
USING INVARIANTS FOR
PHYLOGENETIC TREE CONSTRUCTION

NICHOLAS ERIKSSON·

A.bstract. Pb.~~og'e:n.~t\~\n.V'O;I\aI\t~ M'e ;;:.~!ta\n. ,?ol'Yn.om\-ol~in. th~ ~oint t>!obabiEty
distribution of a Markov model on a phylogenetic tree. Such polynomials are of theoreti
cal interest in the field of algebraic statistics and they are also of practical interest-they
can be used to construct phylogenetic trees. This paper is a self-contained introduction
to the algebraic, statistical, and computational challenges involved in the practical use
of phylogenetic invariants. We survey the relevant literature and provide some partial
answers and many open problems.
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1. Introduction. The emerging field of algebraic statistics (cf. [42])
has at its core the belief that many statistical problems are inherently al
gebraic. Statistical problems are often analyzed by specifying a model-a
family of possible probability distributions to explain the data. In particu
lar, many statistical models are defined parametrically by polynomials and
thus involve algebraic varieties. From this point of view, one would hope
that the ideal of polynomials that vanish on a statistical model would give
statistical information about the model. This is not a new idea in statis
tics, indeed, tests based on polynomials that vanish on a model include the
odds-ratio, which is based on the determinant of a two by two matrix. The
polynomials that vanish on the statistical model have come to be known
as the (algebraic) invariants of the model.

The field of phylogenetics provides important statistical and biological
models with interesting combinatorial structure. The central problem in
phylogenetics is to determine the evolutionary relationships among a set of
taxa (short for taxonomic units, which could be species, for example). To
a first approximation, these relationships can be represented using rooted
binary trees, where the leaves correspond to the observed taxa and the
interior nodes to ancestors. For example, Figure 1 shows the relationships
between a portion of a gene in seven mammalian species.

Phylogenetic invariants are polynomials in the joint probability distri
bution describing sequence data that vanish on distributions arising from
a particular tree and model of sequence evolution. The first of the invari
ants for phylogenetic tree models were discovered by Lake and Cavender
Felsenstein [36, 14]. This set off a flurry of work: in mathematics, gener
alizing these invariants (cf. [27,21,52]) and in phylogenetics, using these
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FIG. 1. Phylogenetic tree for seven mammalian species derived from an align
ment of a portion of the HOXA region (ENCODE region ENmOl0, see [17/ and
genome. ucsc. edu/encode). This tree was built using the dnaml: maximum likelihood
package from PHYLIP [241 on an alignment partially shown in Figure 2.

invariants to construct trees (cf. [29, 38, 39, 44, 45]). However, the linear
invariants didn't fare well in simulations [30] and the idea fell into disuse.

However, the study of phylogenetic invariants was revived in the field
of algebraic statistics; the subsequent theoretical (cf. [2, 50, 12, 5]) and
practical (cf. [13, 11, 18,20, 34]) developments have given cause for opti
mism in using invariants to construct phylogenetic trees. There are benefits
to these algebraic tools; however, obstacles in algebraic geometry, statis
tics, and computer science must be overcome if they are to live up to their
potential. In this paper, we formulate and analyze some of the funda
mental advantages and difficulties in using algebraic statistics to construct
phylogenetic trees, describing the current research and formulating many
open problems.

In geometric terms, the problem of phylogenetic tree construction can
be stated as follows. We observe DNA sequences from n different taxa
and wish to determine which binary tree with n leaves best describes the
relationships between these sequences for a fixed model of evolution. Each
of these trees corresponds to a different algebraic variety in IR4n

. The DNA
sequences correspond to a certain point in IR4n as well. Picking the best
tree means picking the variety that is closest to the data point in some
sense. Since the data will not typically lie on the variety of any tree, we
have to decide what is meant by "close".
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Denote the variety (resp. ideal) associated to a tree T by V(T) (resp.
I(T)). Our main goal, then, is to understand how the polynomials in I(T)
can be used to select the best tree given the data. In order to answer this
question, there are five fundamental obstacles.

1. Formulate an appropriate model of evolution and determine the
invariants for that model, if possible in a form that can be evaluated
quickly.

