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Abstract. We investigate the class Ppp of m-Calculus processes that are
bounded in the function depth. First, we show that boundedness in depth
has an intuitive characterisation when we understand processes as graphs:
a process is bounded in depth if and only if the length of the simple paths
is bounded. The proof is based on a new normal form for the w-Calculus
called anchored fragments. Using this concept, we then show that processes of
bounded depth have well-structured transition systems (WSTS). As a conse-
quence, the termination problem is decidable for this class of processes. The
instantiation of the WSTS framework employs a new well-quasi-ordering for
processes in Pgp.

1 Introduction

Concurrent systems are known to be hard to design correctly. Dynamically
reconfigurable systems add to concurrency the problem of changing connec-
tion structures between system components. To ensure the correct behaviour
of systems, automatic verification techniques have proven useful. This automa-
tion comes with a tradeoff. To automate the analysis requires a decidable class
of models, but to model the systems of interest requires an expressive class.
We use the m-Calculus to model dynamically reconfigurable systems [17, 18].
The contribution of this paper is the up-to-now most expressive subclass of
m-Calculus for which termination is decidable. The importance of termination
for the m-Calculus has been recognised in [19, 5].

The class Ppp we propose contains the processes that are bounded in depth.
The function depth measures the interdependence of restricted names in process
terms. Boundedness in depth is a very liberal requirement as it turns out that all
decidable subclasses of m-Calculus known so far are subclasses of Ppp: finitary
agents [9], finite control processes [4], bounded processes [3], unique receiver
and bounded input systems (up to bisimilarity) [2], finite handler processes
[14], structurally stationary processes [14], and restriction-free processes [2].

But the definition of depth is difficult to grasp as the function refers to all
processes in a congruence class. To provide an intuition to Ppp, we make use of
the standard graph-theoretic interpretation of the m-Calculus [17, 18]. Our first
main result states that boundedness in depth is equivalent to boundedness in the
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length of the simple paths (i.e., without repetition of edges) in the graphs. The
proof is based on a new normal form for processes called anchored fragments.

The decidability result for Ppp is obtained by viewing this class as an in-
stance of well-structured transition systems (WSTS) [10, 1, 11]. WSTS are a
framework for infinite state systems that generalises decidability results for par-
ticular models. Technically, a WSTS is a transition system with an ordering re-
lation on the states which is compatible with the transition relation. Depending
on the ordering, the compatibility, and decidability properties the framework
yields decision procedures, e.g., for termination [10, 11] or simulation [1].

Our second main result is the instantiation of the WSTS framework for
processes of bounded depth. As a consequence, we inherit the decision procedure
for termination in [10, 11]. The technical contribution is a new ordering <p,, on
processes which we show to be a well-quasi-ordering (wqo) (i.e., in every infinite
sequence of processes two comparable processes can be found) for processes of
bounded depth. In the proof, anchored fragments again play a vital role. Since
the ordering <p,, is a simulation relation it is compatible with the reaction
relation of the m-Calculus in a strong sense.

2 Preliminaries

The m-Calculus We use a m-Calculus with parameterised recursion as proposed
in [18]. Let the set (a,b €) N of names contain the channels and messages that
occur in communications. A process consumes prefizes m to communicate with
other processes or to perform silent actions. The prefixes are

m = a(b) | a(x) | 7.

The output action a(b) sends the name b on channel a. The input action a(x)
receives a name that replaces z on a. The 7 symbol stands for a silent action.

To denote recursive processes we use process identifiers K, each defined by
an equation K () := P. When the identifier is called, K |a|, it is replaced by the
process P where the names 2 are replaced by a. More precisely, a substitution
o = {a/%} is a function that maps the names in & to @ and is the identity
on all names not in Z. The application of a substitution, P{a/Z}, is defined in
the standard way [18]. A w-Calculus process is a call to an identifier, K|a], a
choice process deciding between prefixes, Y;crm;.P;, a parallel composition of
processes, P | Py, or the restriction of a name in a process, va.P:

P:=K|a] | Xiermi.P; | P1|Py | va.P.

