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IFIP 2008 World Computer Congress (WCC’08)

Message from the Chairs

Every two years, the International Federation for Information Processing hosts a ma-
jor event which showcases the scientific endeavours of its over one hundred Techni-
cal Committees and Working Groups. 2008 sees the 20th World Computer Congress
(WCC 2008) take place for the first time in Italy, in Milan from 7-10 September 2008,
at the MIC - Milano Convention Centre. The Congress is hosted by the Italian Com-
puter Society, AICA, under the chairmanship of Giulio Occhini.

The Congress runs as a federation of co-located conferences offered by the different
IFIP bodies, under the chairmanship of the scientific chair, Judith Bishop. For this
Congress, we have a larger than usual number of thirteen conferences, ranging from
Theoretical Computer Science, to Open Source Systems, to Entertainment Comput-
ing. Some of these are established conferences that run each year and some represent
new, breaking areas of computing. Each conference had a call for papers, an Inter-
national Programme Committee of experts and a thorough peer reviewed process. The
Congress received 661 papers for the thirteen conferences, and selected 375 from those
representing an acceptance rate of 56% (averaged over all conferences).

An innovative feature of WCC 2008 is the setting aside of two hours each day for
cross-sessions relating to the integration of business and research, featuring the use of
IT in Italian industry, sport, fashion and so on. This part is organized by Ivo De Lotto.
The Congress will be opened by representatives from government bodies and Societies
associated with IT in Italy.

This volume is one of fourteen volumes associated with the scientific conferences and
the industry sessions. Each covers a specific topic and separately or together they form
a valuable record of the state of computing research in the world in 2008. Each volume
was prepared for publication in the Springer IFIP Series by the conference’s volume
editors. The overall Chair for all the volumes published for the Congress is John Im-
pagliazzo.

For full details on the Congress, refer to the webpage http://www.wcc2008.org.

Judith Bishop, South Africa, Co-Chair, International Program Committee
Ivo De Lotto, Italy, Co-Chair, International Program Committee
Giulio Occhini, Italy, Chair, Organizing Committee
John Impagliazzo, United States, Publications Chair
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IFIP

• is the leading multinational, apolitical organization in Information and Communi-
cations Technologies and Sciences

• is recognized by United Nations and other world bodies
• represents IT Societies from 56 countries or regions, covering all 5 continents with

a total membership of over half a million
• links more than 3500 scientists from Academia and Industry, organized in more than

101 Working Groups reporting to 13 Technical Committees
• sponsors 100 conferences yearly providing unparalleled coverage from theoretical

informatics to the relationship between informatics and society including hardware
and software technologies, and networked information systems

Details of the IFIP Technical Committees and Working Groups
can be found on the website at http://www.ifip.org.
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Preface

The papers contained in this volume were presented at the 5th IFIP International Con-
ference on Theoretical Computer Science (IFIP TCS), 7-10 September 2008, Milan,
Italy.

TCS is a bi-annual conference. The first conference of the series was held in Sendai
(Japan, 2000), followed by Montreal (Canada, 2002), Toulouse (France, 2004) and
Santiago (Chile, 2006). TCS is organized by IFIP TC1 (Technical Committee 1: Foun-
dations of Computer Science) and Working Group 2.2 of IFIP TC2 (Technical Com-
mittee 2: Software: Theory and Practice). TCS 2008 was part of the 20th IFIP World
Computer Congress (WCC 2008), constituting the TC1 Track of WCC 2008.

The contributed papers were selected from 36+45 submissions from altogether 30
countries. A total of 14+16 submissions were accepted as full papers. Papers in this
volume are original contributions in two general areas: Track A: Algorithms, Com-
plexity and Models of Computation; and Track B: Logic, Semantics, Specification
and Verification. The conference also included seven invited presentations, from Luca
Cardelli, Thomas Ehrhard, Javier Esparza, Antonio Restivo, Tim Roughgarden, Grze-
gorz Rozenberg and Avraham Trakhtman. These presentations are included (except
one) in this volume. In particular, Luca Cardelli, Javier Esparza, Antonio Restivo, Tim
Roughgarden and Avraham Trakhtman accepted our invitation to write full papers re-
lated to their talks.

We thank the local WCC organizers, IFIP TC1 and WG 2.2 for their support in
the organization of IFIP TCS. We also thank the members of the Programme Com-
mittee and the additional reviewers for providing timely and detailed reviews. Finally,
we want to thank William Blum and, in particular, Arto Lepistö for composing this
proceedings.

Milan, Italy, Juhani Karhumäki (PC Chair, Track A)
September, 2008 Luke Ong (PC Chair, Track B)
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Ambiguity and Complementation in
Recognizable Two-dimensional Languages

Dora Giammarresi1 and Antonio Restivo2

1 Dipartimento di Matematica, Università di Roma “Tor Vergata”,
via della Ricerca Scientifica, 00133 Roma, Italy.

giammarr@mat.uniroma2.it
2 Dipartimento di Matematica e Applicazioni.

Università di Palermo, via Archirafi, 34 - 90123 Palermo, Italy.
restivo@dipmat.math.unipa.it

1 Introduction

The theory of one-dimensional (word) languages is well founded and
investigated since fifties. From several years, the increasing interest for pattern
recognition and image processing motivated the research on two-dimensional
or picture languages, and nowadays this is a research field of great interest. A
first attempt to formalize the concept of finite state recognizability for two-
dimensional languages can be attributed to Blum and Hewitt ([7]) who started
in 1967 the study of finite state devices that can define two-dimensional lan-
guages, with the aim to finding a counterpart of what regular languages are in
one dimension. Since then, many approaches have been presented in the liter-
ature following all classical ways to define regular languages: finite automata,
grammars, logics and regular expressions.

In 1991, a unifying point of view was presented in [13] where the family of
tiling recognizable picture languages is defined (see also [14]). The definition of
recognizable picture language takes as starting point a well known characteriza-
tion of recognizable word languages in terms of local languages and projection.
Namely, any recognizable word language can be obtained as projection of a lo-
cal word language defined over a larger alphabet. Such notion can be extended
in a natural way to the two-dimensional case: more precisely, local picture lan-
guages are defined by means of a set of square arrays of side-length two (called
tiles) that represents the only allowed blocks of that size in the pictures of the
language (with special treatment for border symbols). Then, we say that a pic-
ture language is tiling recognizable if it can be obtained as a projection of a
local picture language. The family of all tiling recognizable picture languages is
called REC. Remark that, when we consider words as particular pictures (that
is pictures in which one side has length one), this definition of recognizability
coincides with the one for the words, i.e. the definition given in terms of finite
automata.

The family REC can be characterized by several formalisms such as dif-
ferent variants of tiling systems, on-line tessellation automata, Wang sys-
tems, existential monadic second order logic, ”special” regular expressions, etc.

Please use the following format when citing this chapter:

Giammarresi, D. and Restivo, A., 2008, in IFIP International Federation for Information Processing,
Volume 273; Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani
Karhumäki, Giancarlo Mauri, Luke Ong; (Boston: Springer), pp. 5–20.
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(see [10, 14, 16, 19]). The number of different characterizations indicates that
(tiling) recognizable picture languages form a robust a therefore somewhat nat-
ural class to study. Further this class inherits most of the important properties
from the class of regular word languages (see also [16]). Moreover tiling recog-
nizable picture languages have been considered and appreciated in the image
processing and pattern recognition fields (see [9]).

On the other hand, recognizable picture languages do not share some prop-
erties that are fundamental in the theory of recognizable word languages. The
first big difference regards the complement operation. It be proved (see [14])
that, contrary to the one-dimensional case, the family REC is not closed un-
der complementation. As a consequence, it is interesting to consider the fam-
ily REC ∪ co−REC of picture languages L such that either L itself or its
complement cL is tiling recognizable. One has that REC is strictly included
in REC ∪ co−REC. An interesting problem (the complement problem) is to
search for conditions on a picture language L such that both L and cL are tiling
recognizable.

The non closure under complementation is related to the fact that the defini-
tion of recognizability in terms of tiling systems, i.e. in terms of local languages
and projections, is implicitly non-deterministic. However, contrary to the one-
dimensional case, does not exist a unique and clear notion of determinism in
two dimensions (see [1]). A notion that indeed can be naturally expressed in
terms of tiling systems is the notion of ambiguity. Informally, a tiling system is
unambiguous if every picture has a unique counter-image in its corresponding
local language. Observe that an unambiguous tiling system can be viewed as a
generalization in two dimensions of the definition of unambiguous automaton
that recognizes a word language. A recognizable two-dimensional language is
unambiguous if it is recognized by a unambiguous tiling system.

We denote by UREC the family of all unambiguous recognizable picture
languages. Obviously it holds true that UREC ⊆ REC. Remark that, in the
one dimensional case, UREC is equal to REC. In [3], it is shown that it is
undecidable whether a given tiling system is unambiguous. Furthermore some
closure properties of UREC are proved. The main result in [3] is that, for
pictures, UREC is strictly included in REC. In other words, there exist picture
languages in REC that are inherently ambiguous.

The aim of this paper is to shed new light on the relations between the
complement problem and the unambiguity in the family of recognizable picture
languages. Remark that the interest for such relations was also raised by W.
Thomas in [24].

Following some ideas in [15], we present a novel general framework to study
properties of recognizable picture languages and then use it to study the rela-
tions between classes REC∪co−REC, REC and UREC. The strict inclusions
among these classes have been proved in [8], [20], [3], respectively, using ad-hoc
techniques. Here we present again those results in a unified formalism and proof
method with the major intent of establishing relations between the complement
problem and unambiguity in the family of recognizable picture languages.
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We consider some complexity functions on picture languages and combine
two main techniques. First, following the approach of O. Matz in [20], we con-
sider, for each positive integer m, the set L(m) of pictures of a language L
having one dimension (say the vertical one) of size m. Language L(m) can be
viewed as a word language over the alphabet (of the columns) Σm,1. The idea
is then to measure the complexity of the picture language L by evaluating the
grow rate, with respect to m, of some numerical parameters of L(m). In order
to specify such numerical parameters we make use, as a second technique, of
the Hankel matrix of a word language. The parameters are indeed expressed
in terms of some elementary matrix-theoretic notions of the Hankel matrices
of the word languages L(m). In particular, we consider here three parameters:
the number of different rows, the rank, and the maximal size of a permutation
sub-matrix.

We state a main theorem that establishes some bounds on corresponding
complexity functions based on those three parameters, respectively. Then, as
applications for those bounds we analyze the complexity functions of some
examples of picture languages in the case of unary alphabet. By means of those
languages we re-prove the strict inclusions of families REC ∪ co− REC, REC
and UREC even in the case of unary alphabet.

Moreover we show an example of a language in REC that does not belong
to UREC and whose complement is not in REC. This language introduces
further discussions on relations between unambiguity and non-closure under
complement.

2 Recognizable Two-dimensional languages

In this section we introduce some definitions about two-dimensional languages
and their operations. Then we recall definitions and basic properties of tiling
recognizable two-dimensional languages firstly introduced in 1992 in [13] that
correspond to family REC. Furthermore, we give the definition of unambiguous
recognizable picture languages and of class UREC. The notations used together
with all the results and proofs mentioned here can be found in [14].

Let Σ be a finite alphabet. A picture (or two-dimensional word) over Σ is
a two-dimensional rectangular array of elements of Σ. Given a picture p, let
p(i, j) denote the symbol in p with coordinates (i, j), moreover the size of p is
given by a pair (m, n) where m and n are the number of rows and columns of p,
respectively. The set of all pictures over Σ of size (x, y) for all x, y ≥ 1 is denoted
by Σ++ and a two-dimensional language over Σ is a subset of Σ++. Very often
we will refer to two-dimensional languages as picture languages. Remark that
in this paper we do not consider the case of empty pictures (i.e. pictures where
the number of rows and/or columns can be zero). The set of all pictures over Σ
of fixed size (m, n), with m, n ≥ 1 is denoted by Σm,n. We give a first example
of a picture language.
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Example 1. Let L be the language of square pictures over an alphabet Σ:

L = { p | p has size (n, n), n > 0 }.

Between pictures and picture languages there are defined two different con-
catenation operations along the horizontal and vertical directions called column
concatenation and row concatenation, respectively. Notice that they are partial
operations because they are defined between pictures with same number of rows
(for the column concatenation) or same number of columns (for row concate-
nation). Furthermore, by iterating the concatenation operations, we obtain the
column and row closure or star.

In order to describe recognizing strategies for pictures, it is needed to identify
the symbols on the boundary. Then, for any picture p of size (m, n), we consider
picture p̂ of size (m+2, n+2) obtained by surrounding p with a special boundary
symbol # �∈ Σ. We call tile a square picture of dimension (2, 2) and given a
picture p we denote by B2,2(p) the set of all blocks of p of size (2, 2).

Let Γ be a finite alphabet. A two-dimensional language L ⊆ Γ++ is local if
there exists a finite set Θ of tiles over the alphabet Γ ∪{#} such that L = {x ∈
Γ++|B2,2(x̂) ⊆ Θ}. We will write L = L(Θ). Therefore tiles in Θ represent
all the allowed blocks of size (2, 2) for the pictures in L. The family of local
picture languages will be denoted by LOC. We now give an example of a local
two-dimensional language.

Example 2. Let Γ = {0, 1} be an alphabet and let Θ be the following set of tiles
over Γ .

Θ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 #
1 #

0 #
0 #

# #
0 0

# #
0 1

# #
# 1

# #
0 #

# 1
# 0

# 0
# 0

0 0
# #

0 1
# #

# 0
# #

1 #
# #

1 0
0 1

0 0
0 1

0 1
0 0

0 0
0 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

The language L(Θ) is the language of squares pictures (i.e. pictures of size (n, n)
with n ≥ 2) in which all diagonal positions (i.e. those of the form (i, i)) carry
symbol 1, whereas the remaining positions carry symbol 0. That is, pictures as
the following:

1 0 0, 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
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Notice that the language of squares over a one-letter alphabet is not a local
language because there is no “local strategy” to compare the number of rows
and columns using only one symbol.

Let Γ and Σ be two finite alphabets. A mapping π : Γ → Σ will be in the
sequel called projection. The projection π(p) of p ∈ Γ++ of size (m, n) is the
picture p′ ∈ Σ++ such that p′(i, j) = π(p(i, j)) for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Similarly, if L ⊆ Γ++ is a picture language over Γ , we indicate by π(L) the
projection of language L, i.e. π(L) = {p′|p′ = π(p), p ∈ L} ⊆ Σ++.

A quadruple T = (Σ, Γ, Θ, π) is called tiling system if Σ and Γ are finite
alphabets, Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection.
Therefore, a tiling system is composed by a local language over Γ (defined by
the set Θ) and a projection π : Γ −→ Σ. A two-dimensional language L ⊆ Σ++

is tiling recognizable if there exists a tiling system T = (Σ, Γ, Θ, π) such that
L = π(L(Θ)). Moreover, we will refer to L′ = L(Θ) as an underling local
language for L and to Γ as a local alphabet for L. Let p ∈ L, if p′ ∈ L′ is such
that π(p′) = p, we refer to p′ as a counter-image of p in the underling local
language L′.

The family of all two-dimensional languages that are tiling recognizable is
denoted by REC. As first example consider the following.

Example 3. Let L be the language of square pictures (i.e. pictures of size (n, n))
over one-letter alphabet Σ = {a}. Language L is in REC because it can be
obtained as projection of local language in Example 2 by mean of projection
π(0) = π(1) = a.

We remark that a tiling system T = (Σ, Γ, Θ, π) for a picture language is
in some sense a generalization to the two-dimensional case of an automaton
that recognizes a word language. Indeed, in one-dimensional case, the quadru-
ple (Σ, Γ, Θ, π) corresponds exactly to the state-graph of the automaton: the
alphabet Γ is in a one-to-one correspondence with the edges, the set Θ describes
the edges adjacency, the mapping π gives the labelling of the edges in the au-
tomaton. Then, the set of words of the underlying local language defined by
set Θ corresponds to all accepting paths in the state-graph and its projection
by π gives the language recognized by the automaton. As consequence, when
rectangles degenerate in strings the definition of recognizability coincides with
the classical one for strings (cf. [11]).

The family REC is closed with respect to different types of operations. In
particular: the family REC is closed under alphabetic projection, under row
and column concatenation, under row and column stars and under union and
intersection operations (see [14]).
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2.1 Examples of recognizable languages

First family of examples of recognizable picture languages can be obtained as
immediate application of closure properties. In fact, as we do in the word case,
we can define sort of picture regular expressions starting from finite languages
and using operations of union, intersection, row and column concatenations and
closures and projection.

In this way we can list the following as recognizable two-dimensional lan-
guages: languages of pictures with odd number of rows, of pictures with even
numbers of as, of pictures with first row equal to the last row, of pictures that
contains to equal columns and so on.

In some sense we can consider all the properties of recognizable word lan-
guages and ”make” the corresponding two-dimensional ones and get a recogniz-
able two-dimensional language. But this does not exhausts the family of all rec-
ognizable two-dimensional languages! In fact going from one to two dimensions,
such generalization of finite automata can recognize much more properties.

As first example, consider the set of pictures over Σ = {{a, b} of size (n, 2n)
where the first row is the word anbn. The tiling system for this language is
quite straightforward. Furthermore, in [26] it is proved that even the language
of pictures over Σ = {{a, b} where the number of as is equal to the number
of bs (providing that the size (m, n) of the pictures is such that m ≤ 2n and
n ≤ 2m). Therefore in two dimensions we can ”count” within a recognizable
setting.

Another way to interpret a picture over a two-letters alphabet Σ = {{a, b},
more in the spirit of pattern recognition, is to consider, for example, the as as
background and the bs as the ”figure”. In [25] it is exhibited a tiling system for
the language of connected figures.

Very interesting is the examples of Chinese boxes in [9]. Pictures are defined
on {{0, 1} alphabet and contain rectangular frames or boxes, placed anywhere.
Frames may be nested one inside the other but they may not overlap, touch
each other, or touch the border. The perimeter of a frame are encoded by 1 and
the background by 0 symbols. It is proved that Chinese boxes are recognizable.
Remark that Chinese boxes can be viewed as the two-dimensional version of
the ”well-formed parenthesis languages” that is not regular in one-dimension.

A family of recognizable two-dimensional languages that is worthwhile to
consider are the languages of pictures on one-letter alphabet. This corresponds
also to consider the shapes of the pictures without looking to the inside contents.

Remark that, in this case, a picture is defined by a pair of positive numbers
corresponding to its size (m, n) and then a picture language is a set of pairs of
natural numbers. Furthermore, given a function f defined on the set of natural
numbers, one can consider the set of pictures of sizes (n, f(n)) for each n.
It can be proved that several families of functions are tiling recognizable like
polynomial and exponential functions (see [12] or [14]).
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Alternatively, given a set of natural numbers, one can consider the set of
square pictures of corresponding sizes. There are some surprising sets of recog-
nizable numbers. One for all, the set of primes is proved to be tiling recognizable
in [5] where it is also given a characterization involving the Turing Machine.

2.2 Ambiguity and complementation

The examples in previous section indicate that tiling systems are devices having
a strong expressive power. Let us observe that, in the one-dimensional case,
”well-formed parenthesis” and ”counting” are some kind of prototype concepts
for non recognizability. On the contrary, examples in the previous section show
that the natural extensions of such concepts to two-dimensions define picture
languages that are tiling recognizable. So the notion of (tiling) recognizability
appears to have, in two dimensions, a stronger expressive power with respect
to the one-dimensional case.

At the same time, recognizable picture languages do not share some proper-
ties that are fundamental in the theory of recognizable word languages. The first
big difference regards the complement operation. In [14], using a combinatorial
argument, it is showed that language in Example 6 is not tiling recognizable
while it is not difficult to write a picture regular expressions for its complement.
This proves the following theorem.

Theorem 1. REC is not closed under complement.

As consequence of this theorem, it is interesting to consider the family REC∪
co−REC of picture languages L such that either L itself or its complement cL
is tiling recognizable. Previous theorem states that REC is strictly included in
REC ∪ co−REC.

Closure by complement for a family of languages is usually related to the ex-
istence of a deterministic computational model recognizing the languages in the
family. Remark that the definition of recognizability in terms of tiling systems,
i.e. in terms of local languages and projections, is implicitly non-deterministic.
This can be easily understood if we refer to the one-dimensional case: if no par-
ticular constraints are given for the tiling system, this corresponds in general
to a non-deterministic automaton.

Contrary to the one-dimensional case, there are however some difficulties to
define determinism in two dimensions, since tiling systems are not computa-
tional models in strict sense. As remarked in [1], they are not effective devices
for recognition unless a scanning strategy for pictures is fixed (for a word the
natural scanning strategy is to read it from left to right). So in [1] is intro-
duced a notion of tiling automaton as a tiling system equipped with a scanning
strategy and, in this framework, some definitions of determinism are proposed.

Actually, a notion that can be naturally expressed in terms of tiling systems
is the notion of ambiguity. Informally, a tiling system is unambiguous if every
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picture has a unique counter-image in its corresponding local language. In a
more formal way, a tiling system T = (Σ, Γ, Θ, π) is unambiguous if for any
picture x ∈ L(T ) there exists a unique local picture y ∈ L(Θ) such that x =
π(y).

An alternative definition for unambiguous tiling system is that function π
extended to Γ++ → Σ++ is injective. Observe that an unambiguous tiling
system can be viewed as a generalization in two dimensions of the definition of
unambiguous automaton that recognizes a word language.

A recognizable two-dimensional language L ⊆ Σ++ is unambiguous if it is
recognized by an unambiguous tiling system T = (Σ, Γ, Θ, π). We denote by
UREC the family of all unambiguous recognizable two-dimensional languages.
Obviously it holds true that UREC ⊆ REC.

In [3], it is shown that it undecidable whether a given tiling system is unam-
biguous. Furthermore some closure properties of UREC are proved. The main
result in [3] is the following theorem.

Theorem 2. UREC is strictly included in REC.

This theorem shows that there exist languages in REC that are inherently
ambiguous.

In the sequel we will focus on possible relationships between Theorem 1
and Theorem 2, i.e. on the relations between the complement problem and the
ambiguity of a picture language. In next section we present a novel general
framework to study such a problem, by introducing some complexity functions
on picture languages.

3 Hankel matrices and complexity functions

In this section we introduce a novel tool to study picture languages based on
combining two main techniques: the Matz’s technique (that associates to a given
picture language L an infinite sequence (L(m))m≥1 of word languages) and the
technique that describes a word language by means of its Hankel matrix. As
results there will be the definitions of some complexity functions for picture
languages that will be used to state some necessary conditions on recognizable
picture languages.

We first describe a technique, introduced by O. Matz in [20]. Let L ⊆ Σ++ be
a picture language. For any m ≥ 1, we consider the subset L(m) ⊆ L containing
all pictures with exactly m rows. Such language L(m) can be viewed as a word
language over the alphabet Σm,1 of the columns, i.e. words in L(m) have a
”fixed height m”. For example, if
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p =

a b b a a
a a b b a
b b a b a
a a a a b

∈ L

then the word

w =

⎡

⎢

⎢

⎣

a
a
b
a

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

b
a
b
a

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

b
b
a
a

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a
b
b
a

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a
b
b
a

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

a
a
a
b

⎤

⎥

⎥

⎦

belongs to the word language L(4) over the alphabet of columns

Σ4,1 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎣

x
y
s
t

⎤

⎥

⎥

⎦

|x, y, s, t ∈ Σ

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

Observe that studying the sequence (L(m))m≥1 of word languages corre-
sponding to a picture languages L does not capture the whole structure of L
because in some sense it takes into account only its horizontal dimension. Nev-
ertheless it will be very useful to state some conditions for the recognizability
of the picture language L.

We first report a lemma given in [20]. Let L be a recognizable picture lan-
guages and let T = (Σ, Γ, Θ, π) a tiling system recognizing L.

Lemma 1. For all m > 1 there exists a finite automaton A(m) with γm states
that recognizes word language L(m), where γ = |Γ ∪ {#}|.

The proof of the above lemma constructs explicitly such non-deterministic
finite automaton A(m) = (Σ1,m, Qm, Im, Fm, δm) where Σ1,m is the alphabet
of the columns of height m over Σ; the set of states Qm is the set of all possible
columns of m. The transitions from a given state p to state q are defined by
using the adjacency allowed by the set of local tiles. This construction implies
directly the following corollary.

Corollary 1. If L ∈ UREC, then A(m) is unambiguous.

Hankel matrices were firstly introduced in [28] in the context of formal power
series (see also [6] and [27]). Moreover they are used under different name in
communication complexity (see [18]).

Definition 1. Let S ⊆ A∗ be a string language. The Hankel matrix of S is the
infinite boolean matrix HS = [hxy]x∈A∗,y∈A∗ where

hxy =
{

1 if xy ∈ S
0 if xy �∈ S.
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Therefore both the rows and the columns of HS are indexed by the set of strings
in A∗ and the 1s in the matrix gives the description of language S in the way
described above.

Let us observe that, in the case of one letter alphabet, the Hankel matrix
of a (string) language is a Hankel matrix in the classical sense, i.e. a matrix,
with rows and columns indexed by non negative integers, with constant skew
diagonals. In other words it is a matrix in which the (i, j)th entry depends only
on the sum i+j. Such matrices are sometimes known as persymmetric matrices
or, in older literature, orthosymmetric matrices.

Given an Hankel matrix HS , we call submatrix of HS a matrix KS specified
by a pair of languages (U, V ), with U, V ⊆ A∗, that is obtained by intersect-
ing all rows and all columns of HS that are indexed by the strings in U and
V , respectively. Moreover, given two Hankel submatrices K1

S and K2
S , their in-

tersection is the submatrix specified by the intersections of the corresponding
index sets respectively.

Moreover we recall some further notations on matrices. A permutation matrix
is a boolean matrix that has exactly one 1 in each row and in each column.
Usually when dealing with permutation matrices, one makes a correspondence
between a permutation matrix D = [dij ] of size n with a permutation function
σ = IN −→ IN by assuming that dij = 1 ⇔ j = σ(i).

Finally we recall that the rank of a matrix is the size of the biggest subma-
trix with non-null determinant (with respect to field Z). Alternatively, the rank
is defined as the maximum number of row or columns that are linearly inde-
pendent. Then, observe that, by definition, the rank of a permutation matrix
coincides with its size.

Given a picture language L over the alphabet Σ, we can associate to L an
infinite sequence (HL(m))m≥1 of matrices, where each HL(m) is the Hankel
matrix of string language L(m) associated to L.

We can define the following functions from the set of natural numbers N to
N ∪∞.

Definition 2. Let L be a picture language.
i) The row complexity function RL(m) gives the number of distinct rows of the
matrix HL(m);
ii) The permutation complexity function PL(m) gives the size of the maximal
permutation matrix that is a submatrix of HL(m);
iii) The rank complexity function KL(m) gives the rank of the matrix HL(m).

Notice the all the functions RL(m), PL(m) and KL(m) defined above are
independent from the order of the rows (columns, resp.) of the Hankel matrix
HL(m). In the sequel we will use any convenient order for the set of strings
that index the rows and the columns. We can immediately state the following
lemma.

Lemma 2. Given a picture language L, for each m ∈ N:

PL(m) ≤ KL(m) ≤ RL(m).
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Example 4. Consider the language L of squares over a two-letters alphabet Σ =
{a, b} described in Example 1. Observe that, for each m ≥ 0, L(m) is the finite
language of all possible strings of length m over the alphabet of the columns
Σm,1. Then consider the Hankel matrix of L(m): it has all its 1s in the positions
indexed by pairs (x, y) of strings such that |x|+ |y| = m. Now assume that the
strings that index the rows and the columns of the Hankel matrix are ordered
by length: we can have some non-zero positions only in the upper-right portion
of HL(m) that indexed by all possible strings of length ≤ m on the alphabet
Σm,1, included the empty word. More specifically, in this portion the matrix
HL(m) has all 0s with the exception of a chain of rectangles of all 1s from the
top-right to the bottom left corner. This is represented in the following figure
where the numbers 0, 1, . . . , m − 1, m indicate the length of the index words.

. . .

...

. . .
. . .

1

1

1

1

0 1 . . . m − 1 m

0

1

...

m−1

m

It is easy to verify that the number of different rows in HL(m) is equal to
m + 1 and this is also the number of rows of a permutation submatrix and this
is also the rank of HL(m).

Then for this language it holds that for all positive m:

PL(m) = KL(m) = RL(m) = m + 1.

Example 5. As generalization of the above Example 4, consider the language L
of pictures over an alphabet Σ of size (n, f(n)) where f(n) is a non-negative
function defined on the set of natural numbers, that is:

L = { p | p is of size (n, f(n)}.
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Similar arguments as in the above example show that, for each m ≥ 0, language
L(m) is a finite language (it contains all strings of length f(m) over the alphabet
of the columns Σm,1) and then, for all positive m: PL(m) = KL(m) = RL(m) =
f(m) + 1.

Example 6. Consider the language L of pictures over an alphabet Σ of size
(n, 2n) such that the two square halves are equal, that is:

L = { p �p | p is a square}.

Again, as in the Example 4, for each m ≥ 0, language L(m) is a finite language
(it contains all strings of length 2m over the alphabet of the columns Σm,1 of
the form ww). Then, doing all the calculations, one obtains that, for all positive
m, PL(m), KL(m) and RL(m) are all of the same order of complexity O(σm2

),
where σ is the number of symbols in the alphabet Σ.

We now state our main theorem that gives necessary conditions for a picture
language to be in REC ∪ co−REC, REC and UREC, respectively. Although
this is a re-formulation of corresponding three theorems given in [8], [20], [3],
respectively, here all the results are given in this unifying matrix-based frame-
work that allows to make connections among these results that before appeared
unrelated. A detailed proof can be found in [15].

Theorem 3.

i) If L ∈ REC ∪ co − REC then there exists a positive integer γ such that,
for all m > 0, RL(m) ≤ 2γm

.
ii) If L ∈ UREC then there exists a positive integer γ such that, for all m > 0,

KL(m) ≤ γm.
iii) If L ∈ REC then there exists a positive integer γ such that, for all m > 0,

PL(m) ≤ γm.

4 Separation results

In this section we state some separation results for the classes of recognizable
picture languages here considered. We start by showing that there exist lan-
guages L such that are neither L nor cL are recognizable.

Let Lf be a picture language over Σ with |Σ| = σ of pictures of size (n, f(n))
where f is a non-negative function over IN . In Example 5 it is remarked that
RLf

(m) = f(m) + 1. Then, if we choose a function “greater” than the bound
in Theorem 3 - i), we obtain the following.

Corollary 2. Let f(n) be a function that has asymptotical growth rate greater
than 2γn

, then Lf �∈ REC ∪ co − REC.
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We now consider an example of picture language L over one letter alphabet
that, together with its complement cL, will be checked for the inequalities of the
Theorem 3. In such a way we show that, even in the case of one letter alphabet,
classes REC ∪ co − REC, REC and UREC are strictly separated.

The proofs of the following results are based on some arithmetic prop-
erties of the function F (n) that is introduced below (cf. [21]). Denote by
lcm(x1, x2, ..., xh) the lowest common multiple of the integers x1, x2, ..., xh. Con-
sider the function

G(m) = lcm(m + 1, m + 2, ..., 2m).

It holds the following.

Lemma 3. G(m) = 2Ω(m).

Consider now the function F (n) = G(2n) and the language

L = {(n, m) | m is not multiple of F (n) }.

Theorem 4. L ∈ REC.

We now calculate our complexity functions for language L. It is not difficult
to verify that, for all n > 0, the Hankel matrix HL(n) is such that in its sub-
matrix composed by the first F (n) rows and the first F (n) columns (i.e.the
rows and the columns indexed 0, 1, ..., F (n)) every element in the main skew
diagonal is equal to 0 and all other elements are equal to 1. We represent it
below.

0 1 2 3 . . . . . . . . . F (n)
1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 0 1
2 1 1 1 1 1 0 1 1
3 1 1 1 1 0 1 1 1
. . . 1 1 1 0 1 1 1 1
. . . 1 1 0 1 1 1 1 1
. . . 1 0 1 1 1 1 1 1
F (n) 0 1 1 1 1 1 1 1

On can easily check that, for all n > 0:

RL(n) = KL(n) > F (n)

and
PL(n) = 2.

Since L ∈ REC and F (n) = G(2n) = 2Ω(2n), from the inequality RL(n) >
F (n) it holds the following proposition.
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Proposition 1. The bound given in Theorem 3 - i) is tight.

From the inequality KL(n) > F (n) and Theorem 3 - iii), one derives the
following result.

Theorem 5. UREC is strictly included in REC.

This result was firstly proved in [3] and in the unary case in [4].
Consider now the language cL. For all n > 0, the Hankel matrix HcL(n) is

obtained from the matrix HL(n) by interchanging the zero’s and the one’s. It
follows that, for all n > 0,

RcL(n) = KcL(n) > F (n)

and
PcL(n) > F (n).

By the previous inequality and Theorem 3 - ii) it follows that cL �∈ REC
and then one has the following theorem.

Theorem 6. REC is strictly included in REC ∪ co − REC.

Therefore we can conclude that also in the unary case it holds the following
hierarchy:

UREC �⊆ REC �⊆ REC ∪ co − REC.

5 Final remarks and open questions

We presented an unifying framework based on Hankel matrices to deal with rec-
ognizable picture languages. As result, we stated three necessary conditions for
the classes REC∪co−REC, REC and UREC. The first natural question that
arises regards the non-sufficiency of such statements, more specifically the pos-
sibility of refining them to get sufficient conditions. Observe that the technique
we used of reducing a picture language L in a sequence of string languages
(L(m))m>0 on the columns alphabets Σm,1 allows to take into account the
”complexity” of a picture language along only the horizontal dimension. Then
the question is whether by combining conditions that use such both techniques
along the two dimensions we could get strong conditions for the recognizability
of the given picture language.

The novelty of these matrix-based complexity functions gives a common de-
nominator to study relations between the complement problem and unambiguity
in this family of recognizable picture languages. In 1994, in the more general con-
text of graphs, Wolfgang Thomas et. al. had pointed the close relations between
these two concepts. In particular, paper [24] ends with the following question
formulated specifically for grids graphs and a similar notion of recognizability
(here, we report it in our terminology and context).
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Question 1. Let L ⊆ Σ++ be a language in REC such that also cL ∈ REC.
Does this imply that L ∈ UREC?

As far as we know, there are no negative examples for this question. On
the other hand, we have seen a language L that belongs to REC such that
its complement does not and L itself is not in UREC. Then we can formulate
another question.

Question 2. Let L ⊆ Σ++ be a language in REC such that cL �∈ REC. Does
this imply that L �∈ UREC?

Remark that, since our language is on unary alphabet, the above questions
are meaningful also in this special case.

As further work we believe that this matrix-based complexity function tech-
nique to discriminate class of languages could be refined to study relations
between closure under complement and unambiguity. Notice that a positive
answer to any of a single question above does not imply that UREC is closed
under complement. Moreover observe that the two problems can be rewritten as
whether REC∩co−REC ⊆ UREC and whether UREC ⊆ REC∩co−REC, re-
spectively, i.e. they correspond to verify two inverse inclusions. As consequence,
if both conjectures were true then we would conclude not only that UREC
is closed under complement but also that it the largest subset of REC closed
under complement.
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Abstract. We give a brief and biased survey of the past, present, and future
of research on the interface of theoretical computer science and game theory.

1 Introduction

By the end of the 20th century, the widespread adoption of the Internet and
the emergence of the Web had changed fundamentally society’s relationship
with computers. The primary role of a computer evolved from a stand-alone,
well-understood machine for executing software to a conduit for global commu-
nication, content-dissemination, and commerce. Two aftershocks of this phase
transition were inevitable: theoretical computer science would respond by for-
mulating novel problems, goals, and design and analysis techniques relevant for
Internet applications; and game theory, with its deep and beautiful study of
interaction between competing or cooperating individuals, would play a cru-
cial role. Research on the interface of theoretical computer science and game
theory, an area now known as algorithmic game theory (AGT), has exploded
phenomenally over the past ten years.

The central research themes in AGT differ from those in classical microeco-
nomics and game theory in important, albeit predictable, ways. Firstly in appli-
cation areas: Internet-like networks and non-traditional auctions (such as digital
goods and search auctions) motivate much of the work in AGT. Secondly in its
quantitative engineering approach: AGT research typically models applications
via concrete optimization problems and seeks optimal solutions, impossibility
results, upper and lower bounds on feasible approximation guarantees, and so
on. Finally, AGT usually adopts reasonable (e.g., polynomial-time) computa-
tional complexity as a binding constraint on the feasible behavior of system
designers and participants. These themes, which have played only a peripheral
role in traditional game theory, give AGT its distinct character and relevance.

Sections 2–4 touch on the current dominant research trends in AGT, loosely
following the organization of the first book in the field [94]; Section 5 highlights
a number of prominent open questions. We discuss only (a subset of the) topics
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studied by “the STOC/FOCS community”; see [4, 54, 79, 123] for alternative
perspectives on computer science and game theory.

2 Algorithmic Mechanism Design

Algorithmic mechanism design studies optimization problems where the un-
derlying data (such as a value of a good or a cost of performing a task) is a
priori unknown to the algorithm designer, and must be implicitly or explicitly
elicited from self-interested participants (e.g., via a bid). The high-level goal is
to design a protocol, or “mechanism”, that interacts with participants so that
self-interested behavior yields a desirable outcome.

There is a complex interaction between the way an algorithm employs elicited
data and participant behavior. For example, in a “first-price” sealed-bid auction
(where the winner pays its bid), bidders typically shade their bids below their
maximum willingness to pay, by an amount that depends on knowledge or beliefs
about the other bids. In the “second-price” or “Vickrey” variant [130], where
the winner pays only the value of the second-highest bid, each participant may
as well bid its true value for the good. (Do you see why?)

Nisan and Ronen [93] proposed the systematic study of what can and cannot
be efficiently computed or approximated when the problem data is held by self-
ish agents, and also coined the term “algorithmic mechanism design (AMD)”.
(See [76, 101, 119] for related contemporaneous work on combinatorial auctions
in the AI literature.) Auction design is the most obvious motivation for this
subfield, but there are many others. See [92] for a list of traditional economic
applications, together with [71] and [37] for overviews of two modern “killer ap-
plications” — keyword search auctions and spectrum auctions, respectively. The
economic literature on mechanism design is very rich (e.g., [60]), but AMD has
contributed in several ways. We concentrate here on its emphasis on complex-
ity bounds and worst-case approximation guarantees, but mention additional
aspects of AMD at the end of the section.

The technical core of AMD is the following deep question:

(Q1) to what extent is “incentive-compatible” efficient computation funda-
mentally less powerful than “classical” efficient computation?

To translate question (Q1) into mathematics, reconsider the Vickrey auction
for selling a single good. Each bidder i has a private (true) willingness-to-pay vi

and submits to the auctioneer a bid bi. The auction comprises two algorithms:
an allocation algorithm, which picks a winner, namely the highest bidder; and
a payment algorithm, which uses the bids to charge payments, namely 0 for the
losers and the second-highest bid for the winner. One easily checks that this
auction is truthful in the following sense: for every bidder i and every set of bids
by the other players, player i maximizes its “net value” (value for the good, if
received, minus its payment, if any) by submitting its true private value: bi = vi.
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Moreover, no false bid is competitive with truthful bidding for all possible bids
by the other players. Assuming all players bid truthfully (as they should), the
Vickrey auction solves the social welfare maximization problem, in the sense
that the good is allocated to the participant with the highest value for it.

More generally, consider a feasible region Ω, n participants each with a real-
valued private objective function ti(·) defined on Ω, and a designer objective
function f(t1, . . . , tn). In the Vickrey auction, Ω has one outcome per partici-
pant (indicating the winner), ti(ω) is vi if i wins in ω and 0 otherwise, and f is
∑

i ti(ω). Classical optimization would ask: given the ti’s, optimize the objective
function f over Ω. The AMD analog is only harder: simultaneously determine
the (private) ti’s and optimize the corresponding f over Ω. Sometimes the lat-
ter problem is no more difficult that the former (as with the Vickrey auction)
— when is it strictly more difficult?

Characterizations and the Limits of Approximation. Question (Q1) is the sub-
ject of intense study by the AGT community. We confine our discussion here
to mechanisms M that share the following properties with the Vickrey auc-
tion: M first asks each participant i for a “bid function” bi(·), hopefully iden-
tical to the private objective function ti(·); M then invokes an allocation al-
gorithm x(b1, . . . , bn) and a payment algorithm π(b1, . . . , bn) to determine an
outcome ω and payments p1, . . . , pn, respectively; and truthful reporting always
maximizes the resulting “utility” ti(ω) − pi of a player, no matter what other
players do. We call such mechanisms simple.2 The allocation algorithm of a
simple mechanism is essentially solving the classical optimization version of the
problem with known ti’s (assuming all players bid truthfully, as they should).

Call an allocation algorithm implementable if, for some cleverly chosen pay-
ment algorithm π, coupling x with π yields a (truthful) simple mechanism. For
a single-good auction, if x is the “highest-bidder” allocation algorithm, then
defining π as in the Vickrey auction shows that x is implementable. If x is
the “second-highest bidder” allocation algorithm, then it is not implementable:
no payment algorithm can be matched with x to yield a truthful mechanism.
(This is not obvious but not hard to prove.) Thus some but not all algorithms
are implementable. We can mathematically phrase the question (Q1) as follows:
are implementable algorithms less powerful than arbitrary algorithms for solving
fundamental optimization problems?

This question is interesting for both polynomial-time and computationally
unbounded algorithms. There is a strong positive result in the latter scenario,
achieved by a far-reaching generalization of the Vickrey auction known as the
“VCG mechanism” (see e.g. [92]): for every mechanism design problem with a
sum objective (

∑

i ti(ω), and weighted variants), the optimal (not necessarily
polynomial-time) allocation algorithm is implementable. This is not generally
the case for non-sum objectives [10, 93].

2 The usual term is “truthful, direct-revelation”. Our restriction to simple mechanisms is
partially but not fully without loss of generality; see Section 5.
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Far less is known about polynomial-time implementability. Most
intriguing are the many mechanism design problems that are derived from
an NP -complete problem and for which the optimal allocation algorithm is
implementable. For these, any separation between implementable and non-
implementable polynomial-time algorithms must be conditional on P �= NP , and
no such separation is known. Any resolution of this issue would be conceptually
and technically remarkable: either incentive-compatibility imposes no additional
difficulty for a massive class of important mechanism design problems, or else
there is a non-trivial way of amplifying (conditional) complexity-theoretic ap-
proximation lower bounds using information-theoretic strategic requirements.

Understanding the reach of implementable algorithms generally involves two
interrelated goals: characterization theorems and approximation bounds (see
also [72]).

(G1) Usefully characterize the implementable allocation algorithms x for the
problem.

(G2) Prove upper and lower bounds on the best-achievable approximation
ratio of an implementable algorithm (subject to polynomial running
time, if desired).

The second goal quantifies the limitations of implementable algorithms using a
worst-case approximation measure. The first goal aims to reformulate the un-
wieldy definition of implementability into a form more amenable to (both upper
and lower) approximation bounds. Versions of the second goal pervade modern
algorithmic research: for a given “constrained computational model”, where the
constraint can be either computational (as for polynomial-time approximation
algorithms) or information-theoretic (as for online algorithms), quantify its lim-
itations for optimization and approximation. Goal (G1) reflects the additional
difficulty in AMD that even the “computational model” (of implementable al-
gorithms) induced by strategic constraints is poorly understood — for example,
determining whether or not a given algorithm is online is intuitively far easier
than checking if one is implementable.

Single-Parameter Mechanism Design. This two-step approach is vividly il-
lustrated by the important special case of single-parameter problems, where
goal (G1) has been completely resolved. A mechanism design problem is single-
parameter if all outcomes are real n-vectors and participants’ private objective
functions have the form ti(ω) = viωi for a private real number vi (the “sin-
gle parameter”); ωi and vi can be thought of as the quantity received and the
value-per-unit of a good, respectively. (A single-item auction is the special case
in which each ω is a standard basis vector.) An algorithm for a single-parameter
problem is monotone if a greater value begets a greater allocation: increasing
the value of a vi (keeping other vj ’s fixed) can only increase the ith component
of the computed solution. For example, the “highest bidder” allocation algo-
rithm for a single-good auction is monotone, while the “second-highest bidder”
allocation algorithm is not. More generally, monotonicity characterizes imple-
mentability for single-parameter problems.
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Theorem 1 ([10, 90, 105]). An algorithm for a single-parameter mechanism
design problem is implementable if and only if it is monotone.

Theorem 1 should be viewed as a useful solution to the first goal (G1), and
it reduces implementable algorithm design to monotone algorithm design. An
analogous characterization applies to randomized algorithms, where the mono-
tonicity and truthfulness conditions concern expected allocations and expected
participant utilities, respectively [10].

Archer and Tardos [10] were the first to systematically study approximation
in single-parameter mechanism design problems. Among other contributions,
they identified a natural candidate problem for a conditional separation be-
tween implementable and non-implementable polynomial-time approximation
algorithms: minimizing the makespan of parallel related machines with pri-
vate machine speeds. (In a scheduling context, each player is a machine with
a private speed si = −1/vi, allocations describe the sum of job processing
times assigned to each machine, and monotonicity dictates that declaring a
slower speed can only decrease the amount of work received.) The problem ad-
mits an (exponential-time) implementable optimal algorithm, but all classical
polynomial-time approximation algorithms for it (e.g., the PTASes in [43, 58])
are not monotone and hence not implementable [10]. Archer and Tardos [7, 10]
devised a randomized monotone 2-approximation algorithm for the problem,
and several subsequent papers gave monotone deterministic approximation al-
gorithms (see Kovács [70] for the best bound of 2.8 and references). Very re-
cently, Dhangwatnotai et al. [40] proved that, allowing randomization, mono-
tone polynomial-time algorithms are competitive with arbitrary polynomial-
time algorithms for makespan minimization.

Theorem 2 ([40]). There is a monotone randomized PTAS, and a correspond-
ing truthful in expectation mechanism, for makespan minimization on parallel
related machines.

Whether or not there is a conditional separation between implementable and
arbitrary polynomial-time algorithms remains open. In light of Theorem 2,
the most likely candidate problems for obtaining such a separation are multi-
parameter; we discuss these next.

Multi-Parameter Mechanism Design. Many important mechanism design prob-
lems are not single-parameter. Combinatorial auctions, in which each partici-
pant aims to acquire a heterogeneous set of goods and has unrelated values for
different sets, are a practical and basic example. (See [24, 38] for much more
on the topic.) Multi-parameter mechanism design is complex and our current
understanding of goals (G1) and (G2) is fairly primitive for most problems of
interest. Because of its importance and bounty of open questions, the subject
has been a hotbed of activity over the past few years; we briefly indicate the
primary research threads next.

New characterizations of implementable algorithms are useful (and possibly
essential) for understanding their approximation capabilities, and are interest-
ing in their own right. Rochet’s Theorem [107] is a classical characterization of
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implementable algorithms in terms of a certain shortest-path condition known
as cycle monotonicity (see [132]) that is general but difficult to use to prove
upper or lower approximation bounds (see [74] for an exception). Archer and
Kleinberg [8] give a promising reformulation of Rochet’s Theorem that could
lend itself to new approximation bounds. Saks and Yu [118] show that in the
common special case where the ti’s are drawn from convex sets, implementabil-
ity is equivalent to a simpler 2-cycle condition known as weak monotonicity; see
also [8, 87] for new alternative proofs and [85] for a recent analog in discrete
domains.

But what kinds of algorithms meet these technical conditions? The answer
depends on the “richness” of the domain in which the private information (the
ti’s) lie — richer domains possess more potentially profitable false declarations,
making the space of implementable algorithms more highly constrained. For the
extreme case of “unrestricted domains”, where Ω is an abstract outcome set
and the ti’s are arbitrary real-valued functions on Ω, Robert’s Theorem [106]
states that there are almost no implementable algorithms: only the VCG-like
“affine maximizers”, all minor variants on the algorithm that always chooses the
outcome maximizing

∑

i ti(ω). This should be viewed as a negative result, since
affine maximizers have limited polynomial-time approximation capabilities in
most important problems (see e.g. [41]). However, applications usually involve
more structured domains. This point motivates an important research agenda,
still in its embryonic stages, to identify the types of domains for which Robert’s
Theorem holds (see [100] for a surprising new example) and characterize the
additional implementable mechanisms for domains in which Robert’s Theorem
breaks down (see [20, 73] and [42, 33] for partial but highly non-trivial results
on combinatorial auctions and machine scheduling, respectively).

The design and analysis of good truthful multi-parameter mechanisms has
proceeded apace despite our limited understanding of implementability. Much of
this research has coalesced around welfare maximization in combinatorial auc-
tions (see [24]), where Ω is the ordered partitions (S1, . . . , Sn) of a set of m goods
among the n players, the private information ti describes player i’s valuation
(willingness to pay) vi(S) for each of the 2m possible subsets S of goods, and the
optimization problem is to choose an allocation maximizing

∑

i vi(Si).3 While
the aforementioned VCG mechanism truthfully solves this optimization problem
in exponential time, its polynomial-time approximability varies with the degree
of structure imposed on valuations. General valuations exhibit both “comple-
ments”, where goods are useful only when purchased in tandem (as with a pair
of tennis shoes), and “substitutes”, where goods are redundant (as with a pair of
tennis rackets). Early research focused on valuations with complements but no
substitutes and largely succeeded in designing implementable polynomial-time
algorithms with approximation ratios matching the best-possible ones for arbi-
trary polynomial-time algorithms (assuming P �= NP ) [76, 89]. Some of these

3 Valuations are typically modeled either as a “black box” that can be queried or implicitly
via a compact representation of size polynomial in m; an “efficient algorithm” in this context
has running time polynomial in both n and m.



Algorithmic Game Theory: Some Greatest Hits and Future Directions 27

guarantees have been extended to general valuations (see [24]). Unfortunately,
with complements, the underlying welfare maximization problem includes the
Maximum Independent Set problem as a special case and thus reasonable ap-
proximation guarantees are possible only under strong additional assumptions
(as in [9, 17]).

Recent work has focused on classes of valuations with substitutes but no com-
plements, including subadditive valuations (satisfying v(S ∪ T ) ≤ v(S) + v(T )
for all S, T ) and submodular valuations (satisfying the stronger condition that
v(S ∪{j})− v(S) ≤ v(T ∪{j})− v(T ) for all T ⊆ S and j /∈ S). Here, excellent
(constant-factor) approximation guarantees appear possible, though challenging
to obtain. Beginning in [75], a number of papers have proved constant-factor up-
per and lower bounds for polynomial-time approximation of welfare maximiza-
tion with complement-free valuations by non-implementable algorithms; see [47]
and [135] for two recent gems. Remarkably, no constant-factor implementable al-
gorithm is known for any such problem. For problems with a sum objective, wel-
fare maximization with complement-free bidders appears to be the most likely
candidate to separate the power of implementable and non-implementable algo-
rithms. See [100] for a very recent communication complexity-based separation,
a significant research breakthrough.

Further Aspects of AMD. This section focused on the design of computationally
efficient truthful mechanisms with provable approximation guarantees for three
reasons: it comprises a large portion of AMD research; there remain numerous
deep open questions on the topic; and appreciating its motivating questions and
key results requires minimal economics background. We emphasize that AMD
has several other thriving aspects, including: revenue-maximization with worst-
case guarantees, and related algorithmic pricing problems (surveyed in [56]);
revenue guarantees and cost-sharing mechanism design (see [61, 83]); online
mechanism design, in which participants arrive and depart over time (surveyed
in [102]); and new models and goals for Internet-suitable mechanism design,
such as distributed mechanisms (see [48]) and mechanisms restricted to use
little [84] or no [57, 78, 122] payments.

3 Quantifying Inefficiency and the Price of Anarchy

The truthful mechanisms studied in Section 2 are strategically degenerate in
that the best course of action of a player (i.e., truthtelling) does not depend
on the actions taken by the others. This was possible because a designer (like
a search engine owner) had tremendous control over the game being played.
Strategic games that occur “in the wild” are rarely so well behaved. Even in a
design context, when the designer cannot directly dictate the allocation of re-
sources (such as traffic rates or routing paths in a large network), dependencies
between different players’ optimal courses of action are generally unavoidable,
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and these dependencies usually preclude exact optimization of standard ob-
jective functions. This motivates adopting an equilibrium concept — a rigorous
proposal for the expected outcome(s) of a game with self-interested participants
— and an approximation measure that quantifies the inefficiency of a game’s
equilibria, in order to address the following basic question:

(Q2) when, and in what senses, are game-theoretic equilibria guaranteed to
approximately optimize natural objective functions?

Such a guarantee implies that imposing additional control over the system is
relatively small, and is particularly reassuring when implementing an optimal
solution is infeasible (as in a typical Internet application).

We only address this question for the most popular modeling choices (Nash
equilibria and the price of anarchy, respectively) and the most well-studied
application area (routing games). The end of the section provides pointers to
some of the many other results in the area.

Routing with Congestion. General tight bounds on the inefficiency of equilibria
were first proved in a model of “selfish routing” [115]. The model is originally
from [18, 136] and is thoroughly discussed in [110]; the price of anarchy was
originally suggested in [69] for a scheduling model, results on which are surveyed
in [131].

Consider a directed multicommodity network — a directed graph with fixed
flow rates between given source-sink vertex pairs — in which selfish users choose
paths to minimize individual cost. Edge costs are congestion-dependent, with
ce(fe) denoting the cost incurred by flow on edge e when there are fe units of
such flow. In an equilibrium, each selfish user with source si and sink ti chooses
an si-ti path P that minimizes

∑

e∈P ce(fe), given the routing selections of the
other users. Such games are strategically non-trivial in that the routing decision
of one user can alter the optimal path for another.

To keep things simple, assume that each selfish user controls a negligible
fraction of the overall traffic, and that all edge cost functions are continuous
and non-decreasing. Equilibrium flows are then, by definition, those on which
all flow is routed on shortest paths, given the congestion: fP > 0 for a path P
implies

∑

e∈P ce(fe) is minimum over all paths with the same source and des-
tination (if not, some selfish users using this path would switch to a cheaper
one). All equilibrium flows are interchangeable in that they have equal cost
—

∑

e ce(fe)fe, as in classical minimum-cost flow — and one is guaranteed to
exist [18].

For example, in a “Pigou-like network” (named after [103]), r units of selfish
users decide between two parallel edges e1 and e2 connecting a source s to a
sink t. Suppose the second edge has some cost function c2(·), and the first edge
has a constant cost function c1 everywhere equal to c2(r). Such networks are
strategically trivial, just like the simple mechanisms of Section 2: the second
edge always has no larger cost than the first, even in the worst case when
it is fully congested. For this reason, routing all flow on the second edge is
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an equilibrium. This equilibrium in generally suboptimal, in that it fails to
minimize the cost

∑

e∈P ce(fe) over all feasible flows. For example, if r = 1 and
c2(x) = x, the equilibrium flow has cost 1, while splitting the traffic equally
between the two edges yields an (optimal) flow with cost 3/4. The latter flow is
not an equilibrium because of a “congestion externality”: a selfish network user
routed on the first edge would switch to the second edge, indifferent to the fact
that this switch (slightly) increases the cost incurred by a large portion of the
population.

The price of anarchy (POA) of such a selfish routing network is the ratio
of costs of an equilibrium and an optimal flow — 4/3 in the example above.
The closer the POA is to 1, the lesser the consequences of selfish behavior.
Simple exploration of Pigou-like networks suggests that, at least in this simple
family of examples, the POA is governed by the “degree of nonlinearity” of the
cost function c2; in particular, the POA can be arbitrarily large in Pigou-like
networks with unrestricted cost functions. A key result formalizes and extends
this intuition to arbitrary multicommodity networks: among all multicommodity
networks with cost functions lying in a set C (e.g., bounded-degree polynomials
with nonnegative coefficients), the largest-possible POA is already achieved in
Pigou-like networks [109]. Conceptually, complex topologies do not amplify the
worst-case POA. Technically, this reduction permits the easy calculation of tight
bounds on the worst-case POA in most interesting cases. For example, the POA
of every multicommodity selfish routing network with affine cost functions (of
the form ce(fe) = aefe + be for ae, be ≥ 0) is at most 4/3, matching the lower
bound noted above. See [113, 112] for recent surveys detailing these and related
results.

While there is no explicit design aspect to these POA bounds, they nicely
justify a common rule of thumb used in real-life network design and manage-
ment: overprovisioning networks with extra capacity ensures good performance.
This postulate was first formalized mathematically and proved in [115]. Here
we provide a conceptually similar but technically different result, which is a
special case of the POA bounds in [109] (see also [110, §3.6]). Suppose ev-
ery edge e of a network has a capacity ue and a corresponding cost function
ce(fe) = 1/(ue − fe). (If fe ≥ ue, we interpret the cost as infinite.) This is the
standard M/M/1 queueing delay function with service rate ue, a common model
in the network literature (e.g. [19]). We say the network is β-overprovisioned for
β ∈ (0, 1) if, at equilibrium, at least a β fraction of each edge’s capacity remains
unused. The following tight bound on the POA holds for such networks.

Theorem 3 (Consequence of [109]). The POA of a β-overprovisioned net-
work is at most 1

2 (1 + 1√
β
).

Thus even 10% extra capacity reduces the price of anarchy of selfish routing to
roughly 2.

Designing for Good Equilibria. In the same spirit as mechanism design and our
prescriptive interpretation of Theorem 3, we would like to use inefficiency mea-
sures such as the POA to inform how to design systems to have good equilibria.
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Two variants of this idea have been explored in a number of different models:
improving the POA of a given game (see [113] for a survey of selfish routing
examples), and designing a family of games to minimize the worst-case POA.
We focus on the latter idea, first proposed in [32], where a number open issues
remain. See [62, 117] for surveys of other work on this important topic.

We follow the network cost-allocation example in [27], which was motivated
by the network formation games of [6] (see [111, 127] for relevant surveys). As
in a selfish routing network, each player selects a path in a multicommodity
network to minimize its incurred cost. For technical convenience, we now as-
sume that each player controls a single (non-negligible) unit of flow and uses
a single path to route it. The key difference between the two models is the
cost structure. If fe units of flow use an edge e of a selfish routing network,
this creates total cost fe · ce(fe) which is distributed evenly among the edges’
users (for a per-unit cost of ce(fe)). In a network cost-allocation game, each
edge e has a fixed price pe for being used by one or more players — for in-
stalling infrastructure or leasing a large fixed amount of bandwidth, say — to
be somehow distributed among the edges’ users. The average per-player cost
of an edge is thus decreasing with the number of users, giving players an in-
centive to cooperate via shared paths. Our benchmark is the minimum-cost
way of connected all of the players’ source-sink pairs, a Steiner connectivity
problem (equivalent to the minimum-cost Steiner tree problem if all players
share a common sink vertex). An obvious question is: how should we distribute
costs to minimize the worst-case equilibrium efficiency loss over all networks?
This cost-allocation design decision does not affect the underlying optimization
problem, but it fundamentally determines the incentives, and hence the Nash
equilibria, in the resulting path selection game.

For example, Shapley cost-sharing dictates sharing each edge cost equally
among its users. So if k players choose paths P1, . . . , Pk, the cost incurred by
the ith player is

∑

e∈Pi
pe/fe, where fe is the number of players choosing a path

including e. At a (pure-strategy) Nash equilibrium, no player can switch paths
to strictly decrease its cost. Shapley cost-sharing always leads to at least one
equilibrium [6], and generally to multiple equilibria. For example, in a network
of parallel links, all with costs strictly between 1 and k, every link corresponds
to a different Nash equilibrium (if all players use a link with price p, each player
pays only p/k < 1, and a unilateral deviation to a different link would cost more
than this). The POA is traditionally defined by the worst equilibrium [69], and
this example yields a linear lower bound for the worst-case POA of Shapley
cost-sharing (there is an easy matching upper bound). Can we do better?

The answer is different for undirected and directed networks. An alternative
to Shapley cost-sharing is ordered cost-sharing, a simple priority scheme: order
the players arbitrarily, with the first user of an edge (according to this order)
paying its full cost. Up to tie-breaking, there is a unique Nash equilibrium under
ordered cost-sharing: the first player chooses a shortest path between its source
and sink, the second player chooses a shortest path given the edges already
paid for by the first player, and so on. Indeed, the equilibria are in one-to-one
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correspondence to the possible outputs of well-studied greedy online algorithms
for Steiner connectivity problems [13, 59]. This correspondence implies that,
in undirected networks, ordered cost-sharing has exponentially better worst-case
POA than Shapley cost-sharing. There is also a matching lower bound.

Theorem 4 ([27]). In undirected cost-allocation games, ordered cost-sharing
attains the minimum-possible worst-case POA (up to constant factors).

The proof of Theorem 4 is highly non-trivial, and hinges on a complete classifica-
tion of the cost-sharing methods that are guaranteed to induce at least one Nash
equilibrium in all networks. These turn out to be precisely the finite “concate-
nations” of weighted Shapley values (in the sense of [65]); Shapley cost-sharing
is the special case of uniform weights and no concatenation, while ordered cost-
sharing arises from the concatenation of k different one-player (trivial) Shapley
values. No method of this type can outperform ordered cost-sharing by more
than a constant factor [27].

In directed networks, it is easy to show that all cost-sharing methods, includ-
ing ordered ones, have linear worst-case POA (like Shapley cost-sharing). We
can obtain a more refined comparison by analyzing the ratio of the best (instead
of the worst) Nash equilibrium and a minimum-cost solution, a quantity known
as the price of stability (POS). The worst-case POS of Shapley cost-sharing
in directed networks is precisely the kth Harmonic number Hk ≈ ln k [6]. A
consequence of the classification above is that no other method has superior
worst-case POS (or POA).

Theorem 5 ([27]). In directed cost-allocation games, Shapley cost-sharing at-
tains the minimum-possible worst-case POS and POA.

Further Aspects of Quantifying Inefficiency. We have barely scratched the sur-
face of recent work on equilibrium efficiency analyses. Many different models
of routing games have studied from this perspective — following [108, 116],
often in the more abstract guise of “congestion games” — see [68, 112] for an
incomplete survey. See [94, Chapters 19-21] and [113] for overviews of efficiency
analyses in some other application domains. See [5, 31] for efficiency analyses of
equilibrium concepts other than Nash equilibria. See [15, 28, 66] for recent effi-
ciency guarantees in models that allow altruistic and/or malicious participants,
rather than only self-interested ones.

In addition to the aforementioned work on designing games with efficient
equilibria, a second current and important trend in the area is to prove POA-
type bounds under increasingly weak assumptions on the rationality of par-
ticipants. Recall that in Section 2, our only assumption was that participants
will make use of a “foolproof” strategy (one that dominates all others), should
one be available. This section implicitly assumed that selfish participants can
reach a Nash equilibrium of a game without such foolproof strategies, presum-
ably through repeated experimentation. This much stronger assumption has
been addressed in two different ways in the recent literature. The first is to
formally justify this assumption by positing natural experimentation strategies
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(or “dynamics”) and proving that they quickly reach a (possibly approximate)
equilibrium; see [14, 21, 30, 44, 50] for a sampling of examples. The second is
to prove POA-like guarantees on system performance that apply even if such
experimentation strategies fail to converge to an equilibrium. Remarkably, such
bounds exist in, for example, the selfish routing networks discussed in this sec-
tion; see [53, 86] and [22] for two different formalizations of this approach.

4 Complexity of Equilibrium Computation

Equilibrium concepts such as the Nash equilibrium obviously play a starring role
in game theory and microeconomics. If nothing else, a notion of equilibrium de-
scribes outcomes that, once reached, persist under some model of individual
behavior. In engineering applications we generally demand a stronger interpre-
tation of an equilibrium, as a credible prediction of the long-run state of the
system. But none the standard equilibrium notions or the corresponding proofs
of existence suggest how to arrive at an equilibrium with a reasonable amount
of effort. The Pavlovian response of any theoretical computer scientist would
be to pose the following queries.

(Q3) When can the participants of a game quickly converge to an equilibrium?
More modestly, when can a centralized algorithm quickly compute an
equilibrium outcome?

These questions are important for two reasons. Algorithms for equilibrium com-
putation can be useful practically, for example in game-playing (e.g. [52]) and
for multi-agent reasoning (see [124] for an introduction). Second, resolving the
computational complexity of an equilibrium concept has economic implications:
a polynomial-time algorithm for computing an equilibrium is a crucial step to-
ward establishing its credibility, while an intractability result casts doubt on its
predictive power (a type of critique dating back at least 50 years [104]).

There has been a frenzy of recent work on these questions, for many different
fundamental equilibrium concepts. Perhaps the most celebrated results in the
area concern the PPAD-completeness of computing mixed-strategy Nash equi-
libria in general games with two or more players [29, 39]. To briefly convey the
spirit of the area with a minimum of technical fuss, we instead discuss the com-
plexity of converging to and computing pure-strategy Nash equilibria in variants
of the routing games studied in Section 3. The end of the section mentions the
key differences between the two settings, as well as surveys of other central
equilibrium computation problems (such as market and correlated equilibria).

Pure Equilibria in Network Congestion Games. Recall the selfish routing net-
works of Section 3. The atomic variant is similar to the cost allocation games
of the section, in that each of k players controls a non-negligible fraction of
the overall traffic (say one unit each) and routes it on a single path. Each edge
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cost function ce : {1, 2, . . . , k} → R +, describing the per-player cost along
an edge as a function of its number of users, is non-decreasing. Similarly to
the cost allocation games in Section 3, in a (pure-strategy) Nash equilibrium
(PNE) P1, . . . , Pk, each player simultaneously chooses a best response: a path
with minimum-possible cost

∑

e ce(fe), given the choices of others.
Best-response dynamics (BRD) is a simple model of experimentation by play-

ers over time: while the current outcome is not a PNE, choose an arbitrarily
player that is not using a best response, and update its path to a best response.
The update of one player usually changes the best responses of the others; for
this reason, BRD cycles forever in many games. In an atomic selfish routing net-
work, however, every iteration of BRD strictly decreases the potential function
Φ(P1, . . . , Pk) =

∑

e∈E

∑fe

i=1 ce(i), and thus BRD is guaranteed to terminate,
necessarily at a PNE [88, 108]. The number of distinct outcomes is generally
exponential in the size of the network and the number of players; does conver-
gence require polynomial or exponential time? Can we compute a PNE of such
a game by other means in polynomial time?

Computing a PNE of an atomic selfish routing game is a member of TFNP
(“total functional NP ), an intriguing class of search problems for which all
instances have a (short and efficiently verifiable) witness [82]. Intuitively, all
(well-formed) instances have a solution (in our case, a PNE); the only issue is
finding one in polynomial time.

Assume for the moment that the problem lies outside P ; how would we
amass evidence for this fact? We can’t expect to prove that a TFNP problem
is NP -hard in a meaningful sense; a short argument shows that such a reduction
would imply NP = coNP [82]. We also can’t expect to show that it is TFNP -
complete, since TFNP is a “semantic class” — informally, there is no apparent
way to efficiently check membership in TFNP given (say) a Turing machine
description of a NP search problem — and thus unlikely to contain complete
problems (see [63, 125]). Our best option is therefore to define a “syntactic
subclass” of TFNP that contains as many problems as possible (including
computing PNE) while admitting complete problems.

We follow [114] in motivating the appropriate subclass. View the definition
of NP (existence of short witnesses and an efficient verifier) as a minimal con-
straint ensuring that a problem is solvable by brute-force search (enumerating
all possible witnesses) using polynomial time per iteration. Computing a PNE
of an atomic selfish routing games appears to be easier because there is a guided
search algorithm (namely BRD) that is guaranteed to find a legitimate witness.
What are the minimal ingredients that guarantee that a problem admits an anal-
ogous guided search procedure? This question was answered twenty years ago
in the context of local search algorithms, by the definition of the class PLS, for
“polynomial local search” [64]. A PLS problem is abstractly described by three
polynomial-time algorithms: one to accept an instance and output an initial
candidate solution; one to evaluate the objective function value of a candidate
solution; and one that either verifies local optimality (for some local neighbor-
hood) or else returns a new candidate solution with strictly better objective
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function value. PLS can be phrased as a syntactic class and it therefore admits
a generic complete problem [64]. The analog of Cook’s Theorem (a reduction
from the generic complete problem to a concrete one), proved in [64], states
that a particular local search problem for Boolean circuits called “Circuit Flip”
is PLS-hard. Circuit Flip has been used to establish the PLS-completeness of
many other problems (e.g. [121, 137]).

Solutions of a PLS problem correspond to local optima, and one can ob-
viously be found (generally in exponential time) via local search. Computing
a PNE of an atomic selfish routing game can be cast as a PLS problem by
adopting the potential function as an objective, and define two outcomes to
be neighbors if they differ in the path of only one player. Local minima then
correspond to the PNE of the game.

