be
50 Mbps. To ensure that the latest conflict signal is sensed by the transmitter before
a data frame is completely sent out, we assume the size of a data frame to be 1,250
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bytes and the round-triptime to be 0.1 ms. The setup period U follows a geometrical
distribution with an average value of 0.2 ms.

At the same time, taking into account the burst data shown in Internet traffic, we
suppose the batch size Λ to be a Pareto(c,α) distribution with λk = ck−(α+1), k =
0,1, . . . , where c is a normalization factor for ∑∞k=1λk = 1, and the parameter α is
related to the Hurst factor H by H = (3−α)/2,0.5 < H < 1,1 <α < 2. The smaller
the result of α is, the more the burst is shown in Internet traffic. Especially, there
is no self-similarity when α = 2. Some research shows that the transmission mode
of the browser shows self-similarity [9] with α = 1.16− 1.5 and the data of each
signal source are self-similar [10] with α = 1.2.

With these parameters, we show the setup ratio γ and offered load ρ as functions
of the batch arrival rate λg = 1−λ0 (batches/slot) with the rate of the transmission
error e = 0.1 under the burst degree of α = 1.2,1.6,2.0, respectively. For differ-
ent kinds of ARQ schemes in Figs. 13.4–13.9, where α = 2.0 means that there is
actually no self-similarity.

In Figs. 13.4–13.6, we show how the setup ratio γ changes with the batch arrival
rate λg with the rate of the transmission error e = 0.1 and with the parameter of
burst degree α = 1.2,1.6,2.0 for different ARQ schemes. It should be noted that
for all the burst degree parameters, the setup ratio γ experiences a two-stage trend.
In the first stage, the setup ratio γ will increase along with the batch arrival rate
λg. During this stage, the greater the batch arrival rate λg is, the higher the number
of data frames arriving in the idle period I will be, and the greater the number of
times needed for the setup procedure will be. In the second stage, the setup ratio
γ will decrease with the incremental batch arrival rate λg. During this period, the
greater the batch arrival rate λg is, the higher the number of data frames arriving in
the busy periodΘ will be, and these data frames can be transmitted directly without
any setup procedure.

Fig. 13.4 Setup ratio γ for a Stop-and-Wait ARQ scheme.
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Fig. 13.5 Setup ratio γ for a Go-Back-N ARQ scheme.

Fig. 13.6 Setup ratio γ for a Selective-Repeat ARQ scheme.

There is a maximal setup ratio γ for all the burst degree parameters, and it can also
be observed that the larger the burst degree parameter α is, the greater the maximal
setup ratio γ will be, and we can conclude that if we omitted any self-similar Internet
traffic, the setup ratio γ would be overevaluated.

In Figs. 13.7–13.9, we compare the offered load ρ with the rate of the transmis-
sion error e = 0.1 versus batch arrival rate λg for the parameters of burst degree
α = 1.2,1.6, 2.0 for different ARQ schemes. It can be found that with an increas-
ing batch arrival rate λg, the offered load ρ increases also for all the ARQ schemes
and all the parameters of burst degree. It should be noted that for the same batch
arrival rate λg, the lower the parameter of burst degree α is, the larger the offered
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Fig. 13.7 Offered load ρ for a Stop-and-Wait ARQ scheme.

Fig. 13.8 Offered load ρ for a Go-Back-N ARQ scheme.

load ρ will be for all the ARQ schemes. Therefore, we can conclude that if the
self-similarity is not considered, the offered load ρ would be underevaluated.

Due to the finite first factorial moment and the infinite second moment of a Pareto
distributed stochastic variable, some other performance measures such as the av-
erage response time E[T ] in (13.24) are difficult to calculate analytically. So we
present the change trend of average response time E[T ] by using the method of
simulation.

There is no ready Pareto function in most simulation tools such as Matlab to be
used, so we use an inverse function method to generate random number sequences
following the Pareto distribution.
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Fig. 13.9 Offered load ρ for a Selective-Repeat ARQ scheme.

Table 13.1 Response time E[T ] of different ARQ schemes for various λg with α = 1.2 and e = 0.1.

Batch Arrival Rate λg 0.001 0.02 0.04 0.06 0.08 0.10

Stop-and-Wait ARQ 2.96 39.17 41.30 517.66 1414.30 14087
Go-Back-N ARQ 5.22 77.13 113.14 731.88 4655.90 6130
Selective-Repeat ARQ 5.44 413.99 2671.40 3453.50 6645.60 24328

The general discrete distribution is characterized as follows:

pk = P{X = k}, k ≥ 0,

F(m) =
m
∑

k=0
pk, m ≥ 0.

(13.41)

By using a random numbers generation function, we generate random numbers of a
1×n vector named M whose elements are uniformly distributed in the interval (0,1).
On the other hand, following the inverse function method, we introduce another
1× n vector named N whose elements are set by N(i) = min{m : F(m) > M(i)},
where F(m) is given in (13.41) and m ≥ 1, i ≥ 1. In this way, the data in the vector
N will be Pareto distributed.

The change trend of average response time E[T ] for different ARQ schemes when
α = 1.2 and e = 0.1 with various λg is presented in Table 13.1. The measurement
of average response time E[T ] behavior for different ARQ schemes when α = 1.2
and λg = 0.04 with various error rates e is shown in Table 13.2.

From Tables 13.1 and 13.2, we can observe that with an increasing batch ar-
rival rate λg or an increasing error rate e, the average response time E[T ] increases
also and tends to be infinite for all the ARQ schemes. This is because of the self-
similarity shown in the size of the data frame batch, which is in fact the reason why
network performance deteriorates in self-similar traffic.
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Table 13.2 Response time E[T ] of different ARQ schemes for various e with α = 1.2 and λg =
0.04.

Error Rate e 0.02 0.06 0.10 0.14 0.18 0.22

Stop-and-Wait ARQ 17.065 26.081 41.30 64.139 2256.7 7957.9
Go-Back-N ARQ 15.268 63.604 113.14 173.91 686.78 778.46
Selective-Repeat ARQ 70.924 228.49 2671.40 2699.6 7813.5 9924.8

13.6 Conclusions

In this chapter, we presented a new method to analyze the performance of high-
reliability Internet systems in self-similar traffic with ARQ schemes. Considering
the self-similar nature widely shown in Internet traffic and the setting up procedure
of a data link, we built a batch arrival GeomX /G/1 queue model with a setup strat-
egy. We analyzed the stationary distribution of the system, derived the Probability
Generation Functions (P.G.Fs.) of the queueing length and the waiting time of the
system. Correspondingly, we gave the formula for performance measures in terms
of response time, setup ratio, and offered load for different kinds of ARQ schemes.
We presented numerical results to evaluate and compared these performance mea-
sures, and to show the influence of the burst degree in self-similar traffic and the
delay in the setup procedure on the system performance.
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Chapter 14
Modeling of P2P File Sharing
with a Level-Dependent QBD Process

Sophie Hautphenne, Kenji Leibnitz, and Marie-Ange Remiche

Abstract In this chapter we propose to analyze a peer-to-peer (P2P) file sharing sys-
tem by means of a so-called level-dependent Quasi Birth-and-Death (QBD) process.
We consider the dissemination of a single file consisting of different segments and
include a model for the upload queue management mechanism with peers compet-
ing for bandwidth. By applying an efficient matrix-analytic algorithm we evaluate
the performance of P2P file diffusion in terms of the corresponding extinction prob-
ability, that is, the probability that the sharing process ends.

14.1 Introduction

With the introduction of peer-to-peer (P2P) technology in networks for file sharing
and content distribution, the volume of transported traffic has recently enormously
increased. The nodes participating in the P2P network are called peers and form log-
ical overlay structures on the application layer above the IP topology; see Fig. 14.1.
One of the main advantages of using P2P networks for content distribution is their
high scalability to a growing number of file requests, especially in the presence of
flash crowd arrivals [1]. Unlike conventional client/server architectures, all peers act
simultaneously as clients and servers, thus shifting the load from a single server to
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Fig. 14.1 A P2P network consists of peers forming a logical overlay network above the IP
topology.

several peers sharing a specific file. Additionally, because the source of a file is no
longer stored at a single location, the P2P network is more robust to failures.

However, there are also certain dangers in entirely relying on P2P networks for
file distribution. Firstly, as the data are no longer kept at a single trusted source, each
peer that hosts the file may modify the data willingly or unwillingly, thus causing the
distribution of corrupt information. This is referred to as poisoning or pollution [2].
Secondly, the existence of a sharing peer in the network cannot be guaranteed due
to churn (i.e., the process of peers entering and leaving the network). The sharing
of files is controlled by the peers’ behavior (willingness to share after downloading,
patience, etc.) and they may arbitrarily join or leave the network at any instant [3].
If the peer, which has the last part of the file, leaves the network, this information
is lost and other peers can no longer retrieve the data. For this reason, specific P2P
architectures (e.g., Chord [4]) employ mechanisms to maintain a certain number of
replicas of a file in the network.

In this chapter we study the probability that the diffusion of a file will eventually
come to a halt in an unstructured P2P file sharing network, which we define as
the extinction of the file. We extend our previous model in [5], where we used a
Markovian Binary Tree (MBT) to model the file sharing network and we formulated
an algorithm to compute the extinction probability. However, the previous model
only considered the sharing of entire files. In this chapter, we extend the model to
include the sharing of individual parts of the file to reflect a more accurate behavior.
This is achieved by using a level-dependent Quasi Birth-and-Death (QBD) process.
By adapting the logarithmic-reduction algorithm (see Latouche and Ramaswami
[6]), we actually compute the probability that file diffusion ends due to the lack of
peers sharing a part of the file.

This chapter is organized as follows. First, we briefly summarize some re-
lated work on modeling of P2P file sharing mechanisms for content distribution
in Sect. 14.2. This is followed by the formulation of our basic assumptions on the
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file sharing network in Sect. 14.3. Although we consider a P2P network that roughly
resembles the eDonkey protocol, the model is general enough to be easily applied to
other file sharing protocols as well. In Sect. 14.4 we formulate two analytical mod-
els corresponding to two different systems in which either the sharing process stops
when the entire file is lost or when any of the segments is missing. Accordingly,
we construct the corresponding level-dependent QBD process and we develop al-
gorithms necessary to obtain the extinction probability in both settings. We provide
some numerical results showing the impact of the system parameters on the perfor-
mance of the system in Sect. 14.5. Finally, conclusions are drawn in Sect. 14.6.

14.2 Related Work

A growing number of studies can be found dealing with the modeling and perfor-
mance evaluation of P2P file sharing networks. In this section we only highlight
a few of them that we consider relevant to this chapter. Most studies on the eval-
uation of P2P systems as content distribution networks rely on measurements or
simulations of existing P2P networks. For example, Saroiu et al. [7] conducted mea-
surement studies of content delivery systems that were accessed by the University
of Washington. The authors distinguish between traffic from P2P, WWW, and the
Akamai content distribution network, and they found that the majority of volume
is transported over P2P. In [8], a measurement-based traffic profile of the eDonkey
network is provided and reveals that there is a strong distinction between download
flows and nondownload streams. Similar studies exist for the Gnutella network [9]
and BitTorrent [10], as well. Hoßfeld et al. [11] provide a simulation study of the
eDonkey network and examine the file diffusion properties under constant and flash
crowd arrivals.

An analytical model for performance evaluation of a generalized P2P system is
given by Ge et al. [12]. On the other hand, other published work mostly consid-
ers specific existing applications. For example, Qiu and Srikant [13] used a fluid
model for BitTorrent and investigate the performance in steady state. They studied
the effectiveness of the incentive mechanism in BitTorrent and proved the existence
of a Nash equilibrium. Rubenstein and Sahu [1] mathematically showed that un-
structured P2P networks have good scalability and are well suited to cope with flash
crowd arrivals. A fluid-diffusive P2P model from statistical physics is presented by
Carofiglio et al. [14]. Both the user and the content dynamics are included, but this
is only done on the file level and without pollution. All these studies show that by
providing incentives to the peers for sharing a file, the diffusion properties are im-
proved. Yang and de Veciana [15] investigated the service capacity of P2P networks
by considering two models, one for the transient state with flash crowds and one in
steady state.

Christin, Weigend and Chuang [2] measured content availability of popular P2P
file sharing networks and used these measurement data for simulating different pol-
lution and poisoning strategies. They show that only a small number of fake peers
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can seriously affect the user’s perception of content availability. In [16], a diffu-
sion model for modeling eDonkey-like P2P networks is presented based on a model
from mathematical biology. This model includes pollution and a patience threshold
at which a peer aborts its download attempt and retries again later. It is shown that
an evaluation of the diffusion process is not accurate enough when steady state is as-
sumed or the model only considers the transmission of the complete file, especially
in the presence of flash crowd arrivals. That model is extended in [17] to analyti-
cally compare the performance of P2P file sharing networks to that of client/server
systems.