The set of all processes is P. We abbreviate empty sums (with 7 = )) by 0 and
arbitrary sums by M or N. By Il;c;P; we denote the parallel composition of
several processes P; with i € I. The processes K|a] and X;c,m;.P; are called
sequential. By S(P) we refer to the set of sequential processes in P. The function
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is defined inductively by S(0) := 0, S(K|a]) := {K|a]}, S(Xicizomi-P;) =
{Eiefi(aﬂ-i'Pi}a S(Pl | Pz) = S(Pl) US(PQ), and S(VaP) = S(P)

The input action a(b) and the restriction ve.P bind b and c¢, respectively.
The set of bound names in P is bn (P). If we refer to the set of restricted names
in P, rn (P) C bn (P), we mean the restricted names that are not covered by
prefixes. A name which occurs not bound in P is free and the set of free names
in P is fn (P). We permit a-conversion of bound names. Therefore, wlog. we
assume bn (P) N fn (P) = 0. Unless otherwise stated, we assume that a name
is bound at most once in a process. In a defining equation K(Z) := P we
require fn (P) C Z. If a substitution {a/Z} is applied to a process P, we assume
bn(P)n(auz)=0.

The results achieved in this paper make heavy use of the structural congru-
ence relation = of processes. It is the smallest congruence where a-conversion
of bound names is allowed, + and | are commutative and associative and have
0 as neutral element, and the following laws for restriction hold:

ve.vy.P =vyve.P ve.0=0
ve. (P |Q)=P| (vz.Q), if z ¢ fn(P).

The latter law is called scope extrusion.

We distinguish two normal forms for processes. A process va.(Py | ... | Pp)
where a C fn (Py | ... | Py) and all P; are sequential is in standard form [17].
Via structural congruence every process P can be rewritten as a process Py
in standard form as follows. First, the scope of every restricted name not un-
der a prefix is extruded over all processes composed in parallel. Then unused
restricted names and empty sums are removed. Since all bound names are dif-
ferent and disjoint with the free names, a-conversion is not required. Thus, the
rewriting does not change the sequential processes, S(P) = S(Psf).

The restricted form [14] is based on the notion of fragments, i.e., processes
where the scopes of restricted names are minimal:

Fu=K|a] | Yicrzomi P |va.(Fy | ... | Fp),

where a € fn (F;) for all i. The set of all fragments is (F,G €) Px. Fragments
that are sequential processes, K'|a| or X;cjom;.P;, are elementary and referred
to by F.. A process P, is in restricted form, if it is a parallel composition of
fragments, P, = Il;crF;. The set of fragments in P, is Frag (P,) = J;c{Fi}-
The set of all processes in restricted form is P,.

To compute the restricted form P, € P, of a process P € P, we minimise the
scopes of all restricted names not under a prefix and remove processes congruent
with 0, in particular unused restricted names. Again, this does not change the
sequential processes, S(P) = S(P,). The restricted form of a process is invariant
under structural congruence up to rewriting of fragments: P = Q iff P,=Q,,
where = is the smallest equivalence on processes in restricted form that permits
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(1) associativity and commutativity with regard to | and (2) replacing fragments
by structurally congruent ones, i.e., F'| BL,=ZG | P, if F = G.

The behaviour of m-Calculus processes is determined by the reaction relation
— C P x P defined by the following rules:

(Tau) 7.P + M — P
(React) (z(y).P + M) | (2(2).Q + N) — P{z/y} | @
(Const) K|a] — P{a/z}, if K(z):=P

P—P P— P
P
(ar)P|Q—>P’|Q (Res) va.P — va.P’
Struct) £ ¥ if P=Qand P' = Q'
( IUC)Q%Q/,I =@ an =qQ'.

By Reach (P) we denote the set of all processes reachable from P with the
reaction relation. The reaction relation is image finite, i.e., for every process P
there are up to structural congruence only finitely many @ with P — Q.

To relate a reachable fragment F' € Frag (Reach (P)) with the initial process
P, we recall that F' consists of derivatives of P [14]. Derivatives are sequen-
tial subprocesses of P gained by removing prefixes as if they were commu-
nicated. Let P use n € N = {0,1,2,...} recursive definitions K;(%;) := P;.
We define derivatives(P) := der(P) U (J;_, der(P;), where der(0) := 0,
der(Kla)) = {K|al}, der(XicrzomiP;) = {Xicrzomi-Pi} U ;e der(P;),
der(Py|Py) := der(P1) U der(Pz), and der(va.P) := der(P). Then every
F € Frag (Reach (P)) is structurally congruent with va.(Il;c;.9Qi0;), where
Q; € derivatives(P) and o; : fn (Q;) — fn (P)Ua.

To define the function depth, we require the nesting of restrictions mea-
sured as follows: nest, (K|a]) := 0, nest, (Xicrm;.P;) := 0, nest, (P1 | P) :=
max{nest, (P1), nest, (P2)}, and nest, (va.P) := 1+ nest, (P).

