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Abstract This chapter concerns the forecasting of crime locations using burglary
as an example. An overview of research concerned with when and where burglaries
occur is provided, with an initial focus on patterns of risk at the individual house-
hold level. Of central importance is evidence that as well as being geographically
concentrated (at a range of geographic scales), burglary clusters in space and time
more than would be expected if patterns of crime were simply the result of some
places being more attractive to offenders than others. One theoretical framework
regarding offender spatial decision making is discussed and consideration given
to how features of the urban environment which affect the accessibility of places
(e.g., road networks or social barriers) might shape patterns of offending. A simple
mathematical model informed by the research discussed is then presented and tested
as to its accuracy in the prediction of burglary locations. The model is tested against
chance expectation and popular methods of crime hot-spotting extant and found to
outperform both. Consideration of the importance of different units of analysis is a
recurrent theme throughout the chapter, whether this concerns the intended policy
purpose of crime forecasts made, the spatial resolution of different types of data
analyzed, or the attention given to the dimension of time – a unit of analysis often
overlooked in this type of work. The chapter concludes with a discussion of means
of developing the approach described, combining it with others, and using it, inter
alia, to optimize police patrol routes.
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Introduction

Predictions about how crime will be distributed can be made for different levels of
spatial aggregation, most being useful for some policy purpose. At the macro level,
predictions may be made about towns or cities. These will be useful for national gov-
ernments in the provision of resources and support to local policing. The meso-level
employs smaller areal units such as police beats or census tracts which nonethe-
less may incorporate hundreds of households and businesses. These will be useful
for resource decisions within police forces and for the understanding of offender
spatial choices dependent on neighborhood characteristics (see e.g., Bernasco and
Nieuwbeerta 2005). The micro level has the individual household or business as its
unit of count and has been studied in the context of repeat victimization (e.g., see
Farrell 2005) and household-specific risk factors (see Winchester and Jackson 1982;
Coupe and Blake 2006). Prediction at this level is useful for the provision of advice
and protective technology to individual locations at risk.

The writers contend that the unit of analysis selected should be informed by
theory and/or an intended application. Data are often unavailable at the level of
geographic resolution desirable, particularly where a disaggregated analysis would
be appropriate. When analyses are performed using data from the less appropriate
larger areal units, the temptation may be to assume that patterns observed across an
area will apply equally to the mosaic of smaller areas (and individual locations) of
which it is composed - the ecological fallacy. The assumption that crime experience
is uniform within an area is certainly ill-founded (Bowers et al. 2005). The larger
the areal unit used, the more probable it becomes that local decisions within the area
will be sub-optimal. Of course, disaggregated data may be aggregated. Aggregated
data cannot readily be disaggregated.

This preamble has two purposes. The first is to assert that the choice of areal unit
in crime prediction should proceed in lockstep with the decisions to be informed.
The second, more contentious, is to propose that there is an areal unit intermediate
between micro and meso level which is the appropriate one for optimizing police
patrol. This may (over-simply) be thought of as an area clearly visible within sec-
onds by a police officer on foot, encapsulated as ‘having a look around’, having
stopped a patrol vehicle in an area of potential interest. While vague, in the next
section, we will suggest how a unit of analysis at roughly this scale emerges from
research as useful in underpinning patrolling choices.

Before continuing, an overview of what follows will be provided. The general
aim of this chapter is to present our most recent work and thinking concerning
the forecasting of future locations of burglary, where the future relates to the next
week, or so. The structure of the chapter is as follows. First, we briefly discuss
research concerned with patterns of burglary at the most precise unit of analysis;
repeat victimization of the individual household. This is followed by a discussion of
more recent work which may be thought of an extension of the repeat victimization
literature. In doing so, we discuss one theoretical framework regarding offender
spatial decision making and how this might inform crime forecasting. Second, we
discuss how other factors, which may be defined at different units of analysis (e.g.,



8 Predictive Mapping of Crime by ProMap: Accuracy 173

the street network, neighborhood characteristics), may influence offender decision
making and how these might be integrated into a forecasting methodology. Third,
we present an empirical test of the method discussed, comparing it to contending
alternatives and chance expectation. Finally, the results are discussed, their implica-
tions articulated, and methodological issues regarding the importance of choosing
the right spatial units of analysis revisited. The crime analyzed in this chapter is
domestic burglary but we are actively conducting the analyses necessary for exten-
sion across crime types and across sequences of different crime types.

Risk, Contagion, and the Optimal Forager

The logic applied in the research refines and develops that focusing on repeat victim-
ization (see Pease 1998). Briefly, for every type of crime studied (except homicide),
the risk of victimization increases significantly following an initial event (e.g., Polvi
et al. 1991); a small proportion of victims (e.g., 4%) account for a large propor-
tion (e.g., 44%) of crime (Pease 1998); and, where repeat victimization occurs, it
usually does so quickly, offering a narrow window of opportunity for intervention
(e.g., Johnson et al. 1997). The consequence is spatio-temporal instability in crime
risk at the micro-level unit of analysis. Importantly, interviews with offenders and
analysis of police records suggest that repeat burglaries at the same location are
overwhelmingly the work of the same offender or of groups having at least one
offender in common (Ericsson 1995; Ashton et al. 1998: Everson and Pease 2001;
Everson 2003; Bernasco 2008).

Research also suggests that offenders exhibit preferences, internalized as cogni-
tive scripts (Cornish 1994; Wright and Decker 1994; Rengert and Wasilchick 2000)
or templates (Brantingham and Brantingham 1993), for the types of property consid-
ered suitable targets. The prevalence of repeat victimization shows that despite the
many and varied opportunities within a burglar’s awareness space, he or she exhibits
an inclination to return to homes already victimized. Interviews with convicted bur-
glars (Ashton et al. 1998; Shaw and Pease 2000) suggest that where opportunities
present themselves, offenders seek familiarity, which is to be found in returning to
the same home or looking for near-replicas, favoring these over targets of which
they know little. Prosaic reasons for return include this terse commentary of one
Scottish burglar ‘Big house, small van’!

Preferences (conceived as reward in relation to effort) seem to be maintained
until they no longer offer an advantage over other opportunities (Brantingham and
Brantingham 1981). Experience updates the templates. The discovery of a good
opportunity for burglary should elevate the risk to similar households from that
burglar. Thus, following a burglary at one home, those located nearby (which will
share a range of physical and other characteristics) should be at an elevated risk for
some time afterwards. This is termed a ‘near repeat’ (Morgan 2001; Pease 1998).
Much recent research demonstrates this to be the case. Using techniques from epi-
demiology (Knox 1964), research has confirmed that burglary clusters in space and
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time (Townsley et al. 2003; Johnson and Bowers 2004a; Bowers and Johnson 2005).
Communicable disease provides a useful simile from the policing and victim per-
spective, where the task at hand is to choose for attention places currently at high
risk. When considering matters from the offender’s viewpoint, the notion of the
optimal forager (discussed below) is more apposite. In any event, we should not
get too excited about similes beyond their heuristic value. For example, in disease
contagion, each victim comes to carry the infective agent to his or her neighbors. In
burglary contagion, the infective agent remains the same (the burglar), and it is the
way in which their awareness of, or preferences for, particular opportunities may be
temporarily shaped by their recent activity that is of interest.