14.3 Peer-to-Peer File Sharing Model

Let us now define the assumptions we make on the P2P file sharing model in this
chapter. We assume an unstructured P2P network operating similar to the eDon-
key network. However, our model is not restricted to eDonkey, but can in fact be
applied to other file sharing networks as well. The sharing of a file with size F is
performed in units of chunks, which are further split into smaller units called blocks;
see Fig. 14.2. In eDonkey, a chunk has the size of 9.28 MB and a block is 180 kB.
After each chunk has been downloaded, it is checked for errors and if the hash value
is incorrect, all blocks of the chunk are discarded and downloaded again. After all
chunks of a file have been successfully downloaded, the peer may decide to keep
the file as a seeder in the network for other peers to download or to remove the file
from sharing (leecher or free rider). In this work, we assume that the file consists
only of a single chunk, corresponding, for example, to a single mp3 audio file, as
this is enough to capture the basic characteristics of the diffusion behavior.

14.3.1 Upload Queue Management and File Segmentation

In order to manage the bandwidth for other peers requesting the file, an upload
queue mechanism is maintained. A peer requests individual blocks from other peers

1 i Nc

1 j Ns

1 k Nb

Fig. 14.2 File structure consisting of chunks, segments, and blocks.
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sharing the chunk that contains the desired block. All requests are appended to the
waiting list of the sharing peer and a weighting mechanism handles the scheduling
of the upload queue requests for transmission. The detailed procedure of the queue
management takes several features into account that depend on the individual set-
tings of the sharing peer such as upload bandwidth and number of simultaneous
uploads.

In our model, an approximative assumption simplifies the upload queue manage-
ment behavior [11]. If a peer downloads a block from another peer, additional blocks
might be of interest, if the providing peer is not already sharing the complete file.
The weighting mechanism takes this into account by giving higher priority to peers
from which blocks had been previously downloaded. We include this interaction by
considering that not individual blocks, but rather a series of blocks is downloaded
at a time after moving from the waiting list to the uploading list. The waiting list is
modeled as a FIFO (first-in-first-out) queue and the number of consecutively down-
loaded blocks can be obtained from measurements [8] through the average data
volume downloaded per sharing peer.

In the original version of eDonkey, error detection is done after all blocks of a
chunk have been received and the complete chunk is discarded in the case of an
error. However, this is not very effective and in more recent versions of eDonkey
clients (e.g., eMule), the Intelligent Corruption Handling (ICH) mechanism is im-
plemented which performs an error detection on smaller data units than chunks and
that we define in the following as segments. Instead of discarding the complete
chunk when at least one corrupted block is received, only all blocks of the damaged
segment need to be requested again. The actual size of a segment depends on the
specific settings of the ICH mechanism.

With the assumptions on the upload queue mechanism and corruption handling,
it is sufficient to consider that a chunk only needs to be modeled consisting of few
segments instead of several individual blocks. In this study we assume that a chunk
consists of two segments (i.e., Ns = 2) and the size of a segment is Z = 4.64 MB.
The size of the whole file F is less than or equal to 9.28 MB.

14.3.2 Download Bandwidth

Let us define the upload and download rates as ru and rd , respectively. For the sake
of simplicity, we use the same assumption as in [16] of homogeneous users with
ADSL connections, resulting in rates of ru = 128 kbps and rd = 768 kbps. Fur-
thermore, let us denote the number of peers sharing a certain segment as S and the
peers downloading it as D. Because eDonkey employs a fair share mechanism for
the upload rates, there are on average S/D sharing peers serving a single download-
ing peer and we multiply this value with ru. This gives us the bandwidth on the
uplink.

However, because the download bandwidth could be the limiting factor,
the effective downloading rate of a segment consists of the minimum of both
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terms, that is, min(S/Dru,rd). When downloading a segment of size Z, the term
min(S/Dru,rd)/Z represents the proportion of the segment that is downloaded in
one unit of time, thus, the rate at which we may observe the arrival of new peers
that have completely downloaded the file. We call this rate the effective transition
rate. It is worth noting that in general the effective downloading rate depends on
the interaction of the peers within the system (namely the number of downloaders
and the number of peers sharing the segment) and on the size of segment that is
effectively downloaded.

14.4 Analytical P2P File Sharing Model

Let us consider a chunk to be made up of two segments: segment 1 and segment 2 of
respective sizes Z and F −Z, where F , as defined earlier, is the size of the complete
file. We end up with three categories of peers; namely, peers with segment 1 or 2
and peers that have both segments. We say that a peer is in phase i (i = 1,2) when
it possesses only segment i and in phase 3 in the case where it has both segments.
New peers are assumed to appear at random times in the system determined by
an exponential random variable whose rate depends both on the effective transition
rate we introduced above and on the current state of the system, that is, the number
of peers Si in each phase i = 1,2, or 3. For the sake of simplicity, we can assume
that the rate at which a peer stops sharing a segment is independent of the segment
number, and is equal to d. The ensuing model is now described.

Let us now define the stochastic process {(X(t),ϕ(t))}, where X(t) counts the
total number of peers present in the system at time t, and ϕ(t) = (ϕ1(t),ϕ2(t),ϕ3(t))
denotes the number of peers in each phase present in the system at time t, with
ϕ(t)1 = X(t). Here, 1 denotes a vector with ones.

We consider two views to measure the extinction probability of the file sharing
process, an optimistic and a pessimistic view. In the optimistic view, we assume that
the sharing process ends when no more segments are available in the system. In the
pessimistic case, the file sharing process ends as soon as one of the two segments is
missing. We call the latter event a catastrophe. Let us explain each resulting model
in turn.

14.4.1 Level-Dependent QBD

In this first setting, recall that the sharing process ends when there are no more seg-
ments available in the system. The stochastic process {(X(t), ϕ(t))} is an absorbing
level-dependent quasi birth-and-death process, of which the generator Q can be
written as
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Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 · · ·
A(1)

2 A(1)
1 A(1)

0 0 0 0 · · ·
0 A(2)

2 A(2)
1 A(2)

0 0 0 · · ·
0 0 A(3)

2 A(3)
1 A(3)

0 0 · · ·
...

...
. . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.1)

This process has been extensively studied in the past (see Latouche and
Ramaswami [6] and references therein). In this setting, the time to extinction
of the system is clearly equal to the time until absorption. In the remainder of this
section, we first elaborate on the content of the A( j)

i matrices (with i = 0,1,2 and
j ≥ 1) and then give the algorithmic procedure in order to compute the absorption
probability in this level-dependent QBD with generator Q.

14.4.1.1 Level-Dependent QBD Generator Description

When the system is in state (S1,S2,S3), it means that we have S1 peers in phase 1
(with only segment 1), S2 peers in phase 2 (with only segment 2), and S3 peers in
phase 3 (with the complete file). We define the state subspace L(k), k ∈ N, as

L(k) = {(S1,S2,S3) : S1 ≥ 0,S2 ≥ 0,S3 ≥ 0; S1 +S2 +S3 = k} ,

which gives all states of the system at level k, that is, when k peers are present in the
system. Its cardinality is clearly

|L(k)| = 1
2
(k +2)(k +1)

and we take the lexicographic order to enumerate the states of each level.
Before proceeding with the description of the transition matrix, we define two

functions of crucial interest in the following; these are

μi(S,D) =
1
Zi

min
{

S
D

ru,rd

}

, i = 1,2, (14.2)

where Z1 = Z and Z2 = F −Z are the sizes of each segment and S and D are the
number of all peers currently sharing and downloading the segment, respectively.

When the system contains a single peer (i.e., when its state is in L(1)), this peer
may stop sharing the one segment it possesses with rate d (the system then moves
to L(0)) or another peer may start downloading the segment (the system is thus in
L(2)). The first event occurs at a rate recorded by A(1)

2 ; that is,

A(1)
2 =

⎡

⎣
d
d
d

⎤

⎦ .
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The latter case occurs at a rate given by the matrix A(1)
0 as

A(1)
0 =

⎡

⎣
μ1(1,1) 0 0 0 0 0

0 0 0 μ2(1,1) 0 0
0 0 μ1(1,1) 0 μ2(1,1) 0

⎤

⎦ .

Indeed, if the system is in state (0,1,0), for example, only a new peer with segment
2 may appear; that is, the system moves towards state (0,2,0). This happens at a
rate μ2(1,1); see (14.2).

Usually, a peer may also perform a change of phase, that is, from 1 to 3 or from 2
to 3. Such a transition keeps the level at 1 because no new peer arrives in the system.
However, if a peer in phase 1 (or phase 2) is alone in the system, it will not be able
to download the missing segment and to change into phase 3. Thus, the transition
rate from phase 1 (or from phase 2) to phase 3 when the system is in level 0, is
μi(0,1) = 0 for i = 1,2 in that particular case. The diagonal elements of A(1)

1 (and
of all A(k)

1 , k ≥ 2) are such that Q1 = 0. It finally gives

A(1)
1 =

⎡

⎣
−d −μ1(1,1) 0 0

0 −d −μ2(1,1) 0
0 0 −d −μ1(1,1)−μ2(1,1)

⎤

⎦ .

The possible transitions from a state (S1,S2,S3) ∈ L(k) with k ≥ 2 are described
below.

A(k)
2 : This matrix records the rate at which the system may lose a peer. A peer

in phase i disappears with rate d. This latter is multiplied by the number of
peers in phase i, that is, Si with i = 1,2,3.

A(k)
0 : This matrix explains at which average rate a new peer may arrive in the sys-

tem. There exist two possible transitions, listed in the table below. They both
may be interpreted with a similar argumentation, so we limit our explana-
tion to only the first case of possible transitions. The effective downloading
rate of a new peer with segment 1 is determined as usual as the minimum
between its own physical downloading rate rd and a rate which depends on
the number of peers that are sharing the available total upload bandwidth.
Segment 1 is available to peers in phases 1 and 3. However, although there
are only S2 peers interested in downloading segment 1 from peers in phase
1, there are S1 +S2 peers interested in downloading segment 1 or segment 2
from peers in phase 3. It is important to take into account the S1 supplemen-
tary peers because they also share the available upload bandwidth at peers
in phase 3. This leads to an effective transition rate of

μ3(S1,S2,S3) =
1
Z

min
{(

S1

S2 +1
+

S3

S1 +S2 +1

)

ru,rd

}
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Table 14.1 Transitions and rates for matrix A(k)
0 .

Transitions Rates

(S1,S2,S3) → (S1 +1,S2,S3) μ3(S1,S2,S3)
(S1,S2,S3) → (S1,S2 +1,S3) μ4(S1,S2,S3)

Table 14.2 Transitions and rates for matrix A(k)
1 .

Transitions Rates

(S1,S2,S3) → (S1 −1,S2,S3 +1) μ2(S2 +S3,S1)
(S1,S2,S3) → (S1,S2 −1,S3 +1) μ1(S1 +S3,S2)
Diagonal element Parameter of the exponential
(S1,S2,S3) → (S1,S2,S3) −k d −μ3(S1,S2,S3)−μ4(S1,S2,S3)

−μ2(S2 +S3,S1)−μ1(S1 +S3,S2)

and accordingly to

μ4(S1,S2,S3) =
1

F −Z
min

{(
S2

S1 +1
+

S3

S1 +S2 +1

)

ru,rd

}

for the case of a new peer appearing in phase 2. Table 14.1 summarizes the
transitions and their corresponding rates.

A(k)
1 : A peer in phase 1 turns into a peer in phase 3 with the rate μ2(S2 + S3,S1),

because S1 peers are competing for the (S2 +S3)ru available bandwidth. The
same argument holds for a peer in phase 2 changing into a peer in phase 3.
Let us recall that the diagonal elements are such that Q1 = 0. The corre-
sponding transitions and rates are shown in Table 14.2.

14.4.1.2 Probability of Extinction

Our interest lies in computing the probability that the sharing process in the partic-
ular system setting described in the previous section will terminate at some point.
Let γ(0) be the first time the system is in level 0; that is no segment is available.
Let ei be a unit vector with a 1 at the ith entry and 0 elsewhere. In this chapter, an
empty product is, by convention, equal to the identity matrix (for l = 0 in (14.3), for
instance). We define (G1)i as the probability that the system starting in level 1 with
ϕ(0) = ei will eventually reach level 0; that, is,

(G1)i = P [γ(0) < ∞ |ϕ(0) = ei] i = 1,2,3.

It was proven in [19] that this vector is explicitly given by

G1 =
∞

∑
l=0

[
l−1

∏
i=0

Ui
2i

]

Dl
2l , (14.3)
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where

Ui
2i = P

[
γ(2i+1) < γ(0) ∧ ϕ(γ(2i+1)) |X(0) = 2i] ,

Dl
2l = P

[
γ(0) < γ(2l+1) ∧ ϕ(γ(0)) |X(0) = 2l

]

and where γ(k) is defined as the first passage time to level k; that is,

γ(k) = inf{t ≥ 0 : X(t) = k}

with k ≥ 0. Accordingly, we have
[

l−1

∏
i=0

Ui
2i

]

Dl
2l = P[γ(2l) < γ(0) < γ(2l+1) ∧ ϕ(γ(0)) |X(0) = 1], (14.4)

that is, the probability that the process starting from level 1, first visits level 2l , then
visits level 0 before visiting level 2l+1. Summing (14.4) over l = 0 to infinity clearly
gives G1.