Solving a PLS problem means computing a locally optimal solution by what-
ever means (not necessarily by local search). For example, in single-commodity
atomic selfish routing games, where all players have the same source and sink, a
PNE can be computed in polynomial time using minimum-cost flow [46] despite
the fact that BRD (i.e., local search) can require an exponential number of itera-
tions [1]. If P = PLS, then given only an abstract description of a PLS problem
in terms of the three algorithms above, there is a generic, problem-independent
way of finding a “shortcut” to a locally optimal solution, exponentially faster
than rote traversal of the path suggested by the guided search algorithm. For
both this conceptual reason and its inclusion of many well-known and appar-
ent difficult problems, it is generally believed that P �= PLS. PLS-hardness
should therefore viewed as strong evidence that a TFNP search problem is not
solvable in polynomial time. Computing a PNE of a (multicommodity) atomic
selfish routing network is hard in this sense.

Theorem 6 ([46]). The problem of computing a PNE of an atomic selfish rout-
ing game is PLS-complete.

See also [1] for an alternative proof, and [1, 2, 46, 126] for further PLS-
completeness results on PNE.

The reductions in PLS-completeness results such as Theorem 6 nearly always
give unconditional exponential lower bounds on the worst-case running time of
the generic local search algorithm (or BRD, in the present context). Even if
P = PLS, the following corollary holds.

Corollary 1. There is a constant c > 0 such that for arbitrarily large n, there
is an n-player atomic selfish routing network and an initial outcome from which
BRD requires 2cn iterations to converge to a PNE, no matter how players are
selected in each step of BRD.

Mixed-Strategy Nash Equilibria and PPAD. A mixed strategy is a probability
distribution over the pure strategies of a player. A collection of mixed-strategies
is a (mixed-strategy) Nash equilibrium (MNE) if every player simultaneously
chooses a mixed strategy maximizing its expected utility, given the mixed strate-
gies chosen by the others. Resorting to mixed strategies is necessary to establish
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the existence of Nash equilibria in arbitrary finite games with two or more play-
ers [91], but they are not without conceptual controversy (see e.g. [96, §3.2]).
Regardless, computing an MNE of a finite game is clearly a central equilibrium
computation problem.

First consider the two-player (“bimatrix”) case, where the input is two m×n
payoff matrices (one for each player) with integer entries. There is a non-obvious
exponential-time algorithm for computing an MNE in bimatrix games, which
enumerates over all possible pairs of supports for the two players and solves a
linear system for each to check for a feasible solution (see e.g. [98, 114, 124]).
There is a still less obvious “guided search” algorithm, the Lemke-Howson (LH)
algorithm [77]; see [133] for a careful exposition. Its worst-case running time is
exponential [120]. The LH algorithm is a path-following algorithm in the spirit
of local search, but is not guided by an objective or potential function and thus
does not obviously prove that computing a MNE of a bimatrix game is in PLS.
A related but apparently different subclass of TFNP , called PPAD (for “poly-
nomial parity argument, directed version”), was defined in [97] to capture the
complexity of this and related problems (mostly from combinatorial topology,
such as computing approximate Brouwer fixed points). Its formal definition
parallels that of PLS, with a PPAD problem consisting of the minimal ingre-
dients (again easily phrased as three polynomial-time algorithms) necessary to
execute a LH-like search procedure. PPAD-hardness is viewed as a comparable
negative result to PLS-hardness (for the same reasons). Computing an MNE
of a bimatrix game is hard in this sense.

Theorem 7 ([29, 39]). The problem of computing an MNE of a bimatrix game
is PPAD-complete.

This hardness result trivially applies to games with any constant number of
players. It extends to computing a natural notion of an “ε-approximate MNE”
for values of ε as large as inverse polynomial [29], thus ruling out an FP-
TAS for computing ε-approximate MNE (unless P = PPAD). Unlike PLS-
completeness results, PPAD-completeness results are not known to have im-
mediate unconditional consequences in the spirit of Corollary 1. However, a
lower bound on the convergence time of certain dynamics to an MNE was re-
cently proved in [55] (without relying on Theorem 7).

The proof of Theorem 7 is necessarily intricate because in the result is a
“Cook’s Theorem for PPAD” — while several PPAD-complete problems were
previously known [97], all of them have the flavor of “generic” complete prob-
lems, in which an instance includes a description of an arbitrary polynomial-
time algorithm. For example, instances of PPAD-complete fixed-point prob-
lems included an encoding of a polynomial-time algorithm that computes the
values of some continuous function restricted to a subdivided simplex. The
proof of Theorem 7 effectively encodes arbitrary computation in terms of a bi-
matrix game, so its sophistication should come as no surprise. Many of the first
“non-generic” PLS-complete problems required similarly intricate reductions
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(e.g. [121]). See [98] for a nice high-level survey of the proof of Theorem 7 and
the sequence of results that led to it.

Further Aspects of Equilibrium Computation. Another genre of equilibrium
computation problems bustling with activity is market or price equilibria —
prices for goods at which decentralized and selfish exchange “clears the mar-
ket”, yielding a Pareto efficient allocation of the goods. As with mixed Nash
equilibria, such equilibria exist under weak conditions [11] but their efficient
computation is largely open. The last five years have seen a number of new
polynomial-time algorithm (surveyed in [129] and [34]) and a few scattered
hardness results (see [34]), but many basic questions remain open (see [129]).

Back in finite games, equilibrium computation in extensive-form games —
specified by a game tree in which paths represent sequences of actions by the
various players and by nature, see e.g. [134] — was studied early on by the AI
community (surveyed in [67]) and more recently in the theoretical computer
science literature (e.g. [85]). Special classes of extensive-form games defined
in [36] are, along with some number-theoretic problems like factoring, among
the most prominent candidates for problems in (NP ∩ coNP ) \ P (see [63]).
Other equilibrium concepts in finite games have also been studied recently. For
correlated equilibria [12], an equilibrium concept with fundamental connections
to no-regret learning algorithms (see [23]), sweeping positive algorithmic re-
sults are possible [99]. In repeated games, computing a Nash equilibrium is
polynomial-time solvable in two-player games [81] but PPAD-hard with three
or more players [25], despite the overwhelming number of equilibria guaranteed
by the “folk theorem” for such games.

5 Future Directions

The astonishing and accelerating rate of progress in algorithmic game theory,
nourished by deep connections with other areas of theoretical computer science
and a consistent infusion of new motivating applications, leaves no doubt that it
will continue to flourish for many years to come. There is presently a surplus of
challenging open questions across all three of the areas surveyed in Sections 2–4;
we record a small handful to prove the point.

We first mention some concrete problems that are well known in the AGT
community. A few in AMD include: prove better upper or lower bounds on the
achievable approximation guarantees of implementable algorithms for combina-
torial auctions (see [24] for a reasonably current survey); characterize the multi-
parameter domains for which affine maximizers are the only implementable
algorithms (see [100] for the latest developments); and develop some under-
standing of the power of randomization in polynomial-time implementability
(see [3] for an entry point). Some personal favorites involving equilibrium ef-
ficiency analyses are: determine the POA in atomic selfish routing networks
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with fractional routing and the POS in Shapley cost allocation games (see [35]
and [49], respectively, for partial results); develop a general analytical tech-
nique to extract tight efficiency loss bounds from potential functions and/or
variational inequalities (see [111]); and, in the spirit of [27], identify how to dis-
tribute delays (via an appropriate queuing policy) to minimize the worst-case
POA in selfish routing networks. Central open questions in equilibrium compu-
tation include the complexity of computing approximate mixed-strategy Nash
equilibria (see [26, 80, 128] for the state-of-the-art), the complexity of com-
puting market equilibria with reasonably general (concave) participant utility
functions (see [129]), and the complexity of the stochastic games in NP ∩coNP
defined in [36] (see also [63]).

Speaking more informally and long-term, we expect that all areas of AGT will
(and should) grapple with appropriate models of agent behavior over the next
several years. Some type of non-worst-case behavioral assumption is inevitable
for systems with independent participants: all of the results described in this
survey, even the welfare guarantee of the simple Vickrey auction, depend on
such assumptions. AGT has minimized controversy thus far by adopting well-
known notions from traditional game theory, such as the Nash equilibrium. But
if traditional game theory applied “off the shelf” to modern computer science
applications, there would be no need for AGT at all. See [51] for a compelling ar-
gument — made over a decade ago but more appropriate than ever — about why
models of rationality and equilibrium concepts should be completely rethought
given the characteristics of an Internet-like strategic environment.

Behavioral assumptions are essential to address modern computer applica-
tions, yet are largely foreign to the mainstream “STOC/FOCS” mentality and
its emphasis on minimal assumptions and worst-case analysis. Can we retain
this unquestionably useful and well-motivated bias while expanding our field’s
reach? Of course: shining examples of worst-case guarantees coupled with novel
behavioral models have already begun to sprout in the AGT literature. For
example: mechanism implementation in undominated strategies [16] and in ex
post collusion-proof Nash equilibrium [95]; the price of total anarchy in [22]; and
the complexity of unit-recall games [45]. If history is any guide, these represent
only the vanguard of what promises to be a rich and relevant theory.
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50. S. Fischer and B. Vöcking. On the evolution of selfish routing. In ESA ’04, pages
323–334.

51. E. J. Friedman and S. J. Shenker. Learning and implementation on the Internet. Working
paper, 1997.

52. A. Gilpin, T. Sandholm, and T. B. Sorensen. Potential-aware automated abstraction of
sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In AAAI
’07.

53. M. X. Goemans, V. Mirrokni, and A. Vetta. Sink equilibria and convergence. In FOCS
’05, pages 142–151.

54. J. Y. Halpern. Computer science and game theory: A brief survey. In S. N. Durlauf and
L. E. Blume, editors, Palgrave Dictionary of Economics. 2008.

55. S. Hart and Y. Mansour. The communication complexity of uncoupled Nash equilibrium
procedures. Games and Economic Behavior, 2008.

56. J. Hartline and A. Karlin. Profit maximization in mechanism design. In Nisan et al.
[94], chapter 13, pages 331–362.

57. J. D. Hartline and T. Roughgarden. Optimal mechanism design and money burning. In
STOC ’08.



40 T. Roughgarden

58. D. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM J. Comput.,
17(3):539–551, 1988.

59. M. Imase and B. M. Waxman. Dynamic Steiner tree problem. SIAM Journal on Discrete
Mathematics, 4(3), 1991.

60. M. O. Jackson. A crash course in implementation theory. Social Choice and Welfare,
18(4):655–708, 2001.

61. K. Jain and M. Mahdian. Cost sharing. In Nisan et al. [94], chapter 15, pages 385–410.
62. R. Johari. The price of anarchy and the design of scalable resource allocation mecha-

nisms. In Nisan et al. [94], chapter 21, pages 543–568.
63. D. S. Johnson. The NP-completeness column: Finding needles in haystacks. ACM

Transactions on Algorithms, 3(2), 2007. Article 24.
64. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search?

Journal of Computer and System Sciences, 37(1):79–100, 1988.
65. E. Kalai and D. Samet. On weighted Shapley values. International Journal of Game

Theory, 16(3):205–222, 1987.
66. G. Karakostas and A. Viglas. Equilibria for networks with malicious users. Mathematical

Programming, 110(3):591–613, 2007.
67. D. Koller and A. Pfeffer. Representations and solutions for game-theoretic problems.

Artificial Intelligence, 94(1-2):167–215, 1997.
68. S. C. Kontogiannis and P. G. Spirakis. Atomic selfish routing in networks: A survey. In

WINE ’05, pages 989–1002.
69. E. Koutsoupias and C. H. Papadimitriou. Worst-case equilibria. In STACS ’99, pages

404–413.
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A.N. Trahtman∗ †

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel

Abstract. The synchronizing word of a deterministic automaton is a word
in the alphabet of colors (considered as letters) of its edges that maps the
automaton to a single state. A coloring of edges of a directed graph is syn-
chronizing if the coloring turns the graph into a deterministic finite automaton
possessing a synchronizing word.
The road coloring problem is the problem of synchronizing coloring of a di-
rected finite strongly connected graph with constant outdegree of all its ver-
tices if the greatest common divisor of lengths of all its cycles is one. The
problem was posed by Adler, Goodwyn and Weiss over 30 years ago and
evoked noticeable interest among the specialists in the theory of graphs, finite
automata, coding and symbolic dynamics. Many partial solutions of the prob-
lem have been found and different generalizations were considered.
The positive solution of the road coloring problem is presented below. We re-
produce from the literature also the statements used in our proof. The neces-

sary and sufficient conditions of synchronizing road coloring of directed graph
with constant outdegree of a vertex are presented.

Key words: road coloring problem, graph, deterministic finite automaton,
synchronization.

Introduction

The road coloring problem originates in [2] and was stated explicitly in [1] for
a strongly connected directed finite graph with constant outdegree of all its
vertices where the greatest common divisor (gcd) of lengths of all its cycles is
one. The edges of the graph are unlabelled. The task is to find a labelling of the
edges that turns the graph into a deterministic finite automaton possessing a
synchronizing word. So the road coloring problem is connected with the problem
of existence of synchronizing word for deterministic complete finite automaton.
The condition on gcd is necessary [1], [5]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets
V1, V2, ..., Vk = V1 (k > 1) such that every edge which begins in Vi has its end
in Vi+1 [5], [14]. The outdegree of the vertex can be considered also as the size
of an alphabet where the letters denote colors.
The road coloring problem is important in automata theory: a synchronizing

∗ Email: trakht@macs.biu.ac.il

† http://www.cs.biu.ac.il/∼trakht/syn.html

Please use the following format when citing this chapter:

Trahtman, A.N., 2008, in IFIP International Federation for Information Processing, Volume 273; Fifth IFIP
International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki, Giancarlo
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coloring makes the behavior of an automaton resistant against input errors
since, after detection of an error, a synchronizing word can reset the automaton
back to its original state, as if no error had occurred. The problem appeared
first in the context of symbolic dynamics and is important also in this area.
Together with the Černy conjecture, the road coloring problem belongs to the
most fascinating problems in the theory of finite automata [13], [16], [17]. The
problem is discussed even in ”Wikipedia” - the popular Internet Encyclopedia.
However, at the same time it proved to be hard and was considered as a ”no-
torious open problem” [12], [5] and ”unfeasible” [8].
Several partial solutions in this area have been found within last thirty years.
In [14] it is shown that a graph with no multiple edges (i.e. no distinct edges in
G have the same source and the same target) and with a simple cycle of prime
length has a synchronizing coloring. In [6] it is shown that a graph of outdegree
two with a simple cycle of length relatively prime to the weight of the graph
(i.e. the sum of the components of an integer Perron left eigenvector chosen
with relatively prime components) has a synchronizing coloring. The conjec-
ture is true for Eulerian digraphs [10] (i.e. the indegree of any vertex is equal
to the outdegree). In [5] the problem is solved for the class of automata having
always stable synchronizing pair of states. The class is closed under some kind
of homomorphism. The conjecture has positive solution also if the outdegree
of vertices is relatively great [7]. Another special case, proven in [15], is that a
graph with all vertices of indegree 1 except one (these graphs are trees where all
leaves merge with the root), has a synchronizing coloring. In [9] it is shown that
a graph of outdegree k which is decomposable in k disjoint monochromatic sub-
graphs containing exactly one cycle, has a synchronizing coloring if the greater
common divisor of the lengths of the monochromatic cycles equals 1. The last
result was strengthened in [4] for strongly disjoint set of cycles. The structure
theory of the minimal ideal of a finite semigroup plays an essential role in [3].
The concept from [6] of the weight of a vertex supposed by Friedman and the
concept of a stable pair of states of Culik, Karhumaki and Kari [5], [10] with
corresponding results and consequences are essentially used in our proof. We
also reproduce from the literature the proofs of some related statements for to
complete the picture.
The road coloring conjecture is settled in the affirmative: a finite directed
strongly connected graph with constant outdegree of all vertices has a syn-
chronizing coloring iff the great common divisor of the lengths of all its cycles
is equal to one.
The necessary and sufficient conditions of synchronizing road coloring of di-
rected graph with constant outdegree of a vertex are presented.
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Preliminaries

A finite directed strongly connected graph with constant outdegree of all its
vertices where the gcd of lengths of all its cycles is one will be called AGW
graph as aroused by Adler, Goodwyn and Weiss.
If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labeled by σ1, ..., σk, then for s = σ1...σk ∈
Σ+ let us write q = ps.
Let Ps be the map of the subset P of states of an automaton by help of s ∈ Σ+

and let Ps−1 be the maximal set of states Q such that Qs ⊆ P . For the
transition graph Γ of an automaton let Γs denote the map of the set of states
of the automaton.
|P | - the size of the subset P of states from an automaton (of vertices from a
graph).
A word s ∈ Σ+ is called a synchronizing word of the automaton with transition
graph Γ if |Γs| = 1.
A coloring of a directed finite graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.
A pair of distinct states p,q of an automaton (of vertices of the transition
graph) will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite
case, if for any s ps �= qs, we call the pair deadlock.
A synchronizing pair of states p, q of an automaton is called stable if for any
word u the pair pu,qu is also synchronizing [5], [10].
We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.
Let u be a left eigenvector with positive components having no common divisor
of adjacency matrix of a graph with vertices p1, ..., pn. The i-th component
ui of the vector u is called the weight of the vertex pi and denoted by w(pi).
The sum of the weights of the vertices from a set D is denoted by w(D) and is
called the weight of D [6].
The subset D of states of an automaton (of vertices of the transition graph Γ of
the automaton) such that w(D) is maximal and |Ds| = 1 for some word s ∈ Σ+

let us call F -maximal as introduced by Friedman [6].
The subset Γs of states (of vertices of the transition graph Γ ) for some word s
such that every pair of states from the set is deadlock will be called an F -clique.

1 Some properties of F -clique and of coloring free of
stable pairs

The road coloring problem was formulated for AGW graphs [1], [2] and only
such graphs are considered below. The primitive cases of graphs with loops and
of only one color can be also omitted [1], [14]. Let us formulate some important
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results from [6], [5] and [10] together with some useful statements [1], [14] in
the following form:

Theorem 1 [6] There exists a partition of Γ on F -maximal sets (of the same
weight).

Proof. Let Γ have outdegree d everywhere. The vector e = (1, ..., 1) is a right
eigenvector with eigenvalue d of the adjacency matrix [11] A of Γ . Since Γ
is strongly connected, by Perron-Frobenius Theorem [11] the matrix A with
non-negative elements has a positive left eigenvector w = (w1, ..., wn) of integer
components with the same eigenvalue d, i.e. wA = dw. The component wi of
the vector w is defined as the weight w(pi) > 0 of the state pi.
Let q be arbitrary state and Q be the set of states qσ−1 for all σ ∈ Σ. Then
∑

r∈Q w(r) = dw(q) because wA = dw. Consequently for any set R of states
dw(R) =

∑

σ∈Σ Rσ−1. It implies, in particular, that from w(R) > w(Rσ−1) for
some σ ∈ Σ follows w(R) < w(Rα−1) for some another α ∈ Σ. Therefore for
F -maximal set R holds w(R) = w(Rσ−1) for any σ and w(R) = w(Rs−1) for
any s ∈ Σ+.
For F -maximal set R and some word s |Rs| = 1. Since Γ is strongly connected,
for any state p there exists a word t = t1s such that Rt = p. So for any state
p and some word t the set of states pt−1 is F -maximal. For any state r �∈ pt−1

and some word u is also F -maximal. The set pt−1u−1 is F -maximal, too. Both
obtained F -maximal sets pt−1u−1 and ru−1 are disjoint. The continuation of
this process for states outside obtained F -maximal sets gives us a partition of
Γ on F -maximal sets.

Lemma 1 [1], [5], [14]. Let Γ be directed graph. Then the greatest common
divisor of lengths of all its cycles is k if and only if there exists a partition of
the set of vertices on subsets V1, V2, ..., Vk+1 = V1 such that every edge which
begins in Vi has its end in Vi+1.

Proof. Indeed, in the case of such partition of size k > 1 the length of any cycle
of the graph is divided by k.
In the case k is a common divisor of length of all cycles of the graph let us
enumerate the vertices of the graph. We begin from an arbitrary vertex and
suppose n(q) = n(p) + 1 (modulo k) if there exist an edge p → q. The contra-
diction in the enumeration is impossible because the difference between length
of cycles is divided by k. Then suppose q ∈ Vm if n(q) = m (modulo k). There-
fore every edge which begins in Vi ends in Vi+1. So the desired partition exists.

Let us recall that a binary relation ρ on the set of the states of an automa-
ton is called congruence if ρ is equivalence and for any word u from p ρ q
follows pu ρ qu.

Theorem 2 [5], [10] Let us consider a coloring of AGW graph Γ . Stability of
states is a binary relation on the set of states of the obtained automaton; denote
this relation by ρ. Then ρ is a congruence relation, Γ/ρ presents an AGW graph
and synchronizing coloring of Γ/ρ implies synchronizing recoloring of Γ .
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Proof. Suppose p ρ q and q ρ r. Then for any word u there exists a word s such
that pus = qus. The couple of states q, r is stable, whence there exists a word
t such that for arbitrary u qust = rust. So for any u there exists a word st
such that pust = rust. Hence p ρ r and the relation ρ is transitive and stable.
It implies the equivalence of ρ. From p ρ q follows ps ρ qs for any s (because
the pair ps, qs is also stable) and therefore the relation ρ is a congruence.
The outdegree of a state in the quotient automaton Γ/ρ is equal to the same
number of colors as in Γ , Γ/ρ is strongly connected just as Γ .
The condition on gcd can be replaced by the equivalent property that there
does not exist a partition of the set of vertices on subsets V1, V2, ..., Vk = V1

such that every edge which begins in Vi has its end in Vi+1 (Lemma 1).
The non-trivial such partition of Γ/ρ exists only if Γ has also such partition.
Every edge with beginning in image of Vi has its end in image of Vi+1. Therefore
the condition on gcd is stable, whence Γ/ρ is AGW graph.
Suppose now that Γ/ρ has a synchronizing coloring. The synchronizing coloring
of Γ/ρ induces a synchronizing coloring of the original automaton as follows:
we color all the preimages of an edge of Γ/ρ by the same color. For any pair of
states from Γ the synchronizing word of the images of the states in Γ/ρ takes
both states into one equivalence class of the relation ρ on Γ . Any couple of
states from this class is stable and therefore synchronizing. So via such coloring
any pair of states from Γ is synchronizing.

The last theorem shows that if every AGW graph has a coloring with a stable
pair, then every AGW graph has a synchronizing coloring. So the problem is
reduced to the search of a coloring with stable pair.

Lemma 2 Let w be the weight of F -maximal set of the AGW graph Γ via
some coloring. Then the size of every F -clique of the coloring is the same and
equal to w(Γ )/w (the size of partition of Γ on F -maximal sets).

Proof. Two states from an F -clique could not belong to one F -maximal set
because this pair is not synchronizing. By Theorem 1 there exists a partition
of Γ on F -maximal sets of weight w. So the partition consists from w(Γ )/w
F -maximal sets and to every F -maximal set belongs at most one state from
F -clique. Consequently, the size of any F -clique is not greater than w(Γ )/w.
Let Γs be an F -clique. The sum of the weights qs−1 for all q ∈ Γs is the weight
of Γ . So

w(Γ ) =
∑

q∈Γs

w(qs−1)

The number of addends (the size of the F -clique) is not greater than w(Γ )/w.
The weight of the set qs−1 for every q ∈ Γs is not greater than w. Therefore
qs−1 is an F -maximal set of weight w for every q ∈ Γs and the size of any F -
clique is w(Γ )/w, the number of F -maximal sets in the corresponding partition
of Γ .
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Lemma 3 Let F be F -clique via some coloring of AGW graph Γ . For any
word s the set Fs is also an F -clique and any state [vertex] p belongs to some
F -clique.

Proof. Any pair p, q from an F -clique F is a deadlock. To be deadlock is a
stable binary relation, therefore for any word s the pair ps, qs from Fs also is
a deadlock. So all pairs from Fs are deadlocks.
For the F -clique F there exists a word t such that Γt = F . Thus Γts = Fs,
whence Fs is an F -clique.
For any r from a strongly connected graph Γ , there exists a word u such that
r = pu for p from the F -clique F , whence r belongs to the F -clique Fu.

Lemma 4 Let A and B (|A| > 1) be distinct F -cliques via some coloring
without stable pairs of the AGW graph Γ . Then |A|−|A∩B| = |B|−|A∩B| > 1.

Proof. Let us assume the contrary: |A|−|A∩B| = 1. By Lemma 2, |A| = |B|. So
|B|− |A∩B| = 1, too. The pair of states p ∈ A\B and q ∈ B \A is not stable.
Therefore for some word s the pair (ps,qs) is a deadlock. Any pair of states
from the F -clique A and from the F -clique B as well as from F -cliques As and
Bs is a deadlock. So any pair of states from the set (A∪B)s is a deadlock. One
has |(A ∪ B)s| = |A| + 1 > |A|.
In view of Theorem 1, there exists a partition of size |A| (Lemma 2) of Γ on F -
maximal sets. To every F -maximal set belongs at most one state from (A∪B)s
because every pair of states from this set is a deadlock and no deadlock could
belong to an F -maximal set. This contradicts the fact that the size of (A∪B)s
is greater than |A|.
Lemma 5 Let some vertex of AGW graph Γ have two incoming bunches.
Then any coloring of Γ has a stable couple.

Proof. If a vertex p has two incoming bunches from vertices q and r, then the
couple q, r is stable for any coloring because qα = rα = p for any letter (color)
α ∈ Σ.

2 The spanning subgraph of cycles and trees with
maximal number of edges in the cycles

Définition 1 Let us call a subgraph S of the AGW graph Γ a spanning sub-
graph of Γ if to S belong all vertices of Γ and exactly one outgoing edge of every
vertex.
A maximal subtree of the spanning subgraph S with root on a cycle from S and
having no common edges with cycles from S is called a tree of S.
The length of path from a vertex p through the edges of the tree of the spanning
set S to the root of the tree is called the level of p in S.
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Remark 1 Any spanning subgraph S consists of disjoint cycles and trees with
roots on cycles; any tree and cycle of S is defined identically, the level of the
vertex from cycle is zero, the vertices of trees except root have positive level,
the vertex of maximal positive level has no incoming edge from S. The edges
of every given color by any coloring form a spanning subgraph and for any
spanning subgraph there exists a corresponding coloring.

Lemma 6 Let N be a set of vertices of level n from some tree of the spanning
subgraph S of AGW graph Γ . Then in a coloring of Γ where all edges of S have
the same color α, any F -clique F satisfies |F ∩ N | ≤ 1.

Proof. Some power of α synchronizes all states of given level of the tree and
maps them into the root. Any couple of states from an F -clique could not be
synchronized and therefore could not belong to N .

Lemma 7 Let AGW graph Γ have a spanning subgraph R of only disjoint
cycles (without trees). Then Γ also has another spanning subgraph with exactly
one vertex of maximal positive level.

Proof. The spanning subgraph R has only cycles and therefore the levels of all
vertices are equal to zero. In view of gcd = 1 in the strongly connected graph Γ ,
not all edges belong to a bunch. Therefore there exist two edges u = p → q �∈ R
and v = p → s ∈ R with common first vertex p but such that q �= s. Let us
replace the edge v = p → s from R by u. Then only the vertex s has maximal
level L > 0 in the new spanning subgraph.

Lemma 8 Let any vertex of an AGW graph Γ have no two incoming bunches.
Then Γ has a spanning subgraph such that all its vertices of maximal positive
level belong to one non-trivial tree.

Let us consider a spanning subgraph R with a maximal number of vertices
[edges] in its cycles. In view of Lemma 7, suppose that R has non-trivial trees
and let L > 0 be the maximal value of the level of a vertex.
Further consideration is necessary only if at least two vertices of level L belong
to distinct trees of R with distinct roots.
Let us consider a tree T from R with vertex p of maximal level L and edge
b̄ from vertex b to the tree root r ∈ T on the path of length L from p. Let
the root r belong to the cycle H of R with the edge c̄ = c → r ∈ H . There
exists also an edge ā = a → p that does not belong to R because Γ is strongly
connected and p has no incoming edge from R.
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We consider the path in T from p to r of maximal length L. Our aim is to



50 A.N. Trahtman

extend the maximal level of the vertex on the extension of the tree T much
more than the maximal level of vertex of other trees from R. We plan to use
the following three changes:
1) replace the edge w̄ from R with first vertex a by the edge ā = a → p,
2) replace the edge b̄ from R by some other outgoing edge of the vertex b,
3) replace the edge c̄ from R by some other outgoing edge of the vertex c.
If one of the ways does not succeed let us go to the next assuming the situation
in which the previous way fails and excluding the successfully studied cases.
So we diminish the considered domain. We can use sometimes two changes
together. Let us begin with
1) Suppose first a �∈ H . If a belongs to a path in T from p to r then a new cycle
with part of the path and edge a → p is added to R extending the number of
vertices in its cycles in spite of the choice of R. In opposite case the level of a
in the new spanning subgraph is L + 1 and the vertex r is a root of the new
tree containing all vertices of maximal level (in particular, the vertex a or its
ancestors in R).
So let us assume a ∈ H and suppose w̄ = a → d ∈ H . In this case the vertices
p, r and a belong to a cycle H1 with new edge ā of a new spanning subgraph
R1. So we have the cycle H1 ∈ R1 instead of H ∈ R. If the length of path from
r to a in H is r1 then H1 has length L+r1 +1. A path to r from the vertex d of
the cycle H remains in R1. Suppose its length is r2. So the length of the cycle
H is r1 + r2 + 1. The length of the cycle H1 is not greater than the length of H
because the spanning subgraph R has maximal number of edges in its cycles.
So r1 + r2 + 1 ≥ L + r1 + 1, whence r2 ≥ L. If r2 > L, then the length r2 of
the path from d to r in a tree of R1 (and the level of d) is greater than L and
the level of d (or of some other ancestor of r in a tree from R) is the desired
unique maximal level.
So assume for further consideration L = r2 and a ∈ H . Analogously, for any
vertex of maximal level L with root in the cycle H and incoming edge from
a vertex a1 the proof can be reduced to the case a1 ∈ H and L = r2 for the
corresponding new value of r2.
2) Suppose the set of outgoing edges of the vertex b is not a bunch. So one
can replace in R the edge b̄ from the vertex b by an edge v̄ from b to a vertex
v �= r.
The vertex v could not belong to T because in this case a new cycle is added
to R and therefore a new spanning subgraph has a number of vertices in the
cycles greater than in R.
If the vertex v belongs to another tree of R but not to cycle, then T is a part of
a new tree T1 with a new root of a new spanning subgraph R1 and the path from
p to the new root is extended. So only the tree T1 has states of new maximal
level.
If v belongs to some cycle H2 �= H from R, then together with replacing b̄ by
v̄, we replace also the edge w̄ by ā. So we extend the path from p to the new
root v at least by the edge ā = a → p and by almost all edges of H . Therefore
the new maximal level L1 > L has either the vertex d or its ancestors from the
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old spanning subgraph R.
Now there remains only the case when v belongs to the cycle H . The vertex p
also has level L in new tree T1 with root v. The only difference between T and
T1 (just as between R and R1) is the root and the incoming edge of the root.
The new spanning subgraph R1 has also a maximal number of vertices in cycles
just as R. Let r3 be the length of the path from d to the new root v ∈ H .
For the spanning subgraph R1, one can obtain L = r3 just as it was done on
the step 1) for R. From v �= r follows r3 �= r2, though L = r3 and L = r2.
So for further consideration suppose that the set of outgoing edges of the vertex
b is a bunch to r.
3) The set of outgoing edges of the vertex c is not a bunch to r because r has
another bunch from b.
Let us replace in R the edge c̄ by an edge ū = c → u such that u �= r. The
vertex u could not belong to the tree T because in this case the cycle H is
replaced by a cycle with all vertices from H and some vertices of T whence its
length is greater than |H |. Therefore the new spanning subgraph has a number
of vertices in its cycles greater than in spanning subgraph R in spite of the
choice of R.

So remains the case u �∈ T . Then the tree T is a part of a new tree with a
new root and the path from p to the new root is extended at least by a part of
H from the former root r. The new level of p therefore is maximal and greater
than the level of any vertex in some another tree.
Thus anyway there exists a spanning subgraph with vertices of maximal level
in one non-trivial tree.

Theorem 3 Any AGW graph Γ has coloring with stable couples.

Proof. By Lemma 5, in the case of vertex with two incoming bunches Γ has a
coloring with stable couples. In opposite case, by Lemma 8, Γ has a spanning
subgraph R such that the vertices of maximal positive level L belong to one
tree of R.
Let us give to the edges of R the color α and denote by C the set of all vertices
from the cycles of R. Then let us color the remaining edges of Γ by other colors
arbitrarily.
By Lemma 3, in a strongly connected graph Γ for every word s and F -clique
F of size |F | > 1, the set Fs also is an F -clique (of the same size by Lemma 2)
and for any state p there exists an F -clique F such that p ∈ F .
In particular, some F has non-empty intersection with the set N of vertices
of maximal level L. The set N belongs to one tree, whence by Lemma 6 this
intersection has only one vertex. The word αL−1 maps F on an F -clique F1 of
size |F |. One has |F1 \C| = 1 because the sequence of edges of color α from any
tree of R leads to the root of the tree, the root belongs to a cycle colored by α
from C and only for the set N with vertices of maximal level holds NαL−1 �⊆ C.
So |NαL−1 ∩ F1| = |F1 \ C| = 1 and |C ∩ F1| = |F1| − 1.
Let the integer m be a common multiple of the lengths of all considered cycles
from C colored by α. So for any p from C as well as from F1∩C holds pαm = p.
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Therefore for an F -clique F2 = F1α
m holds F2 ⊆ C and C ∩ F1 = F1 ∩ F2.

Thus two F -cliques F1 and F2 of size |F1| > 1 have |F1| − 1 common vertices.
So |F1 \ (F1 ∩F2)| = 1. Consequently, in view of Lemma 4, there exists a stable
couple in the considered coloring.

Theorem 4 Every AGW graph Γ has synchronizing coloring.

The proof follows from Theorems 3 and 2.

3 The necessary and sufficient conditions of synchronizing
coloring of an arbitrary graph

Theorem 5 Let every vertex of strongly connected directed finite graph Γ have
the same number of outgoing edges. Then Γ has synchronizing coloring if and
only if the greatest common divisor of lengths of all its cycles is one.

In view of Theorem 4, we must prove only the necessity of the condition on gcd.
Proof [1], [5].
Suppose d > 1 is the greatest common divisor of lengths of all cycles of Γ . Let
us consider a tree T with root p and with all vertices of the graph. Suppose
t(p) = 0 and for every edge r → q of the tree suppose t(r) = t(q) + 1 (modulo
d). So t(q) < d for every vertex q.
Let the edge u → v be outside of T . If t(u) �= t(v) + 1 (modulo d) then two
paths from p to v through the edge u → v and the edges of T and through
only the edges of T have not equal (modulo d) lengths. Therefore in strongly
connected graph Γ there are two cycles having not equal lengths (modulo d).
It contradicts to the choice of d as gcd of lengths of all cycles.
So for any edge u → v one has t(u) = t(v) + 1 (modulo d). Consequently
by whatever coloring for any word s of the colors one has t(us) = t(vs) + 1.
So any word s could not unite v and u, whence Γ has no synchronizing coloring.

Let us recall that the vertex q of the graph Γ is called a s ink if there exists a
way on Γ from any vertex to q.

Theorem 6 A finite directed graph Γ with constant outdegree of all its ver-
tices has synchronizing coloring if and only if Γ has a sink and in the strongly
connected component H of the sink the greatest common divisor of lengths of
all cycles is one.

Proof. The necessity of a sink is obvious, the necessity of conditions on H follows
from Theorem 5 because any subgraph of Γ has synchronizing coloring.
Let us go to the sufficiency. There exists in Γ a tree T with root in sink. Let
us give all edges from T \ H common color α. Therefore the word αi for some
i maps Γ on H . So the proof is reduced to the conditions of Theorem 5.
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Abstract. We present a probabilistic leader election algorithm for anony-
mous, bidirectional, asynchronous rings. It is based on an algorithm from
Franklin [22], augmented with random identity selection, hop counters to de-
tect identity clashes, and round numbers modulo 2. As a result, the algorithm
is finite-state, so that various model checking techniques can be employed to
verify its correctness, that is, eventually a unique leader is elected with proba-
bility one. We also sketch a formal correctness proof of the algorithm for rings
with arbitrary size.

1 Introduction

Leader election is the problem of electing a unique leader in a distributed net-
work. It is required that all processes execute the same local algorithm.1 Leader
election is a fundamental problem in distributed computing and has numerous
applications. For example, it is an important tool for breaking symmetry in a
distributed system. Moreover, by choosing a process as the leader, it is possible
to execute centralized algorithms in a decentralized environment. Leader elec-
tion can also be used to recover from token loss for token-based algorithms, by
making the leader responsible for generating a new token when the current one
is lost.

There is a broad range of leader election algorithms. These algorithms vary
in communication mechanism (asynchronous vs. synchronous), process names
(unique identities vs. an anonymous network), network topology (e.g. ring,
acyclic graph, complete graph). Here we focus on asynchronous communication
with reliable channels but no message order preservation, and a bidirectional
ring topology.

A classic leader election algorithm for unidirectional rings was given by
Chang and Roberts [12]. It requires that each process has a unique identity,

1 Else, the problem would be trivial: let one process perform the event “leader”, while all
other processes perform the event “not leader”.
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with a total ordering on identities; the process with the largest identity be-
comes the leader. The basic idea is that each process sends a message around
the ring bearing its identity, where only the message with the largest identity
completes the round trip. This algorithm requires O(n2) messages in the worst
case, but O(n log n) on average. Franklin [22] developed a leader election algo-
rithm for bidirectional rings with a worst-case message complexity of O(n log n).
The algorithm proceeds in election rounds, and each process is either active or
passive. At the start of an election round, each active process sends its identity
to its nearest active neighbours, and in return it receives such messages from
these neighbours. An active process only progresses to the next election round
if its own identity is larger than the two incoming identities. Peterson [42] and
Dolev, Klawe and Rodeh [15] independently adapted Franklin’s algorithm for
unidirectional rings.

Sometimes the processes in a network cannot be distinguished by means of
unique identities. Firstly, there is no concept of identity, e.g. Lego MindStorms
robots. Secondly, as the number of processes in a network increases, it may
become difficult to keep the identities of all processes distinct; or a network
may accidentally assign the same identity to different processes. Thirdly, iden-
tities cannot always be sent around the network, for instance for reasons of
efficiency; this is for instance the case in the leader election algorithm used
within the IEEE 1394 (FireWire) standard, see [38]. In a so-called anonymous
(or uniform) network, processes do not carry an identity. Angluin [1] showed
that there does not exist a terminating deterministic algorithm for electing a
leader in an anonymous, asynchronous network.

Itai and Rodeh [32, 33] studied how to break the symmetry in anonymous net-
works using probabilistic algorithms. They presented a probabilistic algorithm,
based on the Chang-Roberts algorithm, to elect a leader in an anonymous uni-
directional ring, under the assumption that all processes know the ring size.2 At
the start of an election round, active processes select a random identity from
a finite domain, which they send around the ring. Active processes with the
largest identity start a new election round if they detect a name clash, mean-
ing that another process selected the same identity in the current round. Since
the size of the ring is known, each process can recognise its own message by
means of a hop counter, included in each message. The Itai-Rodeh algorithm
terminates with probability one, and all its terminal states are correct, mean-
ing that exactly one leader is elected. The average-case message complexity is
O(n log n).

In the Itai-Rodeh algorithm, an old message that has been overtaken by other
messages in the ring, could in principle result in a situation where no leader
is elected. To overcome this problem, successive election rounds are numbered,
and each process and message is supplied with a round number. Thus an old
message can be recognized and ignored. Fokkink and Pang [20, 21] showed that
in case of FIFO channels, round numbers can be omitted from the Itai-Rodeh

2 The latter assumption is essential; see e.g. [46, Sect. 9.4.1].



Leader Election in Anonymous Rings: Franklin Goes Probabilistic 59

algorithm. They analysed the resulting algorithm using the probabilistic model
checker PRISM [29].

In Sect. 2, we present a probabilistic leader election algorithm for anony-
mous bidirectional rings, based on Franklin’s algorithm. As in the Itai-Rodeh
algorithm, it is assumed that all processes know the ring size, and at the start
of an election round, active processes select a random identity from a finite
domain. We do not impose any assumption on the channel behaviour, i.e. the
order of messages is not necessarily preserved between any pair of processes.
Once again, each process can recognise its own message by means of a hop
counter that is included in each message. However, instead of an infinite range
of round numbers, we only need to keep track of round numbers modulo 2. This
means that our probabilistic leader election algorithm is finite-state, and thus
can be verified using explicit state space exploration (see Sect. 4). Furthermore,
it implies that infinite executions, in which no leader is ever elected, violate
“global fairness ” (i.e., if in an infinite execution a transition from one global
state of the system to another one γ → γ′ can be taken infinitely often, then it
is taken infinitely often); see Sect. 7.

We modelled our probabilistic version of Franklin’s algorithm in the process
algebraic language μCRL [8], and analysed for up to ring size six that a unique
leader is elected. For ring size five, in case of a domain of three process identities,
and for ring size six, in case of a domain of two process identities, we used the
distributed version of the μCRL toolset [7] to store the generated state space
over a cluster of computers. Moreover, we sketched a formal correctness proof
for the algorithm in Sect. 4.

The model checker CADP [17] provided counter-examples to show that: (1)
round numbers cannot be omitted from the probabilistic Franklin algorithm
altogether (see Sect. 3), and (2) in case of a probabilistic version of the Dolev-
Klawe-Rodeh algorithm, round numbers modulo 2 do not suffice (see Section 8).
We used several optimizations, described in Sect. 5, to increase the efficiency
of model checking of the probabilistic Franklin algorithm, notably confluence
reduction. Moreover, using the probabilistic model checker PRISM, we made a
performance comparison of two versions of the probabilistic Franklin algorithm:
one in which fresh identities are chosen at the start of each election round, and
one in which fresh identities are only chosen at the detection of an identity clash
(see Sect. 6).

Related Work

Higham and Myers [28] present a leader election algorithm for anonymous,
unidirectional rings of known size; their algorithm is similar to the algorithm
of Itai and Rodeh, augmented with a time-out mechanism.

Fischer and Jiang [19] give a self-stabilizing leader election algorithm for
anonymous, unidirectional rings, based on a leader oracle Ω?, which for some
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point onwards is guaranteed to return the same leader to all processes (see also
Sect. 7).

Several papers [11, 30, 34, 18] present leader election algorithms for anony-
mous rings of prime size, in the presence of a central demon, which acts as a
scheduler.3

Leader election is related to token circulation for solving mutual exclusion
problem, where having a token is interpreted as a permission to enter the crit-
ical section. A self-stabilizing token circulation algorithm guarantees eventual
circulation of a unique token, even if the system is started from a global state
where several tokens are present. Israeli and Jalfon [31] propose a self-stabilizing
token circulation algorithm in an anonymous, bidirectional, asynchronous ring,
in the presence of a centralized demon. In their algorithm, tokens move to the
left or to the right with probability 1

2 , and merge when they meet, eventually
reducing the number of tokens to one. However, without knowledge of ring size,
the processes can never be sure whether a single token is left.

Mayer, Ofek, Ostrovsky and Yung [40] show that on an anonymous ring,
leader election is equivalent to providing a self-stabilizing round-robin to-
ken management scheme. Angluin, Aspnes, Fischer and Jiang [2] construct a
self-stabilizing leader election algorithm for anonymous, unidirectional, asyn-
chronous rings of odd size in the framework of their model of population proto-
cols. Beauquier, Gradinariu and Johnen [5] present a randomized self-stabilizing
leader election algorithm under an arbitrary scheduler (no fairness assumption
is required) on anonymous, unidirectional rings of known size, in the shared
variables model. Both algorithms are based on token circulation.

Several other papers present self-stabilizing token circulation algorithms for
anonymous, unidirectional rings: the algorithm of Herman [27] works on syn-
chronous rings of odd size; Duchon, Hanusse and Tixeuil [16] present algorithms
for synchronous rings of arbitrary size; Beauquier, Gradinariu and Johnen [4]
and Datta, Gradinariu and Tixeuil [13] use several types of tokens and assume
the synchronous communication model of shared variables, while the algorithm
of Rosaz [44] uses the same idea in asynchronous message passing systems; the
algorithms of Kakugawa and Yamashita [36] for asynchronous rings and Johnen
[35] for shared memory settings run under unfair distributed schedulers. Of these
papers, [4, 36, 35] require knowledge of ring size.

Mayer, Ostrovsky and Yung [41] give a randomized compiler for anonymous
rings that transforms a self-stabilizing algorithm based on bidirectional com-
munication to one that requires unidirectional, synchronous communication.

3 Dijkstra [14] noted that such a leader election algorithm cannot exist if the ring size is a
composite number.
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2 Franklin’s Algorithm for Anonymous Rings

We consider a ring consisting of processes p0, . . . , pn−1 for n ≥ 2. Processes
are anonymous, meaning that they do not carry a unique identity. Message-
passing communication between processes is asynchronous, message order is
not preserved between any pair of processes. Channels are bidirectional, so that
a process pi can send messages to its neighbours p(i+1) mod n and p(i−1) mod n; a
sent message is included in the message queue of its destination. It is assumed
that receiving a message, processing it, and possibly sending a subsequent mes-
sage take zero time. Channels are reliable, and the message queues are guided by
a fair scheduler, meaning that every sent message will eventually be processed
at its destination.

Each process is either active or passive. In our probabilistic version of
Franklin’s algorithm, an active process pi maintains three parameters:

- id i ∈ {1, . . . , k}, for some k ≥ 2, is its identity, not necessarily unique;
- statei ranges over {active, leader};
- bit i ∈ {T, F} represents the number of the current election round modulo 2.

Passive processes simply pass on messages (increasing their hop counter by one).
All messages are of the form (id, hop, bit), travelling in both clockwise and

counter-clockwise direction, where:

- id stores the identity of the process that originally sent the message;
- bit is a bit that represents the election round of this process modulo 2 (at the

time that it sent the message);
- hop ∈ {1, . . . , n} is a counter, which initially has the value 1, and which is

increased by one every time it is passed on by a process.

At the start of an election round, each active process pi randomly selects an
identity id ∈ {1, . . . , k}, and sends a message with its identity to each of its
two neighbours; initially, this message is of the form (idi, 1, biti). Next, pi

receives such messages that originate from its two nearest active neighbours.
Upon receipt of these messages, pi determines whether it stays active for the
next election round, by comparing three identities. If either of the messages
it received has a larger identity than its own identity, then it becomes passive.
Otherwise, it starts a new election round with a new identity. If a process gets a
message with the hop counter equal to the network size n, the process becomes
the leader (statei := leader ).

We now provide a more precise description of the algorithm. Initially, all
processes pi are active (statei = active), and their bit bit i is set to T .

– At the start of an election round with round number bit , an active process
selects an identity id ∈ {1, . . . , k} and sends the message (id , 1, bit) in both
directions.

– Upon receipt of a message (id , hop, bit), a passive process passes on the
message in the same direction, increasing the hop counter by one, i.e.,
(id , hop + 1, bit).
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– Upon receipt of a message (id , hop, bit) with bit i = bit , an active process pi

executes the following steps:

– if hop = n, then pi becomes the leader (statei := leader );
– if hop < n, then pi stores the message, and waits for a message with the

bit bit i from the opposite direction.

– An active process pi stores messages that carry a bit ¬bit i, to process them
in the round with the appropriate bit.

– Upon receipt of messages with a bit bit i from both directions, pi checks
whether either of these messages carries an identity larger than its own iden-
tity. If this is the case, then pi becomes passive; otherwise, pi starts a new
election round, with an inverted bit as round number (bit i := ¬bit i) and a
new identity.

3 Round Numbers Modulo 2 are Needed

Initially, we thought that our probabilistic version of the Franklin algorithm
could maybe do without round numbers altogether. However, a model checking
verification using the μCRL toolset [8] showed us that this is not true.4 Fig. 3
shows a scenario where no leader is elected for a ring of size three and three
identities. In this figure, black processes are active and white processes are
passive.

Fig. 1 Probabilistic Franklin algorithm without round numbers is flawed.

Initially, all processes are active; two processes select the same identity u,
and one selects an identity v < u; all processes send a message with their

4 Lamport [37] actually advocates that all distributed algorithms should be model checked
before publication.



Leader Election in Anonymous Rings: Franklin Goes Probabilistic 63

identity in both directions (Fig. 3(a)). At the receipt of a message from both
neighbours, the processes with identity u select a new identity w < v, and send
messages carrying this new identity (Fig. 3(b)). The two messages (u, 1) are
overtaken by two messages with identity w. As w < v, process v proceeds to a
next election round, in which it selects the identity v again, and sends messages
(v, 1) in both direction (Fig. 3(c)). Upon the receipt of messages (v, 1) and
(w, 1), the processes with identity w become passive (Fig. 3(d)). Finally, the
outdated messages (u, 1) make the process with identity v passive as well; all
processes have become passive now.

4 Correctness Analysis

We say that an execution of the algorithm has terminated if each process is
either passive or elected as the leader, and there are no remaining messages in
the channels. We argue that the probabilistic Franklin algorithm for anonymous
bidirectional rings terminates with probability one, and upon termination a
unique leader has been elected.

For a start, we modelled the probabilistic Franklin algorithm with round
numbers modulo 2 in the μCRL framework [8], with channels that have an un-
bounded capacity, each implemented as a buffer, and its correctness has been
verified for rings with a size up to six processes. The input language for μCRL
is based on process algebra and abstract data types. Our μCRL specification is
available at [3]. Tables 1(a) and 1(b) provide state space generation results for
domains of two and three identities, respectively. To carry out the verification
for six processes (in case of two identities) and five processes (in case of three
identities), a distributed version of the μCRL toolset was used. The result-
ing state space was reduced using branching bisimulation equivalence [23, 26],
which eliminates internal and communication transitions (i.e., only “leader”
transitions are not abstracted away), while maintaining the branching struc-
ture of the state space. In case of the distributed version of the μCRL toolset,
we applied a distributed reduction algorithm from [9].

Table 1 State space generation statistics

(a) State space for two identities

# Procs States Transitions

2 657 1,368

3 15,445 43,968

4 380,609 1,396,512

5 9,819,065 44,242,920

6 260,753,105 1,393,967,976

(b) State space for three identities

# Procs States Transitions

2 1,525 3,564

3 55,009 168,102

4 2,095,777 8,182,092

5 84,381,157 401,681,445
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The μCRL specification language does not allow to express probabilities. Still
we could verify that although there are infinite executions, with probability one,
eventually always a leader is elected. This is because branching bisimulation
equivalence abstracts away from infinite executions that violate global fairness.
That is, after minimization modulo this equivalence, such executions have been
eliminated. The minimized state space of our algorithm consisted of only two
states s1 and s2, where the initial state s1 can perform a leader action to s2,
which is a terminated state.

We now sketch a formal correctness proof of the probabilistic Franklin algo-
rithm.

Proposition 1. If channels are FIFO, the probabilistic Franklin algorithm be-
haves correctly, even if processes and messages do not keep track of round num-
bers at all. That is, upon termination, exactly one leader has been elected.

Proof. In case of FIFO channels, it is guaranteed that in each election round,
an active process always receives messages from the left and the right that
were created in this election round (cf. [20, 21]). Therefore round numbers are
redundant.

In each election round, active processes with the largest identity in that round
do not become passive. And an active process can only become the leader if all
other processes have become passive. From this it follows that upon termination
there is a unique leader. ��

We now focus on showing that in the probabilistic Franklin algorithm, round
numbers modulo 2 suffice to enforce FIFO behaviour of these channels.

Lemma 1. After initialization, and before a leader is elected, the following in-
variant holds for the algorithm. Between each pair of active processes p, p′ there
are exactly two messages m, m′.

– If m, m′ travel in opposite directions, p, p′, m, m′ all carry the same bit as
round number.

– If m, m′ travel in the same direction, p, p′ have opposite bits, and m, m′

have opposite bits.

Proof. Fig. 2 depicts three cases (a symmetric variant of Fig. 2(a) is omitted)
consisting of a triple of adjacent active processes, wherein the middle process
with the bit b ∈ {T, F} receives two incoming messages from its neighbours
(Figs. 2(a), 2(d), 2(g)). If neither of the messages it received has a larger identity
than its own identity, then it starts a new election round with the bit ¬b (Figs.
2(b), 2(e), 2(h)). Otherwise, it becomes passive (Figs. 2(c), 2(f), 2(i)). In all six
cases, the invariant holds. ��

Theorem 1. In the probabilistic Franklin algorithm (with reliable, but not nec-
essarily FIFO channels), upon termination, exactly one leader has been elected.
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Fig. 2 Illustration of the invariant

Proof. From the invariant in Lemma 1 it follows that in the probabilistic
Franklin algorithm with round numbers modulo 2, channels behave as FIFO
queues. Namely, if there are two messages travelling to an active process in the
same direction, they have opposite bits. So the active process can recognize
which of these two messages was created in its current election round. Hence,
the theorem follows from Prop. 1. ��
Theorem 2. The probabilistic Franklin algorithm terminates with probability
one.

Proof. When there are � ≥ 2 active processes in the ring, these processes all
remain active only if they all the time choose the same identity. Otherwise,
at least one active process will become passive. The probability that all active
processes select the same identity in one election round is ( 1

k )�−1, where k is the
number of possible identities. Thus, the probability for all � active processes to
choose the same identity m times in a row is ( 1

k )m(�−1). As k ≥ 2, the probability
that the number of active processes eventually decreases is one.

On average, the probabilistic Franklin algorithm takes O(n log n) messages to
terminate. (On average, in each election round about 3

8 of the active processes
become passive, so there are in the order of log n rounds; and each election
round takes 2n − 2 messages.)

5 Optimisation Techniques for Generating the State Space

To obtain a smaller state space, we simplified the algorithm described in Sect. 2:
every round a node could decide to read always first a message from the left
neighbour, and then from the right neighbour. This does not really influence
the behaviour of the algorithm, because a node only take visible actions after
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receiving a message from both sides. We modelled this version of the algorithm
in the μCRL toolset, and verified it up to six processes5 in the following manner.

First the parallel operators are eliminated by the linearisation algorithm from
[25]. Next it is symbolically reduced by static analysis: constant propagation
(replace provably constant parameters by their initial value) [24], and dead
variable analysis (reset variables that are not used anymore to a default value).
The number of states and transitions of the state space that have been generated
in this way are presented as the “normal” strategy in Tables 2 and 3.

For more efficient state space generation, we applied symbolic confluence
reduction [10]. To this end, a theorem prover can be used to automatically detect
and mark confluent τ ’s, i.e. internal transitions and hidden communications that
are not causally related, for instance, because they occur at different parallel
components. Confluence can then be exploited on a symbolic level by giving
priority to confluent τ ’s, marked by the theorem prover. This reduction keeps
only the confluent τ ’s going out of a state, and all the other transitions going
out of the state are removed. This symbolic prioritization is implemented in
the Confelm tool [6] from μCRL. We used it to remove confluent τ -summands,
marked by the theorem prover Confcheck [43] from μCRL.

We also experimented with an on-the-fly τ -reduction [10, 39]. It is based
on Tarjan’s algorithm for decomposition of a graph into its strongly connected
components [45]. In this reduction, for each state a representative state is com-
puted, which it can reach by means of confluent τ -transitions. To compute
the representative of a state, a depth-first search traversal via the confluent τ -
transitions is made, until a state with a known representative is encountered, or
a ‘terminal’ strongly connected component of confluent τ -transitions is found.
(Terminal means that there are no outgoing confluent τ -transitions.) In the for-
mer case the known representative is returned, and in the latter case the state
where the terminal strongly connected component was entered is returned. In
the state space generation algorithm from [6], only representatives of states are
generated.

After generation of the (partially reduced) state space, we performed a full
reduction modulo branching bisimulation. The resulting state space consisted
of only two states s1 and s2, where the initial state s1 can perform a leader
action to s2, which is a terminated state.

Tables 2 and 3 show state space generation results of the simplified algorithm
(states and transitions) for domains of two and three identities, respectively,
with the different reduction strategies. For the on-the-fly τ -reduction, the num-
ber of states generated in the end (external states) differs from the number of
states that are internally computed (internal states).

5 A distributed version of the μCRL toolset [7] was used for six processes (in case of two iden-
tities) and five processes (in case of three identities) with the “normal” state space generation
strategy.
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Strategy # Proc. 2 3 4 5 6

normal
s. 385 7,613 152,065 3,162,337 67,758,817
t. 664 17,880 459,488 11,736,100 298,484,184

confelm
s. 205 2,875 40,881 606,783 9,280,633
t. 340 6,342 114,384 2,069,040 37,381,488

confelm
+

on-the-fly

ext. s. 165 1,819 21,409 263,963 3,348,345
int. s. 181 2,343 30,039 395,723 5,350,021

t. 276 4,086 60,576 902,820 13,449,324

Table 2 State space for the probabilistic Franklin algorithm with 2 identities.
Strategy # Proc. 2 3 4 5

normal
s. 877 26,299 802,489 25,919,965
t. 1,680 65,853 2,560,848 100,868,445

confelm
s. 469 9,874 214,957 4,952,449
t. 876 23,310 637,884 17,778,660

confelm
+

on-the-fly

ext. s. 385 6,400 116,785 2,242,609
int. s. 433 8,518 170,131 3,524,305

t. 732 15,570 353,508 8,137,080

Table 3 State space for the probabilistic Franklin algorithm with 3 identities

6 Performance Comparison with PRISM

In Sect. 2, we presented the probabilistic Franklin algorithm in which an active
process chooses a fresh identity at the start of each election round (Algorithm
A). There is one variant of this algorithm (Algorithm B) in which an active
process only chooses a fresh identity at the start of a new election round if
either of the two messages it received in the previous election round carried an
identity equal to its own identity.

The probabilistic model checker PRISM [29] has the ability to automatically
compute precise quantitative results based on exhaustive analysis of a formal
model. For both versions, we used PRISM version 3.1.1 to calculate the prob-
abilities of electing a unique leader within t “discrete time steps” (up to 150),
where each such step corresponds to one transition in the algorithm. The ex-
perimental results presented in Fig. 3 indicate that Algorithm A has a much
better performance than Algorithm B. Note that when t moves to infinity, both
algorithms elect a unique leader with probability one.

7 Global Fairness

Fischer and Jiang [19] give a leader election algorithm for anonymous, unidi-
rectional rings, without requiring global knowledge of ring size. Instead, they
require a leader oracle Ω?, which can by each process be asked who is the leader,
and which for some point onwards is guaranteed to return the same answer to
all processes. Under the assumption of what they call global fairness (i.e., if in
an infinite execution a transition from one global state of the system to another
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Fig. 3 The probability of electing a unique leader with deadlines.

one γ → γ′ can be taken infinitely often, then it is taken infinitely often), they
prove that their algorithm always terminates successfully.

Fischer and Jiang [19, p403] write: “We leave open the question of whether
such an algorithm exists without the help of Ω?.” Actually, in the absence of
global knowledge of ring size, it is straightforward to provide a negative answer
to this question. Namely, if such a leader election algorithm existed, then upon
successful termination, the leader could start a traversal to determine the correct
ring size. However, for anonymous rings, each ring size computation algorithm
has a positive probability of computing the wrong ring size (see [46, Sect. 9.4.1]).

On the other hand, under the assumption of global knowledge of ring size, our
probabilistic version of Franklin’s algorithm provides a positive answer to the
question of Fischer and Jiang, in the case of bidirectional rings. Namely, owing
to the fact that our algorithm is finite-state, each globally fair infinite execution
should at some point reach a configuration in which one active process selects a
larger identity than all other active processes, meaning that the execution will
terminate with this process as leader. But this contradicts with the fact that
the execution is infinite. In other words, in our algorithm each infinite execution
is not globally fair.

We note that this argumentation does not apply to the Itai-Rodeh algorithm,
due to the presence of an infinite range of round numbers. As a consequence,
in that algorithm no infinite execution visits a configuration infinitely often.

8 Probabilistic Dolev-Klawe-Rodeh Algorithm

The Dolev-Klawe-Rodeh algorithm is an adaptation of Franklin’s algorithm
to unidirectional rings. In an election round, an active process p compares its
identity with the identities of the two closest active processes on its left. The
process p proceeds to the next election round only if the identity of the closest
active process on its left is the largest of these three identities. A natural ques-
tion is whether the idea of round numbers modulo 2 would also apply to that
algorithm. We therefore modelled a probabilistic version of the Dolev-Klawe-
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Rodeh algorithm with round numbers modulo 2 in μCRL. We detected by a
model checking analysis using μCRL and CADP toolsets that this algorithm is
flawed, in the sense that no leader may be elected. This is due to the fact that
in the probabilistic Dolev-Klawe-Rodeh algorithm, round numbers modulo 2 do
not enforce FIFO behaviour of channels. This is depicted in Fig. 4.

Fig. 4 Probabilistic Dolev-Klawe-Rodeh with round numbers modulo 2 is flawed.

In Fig. 4, a scenario is depicted in which a message 〈2, two, 2, T 〉 is over-
taken by a newer message 〈0, two, 2, T 〉. In this picture, processes carry a round
number modulo 2 (T or F ). Moreover, messages carry a value (the first param-
eter), a hop counter (the third parameter), and a round number modulo 2 (the
fourth parameter). The second parameter in a message, one or two, keeps track
whether a message is travelling from its originator to the next active process,
or has been forwarded by an active process, respectively.
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Abstract. In this paper we show that inverting problems of higher com-
plexity is easier than inverting problems of lower complexity. While inverting
Σp

i 3CNFSAT is known to be coNP-complete [6] for i = 1 we prove that it
remains coNP-complete for i = 2 and is in P for all i ≥ 3. Relatedly, we show
that inverting Σp

i 3DNFSAT is in P for all i ≥ 1.

1 Introduction

Do problems of higher complexity also always have inverse problems of higher
complexity? We answer this question to the negative by showing that within the
polynomial hierarchy complete problems from higher levels have easier inverse
problems than those from lower levels. More precisely, we prove that while
inverting Σp

i 3CNFSAT is coNP-complete for i = 1 [6] it is also coNP-complete
for i = 2, yet is in P for all i ≥ 3. In contrast, inverting Σp

i 3DNFSAT is easy,
i.e., in P, for all i ≥ 1.

Standard NP decision problems A are of the nature given an object x find
out if there exists a proof for the membership of x in A. The inverse problem
would then be given a set of proofs for membership in A does there exist an
object x such the proofs for membership of x in A are exactly the given ones?
For example, while the well known satisfiability problem SAT asks if a given
Boolean formula has a satisfying assignment, the computational problem IN-
VERSE SAT is defined as follows: Given a set of assignments does there exist
a Boolean formula F such that the given assignments are exactly the satisfying
assignments of F . While INVERSE SAT is (trivially) in P it has been shown
that INVERSE 3SAT is coNP-complete [6]. Note that our proofs showing that
inverting Σp

i 3CNFSAT as well as inverting Σp
j 3DNFSAT is in P for i ≥ 3 and

j ≥ 1, respectively, are constructive. Hence, not only the decision if a formula
F such that the given assignments are exactly the satisfying assignments of F
exists but also actually finding F can be done in polynomial time.

In general, the study of inverse problems contributes to the field of identifying
meaningful structures in data and efficient knowledge representation. Finding
a computationally appealing representation for a given set of data can only be
an easy problem if the corresponding inverse problem is easy. Furthermore, the
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Berg, T. and Hempel, H., 2008, in IFIP International Federation for Information Processing, Volume 273;
Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki,
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study of inverse NP-problems may be helpful in gaining more insight into the
nature of NP-completeness and may also be helpful in characterizing ”natural”
verifiers.

It has been shown that for many NP-complete problems inverting their nat-
ural verifier is coNP-complete [6, 2, 7]. However, the complexity of inverse prob-
lems in general heavily depends on the underlying verifier [2]. Formally, NP is
the set of all languages A such that there exists a polynomial time computable
2-ary predicate V (also called a polynomial-time-verifier or NP-verifier) such
that for all x ∈ Σ∗ we have x ∈ A if and only if there exists a polynomial size
bounded string π such that (x, π) ∈ V . The inverse NP-problem of A relative to
V , INVSV , is given a set of strings {π1, π2, . . . , πk} does there exist a string x
such that {π1, π2, . . . , πk} = {π : (x, π) ∈ V }? There are NP-complete problems
that have NP-verifiers that can be inverted in P while the inversion of other of
their NP-verifiers is Σp

2 -complete [2]. Despite these results we feel that studying
the inverse problems relative to the canonical (natural) NP-verifiers will give
the true answer concerning the complexity of the inverse problems.

In this paper we study inverse problems from the classes Σp
i from the poly-

nomial hierarchy thereby giving answers to some open questions posed in [2].
We introduce the notion of a verifier for the classes Σp

i and define the in-
verse problem for such verifiers. After giving upper bounds for the complexity
of these inverse problems based on Σp

i -verifiers we study the inverse problem
for some specific Σp

i -complete satisfiability problems such as Σp
i 3DNFSAT and

Σp
i 3CNFSAT, yielding the above mentioned results.
We mention in passing that inverse NP-problems in a slightly different set-

ting, namely in a setting where the solutions are not given explicitely as a list
but implicitely in form of a boolean circuit accepting exactly those solutions
have been studied in [4]. Also, lower and upper bounds for the inversion of RE
problems have been found by the authors [1].

This paper is organized as follows: After formally introducing some notation
and giving some remarks on previous results in Section 2, we will translate
these concepts to problems from Σp

i in Section 3. In Section 3 we will also
give an upper bound for inverting a reasonable restricted subset of verifiers for
Σp

i -languages. We will furthermore examine the inverse complexity of some nat-
ural verifiers for specific Σp

i -complete satisfiability problems yielding the above
mentioned results that are interesting beyond the scope of inverse problems.

2 Preliminaries

We assume the reader to be familiar with the basic concepts and notations of
complexity theory (see [9, 5]).

Our alphabet will be Σ = {0, 1}. For a string α ∈ Σ∗ let αi denote the ith
letter of α, i.e., α = α1α2α3 . . . α|α|. As is standard in complexity theory an
assignment for a Boolean formula F with variables x1, x2, . . . , xn is a length n
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string α = α1α2α3 . . . αn which, for all 1 ≤ i ≤ n, assigns the Boolean value αi

to the variable xi. Recall that a 3CNF (3DNF) formula is a Boolean formula in
conjunctive (disjunctive) normal form having exactly 3 literals per clause.

Verifiers, the language associated with a verifier, sets of proofs, and inverse
problems relative to a given verifier can in general be defined as follows:

Definition 1. 1. A relation V is called a verifier if and only if V ⊆ Σ∗ × Σ∗.
2. For any verifier V and any string x ∈ Σ∗, the set of proofs for x with respect

to V , short V (x), is defined as

V (x) = {π ∈ Σ∗ : (x, π) ∈ V }.

3. The language associated with V , L(V ), is defined as

L(V ) = {x ∈ Σ∗ : V (x) �= ∅}.

4. The inverse problem relative to a verifier V , INVSV , is defined as

INVSV = {Π ⊆ Σ∗ : (∃x ∈ L(V ))[V (x) = Π ]}.

One could also define the inverse problem as INVSV = {Π ⊆ Σ∗ : (∃x ∈
Σ∗)[V (x) = Π ]}. However, this marginal change in definition – adding the
empty set to the inverse problem – should not result in any differences regard-
ing the complexity of both types of inverse problems. We take the freedom to
sometimes write V (x, π) instead of (x, π) ∈ V for verifiers V and strings x and
π.

The class NP can be viewed as the class of languages having polynomial-time
verifiers.

Definition 2. A verifier V is called a polynomial-time verifier if and only if

1. V ∈ P and
2. there is a polynomial p such that for all x, π ∈ Σ∗, (x, π) ∈ V → |π| ≤ p(|x|).

In this paper polynomial-time verifiers will also be called NP-verifiers. It is
well-known that a language A is in NP if and only if there exists an NP-verifier
V such that A = L(V ).

Inverse NP-problems are exactly the inverse problems relative to NP-verifiers
and have been introduced in [2]. Clearly, it does not make sense to speak of
inverting NP-problems without specifying the verifier. And in fact, inverting
different NP-verifiers for one and the same NP-problem has different complexity.
In [2] it has been shown that for every problem A ∈ NP there exists an NP-
verifier V such that L(V ) = A and INVSV ∈ P . Here one can even show that
there exists such a verifier that is fair [2].

Definition 3. [2] An NP-verifier V is called fair if and only if there exists a
polynomial q such that for all x ∈ L(V ) there exists a string x′ ∈ L(V ) such
that V (x) = V (x′) and |x′| ≤ q(||V (x)||), where ||V (x)|| denotes the length of
the encoding of the set V (x).



76 T. Berg, H. Hempel

In contrast, it has been shown that several NP-problems have NP-verifiers
such that the inverse problem relative to those verifiers is coNP-complete [6, 2,
7]. And it is also known that there is a tight Σp

2 upper bound for inverting fair
NP-verifiers [2], where Σp

2 denotes the second level of the polynomial hierarchy.
Recall that for a complexity class C the classes PC and NPC are defined as

the classes of languages that can be accepted by polynomial-time deterministic
and nondeterministic, respectively, oracle Turing machines that make queries to
a language from C. Based on this concept the Σp

i levels of the polynomial-time
hierarchy are defined as follows.