Returning to the typical conclusions from the research concerned with near
repeats, following a burglary, homes up to 400 m away have been shown to expe-
rience an elevated risk for up to two months. Importantly, data from five coun-
tries (UK, US, AUS, NDL, and NZ), demonstrated that the phenomenon is at
least widespread, perhaps ubiquitous, in the developed world (Johnson et al. 2007).
Arguing that the same underlying process is involved is premature but tempting.
This so-far ubiquitous pattern suggests that, although some areas tend to experience
enduring risks, hot spots tend to be ‘slippery’ (Johnson and Bowers 2004b). Offend-
ers demonstrate by their ‘spoor’ (the trail of victimized homes or people) a search
pattern which may be likened to foraging behavior (Johnson and Bowers 2004a). As
a consequence of having exploited all favorable opportunities on one street segment,
or because of a perceived elevation in the local risk of apprehension, an offender
may move to other areas, typically those conveniently accessible, that is, nearby.
Our understanding of the burglar’s sequenced decision making is thus as follows.
First, select an area/street segment, burgle the best presenting option, and then tar-
get the most similar available opportunities, returning to some before moving on
when profit diminishes or physical change alerts to precautions being taken. As
with foraging, the activity is intermittent.

Why is the image of the optimal forager appealing? Consider the foraging sheep.
Sheep may take multiple bites of the most luscious grass, particularly since foraging
involves a trade-off between, on the one hand, the energy value of food immedi-
ately available and, on the other, effort expended in reaching even more luscious
grass elsewhere. Grass in the far corner of the field has to be more calorific to the
extent that it offsets the energy (and possibly danger) involved in moving across
the pasture. The food value of over-grazed grass diminishes until it re-grows, just
as the take from repeatedly burgled homes declines until replacement goods are
purchased. Even sheep get full sometimes, and so do the arms or vans of bur-
glars. Burgled goods must be secreted or disposed of before foraging recommences.
Once an area is perceived to have been grazed out (skimmed of the best oppor-
tunities) the forager moves on. This is in line with theory discussed elsewhere
(e.g., Brantingham and Brantingham 1978; Cornish and Clarke 1986; Bernasco and
Nieuwbeerta 2005) and is consistent with interviews conducted with offenders (e.g.,
Bennett and Wright 1984; Nee and Meenaghan 2006). The evident regularity in
the space-time clustering of recorded burglary is, in short, a consequence of bur-
glar as forager. It is emphatically not consistent with any theory predicated on a
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time-invariant distribution of risk factors. To put it bluntly, space and time are both
crucial in the analysis of crime patterns. To ignore time is to diminish the value
of spatial analysis and vice-versa. Ignoring time leads to a perceived paradox: that
homes already victimized are liable to further victimization, but that crime risks
move. The paradox is only apparent when the variable time is overlooked. The
elevated risk to the recently burgled is transient. As time moves on, so does the
foraging burglar.

We presume that crimes in a near repeat series are more often than not com-
mitted by the same offender(s). Interviews with offenders support this idea (Ashton
et al. 1998), as do the findings of research which has examined patterns of offending
for detected offences. For example, Everson (2003) found that having targeted one
home on a street, burglars tended to target others nearby. Bernasco (2008) looked at
pairs of detected burglaries at a range of spatio-temporal distances. He found that
98% of repeat burglary pairs occurring within 100 m and one week of each other
were detected to the same burglar. The proportion of same-offender pairs declined
as time and space between events increased. For example, events 100–200 m from
an initial burglary 1–2 weeks later were the work of the same offender in only 55%
of detected cases. That said, more research is required as analyses so far conducted
may reflect only the targeting decisions made by the (potentially biased) samples of
offenders for which data were available- those arrested or convicted.

A further test of the near repeat/same offender hypothesis (Bowers et al. 2004)
involved the use of a simple mathematical model (hereafter, ProMap) to predict
where burglary would next occur. The risk of crime at any location within a grid that
represented the study area was derived by considering where and when burglaries
had previously occurred. If burglaries clustering in space and time represent the
foraging signatures of individual offenders (or co-offenders), grid locations where
the greatest number of burglaries had occurred recently and nearby (rather than
those locations that had just had the most crime at them, irrespective of when) were
predicted to have the greatest imminent risk. Given the finding that such risk dimin-
ishes with time, the appropriate temporal interval for analysis of predictive accuracy
should be short (e.g., one week into the future). The use of longer intervals (e.g., one
month into the future) would be incongruent with the tempo at which offender and
policing decisions are made. The areas for which the predictions were generated
were also small (50 m grid cells) for the same reasons.

ProMap: Initial Tests and Introducing Accessibility

The results of the ProMap model were compared to the retrospective hot-spotting
technique known as Kernel Density Estimation (KDE) and also to a thematic map
generated using a police beat geography (Bowers et al. 2004). The KDE method
was chosen as a comparator for two reasons. First, it is commonly used by police
and researchers. Second, unlike thematic maps, the unit of analysis is flexible. 50 m
grid cells were used for both the KDE and ProMap. The obvious justification for the
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use of thematic maps is that they correspond to areas of police responsibility (Poot
et al. 2005) and that such analysis facilitates a comparison of forecast accuracy for
maps derived using very different units of analysis.

To examine the relative accuracy of the approaches, we first compared the per-
centage of future burglaries that occurred in the 20% of cells (or beats when using
thematic maps) with the highest predicted risks according to each method. ProMap
proved more accurate than either KDE or thematic maps. The fact that only one
prediction was generated and no comparison was made against chance expecta-
tion limits euphoria about ProMap’s performance. Both of these considerations are
addressed below.

A criticism of most crime mapping techniques is that crime data constitutes
the sole input, (although this is not true of repeat victimization research (see, e.g.,
Tseloni et al. 2004; Tseloni and Kershaw 2005). The underlying opportunity struc-
ture or spatial field is essentially assumed to be uniform. This assumption is seldom
tenable. Recent research concerned with spatial ecology (Matthiopoulos 2003) con-
sidered the impact on the foraging behavior of species under temporal and spatial
constraints on the distribution of resources and the accessibility of locations. Where
resources are unevenly distributed (the norm), the inclusion of an accessibility vari-
able increases the predictive efficacy of mathematical models of foraging. People
are likewise subject to both spatial and temporal constraints (Ratcliffe 2006), and
location accessibility is hence a plausible influence on offender foraging.