2. Choose a finite set of polynomials in I(T) with good discriminating
power between different trees.

3. Given a set of invariants for each tree, define a single score that
can be used to compare different trees.

4. Since the varieties are in IR.4n
, each polynomial is in exponentially

many unknowns. Thus even evaluating a single invariant could
become difficult as n increases. This is in addition to the problem
that the number of trees and the codimension of V(T) increase
exponentially. Phylogenetic algorithms are often used for hundreds
of species. Can invariants become practical for large problems?

5. Statistical models are not complex algebraic varieties; they make
sense only in the probability simplex and thus are real, semi
algebraic sets. This problem is more than theoretical-it is quite
noticeable in simulated data (see Figures 6 and 7). Can semi
algebraic information be used to augment the invariants?

In the remainder of the paper, we will analyze these problems in detail,
showing why they are significant and explaining some methods for dealing
with them. The first problem (determining phylogenetic invariants) has
been the focus of substantial research, thus we deal here with only the last
four problems. We begin by introducing phylogenetics and constructing
and using some phylogenetic invariants, then consider the four problems
in order.

While in this paper we concentrate solely on the problem of construct
ing phylogenetic trees using invariants, we should note that phylogenetic
invariants are interesting for many other reasons. On the theoretical side
of phylogenetics, they have been used to answer questions about identi
fiability (e.g., [3, 37]). The study of the algebraic geometry arising from
invariants has led to many interesting problems in mathematics [18, 9, 15].

2. Background. We give here a short, self-contained introduction to
phylogenetics and phylogenetic invariants. For a more thorough survey of
algebraic methods in phylogenetics, see [4]. Also see [23, 46] for more of
the practical and combinatorial aspects of phylogenetics.

DEFINITION 2.1. Let X be a set of taxa. A phylogenetic tree T on X
is a unrooted binary tree with IXlleaves where each leaf is labelled with
an element of X and each edge e of T has a weight, written t.; and called
the branch length.
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FIG. 2. Multiple sequence alignment of length 180 from the HOXA region of seven
mammalian genomes. Dashes indicate gaps; bases are colored according to their simi
larity across the species.

While we include branch lengths in our definition of phylogenetic trees,
our discussions about constructing trees are about only choosing the cor
rect topology (meaning the topology of the labelled tree), not the branch
lengths. While estimating branch lengths is relatively easy using maximum
likelihood methods after a tree topology is fixed (e.g., with [54]), it is an in
teresting question whether algebraic ideas can be used to estimate branch
lengths (see [48, 7] for algebraic techniques for estimating parameters in
invariable-site phylogenetic models).

Phylogenetics depends on having identified homologous characters be
tween the set of taxa. For example, historically, these characters might be
physical characteristics of the organisms (for example, binary characters
might include the following: are they unicellular or multicellular, cold
blooded or hot-blooded, egg-laying or placental mammals). In the era of
genomics, the characters are typically single nucleotides or amino acids that
have been inferred to be homologous (e.g., the first amino acid in a certain
gene that is shared in a slightly different form among many organisms).
For example, see Figure 2, which shows a multiple sequence alignment. We
will throughout make the typical assumption that characters evolve inde
pendently, so that each column in Figure 2 is an independent, identically
distributed (i.i.d.) sample from the model of evolution. While both DNA
and amino acid data are common, we will work only with DNA and thus
use the alphabet E == {A,C,G,T}.

We assume that evolution happens via a continuous-time Markov pro
cess on a phylogenetic tree (see [41] for general details about Markov
chains). That is, along each edge e there is a length t; and a rate ma
trix Qe giving the instantaneous rates for evolution along edge e. Then
Me == eQ et e is the transition matrix giving the probabilities of substitutions
along the edge. In order to work with unrooted trees, we will assume that
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the Markov process is reversible, that is, 1riMe(i,j) == 1rj Me(j , i), where 1f

is the stationary distribution of Me. In order for eQ et e to be stochastic, we
must have Q(i, i) S 0, Q(i,j) ~ 0 for i 1:- j, and ~j Q(i,j) == 0 for all i,
Notice that since det(eQ ) == etr(Q), we can recover the branch length from
the transition matrix Me as

1
t; == -Q logdet(Me ) .

tr e
(2.1)