Definition 1. The depth of F' € Pr is the minimal nesting of restrictions in
all fragments in the congruence class: depth(F') := min{nest, (F') | F' = F}.
A process P € P is bounded in depth, iff there is kp € N such that the depth of
all reachable fragments is less or equal to kp, i.e.,

Jkp € N:VQ € Reach (P) :VF € Frag (Q,) : depth(F) < kp.
The set of all processes that are bounded in depth is Ppp. O

Well-Quasi-Orderings A quasi-ordering (qo) on a set of elements A is a reflexive
and transitive relation <4 C A x A. We also call (A, <4) a qo. The qo (A4, =<4)
is a well-quasi-ordering (wqo), iff in every infinite sequence (a;);cn in A there
are two comparable elements, i.e., there are indices ¢ < j with a; <4 a;.

A result by Higman [13] lifts a wqo <4 on a set of elements A to a wqo
jﬁ{ on the set of finite sequences A*. The ordering u jfg{ v demands v to be a
subsequence of v which is dominated elementwise wrt. <4, i.e., u = (u1,...,Un)
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and v = (v1,...,v,) and there are 1 <14y < ... < iy, < n such that ux <4 v;,
forall 1 <k <m.

In Section 4 we define a qo on fragments. To prove it is a wqo, we relate it
with a wqo on trees. Consider a qo (A, <4). The trees over A are defined by

T:=al(a,(T1,...,Tn)),

where a € A. The set of all trees over A is T(A). The height of a tree is
measured similar to the nesting of restrictions in fragments, height(a) := 0 and
height((a, (Th, ..., Tyn))) = 1+ maz{height(T;) | 1 < i < n}. For n € N we
denote by 7 (A),, the trees of height less or equal to n.

We use the rooted tree embedding <74y as qo on the trees in 7(A). In-
tuitively, T1 =7(a) T2 if T1 is a subtree of Ty so that the levels of T; are
preserved in T5. In particular, the root of 77 is mapped to the root of 75 and
the leaves in T are leaves in Ts. Technically, the rooted tree embedding is de-
fined by two rules. If a <4 a’ then a =<7(4) @' (Elem) and if a <4 o' and
(Th,...,Tn) 5¥(A) (17,...,T}) then (a,(T1,...,Tn)) 27 (', (T1,...,T}))
(Comp). It is not hard to see that the relation =74y € 7(A) x T(A) is a qo.
It is a wqo on trees of bounded height.

Lemma 1. If (A, =4) is a wgo then (T (A)n, =27(a)) is a wgo for all n € N.

3 A Characterisation of Boundedness in Depth

In this section, we interpret fragments F as hypergraphs G[F]. With this in-
terpretation we call the process P € P bounded in the simple paths, iff there is
ksim € N such that the length of the longest simple path in the hypergraphs of
all reachable fragments is less or equal to kg;n, i.e.,

Fksim € N:VQ € Reach (P) :VF € Frag (Q,) : lsp(G[F]) < ksim,

where Isp(G[F]) denotes the length of the longest simple path in G[F]. We prove
that a process is bounded in depth if and only if it is bounded in the simple
paths. Thus, processes in Ppp can be intuitively understood as hypergraphs
where the length of the simple paths is bounded.

The main technical contribution is the definition of anchored fragments. In
this section, we use them to derive boundedness in depth from boundedness in
the simple paths (Lemma 3). In Section 4 they help us prove that the given
qo is a wqo. In particular we need that the nesting of restrictions in anchored
fragments is bounded if the depth is (Corollary 1). Before we turn to anchored
fragments, we make the interpretation of processes as hypergraphs precise.
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3.1 The Graph-theoretic Interpretation of the w-Calculus

A hypergraph [12] is a graph where several vertices may be connected with one
hyperedge, i.e., it is a tuple G = (V, E, [, inc), where V is a finite set of vertices,
E is a finite set of hyperedges, | : V. — P is a vertex labelling function, and
inc : E — P(V) is an incidence function. In the graphical representation we
draw a dot labelled by I(v) for each v € V and a box labelled by e for every
e € E. There is an arc between v and e, if v € inc(e). In our setting edges are
names, £ C N. We also call hypergraphs graphs and hyperedges edges.

Two graphs G and G, are equal, G = Go, if F1 = FEs and there is a bijection
f Vi — V5 that is compatible with the labelling and the incidence functions.
Hence, the identity of elements v € V is not important and we can always
assume Vi NV5 = 0.

A path in G is a finite sequence p = (v1,€1,...,Un, €n,Unt1) such that the
edges e; connect v; and v;41, i.e., v;,vi41 € inc(e;) for all i. The length of p,
length(p), is the number of edges in p. By fe(p) we refer to the first element in
p, v1. A path is simple, if e; # e; for all ¢ # j. By Isp(G) we denote the length
of the longest simple path in G. The set of all paths in G is Paths(G).