In the urban environment, Beavon et al. (1994) examined how the risk of victim-
ization at different street segments in Vancouver varied according to their ease of
access. There was indeed a positive correlation between victimization and ease of
access for a range of property crimes including burglary. Similar results have been
found for research conducted in the UK (e.g., Armitage 2007; Hillier 2004).

The only study which considered such issues in the prediction of crime and of
which the authors are aware was conducted by Groff and LaVigne (2001). They
used a simple ‘on-off’ estimation of opportunity factors such as land use, housing
tenure, and proximity to likely offenders, derived for a grid that represented the
study area. These were aggregated to produce an overall risk score for every grid
square (or cell). For each cell, the risk score incorporated the mean of the cells
that comprised its Moore neighborhood (the surrounding cells). The accuracy of
this weighted opportunity surface in predicting burglary was then tested. The results
suggested that only 6% of burglaries occurred where the risk score was one to two
standard deviations below the mean. At the other end of the scale, 20% of burglaries
happened in cells with risk values one or more standard deviations above the mean.
The model thus seemed better at predicting where crimes would not occur than
where they would. Groff and LaVigne incorporated only time-invariant factors in
their predictions. The model thus accurately identified areas where good oppor-
tunities for crime were always rare. Where opportunities did exist, the Groff and
LaVigne procedure, neglecting variations over time, failed to help much in indicat-
ing which locations would be exploited.

How should one operationalize accessibility (or what might be thought of as pull
factors)? The simplest and most obvious factor is the number of homes in a grid



8 Predictive Mapping of Crime by ProMap: Accuracy 177

square and this is the first accessibility measure used in the study reported. The
second concerns the street network and in the simplest sense the number and types
of road in each grid cell. The rationale for using the latter was that the number of
roads in a cell is likely to provide a crude index of how connected each cells is to
those that surround it, whereas the type of road (small or large) provides an estimate
of the likely volume of through traffic (pedestrian or vehicle).

A further factor that might affect offender movement is the existence of phys-
ical or perceived barriers. For example, using data for convicted offenders in The
Hague, Bernasco and Nieuwbeerta (2005) examined the effect of area characteris-
tics on offenders’ target choices. After controlling for other relevant factors (such as
proximity to the central business district), they found that an offender’s decision to
burgle was linked to ethnic heterogeneity, measured at the area level. More homo-
geneous neighborhoods appeared to generate impedance to offender movement, and
this was particularly the case for areas hosting those not native to the Netherlands.
In a further Dutch study, Poot et al. (2005) found that when offenders committed
any place based crime (e.g., shoplifting, burglary, or violence) in neighborhoods
other than their own, they were less likely to cross recognizable social barriers. In
the same vein, LeBeau and Rengert (2006) showed that arrested drug dealers tend
to deal drugs in areas with ethnic profiles similar to that of their own neighborhood.
Reynald et al. (2006) also show the salience of social barriers in crime trips. In short,
the evidence suggests that social barriers delineating areas shape offender choices.
Observed consistencies in the target choices of offenders reflect their preferences
(see Hakim et al. 2001).

Put simply, burglars have preferences for certain areas. We here hypothesize that
where barriers may be perceived to separate areas of recent crime from different but
contiguous areas, the established patterns whereby (offender foraging and hence)
crime risk seems to spread will be impeded.

The Argument So Far and Measuring Predictive Success

Let us rehearse the arguments advanced to this point. We have argued

1. that a scale of spatial analysis between meso and micro is appropriate for
patrolling choices.

2. that the range over which burglary risk might be thought of as being communi-
cated (to use the simile) is consistent with this scale, being some 200–400 m

3. that the spatial communication of risk is temporally limited, making spatio-
temporal analysis necessary.

4. that such patterns are overwhelmingly a reflection of the activity of individual
offenders, with the analogy of the optimal forager being helpful in illuminating
the likely search processes involved.

5. that factors of actual and perceived accessibility of places can usefully supple-
ment the basic ProMap approach.
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A further issue that is central to the theme of this book concerns the size of the
areas to be identified as being most at risk. Police resources vary. A poorly resourced
police area will be attracted by a predictive mapping model which identifies the
most crime-prone 10% (say) of locations. The police commander in such an area
will be indifferent to the model’s performance for a higher proportion of the area
to be policed, because he or she does not have the resources to cover more than
10% of the area. A more richly resourced area will be concerned about the model’s
performance up to (say) 20% of the area, if resources exist to police such a high
proportion of the area. For this reason, a more sensitive means of establishing pre-
dictive accuracy than has been used elsewhere (e.g., Bowers et al. 2004; Groff and
LaVigne 2001) is required. Instead of considering the fraction of events predicted
by a particular proportion (such as the top 20%) of cells with the highest anticipated
risks, the product which satisfies the information needs of police across a range of
resourcing options is an accuracy concentration curve. This is simple to do, being
generated by plotting the percentage of burglaries accurately predicted as a function
of the incremental (risk ordered) percentage of cells considered. This provides a
more complete understanding of how well the different models work. Crucially, it
allows operational decisions to be optimized for any level of local resourcing and
circumstance, and to be adjusted in response to changes in these factors. Consider
the two hypothetical examples shown in Fig. 8.1. For the first four percent of cells
considered, model 2 performs better than model 1, but thereafter the reverse is true.
The functional form of model 1 is non-linear, which is desirable, whereas as that
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for model 2 is linear, which is not. Patterns such as this are only detectable where
a concentration curve is generated and will be missed where single cut points are
used.

The aims of the analyses that follow were three-fold: (1) to provide a further
test of the prospective mapping (ProMap) algorithm, by generating a series of pre-
dictions for comparison against chance expectation and the performance of retro-
spective methods generated using different (spatial) units of analysis (KDE and
thematic mapping); (2) to examine the effect of using data concerning the distri-
bution of opportunities and a crude index of their accessibility on the accuracy of
the ProMap algorithm; and, (3) to develop the model to incorporate the potential
impact of barriers. The last aim was particularly tentative as no relevant research
had been conducted within the study area used in this chapter, or using the approach
here proposed. It has yet to be established whether the existence of barriers of the
kind discussed above affect offender targeting decisions within the UK, or what
types of barrier might be chosen as most relevant. The attempt is worthwhile, if
only as a marker for future research.