The matrices Ul
k and Dl

k, respectively, of dimensions |L(k)| × |L(k + 2l)| and
|L(k)|× |L(k−2l)|, are given by the following recursive equations:

U0
k =

(
−A(k)

1

)−1
A(k)

0 , (14.5)

D0
k =

(
−A(k)

1

)−1
A(k)

2 , (14.6)

Ul
k =

[
I −Ul−1

k Dl−1
k+2l−1 −Dl−1

k Ul−1
k−2l−1

]−1
Ul−1

k Ul−1
k+2l−1 , l ≥ 1, (14.7)

Dl
k =

[
I −Ul−1

k Dl−1
k+2l−1 −Dl−1

k Ul−1
k−2l−1

]−1
Dl−1

k Dl−1
k−2l−1 , l ≥ 1. (14.8)

Note that for k = 2l the matrix Dl
k will become a vector. A clear proof is given

in [19]. The sum in (14.3) needs to be truncated in order to numerically evaluate
G1. This matter is discussed by Latouche and Ramaswami in [6] and is addressed
in our context in Sect. 14.5.

14.4.2 Level-Dependent QBD with Catastrophes

The model in the previous section considered that the file dissemination terminates
when no more segments are available for sharing in the system. However, in reality
when only an individual segment or an incomplete file remains in the network, no
peer is able to retrieve the file completely anymore. Therefore, we now consider that
a file is not available for sharing as soon as one of its segments is lost. In this case,
the process ends in an absorbing state defined as belonging to L(0) which is defined
in this new setting as
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L(0) = {(0,0,0),(n,0,0),(0,n,0); n ∈ N0} ,

where N (respectively, N0) is the set of natural numbers (respectively, strictly
positive natural numbers). We propose not to differentiate for any n ∈ N0 be-
tween the states (n,0,0) and (0,n,0), but instead define a kind of metastate la-
beled (k,0,0) and (0,k,0) that gathers all of these states (n,0,0) and (0,n,0) for
n ∈ N0, respectively. The subspace L(0) is, thus, composed of three states, that is
{(0,0,0),(k,0,0),(0,k,0)} and is an absorbing level. Other level state-spaces are
for k ≥ 1:

L(k) = {(i, j, l) | i, j ∈ N, l ∈ N0, i+ j + l = k}∪{(i, j,0) | i, j ∈ N0, i+ j = k} .
(14.9)

The time to extinction is still equal to the time to absorption and the generator of
this new level-dependent QBD is given in (14.10) as follows:

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 · · ·
A(1)

2 A(1)
1 A(1)

0 0 0 0 · · ·
A(2)

3 A(2)
2 A(2)

1 A(2)
0 0 0 · · ·

A(3)
3 0 A(3)

2 A(3)
1 A(3)

0 0 · · ·
...

...
. . . . . . . . . . . . . . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (14.10)

The rates of catastrophe, determined by matrix A(k)
3 , are given by the transitions

and corresponding rates in Table 14.3. Accordingly, matrix A(k)
2 becomes as shown

in Table 14.4.
The other transitions in matrices A(k)

0 and A(k)
1 stay the same as previously de-

scribed in Sect. 14.4.1.1 for the first model, taking care of the states that now belong
to the subspace L(k), as defined in (14.9).

Table 14.3 Transitions and rates for matrix A(k)
3 .

Transitions Rates

S2 > 0 : (0,S2,1) → (0,k,0) d
S2 > 0 : (1,S2,0) → (0,k,0) d
S1 > 0 : (S1,0,1) → (k,0,0) d
S1 > 0 : (S1,1,0) → (k,0,0) d

(0,0,1) → (0,0,0) d

Table 14.4 Transitions and rates for matrix A(k)
2 with catastrophes.

Transitions Rates

S1 > 1 or S3 > 0 : (S1,S2,S3) → (S1 −1,S2,S3) S1 d
S2 > 1 or S3 > 0 : (S1,S2,S3) → (S1,S2 −1,S3) S2 d
(S1 > 0 and S2 > 0) or S3 > 1 : (S1,S2,S3) → (S1,S2,S3 −1) S3 d
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The extinction probability can now be computed by extending the results by Bean
and Latouche [18] to the level-dependent case. The authors in [18] analyze QBD
processes with catastrophes as defined in our setting. However, their phase state-
space is of infinite size, whereas in our setting this is no longer the case and makes
the problem easier to handle from a numerical viewpoint.

We first define G(k)
0 as a matrix whose (i, j)th element is the probability that the

process reaches level 0 for the first time in phase j, given that the process starts in
phase i of level k ≥ 1 and levels 1 to k− 1 are taboo. Let Gk be the matrix whose
(i, j)th element is the probability that the process reaches level k − 1 for the first
time in phase j, given that the process starts in phase i of level k ≥ 1. The extinction
probability is then given by G1 which is here also equal to G(1)

0 by definition of this
quantity. Moreover, we have for k ≥ 2 that Gk is given by

Gk =
(

A(k)
1

)−1
A(k)

2 +
(

A(k)
1

)−1
A(k)

0 Gk+1 Gk. (14.11)

Indeed, starting from level k, the QBD may directly move to level k−1 with proba-
bility

(
A(k)

1

)−1 A(k)
2 , or it may move up to level k +1 with probability

(
A(k)

1

)−1 A(k)
0 .

Upon arrival in level k + 1, it eventually returns to level k with probability Gk+1
and then to level k−1 with probability Gk. However, the equation for G1 is slightly
different and is given by

G1 =
(

A(1)
1

)−1
A(1)

2 +
(

A(1)
1

)−1
A(1)

0

[
G2 G1 +G(2)

0

]
.

If the process moves up to level 2 with probability
(
A(1)

1

)−1 A(1)
0 (the second term in

this sum), then to reach level 0, it may first return to level 1 with probability G2 and
then move to level 0 with probability G1. It may also be directly absorbed in level 0
this time without returning to level 1 first. This happens with probability G(2)

0 . Thus,

to compute G1, we need to know G2 and G(2)
0 . More generally, G(k)

0 satisfies the
following recursive equation:

G(k)
0 =

(
A(k)

1

)−1
A(k)

3 +
(

A(k)
1

)−1
A(k)

0

[
Gk+1 G(k)

0 +G(k+1)
0

]
. (14.12)

Its interpretation follows directly from the definition of G(k)
0 using the same argu-

ment as before. Thus, writing Q(k)
i =

(
−A(k)

1

)−1 A(k)
i , 0 ≤ i ≤ 3, we have explicitly

G(k)
0 =

[
I −Q(k)

0 Gk+1

]−1 [
Q(k)

3 +Q(k)
0 G(k+1)

0

]
. (14.13)

This implies that to obtain G(2)
0 we need G(3)

0 and so on. So, we have to truncate
the QBD after some level M to be able to start the recursion. We start computing
GM using the logarithmic-reduction algorithm as described in [19]; that is,
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GM =
∞

∑
l=0

[
l−1

∏
i=0

Ui
M−1+2i

]

Dl
M−1+2l , (14.14)

where the matrices Ul
k and Dl

k are given by (14.5)–(14.8). Accordingly, we obtain
the matrices GM−1, GM−2, . . . , G2 with (14.11). Using (14.13), we finally end up
with the following system, which provides us the extinction probability G1:

G(M)
0 = Q(M)

3 ,

G(M−1)
0 =

[
I −Q(M−1)

0 GM

]−1 [
Q(M−1)

3 +Q(M−1)
0 G(M)

0

]
,

...

G(1)
0 =

[
I −Q(1)

0 G2

]−1 [
Q(1)

2 +Q(1)
0 G(2)

0

]
= G1.

By truncating the QBD at level M, we actually compute the extinction probability
under the taboo of level M + 1, but a sufficiently large M will provide us a good
approximation of this extinction probability.

14.5 Numerical Evaluation

Let us now consider the numerical evaluation of the proposed models, starting with
the analysis of the optimistic case. We assume that initially there is a single source
sharing both segments in the network, so the system starts at state (0,0,1). The
accuracy of our proposed algorithm for computing the extinction probabilities in
Sect. 14.4.1 depends on the term l, at which the infinite sum in (14.3) is truncated.
Experiments show that in our case the accuracy for l = 3 is already sufficient.

The resulting extinction probability as a function over the death rate is illustrated
in Fig. 14.3 for file sizes of F = 9.28 MB and F = 6.8 MB, with Z = 4.64 MB
as defined earlier being the size of the first segment. The smaller file size has the
effect that the second segment is transmitted faster and thus more copies of it exist
in the network, which reduces the overall extinction probability slightly. In general,
this result can be interpreted as follows. The average death rate d corresponds to the
reciprocal of the average sharing time of a peer in the system in seconds. Thus, in
order for the content provider to keep a low extinction probability of about 0.01, he
should provide incentives that a peer remains in the system for at least 100 s.

We now look at the more pessimistic case that the dissemination stops when
at least one segment is no longer available for sharing. In Fig. 14.4, a file size of
F = 9.28 MB is considered and the death rate d is fixed and equal to 10−2. For the
probability that none of both segments are left in the system (i.e., case (0,0,0)), we
can see that all probabilities are identical and are thus not affected by the truncation
level M. However, a slight difference can be seen when we compare the probabilities
where only one kind of segment becomes extinct.
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Fig. 14.3 Extinction probability for file sizes F = 9.28 MB and F = 6.8 MB. When the death rate
approaches 1, the extinction probability increases drastically to 1.
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Fig. 14.4 Influence of the truncation level M on the accuracy. A value of about M = 5 proves to
be accurate enough, so in the following evaluations we use this value as the truncation point.

If we plot the extinction probabilities from the second model with catastrophes
over the death rate, we can recognize in Fig. 14.5 that the probabilities to reach
(0,0,0) lie above the two curves corresponding to states (k,0,0) and (0,k,0). The
reason why they are larger can be interpreted as follows. Initially, the system starts
at state (0,0,1), that is, with exactly a single sharing peer. In order to reach the
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Fig. 14.5 Extinction probabilities with catastrophes for M = 5 and file sizes of F = 9.28 MB and
F = 6.8 MB.
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Fig. 14.6 Influence of file size F on the extinction probabilities for d = 10−2.

absorbing state (0,0,0), this peer may either make a direct transition by leaving
the system or an indirect path by first giving birth to other peers which then all
leave after time. On the other hand, in order to reach one of the other absorbing
states (k,0,0) or (0,k,0) at least one birth must take place to increment S1 or S2,
respectively. Thus, a direct transition from (0,0,1) to an absorbing state of that type
does not exist in this case, causing a reduction in the weight of the probability.
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Additionally, when we look at the shape of the curves, we can recognize that
both curves for (k,0,0) and (0,k,0) are identical, when we consider equal segment
sizes and the probability for finding and sharing both segments is equal. With F =
6.8 MB the second segment is only half in size of the first, which results in a higher
extinction probability of the first segment. The curves lie below the corresponding
curves for F = 9.28 MB when the death rate d is small. However, in both cases
we can see that when the death rate exceeds 10−1 the extinction probabilities drop
again. At this point it is more likely that the sharing process will stop before any
segment is actually downloaded at all; that is

d � μ1(1,1)+μ2(1,1),

where μ1(1,1)+μ2(1,1) corresponds to the rate of observing a first new peer with
any one of the segments.

The influence of the file size F and, thus, the different size of the second segment
is illustrated in Fig. 14.6. We can recognize firstly that for a death rate of d = 10−2

the extinction probabilities increase with the file size and, secondly, that when the
second segment size is small, the difference between the extinction probabilities of
states (k,0,0) and (0,k,0) is large. As expected, when both sizes are equal, both
curves approach the same value.

14.6 Conclusions

We provided in this chapter an algorithmically tractable analysis of a level-
dependent QBD process with and without catastrophe in terms of the absorption
probability, which corresponds to the extinction probability of a file, when we apply
the model to file diffusion in unstructured P2P file sharing networks. Numerical re-
sults have confirmed that there is a need for the content provider to offer incentives
to the peers to encourage sharing and a long sojourn time in the system in order to
maintain a sufficiently low extinction probability.

In the future we will use this model to analytically derive further performance
measures, especially transient ones such as the distribution of the number of peers
present in the system. Furthermore, we would like to enhance the model to consider
a more sophisticated peer behavior by including, for example, their willingness to
share, impatient peers, and pollution.
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Chapter 15
Performance Analysis of a Decentralized
Content Delivery System with FEC Recovery

Kenji Kirihara, Hiroyuki Masuyama, Shoji Kasahara, and Yutaka Takahashi

Abstract This chapter considers the performance of a decentralized content deliv-
ery system where video data are simultaneously delivered without duplication by
multiple streaming video servers, resulting in a low sending rate per video server.
Focusing on a multiple-server video streaming service reinforced by forward er-
ror correction (FEC), we model the system as a set of independent GI+M/M/1/K
queues, and derive the block-level loss probability. Numerical results show that the
decentralized content delivery system with FEC recovery is significantly effective
to guarantee video quality even when the background traffic intensity is high.

15.1 Introduction

With the recent advancement of network technologies enabling ultra-high-speed
data transmission, video streaming service over the Internet has attracted consid-
erable attention. The Internet, however, is a best-effort network, and thus the quality
of service (QoS) for video streaming is not strictly guaranteed due to packet loss
and/or delay.