(

- 1 i t 1)
EXAMPLE 1. Let Qe == =_! ~1 ! 1 _1 be the rate matrix for

~ iiI
edge e, where the rows and columns are labeled by ~ == {A,C,G, T}. Then

1 - e-!te

1+ 3e-~te

1- e-!te

1- e-!te

1 - e-~te

1 - e-~te

1 + 3e-~te

1 - e-~te

This form of rate matrix is known as the Jukes-Cantor model [33]. For
example, the probability of changing from an A to a C along edge e is given

1 - ~te
by Me(l, 2) == -e

4
3

•

Commonly used models that are more realistic than the Jukes-Cantor
model include the Kimura 3-parameter model [35] where the rate matrices
are of the form

where· == -, - a - (3. See [42, Figure 4.7] for a description of many other
possible models.

In order to obtain the joint distribution of characters at the leaves of
the trees, we have to choose a root of the tree (arbitrarily, since the pro
cesses are time reversible), and run the Markov process down the edges of
the tree, starting from a distribution of the characters at the root. The
result is a joint probability distribution p == (PA...A, - .. ,Pr...r), and the im
portant point is that the coordinates of p can be written as polynomials in
the transition probabilities. That is, the model is specified parametrically
by polynomials in the entries of Me- We will forget about the specific form
of the entries of Me == eQet e and instead treat each entry of Me as an
unknown. Thus for the Jukes-Cantor model, we have two unknowns per

4 4

edge: a e == 1+3e
4-

'3
t e

and (3e == l-e~ '3
t e

• This makes the algebraic model
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FIG. 3. The four-point condition.

more general than the statistical model (as it allows probabilities in the
transition matrices to be negative or even complex). Although this allows
algebraic tools to be used, we will see in Section 7 that it can be a disad
vantage. Generally speaking, there are two types of phylogenetic models
that have been thoroughly studied from the algebraic viewpoint: "group
based" models such as the Jukes-Cantor and Kimura models, and variants
of the general Markov model, in which no constraints are placed on the
transition matrices.

In this paper, we define the phylogenetic invariants for a model of evo
lution and a tree to be the polynomials in the joint probabilities that vanish
if the probabilities come from the model on the tree. For example, for a
quartet tree (an unrooted binary tree with four leaves, see Figure 3) under
the Jukes-Cantor model, PAAAA - Pcccc == 0, due to the symmetry built into
the model. However, this polynomial doesn't differentiate between trees
it lies in the intersection of the ideals of the three quartet trees. Beware
that there are two commonly used definitions of phylogenetic invariants.
Originally, they were defined as polynomials that vanish on probability dis
tributions arising from exactly one tree, so the above polynomial would be
excluded. However, it is more algebraically convenient to take as invariants
the full set of polynomials that vanish, as this forms an ideal. We spend
the rest of this section deriving a particularly important polynomial.

A class of phylogenetic methods bypass working with the joint prob
ability distribution and instead only estimate the distances between each
pair of taxa. The goal then is to find a tree with branch lengths such that
the distance along edges of the tree between pairs of leaves approximates
the estimated pairwise distances. To use these distance methods, we first
need a couple of definitions. We will concentrate in this paper on quartet
trees, i.e., trees with four leaves. There are 3 different (unrooted, binary)
trees on four leaves, we will write them (01 : 23), (02 : 13), and (03 : 12),
corresponding to which pairs of leaves are joined together.

DEFINITION 2.2. A dissimilarity map d E lR(~) satisfies d(i,j) ==
d(j, i) ~ 0 and d( i, i) == O. We say that d is a tree metric if there exists
a phylogenetic tree T with non-negative branch lengths te such that for every
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pair i,j of taxa) d(i,j) is the sum of the branch lengths t e on the edges of
T connecting i and j .

PROPOSITION 2.1 (Four-point condition [10]). A dissimilarity map d
is a tree metric if and only if for every i,j, k, and l , the maximum of the
three numbers

is attained at least twice.

EXAMPLE 2. Let us restrict our attention to a tree with four leaves,
(ij : kl). In this case, the four-point condition becomes (see Figure 3)

(2.2)

The equality in the four-point condition can be translated into a quadratic
polynomial in the probabilities, however, we first have to understand how to
transform the joint probabilities into distances. Distances can be estimated
from data in a variety of ways (there are different formulas for the maximum
likelihood estimates of the distances under different models of evolution, see
[23, Chapter 13]). The formula for the general Markov model is the logdet
distance, which mimics what we saw above (2.1), in that a transition matrix
is estimated and the distance is taken to be the log of the determinant of
this matrix.