Data and Method

Residential burglary data were obtained for the county of Merseyside, UK. Reflect-
ing processing limitations, data were analyzed for a (5 km × 5 km) 27,040,000 m2

grid square in South Liverpool, a fragment of which is illustrated in Fig. 8.2. Each
burglary record included information concerning date and location, the grid coor-
dinates having a positional accuracy of one meter. The available data covered the
period 1 September 1996 to 30 November 1997. Data for the first year (1 September
1996 to 31 August 1997) were used as a construction sample to generate a profile of
space-time clustering, the remainder of the data were used (1 September 1997 to 30
November 1997) as a validation sample for the predictions generated2. Data cover-
ing a period of two months were used to generate all predictions, irrespective of the
method used. To test the accuracy of predictions, data from the ensuing seven days
were examined. In order to minimize spatial edge effects, data for a 500 m-buffer
zone were included in the generation of the predictions.

Analysis of space-time clustering using historic data allowed calibration of
the prospective mapping algorithm. Because this approach has been described
elsewhere (see, Johnson et al. 2007), it will be merely outlined here. In the
Knox approach (Knox 1964) and the Monte Carlo variant used here (Besag and
Diggle 1977), the spatial and temporal interval between each crime and every other
crime was computed. A contingency table was then populated to summarize the

2 The validation sample was not used in the generation of the area-level profile of space-time
clustering, but was of course used in the generation of the predictions. That is, to generate the pre-
dictions a rolling window of data were required. For the initial forecast only data from the con-
struction sample were required, but for subsequent predictions additional data (which preceded the
prediction) from the validation sample were necessary.
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Fig. 8.2 An example of the study area grid and opportunity structure (Ordnance Survey c© Crown
Copyright. All Rights reserved)

resulting n∗(n-1)/2 comparisons. To generate the frequencies expected (e.g., for
burglaries that occurred within 100 m and 7 days of each other) under conditions
where the timing and placement of crimes were independent (the null hypothesis),
a Monte Carlo re-sampling approach (Besag and Diggle 1977) was used. This was
completed 999 times to enable inference testing3. Twelve months’ data from the

3 The basic Monte Carlo re-sampling approach is discussed in a little detail in a later section. For
the sake of brevity, readers are asked to accept that the approach was valid.
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study area (N=1,662) as described above were used as the construction sample.
The results showed that more burglaries occurred within 500 m and two months
of another than would be expected on the basis of chance. If, as argued here, this
pattern is the consequence of offender foraging behavior, the transient elevated risk
for locations within close proximity of burgled homes reflects the behavior of the
same offender.

As discussed, two factors contributing to the placement of burglary are the phys-
ical attributes of housing and the road infrastructure. The former defines the spatial
distribution of opportunities for burglary, the latter a way of accessing homes and
traveling between them. Two simple opportunity surfaces were derived to represent
the two factors. Using a Geographical Information System (GIS), the study grid
was divided into 50 m cells, 10,816 in all. Information on housing was generated
using Ordnance Survey (OS) Land Line data. These data afforded a considerable
advantage over census data, available only at the area level and consequently invit-
ing the ecological fallacy. Processing OS data involved the conversion of building
outlines to solid shapes using a GIS. The building shapes were then intersected
with the 50 m grid squares which provided a target distribution ‘layer’. This is
illustrated in Fig. 8.2, which shows the relationship between the building outlines
and the grid squares. It should be noted that some buildings were located on the
boundary between two or more grid squares. Where this occurred, the building was
allocated to the cell containing the midpoint of the building. It was then possible
to quantify the number of buildings wholly or partially located within each grid
square.

Information on road infrastructure was derived from OS Meridian data. This
related to all roads in the area and provided details of the classification of the road
(e.g., was it a major or minor road or a motorway?) as well as their location and
length. This information was intersected with the grid square coverage and is also
illustrated in Fig. 8.2. The width of the lines is proportional to the classification of
the road (wide lines are wide roads). The figure shows that some grids contain no
roads, others several. The following variables could then be quantified for each grid
square:

� The number of road sections that were located in each grid square
� The length of each road encapsulated by each grid square
� The road classification. In the UK urban roads are categorized in terms of the

volume of traffic use they are designed for, designated ‘A’, ‘B’, and ‘minor’,
defining largest through smallest roads.

How these data inform predictions is described below. However, before proceed-
ing, it is worth addressing a potential concern that might arise for readers most
familiar with the Manhattan grid street configuration. Such readers might wonder
about the orientation of the grid and why we did not align this with the street net-
work. The simple answer is that in the UK, for most cities the street network is
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irregular and so in truth there was no (obvious) optimum orientation that could have
been applied4.

Crime Risk Surfaces

Thematic maps were generated in the conventional way. For a basic (concentration)
map, the total number of burglaries occurring on each beat for the two months
prior to each prediction was computed. To enable a direct comparison with other
approaches (see below), some of the police beats were cropped so that only the area
(of each beat) that was encapsulated by the 5 km grid was included. In addition
to a basic police beat thematic map, others showed the historic concentration of
burglary per meter squared and per 1000 households. These metrics standardize the
risk experienced across beats using different denominators, with the rate per 1000
households being commonly used by both academic and operational analysts.

The ProMap and KDE event driven risk surfaces were derived as follows. Briefly,
a moving window (see Bailey and Gatrell 1995) algorithm is used to generate a risk
intensity value for every cell in the grid to reflect the risk experienced or anticipated
for that location. For each cell, all crimes within a particular radius (bandwidth)
from the midpoint of that cell are identified and a risk intensity value computed
based on (for retrospective mapping) the number of crimes within the bandwidth
and their spatial proximity to the center of the cell (crimes closest to the center of
the cell are allocated a greater weighting). This produces a nicely smoothed map for
display. A more detailed description of the approach is provided in Appendix 1.

The ProMap algorithm represents a refinement to the traditional KDE approach
for three reasons. First, it provides a theoretical rationale for why risks should decay
in space (distance decay is incorporated in KDE but not for theoretical reasons of
which the authors are aware). Second, a temporal bandwidth is specified and an
associated parameter used to model the effect of elapsed time on burglary risk.
Third, the spatial bandwidth is selected for theoretical reasons and is empirically
derived using the space-time clustering profile of the area concerned. Appendix 1
provides information on the equation used.

Event Driven Opportunity Surfaces

The opportunity surfaces described earlier were used to produce a variety of
weighted ProMap risk surfaces, which were subsequently tested for predictive
accuracy. Different layers (ProMap and the two opportunity surfaces) were gener-
ated independently and the values for each cell derived by taking the product of the
relevant layers, stationary and event driven.

4 Although not attempted here, it would of course be possible to repeat the analyses reported here
a number of times using a different orientation of the grid each time.
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The casual reader may wonder why only ProMap risk surfaces were subjected to
the layering approach. The superficial answer is that the ProMap approach turned
out to be the most predictive, and hence was used in the latter part of the research.
The more satisfactory response is that, because the other approaches were time-
invariant, other time-invariant factors like road structure (which are hypothesized
to influence offender foraging) should already have their effects reflected in his-
toric crime data. By contrast, for ProMap which particularly emphasizes short-run
changes, time-stable factors like road structure provided a sort of scaffolding around
which short-run changes could be modeled.