We require three operations on graphs. The disjoint union of G; and Go,
where E1 N By = (), puts both graphs side by side. Formally, it is the graph
G WGy = (V1 W Vo, By W Eo, 11 Wla, incy Wince). The connect operator takes a
graph G and a name a ¢ E. The result is the graph G®a, where a is added to E.
The new edge connects the processes that have a as a free name, i.e., G ® a :=
(V,EW {a},l,incW{(a,V,)}), where V, CV with v € V, iff a € fn (I(v)). We
define the application of a substitution {a/x} to G by G{a/z} := (V, E,l',inc),
where I'(v) :=l(v){a/z} for all v € V.

The graph-theoretic interpretation (1) creates a vertex for every sequential
process, (2) takes the restricted names not under prefixes as the edges, and (3)
inserts an arc where a name is free in a process. Technically, it is the func-
tion g[[_]] defined by Q[[O]] = (@707@70)7 g[[KL&J]] = ({U},(Z), {(’U,KL&J)},@),
g[[EiEI#fDWi'Pi]] = ({U},(Z), {(vﬂziEI?fWTi'Pi)}v@)ﬂ g[[P | Q]] = g[[P]] © Q[[Q]],
and Gva.P] := G[P] ® a if a € fn (P), G[P] otherwise.

Structurally congruent processes P; = P» are mapped to equivalent hyper-
graphs G[P1] ~ G[P:]. The relation ~ is the smallest equivalence on hyper-
graphs where replacement of vertex labels by structurally congruent processes
is allowed, (V W {v}, E,l W {(v,P)},inc) = (VW {v}, E,l W {(v,Q)},inc), if
P = @, and renaming of edges together with the attached processes is possible,
GRa~ (G{b/a})@Db,if b ¢ fn(l(v)) for all v € V. The equivalence ~ preserves
the length of the longest simple path, G ~ Go implies Isp(G1) = lsp(Ga).
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3.2 Anchored Fragments

By definition, all fragments under a restriction va share the name a. In an-
chored fragments, we demand that distinguished processes inside the fragments,
the anchors, share the name a. The corresponding function anc gives for a
fragment Fa; in va.(Fa; | ... | Fa,) the process anc(Fyu;) = P € S(Fa;)
that knows the name, i.e., a € fn (P). When descending an anchored fragment
Fi=wva.(Fay| ... | Fa,) using the function nest,, this guarantees that the
vertices labelled by the anchors anc(Fy;) are connected via a in G[F4].

Definition 2. The set of anchored fragments (Fa,Ga €) P4 is defined by
FA = KL&J | Eie]¢®ﬂi~Pi | ua.(FAl | | FAH),

where a € fn (anc(F4;)) for alli, with anc(K |a]) := K|a), anc(X;crzpmi-P;) =
Yicrzomi- Py, and anc(va.(Fay | ... | Fay)) = anc(Fay).

Of course, anchored fragments are fragments. We now show that every fragment
can be rewritten as an anchored fragment using structural congruence. In the
proof, it is important that every sequential process inside a fragment can be
chosen as the anchor.

Lemma 2. Consider F' € Pr and a process P € S(F). Then there is an an-
chored fragment Fq € P such that Fqx = F, S(F4) = S(F), and anc(F4) = P.

We explain the induction step in the proof of Lemma 2. Given fragment I’ we
compute the standard form va.(Py | ... | P,). Since this does not change the
sequential processes, one process P; is the given process P, wlog. P;. We split
the set of names a into three subsets ai,as,as as follows. A name a that is
shared by P and P | ... | Py, ie, a € fu(P)Nfn(Py| ... | B,), is in the
set @1. A name which is only in the free names of P is in as. The remaining
names are in ag. Shrinking the scopes yields vas.(vaqg.P | vag.(Pa | ... | Py)).
To transform vas.(P» | ... | P,) into a parallel composition of anchored
fragments, we compute the restricted form. It consists of several fragments,
(vas.(Pa| ... | Pp)), = Gi | ... | Gy. By construction, every G; contains
a process Py; sharing a name with P. Since each G; contains less processes
than F' we can apply the induction hypothesis. This yields anchored frag-
ments G 4; where anc(Ga;) = Pa; shares a name with P. We now have
vay.(vaz.P | Gay | ... | Gam). As the names in a; are shared by different
G 4;, we minimise their scopes to get the required anchored fragment.