Definition 4. [8, 10] The complexity classes Σp
i are inductively defined via

1. Σp
0 = P and

2. Σp
i+1 = NPΣp

i for all i ≥ 1.

A useful characterization of the classes Σp
i was proven in [8].

Theorem 1. [8] A language A ⊆ Σ∗ belongs to Σp
i if and only if there exists a

predicate V ∈ P and polynomials p1, ..., pi such that for all x ∈ Σ∗ the following
holds:

x ∈ A ↔ (∃y1 ∈ Σ∗)(∀y2 ∈ Σ∗)(∃y3 ∈ Σ∗) . . . (Qyi ∈ Σ∗)[|y1| ≤
p1(|x|) ∧ ... ∧ |yi| ≤ pi(|x|) ∧ (x, y1, ..., yi) ∈ V ].

If i is even then Q = ∀ and if i is odd then Q = ∃.
As we have pointed out earlier the complexity of inverse problems heav-

ily depends on the underlying verifier. In order to study inverse NP-problems
researchers have focused on inverting “natural” NP-verifiers, i.e., NP-verifiers
that have proofs that closely reflect the canonic statement of the original NP-
problem. For instance, in the case of SATISFIABILITY the most natural proof
would be an assignment and a natural NP-verifier for SATISFIABILITY would
be

VSAT = {(F, α) : F is a Boolean formula and α satisfies F}.
The first ”natural” NP-verifiers have been studied in [6], where the com-

plexity of inverting various syntactically constrained satisfiability problems has
been studied. Following this line of research the coNP-completeness of the in-
verse problem (with respect to some ”natural” NP-verifier) for some more NP-
complete problems has been shown :

– 3SAT [6]
– CLIQUE, EXACT COVER, VERTEX COVER, SUBSET SUM (=KNAP-

SACK), STEINER TREE IN GRAPHS, PARTITION [2]
– HAMILTONIAN CIRCUIT, 3-D MATCHING [7]

For formal definition of these problems see [3].
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3 The Inverse Problem for Σp
i

It has been suggested in [2] to examine the inverse problems for classes different
than NP. In this section we will lay the ground for studying inverse Σp

i problems.
The class Σp

i is defined as the class of all languages that can be decided by a
nondeterministic polynomial-time oracle Turing machine with queries to a Σp

i−1

oracle, Σp
i = NPΣp

i−1 . This leads to the following definition of a Σp
i -verifier.

Definition 5. A verifier V is called a Σp
i -verifier if and only if

1. V ∈ PΣp
i−1 ,

2. there exists a polynomial p such that for all x, π ∈ Σ∗, (x, π) ∈ V → |π| ≤
p(|x|).

Observation 1 For every language A ⊆ Σ∗, A is in Σp
i if and only if there

exists a Σp
i -verifier V such that L(V ) = A.

Fair Σp
i -verifiers can be defined in analogy to Definition 3.

Definition 6. A Σp
i -verifier V is called a fair Σp

i -verifier if and only if there
exists a polynomial q such that (∀x ∈ L(V ))(∃x′ ∈ L(V ))[V (x) = V (x′) ∧ |x′| ≤
q(||V (x)||)], where ||V (x)|| denotes the length of the encoding of the set V (x).

Informally, a Σp
i -verifier is called fair if for any set of proofs Π either

– there exists a polynomially length-bounded string (theorem) x′ with exactly
the proofs from Π or

– there exists no theorem with the set of proofs Π .

With this definitions in mind, what is an upper complexity bound for inverting
a fair Σp

i -verifier?

Theorem 2. If V is a fair Σp
i -verifier (i ≥ 1), then INVSV ∈ Σp

i+1.

Proof. The case i = 1 has been shown in [2]. So let i ≥ 2 and let V be a fair
Σp

i -verifier, i.e., V ∈ PΣp
i−1 and there exist two polynomials p and q such that

1. for all x, π ∈ Σ∗, (x, π) ∈ V → |π| ≤ p(|x|)
2. for all x ∈ L(V ) there exists x′ ∈ L(V ) such that both V (x) = V (x′) and

|x′| ≤ q(||V (x)||).
We define the following set A:

A = {(Π, x) : Π ⊆ Σ∗ ∧ x ∈ Σ∗ ∧
(∀π ∈ Σ∗ : π ≤ p(|x|))[π ∈ V (x) ⇐⇒ π ∈ Π ]}.

It is not hard to see that A ∈ Πp
i since V ∈ PΣp

i−1 . Observe that the set A
can be also written as A = {(Π, x) : Π ⊆ Σ∗∧x ∈ Σ∗ ∧ V (x) = Π}. It follows
that
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INVSV = {Π ⊆ Σ∗ : (∃x ∈ Σ∗)[V (x) = Π ]}
= {Π ⊆ Σ∗ : (∃x ∈ Σ∗ : |x| ≤ q(||Π ||))[V (x) = Π ]}
= {Π ⊆ Σ∗ : (∃x ∈ Σ∗ : |x| ≤ q(||Π ||))[(Π, x) ∈ A]}

and thus INVSV ∈ Σp
i+1.

Even though inverting fair Σp
i -verifiers has, in general, an upper complexity

bound of Σp
i+1, inversion of fair Σp

i -verifiers can be very easy in special cases.

Lemma 1. For all i ≥ 1 and all B ∈ Σp
i there exists a fair Σp

i -verifier S such
that INVSS ≡log

m B.

Proof. The proof is based on a proof given in [2]. Let B be a set from Σp
i and let

R be a Σp
i -verifier such that L(R) = B. Consider the verifier S that is defined

by ((x, π), x) ∈ S ↔ (x, π) ∈ R for all x, π ∈ Σ∗. Clearly, S is a Σp
i -verifier.

It is straightforward to verify that S is also a fair Σp
i -verifier. Note that for all

(x, π), the set S((x, π)) contains at most one proof, namely x itself.
We will now show that x ∈ B ↔ {x} ∈ INVSS which yields the claim. First

assume that x ∈ B and thus there exists a certificate π such that (x, π) ∈ R
and thus ((x, π), x) ∈ S. Since S((x, π)) ⊆ {x} it follows that S((x, π)) = {x}.
We conclude that {x} ∈ INVSS .

For the other direction assume that x /∈ B and hence for all π ∈ Σ∗ it holds
that (x, π) /∈ R and thus ((x, π), x) /∈ S for all certificates π. It follows that
S((x, π)) = ∅ for all π ∈ Σ∗ which implies {x} /∈ INVSS .

3.1 The Inverse Problem for Σp
i 3CNFSAT

In the next two subsection we would like to examine the inverse complexity
of natural verifiers for some selected complete problems in Σp

i . In particular
we will look at the quantified versions of 3CNF-SAT and 3DNF-SAT and their
natural verifiers.

Definition 7. An i+1-tuple (F, X, Y1, Y2, . . . , Yi−1) is called a type-i-formula if
and only if F is a Boolean formula with variables from the set X∪Y1∪ ...∪Yi−1

and X, Y1, ..., Yi−1 are pairwise disjoint sets. The set Σp
i SAT is defined as

Σp
i SAT = { (F, X, Y1, . . . , Yi−1) : (F, X, Y1, . . . , Yi−1) is a type-i-formula ∧

(∃α ∈ {0, 1}|X|)(∀β1 ∈ {0, 1}|Y1|) . . .

(Q βi−1 ∈ {0, 1}|Yi−1|)[F (α, β1, ..., βi−1) = 1]}

where Q = ∀ if i is even and Q = ∃ if i is odd. Here F (α, β1, ..., βi−1) denotes
the truth value of F when using α as a truth assignment for the variables of X
and for all 1 ≤ j ≤ i − 1 using βj as a truth assignment for the variables of Yj .
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It is well know that for all i ≥ 1, the language Σp
i SAT is Σp

i -complete [10].
When restricting the formulas in Σp

i SAT to 3CNF or 3DNF formulas the set

Σp
i 3CNFSAT = {F : F ∈ Σp

i SAT ∧ F is a 3CNF-formula}
is Σp

i -complete for odd i’s [10]. If i is even then the set

Σp
i 3DNFSAT= {F : F ∈ Σp

i SAT ∧ F is a 3DNF-formula}
is Σp

i -complete [10].
Let i ≥ 1 be a natural number. The natural choice for a Σp

i -verifier for
Σp

i SAT is certainly Si, where

Si(F, α) ↔ (F, X, Y1, . . . , Yi−1) is a type-i-formula ∧ (∀β1 ∈ {0, 1}|Y1|)
(∃β2 ∈ {0, 1}|Y2|) . . . (Q βi−1 ∈ {0, 1}|Yi−1|)[F (α, β1, ..., βi−1) = 1]

and Q = ∀ if i is even and Q = ∃ if i is odd. Analogously, the natural verifiers
for Σp

i 3CNFSAT and Σp
i 3DNFSAT are Ci and Di, where

(F, α) ∈ Ci ↔ F is a type-i-formula in 3CNF ∧ (F, α) ∈ Si,

(F, α) ∈ Di ↔ F is a type-i-formula in 3DNF ∧ (F, α) ∈ Si,

and Q = ∀ if i is even and Q = ∃ if i is odd.
In this subsection we will concentrate on the inverse problem for the verifier

Ci. In the next subsection we will proof results for the verifier Di.

Lemma 2. For all i ≥ 1 it holds that INVSCi ⊆ INVSCi+1 .

Proof. The proof is obvious, since every type-i-formula (F, X, Y1, ..., Yi−1) in
3CNF has exactly the same satisfying assignments as the type-i + 1-formula
(F, X, Y1, ..., Yi−1, Yi) in 3CNF, where Yi = ∅.

Next we will show a partial converse to Lemma 2, i.e., that INVSC1 =
INVSC2 (Theorem 3). Before formally stating and proving the theorem we will
recall some helpful concepts and prove some lemmata.

Definition 8. [6]

1. Let Π ⊆ {0, 1}n be a set of Boolean vectors, Π = {π1, π2, . . . , πk}. We call a
Boolean vector m ∈ {0, 1}n 3-compatible with Π if for any triple of indices
(i1, i2, i3), 1 ≤ i1 ≤ i2 ≤ i3 ≤ n, there exists a vector πj ∈ Π such that
mi1 = πi1

j and mi2 = πi2
j and mi3 = πi3

j .
2. A set Π ⊆ {0, 1}n of Boolean vectors is called a 3CNF-set if and only if there

is a 3CNF formula F such that the set of satisfying assignments of F is equal
to Π .

Informally put, a vector m ∈ {0, 1}n is 3-compatible with a set of Boolean
vectors Π if and only for any sequence of three bit positions there exists a string
in Π that agrees with m in these three positions.
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The following Lemma from [6] gives a very tight connection between the
notions of 3-compatibility and 3CNF-sets, namely, a set of Boolean vectors is a
3CNF-set if and only if it is closed under 3-compatibility.

Lemma 3. [6] Let Π ⊆ {0, 1}n be a set of assignments. Then Π is a 3CNF-set
if and only if for all m ∈ {0, 1}n that are 3-compatible with Π we have m ∈ Π.

As an easy example consider the set Π := {0111, 1011, 1101, 1110}. The
Boolean vector 1111 is 3-compatible with Π . But since 1111 /∈ Π we conclude
by Lemma 3 that there can not exist a 3CNF-formula F with exactly the
satisfying assignments from Π .

Lemma 4. Let Π ⊆ {0, 1}n be a 3CNF-set. For all i, 1 ≤ i ≤ n, and all
c ∈ {0, 1} the set

Cutic(Π) := { α : α ∈ Π ∧ αi = c }

is a 3CNF-set.

Proof. Let Π ⊆ {0, 1}n be a 3CNF-set, let 1 ≤ i ≤ n, and c ∈ {0, 1}. In order
to show that Cutic(Π) is a 3CNF-set we use Lemma 3. We need to show that
for all assignments α it holds that whenever α is 3-compatible with Cutic(Π) it
also is an element of Cutic(Π). We will give a proof by contradiction.

So assume that α ∈ {0, 1}n is 3-compatible with Cutic(Π) yet α /∈ Cutic(Π).
Hence α /∈ Π or αi �= c. We now argue that in both cases we have a contradic-
tion. So assume that α /∈ Π . Since α is 3-compatible with Cutic(Π) it is also
3-compatible with any superset of Cutic(Π) and thus also 3-compatible with
Π . However, by Lemma 3 we have that Π contains every assignment that is
3-compatible with Π , a contradiction. In case αi �= c we have an outright con-
tradiction with the fact that α is 3-compatible with Cutic(Π). By definition for
any three positions 1 ≤ i1 ≤ i2 ≤ i3 ≤ n there exists a vector in Cutic(Π) that
agrees with α in these three positions yet αi �= c and all vectors β ∈ Cutic(Π)
satisfy βi = c.

Lemma 5. Let Π ⊆ {0, 1}n be a 3CNF-set. For all 1 ≤ i, j ≤ n and all c1, c2 ∈
{0, 1} the set

Cuti,jc1,c2
(Π) := { α : α ∈ Π ∧ ( αi = c1 ∨ αj = c2 ) }

is a 3CNF-set.

The proof is quite similar to the proof of Lemma 4 and thus omitted. We are
now prepared to state and prove the main results of this section.

Theorem 3. INVSC1 = INVSC2 .

Proof. Due to Lemma 2 it suffices to show INVSC2 ⊆ INVSC1 .
Let Π ∈ INVSC2 . By definition of INVSC2 we have Π �= ∅ and there exists a

type-2-formula (F, X, Y ) in 3CNF over the variable set X ∪ Y of the form F =
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K1∧...∧Kp where each Ki is a clause of the form (z1∨z2∨z3), z1, z2, z3 ∈ X∪Y ,
such that C2(F ) = Π . Recall that by definition of C2 it holds that (F, α) ∈ C2 if
and only if F is a type-2-formula in 3CNF and (∀β1 ∈ {0, 1}|Y |)F (α, β) = 1. In
the remainder of this proof an assignment for a type-2-formula (F ′, X ′, Y ′) in
3CNF will be denoted by αβ, where α is the part of the assignment that assigns
truth values to the variables from X ′ whereas β is the part of the assignment
that assigns truth values to the variables from Y ′.

We will now show that the set C2(F ) = Π is itself a 3CNF-set and thus
Π ∈ INVSC1 . Observe that F does not contain a clause consisting solely
of literals from the variable set Y since otherwise C2(F ) = Π = ∅, a con-
tradiction. Hence, each clause of F contains at least one literal from the
variable set X . We will construct a sequence of type-2-formulas in 3CNF
(F0, X, Y ), (F1, X, Y ), . . . , (Fn1 , X, Y ), (Fn1+1, X, Y ), . . . , (Fn1+n2 , X, Y ) over
the variable set X ∪ Y such that C2(Fn1+n2) = Π . Indeed, we will prove by
induction that for each 0 ≤ i ≤ n1 + n2 the set C2(Fi) is a 3CNF-set.

Define F0 to be the 3CNF formula that consists of all clauses from F that
contain no literal from the variable set Y . Note that C2(F0) is a 3CNF-set since
F0 is satisfied independent of assignments to the variables from Y . Let n1 be
the number of clauses in F that contain exactly one literal from the variable
set Y . For each i, 0 ≤ i ≤ n1 − 1, let Fi+1 be a type-2-formula in 3CNF such
that Fi+1 = Fi ∧ K where K is a clause from F that contains exactly one
literal from the variable set Y and K is not part of Fi. We will now argue
that for all i, 1 ≤ i ≤ n1, C2(Fi) is a 3CNF-set. We will do this inductively.
Recall that C2(F0) is a 3CNF-set and assume that for some q, 1 ≤ q ≤ n1,
C2(Fq−1) is a 3CNF-set. Consider Fq. Let Fq = Fq−1 ∧ (�i ∨ �j ∨ �k) where �i

and �j are literals of the variables xi and xj , respectively, from X and �k is
a literal of the variable yk from Y . Observe that those assignments αβ for Fq

that (implicitly) assign the truth value 0 to �i, �j and �k can not satisfy Fq. It
follows that no assignment α that assigns the truth value 0 to �i and �j can be
in C2(Fq). On the other hand, any assignment from C2(Fq−1) that assigns 1 to
�i or �j or both is also in C2(Fq). Since trivially C2(Fq−1) ⊇ C2(Fq) we have
that C2(Fq) = Cuti,ja,b(C2(Fq−1)) where a = 1 if �i = xi and a = 0 if �i = xi and
similarly b = 1 if �j = xj and b = 0 if �j = xj . By Lemma 5 and the induction
hypothesis we conclude that C2(Fq) is a 3CNF-set.

Let n2 be the number of clauses in F that contain exactly two literals from
the variable set Y . Similar to the above inductive argument related to clauses
that contain exactly one literal from X one can easily show that C2(Fq) =
Cutia(C2(Fq−1)) for an appropriately chosen a ∈ {0, 1}. By Lemma 4 and the
induction hypothesis we have that C2(Fq) is a 3CNF-set.

To complete the proof observe that Fq = F and thus C2(F ) = Π is a 3CNF-
set and hence Π ∈ INVSC1 .

It has been shown in [6] that INVSC1 is coNP-complete. Using the last the-
orem we have the following corollary.

Corollary 1. INVSC2 is coNP-complete.
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Next we will show that except the two coNP-complete problems INVSC1

and INVSC2 all other problems INVSCi , i ≥ 3, are in P. We will do so by
showing that for every syntactically correct set of assignments Π there exists a
type-3-3CNF-formula with exactly the satisfying assignments from Π .

Theorem 4. For all n and all Π ⊆ Σn it holds that Π ∈ INVSC3 .

Proof. Let Π = {α1, ..., αp} ⊆ Σn for some n ∈ N. In order to show
Π ∈ INVSC3 we will construct a type-3-3CNF-formula (F, X, Y1, Y2) over the
variable sets X , Y1, and Y2 where |X | = n, |Y1| = 1, and |Y2| = 2p + 1 such
that C3(F ) = Π .

We define an auxiliary set of assignments Π ′ ⊆ {0, 1}|X|+|Y1|+|Y2| as follows:

Π ′ =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α1 0 000...00001,
α1 1 000...00011,
α2 0 000...00111,
α2 1 000...01111,

...
αp 0 001...11111,
αp 1 011...11111

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

Claim: Π ′ is a 3CNF-set.

Proof of Claim: According to Lemma 3 it suffices to show that every
assignment γ ∈ Σn+2p+2 that is 3-compatible with Π ′ is also an element of Π ′.

So let γ ∈ Σn+2p+2 be an assignment that is 3-compatible with Π ′. Hence
it holds for any three positions k1, k2, and k3, 1 ≤ k1 ≤ k2 ≤ k3 ≤ n + 2p + 2,
that γ agrees with some γ′ ∈ Π ′ at these three positions. Since all assignments
in Π ′ have a 0 at position n +2 and 1 at position n + 2p+2 and since γ due to
its 3-compatibility with Π ′ agrees with some assignment from Π ′ in particular
at positions n + 2, n + 2p + 2 and 1 it follows that γn+2 = 0 and γn+2p+2 = 1.
Hence, there exists a position k, n + 2 ≤ k ≤ n + 2p + 1, such that γk = 0 and
γk+1 = 1. Furthermore, for all positions k′, 1 ≤ k′ ≤ n + 2p + 2, there exists
an assignment γ′ ∈ Π ′ such that γ and γ′ are equal at the positions k, k + 1
and k′. However, there is only one assignment γ̂ ∈ Π ′ that has a 0 at position
k and a 1 at position k + 1. Hence γ̂ and γ have to agree at all positions k′,
1 ≤ k′ ≤ n + 2p + 2. It follows that γ = γ̂ and thus γ ∈ Π ′. This concludes the
proof of the claim.

By the claim there exists a 3CNF-formula F ′ for which Π ′ is exactly the set
of its satisfying assignments, C1(F ′) = Π ′. Let (F, X, Y1, Y2) denote a type-3-
3CNF-formula where F = F ′ and X , Y1, and Y2 are the sets of variables that
correspond to the first n, the n + 1st, and the last 2p + 1 truth values in each
assignment in Π ′. Now it is immediate that C3(F ) = Π .

Corollary 2. For all n and all Π ⊆ Σn it holds that a type-3-3CNF-formula
(F, X, Y1, Y2) such that Π = C3(F ) can be constructed in time polynomial in
the size of Π.
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The proof is immediate from the proof of Theorem 4 and the fact that given
a set of assignments a so called candidate formula for that set of assignments
can be constructed in polynomial time [2].

Note that INVSC3 already contains all possible syntactically correct proof
sets Π for C3, i.e., all proof sets where all certificates have the same length. To
decide if Π belongs to INVSC3 one therefore simply has to test if all certificates
of Π have the same length, which can be tested in polynomial time in the
size of Π . By Lemma 2 we furthermore have that for all i ≥ 3 it holds that
INVSCi = INVSC3 .

Corollary 3. For all i ∈ N, i ≥ 3, it holds

1. INVSCi = INVSC3 = {Π ⊆ {0, 1}∗ : (∃n ∈ N)[Π ⊆ {0, 1}n]}.
2. INVSCi ∈ P.

Summarizing the results from this section, we can state that the inverse
problems for the languages Σp

i 3CNFSAT (based on their natural verifiers Ci)
become easier with growing i.

3.2 The Inverse Problem for Σp
i 3DNFSAT

In this subsection we will focus on the inverse problems related to Σp
i 3DNFSAT

as defined in Subsection 3.1.
We start by examining the problem Σp

13DNFSAT. Note that Σp
13DNFSAT

belongs to P. Despite the fact that members of languages from P do not need
any certificate, we feel that the verifier D1 as defined in Section 3.1 is a natural
verifier for Σp

13DNFSAT. However, it is not immediately clear, that INVSD1 is
in P as well.

Theorem 5. INVSD1 ∈ P .

Proof. Let us first take a look at the structure of the proof set Π for a 3DNF-
formula F . Let F = M1 ∨ ... ∨Mm be a 3DNF-formula over the variable set
X = {x1, ..., xn} consisting of 3-monomials M1, . . . ,Mm. If M = (�i ∧ �j ∧ �k),
where 1 ≤ i < j < k ≤ n and either �t = xt or �t = xt for all t ∈ {i, j, k}, is
a monomial of the formula F then all assignments α ∈ {0, 1}n that assign the
truth value 1 to �i, �j, and �k are satisfying assignments for the monomial M.
We denote the set of assignments for the formula F that satisfy the monomial
M by ΠM, i.e.,

ΠM = {α ∈ {0, 1}n : α as an assignment for F satisfies M}.

It is obvious that for the set of satisfying assignments Π of the formula F we
have Π = ΠM1 ∪ ... ∪ ΠMm .

In order to decide if a given set of assignments Π is contained in INVSD1

we have to test if there exist 3-monomials M1, ...,Mm such that Π = ΠM1 ∪
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...∪ΠMm . A deterministic polynomial-time algorithm for this decision problem
works as follows: On input Π ⊆ {0, 1}∗ test if there exists a natural number
n such that Π ⊆ {0, 1}n. If so continue and otherwise reject the input Π .
Next, test for each of the 8

(

n
3

)

possible 3-monomials M over the variable set
X = {x1, ..., xn} if ΠM ⊆ Π . In case ΠM ⊆ Π mark all those assignments α in
Π that are contained in ΠM, otherwise continue with the next monomial. As
a final step, check if there are unmarked assignments in Π and accept if this is
not the case and reject otherwise.

Note that this algorithm runs in polynomial time in the size of Π . If all
assignments are marked in the final stage of the algorithm it is immediate that
the formula F , consisting of all 3-monomials M satisfying ΠM ⊆ Π , has exactly
the satisfying assignments from Π . If there is an unmarked assignment in Π
then there exists no 3DNF-formula F such that D1(F ) = Π . This is since any
unmarked assignment in Π has to be the satisfying assignment for a 3-monomial
M that has additional assignments not contained in Π . This procedure can be
accomplished in polynomial time in the size of Π .

A close look at the proof of Theorem 5 reveals that following corollary holds.

Corollary 4. For all n and all Π ⊆ Σn it holds that a 3DNF-formula F over
n variables such that Π = D1(F ) can be constructed in time polynomial in the
size of Π.

Regarding INVSDi for i ≥ 1 we can in analogy to Lemma 2 state the follow-
ing.

Lemma 6. For all i ≥ 1 it holds that INVSDi ⊆ INVSDi+1 .

Next we will introduce the main idea used in the proof of Theorem 6 at an
easy example, otherwise the proof of Theorem 6 would become slightly intricate.

Lemma 7. For all Π ⊆ {0, 1}∗ with |Π | = 1 it holds that Π ∈ INVSD2 .

Proof. Let Π ⊆ {0, 1}∗ such that |Π | = 1 and let α ∈ {0, 1}n denote the single
string contained in Π , i.e., Π = {α}.

We will define a Σp
2 -3DNF-formula (F, X, Y ) with D2(F ) = {α}, X =

{x1, x2, . . . , xn}, and Y = {y1, y2, . . . , yn−3}. The formula F is defined as

F = (xα1

1 ∧ xα2

2 ∧ y1) ∨
(y1 ∧ xα3

3 ∧ y2) ∨
(y2 ∧ xα4

4 ∧ y3) ∨
. . . ∨

(yn−4 ∧ xαn−2

n−2 ∧ yn−3) ∨
(yn−3 ∧ xαn−1

n−1 ∧ xαn

n ),
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where for any variable z, z0 = z and z1 = z. It remains to show that D2(F ) =
{α}.

First, observe that when assigning α to the variables from X the formula
F is satisfied independent of the assignment of the variables from Y . Second,
let α′ ∈ {0, 1}n, α �= α′, be an assignment for the variables from X . Since
α �= α′ there exists 1 ≤ i ≤ n such that αi �= α′i. However, it follows that the
assignment α′β, where βj = 0 for all j smaller than i − 2 and βj = 1 for all
other j, does not satisfy F .

This shows that the only assignment for the variables of X such that for all
assignments of the variables from Y the formula F is satisfied is indeed α.

The main idea of the proof of Lemma 7 can be also used to prove the main
result of this section. Similar to Theorem 4 we have that all syntactically correct
set of proof are contained in INVSD2 .

Theorem 6. For all n and all Π ⊆ {0, 1}n it holds that Π ∈ INVSD2 .

Proof. Let Π ⊆ {0, 1}n, Π = {α1, α2, . . . , αk}. Just as in the proof of Lemma 7
we will construct a formula F such that D2(F ) = Π . Informally, the formula F
will consist of k subformulas in 3DNF F1, F2, . . . , Fk such that for all 1 ≤ i ≤ k,
D2(Fi) = {αi}.

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn−3} be disjoint sets. For
each i, 1 ≤ i ≤ k we define a Σp

2 -3DNF-formula (Fi, X, Y ) as follows:

Fi = (xα1
i

1 ∧ x
α2

i
2 ∧ y1) ∨

(y1 ∧ x
α3

i
3 ∧ y2) ∨

. . . ∨
yn−3 ∧ x

αn−1
i

n−1 ∧ x
αn

i
n ).

The Σp
2 -3DNF-formula (F, X, Y ) is defined via F = F1 ∨ F2 ∨ . . . ∨ Fk.

It follows from the proof of Lemma 7 that for each i, 1 ≤ i ≤ k, there is
exactly one assignment α for the variables of X , namely αi, such that for all
assignments β for the variables of Y , we have that Fi(α, β) is satisfied. It follows
that D2(F ) = Π .

The proof of Theorem 6 contains an algorithm that given a set of assignments
Π ⊆ Σn constructs a type-2-3DNF-formula (F, X, Y ) such that D2(F ) = Π .
We hence have the following corollary.

Corollary 5. For all n and all Π ⊆ Σn it holds that a type-2-3DNF-formula
(F, X, Y ) such that Π = D2(F ) can be constructed in time polynomial in the
size of Π.

In light of Lemma 6 we also have

Corollary 6. INVSDi ∈ P for all i ≥ 1.
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Rounding off this section, we recall the verifier Si (i ∈ N) defined as

Si(F, α) ↔ (F, X, Y1, . . . , Yi−1) is a type-i-formula ∧ (∀β1 ∈ {0, 1}|Y1|)
(∃β2 ∈ {0, 1}|Y2|) . . . (Q βi−1 ∈ {0, 1}|Yi−1|)[F (α, β1, ..., βi−1) = 1]

where Q = ∀ if i is even and Q = ∃ if i is odd. It can be seen as the natural
verifier for the language Σp

i SAT.

Corollary 7. INVSSi ∈ P for all i ≥ 1.

The corollary again is obvious since every type-i-3DNF-formula is a type-i-
formula.
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Abstract. Straight-Line Programs (SLP) are widely used compressed repre-
sentations of words. In this work we study the rational transformations and
the literal shuffle of words compressed via SLP, proving that the first preserves
the compression rate, while the second does not. As a consequence, we prove a
tight bound for the descriptional complexity of 2D texts compressed via SLP.
Finally, we observe that the Pattern Matching Problem for texts expressed by
the literal shuffle of compressed words is NP-complete. However, we present a
parameter-tractable algorithm for this problem, working in polynomial time

whenever the length of the pattern is polynomially related to that of the text.

1 Introduction

Straight-line programs (SLP) are a widely accepted representation of com-
pressed texts (see, for instance, [16, 13, 12, 11]). A SLP is a grammar in Chom-
sky Normal Form generating only one word; the grammar can be seen as a
compressed representation of the word. Such a representation suggests a nat-
ural measure of descriptional complexity for a word, consisting of the SLP of
smallest size that generates it. The compression rate of SLPs is comparable to
that of Lempel-Ziv factorization. Indeed, given the LZ-encoding of a word, it is
possible to obtain a SLP of the same compressed size, up to a log factor, that
generates the same word ([17]).

Since the output size of these compression techniques could be logarithmic
with respect to the length of the generated word, it is useful to design algorithms
for problems on compressed texts without full unpacking. Generally, in this con-
text, grammar compression is more convenient than LZ-factorization. For some
problems, such as Equality and Pattern Matching with grammar compressed
words as input, polynomial time algorithms have been found ([15, 9]); for other
problems, the compressed version becomes NP-hard (for instance, computing
Hamming distance, as proved in [9]).

In this work, we consider some operations on strings and study the problem of
implementing such operations in compressed representations. In particular, we
consider the rational transformations and the literal shuffle. The literal shuffle
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ing, Volume 273; Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello,
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consists of merging two words of equal length from left to right alternating ex-
actly one symbol of the first word and one of the second (for example the literal
shuffle of “lug” and “one” is “lounge”). The “inverse operation” R (L) consists
of selecting the subword composed by the symbols in odd (even, respectively)
position in the input word.

These operations play an important role in Cooley-Tukey Algorithm for the
fast computation of the Discrete Fourier Transform [3]. This technique is based
on a Divide and Conquer strategy which recursively breaks up a string by using
R and L operations, while the merging phase consists of applying the literal
shuffle to the partial solutions. A natural question is whether it is possible to
apply this technique in a compressed context, that is, to execute efficiently R,
L and the literal shuffle on grammar compressed strings.

First of all, we prove that rational transformations preserve the compression
rate, while, in general, this does not hold for literal shuffle. This fact is proved
by exploiting a construction that relates the circuital complexity of boolean
functions with the descriptional complexity defined in terms of SLPs.

This result is then applied to compressed pictures. 2D-texts can be com-
pressed by using a 2D version of SLPs. The structure of 2D SLPs is more
complex than that of SLPs. Indeed, it is known that, while factors of logarith-
mically compressible words are still logarithmically compressible, this does not
hold for 2D texts. In particular, there exists an infinite number of logarith-
mically compressible pictures having at least one section (row or column) not
logarithmically compressible ([2]). We obtain a bound for the descriptional com-
plexity of the sections of a compressed picture which depends on their position
in the picture. Such a bound is proved to be tight, in some sense.

Finally, we study the problem of deciding whether a word is a factor of a
text, where both the word and the text are represented by the literal shuffle of
compressed words given as input. We prove that the problem is NP-complete
also if the word to be searched for is 11. However, we present an algorithm
working in polynomial time whenever the length of the pattern is polynomially
related to that of the text.

2 Preliminaries

Given a word w ∈ Σ∗, we denote by w[i] the i-th symbol of w and by w[i, j]
the factor w[i] · · ·w[j] of w, where 1 ≤ i ≤ j ≤ |w|. We call Fact (w) the set of
the factors of w.

For the sake of simplicity, in the following we consider Σ = {0, 1}; given
a word x ∈ {0, 1}n, b(x) is the base-2 integer whose binary representation is
x and, with an abuse of notation, we intend x as the vector of components
b(x[1]), . . . , b(x[n]). By 0 (1), we denote a vector whose components are all 0
(1, respectively); its dimension is specified only in the case of ambiguity. Given
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two vectors a = (a1, . . . , an) and b = (b1, . . . , bm), we denote by a � b the
concatenation (a1, . . . , an, b1, . . . , bm) and, if n = m, by a · b the sum

∑

i aibi.

2.1 Straight-Line Programs

A straight-line program (SLP) is a sequence of labelled instructions of the form

X1 = 0, X2 = 1, Xk = XiXj 0 < i, j < k, k = 3, . . . , n.

The output of a SLP Φ is the word generated by performing all the concatena-
tions from X3 to Xn and is denoted by eval(Φ), while we write evalΦ(Xk) for the
word obtained by performing the first k concatenations in Φ. The number n of
instructions in Φ is called its size and is denoted by |Φ|. For every w ∈ {0, 1}∗,
as descriptional complexity of w we consider the size g(w) of the smallest SLP
generating w.

Since the computational complexity of a word can be logarithmic with respect
of its size, many classical problems on words are studied in their compressed
version, that is, considering SLPs as input instead of words.

For instance, the input of the compressed version of Equality is a pair (Φ, Ψ)
of straight-line programs and the question is to decide whether eval(Φ) =
eval(Ψ). Analogously, the question of the compressed version of Pattern Match-
ing is to decide whether eval(Ψ) is a factor of eval(Φ). The first result in this
direction is in [15] where a polynomial time algorithm for Equality is shown,
while the best algorithm for Compressed Pattern Matching is presented in [9].

2.2 Lempel-Ziv Factorization

The LZ-factorization of a word w is a decomposition f1 · · · fk = w, where
f1 = w[1] and fi+1 is the shortest factor not appearing in f1 · · · fi. We call
LZ-factors of w the factors appearing in its LZ-factorization. The LZ-encoding
of w is the sequence LZ(w) = (f1, . . . , fk), where every LZ-factor fi = w[a, b]
is exclusively expressed by a and b. LZ-encoding gives a very efficient lossless
compression technique, used in several compression standards ([8, 7]).

The size of LZ(w) is the number of its LZ-factors and is denoted by |LZ(w)|.
In [17] it is shown that g(w) ≥ |LZ(w)| and g(w) = O(|LZ(w)| × log |w|)
for every w. Moreover, we give a simple lower bound for the size of a LZ-
factorization:

Lemma 1. For every w ∈ {0, 1}∗, |LZ(w)| ≥ |Fact (w) ∩ 10∗1|.
Proof. The LZ-factorization of w contains a LZ-factor for each first occurrence
of 10t1 with different t. Indeed, if we scan w from left to right and run into a
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factor 10t1 for the first time, then two cases are possible: either we already ran
into a sequence of zeros of length s > t, and then a new LZ-factor necessarily
starts immediately after 10t1 in w, or the longest sequence of zeros has length
s < t, then a new LZ-factor starts from the (s + 1)th zero of 10t1. ��

3 Rational Transformations and SLPs

In this section we study rational transformations of compressed words. First,
we recall the notion of deterministic rational transducer, defining from word to
word rational transformations. Then we prove that rational transformations on
compressed words preserve the compression rate.

A deterministic rational transducer is a 5-tuple A = (Σ, Γ, Q, q0, δ), where Σ
is the input alphabet, Γ is the output alphabet, Q is the set of states, q0 ∈ Q is
the initial state and δ = (δQ, δΓ ) is the transition function, with δQ : Q×Σ → Q
and δΓ : Q × Σ → Γ ∗. We denote (δQ(q, σ), δΓ (q, σ)) as δ(q, σ).

The extension of δQ to Σ∗ is similar to the case of finite state automata,
we set δ∗Q(q, ε) = q and δ∗Q(q, wσ) = δQ(δ∗Q(q, w), σ) for every w ∈ Σ∗. The
extension of δΓ is different: we set δ∗Γ (q, ε) = ε, and

δ∗Γ (q, wσ) = δ∗Γ (q, w)δΓ (δ∗Q(q, w), σ),

where w ∈ Σ∗. The rational transformation applied by A to a word w ∈ Σ∗ is
the word A(w) = δ∗Γ (q0, w).

To our aim, we consider the set S = {w | δΓ (q, σ) = w, q ∈ Q, σ ∈ Σ}
and define the size of A as |A| = |Q| +

∑

w∈S |w|. Hence, in the context of
compressed words, we introduce the following problem:

Problem: Compressed Rational Transformation (CRT)
Instance: A deterministic rational transducer A and a SLP Φ;
Question: A SLP generating A(eval(Φ)).

The CRT problem can be solved in polynomial time, as stated in the following

Theorem 1. Given a rational transducer A and a SLP Φ, there is a O(|A|×|Φ|)
algorithm for the CRT problem with input A and Φ.

Proof. Let A = (Σ, Γ, Q, q0, δ) and n = |Φ|. We first compute a table T with
entries (Xk, q) with Xk ∈ Φ and q ∈ Q, such that T (Xk, q) = δ∗Q(q, evalΦ(Xk)).
The table T can be computed in time O(|Q| × |Φ|) by giving an order to the
pairs (Xk, qi) which preserves the order in Φ and then, for every instruction
Xk = XiXj and every q ∈ Q, computing the entry T (Xk, q) as T (Xj, T (Xi, q)).
If Xk = σ, then T (Xk, q) = δQ(q, σ).

We obtain a new SLP Ψ by translating each variable Xk of Φ in |Q| variables
X(k, q) of the form
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X(k, q) =
{

X(i, q) X(j, T (Xi, q)) if Xk = XiXj ,
Ψ(q, σ) if Xk = σ, σ ∈ Σ,

where Ψ(q, σ) is a SLP such that eval(Ψ(q, σ)) = δΓ (q, σ). By setting X(n, q0)
as the last variable of Ψ , we have evalΨ (X(n, q0)) = A(eval(Φ)) by construction.
Every Ψ(q, σ) has size at most |δΓ (q, σ)|, hence |Ψ | = O(|A| × |Φ|). ��
A straightforward consequence of Theorem 1 is that the compression properties
of SLPs are preserved by rational transformations.

Corollary 1. Let A be a fixed rational transducer. Then, g(A(w)) = O(g(w))
for every w ∈ Σ∗.

Example 1. Consider the following rational transducer

A = ({0, 1}, {0, 1}, {q0, q1, q2}, q0, δ),

where δ(q0, 0) = (q1, ε), δ(q1, 0) = δ(q1, 1) = δ(q2, 0) = (q0, 0), δ(q0, 1) = (q2, ε)
and δ(q2, 1) = (q0, 1).

��
�������	q1

0,1|0
��
�������	q0

0|ε
��

1|ε
�� �������	q2

0|0��

1|1

��

Such a transducer reads the symbols of a word in {0, 1}∗ two by two, and writes
1 for 11 and 0 for 00, 01 and 10.

Let Φ = (X1 = 0, X1 = 1, [Xk = Xk−1Xk−2]k∈[2..6]) be the SLP that
generates the 6th Fibonacci word eval(Φ) = 10110101. Applying the algo-
rithm of Th. 1, we obtain the (opportunely simplified) straight-line program
Ψ = (X1 = 0, X2 = 1, X3 = X1X1, X4 = X1X2, X5 = X4X3), which generates
the word 0100.

4 Lohrey Strings

In this section we recall a construction due to Lohrey ([10]), useful for study the
computational complexity of some compressed word problems. The SubsetSum

problem consists in deciding, given as input a vector w of integers and a target
integer t, if there is at least one selection of entries in w whose sum is t. It can
be formally defined as

Problem: Subset Sum (SubsetSum)
Instance: w ∈ Nn, t ∈ N;
Question: does there exist x ∈ {0, 1}n such that x · w = t?

It is a well known NP-complete problem and its counting version, consisting in
defining the cardinality of the set {x ∈ {0, 1}n | x · w = t}, is 	P -complete. In
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the context of straight-line programs, it has been used to prove that computing
the Hamming distance of two compressed words is a 	P -complete problem ([9]).
The proof makes use of the so called Lohrey strings [10], couples of words repre-
senting instances of SubsetSum problem that have an exponential compression
rate.

Let I = (w, t) be an instance of SubsetSum, with w ∈ Nn and define
s = 1 · w. The Lohrey strings of I are the two words

ξ(I) = (0t10s−t)2
n

ξ′(I) =
∏

x∈{0,1}n

b(x)=0..2n−1

(0x·w10s−x·w)

of length (s+1)2n. Informally, ξ(I) encodes t by 2n blocks of length s+1 made
of zeros in all places except in the (t + 1)-th. On the other hand, ξ′(I) encodes
the sums of all the possible subsets of w by setting to 1 the only bit in position
x · w in the x-th block, for every x ∈ {0, 1}n.

The relevance of Lohrey strings is depicted by the following

Lemma 2. Let I = (w, t) be an instance of SubsetSum with w ∈ Nn. Then,
g(ξ(I)), g(ξ′(I)) = nO(1).

Proof. This lemma is a special case of Theorem 6 in [10]. ��

5 Literal Shuffle of Compressed Words

In this section we consider the operations of bitwise AND and literal shuffle
between words. Let x, y ∈ {0, 1}n, with n > 0; the bitwise AND x ∧ y is
(x ∧ y)[i] = x[i] ∧ y[i] for i = 1, . . . , n, while the literal shuffle ([1]) of x and y
is defined as

x

∃

y = x[1]y[1]x[2]y[2] · · ·x[n]y[n],

Its ”inverse operations” are L and R, where, for a word w ∈ {0, 1}2n,

L(w) = w[1]w[3] · · ·w[2n − 1], R(w) = w[2]w[4] · · ·w[2n].

Operations L, R and ∃ play an important role in many algorithms (such as Fast
Fourier Transform for analysis and compression of digital signals) and it would
be interesting to work using these operations in a compressed representation.
L and R preserve the compression rate, since it is easy to construct the de-
terministic rational transducers implementing such operations. Unfortunately,
this does not hold for the literal shuffle, as proved in this section.

First of all, we prove a technical lemma that allows to transform constructions
using boolean circuits into constructions using SLPs.

Lemma 3. Let C be a circuit computing the boolean function f(x) in the vari-
ables x1, . . . , xn. Then, there exist two SLP Φ and Ψ such that
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– |Φ| , |Ψ | = |C|O(1);
– |eval(Φ)| = |eval(Ψ)| = 2n+m, with m = nO(1);
– f(x) = 1 =⇒ ∃!z ∈ {0, 1}m | eval(Φ)[b(xz)] = eval(Ψ)[b(xz)] = 1;
– f(x) = 0 =⇒ ∀z ∈ {0, 1}m | eval(Φ)[b(xz)] ∧ eval(Ψ)[b(xz)] = 0;

Proof. Without loss of generality, suppose C is built using NAND gates. Then,
it is easy to construct a 3-CNF formula φ for f with O(|C| + n) variables and
clauses by adding the boolean variables y1, . . . , y|C| to the initial x1, . . . , xn. Let
yk represent the output of a gate k in C and let a and b be its inputs. Then, φ
contains the clauses defining yk = a ∧ b. Moreover, it contains further clauses
for y|C| = 1, being y|C| the output of the circuit.

In this construction, if f(x) = 1 then there exists a unique y such that
φ(x, y) = 1, whereas if f(x) = 0 then φ(x, y) = 0 for all y.

By using a minor variant of the reduction from 3-Sat to SubsetSum (see, for
example, [6] and [4, pag. 223]), we can reduce φ(x, y) to an instance In(α, β, γ; t)
of SubsetSum, with

∣

∣γ
∣

∣ = nO(1), such that

– φ(x, y) = 1 implies ∃!w such that x · α + y · β + w · γ = t;
– φ(x, y) = 0 implies x · α + y · β + w · γ �= t for every w.

Let now ξ(In) and ξ′(In) be the Lohrey strings associated with the instance
In(α, β, γ; t). Then, we have two words of length 2n+m+|γ| such that

– f(x) = 1 =⇒ ∃!z ∈ {0, 1}m+|γ| | ξ(In)[b(xz)] = ξ′(In)[b(xz)] = 1;
– f(x) = 0 =⇒ ∀z ∈ {0, 1}m+|γ| | ξ(In)[b(xz)] ∧ ξ′(In)[b(xz)] = 0;

By Lemma 2, g(ξ(In)), g(ξ′(In)) = nO(1). ��
Now, we are able to prove the main result of this section:

Theorem 2. For all n > 0, there exist two words wn and w′
n of equal length

such that g(wn), g(w′
n) = nO(1) and g(wn ∧ w′

n) = Ω(2n/2).

Proof. Let C be the circuit computing the boolean function

f(x, y) =
{

1 if b(x) = b(y)2

0 if b(x) �= b(y)2

A circuit C for f can be realized with O(|x|2) variables and O(|x|2) 3-clauses
by iterated sums.

Consider the instance In(α, β, γ; t) of SubsetSum defined for C as in Lem-
ma 3, fix the representation q(s) of the sth perfect square s2 and let z(s) be the
unique string such that q(s) · α + z(s) · (β � γ) = t. Let now ξ(n) and ξ′(n) be
the Lohrey strings associated with In and let be ξ = ξ(n) ∧ ξ′(n). The position
ts of the sth 1 in ξ is equal to b(q(s)z(s)). Since z(s) is unique, we have

s22M ≤ ts < s22M + 2M ,

where M = |z(s)|. It follows that
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s2M+1 ≤ ts+1 − ts < (s + 1)2M+1.

This implies that ts+1− ts �= tj+1− tj whenever s �= j. As a consequence, fixing
ŝ = max{s | s2 < 2n}, it holds

|Fact (ξ) ∩ 10∗1| =
∣

∣{10ts+1−ts1 | 1 ≤ s ≤ ŝ}∣∣ = ŝ ≥ 2n/2 − 1.

By Lemma 1, we have |LZ(ξ)| ≥ |Fact (ξ) ∩ 10∗1|. Hence g(ξ) = Ω(2n/2), while
g(ξ(n)), g(ξ′(n)) = nO(1) by Lemma 2. ��
In Example 1, we have a rational transducer A such that A(x ∃

y) = x ∧ y.
Hence, by exploiting Theorem 1, the previous result can be extended to the
literal shuffle of words.

Corollary 2. For all n > 0, there exist two words wn and w′
n of equal length

such that g(wn), g(w′
n) = nO(1) and g(wn

∃
w′

n) = Ω(2n/2).

5.1 Picture Straight-Line Programs

A natural representation of 2D texts can be obtained by using a 2D extension
of SLPs. Informally, a binary picture of width M and height N is a matrix
T ∈ {0, 1}N×M . We refer to the rows and columns of a picture as its sections.
A 2D-SLP of size n is a sequence of labelled instructions of the form

Xk = 1 | 0 | Xi � Xj | Xi � Xj, 0 < i, j < k k = 1, . . . , n.

The operator � is the horizontal concatenation between two pictures of equal
height, while � is the vertical concatenation of two pictures of equal width. The
output of a 2D-SLP Φ is a binary picture T = eval(Φ), obtained performing all
the concatenations in Φ; the descriptional complexity g(T ) of a picture T is the
size of the smallest 2D-SLP generating T .

The structure of 2D-SLPs is more complex than that of SLPs. In particular,
while the factors of logarithmically compressible words are still logarithmically
compressible, an analogous property does not hold for subpictures of pictures.
For instance, in [2] it is proved that, for each n, there exists a picture Tn with
g(Tn) = n having at least one section wn with g(wn) = 2Ω(n).

Here, we prove a stronger result on the sections of compressed pictures.

Theorem 3. Let T be a N ×M picture and let ci be its i-th column and rj its
j-th row. Then, g(ci) ≤ g(T )×min{i, M − i} and g(rj) ≤ g(T )×min{j, N − j}.
Proof. Let Φ = (X1, . . . , Xn) be a 2D-SLP such that eval(Φ) = T . Then, we
construct a SLP Φs for the sth column of T in the following way. Without loss
of generality, suppose that s < �M/2� and, for each variable Xk of Φ, define s
variables of the form
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Xk(s) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

σ if Xk = σ;
Xi(s)Xj(s) if Xk = Xi � Xj;
Xi(s) if Xk = Xi � Xj and s ≤ |Xi| ;
Xj(s − |Xi|) if Xk = Xi � Xj and s > |Xi| .

Then, |Φs| = s × |Φ| and evalΦs(Xn(s)) is the sth column of T . The technique
can be easily adapted for the columns of position grater that �M/2� and for all
the rows of T . ��

The previous result gives an upper bound for the compression rate of the
sections of a picture. However, we would ask how much strict is this bound.
Next theorem proves that the bound is, in some sense, optimal.

Theorem 4. There exists an infinite number of pictures {Tn}n∈N such that, for
each column ci of Tn in position i, it holds g(ci) = (g(Tn)×min{i, M − i})Ω(1).

Proof. Consider the Lohrey strings ξ(n), ξ′(n) related with the instance of Sub-

setSum in the proof of Th. 2 and let l = |ξ(n)| = |ξ′(n)|. By Lemma 2,
we have two polynomial size SLPs Φ and Φ′ such that eval(Φ) = ξ(n) and
eval(Φ′) = ξ′(n). Moreover, let Zi be the 2i × 2i−1 picture containing all zeros.
For i = 1, . . . , k, all the Zi can be compressed by a SLP of size O(k). Then, we
can construct a polynomial size SLP for the picture T described recursively by

X1 = ξ(n) � ξ′(n);
Xi+1 = (Zi � Xi) � (Xi � Zi), i = 1, . . . , 2n.

In this way, we obtain a picture T of size 22n+1 × (l + 22n − 1) of the form
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 · · · · · · · · · · · · 0 a1 a2 · · · al

: · · · · · · · · · · · · 0 b1 b2 · · · bl

: · · · · · · · · · 0 a1 a2 · · · al 0
: · · · · · · · · · 0 b1 b2 · · · bl 0
: · · · · · · 0 a1 a2 · · · al 0 :
: · · · · · · 0 b1 b2 · · · bl 0 :

0 · · · . .
.

. .
.

. .
.

. .
.

. .
.

. .
.

: :
a1 a2 · · · al 0 · · · · · · · · · · · · 0
b1 b2 · · · bl 0 · · · · · · · · · · · · 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

with ξ(n) = a1 · · · al and ξ′(n) = b1 · · · bl. Clearly, g(T ) = nΘ(1). Note that
every column ci of T in position i such that l ≤ i < 22n contains all zeros
except a factor ξ(n) ∃ ξ′(n). So, g(ci) = nΘ(1) g(ξ(n) ∃ ξ′(n)) = (n2n)Θ(1).

The cases 1 ≤ i < l and 22n ≤ i < 22n + l are symmetric, so we focus
on the former. In this case, only the prefix pi = (ξ(n) ∃ ξ′(n))[1, 2i] appears
at the end of ci, while the rest of the column is all zeros. By Corollary 1,
O(g(pi)) = g(ξ[1, 2i]), where ξ = ξ(n) ∧ ξ′(n). The structure of ξ is such that

g(ξ[1, 2i]) ≥ |Fact (ξ[1, 2i]) ∩ 10∗1| = Ω(
√

i).
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Hence, again g(ci) = (ni)Ω(1). ��
Obviously, the same result holds for the case of rows of pictures.

6 Pattern Matching and Literal Shuffle

In this section, we represent a word w = eval(Φ) ∃ eval(Ψ) by means of the pair
(Φ, Ψ) with size |Φ| + |Ψ | and study the compressed pattern matching problem
in this representation. More formally, the problem can be stated as

Problem: Compressed Pattern Matching with ∃ (CPM ∃ )
Instance: Four SLPs Φ, Ψ, Φ′, Ψ ′, such that

|eval(Φ)| = |eval(Φ′)| and |eval(Ψ)| = |eval(Ψ ′)|;
Question: is eval(Ψ) ∃ eval(Ψ ′) a factor of eval(Φ) ∃ eval(Φ′)?

It can be easily observed that CPM ∃ is reducible to the Compressed Pattern
Matching for pictures composed by two lines. So, it appears more difficult than
Compressed Pattern Matching for words, solvable in polynomial time ([9]), but
easier than Compressed Pattern Matching for pictures, which is ΣP

2 -complete
([2]).

CPM ∃ is clearly in NP . Moreover, it is NP -complete even if the pattern is
the string 11.

Theorem 5. The problem of deciding, given two SLPs Φ and Φ′, whether 11 is
a factor of eval(Φ) ∃ eval(Φ′) is NP -hard.

Proof. By reduction to SubsetSum. Let ξ(I) and ξ′(I) be the Lohrey strings
associated with an instance I of SubsetSum and let Φ and Φ′ be the as-
sociated SLPs of smallest size. Then, define a deterministic rational trans-
ducer A such that A(x) = 0x[1]0x[2] · · · 0x[|x|], for every word x. By Th. 1,
g(A(x)) = O(g(x)). Moreover, A(eval(Φ)) ∃ A(eval(Φ′)) contains the factor 11
if and only if the instance I of SubsetSum admits a solution. ��

Despite this hardness result, we exhibit an algorithm for CPM ∃ working in
polynomial time if the length of the pattern is polynomially related with that
of the text.

We recall some notation about SLPs used in [9]. The positions 0 and n in a
word w ∈ Σn are the points immediately before w[1] and after w[n], respectively,
while a position i, with 1 ≤ i < n is the point between w[i] and w[i + 1]. A
factor w[i, j] touches a position k in w if i − 1 ≤ k ≤ j. Given a nonterminal
symbol Xk in a SLP Φ such that Xk = XiXj , its cut position is |evalΦ(Xi)|.

Finally, by the triple of nonnegative integers (p, d, r) we codify the arith-
metical progression {p, p + d, p + 2d, . . . , p + rd} and recall the following result.

Lemma 4. Let (p, d, r) and (p′, d′, r′) be two arithmetical progressions, where
p, d, r, p′, d′, r′ are n-bits integers. Then, deciding if their intersection is empty
requires O(n2) time.
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Proof. The problem of deciding if (p, d, r) ∩ (p′, d′, r′) is the empty set consists
of verifying the existence of two integers x, y such that

1. p + dx = p′ + d′y;
2. 0 ≤ x ≤ r and 0 ≤ y ≤ r′.

Such equations are equivalent to the diophantine equation Ax−By = C, where
c = MCD(d, d′, p′ − p) and A = d/c, B = d′/c, C = (p′ − p)/c.

If MCD(A, B) > 1, then the previous equation has no solution and (p, d, r)∩
(p′, d′, r′) = ∅. Otherwise, one solution (x0, y0) can be obtained by computing
the (h − 1)th convergent, where h is the number of terms in the continued
fraction for A/B ([14]).

All the other solutions are of the form x = c(x0 + kB), y = c(y0 + kA). By
setting

k = min{k | 0 ≤ c(x0 + kB)},
k = max{k | c(x0 + kB) ≤ r},
k′ = min{k | 0 ≤ c(y0 + kA)},
k
′
= max{k | c(y0 + kA) ≤ r},

one can conclude that (p, d, r) ∩ (p′, d′, r′) �= ∅ if and only if [k, k] ∩ [k′, k
′
] �= ∅.

The most expensive task in this process is the computation of the convergent
of a fraction of two n-bits integers, which takes O(n2) time. ��

Many compressed pattern matching algorithms are based on the following
([5])

Lemma 5. Given two words w and v, all the occurrences of v in w touching a
fixed position form a single arithmetical progression.

Some compressed pattern matching algorithms use as a data structure the so
called AP -table, which we recall in a simplified version. Given two SLPs Φ and
Ψ , the AP -table for Φ and Ψ is a vector where, for every symbol Xk in Φ, the
k-th entry is the (possibly empty) arithmetical progression (p[Xk], d[Xk], r[Xk])
identifying the starting positions of the occurrences of eval(Ψ) that touch the
cut position of Xk. The AP -table for Φ and Ψ is computable in time O(|Φ|3×|Ψ |)
([9]).

Given a SLP Φ having variables X1, . . . , Xn, consider the following partial
function t : {X1, . . . , Xn} −→ {X1, . . . , Xn}, such that

t(Xk) =

⎧

⎨

⎩

Xi if Xk = XiXj and |evalΦ(Xi)| ≥ |evalΦ(Xk)| /2,
Xj if Xk = XiXj and |evalΦ(Xi)| < |evalΦ(Xk)| /2,
⊥ otherwise.

Now, select the path z1, . . . , zj in the derivation tree of eval(Φ), defined as
z1 = Xn, zi+1 = t(zi) for 1 ≤ i < j, where zj is the first occurrence of ⊥. Then,
this path identifies a sequence of factors f1, . . . , fj of eval(Φ), each of which is



98 A. Bertoni, C. Choffrut, R. Radicioni

a prefix or a suffix of its predecessor. Hence, their starting positions g1, . . . , gj

can be computed in time O(|Φ|2).
Now, suppose that |eval(Ψ)| > |eval(Φ)| /2. Then, the possible starting posi-

tions of eval(Ψ) in eval(Φ) are the elements defined in the arithmetical progres-
sions

ari(Φ, Ψ) = (gi + p[zi], d[zi], r[zi]), for i = 1, . . . , j.

Theorem 6. Let Φ, Ψ , Φ′ and Ψ ′ be four SLPs such that |eval(Φ)| = |eval(Φ′)| =
N and |eval(Ψ)| = |eval(Ψ ′)| = M . Then, the CPM ∃ problem can be solved in
time O(Nn4/M), where n = |Φ| + |Ψ | + |Φ′| + |Ψ ′|.
Proof. Suppose that N < 2M . Then,

eval(Ψ) ∃ eval(Ψ ′) ∈ Fact (eval(Φ) ∃ eval(Φ′))

if and only if, for some integers i, s, at least one of the following facts hold:

– ari(Φ, Ψ) ∩ ars(Φ′, Ψ ′) �= ∅;
– ari(Φ′, Ψ) ∩ ar′s(Φ, Ψ ′) �= ∅;
where ar′s(Φ, Ψ ′) is ars(Φ, Ψ ′) left-shifted by one, i.e., if ars(Φ, Ψ ′) = (g+p, d, r),
then ar′s(Φ, Ψ ′) = (g +p−1, d, r). By Lemma 4, non-emptiness of each intersec-
tion can be verified in O(n2) time and, since i and s range over [1, n], we can
solve the problem in time O(n4).

If, on the contrary, N ≥ 2M , then, for 0 ≤ i ≤ 2N/M − 2, we construct the
SLPs Φi, such that

eval(Φi) = eval(Φ)[i�M/2�+ 1, min{N, (i + 3)�M/2�}]

and we do the same for Φ′. This construction requires O(n2N/M) time and
guarantees that the following sentences are equivalent:

1. The word eval(Ψ) ∃ eval(Ψ ′) is a factor of eval(Φ) ∃ eval(Φ′).
2. There exists k (0 ≤ k ≤ N − M) such that at least one of these facts hold:

– eval(Ψ) is a factor of eval(Φ) and eval(Ψ ′) is a factor of eval(Φ′), both
starting in position k;

– eval(Ψ) is the factor of eval(Φ′) starting in position k and eval(Ψ ′) is the
factor of eval(Φ) starting in position k + 1.

3. There exists i (0 ≤ i ≤ 2N/M − 2) such that eval(Ψ) ∃ eval(Ψ ′) is a factor of
eval(Φi)

∃ eval(Φ′
i).

Since |Φi| = |Φ′
i| < 2M , for every i, we can verify whether eval(Ψ) ∃ eval(Ψ ′) is

a factor of eval(Φi)

∃ eval(Φ′
i) in time O(n4). Hence, the problem is solvable in

time O(n4N/M). ��
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7 Conclusions

We investigated the possibility of performing rational transformations and the
literal shuffle of words compressed via SLPs, without full unpacking. We proved
that the last operation does not preserve the compression rate; hence, some tech-
niques like Cooley-Tukey algorithm for FFT can not be applied in a compressed
context. On the other hand, rational transformations can be performed without
fully uncompressing the SLPs in input.

These results lead to a deeper insight into the relations between SLPs for
words and SLPs for pictures. Indeed we showed that the descriptional complex-
ity of the sections of a picture can strongly depend on their distance from the
borders.

The literal shuffle has been finally exploited as a compressed representation of
pictures having two lines. The associated compressed pattern matching problem
lies in the half way between the same problems for compressed words and for
compressed pictures. We proposed a parameter-tractable algorithm working in
polynomial time, where the parameter is the ratio between the length of the
text and that of the pattern.

Acknowledgements We would like to thank Antonio Restivo for some useful discussions.
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Abstract. To every word w is associated a sequence Gw built by computing
at each position i the length of its longest palindromic suffix. This sequence
is then used to compute the palindromic defect of a finite word w defined by
D(w) = |w| + 1 − |Pal(w)| where Pal(w) is the set of its palindromic factors.
In this paper we exhibit some properties of this sequence and introduce the
problem of reconstructing a word from Gw. In particular we show that up to
a relabelling the solution is unique for 2-letter alphabets.

Key words: Palindromic complexity, defect, lacunas, reconstruction.

1 Introduction

Among the many ways of measuring the information content of a finite word,
counting the number of its distinct factors or subwords of given length has
been widely used and known as its complexity. A refinement of this notion
amounts to restrict the factors to palindromes. The motivations for the study
of palindromic complexity comes from many areas ranging from the study of
Schrödinger operators in physics [4, 7, 20] to number theory [6] and combina-
torics on words where it appears as a powerful tool for understanding the local
structure of words. It has been recently studied in various classes of infinite
words, an account of which may be found in the survey provided by Allouche
et al. [5].

In particular, the palindromic factors give an insight on the intrinsic struc-
ture, due to its connection with the usual complexity, of many classes of words.
For instance, they completely characterize Sturmian words [23], and for the
class of smooth words they provide a connection with the notion of recurrence
[12, 13].
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The problem of reconstructing words from partial information arise naturally.
We mention a few of them that have been solved for a fixed alphabet Σ:

Some set A of factors is fixed. Find the shortest words containing the set A of
all factors of given length k. This leads to the De Bruijn sequences [15, 17, 19]
whose construction uses a graph Gk where vertices are the given words of length
k, and where edges model the scanning of the word by a window of size k. The
solution is then obtained by computing all Eulerian cycles in the graph. It
is worth noting that finding the lexicographically smallest such word is much
easier: it is given by the lexicographic concatenation of Lyndon words on Σ
whose lengths are divisible by k (See Fredericksen et al. [18]).

Some set A is fixed along with some suitable hypothesis. Construct all words w
such that the set of its factors A = F (w). The technique used for this problem is
based on constructing a set of minimal forbidden words, that is the extensions
of words in A that do not belong to A [9]. That technique was also used in [11]
to construct words whose language of palindromes is a fixed set P . It turns out
that it is a rational language. Concerning multisets of subsequences, instead
of factors we mention a general result. If the set A contains sufficiently many
subsequences of length k, then the solution is unique [26]: indeed, for a word
w of lengh n > 7 and k ≥ [n/2] the subsequences uniquely determine w, and
for k < log2 n they do not. See also an interesting combinatorial approach
depending on the Burrows-Wheeler transform (See Mantaci et al. [25]).

Fixed complexity. The most famous example is that of Sturmian words (see
Lothaire [22] for a substantial review) which are characterized by the complexity
P (n) = n + 1 established by M. Morse [28]. Sturmian words are the discretiza-
tion of lines with irrational slopes, and they are easily constructed from the
continued fraction expansion corresponding to the irrational slope. The com-
plexity is therefore not enough to characterize completely a word. However, in
the case of the Thue-Morse complexity [10, 24], there are essentially only two
such words [1, 2].

In this paper we introduce the problem of reconstructing a word from sequences
describing its palindromic complexity. Droubay, Justin and Pirillo [16] noted
that the palindrome complexity |Pal(w)| of a word w is bounded by |w| + 1,
and observed that it is computed by a sequential algorithm listing the first
occurrences of longest palindromic suffixes, called unioccurrent in [16]. For our
study we need the following two auxiliary functions on words. Given a word of
length n, w : [0..(n − 1)] −→ Σ, we define two functions Gw, Hw : N −→ N by
Gw(i) = |LPS(w[0..i])| and

Hw(i) =
{

Gw(i) if it is the first occurrence of LPS(w[0..i])
0 otherwise (1)

We first exhibit some combinatorial properties of the palindromic factors in
words (Section 3) and use them in order to obtain properties of the sequences
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G and H (Section 4). Finally we study the problem of reconstructing words
from given sequences, and establish conditions for unicity on 2-letter alphabets.

2 Preliminaries

In what follows, Σ is a finite alphabet whose elements are called letters. By word
we mean a finite sequence of letters w : [0..(n − 1)] −→ Σ, where n ∈ N. The
length of w is |w| = n and w[i] or wi denote its i-th letter. The set of n-length
words over Σ is denoted Σn. By convention, the empty word is denoted ε and
its length is 0. The free monoid generated by Σ is defined by Σ∗ =

⋃

n≥0 Σn.
The set of right infinite words is denoted by Σω and we set Σ∞ = Σ∗ ∪Σω.

Given a word w ∈ Σ∞, a factor f of w is a word f ∈ Σ∗ satisfying

∃x ∈ Σ∗, ∃y ∈ Σ∞, w = xfy.

If x = ε (resp. y = ε ) then f is called prefix (resp. suffix). The set of all factors
of w is denoted by Fact(w), those of length n is Factn(w) = Fact(w) ∩Σn, and
Pref(w) is the set of all prefixes of w. The number of occurrences of a factor
f in w is denoted |w|f . A period of a word w is an integer p < |w| such that
w[i] = w[i + p], for all i < |w| − p. If w = pu, with |w| = n and |p| = k, then
p−1w = w[k..(n−1)] = u is the word obtained by erasing p. A word is said to be
primitive if it is not a power of another word. Two words u and v are conjugate
when there are words x, y such that u = xy and v = yx. The conjugacy class of
a word w is denoted by [w]; note that the length is invariant under conjugacy.
For a given word w of length n, any of its conjugates is obtained by cyclic
permutation, that is σi(w) = w[i..(n − 1)]w[0..(i − 1)].

The reversal of u = u0u1 · · ·un−1 ∈ Σn is the word ũ = un−1un−2 · · ·u0,
and a palindrome is a word p such that p = p̃ . Since every word contains
palindromes, the letters and ε being necessarily part of them, the set of its
palindromic factors is Pal(w), and its palindromic complexity is denoted by
|Pal(w)|. Conjugacy is an equivalence relation having numerous properties and
for our purpose we need the following one easily obtained by induction: let p
and q be two palindromes, then σi(pq) = p′q′, for some palindromes p′ and q′.
We start by quoting Lemma 1 of [8] in order to establish a useful combinatorial
property.

Lemma 1 (Blondin Massé et al. [8]) Assume that w = xy = yz. Then for
some u, v, and some i ≥ 0 we have from [21]

x = uv, y = (uv)iu, z = vu; (2)

and the following conditions are equivalent :

(i) x = z̃ ;
(ii) u and v are palindromes;
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(iii) w is a palindrome;
(iv) xyz is a palindrome.

Moreover, if one of the equivalent conditions above holds then

(v) y is a palindrome.

As a consequence we have the following proposition.

Proposition 1 Assume that w = xp = qz where p and q are palindromes
such that |q| > |x|. Then w has period |x| + |z|, and xz̃ is a product of two
palindromes.

Proof. Since |q| > |x|, there exists a non-empty word y such that q = xy and
p = yz. It follows that

w x̃ = q z x̃ = x y z x̃ = x p x̃ = x p̃ x̃ = x z̃ ỹ x̃ = x z̃ q̃ = x z̃ q.

Considering qzx̃ = xz̃q, we obtain from Equation (2) that |xz̃| is a period of
wx̃. From Lemma 1 (iii), there exist palindromes u, v such that xz̃ = uv. �	

In order to compute the palindromic complexity we need the function
LPS : Σ∗ −→ Σ∗ which associates to any word w its longest palindromic
suffix LPS(w).

Droubay, Justin and Pirillo [16] noted that the palindrome complexity
|Pal(w)| of a word w is bounded by |w| + 1, and that finite Sturmian (and
even episturmian) words realize the upper bound. Moreover they implicitly
show that the palindrome complexity is computed by an algorithm listing the
longest palindromic suffixes which amounts to compute for a word w the func-
tions Gw, Hw : N −→ N defined by

Gw(i) = |LPS(w[0..i])|;

Hw(i) =
{

Gw(i) if it is the first occurrence of LPS(w[0..i]);
0 otherwise.