The values for each stationary surface could be generated in a number of ways,
but in the current study the following simple rules were applied. A more detailed
discussion of the rules used is provided in Appendix 1.

Road backcloth - this surface was produced by weighting grid cells on the basis
of the presence of roads alone, their length and type.

Building backcloth – this surface was produced by weighting cells on the basis
of the number of buildings hosted.

Combined backcloth – this combined the data from the road and building surfaces.

Barriers

The first consideration for this factor concerned the identification of the boundaries
that would be used to model barrier effects. A number of approaches are possible,
including the identification by local offenders or police officers of likely barriers
(see Poot et al. 2005). Another uses existing administrative boundaries with barri-
ers being identified using socioeconomic data. This is the approach used here, not
least because a finding of the Poot et al. (2005) study was that these aligned with
practitioner perceptions. UK census Output Area geography was used as proxy for
barrier location, since socioeconomic information is thus readily available. For this
initial analysis a geodemographic classification system was derived using census
data. The super-profiles system (Brown 1991) is one of a number of target market
classification systems and was selected because of its availability to the authors.
Further research will explore other market segmentation systems and alternative
approaches.

Essentially, the super-profiles classes (ranging from 1 to 10) provide an indication
of area affluence. Low scores reflect affluence, high scores deprivation. Figure 8.3
shows the study area with the spatial distribution of super profile lifestyle areas.
Where two areas vary in terms of affluence (measured at the area level), we presume
social barriers. The greater the area affluence contrast, the higher the social barrier.

The imperfections of this approach are acknowledged, and in consequence the
method used was simple. Following the rationale in the introduction, this was: when
deriving estimates of risk intensity, rather than weighting each crime event equally,
those occurring within the same type of area as the cell for which a prediction was
being made were given a higher weighting than those occurring in a different type
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Fig. 8.3 Census geography and Super-profile classification for the study area
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of area. To do this, each crime had to be assigned an area-level characteristic using
the spatial-join command in the GIS. Each cell also had to be assigned a value using
the ‘intersect’ command. A discussion of the equation used to model the effects of
barriers can be found in Appendix 1.

Measuring Predictive Accuracy

We now return to the basic question of the relative predictive accuracy of ProMap
and alternatives. The approach used to assess this was, as noted earlier, to generate
the maps using two months of historic data and to determine how many of the bur-
glaries occurring over the ensuing seven days (on average there were 70 per week,
SD=7) were correctly predicted as to location. Seven days was considered sensible
as each prediction would include both weekdays and a weekend, with their differ-
ent routine activities (see Rengert and Wasilchick 2000). Predictions for weekdays
and weekends should arguably be considered separately in future research. Nine
predictions were generated using each method. Predictions were generated for the
weeks from 1st, 14th, and 24th of September, October, and November 1997. Thus,
test periods did not overlap. The number of predictions generated was limited to
nine for two reasons. First, it was necessary to build a space-time clustering profile
(discussed above) for the area to calibrate the ProMap algorithm, and with limited
resources we were reluctant to do this more than once. As it is likely that space-time
clustering profiles change over time, (a topic of no little interest in itself) this was
deemed prudent. The second reason was simply that the work took a long time.

Statistical inference is central to theory testing. The question of interest is
whether the results observed could have occurred on the basis of chance. Various
types of test and method have been derived for different types of data and research
questions, but the authors are unaware of any that have been used to establish the
accuracy of crime forecasting techniques in anything other than a descriptive way.
In the current study we use a simple Monte Carlo (MC) simulation approach (for
a general discussion, see North et al. 2002). For the current endeavor, chance per-
formance would characterize a strategy whereby cells were assigned a risk level
randomly. One approach would be randomly to select 10,816 balls, one to represent
each cell of the grid, from a very large bag, recording their order of selection. The
cells designated as most risky would be those selected first, those least at risk last.
This would generate one random selection against which the performance of the
different predictive approaches could be compared. However, making one selection
is not reliable and hence a series of selections was deemed necessary. If we assume
that the prediction under evaluation had been drawn from a larger population, then
(say) 99 random sequences or samples would enable a reasonable distribution to be
produced for the purposes of inferential testing5. If the volume of crime predicted

5 For a one-tailed test, a minimum of 19 simulations are required if the 0.05 level of significance
is used, but the standard error of the estimate is inversely related to N and so a larger sample is
desirable.
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by the model of interest were the most extreme then the null hypothesis maybe
rejected. For consistency with convention, a particular model would be considered
to deviate significantly from chance if the predictions made exceeded at least 95%
of the (pseudo) random sequences.

Selecting balls in this way would take a long time and result in the de-motivation
of research staff. Fortunately, this MC re-sampling technique can be easily imple-
mented by those with a basic knowledge of computer programming. The method
uses a recursive algorithm shown as Appendix 2.

One criticism is that not all cells within the grid contain houses (around 29% do
not). Domestic burglars would not select locations without dwellings! Consequently,
the MC approach was modified so that cells with houses were selected first, and only
then were cells that did not contain housing considered. This removes potential bias
in favor of judging ProMap better than chance.

ProMap Accuracy and Backcloth Influences

Figure 8.4 shows the accuracy concentration curves for the first prediction for four
of the models (others are not shown due to limitations of space). Each graph shows
what would be expected on the basis of chance, estimated using the MC simulation
described above, alongside the particular model under consideration. This enables
comparisons to be made with chance expectation and, by providing consistent ref-
erence lines, facilitates comparisons across models. Considering chance expectation
first, as would be anticipated there is a linear relation between the number of cells
searched and the concentration of burglary identified. The slope for the average of the
simulations is greater than one, indicating the effect of first sampling cells containing
housing. On average around 15% of burglaries are correctly identified by searching
10% of cells. The dotted line shows the area of the graph within which 95% of simula-
tions fall. The maximum proportion of burglaries identified by searching 10% of the
cells for 95% of the simulations was 22%. If the value for a particular model exceeds
the 95th percentile of the simulations, we conclude that the model was significantly
more predictive than chance (for a one-tailed test, and p < 0.05).

For this prediction, the ProMap model has a logarithmic functional form which
deviates from chance expectation across most of the distribution. This pattern
reflects known facts about near repeats. The pattern for the retrospective KDE
method is quite different. The KDE method appears to exceed chance expectation
until around 50% of burglaries have been identified, but the shape of the concentra-
tion curve is less impressive. For example, after around 67% of burglaries have been
identified, the KDE model performs below chance expectation. The thematic map-
ping method (computed using the rate of burglary per 1000 households) performs
the worst, failing to exceed chance across the entire distribution.