Ezample 1. Let F = vby, by, b3, a.(K|a,by| | Lla,b2] | L|a,bs]). We construct
the anchored fragment F4 that has K|a, b | as the anchor, anc(F4) = K|a,by].
The fragment F' already is in standard form. We split the set of names
{a,by,b2,b3} into a1 = {a}, az = {b1}, and az = {ba, bs}. We shrink the scopes
of all a; which gives va.(vby.K|a,b1] | vba,bs.(L|a,b2| | L|a,bs])). The re-
stricted form of vby, bs.(L|a,b2| | L|a,bs]) is vba.L|a,bs] | vbs.L|a,bs]. Both
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fragments, vby.L|a,bs| and vbs.L|a,bs], are also anchored fragments where
the anchors share the name a with K|a,b1]. The scope of a is minimal. Qur
computation returns va.(vby.K|a,b1| | vba.L|a,bs] | vbs.L|a,bs]). O

For anchored fragments F 4, the nesting of restrictions corresponds to the length
of a simple path p in the graph G[F 4], nest, (F.4) = length(p) for some simple
path p € Paths(G[F.a]). In the proof, we need that the first element of p is
labelled by the anchor of F 4, [(fe(p)) = anc(F.4). We illustrate the construction
of a suitable path p in the induction step. The idea is to extend a path p’ that
exists by the hypothesis by an edge and a vertex.

Ezample 2. Consider Fa4 = va.(vby.K|a,bi| | vbe.L|a,bs] | vbs.L|a,bs]).
The figure to the left shows a simple path p
in G[F4] with length(p) = 2 = nest, (F4) and
l(fe(p)) = K|a,b1| = anc(F4). By the hypoth-
esis, there is a simple path p’ in G[vbs.L|a,bs]]
with length(p’) = 1 = nest, (vbs.L|a,bs]) and
I(fe(p')) = L|a,b3] = anc(vbs.L|a,bs|). This
path is p’ = (L|a,bs], b3, L|a,bs]), depicted by
dashed lines. As Gvbs.L|a, bs]] is embedded in G[F 4] (dotted line), p’ is a path
in G[F.4]. The anchor L|a,bs] and the anchor of F 4, K|a,b; |, are connected
with a. We define p = (anc(F4),a,p’) = (Kl|a,b1],a,L|a,bs|,bs, L|a,bs]). Tt
extends p’ by the bold lines. ¢

3.3 The Characterisation of Boundedness in Depth

Fragment F is structurally congruent with an anchored fragment F'4 (Lemma 2).
As depth(F) < nest, (F.4) = length(p) for some simple path p in G[F4] and as
the length of the simple paths is bounded, the depth is bounded as well.

Lemma 3. If P € P is bounded in the simple paths by kgim then P is bounded
in depth by ksim as well.

It is easy to check that the length of the longest simple path in G[F] is bounded
by the nesting of restrictions in F as follows: Isp(G[F]) < 2m°*»(F) — 1. Let
F be bounded in depth. There is a fragment Fp = F where the nesting of
restrictions is minimal, nest, (Fp) = min{nest, (F') | F' = F} = depth(F).
Since the graphs of F' and Fp are equivalent, Isp(G[F]) = Isp(G[Fp]) holds.
The mentioned inequality and the choice of Fp yield the following lemma.

Lemma 4. If P € P is bounded in depth by kp then P is bounded in the simple
paths by 2F0 — 1.

Combined, Lemma 3 and Lemma 4 prove our first main theorem.

Theorem 1. A process P € P is bounded in depth if and only if it is bounded
in the simple paths.
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In the following section we understand anchored fragments as trees of bounded
height. The boundedness is justified by the following corollary of Lemma 4.

Corollary 1. Let P be bounded in depth by kp and F4 € Frag (Reach (P)) then
nest, (Fq) < 2k0 — 1.

4 The Transition Systems of Pgp are Well-structured

Our second main result states that processes of bounded depth have well-
structured transition systems (WSTS) [10, 1, 11]. A WSTS is a tuple (S, ~, <),
where (S, ~») is an image finite transition system and <= C S x S is a wqo on
the states (s,t €) S which is required to be a simulation. By definition, the re-
lation s < t is a simulation if state ¢t imitates the transition behaviour of s, i.e.,
s <t and s ~ s’ implies there is ¢ with ¢t ~ ¢’ and s’ < ¢/. To instantiate the
framework, we define a qo <p,,, on processes and prove it (1) to be a wqo on
Reach (P) where P is bounded in depth (Section 4.1) and (2) to be a simulation
(Section 4.2). We conclude with a decision procedure for termination.