We often omit the subscript w in Gw and Hw when the context is clear. As an
example let w = aababbaababaaabaab. Then we have the following table :

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
w a a b a b b a a b a b a a a b a a b

G 1 2 1 3 3 2 4 2 4 3 3 5 7 3 5 7 5 4
H 1 2 1 3 3 2 4 0 4 0 0 5 7 3 5 7 5 0

A position in the word w where H vanishes is called a lacuna in [8]. For instance
the set of lacunas for w in the example above is {7, 9, 10, 17}. Equivalent words,
that is words obtained by relabelling of the alphabet, have obviously the same
functions G and H . For instance, on the 2-letter alphabet {a, b}, we have Gw =
Gw and Hw = Hw, where ( ) is the morphism defined by a = b, b = a.
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The palindromic defect of a finite word w is defined in Brlek et al. [11] by
D(w) = |w|+1− |Pal(w)|, and words for which D(w) = 0, that is, such that H
does not vanish for any index are called full. In that paper it is also shown that
there exist periodic full words, and an optimal algorithm is provided to check if
an infinite periodic word is full or not. Moreover, a characterization by means
of a rational language is given for the language LP of words whose palindromic
factors belong to a fixed and finite set P of palindromes.

3 Properties of the functions G and H

First observe that a word w is full if and only if Gw = Hw. Now we describe
the shortest words having a fixed defect value d. For instance, on a 2-letter
alphabet, the shortest words having one lacuna, i.e. when d = 1, are

w1 = aababbaa, w2 = aabbabaa, w3 = bbabaabb and w4 = bbaababb.

Observe that this set is closed under reversal (w1 = w̃2; w3 = w̃4) and comple-
mentation (w1 = w3; w2 = w4). On the other hand, one of the shortest words
having two lacunas is the following.

i 0 1 2 3 4 5 6 7 8 9
w b a a b a b b a a b

G 1 1 2 4 3 3 2 4 2 4
H 1 1 2 4 3 3 2 4 0 0

The example above extends to the infinite periodic word W = (baab.ab)ω

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .

W b a a b a b b a a b a b b a a b a b . . .

G 1 1 2 4 3 3 2 4 2 4 3 3 2 4 2 4 3 3 . . .
H 1 1 2 4 3 3 2 4 0 0 0 0 0 0 0 0 0 0 . . .

where baab.ab is not the product of two palindromes, so that |Pal(W )| is finite
by virtue of a previous result (see Theorems 4 and 6 in [11]). More generally,
we have the following result.

Proposition 2 Let M(k, d) be the length of a shortest word on a k-letter al-
phabet Σ having defect d, we have :

M(k, d) =

⎧

⎨

⎩

8 if k = 2, d = 1,
d + 8 if k = 2, d ≥ 2,
d + k if k ≥ 3.

Proof. The first two cases follow from the observations above. For k ≥ 3, let
w be a word such that |w| = M(k, d). Since every letter occurs in w and w
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has defect value d, we have M(k, d) ≥ d+k. Now, consider the infinite periodic
word w = (α1α2 · · ·αk)ω, where αi is a letter. Observe that Pal(w) = Σ, so that
each prefix of length n ≥ k + 1 has defect value n − k. Hence M(k, d) = d + k
for k ≥ 3. �	
Lemma 2 Let w be a nonempty word, and let W = wω. Then we have

(i) Gw(0) = 1, and if Hw(i) = 1 then w[i] is the first occurrence of a letter;
(ii) if w = pq is primitive with p, q ∈ Pal(Σ∗) then limn−→∞ GW (n) = ∞;
(iii) if w is not the product of two palindromes then GW is eventually periodic.

Proof. (i) Obvious. (ii) In this case by Theorem 4 of [11] the palindromic lan-
guage of W is infinite. Since for all k ≥ 0, (pq)kp is a palindromic prefix of
W , there are infinitely many palindromic prefixes of W . Moreover, we have
GW (i) = GW (i − |w|) + |w| for i ≥ 2|w|.

(iii) Here again by Theorem 4 of [11], the palindromic language of W is
finite. Therefore, let u be the shortest prefix of W containing all the palin-
dromes, and let k be the smallest integer such that u ∈ Pref(wk) then we have
GW (i) = GW (i + k|w|). �	

Examples. Let W = (abc)ω, whose palindromic language is P = {a, b, c} taken
from [11] (Section 3). Then we have the following values for G and H :

i 0 1 2 3 4 5 6 7 8
W a b c a b c a b c . . .
G 1 1 1 1 1 1 1 1 1 . . .

H 1 1 1 0 0 0 0 0 0 . . .

Here are some typical periodic words with their characteristic functions:

W GW

an [1, 2, 3, 4, 5, · · · ]
a.bn [1, 1, 2, 3, 4, 5, · · · ]

(ab)n [1, 1, 3, 3, 5, 5, 7, 7, 9, 9, · · · , (2n + 1), (2n + 1), · · · ]

Moreover they are all full, since G and H coincide.

Another periodic example illustrating Lemma 2 (ii) is W = (aba.cbc)ω. Its
palindromic language is infinite and W has infinitely many palindromic pre-
fixes, and we have

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
W a b a c b c a b a a b a c b c a b a c b c . . .

H 1 1 3 1 0 3 5 7 9 5 7 9 11 13 15 11 13 15 17 19 21 . . .

Observe also that there are non periodic words U such that GU is periodic.
Indeed, take any nonperiodic word, for instance the Fibonacci word defined as
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F = ϕω(a) = abaababaabaabab · · · , where ϕ(a) = ab; ϕ(b) = a.

Define the morphism θ : {a, b} −→ {a, b, c, d}∗ by a �→ abcd; b �→ acbd. Then
the word W = θ(F ) is nonperiodic, but GW = (1111)ω. Nevertheless we have
the following result showing a local periodical behaviour.

Lemma 3 Let w ∈ Σ∗. If there exists i such that G(i) = G(i + k) = l, with
l ≥ k, then the factor f = w[(i − l + 1)..(i + k)] has period 2k, and any factor
of length 2k of f is the product of two palindromes.

Proof. Assume that q and p are the longest palindromic suffixes of length l at
positions respectively i and i + k. Then there exist x and z such that f = qz =
xp. In the case l = k, we have f = qp and the claim is true. If l > k there exists
a non-empty word y such that q = xy and p = yz. It follows from Proposition
1 that 2|x| is a period of f , and xz̃ is a product of two palindromes. Therefore,
any factor of length 2k is the product of two palindromes since it is a conjugate
of xz̃. �	

The function G satisfies the following properties

Proposition 3 For any finite word w ∈ Σ∗, the following properties hold :

(i) G(i) ≤ max{|p| : p ∈ Pal(w[0..i])} ≤ i + 1
(ii) G(j) ≤ G(i) + 2(j − i), for all j ≥ i;
(iii) G(i+1) = G(i) =⇒ G(i) and G(i+1) are odd, and G(i+2) ∈ {G(i)+2, 2};
(iv) G(i + 1) = G(i) + 1 =⇒ LPS(w[0..i]) = αG(i)+1, for some α ∈ Σ;

Proof. (i) is obvious. (ii) First, note that G(i + 1) ≤ G(i) + 2 since the longest
palindromic suffix at position i+1 contains a palindrome of length G(i+1)− 2
ending at position i. The result follows by induction.

(iii) Follows from Lemma 3. (iv) Let p and q be the respective palindromes at
positions i and (i + 1). Then we have q = pα for some α ∈ Σ, and we conclude
by using Proposition 1. �	
Lemma 4 Let i ≤ k. If G(k) = G(i) + 2(k − i), then G(j) = G(i) + 2(j − i)
for all i ≤ j ≤ k.

Proof. G(k) − 2(k − j) ≤ G(j) ≤ G(i) + 2(j − i) and the left term is equal to

G(i) + 2(k − i) − 2(k − j) = G(i) + 2(j − i). �	

The next proposition is obtained by adapting the proof of Proposition 3.

Proposition 4 For any finite word w ∈ {a, b}∗, the function H satisfies

(i) H(i + 1) − H(i) ≤ 2 ;
(ii) H(i + 1) = H(i) =⇒ H(i + 1) and H(i) are both odd;
(iii) H(i) ≤ max{|p| : p ∈ Pal(w)};
(iv) if H([i..(i + k + 2)]) = [n, 0, · · · , 0, m] for some i, then m < n + 2k.
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4 Reverse engineering the functions G and H

Here we tackle the following problems. Given a (finite or infinite) sequence s
of integers, does there exist a word w such that Hw = s or Gw = s ? If such
a word w exists, under which conditions is it unique up to permutation of the
letters ?

We say that a finite/infinite sequence s is G-consistent (resp. H-consistent) on
Σ if there is at least one nonempty word w ∈ Σ∞ such that for all i, Gw(i) = s[i]
(resp. Hw(i) = s[i]). If there is only one such word (up to permutation of the
letters) then s is said to be unambiguous. A first simple result follows:

Proposition 5 Let Σ be an alphabet of at most 3 letters. Then any G-
consistent sequence on Σ is unambiguous.

Proof. Let s be a G-consistent sequence. We proceed by induction on the length
of s. Then s[0] = 1 so that the base of the induction is trivially satisfied by
choosing one letter in Σ. Assume that s[0..i] is unambiguous. Then there exist
a word w, such that Gw[0..i] = s[0..i]. Two cases arise:

(a) s[i + 1] > 1: we set w[i + 1] = w[i + 2 − s[i + 1]].
(b) s[i + 1] = 1: if |s|1 = 2 then |Σ| = 2, so that w[i + 1] ∈ Σ \ {w[0]}.

If |s|1 > 2 then |Σ| = 3 and we have to consider two cases:
- if |s[0..i]|1 = 2, then we set w[i + 1] to the remaining letter;
- if |s[0..i]|1 > 2, then w[0..i] = pγβkαl where Σ = {α, β, γ}, p ∈ Σ∗, and
k, l ≥ 1, and we set w[i + 1] = γ. �	

Observe that for larger alphabets, that is when |Σ| > 3, G-consistent se-
quences are not necessarily unambiguous, as shown in the following examples.

Example. Let Σ = {a, b, c, d} and consider the sequence s = [1, 1, 1, 3, 2, 1, 3, 5].
There is a unique word w[0..4] which is G-consistent with s[0..4] :

i 0 1 2 3 4 5 6 7
s 1 1 1 3 2 1 3 5
w a b c b b a b b

w′ a b c b b d b b

while two different words are consistent with s[0..5], a fact that follows from
Lemma 2(i).

One can easily see that the previous ambiguity is related with the presence of
more than three 1’s in the sequence s. However here is a word w having four
occurrences of 1, but uniquely determined by G as well.

Example. Let Σ = {a, b, c, d} and let s = [1, 1, 1, 3, 1, 3, 5, 7, 9]. There is a
unique word which is G-consistent with s:
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i 0 1 2 3 4 5 6 7 8
s 1 1 1 3 1 3 5 7 9
w a b c b d b c b a

The situation is clearly explained by the following statement

Proposition 6 Let s be a G-consistent sequence. If there exist two distinct
words w, w′ consistent with s, then there exists i such that Gw(i) = Gw′(i) = 1
and Hw(i) = 0 or Hw′(i) = 0.

Proof. Indeed, if s[i] = 1, then w[i] is either a new letter or, a previously
encountered letter such that the longest palindromic LPS(w[0..i]) is the letter
itself. �	

Consider now the same problem for the function H . Since the functions G and
H coincide for full words, we have immediately the next result.

Corollary 1 Any full word (thus any Sturmian word) is uniquely determined
by the function H.

So, the function Gw encodes all the information on w, but this is no longer
true for the function Hw. Indeed, there exist H-consistent sequences that are
not unambiguous as shown in the following example: consider the word w =
abbabbbabaabb. Then, we have

Hwa = Hwb = (1, 1, 2, 4, 3, 5, 3, 5, 7, 3, 2, 4, 0, 0) (3)

but wa �= wb.

Observe that the counterpart of Proposition 6 does not hold for the function H .
Indeed, every 1 in the sequence s = Hw corresponds necessarily to a new letter
in w. Consequently the presence of 1’s does not cause ambiguity, and |s|1 = |Σ|,
as shown below for a 5-letter alphabet {a, b, c, d, e}.

i 0 1 2 3 4 5 6 7 8
s 1 1 2 1 3 5 1 3 5
w a b b c b b e b b

w′ a b b d b b c b b

We point out that w and w′ are the same word up to a relabelling of the letters.

For words which are not full, the study of the H function is more complex.
However, there are some special conditions ensuring that an H-consistent se-
quence s on a given Σ is also unambiguous.

Proposition 7 Let s be an H-consistent sequence such that s = s1 0k m s2

with m �= 0, and s1 does not contain any 0. If m > 2k+1 then there is a unique
word w[ 0..(|s1| + k) ] such that Hw = s[ 0..(|s1| + k) ].
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The proof is similar to that of proof of Proposition 5. As an example, consider
the following H-consistent sequence on Σ = {a, b}

i 0 1 2 3 4 5 6 7 8 9 10 11
s 1 2 1 2 4 6 4 3 3 0 0 6
w a a b b a a b a b x y z

where s1 = [ 1, 2, 1, 2, 4, 6, 4, 3, 3] , m = 6, and k = 2. The last three elements of
w can be uniquely determined since the factor b a b x y z has to be a palindrome,
that is x = z = b, and y = a.

Note that the bound k on the length of a subsequence of 0’s in s given in
Proposition 5 does not depend on the cardinality of Σ. On the other hand,
observe that if |Σ | = 2 and k = 1 the sequence s is still uniquely determined.
For instance, consider the sequence s[0..12] = [1, 2, 1, 3, 3, 2, 4, 6, 5, 3, 5, 0, 3],
with Σ = {a, b}, and therefore m = 3:

i 0 1 2 3 4 5 6 7 8 9 10 11 12
s 1 2 1 3 3 2 4 6 5 3 5 0 3
w a a b a b b a b b b a a a

Here the cardinality of the alphabet allows only one possible choice of the letter
consistent with Hw(11) = 0, consequently m �> 2k + 1 = 3, but the word w is
uniquely determined as well.

4.1 Infinite words

In the case of infinite words, the situation is similar and ambiguous H can
also occur. We start by recalling some facts. From [8, 11], we know that, when
analyzing the defect and the lacunas of an infinite word, it can present

(a) an infinite palindromic complexity with a finite number of lacunas;
(b) a finite palindromic complexity with an infinite number of lacunas;
(c) both infinite palindromic complexity and number of lacunas.

In general, in none of the three cases the function H is unambiguous, as it
is shown in the following examples.

Case (a): consider two words U and V having the same prefix of length 23

u1 = a b b a a b b a b a b a a a a b a b b b b a a,

and such that U = u1 a ( a b )ω and V = u1 b ( b a )ω. The two sequences
HU ([0..22]) and HV ([0..22]) are equal since they share a common prefix. Now,
since the suffix parts of U and V starting at position 23 satisfy U [≥ 23] =
V [≥ 23], we have HU = HV . Since, both u and v are eventually periodic,
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and since their period is the product of two palindromes, the palindromic
complexity of both u and v is infinite. Finally, an easy check reveals that the
suffix sequence of the function H , for n > 2, is

HU ([≥ 23]) = (0, 0, 0, 0, 0, 0, 0, 7, 7, 9, 9, 11, 11, . . . , (2n + 3), (2n + 3), . . .).

Case (b): let w = abbabbbabaabb, already used in Equation (3), and consider
the words U and V defined as follows, by means of the word w:

U = w · ab · bbaaa · (baabba)ω ,

V = w · ba · bbaaa · (baabba)ω .

The sequences HU and HV coincide and are

HU = HV = (1, 1, 2, 4, 3, 5, 3, 5, 7, 3, 2, 4, 0, 0, 0, 0, 0, 0, 0, 3, 5, 0, 5, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, · · ·)

All the terms after position 22 are equal to 0 since the words U and V are
eventually periodic, with a period which is not the product of two palin-
dromes.

Case (c): finally, consider the words U and V defined as follows (using again
w = abbabbbabaabb):

U = w · ab · bbaaa · baab · baabba · (baab)2 · baabba . . . (baab)n · baabba . . .

V = w · ba · bbaaa · baab · baabba · (baab)2 · baabba . . . (baab)n · baabba . . . .

The sequences HU and HV coincide and their first terms are

HU = HV = (1, 1, 2, 4, 3, 5, 3, 5, 7, 3, 2, 4, 0, 0, 0, 0, 0, 0, 0, 3, 5, 0, 5, 0, 0, 0,
6, 8, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 10, 12, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 14, 16, 14, 16, 0, 0, . . .).

The two sequences have an infinite number of new palindromes since the
palindromic factor baab is repeated an increasing number of times at each
step. At the same time the set of lacunas is infinite since the factor baabba,
which is not the product of two palindromes, occurs infinitely many times.

5 Further work

The problem of reconstructing words from the functions G and H leads to many
interesting developments, some of them requiring a deeper analysis in order to
produce efficient decision algorithms.
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Consistency. Deciding if a given finite sequence s of numbers is G-consistent
(resp. H-consistent) may be easily achieved. Indeed, let k = |s|1. This implies
that the smallest alphabet Σ we have to consider contains at most k letters
(exactly k for H-consistency, by virtue of Lemma 2 (i)). Taking an order on the
letters of Σ permits to restrict the study to classes of words equivalent under
permutations of letters. A close look to the proof of Proposition 5 reveals all
the information in order to construct sequentially all words consistent with s:
indeed, it suffices to check at each position i, if LPS(w[0..i]) = s[i].

Random and exhaustive generation. The algorithms described above may be
used for constructing trees of words. Indeed, at each step i one constructs a trie
of words having height i+1 and satisfying G[i] = s[i+1] (resp. H [i] = s[i+1]).
The process stops if either it is impossible to construct the next step, or ends
successfully if i = |s|. In case of a successful termination it is easy to check if
every non leaf node has a unique son, solving the unambiguity problem of the
sequence s. These are the basic tools for constructing randomly or exhaustively
many classes of words, for instance all full words of length n.

Enumeration. Counting classes of G-consistent or H-consistent sequences
follows naturally. For instance, given a fixed length n, it amounts to count for
a fixed alphabet Σ the set {Hw : w ∈ Σn }. Indeed, a greedy algorithm can be
implemented to obtain the first values: it suffices to generate all words in Σn,
and to compute H for each such word.

The enumeration formula of the finite Sturmian words is known [27]. Since
they are full, a closely related counting problem is that of determining a formula
for the number of non-Sturmian full words on the alphabet {a, b}∗. Determining
the number of words having a fixed number of lacunas is also challenging.

Characterization of special classes of G or H functions. For instance, given
a 2-letter alphabet Σ = {a, b} one might look for a description of the following
sets of functions:

G = {Gw : w ∈ {a, b}∗} H = {Hw : w ∈ {a, b}∗ such that w is full}.

In another direction it would be interesting to describe infinite words on fixed
alphabets whose G (or H) sequence is automatic.

Constrained reconstruction. Given a finite set of palindromes P , how can
we determine the shortest full word containing all the palindromes of P and
only those palindromes? The answer is based on Theorem 1 of [11]. Indeed, the
language of words having exactly P as palindromic factors is rational. Therefore
there exists a deterministic minimal automaton recognizing all these words. For
each palindrome q in P , there is a unique path starting from the initial state
whose trace is q. Collecting the target states T(P ) of all paths computing P ,
it suffices then to compute the shortest path starting from the initial state and
containing all states in T(P ). It may or may not exist, and if it does not, one
might relax the conditions by allowing some extra palindromes in order to find
a solution.
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Structure of full words. Let w be a finite full word on a 2-letter alphabet Σ.
One can easily prove that Hw and Hw̃ have the same elements, while Hw = Hw̃

if and only if w̃ = w or w̃ = w. The two sets of longest unioccurrent palindromic
suffixes of w and w̃ naturally define a permutation on the set {1, 2, . . . , |w|}.
More precisely, let p1, p2, . . ., p|w| be the longest palindromic suffixes of w
in order of their first occurrence in w and let xi be the position of the last
occurrence of pi in w. We define the permutation πw on {1, 2, . . . , |w|} by

πw(i) = |w| + |pi| − |xi|.

Now, let q1, q2, . . ., q|w| be the longest palindromic suffixes of w̃ in order of
their first occurrence in w̃. Then pi = qπw(i), for i = 1, 2, . . . , |w|. We illustrate
this fact by an example: let w = ababbabab, so that w̃ = bababbaba. Then we
have the following table showing that Hw �= Hw̃,

i 1 2 3 4 5 6 7 8 9
LPSU(w) a b aba bab bb abba babbab ababbaba babab
LPSU(w̃) b a bab aba babab bb abba babbab ababbaba

and the permutation πw is (2, 1, 4, 3, 6, 7, 8, 9, 5).
We would like to study the combinatorial properties of πw in relation with
those of the word w. In particular we are interested in characterizing the per-
mutations πw associated with full words. A similar study can also be performed
on arbitrary alphabets provide one replaces the ( ) operation by an arbitrary
permutation of the alphabet Σ.
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Abstract We present a new tool called the ”mv-decomposition”, and we describe
some interesting algorithmic properties about it. We propose an algorithm with a
complexity of O(m) to build a mv-decomposition for each bipartite graph. We use
this mv-decomposition to propose a solution to the distance-2 broadcast problem in
a synchronous multi-hops radio networks where adjacent transmissions are subject
to interferences. More precisely, we propose two algorithms of resolution: the first
one guarantees a complete distance-2 broadcast scheme using O((logn)2) slots for a
time complexity of O(m(logn)2), while the second builds a solution with a minimal
number of transmissions for a time complexity of O(m).

1 Introduction

In a multi-hops radio network, nodes communicate with each other via multi-hops
wireless links. The use of the radio medium implies some restrictions and properties:
whenever a node transmits, all the nodes in its communication range may receive the
transmission. Incoming messages have to be forwarded to reach nodes which are lo-
cated at more than one hop from the source. Since all nodes share the same frequency
channel, a collision may occurs if two or more neighbors transmit simultaneously, pre-
venting correct reception of the message. This paper deals with the broadcast problem
which refers to the sending of a message from a source node to all the other nodes of
the network. We consider the simplified communication model used in [4, 5]: nodes
send messages in synchronous slots. In each slot each node acts either as a transmitter
or as a receiver. A node acting as a receiver in a given slot gets a message if and only if
exactly one of its neighbors transmits in this slot. In addition, the topology of the net-
work is assumed to be known by all the nodes. This model has been widely considered
to analyze the complexity of the broadcast problem. According to this model, a valid
broadcast strategy consists of finding a schedule scheme, i.e. a particular schedule of
transmissions among the network nodes.

Many research have focused on producing schedule-based broadcasting schemes
in known radio networks. Chlamtac and Kutten have proved that finding a scheme
with a minimum number of slots is a NP-Hard problem [4]. Authors from [5] have
first proposed a polynomial algorithm in O(nm(logn)2) for constructing a schedule
which achieves a broadcast in O(D.(logn)2) slots, where D is the source eccentricity,
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n the number of nodes and m the number of links. Other results have progressively
reduced this bound to O(D. logn+(logn)2) in [2, 11], then O(D+(logn)5) [9], to end
with O(D +(logn)4) [10]. In this last paper authors announce a schedule scheme for
broadcasting which requires O(D +(logn)3) slots when the network graph is planar.
In [1], the authors present a class of 2-diameter graphs which require Ω((logn)2) slots
to complete a broadcast.

The broadcast problem has also been studied under the assumption that the topology
is unknown: a first scheme using O(n11/6) slots has been proposed in [6]. This bound
has been decreased in multiple works [12, 7, 13] to reach O(n(logn)2) slots in [8].
Actual lower bounds for the broadcast problem without knowledge of the topology are
in Ω(n logn) [6, 3].

This paper is organized as follows: in section 2 we present a new tool: the mv-
decomposition, and describe some of its algorithmic properties. We use the mv-
decomposition in section 3 to propose strategies with performance guarantees for the
distance-2 broadcast problem: this problem is a restricted version of the broadcast
problem in which the objective consists of informing nodes located at two hops away
from the source node. We conclude this section by giving an algorithm which con-
structs a distance-2 broadcast strategy requiring O((logn)2) slots. The quality of the
strategy returned by our algorithm is the same as the solution proposed by [5], but the
computation time complexity is improved from O(nm(logn)2) to O(m(logn)2).

2 A new tool: the mv-decomposition

This section is organized as follows: in a first step, we propose a common graph model
for radio networks, and we introduce some useful definitions and notations. Then we
propose a new tool, which we call the mv-decomposition, and pose some algorithmic
properties. We also propose an algorithm with a complexity of O(m) to compute an
mv-decomposition for each bipartite graph.

2.1 Model description and definitions

A radio network is commonly modelized by an undirected graph G = (V,E), where
V represents the network nodes, and E contains pairs of nodes which can directly
communicate. The source node is noted s.

Let G = (X ,Y,E) be a bipartite graph. A cover of a subset Y ′ ⊆ Y in G, is a subset
X ′ ⊆ X such that Y ′ ⊆ NG(X ′), where NG(X ′) is the union of neighborhoods of vertices
of X ′ in G.

We say that X ′ is a minimal cover (for the inclusion) of Y ′ in G when X ′ is a cover
of Y , but none of its subsets is.

For a given cover X ′ of Y in G, we note mvG(X ′) the set of neighbors of X ′ which
are adjacent to exactly one element of X ′.
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Lemma 1. let G = (X ,Y,E) be a bipartite graph and X ′ ⊆ X a minimal cover of Y ′ ⊆
Y.

Then each vertex of X ′ has an adjacent vertex in Y which is not adjacent to any
other vertex of X ′. In other words, mvg(X ′) ≥ |X ′|.
Proof. Let X ′ ⊆ X be a cover of Y ′ ⊆Y in GB, and x be a vertex of X ′. If each neighbor
of x in Y is also adjacent to another vertex in X ′, then X ′ − {x} is still a cover of Y ′.

Let G = (X ,Y,E) be a bipartite graph such that X covers Y . We say that a collection
(Xi)i∈I of subsets of X saturates Y in GB when Y =

⋃

i∈I mvG(Xi). Then the saturation
cost of G is the minimal cardinal of a collection of subsets of X which saturates Y in
G. We note it σ(G).

2.2 The mv-decomposition: definition and properties

In the following sections, let us define X0 = X and Y0 = Y . A mv-decomposition of a
bipartite graph G consists of the data of an integer K, a collection (Xi)1≤i≤K of K sub-
sets of X which saturates Y in G, and two others collections (Yi)1≤i≤K and (Zi)1≤i≤K ,
such that for each i with Xi �= /0 we have :

– Xi+1 ⊆ Xi is a minimal cover of Yi,
– Zi is defined such that the subgraph of G induced by Xi ∪Zi is a perfect matching:

each vertex has degree 1,
– Yi+1 = Yi −Zi+1.

The depth of an mv-decomposition is the smallest value K, for which YK = /0. Let
us note that, for any collection (Xi)1≤i≤K which saturates Y in G, one can deduce an
mv-decomposition of depth K, by computing the sets Yi and Zi from the knowledge of
Xi. That is why, in the following, an mv-decompostion is sometime described as the
collection (Xi)1≤i≤K .

Property 1 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then for each
mv-decomposition we have:

1. {Xi}0≤i≤K et {Yi}0≤i≤K are two sequences such that Xi ⊆ Xi−1 and Yi ⊆Yi−1, with
XK �= /0 and YK = /0. In addition Xi covers Yi for 0 ≤ i ≤ K.

2. {Zj}i≤ j≤K is a partition of Yi−1. In particular {Zi}1≤i≤K is a partition of Y .
3. For each i such that 1 ≤ i ≤ K, we have |Zi| = |Xi| �= /0, and Zi ⊆ mvG(Xi).
4. For each i such that 1 ≤ i ≤ K, each vertex x of Xi has, for each j such that

1 ≤ j ≤ i, exactly one neighbor in Z j which is not adjacent to any other vertex of
Xi.

Proof. Let us consider Xi ⊆ X and Yi ⊆Y , Yi �= /0, such that Xi covers Yi (true for i = 0).
Then Yi has some minimal cover Xi+1 ⊆ Xi. Lemma 1 allows to affirm that for each
Xi+1 �= /0, Zi+1 is defined and not empty, and then that Yi+1 is strictly included in Yi.
This also guarantees that Xi+1 is a cover of Yi+1. This proves points (1), (2) and (3).



118 Cogis, Darties, Durand, König, Simonet

1 2 7 8 1 0

X 0X 1X 2X 3

Y 0Z 1Y 1Z 2Y 2Z 3

a b c d e f

3 4 5 6 9

Fig. 1 an mv-decomposition of a bipartite graph

For each i and j such that 1 ≤ j ≤ i ≤ K, we have Xi ⊆ Xj. Then any vertex x of Xi

is also a vertex of Xj. Since the subgraph of G induced by vertices Xj ∪Zj is a perfect
matching, then there exists a vertex z j ∈ Zj adjacent to x but not with any other vertex
of Xj.

For any mv-decomposition of G with a depth K, we have K ≤ ΔG(X), where ΔG(X)
is the maximum degree of a node of X in G.

Property 2 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then for any
mv-decomposition of G with a depth K, we have:

K ≤ ΔG(X) (1)

Where ΔG(X) is the maximum degree of a vertex of X in G.

Proof. According to points 2 and 4 of property 1, we have dG(x) ≥ K. This allows us
to conclude.

We propose the algorithm ”mv-decomposition” which computes an mv-
decomposition from a given bipartite graph G = (X ,Y,E).
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Algorithm 1: mv-decomposition

Data: A bipartite graph G = (X ,Y,E)
Result: A collection (Xi)1≤i≤K of subsets of X which saturates Y in G
// Variables declaration :
Stack P[x]: stack of vertices of Y that are adjacent only to x, ∀x ∈ X .1

int L: number of vertices of Y which have been saturated.2

int i: actual depth3

// variables initialization :
L = 0 ; X [0] = X ; i = 14

Initialize P[x], ∀x ∈ X .5

while L < |Y | do6

X [i] = /07

// Computing a minimal cover X[i] :
foreach x ∈ X [i−1] do8

if |P[x]| = 0 then9

// Suppress x from the neighborhood of its
neighbors :
foreach y ∈ N(x) do10

N(y) = N(y)−{x}11

if |N(y)| = 1 then12

// If y has only one neighbor z, it is
added to P[z]
P[N(y)] = P[N(y)]∪{y}13

end14

end15

else16

// x is selected in the current cover.
X [i] = X [i]∪{x}17

// a vertex y becomes the receiver of the
transmission of x :
Let y ∈ P[x]. P[x] = P[x]−{y}.18

L++19

end20

end21

end22

Theorem 1 The algorithm mv-decomposition has a complexity of O(m).

Proof. The initialization phase (line 5) runs in O(m) and consists of filling the stacks
P[x],∀x ∈ X .

Thereafter, for a given x ∈ X :

– The part of code between lines 9 and 16 is executed at most once, and consists of
suppressing the vertex x from G.

– The part of code between lines 17 and 21 is executed at most dG(x) times.
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The part of code between lines 9 and 15 has a complexity of O(dG(x)) (by using
advanced implementation techniques). The part of code between lines 17 and 21 has a
complexity of O(1).

It is concluded that the overall complexity of the algorithm is of the order of :

O(∑
x∈X

dG(x)) = O(m)

3 Using the mv-decomposition to solve the distance-2 broadcast
problem

We employ the mv-decomposition to define solutions with performance guarantees
for the distance-2 broadcast problem in multi-hops synchronous radio networks. This
problem is a particular case of the broadcast-problem and can be described as follows:
let us consider a single source broadcast problem. After the first slot is completed, all
the nodes which are adjacent to the source node have a knowledge of the broadcasted
information. Their transmissions must be scheduled in order to inform all the nodes
that are two hops away from the source. A recursive approach of this process, depend-
ing on the distance of nodes from the source, allows to broadcast the message on the
whole network.

The data can be restricted to a bipartite graph G = (X ,Y,EB) where X and Y respec-
tively denotes the set of vertices at distance 1 and 2 of s in G, and E the set of possible
direct communications: EB =

{{x,y}|x ∈ X ,y ∈ Y,{x,y} ∈ E
}

. We say that finding a
distance-2 broadcast strategy consists of broadcasting a single message from nodes of
X to nodes of Y . In a synchronous model, two important criterias are the number of
required slots, and the number of realized transmissions.

In the first sub-section, we use the mv-decomposition to propose a distance-2 broad-
cast strategy with a minimal (not minimum, which is an NP-hard problem) number of
transmissions, and a number of slots bounded by the maximum degree of the graph.
In the second sub-section, we propose an algorithm to compute a distance-2 broadcast
strategy with O(logn)2) slots, for a time complexity of O(m(logn)2).

3.1 Minimizing both the number of slots and the number of
transmissions

Let I be an instance of the distance-2 broadcast problem composed of a bipartite graph
G = (X ,Y,E) such that X covers Y .

The following theorem establishes a link between a cover of Y in a bipartite graph,
and the number of required transmissions for the distance-2 broadcast problem on the
same graph.
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Theorem 2 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then we
have:

1. If C is a minimal cover of Y , then there exists a broadcast strategy from X to Y
with a minimal number of transmissions equal to the cardinality of C.

2. Finding a broadcast strategy with a minimum number of transmissions is tanta-
mount to finding a minimum cover.

Proof. Let C ⊆ X be a minimal cover of Y of cardinality k, with C = {ci}1≤i≤k. Let us
consider the following strategy : during each slot exactly one node of C is transmitting.
All the nodes of C have transmitted the information after k slots, and no interference
has occurred. Thus all the nodes of Y have successfully received the information, and
we infer points 1 and 2. The number of transmissions is clearly equal to the cardinality
of the cover C. Let us note that as C is minimal, each element of C has to transmit at
least once. Q.E.D.

Let us consider a collection (Xi)1≤i≤K of subsets of X resulting from the mv-
decomposition of G. From this mv-decomposition we can propose a distance-2 broad-
cast strategy S1: At slot i, all the nodes of XK+1−i are transmitting the message. Since
the collection (Xi)1≤i≤K saturates Y , each node of Y can receive the information. The
number of transmissions is equal to ∑K

i=1 |Xi|. This number is not minimal, since X1 is
already a minimal cover of Y .

We define a second strategy S2 as follows :

– During the first slot, all the nodes of XK transmit the message.
– During the slot i with 2 ≤ i ≤ K, all the nodes of XK+1−i − XK+2−i transmit the

message.

This second strategy differs from the previous one in the fact that when a node
transmits at slot i, it does not transmit anymore. We propose the following property :

Property 3 The strategy S2 produces a complete broadcast from X to Y .

sketch of proof: We recall that Xi+1 ⊆ Xi for all i such that 1 ≤ i ≤ k−1. Each node of
X1 transmits exactly once. The validity of this strategy can be deduced if we compare
it with S1 . �

The number of used slots by strategy S2 is K. Its cost in number of transmissions is
equal to:

|XK |+
K

∑
i=2

|XK+1−i −XK+2−i| = |X1|

If the set X1 is a minimal cover of Y , then we obtain a valid broadcast strategy (all
the nodes will receive the information), where the number of transmissions is minimal,
in accordance with Theorem 2.

With both strategies S1 and S2, the number of used slots is less or equal than ΔG(X),
in agreement with property 2. We show in the following sub-section that we can obtain
a strategy with a better cost in term of number of slots.
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3.2 Minimizing the number of slots

In this sub-section, we propose another strategy to solve the distance-2 broadcast prob-
lem. The objective is here to minimize the number of used slots, regardless the number
of effective transmissions.

Our approach consists of showing that one can ensure that enough number of nodes
of Y could receive the message in exactly one slot. By generalizing this property, we
obtain a valid broadcast strategy, and we evaluate its cost in number of slots. First we
establish some properties concerning the receptivity, ie the maximum number of nodes
that can receive a transmission correctly in one slot.

Property 4 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then the
receptivity ρ(G) satisfies the following inequation:

max
X ′⊆X

|mvG(X ′)| = ρ(G) ≥ max(ΔG(X),
|Y |

ΔG(X)
)

Proof. Let x be a vertex of X having degree ΔG(X). Then |mvG({x})| = ΔG(X). The
inequality ρ(G) ≥ ΔG(X) is deduced from the definition of ρ(G).

Let X ′ ⊆ X be a minimal cover of Y in G. While Y =
⋃

x∈X ′ NG(x), then we have :

|Y | ≤ ∑
x∈X ′

|NG(x)| = ∑
x∈X ′

dG(x) ≤ ∣

∣X ′∣
∣ .ΔG(X) ≤ mvG(X ′).ΔG(X)

The second inequality ρ(G) ≥ |Y |
ΔG(X) is deduced again from the definition of ρ(G).

As an immediate corollary of property 4, we have :

ρ(G) ≥
√

|Y |

In fact, we are going to improve this bound to show that :

ρ(G) ≥ |Y |
1 + ln |Y |

Property 5 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then for each
mv-decomposition for G, we have :

∀i|1 ≤ i ≤ K, |mvG(Xi)| ≥ i×|Xi| (2)

Proof. According to point 4 of property 1, each node x of Xi has in each Zj, with
1 ≤ j ≤ i, a neighbor which is not adjacent to any other vertex of Xi. According to
point 2 of the same property, these i neighbors are pairwise distinct.

Theorem 3 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then for each
mv-decomposition of G, we have :
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ρ(G) ≥ max
1≤i≤K

|mvG(Xi)| ≥ |Y |
HK

(3)

σ(G) ≤ K (4)

where Hn is the harmonic number Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n .

Proof. The first inequality of (3) stems from the definition of ρ(G). The second is
deduced from the followings:

|Y | =
K

∑
i=1

|Zi|

=
K

∑
i=1

|Xi|

≤
K

∑
i=1

|mvG(Xi)|
i

≤
K

∑
i=1

max1≤i≤K |mvG(Xi)|
i

= max
1≤i≤K

|mvG(Xi)|×HK

Now we prove the inequality 4. Let y be any vertex of Y . According to point 2 of
property 1, y ∈ Zi for one i such that 1 ≤ i ≤ K. According to point 3 of the same
property, y ∈ mvG(Xi). Then Y =

⋃K
i=1 mvG(Xi), and allows us to conclude.

Theorem 4 Let G = (X ,Y,E) be a bipartite graph such that X covers Y . Then :

ρ(G) ≥ |Y |
1 + lnΔG(X)

(5)

σ(G) ≤ ΔG(X) (6)

(Let us remind that σ(G) is the saturation cost of G, i.e. the minimal cardinality of a
collection of subsets of X which saturates Y in G). We note it σ(G).

Proof. Can be deduced from theorem 3 and property 2, bearing in mind that the har-
monic number Hn is an increasing function of n which satisfies Hn ≤ 1 + lnn.

We propose the following algorithm :
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Algorithm 2: the algorithm ”Saturation”

Data: A bipartite graph G = (X ,Y,E) such that X covers Y
Result: A collection (Wt)1≤t≤L which saturates Y in G
R = Y ;1

t = 0;2

while R �= /0 do3

t = t + 1;4

compute an mv-decomposition of G[X,R];5

Let Kt be its depth, and let
(

Xt
i

)

0≤i≤Kt
be the resulting sequence.;6

choose i in {1, . . . ,Kt} so that the cardinality of mvG[X ,R] (X
t
i ) is maximum;7

R = R−mvG[X ,R] ;8

Wt = Xt
i ;9

end10

L = t;11

Return {Wt}1≤t≤L ;12

Clearly, {Wt}1≤t≤L is a collection of subsets of X and saturates Y .
A valid broadcast strategy can be logically deduced from {Wt}1≤t≤L, if the vertices

of Wi emit at slot i. The number of slots is the cardinality of {Wt}1≤t≤L, ie the number
of iterations of the algorithm.

Theorem 5 The algorithm ”‘Saturation” runs in O((ln |Y |)2) iterations. In other
words, a broadcast strategy constructed from the collection (Wt)1≤t≤L requires
O((ln |Y |)2) slots.

Proof. In agreement with property 2, Kt ≤ ΔG[X ,R] ≤ |R|. During one iteration we have,
in accordance with theorem 3 :

∣

∣

∣mvG[X ,R] (X
t
i )

∣

∣

∣ ≥ |R|
Hk

≥ |R|
1 + ln |R|

Let us note un the cardinality of the set R after the nth iteration. Then we have :

u0 = |Y |
un+1 ≤ un

(

1− 1
1 + lnun

)

,0 ≤ n ≤ L

uL = 0

Let (vn)n∈N be the geometric sequence defined as:

vn = |Y |
(

1− 1
1 + ln |Y |

)n

We have :
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vθ((ln |Y |)2) = 0

Indeed :

vn < 1 ⇔ lnvn < 0

⇔ ln |Y |+ n ln

(

1− 1
1 + ln |Y |

)

< 0

While ln(1 + x) ≤ x, in order that vn < 1, it requires that ln |Y | − n
1+ln|Y | < 0, soit

n > ln |Y |× (1 + ln |Y |).
Clearly we have vn ≥ un,∀n and then L ≤ ln |Y |× (1 + ln |Y |).

Theorem 6 The algorithm ”Saturation” has a time complexity of O(m× (ln |Y |)2).

Proof. During each iteration, the algorithm computes an mv-decomposition. In agree-
ment with theorem 1, any mv-decomposition can be computed in O(m). Let us recall
that the number of iterations of this algorithm is in O((ln |Y |)2), in accordance with
theorem 5.

Thus, we have proposed an algorithm to compute a strategy using O((logn)2) slots.
The quality of the solution returned by our algorithm is the same as the algorithm of
[5], but we have improved the complexity from O(mn(logn)2) to O(m(logn)2).

4 Conclusion

We have proposed the mv-decomposition as a new theoretical tool with interesting al-
gorithmic properties. These properties have been used to develop different algorithms
for the distance-2 broadcast problem in multi-hops synchronous radio networks. The
mv-decomposition allows to create broadcast solutions where the number of transmis-
sions is minimal, ensuring a number of slots below the maximum degree of the graph.
The algorithm which computes this solution has a complexity of O(m).

We have also proposed an algorithm which builds a distance-2 broadcast strat-
egy of O((ln |Y |)2) slots for a time complexity O(m(logn)2). This improves the re-
sult of [5] which announces a broadcast strategy with the same number of slots for a
time complexity O(mn(logn)2). An interesting perspective would be to adapt the mv-
decomposition for the distance-3 broadcast problem, by including a weight function
on the elements of Y , and to generalize this approach for the broadcast problem on
arbitrary graphs.
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7. B. Chlebus, L. Ga̧sieniec, A. Östlin, and J.M. Robson. Deterministic radio broadcasting. In
ICALP ’00: Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, pages 717–728, London, UK, 2000. Springer-Verlag.

8. M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks. J.
Algorithms, 43(2):177–189, 2002.

9. I. Gaber and Y. Mansour. Broadcast in radio networks. In SODA ’95: Proceedings of the sixth
annual ACM-SIAM symposium on Discrete algorithms, pages 577–585, Philadelphia, PA, USA,
1995. Society for Industrial and Applied Mathematics.

10. G. Kortsarz and M. Elkin. An improved algorithm for radio broadcast (submitted), 2005.
11. D. R. Kowalski and A. Pelc. Centralized deterministic broadcasting in undirected multi-hop radio

networks. In APPROX-RANDOM, pages 171–182, 2004.
12. G. De Marco and A. Pelc. Faster broadcasting in unknown radio networks. Inf. Process. Lett.,

79(2):53–56, 2001.
13. D. Peleg. Deterministic radio broadcast with no topological knowledge, 2000.



Partitioning Random Graphs with General
Degree Distributions

Amin Coja-Oghlan1 and André Lanka2
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Abstract. We consider the problem of recovering a planted partition (e.g., a
small bisection or a large cut) from a random graph. During the last 30 years
many algorithms for this problem have been developed that work provably
well on models resembling the Erdős-Rényi model Gn,m. Since in these ran-
dom graph models edges are distributed very uniformly, the recent theory of
large networks provides convincing evidence that real-world networks, albeit
looking random in some sense, cannot sensibly be described by these models.
Therefore, a variety of new types of random graphs have been introduced.
One of the most popular of these new models is characterized by a prescribed
expected degree sequence. We study a natural variant of this model that fea-
tures a planted partition, the main result being that there is a polynomial time
algorithm for recovering (a large share of) the planted partition efficiently. In
contrast to prior work, the algorithm’s input only consists of the graph, i.e., no
further parameters of the distribution (such as the expected degree sequence)
are required.

1 Introduction

To solve various types of graph partitioning problems, spectral heuristics are
in common use. Such heuristics represent the input graph by a suitable matrix
and exploit the eigenvectors of that matrix in order to solve the combinatorial
problem of interest. Spectral techniques have been used to either cope with
“classical” NP-hard graph partitioning problems such as Graph Coloring or
Max Cut, or to solve less well defined problems such as recovering a “latent”
clustering of the vertices of a graph. Examples of such clustering problems occur
in information retrieval [4], scientific simulation [18], or bioinformatics [10].
Furthermore, an important advantage of spectral methods is their efficiency, as
there are very fast algorithms for computing eigenvectors, in particular in the
case of sparse graphs/matrices.

Despite their success in applications (e.g., [17, 18]), for most of the known
spectral heuristics there are counterexamples known showing that these algo-
rithms perform badly in the “worst case”. Thus, understanding the conditions
that cause spectral heuristics to succeed (as well as their limitations) is an im-
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Coja-Oghlan, A. and Lanka, A., 2008, in IFIP International Federation for Information Processing,
Volume 273; Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani
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portant research problem. To address this problem, quite a few authors have
performed rigorous analyses of spectral techniques on suitable models of ran-
dom graphs. Examples include Alon and Kahale [3] (Graph Coloring), Bop-
pana [5] (Minimum Bisection), and McSherry [15] (recovering a latent parti-
tion).

Since the random graph models studied in the aforementioned papers are
closely related to the simple models Gn,p and Gn,m pioneered by Erdős and
Rényi, the resulting graphs have a very simple degree distribution. In fact, the
vertex degrees are concentrated about a constant number of values. By contrast,
the recent theory of complex networks shows that in many cases real-world
instances of partitioning problems have a considerably more involved degree
distribution [1]. Since most spectral heuristics are very sensitive to fluctuations
of the degree distribution, this means that most of the previous spectral methods
do not apply to such real-world inputs. Indeed, none of the algorithms from [3,
5, 15] can cope with heavily-tailed degree distributions such as those resulting
from the ubiquitous “power law”.

Therefore, in the present paper we present and analyze a spectral heuristic
for partitioning random graphs with a general degree distribution (including,
but not limited to “power laws”). In fact, the result comprises sparse graphs,
i.e., the case that the average degree remains bounded as the number of vertices
grows. This case is of particular practical interest, as many real-world networks
turn out to be sparse [1].

The present work is an extension of our prior paper [9] on the same subject.
The crucial improvement that we achieve in the present work is that the al-
gorithm only requires the graph as an input. By contrast, the algorithm in [9]
requires further inputs (namely, parameters of the random graph model such
as the expected degree of each vertex), which generally will not be available in
practice. Hence, the present work is a step towards spectral methods that apply
to graphs with general degree distributions – and in fact to sparse graphs.

In Section 2 we describe the random graph model and state the main result.
Then, in Section 3 we discuss related work, and Section 4 contains the algorithm
and its analysis.

2 The random graph model and the main result

We consider random graphs with a planted partition and a given expected
degree sequence. The model coincides with the one studied in [9] and resembles
the model investigated in Dasgupta, Hopcroft, and McSherry [11]. Moreover, it
is based on the “given expected degrees” model of Chung and Lu [7], which we
modify in order to incorporate a planted partition.

Let V = {1, . . . , n} be the set of nodes. The first parameter of the model is
a symmetric 2 × 2-matrix Φ = (φij) of full rank with non-negative constants
as entries. Furthermore, for each vertex u there is a weight wu > 0; let w =
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∑

u∈V wu/n be the average weight. In addition, let V1, V2 be a partition of
V into two subsets; this is going to be planted partition that the algorithm is
supposed to recover. For each u ∈ V we let ψ(u) ∈ {1, 2} denote the index of
the subset u belongs to, that is u ∈ Vψ(u).

Now, the random graph G = G(V1, V2, Φ, w1, . . . , wn) = (V, E) is obtained by
inserting each possible edge {u, v} with u, v ∈ V independently with probability

φψ(u),ψ(v) · wu · wv

w · n . (1)

Of course, we insist on the parameters Φ and wu being chosen such that each
of the above terms is bounded above by 1. Let du signify the degree of u ∈ V ,
and let w′

u be the expected degree. Then (1) yields

w′
u = E [du] =

wu

w · n ·
∑

v∈V

wv · φψ(u),ψ(v). (2)

We say that the random graph G = G(V1, V2, Φ, w1, . . . , wn) has some property
P with high probability (“w.h.p.”) if the probability that P holds tends to 1 as
n → ∞, uniformly for any feasible choice of V1, V2, Φ and w1, . . . , wn.

Let us briefly discuss the meaning of the model’s parameters. As (2) shows,
the expected degree of u ∈ V is proportional to wu. Thus, the purpose of
the weights wu is to model the desired degree sequence (e.g., a power law).
Furthermore, the matrix Φ rules the edge density inside the classes V1, V2 and
the density of the bipartite graph consisting of the V1-V2 edges; for by (2) the
edge density of V1 (resp. V2) is proportional to φ11 (resp. φ22), and the V1-V2-
edge density is proportional to φ12 = φ21. Thus, the weight wu influences the
degree of u, while the matrix Φ yields what proportion of u’s neighbors belong
to V1 or V2.

For instance, to model a graph with a small bisection, we could set φ11 =
φ22 = 0.51 and φ12 = 0.49. Moreover, we let V1, V2 ⊂ V be two randomly chosen
disjoint sets of size n/2. Finally, setting wu = d · u 1

2 , we obtain a graph with a
power law degree distribution (with average degree about 2d) and a “planted
bisection” containing about 49% of all edges. Other examples include graphs
with planted independent sets, planted dense spots etc.

Theorem 1. There is a polynomial time algorithm A such that the following
holds. Let ε, δ > 0 be arbitrarily small but fixed, and let C = C(ε, δ) be a
sufficiently large constant. Moreover, assume that

1. |V1|, |V2| ≥ δn,
2. for all u ∈ V the weight wu satisfies εw ≤ wu ≤ n1−ε, and
3. the average weight satisfies w ≥ C.

Then w.h.p. A applied to G = G(V1, V2, Φ, w1, . . . , wn) outputs a partition V ′
1 , V ′

2

that differs from the planted partition V1, V2 on at most n · ln w /w 0.98 vertices;
that is, min{|V1�V ′

1 | + |V2�V ′
2 |, |V1�V ′

2 | + |V2�V ′
1 |} ≤ n · ln w /w 0.98.
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Note that the number of vertices that A may not classify correctly decreases
as w grows. Indeed, if w = O(1), i.e., if G is a sparse graph with average degree
O(1), then it is impossible to recover the partition V1, V2 perfectly. A simple
reason for this is that w.h.p. both V1 and V2 will contain a linear number Ω(n)
of isolated vertices. Nevertheless, a large share of the vertices gets partitioned
correctly w.h.p. Moreover, we emphasize that the input of the algorithm only
consists of the graph G; no further parameters of the model are revealed to A.

Although we have stated Thereom 1 only for a planted partition V1, V2 with
two classes, the techniques generalize to the case of an arbitrarily large but
bounded number k of classes. We omit the details to simplify the exposition.

3 Related work

The general relationship between spectral properties of the adjacency matrix of
a graph and clustering problems has been investigated thoroughly [2]. Usually
this relationship is based on some separation between the few largest eigen-
values in absolute value (which then represent the clusters) and the remaining
eigenvalues. Along these lines theoretically rigorous analyses of spectral meth-
ods have been conducted, mainly stating that a certain algorithm performs well
on a certain random graph model. Indeed, this has lead to provably efficient al-
gorithms for clustering problems in situations where purely combinatorial algo-
rithms do not seem to work; examples include Alon and Kahale [3] (3-coloring),
Boppana [5] (graph bisection), and McSherry [15] (recovering a “latent” par-
tition). In particular [3] has inspired further results (e.g., Flaxman’s work on
3-SAT [12]).

However, the aforementioned results do not yield spectral algorithms for
clustering graphs whose degree distribution features a heavy upper tail, e.g.,
a power law degree distribution. Nonetheless, these degree distributions occur
prominently in large real world networks [1]. In fact, Mihail and Papadim-
itriou [16] proved that in the case of a power-law the spectrum of the adjacency
matrix merely reflects the upper tail of the degree distribution, but provides
no clue on global graph properties (such as the presence of dense clusters or
a large cut). Furthermore, in the case of a heavily-tailed degree distribution it
is not an option to just remove high degree vertices, because significant parts
of the graph may just be ignored in this way. Thus, the adjacency matrix is
inappropriate to represent graphs with heavy-tailed degree distributions.

To cope with a heavily-tailed degree distribution, the Laplacian matrix has
been used in both theoretical (e.g. [6]) and practically oriented work [17]. How-
ever, for randomly generated graphs the Laplacian is significantly more difficult
to study than the adjacency matrix (because the entries are heavily dependent).
Nonetheless, Dasgupta, Hopcroft, and McSherry [11] showed that clustering
problems on sufficiently dense random graphs with a general degree distribu-
tion (say, average degree 	 ln6(n), where n is the number of vertices) can be
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solved efficiently using the Laplacian. More precisely, [11] deals with essentially
the same model as considered in the present paper (though they additionally
deal with the case k > 2). However, the assumption that the average degree is
	 ln6 n turns out to be crucial in [11] (because the paper employs the “trace
method” from Füredi and Komlós [13] for analyzing the Laplacian spectrum).
Hence, in comparison to [11] the new aspect of the present work is that our
result covers sparse graphs (of average degree O(1)), which seem most appro-
priate to model real networks [1]. In fact, the case of sparse graphs is posed as
an open problem in [11].

In a prior paper [9] we studied the same random graph model and presented
an algorithm for recovering (a large part of) the planted partition efficiently,
provided that the expected degree distribution (E [dv])v∈V is given as a further
input parameter to the algorithm. This assumption is crucial in that paper,
because the algorithm exploits the spectrum of the matrix M = (muv)u,v∈V

with entries

muv =
{

(E [du]E [dv])−1 if u, v are adjacent,
0 otherwise. (3)

In fact, in the sparse case (average degree O(1)), the vertex degrees dv are
not tightly concentrated about their means (as there tails of Poisson type), so
that it is impossible to recover/approximate the expected degree distribution
(E [dv])v∈V sufficiently well in terms of the actual degree distribution (dv)v∈V .
Therefore, the assumption that the algorithm is given the expected degree se-
quence is inevitable in order to set up the matrix (3). Of course, this assumption
is rather impractical, because it reduces the applicability of the algorithm to
artificially generated instances.

To avoid the assumption that the expected degree sequence is given to the
algorithm, we fix (3) by instead considering the matrix M = (muv)u,v∈V with
entries

muv =
{

(dudv)−1 if u, v are adjacent,
0 otherwise. (4)

Hence, we replace the expected degrees by the actual vertex degrees of the input
graph. In effect, while the entries of (3) are mutually independent (up to the
trivial dependence due to symmetry), the entries of (4) are mutually dependent.
This issue complicates the analysis of the algorithm – in particular, the analysis
of the spectrum of M – significantly; to cope with these new issues, we build
upon methods that we developed recently in [8]. Furthermore, the algorithm
needs to proceed more carefully, as the actual vertex degrees may deviate from
their means considerably. Thus, in comparison to [9] the contribution of the
present work is that we obtain a much more practical algorithm, and present
significantly more sophisticated techniques for analyzing its performance on
random graphs.
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4 The algorithm and its analysis

Throughout this section we keep the notation and the assumptions of Theorem 1.

4.1 Notation and preliminaries

If ξ is a vector, then ‖ξ‖ denotes its 	2-norm. Moreover, for a m × n matrix B
we let ‖B‖ = maxξ∈Rn, ‖ξ‖=1 ‖Bξ‖ denote the operator norm. The transpose of
B is written as Bt. Furthermore, 1 signifies the vector with all entries equal to
1 (in any dimension). If ξ ∈ RS and U ⊆ S, then ξ|U ∈ RS signifies the vector
obtained by replacing the i’th component of ξ by 0 if i /∈ U , whereas ξU ∈ RU

is obtained from ξ by deleting all entries ξv with v /∈ U . In addition, if B is a
m × n matrix and X ⊆ {1, . . . , m}, Y ⊆ {1, . . . , n}, then BX×Y denotes the
minor of B induced on X ×Y . Further, if M = (muv) is a matrix and X (resp.
Y ) is a set of rows (columns), then we set

sM (X, Y ) =
∑

x∈X

∑

y∈Y

mxy.

If u is a vertex of a graph G = G(V1, V2, Φ, w1, . . . , wn), then N(u) = {v :
{u, v} ∈ E} denotes the neighborhood of u. Moreover, for two sets U1, U2 of
vertices we define the volume of (U1, U2) to be

Vol(U1, U2) =
∑

u∈U1

∑

v∈U2

φψ(u),ψ(v) · wu · wv

w · n ;

if U1 and U2 are disjoint, then Vol(U1, U2) equals the expected number of U1-U2-
edges. In other words, if A = A(G) is the adjacency matrix, then Vol(U1, U2) =
E [sA(U1, U2)].

The following Chernoff bounds will prove useful in several places (cf. [14,
Theorems 2.1 and 2.8]).

Fact 2. Let X be the sum of independent 0–1 random variables. Then

1. Pr [X ≥ E [X ] + t] ≤ exp
(

− t2

2·(E[X]+t/3)

)

2. Pr [X ≤ E [X ] − t] ≤ exp
(

− t2

2·E[X]

)

for all t ≥ 0.

Finally, we collect a few simple observations concerning the random graph
model.

Lemma 3. Suppose that G = G(V1, V2, Φ, w1, . . . , wn) is a random graph.
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1. Let u1, u2 be two vertices belonging to the same set of the planted partition.
Then
wu1/w′

u1
= wu2/w′

u2
.

2. There exists a constant C = C(Φ, ε, δ) such that 1/C ≤ w′
u/wu ≤ C for all

u ∈ V .
3. The expected average degree of G equals w ′ =

∑

u∈V w′
u/n = Θ(w ).

Since by Lemma 3 the quotient wu/w′
u coincides for all u ∈ Vi, we abbreviate

Wi = wu/w′
u = Θ(1), and W = w /w ′ = Θ(1). (5)

4.2 The algorithm

The algorithm A for Theorem 1 reads as follows.

Algorithm 4.
Input: A graph G = (V, E).
Output: A partition V ′

1 , V ′
2 of V .

1. Calculate the average degree d =
∑n

u=1 du/n of G and set dm = d / ln d .
2. Construct the matrix M = (muv)u,v∈V as described in (4).
3. Let U = {u ∈ V : du ≥ dm} be the set of all vertices whose degree is “not

too small”.
4. Obtain M∗ from M by replacing any entry muv with (u, v) /∈ U × U by 0.
5. Let s1, s2 be the eigenvectors of M∗ with the two largest eigenvalues in ab-

solute value. Scale si such that ‖si‖ =
√

n.
6. If at least one of s1, s2 enjoys the following property:

There are c1, c2 ∈ R with |c1 − c2| > 1/4 such that more than
n/

√
dm vertices v ∈ U satisfy |si(v) − c1| ≤ 1/32 and more than

n/
√

dm vertices satisfy |si(v) − c2| ≤ 1/32,
(6)

then let s ∈ {s1, s2} be such an eigenvector. Furthermore, let V ′
1 be the

vertices whose corresponding entries in s are closer to c1 than to c2 and set
V ′

2 = V \V ′
1 . Otherwise, if neither s1 nor s2 enjoys (6), let V ′

1 = V and V ′
2 = ∅

(in this case, the algorithm fails).

Before we sketch the analysis of the algorithm, let us briefly discuss the
basic ideas that it is based on. In its first step, A just computes the average
degree and the value dm. This value is assumed to be a lower bound on the
degree that a vertex should typically have; that is, all vertices with degree
< dm are considered exceptional. Note that this is consistent with assumption
2. of Theorem 1, which entails that E [du] ≥ δε2 ·minφij>0(φij) · d > dm for all
u ∈ V .

Step 2 of the algorithm then sets up the matrix M , whose eigenvectors we
are going to use in order to partition G. Note that the entry corresponding
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to an edge {u, v} is normalized by the product dudv of the vertex degrees;
this normalization is crucial as it ensures that the upper tail of the degree
distribution does not dominate the spectrum of M (in contrast to the case of
the adjacency matrix, cf. Section 3).

While the normalization of the entries of M ensures that the upper tail of the
degree distribution does not dominate the spectrum of M , vertices of atypically
small degree may induce large eigenvalues (cf. [8]). Therefore, before computing
the dominant eigenvectors s1, s2 in Step 5, Steps 3 and 4 remove all entries of
M that involve low degree vertices. By the Chernoff bound (Fact 2), in this way
we just remove a tiny (though linear) fraction of the vertices.

Finally, Step 6 exploits the entries of s1 and s2 to compute a partition.
The basic insight is that the entries of s1 and s2 are essentially constant on
the two classes V1, V2, and that indeed the entries of s1 and s2 differ on each
class significantly; this second fact follows from our assumption that the density
matrix D has full rank. However, if s1 and s2 do not have these properties, then
the algorithm will fail to partition the graph correctly and just output a trivial
partition.

In order to analyze the algorithm (and thus to prove Theorem 1), we basically
need to study the eigenvalues and -vectors of M∗. The main ingredient of the
analysis is the following result on the spectrum of the minors M∗

Vi×Vj
, i.e., the

sub-matrices of M∗ consisting of the rows Vi and the columns Vj .

Theorem 5. With high probability the following holds for any two indices 1 ≤
i, j ≤ 2.

1.
1t

‖1t‖ · M∗
Vi×Vj ·

1
‖1‖ = φij · Wi · Wj ·

√|Vi|·|Vj |
w · n · (1 ± O

(

dm
−0.49

))

.

2. For any u, v with ‖u‖ = ‖v‖ = 1 and u ⊥ 1 or v ⊥ 1 we have the bound
∣

∣ut · M∗
Vi×Vj · v

∣

∣ = O
(

w −1.49 + dm
−1.5

)

= O(1/(w · dm
0.49)).

The assumptions of Theorem 1 ensure that the expression on the r.h.s. of 1. is
of order 1/w , whereas the expression in 2. is of order 1/(w · dm

0.49). Thus, the
intuitive meaning of Theorem 5 is that the dominant singular value of M∗

Vi×Vj

corresponds approximately to the singular vectors 1Vi and 1Vj . By combining
the estimates from Theorem 5 for all index pairs 1 ≤ i, j ≤ 2, we obtain the
following result concerning the eigenvectors of M∗.

Corollary 6. W.h.p. M∗ has exactly two eigenvalues whose absolute value is
Θ(1/w ), whereas all the other eigenvalues are O

(

1/(w · dm
0.49)

)

in absolute
value. Moreover, if s1, s2 are orthogonal eigenvectors of norm

√
n with the

largest two eigenvalues in absolute value, then there is an index j ∈ {1, 2}
such that

sj = α1|V1 + β1|V2 + γu, where u ⊥ 1|V1 ,1|V2 , ‖u‖ =
√

n

and |α − β| > 1
4 and γ = O(dm

−0.49).
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Corollary 6 implies that w.h.p. step 6 of A will succeed in finding a vector
that satisfies (6). Moreover, a simple calculation based on the above eigenvalue
bounds shows that the number of falsely classified vertices (i.e., the symmetric
difference of the partitions (V ′

1 , V ′
2) and (V1, V2)) is at most O(n/dm

0.98), whence
Theorem 1 follows.

The values of α and β correspond to the ci in the algorithm. If some vertex
classified falsely, its entry in sj is twisted due to its value in γ · u. Because
of the large distance between α and β, such entries are bounded below by
some constant. As |γ| = O(dm

−0.49) the value in u has to be Ω(dm
0.49). Since

‖u‖ =
√

n we have at most O(n/dm
0.98) such entries.

4.3 Proof of Corollary 6

At first we show that M∗ has the exactly two eigenvalues whose absolute value
is Θ(1/w ), whereas all the other eigenvalues are O

(

1/(w · dm
0.49)

)

in absolute
value. Let g, h be two vectors from the space spanned by 1|V1 and 1|V2 . Namely,
g = a1 ·1|V1/‖1|V1‖+a2 ·1|V2/‖1|V2‖ with a2

1 +a2
2 = 1 and h = b1 ·1|V1/‖1|V1‖+

b2 · 1|V2/‖1|V2‖ with b2
1 + b2

2 = 1. Note, ‖g‖ = ‖h‖ = 1. By Theorem 5 we have
with probability 1 − o(1) that

htM∗g =
2

∑

i,j=1

bi ·
1|Vi

‖1|Vi
‖ · M∗ · aj ·

1|Vj

‖1|Vj
‖ =

2
∑

i,j=1

bi · aj ·
1t · M∗

Vi×Vj · 1
√|Vi| · |Vj |

=
2

∑

i,j=1

bi · aj · φij · Wi · Wj ·
√|Vi| · |Vj |

w · n · (1 ± O
(

dm
−0.49

))

=
2

∑

i,j=1

(

bi · aj · φij · Wi · Wj ·
√|Vi| · |Vj |

w · n

)

± O
(

1/
(

w · dm
0.49

))

=
1
w

· (b1 b2

) · P ·
(

a1

a2

)

± O
(

1/
(

w · dm
0.49

))

with

P =

⎛

⎝

W1 ·
√

|V1|
n 0

0 W2 ·
√

|V2|
n

⎞

⎠ ·
(

φ11 φ12

φ12 φ22

)

·
⎛

⎝

W1 ·
√

|V1|
n 0

0 W2 ·
√

|V2|
n

⎞

⎠ .

Remember, Φ has full rank as well as both remaining factors of P . We conclude
that the matrix P has full rank. The Wi are Θ(1) as |Vi| /n, too. This shows
that the spectral properties of P are determined only by Φ, ε and δ and do
not rely on w1, . . . , wn or n. P has two eigenvectors with constant nonzero
eigenvalues. Let

(

e1 e2

)t and
(

f1 f2

)t be two orthonormal eigenvectors of P to
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the eigenvalues λ1 and λ2. Set

g1 = e1 ·
1|V1

‖1|V1‖
+ e2 ·

1|V2

‖1|V2‖
and g2 = f1 ·

1|V1

‖1|V1‖
+ f2 ·

1|V2

‖1|V2‖
.

By the calculation above get

∣

∣gt
1 · M∗ · g1

∣

∣ =
∣

∣

∣

∣

1
w

· (e1 e2

) · P ·
(

e1

e2

)

± O
(

1/
(

w · dm
0.49

))

∣

∣

∣

∣

=
∣

∣

∣

∣

1
w

· λ1 ± O
(

1/
(

w · dm
0.49

))

∣

∣

∣

∣

= Θ(1/w )

whereas

∣

∣gt
1 · M∗ · g2

∣

∣ =
∣

∣

∣

∣

1
w

· (e1 e2

) · P ·
(

f1

f2

)

± O
(

1/
(

w · dm
0.49

))

∣

∣

∣

∣

=
∣

∣

∣

∣

1
w

· 0 ± O
(

1/
(

w · dm
0.49

))

∣

∣

∣

∣

Thus for 1 ≤ i, j ≤ 2 we have

∣

∣gt
i · M∗ · gj

∣

∣ =

{

Θ(1/w ) for i = j

O
(

1/
(

w · dm
0.49

))

for i �= j
. (7)

For any unit-vector u ⊥ g1, g2 (what equals u ⊥ 1|V1 ,1|V2) we have by
Theorem 5 for all unit-vectors v

∣

∣ut · M∗ · v∣

∣ ≤
2

∑

i,j=1

∣

∣ut
Vi

· M∗
Vi×Vj · vVj

∣

∣ = O
(

1/
(

w · dm
0.49

))

and analogously
∣

∣vt · M∗ · u∣

∣ = O
(

1/
(

w · dm
0.49

))

.

Both bounds and (7) together with the Courant-Fischer-characterization of
eigenvalues yield the first part of the claim.

We are left to show that M∗ w.h.p. has an eigenvector sj as desired. Let e
be an eigenvector of M∗ with norm ‖e‖ =

√
n to the eigenvalue Θ(1/w ) (in

absolute value). We can decompose e such that e = α · 1|V1 + β · 1|V2 + γ · u
for some u ⊥ 1|V1 ,1|V2 with ‖u‖ =

√
n. By Theorem 5 we conclude on the one

hand
∣

∣et · M∗ · u∣

∣ = ‖e‖ · ‖u‖ · O (

1/
(

w · dm
0.49

))

= O
(

n/
(

w · dm
0.49

))

as u ⊥ 1|V1 ,1|V2 . Because of et · M∗ = Θ(1/w ) · et we have on the other hand
∣

∣et · M∗ · u∣

∣ = Θ(1/w ) · ∣∣et · u∣

∣ = Θ(1/w ) · |γ| · utu = Θ(1/w ) · |γ| · n ,
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so that |γ| = O(dm
−0.49). Let s1, s2 be as in the lemma and

sj = αj · 1|V1 + βj · 1|V2 + γj · uj

the decomposition with uj ⊥ 1|V1 ,1|V2 and ‖uj‖ =
√

n as described. Assume
for a contradiction that we have |αj − βj | ≤ 1/4 for both j = 1, 2. As

n = st
j · sj = α2

j · |V1| + β2
j · |V2| + γ2

j · n

we get

α2
j + β2

j ≥ α2
j ·

|V1|
n

+ β2
j · |V2|

n
= 1 − γ2

j ≥ 1 − O(dm
−0.98) .