The ProMap models that include opportunity layers consistently exceed chance
expectation, and the area of the graph between model performance and chance
expectation is larger than for the basic ProMap model. Including a parameter to
model the existence of barriers (graph not shown) has little effect on model accuracy.
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Fig. 8.4 Accuracy concentration curves for a sample of methods tested and chance expectation
(for prediction 1)

The above results relate to only one prediction. Rather than reproducing each
of the graphs for every prediction, a summary table was generated to provide an
overview of the findings. Table 8.1 shows the median accuracy of each model across
the nine predictions. It tabulates the fraction of cells that would have to be searched
to identify x% of burglaries for five different cut points. Other thresholds could be
used, but covering a range of values is instructive since they provide an accurate
reflection of visual inspection of every finding6.

For each cut point, the cell value for the best performing algorithm is highlighted
in bold. Where ties occur, multiple cells are highlighted. Also shown in each cell
as a subscript is the number of predictions for which that model exceeded chance
expectation as defined by the value for the 95th percentile of the simulation results.

6 An alternative approach to summarizing the data that we are yet to do is to compute a gini
coefficient for each concentration curve. Frequently used to examine (for example) the inequality
in the distribution of wealth across areas, the measure indicates the area between an observed
(Lorenz) curve and the 45 degree line of equality. The advantage of so doing is that the coefficient
summarizes the entire distribution rather than a subset of cut points.
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Table 8.1 Median mapping algorithm accuracy for a subset of the results

Percentage of burglaries identified

10 25 50 75 90

Prospective:
ProMap 1.39 5.09 14.39 30.89 55.36

Pe
rc

en
ta

ge
of

ce
lls

se
ar

ch
ed

ProMap∗Houses 1.59 5.09 14.39 28.39 48.88

ProMap∗RDs 1.39 4.89 13.39 29.09 52.57

ProMap∗Houses∗RDs 1.59 4.59 12.59 29.39 56.35

ProMap∗barriers 1.59 5.09 14.89 29.59 54.55

Chance:
Simulation 95th Percentile 3.8 11.5 27.3 44.8 56.8

Simulation Mean 7.0 17.0 34.3 51.3 61.3

Retrospective:
KDE 2.09 6.59 16.89 34.87 59.04

Thematic (concentration) 4.03 15.50 35.40 49.12 63.02

Thematic (rate per area) 3.34 10.85 23.47 42.55 58.82

Thematic (rate per 1000 Hholds) 6.41 17.62 31.70 50.02 69.11

Note: subscripts indicate for how many of the nine predictions the model exceeded chance
expectation

To take an extreme example, in predicting the locations of 90% of the burglaries, the
retrospective KDE method exceeds chance on only four occasions, being worse than
chance for five. For the thematic maps, two of the models (basic concentration and
rate per 1000 households) failed to exceed chance for almost every trial and each
cut point. It should be noted that in generating the graphs for the thematic maps, it
was not possible to compute the percentage of area needed to identify a particular
fraction of burglaries. This was because, unlike the regular cells used for the KDE
and prospective maps, the units of analysis (police beats) for the thematic maps
varied in size. Thus, when estimating how much area would need to be patrolled
to identify a particular proportion of crime, one can either select the configuration
of beats that identify slightly more than the threshold of interest or slightly less.
The latter would overestimate the effectiveness of the thematic maps and is the
approach used here. Thus the thematic approach appears to be egregious even when
it is favored in the conventions applied.

We have thus established that the prospective models typically exceed chance
expectation. A complementary perspective on model accuracy involves the compar-
ison of the different models against each other. A variety of comparisons is possible.
We report here comparisons between the prospective model most accurate for fore-
casts made over the smallest areas (that which included data on the homes and roads
in each cell) and the KDE method. The results indicated that the ProMap model
considered consistently performed better than the KDE method in identifying 10%
(z=1.70, p<0.05, one-tailed)7, 25% (z=1.96, p<0.03, one-tailed), 50% (z=2.56,
p<0.01, one tailed), and 75% (z=1.90, p<0.03, one-tailed) of burglaries. In identi-

7 A one-tailed test is here used as the direction of the hypothesis was specified a-priori.
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fying 90% of burglaries, the difference was non-significant (z=0.29, p=ns). Thus,
with one exception, the ProMap algorithm that incorporated data on the location
and spatial concentration of homes and roads exceeded chance performance and
consistently outperformed the KDE method. The inclusion in the ProMap algorithm
of data concerning the concentration of homes and the road network seemed only
to offer meager additional value when forecasts were generated for the largest areas
(e.g., when forecasting 90% of burglary locations). Expressed in another way, the
improvements in predictive accuracy offered by the ProMap model discussed were
most evident for geographical areas that could realistically be targeted for police
attention (i.e., smaller areas).

It is important to paint a picture of how to interpret differences in the values
shown in the cells of the table. For example, what does it mean to say that to iden-
tify the locations of 50% of burglaries, using the ProMap∗housing∗RDs algorithm
12.5% of cells would need to be searched whereas for the KDE algorithm the equiv-
alent fraction of cells would be 16.8? A potentially useful guide to the interpretation
of these figures is that a one-percent difference in the search area required to iden-
tify a particular fraction of burglaries equates to a patrol area of 270,400 m2 (or
0.27 km2). If the purpose of a crime reduction intervention informed by predictive
mapping is the detection of offences in progress, then even a one-percent difference
in accuracy so measured will have substantial implications. The importance of a
four or five percent difference needs no advocacy as to operational importance.

What Is Established? What Next?

The incorporation of short-run changes in risk via the ProMap approach to pre-
dicting domestic burglary does seem to yield a dividend in predictive performance
across the spectrum of risk levels. The distances across which risks change chime
well with the practice of patrolling and it is in the optimization of patrolling routes
that ProMap has its most obvious potential. The various backcloth information con-
tributed modestly to the accuracy of ProMap and with enough promise to motivate
the writers to develop alternative ways of characterizing areal influence on foraging
behavior. Further research will use parameters specifically calibrated to maximize
prediction accuracy. Similar approaches to least squares estimation will be used, and
where enough data are available, Monte Carlo Markov Chain approaches to param-
eter fitting may also be explored. We also intend to examine accessibility, measured
using the street network, in different ways. Accessibility at a higher level of spatial
aggregation than analyzed here may be considered by examining (for example) the
number of roads that connect each cell to members of its Moore neighborhood.
This would provide an indication of how accessible the local area is, as well as the
number of roads contained within a particular grid cell. Such analysis may also be
conducted at other levels of spatial aggregation.