In order to enhance the resilience to packet loss, a number of approaches have
been proposed and studied. Among them automatic repeat request (ARQ) and for-
ward error correction (FEC) are commonly deployed for loss recovery. ARQ is an
acknowledgment-based error recovery, in which lost data packets are retransmitted
reactively by the sender host. ARQ is an efficient resilience mechanism for packet
loss if the round-trip time between the sender and receiver hosts is significantly
small. However, ARQ is not suitable for a network with a large round-trip time,
resulting in a larger end-to-end delay caused by multiplicative transmissions.
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On the other hand, FEC is a one-way recovery technique based on open-loop
error control. FEC generates redundant data from original data, and both original
and redundant data are transmitted to a destination. If the amount of lost data is less
than or equal to a prespecified threshold, the lost data can be reconstructed. In this
chapter, we consider a packet-level FEC scheme [1]. Because FEC needs no retrans-
mission, it is suitable for real-time applications with stringent delay constraint such
as video streaming. However, FEC does not work well against packet burst loss be-
cause the amount of redundant data has to be predetermined with the estimate of the
packet loss probability.

An alternative approach to guarantee QoS against packet loss is multiple-sender
video streaming [2]. This is a decentralized content delivery scheme in which video
data are divided into segments to be simultaneously delivered by multiple stream-
ing sender hosts. Each sending rate per server is significantly smaller than that of
a single-sender case, achieving a small overall packet loss probability at the desti-
nation. In [2], Nguyen and Zakhor proposed a distributed video streaming protocol
consisting of a rate allocation algorithm and a packet partition algorithm. Its per-
formance was investigated by simulation and experiments with a real network. FEC
recovery performance has also been studied in the literature [3]–[5], however, little
work has been devoted to analyze the compound effect of the decentralized content
distribution mechanism and FEC.

With the recent advancement of photonic networking technology such as wave-
length division multiplexing (WDM), the bottleneck of data transmission has shifted
from backbone networks to access ones (the last-mile bandwidth bottleneck [6]).
This implies that edge routers of backbone networks are likely to be the bottleneck
of data transmission for real-time applications. In real-time applications such as
VoIP and Internet TV, packets are sent to the network at a constant bit rate. There-
fore, it is important to consider the case where interarrival times of packets to a
bottleneck edge router are almost the same.

In this chapter, we analyze the performance of this decentralized content deliv-
ery system by a queueing theoretical approach. We consider a multiple-sender video
streaming service, and focus on disjoint parts of multiple routes to the destination.
Assuming that there exists a bottleneck router along the disjoint part of each route,
we model each bottleneck router as a single-server finite queueing system with both
general renewal and Poisson inputs. We derive the block-level loss probability, and
investigate the resulting video quality of multiple-sender video streaming with and
without FEC. Note that the assumption of the general renewal input for main traf-
fic enables us to describe various arrival processes including constant interarrival
times.

The chapter is organized as follows. Section 15.2 describes the analysis model
in detail, and derives the block-loss probability. Numerical results are presented in
Sect. 15.3, and we conclude this chapter in Sect. 15.4.
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15.2 Model and Analysis

We consider a multiple-sender distributed video streaming service. Let S denote the
number of video servers. A video dataum is divided into S parts, each of which
are simultaneously delivered along with different routes. We assume that a video
data frame consists of D packets. N redundant data packets are generated from the
D original data packets, and a set of M(= D + N) packets is called a block. If the
number of lost packets among the M packets is less than or equal to N, the original
data packets can be reproduced completely regardless of the lost packets. On the
other hand, if the number of lost packets among the M packets is greater than N, the
original data packets cannot be recovered. We call this event a block loss.

Video streaming service is supported by S servers. We divide M packets per frame
into S groups: group l (l = 1, . . . ,S) with M(l) packets. Note that ∑S

l=1 M(l) = M.
Server l manages the M(l) packets in group l and sends those packets to the desti-
nation. Note that we have S streaming routes for a video service. Suppose that there
exists a bottleneck router along each route and that packet loss occurs independently
at each bottleneck router.

We model each bottleneck router as a single-server queueing system with a finite
buffer that is fed by two independent input processes. In the following, the packet
flow sent from a streaming server is called the main traffic, and the other packet
flow the background traffic. The interarrival times of packets in the main traffic
sent from server l are independently identically distributed (i.i.d.) with a general
distribution G(l)(x). The packet arrivals in the background traffic form a Poisson
process with rate λ (l). The capacity of the system with server l is K(l). Note that the
bottleneck router forwards not only the packets from the video server but also the
packets belonging to the background traffic. Therefore, it is natural to assume that
the packet size is not the same. Then, we assume that the service time of a packet
is exponentially distributed with rate μ(l). From the above assumptions, we have a
GI+M/M/1/K-type queueing model for each bottleneck router.

We derive the block-loss probability that a block is not eventually retrieved
at the destination. Let p(l)(k | M(l)) (l = 1, . . . ,S) denote the probability that k
(k = 0,1, . . . ,M(l)) packets out of M(l) packets sent from server l are lost. We
can compute p(l)(k | M(l)) from the analytical result in [5]. (The derivation of
p(l)(k | M(l)) is summarized in the appendix.) Noting that original data packets for
a video frame can be recovered if the number of lost packets is less than or equal to
N, the block-loss probability PLoss is given by

PLoss = 1−
N

∑
n=0

∑
k1+···+kS=n

p(1)(k1 | M(1))p(2)(k2 | M(2)) · · · p(S)(kS | M(S)). (15.1)
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15.3 Numerical Results

We assume that the transmission rate of a video streaming service for the single-
server case is 10 Mbps, and that the output transmission speed of bottleneck routers
is 100 Mbps. It is supposed that the video frame rate is 30 [frame/s], and that a
frame has the same number of packets as that of a block. The packet size is 1250
bytes. Thus a block has D = 34 original data packets, and the packet service rate of
packets at bottleneck routers is μ = 1×104 [packet/s].

For the multiple-sender case, we assume that the number of video servers is two
and that M(1) = M(2) = (34+N)/2. The number of FEC redundant packets N is set
to 0, 2, and 4. The packet interarrival time of main traffic from each video server is
constant. The system capacities K(l) are assumed to be the same and set to K(l) =
K = 10 and 100. In what follows, we assume that the flow rates of background traffic
are equal at both of the bottleneck routers. Note that when N FEC redundant packets
are added to D original data packets, the resulting packet transmission rate becomes
(D+N)/D times larger than the original one.

The block-loss probability for the multiple-sender case is calculated by (15.1).
We also calculate the block-loss probability for the single-sender case using the
result in [5]. We define the FEC redundancy as N/D.

15.3.1 Impact of Background Traffic

In this subsection, we investigate how the bandwidth of background traffic affects
the block-loss probability.

Figures 15.1 and 15.2 show the block-loss probability against the bandwidth of
background traffic in the cases K = 10 and 100, respectively. We observe from
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Fig. 15.1 Block-loss probability versus bandwidth of background traffic (S = 2, K = 10, D = 34).
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Fig. 15.2 Block-loss probability versus bandwidth of background traffic (S = 2, K = 100, D = 34).

Figs. 15.1 and 15.2 that the block-loss probability increases monotonically when the
bandwidth of the background traffic is large, as expected. Owing to the multiple-
sender effect, the block-loss probability is further improved for the same number
of redundant packets as the single-sender case. We also observe the decrease in
the block-loss probability when the number of FEC redundant packets increases,
and that the block-loss probability is effectively reduced by FEC redundant pack-
ets in the system with a small capacity. When the system capacity is small, a
packet-loss event frequently occurs, making the packet-loss process random. Be-
cause FEC works well against random packet-loss processes, the block-loss proba-
bility is greatly improved by FEC when the system capacity is small.

Next we investigate how the bandwidth of background traffic affects the min-
imum FEC redundancy. Here, the minimum FEC redundancy is such that the
block-loss probability is smaller than a prespecified value P(α)

Loss. Figures 15.3 and
15.4 illustrate the minimum FEC redundancy against the bandwidth of background
traffic in cases of K=10 and K=100, respectively. For each value of K, we calculated
the minimum FEC redundancy for the cases P(α)

Loss = 10−2, 10−3 and 10−4.
It is observed from Fig. 15.3 that the FEC redundancy in the multiple-sender

case is smaller than that in the single-sender case when P(α)
Loss is fixed. This is due to

a small packet-loss probability in the multiple-sender case. In Fig. 15.4, the mini-
mum FEC redundancy remains zero at 80 Mbps background traffic in all the cases,
because the packet-loss events hardly occur in a system with large capacity. When
the bandwidth of background traffic is greater than 80 Mbps, the minimum FEC re-
dundancy increases rapidly. This tendency of the minimum FEC redundancy is the
same as in Fig. 15.3. Comparing Fig. 15.3 with Fig. 15.4, FEC is effective in a wide
range of background traffic when the system capacity is small.



270 K. Kirihara et al.

0

0.2

0.4

0.6

0.8

1

40 50 60 70 80 90 100

M
in

im
um

 F
E

C
 R

ed
un

da
nc

y

Bandwidth of Background Traffic (Mbps)

single Ploss<10−4
single Ploss<10−3
single Ploss<10−2

multiple Ploss<10−2

multiple Ploss<10−3

multiple Ploss<10−4

Ploss<10−4
Ploss<10−3

Ploss<10−2

Fig. 15.3 Minimum FEC redundancy versus bandwidth of background traffic (S = 2, K = 10).
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Fig. 15.4 Minimum FEC redundancy versus bandwidth of background traffic (S = 2, K = 100).

15.3.2 Impact of Service Rate at Bottleneck Router

In this subsection, we investigate how the output transmission speed of the bottle-
neck router affects the block-loss probability and the minimum FEC redundancy.

Figures 15.5 and 15.6 show the block-loss probability against the transmission
speed in the cases K = 10 and 100, respectively. Note that when the transmission
speed is η bps, the corresponding service rate of a packet at the bottleneck router μ
is equal to η×10

4
[packet/s]. The bandwidth of background traffic is set to 50 Mbps.

We observe from Fig. 15.5 that the block-loss probability decreases monoton-
ically and gradually when the transmission speed increases. It is also observed
that the decentralized content delivery system is greatly effective for the block-loss
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Fig. 15.5 Block-loss probability versus transmission speed (S = 2, K = 10, D = 34).
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Fig. 15.6 Block-loss probability versus transmission speed (S = 2, K = 100, D = 34).

probability as the FEC redundancy increases. In addition, the block-loss probability
for the multiple-sender case is significantly smaller than that for the single-sender
case.

It is observed from Fig. 15.6 that the block-loss probability for K = 100 exhibits
the same tendency as that in Fig. 15.5. Note that the block-loss probability is greatly
improved by a high transmission speed, rather than FEC and the decentralized con-
tent distribution mechanism.

Figures 15.7 and 15.8 illustrate the minimum FEC redundancy against the trans-
mission speed of the bottleneck router in the cases K = 10 and 100, respectively. The
minimum FEC redundancy was calculated for P(α)

Loss = 10−2, 10−3, and 10−4.
In Fig. 15.7, the minimum FEC redundancy in the multiple-sender case is smaller

than that in the single-sender case when P(α)
Loss is fixed. In addition, the minimum
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Fig. 15.7 Minimum FEC redundancy versus transmission speed (S = 2, K = 10).
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Fig. 15.8 Minimum FEC redundancy versus transmission speed (S = 2, K = 100).

FEC redundancy gradually decreases when the transmission speed increases. We
observe from Fig. 15.8 that the minimum FEC redundancy reaches zero when the
transmission speed is larger than around 60 Mbps, and that the other tendency is the
same as in Fig. 15.7. These results imply that when the output transmission speed is
small, the decentralized content delivery system with FEC recovery is significantly
effective for the block-loss probability.

15.3.3 Impact of System Capacity

In this subsection, we investigate the impact of the system capacity on the minimum
FEC redundancy. The QoS requirement considered here is P(α)

Loss = 10−2, 10−3, and
10−4. With each P(α)

Loss, we calculated the minimum FEC redundancy in cases of
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Fig. 15.10 Minimum FEC redundancy versus system capacity (S = 2, 80 Mbps background
traffic).

50 Mbps and 80 Mbps of the bandwidth of background traffic. It is supposed that
the output transmission speed of the bottleneck router is 100 Mbps.

Figure 15.9 shows the minimum FEC redundancy against the system capacity
when the bandwidth of background traffic is 50 Mbps. We observe from Fig. 15.9
that the minimum FEC redundancy decreases rapidly when the system capacity is
about 5, and that for each PLoss the minimum FEC redundancy reaches zero when
the system capacity is greater than 20. Note that the variation of the minimum FEC
redundancy is small. This implies that the block-loss probability is greatly improved
by the system capacity rather than the decentralized content distribution mechanism
with FEC recovery.

Figure 15.10 shows the minimum FEC redundancy when the bandwidth of back-
ground traffic is 80 Mbps. In Fig. 15.10, the minimum FEC redundancy decreases
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monotonically as the system capacity is large. This tendency is the same as in
Fig. 15.9. Comparing Fig. 15.9 with Fig. 15.10, there is a difference between the
minimum FEC redundancy in the multiple-sender case and in the single-sender case.
A remarkable point of Fig. 15.10 is that the minimum FEC redundancy is likely to
remain constant when the system capacity increases. This implies that the decen-
tralized content delivery system with FEC recovery is more effective than enriching
system capacity when the system is overloaded.

15.3.4 Impact of Number of Video Servers

Finally, we investigate how the number of video servers improves the video QoS.
We set N = 4 and hence the number of packets in a block M is 38. We consider
four cases of S = 1, 2, 3, and 4. Table 15.1 shows the parameter values of M(l)s for
each S.