Clearly, for both j = 1, 2 we have |αj | > 1/2 or |βj | > 1/2, yielding that the
sign of αj equals the sign of βj for both j = 1, 2. We get

|α1 · α2 + β1 · β2| = |α1 · α2| + |β1 · β2| ≥ 1
2
· 1
4

+
1
4
· 1
2

=
1
4

and

0 = st
1 · s2 =

∣

∣α1 · α2 · |V1| + β1 · β2 · |V2| + γ1 · γ2 · ut
1 · u2

∣

∣

≥ δn · |α1 · α2 + β1 · β2| − |γ1 · γ2| · n ≥ δn/4 − O
(

n/dm
0.98

)

.

This is a contradiction since δ > 0 is constant and dm is large. So at least one
sj has |αj − βj | > 1/4. ��

4.4 Proof of Theorem 5: The spectrum of M∗
Vi×Vj

The main difficulty in the (rather involved) proof of Theorem 5 is the fact that
the entries of M∗ are mutually dependent, because we normalize by the actual
vertex degrees (cf. Step 2 of the algorithm and (4)). Furthermore, in case of
sparse graphs (which is included in Theorem 1), it is possible that all (or most)
weights wu remain bounded as n → ∞. In this case the expected degrees are
bounded as well. In effect, the actual degrees of the vertices are not concentrated
about their expectations, but may deviate by up to Ω(log n/ log log n). Hence,
we need to cope with the dependence of the matrix entries as well as with
deviations of the vertex degrees from their expectations.

To this end, we mark vertices u ∈ Vi as “bad” if the number of u’s neighbors
in Vj is far from its expectation (of course, this is just a part of the analysis –
the algorithm cannot identify these “bad” vertices). Similarly, we mark vertices
from Vj as “bad”. Now, it is possible that some “good” vertices inside Vi and/or
Vj have many “bad” neighbors. We mark such vertices as “bad”, too. Repeating
this process, we obtain a subset Rij ⊆ Vi of “good” vertices, which firstly have
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about as many neighbors in Vj as expected and secondly have only a few “bad”
neighbors in Vj . Analogously we obtain “good” vertices Cij ⊆ Vj . Then, we
shall analyze the sub-matrix induced on Rij × Cij separately from the rest.

More precisely, the sets Rij ⊆ Vi and Cij ⊆ Vj are the outcome of the fol-
lowing process. Let c be a sufficiently large constant (the value gets determined
later), and let A = A(G) be the adjacency matrix of G.

1. Let R′ = {u ∈ V : ∀j′ : |sA(u, Vj′ ) − Vol(u, Vj′)| ≤ Vol(u, Vj′ )0.51}.
2. Let C′ = {v ∈ V : ∀i′ : |sA(Vi′ , v) − Vol(Vi′ , v)| ≤ Vol(Vi′ , v)0.51}.
3. Set R′

ij := R′ ∩ Vi and C′
ij := C′ ∩ Vj .

4. While there is some u ∈ R′
ij with

sA(u, Vj \ C′
ij) ≥ Vol(u, Vj) · c/dm then R′

ij := R′
ij \ {u}.

5. While there is some v ∈ C′
ij with

sA(Vi \ R′
ij , v) ≥ Vol(Vi, v) · c/dm then C′

ij := C′
ij \ {v}.

6. Repeat Steps 4 – 5 until R′
ij and C′

ij remain unchanged.
7. Rij := R′

ij . Cij := C′
ij .

We abbreviate Rij by R and Cij by C, Vi \Rij by R , and Vj \Cij by C . Due
to the first step of the above process all u ∈ R and v ∈ C satisfy

|sA(u, V ) − Vol(u, V )| ≤ 2 · Vol(u, V )0.51,

|sA(V, v) − Vol(V, v)| ≤ 2 · Vol(V, v)0.51
.

(8)

Let us briefly discuss the above process. For a vertex u ∈ V1 the standard
deviation of the number sA(u, Vj) of neighbors of u in Vj from its expectation
Vol(u, Vj) is of order O(Vol(u, Vj)0.5) (because sA(u, Vj) is a sum of independent
0/1-random variables). Therefore, the Chernoff bound (Fact 2) entails that
w.h.p. “most” of the vertices in Vi belong to R′. Moreover, the larger Vol(u, Vj),
the more likely it is that u ∈ R′. Hence, we expect Vol(Vi \ R′, Vj) (as well as
Vol(Vi, Vj \C′)) to be fairly small. Consequently, as a vertex removed from R′

ij

in Step 4 has relatively many neighbors inside the set Vj \C′
ij of small volume,

we expect that Step 4 will remove only a small number of vertices. Thus, the
final sets R and C should constitute the dominant fraction of the volume of G.
The following lemma, whose proof is omitted, shows that this is actually the
case.

Lemma 7. W.h.p. we have Vol(R , Vj) ≤ n/dm
4, Vol(Vi, C ) ≤ n/dm

4, and
Vol(R , C ) ≤ n/dm

8.

A consequence of Lemma 7 is that both R and C contain only a few vertices.
For by the choice of dm (cf. Step 1 of A) for all u ∈ Vi and all v ∈ Vj we have

dm ≤ Vol(u, Vj) ≤ Vol(u, V ) = w′
u and dm ≤ Vol(Vi, v) ≤ w′

v . (9)
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Thus, dm ·∣∣R ∣

∣ ≤ Vol(R , Vj) ≤ n/dm
4, which yields

∣

∣R ∣

∣ ≤ n/dm
5. As δ·n ≤ |Vi|,

we get

∣

∣R ∣

∣ ≤ |Vi|
δ · dm

5 ≤ |Vi|
dm

4 and |R| = |Vi| −
∣

∣R ∣

∣ ≥ |Vi| ·
(

1 − 1
dm

4

)

, (10)

(provided that w > 1/δ2 is sufficiently large). Analogously,
∣

∣C ∣

∣ ≤ |Vi| /dm
4 and |C| ≥ |Vi| ·

(

1 − 1/dm
4
)

. (11)

To proceed, we subdivide M∗
Vi×Vj into four parts M∗

R×C , M∗
R×C , M∗

R×C ,
and M∗

R×C , which we shall analyze separately. With respect to M∗
R×C , we

have the following.

Lemma 8. With high probability we have

1. 1t · M∗
R×C · 1 = φij · Wi · Wj · |R| · |C|

w · n · (1 ± O(1/dm
0.49)

)

= Θ(n/w ),

2. |ut · M∗
R×C · v| = O

(

1/w 1.49
)

for any u, v with ‖u‖ = ‖v‖ = 1 and u ⊥ 1
or v ⊥ 1, and

3. ‖M∗
R×C‖ = Θ (1/w ) .

The proof of Lemma 8 is based on the fact that on R × C the vertex degrees
behave at least roughly as expected. Therefore, we can relate the spectrum of
M∗

R×C to the spectrum of MR×C , where M is the matrix from (3). Since the
entries of M are mutually independent (up to the trivial dependence resulting
from symmetry), the analysis of its spectrum is significantly simpler than the
analysis of M ; in fact, this analysis has been carried out in [9]. Nonetheless, in
order to relate MR×C and M∗

R×C , we need to analyze the degree distribution
of G thoroughly, which requires considerable technical work (omitted).

As a next step, we analyze the three “small” blocks M∗
R×C , M∗

R×C and
M∗

R×C .

Lemma 9. With high probability we have that ‖M∗
R×C ‖, ‖M∗

R×C‖ and
‖M∗

R×C ‖ are O(dm
−1.5).

The proof of Lemma 9 is based on combinatorial ideas, and, in particular, the
fact that the volumes of R and C are relatively small (cf. Lemma 7). Therefore,
for instance the subgraph induced on R × C has a very simple combinatorial
structure (it is essentially forest-like), which allows a direct analysis of M∗

R×C .
Details are omitted.

4.4.1 Proof of Theorem 5. With respect to the first statement, we have

1t · M∗
Vi×Vj · 1 = 1t · M∗

R×C · 1 + 1t · M∗
R×C · 1+

1t · M∗
R×C · 1 + 1t · M∗

R×C · 1 . (12)
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Item 1. of Lemma 8 gives for the first term

1t · M∗
R×C · 1 = φij · Wi · Wj · |R| · |C|

w · n · (1 ± O(1/dm
0.49))

(10),(11)
= φij · Wi · Wj · |Vi| · |Vj |

w · n · (1 ± O(1/dm
0.49)) .

Lemma 9 shows that the second summand in (12) is bounded by

∣

∣1t · M∗
R×C · 1∣

∣ ≤
√

|R| · ∣∣C ∣

∣ · ‖M∗
R×C ‖

(11)

≤
√

|Vi| · |Vj | /dm
4 · O(dm

−1.5)

=
√

|Vi| · |Vj | · O
(

dm
−3.5

)

=
√

|Vi| · |Vj | · O(1/(w · dm
0.49)) .

The same bound holds for both
∣

∣1t · M∗
R×C · 1∣

∣ and
∣

∣1t · M∗
R×C · 1∣

∣. Di-
viding each summand for (12) by

√|Vi| · |Vj | we get the desired bound on
1t

‖1t‖ · M∗
Vi×Vj ·

1
‖1‖ .

For the second item of Theorem 5 we assume that u ⊥ 1, yielding ut · (1|R +
1|R ) = 0, so that

∣

∣ut · 1|R
∣

∣ =
∣

∣

∣ut · 1|R

∣

∣

∣ ≤ ‖u‖ · ‖1|R ‖ ≤
√

∣

∣R ∣

∣ . (13)

We decompose u as u = a · 1|R /‖1|R‖ + b · ul with ‖ul‖ = 1 and ul ⊥ 1|R.
Clearly ul|R ⊥ 1|R, too, and a2 + b2 = 1. A straightforward computation yields

|a| =
∣

∣

∣

∣

ut · 1|R
‖1|R‖

∣

∣

∣

∣

(13)

≤
√

∣

∣R ∣

∣

‖1|R‖
(10)
< 2/dm

2 . (14)

Let v be some arbitrary unit-vector. Then we can rewrite
∣

∣ut · M∗
Vi×Vj · v

∣

∣ as
∣

∣

∣ut · M∗
Vi×Vj ·

(

v|C + v|C

)∣

∣

∣ ≤
∣

∣ut · M∗
Vi×Vj · v|C

∣

∣ + ‖M∗
R×C ‖ + ‖M∗

R×C ‖ .

The second and the third summand are O(dm
−1.5) by Lemma 9. The first one

we bound as follows

∣

∣ut · M∗
Vi×Vj · v|C

∣

∣ =
∣

∣

∣

∣

(

a · 1t
|R

‖1t|R‖ + b · ul

)

· M∗
Vi×C · vC

∣

∣

∣

∣

≤ |a| · ‖M∗
R×C‖ + |(b · ul) · M∗

Vi×C · vC |
(14)
< 2/dm

2 · O(1/w ) +
∣

∣

∣b ·
(

ul|R + ul|R

)

· M∗
Vi×C · vC

∣

∣

∣

≤ O
(

dm
−1.5

)

+ |ulR · M∗
R×C · vC | + ‖M∗

R×C‖
= O

(

dm
−1.5

)

+ O
(

w −1.49
)

+ O
(

dm
−1.5

)

.
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We got the last step because of ul|R ⊥ 1|R and Lemma 8. So,
∣

∣ut · M∗
Vi×Vj · v

∣

∣

is O
(

w −1.49
)

+ O
(

dm
−1.5

)

as desired. The case v ⊥ 1 and u arbitrary can be
handled analogously. ��
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1 King’s College London, U.K. and Université Paris-Est, Institut Gaspard-Monge, France
maxime.crochemore@kcl.ac.uk

2 Dipartimento di Matematica e Applicazioni, Università di Palermo, Italy
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Abstract The Longest Common Factor (LCF) of a set of strings is a well
studied problem having a wide range of applications in Bioinformatics: from
microarrays to DNA sequences analysis. This problem has been solved by
Hui (2000) who uses a famous constant-time solution to the Lowest Common
Ancestor (LCA) problem in trees coupled with use of suffix trees. A data
structure for the LCA problem, although linear in space and construction
time, introduces a multiplicative constant in both space and time that reduces
the range of applications in many biological applications.
In this article we present a new method for solving the LCF problem using
the suffix tree structure with an auxiliary array that take space O(n). Our
algorithm works in time O(n log a), where n is the total input size and a is
the size of the alphabet.
We also consider a different version of our algorithm that applies to DAWGs.
In this case, we prove that the algorithm works in both time and space pro-
portional to data DAWG’s size.

1 Introduction

In 1976 E.M.McCreight settled a Kunt’s open problem by introducing a new
data structure on string: the Suffix Tree. Since then, many other problems have
been settled by using suffix trees or similar structures such as Patricia trees,
DAWG, CDAWG and suffix array (cf. for instance [2, 8, 7, 5, 14] and references
therein). Some other applications can be retrieved by exploring the “Pattern
Matching Pointers” maintained by S. Lonardi (cf. [13]).

The most commonly used data structures are Suffix Trees, Suffix Arrays,
DAWGs and CDAWGs. Usually any problem that can be settled by the aid
of one of such data structure can also be settled by using any of the other
ones. Despite this fact the passage from one data structure to another is not
automatic nor always easy and, in some rare cases, not yet proved (see [1] for
example). Each of these structures has some advantage and some disadvantage.
Some relation among the data structures and their size is reported in [3]. The
size of an implementation of the above data structures is often evaluated by the
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Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki,
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average number of bytes necessary to store one letter of the original text. It is
commonly admitted that these ratios are 4 for suffix arrays, 9 to 11 for suffix
trees, and 5 for CDAWGs (cf. [3] for further information).

This paper deals with particular data structures: DAWGs.
The problem we consider is reported by D. Gusfield, [8, 8,Sec. 7.6, 9.4]. In the

exact case, it is the following: given a set of m strings, for any k = 2, .., m find
the longest factors that are common to at least k strings. The word common in
the exact case means occurring with equality. The first solution to this problem
has been given by Hui, ([10, 11]), who uses a famous constant-time solution to
the Lowest Common Ancestor (LCA) problem in trees coupled with the use of
suffix trees (see [9, 16, 6]). A data structure for the LCA, although it is linear
in space and time, introduces a multiplicative constant in both space and time
that reduces the range of applications in many biological applications.

Since DAWGs and CDAWGs are not trees, this solution cannot be used for
the structures we are interested in. Therefore we look for a totally new solution.
So, our solution turns out to be simpler and more efficient than Hui’s one of
about one order of magnitude. This solution is an extension from that of suffix
trees to DAWGs.

This paper is organized as follows. In the next section we describe our solution
for the problem based on the use of suffix trees, while in the Section 3 we extend
our solution to DAWGs. The fourth section contains our conclusions and some
conjectures on the approximate case of the problem. Hence in the Appendixes
A and B, we report the specialized pseudo-code related to the procedures used
in our algorithm.

2 A Simpler Solution

We assume the reader familiar with suffix trees and Generalized Suffix Trees.
Let S be a set of input strings Si, 1 ≤ i ≤ m, on the alphabet {0, 1}. Let u be

the word composed of the concatenated labels of transitions along the unique
path from the root to the node p in the Generalized Suffix Tree.

We want to compute a table � having m−1 entries: where entry �[k] provides
the length of the longest factor common to at least k of the input strings and
also points to one of the common factors having that length.

Our preprocessing is as follows. We build the Generalized Suffix Tree for the
m strings. Then perform a depth-traversal of the tree and put all nodes in a
stack in the order they appear. Define s to be an array of pointers representing
the input strings useful to increase the algorithm’s performances.

Each node stores the following information:

– i represents the string identifier whose suffix is the node path-label. If this is
not a suffix, this field is empty.

– num is the number of distinct string identifiers that appear at the leaves in
the subtree rooted in p. Observe that this approach is the same as the one
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used by Gusfield in [8, Sec.7.6]. The difference lays in how to compute these
values, that he calls C[p].

So we must first compute the num values and then use them to update the
table.

2.1 Computing the num values

For each node p, we create an auxiliary node size that stores the values num(p)
and points to the strings it represents in s.

When for the vertex p we have num(p) = b, this means that in its subtree
there are nodes representing suffixes from b different input strings. In other
words, p is the common factors of exactly b different input strings. In the algo-
rithm we call these nodes representative in the operation of Union that plays
an important role in the computing of our values.

The operation Union is the union between disjoint sets of elements that, in
our case, are nodes size linked to visited nodes. All pointers to auxiliary node
of smaller size must point to the other node size and, naturally, we must also
update the sizes of the involved nodes, i.e. the field num.

Union operates as follows. Let a be a node with num(a) = 2 and let b with
num(b) = 3. When we visit the a and b’s father p, we execute a Union of his
children. The result is that num(p) = 5 and the p’s label becomes a common
factor of 5 input strings.

We keep the disjoint strings sets as follows. We use an array s of m pointers
that represent the input strings and for which s[i] points permanently to the
last met factor of the string si. Since the last factor of a string is unique, the
sets to merge are always disjoints.

In the algorithm we use three procedures called NodeSize T est, String Test
and Union (that implements the union operation). Now we explain how they
work, while in the Appendix A we show the code of them.

– NodeSize T est procedure: we check if the node size is already created. If
not, we create it.

– String Test procedure: when we visit a new node, we must update the in-
formation about the last visited factor of some string. Note that after this
test and related “cut-append” of pointers, node size stores the current num
value, while the internal node stores the real one. Because nodes size are
representatives in the Union, then they must be updated in every time. In
Figure 1 we show the effect of this test.

– Union procedure: after we have found the smallest son its pointer is redirected
to the largest one, the num value is updated, and the new node size resulting
from the merging is merged with the father node size.
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Fig. 1: In the left figure, is shown the situation after the visit of the B node, at the top
of the stack. It’s the common factor of all input strings. Then the node C is traversed.
Therefore it’s a leaf node representing the string s2, then the algorithm “cut” the pointer
from B’s node size to the element s[2], appending it to C’s node size. In fact, the last
factor of s2 is the path-label of C. Observe that the values about the size of the nodes are
updated during this test.

Now we describe the algorithm to compute in an efficient way the num
information.

CountNum (stack, s)
1. while (stack isNotEmpty) do
2. p = pop(stack);
3. NodeSize test;
4. String test;
5. if p has sons then
6. Union operation;
7. End CountNum.

2.2 The method

Once the num values are known and the string-depth of every node is known, the
desired �(k) values can be easily found with a linear-time traversal of GST (S).

When encountering a node p with num(p) = k, we compare the string-depth
of p to the current value of �(k). If the first value is greater than the second, we
change �(k) to the depth of p and update its pointer to the node representing
the factor with the current value of �(k).

Eventually, the resulting table holds the desired �(k) values.
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2.3 Time and space analysis

Building GST (S) requires linear space and time in the size of input [8, Sec. 6.4],
i.e. O(n) with n = |S1| + · · · + |Sm|. Algorithm CountNum executes a single
post-order traversal of GST (S) and its main operation is the Union. Since the
operation “cut-append” of a pointer from a node to another is done in constant
time, then we have to know how many pointers could be involved during it.

Theorem 1. [CountingNum] During the execution of CountNum(S, s) al-
gorithm, the number of “cut-append” operations is less than n, with n =
|S1| + · · · + |Sm| = |S|.
Proof. The statement is proved by induction on the total size n of the rep-
resentatives u of the nodes p. Recall that u is p’s representative if it is the
concatenated labels of transitions of the unique path from the root to the node
p in GST (S).

Basic step: let m be the minimal size of S. The root points directly to
the m leaves. Therefore the number of “cut-append” operations is equal to
m − 1: we append all auxiliary leaves to the root. Since the input’s size is
equal to m then our thesis is proved.

Inductive step: by induction we suppose that our thesis is true for every tree
with representatives’ size equal to n − 1.
We prove the thesis is true at the level n.
Let our visit be stopped in a node with two sons. The first subtree has NL1

leaves and representatives’ size equal to n1, while the second has NL2 leaves
and size equal to n2.
When we get to the bottom level n, we add a character to every representative
for each leaf. So the total representatives’ size of the level n is equal to
n1 + NL1 + n2 + NL2.
The Union simply appends all leaves of one subtree to the other subtree.

cut − append = NL1 + NL2 <

< n1 + NL1 + n2 + NL2 = n. (1)

When we visit the GST (S)’s root, the total representative’s size is equal to
the input length, n. Hence, the total number of Union operations is linear
in the input length. �

During a run of the algorithm O(n) “cut-append” operations are executed,
each of which takes constant time, so the overall Union takes O(n) time.

Hence only O(n) time is needed to execute the algorithm and to compute all
num numbers. Once these are known, only O(n) additional time is needed to
build the output table.

Hui’s solution take O(mn) time because it uses an array of k elements for
each node of the tree to calculate the num values. We solve the original problem
simply using O(m+n) space, because the algorithm makes use of a unique array.



148 M. Crochemore, A. Gabriele, F. Mignosi, M. Pesaresi

Theorem 2. The Lowest Common Factor Problem on a set of m input’s
strings, represented by a Generalized Suffix Tree, can be solved in O(n) time,
with n = |s1| + · · · + |sm|, and O(m + n) space.

3 An Optimal Solution

In this section we deal with the data structures that plays an important role in
this paper, the Generalized Directed Acylic Word Graph (Generalized DAWG).
We assume the reader familiar with DAWGs.

Now we recall the definition of DAWG.

Definition 1. The DAWG for a set of strings s1, · · · , sm is a directed acyclic
graph, with a node marked as initial and m distinct nodes F1, · · · , Fm marked
as final. Edges are labeled with non empty factors of at least one of the strings.
Labels of two edges leaving the same node cannot begin with the same character.
For every string si in the set, all suffixes of si are spelled by patterns starting
at the initial node and ending at node Fi. Paths ending at non final nodes
correspond to strict classes of factors of the congruence relations ≡Suf(S).

Let S be our input set of strings.
We want to analyse the meaning of the state u in terms of “representative”.

In DAWG(S) there are more edges entering the same state than in the corre-
sponding tree, according to Def.1. So we define the representative of a state as
the longest path from the initial state to it.

Like for Suffix Trees, we want to compute a table that gives for entry k the
length of a longest factor common to at least k strings and also points to it.

Now our preprocessing is less easy than in the previous section because more
paths are not distinct. We build a Generalized DAWG for the m input strings.
Each final state represents an input string (e.g., si) and is marked with a non
null identifier (e.g., i).

Observe that in a DAWG two or more outgoing edges from the same state
could finish in the same state and so we would like that the path from an
internal state to other one is unique. Hence we keep only the representative of
a factor’s class. Since to solve the LCF Problem we need the longest labels of
the paths, we keep only the transitions with the longest labels and we delete all
other ones that have the same origin and target states. In this way the number
of transition is drastically reduced and we obtain a pruned DAWG, denoted by
D, having a deterministic transition function between adjacent states.

Now we are ready to perform a particular breadth-traversal of the new struc-
ture to store all states in a stack, in a way that is similar to the procedure done
on suffix trees. We put nodes in the stack in the order they appear. Our problem
is that we traverse some nodes more times and we must store them only once.
Hence, if a node is already stored, we delete its previous occurrences, we put
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its new occurrence and we increase a counter related to the node. Define s to
be an array of pointers representing the input strings like above. In our data
structure each state stores the following informations:

– i is the string identifier whose suffix is the state path-label,
– num is the number of distinct string identifiers that appear in the subgraph

rooted in the state,
– count is the counter mentioned above.

As in the previous section, we first compute the num values and then we use
them to update the output’s table.

3.1 How to compute desired values?

The algorithm to calculate num is almost the same as for suffix trees. The
only difference is in the String Test procedure, because here there is another
parameter to check, the count value. In the algorithm we use three procedures
called NodeSize T est, StringD Test and UnionD. NodeSize T est procedure
has already been described in the previous section.

Now we explain how the StringD test works, while in the Appendix B we
show its code and the UnionD one. First we perform the following test on the
field count of the sons of the current state:

– if count is not null for some son, we decrease the value of count and we
“cut” only the pointer from array s to the previous state to link it to the
actual node, because this one represents the last factor of the interesting
string. Observe that we delete a node size when count become null. So, for
count times we must replace the node size. This fact causes an additional
extra-space but it permits to perform the execution in linear time;

– otherwise we call the classical String test.

The complete algorithm is the following:

CountNumBIS (stack, s)
1. while (stack isNotEmpty) do
2. p = pop(stack);

3. NodeSize test;
4. StringD test;
5. if p has sons then
6. UnionD operation;
7. End CountNum.
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Fig. 2: How StringD works. Visiting the state G is the same as visiting the corresponding
tree node. When we traverse state F , we create a duplicate pointer to s[1] not to lose the

information related to state G: in fact, two other edges arrive in this state and they need to
know that G is a suffix of s[1]. Note that the field count of state G is decreased. Therefore F is
also a suffix of s[2], then we perform a traditional Union. The same happens when traversing
states L and B. In last case, since the field count of state G is null, then we can delete its
node size because we have visited all its neighbors.
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3.2 Building the output table

Once the num value and the string-depth of every state are known, the desired
�(k) values can be easily found with a linear-time traversal of D.

When encountering a state p with num(p) = k, the string-depth of p is
compared to the current value of �(k) and if the first one is greater than the
second, �(k) is changed to the depth of p and its pointer is updates to the node
representing the factor with the current value of �(k).

Finally the resulting table holds the desired �(k) values.

3.3 Time analysis

Let n be the input size, with n = |S1|+ · · ·+ |Sm|. Building DAWG(S) requires
linear time in the input size as described in [12].

Algorithm CountNumBIS executes a single traversal of D and its main
operation is Union. Since the operation “cut-append” of a pointer from a node
to another is constant, then we would like to know how many pointers could be
involved during it.

Let D be the Generalized DAWG over S. We can use a breadth-first visit
of D to re-create the original Suffix Tree. Each path from initial state to a final
state in DAWG is used to build a path from the root to a leaf in the Suffix
Tree. Note that the technique is the same as McCreight’s one (cf. [15]) to create
suffix trees directly from input’s strings.

After this traversal, we have created a suffix tree with a number ns of nodes
that is larger than the number nc of DAWG states, with same edges and
related labels. Hence representatives of suffix tree states are the same as that
of DAWGs.

Since nc ≤ ns, from Theorem 1, we have the following result:

Theorem 3. [LCSS Counting Bis] During the execution of algorithm
CountNumBIS(S, s), the number of “cut-append” operations is less than n,
with n = |S1| + · · · + |Sm| = |S|.

During the run of the algorithm there are O(n) “cut-append” operations
executed, each of which takes constant time, so all Union executions take O(n)
time in total.

Hence only O(n) time is needed to execute the algorithm and to compute all
numS numbers. Once these are known, only O(n) additional time is needed to
build the output table.

Finally, we can state:

Theorem 4. The Lowest Common Factor Problem on a set of m input strings,
represented by a Generalized Directed Acyclic Graph, can be solved in O(n)
time, with n = |s1| + · · · + |sm|, and O(m + n) space.
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4 Conclusions

In this paper we introduced an algorithm that we show to require less space
than the previous Hui’s solution, when we use a data structure like Suffix Trees.
We obtain a solution that requires a unique k-array, where k is the number of
input’s strings, to store all information, instead of using a k-array for each node
as in the Hui’s solution. Both algorithms run in linear time.
Another advantage of our algorithm is about the size of the implementation of
the data structure used that is often evaluated by the average number of bytes
necessary to store one letter of the original text. It is commonly admitted that
these ratios are 9 to 11 for suffix trees and 5 for DAWGs (cf. [3] for further
information). Moreover a data structure for the LCA problem, although linear
in space and construction time, introduces a multiplicative constant (from 2
to 4) in both space and time. While Hui’s implementation introduce a factor
of 40 to solve the problem, our implementation with the DAWGs reduces this
multiplicative constant to nearly 5.
Recent experiments [4] have showed that DAWGs are space thrifty not only
in exact problems, but also in the approximate cases, where some “errors” or
“faults” are allowed. To build the approximate DAWG of a word in optimal
time remains an open problem. Now, we think that our solution of the exact
problem can be applied to these data structures to solve the approximate case.
If the conjecture reported in [4] is true and if it is possible to build approximate
DAWGs in optimal time, then our solution will drastically outperform previous
solutions.
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5 Appendix

Now we detail the procedures used by the algorithm for Suffix Tree. Recall the
data structures in a formally way.
The auxiliary structure s is an m-array of pointers.
The node of GST (S) are formed by three fields (and not two):

– the fields i and num;
– the field ns is a pointer to the node size related to our node.

The node size has two fields (and not one):

– the field num;
– the field ns is a set of pointers to the structures s, one for each string that

the node representing.

NodeSize test (GST (S), s)
1. if p.ns = Nil then
2. p.ns =new node.
3. Return(GST (S), s).
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String test (GST (S), s)
1. for every i of p do
2. if p.i! = Nil then
3. s[p.i].ns.num−−
4. if s[p.i].ns.num = 0 then
5. delete s[p.i].ns;
6. s[p.i] = p;
7. p.ns.ns = s[p.i];
8. p.ns.num + +;
9. p.num + +.
10. Return(GST (S), s).

Union (GST (S), s)
1. Merge between nodes size
2. merge between pointers to s;
3. sum between the fiels num;
4. have created a new node size m;
5. p.ns = merge(p.ns, m);
6. p.num = p.ns.num.
7. End Union operation.

6 Appendix

Now we detail the procedures used by the algorithm for DAWG. Recall the data
structures in a formally way.
The auxiliary structure s is an m-array of pointers.
The node of DAWG(S) are formed by four fields (and not three):

– the fields i, num and count;
– the field ns is a pointer to the node size related to our node.

The node size has two fields (and not one):

– the field num;
– the field ns is a set of pointers to the structures s, one for each string that

the node representing.

NodeSize test (D, s)
1. if p.ns = Nil then
2. p.ns =new node.
3. Return(D, s).
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StringD test (D, s)
1. for every i of p do
3. if s[p.i].count! = 0 then
4. s[p.i].count−−;
5. if s[p.i].count = 0 then
6. delete s[p.i].ns;
7. s[p.i] = p
8. else
9. s[p.i].ns.num−−
10. if s[p.i].ns.num = 0 then
11. delete s[p.i].ns;
12. s[p.i] = p;
13. p.ns.ns = s[p.i];
14. p.ns.num + +;
15. p.num + +.
16. Return(D, s).

UnionD (D, s)
1. Merge between nodes size of p’s sons with the field count null
2. merge between pointers to s;
3. sum between the fields num;
4. have created a new node size m;
5. if q.count! = 0 and q.ns.ns! = p.ns.ns with q son of p then
6. q.count −−;
7. if q.count = 0 then
8. delete q.ns;
9. duplicate q.ns pointers and append to m;
10. m.num = m.num + +
11. p.ns = merge(p.ns, m);
12. p.num = p.ns.num.
13. End UnionD operation.
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Abstract. In this paper, we study different notions of stability for sand au-
tomata, dynamical systems inspired by sandpile models and cellular automata.
First, we study the topological stability properties of equicontinuity and ulti-
mate periodicity, proving that they are equivalent. Then, we deal with nilpo-
tency. The classical definition for cellular automata being meaningless in that
setting, we define a more suitable one. Finally, we prove that this dynamical
behavior is undecidable.

1 Introduction

Self-organized criticality (SOC [2]) is a common phenomenon observed in a huge
variety of processes in physics, biology and computer science. A SOC system
evolves to a “critical state” after some finite transient. Examples of SOC systems
are: sandpiles, snow avalanches, star clusters in the outer space, earthquakes,
forest fires, load balance in operating systems [1]. Among them, sandpile models
are a paradigmatic formal model for SOC systems [10].

In [3], the authors introduced sand automata as a generalization of sandpile
models and transposed them in the setting of discrete dynamical systems. A
key-point of [3] was to introduce a (locally compact) metric topology to study
the dynamical behavior of sand automata. A first and important result was
a fundamental representation theorem similar to the well-known theorem of
Hedlund for cellular automata [11, 3]. In [4, 5], the authors investigate sand
automata by dealing with some basic set properties and decidability issues.
Then, in [8], a new compact topology is introduced, inspired by the strong
relation between sand automata and cellular automata. It is proved that with
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this new topology, the representation theorem still holds, while the compactness
provides new opportunities for further topological studies of the model.

In this paper we continue the study of sand automata dynamics of [4, 5], using
the topological framework from [8]. We focus on stability, which is a major issue
for isolating the realistic sandpile models satisfying the SOC principles. More
precisely, we study different types of stability. First, we deal with the topological
stability, i.e., the equicontinuity and ultimate periodicity properties. We prove
that they are equivalent. We also show the insignificance of expansivity, a form
of strong instability. This fact suggests that the topological classification for
cellular automata from [13] cannot be easily generalized to sand automata.

Then, we study nilpotency, a very strong form of dynamical stability. The
classical definition of nilpotency for cellular automata [7, 12] is no more mean-
ingful here, since it would prevent any sand automaton from being nilpotent.
Therefore, we introduce a new definition which captures the intuitive idea that
a nilpotent automaton destroys all configurations: a sand automaton is nilpo-
tent if all configurations get closer and closer to a uniform configuration, not
necessarily reaching it. Finally, we prove that this behavior is undecidable, using
the undecidability of the nilpotency of spreading cellular automata.

The paper is structured as follows. Section 2 recalls basic definitions and
results on cellular automata and sand automata. In Section 3, results on the
topological stability of sand automata are proved and discussed. Nilpotency of
sand automata is then defined and proved undecidable in Section 4.

2 Definitions

For all a, b ∈ Z with a ≤ b, let [a, b] = {a, a + 1, . . . , b} and ˜[a, b] = [a, b] ∪
{+∞,−∞}. Let N+ be the set of positive integers.

For a vector i ∈ Z
d, denote by |i| the infinite norm of i. Let A a (possibly

infinite) alphabet, and r ∈ N, d ∈ N+. Denote by Md
r the set of all the d-

dimensional matrices with values in A and entry vectors in the hyper-rectangle
[−r, r]d.

2.1 Cellular Automata

Let A be a finite alphabet. A CA configuration of dimension d is a function from
Z

d to A. The set AZ
d

of all the CA configurations is called the CA configuration
space. This space is usually equipped with the Tychonoff metric dT defined by

∀x, y ∈ AZ
d

, dT (x, y) = 2−k where k = min
{|j| : j ∈ Z

d, xj �= yj

}

.



Stable Dynamics of Sand Automata 159

The topology induced by dT coincides with the product topology induced by the
discrete topology on A. It makes the CA configuration space is a Cantor space:
it is compact, perfect (i.e., it has no isolated points) and totally disconnected.

A cellular automaton (CA) is a quadruple 〈A, d, r, g〉, where A is the alpha-
bet, also called the state set, d ∈ N+ is the dimension, r ∈ N is the radius and
g : Md

r → A is the local rule of the automaton. The local rule g induces a global
rule G : AZ

d → AZ
d

defined as follows,

∀x ∈ AZ
d

, ∀i ∈ Z
d, G(x)i = g

(

M i
r(x)

)

,

where M i
r(x) ∈ Md

r is the finite portion of x of reference position i ∈ Z
d and

radius r defined by ∀k ∈ [−r, r]d, M i
r(x)k = xi+k.

For any k ∈ Z
d the shift map σk : AZ

d → AZ
d

is defined by ∀x ∈ AZ
d

, ∀i ∈ Z
d,

σk(x)i = xi+k. A function F : AZ
d → AZ

d

is said to be shift-commuting if ∀k ∈
Z

d, F ◦ σk = σk ◦ F . Note that CA are exactly the class of all shift-commuting
functions which are (uniformly) continuous with respect to the Tychonoff metric
(Hedlund’s theorem from [11]). For the sake of simplicity, we will make no
distinction between a CA and its global rule G.

For a given CA, a state s ∈ A is quiescent (resp., spreading) if for all matrices
U ∈ Md

r such that ∀k ∈ [−r, r]d, (resp., ∃k ∈ [−r, r]d) Uk = s, it holds that
g(U) = s. Remark that a spreading state is also quiescent. A CA is said to be
spreading if it has a spreading state. In the sequel, the spreading state of any
spreading CA will be denoted 0 ∈ A.

2.2 SA Configurations

A SA configuration (or simply configuration) is a set of sand grains organized in
piles and distributed all over the d-dimensional lattice Z

d. A pile is an element of
˜Z = Z∪{−∞, +∞} which represents a number of grains. One pile is positioned
in each point of the lattice Z

d. Formally, a configuration x is a function from Z
d

to ˜Z which associates any vector i = (i1, . . . , id) ∈ Z
d with the number xi ∈ ˜Z

of grains in the pile of position i. When the dimension d id known without
ambiguity, we note 0 the null vector of Zd. Denote by C = ˜Z

Z
d

the set of all
configurations.

A configuration x ∈ C is said to be constant if there is an integer c ∈ Z such
that for any vector i ∈ Z

d, xi = c. In that case we write x = c. A configuration
x ∈ C is said to be bounded if there exist two integers m1, m2 ∈ Z such that
for all vectors i ∈ Z

d, m1 ≤ xi ≤ m2. Denote by B the set of all bounded
configurations.

A measuring device βm
r of precision r ∈ N and reference height m ∈ Z is a

function from ˜Z to [̃−r, r] defined as follows
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∀n ∈ ˜Z, βm
r (n) =

⎧

⎨

⎩

+∞ if n > m + r ,
−∞ if n < m − r ,
n − m otherwise.

A measuring device is used to evaluate the relative height of two piles, with
a bounded precision. This is the technical basis of the definition of cylinders,
distance and ranges which are used all along this article.

In [8], a topology, inspired by the topology on CA configurations, is defined
as follows.

Definition 1 (cylinder). For any configuration x ∈ C, for any r ∈ N, and for
any i ∈ Z

d, the cylinder of x centered on i and of radius r is the d-dimensional
matrix Ci

r(x) ∈ Md
r defined on the finite alphabet [̃−r, r] by

∀k ∈ [−r, r]d ,
(

Ci
r(x)

)

k
= β0

r (xi+k) .

Definition 2. For any pair of configurations x, y ∈ C, we define

d(x, y) = 2−k where k = min
{

r ∈ N : C0
r (x) �= C0

r (y)
}

.

As a consequence, two configurations x, y are compared by putting boxes (the
cylinders) at height 0 around the corresponding piles indexed by 0. The integer
k is the size of the smallest cylinders in which a difference appears between x
and y.

With the topology induced by d, the SA configuration space is perfect, totally
disconnected, and, unlike the original topology used in [11, 3], compact (see [8]).

2.3 Sand Automata

For any integer r ∈ N, for any configuration x ∈ C and any index i ∈ Z
d

with xi �= ±∞, the range of center i and radius r is the d-dimensional matrix
Ri

r(x) ∈ Md
r on the finite alphabet A = [̃−r, r] ∪ ⊥ such that

∀k ∈ [−r, r]d ,
(

Ri
r(x)

)

k
=

{⊥ if k = 0 ,
βxi

r (xi+k) otherwise.

The range is used to define a sand automaton. It is a kind of cylinder, where
the observer is always located on the top of the pile xi (called the reference).
It represents what the automaton is able to see at position i. Sometimes the
central ⊥ symbol may be omitted for simplicity sake. The set of all possible
ranges of radius r, in dimension d, is denoted by Rd

r .
A sand automaton (SA) is a deterministic finite automaton working on con-

figurations. Each pile is updated synchronously, according to a local rule which
computes the variation of the pile by means of the range. Formally, a SA is a
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triple 〈d, r, f〉, where d is the dimension, r is the radius and f : Rd
r → [−r, r] is

the local rule of the automaton. The global rule F : C → C is defined by

∀x ∈ C, ∀i ∈ Z
d, F (x)i =

{

xi if xi = ±∞ ,
xi + f(Ri

r(x)) otherwise.

The following example illustrates a sand automaton whose behavior will be
studied in Section 4. For more examples, we refer to [5].

Example 1 (the automaton N ). This automaton destroys a configuration by
collapsing all piles towards the lowest one. It decreases a pile when there is a
lower pile in the neighborhood. Let N = 〈1, 1, fN 〉 of global rule FN where

∀a, b ∈ [̃−1, 1], fN (a, b) =
{−1 if a < 0 or b < 0 ,

0 otherwise.

Fig. 1 Illustration of the behavior of N .

When no misunderstanding is possible, we identify a SA with its global rule
F . For any k ∈ Z

d, we extend the definition of the shift map to C, σk : C → C
is defined by ∀x ∈ C, ∀i ∈ Z

d, σk(x)i = xi+k. The raising map ρ : C → C is
defined by ∀x ∈ C, ∀i ∈ Z

d, ρ(x)i = xi + 1. A function F : C → C is said to be
vertical-commuting if F ◦ ρ = ρ ◦F . A function F : C → C is infinity-preserving
if for any configuration x ∈ C and any vector i ∈ Z

d, F (x)i = +∞ if and only
if xi = +∞ and F (x)i = −∞ if and only if xi = −∞.

With the topology from [8], the Hedlund-like representation theorem for SA
from [3] remains valid.

Theorem 1 ([8]). A mapping F : C → C is a SA if and only if F is (uniformly)
continuous, shift-commuting, vertical-commuting and infinity-preserving.

3 Some Dynamical Behaviors

SA are very interesting models, whose complexity lies somewhere between d-
dimensional and d + 1-dimensional CA. Indeed, the latter can simulate d-
dimensional SA, which can, in turn, simulate the former [5, 8]. We are interested
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in studying the SA complexity from the stability point of view. The concepts
that first come to mind to formalize the notion of stability are inspired by the
topological classifications given in [9, 13] for CA. In [13], one-dimensional CA
are classified into four classes, from the most stable to the most unstable be-
havior: equicontinuous CA, non-equicontinuous CA admitting an equicontinuity
configuration, sensitive but not positively expansive CA, positively expansive
CA. Things are very different as soon as we get into dimension d = 2, as noted
in [15, 14]. The question is now whether the complexity of the SA model is
closer to that of the lower or the higher-dimensional CA. In this section we
consider the above mentioned concepts in the SA settings, and we introduce
the notion of ultimate periodicity, useful for the characterization of SOC sys-
tems. We prove that there exist no positively expansive SA and characterize
equicontinuous SA as the ultimately periodic SA.

First, recall basic definitions. Let (X, m) be a metric space and let H : X →
X be a continuous application. An element x ∈ X is an equicontinuity point
for H if for any ε > 0, there exists δ > 0 such that for all y ∈ X , m(x, y) < δ
implies that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. The map H is equicontinuous if
for any ε > 0, there exists δ > 0 such that for all x, y ∈ X , m(x, y) < δ implies
that ∀n ∈ N, m(Hn(x), Hn(y)) < ε. An element x ∈ X is ultimately periodic
for H if there exist two integers n ≥ 0 (the preperiod) and p > 0 (the period)
such that Hn+p(x) = Hn(x). H is ultimately periodic if there exist n ≥ 0 and
p > 0 such that Hn+p = Hn. If X is compact, H is equicontinuous (resp. ulti-
mately periodic) iff all elements of X are equicontinuity points (resp. ultimately
periodic). H is sensitive (to the initial conditions) if there is a constant ε > 0
such that for all points x ∈ X and all δ > 0, there is a point y ∈ X and an
integer n ∈ N such that m(x, y) < δ but m(Fn(x), Fn(y)) > ε. H is positively
expansive if there is a constant ε > 0 such that for all distinct points x, y ∈ X ,
there exists n ∈ N such that m(Hn(x), Hn(y)) > ε.

The classification from [13] is no more relevant in the SA context since the
class of positively expansive SA is empty. This result can be related to the
absence of positively expansive two-dimensional CA (see [15]), though the proof
is much different.

Proposition 1. There are no positively expansive SA.

Proof. Let F be a SA and for any k ∈ N, let δ = 2−k. Take two distinct
configurations x, y ∈ C such that ∀i ∈ [−k, k]d , xi = yi = +∞. By infinity-
preservingness, we get ∀n ∈ N, ∀i ∈ [−k, k]d, Fn(x)i = Fn(y)i = +∞, hence
d(Fn(x), Fn(y)) < δ. ��

We now prove that two different notions of stability, such as equicontinuity
and ultimate periodicity, are equivalent. We need the following lemma, which
allows a better understanding of equicontinuity for SA.

Lemma 1. If F is an equicontinuous SA, then the variation of a pile is bounded
by the differences in an initial neighborhood, i.e., there exists an integer l ∈ N

such that all configurations x ∈ C with x0 = 0 satisfy
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∀n ∈ N, |Fn(x)0| ≤ max
|i|≤l

|xi|<∞

{|xi|} .

Proof. If F is equicontinuous, in particular, for ε = 20, there exists δ = 2−l such
that for all x, y ∈ C, if C0

l (x) = C0
l (y), then ∀n ∈ N, C0

0 (Fn(x)) = C0
0 (Fn(y)).

First, consider a configuration y which has infinite l-neighborhood, i.e., ∀i ∈
[−l, l]d, yi /∈ [−l, l]. Let z defined by zi = +∞ if yi ≥ 0 and zi = −∞ if yi < 0,
in such a way that C0

l (y) = C0
l (z). Then ∀n ∈ N, C0

0 (Fn(y)) = C0
0 (Fn(z)) =

C0
0 (z), i.e., Fn(y)0 < −l ⇔ y0 < −l and Fn(y)0 > l ⇔ y0 > l.
Now, let x ∈ C such that x0 = 0 and m = max|i|≤l,|xi|<∞{|xi|}. Notice

that ρl+m+1(x) has infinite l-neighborhood, since xi ≤ m or xi = +∞ for
|i| ≤ l. Hence, as seen before, ∀n ∈ N, Fn(x)0 ≤ m. A symmetrical reasoning
on ρ−l−m−1(x) gives ∀n ∈ N, |Fn(x)0| ≤ m. ��
Proposition 2. A SA is equicontinuous if and only if it is ultimately periodic.

Proof. Let F be a SA such that with Fn+p = Fn for some n ≥ 0, p > 0. Since
F, F 2, . . . , Fn+p−1 are uniformly continuous maps, for any ε > 0 there exists
δ > 0 such that for all x, y ∈ C with d(x, y) < δ, it holds that ∀q ∈ N, q < n+p,
d(F q(x), F q(y)) < ε. Since for any t ∈ N, F t is equal to some F q with q < n+p,
the map F is equicontinuous.
Let F be an equicontinuous SA and l, as in Lemma 1, such that for all x, y ∈ C,
if C0

l (x) = C0
l (y), then ∀n ∈ N, C0

0 (Fn(x)) = C0
0 (Fn(y)). Let x ∈ C such

that x0 is finite. Should we vertically shift it, we can assume x0 = 0. Let
y ∈ C defined by yi = max{min{xi, l + 1},−l − 1} if |i| ≤ l and yi = +∞
otherwise, in such a way that C0

l (x) = C0
l (y). By Lemma 1, ∀i ∈ [−l, l]d , ∀n ∈

N, |Fn(y)i| ≤ 2l +2. So we can find some preperiod qy and some period py such
that ∀i ∈ [−l, l]d , F py+qy (y)i = F qy(y)i. Since the other piles are infinite, and
then invariant, we get F py+qy(y) = F qy (y). As a consequence, C0

0 (F py+qy (x)) =
C0

0 (F qy (x)). Define p (resp., q) as the least common multiple (resp., maximum)
of all py (resp., qy) for y ∈ C such that |yi| ≤ l + 1 if |i| ≤ l and yi = +∞
otherwise. Then, for any x ∈ C, C0

0 (F p+q(x)) = C0
0 (F q(x)); in particular for

vertical and horizontal shifts of x, which gives F p+q(x) = F q(x). ��
An important open question in the dynamical behavior of SA is the existence

of non-sensitive SA without any equicontinuity configuration. An example for
two-dimensional CA is given in [14], but the involved method can hardly be
adapted for SA. However, we conjecture that such SA exist, which would lead
to a classification of SA into four classes: equicontinuous, admitting an equicon-
tinuity configuration (but not equicontinuous), non-sensitive without equicon-
tinuity configurations, sensitive.
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4 Nilpotency

In this section we give a definition of nilpotency, the most stable dynamics of a
dynamical system, adapted to SA. Then, we prove that this nilpotency behavior
is undecidable (Theorem 3).

4.1 Nilpotency of CA

Here we recall the basic definitions and properties of nilpotent CA. Nilpotency
is among the simplest dynamical behavior that an automaton may exhibit.
Intuitively, a system is nilpotent if it destroys every piece of information in any
initial configuration, reaching a common constant configuration after a while.
For CA, this is formalized as follows.

Definition 3 (CA nilpotency [7, 12]). A CA G is nilpotent if

∃c ∈ A, ∃N ∈ N ∀x ∈ AZ
d

, ∀n ≥ N, Gn(x) = c .

Remark that, because of the compactness of the CA configuration space, a
CA is nilpotent if and only if it is nilpotent for all initial configurations (i.e.,
all configurations eventually reach the same configuration).

Spreading CA have the following stronger characterization.

Proposition 3 ([6]). A CA G, with spreading state 0, is nilpotent if and only
if for all configurations x ∈ AZ

d

, limn→∞ dT (Gn(x), 0) = 0.

This equivalence is very useful since the CA nilpotency has been proved
undecidable in [12], even for the restricted class of spreading CA.

Theorem 2 ([12]). For a given state s, it is undecidable to know whether a
cellular automaton with spreading state s is nilpotent.

4.2 Nilpotency of SA

A direct adaptation of Definition 3 to SA is vain. Indeed, assume F is a SA of
radius r. For any k ∈ Z

d, consider the configuration xk ∈ B defined by xk
0 = k

and xk
i = 0 for any i ∈ Z

d\{0}. Since the pile of height k may decrease at most
by r during one step of evolution of the SA, and the other piles may increase at
most by r, xk requires at least �k/2r� steps to reach a constant configuration.
Thus, there exists no common integer n such that all configurations xk reach
a constant configuration in time n. This is a major difference with CA, which
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is essentially due to the unbounded set of states and to the infinity-preserving
property.

Thus, we propose to label as nilpotent the SA which make every pile approach
a constant value, but not necessarily reaching it ultimately. This nilpotency
notion, inspired by Proposition 3, is formalized as follows for a SA F :

∃c ∈ Z, ∀x ∈ C, lim
n→∞

d(Fn(x), c) = 0 .

Remark that c shall not be taken in the full state set ˜Z, because allowing in-
finite values for c would not correspond to the intuitive idea that a nilpotent
SA “destroys” a configuration (otherwise, the raising map would be nilpotent).
Anyway, this definition is not satisfying because of the vertical commutativity:
two configurations which differ by a vertical shift reach two different configura-
tions, and then no nilpotent SA may exist. A possible way to work around this
issue is to make the limit configuration depend on the initial one:

∀x ∈ C, ∃c ∈ Z, lim
n→∞

d(Fn(x), c) = 0 .

Again, since SA are infinity-preserving, an infinite pile cannot be destroyed (nor,
for the same reason, can an infinite pile be built from a finite one). Therefore
nilpotency has to involve the configurations of Z

Z
d

, i.e., the ones without infinite
piles. Moreover, every configuration x ∈ Z

Z
d

made of regular steps (i.e., in
dimension 1, for all i ∈ Z, xi − xi−1 = xi+1 − xi) is invariant by the SA rule
(possibly composing it with the vertical shift). So it cannot reach nor approach
a constant configuration. Thus, the larger reasonable set on which nilpotency
might be defined is the set of bounded configurations B. This leads to the
following formal definition of nilpotency for SA.

Definition 4 (SA nilpotency).

∀x ∈ B, ∃c ∈ Z, lim
n→∞

d(Fn(x), c) = 0 .

The following proposition shows that the class of nilpotent SA is nonempty.
Remark that similar nilpotent SA can be constructed with any radius and in
any dimension.

Proposition 4. The SA N from Example 1 is nilpotent.

Proof. Let x ∈ B, let i ∈ Z such that for all j ∈ Z, xj ≥ xi. Clearly, after
xi+1 − xi steps, F

xi+1−xi

N (x)i+1 = F
xi+1−xi

N (x)i = xi. By immediate induction,
we obtain that for all j ∈ Z there exists nj ∈ N such that F

nj

N (x)j = xi, hence
limn→∞ d(Fn

N (x), xi) = 0. ��
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4.3 Undecidability

The main result of this section is that SA nilpotency is undecidable (Theorem 3),
by reducing to it the nilpotency of spreading CA. This emphasizes the fact that
the dynamical behavior of SA is very difficult to predict. We think that this
result might be used as the reference undecidable problem for further questions
on SA.

Problem Nil
instance: a SA A = 〈d, r, λ〉;
question: is A nilpotent?

Theorem 3. The problem Nil is undecidable.

Proof. This is proved by reducing Nil to the nilpotency of spreading cellular
automata. Remark that it is sufficient to show the result in dimension 1. Let S
be a spreading cellular automaton S = 〈A, 1, s, g〉 of global rule G, with finite
set of integer states A ⊂ N containing the spreading state 0. We simulate S with
the sand automaton A = 〈1, r = max(2s, maxA), f〉 of global rule F using the
following technique, also developed in [5]. Let ξ : AZ → B be a function which
inserts markers every two cells in the CA configuration to obtain a bounded
SA configuration. These markers allow the local rule of the SA to know the
absolute state of each pile and behave as the local rule of the CA. To simplify
the proof, the markers are put at height 0 (see Figure 2):

∀y ∈ AZ, ∀i ∈ Z, ξ(y)i =
{

0 (marker) if i is odd ,
yi/2 otherwise.

This can lead to an ambiguity when all the states in the neighborhood of size
4s + 1 are at state 0, as shown in the picture. But as in this special case the
state 0 is quiescent for g, this is not a problem: the state 0 is preserved, and
markers are preserved.

Fig. 2 Illustration of the function ξ used in the simulation of the spreading CA S by A. The
thick segments are the markers used to distinguish the states of the CA, put at height 0. There
is an ambiguity for the two piles indicated by the arrows: with a radius 2, the neighborhoods
are the same, although one of the piles is a marker and the other the state 0.

The local rule f is defined as follows, for all ranges R ∈ R1
r,
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f(R) =

⎧

⎨

⎩

0 if R−2s+1, R−2s+3, . . . , R−1, R1, . . . , R2s−1 ∈ A ,
g(R−2s + a, R−2s+2 + a, . . . , R−2 + a, a, R2 + a, . . . , R2s + a) − a

if R−2s+1 = R−2s+3 = · · · = R2s−1 = a < 0 and −a ∈ A .
(1)

The first case is for the markers (and state 0) which remain unchanged, the
second case is the simulation of g in the even piles. As proved in [5], for any
y ∈ AZ it holds that ξ(G(y)) = F (ξ(y)). The images by f of the remaining
ranges will be defined later on, first a few new notions need to be introduced.

A sequence of consecutive piles (xi, . . . , xj) from a configuration x ∈ B is
said to be valid if it is part of an encoding of a CA configuration, i.e., xi =
xi+2 = · · · = xj (these piles are markers) and for all k ∈ N such that 0 ≤ k <
(j − i)/2, xi+2k+1 − xi ∈ A (this is a valid state). We extend this definition to
configurations, when i = −∞ and j = +∞, i.e., x ∈ ρc ◦ ξ(AZ) for a given c ∈ Z

(x ∈ B is valid if it is the raised image of a CA configuration). A sequence (or
a configuration) in invalid if it is not valid.

First we show that starting from a valid configuration, the SA A is nilpotent
if and only if S is nilpotent. This is due to the fact that we chose to put the
markers at height 0, hence for any valid encoding of the CA x = ρc ◦ ξ(y), with
y ∈ AZ and c ∈ Z,

lim
n→∞

dT (Gn(y), 0) = 0 if and only if lim
n→∞

d(Fn(x), c) = 0 .

It remains to prove that for any invalid configuration, A is also nilpotent. In
order to have this behavior, we add to the local rule f the rules of the nilpotent
automaton N for every invalid neighborhood of width 4s + 1. For all ranges
R ∈ R1

r not considered in Equation (1),

f(R) =
{−1 if R−r < 0 or R−r+1 < 0 or · · · or Rr < 0 ,

0 otherwise. (2)

Let x ∈ B be an invalid configuration. Let k ∈ Z be any index such that
∀l ∈ Z, xl ≥ xk. Let i, j ∈ Z be respectively the lowest and greatest indices
such that i ≤ k ≤ j and (xi, . . . , xj) is valid (i may equal j). Remark that
for all n ∈ N, (Fn(x)i, . . . , F

n(x)j) remains valid. Indeed, the markers are by
construction the lowest piles and Equations (1) and (2) do not modify them.
The piles coding for non-zero states can change their state by Equation (1),
or decrease it by 1 by Equation (2), which in both cases is a valid encoding.
Moreover, the piles xi−1 and xj+1 will reach a valid value after a finite number
of steps: as long as they are invalid, they decrease by 1 until they reach a value
which codes for a valid state. Hence, by induction, for any indices a, b ∈ Z,
there exists Na,b such that for all n ≥ Na,b the sequence (Fn(x)a, . . . , Fn(x)b)
is valid.

In particular, after N−2Nr−1,2Nr+1 step, there is a valid sequence of length
4Nr + 3 centered on the origin (here, N is the number of steps needed by S to
reach the configuration 0, given by Definition 3). Hence, after N−2Nr,2Nr + N
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steps, the local rule of the CA S applied on this valid sequence leads to 3
consecutive zeros at positions −1, 0, 1. All these steps are illustrated on Figure 3.

0

0

time

i

N

j

−2Nr+1,2Nr+1

N−2Nr+1,2Nr+1 + N

Fig. 3 Destruction of the invalid parts. The lowest valid sequence (in gray) extends until it
is large enough. Then after N other steps the 3 central piles (hatched) are destroyed because
the rule of the CA is applied correctly.

In a similar way, we prove that for all n ≥ N−2Nr−k,2Nr+k +N , the sequence
(Fn(x)−k, . . . , Fn(x)k) is constant and does not evolve as n grows. Therefore,
there exists c ∈ Z such that limn→∞ d(Fn(x), c) = 0. We just proved that A
is nilpotent, i.e., limn→∞ d(Fn(x), c) = 0 for all x ∈ B, if and only if S is
nilpotent (because of the equivalence of definitions given by Proposition 3), so
Nil is undecidable (Theorem 2). ��

5 Conclusion

In this article we have continued the study of sand automata, using the compact
topology on the SA configuration space introduced in [8]. This topology, inspired
by the topology on CA, may facilitate studies about dynamical and topological
properties of SA, as for the proof of the equivalence between equicontinuity and
ultimate periodicity (Proposition 2).

Then, we have given a definition of nilpotency. Although it differs from the
standard one for CA, it captures the intuitive idea that a nilpotent automaton
“destroys” configurations. Finally, we have proved that SA nilpotency is unde-
cidable (Theorem 3). This fact enhances the idea that the behavior of a SA is
hard to predict. We also think that this result might be used as a fundamental
undecidability result, which could be reduced to other SA properties.

Besides, in the context of CA, nilpotency clearly implies ultimate periodic-
ity. It appears that with our definitions, nilpotency of SA is not necessarily a
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particular case of ultimate periodicity (N is not ultimately periodic). However,
it would be interesting to see if it could be linked to other weaker stability
notions.

Moreover, the study of global properties such as injectivity and surjectiv-
ity and their corresponding dimension-dependent decidability problems could
help to understand if d-dimensional SA look more like d-dimensional or d + 1-
dimensional CA. Unfortunately, deciding these dynamical properties remains
a major problem. Similarly, it would be interesting to solve the open question
of the dichotomy between sensitive SA and those with equicontinuous config-
urations. A potential counter-example would give a more precise idea of the
dynamical behaviors represented by SA.
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Abstract. The Cops and Robbers game is played on undirected graphs where
a group of cops tries to catch a robber. The game was defined independently
by Winkler-Nowakowski and Quilliot in the 1980s and since that time has been
studied intensively. Despite of that, its computation complexity is still an open
question. In this paper we prove that computing the minimum number of cops
that can catch a robber on a given graph is NP-hard. Also we show that the
parameterized version of the problem is W[2]-hard. Our proof can be extended
to the variant of the game where the robber can move s times faster than cops.
We also provide a number of algorithmic and complexity results on classes of
chordal graphs and on graphs of bounded cliquewidth. For example, we show

that when the velocity of the robber is twice cop’s velocity, the problem is
NP-hard on split graphs, while it is polynomial time solvable on split graphs
when players posses the same speed. Finally, we establish that on graphs of
bounded cliquewidth (this class of graphs contains, for example, graphs of
bounded treewidth), the problem is solvable in polynomial time in the case
the robber’s speed is at most twice the speed of cops.

Key words: Pursuit-evasion games on graphs, complexity, parameterized
complexity, algorithms, cliquewidth

1 Introduction

Cops and Robbers is a pursuit-evasion game with two players cop C and robber
R which play alternately on a finite connected undirected graph G. Player C
has a team of cops who attempt to capture the robber. At the beginning of the
game C selects vertices and put cops on these vertices. Then R put the robber
on a vertex. The players take turns starting with C. At every move each of
the cops can be either moved to an adjacent vertex or kept on the same vertex.
(Several cops can occupy the same vertex at some move.) R responds by moving
the robber to some vertex along some path of length at most s, which does not
contain vertices occupied by cops. (In other words, cops are moving with a unit
speed and the speed of robber is s, and robber cannot run through a vertex
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occupied by a cop.) We say that a cop catches the robber at some move if at
that move they occupy the same vertex. Player C wins if in a finite number of
moves one of his cops catches the robber. Player R wins if he can avoid such
a situation. For an integer s and a graph G, we denote by cs(G) the minimum
number of cops sufficient for C to win on graph G against the robber moving
at the speed of s.

The variant of the game with s = 1, i.e. when cops and robber have the
same speed, was studied intensively. The game was defined (for one cop) by
Winkler and Nowakowski [25] and Quilliot [28] who also characterized graphs
with the cop number one. Aigner and Fromme [2] initiated the combinatorial
study of the problem with several cops and obtained a number of important
results. In particular, they observed that if a girth of G (the minimum length
of a cycle) is at least 5, then c1(G) is at least the minimum vertex degree of
G. Another interesting result proved in [2] is that on planar graphs 3 cops can
always catch the robber. This result can be generalized on graphs of bounded
genus [27, 31]. Andreae [5] extended the result of Aigner and Fromme to graphs
containing no fixed graph H as a minor. Different combinatorial (lower and
upper) bounds on the cop number for different graph classes are discussed in
[4, 13, 15, 16, 20, 22, 23] (see also the survey [3]).

There is a resemblance of Cops and Robbers game, at least for large values
of s → ∞, to the helicopter search game defined by Seymour and Thomas
[32], which is the game-theoretic interpretation of the well known treewidth
parameter. In Seymour-Thomas game the robber can move arbitrarily fast, but
players make their moves simultaneously. See the survey of Bodlaender for an
overview of pursuit-evasion games related to treewidth [7].

Despite of such an intensive study of the combinatorial properties of the
game almost no algorithmic results on this game are known. Perhaps the only
algorithmic result known about Cops and Robbers game (for s = 1) is the
observation that determining whether the cop number of a graph on n vertices
is at most k can be done by a backtracking algorithm which runs in time
O(nO(k)) (thus polynomial for fixed k) [6, 17, 19].

Similar result holds for every s ≥ 1. Given an integer k and a graph G on
n vertices, the question if cs(G) ≤ k can be answered (and the corresponding
winning strategy of k cops can be computed) by constructing the game graph
on 2

(

n+k−1
k

)

n nodes (every node of the game graph corresponds to a possible
position in G of k cops and one robber, taking into account two possibilities for
the turn), and then by making use of backtracking find if some cop-winning po-
sition can be obtained from an initial position. While the proof of the following
proposition is standard and easy (and we omit it here), it serves as the main
tool for obtaining all polynomial time algorithms in this work.

Proposition 1. For a given integer k ≥ 1 and a graph G on n vertices, the
question if cs(G) ≤ k can be answered in time

(

n+k−1
k

)2 · nO(1) = nO(k).

Thus for every fixed k, one can decide in polynomial time if k cops can catch
the robber on a given graph G. There are several natural questions around
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Proposition 1. The first is, what is the complexity of the problem when k is
part of the input? Another question, is the problem fixed parameter tractable?
There are many search and pursuit-evasion problems which are fixed parameter
tractable, i.e. for which deciding if k searchers (cops) can catch evader (rob-
ber) on an n-vertex graph can be done in time O(f(k) · nO(1)) (we refer to
Bodlaender’s survey [7] for examples of such problems).

There are several variants of similar games like the k-pebbles game, or the
cat and k-mouse game, which solutions require nΩ(k) steps (see e.g. Adachi et
al. [1]). However, all these games are played on directed graphs or the games
should either start, or end in specified positions (holes or cheese for mouses),
and the proofs are strongly based on these specific properties. Following this line
of research, Goldstein and Reingold [17] proved that the version of the Cops and
Robbers game on directed graphs is EXPTIME-complete. Also they have shown
that the version of the game on undirected graphs when cops and robber are
given their initial positions is also EXPTIME-complete. They also conjectured
that the game on undirected graphs (for s = 1) is also EXPTIME-complete.
Again, their proofs strongly relies on the specific settings (adding directions or
fixing initial positions) and cannot be transferred to the standard Cops and
Robbers game on undirected graphs, and their conjecture is still open.

Our results. We prove that for every s ≥ 1, deciding if cs(G) ≤ k is NP-hard.
We also show that the parameterized version of the problem is W [2]-hard.
Loosely speaking, this means that the existence of a O(f(k) · nO(1))-time algo-
rithm deciding if cs(G) ≤ k, where f is a function only of the parameter k and
G is a graph on n vertices, would imply that FPT = W [2], which is consid-
ered to be very unlikely in parameterized complexity. (We refer to the books
[12, 14, 24] for an information on parameterized complexity.) We also show
that for s ≥ 2, the problem remains NP-hard and W [2]-hard even when input
is restricted to split graphs. We find it a bit surprising, especially for s = ∞,
i.e. when the speed of robber is not bounded, because all known search and
pursuit-evasion problems on undirected graphs which look quite similar to this
case, are polynomially solvable or at least fixed parameter tractable for chordal
graphs. For example, for helicopter search game [32] the minimum number of
cops equals treewidth plus one and can be easily calculated for chordal graphs.
For node searching (see [18]) the corresponding problem can be solved in poly-
nomial time for split graphs but remains NP-complete on chordal graphs. See
also [26] for related results. Note also that for s = 1 one cop always can capture
robber on the chordal graph [28]. By continuing investigating the complexity
of the problem on classes of chordal graphs, we show that for every fixed s,
the computation of cs(G) on interval graphs can be done in polynomial time.
Finally, we investigate the complexity of the problem on graphs of bounded
cliquewidth. We prove that on graphs of bounded cliquewidth the computation
of numbers cs(G) can be done in polynomial time for s = 1, 2. While most of
polynomial time algorithms on graphs of bounded cliquewidth (and treewidth)
are based on dynamic programming approach [11], this is not the case for the
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Cops and Robbers problem. Our proof is based on combinatorial bounds and
Proposition 1.

2 Cops and Robbers is NP hard

All this section is devoted to the proof of the following result

Theorem 1. For every s ≥ 1, the following problem is NP-hard

INSTANCE: A graph G and a positive integer k.
QUESTION: Is cs(G) ≤ k?

Moreover, the parameterized version

INSTANCE: A graph G.
PARAMETER: A positive integer k.
QUESTION: Is cs(G) ≤ k?

of the Cops and Robbers problem is W [2]-hard for every s ≥ 1.

2.1 Bipartite graphs with large girth and degrees of
vertices

Let us start with auxiliary results. We want to construct a bipartite graph
with girth at least six and large minimum vertex degree with some additional
properties. (Let us remind that the girth of a graph G is the minimum cycle
length in G.) The study of such graphs has a long history (see e.g. [8]). There are
different approaches for obtaining such graphs. Most of them are geometrical
or algebraic. For our reduction we use algorithmic construction which is based
on the construction of Krishnan et al. [21].

For positive integers n, m and r we construct a bipartite graph H(n, m, r)
with rmn2 edges and bipartition (X, Y ), |X | = |Y | = nm. Set X is partitioned
into sets U1, U2, . . . , Un, and set Y is partitioned into sets W1, W2, . . . , Wn,
|Ui| = |Wi| = m for i = 1, 2, . . . , n. We denote by Hi,j the subgraph of
H(n, m, r) induced by Ui ∪ Wj , and by degi,j(z) the degree of vertex z in
Hi,j . We also denote by E the set of edges in H(n, m, r) and by dist(x, y) the
distance between vertices x and y in H(n, m, r).