To model the space-time variation in risk more precisely, a slightly different
mathematical approach is desirable. Here, each cell (and eventually each home)
would be considered a vertex or node in a graph. Each vertex would be connected
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by roads represented by edges in the graph. An adjacency matrix would be used
to summarize how each vertex was connected to every other vertex, and weights
applied to indicate the distance between each node. For nodes that are not connected
by a single edge (a road), a shortest path analysis algorithm would be required (e.g.,
Dijkstra’s 1959) to make the necessary calculations. In addition to distance, weights
may also be used to indicate other factors that might encourage or impede the flow
of risk through the graph network. For example, instead of assuming that the change
in risk would be isotropic (uniform in all directions), the role, that the configuration
of the street network plays upon people’s ability to navigate their environment (and
any directional biases that arise), could be modeled. Risk would be hypothesized to
flow with a higher probability between nodes located near to each other, between
those connected by multiple edges and along arcs which generate the least friction.

Unlike the other factors considered, the inclusion in the model of data concerned
with social barriers had no observable impact on predictive accuracy. There are at
least three explanations for this, some of which concern construct validity while oth-
ers are more theoretical. First, the size of the effect that barriers have on offenders’
target choices may be truly minimal. Second, the geography used to define the barri-
ers considered may have been inappropriate and failed to reflect the kinds of barrier
that offenders take into consideration. Given that the census geography was used,
this is entirely plausible, but it should be noted that the same kinds of geographic
boundary were used in the studies reviewed in the introduction for which barrier
effects were revealed. Further research should use alternative geographies and, in
line with the approach used by Poot et al. (2005) draw upon local knowledge when
determining which boundaries to use and how to classify them.

Third, the variable used to differentiate between areas and hence to identify bar-
riers may have been sub optimal. We here used a sociodemographic classification
system developed for target marketing. Other methods of classification, such as the
use of univariate or multivariate analyses of census data are possible and could be
usefully explored in future research. Measures of social cohesion may be a useful
next step (see Bernasco and Luykx 2003). Considering the current findings, our
intuition is that the latter explanations are most likely. Whatever the answer, the
current approach offers one empirical approach, easily programmed, for testing the-
ories of this kind. A further caveat worthy of discussion, of course, is that in this
study predictions were generated using the spatio-temporal distribution of historic
crime events. Whilst these reflect the emergent patterns of the activity of offenders,
they do not provide a direct test of the behavior of any distinct offender(s). It may
(or may not) be the case that on some or all occasions there is too much ‘noise’ in
the data to model this by proxy.

Areal Units and ProMap: Closing Thoughts

The writers believe that there is much scope for further work. Patrolling patterns are
not dictated by one offence type, and establishing regularities in space-time patterns
of other offence types, and integrating ProMap across offence types represents the
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research strategy. Research tactics should obviously incorporate salient other data
as was attempted for domestic burglary in the later analyses reported above and dis-
cussed below. The point of central importance however is that the ProMap algorithm
and (particularly) variants of it significantly outperformed methods extant. They did
so in a way that is important not just for theory testing but also for operational
policing. All variants of the ProMap algorithm produced maps that could identify
the same volume of crime as other methods within much smaller areas.

With respect to units of analysis, the general theme of this book, unsurprising but
important results emerged. As expected, the Thematic mapping approach was worst
at predicting what happens next, but what is perhaps surprising is that the allocation
of resources based on such maps may be no better than chance. This was partic-
ularly true where prioritization was informed by area-level crime rates expressed
as the risk per 1000 households. It is worth briefly discussing why this might be
so. The definition of the boundaries used is critical. For the task at hand, the ideal
situation would be to have boundaries that circumscribe areas within which risks
tend towards homogeneity. Unfortunately, the boundaries used by the police and
others are dictated by diverse factors. Some of these are likely to be administrative
and not pertinent for the anticipation of crime patterns. The units are also typically
large, meaning that within them some degree of heterogeneity is inevitable. And, the
boundaries (e.g., census collection areas) are often defined in advance of the data
collected, rather than being derived on the basis of emergent phenomena. Rather
than fully articulating these issues, which are covered in the chapter in this volume
by Brantingham and Brantingham, one approach to boundary determination should
be briefly discussed. This is outlined here because it may influence how the current
authors attempt to delineate barriers in future work. The approach is inspired, in part,
by ‘lossy’ image compression techniques from the field of software engineering,
which attempt to reduce image file sizes by generalizing about similar elements of
an image. Potential problems with any such approach are acknowledged. The idea
is rehearsed here so that others might point out any weaknesses in the approach or
any suitable refinements which overcome them.

To illustrate the approach, the first panel of Fig. 8.5 shows an area with three
distinct geographies over which a relatively small ‘meso-level’ grid has been applied
(one cell might encompass 10–20 properties as previously described). All cells
within the area are ascribed one or a set of values relating to a multivariate descrip-
tion of their internal characteristics relevant to the investigator (see panel 2). For
example, the values considered may include the type of housing in each cell,
concentration of crime and so on. Each cell is then examined with respect to its
neighbors and evaluated for similarity. Contiguous cells considered ‘similar’ (i.e.,
with values within some bandwidth of one another) are then grouped into single
areas/geographies/unit of aggregation.

The degree to which cells are considered ‘similar’ is dictated by the level of
‘compression’ applied; the higher the level of compression, the less similar things
need to be for them to be considered as such, as illustrated in panels 3 and 4. By
applying this technique, new area boundaries can be defined which are wholly dic-
tated by similarities important to the research question under consideration rather
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Fig. 8.5 An example of ‘Lossy’ Boundaries

than (say) the identification of a series of areas with similar population counts.
Obviously this does not provide a complete solution to the problems associated
with boundary definition as its viability relies purely upon the correct selection of
those factors considered in the calculation of ‘similarity’. However, it may offer
an incremental step towards a more hypothesis driven approach to area boundary
definition.

To reiterate in conclusion, the research demonstrates that an algorithm based on
the findings from the near repeat literature predicts the future locations of crime
at a level that exceeds chance expectation, and also outperforms other hot-spotting
methods. Considering Thematic mapping in particular, for which the unit of analysis
was police beats, this approach was not only worse than ProMap but typically failed
to exceed chance expectation. Consequently, the findings provide support for the
hypothesis on which the model was based. The inclusion of data concerned with
the opportunity structure for the area considered improved the performance of the
model, but an initial attempt at modeling barriers did not. The results have implica-
tions for both theory and practice. Maintaining a balance between theory refinement
and applicability enhancement is difficult. It is contended that their implementation
in practice should not wait upon further research. In the light of the research already
reported, it seems difficult to justify basic KDE crime mapping in preference to
ProMap as enhanced by road and building composition. The research agenda which
takes enhanced ProMap as its starting point should contain at least the following
elements:

1. Recalculating for periods which are operationally meaningful (e.g., police shifts
and periods for which tasking and coordinating meetings plan);

2. Ensuring by calculation of patrolling routes that high risk areas are not so dis-
persed that transit times between high risk areas offset the advantages which
ProMap offers;
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3. Considering thresholds of the proportion of predicted burglaries which it is real-
istic to police, including consideration of policing styles which involve thorough
scrutiny of the highest risk areas with more superficial search of a greater number
of areas;

4. Considering other crime types, to produce a pan-crime ProMap, devising search
patterns reflecting the relative seriousness of individual crime types.