Here we will use a simpler formula for the distance, under the Jukes
Cantor model (Example 1). The maximum likelihood estimate of the dis
tance between two sequences under the Jukes-Cantor model is given by

di j = - ~ log ( 1 - 4~'j) where mij is the fraction of mismatches between

the two sequences, e.g.,

m12 == L Pijkl.

i,j,k,lE{A,C,G,T},i-:pj

After plugging this distance into the four point condition, cancelling,
and exponentiating, the equality in (2.2) becomes

We will call this polynomial the four-point invariant. This construction is
originally due to Cavender and Felsenstein [14].

Example 2 shows one of the first constructions on a phylogenetic in
variant, in the same year as the discovery by Lake of linear invariants
[36]. There is a linear change of coordinates on the probability distribution
p under which I(T) has a generating set of binomials. In particular, in
these coordinates, a simple calculation shows that (2.3) becomes a bino
mial. Known as the Hadamard or Fourier transform [27, 52, 21, 50]' this
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change of coordinates transforms the ideals of invariants for several models
of evolution into toric ideals [49]. It should be emphasized, however, that
this transform is only known to exist for group-based models.

The four-point invariant is a polynomial in the joint probabilities that
vanishes on distributions arising from a certain quartet tree. Define the
ideal 1M (T) of invariants for a model M of evolution on a tree T to be the
set of all polynomials that are identically zero on all probability distribu
tions arising from the model M on T. We will write only I(T) when M is
clear from context.

3. How to use invariants. The basic idea of using phylogenetic
invariants is as follows. A multiple sequence alignment DNA alignment of
n species gives rise to an empirical probability distribution p E IR4n

. This
occurs simply by counting columns of each possible type in the alignment,
throwing out all columns that contain a gap (a "-" symbol). For example,
Figure 2 has exactly one column that reads "CCCACCC" (the first) out of
107 gap-free columns total, so PCCCACCC ::=; 1/107.

Then if f is an invariant for tree T under a certain model of evolution,
we expect f(p) ~ 0 if (and generically only if) the alignment comes from
the model on T. More precisely, where PN is the empirical distribution after
seeing N observations from the model on T, then limN-HX) E(f(PN)) == O.

We thus have a rough outline of how to use phylogenetic invariants to
construct trees:

1. Choose a model M of evolution.
2. Choose a set of invariants fT for model M for each tree T with n

leaves.
3. Evaluate each set of invariants at p.
4. Pick the tree T such that fT (p) is smallest (in some sense) .

However, all of these steps contain difficulties: there are infinitely many
polynomials to pick in exponentially many unknowns and exponentially
many trees to compare. We will discuss step 2 in Section 4, step 3 in
Section 6, and step 4 in Section 5. Selecting a model of evolution is difficult
as well. There is, as always, a trade-off between biological realism (which
could lead to hundreds of parameters per edge) and statistical usefulness
of the model.

Since the rest of this paper will discuss difficulties with using invari
ants, we should stop and emphasize two especially promising features of
invariants:

1. Invariants allow for arbitrary rate matrices. One major challenge
of phylogenetics is that evolution does not always happen at one rate.
But common methods for constructing trees generally assume a single rate
matrix Q for all edges, leading to difficulties on data with heterogeneous
rates. While methods have been developed to solve this problem (cf. [55,
25, 26]), it is a major focus of research.
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In contrast, phylogenetic invariants allow for differing rate matrices
within the chosen model on every edge (and in fact, even changing rate
matrices along a single edge). The invariants for the Kimura 3-parameter
model [35] have been shown to outperform neighbor-joining and maximum
likelihood on quartet trees for heterogeneous simulated data [11]. To be fair,
we should note that the invariants in this analysis were based on the correct
model (i.e., the Kimura 3-parameter with heterogeneous rates, which the
data was simulated from) while the maximum likelihood analysis used an
incorrect model (with homogeneous rates) due to limitations in standard
maximum likelihood packages.