Figure 15.11 represents the block-loss probability against the bandwidth of back-
ground traffic for K = 10 and 100. We assume that all the background traffic inten-
sities at bottleneck routers are the same. This scenario can be regarded as the worst
case for multiple-sender transmission.

Table 15.1 Number of packets within each group.

S Parameters Values

1 M 38
2 (M(1),M(2)) (19,19)
3 (M(1),M(2),M(3)) (13,13,12)
4 (M(1),M(2),M(3),M(4)) (10,10,9,9)
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Fig. 15.11 Block-loss probability versus bandwidth of background traffic (D = 34, N = 4).
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It is observed from the figure that for both Ks, the block-loss probability is im-
proved with the increase in the number of video servers, as expected. When K = 10,
the block-loss probability for S = 2 is significantly smaller than that for the single-
server case. However, the block-loss probabilities for S = 3 and 4 are not greatly
improved. Note that M = 38 corresponds to 11.4 Mbps of the video sending rate
for the single-server case. Roughly speaking, the video sending rate per server is
5.7 Mbps for S = 2, 3.8 Mbps for S = 3, and 2.9 Mbps for S = 4. That is, the re-
sulting video sending rates per server are relatively small in comparison with the
background traffic intensity. When K = 100, on the other hand, the block-loss prob-
ability is significantly small and greatly improved with the increase in the number
of video servers. This result suggests that the decentralized content delivery sys-
tem supported by multiple servers can guarantee video QoS effectively when the
network is heavily congested.

Figure 15.12 shows the minimum FEC redundancy against the system capacity
per router when the bandwidth of background traffic is 80 Mbps. The QoS require-
ment considered here is P(α)

loss = 10−4. In Fig. 15.12, the minimum FEC redundancy
for S = 1 is the largest, and the minimum FEC redundancy decreases with the in-
crease in S. A remarkable point here is that the minimum FEC redundancies for
S = 2, 3, and 4 are almost the same, regardless of the system size. Note that the
bandwidth of background traffic is 80 Mbps. Because the link capacity is set to 100
Mbps, the overall traffic intensity at each bottleneck router is more than 0.8; that is,
the system is heavily utilized. Under such a heavy loaded condition, the increase in
the system capacity is more effective for video streaming than increasing the num-
ber of video servers. This result also implies that if the buffer size of bottleneck
routers is large, video QoS can be guaranteed with two video servers.
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15.4 Conclusions

This chapter analyzed the performance of the decentralized content delivery system
with FEC recovery. We focused on a multiple-sender video streaming service and
modeled it as a set of GI+M/M/1/K queues, deriving the block-level loss proba-
bility. Numerical results showed that decentralized content delivery in cooperation
with FEC recovery is significantly effective for preserving video quality even when
the background traffic intensity is high. In particular, when the system capacity is
small and the network is overloaded, multiple-sender video streaming succeeds in
guaranteeing video QoS with less FEC redundancy than the single-server case. A re-
markable point is that two video servers are enough to guarantee video QoS even
when the network is heavily utilized. In this overloaded condition, enriching router
buffers is more effective than increasing the number of video servers. In general,
increasing the number of video servers causes a large control overhead of video-
content management. The fact that a few video servers are enough to guarantee
video QoS is significant from the viewpoint of video-content management.

Appendix: Derivation of Probability p(l)(k | M(l))

This appendix summarizes the derivation of the probability p(l)(k | M(l)) (l =
1, . . . ,S). For details, see [5], where pM(k)e corresponds to p(l)(k | M(l)). For sim-
plicity, we omit superscript “(l)” in this appendix. Thus, for example, although we
write λ , μ , and M for λ (l), μ(l), and M(l), respectively, λ s, μs, and Ms herein are
different from original λ s, μs, and Ms in the preceding sections.

We first consider the stationary queue length distribution immediately before an
arrival from main traffic in the GI+M/M/1/K queue, which models a bottleneck
router. Let Tm (m = 0,±1,±2, . . . ) denote the arrival epoch of the mth packet from
main traffic. We then assume that the system reaches steady state at time T0. Let L−

m
(m = 0,±1,±2, . . . ) denote the number of packets in the system immediately before
time Tm. Note that during each interval between arrivals (Tm,Tm+1), the behavior of
the queueing process is stochastically the same as that of the M/M/1/K queue with
arrival rate λ and service rate μ . Thus {L−

m ;m = 0,±1,±2, . . .} is a Markov chain
whose transition probability matrix Π is given by

Π =Λ
∫ ∞

0
exp(Qx)dG(x), (15.2)

where G(x) denotes the distribution of interarrival times of packets from main traf-
fic, and where Λ and Q denote (K +1)× (K +1) matrices that are given by
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Λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 0

0 0 1
. . . 0 0

...
...

. . . . . .
...

...

0 0 0
. . . 1 0

0 0 0 . . . 0 1
0 0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−λ λ 0 . . . 0 0

μ −(λ +μ) λ
. . .

...
...

0 μ −(λ +μ)
. . . 0 0

0 0 μ
. . . λ 0

...
...

. . . . . . −(λ +μ) λ

0 0 0
. . . μ −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We define π− as a 1× (K +1) vector whose jth ( j = 0,1, . . . ,K) element π−j repre-
sents Pr[L−

1 = j]. We then have

π−Π = π−, π−e = 1,

where e denotes a column vector of ones with appropriate dimension.
Next in order to derive p(k | M), we consider an arbitrary group that consists of

M packets sent from a server. We assume that the M packets of the group arrive
at the system at times T1 through TM . We then call the packet arriving at time Tm
(m = 1,2, . . . ,M) packet m. Let Lm denote the number of packets in the system at
time Tm. Let Nm (m = 1,2, . . . ,M) denote the number of lost packets among packets
1 through m at time Tm. We define pm(k) (m = 1,2, . . . ,M, k = 0,1, . . . ,M) as a 1×K
vector whose jth ( j = 1,2, . . . ,K) element pm, j(k) is given by

pm, j(k) = Pr[Nm = k,Lm = j].

Because Nm ≤ m for all m = 1,2, . . . ,M,

pm(k) = 0, for all k = m+1,m+2, . . . ,M. (15.3)

By using pm(k), the probability p(k | M) is given by

p(k | M) = pM(k)e. (15.4)

In what follows, we discuss the pm(k)s (m = 1,2, . . . ,M, k = 0,1, . . . ,M). Note
that if L−

1 < K, packet 1 can join the queue and hence L1 = L−
1 +1. Note also that if

L−
1 = K, packet 1 is lost and L1 = K. Thus p1, j(0) and p1, j(1) ( j = 1,2, . . . ,K) are

given by
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p1, j(0) = Pr[L−
1 < K,L−

1 = j−1] = π−j−1, j = 1,2, . . . ,K, (15.5)

p1, j(1) =
{

0, j = 1,2, . . . ,K −1
π−K , j = K,

(15.6)

respectively, or equivalently,

p1(0) = (π−0 ,π−1 , . . . ,π−K−1), p1(1) = (0,0, . . . ,0,π−K ).

We now define A(ν) (ν = 0,1) as a K ×K matrix whose (i, j)th element Ai, j(ν)
(i, j = 1,2, . . . ,K) is given by

Ai, j(ν) = Pr[Θm = ν ,Lm = j | Lm−1 = i],

where Θm = 1 if packet m is lost, and otherwise Θm = 0. It is easy to see that for
m = 2,3, . . . ,M,

pm(0) = pm−1(0)A(0), (15.7)
pm(k) = pm−1(k−1)A(1)+pm−1(k)A(0), k = 1,2, . . . ,M. (15.8)

Finally, we consider A(ν) (ν = 0,1). If L−
m < K,Θm = 0 and Lm = L−

m +1. Thus
we have

Ai, j(0) = Pr[L−
m < K,L−

m = j−1 | Lm−1 = i] = Γi, j−1, i, j = 1,2, . . . ,K, (15.9)

where Γi, j (i, j = 0,1, . . . ,K) denotes the (i, j)th element of Γ =
∫ ∞

0 exp(Qx)dG(x).
Note here that Π =ΛΓ (see (15.2)). Furthermore, because {Θm = 1} is equivalent
to {Lm = L−

m = K},

Ai, j(1) =
{

0, j = 1,2, . . . ,K −1,
Γi,K , j = K,

i = 1,2, . . . ,K. (15.10)

In matrix notation, (15.9) and (15.10) are written as follows:

A(0) =

⎛

⎜
⎜
⎜
⎝

Γ1,0 Γ1,1 · · · Γ1,K−1
Γ2,0 Γ2,1 · · · Γ2,K−1

...
...

. . .
...

ΓK,0 ΓK,1 · · · ΓK,K−1

⎞

⎟
⎟
⎟
⎠

, A(1) =

⎛

⎜
⎜
⎜
⎝

0 · · · 0 Γ1,K
0 · · · 0 Γ2,K
...

. . .
...

...
0 · · · 0 ΓK,K

⎞

⎟
⎟
⎟
⎠

.
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Chapter 16
Blocking Probabilities of Multiple Classes
in IP Networks with QoS Routing

Chia-Hung Wang and Hsing Luh

Abstract We propose a mathematical model for calculating blocking probabilities
with optimal bandwidth allocation and QoS routing on multiclass communication
networks. This scheme is performed by means of a two-phase procedure. The first
step determines optimal paths under network constraints. The second step computes
the blocking probability with predetermined optimal solutions. The blocking is due
to the failure of meeting the demand of end-to-end paths for each class.

16.1 Introduction

Because of the rapid growth of Internet traffic, aggressive deployment of broad-
band fiber-optic networks, advance of Voice over IP technology, and the global
standardization of IP technology, the telecommunications industry is moving to-
ward a converged network, which uses a single global IP-based packet-switching
network to carry all types of network traffic, to replace the traditional separated
packet-switching and circuit-switching networks. The international telecommuni-
cations standard organizations have decided to adopt this new All-IP network as the
base transport network for future development.

The quality of the network must be greatly enhanced to support some applica-
tions due to inherent problems of packet-switching networks: long delay time, jitter,
and packet loss. In this chapter, we investigate the quality issues, especially analyz-
ing the relationship between the blocking probability and the allocated bandwidth
allocation under budget-based end-to-end Quality of Service (QoS) management.
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Because it is an NP-hard problem, to our knowledge, this is the first novel and ana-
lytically possible approach in relating these two critical factors in QoS management.

We deal with the problem of dimensioning bandwidth for elastic data applica-
tions in packet-switched communication networks [1], which can be considered as a
multiple-objective optimization model. Users’ satisfaction is summarized by means
of their achievement functions, and each user is allowed to request more than one
type of service. The objective is to determine the amount of required bandwidth for
each class to maximize the sum of the users’ satisfaction.

We study the blocking probability of this end-to-end transmission system with
predetermined optimal solutions, which is an important performance measurement
of network systems. We focus on obtaining blocking probabilities after optimally
allocating resources with proportional fairness [2]. The blocking is due to the failure
of meeting the demand of end-to-end paths for each class.

Bandwidth sharing in a network is frequently evaluated in terms of a utility func-
tion [3], [4]. The utility of a connection of class i, fi(θi), is assumed to be an in-
creasing concave function of its bandwidth θi, as introduced by Kelly, Maullco, and
Tan [2]. Let Ki be the number of class i connections in progress and denote by μi(K)
the overall bandwidth allocation of class i in state K = {K1, . . . ,Km}. The quantity
μi(K) can be obtained from a complicated optimization process. The objective is to
realize the allocation that maximizes overall utility. That is, for a given connection
population K, to choose μi(K) to maximize

m

∑
i=1

Ki fi

(
μi(K)

Ki

)

. (16.1)

Assume every connection of the same class i has the same allocated bandwidth
allocation θi; that is, μi(K) = Kiθi. Then, fi(μi(K)/Ki) = fi(θi). Examples of possi-
ble utility functions are fi(θi) = logθi, leading to the so-called proportional fairness
of Kelly et al. [2], and fi(θi) = θ 1−α

i /(1−α) for 0 <α <∞, leading more generally
to α-fairness defined by Mo and Walrand [5]. Max-min fairness arises in the limit
α → ∞ and proportional fairness corresponds to α → 1. In the limit α → 0, the ob-
jective is to maximize overall throughput to the detriment of fairness. More general
notions of weighted fairness can be defined by multiplying the utility function by a
class-dependent weight.

Roberts [6] provided a survey of recent results on the performance of a net-
work handling elastic data traffic under the assumption that flows are generated as
a random process. There are very few analytical results available for the throughput
performance of α-fair allocations under random traffic. This is mainly because the
performance of these networks is not insensitive and depends significantly on de-
tailed traffic characteristics [7].

QoS routing concerns the selection of a path satisfying the QoS requirements
of a connection [8]–[10]. The path selection process involves the knowledge of the
connection’s QoS requirements and information on the availability of bandwidth
[11], [12]. Apostolopoulos and Tripathi [13] characterized the processing cost of
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QoS routing algorithms that use the constrained widest–shortest path heuristic to
compute QoS paths in a link state-based routing environment. Hernández-Orallo
and Vila-Carbo [14] presented an efficient routing scheme for Expedited Forwarding
(EF) flow path computation. Kumar and Saraph [15] presented a novel approach to
achieve end-to-end QoS support by proposing a new Alliance Network model.