Much of this drive towards applicability would appropriately be carried out by
crime analysts in local areas, in a federated research programme. Winston Churchill,
in World War II visited Washington to plead for assistance. He opined ‘Give us
the tools and we will finish the job’. A cynic’s version is that for social scientists,
the mantra would be ‘Give us the tools, and we will spend the rest of our lives
sharpening them’. This would be a fate worse than death for crime mapping. The
techniques are already fit for purpose and need to be sympathetically but urgently
integrated into the craft of policing.

Appendix 1 Equations Used in the Derivation of the KDE
and ProMap Algorithms

KDE Equation and Callibration

To generate the KDE surfaces used, a quartic function (Bailey and Gatrell, 1995)
was used. The formula is shown as equation (8.1). There exists no obvious consen-
sus of opinion regarding the appropriate spatial bandwidth to use in KDE hotspot
generation. Some suggest using a bandwidth of one-tenth of the smallest dimension
of the study area. This yields a nicely smoothed map for visual display but is deter-
mined by the dimensions of the study area rather than criminological understand-
ing or the requirements of operational policing. A variety of alternative bandwidths
or methods for calibration have been proposed, but no theoretical explanations are
offered to underpin the selection, or empirical studies provided to demonstrate any
superior heuristic value. In the absence of a rationale for bandwidth selection, and
on the basis of a suggestion by Ratcliffe (2000), we used a bandwidth of 200 m. This
is relevant not least because it is used by many UK crime analysts with whom the
authors have had contact.

λτ (s) =
∑

di≤τ

3

πτ 2

(
1 − d2

i

τ 2

)2

(8.1)

Where, λτ (s) = risk intensity value for cell s

� = bandwidth
di = distance of each point (i) within the bandwidth from the centroid of the

cell
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ProMap Equation and Callibration

Equation (8.2) shows the formula used in the computation of the ProMap risk
surface.

λτ (s) =
∑

ci ≤τ∩ei ≤υ

(
1

(1 + ci )

)
1

(1 + ei )
(8.2)

Where, λτ (s) = risk intensity value for cell s

� = spatial bandwidth υ = temporal bandwidth
ci = number of cells between each point (i) within the bandwidth and the cell
ei = weeks elapsed for each point (i) within the temporal bandwidth

Similar in basic terms to that used to derive the KDE maps, the equation includes an
additional parameter (ei ) to model the effect of elapsed time on the risk of crime at
each location. The spatial bandwidth used is determined by the results of the Knox
analysis. For example, if the Knox analysis suggests that events cluster in space and
time more than would be expected on a chance basis for a distance of (say) 500 m
and two months, then the spatial bandwidth used would be 500 m.

Modeling Accessibility

The basic ProMap approach was modified to try to reflect the influence of the urban
backcloth on offender spatial target choices. Two factors were considered, the type
and number of roads in each cell, and the number of homes:

Roads

This was used to provide a crude estimate of accessibility. The weighting considered
the length, classification and number of road sections within each cell. Cells with
more and larger roads were assigned a higher accessibility weighting to reflect the
fact that they were likely to be more connected to surrounding cells than other cells.
The following equations show the construction of the road weighting:

Road type =
weighting

Length of A rds in
cell +

0.8 ∗ length B rds in
cell +

0.6 ∗ length of ‘minor’
rds

Road number =
weighting

Number of A rds in
cell +

Number of B rds in
cell +

Number of ‘minor’
rds

Where the road type weighting was above 20 (the average length of road across
cells) and the road number weighting was greater than zero, a weighting of 1.01
was applied. Where the road type weighting was less than 20 a weighting of 1.0 was
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used. Where there were no roads, a weighting of zero was assigned. The weights
were arbitrary, but the results are robust across weighting options.

Housing

Where a cell had more than the average amount of houses (7 homes) a weighting
of 1.01 was applied. Where a cell had no homes within it, a weighting of zero was
used. In all other cases, a weighting of 1.0 was applied.

Roads and Homes

A multiplicative function was used to weight the cells, so that the combined weight-
ing was the product of the above variables. These weightings were then used to
generate three new event driven opportunity surfaces by taking the product of these
layers and the ProMap surface.

Barriers

To model the effect of barriers, a modification of equation (8.2) was required to
reflect whether contributing events had occurred in an area similar (or not) to the
cell for which a prediction was being made. If we consider the ProMap formula as
a form of regression equation, we can alter the slope or intercept (or both) of the
model using a parameter to model the presence or absence of a barrier. Considering
the effect of changing the intercept, an event will acquire a change in weight on
the basis of the area within which it is located, irrespective of its proximity to a
barrier. Changing the slope takes account both of the existence of a barrier and a
cell’s proximity to it and is thus the preferred approach here.

To model the effects of barriers, equation (8.2) is modified only slightly. In this
case, the denominator in the first term of the equation (1 + ci ) is replaced with the
following:

(1 + ci )(1 − α)

where,

(1) α = 0 when the lifestyle value of the cell for which the prediction is being
derived and the event considered is located are the same, and

(2) α > 0 when the lifestyle values differ.

A series of calibration trials were conducted to identify the optimum value of α.
To do this, predictions were generated using values ranging from 0.5 to 0.99, with
increments of 0.01 being tested across trials. The value ultimately selected of 0.98
was then fixed. That is, � was always 0.98 when condition (2) above was met. That
the slope found to be optimal was virtually at the top of the range tested may be
taken as a preliminary indication of the salience of social barriers as here measured.
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Appendix 2 Monte Carlo Simulation Algorithm for Estimating
Chance Expectation

The simulation worked in the following way:

1. Using a uniform random number generator (RNG) select the first cell from those
available (1–10,816) and assign this the highest risk value

2. Select another number using the RNG

a. If this has not previously been selected, assign this the next highest value. If it
has already been selected, choose another value until a previously unselected
cell is identified.

b. Repeat step 2 until all cells have been allocated a risk value from 1 to 10,816

3. Rank order the data using the risk values assigned to each cell
4. Generate an accuracy concentration curve
5. Repeat the above steps 99 times, storing the results of each iteration
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