2. Invariants perhaps can test individual features of trees. Researchers
are frequently interested in the validity of a single edge in the tree. For
example, we might wonder if human or dog is a closer relative to the rabbit.
This amounts to wondering about how much confidence there is in the
edge between the human-rabbit-mouse-rat subtree and the dog subtree in
Figure 1. There are methods, most notably the bootstrap [22] and Bayesian
methods (cf. [32]), which provide answers to this question, but there are
concerns about their interpretation [28, 16, 40, 1].

As for phylogenetic invariants, the generators of the ideal I(T) are, in
many cases, built from polynomials constructed from local features of the
tree. Thus invariants seem to be well suited to test individual features of
a tree. For example, suppose we have n taxa. Consider a partition {A, B}
of the taxa into two sets. Construct the 1~lrAI X IEIIBI matrix FlatA,B(p)
where the rows are indexed by assignments of E to the taxa in A and the
columns by assignments of E to the taxa in B. The entry of the matrix in
a given row and column is the joint probability of seeing the corresponding
assignments of ~ to A and B. The following theorem is [6, Theorem 4] and
deals with the general Markov model, where there are no conditions on the
form of the rate matrices.

THEOREM 3.1 (Allman-Rhodes). Let E == {a, 1} and letT be a binary
tree under the general Markov model. Then the 3 X 3 minors of FlatA,B(p)
generate I(T) for the general Markov model, where we let A, B range over
all partitions of [n] that are induced by removing an edge of T.

While the polynomials in Theorem 3.1 do not generate the ideal for
the DNA alphabet, versions of these polynomials do vanish for any Markov
model on a tree. A similar result also holds for the Jukes-Cantor model in
Fourier coordinates; the following is part of [50, Thm 2].

THEOREM 3.2 (Sturmfels-Sullivant). The ideal for the Jukes-Cantor
DNA model is generated by polynomials of degree 1, 2, and 3 where the
quadratic (resp. cubic) invariants are constructed in an explicit combina
torial manner from the edges (resp. vertices) of the tree.

Although there are many challenges to overcome, the fact that phylo
genetic invariants are associated to specific features of a tree provides hope
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that they can lead to a new class of statistical tests for individual features
on phylogenetic trees.

4. Choosing powerful invariants. There are, of course, infinitely
many polynomials in each ideal I(T), and it is not clear mathematically or
statistically which should be used in the set fT of invariants that we test.
For example, we might hope to use a generating set, or a Grabner basis,
or a set that locally defines the variety, or a set that cuts out the variety
over JR. We have no actual answers to this dilemma, but we provide a few
illustrative examples and suggest possible criteria for an invariant to be
powerful. We will deal with the Jukes-Cantor model on a tree with four
leaves; the 33 generators for this ideal can be found on the "small trees"
website 'WWW. shsu. edu/rvldg005/ small-trees/ [13].

We believe that symmetry is an important factor in choosing powerful
invariants. The trees with four leaves have a very large symmetry group:
each tree can be written in the plane in eight different ways (for example,
one tree can be written as (01 : 23), (10 : 23), ... , (32 : 10)), and each
of these induces a different order on the probability coordinates Pijkl. This
symmetry group (Z2 X Z2 x Z2) acts on the ideal I(T) as well. In order
that the results do not change under different orderings of the input, we
should choose a set fT of invariants that is closed (up to sign) under this
action. After applying this action to the 33 generators, we get a set of 49
invariants. This symmetry will also play an important role in our metric
learning algorithms in Section 5. See also [51] for a different perspective
on symmetry in phylogenetics.

We begin by showing how different polynomials have drastically differ
ent behavior. Figure 4 shows the distribution of three of the invariants on
data from simulations of alignments of length 1000 from the Jukes-Cantor
model on (01 : 23) for branch lengths ranging from 0.01 to 0.75 (similar to
[30, 11, 20]). The histograms show the distributions for the simulated tree
in white and the distributions for the other trees in gray and black. The
four-point invariant (left) distinguishes nicely between the three trees with
the correct tree tightly distributed around zero. It is correct almost all of
the time. Lake's linear invariant (middle) also shows power to distinguish
between all three trees, but distributions overlap much more-s-it is only
correct about half of the time. The final polynomial seems to be biased
towards selecting the wrong tree, even though it does not lie in I(T) for
either of the other two trees.