4.1 A Well-Quasi-Ordering for Ppp

Our wqo =p,, on processes is derived from a wqo on fragments. The idea of
the fragment ordering =<z is to use the rooted tree embedding and close it
under structural congruence. The leafs in Rule (Elem) correspond to elemen-
tary fragments: Fo < F, (Rule (1)). Fragment va.(Il;crF;) is dominated by
va.(Ilic1Gy | I1je ;Gj5) if the G; dominate the F;. This mimics Rule (Comp). If
F’ is smaller than G’ then every F' = F’ is smaller than G = G’ (Rule (3)).

Definition 3. The fragment ordering <7 C Pz x Px is defined by:

F, <z G;foralliel

1
(1) va.(Ilicr Fy) 25 va.(Iic1G; | e 1Gj)

Fej}'Fe (2)
FEFIj]:G/EG

F=<rG 0

(3)
Reflexivity of <z is immediate, transitivity follows from Lemma 8. To relate
the fragment ordering <z with the rooted tree embedding =7(4), we inter-
pret fragments F' as (syntax) trees 7 [F] as follows: an elementary fragment
is a single leaf, T[F.] := F., a fragment va.(Fy | ... | F,) is the tree
Tlva.(Fy | ... | Fy)] = (a,(T[F1],...,T[F,])). If we assume that the set
A contains the sequential processes and the restricted names in I’ that are not
under prefixes, i.e., S(F)Urn (F) C A, then T[F]is atree over A, T[F] € T (4).
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If we furthermore assume that A is ordered by the identity, i.e., we consider the
qo (A, id), then the rooted tree embedding implies the fragment ordering.

Lemma 5. Consider the qo (A, id). If T[F] 27y T[G] then F <# G for all
fragments F,G € Pr.

To conclude <7 is a wqo from the fact that <7(4) is a wqo with Lemma 5,
(A, id) needs to be a wqo (cf. Lemma 1). This is the case if A is finite. Thus,
we need fragments that consist of a finite set of sequential processes and a
finite set of restricted names. The idea is to reuse restricted names in parallel
compositions, i.e., here we relax the requirement that a name is bound at most
once. For every i € N we define con; : Pr — Pr by con;(F.) := F. and
con;(va.(Fy | ... | Fp)) = vu;.(conip1(Fy){ui/a} | ... | conjp1(Fn){u;/a}),
where wlog. u; is fresh for Fy, ..., F,. Of course, F' = con;(F') and the restricted
names are determined by nest, (F) since rn (con;(F)) C {ui, ..., Uiynest, (F)}-

Ezample 3. Consider F4 = va.(vbi.K|a,b1| | vbe.L|a,bs] | vbs.L|a,bs]). We
compute cong(F4) = vug.(vuy . K |ug, ur | | vus.Llug,u1 ] | vur.Llug,ut]). O

Following the argumentation above, we now build particular anchored fragments
F 4 that consist of derivatives where the restricted names are changed by cong.

Lemma 6. Let F' € Frag (Reach (P)) for some P € P. There is an anchored
fragment Fa = F with mn (Fa) C {uo, ..., Unest, (Fq) ) and S(Fa) C{Qo | Q €
derivatives(P) and o : fn (Q) — frn (P)U{uo, ..., Unest, (Fa)} }-

Proof. Let F € Frag (Reach (P)). We recalled that F = va.(Q101 | ... | Qnon)
where Q; € derivatives(P) and o; : fn(Q;) — aU fn(P) in Section 2. We
compute the restricted form, (va.(Qioy | ... | Qnon)), =: F'. It is a fragment
F’ according to =. For F’ we compute F,' with Lemma 2. We now have
F=F4 and S(F4') C{Qo | Q € derivatives(P) and o : fn (Q) — aU fn (P)}.

With the function cong we change the restricted names: cong(F4') = F4'
and rn (cong(Fa')) € {uo, ..., Upest, (74 }- The renaming changes the set of
sequential processes. They are now derivatives where the substitutions map into
fn (P)U{uo, ..., tpest, (ray}- Thus, cong(F4") satisfies the requirements. 0

To see that <z is a wqo on the reachable fragments of P € Pgp, let kp be
a bound on the depth. We define the set A := {ug,...,uqpp_ 1} U{Qo | Q €
derivatives(P) and o : fn (Q) — fn(P) U {uo,...,usrp_1}}. Obviously, A is
finite and thus (A, id) is a wqo.