Bandwidth sharing efficiency in overload would be improved if it were possible
to perform proactive admission control rather than relying on user impatience to
stabilize the system [6]. Admission control consists in rejecting a new connection
on its arrival in order to preserve the performance of connections already in progress.

Thus, we focus on the precomputation perspective of QoS routing [16], [17].
This scheme is performed by means of a two-phase procedure [18]. The first step
determines optimal paths under network constraints, and the second phase selects
an adequate path from predetermined optimal paths when connections arrive. We
propose a mathematical model to calculate the available bandwidth of the possible
QoS routes, so that the destination host can choose the route that is most likely to
satisfy the QoS requirements. After the QoS route has been listed in the routing
database, the second phase follows, where we propose a novel algorithm to obtain
blocking probabilities in terms of optimal bandwidth.

Computing or estimating blocking probabilities is a fundamental ingredient in
network design and engineering [19]. To compute it, the classical approach of
Erlang provided a very well-tried solution, and it was perfectly adequate for tele-
phone networks. However, computing blocking probabilities becomes much harder
in today’s complex networks that carry very heterogeneous traffic [20].

The chapter is organized as follows. In Sect. 16.2, we introduce bandwidth
allocation schemes. We derive blocking probabilities with predetermined optimal
solutions obtained from the mathematical model in Sect. 16.3. We also analyze the
relationship between the blocking probability and the allocated bandwidth alloca-
tion in Sect. 16.3. Numerical results are shown in Sect. 16.4 and conclusions are
drawn in Sect. 16.5.

16.2 Bandwidth Allocation Schemes

We propose a scheme offering a suitable solution to the network optimization
problem. This scheme is performed by means of a two-phase procedure [18]. When
handling connection requests, the first phase precomputes paths for a wide range of
possible constraints, and the second phase just needs to select an adequate path
through an online selecting procedure. The first phase (off-line optimization) is
executed in advance and its purpose is to precompute solutions, summarized in a
database for later usage. When a connection arrives, the second phase is activated
as an online process, and its purpose is to promptly select an adequate solution from
the database. The key idea of this two-phase procedure is to effectively reduce the
time needed to handle network optimization problems (bandwidth allocation and
QoS routing) by performing a certain amount of computation in advance.
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16.2.1 Problem Definition

Consider a directed network topology G = (V,E), where V and E denote the set of
nodes and the set of links in the network, respectively. There are m (different) QoS
classes in this network. Let Eo ⊆ E and Ed ⊆ E be subsets of links connected with
the source o and destination d, respectively. Each connection is delivered between
the same source o and destination d in the core network. We denote Ein

ν ⊆ E a
subset of incoming links to the node ν ∈ V , and we also denote Eout

ν ⊆ E a subset
of outgoing links from the node ν ∈ V . The maximal link capacity is Ue on each
link e ∈ E. For each link e ∈ E, we use de and κe to represent average delay and
the purchasing cost of bandwidth, respectively. Let Ai, j(e) represent the bandwidth
allocated to link e ∈ E for connection j in class i. We use χi, j(e) to denote the binary
variable that determines whether the link e is chosen for connection j in class i.

The decision variable θi is the bandwidth allocated to each connection in class i.
In each class i, every connection is allocated the same bandwidth θi and has the
same QoS requirement. The specific QoS requirements include minimal bandwidth
requirement bi and maximal end-to-end delay constraint Di for each class i. Assume
every connection in class i has the same aspiration level and reservation level of
bandwidth, ai and ri, and assume that the average number of connections in class i
is Ki.

16.2.2 First Phase: A Precomputation Scheme
for Network Optimization

Under a limited available budget B, we want to allocate the bandwidth in order to
provide each class with maximal possible QoS. The purpose of this work is to show
that a methodology that allows the decision maker to explore a set of solutions could
satisfy preferences with fairness, and choose the solution which the decision maker
finds best.

Using the achievement function interpreted as a measure of QoS [21], we can
formulate the mathematical model of the fair bandwidth allocation. Depending on
the specified aspiration and reservation levels, ai and ri, respectively, Wang and
Luh [16], [21] transformed the different QoS measurements onto a normalized scale
by using achievement functions. At the first phase, a precomputation-based scheme
for network optimization is executed:

max
m

∑
i=1

wi logαi

θi

ri
, (16.2)

s. t. ∑
e∈E

m

∑
i=1

Ki

∑
j=1
κeAi, j(e) ≤ B, (16.3)

m

∑
i=1

Ki

∑
j=1

Ai, j(e) ≤Ue, ∀e ∈ E, (16.4)
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Ai, j(e)−Mχi, j(e) ≤ 0, ∀e ∈ E, j = 1, . . . ,Ki, i = 1, . . . ,m, (16.5)
θi −Ai, j(e) ≤ M(1−χi, j(e)), ∀e ∈ E, j = 1, . . . ,Ki, i = 1, . . . ,m, (16.6)
Ai, j(e)−θi ≤ M(1−χi, j(e)), ∀e ∈ E, j = 1, . . . ,Ki, i = 1, . . . ,m, (16.7)
θi ≥ bi, ∀i = 1, . . . ,m, (16.8)

∑
e∈Eo

Ai, j(e) = θi, ∀ j = 1, . . . , Ki, i = 1, . . . ,m, (16.9)

∑
e∈Ed

Ai, j(e) = θi, ∀ j = 1, . . . , Ki, i = 1, . . . ,m, (16.10)

∑
e∈Ein

ν

Ai, j(e) = ∑
e∈Eout

ν

Ai, j(e), ∀ν ∈V ′, j = 1, . . . ,Ki, i = 1, . . . ,m, (16.11)

Ai, j(e) ≥ 0, ∀e ∈ E, j = 1, . . . ,Ki, i = 1, . . . ,m, (16.12)
θi ≥ 0, ∀i = 1, . . . ,m, (16.13)
χi, j(e) ∈ {0,1}, ∀e ∈ E, j = 1, . . . ,Ki, i = 1, . . . ,m, (16.14)

where wi is a fixed weight, M is a sufficiently large number, αi = ai/ri, and V ′ =
V \{o,d}. It is a strictly increasing function of θi, having value 1 if θi = ai, and value
0 if θi = ri. The use of the logarithmic function prevents the possibility of assigning
zero flow to any user, and on the other hand makes it unprofitable to assign too
much flow to the users. Note that this allocation is equivalent to proportionally fair
allocation [2].

In this scheme, there is a clear dependence between bandwidth reservation and
path selection. This chapter uses the bandwidth and budget as constraints of require-
ments for feasible path computations. Due to the limited budget on network plan-
ning, there exists the budget constraint (16.3). Because the aggregate bandwidth of
all connections at any link does not exceed the capacity, we have constraint (16.4).

Constraints (16.5)–(16.8) show that every connection in the same class
uses the same bandwidth and has the same bandwidth requirement. Constraints
(16.9)–(16.11) express the node conservation relations indicating that flow in equals
flow out for every connection j in class i. Although Ai, j(e) are continuous variables,
constraints (16.9) and (16.10) are flow conservation constraints. Continuous de-
cision variables and binary variables must be nonnegative, shown in constraints
(16.12)–(16.14).

Under a limited budget B, we can determine the optimal solutions A∗
i, j(e) and

θ ∗i which represent the optimal bandwidth allocation for each link e and for each
connection of class i. The optimal solution θ ∗i is unique and it provides the propor-
tional fairness to every class. This allocation can provide the fair satisfaction to each
user of all classes. Consequently, the bandwidths Kiθ ∗i are allocated to each class i.
Moreover, we determine the maximal bandwidth offered by link e for class i, that
is, ∑Ki

j=1 A∗
i, j(e).

Bandwidths are allocated along less expensive paths that connect the origin o and
the destination d. After solving the mathematical model in the first phase, we deter-
mine the optimal end-to-end path from the source to the destination and introduce a
routing database with end-to-end QoS guarantees.
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Proposition 16.1. If pi, j = {e ∈ E| χ∗i, j(e) = 1} for connection j in class i, then path
pi, j is the Pareto optimal path from the source o to the destination d.

Proposition 16.2. The Pareto optimal end-to-end path pi, j is unique for each con-
nection j in class i.

The routing database P represents the set of all optimal end-to-end paths obtained
from the execution of the first phase.

Definition 16.1. The set of all Pareto optimal paths is called the routing database P.
That is, P = {pi, j| pi, j is the Pareto optimal path from o to d, ∀ j = 1, . . . ,Ki, i =
1, . . . ,m}.

The routing database P includes the inexpensive routes from the source to the desti-
nation on the network.

Definition 16.2. Link e is a bottleneck link if the usage of bandwidth achieves its
link capacity; that is,

m

∑
i=1

Ki

∑
j=1

A∗
i, j(e) = Ue.

Proposition 16.3. Let θi,p ≥ 0, for each class i, be the bandwidth allocated to each
optimal path p ∈ P. Then we have

∑
p∈P
θi,p = Kiθ ∗i (16.15)

and

0 ≤
m

∑
i=1
θi,p ≤ min

e∈p
Ue. (16.16)

Proposition 16.4. A link e ∈ p is a bottleneck link if

m

∑
i=1
θi,p = min

e∈p
Ue. (16.17)

From the optimization of the precomputation-based scheme (the first phase), we
determine the Pareto optimal bandwidth allocation and a routing database. Next,
using the output of the first phase, we execute an online routing scheme (the second
phase).

16.2.3 Second Phase: An Online Routing Scheme
with End-to-End QoS Guarantees

After the off-line precomputation in the first phase, we determine a reduced network
G′ = (V,E ′), where V is the original set of nodes and E ′ is the subset of links used for
each end-to-end path p in the routing database P. Each link e ∈ E ′ is characterized
by the following values [22]:
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(1) Maximal bandwidth ∑Ki
j=1 A∗

i, j(e) which the link e can offer to each connection

of class i. After a connection of class i with bandwidth θ ∗i ≤ ∑Ki
j=1 A∗

i, j(e) is

established through link e, the value of ∑Ki
j=1 A∗

i, j(e) becomes ∑Ki
j=1 A∗

i, j(e)−θ ∗i .
(2) A constant delay de, related to the link’s speed, propagation delay, and maximal

transfer unit.

A connection of class i in the network is characterized by the following values [9]:

(1) The source node o and the destination node d
(2) A mean packet size σi of a connection in each class i
(3) An allocated bandwidth θ ∗i
(4) A maximal end-to-end delay constraint Di

In each class i, an arriving connection should be routed through some path p
between the source and destination nodes. We represent by n(p) the number of
links of a path p ∈ P. When a connection of class i is routed over a path p with a
bandwidth θ ∗i , the following end-to-end delay D(p) applies ([9], [12], [22], etc.),

D(p) =
n(p)σi

θ ∗i
+∑

e∈p
de, (16.18)

where σi is the mean packet size and de is a mean delay on link e related to the link’s
speed, propagation delay, and maximal transfer unit. A path p between o and d is
feasible, for a connection of class i, if D(p) ≤ Di.

The ability to identify a feasible path for a connection does not yet yield a sat-
isfactory QoS routing solution. In order to supervise multiple connections across
the network, the routing algorithm must consider the efficient use of the consumed
bandwidth. There does not seem to be a precise definition for the optimality of a
path in this context, yet it is clear that an efficient scheme should aim at balancing
the loads across the network [9]. A better measure for balancing the loads over the
network may be one that aims at seeking a path for which the residual bandwidth
of its bottleneck link is maximal [9]. For a path p ∈ P, we represent the residual
bandwidth of its bottleneck link by θ̂i,p; that is,

θ̂i,p = min
e∈p

{
Ki

∑
j=1

A∗
i, j(e)−θ ∗i }. (16.19)

For each class i, we present one scheme that aims at balancing the loads across
the network. The following scheme is executed as an online procedure in the second
phase.

max θ̂i,p,

s. t. θ̂i,p ≤
Ki

∑
j=1

A∗
i, j(e)−θ ∗i , ∀e ∈ p,

D(p) ≤ Di,
p ∈ P.

(16.20)
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The optimization goal of this scheme is to enhance the performance of IP traf-
fic while economically utilizing the bandwidth on communication networks. This
scheme is to make more efficient use of bandwidth on the network. Hence, the sec-
ond phase is to find an optimal path p from the routing database P, maximizing the
residual bandwidth of its bottleneck link, θ̂i,p. That is, the online routing scheme
distributes the arriving connection among the predetermined paths so as to avoid
overloaded links.

Algorithm Online Routing Scheme (16.20) for Class i:
Input Predetermined optimal solutions: A∗

i, j(e), θ ∗i , routing database P.
1. for j ← 1 to Ki
2. for each p ∈ P

3. do D(p) ← n(p)σi

θ ∗i
+∑

e∈p
de

4. if D(p) ≤ Di then

5. do θ̂i,p ← mine∈p

{
Ki

∑
n=1

A∗
i,n(e)−θ ∗i

}

6. else
7. do P ← P\{p}
8. do p ← argmaxp∈P{θ̂i,p}
9. return pi, j ← p and P ← P\{pi, j}

The goal of the objective function in the scheme (16.20) is to minimize the net-
work utilization under delay constraints, that is, to keep link utilization low. There-
fore, after selecting a path, we can check if the utilization of all paths in the routing
database is less than a given limit value, Ki. With the reduced network G′, we find
the path with bounded delay. This procedure can be repeated until a path is found;
otherwise, the connection is blocked.