Figure 5 shows the performance of all the generators for this ideal on
simulated data. The four-point invariant is the best, but the performance
drops sharply with the other generators. Notably, the four-point invariant
and several of the other powerful ones are unchanged (aside from sign)
under the symmetries of the tree. While any invariant can be made sym
metric by averaging, this behavior leads us to believe that invariants with
a simple, symmetric form may be the best choice.
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F1G. 4. Distributions of three invariants (the four-point invariant, Lake '8 linear
invariant, and a biased invariant) on simulated data. The white histogram corresponds
to the correct tree, the black and gray are the other two trees. The invariants have quite
different variances and performance.



100 NICHOLAS ERIKSSON

P,1Id1dIlln Rahl. of JndYkilai In..alla11£

104123 5 1 6 4391235 916 624 7153221221845332936264828.0174325 3 21737201341938111931341416274244301440
I....arianl,..,mtlllr

F1G. 5. Prediction rate for the 49 Jukes-Cantor invariants on simulated data of
length 100. The four-point invariant is by far the best, although four other invariants
are quite good.

For more complex models, it becomes even more necessary to pick a
good set of invariants since there are prohibitively many generators of the
ideal. The paper [12] describes an algebraic method for picking a subset
of invariants for the Kimura 3-parameter model, which has 11612 genera
tors for the quartet tree (after augmenting by symmetry). Their method
constructs a set of invariants which is a local complete intersection, and
shows that this defines the variety on the biological relevant region. This
reduces the list to 48 invariants which overall behave better than all 11612
invariants. However, of these 48, only 4 rank among the top 52 invariants
in prediction rate (using simulations similar to those that produced Fig
ure 5) and the remaining 44 invariants are mostly quite poor (42% average
accuracy). This result, while of considerable theoretical interest, doesn't
seem to give an optimal set of invariants.

5. Comparing trees. Once we have chosen a set fT of invariants for
each tree T, we want to pick the tree such that fr(f;) is smallest (in some
sense). The examples in Section 4 show why this is a non-trivial problem
different invariants have different power and different variance and thus
should be weighted differently in choosing a norm on fT. In this section,
we briefly describe an approach to normalizing the invariants to enable us
to choose a tree. It is based on machine learning and was developed in [20].
It leads to large improvements over previous uses of invariants; however, it
is computationally expensive and dependant on the training data. It can
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be thought of as finding the best single invariant which is a quadratic form
in the starting set fT of invariants.

There are also standard asymptotic statistical tools such as the delta
method for normalizing invariants to have a common mean and variance.
They have the disadvantage of depending on a linear approximation and
asymptotic behavior, which might not be accurate for small datasets. For
tunately, the varieties for many phylogenetic models are smooth in the
biologically significant region [12], so linear approximations may work well.

This problem is somewhat easier when we are choosing between dif
ferent trees with the same (unlabelled) topology, for example, the three
quartet trees. In this case the different ideals I(T) are the same under a
permutation of the unknowns, and thus we are comparing the same sets of
polynomials (as long as the chosen set fT is closed under the symmetries
of T). For this reason, we will concentrate on the case of quartet trees and
write T1 == (01 : 23), T2 == (02 : 13), and T3 == (03 : 12).

Let p(8) be an empirical probability distribution generated from a
phylogenetic model on tree T; with parameters e. Choose m invariants fi
(i :::::: 1,2,3) that are closed under the symmetries of Ts, We want a norm
II II * such that

(5.1)

is typically true, i.e., the true tree should have its associated invariants
closer to zero than others on the relevant range of parameter space.

In order to scale and weigh the individual invariants, the algorithm
seeks to find an optimal II [1* within the class of Mahalanobis norms. Recall
that given a positive (semi)definite matrix A, the Mahalanobis (semi)norm
II . IIA is defined by

Since A is positive semidefinite, it can be written as A == UDU t where
U is orthogonal and D is diagonal with non-negative entries. Thus the
positive semidefinite square root B == UVDu t is unique. Now since Ilxll~ ==
xtAx == (Bx)t(Bx) == IIBxIl2, learning such a metric is the same as finding
a transformation of the space of invariants that replaces each point x with
Bx under the Euclidean norm, i.e., a rotation and shrinking/stretching of
the original x.