The graph H(n, m, r) is constructed by the following procedure which starts
from empty graph on vertices X ∪ Y and add edges according the following
rules:
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for k := 1 to rm do
let t := � k

m�;
if k is odd then

for i := 1 to n do
for j := 1 to n do

choose a vertex x ∈ Ui of minimum degree in Hi,j ;
let S := {z ∈ Wj : dist(x, z) > 1 and degi,j(z) < t + 1};
select a vertex y ∈ Wj such that
dist(x, y) = maxz∈S dist(x, z); add (x, y) to E;

else
for j := 1 to n do

for i := 1 to n do
choose a vertex y ∈ Wj of minimum degree in Hi,j ;
let S := {z ∈ Ui : dist(y, z) > 1 and degi,j(z) < t + 1};
select a vertex x ∈ Ui such that
dist(x, y) = maxz∈S dist(x, z); add (x, y) to E;

Value of t is called the phase number of the algorithm. Clearly, the algorithm
has to complete r phases. If k is odd then we say that n2 edges, added by the
algorithm for this value of k, are added during the odd phase t. Correspondingly,
if k is even then we say that n2 edges, added by the algorithm for this value of
k, are added during the even phase t.

The following lemma, which is the direct analog of Lemma 1 from [21], es-
tablishes the key invariants maintained by the algorithm. We omit the proof of
this lemma here.

Lemma 1. For every 1 ≤ t ≤ r the following holds:

1. When the algorithm completes an odd phase t, the average degree of vertices of
Ui in Hi,j is r and t−1 ≤ degi,j(x) ≤ t+1 for x ∈ Ui and i, j ∈ {1, 2, . . . , n};

2. When the algorithm completes an even phase t, the average degree of vertices
of Wj in Hi,j is r and t − 1 ≤ degi,j(y) ≤ t + 1 for y ∈ Wj and i, j ∈
{1, 2, . . . , n}.
It can be easily seen that if set S is empty then the algorithm cannot add

an edge. Next lemma gives sufficient condition, which makes such situation
impossible.

Lemma 2. If r < m+3
6 then the algorithm completes all r phases.

This lemma is a simplified version of the lemma 2 of [21] and we omit its
proof here.

Now we can summarize properties of the algorithm and of the graph
H(n, m, r) which will be used in our reduction.
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Lemma 3. Let m ≥ 2n(r + 1) (n(r+1)−1)6−1
(n(r+1)−1)2−1 . Then

1. The algorithm constructs graph H(n, m, r) in time O(r · m · n2);
2. For every vertex z ∈ V (Hi,j) and every i, j ∈ {1, 2, . . . , n}, we have r − 1 ≤

degi,j(z) ≤ r + 1;
3. For every vertex z, deg(z) ≤ n(r + 1).
4. The girth of H(n, m, r) is at least six.

Proof. The first three items are immediate corollaries of Lemmata 1 and 2.
In order to prove 4, let us assume that a cycle of length g = 2p, p ≥ 1,

where g is the girth of H(n, m, r), was created during the phase t of the al-
gorithm. Without loss of generality, we can assume that the last edge (x, y)
of this cycle was added during odd phase t, and x ∈ Ui, y ∈ Wj . Let
D = {z ∈ Wj : dist(x, z) ≥ g}. Since vertex x had no neighbors in D, we have
that for every z ∈ D degi,j(z) = t + 1 during the even phase t. By Lemma 1,
|D| ≤ m

2 . Thus |Wj \ D| ≥ m
2 . Clearly dist(x, z) ≤ g − 1 = 2p − 1 for every

z ∈ Wj \ D. Let us estimate the number of vertices at distance at most 2p − 1
from x in H(n, m, r). Since the maximum vertex degree in H(n, m, r) is at most
n(r + 1), we have that the number of vertices at distance at most 2p − 1 from
x is at most

n(r + 1) + n(r + 1)(n(r + 1) − 1)2 + · · · + n(r + 1)(n(r + 1) − 1)2(p−1)

= n(r + 1)
(n(r + 1) − 1)2p − 1
(n(r + 1) − 1)2 − 1

.

Thus

n(r + 1)
(n(r + 1) − 1)6 − 1
(n(r + 1) − 1)2 − 1

≤ m

2
≤ n(r + 1)

(n(r + 1) − 1)2p − 1
(n(r + 1) − 1)2 − 1

,

which yields g = 2p ≥ 6. 
�

2.2 Proof of Theorem 1

Now we are ready to proceed with the proof of the main result of this section.
We use reduction from the well known NP-complete Minimum Dominating set
problem

INSTANCE: A graph G and a nonnegative integer k.
QUESTION: Does G contain a dominating set (i.e. a set of vertices D such
that every vertex of G is either in D, or is adjacent to a vertex of D) of
cardinality at most k?

Let G be a graph with the vertex set V (G) = {v1, v2, . . . , vn}. Let r = k + 2
and
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m =
⌈

2n(r + 1)
(n(r + 1) − 1)6 − 1
(n(r + 1) − 1)2 − 1

⌉

.

For every vertex vi ∈ V (G) we add 2m new vertices and make each new vertex
adjacent to vertices from N [vi] (in G). We use m of the new vertices to compose
the set Ui, and the other m vertices to compose the set Wi. Then we apply the
algorithm from the previous section to construct the bipartite graph H(n, m, r)
on the vertex set

(U1 ∪ U2 ∪ · · · ∪ Un) ∪ (W1 ∪ W2 ∪ · · · ∪ Wn).

Denote the resulting graph by G′. By Lemma 3, G′ is constructed in time
polynomial in n and k.

Now we prove that graph G has a dominating set of size at most k if and
only if cs(G′) ≤ k.

We say that vertex is dominated by the cop if this vertex is occupied by the
cop or some adjacent vertex is occupied by the cop.

Let S ⊆ V (G) be a dominating set in G of size ≤ k. Since cops placed in
vertices of S dominate all vertices of G′, for every vertex choice of robber he
will be caught after the first move of cops.

In opposite direction, let us assume that G has no dominating set of size k
and describe the strategy of the robber avoiding cops. Let S be the set of vertices
chosen by cops for their initial position. Since this set is not a dominating set
in G, we have that there is a vertex vi ∈ V (G) which is not dominated by
cops. Degree of every vertex of H(n, m, r) is at most n(r + 1) and thus k cops
dominate at most kn(r + 1) vertices in Ui. The set Ui contains m vertices,
therefore,

m =
⌈

2n(r + 1)
(n(r + 1) − 1)6 − 1
(n(r + 1) − 1)2 − 1

⌉

> kn(r + 1).

So there is a vertex u ∈ Ui which is not dominated by cops. The robber chooses
this vertex as his initial position. Suppose now that after some robber’s move
the robber occupies vertex u ∈ Ui which is not dominated by cops. If after the
next move of cops this vertex is still not dominated then the robber stays there.
If it it becomes dominated, then the robber do the following. Let S be the set of
vertices of G occupied by cops. Since this set is not a dominating set in G, there
is vertex vj ∈ V (G) which is not dominated by cops standing at S. The vertex
u has at least r − 1 = k + 1 neighbors in Wj . Since graph H(n, m, r) has the
girth at least six, we have that at least one of these neighbors is not dominated
by cops. Then the robber moves into this vertex (note that he moves along the
path of length 1). Clearly, this strategy of the robber gives him possibility to
avoid cops. This completes the NP-hardness part of the proof.

To prove W [2]-hardness, it is sufficient to observe that our reduction from
dominating set (which is W [2]-hard) is an FPT reduction.
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3 Complexity on Split and Interval graphs

A graph G is a split graph if the vertex set of G can be partitioned into sets
C and I, such that C is a clique, and I is an independent set. It is well known
that the treewidth of a split graph can be computed in linear time (actually it
is true for a larger class of chordal graphs). It is also well known that c1(G) = 1
on a superclass of chordal graphs and can be computed in polynomial time [25].
Also the treewidth of a chordal graph can be computed in polynomial time,
and thus the search game of Seymour-Thomas is tractable on chordal graphs.
However, for s ≥ 2 problem of computing of cs(G) becomes difficult even for
split graphs.

Theorem 2. For every s ≥ 2 the following problem is NP-hard:

INSTANCE: A split graph G, and a nonnegative integer k.
QUESTION: Is cs(G) ≤ k?

Moreover, for every s ≥ 2 the parameterized version of the problem is W [2]-
hard on split graphs.

Proof. The proof of this theorem uses the constructions from the proof of The-
orem 1. It is known that the Minimum Dominating set problem is NP-complete
(and its parameterized version is W[2]-hard) even when the input is restricted
to split graphs [29].

Let G be a split graph with clique C and independent set I = {v1, v2, . . . , vp}.
Let also r = k + 2 and m =

⌈

2(r + 1) r6−1
r2−1

⌉

. Each vertex vi ∈ I is replaced by
new m vertices, which form set Vi. Let N(vi) be the set of neighbors of vi in the
original graph G. We make every new vertex from Vi be adjacent to all vertices
from N(vi). Then we add m vertices forming a set W to the clique (i.e. these
vertices are joined by edges with each other and vertices of C). Now we construct
p copies of the graph H(1, m, r) with vertex sets V1 ∪ W, V2 ∪ W, . . . , Vp ∪ W
(Vi = X and W = Y for each copy of H(1, m, r)). The resulting graph is
denoted by G′. Clearly, this graph is a split graph, and can be constructed in
polynomial time.

Now we prove that for any s ≥ 2, graph G has a dominating set of size at
most k if and only if cs(G′) ≤ k.

Suppose that S ⊆ V (G) is a dominating set in G and |S| ≤ k. Clearly we can
assume that S ⊆ C. It can be easily seen that S is a dominating set in G′. We
place cops in vertices of S, and for every possible choice of an initial position,
the robber would be captured after the first move of cops.

Assume now that for every S ⊆ V (G), |S| ≤ k, S is not a dominating set
of G, and describe the strategy of the robber. Suppose that cops have chosen
initial positions, and S is the set of vertices of G occupied by cops. Since this
set is not a dominating set in G, there is i ∈ {1, 2, . . . , p} such that vertices
of Vi are not dominated by cops standing on vertices of S. Since each vertex
u ∈ W is adjacent to no more than k + 3 vertices of Vi and k(k + 3) + 1 ≤ m,
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we have that there is vertex x ∈ Vi which is not dominated by cops standing on
vertices of W . The robber chooses this vertex as his initial position. Suppose
now that after some moves the robber occupies vertex x ∈ Vi which is not
dominated by cops. If after next move of cops this vertex is still not dominated,
then the robber stays there. Suppose that it became dominated. Let S be the
set of vertices of G occupied by cops. Since this set is not a dominating set in
G, there is j ∈ {1, 2, . . . , p} such that vertices of Vj are not dominated by cops
standing on vertices of S. Vertex x has at least k + 1 adjacent vertices in W .
So there is vertex y ∈ W which is adjacent to x and is not occupied by cops.
Now vertex y has at least k + 1 neighbors in Vj . Since graph H(1, m, r) has the
girth at least six, at least one vertex z ∈ Vj in the neighborhood of y is not
dominated by cops. Then the robber can move from x to y and then to z. Such
a strategy provides the robber an opportunity to avoid capture.

To establish the parameterized complexity on split graph we observe, that
the parameterized version of the dominating set problem remains to be W [2]-
hard on split graphs and that the described reduction from dominating set is
an FPT reduction. 
�

Another well known class of chordal graphs are interval graphs. An interval
graph is the intersection graph of a set of intervals on the real line, i.e. every
vertex corresponds to an interval and two vertices are adjacent if and only if the
corresponding intervals intersect. We show that for every interval graph G and
integer s, cs(G) can be computed in polynomial time. Actually the only property
of interval graphs we need is the existence in interval graphs dominating pairs.
A dominating pair in a connected graph G is a pair of two (not necessary
different) vertices u and v such that the vertex set of every u, v-path in G is a
dominating set. A caterpillar is a tree which consists of a path, called backbone,
and leaves adjacent to vertices of the backbone. For a graph G and integer p,
the p-th power of G, Gp is the graph on vertex set V (G), and vertices u, v are
adjacent in Gp if and only if the distance between them is at most p in G.

Lemma 4. Let T be a spanning caterpillar of a graph G, and let p be an integer
such that G is a subgraph of T p. Then cs(G) ≤ max{1, ps− 1}.
Proof. We describe a winning strategy for k = max{1, ps − 1} cops. Suppose
that P = (v1, v2, . . . , vr) is a backbone of T . Cops occupy first k vertices of the
backbone. Then they move along P simultaneously. If after some robber’s move
he is standing on the vertex adjacent to the vertex occupied by a cop, then this
cop makes capturing move.

For a vertex v we use N [v] to denote the closed neighborhood of v, i.e. the
set of all vertices adjacent or equal to v. We use induction to prove that if at
some step cops occupy vertices vi, vi+1, . . . , vi+k−1 then the robber cannot move

to any vertex of set
i+k−1

⋃

j=1

N [vj ] without being captured after the next move of

cops. Clearly, this holds after the first move of cops. Let us consider the i-th
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move. By the induction assumption, before this move of cops the robber is at

some vertex x /∈
i+k−2

⋃

j=1

N [vj ]. If he is going to move to vertex y ∈
i+k−1

⋃

j=1

N [vj ] he

has to go along some path of length at most s which does not contain cops. Since

G ⊆ T p, the distance between x and y in T is at most ps. Then y ∈
i+k−1

⋃

j=i

N [vj ],

i.e that y is adjacent to a vertex occupied by some cop and thus the robber is
caught at the next move of cops. 
�
Lemma 5. Let G be a connected graph with dominating pair. Then cs(G) ≤
5s − 1.

Proof. Let u and v be a dominating pair, and P be a shortest u, v-path in G.
Then P is the backbone of a spanning caterpillar T in G. Since P is a shortest
path, G ⊆ T 5. Now we apply Lemma 4. 
�

Combining Proposition 1 with Lemma 5, we obtain the following result.

Corollary 1. For every positive integer s, cs(G) can be computed in time nO(s)

on graphs with a dominating pair.

Corollary 1 yields polynomial time algorithms on many graph classes containing
a dominating pair. This include not only interval graphs and cocomparability
graphs, but more general class of AT-free graphs. (See [9, 10] for definition and
properties of AT-free graphs.)

4 Graphs of bounded cliquewidth

Cliquewidth is a graph parameter that measures in a certain sense the com-
plexity of a graph. This parameter was introduced by Courcelle, Engelfriet, and
Rozenberg [11].

Let G be a graph, and k be a positive integer. A k-graph is a graph whose
vertices are labeled by integers from {1, 2, . . . , k}. We call the k-graph consisting
of exactly one vertex labeled by some integer from {1, 2, . . . , k} an initial k-
graph. The cliquewidth is the smallest integer k such that G can be constructed
from initial k-graphs by means of repeated application of the following three
operations:

– Disjoint union (denoted by ⊕).
– Relabeling: changing all labels i to j (denoted by ρi→j).
– Join: connecting all vertices labeled by i with all vertices labeled by j (denoted

by ηi,j).

If graph G has cliquewidth k it is possible to construct the expression tree
for G. The expression tree is a rooted tree T of the following form:
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– The nodes of T are of four types i, ⊕, η and ρ.
– Introduce nodes i(v) are leaves of T , corresponding to initial k-graphs with

vertices v, which are labeled i.
– A union node ⊕ stands for a disjoint union of graphs associated with children.
– A join node ηi,j with one child is associated with the k-graph, which is the

result of join operation for the graph corresponding to the child.
– A relabel node ρi→j also with one child is associated with the k-graph, which

is the result of relabeling operation for the graph corresponding to the child.
– The graph G is isomorphic to the graph associated with the root of T (with

all labels removed).

For node v of T we denote by Tv the subtree of T induced by v and it’s descen-
dants, and by Gv is denoted k-graph associated with this node. Clearly, Tv is
the expression tree for Gv.

Theorem 3. Let G be a connected graph with cliquewidth k. Then c1(G) ≤ k
and c2(G) ≤ 2k.

Proof. If our graph has one vertex then the statement is trivial. So assume that
G contains at least two vertices.

We start with the first bound. Let T be an expression tree for G. We describe
a cops strategy, which is constructed by tracing of T starting from the root.
The key idea of the cop’s strategy is to force the robber stay in vertices of graph
Gv, where v is a child of considered node of T .

It is assumed that at the beginning cops occupy some vertices of G. We say
that a cop moves to vertex z if he is moved to this vertex by a sequence of
moves. In the process of the pursuit cops are assigned to sets of vertices of the
graph. Correspondingly, these cops (sets) are called assigned, and other cops
are called free.

Let u be a vertex of T . It is assumed inductively that the robber occupies
some vertex of Gu, and that all vertices of V (Gu), which are adjacent to vertices
of V (G) \ V (Gu), are dominated by assigned cops. Suppose that S1, S2, . . . , Sr

are disjoint sets of vertices of Gu, to which cops are assigned. The cop assigned
to the set Si occupies some vertex, which is adjacent to all vertices of this set,
and every set has exactly one assigned cop. If u is the root, then r = 0. Now
we consider different cases.
Case 1. u is an introduce node. Since this vertex is dominated by some cop, this
case is trivial.
Case 2. u is a union node. Let v1, v2, . . . , vt be the children of u. Since Gu is
a disjoint union of Gv1 , Gv2 , . . . , Gvr , we have that the robber can stay only
in vertices of the graph Gvi for some 1 ≤ i ≤ r. If for some j ∈ {1, 2, . . . , r}
Sj ∩ V (Gvi ) = ∅, then the cop assigned to this set is declared free. For other
sets we put Sj = Sj ∩ V (Gvi). Finally, we put u = vi and cops proceed with
the new list of assigned sets.
Case 3. u is a join node ηi,j with the child v. Let X ⊆ V (Gu) be the set of
vertices labeled by i, and Y ⊂ V (Gu) be the set of vertices labeled by j. If X is
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not included in the list of assigned sets, then vertex z ∈ Y is chosen, some free
cop is moved to this vertex, and this cop is assigned to X . Similarly, if Y is not
included to the list of assigned sets then vertex z ∈ X is chosen, some free cop
is moved to this vertex and is assigned to Y . The game proceeds with the new
list of assigned sets for u = v.
Case 4. u is a relabel node ρi→j with the child v. Let X ⊂ V (Gu) be the set of
relabeled vertices. If for some t ∈ {1, 2, . . . , r}, X ⊂ St, then set St is partitioned
into X and St \X , and one additional free cop is moved to a vertex dominating
X . This cop is assigned to X and the one that was assigned to St is assigned to
St \ X . Then cops proceed further with the new list of assigned sets for u = v.

By following this strategy, Cop player is guaranteed that at some moment
he reaches a position in the game when it is his turn to make a move and that
the robber occupies a vertex of some assigned set. Since each of the assigned
vertices is dominated by a cop, it follows that at some moment Cop player can
win the game by catching the robber.

Let us prove that k cops are sufficient to perform this strategy. We use here
the following property: For every u ∈ V (T ) with assigned sets S1, S2, . . . , Sr, no
label is used on vertices from two different sets. This property can be shown by
inductive arguments. By definition, it holds when u is the root of T . Suppose
that after some step of the pursuit two different sets Si and Sj have vertices with
same label. But it means that in the process of construction of G from Gu these
sets have to be subjected to relabeling and join operations simultaneously. Then
all vertices of these sets should be included into one assigned set after some join
operation. Thus r ≤ k, which yields that c1(G) ≤ k.

The second bound is proved similarly. Main difference is that we assign not
one but two cops to a set. Let u be a vertex of T . For the case s = 1 cops
were able to succeed by dominating all vertices of V (Gu), which are adjacent
to vertices of V (G) \ V (Gu). In the case s = 2, this is not sufficient and cops
also have to control all vertices of V (G) \V (Gu), which are adjacent to vertices
of V (Gu). Except this, the proof of this bound is almost identical to the case
of s = 1 and we omit it here. 
�

In combination with Proposition 1, Theorem 3 implies that

Corollary 2. For every graph G of bounded cliquewidth the numbers c1(G) and
c2(G) can be computed in polynomial time.

Let us remark that the results of this section cannot be extended for s ≥ 3
because cs(G) is not bounded by the cliquewidth of a graph. Consider, for
example, complete n-partite graph with partition sets V1, V2, . . . , Vn, |Vi| = n
for every i ∈ {1, 2, . . . , n}. Then we add n vertices v1, v2, . . . , vn and for every
i ∈ {1, 2, . . . , n} make vi adjacent to all vertices from Vi. Let Gn be the resulting
graph. It is easy to see that this graph has cliquewidth at most 3 and that
cs(Gn) = n for s ≥ 3.
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5 Open problems

Many interesting algorithmic question around Cops and Robbers game remain
open and we conclude with asking some of them.

– The most challenging question is due to Goldstein and Reingold in [17]: Is
the testing of c1(G) ≤ k EXPTIME-complete? If the answer is ”yes”, is the
problem EXPTIME-complete for every fixed s? Can it be so that for large s,
say for s ≥ √

n, the problem is in NP?
– We have shown that for every graph G of bounded cliquewidth and s ≤ 2,

the number cs(G) can be computed in polynomial time. What is the com-
putational complexity of the problem on graphs of bounded cliquewidth for
s = 3 or for s = ∞?

– For a graph G of treewidth k, for every s ≥ 1, it is possible to prove that
cs(G) ≤ k + 1, which implies that cs(G) can be computed in time nO(k).
What is the parameterized complexity of computing cs with the treewidth
(or the cliquewidth) of a graph as a parameter?

– In the proof of Theorem 1, for a given graph G on n vertices, we construct a
graph G′ on O(n10) vertices such that γ(G) = cs(G′), where γ(G) is the dom-
ination number of G. Combined with the non-approximability for dominating
set problem [30], this implies the following

Corollary 3. There is a constant c > 0 such that there is no polynomial time
algorithm to approximate cs(G) within a multiplicative factor c log n, unless
P = NP .

An interesting question here is if there is an n1−ε-approximation algorithm
for the Cops and Robbers game.

– We have shown that for every fixed s, the solution of the Cops and Robbers
game can be solved in polynomial time on interval graphs. Can c∞(G) be
computed in polynomial time on interval graphs?
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Abstract Wang tiles are unit size squares with colored edges. To know whether a
given finite set of Wang tiles can tile the plane while respecting colors on edges is
undecidable. Robinson’s tiling is an auto-similar tiling in which the computation of
a Turing machine can be carried out. By using this construction and by consider-
ing a strong notion of simulation between tilings, we prove computability results for
tilings. In particular, we prove theorems on tilings that are similar to Kleene’s recur-
sion theorems. Then we define and show how to construct reductions between sets
of tile sets. We generalize this construction to be able to transform a tile set with
a given recursively enumerable property into a tile set with another property. These
reductions lead naturally to a Rice-like theorem for tilings.

Introduction

In [17], Wang introduced the study of tilings with colored tiles. A tile is a unit size
square with colored edges. Two tiles can be assembled if their common edge has the
same color. To tile consists in assembling tiles from a tile set (a finite set of different
tiles) on the grid Z2. The tiles can be repeated as many time as needed, but cannot be
turned.

Two questions arose from these definitions. The first one, conjectured true by Wang,
was to know whether any tile set that can tile the whole plane can also tile it in a
periodic way, i.e., there exists two linearly independant vector u and v ∈ Z2 such that
for any position z ∈ Z2, the tiles at position z, z+u and z+v in the tiling are the same.
The second one, known as the domino problem, is to know if one can decide whether
a given tile set can generate a tiling of the plane.

Both of the questions were answered by Berger in [3]. In his thesis, Berger con-
structed for any Turing machine M and any input w, a tile set τM,w such that this tile
set can generate a tiling of the plane if and only if the computation of M stops on
the input w. This construction proved the undecidability of the domino problem, and
also proved that there exist aperiodic tile sets, i.e., tile set that produces only aperiodic
tiling (similarly, a tile set is said to be periodic if it generates at least one periodic
tiling). This technical construction was improved later, and simplified constructions of
aperiodic tile sets can be found in [16] and [1].

Since the main argument of Berger’s proof was to simulate the behavior of a given
Turing machine with a tile set, then one of the most important fact concerning tilings
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is that tilings can constitute a Turing equivalent computation model. This computation
model is particularly relevant as a model of computation on the plane.

The study of tilings has made possible the resolution of mathematical logical prob-
lems ([1]). Then researchers have been interested in studying the kinds of tilings that
one tile set can produce ([16] and more recently [5, 8, 12]). Others have defined tools
to quantify the regular structure of a tiling ([6, 2, 13]). Recently, notions of simulation
between tilings have been defined to obtain a first approach to computability results on
tilings ([12, 14]).

In this paper, we aim at proving computability results for tilings. To reach this goal,
we use the construction most used nowadays: Robinson’s tiling. In [16], Robinson
has built a tile set that generates only auto-similar aperiodic tilings. The construction
is based on a hierarchy of squares of ever increasing sizes. In each of these squares,
some zone can be used to simulate the behavior of a Turing machine. In [12], notions
of simulation and reduction between tilings and tile sets have lead to notions of uni-
versality for tilings and completeness for tile sets. Finer notions of simulation have
been defined in [14]. These notions rely on Robinson’s construction to study the com-
putability of problems related to simulation. In this paper, we make a heavy usage of
this construction to prove classical computability results for tilings.

In classical computability (recursion theory) all theorems derive from the enumer-
ation and s-m-n theorems. Kleene’s recursion (or fixed point) theorem is a direct ap-
plication of s-m-n. With tilings, an s-m-n approach would be unnatural because of the
particular geometrical nature of computation in this model. Nevertheless, Kleene’s the-
orem is a tool that seems to be more naturally fitted to be transposed on tilings. Our
goal in this paper is to show how a computability can be shaped on the geometrical
computation model of tilings, and not merely to use classical computability to obtain
tools on tilings. In traditional computability, Kleene’s theorem states that for any re-
cursive modification of programs M, there exists a program p which is a fixed point
for M, i.e., p and M(p) compute the same function. So two Turing machines can be
seen as equivalent if they compute the same function. To obtain a Kleene-like theorem
for tilings, we need notions of comparison of tile sets: one such notion is the exact
simulation. The general idea is to say that a tile set τ exactly simulates a tile set τ ′ if
τ generates a set of rectangles of equal sizes which are isomorphic to the tiles of τ ′.
From this, we can obtain Kleene-like theorems for tilings.

Beyond Kleene-like theorems, we show how to construct reductions between sets of
tile sets. Reductions are fundamental notions in computability theory. Natural notions
of reductions between sets of tile sets are also fundamental for tilings. In fact, the idea
behind the construction of these reductions lies in Kleene’s recursion theorem with
parameters: to inject some property in the fixed point being constructed. The reduction
constructed is not only interesting for applications but also in itself: it shows how to
transform a tile set with a certain property into another tile set with another property. A
generalization of this construction leads to another main computability result: Rice’s
theorem. This theorem states that for any property P on the set of partial recursive
functions, if there exist at least one function which satisfies P and one which does
not then it is not decidable to know if a given Turing machine computes a function
satisfying the property P. Again with the exact simulation, we can state this theorem
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for tilings as follows: if A is a set of tile sets, then it is not decidable to know whether a
given tile set τ exactly simulates a tile set of A. We note that in [4], a first and different
approach to a Rice-like theorem for the local constraints has been done, where local
constraints are a tiling equivalent model. In this paper, the authors show that it is not
decidable to know whether two local constraints can produce the same set of tilings.
Our approach is different since we consider the exact simulation as the way to compare
tile sets. With the exact simulation, we show how to build reductions between tile sets
which lead naturally to a Rice-like theorem.

The main result of this paper is to obtain different Kleene-like theorems using
Robinson’s construction. We also show that some of these results can be proved with
another natural construction introduced in [9] to construct an aperiodic self-similar
tiling using Kleene’s theorem.

From there, we show how to construct reductions between sets of tile sets and obtain
a Rice-like theorem for tilings. The striking aspect of this work holds primarily in the
fact that these reductions exist and in the detailed description of their construction.

In Sec. 1, we recall the basic notions of tilings and simulation between tile sets and
recall the two main definitions of simulation, the total and the exact ones introduced in
[14]. In Sec. 2, we recall the construction of Robinson’s tiling and how it can carry out
the simulation of a Turing machine. In Sec. 3, we improve this construction to obtain
a famous result proved in [10]: the set of periodic tile sets is Σ1-complete. In Sec. 4,
we prove three Kleene-like theorems for tilings. In the last section, we define how to
construct reductions between sets of tile sets and prove a Rice-like theorem for tilings.

1 Notions of simulation

We begin with the basic notions of tilings. A tile is an oriented unit size square with
colored edges from C, where C is a finite set of colors. A tile set is a finite set of tiles. To
tile consists in placing the tiles of a given tile set on the grid Z2 such that two adjacent
tiles share the same color on their common edge. Since a tile set can be described with
a finite set of integers, then we can enumerate the tile sets, and τi designates the ith tile
set.

Let τ be a tile set. A tiling P generated by τ is called a τ-tiling. It is associated to
a tiling function fP where fP(x,y) gives the tile at position (x,y) in P. When we say
that we superimpose the tiles of a tile set τ on the tiles of a tile set τ ′, we mean that
for any tile t ∈ τ and any tile t ′ ∈ τ ′, we build a tile u = t × t ′ where the colors of the
sides of u are the cartesian product of the colors of the sides of t and t ′. Then two tiles
u1 = t1× t ′1 and u2 = t2× t ′2 match if and only if t1 and t2 match and t ′1 and t ′2 match.

Different notions of reduction have been introduced in [12] and in [14]. We recall
some of the notions relative to these reductions and we refer the reader to these papers
for detailed explanations and properties.

A pattern is a finite tiling. If it is generated by τ , we call it a τ-pattern. A finite set
of rectangular τ-patterns of even size is a τ-pattern set. By analogy with tilings, to tile
with a pattern set consists in placing the patterns on a regular subgrid of Z2 in such
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a way that the connection between two patterns respects the local constraint of color
matching. We call a tiling P generated by a pattern set M, an M-tiling. If M is a set of
τ-patterns, then for any M-tiling P, there exists a τ-tiling Q which is a representation
of P at the unit tile level.

From this remark we obtain notions of simulation. We say that a pattern tiling P
simulates a tiling P′ if there exists a function R from the patterns of P to the tiles of P′

such that if we replace the patterns of P by their corresponding tiles given by R, then
we obtain P′. In such a case, we write P′ PR P and say that P′ reduces to P. If R is not
determined, we denote the fact that P′ reduces to P by P′ P P. The main thing in this
reduction is that R is not necessarily a one-to-one function. Different patterns of P can
represent the same tile of P′.

This is the least restrictive notion of simulation that we have. We require of a tile set
to be able to simulate the behavior of another tile set with patterns. This can be done by
any tile set that can produce rectangle patterns whose sides can encode colors. From
this simulation, we can define notions of universality for tilings and completeness for
tile sets: a tiling P is strongly universal if for any tile set τ , there exists a τ-tiling Q
such that Q P P and a tile set τ is complete if for any tile set τ ′ and any τ ′-tiling Q
there exists a τ-tiling P such that Q P P. Therefore, universality is a property of tilings.
A tiling is universal if it can simulate the behavior of at least one tiling for any tile set.
Completeness is a property of tile sets. A tile set τ is complete if for any tiling P it can
generate a tiling having the behavior of P.

In [14], two finer notions have been introduced:

Definition 1. Let τ and τ ′ be two tile sets. We say that τ totally simulates τ ′ if there
exist a,b ∈ Z and a reduction R from the a×b patterns of τ to the tiles of τ ′ such that
the two following conditions are respected:

1. for any τ ′-tiling Q, there exists a τ-tiling P such that Q PR P,
2. for any τ-tiling P, there exists a τ ′-tiling Q such that Q PR P.

We denote it by τ ′ Pt τ (or τ ′ PR
t τ to specify the reduction R).

If τ ′ Pt τ , then there exists a reduction R such that any τ-tiling can be cut in rectan-
gle patterns of size a×b such that if one replaces these patterns by their corresponding
tiles given by R then one obtains a τ ′-tiling. And the set of all τ ′-tilings that reduce to
a τ-tiling is exactly the set of all τ ′-tiling. The total simulation is thus more specific
than the simulation introduced in [12]. In this way, τ can be seen as a tile set which
computes in a same way than τ ′.

A tile set τ exactly simulates a tile set τ ′ if τ totally simulates τ ′ and if the reduc-
tion R between τ and τ ′ is one-to-one. In the total simulation, different patterns can
represent the same tile; in the exact one, any tile is represented by only one pattern. It
is this simulation that we use to prove our computability theorems for tilings.

To be able to study these notions of simulation, we now recall the classical Robinson
construction and some of its specific aspects that we will use later on.
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2 Basic notions of simulation of a tile set

Since Berger’s proof of the domino problem, we know that we can simulate a Turing
machine with a tiling. To any Turing machine M and any input w, we can associate
a tile set which simulates the behavior of the computation of M on w. Nowadays, the
most used construction to simulate a Turing machine is based on Robinson’s tile set
(Fig. 1). In [16], Robinson built an aperiodic tiling. This tiling is based on a hierarchy
of squares of ever-increasing sizes (Fig. 1.1) shows this hierarchy for the first three
levels. These squares are of sizes 2n + 1. The idea is to dedicate spaces (the white
spaces in Fig. 1.2) in each square of size 22n + 1 to simulate a Turing machine by
forcing the lowest southwest tile of any of these squares to have the tile representing the
initial state of M on the input w. For more details and explanations of this construction,
we refer the reader to [1].

Fig. 1 The hierarchical structure and the obstruction zone in Robinson’s tiling

In [12], a tile set is simulated by a Turing machine, in the sense that for any tile
set τ , we build a Turing machine Mτ that produces space×time diagrams of same size
which are isomorphic to the tiles of τ , where the size of the space×time diagrams are
the length and width of the diagrams , i.e., the time and space needed to reach a final
state.. This can be done with a Turing machine that takes as input two integers: i, the
code of the index of a tile set, and j, the code of a color of τi. The Turing machine
checks if j is the code of a color of the south side of τi. If yes, it computes in a non-
deterministic way a tile of τi with south color j, as shown in Fig. 2. Then we can
simulate this Turing machine in Robinson’s tiling and obtain a tile set which simulates
totally or exactly, depending on the conditions used, another tile set. For a detailed
explanation we refer the reader to [12] and also [14] where constructions of particular
tile sets with simulation conditions are built.
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Fig. 2 The space×time di-
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3 Periodicity if and only if a Turing machine stops

In this section we use the construction making possible the simulation of a Turing
machine in Robinson’s tiling in order to obtain a well known result proved in [10]: the
undecidability of the periodic tilability of the plane. The explanations that follow are
an introduction to the construction that we will use in the following sections to prove
computability results for tilings.

Robinson’s tiling is a tiling with a hierarchy of squares of ever increasing sizes. The
squares of level one are of size 3 and the squares of level i are of size 2i + 1. We can
see that the squares of level n are based on a regular subgrid of Z2 where two lines
and two columns are separated by 2n − 1 tiles. Actually, one can note that these lines
and columns are composed of the alternation of two different sequences of 2n−1 tiles
separated by corner tiles, one of these sequences representing the side of a square of
the nth level. We call this subgrid on which is based the squares of level n, the nth grid.
Therefore, the sides of any squares of level n is part of the nth grid.

We can tile Robinson’s tiling in a sequence of stages: at stage one, we tile the first
grid on Z2. At stage n, we tile the nth grid and modify, if needed, the tiles of the
lowest grids with which the nth grid intersects. This can be done without changing the
structure of squares made until this stage. We can proceed like that until the end of the
process and we will obtain Robinson’s tiling. But we can see that after having tiled
the nth level, if we choose to add to our tiling a simple grid, i.e., a grid that does not
contains square of the Robinson hierarchy, of same size than the nth grid, and translated
in such a way that its corner tiles are in the middle of the squares of the nth grid, then
we complete the tiling and make it periodic since we have stopped the self-similarity.
Fig. 3 shows the black grid which is inserted in the tiling.

We add to Robinson’s tile set special tiles that can generate squares of Robinson’s
tiling marked with a special color. Thus, at a certain level n, we can decide to tile the
nth grid either with the tiles of Robinson’s tile set or with the special marked tiles.
The special colored tiles have the particularity to not allow squares of higher level to
intersect it. Therefore, when one has decided to tile a level with these special tiles,
then the self-similarity of Robinson’s tiling stops. The only way to complete the tiling,
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Fig. 3 The blocking color
(dark gray) forces the com-
pletion of the tiling by adding
a regular subgrid (black) that
stops the self-similarity of
Robinson’s tiling (clear gray)

is to do as said in the previous paragraph: we tile a simple grid and, by stopping the
self-similarity, we obtain a periodic tiling.

Fig. 3 shows what happens when one decides to tile the squares of level n with
the blocking color (here, in black gray). Since no other square of higher level can be
added to the tiling, the only way to complete the tiling is to add a simple grid formed
of squares of sizes 2n +1 (here, in black).

We now have to add a condition to force to tile with the special colored tiles. Let M
be a Turing machine. We build the tile set τM which simulates M on the empty input.
On the lowest southwest tile of any square of level 2n, we begin the simulation of M
with τM with the condition that if a final state is reached before reaching the perimeter
of the square, then a special color is sent to the north side of the square that forces the
perimeter of the square of level 2n - and thus the whole (2n)th grid - to be tiled with
the special colored tiles. Then the self-similarity is stopped and the tiling is periodic if
and only if M stops on the empty input.

To be more precise, we can compute the exact period of this tiling. If we choose
to stop the self-similarity of Robinson’s tiling at the level 2n, then the squares of the
hierarchy are of size 22n +1 and at least 22n−1 tiles separate two sides of two squares
of level 2n. Therefore, the smallest period is a square of size 22n+1. In Fig. 3, the period
is represented by a square composed of four blue squares.

In the following sections, we used these different constructions to obtain com-
putability results for tilings.

4 Kleene-like theorems for tilings

The first result we want to obtain is a theorem like Kleene’s fixed point theorem but
for tilings. Kleene’s theorem, in classical computability, states that for any recursive
function f , there exists a Turing machine Me

1 such that the function computed by the

1 Where Me denote the eth Turing machine according to an acceptable enumeration of Turing
Machines
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Turing machine Me is the same than the one computed by M f (e). We can state it as
follows: for any recursive modification of programs f , there exists a program p such
that p and its modification f (p) give the same result when computing on the same
input. For tilings, we cannot compare functions but we can compare their behavior.
We have in the exact simulation the notion of comparison that we need. Therefore, a
Kleene-like theorem for tilings can be stated as follows: for any modification f of tile
sets, there exists a tile set τ such that τ exactly simulates the modification of τ by f .

Theorem 1. Given a recursive function f , there exists an e such that τe simulates ex-
actly τ f (e).

Proof. Let f be a recursive function and M f a Turing machine which computes f .
Let M be the Turing machine that has the following behavior: when the input is the
empty word, M computes an integer i. After having computed i, M simulates M f on
the input i. We consider Robinson’s tiling where the lowest southwest corner of each
square of level n, and thus of size 22n +1, of the hierarchy of Robinson’s tiling is a tile
representing the initial state of M. The simulation of the computation of M is made in
this square until it has computed the value f (i). When this value has been computed,
a special color is sent to the north board of the square that colors the whole perimeter
of this square with this special color (Fig. 4.1). This special color is also a blocking
color, i.e., the self-similarity of Robinson’s tiling is stopped. Then we send the bits
composing f (i) to the south board of the square. This can be done by superimposing
the bits of f (i) on the computation tiles.

Therefore, the first line of the square is marked with the bits of f (i) and with the
special color, as well as the whole perimeter of the square. When the square is marked
with the special color, the computation of a new Turing machine, say N, can begin. N
is a Turing machine which takes as inputs an integer x, the index of a tile set, and an
integer y, the index of a color of τx and computes a tile of the tile set τx with south
color y, i.e., the space×time diagram of the computation of N on x and y is isomorphic
to a tile of τx with south color y. In our tiling, we want to simulate a tile of the tile set
τ f (i). Since we already have the bits of f (i) on the first line, we just need to add an
integer y, following f (i), which represents the index of a color of the tile set τ f (i), and
then begin the computation of N on f (i) and y (Fig. 4.2).

If y is not a south color of a tile of τ f (i), then the computation enters an error state,
and the tiling cannot be completed. Therefore, the tiling process keeps going on if and
only if we have chosen a valid color y. Then N computes the simulation of a tile with
south color y. Thus, there exists a level 2n such that any square of this level carries out
the computation of a tile of τ f (i).

The last thing that has to be done, to guarantee that two neighboring squares of level
2n carry out the simulation of two tiles that match, is to send the codes of the colors
on the sides of the squares of level 2n outside the square. This guarantees that the zone
between two neighboring squares contains the code of a common color.

Those squares of level 2n are the biggest of the tiling, since the self-similarity has
been stopped. Two squares, carrying out the simulation of the same tile, are composed
exactly of the same tiles. There exists only one way for a square to carry out the
simulation of a given tile. Therefore, the reduction is an isomorphism and the tile set
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Fig. 4 The computation of M and N in a square of computation of Robinson’s tiling

can simulate any tiling generated by τ f (i) and does not generate a tiling that does not
simulate a τ f (i)-tiling. Therefore, the simulation is exact.

We would like for our tile set to have access to its own index to be able to simulate
itself but modified by f . This is not an all natural fact, since each time that we add
tiles to our tile set to try to encode the code of the tile set, we change the code of the
tile set. To prove this, we need Kleene’s theorem with parameters which states that
for any recursive function g with two parameters, there exists a recursive function n
such that for any index of Turing machine e, Mn(e) and Mg(n(e),e) compute the same
function. We consider a recursive function g which takes as inputs a tile set that gener-
ates Robinson’s tiling, or a Turing machine able to simulate this tile set, and a Turing
machine M, and outputs the code g(Robinson’s tile set,M) of a Turing machine which
has the following behavior: it computes the index of the tile set which is the simulation
of M in Robinson’s tiling. By Kleene’s theorem, there exists a function n such that
Mn(M) = Mg(n(M),M). Here, n(Robinson’s tile set) is our fixed point and represents a
Robinson tiling which has access to its own code. This proves that when we simulate a
Turing machine in a tiling, we can always suppose that we can do it by having access
to the code of this tile set written somewhere in the tilings that it generates.

Therefore, we can suppose that there exists M which gives the index i of its own tile
set and thus, the tile set simulated exactly itself modified by f . This proves that this
tile set τi exactly simulates τ f (i). ut

We now show another version of Kleene’s theorem on tilings: Kleene’s theo-
rem with parameters. This theorem in a classical computability setting is of great
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usefulness, as shown at the end of the previous proof. This theorem states that for any
recursive function f , there exists a recursive function n such that Mn(y) = M f (n(y),y).
For tilings, we expect to obtain a similar result.

Theorem 2. For any recursive function f with two parameters, there exists a recursive
function n such that for any tile set τi, τn(i) exactly simulates τ f (n(i),i).

Proof. Let f be a recursive function which takes as input two indexes i, j of tile sets
and transforms them in a tile set τ f (i, j).

Let M f be the Turing machine with the following behavior: it takes as input two
integers x and y and computes f (x,y).

As we did before, to obtain the inputs x and y we can use two Turing machines Mx

and My which compute, from the empty input, respectively x and y. Let τM be the tile
set that simulates the Turing machine M which has the following behavior: it simulates
Mx and My from the empty input and then simulates M f on x and y to obtain f (x,y).

We simulate the behavior of these Turing machines with τM in Robinson’s tiling.
To do that, the lowest southwest tile of any square of size 22n + 1 contains the tile
representing the initial state of M: then, the tiling τM generates two integers x and y
and computes f (x,y). We send to the southeast line of the square, the bits of f (x,y),
to have a plain access to this code. They represent the index of the tile set we want
to simulate. As we did before, the final state of M sends a special color to the north
side of the square that forces the perimeter of the square to be colored with this special
color. This special color triggers the computation of a new Turing machine, say N,
that simulates the tiles of the tile set f (x,y). If the square is big enough to carry out
the computation of the tiles of the tile set of index f (x,y), then a blocking color is
sent to the north side of the square of computation which forces the whole perimeter
of the square to be colored with this blocking color and stops the self-similarity of
Robinson’s tiling. As we have seen in the previous proof, stopping the self-similarity
allows the simulation to be exact.

Therefore, we have a tile set τMx,My
, depending on Mx and My, which simulates ex-

actly the tile set τ f (x,y). For any tile set τi, and any Turing machine Mi which computes
i when given the empty input, by using Kleene’s theorem with parameters, we have
seen that we can find a Turing machine M x such that M x outputs the index of the
tile set τM x,Mi

, i.e., the tile set that has the following behavior: it simulates M x on the
empty input, which gives the code of the tile set, say k; then it simulates Mi which out-
puts i and computes f (k, i). Finally, it simulates the tile set with index f (k, i). Let n be
the recursive function that transforms the index i into the index of the tile set τM x,Mi

,
i.e., k. Therefore, n(i) is a fixed point. Indeed, τn(i) = τM x,Mi

exactly simulates the tile
set τ f (M x(ε),Mi(ε)) = τ f (n(i),i). ut

The two previous theorems can be proved without using Robinson’s construction.
To do that, we can use the construction introduced in the paper [9]. In this paper,
the authors use Kleene’s recursion theorem to build an aperiodic tiling. The idea is
to cut Z2 with rectangular equal patterns, where each tile of the rectangle knows its
position in this rectangle. This can be done by using a special tile for any position of
these rectangles. Then one superimposes on each rectangle the computation of a Turing
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Fig. 5 The computation of M and N in a square of computation of Robinson’s tiling

machine simulating a tile of a tile set. One can modify this tile set, say τ , in such a way
that each rectangle simulates a tile of τ . By using Kleene’s recursion theorem, one
obtains a tile set that simulates itself and thus, cannot be periodic.

We can also use this construction to prove our theorem. Since we can know the
time needed to compute x, y and f (x,y) then we can apply the same argument and
simulate Mx, My, the computation of f (x,y) and the simulation of the tiles of f (x,y) in
a determined rectangle. The conclusion is the same than in the previous proof. We just
have to simulate, as before, the tile set which simulates itself modified by f . Therefore,
the recursive function n, that takes as input the code i of a tile set, and outputs the code
n(i) of a tile set which computes: Mn(i), Mi, and the tiles of the tile set with index
f (Mn(i)(ε),Mi(ε)) = f (n(i), i), is a fixed point and τn(i) exactly simulates the tiles of
the tile set τ f (n(i),i).

Another version of Kleene’s theorem that we prove is the doubled-fixed point the-
orem: if f and g are two recursive functions of two variables, then there exist a and
b such that: Ma = M f (a,b) and Mb = Mg(a,b). In the context of tilings, we obtain the
following theorem:

Corollary 1. Let f and g be two recursive functions of two variables. Then there exist
two indexes k and j of tile sets such that τk exactly simulates f (k, j) and τ j exactly
simulates g(k, j).

Proof. We use the two Kleene-like theorems we have just introduced. Since f is a
recursive function with two variables, then, by theorem 2, there exists a recursive
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function n such that for any index i of a tile set, n(i) exactly simulates the tile set
with index f (n(i), i). Now, by theorem 1, there exists a tile set of index j which ex-
actly simulates the tile set g(n( j), j). Then set k = n( j). ut

In the next section we show how we can reduce properties between tilings to study
their computability, and obtain a Rice-like theorem for tilings and simulation.

5 Reductions of properties and Rice-like theorem for tilings

The construction used in the previous section can be modified to obtain other com-
putability results for tilings. This construction can be slightly adapted to obtain the
simulation of a certain tile set if a condition is fulfilled. Thereby, we are able to study
the computability of different properties on tilings.

We consider the set AP = { i |τi has the property P }, where P is a property on the
tilings generated by τi. One example can be the set Aper, the set of tile sets that gen-
erates a periodic tiling. We prove the following theorem, that has first been proved in
[10]:

Theorem 3. Aper ≡K0, where K0 is the set of pairs 〈i,w〉 such that the Turing machine
Mi stops on the input w, and thus is Σ1-complete.

Proof. In Sec. 3, we have shown that K0 ≤1 Aper. It suffices to show that Aper is in Σ1.
The property “τ is periodic” can be defined as follows: there exists an n such that τ

generates a pattern of size n which is a periodic pattern. Thus, Aper can be defined with
an ∃ arithmetical property. ut

To prove the previous theorem, we have reduced the halting problem to the problem
to know whether a tile set generates periodicity, by forcing a tile set to have a property
if a Turing machine halts on a given input. This kind of argument can be generalized to
tile sets to obtain reduction between sets of tile sets. We have the following definition:

Definition 2. Let A and B be two sets of tile sets. A reduces to B (noted A≤ B) if there
exists a recursive function f such that i ∈ A ⇔ f (i) ∈ B.

We show a first kind of reduction between sets of tile sets by proving that the set of
periodic tile sets reduces to non-recursive tile sets, i.e., tile sets that produces only non
recursive tilings of the plane.

Theorem 4. Let Bnr be the set of non recursive tile sets, i.e., tile sets that produce only
tilings of the plane which cannot be defined by a recursive function. Then Aper ≤ Bnr
and thus, Bnr is not a recursive set.

Proof. Let τ be a periodic tile set and ρ be a non-recursive tile set. Since [11] and
[15], we know that such tile sets exist. Let M be the Turing machine that enumerates
the rectangle patterns generated by τ and which stops if and only if τ generates a
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periodic pattern. As we did before, we simulate M in Robinson’s tiling and we block
the self-similarity of Robinson’s tiling if a final state is reached. Thus, if a period exists,
then there exists a level of squares which is all tiled with the blocking color.

We want for our property of generating only non-recursive tilings to appear if and
only if τ generates a periodic tiling. We have shown that we can simulate a tile set τ

with another tile set, by inserting in Robinson’s tiling the simulation of a Turing ma-
chine that has the particularity to produce space×time diagrams which are isomorphic
to the tiles of τ . Therefore, if a square is marked with the blocking color, it allows the
beginning of the computation of a new Turing machine, say N, which has the particu-
larity to produce space×time diagrams which are isomorphic to the tiles of ρ . Without
loss of generality, we can consider that N takes always less time and space than M to
reach a final state, and thus, if a square can carry out the computation of M, it can also
carry out the one of N. Let τ ′ be this tile set. A simulation of a tile of ρ by τ ′ is made
in a square if and only if the computation of M stops in this square. By adding the
condition that the color of the sides of the squares of level n are sent outside the square
to force the matching with the neighboring squares, then we obtain the simulation of a
ρ-tiling. This tiling cannot be recursive, since it would imply that the tiling it simulates
is recursive too. If τ does not generate a periodic tiling, then the squares never carry
out the simulation of tiles of ρ and thus, the tile set τ ′ can generate recursive tilings.

By construction, we have that the self-similarity is stopped and the simulation of the
tiles of ρ is made if and only if τ is periodic. As seen before, τ ′ exactly simulates ρ and
thus τ ′ cannot be recursive. Therefore, τ is periodic if and only if τ ′ is not recursive.

The reduction that associates to any tile set τ , the tile set τ ′ shows that Bnr is not a
recursive set. ut

In the previous proof, we have reduced the property of being periodic to the property
of being non recursive. This construction can be generalized to obtain other reductions.
The main argument of the proof is that, as for Kleene’s theorem with parameters,
we can inject in a tiling the computation of a program who checks if a property is
satisfied in order to obtain a tiling with another property if the previous one is satisfied.
The property that we want to verify can be any property P such that it is recursively
enumerable to know whether a tile set satisfies it or not. Therefore, we can reduce
tile sets satisfying a recursively enumerable property to tile sets with another property.
Such recursively enumerable property can be, for example: τ does not tile the plane, τ

simulates exactly ρ (where ρ is fixed), τ generates patterns using all its tiles. . .. Then,
if the property is satisfied, we can trigger the start of an exact simulation of a tile set
satisfying another property.

By generalizing this kind of construction, we can obtain a Rice-like theorem for
exact simulation of sets of tile sets. The only thing we need, is to have a set of tile sets
such that if a tile set τ satisfies the property, then any tile set simulating exactly τ has
the property too. We define formally this property:

Definition 3. Let A be a set of tile sets. A is an exact index set if for any index i ∈ A of
a tile set, if a tile set τ j exactly simulates τi then j ∈ A.

Rice’s theorem for Turing machines states that to know whether a Turing machine
accepts a language which is in a set A of recursively enumerable languages is not
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decidable except if A is trivial (empty or if it contains all enumerable languages). We
can compare Turing machines by the functions they accept. For tile sets, we do not
have a notion of function to compare them. Therefore, if we want a Rice-like theorem
for tile sets, the set of tile sets has to be an exact index set and contains the tile sets
which “compute” in a same way.

Theorem 5. Let A be an exact index set. Then the set A is recursive if and only if A is
trivial, i.e., A 6= N and A 6= /0.

Proof. Let A be an exact index set. Since A is not trivial, thus there exist at least one
index i ∈ A and one index j 6∈ A. We first suppose that Robinson’s tile set is not in A.

We will reduce Lper to LA as we did in the previous proof. For that, we just have to
build from a tile set τk, a tile set τ f (k) such that τ f (k) simulates τi - whose index is in A
- if τk is periodic, and does not simulate it if τk is not periodic. Therefore, this tile set
is in A since A is an exact index set.

If τk is not periodic, then the only tile set that τ f (k) exactly simulates is Robinson’s
tile set.

Therefore, τk ∈ Lper ⇔ τ f (k) ∈ LA.
If Robinson’s tile set is in A, then we just have to consider LA instead of L(A). ut

To have a better intuitive understanding of this theorem, we can state it as follows:
let P be a property on the tilings generated by a tile set satisfying the following state-
ment: if τ satisfies P, then any τ ′, that exactly simulates τ , satisfies P. Then to know
whether a given tile set satisfies P or not is undecidable except if any or no tile set
satisfies P.
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Abstract. Loop agreement is a type of distributed decision tasks including many
well-known tasks such as set agreement, simplex agreement, and approximation
agreement. Because of its elegant combinatorial structure and its important role in
the decidability problem of distributed decision tasks, loop agreement has been thor-
oughly investigated. A classification of loop agreement tasks has been proposed,
based on their relative computational power: tasks are in the same class if and only
if they can implement each other. However, the classification does not cover such
important tasks as consensus, because any loop agreement task allows up to three
distinct output values in an execution. So, this paper considers classifying a variation
of loop agreement, called degenerate loop agreement, which includes consensus. A
degenerate loop agreement task is defined in terms of its decision space and two dis-
tinguished vertices in the space. It is shown that there are exactly two equivalence
classes of degenerate loop agreement tasks: one represented by the trivial task, and
the other by consensus. The classification is totally determined by connectivity of the
decision space of a task; if the distinguished points are connected in the space, the
task is equivalent to the trivial task, otherwise to consensus.

Key words: distributed computing, loop agreement, computability, classification

1 Introduction

A distributed computing system consists of finitely many sequential processes com-
municating via accessing shared read/write registers and other mechanisms [10]. The
mechanisms include communication channels, synchronizing primitives, and general
services [1, 6]. The processes are asynchronous and may fail by stopping, so it is in-
distinguishable whether an irresponsive process has failed or is only running slowly. A
protocol is a distributed program in such a system. A task is a distributed coordination
problem where each process starts with a private input value and decides an output
value such that the decisions of all processes meet some specification [7]. Well-known
examples of tasks include consensus[5], set consensus[4], and renaming [2]. A pro-
tocol is said to solve a task if starting with any legal input assignment, the outputs
produced in any execution of the protocol meet the task specification.

Loop agreement [8] is an interesting type of tasks in the theory of distributed com-
puting. A loop agreement task is defined in terms of an edge loop in a 2-complex, with

Please use the following format when citing this chapter:

Liu, X., Pu, J. and Pan, J., 2008, in IFIP International Federation for Information Processing, Volume 273; Fifth IFIP International Conference
on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, Luke Ong; (Boston: Springer), pp. 203–213.
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three distinguished points on the loop. It stands for a task with the distinguished points
as input values and the vertices of the 2-complex as output values. In an execution, if
the inputs are the same, the outputs all coincide with the input; if the inputs have two
distinct values, the outputs span a simplex along the segment of the loop connecting
the two points; otherwise, the outputs span an arbitrary simplex in the complex. Loop
agreement is attractive for the following reasons. 1. It has elegant combinatorial struc-
ture. 2. It plays a critical role in proving the undecidability of a variety of distributed
tasks [7]. 3. It is so general as to include many well-known tasks such as set agreement
and approximation agreement.

There are two very influential pieces of work on the computability issue of loop
agreement [7, 8]. Ref. [7] showed that a loop agreement task is solvable in certain
models if and only if the loop is contractible in the 2-complex, so the solvability of
loop agreement tasks in these models is undecidable.

In [8], a classification of loop agreement tasks was presented based on their relative
computational power. It considered whether a task T1 can implement T2, i.e. T2 can be
solved by calling an instance of a solution to T1, followed by a protocol using shared
read/write registers. Loop agreement tasks can be classified according to the equiva-
lence relation induced by implementation. [8] assigned an algebraic signature to each
loop agreement task, which is a pair of the fundamental group of the 2-complex and
the path class represented by the loop. It was shown that T1 can implement T2 if and
only if there is a homomorphism from the signature of T1 to that of T2. As a result, the
signature completely characterizes the computability of a loop agreement task.

The above work is so elegant. However, its significance is a little weakened in that
loop agreement does not include consensus. Consensus is a task whose set of input
values is {0,1}, and in any execution, all the processes agree on the input to some pro-
cess. Consensus is among the most important tasks in distributed computing, due to its
universality [6]. As a result, this paper choose to study an variation of loop agreement,
called degenerate loop agreement, which includes consensus. The aim is to adapt the
classification of loop agreement tasks in [8] to degenerate loop agreement tasks.

The main contribution of this paper is a complete classification of degenerate loop
agreement tasks. Based on the equivalence relation induced by mutual implementa-
tion, degenerate loop agreement tasks are divided into two classes: one represented by
consensus, the other by the trivial task. The classification is topologically determined;
any disconnected task is equivalent to consensus, while connected ones are equivalent
to the trivial task.

The rest of this paper is organized as follows. In Section 2, preliminaries on com-
plexes and distributed tasks are presented. In Section 3, degenerate loop agreement
tasks are defined. Section 4 proves that there are exactly two classes of degenerate
loop agreement tasks, up to the equivalence induced by implementation. Section 5
concludes this paper.
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2 Preliminaries

This section will introduce our distributed computing model and formalize the no-
tion of a task. Necessary material from combinatorial topology is also presented, since
degenerate loop agreement will be specified using simplicial complexes. Simplicial
complexes and their topological properties have long been utilized in distributed com-
putability theory [3, 9, 12]. This paper will exploit connectivity of 1-complexes.

2.1 System model and task formalization

The computing model and task formalization coincide with those in [8], so we will
present very briefly. Interested readers please refer to Subsection 3.1 of [8].

We adopt the shared-memory model [10] for distributed computing, where a sys-
tem consists of a finite set of asynchronous sequential processes, which communicate
through accessing shared memory. The shared memory includes read/write registers
and possibly more powerful objects and services. A process may delay indefinitely, or
fail by stopping.

A task is a distributed coordination problem in which each process starts with a
private input value, communicates with others via shared memory, produces an output
value, and halts.

Formally, an n-process task T is specified by a triple (I ,O,Δ), where I ⊆
(DI

⋃{⊥})n\{(⊥, · · · ,⊥)} is the set of input vectors, O ⊆ (DO
⋃{⊥})n\{(⊥, · · ·⊥)}

is the set of output vectors, and Δ ⊆ I ×O is the task specification. DI and DO are
respectively the input and output data types. I and O are both prefix-closed [8]. An
element I ∈ I represents an assignment of input values in an execution: if Ii �= ⊥, the
ith process starts with input Ii, otherwise it does not participate in that execution. The
meaning of output vectors can be likewise understood. Δ carries an input vector to a
set of matching output vectors, specifying the legal outputs for that input assignment.
Here, vectors I ∈ I and O ∈ O are said to match, when for any i, Ii = ⊥ if and only if
Oi = ⊥.

An n-process protocol is said to t-resiliently solve a task (I ,O,Δ), if for every
execution where the input vector is I and at least n− t processes decide, the decision
vector is a prefix of some output vector in Δ(I). When t = n−1, the protocol is said to
be wait-free.

We also borrow the notion of implementation from [8]. A task T1 is said to be im-
plementable from task T2, if T1 can be solved by calling an instance of a protocol
that solves T2, possibly followed by access to shared read/write registers. Implemen-
tation naturally induces an equivalence relation where two tasks are equivalent if and
only if they are mutually implementable. This relation partitions tasks into equivalence
classes, which is the very idea of the classification in this paper.
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2.2 Simplicial Complexes

We recall the notion of simplicial complexes and simplicial maps. Readers can also
refer to the standard textbook [13, 11] for more information.

Arbitrarily choose a finite set of points {v0,v1, · · · ,vm} in the n−dimensional Eu-
clidean space Rn. If they are affinely independent, the convex closure

s =
{

m
∑

i=0
λivi ∈ Rn|

m
∑

i=0
λi = 1 and λi ≥ 0 for 0 ≤ i ≤ m

}

is called the simplex spanned

by {v0,v1, · · · ,vm}, denoted by {v0,v1, · · · ,vm}, and m is called the dimension of s.
The simplex spanned by any subset of {v0,v1, · · · ,vm} is called a face of s. Each vi is
called a vertex of s.

Two simplices are said to well-positioned, if the intersection of them is either empty
or a face of each of them. A finite set of pairwise well-positioned simplices, together
with all their faces, is called a (simplicial) complex. A complex is said to be an
n−complex, if all the simplexes are of dimension no more than n. A complexes C′
is said to be a subcomplex of C, if C′ ⊆ C. Vertices A,B in a complex C are said to
connected, if there is a sequence of vertices v0 = A,v1, · · · ,vn = B, such that for each
0 ≤ i ≤ n− 1, {vi,vi+1} spans a simplex in C; such a sequence of vertices is called a
path connecting A and B.

A map f from complex C to C′ is simplicial, if for each vertex v of C, f (v) is also
a vertex of C′, and for each simplex s = {v0,v1, · · · ,vm} ∈ C, f (s) is spanned by the
set { f (vi)|0 ≤ i ≤ m}. Obviously, to define a simplicial map, one only has to define its
behavior on vertices.

3 Degenerate Loop Agreement

Definition 1. A 1-complex K, together with two distinct vertices A,B ∈ K, deter-
mines a task (I ,O,Δ ) where I = (DI

⋃{⊥})n \ {(⊥, · · · ,⊥)}, O = (DO
⋃{⊥})n \

{(⊥, · · · ,⊥)}, DI = {0,1}, DO is the set of vertices of K, and

Δ(I) =

⎧

⎨

⎩

{O|O matches I, and val(O) = {A}} i f val(I) = {0}
{O|O matches I, and val(O) = {B}} i f val(I) = {1}
{O|O matches I, and val(O) ∈ K} otherwise

(1)

The task is called a degenerate loop agreement task and denoted by T = (K,A,B). K
is called the decision space of T .

Intuitively, the input values of T = (K,A,B) are 0 and 1, and the output ones are the
vertices of K. When all the inputs are 0 (or 1, respectively), all processes decide A (or
B, respectively); otherwise, the decided values spans a simplex in K.

Hereunder, a degenerate loop agreement task T = (K,A,B) will be illustrated by
the complex K marked with A and B. See Figure 1 as an example.
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Fig. 1 The illustration of a task T = (K,A,B)

Example 1. A famous example of degenerate loop agreement task is consensus, which
intuitively means that all processes must agree on a value from their inputs. Formally,
consensus = ({A,B},A,B), as illustrated in Figure 2.

Fig. 2 consensus

There is a canonical fact on consensus.

Lemma 1. (Theorem 12.6, [10]) Consensus can’t be solved using read/write registers.

Example 2. Another example of degenerate loop agreement task is T = (K,A,B),
where K consists of the simplex {A,B} and its faces. See Figure 3 as an illustration of
T . Since T can be solved by the protocol where each process trivially outputs its input,
it is called the trivial task in this paper.

Fig. 3 The trivial task

There is an obvious fact on the trivial task. The proof is omitted here.

Lemma 2. A degenerate loop agreement task can be solved using read/write registers
if and only if it can be implemented by the trivial task.

4 A Classification of Degenerate Loop Agreement

The main result is that degenerate loop agreement is divided into two classes, as stated
in Theorem 1 at the end of this section. To prove this theorem, this section is organized
as follows. First, Corollary 1 normalizes degenerate loop agreement tasks by removing
redundant components from their decision spaces. Second, Lemma 6 shows that all
disconnected degenerate loop agreement tasks are equivalent. Third, Lemma 8 shows
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that all connected degenerate loop agreement tasks are equivalent. Some other techni-
cal lemmas are also included.

First of all, we identify a condition which allows one degenerate loop agreement
task to implement another. It can be an corollary of Lemma 6.2 in [8], but we provide
a much simpler proof.

Lemma 3. Given two degenerate loop agreement tasks T=(K,A,B) and T ′ = (K′,A′,B′),
if there is a simplicial map f : K → K′ such that f (A) = A′ and f (B) = B′, then T im-
plements T ′.

Proof: Choose an arbitrary protocol P for T , and construct a protocol Pf as follows.
Each process of Pf first runs protocol P, resulting in a temporary decision value v.
Then it outputs f (v) as its final decision. We show that Pf solves T ′.

Consider an arbitrary execution of Pf , with SI/SO as its set of input/output values,
respectively. Assume S′O to be the set of output values of P in this execution. The fol-
lowing is a case analysis.

Case 1: SI = {0}. Then S′O = {A} since P solves T . Because f (A) = A′, we have
SO = {A′}. Likewise, if SI = {1}, then SO = {B′}.

Case 2: SI = {0,1}. Then S′O spans a simplex in K. Because f : K → K′ is a simpli-
cial map, SO = { f (v)|v ∈ S′O} spans a simplex in K′.

As a result, Pf solves T ′, and hence T implements T ′. �

Then we show that a task gets stronger if some part of its decision space is removed,
as shown in the following lemma.

Lemma 4. Given two 1-complexes K and K′, if K is a subcomplex of K′ and A,B
are vertices of K, then the degenerate loop agreement task T = (K,A,B) implements
T ′ = (K′,A,B).

Proof: The inclusion i : K → K′, v 
→ v is a simplicial map. By Lemma 3, T = (K,A,B)
implements T ′ = (K′,A,B). �

Definition 2. Given a degenerate loop agreement task T = (K,A,B), a connected com-
ponent C of K is called an idle component of T , if C contains neither A nor B.

Lemma 5. Let C be an idle component of a degenerate loop agreement task T=(K,A,B).
Then T is equivalent to T ′ = (K \C,A,B).

Proof: On the one hand, T ′ implement T , by Lemma 4.
On the other hand, define a simplicial map f : K → K′,

f (v) =
{

A i f v is a vertex in C
v otherwise

(2)

See Figure 4 for an illustration of f . By Lemma 3, T ′ implement T .
To sum up, T is equivalent to T ′. �

According to Lemma 5, a task can be equivalently transformed by eliminating all
its idle components, so we immediately have the following corollary.

Corollary 1. Any degenerate loop agreement task is equivalent to one without idle
components.
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Fig. 4 The map f in Lemma 5

As a result, all the tasks hereunder are assumed to have no idle components, without
loss of generality.

Definition 3. A degenerate loop agreement task T = (K,A,B) is said to be connected
if A and B are connected in K. Otherwise it is said to be disconnected.

Connectivity is a topological property. The following lemmas show that it plays a
critical role in classifying degenerate loop agreement tasks.

Lemma 6. Any two disconnected degenerate loop agreement tasks are equivalent.

proof: The basic idea is to show that any disconnected degenerate loop agreement
task T = (K,A,B) is equivalent to consensus. Without loss of generality, assume the
decision space of consensus is K′ = {A,B}.

First, K′ is a subcomplex of K. By Lemma 4, consensus implements T .
Second, define a simplicial map f : K → K′,

f (v) =
{

A i f v is in the component containing A
B i f v is in the component containing B

(3)

See Figure 5 for an illustration of f . By Lemma 3, T implements consensus.
Altogether, T is equivalent to consensus, and the lemma holds. �

To show that that all connected degenerate loop agreement tasks are also equiva-

Fig. 5 The map f in Lemma 6

lent, we have to construct a protocol πm for a special task τm = (κm,0,1), where m is
a positive integer. The decision space κm of τm is a 1-complex in R1, consisting of the

simplices { i
2m , i+1

2m }, 0 ≤ i ≤ 2m−1, as well as their faces. κm is illustrated in Figure 6.
The n−process protocol πm is illustrated in Figure 7. It is actually the 1-dimensional
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version of the barycentric agreement protocol in [8]. For the completeness of presen-
tation, the correctness of πm is proved here, in a way that is a little different from that
in [8].

Fig. 6 Decision space κm of the task τm

Fig. 7 The protocol πm (for process P)

Lemma 7. The protocol πm solves τm.

Proof: First, πm is wait-free, since each process does not wait for others to progress
and it only executes a bounded number of steps before terminating.

Second, We claim that for each r, the values in view[r] always span a simplex in κr.
The proof is by induction.