Let (F;)ien be a sequence in Frag (Reach (P)). Every F; is structurally
congruent with an anchored fragment F,; in Lemma 6. Corollary 1 yields
nest, (Fa;) < 280 — 1. Thus T[F4;] € T(A) with the set A we just defined.
The height of T[F 4;] is equal to the nesting of restrictions in Fy,;. Thus, we
have a sequence (7 [F4;])ien of trees in 7 (A)qrp ;. According to Lemma 1,
(T(A)grp 1, 27(a)) is awqo and so there are i < j with T[F4;] <74y T[Fa;].
Since A is ordered by the identity, Fla; <7 Fl4; with Lemma 5. With Rule (3)
we conclude F; <7 Fj. The following lemma holds.
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Lemma 7. Let P € Pgp. Then (Frag (Reach (P)),=<r) is a wqo.

We define the qo =<p,, on Reach (P)/= by [IIic1F;] =py, ic1G; | I1;c;Gj] if
F;, <7 G; for all : € I. Wqo follows from Lemma 7 and Higman’s result.

Proposition 1. Let P € Pgp. Then (Reach (P)/=, <p,,) is a wqo.

4.2 The Relation <p,, s a Stmulation

In the proof that <p,, is a simulation, the following Lemma 8 is crucial. It
relates the fragment ordering F' <z G with the standard form of F. This
standard form is covered by G in a way that reveals <z is a simulation.

Lemma 8. For all F,G € Pr: F <7 G if and only if F =va.(Py | ... | Py)
in standard form and G =va.(Py| ... | P, | R) for some R € P.

Let [P] = [Hiejﬂ] =Psp [HiEIGi | HjeJGj] = [Q], which means F; <z G;
for all ¢ € I. With Lemma 8 we get Il;c/F; = icrva;.(Py, | ... | Py,). We
extrude the names va; and check that [P] — [P’] implies [Q] — [Q'] with a case
distinction. The direction from right to left in Lemma 8 yields [P'] <p,, [Q'].

Proposition 2. The relation <p,, is a simulation on P/=.

With Proposition 1, Proposition 2, and the fact that — is image finite up to =,
we conclude that processes of bounded depth have WSTS.

Theorem 2. Let P € Pgp. Then (Reach (P)/=,—, <p,,) is a WSTS.

4.3 Decidability of Termination for Pgp

The WSTS (S, ~, =) has a non-terminating computation from so € S iff an
infinite sequence sy ~» §1 ~~ ... exists. If ~ is effectively computable and < is
decidable the following algorithm decides the termination problem [10, 11].

Let so € S. We construct the finite reachability tree FRT (so). The root is
labelled by sg. For every node labelled by s in the tree, we create a new node
for every successor t of s. We connect the node labelled by s and the new node.
If there is a node labelled by s’ on the path from the root to the new node with
s’ < t, we label the new node by ;. Otherwise we label it by t. We do not
create successors for nodes ty. The idea is that ¢ with s’ < ¢ can simulate the
behaviour of s’ and thus repeat s’ ~ ...~ t.

Proposition 3 ([10, 11]). A WSTS (S,~, =) has a non-terminating compu-
tation from so € S if and only if FRT (so) contains a node t4. As < is a wqo,
the tree FRT (so) is finite and containment of t4 is decidable.
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The reaction relation is effectively computable and <p,,, is decidable.

Corollary 2. For P € Ppp it is decidable whether there is a non-terminating
computation starting from [P].

Ezample 4. Let Py = wvug.(vur.K|ug,u1] | vui.Llug,ui| | vuy.Llug,ui])
with K(z,y) := K|x,y] | vz.y(z) and L(z,y) := x(y). Then FRT([P)]) is

[PO] Pi = vug.(vui.(K|uo,u1 ] | vuz.ui(u2)) | vui.L|ug,u1]| | vui.Lluo,u1])
[Pl]+ Py = vug.(vui. K |uo, u1 ] | vur.uo(ui) | vui.L|ug,u1 )
[P] Py] Py = vuo.(vur.(K|uo, u1] | vuz.ui(uz)) | vur.uo(u) | vur.Lluo,u1])  The

+ Py = vug.(vui. K |ug, u ] | vur.uo(ut) | vui.uo(ui))

[

2

[P5]+ Ps = vug.(vui.(K|uo, u1 | | vuz.ui (u2)) | vur.uo(ui) | vur.ugui)).

root of FRT([P]) is labelled by [Py]. We have [Py] — [P1] and [Py] — [P
Thus, we insert two new nodes. For the first node, [FPy] =<p,, [P1] holds, so
we label it by [P1], . Since [Po] =p,, [P2] does not hold, the second node is
labelled by [P2]. With [P] — [Ps] we construct a new node. As [Py] Zp,, [Ps]
but [P2] =Xp, [Ps], we label it by [Ps], . The remaining nodes are constructed
similarly with [P;] <p,, [Ps]. The existence of [P], implies the system has a
non-terminating computation from [Fp). O

5 Related Work and Conclusion

The interpretation of processes as graphs was proposed in [15, 16] and has been
recalled in [17, 18] for the m-Calculus. We related the depth of a process P with a
function on the graph G[P]. We are not aware of similar results in the literature.
The proof required an intricate normal form called anchored fragments.