Now suppose that e is a finite set of parameters from which training
data f1 (fi(e)), f 2 (p(B)), f3 (p(0)) is generated for () E e. As we saw above,
each of the eight possible ways of writing each tree induces a permuta
tion of the coordinates Pijkl and thus induces a signed permutation of
the coordinates of each fi(p(B)). Write these permutations in matrix form
as 1rl, ... , 7r8. Then the positive semidefinite matrix A must satisfy the
symmetry constraints KiA == A1ri which are hyperplanes intersecting the
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semidefinite cone. This symmetry condition is crucial in reducing the com
putational cost. Given training data, the following optimization problem
finds a good metric on the space of invariants.

Minimize:

Subject to:

2: ~(O) + sAtrA
eE8

Ilfl(p(O))II~+ 'Y ~ IIfi(p(O))II~ + ~(e)

?riA == Ani (for 1 SiS 8),

~((}) 2 0, and

At 0,

(for i == 2,3),
(5.2)

where A !::: 0 denotes that A is a positive semidefinite matrix, so this is a
semidefinite programming problem. There are several parameters involved
in this algorithm: ~ (0) for eE 8 are slack-variables measuring the violation
of (5.1), 'Y is a margin parameter that lets us strengthen condition (5.1), and
sA is a regularization parameter to keep the trace trA small while keeping
A as low rank as possible. It tries to find a positive semidefinite A at a
trade-off between the small violation of (5.1) and small trace A.

The metric learning problem (5.2) was inspired by some early results
on metric learning algorithms [53, 47], which aim to find a Mahalanobis
(semi)norm such that the mutual distances between similar examples are
minimized while the distances across dissimilar examples or classes are kept
large. If it becomes too computationally expensive, we can restrict A to be
diagonal, which reduces the problem to a linear program. See [20] for details
and simulation results. The learned metrics significantly improve on any of
the individual invariants as well as on unweighted norms. The semidefinite
programming algorithm is computationally feasible for approximately 100
invariants, and the choice of powerful invariants is important.

6. Efficient computation. At first glance, the problem of using in
variants seems intractable for large trees for the simple reason that the
number of unknowns grows exponentially with the number of leaves. How
ever, the problem is not as bad as it may seem. Phylogenetic analyses typ
ically use DNA sequences at most thousands of bases long, which means
that the empirical distribution p E lR4n will be extremely sparse even with
a relatively small number of taxa.

Also the data can be sparse, this will not help unless we can write
down the invariants in sparse form. If the polynomials can be written
down in an effective way, they can be evaluated quickly. The determinantal
form of the invariants in Theorem 3.1 provide such a form; see [18] for an
algorithm to construct phylogenetic trees in polynomial time using these
invariants and numerical linear algebra. Also see [2] for invariants that
are (in some sense) determinantal. It seems that determinantal conditions
could be particularly useful, so we suggest Problem 8.5 to computational
commutative algebraists (see also [19]).
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Unfortunately, for group-based models the polynomials are only sparse
when written in Fourier coordinates, and the Fourier transform takes a
sparse distribution p and produces a completely dense vector q. Many
of the invariants are determinantal in Fourier coordinates, but since the
matrices are dense, they are difficult to write down. Can these polynomials
be evaluated efficiently?

7. Positivity. Recall that the four point condition (Proposition 2.1
and Figure 3) says that for a dissimilarity map d arising from the quartet
tree (01 : 23),

dOl + d23 S d02 + dl3 == d03 + d12. (7.1)

This is true since the right two sums traverse the inner edge of the tree
twice (Figure 3). We saw in Example 2 that the equality in (7.1) translates
to a quadratic invariant. However, notice that if the interior branch of the
tree has negative length, the equality is still satisfied, but the inequality
changes so that dOl + d23 is now larger than the other two sums.

The widely used neighbor-joining algorithm [43], when restricted to
four taxa, reduces to finding the smallest of the three sums in the four-point
condition. That is, neighbor-joining on a quartet tree involves estimating
the distances as in Section 2 and then returning the tree (ij : kl) that
minimizes dij +dkl. If instead we used the quadratic invariant arising from
the equality in the four point condition, we would have an invariant based
method that simply returns the tree (ij : kl) that minimizes Idik+djl- dil
djk I· We saw in Section 4 that this invariant performs quite well compared
to the other generators of the Jukes-Cantor model. However, it compares
poorly to the neighbor-joining criterion in the following way.