Step 1. When r = 0, view[r] contains either 0, 1, or 0 and 1, so it spans a simplex in
κ0. The claim holds in this case.

Step 2. Hypothesize that the claim holds for r0 < m−1.
Step 3. It is obvious that the set of values scanned by one process when r = r0 is

either a subset or a superset of that scanned by another process when r = r0. Hence
when r = r0, some (possibly zero) processes decide a value in view[r0], and the others
decides the average of the values in view[r0]. As a result, the values in view[r0 + 1]
spans a simplex in κr0+1.

To sum up, the values in view[m−1] always span a simplex in κm−1. Following the
argument in step 3, we have that the final values decided by the protocol πm spans a
simplex in κm. Furthermore, it is clear that when all the inputs are A, the processes
only decides A, likewise for the case of B. So, πm solves τm. �

Now we are ready to adapt Lemma 6 to the case of connected tasks.

Lemma 8. Any two connected degenerate loop agreement tasks are equivalent.

Proof: Our idea is to show that any connected degenerate loop agreement task T =
(K,A,B) is equivalent to the trivial task. The proof proceeds in two steps. Without loss
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of generality, assume that the trivial task is T ′ = (K′,0,1), where K′ = {0,1,{0,1}}.
Step 1: to prove that T implement the trivial task. Define a simplicial map f : K →

K′,

f (v) =
{

0 i f v = A
1 otherwise

(4)

See Figure 8 for an illustration of f . By Lemma 3, T implements the trivial task.
Step 2: to prove that the trivial task implements T . Because K is connected, there

Fig. 8 The map f in Lemma 8

is a path in K connecting A and B. Fix one such path u0,u1,u2, · · · ,un, where u0 = A
and un = B. Let m = �log2n�. By Lemmas 7 and 2, the trivial task implements τm.

We now have to show that τm implements T . Define a simplicial map g : κm → K,

g(
i

2m ) =
{

ui 0 ≤ i ≤ n
B n ≤ i ≤ 2m (5)

See Figure 9 for an illustration of f . By Lemma 3, τm implements T , so the trivial task
implements T .

To sum up, every connected degenerate loop agreement task is equivalent to the
trivial task, and the lemma holds. �

Fig. 9 The map g in Lemma 8

Theorem 1. There are two equivalence classes of degenerate loop agreement tasks.

Proof: By Lemma 6 and Lemma 8, degenerate loop agreement tasks can be divided
into at most two equivalence classes: one represented by consensus, and the other by
the trivial task. By Lemma 1, consensus can not be implemented from the trivial task.
As a result, there are exactly two equivalence classes of degenerate loop agreement
tasks. �
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5 Conclusion

Loop agreement is an interesting type of distributed decision tasks and has been thor-
oughly studied. However, it does not include the important task of consensus, so this
paper considers one of its variation, called degenerate loop agreement, which includes
consensus. Classifying degenerate loop agreement tasks is explored to characterize
their computational power: two tasks are in the same class if and only if they can
implement each other. It turn out that there are exactly two classes: one represented
by consensus, including all disconnected tasks, and the other by the trivial task, in-
cluding all connected tasks. Hence this classification is totally determined by topology
of the decision spaces. Compared with the classification of loop agreement where 1-
dimensional holes are decisive, our work involves mainly 0-dimension holes, i.e. con-
nectivity. We hope that this provides a further step towards bridging the gap between
topology and computer science.
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Abstract. Equations of the form X = ϕ(X) are considered, where the un-
known X is a set of natural numbers. The expression ϕ(X) may contain the
operations of set addition, defined as S + T = {m + n | m ∈ S, n ∈ T}, union
and intersection, as well as ultimately periodic constants. An equation with
a non-periodic solution of exponential growth is constructed. At the same
time it is demonstrated that no sets with super-exponential growth can be
represented. It is also shown that a restricted class of these equations cannot
represent sets with super-linearly growing complements. The results have di-
rect implications on the power of conjunctive grammars with one nonterminal
symbol.

1 Introduction

Language equations, in which the unknowns are formal languages, have recently
become an active topic of study [5]. Formal languages are typically considered
over an alphabet containing at least two letters. For a unary alphabet Σ =
{a}, they can be regarded as sets of natural numbers. Then the operation of
concatenating such languages turns into pairwise addition of sets: S + T =
{m + n | m ∈ S, n ∈ T }. Language equations accordingly become equations
over sets of numbers. Even in this seemingly simple case they already have
quite surprising properties.

Consider systems of equations of the form

Xi = ϕi(X1, . . . , Xn) (1 � i � n), (*)

where the unknowns Xi are subsets of N0 = {0, 1, 2, . . .}, while the right-hand
sides ϕi contain union, addition and singleton constants. These systems are
equivalent to language equations of the same form (*) over a unary alphabet
using the operations of union and concatenation, and accordingly represent
context-free grammars. As it is well-known that all unary context-free languages
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are regular, least solutions of systems (*) over sets of numbers are vectors of
ultimately periodic sets.

Another kind of equations are systems of the form (*) with addition and
complementation. An example of such an equation with a non-periodic solution
was given by Leiss [6]. Later Okhotin and Yakimova [8] established the main
properties of systems of such equations (in the more general case of language
equations) and gave a direct proof that a certain rather simple non-periodic set
is not representable.

Consider systems of the same general form (*), in which the allowed oper-
ations are union, intersection and addition. These systems correspond to an
extension of the context-free grammars, the conjunctive grammars [7], which
are again considered over a unary alphabet. The question of whether conjunc-
tive grammars can generate any non-regular unary languages has been an open
problem for some years [7], until recently solved by Jeż [3], who constructed
a grammar for the language { a4n | n � 0 }. This grammar can be regarded
as a system (*) of four equations over sets of numbers using union, intersec-
tion and addition, such that one of the four components of its least solution is
{ 4n | n � 0 }.

The set { 4n | n � 0 } grows exponentially, so this example left a question
of whether any super-exponentially growing sets are representable. A strong
answer was given by Jeż and Okhotin [4], who showed that for every given
recursive function it is possible to represent a set that grows faster.

Despite these extensive positive results (and maybe to some extent due to
these positive results), no results saying that some particular set cannot be
represented by such equations could so far be obtained. The DTIME(n2) ∩
DSPACE(n) complexity upper bound for conjunctive grammars over a unary
alphabet is the only known restriction. Otherwise, no techniques of proving
non-representability of sets by equations with union, intersection and addition
are known.

This paper considers a particular case of systems (*) with n = 1: these
are equations of the form X = ϕ(X), where X is a unique variable and ϕ is
an expression containing arbitrarily nested union, intersection, sum and ulti-
mately periodic constants. Every such equation has a least solution given by
⋃∞

n=0 ϕn(∅). It is shown that these equations can represent a certain non-
periodic set of an exponential growth rate: namely, the example of Jeż [3] is
reconstructed using one variable instead of four. At the same time it is proved
that no sets that grow asymptotically faster than exponential can be repre-
sented. Another class of sets is shown to be non-representable by a restricted
class of such equations: these are dense sets, that is, sets with super-linearly
growing complements. In overall, it is demonstrated that one-variable equations
are weaker in power than systems of multiple equations. This also demonstrates
that conjunctive grammars with a single nonterminal cannot generate all con-
junctive languages.
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2 Conjunctive grammars and systems of equations

Conjunctive grammars form a natural extension of the context-free grammars
that supports intersection in the right-hand sides of rules:

Definition 1 ([7]). A conjunctive grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively, P is a finite set of rules, each of the form

A → α1& . . .&αn (n � 1, A ∈ N, αi ∈ (Σ ∪ N)∗) (1)

and S ∈ N is the start symbol. A grammar is said to be linear conjunctive if
furthermore each αi in each rule (1) is in Σ∗NΣ∗ or in Σ∗.

One way to define the semantics of conjunctive grammars is by term rewrit-
ing. Consider terms over concatenation and conjunction. Then a subterm A can
be rewritten with (α1& . . .&αn) for every rule (1), and any subterm of the form
(w& . . . &w), with w ∈ Σ∗, can be rewritten with w. Then L(G) is defined as
the set of all strings w ∈ Σ∗ that are derivable from the term S.

An equivalent definition can be given using language equations.

Definition 2. For every conjunctive grammar G = (Σ, N, P, S), the associated
system of language equations is a system of equations in variables N , in which
each variable assumes a value of a language over Σ, and which contains the
following equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m
⋂

i=1

αi (for all A ∈ N) . (2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution of such
a system is a vector of languages (. . . , LC , . . .)C∈N , such that the substitution
of LC for C, for all C ∈ N , turns each equation (2) into an equality.

Let (. . . , LC , . . .) be the least solution of the system and define LG(C) = LC

for all C ∈ N and L(G) = LG(S).

Consider conjunctive grammars over a one-symbol alphabet, with Σ = {a}.
A formal language L ⊆ a∗ can be regarded as a set of numbers {n | an ∈ L }.
The operation of concatenation of languages is replaced with pairwise addition
of sets: for all S, T ⊆ N, define

S + T = {m + n | m ∈ S, and n ∈ T }

Thus a system of language equations (2) corresponding to a conjunctive gram-
mar over {a} can be regarded as a system of equations over sets of natural
numbers.
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For unary languages, being regular means to be ultimately periodic as a set
of numbers. A set S is ultimately periodic if there exist numbers d, p � 0, such
that for any n � d, the number n is in S if and only if n + p is in S. Such a set
is also said to be periodic starting from d with period p.

The first example of a system of equations with union, intersection and ad-
dition representing a non-periodic set (originally presented in the form of a
conjunctive grammar) is as follows:

Example 1 (Jeż [3]). The system of equations
⎧

⎪

⎪

⎨

⎪

⎪

⎩

X1 =
(

(X1 + X3) ∩ (X2 + X2)
) ∪ {1}

X2 =
(

(X1 + X1) ∩ (X6 + X2)
) ∪ {2}

X3 =
(

(X1 + X2) ∩ (X6 + X6)
) ∪ {3}

X6 =
(

(X1 + X2) ∩ (X3 + X3)
)

has the least solution Xk = { k · 4n | n � 0 }, for k = 1, 2, 3, 6.

The idea of this construction is best understood in terms of positional nota-
tion of numbers. Let Σk = {0, 1, . . . , k − 1} be digits in base-k notation. For
every w ∈ Σ∗

k , let (w)k be the number defined by this string of digits. Define
(L)k = { (w)k | w ∈ L }. Now the solution of the above system can be repre-
sented in base-4 notation as the vector

(

(10∗)4, (20∗)4, (30∗)4, (120∗)4

)

. Let us
substitute this vector into the right-hand side of the first equation:

(

(10∗)4 + (30∗)4

) ∩ (

(20∗)4 + (20∗)4

)

=

=
(

(10∗30∗)4 ∪ (10+)4 ∪ (30∗10∗)4

) ∩ (

(20∗20∗)4 ∪ (10+)4

)

= (10+)4

Taking the singleton {1} into account, the set (10∗)4 is obtained.
In order to minimize the number of brackets, the subsequent examples will

assume the following default precedence of operations: addition has the highest
precedence, intersection has intermediate precedence, and the precedence of
union is the lowest. Also, singleton constants {n} will sometimes be written as
n.

Let us define the notion of a growth rate of a set. Every infinite set of numbers
L = {i1, i2, . . . , in, . . .}, with 0 � i1 < i2 < . . . < in < . . ., can be regarded as
an increasing integer sequence. The growth rate of such sequences is represented
by a function g(n) = in. The set from Example 1 has exponential growth rate.

The method of manipulating positional notations of numbers using addi-
tion of sets has been further extended in the following way. Consider a linear
conjunctive grammar generating base-k positional notations of some numbers.
Then the set of these numbers can be specified by a system of equations over
sets of numbers.

Theorem 1 (Jeż, Okhotin [4]). For every k � 2 and for every linear conjunc-
tive grammar G over Σk there exists a system of equations X = ϕi(X1, . . . , Xn)
over sets of natural numbers with the least solution Xi = Si, in which S1 =
(L(G))k.
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This theorem has several important implications. One of them is that the
growth rate of representable sets is not bounded by any fixed recursive function.

Theorem 2 (Jeż, Okhotin [4]). For every recursively enumerable set of nat-
ural numbers S there exists a system Xi = ϕi(X1, . . . , Xn) over sets of natural
numbers with the least solution Xi = Si, such that the growth function of S1 is
greater than that of S at any point.

There are four variables in the system in Example 1, while Theorems 1–
2 use quite many variables. The purpose of this paper is to investigate the
expressibility of univariate equations.

3 Equations with one variable

Consider an equation
X = ϕ(X),

where the unknown X is a set of natural numbers, while ϕ uses union, inter-
section and addition, as well as ultimately periodic constants. These operations
can, in general, be arbitrarily nested. It is known from the fixed point theory
that

⋃

i�0 ϕi(∅) is the least (wrt set inclusion) among all the solutions of the
equation.

A particular case of such equations are those corresponding to one-non-
terminal conjunctive grammars, where ϕ must be a union of intersections of
sums, and it is interesting to note that already in this case every ultimately
periodic set can be represented using singleton constants.

Lemma 1 (Alhazov [1]). Every unary regular language is generated by a one-
nonterminal conjunctive grammar.

Proof. Let K ∪ (ap)+L be the given language, where K, L ⊆ {ε, a, . . . , ap−1}.
Then the required grammar is

S → ai (ai ∈ K ∪ apL ∪ a2pL)

S → apS&a2pS ��

The question is, whether any non-periodic sets can be represented using
univariate equations. As the following lemma demonstrates, this is indeed the
case:

Lemma 2. The following one-variable equation has the unique solution { 4n−8 |
n � 3 } ∪ { 2 · 4n − 15 | n � 3 } ∪ { 3 · 4n − 11 | n � 3 } ∪ { 6 · 4n − 9 | n � 3 }:

X =
(

11+X+X ∩ 22+X+X
)∪ (

1+X+X ∩ 9+X+X
)∪

∪(

7+X+X ∩ 12+X+X
)∪ (

13+X+X ∩ 14+X+X
)∪ {56, 113, 181}
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Here addition is assumed to have higher precedence than intersection.

The idea behind this construction is to encode four variables from Example 1
into a single variable. The unique solution of the constructed equation is a union
of four disjoint sets:

L1 = { 4n − 8 | n � 3 }
L2 = { 2 · 4n − 15 | n � 3 }
L3 = { 3 · 4n − 11 | n � 3 }
L6 = { 6 · 4n − 9 | n � 3 }

Each of them represents the corresponding component of the solution of the
system from Example 1. These components are represented with an offset : the
numbers in L1, L2, L3 and L6 are smaller by d1 = 8, d2 = 15, d3 = 11 and
d6 = 9, respectively.

Consider first the following system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Y1 =
(

11+Y1+Y3 ∩ 22+Y2+Y2

) ∪ {56}
Y2 =

(

1+Y1+Y1 ∩ 9+Y6+Y2

) ∪ {113}
Y3 =

(

7+Y6+Y6 ∩ 12+Y1+Y2

) ∪ {181}
Y6 = 13+Y3+Y3 ∩ 14+Y1+Y2

(3)

This system is obtained from the system in Example 1 as follows. First, the
constant sets {1}, {2} and {3} are replaced with {64}, {128} and {192}, so that
the values of n in the solution start from 3. Then the substitution X1 = Y1 +8,
X2 = Y2 + 15, X3 = Y3 + 11, X6 = Y6 + 9 is applied. It is easy to see that the
solution of system (3) is the vector (L1, L2, L3, L6).

Note that each set Li is a subset of a periodic set { 64m− di | m � 1 }.
Let us call every such periodic superset a track. The sum of any two of these
sets, Li + Lj , is a subset of { 64m− di − dj | m � 2 }, which is a track as well.
The numbers 8, 15, 11 and 9 have been chosen so that the sums of all pairs of
these numbers are pairwise distinct: di + dj = dk + d� with i � j and k � �
implies i = k and j = �. In other words, the tracks are pairwise disjoint, and
the calculations in the right-hand sides of different equations occur in different
tracks.

This property is used to ensure that if the same set L1 ∪ L2 ∪ L3 ∪ L6 is
substituted for every variable in the right-hand sides of (3), then every right-
hand side still evaluates to L1, L2, L3 and L6, respectively. Now the equation
in Lemma 2 is obtained from the system (3) by identifying all four variables
into one.

It must be admitted that these ideas do not work in general, and Lemma 2
is not proved by a formal transformation. However, they happen to work for
the given example and with the given assignment of offsets to variables. The
lemma can actually be proved by substituting the given set into the equation
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and verifying that it is indeed a solution. The proof is omitted in this extended
abstract due to its pure technicality.

The equation in Lemma 2 has a simple form corresponding to a conjunctive
grammar. The result can thus be restated in the following form.

Example 2. The following one-nonterminal conjunctive grammar generates the
language { a4n−8 | n � 3 }∪{ a2·4n−15 | n � 3 }∪{ a3·4n−11 | n � 3 }∪{ a6·4n−9 |
n � 3 }:

S → a22SS&a11SS | a9SS&aSS | a7SS&a12SS | a13SS&a14SS | a56 | a113 | a181

This example answers the question raised by Jeż [3] about the least number
of nonterminals in a conjunctive grammar necessary to generate non-regular
languages over {a}: one is enough.

4 Non-representability of fast growing sets

The set represented in Lemma 2 has exponential growth. It will now be shown
that sets with asymptotically super-exponential growth cannot be represented
by univariate equations. The following statement is also applicable to some sets
that do not formally fit this description.

Theorem 3. Let L = {n1, n2, . . . , ni, . . .} with 0 � n1 < n2 < . . . < ni < . . .
be an infinite set of natural numbers, for which lim infi→∞

ni

ni+1
= 0. Then L is

not the least solution of any univariate equation X = ϕ(X).

In particular, the theorem asserts non-representability of sets like { 22n |
n � 0 } and {n! | n � 1 }, as well as sets like {n!, n! + 1 | n � 1 }.

The assumption that limit inferior of ni

ni+1
as n approaches infinity is zero

means that the size of gaps between consecutive numbers (measured relatively
to the smaller number) is not bounded. That is, for every k there is n ∈ L so
that L does not contain any numbers between n + 1 and kn.

If such a set is a least solution of an equation, then L can be expressed
from itself and from ultimately periodic constants using union, intersection
and addition. Then the gaps between elements of the set have to be bridged
either by summing up several smaller elements of this set in an expression
X + . . .+X , or by adding an ultimately periodic constant to X . The expression
ϕ contains only finitely many additions, and hence only a bounded number of
smaller elements can be added up. Larger gaps can only be bridged by adding
an ultimately periodic constant. However, this addition would make the sum
ultimately periodic as well.

This reasoning is formalized in the following statement:

Lemma 3. Let ϕ(X) be an expression that contains instances of a unique vari-
able X ultimately periodic constants with a common period p starting from d,
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and the operations of union, intersection and addition. Let h be the greatest
number of nested additions in ϕ. Let a number n and a set of numbers L be
such that n ∈ ϕ(L), L ∩ {	 n

2h 
, 	 n
2h 
 + 1, . . . , n − 1} = ∅ and n

2h � d + p. Then
n ∈ L or n − p ∈ ϕ(L).

Proof. Induction on the structure of ϕ.
Basis I: ϕ(X) = X . Then n ∈ ϕ(L) means n ∈ L.
Basis II: ϕ(X) = C, where C is an ultimately periodic set of natural num-

bers. Then h = 0 and hence n � d + p by assumption. Since C has period p
starting from d, n ∈ ϕ(L) = C is equivalent to n − p ∈ C = ϕ(L).

Induction step I: ϕ(X) = ϕ1(X) ∪ ϕ2(X). Then n ∈ ϕ(L) implies that
n ∈ ϕi(L) for some i ∈ {1, 2}. Assume without loss of generality that n ∈ ϕ1(L).
Let h1 be the greatest number of nested additions in ϕ1; obviously, h1 � h. Then

n
2h1 � n

2h and therefore L ∩ {	 n
2h1 
, 	 n

2h1 
 + 1, . . . , n − 1} = ∅ and n
2h1 � d + p.

Thus the induction hypothesis is applicable to ϕ1 and n, giving that n ∈ L or
n − p ∈ ϕ1(L) ⊆ ϕ(L).

Induction step II: ϕ(X) = ϕ1(X)∩ϕ2(X). In this case n ∈ ϕ(L) implies both
n ∈ ϕ1(L) and n ∈ ϕ2(L). Let h1 and h2 be the greatest numbers of nested
additions in ϕ1 and ϕ2, respectively, for which it is known that h1 � h and
h2 � h. As in the case of union, the induction hypothesis is applicable to ϕ1

and n, as well as to ϕ2 and n, which gives n ∈ L or n − p ∈ ϕ1(L), and at
the same time n ∈ L or n − p ∈ ϕ2(L). If either subexpression yields n ∈ L,
this immediately proves the claim for ϕ and n. Otherwise the number n − p is
known to be both in ϕ1(L) and in ϕ2(L), which means n − p ∈ ϕ(L).

Induction step III: ϕ(X) = ϕ1(X)+ϕ2(X). Then it follows from n ∈ ϕ(L)
that there are two numbers n1, n2 � 0 with n1 + n2 = n and ni ∈ ϕi(L) for
i ∈ {1, 2}. Assume without loss of generality that n1 � n2. Let h1 be the greatest
number of nested additions in ϕ1, which is known to be at most h − 1. Then
n1
2h1

� n1
2h−1 � n

2 · 1
2h−1 = n

2h , and therefore L∩{	 n1
2h1


, 	 n1
2h1


+1, . . . , n−1} = ∅

and n1
2h1 � d + p. By the induction hypothesis for ϕ1 and n1 it follows that

n1 ∈ L or n1 − p ∈ ϕ1(L). Consider each of these cases:

– In the former case, note that n
2 � n1 � n. Since h � 1 and L∩ {	 n

2h 
, 	 n
2h 
+

1, . . . , n− 1} = ∅ by assumption, n1 ∈ L implies that n1 must be equal to n,
while n2 must be zero. This proves that n ∈ L.

– If n1 − p ∈ ϕ1(L), then n − p = (n1 − p) + n2 ∈ ϕ(L).

This last case completes the proof of the lemma. ��
Proof (Theorem 3). Suppose there exists an equation X = ϕ(X) with the least
solution L0. Let C1, . . . , Cm be all constants used in ϕ, and let each Ci have
period pi starting from di. Let p = lcm{p1, . . . , pm} and d = max{d1, . . . , dm};
then all constants have period p starting from d. Denote the greatest number
of nested additions in ϕ by h.

By the definition of limit inferior, there exist infinitely many numbers i with
ni

ni+1
< 1

2h . Then it is possible to choose a sufficiently large i so that ni+1
2h � d+p.
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Now ni < ni+1
2h � 	ni+1

2h 
, and since L0 contains no elements between ni +1 and
ni+1 − 1, it follows that L0 ∩ {	ni+1

2h 
, . . . , ni+1 − 1} = ∅.
Since L0 is the least fixed point of ϕ, there exists a number of iterations �, for

which ni+1 /∈ ϕ�(∅) and ni+1 ∈ ϕ�+1(∅). Denote L = ϕ�(∅), that is, ni+1 /∈ L
and ni+1 ∈ ϕ(L). Since L ⊆ L0, it is known that L∩{	ni+1

2h 
, . . . , ni+1−1} = ∅.
Therefore, Lemma 3 is applicable to ϕ, n and L, and it asserts that n ∈ L or
n − p ∈ ϕ(L). The former contradicts the assumption, while the latter is not
possible since 	 n

2h 
 � n − p � n − 1. The contradiction obtained proves the
theorem. ��

Theorem 3 implies a separation of one-nonterminal conjunctive languages
from conjunctive languages of the general form.

Theorem 4. The following proper containments hold:

Reg{a} ⊂ Conj
1
{a} ⊂ Conj{a}

Proof. In particular, Conj
1
{a} \ Reg contains the language from Example 2,

while Conj{a} \ Conj
1
{a} contains some languages growing faster than expo-

nential (and as it will be demonstrated in the next section, also some languages
with super-linearly growing complements). ��

5 Non-representability of dense sets

In this section we derive non-representability results concerning a class of sets
that are known as additive bases:

Definition 3. Let S ⊆ N be an infinite set of natural numbers, and let k > 0.
For any n ∈ N, define the number of its representations as a sum of k elements
of S by

rk,S(n) = |{(a1, . . . , ak) ∈ Sk : a1 + · · · + ak = n}|.
The set S is said to be a basis of order k if every sufficiently large natural
number n can be represented as sum of k (not necessarily distinct) elements of
S, or equivalently if rk,S(n) � 1. In other words, S is a basis of order k if and
only if (S + · · · + S)

︸ ︷︷ ︸

k

is co-finite.

As an example, there is a well-known result, Legendre’s theorem, that the set
of squares of the natural numbers is a basis of order four.

Clearly, if a set S is a basis of order k then it is also a basis of every order
n > k. The non-representability results we will obtain in this section, are for
sets that are bases of order 2.

We start with a class of sets that are dense additive bases of order 2:
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Definition 4. Given any m, n ∈ N, let [m, n] denote the discrete closed interval
[m, n] = {i ∈ N : m � i � n}.

A set L ⊆ N is said to be dense if limn→∞
|L∩[0,n]|

n = 1.

For example, the set N \ { 2n | n � 0 } is obviously dense, and so is the set
of composite numbers.

The following lemma is easy to establish using basic properties of limits:

Lemma 4. Let L be a dense set. Then

lim
n→∞

|(N \ L) ∩ [0, n]|
|L ∩ [0, n]| = lim

n→∞

|(N \ L) ∩ [0, n]|
n

= 0.

Similarly to Theorem 3, the following theorem states that sets of the above
form cannot be represented using univariate equations that use finite or co-finite
constants:

Theorem 5. Let L be a dense non-ultimately periodic set. Then there is no
univariate equation X = ϕ(X) using finite and co-finite constants, which would
have the least solution L.

The proof of the theorem is based upon the following three lemmas.

Lemma 5. Let L1 ⊆ N and L2 ⊆ N be dense sets. Then the set L1 + L2 is
co-finite.

Notice that this lemma implies that dense sets are additive bases of order 2
(just take L1 = L2).

Proof. The main idea of the proof is that every sufficiently large element of N

can be written as the sum of two elements of N in too many ways. Now, since
the sets N \ L1 and N \ L2 are “sparse”, every sufficiently large element of N

can also be written as the sum of at least two elements of L1 and L2. In other
words, N \ (L1 + L2) is finite.

More formally now, it suffices to show that for every sufficiently large n ∈ N

there exist �1 ∈ L1 and �2 ∈ L2 such that n = �1 + �2. Consider the number
of ways in which a number n can be written as a sum of two numbers n1 ∈ L1

and n2 ∈ L2. More specifically, given n ∈ N, define the functions:

p(n) = |{(n1, n2) : (n1 ∈ N) and (n2 ∈ N) and (n1 + n2 = n)}|
r1(n) = |{k : (k ∈ N \ L1) and (k � n)}|
r2(n) = |{k : (k ∈ N \ L2) and (k � n)}|

Now it is easy to see that every sufficiently large number n in N can be written
as n = �1 + �2, with �1 ∈ L1 and �2 ∈ L2, in at least p(n)− r1(n)− r2(n) ways.
To prove that p(n) − r1(n) − r2(n) > 0 for large values of n, it suffices to show
that limn→∞

p(n)
n > 0, while limn→∞

r1(n)
n = 0 and limn→∞

r2(n)
n = 0.
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Notice now that p(n) = n + 1 since n can be written as the sum of two
elements of N in the following ways: (0, n), (1, n − 1), . . . , (n, 0). Therefore,
limn→∞

p(n)
n = 1. Consider now the case of r1(n) (the case of r2(n) is iden-

tical). Since L1 is a dense set, Lemma 4 asserts that limn→∞
|(N\L1)∩[0,n]|

n = 0,
and therefore limn→∞

r1(n)
n = 0. It follows that p(n) − r1(n) − r2(n) > 0 (that

is, n ∈ L1 + L2) for all sufficiently large n ∈ N. Therefore, N \ (L1 + L2) is a
finite set. ��
Lemma 6. Let S1, S2 ⊆ N be dense sets, let T ⊆ N be any non-empty set. Then
the sets S1 ∩ S2, S1 ∪ T and S1 + T are dense.

The proof, which is omitted, proceeds by using simple set-theoretic arguments,
and the basic properties of limits.

Lemma 7. Let ϕ(X) be an expression using the variable X, finite or co-finite
constants, together with the operations of union, intersection and addition. Let
L be a dense set and assume that ϕ(L) is infinite. Then, ϕ(L) is a dense set.

Proof. Follows from Lemma 6 by a straightforward induction.

Proof (Proof of Theorem 5). Let X = ϕ(X) be an equation. Let us prove that
L cannot be its least solution. The proof is by an induction on the number of
subexpressions of the form ψ(X) + ξ(X) in ϕ, in which both ψ and ξ contain
some instances of X .

Basis. If there are no such additions, then the least solution must be ul-
timately periodic by the known results on language equations with one-sided
concatenation [2]. Since L is non-periodic, a contradiction is obtained.

Induction step. Consider any of the smallest such subexpressions of ϕ, that
is, let ϕ(X) = ϕ̂(X, ϕ̃(X)), where ϕ̃ = ψ + ξ.

Consider first the case where both ψ(L) and ξ(L) are infinite. Let us show
that ϕ̃(L) is co-finite. Indeed, by Lemma 7, ψ(L) is a dense set and ξ(L) is also
a dense set. Then Lemma 5 states that N\ (ψ(L)+ ξ(L)) is a finite set. In other
words, ψ(L) + ξ(L) = N \ F for some finite F ⊂ N. Denote N \ F by R′.

Then ϕ(L) = ϕ̂(L, ϕ̃(L)) = ϕ̂(L, R′). Let ϕ′(X) be a new expression defined
as ϕ̂(X, R′). Then L should be the least solution of the equation X = ϕ′(X).
Since ϕ′(X) contains fewer subexpressions of the form ψ(X) + ξ(X), by the
induction hypothesis, L cannot be the least solution of this equation. A contra-
diction.

Now consider the remaining case of ψ(L) being a finite set, say F . Then
ϕ(L) = ϕ̂(L, ϕ̃(L)) = ϕ̂(L, F+ξ(L)). Define a new expression ϕ′(X) as ϕ̂(X, F+
ξ(X)); the set L should be the least solution of the equation X = ϕ′(X).
However, ϕ′ contains fewer subexpressions of the form ψ(X)+ ξ(X), and hence
L is not its least solution. This last contradiction establishes the induction step
and concludes the proof. ��

An immediate consequence of this result is that the class of sets of natural
numbers that can be defined using univariate equations containing only finite
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or co-finite constants is not closed under complementation. Indeed, the com-
plement of the language in Lemma 2 is dense and falls under Theorem 5. In
particular, the class of unary languages generated by conjunctive grammars
with one nonterminal is not closed under complementation.

Note that the equations corresponding to conjunctive grammars have a par-
ticular form, in which union and intersection may not be nested within addition.
Further non-representability results for one-nonterminal conjunctive grammars
can be obtained by using this form:

Theorem 6. Let L be an additive basis of order 2 that is not ultimately periodic.
Then L is not the least solution of any univariate equation X = ϕ(X) that uses
ultimately periodic constants, together with the operations of union, intersection
and addition and in which union and intersection can not be nested within
addition.

Proof (a sketch). Let X = ϕ(X) be an equation. Let us prove that L cannot
be its least solution. Consider any subexpression of ϕ of the form X + · · ·+ X .
Since L is a basis, the corresponding sum L + · · · + L is co-finite and therefore
ultimately periodic. Replace every such expression in ϕ by a corresponding
constant. If there are no such additions left, then the least solution of the
resulting equation must be ultimately periodic by the known results on language
equations with one-sided concatenation [2], which is a contradiction. ��

It follows that the family of unary languages generated by one-nonterminal
conjunctive grammars does not contain any non-periodic additive bases of
order 2.

6 Conclusions

It was shown that univariate equations X = ϕ(X) with union, intersection and
addition are, on one hand, nontrivial in the sense that they can represent some
non-periodic sets. On the other hand, counting arguments were used to show
that they cannot represent some sets that are known to be representable using
systems of equations.

These non-representability results become the first of their kind, since no
methods of proving sets non-representable by systems of equations with union,
intersection and addition are currently known. This task appears challenging,
though it is the authors’ hope that the results obtained in this paper may also
shed some light on this more general case.
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Abstract. Motivated by the study of cellular automata algorithmic and
dynamics, we investigate an extension of ultimately periodic words to two-
dimensional infinite words: collisions. A natural composition operation on
tilings leads to a catenation operation on collisions. By existence of ape-
riodic tile sets, ultimately periodic tilings of the plane cannot generate all
possible tilings but exhibit some useful properties of their one-dimensional
counterparts: ultimately periodic tilings are recursive, very regular, and tiling
constraints are easy to preserve by catenation. We show that, for a given
catenation scheme of finitely many collisions, the generated set of collisions is
semi-linear.

1 Introduction

The theory of regular languages, sets of one-dimensional sequences of letters
sharing some regularities, has been well studied since the fifties. Finite state
machines [18], regular languages [14, 5], computing devices with bounded mem-
ory, monadic second-order logic [4]: various point of views lead to a same ro-
bust notion of regular languages. The concept extends to infinite words and
various other one-dimensional structures. Unfortunately, when considering two-
dimensional words – partial mappings from the plane Z

2 to a finite alphabet –
such a robust common object fails to emerge: automata on the plane, picture
languages, second-order logic, all lead to different notions of regular languages
[9]. A first difficulty arises from the definition of a finite word: should it be any
partial mapping with a finite support? Should it be rectangles filled with letters?
Should it be any mapping with a connected support for some particular connex-
ity notion? A second difficulty arises from the complexity of two-dimensional
patterns: in the simplest case of uniform local constraints, i.e. tilings, knowing
whether a given finite pattern is a factor of a valid tiling (of the whole plane)
is already undecidable [1].

In the present paper, we investigate a particular family of recursive tilings
of the plane endowed with a catenation operation. Our definition of an ulti-
mately periodic tiling, a collision, is inspired by geometrical considerations on
one-dimensional cellular automata space-time diagrams and tilings. It can be
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thought of as an extension of the notion of ultimately periodic bi-infinite words
to two-dimensional words. These objects provide a convenient tool to describe
synchronization problems in cellular automata algorithmic.

One-dimensional cellular automata [13] are dynamical systems whose con-
figurations consist of bi-infinite words on a given finite alphabet. The system
evolves by applying uniformly and synchronously a locally defined transition
rule. The value at each position, or cell, of a configuration only depends on the
values of the cells on its neighborhood at the previous time step. To discuss
the dynamics or to describe algorithmic constructions, it is often convenient to
consider space-time diagrams rather than configurations. A space-time diagram
is a drawing of a particular orbit of the system: configurations are depicted one
on top of the other, from bottom to top, by successively applying the transition
rule, as depicted on Fig. 1. This representation permits to draw away the time-
line and discuss the structure of emerging two-dimensional patterns. Formally,
this is equivalent to consider tilings of half the plane with a special kind of local
constraint, oriented by the time-line.

Time goes from bottom to top. Each letter is represented by a different color.

Fig. 1 Space-time diagram of a one-dimensional cellular automaton

Let us give first an informal overview of what collisions are and where they
come from. An ultimately periodic configuration consists of two infinite peri-
odic words separated by a finite non-periodic word. As transitions of cellular
automata are locally defined, the image of an ultimately periodic configuration
is an ultimately periodic configuration such that: for each periodic part, the pe-
riod in the image divides the period in the preimage; for the non-periodic part,
it can only grow by a finite size depending on the local rule. If, by iterating the
transition rule of the cellular automaton, the size of the non-periodic part of
the configurations remains bounded, then the orbit of the ultimately periodic
configuration is, up to a translation, ultimately periodic. When considering this
ultimately periodic behavior from the space-time diagram point of view, one
can see some kind of particle: a localized structure moving with a rational slope
in a periodic background environment, as depicted on Fig. 2a.

As particles are ultimately periodic configurations, one can construct more
complicated configurations by putting particles side by side, ensuring that the
non-periodic parts are far enough from each other, and that the periodic parts
of two particles put side by side are the same and well aligned. If the non-
periodic part of several particles (two or more) becomes near enough in the
orbit, complex interactions might occur. If the interaction is localized in both
space and time, as depicted on Fig. 2b, this interaction is called a collision.

Particles and collisions provide a convenient tool in the study of cellular au-
tomata. When constructing two-dimensional cellular automata, like in historical
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(a) particle (b) collision (c) network of collisions

Fig. 2 Particles and collisions generated by ultimately periodic configurations

constructions of von Neumann [20] and Codd [6], particles are a convenient way
to convey quanta of information from place to place. The most well known ex-
ample of particle is certainly the glider of the Game of Life used by Conway
et al. to embed computation inside the Game of Life [2] by using particular
behavior of glider collisions. When using one-dimensional cellular automata to
recognize languages or to compute functions, a classical tool is the notion of
signal introduced by Fischer [8] and later developed by Mazoyer and Terrier
[16, 17]: signals and their interactions are simple kinds of particles and colli-
sions. Particles appear even in the classification of cellular automata dynamics:
in its classification [21], Wolfram identifies what he calls class 4 cellular au-
tomata where “(...) localized structures are produced which on their own are
fairly simple, but these structures move around and interact with each other in
very complicated ways. (...)” A first study of particles interaction was proposed
by Boccara et al. [3], latter followed by Crutchfield et al. [12]: these works focus
on particles and bounding the number of possible collisions they can produce.
Finally, the proof by Cook of the universality of rule 110 [7] is a typical construc-
tion involving a huge number of particles and collisions: once the gadgets and
the simulation are described, the main part of the proof consists of proving that
particles are well synchronized and that collisions occur exactly as described in
the simulation.

When dealing with space-time diagrams consisting of only particles and col-
lisions, a second object is often used: a planar map describing the collisions
and their interactions. When identifying particles and collisions in space-time
diagrams, in the style of Boccara et al. [3], one builds the planar map to give a
compact description of the diagram, as depicted on Fig. 2(c). When describing
algorithmic computation, in the style of Fischer [8], one describes a family of
planar maps as a scheme of the produced space-time diagrams.

The aim of the present paper is to define particles and collisions, describe
how collisions can be catenated, introduce collisions schemes as planar maps
and discuss the construction of finite catenations from collisions schemes. All
the necessary material is defined in section 2 followed by basic catenation of
tilings in section 3. Collisions and their catenations are formally introduced in
section 4. The main result on catenation is presented in section 5.
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2 Definitions

In the remaining of this paper, every discussion occurs in the two-dimensional
plane Z

2 partially colored with the letters of a given finite alphabet Σ. A pattern
is a subset of Z

2. A cell c of a given pattern P is an element c ∈ P . A vector is
an element of the group

(

Z
2, +

)

of translations in the plane. A coloring C is a
partial map from Z

2 to Σ. The support of a coloring C is denoted by Sup(C),
its restriction to a pattern P is denoted by C|P .

The translation u ·C of a coloring C by a vector u is the coloring with support
Sup(C) + u such that, for all z ∈ Sup(C), it holds (u · C)(z + u) = C(z). The
disjoint union C ⊕ C′ of two colorings C and C′ is the coloring with support
Sup(C) ∪ Sup(C′) such that, for all z ∈ Sup(C), it holds C ⊕ C′(z) = C(z) and
for all z ∈ Sup(C′), it holds C ⊕ C′(z) = C′(z). Colorings and their operations
are depicted on Fig. 3.

(a) a coloring C (b)
(1
1

)

· C (c) C ⊕
(−2
−2

)

· C

Fig. 3 Colorings, translations and disjoint unions

A tiling constraint is a pair (V, Υ ) where V is a finite pattern and Υ is a
subset of ΣV . A coloring C satisfies a tiling constraint (V, Υ ) if for each vector
u ∈ Z

2 such that V is a subset of Sup(u · C), it holds (u · C)|V ∈ Υ . For now
on we fix a tiling constraint (V, Υ ). A tiling is a coloring with support Z

2 that
satisfies the tiling constraint. For any pattern P , the neighborhood along the
constraint (V, Υ ) is defined as ∂P = P ∪ {p + v|p ∈ P and v ∈ V }.

In the following, for geometrical considerations, we will implicitly use vari-
ations of discrete forms of the Jordan curve theorem [15]. Two points

(

x
y

)

,
(

x′

y′

) ∈
Z

2 are 4-connected if
(|x−x′|
|y−y′|

) ∈ {(

1
0

)

,
(

0
1

)}

, 8-connected if
(|x−x′|
|y−y′|

) ∈ {(

1
0

)

,
(

0
1

)

,
(

1
1

)}

.
A pattern P is 4-connected, resp. 8-connected, if for each pair of points z, z′ ∈ P ,
there exists a 4-connected, resp. 8-connected, path of points of P from z to z′.
The discrete Jordan curve theorem states that any non empty 4-connected
closed path separates the plane into two 8-connected patterns, the interior and
exterior of the path. More generally, a frontier is a 4-connected pattern sepa-
rating the plane into n 8-connected patterns, its borders.
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3 Catenation of tilings

Let (V, Υ ) be a tiling constraint and C a set of colorings satisfying this con-
straint. To generate tilings by catenating colorings in C, the idea is to construct
a patchwork of colorings by cutting portions of coloring and glue them together
so that tiling constraints are preserved. A simple patchwork of 2 tilings is de-
picted on Fig. 4.

(a) coloring � (b) coloring � (c) blueprint (d) patchwork

Fig. 4 A patchwork

Definition 1. A patchwork is a tiling Tφ defined for each z ∈ Z
2 by Tφ(z) =

φ(z)(z) where φ : Z
2 → C is the blueprint of the patchwork such that:

1. ∀C ∈ C, ∂φ−1(C) ⊆ Sup(C);
2. ∀z ∈ Z

2, ∀v ∈ V, φ(z)(z + v) = φ(z + v)(z + v).

Patchworks provide a convenient way to combinatorially generate tilings from
a set of valid colorings without knowing explicitly the tiling constraint: it is
sufficient to know a super-set of the tiling neighborhood V and to cut colorings
on a big enough boundary containing the same letters.

Topology is a classical tool of symbolic dynamics [11], tilings being exactly
the shifts of finite type for two-dimensional words. The set of colorings is en-
dowed with the so called Cantor topology: the product of the discrete topology
on Σ ∪{⊥} where ⊥ denotes undefined color. This topology is compatible with
the following distance on colorings: d(C, C′) = 2−min{|z|,C(z) �=C′(z)}. Let OC be
the set of colorings C′ such that C′

|Sup(C) = C|Sup(C). The set of OC for colorings
C with a finite support is a base of clopen sets for the given compact perfect
topology.

Proposition 1. The set of patchworks over C is a compact set. Furthermore,
it contains the tilings of the closure of C.

Proof. Let Ti be a sequence of patchworks over C converging to a limit tiling T .
Consider the blueprints φi of these patchworks. For each cell z ∈ Z

2, let vz be
the element (−z · T )|V of Υ . Let φ(z) be any φi(z) such that (−z ·φi(z))|V = vz

– such a φi(z) always exists by definition of patchworks as Ti converges to T .
The map φ is a blueprint for T .

Let Ci be a sequence of colorings in C converging to a limit tiling T . For
each Ci, let Pi be the largest pattern, for inclusion, such that Ci|Pi

= T|Pi
.

As the sequence Ci converges to T , the sequence Pi converges to Z
2. Without
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loss of generality, consider that Pi is an increasing sequence of patterns. For
each i let δ(i) be the smallest j such that ∂Pi ⊆ Pj . Consider P ′

n = Pδn(1),
an increasing sub-sequence of Pi. Construct a blueprint φ as follows: for all
z ∈ Z

2, let φ(z) = P ′
min{n|z∈P ′

n}. By construction, this blueprint is valid and its
patchwork is T . �

Corollary 1. Let Oi be a base of open sets of colorings and C be a set of
colorings containing at least one element of each Oi. The set of patchworks
over C is the whole set of tilings. �

In particular, the set of tiling constraints Υ , viewed as colorings, generates the
whole set of tilings. The larger set of colorings with finite support generates the
whole set of tilings. But this approach is heterogeneous: we combine colorings
to obtain tilings. Can we restrict ourselves to combinations of tilings? More
precisely, given a tiling constraint, can we recursively construct a recursive
family of tilings T such that the set of patchworks over T is the whole family
of tilings?

In the case of one-dimensional tilings, replacing Z
2 by Z, it is straightforward

that the set of ultimately periodic tilings generates the whole set of tilings: the
set of ultimately periodic tilings is a dense set – from any tiling T and any
finite pattern P , one can construct an ultimately periodic tiling T ′ such that
T|P = T ′

|P . In the case of two-dimensional tilings, due to the undecidability of
the tiling problem [1, 19], there exists no such family. This result prohibits us
to obtain a recursive set of tilings whose closure under catenation give us the
whole set of tilings. Therefore, in the rest of the paper, we search for simplicity
rather than being exhaustive.

4 Ultimately periodic tilings

Bi-periodic tilings are among the most regular ones and correspond to the idea of
a background for cellular automata: a tiling B with two non-co-linear periodicity
vectors u and v such that B = u · B = v · B. As backgrounds are objects of
dimension 2, if one wants to mix several backgrounds in a same tiling, the
interface between two background is of dimension 1. The most regular kind of
interface corresponds to the idea of a particle: a tiling P with two non-co-linear
vectors, the period u of the particle such that P = u ·P and the period v of its
backgrounds such that for all position z ∈ Z

2, the extracted one-dimensional
word (P(z + vi))i∈Z

is ultimately periodic. Of course, several particles might
meet on the plane, leading to objects of dimension 0 that correspond to the
idea of a collision. In this paper, an ultimately periodic tiling of the plane is
such a collision.

Let �v(u, u′) denote the angular portion of the plane, on the right hand
side of u, starting in position v ∈ Z

2 and delimited by the vectors u, u′ ∈ Z
2.
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Formally, one might geometrically define a collision as follows (and depicted on
Fig. 5):

k = 2

u0 =
(1
2

)

u1 =
(3
1

)

u2 =
( 2
−2

)

u3 =
(−2
−2

)

u4 =
(−2

1

)

Fig. 5 Defining collisions through vectors

Definition 2. A collision is a tiling C for which there exists an integer k and
a finite cyclic sequence of n vectors (ui) ∈

(

Z
2
)Zn such that, for all i ∈ Zn, C is

ui-periodic in z, i.e. C(z) = C(z+ui), for all positions z inside �kui (ui−1, ui+1).

Although it corresponds to intuition, this definition made it difficult to effec-
tively use collisions in constructions since it does not identify components of the
collision. To overcome this problem, we introduce constructive versions of colli-
sions. Ideas behind such definitions is that all elements can be represented with
a finite description. A background is entirely determined by two non-collinear
vectors of periodicity u and v and by a coloring of finite support C that tiles
the plane along u and v (i.e.

⊕

i,j∈Z2(iu + jv) · C is a tiling) (see Fig. 6). Such a
triple (C, u, v) is called background representation.

The same way, in a particle, the uni-periodic part can be characterised by
a vector u and a coloring with finite support C which repeats along u (I =
⊕

k∈Z
ku·C) is a frontier with two borders (L and R). The rest of particle can be

described using two backgrounds B and B′. The resulting coloring P = B|L ⊕
I ⊕ B′

|R is require to be a tiling. Furthermore, we require to have a condition
ensuring that the different portion have some common “safety zone”. This is

done by adding the constraint that the function: φ : z →
⎧

⎨

⎩

P if z ∈ Sup(I)
B if z ∈ L
B′ if z ∈ R

is the blueprint of a patchwork. Such a tuple (B, C, u, B′) is called particle
representation.

For collisions, the idea is basically the same (see Fig. 6) , the characterisation
is based on a coloring with finite support C for the non-periodic part and a finite
list of particles. Each particle defines a half-line starting form the center of the
collision. The support of all the particles and the center must form a star and
each consecutive pair of particles must have a common background to fill the
space between them. Some safety zone is also required as in particle. This is
formalised in the following definition:
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(a) a background (b) a particle (c) a collision

Fig. 6 Principle of construction

Definition 3. A collision representation is a pair (C, L) where C is a finite
pattern, L is a finite sequence of n particles Pi = (Bi, Ci, ui, B

′
i), satisfying:

1. ∀i ∈ Zn, B′
i = Bi+1;

2. the support of I = C ⊕ ⊕

i∈Zn,k∈N
kui · Ci is a frontier with n borders;

3. For all i ∈ Zn, the support of C ⊕ ⊕

k∈N
(kui · Ci ⊕ kui+1 · Ci+1) is a frontier

with two borders: let Pi be the border on the right of Pi;
4. C = I ⊕ ⊕

i Bi|Pi
is a tiling;

5. the function φ : z →
⎧

⎨

⎩

C if z ∈ Sup(C)
Pi if z ∈ Sup(

⊕

k∈N
kui · Ci)

Bi if z ∈ Pi

is the blueprint of a

patchwork.

The set Sup(C) is called perturbation of the collision and Sup(
⊕

k∈N
kui · Ci)

are called perturbation of the particle Pi.
The constructive definitions of particles, backgrounds and collisions provide

us with a finite representation that allows us to recursively manipulate them.
Contrary to intuition, representations are not invariant by translation. This
seems unavoidable since we want to have means of expressing the relative posi-
tion between two such representations. In the rest of the paper, we will always
assume that background, particles and collisions are given by a representation.

5 Finite catenations

A blueprint of finitely many collisions might produce a tiling which is not a
collision, however if the blueprint of the patchwork consists of finitely many
8-connected components, the patchwork is a collision. Using representations of
collisions, a more regular family of patchworks can be defined: a catenation
induces a patchwork combining collisions by binding pairs of similar particles
as depicted on Fig. 2.

To “bind” collisions using particles, we need two identical particles facing
each other such that the gap between them correspond to a integer number
of particles n. Two particles P = (B, C, u, B′) and P̃ = (B̃, C̃, ũ, B̃′) form a
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n-binding if ũ = −u (particles are facing each other), C̃ = (n − 1)u · C (they
have the same finite pattern and gap is n repetitions) , B̃ = (n − 1)u · B′ ,
B̃′ = (n−1)u ·B (backgrounds are the same). The set

⊕

0<i<n−1 iu · C is called
the perturbation of the n-binding.

Since we want to get rid of positions, we introduce the potential n-binding.
The idea is that given two collisions and one particle for each collision, the
particles P1 and P2 form a potential n-binding if up to a translation z, the
two particles form an n-binding (i.e. P1 and z ·P2 form a n-binding). One can
remark in case of potential n-binding, the translation vector z is unique.

Now the idea is that we can use potential n-binding to construct patchworks
since background is bi-periodic and does not cause heavy harm for checking
properties on it. The description needs to have collisions as points and particles
as lines. Particles can be half-infinite (if they are not part of potential n-binding)
or link two collisions. Since we work in the plane, it is sound to require that the
constructed element is planar and that the order of particles is compatible with
the collisions. At last, we add a connected condition to avoid problem with free
parts of the map. This leads to the following definition:

Definition 4. A catenation is a connected planar map where:

– vertices are labeled by collisions;
– edges are potentially semi infinite;
– edges extremities are labeled by particles;
– edges order in a vertex is compatible with the order on particles in the cor-

responding collision.
– finite edges (of extremities P1 and P2) are labeled with an integer n such

that P1 and P2 form a potential n-binding.

At this point, we want to transform the catenation into a patchwork. For this,
let us first study some necessary conditions. Since we deal with a planar map, it
is possible to define faces as elements of the dual of catenation. To transform a
catenation into a patchwork, it is necessary that every face can be transformed
into a patchwork. Since we have potential ni-bindings, the translation induced
between two consecutive collisions is fixed. Since the sequence of collisions in a
face is cyclic, it is sound to require that the sequence of corresponding transla-
tion sum up to zero when cycling. This will be the first condition. Now, with
this condition, it is possible to assign (up to a global constant) a translation to
every collision such that all edges are ni-bindings. With those objects, the ba-
sic idea is to construct a patchwork that corresponds to each collision, particle
or ni-binding on its perturbation. This implies that all perturbations does not
enforce contradictions. One easy way to get rid of this risk is just to require
that all perturbations are distinct (this will be our second condition). If these
conditions are met then we speak of valid catenation.

Proposition 2. It is possible to associate a patchwork (and therefore a space-
time diagram) to every valid catenation.
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Proof. To prove this result, we shall give a potential blueprint and show that
it satisfies the conditions. First of all, the condition on null translation after
a round on every faces induce a unique set of translation (up to a constant)
for every collision in the map since the map is connected. At this point, let us
consider the collisions with those translations.

The second condition ensure that perturbations of collisions, bindings and
particles are disjoint. Thus it is possible to define a blueprint linking any point
of such a perturbation to the corresponding collision, particle or binding. Let us
now study the points that are not mapped. Since the map is planar and particle
(and also bindings) are isolating, every left point belongs to one unique face.
On this face, the associated background with particles or collision or bindings
present is unique (bindings ensure that two consecutive collisions are the same
and collisions ensure this for consecutive particles and bindings). So we map
those points to the corresponding background.

The last point is to show that the constructed blueprint does really satisfy
the properties for patchwork. The first condition on definition is trivial since the
used valid coloration are tilings. Let us go now to the second and main point.

For this last part, let us study the different cases. For example, if we are
in a collision C perturbation. If the neighborhood is also in C perturbation or
in perturbation of binding, particle belonging to C or even of background with
this property, then the neighborhood is by definition equal to the original one
of a collision. the only difficult case is when in the neighborhood, there is a
perturbation originated from another element. For example let us suppose this
elements is in the perturbation from C′. In this case, in C we have in these
points some backgrounds or particles. But since perturbations do not overlap,
we are in the border of C′. As we have requested in our constructive version
representation to be patchworks, the border of C′ does correspond to the value
of backgrounds or particles present in C′. By definition of our catenations, the
backgrounds and particles are the same so elements of C′ are the same of those
in C.
The same arguments do also apply for other cases thus ending the proof. �

At this point, we have both a set of “simple” tilings (the collisions) and an
operation generating new tilings from this set (the valid catenation). Despite
being intuitive, catenations require to give explicitly the relative positions of
collision via the number of repetitions of particles. Intuitively, we would like
to give only the collisions involved and their organisation (as in Fig. 2c). With
this approach, it is possible to define an alternative to catenation that does not
require the number of repetitions to be given. The resulting element is called
catenation scheme. Formally, a catenation scheme is a catenation whose label
on finite edge where erased. Conversely, to go back from a catenation scheme
to a catenation, one need to give every finite edge a label. Such elements of N

F

where F is the set finite edges of the catenation scheme is called affectation.
Moreover, it is called valid affectation if the resulting catenation is valid.

For a given catenation scheme, one natural question is whether it correspond
to a tiling. To bring an answer one idea is to search for valid affectation of
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the scheme. In case of finite catenation scheme, we can achieve a very strong
characterisation of this set and even compute it.

Theorem 1. The set of valid affectation of a finite catenation is a recursive
semi-linear set (i.e. a finite union of linear sets).

Proof. To prove the main theorem, we will show that being a valid affectation
of finite catenation scheme can be expressed with a formula in Presburger arith-
metic (i.e first order logic on integer with addition and comparison). Since the
set of solutions of formula in such arithmetic is a recursive semi-linear set [10]
this will conclude the proof. One can note that the construction of the solution
is explicit even if the complexity is non-elementary.

In our formula, the number of repetitions of each finite edge will correspond
to free variables. let us call them r1, . . . , rn. Since the conditions for valid cate-
nation are for each face, the global formula F will consists on the conjunction
of an elementary formula for each face: F = ∧f faceFf . For each face, let us
look at the two conditions. First one (going back to the same point after a turn
around the face) can be easily expressed: the translation induced by a particle
i is just ri times the vector of repetition of the particle ui (just note that the
direction of the particles is chosen in the face) which is a known constant. For
the translation induced by collision εc they are know constant. So the formula is
on the form Ff,1 = Σiparticles in the faceuiri + Σccollisionsεc =

(

0
0

)

. For the second
condition (non overlap of perturbation) it can be expressed with the conjunc-
tion that any pair of points of different perturbations are distinct. In the case
of collision perturbation, it is trivial since there is only a finite (and known)
number of perturbation points. For bindings, it is more difficult since the set of
points can be expressed with a universal quantifier with the following remark,
the set of points in the binding’s perturbation correspond to the set of points of
the particle perturbation Sup(Ci) (a finite number) for every integer n multiple
of the vector of repetition ui which is between 0 and the number of repetition
ri. thus the formula is on the form: ∀x, 0 < x < ri ⇒ ∧p∈Sup(Ci)p + uiri �= z
where z are points for the other considered perturbation. The same applies for
free particles (just omit the upper bound in the comparison).

With this, we have show how to construct the Presburger formula which
conclude the proof. �

With this theorem we achieve a very strong framework for cellular automata.
After have extracted a set of collisions, one can give the desired finite catenation
scheme and automatically check the necessary and sufficient conditions for that
scheme to exists. This method would make proves far more understandable
and could avoid the need to rely on combinatorial proves to ensure validity of
intuition. For now, the main limitation of those results are that only the field
of finite catenations are treated. One main goal of future work is to achieve
such kind of result for infinite catenation schemes. Due to the infinite nature of
such elements, such strong a characterisation is excluded but we hope to have
sufficient computable conditions for affectation of a wide range of “regular”
infinite catenations.
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Cache-sensitive Memory Layout
for Binary Trees∗

Riku Saikkonen and Eljas Soisalon-Soininen
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Abstract We improve the performance of main-memory binary search trees
(including AVL and red-black trees) by applying cache-sensitive and cache-
oblivious memory layouts. We relocate tree nodes in memory according to
a multi-level cache hierarchy, also considering the conflict misses produced
by set-associative caches. Moreover, we present a method to improve one-
level cache-sensitivity without increasing the time complexity of rebalancing.
The empirical performance of our cache-sensitive binary trees is comparable
to cache-sensitive B-trees. We also use the multi-level layout to improve the
performance of cache-sensitive B-trees.

1 Introduction

Most of today’s processor architectures use a hierarchical memory system: a
number of caches are placed between the processor and the main memory.
Caching has become an increasingly important factor in the practical perfor-
mance of main-memory data structures. The relative importance of caching
will likely increase in the future [1, 2]: processor speeds have increased faster
than memory speeds, and many applications that previously needed to read
data from disk can now fit all of the necessary data in main memory. In data-
intensive main memory applications, reading from main memory is often a bot-
tleneck similar to disk I/O for external-memory algorithms.

There are two types of cache-conscious algorithms. We will focus on the
cache-sensitive (or cache-aware) model, where the parameters of the caches
are assumed to be known to the implementation. In contrast, cache-oblivious
algorithms attempt to optimize themselves to an unknown memory hierarchy.

The simplest cache-sensitive variant of the B-tree is an ordinary B+-tree
where the node size is chosen to match the size of a cache block (e.g., 64 or
128 bytes) [3]. A more advanced version called the Cache-Sensitive B+-tree or
CSB+-tree [1] additionally removes pointers from internal nodes by storing the
children of a node consecutively in memory. The CSB+-tree has been further
optimized using a variety of techniques, such as prefetching [4], storing only
partial keys in nodes [5], and choosing the node size more carefully [2]. The
above structures used a one-level cache model; B-trees in two-level cache models
(one level of cache plus the TLB) are examined in [6, 7].
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Please use the following format when citing this chapter:

Saikkonen, R. and Soisalon-Soininen, E., 2008, in IFIP International Federation for Information Processing,
Volume 273; Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani
Karhumäki, Giancarlo Mauri, Luke Ong; (Boston: Springer), pp. 241–255.



242 R. Saikkonen, E. Soisalon-Soininen

A weight-balanced B-tree based on the cache-oblivious model has been pro-
posed in [8]. Its simpler variants [9, 10] use an implicit binary tree (a complete
binary tree stored in a large array without explicit pointers) whose structure
and rebalancing operations are dictated by the cache-oblivious memory layout.
In all three, update operations may rebuild parts of the tree, so most of the
complexity bounds are amortized.

When using binary search trees, the node size cannot be chosen as freely as
in B-trees. Instead, we will place the nodes in memory so that each cache block
contains nodes that are close to each other in the tree. Binary search tree nodes
are relatively small; for example, AVL and red-black tree nodes can fit in about
16 or 20 bytes using 4-byte keys and 4-byte pointers, so 3–8 nodes fit in one
64-byte or 128-byte cache block. (We assume that the nodes contain only small
keys. Larger keys could be stored externally with the node storing a pointer to
the key.)

Caching and explicit-pointer binary search trees have been previously con-
sidered in [11], which presents a cache-oblivious splay tree based on periodically
rearranging all nodes in memory. In addition, [12] presents a one-level cache-
sensitive periodic rearrangement algorithm for explicit-pointer binary trees. A
similar one-level layout (extended to unbalanced trees) is analyzed in [13], which
also discusses the multi-level cache-oblivious layout known as the van Emde
Boas layout. The latter is analyzed in detail in [14].

We give an algorithm that preserves cache-sensitivity in binary trees in the
dynamic case, i.e., during insertions and deletions. Our algorithm retains single-
level cache-sensitivity using small worst-case constant-time operations executed
when the tree changes. In addition, we give an explicit algorithm for multi-
level cache-sensitive global rearrangement, including a variation that obtains
a cache-oblivious layout. We also investigate a form of conflict miss caused by
cache-sensitive memory layouts that interact poorly with set-associative caches.

Our approach does not change the internal structure of the nodes nor the
rebalancing strategy of the binary search tree. The approach is easy to imple-
ment on top of an existing implementation of any tree that uses rotations for
balancing, e.g., red-black trees and AVL trees. Our global rearrangement algo-
rithm can also be applied to cache-sensitive B-trees, and our empirical results
indicate that the multi-level memory layout improves the performance of both
B+-trees with cache-block-sized nodes and CSB+-trees.

2 Cache model

We define a multi-level cache model as follows. We have a k-level cache hierarchy
with block sizes B1, . . . , Bk at each level. We also define B0 = node size in bytes,
Bk+1 = ∞. We assume that our algorithms know these cache parameters. (In
practice, they can be easily inferred from the CPU model or from metadata
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stored in the CPU.) To keep the model simple, we do not model any other
features of the cache, such as the capacity.

Our algorithms shorten the Bi-block search path length, denoted Pi and de-
fined as the length of a root-to-leaf path measured in the number of separate
cache blocks of size Bi encountered on the path. Using this terminology, P0 is
the traditional search path length in nodes (assuming that the search does not
end before the leaf level), P1 is the length counted in separate B1-sized cache
blocks encountered on the path, and so on.

We assume that for i > 1, each block size Bi is an integer multiple of Bi−1.
Additionally, if B1 is not an integer multiple of the node size B0, a node should
not cross a B1-block boundary (so that it is never necessary to fetch two cache
blocks from memory in order to access a single node). In practice, this is achieved
by not using the last B1 mod B0 bytes of each B1-block. (In practice, Bi, i > 0,
is almost always a power of 2.)

A typical modern computer employs two levels of caches: a relatively small
and fast level 1 (“L1”) cache, and a larger and slower level 2 (“L2”) cache.
In addition, the mapping of virtual addresses to physical addresses used by
multitasking operating systems employs a third hardware cache: the Translation
Lookaside Buffer or TLB cache.

Currently the cache block size is often the same in the L1 and L2 caches.
They then use only one level of our hierarchy. For example, the cache model used
in the experiments in Section 5 is k = 2, B0 = 16 (16-byte nodes), B1 = 64
(the block size of the L1 and L2 caches in an AMD Athlon XP processor),
B2 = 4096 (the page size of the TLB cache), B3 = ∞. However, our algorithms
can be applied to an arbitrary hierarchy of cache block sizes.

3 Global relocation

Figure 1 gives an algorithm that rearranges the nodes of a tree in memory into
a multi-level cache-sensitive memory layout. The algorithm can be used for any
kind of balanced tree with fixed-size nodes.

The produced layout can be considered to be a generalization of the one-
level cache-sensitive layouts of [12, 13] and the two-level layouts of [6, 7] to
an arbitrary hierarchy of block sizes. It is different from the multi-level “van
Emde Boas” layout (see [13]) in that the recursive placement of smaller blocks
in larger ones is more complex, because, in the cache-sensitive model, we cannot
choose the block sizes according to the structure of the tree, as is done in the
cache-oblivious van Emde Boas layout.

In the produced layout, the first lowest-level (l = 1) block is filled by a
breadth-first traversal of the tree starting from the root r. When this “root
block” is full, each of its children (i.e., the “grey” or border nodes in the breadth-
first search) will become the root node of its own level 1 block, and so on. On
levels l > 1, level l−1 blocks are allocated to level l blocks in the same manner.
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reloc-block(l, r):
1: if l = 0 then
2: Copy node r to address A, and update the link in its parent.
3: A ← A + B0

4: return children of r
5: else
6: S ← A
7: E ← A + F (A, l) − Bl−1

8: Q ← empty queue
9: put(Q, r)

10: while Q is not empty and A ≤ E do
11: n ← get(Q)
12: c ← reloc-block(l − 1, n)
13: put(Q, all nodes in c)
14: end while
15: if Q is not empty then
16: A ← start of next level l block (= E + Bl−1)
17: if F (S, l) < Bl/2 then {less than half of the block was free}
18: Free the copies made above, i.e., all nodes at addresses S to A − 1.
19: return r {our caller will try to relocate r again later}
20: end if
21: end if
22: return remaining nodes in Q
23: end if
relocate(r):
1: A ← beginning of a new memory area, aligned at a level k block boundary
2: reloc-block(k + 1, r) {Bk+1 = ∞, so this relocates everything}

Fig. 1 The global relocation algorithm. The address A of the next available position for a
node is a global variable. F (A, l) = Bl−A mod Bl is the number of bytes between A and the
end of the level l block containing A. (To be able to update the link in a parent when a node
is copied, the algorithm actually needs to store (node, parent) pairs in the queue Q, unless
the tree structure contains parent links. This was left out of the pseudocode for clarity.)

The algorithm of Figure 1 produces this layout using a single traversal of
the tree using auxiliary queues that store border nodes for each level of the
breadth-first search. Lines 17–20 are an optional space optimization: at the leaf
level, there may not be enough nodes to fill a block. Lines 17–20 ensure that
each level l block will be at least half full by trying to allocate the next available
subtree in the remaining space in a non-full block.

Theorem 1. Assume that the global relocation algorithm of Figure 1 is executed
on a complete binary tree of height h. Then the worst-case Bi-block path length
will be Pi = �h/hi�, where hi = hi−1 · �logdi−1

(Bi/Bi−1 + 1)�, h0 = 1. If
B1 is an integer multiple of B0, then di = Bi/B0 + 1; otherwise, d0 = 2 and
di = (di−1 − 1) · �Bi/Bi−1� + 1.

Proof. Consider a cache block level i ∈ {1, . . . , k}. Each level i − 1 block pro-
duced by the layout (except possibly for blocks that contain leaves of the tree)
contains a connected part of the tree with di−1 − 1 binary tree nodes. These
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blocks can be thought of as “super-nodes” with fanout di−1. The algorithm of
Figure 1 produces a level i block by allocating Bi/Bi−1 of these super-nodes in
breadth-first order (i.e., highest level i−1 block first). The shortest root-to-leaf
path of the produced level i block has hi binary tree nodes. �	

The produced layout is optimal on the level of B1-blocks: it is not possible
to produce a larger h1. It is not possible to be optimal on all levels [14], and we
resolved this tradeoff by preferring the lowest level. Knowledge of the relative
costs of cache misses at each level could in theory be used to produce a more
optimal layout, but we did not want our cache-sensitive algorithms to depend
on these kinds of additional parameters.

Theorem 2. The algorithm of Figure 1 rearranges the nodes of a tree into a
multi-level cache-sensitive memory layout in time O(nk), where n is the number
of nodes in the tree and k is the number of memory-block levels.

Proof. Each node in the tree is normally copied to a new location only once.
However, the memory-usage optimization in line 18 may “undo” (free) some of
these copies. The undo only happens when filling a level l cache block that was
more than half full, and the layout is then restarted from an empty level l cache
block. Thus, an undo concerning the same nodes cannot happen again on the
same level l. However, these nodes may already have taken part in an undo on
a smaller level l′ < l. In the worst case, a node may have taken part in an undo
on all k memory-block levels. Each of the n nodes can then be copied at most
k times.

Consider then the queues Q at various levels of recursion. Each node enters
a queue at level l = 1 (line 13, using c from line 4), and travels up to a level
l′ ≤ k + 1, where it becomes the root of a level l′ − 1 subtree and descends to
level 0 in the recursion. Thus, each node is stored in O(k) queues. �	

Cache-oblivious layout. Though cache-sensitive, the produced layout is
similar to the “van Emde Boas” layout used as the basis of many cache-oblivious
algorithms. In fact, our algorithm can produce the van Emde Boas layout:
simply use the block sizes Bi = (22i − 1) · B0 (i = 1, . . . , k where k = 4 or
k = 5 is enough for trees that fit in main memory). The only difference between
the layout thus produced and the van Emde Boas layout (as described in, e.g.,
[13]) is that the recursive subdivision is done top-down instead of bottom-up,
and some leaf-level blocks may not be full. (These differences are unavoidable
because the van Emde Boas layout is defined only for complete trees.)