Selecting a path satisfying the QoS requirements of a new connection is based
on the knowledge of the connection’s requirements and information about the avail-
ability of resources in the network. This information is listed in the routing database
by which the optimal path is chosen for each connection. The routing database must
be periodically updated and distributed to the ingress routers in order to make an
accurate path selection.

16.3 Blocking Probability with Predetermined Optimal Solutions

In real networks, connections do not last forever but arrive at random times and leave
the network once the corresponding digital document has been transferred. This
results in a random dynamic set of active connections. Moreover, the bandwidth
allocation allocated to each connection determines how long that connection will
stay active and thus affects the evolution of the set of active connections. A new
connection in class i will be dropped if the number of active connections equals the
predetermined number of connections, Ki.
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The blocking probability is an important performance measurement of the net-
work system [23]. In our situation here, the blocking is due to the failure of setting
up the number of end-to-end paths Ki for each class i. In this section, we study
the blocking probability of an end-to-end transmission system with predetermined
optimal solutions, including optimal bandwidth allocation θ ∗i , and Ki optimal end-
to-end paths pi, j. At the source node o, connections arrive at random times to enter
the core network. The predetermined number Ki in the first phase is used to denote
the limit on the number of connections in class i. A new connection in class i cannot
enter the source node o and is lost when all Ki end-to-end paths are busy. That is, for
each class i, a connection gets dropped on its arrival when the number of connec-
tions occupying the end-to-end paths equals Ki. Otherwise, it will be routed through
an end-to-end path pi, j with allocated bandwidth θ ∗i predetermined by the off-line
scheme in the first phase.

The principal quantity of interest is the blocking probability of different QoS
classes, that is, the steady-state probability that all Ki end-to-end paths in class i are
busy. Our objective is to estimate these blocking probabilities.

16.3.1 M/G/K/K Blocking Probability Model
and System Performance

In the busy period, connections occur as a stationary Poisson process. This results
from an assumption that individual connections are independently generated by a
large population of users. Wang, Yue, and Luh [23] assumed that connections in
class i arrive at the source node o in accordance with independent Poisson processes
at rate λi, but the packet sizes have a general distribution G with mean σi. For each
class i, we define μi = θ ∗i /σi, where θ ∗i is the optimal bandwidth allocation for each
connection of class i. The average service time corresponds to the packet transmis-
sion time and is equal to average pack size divided by bandwidth. That is,

1
μi

=
σi

θ ∗i
. (16.21)

Hence, for each class i, the service times of connections occupying the end-to-end
paths have a general distribution G with mean 1/μi = σi/θ ∗i . Suppose that con-
nections occupy the end-to-end paths in the order they arrive and that packet sizes,
which need to be transmitted from o to d, are identically distributed, mutually inde-
pendent, and independent of the interarrival times.

Under these assumptions, we analyze this end-to-end transmission system as
M/G/K/K loss systems [24], that is, Poisson arrivals, general service, Ki end-to-end
paths with identical bandwidth allocation θ ∗i , and no waiting space. We can derive
the steady-state occupancy probabilities from the Erlang loss system [25]. For each
class i, the blocking probability is
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Pi(Ki) =
1

Ki!

(
σiλi

θ ∗i

)Ki
[

Ki

∑
j=0

1
j!

(
σiλi

θ ∗i
) j

]−1

(16.22)

under conditions of Poisson arrival, general service time, and only Ki end-to-end
paths. Equation (16.22) is referred to as Erlang’s loss formula [25]. If we denote

ρi =
σiλi

Kiθ ∗i
, (16.23)

then (16.22) can be rewritten as

Pi(Ki) =
(Kiρi)Ki

Ki!

[
Ki

∑
j=0

(Kiρi) j

j!

]−1

=
(Kiρi)Ki

Ki!
[exp(Kiρi)−Ri(Ki)]

−1 , (16.24)

where Ri(Ki) is the Kithdegree Taylor remainder term of exp(Kiρi) [26]. It is valid
for all service distributions and only depends on the traffic load, ρi. From Taylor’s
formula with remainder [26], we have the following results.

Proposition 16.5. There exists a real number ξi ∈ (0,Kiρi), such that exp(Kiρi) =
∑Ki

j=0(((Kiρi) j)/ j!)+Ri(Ki) as

Ri(Ki) =
exp(ξi)(Kiρi)Ki+1

(Ki +1)!
.

Moreover,

lim
Ki→∞

Ri(Ki) = 0.

Harel [27] proved that the fraction of customers lost in the M/G/K/K system is
convex in the arrival rate, if the traffic intensity is below some ρ∗ and concave if the
traffic intensity is greater than ρ∗. Some convexity properties of the blocking proba-
bility (16.22) are listed below. These results are consistent with convexity properties
shown by Harel [27].

Proposition 16.6. For each Ki, there exists a ρ∗i such that for all ρi < (>)ρ∗i , the
blocking probability (16.22) is strictly convex (concave) in ρi.

Proposition 16.7. The blocking probability (16.22) is strictly decreasing and
strictly convex in θ ∗i /σi, provided λi and Ki are fixed.

If the allocated bandwidth allocation with objective function (16.1) is insuffi-
cient, the effect of bandwidth allocation on the blocking probability will be unstable.
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Proposition 16.8.

(1) The blocking probability (16.22) is a decreasing function of θ ∗i if θ ∗i > σiλi/Ki.
(2) The blocking probability (16.22) is an increasing function of θ ∗i if θ ∗i < σiλi/Ki.

Proof. By Proposition 16.5, for a sufficiently large Ki, the blocking probability can
be described as

Pi(Ki) =
ρ̂Ki

i
Ki!exp(ρ̂i)

,

where ρ̂i = σiλi/θ ∗i . Its derivative is

∂Pi(Ki)
∂θ ∗i

= (ρ̂i −Ki)
ρ̂Ki

i
θ ∗i Ki!exp(ρ̂i)

.

When θ ∗i > σiλi/Ki, we have ∂Pi(Ki)/∂θ ∗i < 0. That is, Pi(Ki) is a decreasing func-
tion of θ ∗i if θ ∗i > σiλi/Ki. When θ ∗i < σiλi/Ki, we have ∂Pi(Ki)/∂θ ∗i > 0. That is,
Pi(Ki) is an increasing function of θ ∗i if θ ∗i < σiλi/Ki. 
�

Proposition 16.9.

(1) The blocking probability (16.22) is strictly convex in ρi if 0 < θ ∗i < σiλi/(Ki +√
Ki) or θ ∗i > σiλi/(Ki −

√
Ki).

(2) The blocking probability (16.22) is strictly concave in ρi if σiλi/(Ki +
√

Ki) <
θ ∗i < σiλi/(Ki −

√
Ki).

Proof. Given a sufficiently large Ki, by Proposition 16.5, the blocking probability
can be described as

Pi(Ki) =
ρ̂Ki

i
Ki!exp(ρi)

,

where ρ̂i = σiλi/θ ∗i . Then, we have the first derivative of Pi(Ki) with respect to ρ̂i,

∂Pi(Ki)
∂ ρ̂i

= (Ki − ρ̂i)
ρ̂Ki−1

i
Ki!exp(ρ̂i)

.

And its second derivative is

∂ 2Pi(Ki)
∂ ρ̂2

i
=
[
(Ki − ρ̂i)2 −Ki

] ρ̂Ki−2
i

Ki!exp(ρ̂i)
.

The inequalities 0 < θ ∗i < σiλi/(Ki +
√

Ki) and θ ∗i > σiλi/(Ki −
√

Ki) imply that
ρ̂i > Ki +

√
Ki and 0 < ρ̂i < Ki−

√
Ki. In such cases, ∂ 2Pi(Ki)/∂ ρ̂2

i > 0. On the other
hand, the inequality σiλi/(Ki +

√
Ki) < θ ∗i < σiλi/(Ki −

√
Ki) implies Ki −

√
Ki <

ρ̂i < Ki +
√

Ki. In this case, ∂ 2Pi(Ki)/∂ ρ̂2
i < 0. 
�
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16.3.2 GI/M/K/K Blocking Probability Model
and System Performance

Assume that connections arrive at the source node o in accordance with independent
general distributions from outside this end-to-end transmission system. For connec-
tions in class i, we assume that successive interarrival times are independent and
identically distributed (i.i.d.) and that the packet sizes to be transmitted are i.i.d. ex-
ponential random variables. Therefore, this end-to-end transmission system can be
analyzed as a GI/M/K/K loss system.

We analyze the GI/M/K/K queue through a combination of the supplementary
variable and the embedded Markov chain techniques. We use the former technique
to derive closed-form relations between prearrival and arbitrary epoch probabilities
and the latter one to obtain prearrival epoch probabilities. Various performance mea-
sures such as the average system length and blocking probabilities are discussed and
evaluated.

The interarrival times of connections of class i are i.i.d. random variables with
cumulative distribution function Ai(u), probability density function ai(u) for u > 0,
Laplace–Stiltjes’ transform A∗

i (z), and mean 1/λi. The packet sizes of every con-
nection in class i are i.i.d. random variables following exponential distribution with
mean σi. The Ki end-to-end paths (servers) have independent, exponentially dis-
tributed service times with common average service time 1/μi = σi/θ ∗i , where θ ∗i is
the optimal bandwidth allocation for each connection of class i. That is, the average
service time corresponds to the packet transmission time and is equal to the average
pack size divided by bandwidth. The service discipline is First-Come First-Served
(FCFS) and the maximum number of connections allowed in the system at any time
is Ki. The interarrival times and service times are mutually independent. The traffic
intensity of the system is

ρi =
λi

Kiμi
=
λiσi

Kiθ ∗i
.

Let Ni(t) be the number of connections in class i present, and let Ui(t) be the
remaining inter arrival time of the next arrival in class i. At time t, the state of the
system for class i is given by Ni(t) and Ui(t). We define

Pi,n(u, t)du = P{Ni(t) = n, u ≤Ui(t) < u+du}, u ≥ 0, n = 0,1,2, . . . ,Ki.

It follows that

Pi,n(t) = P(Ni(t) = n) =
∫ ∞

0
Pi,n(u, t)du, n = 0,1,2, . . . ,Ki.

For simplicity, we skip the notation i in the following mathematical derivation. That
is, for every class i, the derivation is conducted in general format.

From the result of Laxmi and Gupta [28], we can obtain the steady-state probabil-
ities of n (0 ≤ n ≤ K) connections in the system at prearrival epochs P−

n by relating
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the states of the system at two consecutive time epochs t and t + dt and by using
probabilistic arguments. The steady-state probabilities P−

n can be easily obtained
from Pn(0) and are given by

P−
n =

Pn(0)
K

∑
k=0

Pk(0)

=
Pn(0)
λ

, 0 ≤ n ≤ K. (16.25)

Our objective is to find the distributions of the number of connections in the
system at arbitrary (Pn) and prearrival (P−

n ) epochs. Next, we develop the relation
between Pn and P−

n and obtain the latter using the embedded Markov chain tech-
nique. After some similar manipulation in [28], we obtain

Pn+1 =
λ

μ(n+1)
P−

n , n = 0,1, . . . ,K −1. (16.26)

Once the P−
n (0 ≤ n ≤ K) are known, one can get Pn (1 ≤ n ≤ K) from (16.26).

Finally, P0 is obtained by using ∑K
n=0 Pk = 1.

The state probabilities at prearrival epochs, P−
n s (0 ≤ n ≤ K), can be determined

by solving the system of linear equations:

P−
n =

K

∑
m=0

P−
m Pm,n, 0 ≤ n ≤ K, (16.27)

where Pm,ns are the one-step transition probabilities. The expression for Pm,n is

Pm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

0

(
m+1

n

)

e−μnt(1− e−μt)m+1−ndA(t), 0 ≤ n ≤ m < K
∫ ∞

0

(
K
n

)

e−μnt(1− e−μt)K−ndA(t), 0 ≤ n ≤ m = K
∫ ∞

0
e−μntdA(t), 1 ≤ m+1 = n ≤ K

0, 1 ≤ m+1 < n ≤ K.
(16.28)

We briefly explain (16.28) as follows. Let connections arrive at the epochs 0 =
τ0, τ1, . . . ,τt , . . .. The interarrival times Tt+1 = τt+1 − τt > 0, t = 0,1,2, . . . , are
i.i.d. random variables with the common distribution function A(u). Let τ−t denote
the time epochs just before the arrival instant τt . Furthermore, at time epoch τ−t ,
a connection arrives and finds the system in state m (0 ≤ m<K), so that the total
number of connections at the instant τt is m + 1. Therefore, if at time epoch τ−t+1,
n (0 ≤ n ≤ K) connections are needed, then (m + 1− n) connections must depart
during the interarrival period.

In the following examples, we determine some quantities of (16.28) for interar-
rival time distributions: exponential, Erlang-k, deterministic, and hyperexponential.

Example 16.1. Assume the interarrival time is exponentially distributed with param-
eter λ . Then
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Pm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λσ
θ ∗

(m+1)!Γ (n+λσ/θ ∗)
n!Γ (m+2+λσ/θ ∗)

, 0 ≤ n ≤ m < K

λσ
θ ∗

K!Γ (n+λσ/θ ∗)
n!Γ (K +1+λσ/θ ∗)

, 0 ≤ n ≤ m = K

λσ
θ ∗

Γ (n+λσ/θ ∗)
Γ (n+1+λσ/θ ∗)

, 1 ≤ m+1 = n ≤ K

0, 1 ≤ m+1 < n ≤ K.