In [6, 8] decidability of structural congruence relations was investigated. The
authors proposed normal forms related with the restricted form in [14]. The
standard form of processes is due to [17]. Anchored fragments are more stringent
than the normal forms above, and thus reveal more information about the
connection structure of process terms.

Finkel generalised the coverability graph procedure for Petri nets to what he
called WSTS [10]. He presented algorithms to decide termination and bound-
edness problems in the general setting. Abdulla et. al. generalised decidability
results of temporal properties and simulation relations for lossy channel systems
to their notion of WSTS [1]. Both definitions were unified in [11]. This paper is
the first to instantiate the WSTS framework for the w-Calculus. Compatibility
with the reaction relation required a non-trivial ordering <p,,.

Based on a translation of 7w-Calculus into multisets, orderings on processes
defined by multiset containment relations were studied in [7]. We considered
the more intricate wqos, i.e., <p,, needed to be well-behaved under reaction.
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In [19, 5] type systems for the m-Calculus were presented that ensure ter-
mination of well-typed processes. We observe that terminating processes are
always bounded in depth due to the finite number of reachable processes. Fur-
thermore, our result is more general in that we instantiate the WSTS framework
for Ppp and then derive decidability of termination as a corollary. To turn our
decidability result into a practical procedure, approximations on <p,, should
be developed to prune the finite reachability tree.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1-2):109-127, 2000.

2. R. M. Amadio and C. Meyssonnier. On decidability of the control reachability problem
in the asynchronous m-calculus. Nordic Journal of Computing, 9(1):70-101, 2002.

3. L. Caires. Behavioural and spatial observations in a logic for the m-Calculus. In FOSSACS
2004, volume 2987 of LNCS, pages 72—-89. Springer-Verlag, 2004.

4. M. Dam. Model checking mobile processes. Information and Computation, 129(1):35-51,
1996.

5. Y. Deng and D. Sangiorgi. Ensuring termination by typability. Information and Com-
putation, 204(7):1045-1082, 2006.

6. J. Engelfriet and T. Gelsema. Multisets and structural congruence of the pi-calculus with
replication. Theoretical Computer Science, 211(1-2):311-337, 1999.

7. J. Engelfriet and T. Gelsema. Structural inclusion in the pi-calculus with replication.
Theoretical Computer Science, 258(1-2):131-168, 2001.

8. J. Engelfriet and T. Gelsema. A new natural structural congruence in the pi-calculus
with replication. Acta Informatica, 40(6):385-430, 2004.

9. G.-L. Ferrari, S. Gnesi, U. Montanari, and M. Pistore. A model-checking verification envi-
ronment for mobile processes. ACM Transactions on Software Engineering and Method-
ology, 12(4):440-473, 2003.

10. A. Finkel. Reduction and covering of infinite reachability trees. Information and Com-
putation, 89(2):144-179, 1990.

11. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theo-
retical Computer Science, 256(1-2):63-92, 2001.

12. A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of LNCS.
Springer-Verlag, 1992.

13. G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3),
2(7):326-336, 1952.

14. R. Meyer. A theory of structural stationarity in the w-Calculus. Under revision, 2008.

15. G. Milne and R. Milner. Concurrent processes and their syntax. JACM, 26(2):302-321,
1979.

16. R. Milner. Flowgraphs and flow algebras. JACM, 26(4):794-818, 1979.

17. R. Milner. Communicating and Mobile Systems: the w-Calculus. Cambridge University
Press, 1999.

18. D. Sangiorgi and D. Walker. The w-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

19. N. Yoshida, M. Berger, and K. Honda. Strong normalisation in the m-Calculus. Infor-
mation and Computation, 191(2):145-202, 2004.



	On Boundedness in Depth in the -Calculus
	Roland Meyer
	Introduction
	Preliminaries
	A Characterisation of Boundedness in Depth
	The Graph-theoretic Interpretation of the -Calculus 
	Anchored Fragments
	The Characterisation of Boundedness in Depth

	The Transition Systems of PBD are Well-structured
	A Well-Quasi-Ordering for PBD
	The Relation PBD is a Simulation
	Decidability of Termination for PBD

	Related Work and Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