Figure 6 shows the difference between these two selection criteria on

a projection of the six dimensional space of dissimilarity maps lR.(~) to two
dimensions. The three black lines are the projections of distances arising
from the three different trees. Moving out from the center along these lines
corresponds to increasing the length of the inner edge in the tree.

Geometrically, neighbor-joining can be thought of as finding the closest
tree metric (a point on a black half-ray) to a dissimilarity map. The four
point invariant can't distinguish negative inner branch length (the dotted
black line) and thus is much less robust than neighbor-joining. Notice that
even when it picks the wrong tree, it can pick the wrong wrong tree-that
is, the one least supported by the data. It is less robust than neighbor
joining in the "Felsenstein zone" [31], which corresponds to the region close
to the center, where the inner edge is very short.

Simulations (see Figure 7) show that building trees by evaluating this
quadratic invariant does not perform nearly as well as neighbor-joining.
This is because many simulations with a short interior branch tend to
return metrics that seem to come from trees with negative inner branch
lengths.
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FIG. 6. The selection criteria for neighbor-joining (left) and the four-point invari
ant (right) projected to two dimensions. The colored/shaded regions show which dis
similarity maps are matched to which trees by the two algorithms. The white/unshaded
area corresponds to tree (01 : 23), the red/solid area to tree (02 : 13) and the blue/striped
area to (03 : 12).
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FIG. 7. Illustration of Figure 6 on simulated data. Simulated alignments from tree
(01 : 23) of length 100 were created for randomly chosen branch lengths between 0.01
and 0.75. Distances were estimated using the Jukes-Cantor model and projected onto
two dimensions in the same way as in Figure 6. Trees were built from the distances
using both neighbor-joining and the four-point invariant. Black circles correspond to
distances assigned tree (01 : 23), red x's to tree (02 : 13), and blue diamonds to tree
(03 ~ 12).

This seems to be a large blow to the method of invariants: even the
most powerful invariant on our list in Section 4 doesn't behave as well as
this simple condition. However, it can be easily seen that testing the in
equality is equivalent to testing the signs of the invariant instead of the
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absolute value, which leads us to ask if invariants can provide a way to dis
cover conditions similar to that used in neighbor-joining (see Problem 8.7).
The original paper of Cavender-Felsenstein [14] also suggested using in
equalities, although no one seems to have followed up on this idea.

8. Open problems.

PROBLEM 8.1. Can algebraic ideas be used to estimate branch lengths
and other parameters in phylogenetic trees'? See /48, 7j for algebraic tech
niques for estimating parameters in invariable-site phylogenetic models.

PROBLEM 8.2. Investigate the behavior of individual invariants on
data from trees with heterogeneous rates. Are the best invariants the same
ones that are powerful for homogeneous rates?

PROBLEM 8.3. Can asymptotic statistical methods be practically used
to normalize invariants? Do they give any information about the power of
individual invariants?

PROBLEM 8.4. Do the metrics constructed by the machine learning
algorithm in Section 5 shed any light on the criteria for invariants to be
powerful?

PROBLEM 8.5. Define the "determinanial closure" of an ideal I and
develop algorithms to calculate it. See also [19J.

PROBLEM 8.6. For group-based models, does Fourier analysis pro
vide a method to efficiently evaluate polynomials in the Fourier coordinates
without destroying the sparsity of the problem? Note that many of the in
variants are determinental in Fourier coordinates.

PROBLEM 8.7. Are there other phylogenetic invariants (say for quartet
trees under the Jukes-Cantor model) "similar" to the four-point invariant?
We suggest the following conditions:

1. Be fixed (up to sign) under the Z2 X Z2 X Z2 symmetries of the
quartet tree.

2. Have the following sign condition: ±f(p) > 0 for all p from T2 and
T3 (with perhaps a different choice of sign for T2 and T3). See for
example, the symmetries of the left subfigure in Figure 4.

Beware that results such as f8} on the uniqueness of the neighbor-joining
criterion place some constraints on whether we can hope to find in variants
mimicking this behavior.
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