(16.29)

Example 16.2. Assume the interarrival time is deterministic with mean 1/λ = d,

a(t) = δ (t −d) =
{
∞, t = d
0, t 	= d.

We can determine

Pm,n =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
m+1

n

)

e−θ
∗nd/σ (1− e−θ

∗d/σ )m+1−n, 0 ≤ n ≤ m < K
(

K
n

)

e−θ
∗nd/σ (1− e−θ

∗d/σ )K−n, 0 ≤ n ≤ m = K

e−θ
∗nd/σ , 1 ≤ m+1 = n ≤ K

0, 1 ≤ m+1 < n ≤ K.
(16.30)

Example 16.3. Assume the interarrival time is Erlang-k with mean 1/λ . Then

Pm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
m+1

n

)(
kλσ
θ∗

)k m+1−n

∑
l=0

(
m+1−n

l

) (−1)m+2−n

(m+ kλσ/θ∗)k , 0 ≤ n ≤ m < K
(

K
n

)(
kλσ
θ∗

)k K−n

∑
l=0

(
K−n

l

) (−1)K+1−n

(K −1+ kλσ/θ∗)k , 0 ≤ n ≤ m = K

(
kλσ
θ∗

)k (−1)
(n−1+ kλσ/θ∗)k , 1 ≤ m+1 = n ≤ K

0, 1 ≤ m+1 < n ≤ K.
(16.31)

Example 16.4. Assume the interarrival time is hyperexponential with k exponential
stages and parameters λl , pl , l = 1, . . . ,k, where 0 ≤ pl ≤ 1, λl ≥ 0, for each l =
1, . . . ,k, ∑k

l=1 pl = 1, and 1/λ = ∑k
l=1 pl/λl . Then

Pm,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m+1)!σ
θ ∗n!

k

∑
l=1

plλlΓ (n+λlσ/θ ∗)
Γ (m+2+λlσ/θ ∗)

, 0 ≤ n ≤ m < K

K!σ
θ ∗n!

k

∑
l=1

plλlΓ (n+λlσ/θ ∗)
Γ (K +1+λlσ/θ ∗)

, 0 ≤ n ≤ m = K

σ
θ ∗

k

∑
l=1

plλlΓ (n+λlσ/θ ∗)
Γ (n+1+λlσ/θ ∗)

, 1 ≤ m+1 = n ≤ K

0, 1 ≤ m+1 < n ≤ K.

(16.32)
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After obtaining Pm,ns for various interarrival time distributions, we can obtain the
state probabilities at prearrival epochs P−

n s by solving the system of linear equations
(16.27). Then, we know all Pn, 0 ≤ n ≤ K, from (16.26) and ∑K

n=0 Pn = 1.
Performance measures are the means to analyze the efficiency of the queueing

system under consideration. Let L denote the average system length. Then it is
given by

L =
K

∑
n=1

nPn.

Let E[W ] denote the average waiting time in the system. Then by Little’s rule

E[W ] =
L
λ ′ ,

where λ ′ = ḡ(1−PBA)λ is the effective arrival rate.

16.4 Numerical Results

Consider a sample network shown in Fig. 16.1, where V ={node o, node 1, . . . ,
node d} and E = {eo,1,eo,2, . . . ,e11,d} denote the set of nodes and the set of links
in the network, respectively. Let node o and node d be the source and destination,
respectively. Each connection is delivered from node o to node d. Table 16.1 shows
the capacity Ue, constant delay �e, and the purchasing cost κe of bandwidth for each
link e ∈ E.

Four different QoS classes are given (characterized and shown in Table 16.2),
where class 1 has the highest priority and class 4 has the lowest priority. We assume
every connection in class i, for i = 1, . . . ,4, has the same aspiration level ai kbps (i.e.,
kilobits/sec), reservation level ri kbps, mean packet size σi kb, maximal end-to-end
delay Di, and bandwidth requirement bi kbps. We let θi be the bandwidth allocated
to each connection in class i, ∀ i = 1, . . . ,4. Let Ki be the number of connections in
each class i for i = 1, . . . ,4.

Fig. 16.1 A sample network.
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Table 16.1 Characteristics of each link.

Characteristics eo,1 eo,2 eo,3 e1,4 e1,5 e2,4 e2,5 e2,6 e3,5

Capacity (Mbps) 35 45 55 53 47 36 37 45 40
Cost ($) 7 6 5 14 11 14 7 13 8
Delay (ms) 3 3.2 3.5 1.2 2 1.2 3 1.5 2.7

e3,6 e5,4 e5,8 e5,6 e4,7 e4,8 e6,8 e6,9 e8,7
Capacity (Mbps) 50 45 46 45 44 46 36 35 54
Cost ($) 14 7 11 5 5 10 5 7 5
Delay (ms) 1.2 3 2 3.5 3.5 2.2 3.5 3 3.5

e8,10 e8,11 e8,9 e9,11 e7,d e7,10 e10,d e11,d
Capacity (Mbps) 40 53 41 40 52 44 42 50
Cost ($) 7 9 6 8 13 6 8 6
Delay (ms) 3 2.5 3.2 2.7 1.5 3.2 2.7 3.2

Table 16.2 Characteristics of each QoS class.

Class i bi (kbit/s) ri (kbit/s) ai (kbit/s) σi (kb) Di (ms)

1 512 622 1024 2534.2 10.2
2 155 167 512 367.8 19.7
3 45 83 256 128.7 25.4
4 34 38 56 47.1 41.3

16.4.1 Predetermined Optimal Solutions

Under the total available budget B = 2× 106, we plan to allocate the bandwidths
in order to provide each class with maximal utility. We provide a routing table
as shown in Table 16.3 given parameters (K1,K2,K3,K4) = (20,35,60,90) and
(w1,w2,w3,w4) = (0.4,0.3,0.2,0.1). The optimal bandwidth allocation is θ ∗1 =
1024, θ ∗2 = 448, θ ∗3 = 189, and θ ∗4 = 56. In Table 16.3, it gives, for each path p in the
routing table P, the path flow θi,p which is computed by (16.15) in Proposition 16.3.

Moreover, it gives the number of connections and number of links n(p) along
path p. When connections arrive, these paths are the candidates for the adequate so-
lution with end-to-end QoS guarantees. We can determine the unit path cost ∑e∈pκe
for using one-unit bandwidth along the path p ∈ P. These paths are Pareto opti-
mal solutions with end-to-end QoS guarantees. The path flow θi,p in (16.15) and
(16.16), for each class i, is the aggregated bandwidth of connections along path
p. The number of connections, for each class, along path p ∈ P is also determined.
A path pi, j between o and d is guaranteed if D(pi, j)≤Di for a connection j in class i.

We now explore how changes in the total budget affect the optimal allocation.
Some numerical results are depicted in Figs. 16.2 to 16.4. Figure 16.3 shows an
obvious phenomenon that increasing the total budget will increase the total satisfac-
tion. It is also reflected by bandwidth obtained as shown in Fig. 16.2.
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Table 16.3 A routing table as B = 2 × 106, (K1,K2,K3,K4) = (20,35,60,90), and (w1,w2,
w3,w4) = (0.4,0.3,0.2,0.1).

Class Opt. Path Path Flow No. of No. of Unit Path Delay
i p θi,p Connect. Links n(p) Cost D(p)

1 eo,1 − e1,4 − e4,7 − e7,d 6144 6 4 39 9.2
eo,2 − e2,4 − e4,7 − e7,d 14336 14 4 38 9.4
eo,1 − e1,4 − e4,7 − e7,d 448 1 4 39 9.2
eo,2 − e2,4 − e4,7 − e7,d 2688 6 4 38 9.4

2 eo,2 − e2,5 − e5,4 − e4,7 − e7,d 448 1 5 38 14.2
eo,2 − e2,5 − e5,6 − e6,8 − e8,10 − e10,d 448 1 6 38 18.9
eo,2 − e2,5 − e5,6 − e6,8 − e8,11 − e11,d 11200 25 6 38 18.9
eo,2 − e2,5 − e5,6 − e6,8 − e8,7 − e7,d 448 1 6 41 18.2

eo,2 − e2,4 − e4,7 − e7,d 3213 17 4 38 9.4
3 eo,2 − e2,5 − e5,6 − e6,8 − e8,10 − e10,d 378 2 6 38 18.9

eo,2 − e2,5 − e5,6 − e6,8 − e8,11 − e11,d 7749 41 6 38 18.9
eo,2 − e2,4 − e4,7 − e7,d 2128 38 4 38 9.4

4 eo,2 − e2,5 − e5,6 − e6,8 − e8,10 − e10,d 112 2 6 38 18.9
eo,2 − e2,5 − e5,6 − e6,8 − e8,11 − e11,d 2800 50 6 38 18.9
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Fig. 16.2 Bandwidth versus budget.

16.4.2 Blocking Probabilities Under M/G/K/K Model

We observe the relationship between blocking probability Pi(Ki) and average arrival
rate λi. We assume connections of class i arrive at the source node o in accordance
with independent Poisson processes at rate λi, and the packet sizes to be transmit-
ted have general distributions with mean σi. From (16.22), we can determine the
blocking probabilities with parameters θ ∗1 = 1024, θ ∗2 = 448, θ ∗3 = 189, θ ∗4 = 56,
σ1 = 2534.2, σ2 = 367.8, σ3 = 128.7, σ4 = 47.1, K1 = 20, K2 = 35, K3 = 60,
and K4 = 90. Figure 16.5 shows that class 1 has higher blocking probability than
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Fig. 16.4 Budget ratio versus budget.

other classes due to the number of their estimated arrivals, K1 being smaller and
the packet transmission, being time (16.21) being longer than that of other classes.
From Proposition 16.6, there exists an inflection point for each curve in Fig. 16.5.
These curves are convex ahead of inflection points.

Next, we observe the the relationship between blocking probability Pi(Ki) and
total budget B by using the formula (16.24) in the M/G/K/K model and optimal solu-
tions in Table 16.4. The numerical results are drawn in Fig. 16.6 given mean arrival
rates λ1 = K1 = 20, λ2 = K2 = 35, λ3 = K3 = 60, λ4 = K4 = 90, and mean packet
size σ1 = 2534.2, σ2 = 367.8, σ3 = 128.7, and σ4 = 47.1. We observe that the effect
on blocking probability in class 2 is unstable when 1.5×106 < B < 1.8×106, and
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Fig. 16.5 Blocking probability versus traffic load with four classes.

Table 16.4 Change in the budget with (K1,K2,K3,K4) = (20,35,60,90) and (w1,w2,w3,w4) =
(0.4,0.3,0.2,0.1).

Budget Bandwidth Utility Total Flow Utility Budget Ratio CPU Time
B
(106)

(θ ∗1 ,θ ∗2 ,θ ∗3 ,θ ∗4 ) ( f1, f2, f3, f4) (kbps) ∑4
i=1 wi fi % (sec)

1.5 (1024,256,83,56) (1,0.38,0,1) 34494 0.615 (51.9,22.7,12.6,12.8) 311.63
1.6 (1024,272,118,56) (1,0.44,0.31,1) 35049 0.693 (48.6,22.6,16.8,12.0) 87.41
1.7 (1024,340,122,56) (1,0.63,0.34,1) 37403 0.758 (45.8,26.6,16.3,11.3) 290.44
1.8 (1024,374,145,56) (1,0.72,0.50,1) 38610 0.815 (43.3,27.6,18.4,10.6) 139.91
1.9 (1024,409,168,56) (1,0.80,0.63,1) 39818 0.865 (41.1,28.6,20.2,10.1) 9981.41
2.0 (1024,448,189,56) (1,0.88,0.72,1) 41215 0.909 (39.2,29.9,21.3,9.6) 350.91
2.1 (1024,512,193,56) (1,1,0.75,1) 43440 0.950 (37.4,32.5,21.0,9.1) 1781.72
2.2 (1024,478,253,56) (1,0.94,0.99,1) 42233 0.979 (35.7,29.0,26.2,8.7) 613.13
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Fig. 16.6 Blocking probability versus total budget under M/G/K/K model.
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the effect on blocking probability in class 3 is also unstable when 1.5×106 < B <
1.7× 106. These unstable situations occur due to insufficient bandwidth allocation
to class 2 and class 3 by Proposition 16.8. If the bandwidth allocation is sufficiently
large, by Proposition 16.8, the blocking probability will decrease as the allocated
bandwidth increases. Computational experiences show different topologies do not
change the validity of the model.

16.5 Conclusions

We present an approach for a two-phase modeling of QoS routing in communication
networks. The first phase is executed in advance and its purpose is to precompute
solutions as a database for later use. The second phase selects one of the solutions
precomputed at the first phase by performing a few additional computations. The
purpose of the second phase is to promptly provide an adequate solution when con-
nections arrive. Users’ utility functions are summarized by means of achievement
functions. Using the bandwidth allocation model, we can find a Pareto optimal al-
location of bandwidth on the network under a limited available budget, and this
allocation can provide the so-called proportional fairness to every class. That is, this
allocation can provide similar satisfaction to each user in all classes.

We also derive the blocking probability of an end-to-end transmission system
with predetermined optimal solutions, which is an important performance measure-
ment of network systems.
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