Aliasing correction. While experimenting with the global relocation al-
gorithm, we found that multi-level cache-sensitive layouts can suffer from a
problem called aliasing, a kind of repeated conflict miss. Many hardware caches
are d-way set associative (d ∈ {2, 4, 8} are common), i.e., there are only d pos-
sible places in the cache for a block with a given address A. The problem is
that, for instance, the ith cache block in each TLB page is often mapped to the
same set of d places. Therefore, if the ith cache blocks of several TLB pages are
accessed, the cache can only hold d of these blocks.
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A straightforward multi-level cache-sensitive layout (including the one pro-
duced by the above algorithm) fills a TLB page (of size Bl for some l) with a
subtree so that the root of the subtree is placed at the beginning of the TLB
page (i.e., in the first Bl−1-sized cache block). Then, for example, when a par-
ticular root-to-leaf path is traversed in a search, only d root nodes of these
TLB-sized subtrees can be kept in the (set associative) Bl−1-block cache. (The
root of the TLB-sized subtree is not of course the only problematic node, but
the problem is most pronounced at the root.)

The problem can be fixed by noting that we can freely reorder the cache
blocks inside a TLB page. The Bl-sized TLB page consists of Bl/Bl−1 cache
blocks, and the subtree located in the TLB page can use these cache blocks in
any order. We simply use a different ordering for separate TLB pages, so the
root node of the subtree will not always be located in the first cache block.

We implement the reordering by a simple cache-sensitive translation of the
addresses of each node allocated by the global relocation algorithm, as fol-
lows.2 Every address A can be partitioned into components according to the
cache block hierarchy: A = Ak . . . A2A1A0, where each Ai, i ∈ {1, . . . , k − 1},
has log2 Bi/Bi−1 bits of A, and A0 and Ak have the rest. For each level
i = {1, . . . , k}, we simply add the upper portion Ak . . . Ai+1 to Ai, modulo
Bi/Bi−1 (so that only the Ai part is changed).

For example, if Bl is the size of the TLB page, the root of the first allocated
TLB page (Ak . . . Al+1 = 0) will be on the first cache block (the translated
portion A′

l = 0), but the root of the second TLB page (which is a child of the
first page) will be on the second cache block (Ak . . . Al+1 = 1, so A′

l = 1) of its
page.

It would be enough to apply this correction to those memory-block levels
with set associative caches on the previous level (i.e., only level l in the above
example, since level l − 1 has the set associative cache). However, we do it on
all levels, because then our cache-sensitive algorithms only need knowledge of
the block sizes and not any other parameters of the cache hierarchy. Applying
the translation on every level increases the time complexity of the relocation
algorithm to O(nk2), but this is not a problem in practice, since k is very small
(e.g., k = 2 was discussed above).

4 Local relocation

When updates (insertions and deletions) are performed on a tree which has been
relocated using the global algorithm of the previous section, each update may
disrupt the cache-sensitive memory layout at the nodes that are modified in the
update. In this section, we present modifications to the insert and delete algo-

2 The translation is applied to every address used in lines 2 and 18 of the algorithm of Figure 1.
The other addresses S, A and E in the algorithm do not need to be translated, because they
are only used to detect block boundaries.
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rithms that try to preserve a good memory layout without increasing the time
complexity of insertion and deletion in a binary search tree that uses rotations
for balancing. These algorithms can be used either together with the global
relocation algorithm of the previous section (which could be run periodically)
or completely independently.

Our approach preserves the following memory-layout property:

Invariant 1 For all non-leaf nodes x, either the parent or one of the children
of x is located on the same B1-sized cache block as x.

This property reduces the average B1-block path length even in a worst-case
memory layout. For simplicity, the proof only considers a complete binary tree
of height h. (To see that Invariant 1 improves the memory layout of, e.g., a red-
black tree, note that the top part of a red-black tree of height h is a complete
tree of height at least h/2.)

Theorem 3. Assume that Invariant 1 holds in a complete binary tree of
height h. Then the average B1-block path length P1 ≤ 2h/3 + 1/3.

Proof. In the worst-case memory layout, each B1-sized cache block contains
only nodes prescribed by Invariant 1, i.e., a single leaf or a parent and child.

By Invariant 1, the root r of the tree (with height h) is on the same
cache block as one of its children. Considering all possible paths down from r
leads to the following recurrence for the expected value of the B1-block path
length: P (h) = 1/2 · (1 + P (h − 2)) + 1/2 · (1 + P (h − 1)) (with P (1) = 1
and P (0) = 0). Solving gives E[P1|worst-case memory layout] = P (h) =
2h/3 + 2/9 − 2(−1)h/(9 · 2h) ≤ 2h/3 + 1/3. In any memory layout, the av-
erage P1 ≤ E[Pi|worst-case memory layout]. �	

We say that a node x is broken if Invariant 1 does not hold for x. To analyze
how this can happen, denote N(x) = the set of “neighbors” of node x, i.e., the
parent of x and both of its children (if they exist). Furthermore, say that x
depends on y if y is the only neighbor of x that keeps x non-broken (i.e., the
only neighbor on the same cache block).

Our local relocation approach works as follows. We do the standard binary
search tree structure modification operations (insertion, deletion, rotations) as
usual, but after each such operation, we collect a list of nodes that can poten-
tially be broken (Figure 2), and use the algorithm given below to re-establish
Invariant 1 before executing the next operation.

The nodes that can break are exactly those whose parent or either child
changes in the structure modification, since a node will break if it depended on
a node that was moved away or deleted. As seen from Figure 2, 1 to 6 nodes
can be broken by one structure modification. We explain the various cases in
Figure 2 below.

In internal trees, actual insertion is performed by adding a new leaf node to
an empty location in the tree. If the parent of the new node was previously a
leaf, it may now be broken; thus, the parent is marked as potentially broken in
Figure 2(c).
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⇒

(a) External tree insertion

⇒

(b) External tree deletion

(c) Internal tree
insertion

⇒ ⇒

(d) Internal tree deletion (non-leaf)

⇒

(e) Internal tree
deletion (leaf)

⇒

(f) Single rotation

⇒

(g) Double rotation

Fig. 2 Broken nodes in actual insertion, actual deletion and rotations. Potentially broken
nodes are filled black; the dotted lines indicate the nodes that the operation works on.

In external (leaf-oriented) trees, actual insertion replaces a leaf node by a new
internal node with two children: the old leaf and a new one (see Figure 2(a)).
The new internal node is potentially broken (if it was not allocated on the same
cache block as one of the other nodes), and its parent may become broken, if
the parent depended on the old leaf node.

Actual deletion in external trees deletes a leaf and its parent and replaces
the parent with its other child (Figure 2(b)). The parent of the deleted internal
node and the other child can become broken, since they could have depended
on the deleted internal node.

Actual deletion in internal trees is slightly more complicated, with two cases.
In the simple case (Figure 2(e)), a leaf is deleted, and its parent becomes broken,
if it depended on the deleted leaf. The more complicated case arises when a non-
leaf node x needs to be deleted (Figure 2(d)). The standard way of doing the
deletion is to locate the node y with the next-larger key from the right child
of x, copy the key and possible associated data fields to x, and then delete y
by replacing it with its right child (if any). In this process, the parent of y
and the right child can become broken (if they depended on y). The node x
cannot become broken, since it or its neighbors were not moved in memory.
(The equivalent implementation that looks for the next-smaller key of x in its
left child is completely symmetric with regard to broken nodes.)

When a single or double rotation is performed, the nodes that can break are
those whose parent or either child changes in the rotation, since a node will
break if it depended on a node that was moved away by the rotation.
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fix-broken(B):
1: while B �= ∅ do
2: Remove any non-broken nodes from B (and exit if B is emptied).
3: if a node in N(B) has free space in its cache block then
4: Select such a node x and a broken neighbor b ∈ B. (Prefer the x with the

most free space and a b with no broken neighbors.)
5: Move b to the cache block containing x.
6: else if a node b ∈ B has enough free space in its cache block then
7: Select the neighbor x ∈ N(b) with the smallest |D(x)|.
8: Move x and all nodes in D(x) to the cache block containing b.
9: else

10: Select a node x ∈ N(B) and its broken neighbor b ∈ B. (Prefer a broken x,
and after that an x with small |D(x)|. If there are multiple choices for b,
prefer a b with N(b) \ x non-broken.)

11: Move b, x and all nodes in D(x) to a newly-allocated cache block.
12: end if
13: end while

Fig. 3 The local relocation algorithm. B is a set of potentially broken nodes which the
algorithm will make non-broken; N(B) =

⋃

b∈B
N(b). An implementation detail is that the

algorithm needs access to the parent, grandparent and great grandparent of each node in B,
since the grandparent may have to be moved in lines 8 and 11.

We can optimize the memory layout somewhat further with a simple heuristic
(not required for Invariant 1): In insertion, a new node should be allocated in
the cache block of its parent, if it happens to have enough free space.

We need an additional definition for the algorithm of Figure 3: D(x) is the set
of neighbors of node x that depend on node x (i.e., will be broken if x is moved
to another cache block). Thus, D(x) ⊂ N(x) and 0 ≤ |D(x)| ≤ |N(x)| ≤ 3. A
crucial property is that nothing depends on a broken node (because no neighbor
is on the same cache block), and thus broken nodes can be moved freely.

The algorithm of Figure 3 repeats three steps until the set of broken nodes B
is empty. First, all neighbors of the broken nodes are examined to find a neigh-
bor x with free space in its cache block. If such a neighbor is found, a broken
node b ∈ N(x) is fixed by moving it to this cache block. If no such neighbor was
found, then the cache blocks of the nodes in B are examined; if one of them
has enough space for a neighbor x and its dependants D(x), they are moved to
this cache block. Otherwise, if nothing was moved in the previous steps, then
a broken node b is forcibly fixed by moving it and some neighboring nodes to
a newly allocated cache block. At least one neighbor x of b needs to be moved
along with b to make b non-broken; but if x was not broken, some of its other
neighbors may depend on x staying where it is – these are exactly the nodes in
D(x), and we move all of them to the new cache block. (It is safe to move the
nodes in D(x) together with x, because their other neighbors are not on the
same cache block.)
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Theorem 4. Assume that Invariant 1 holds in all nodes in a tree, except for a
set B of broken nodes. Then giving B to the algorithm of Figure 3 will establish
Invariant 1 everywhere.

Theorem 5. The algorithm of Figure 3 moves at most 4|B| = O(|B|) nodes in
memory. The total time complexity of the algorithm is O(|B|2).
Proof. Each iteration of the loop in the algorithm of Figure 3 fixes at least
one broken node. Line 5 does this by moving one node; line 11 moves at most
4 nodes (b, x, and the two other neighbors of x), and line 8 moves at most
3 nodes (x and two neighbors). Thus, at most 4|B| nodes are moved in the at
most |B| iterations that the algorithm executes.

Each iteration looks at O(|B|) nodes; thus, the total time complexity is
O(|B|2). Additionally, looking for free nodes in a B1 cache block can require
more time. A naïve implementation looks at every node in the B1-block to
locate the free nodes, thus increasing the time complexity to O(|B|2 · B1/B0).
This may actually be preferable with the small B1 of current processors. (The
implementation we describe in Section 5 did this, with B1/B0 = 4.)

With larger B1/B0, the bound of the theorem is reached simply by keeping
track of the number of free nodes in an integer stored somewhere in the B1-sized
block. To find a free node in constant time, a doubly-linked list of free nodes
can be stored in the (otherwise unused) free nodes themselves, and a pointer to
the head of this list is stored in a fixed location of the B1-block. �	

Remember that |B| ≤ 6 always when we execute the algorithm.
A space-time tradeoff is involved in the algorithm of Figure 3: we sometimes

allocate a new cache block to get two nodes on the same cache block (thus
improving cache locality), even though two existing cache blocks have space for
the nodes. Since our relocation algorithm always prefers an unused location in
a previously allocated cache block, it is to be hoped that the cache blocks do
not become very empty on average. (Moving unrelated nodes on the existing
cache blocks “out of the way” is not practical: to move a node x in memory, we
need access to the parent of x to update the link that points to the node, and
our small-node trees do not store parent links.)

We get a lower limit for the cache block fill ratio from the property that
our algorithm preserves: each non-leaf node has at least the parent or one child
accompanying it on the same cache block. (Empty cache blocks should of course
be reused by new allocations.)

5 Experiments

We implemented the algorithms of Sections 3 and 4 on internal AVL and red-
black trees, and compared them to the cache-sensitive B+-tree (the “full CSB+-
tree” of [1]) and to a standard B+-tree with cache block-sized nodes (called a
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Fig. 4 Effect of global and local relocation and aliasing correction (=“ac”). The figures give
the search time relative to (a) the traditional red-black tree, (b) the cB+-tree. The trees
marked “global” have been relocated using the global algorithm. “Red-black local” uses local
relocation; the others use neither global nor local relocation. AVL trees (not shown) performed
almost identically to red-black trees.

“cB+-tree” below for brevity).3 As noted in Section 2, we used the following
cache parameters: k = 2, B0 = 16, B1 = 64, B2 = 4096, B3 = ∞. The
tree implementations did not have parent links: rebalancing was done using an
auxiliary stack.4

Figure 4 examines the time taken to search for 105 uniformly distributed
random keys in a tree initialized by n insertions of random keys. (Before the
105 searches whose time was measured, the cache was “warmed up” with 104

random searches.) The search performance of red-black and AVL trees relocated
using the global algorithm was close to the cB+-tree. The local algorithm was
not quite as good, but still a large (about 30%) improvement over a traditional
non-cache-optimized binary tree. The cache-oblivious layout produced by the

3 We executed our experiments on an AMD Athlon XP processor running at 2167 MHz,
with 64 Kb L1 data cache (2-way associative) and 512 Kb L2 cache (8-way associative). Our
implementation was written in C, compiled using the GNU C compiler version 4.1.1, and ran
under the Linux kernel version 2.6.18. Each experiment was repeated 15 times; we report
averages.
4 The binary tree node size B0 = 16 bytes was reached by using 4-byte integer keys, 4-byte
data fields and 4-byte left and right children. The balance and color information for the AVL
and red-black tree was encoded in the otherwise unused low-order bits of the child pointers.
The nodes of the B-trees were structured as simple sorted arrays of keys and pointers. The
branching factor of a non-leaf node was 7 in the cB+-tree and 14 in the CSB+-tree.
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Fig. 5 Effect of the local relocation algorithm on the time taken by (a) insertions and (b) dele-
tions.

global algorithm was somewhat worse than a cache-sensitive layout, but about
40–45% better than a non-cache-optimized tree. Aliasing correction had about
10–15% impact on binary trees and cB+-trees, and about 5% on CSB+-trees
(which don’t always access the first B1-sized node of a TLB page). Especially in
the B-trees, global relocation was not very useful without aliasing correction. In
summary, the multi-level cache-sensitive layout improved binary search trees by
50–55%, cB+-trees by 10–20% and CSB+-trees by 3–5% in these experiments.

Figure 5 examines the running time of updates when using the local algo-
rithm. Here the tree was initialized with n random insertions, and then 104+105

uniformly distributed random insertions or deletions were performed. The times
given are averaged from the 105 updates (the 104 were used to “warm up” the
cache). The local algorithm increased the insertion time by about 20–70% (more
with smaller n). The deletion time was affected less: random deletions in bi-
nary search trees produce less rotations than random insertions, and the better
memory layout produced by the local algorithm decreases the time needed to
search for the key to be inserted or deleted.

In addition, we combined the global and local algorithms and investigated
how quickly updates degrade the cache-sensitive memory layout created by the
global algorithm. In Figure 6, we initialized the tree using n = 106 random
insertions, executed the global algorithm once, and performed a number of
random updates (half insertions and half deletions). Finally, we measured the
average search time from 105 random searches (after a warmup period of 104

random searches), and the average B1-block path length. The results indicate
that the cache-sensitivity of the tree decreases significantly only after about
n updates have been performed. The local algorithm keeps a clearly better
memory layout, though it does not quite match the efficiency of the global
algorithm.

Our experiments, as well as those in [6, 9], support the intuition that multi-
level cache-sensitive structures are more efficient than cache-oblivious ones. It
has been shown in [14] that a cache-oblivious layout is never more than 44%
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Fig. 6 Degradation of locality when random insertions and deletions are performed after
global relocation of a tree with n = 106 initial keys: (a) average search time from 105 searches,
(b) B1-block path length. For 0 to 104 updates after relocation, there was practically no change
in the values; here, the x axis begins from 103 for clarity.

worse in the number of block transfers than an optimal cache-sensitive layout,
and that the two converge when the number of levels of caches increases. How-
ever, the cache-sensitive model is still important, because the number of levels
of caches with different block sizes is relatively small in current computers (e.g.,
only two in the one we used for our experiments).

6 Conclusions

We have examined binary search trees in a k-level cache memory hierarchy with
block sizes B1, . . . , Bk. We presented an algorithm that relocates tree nodes
into a multi-level cache-sensitive memory layout in time O(nk), where n is the
number of nodes in the tree. Moreover, our one-level local algorithm preserves
an improved memory layout for binary search trees by executing a constant-
time operation after each structure modification (i.e., actual insertion, actual
deletion or individual rotation).

Although cache-sensitive binary trees did not quite match the speed of the
B+-tree variants in our experiments, in practice there may be other reasons than
average-case efficiency to use binary search trees. For instance, the worst-case
(as opposed to amortized or average) time complexity of updates in red-black
trees is smaller than in B-trees: O(log2 n) vs. O(d logd n) time for a full sequence
of page splits or merges in a d-way B-tree, d ≥ 5. Red-black tree rotations are
constant-time operations, unlike B-tree node splits or merges (which take O(B1)
time in B-trees with B1-sized nodes, or O(B2

1) in the full CSB+-tree). This may
improve concurrency: nodes are locked for a shorter duration. In addition, it has
been argued in [15] that, in main-memory databases, binary trees are optimal
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for a form of shadow paging that allows efficient crash recovery and transaction
rollback, as well as the group commit operation [16].

The simple invariant of our local algorithm could be extended, for instance, to
handle multi-level caches in some way. However, we wanted to keep the property
that individual structure modifications use only O(1) time (as opposed to O(B1)
or O(B2

1) for the cache-sensitive B-trees). Then we cannot, e.g., move a cache-
block-sized area of nodes to establish the invariant after a change in the tree
structure. A multi-level approach does not seem feasible in such a model.

Other multi-level cache-sensitive search tree algorithms are presumably also
affected by the aliasing phenomenon, and it would be interesting to see the effect
of a similar aliasing correction on, for example, the two-level cache-sensitive B-
trees of [7].
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Abstract. We investigate the collective behavior of processes in terms of differential
equations, using chemistry as a stepping stone. Chemical reactions can be converted
to ordinary differential equations, and also to processes in a stochastic process alge-
bra. Conversely, certain stochastic processes (in Chemical Parametric Form, or CPF)
can be converted to chemical reactions. CPF is a subset of π-calculus, but is already
more powerful that what is strictly needed to represent chemistry: it supports also
parameterization and compositional reuse of models. The mapping of CPF to chem-
istry thus induces a parametric and compositional mapping of CPF to differential
equations; the indirect mapping through chemistry is easier to define and understand
than a direct mapping. As an example, we derive a quantitative interleaving law from
the differential equations.

1 Introduction

In Systems Biology, biochemical systems are routinely described as large state tran-
sition diagrams with rates on transition [20], with emphasis on the graphical and
database-oriented representation of the models. Graphical representation has advan-
tages in terms of readability and sharing of information, but has obvious disadvan-
tages in terms of precision, scalability (compositionality), and analyzability. Given that
such models are presented already as state transition systems, it is natural to interpret
them as term-rewriting systems or process algebras. These interpretations have a bet-
ter chance than diagrams of satisfying scalability requirements, and can be mapped to
increasingly promising analysis tools and techniques [23,17], including ones such as
Petri Nets that already have a long tradition in other areas. This is not to say that current
modeling approaches lack formality: biochemical systems, including the diagrammatic
ones just discussed, are usually interpreted as systems of chemical reactions, and ul-
timately as systems of ordinary differential equations. A question then arises: what is
the relationship between transition-based models and differential equation models, and
even more fundamentally with chemistry?

Our starting point is stochastic process algebra, which provides us with a quanti-
tative compositional semantics, and with simulation and analysis techniques [15,25].
Our goal is to relate process algebra to ordinary differential equations (ODEs), so that
one can hopefully use techniques and tools from both camps [16]. We cannot carry
out this program yet for general process algebras (e.g. π-calculus [21]) where some
features go “beyond ordinary chemistry”, but we can do it for interesting fragments
that include unbounded-state systems, and that provide rich model parameterization.
In this paper we establish a mapping from processes to ODEs via a detour though
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chemical reactions, primarily to obtain an easy two-step translation, but also to build
a connection with chemistry. The foundations of this work are covered in more detail
elsewhere [6]; here we emphasize the intuitive connection to chemical reactions by a
number of examples, and we additionally handle parametric models.

The basic chemistry of well-mixed solutions can be described, at the molecular
level, in terms of random molecular collisions and subsequent reactions. From this
microscopic point of view, it can be modeled by Markov chains in continuous time
(with real-valued reaction rates), with a discrete unbounded state space (an unbounded
number of molecules that may flow in or be produced), and with a bounded number
of chemical species (kinds of molecules). Alternatively, macroscopically, the funda-
mental law of interaction in chemistry is the law of mass action, which quantitatively
determines the speed of reactions based on the continuous state space of concentrations
of chemical species. The relationships between the discrete-space and the continuous-
space views are subtle [10, 30, 6], and must be considered when relating discrete-state
stochastic process algebra to continuous-state differential equations.

This paper is organized as follows. In Section 2 we introduce the notation of chem-
ical reactions and its standard interpretation in terms of ordinary differential equa-
tions, relating changes of concentration of chemical species over time [18]. We also
provide an interpretation of chemical reactions as a stochastic process algebra (CGF)
that is a fragment of well-known ones. Stochastic processes can in turn be mapped to
continuous-time Markov chains [12], which provide another standard interpretation of
chemical reactions [11]. In Section 3 we translate stochastic processes (CGF) back to
chemical reactions. We also consider a more general process algebra (CPF) that sup-
ports various kinds of parameterization. We show how to translate CPF down to CGF,
and we provide an incremental algorithm for doing so. We thus obtain a systematic
way of translating CPF parametric stochastic processes, through chemical systems,
to differential equations. In section 4 we give various examples of the translations,
including non-chemical ODE systems such as Kermack-McKendrick epidemics and
Lotka-Volterra predation. The mapping to ODEs can be used also as a semantics of
processes, and we show how to derive a quantitative interleaving law from it.

2 From Chemistry to ODEs and Processes

2.1 Chemical Reactions

We consider three basic kinds of chemical reactions. First, in unary reactions, a chemi-
cal species A may spontaneously degrade into other species; the rate of such a reaction
is given by the exponential decay law: the rate is proportional to the concentration
of the species A. Second, in hetero binary reactions, two chemical species A1 and A2

may react and produce other species; the rate of such a reaction is given by the law of
mass action: the rate is proportional to the product of the concentrations of A1 and A2.
Third, in homeo binary reactions, A1 and A2 are the same species A, and the rate is then
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proportional to the square of the concentration of A. We write [A] for the concentration
of A in moles per liter as a function of continuous time, and [A]• for its time derivative.

A →k B1 + . . .+Bn Unary k : s−1 [A]• = −k[A]
A1 +A2 →k B1 + . . .+Bn Hetero Binary k : M−1s−1 [Ai]• = −k[A1][A2]
A+A →k B1 + . . .+Bn Homeo Binary k : M−1s−1 [A]• = −2k[A]2

(assuming A �= Bi �= A j for all i, j)

Table 1 The Three Kinds of Chemical Reactions

Chemical reactions and the law of mass action can be presented in a more general
form, with any number of molecules on the left-hand side. Still, the only chemical re-
actions of interest to us are unary and binary, in view of the molecular interpretation of
interactions between chemical species. For example, we can ignore unlikely reactions
that require three molecules to collide at the same time: “Genuinely trimolecular re-
actions do not physically occur in dilute fluids with any appreciable frequency. Appar-
ently trimolecular reactions in a fluid are usually the combined result of two bimolec-
ular reactions and one monomolecular reaction, and involve an additional short-lived
species.”[11]

A system of chemical reactions is a finite set of reactions between a finite set of
chemical species1. We assume, as is common, that our reactions happen in a well-
stirred solution, that is, that the dynamics of chemical reactions depends only on con-
centrations of the species (and on other factors, such as temperature, that are assumed
fixed), and not on the positions of the molecules. Each reaction, →k, has a (base) rate,
k, which is a proportionality constant used in the corresponding rate law, with bigger
base rates meaning faster reactions. The initial conditions of the system, that is, the
initial concentrations of the chemical species, are specified separately from the reac-
tions.

2.2 From Chemistry to ODEs

A system of ordinary differential equations can be extracted from any system of chem-
ical reactions, to describe the rate of change in concentration of chemical species over
time. The ODEs provides the kinetics of the chemical system, that is, they completely
describe the dynamic time evolution of the various quantities.

The procedure for extracting ODEs is standard [18]. Consider, as an example, the
following system of 4 chemical reactions v1,v2,v3,v4 with corresponding reaction rates
k1,k2,k3,k4, between 6 chemical species A,B,C,D,E,F .

1 More generally, it could be a collection of reactions and chemical species indexed by an infinite
set; this is necessary, e.g., to describe polymerization. A corresponding effect can be obtained within
-calculus [26], but here we consider only finite systems of reactions.
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v1 : A + B →k1 C +C Hetero
v2 : A +C →k2 D Hetero
v3 : C →k3 E+F Unary
v4 : F + F →k4 B Homeo

N v1 v2 v3 v4

A −1 −1
B −1 1
C 2 −1 −1
D 1
E 1
F 1 −2

l
l1 k1[A][B]
l2 k2[A][C]
l3 k3[C]
l4 k4[F ]2

Chemical reactions Stoichiometry, N Rate laws, l Flux

We first build the stoichiometric matrix, N, which has one row for each species
and one column for each reaction. Each cell 〈S,v〉 in the matrix contains a positive
number n if n molecules of species S are produced (overall) in reaction v; it contains
a negative number −n if n molecules of species S are removed (overall) in reaction v,
and otherwise it contains 0.

Then, we build the vector of rate laws, l: for each reaction it specifies the rate law
for that reaction. In our case, v1,v2 have the hetero rate law, v3 has the unary rate
law, and v4 has the homeo rate law. (In general, other rate laws may include steady-
state approximations, such as the Michaelis-Menten law for enzymatic reactions, or
empirical rate laws).

Finally let X be the vector of chemical species (A,B,C,D,E,F). The system of
ODEs is then, in general, given by the following rate equation:

[X]• = N · l

Table 2 From Chemical Reactions to Ordinary Differential Equations

Expanding for our set of reactions we obtain:

[A]• = −l1 − l2 = −k1[A][B]− k2[A][C] [D]• = l2 = k2[A][C]

[B]• = −l1 + l4 = −k1[A][B]+ k4[F]2 [E]• = l3 = k3[C]

[C]• = 2l1 − l2 − l3 = 2k1[A][B]− k2[A][C]− k3[C] [F]• = l3 −2l4 = k3[C]−2k4[F]2

The rate law l4 for the homeo reactions is k4[F]2, but the contribution of v4 to [F ]•
is −2k4[F ]2 because two F are consumed in that reaction (hence the rate law shown in
table 2). Compare this with the contribution of v4 to [B]•, which is k4[F ]2.
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2.3 Processes in Chemical Ground Form

We introduce a subset of π-calculus (and of CCS) [21]: the Chemical Ground Form
(CGF) [6], which is sufficient, in stochastic version, for translating chemical reactions
to processes. See [25, 23, 3, 4, 12, 13, 14, 15] for the semantics of stochastic π-calculus
and other stochastic process algebras.

E ::= 0
... X = M,E Reagents (empty, or a reagent X=M and Reagents)

M ::= 0
... π ;P⊕M Molecule (empty, or an interaction π ;P and Molecule)

P ::= 0
... X|P Solution (empty, or a variable X and Solution)

π ::= τ(r)

... ?n(r)

... !n(r) Interaction prefix (delay, input, output)

CGF ::= E,P Chemical Ground Form (Reagents with initial Solution)

Table 3 Chemical Ground Form (CGF)

A chemical ground form CGF has a finite set E of reagents Xi = Mi (named
molecules) for distinct variables Xi naming chemical species, and molecules Mi de-
scribing the interaction capabilities of the corresponding species. The possible process
interactions π are: delay τ(r) at rate r (where r is a positive real), input ?n(r) on channel
n at rate r, and output !n(r) on channel n at rate r (each channel always has the same
rate). In the syntax of molecules, each interaction π leads to releasing a solution P (a
multiset of variables). We use ⊕ for choice, | for parallel composition, and 0 for the
empty reagent, the empty molecule, and the empty solution. Trailing 0’s are usually left
implicit, and we use | also as an operator over the syntax: if P and P′ are 0-terminated
lists of variables, according to the syntax above, then P|P′ means appending the two
lists into a single 0-terminated list. Therefore, if P is a solution, then 0|P, P|0, and P
are syntactically equal.

A CGF (E,P) is a set of reagents E together with initial conditions, which are a
solution P. If a variable X occurs in some Mi or initial conditions P, but X is not defined
in E , we can assume the existence of an additional reagent X = 0. The meaning of a
CGF can be given by directly extracting a continuous time Markov chain from it [6].

Some CGFs can be drawn conveniently as stochastic interacting automata; for ex-
ample here is a two-state automaton, with states X ,Y , which interacts with copies of
itself over the channels a(r),b(s):

X =!a(r);X⊕?b(s);Y
Y =!b(s);Y⊕?a(r);X
X | X | X | Y | Y (initial conditions)
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In general, however, a CGF can “split” by parallel composition after an interaction,
and then some less standard graphical notation (similar to Petri Net transitions) must
be used to represent such splitting.

2.4 From Chemistry to Processes

We now discuss how to produce CGF processes from systems of chemical reactions.
We need, in particular, to convert concentrations of chemical species, of dimension
M (molarity), to discrete numbers of molecules/processes, for which we need a con-
version factor γ of dimension M−1. In chemistry, γ = NAV , where NA is Avogadro’s
number, and V is the volume of the solution; if we take γ = 1.0, for example, it means
that we are considering a chemical solution of volume 1/NA.

The factor γ has other uses too. The mass action rates “k” have dimension s−1 for
unary reactions and M1s−1 for binary reactions. Stochastic processes, instead, operate
on molecule counts, and the stochastic rates “r” always have dimension s−1. There-
fore, an appropriate M−1 conversion factor is needed for the rates of binary reactions.
In particular, the conversions between stochastic “r” and mass action “k” rates are:
r = k for unary reactions, r = k/γ for hetero reactions, and r = 2k/γ for homeo reac-
tions [10, 30]. There is, however, an additional twist for homeo reactions. The natural
encoding of homeo reactions, as processes that offer both an input and an output on the
same channel, produces an artificial doubling of interactions; see for example F below,
where 2 copies of F have 2 interactions on channel v4, instead of 1 “collision” [25].
We can compensate for this doubling by halving the stochastic rate of the interaction
channel, with the net effect that homeo channels too end up with r = k/γ . We keep the
two contributions to the rate of homeo reactions separate in Table 4 for emphasis.

To convert chemical reactions to process reagents, we first prepare a separate chan-
nel v(r) of rate r for each binary reaction v of rate k, setting r = k/γ as discussed. The
unary reactions do not need channels, and use a τ delay with r = k. Setting up such
channels is similar to setting up the vector of rate laws in Section 2, but fixing the base
rates is sufficient here because the semantics of the intended process algebra already
incorporates the decay law and the mass action law [23].

With these channels, we can produce the CGF reagents for the reactions from
Section 2:

A =?v1(k1/γ);(C|C)⊕?v2(k2/γ);D ⊕?cA(0);0

B =!v1(k1/γ);0 ⊕?cB(0);0

C =!v2(k2/γ);0⊕ τ(k3);(E|F) ⊕?cC(0);0

D = 0 ⊕?cD(0);0

E = 0 ⊕?cE(0);0

F =?v4(k4/γ);B⊕!v4(k4/γ);0 ⊕?cF(0);0



From Processes to ODEs by Chemistry 267

That is done as follows. For each species X we produce an initially empty reagent,
X = 0. Then we scan each chemical reaction to gradually populate the reagents with
summands. For a degradation reaction v : X →k P we add a summand τ(r);P with r = k
to the reagent X . For a hetero reaction v : X +Y →k P we add a summand ?v(r);P with
r = k/γ to the reagent X and a summand !v(r);0 to the reagent Y , using the reaction
names as the channel names. For a homeo reaction v : X + X →k P we add two sum-
mands ?v(r/2);P and !v(r/2);0 to the reagent X , with r = 2k/γ . (We also change all
chemical “+” to process “|”.)

We may optionally add an extra summand ?cX(0);0 to the definition of each X ,
where cX is a channel where no interaction ever happens. This is useful if we want
to observe the system (e.g., counting the number of X for plotting), by observing how
many ?cX are being generated [23].

The formal procedure for obtaining processes Piγ (C) from a chemical system C
is finally given in Table 4, assuming that the reactions in C are uniquely named. The
initial conditions of a chemical system consist of a vector V of concentrations VXi :
M = [Xi] for the various species Xi; these can be converted to CGF initial conditions P
with #Xi(P) = �γ[Xi]	, with a rounding error. Piγ(C) has the same dynamics as C [6].

Piγ(C) = {(X = ⊕((v : X →k P) ∈C) of (τ(r);P) ⊕ with r = k
⊕((v : X +Y →k P) ∈C and Y �= X) of (?v(r) ;P) ⊕ with r = k/γ
⊕((v : Y +X →k P) ∈C and Y �= X) of (!v(r) ; 0) ⊕ with r = k/γ
⊕((v : X +X →k P) ∈C) of (?v(r/2);P⊕ !v(r/2); 0) ) with r = 2k/γ
s.t. X is a species in C}

Piγ(C,V ) = E,P where E = Piγ (C) and #X(P) = �γV X	 for all X ∈ E

Table 4 From a Chemical Reaction System C to a Chemical Ground Form Piγ(C)

(C,V ) Piγ(C,V ) where initially ODEs
n : X →k 0, V X = τ(r); 0, P r = k #X(P) = �γVX 	 [X]• = −k[X] = −r[X]

n : X +Y →k 0, V X =?n(r); 0,
Y =!n(r); 0, P

r = k/γ #X(P) = �γVX 	
#Y (P) = �γVY 	

[X]• = −k[X][Y ] = −rγ [X][Y ]
[Y ]• = −k[X][Y ] = −rγ [X][Y ]

n : X +X →k 0, V X =?n(r/2); 0⊕
!n(r/2); 0, P

r = 2k/γ #X(P) = �γVX 	 [X]• = −2k[X]2 = −rγ [X ]2

Table 5 Examples: from (C,V ) to Piγ (C,V )

3 From Processes to Chemistry and ODEs

We have seen that we can convert chemical reactions to ODEs. Therefore, a map-
ping from a stochastic process algebra to chemical reactions, which we study in this
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section, induces in two steps a mapping from that process algebra to ODEs. A two-
step approach is desirable, because a direct mapping from a process algebra to ODEs,
although possible and intuitively understandable, is more challenging [16, 6]. The first
step, from process algebra to chemical reactions, has the effect of identifying the transi-
tions that the system performs, and the second step, from chemical reactions to ODEs,
identifies the rate of change of populations of processes.

3.1 Processes in Chemical Parametric Form

We begin by defining a more general subset of π-calculus, the Chemical Parametric
Form (CPF), which extends the CGF with parameterization and communication. CPF
is not technically a subset of CCS, since it allows channel passing, but the subsequent
translation of CPF to CGF essentially amounts to a translation of CPF to CCS. The
reason for these subsets is that, in general, it is not possible to translate an arbitrary
π-calculus process to a system of chemical reactions with a finite set of chemical
species, because in full π-calculus, via name generation, we can generate unboundedly
many species. Therefore, the CPF incorporates limitations that, as we shall see, are
sufficient to enable the translation to chemistry. The limitations are not that our systems
be finite state (since it is convenient to abstract from detailed accounting of energy
and to express chemical systems that produce unbounded quantities of product), nor
that they be finite control [8] (since parallel composition within recursive definitions
models chemical reactions that generate multiple products). However, it is essential
that our systems have a finite number of species.

E ::= 0
... X(p) = M,E Reagents (empty, or a parametric reagent X(p) = M and Reagents)

M ::= 0
... π ;P⊕M Molecule (empty, or an interaction π ;P and Molecule)

P ::= 0
... X(p)|P Solution (empty, or an instanced variable X(p) and Solution)

π ::= τ(r)

... ?n(p)
... !n(p) Interaction prefix (delay, parametric input, instanced output)

CPF ::= E,P Chemical Parametric Form (Reagents with initial Solution)

Table 6 Chemical Parametric Form (CPF)

The syntax of the CPF is the same as that of the CGF, but with additional parameter
lists p. There is a finite set E of parametric reagents Xi(pi) = Mi for distinct variables
Xi. Each p is a vector of distinct channel names, and #p, the length of p, is the arity of
the corresponding X , which must be used consistently through E,P. If X(p) occurs in
some Mi or initial conditions P, but X is not defined in E , we can assume the existence
of an additional reagent of the form X(q) = 0.
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A name n in E is free if it occurs in some Mi but is not bound by the corresponding
pi or any enclosing ?n(p); we then say that n∈ fn(E). Moreover, any name n occurring
in the initial conditions P is free (n ∈ fn(P)). Each free name n is uniformly associated
with a fixed rate n(r); we may also keep track of this information separately by saying
that ρ(E,P)(n) = r for n ∈ fn(E,P). The non-free (parametric) names are not annotated
with a rate, and simply acquire the rate of the free names that they must be replaced
with before any interaction can happen. Therefore, the possible process interactions
are: stochastic delay τ(r) at rate r, input ?n(r)(p) of names p (parametric and distinct)
on channel n at rate r, and output !n(r)(p) of names p (free at the time of interaction)
on channel n at rate r.

An example of a CPF system (with no initial conditions, no free names, and no input
and output parameters), is the following gene gate Neg(a,b) [1]. This is a process that
at stochastic intervals produces copies of Tr(b), unless it is inhibited (for some time)
on channel a. Tr(b) can in turn inhibit other gates that accept input on channel b, or
decay.

Neg(a,b) = ?a(); Inh(a,b)⊕ τ(ε);(Tr(b)|Neg(a,b))

Inh(a,b) = τ(η);Neg(a,b)

Tr(b) = !b();Tr(b)⊕ τ(δ );0

This description is parametric in that it defines the behavior of a gate in a net-
work without specifying its connectivity; the connectivity of the network is then given
in the initial conditions. Initial conditions for this CPF system could be given by
Neg(x(r),x(r)): a single gate with a self loop (with free name x(r)), or by Neg(x(r),y(s))|
Neg(y(s),z(t))|Neg(z(t),x(r)): a network of three gates (with free names {x(r),y(s),z(t)})
which can function as a stochastic oscillator.

A more general normal form, that can represent any π-calculus process, can be ob-
tained by allowing π-calculus restriction in reagents: X(p) = (νq)M. This way we can
express complexation and polymerization by channel passing [25], but ODE transla-
tions are not currently known.

3.2 From CGF to Chemistry

The chemical ground form, CGF, from Section 2.3 is a restricted version of the CPF,
where there are zero parameters in definitions, inputs and outputs. Empty parameters,
(), are omitted.

We first consider the problem of converting a CGF (E,P) to a system of chemical
reactions Chγ(E,P) (the resulting Chγ(E) has the same dynamics as E [6]). This is
achieved by producing a degradation reaction for each τ(r) delay in E , a hetero reaction
for each pair ?a, !a of interactions in different molecules of E, and a rate-doubled
homeo reaction for each pair of interactions ?a, !a in the same molecule of E . Several
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examples are shown in section 4. The mass action rate for homeo reactions is rγ , but
we keep the factors contributing to it (rγ = 2(rγ/2)) separate in Table 7 for emphasis.

Chγ (E) =
{({X .i}X →k P) s.t. E(X).i = τ(r);P}∪ with k = r
{({X .i,Y. j}X +Y →k P+Q) s.t. X �= Y and E(X).i =?n(r);P and E(Y). j = !n(r);Q}∪ with k = rγ
{({X .i,X . j}X +X →2k P+Q) s.t. E(X).i =?n(r);P and E(X). j =!n(r);Q} with k = rγ/2

Chγ (E,P) = C,V where C = Chγ (E) and VX = #X(P)/γ for all X ∈ E

Table 7 From a Chemical Ground Form E to a Chemical Reaction System Chγ (E)

When inserting a P into a chemical reaction, we change all process “|” to chemical
“+”. The initial conditions of the chemical system can be obtained from the initial
conditions P of the CGF by setting [Xi] = #Xi(P)/γ for each species Xi. Note how we
have tagged the resulting reactions (by {...}): here M.i is the i-th summand in molecule
M, and X .i refers to the molecule summand E(X).i. This tagging allows us to easily
account for multiplicity of reactions. Applying this procedure to the process reagents A
... F in Section 2.4 (without the observer channels), reproduces the system of reactions
from Section 2.

(E,P) Chγ (E,P) where initially ODEs
X = τ(r);0, P {X.1} X →k 0, V k = r VX = #X(P)/γ [X ]• = −k[X ] = −r[X ]
X =?n(r) ;0,
Y =!n(r) ;0, P

{X.1,Y.1} X +Y →k 0, V k = rγ VX = #X(P)/γ
VY = #Y (P)/γ

[X ]• = −k[X ][Y ] = −rγ [X ][Y ]
[Y ]• = −k[X ][Y ] = −rγ [X ][Y ]

X =?n(r) ;0⊕
!n(r) ;0, P

{X.1,X.2} X +X →2k 0, V k = rγ/2 VX = #X(P)/γ [X ]• = −4k[X ]2 = −2rγ [X ]2

Table 8 Examples: from (E,P) to Chγ (E,P)

3.3 From CGF to ODEs directly

We have seen how to convert CGF to chemistry (Section 3.2) and how to convert
chemistry to ODEs (Section 2). We can obviously compose the two conversions to go
from CGF to ODEs, but we can also do it more directly via a stoichiometric matrix
technique. In comparison to the chemical technique, the role of the set of chemical
reactions is replaced by the following set:

I = {{X .i} s.t. E.X .i = τ(r).Q}
∪{{X .i,Y. j} s.t. E.X .i =?n(r).Q and E.Y. j = !n(r).R} (for any r,n,Q,R)
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I is the finite set of possible interactions arising from a set of reagents E , where
X .i is an ordered pair identifying a molecule summand in E , and E.X .i is a molecule
summand as previously defined.

The stoichiometric matrix used in the conversion has as many rows as species, and
as many columns as interactions I: each column contains coefficients for the reagents
that are gained or lost in that interaction. The corresponding vector of rate laws has as
many rows as interactions, and contains the rate laws for the interactions. For example,
in volume γ : M−1 = NAV where NA:mol−1 and V:L, and r, t,u : s−1, we have:

X = τ(t).Y⊕?a(r).X
Y =!a(r).(Y |Y )⊕ τ(u).Y

{{X .1},{X .2,Y.1},{Y.2}}
Processes Interactions I

N {X .1} {X .2,Y.1} {Y.2}
X −1 0 0
Y +1 +1 −1

l
{X .1} t[X ] : M · s−1

{X .2,Y.1} rγ[X ][Y ] : M · s−1

{Y.2} u[Y ] : M · · ·−1

Stoichiometry, N Rate laws, l

The ODEs are then obtained, as in the chemical technique, as N · l:

[X ]• : M · s−1 = −t[X ]
[Y ]• : M · s−1 = t[X ]+ rγ[X ][Y ]−u[Y ]

3.4 From CPF to CGF

The procedure in Section 3.2 allows us to obtain chemical systems from ground forms.
But we can use it also for the more general parametric forms, if we can first convert
a CPF to a CGF. To that end, grounding (/N) is a process that converts molecules and
solutions of a CPF to those of a CGF. It eliminates parameters on the basis of a set of
free names N (covering all free names), which is initially chosen to be that of the CPF.
Here n/p denote (single) channel names in bijection with pairs 〈n,p〉, and X/p denote
species names in bijection with pairs 〈X ,p〉 (any rate annotations in p are ignored).
Each X/p has the role of a separate chemical species for the parameter instantiation
given by p.

In Table 9, n/p(r) means that the (single) name n/p is annotated with r. The notation
{p ← q} is the simultaneous substitution of name vectors, where q ∈ N#p are vectors
of free names (of the same size as p) and hence annotated with rates. As an invariant
of the definition, the names in channel position and in output must be annotated with
rates; this is maintained by {p ← q}.

Then, a process of parametric explosion converts a parametric form E , to a ground
form EG, by instantiating all possible parameter lists with respect to the set N of free
names of E . Grounding is used in such a process. The initial conditions are simply
grounded once.
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/N(τ(r);P) = τ(r);/N(P)

/N(!n(r)(p);P) = !n/p(r);/N(P)

/N(?n(r)(p);P) = ⊕(q ∈ N#p) of ?n/q(r);/N(P{p ← q})
/N(π1;P1 ⊕ . . .⊕πn;Pn) = /N(π1;P1)⊕ . . .⊕/N(πn;Pn)

/N(X1(p1)| . . . |Xn(pn)) = X1/p1| . . . |Xn/pn

Table 9 Grounding

EG = {(X/q = /N(M{p ← q})) s.t. (X(p) = M) ∈ E and N = fn(E,P) and q ∈ N#p}

PG = /N(P) where N = fn(E,P)

Table 10 Parametric Explosion: From a CPF (E,P) to a CGF (EG,PG)

Finally, we can convert a CPF to chemical reactions simply by first exploding it into
a CGF, and then applying the previous Chγ procedure. See section 4.5 for an example.

Cpγ (E,P) = Chγ (EG,PG)

Table 11 From a Chemical Parametric Form (E,P) to a Chemical Reaction System Cpγ (E,P)

3.5 Iterative CPF to CGF Algorithm

A system Cpγ(E,P) computed from EG,PG is highly redundant because it includes all
the parameter permutation symmetries, many of which are not needed for any given
set of initial conditions. The following iterative algorithm for the CPF case, combining
definitions 7 and 10, computes a subset of EG from the initial conditions of PG. It
produces a (usually) much smaller although not necessarily minimal set C. Again, see
section 4.5 for an example.

The algorithm terminates: EC never shrinks and is always a subset of EG, which is
finite.
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initialization for a CPF (E,P)
N = fn(E,P)
EC := {X/q = /N(M{p ← q})) s.t. X(q) occurs in P and (X(p) = M) ∈ E} (initial conditions)

iteration
C := Chγ (EC)
E ′

C := EC ∪X/q = /N(M{p ← q})) s.t. X/q occurs in C and (X(p) = M) ∈ E}
termination

if E ′
C = EC then stop and return (C, /N(P)), else EC := E ′

C and iterate.

Table 12 Algorithm: Chemical Reaction System from CPF Initial Conditions

4 Examples

We illustrate the translations Piγ (−) from 4, Chγ(−) from 7 and Cpγ(−) from 11, 12.
There are natural issues about correctness of these translations, which are investigated
in detail in [6]; the examples are provided to give some appreciation of the expected
properties of the translations.

4.1 Unary Reactions

We begin with a degradation reaction that is not finite-control (because parallel split-
ting occurs) and is not finite-state (because the cardinality of X grows over time).
However, the set of species is fixed ({X}), so we can still carry out translations be-
tween processes and reactions.

Chemistry (C) to Processes (Piγ (C)) to Chemistry (Chγ (Piγ(C)))
v : X →r X +X X = τ(r);(X |X) v : X →r X +X

Next is a similar unbounded-state system, but its size may grow or shrink depending
on the rates r,s.

Chemistry (C) to Processes (Piγ (C)) to Chemistry (Chγ (Piγ(C)))
v : X →r X +X
d : X →s 0

X = τ(r);(X |X)⊕ τ(s);0 v : X →r X +X
d : X →s 0

4.2 Hetero Binary Reactions

The translation of reversible ionization reactions between Na and Cl is shown below.
Note that a more natural version of Piγ(C) would map Na to Na+ and Cl to Cl−, but
that is not what the default translation produces. The back translation (Chγ(Piγ(C)))
yields the initial reactions (once retagged).
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C Piγ (C) Chγ (Piγ(C))
i : Na+Cl →k Na+ +Cl−
d : Na+ +Cl− →v Na+Cl

Na =?i(k/γ);(Na+|Cl−)
Cl =!i(k/γ);0
Na+ =?d(v/γ);(Na|Cl)
Cl− =!d(v/γ);0

i : Na+Cl →k Na+ +Cl−
d : Na+ +Cl− →v Na+Cl

The next example starts from a two state process (from Section 2.3), and translates
it to chemistry and back; the result is an equivalent but not identical process.

E Chγ (E) (= Chγ (Piγ(Chγ (E)))) Piγ(Chγ (E))
X =?a(r);Y⊕!b(s);X
Y =?b(s);X⊕!a(r);Y

a : X +Y →rγ Y +Y
b : Y +X →sγ X +X

X =?a(r);(Y |Y )⊕!b(s);0
Y =!a(r);0⊕?b(s);(X |X)

4.3 Homeo Binary Reactions

The inverse translation of a homeo chemical reaction gives back in the original reac-
tion, and in particular it reproduces the original rate k = 2((k/γ)γ/2).

C Piγ (C) Chγ (Piγ(C))
v : X +X →k Y X = ?v(k/γ);Y⊕!v(k/γ);0

Y = 0
v : X +X →k Y

Conversely, starting from processes that self-interact, we produce homeo reactions,
and then we go back again to equivalent but not identical processes.

E Chγ (E) (and Chγ (Piγ(Chγ (E)))) Piγ(Chγ (E))
X =?a(r);Y⊕!a(r);X
Y =?b(s);X⊕!b(s);Y

a : X +X →rγ Y +X
b : Y +Y →sγ X +Y

X =?a(r);(Y |X)⊕!a(r);0
Y =?b(s);(X |Y)⊕!b(s);0

4.4 Hetero and Homeo Reactions on a Shared Channel

This example involves both homeo and hetero reactions. We start with processes E
and we obtain Chγ(E), assigning unique reaction names b,c (this is a precondition
for applying Piγ(−)). The translation back, Piγ (Chγ(E)), produces different-looking
processes, but both in E and in Piγ(Chγ(E)), the interaction of X with Y produces X |X ,
and the interaction of X with X produces Y |X . We show stochastic simulations of E
and Piγ (Chγ(E)), and Matlab simulations of ODE(Chγ(E)) for two values of γ .

E Chγ (E) (and Chγ (Piγ(Chγ (E)))) Piγ(Chγ (E))
X =!a(r);X⊕?a(r);Y
Y =?a(r);X

b : Y +X →rγ X +X
c : X +X →rγ Y +X

X =!b(r);0⊕?c(r);(Y |X)⊕!c(r);0
Y =?b(r);(X |X)



From Processes to ODEs by Chemistry 275

E (SPiM) Piγ (Chγ (E)) (SPiM) ODE(Ch1.0(E)) (Matlab) ODE(Ch5.0(E)) (Matlab)

4.5 A Parametric Example: Gene Networks

We compute the reactions for the parametric gate of Section 3.1, with initial conditions
Neg(x,x). Since this system E,P has a single free name, x, the parametric explosion
does not actually increase its size, and we can easily show its expansion EG,PG. We
could then compute Chγ(EG) directly. For illustration, though, we convert E to chem-
ical reactions EC using the iterative algorithm of Section 3.5. With initial conditions
Tr(x)|Neg(x,y) (not shown), with two free variables, the parametric explosion is larger,
but the algorithm terminates in just two iterations with an output that is much smaller
than EG.

E,P (Input) EG,PG (directly obtained, for comparison)
Neg(a,b) =?a(); Inh(a,b)⊕ τ(ε) ;(Tr(b)|Neg(a,b))
Inh(a,b) = τ(η);Neg(a,b)
Tr(b) =!b();Tr(b)⊕ τ(δ );0
Neg(x(r) ,x(r)) N = fn(E,P) = {x(r)}

Neg/x,x =?x/(r) ; Inh/x,x⊕ τ(ε) ;(Tr/x|Neg/x,x)
Inh/x,x = τ(η);Neg/x,x
Tr/x =!x/(r) ;Tr/x⊕ τ(δ ) ;0
Neg/x,x

Iterative Algorithm for E,P Initialization: EC
Neg/x,x =?x/(r); Inh/x,x⊕ τ(ε);(Tr/x|Neg/x,x)

Iteration 1: C Iteration 1: EC
Neg/x,x →ε Tr/x+Neg/x,x Neg/x,x =?x/(r); Inh/x,x⊕ τ(ε);(Tr/x|Neg/x,x)

Tr/x =!x/(r);Tr/x⊕ τ(δ );0

Iteration 2: C Iteration 2: EC
Neg/x,x →ε Tr/x+Neg/x,x
Tr/x →δ 0
Tr/x+Neg/x,x →rγ Tr/x+ Inh/x,x

Neg/x,x =?x/(r); Inh/x,x⊕ τ(ε);(Tr/x|Neg/x,x)
Tr/x =!x/(r);Tr/x⊕ τ(δ );0
Inh/x,x = τ(η);Neg/x,x

Iteration 3: C (Result) Iteration 3: EC (Termination)
Neg/x,x →ε Tr/x+Neg/x,x
Tr/x →δ 0
Tr/x+Neg/x,x →rγ Tr/x+ Inh/x,x
Inh/x,x →η Neg/x,x

no change

Resulting initial conditions: Neg/x,x

In the context of this example we can discuss a basic question: if we can trans-
late freely between processes and chemistry, why are processes better than chemistry?
One answer, which is at the core of managing large models, is: consistent parame-
terization and modularization. With processes, we can describe a gate Neg(a,b) as a
module with input a and output b. We can later connect several of these modules, and
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even connect them in loops like Neg(x,x) without problems. In the case of chemical
reactions, instead, we would have a “chemical module” Neg(A,B) consisting of the
reactions involving the chemicals A,B and the gate. In particular, the module would
contain degradation reactions for both species: A →δ 0, B →δ 0, because one possi-
ble system is simply Neg(A,B). If we then want to connect several gates, we have to
make copies of the module by appropriately instantiating the species A and B. But even
Neg(A,A) goes wrong, because this creates two copies of the reaction A →δ 0, result-
ing in a doubled degradation rate for A. This problem does not occur with the processes
as defined above (and does not even require any planning), because each molecule is a
process that knows how to degrade. Parameterized chemical reactions are not as good
as parameterized processes.

4.6 Processes to ODEs: The Kermack-McKendrick Model of
Epidemics

This example, and the next one, are not about chemistry, but they describe interactions
governed by laws equivalent to the law of mass action (“chance of collision”), and use
reactions to derive the ODEs.

E Chγ (E) ODE(Chγ (E))
S =?i(t); I
I =!i(t); I ⊕?i(t); I ⊕ τ(r);R
R =?i(t);R

v1 : S+ I →tγ I + I
v2 : I + I →tγ I + I
v3 : I →r R
v4 : R+ I →tγ R+ I

[S]• = −tγ [S][I] (v1)
[I]• = tγ [S][I]− r[I] (v1,v3)
[R]• = r[I] (v3)

In this SIR model, inspired by [22], we map out the behavior of individuals dur-
ing an epidemic. A Susceptible individual may become Infected by interaction with an
Infected at rate t. A Recovered may be infected (with no effect). An Infected may spon-
taneously become Recovered at rate r, or may infect a Susceptible, or a Recovered, or
another Infected (with no effect).

Although we start with an intuitive process-oriented description of individual be-
havior, the resulting ODE system is exactly the Kermack-McKendrick population
model [19]. Moreover, we may notice that reactions v2 and v4 do not contribute to
the ODE translation. This suggests that the process model can in fact be simplified to
S =?i(t); I, I =!i(t); I ⊕ τ(r);R,R = 0, which produces only (v1,v3) and hence the same
ODE system. Below we run the processes with SPiM [23], the chemical reactions with
CellDesigner (which converts them to ODEs) [9], and the ODEs with Matlab [28].
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E (SPiM) Ch1.0(E) (CellDesigner) ODE(Ch1.0(E)) (Matlab)

4.7 Unbounded Processes to ODEs: The Lotka-Volterra Model of
Predation

In the Lotka-Volterra model of predation, prey (H) can breed without bounds, but is
culled by predators (C), which can reproduce by predation, but have a regular mortality
rate.

E Chγ (E) ODE(Chγ (E))
H = τ(b);(H|H)⊕?c(p);0
C = τ(m);0⊕ !c(p);(C|C)

v1 : C →m 0
v2 : H →b H +H
v3 : H +C →pγ C +C

[H]• = b[H]− pγ [H][C] (v2,v3)
[C]• = −m[C]+ pγ [H][C] (v1,v3)

The resulting ODEs are the Lotka-Volterra equations [2], for the case where the
rates at which prey decrease and predators increase are equal (p). Different ratios can
be modeled (e.g., a normal form of: C = τ(m);0⊕!c(p); !c(p); !c(p);(C|C)), but such a
model of sequential predation no longer corresponds exactly to the original Lotka-
Volterra. A SPiM stochastic simulation of E is shown: it quickly leads to extinction,
unlike the ODE model that with the same parameters oscillates indefinitely.

E (SPiM) ODE(Ch1.0(E)) (Matlab)

4.8 Process Equivalences from ODEs: The Markovian Interleaving
Law

The translation of processes to ODEs can be regarded as a semantics of processes,
and in particular it induces an equivalence over processes that can be used to derive
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algebraic laws. The following equivalence, an interleaving law for concurrent degra-
dations, is derived in [12], section 4.1.2, for continuous-time Markov chains:

τ(λ );B|τ(μ);D = τ(λ );(B|τ(μ);D)⊕ τ(μ);(τ(λ );B|D)

We now derive this law as an equivalence of ODE systems. We set up a separate
CGF for the left hand side (X) and right hand side (Y ), with initially the same number
n of top-level processes X and Y , and we compute their respective chemical reactions
and ODEs. The factor γ here does not appear (except in the initial conditions) because
all the reactions are exponential decays:

Left hand side: X = τ(λ);B|τ(μ) ;D Right hand side: Y = τ(λ);(B|τ(μ) ;D)⊕ τ(μ);(τ(λ) ;B|D)
A1 = τ(λ) ;B
C1 = τ(μ);D
n×A1|n×C1

The CGF EX ,PX (Sec 2.3)

←initial conditions

Y = τ(λ);(B|C2)⊕ τ(μ);(A2|D)
C2 = τ(μ);D
A2 = τ(λ) ;B
n×Y

The CGF EY ,PY

←initial condi-
tions

A1 →λ B
C1 →μ D
[A1]0 = n/γ
[C1]0 = n/γ

Chγ (EX ,PX ): (Sec 2) Y →λ B+C2
Y →μ A2 +D
C2 →μ D
A2 →λ B
[Y ]0 = n/γ

Chγ (EY ,PY )

[A1]• = −λ [A1]
[B]• = λ [A1]
[C1]• = −μ [C1]
[D]• = μ [C1]

ODE for Chγ (EX ) (Sec 3.2) [Y ]• = −λ [Y ]−μ [Y ]
[A2]• = μ [Y ]−λ [A2]
[B]• = λ [Y ]+λ [A2]
[C2]• = λ [Y ]−μ [C2]
[D]• = μ [Y ]+ μ [C2]

ODE for Chγ (EY )

[Y +A2]• = −λ [Y +A2]
[B]• = λ [Y +A2]
[Y +C2]• = −μ [Y +C2]
[D]• = μ [Y +C2]

Derived ODE

The final ODE on the right is derived from the one above it, because [Y + A2]• =
[Y ]• +[A2]• = (−λ [Y ]− μ [Y ])+ (μ [Y ]−λ [A2]) = −λ [Y ]−λ [A2] = −λ [Y + A2], and
[B]• = λ [Y ]+ λ [A2] = λ [Y + A2].

Comparing the final ODEs for EX and EY , we see that the quantities [B] and [D] are
identically related up to a change of variables [A1] = [Y +A2] and [C1] = [Y +C2]. That
is, [B] and [D] have equal time evolutions on the two sides provided that [A1] = [Y +A2]
and [C1] = [Y +C2]. Moreover we have that [A1]0 = [C1]0 = [Y ]0 = n/γ , and the initial
conditions of the right hand system specify that [A2]0 = [C2]0 = 0 (since only Y is
present), so that [A1]0 = [Y + A2]0 and [C1]0 = [Y +C2]0. Similarly [B]0 = [D]0 = 0.
Therefore the final ODEs also have the same initial conditions for all variables, and
hence have the same time evolution. For example, if we run a stochastic simulation of
the left hand side with n = 1000 and with initially 1000×A1 and 1000×C1, we obtain
the same curves for B and D than a simulation of the right hand side with initially
1000×Y . The figure below illustrates the case with rates λ = 1.0, μ = 2.0.
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τ(1.0);B|τ(2.0);D (SPiM) τ(1.0);(B|τ(2.0);D) ⊕ τ(2.0);(τ(1.0);B|D)
(SPiM)

ODE (Matlab)

5 Related Work

A direct translation from a stochastic process algebra (PEPA) to ODEs is presented in
[5,16]. The rate equation and the activity matrix techniques presented there, are similar
to the stoichiometric techniques from chemistry (section 2). Differences in apparent
rate computations between PEPA and the law of mass action can be easily adapted
either way.

A main difference between our CGF and PEPA, however, is our ability to represent
chemical reactions of the form A →r B+C: these reactions require a process to “split”
in two. PEPA, instead, is intentionally restricted to the composition of purely sequential
processes, to enable Markov chain analysis by linear algebra. At the level of ODEs,
this ability allows us, for example, to give a process model corresponding to the Lotka-
Volterra equations, which are based on an unbounded growth of prey (H →b H +
H, example 4.7). In addition, the translation of parametric processes (CPF) does not
appear to have been considered before, and this is very useful for parameterizing and
modularizing models of even modest size [1].

6 Conclusions

We have shown how to go from a subset of π-calculus to ODEs, and how to use chem-
istry as a stepping stone to simplify the translation, avoiding a direct expression of a
rate equation for processes [6]. A mapping to ODEs is necessary to validate and com-
pare models of biochemistry written in process calculi, with respect to the wider and
deeper literature of chemical and ODE models.

An advantage of process algebra modeling shines through from this analysis: com-
positionality. Parametric models can be written in process calculi without reference
to initial conditions (e.g., a library of gene gates, as in example 4.5), and then reused
without change by adding specific initial conditions (e.g., by wiring gene gates to pro-
duce specific gene networks). In contrast, under translations such as the one shown
here, any given network expands to a different set of chemical or differential equa-
tions. The resulting model consists of a large “flat” set of equations that unrolls the
state space (as shown in [6]), and that may oddly relate in differential form entities that
actually only exist in discrete quantity (the genes of example 4.5). Both the network
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structure and the discrete character of the components are lost in such a translation.
Still, useful analysis can often be obtained from a translation to differential form, as
well as comparison with ODE models from the literature.

7 References

1. R. Blossey, L. Cardelli, A. Phillips: A Compositional Approach to the Stochastic
Dynamics of Gene Networks. Transactions on Computational Systems Biology
IV, LNCS 3939, 99-122. Springer 2006.

2. W.E. Boyce, R.C. DiPrima. Elementary Differential Equations and Boundary
Value Problems, 5th ed. New York: Wiley, p. 494, 1992.

3. M. Bernardo, L. Donatiello, R. Gorrieri. MPA: a Stochastic Process Algebra.
Technical Report UBLCS-94-10, University of Bologna, Laboratory of Computer
Science. 1994

4. P. Buchholz. Markovian Process Algebra: Composition and Equivalence. In Proc.
PAPM ’94, Erlangen (Germany), 11-30, 1994.

5. M. Calder, S. Gilmore, J. Hillston: Automatically Deriving ODEs from Process
Algebra Models of Signalling Pathways. Proc. Computational Methods in Sys-
tems Biology 2005, pp 204-215.

6. L. Cardelli: On Process Rate Semantics. Theoretical Computer Science 391(3)
190-215, Elsevier, 2008. DOI: <http://dx.doi.org/10.1016/j.tcs.2007.11.012>.

7. N. Chabrier, M. Chiaverini, V. Danos, F. Fages and V. Schchter. Modeling
and querying biomolecular interaction networks. Theoretical Computer Science,
2004.

8. M. Dam: On the Decidability of Process Equivalences for the pi-Calculus. Theo-
retical Computer Science 183, 215-228, 1997.

9. A. Funahashi, N. Tanimura, M. Morohashi, H. Kitano. CellDesigner: a process di-
agram editor for gene-regulatory and biochemical networks, BIOSILICO, 1:159-
162, 2003.

10. D.T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions.
Journal of Physical Chemistry 81, 2340–2361. 1977.

11. D.T. Gillespie: The chemical Langevin equation. Journal of Chemical Physics
113(1), 297-306, 2000.

12. H. Hermanns: Interactive Markov Chains. Springer LNCS, vol 2428, 2002.
13. H. Hermanns, M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for

MTIPP. Proc. of PAPM ’94, Erlangen (Germany), pp 71-87. 1994.
14. N. Gtz, H. Hermanns, U. Herzog, V. Mertsiotakis, M. Rettelbach. Stochastic Pro-

cess Algebras: Constructive Specification Techniques Integrating Functional, Per-
formance and Dependability. In Baccelli and Mitrani (eds): Quantitative Mod-
elling in Parallel Systems. Chapter 1, Springer 1995.

15. J. Hillston. A compositional approach to performance modelling. Cambridge Uni-
versity Press, 1996.



From Processes to ODEs by Chemistry 281

16. J. Hillston: Fluid flow approximation of PEPA models. In Proceedings of the
Second International Conference on the Quantitative Evaluation of Systems, 33-
43. IEEE Press, 2005.

17. A. Hinton, M. Kwiatkowska, G. Norman, D. Parker. PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In H. Hermanns, J. Palsberg (Eds.):
Proc. TACAS’06. Springer LNCS 3920, 441-444, 2006.

18. F. Horn, R. Jackson. General mass action kinetics. Arch. Rational Mech. Anal.
47, 81–116, 1972.

19. W.O. Kermack, A.G. McKendrick: A Contribution to the Mathematical Theory
of Epidemics. Proc. Roy. Soc. Lond. A 115, 700-721, 1927.

20. H. Kitano: A graphical notation for biochemical networks. BioSilico 1(5): 169-
76. 2003.

21. R. Milner: Communicating and Mobile Systems: The p-Calculus. Cambridge
University Press, 1999.

22. R. Norman, C. Shankland. Developing the Use of Process Algebra in the Deriva-
tion and Analysis of Mathematical Models of Infectious Disease. Proc. Com-
puter Aided Systems Theory - EUROCAST 2003. Springer LNCS 2809, 404-414,
2003.

23. A. Phillips, L. Cardelli: A Correct Abstract Machine for the Stochastic Pi-
calculus. Proc. BioConcur’04.

24. C. Priami. Stochastic p-calculus. The Computer Journal, 38, 578–589, 1995.
25. C. Priami, A. Regev, E. Shapiro, W. Silverman: Application of a stochastic name-

passing calculus to representation and simulation of molecular processes. Infor-
mation Processing Letters 80, 25-31. 2001.

26. A. Regev. Computational systems biology: a calculus for biomolecular knowl-
edge. Ph.D. Thesis, Tel Aviv University, 2002.

27. A. Regev, E. Shapiro. Cellular abstractions: Cells as computation. Nature 419
343. 2002.

28. The Mathworks: Matlab. http://www.mathworks.com.
29. J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler: Mechanisms of noise-resistance

in genetic oscillators. PNAS 99(9) 5988-5992. 2002.
30. O. Wolkenhauer, M. Ullah, W. Kolch, K. Cho. Modelling and simulation of in-

tracellular dynamics: Choosing an appropriate framework. IEEE Transactions on
NanoBioscience 3, 200-207. 2004.



Differential Linear Logic and Processes

Thomas Ehrhard

Preuves, Programmes & Systèmes
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In Linear Logic, the tensor/par and plus/with dualities are lost when exponen-
tials come in.

– The “?” modality is introduced by the weakening and dereliction rules, and
contraction allow to contract two occurrences of a formula ?A (from an unique
premise sequent) into a single one

– whereas the “!” modality can be introduced only by mean of a promotion
rule.

By adding new rules for the “!” modality, one retrieves, in the exponential frag-
ment, a duality and a symmetry similar to that of the multiplicative fragment.
These new rules are

– coweakening and cocontraction which are new ways of introducing “!” formu-
las

– and cocontaction, which allow to contract two occurrences of !A (from two
different premise sequents) into a single one.

Corresponding reduction (cut-elimination) rules are added, which express op-
erationally this new !/? symmetry. These reduction rules are semantically jus-
tified, when interpreting the new logical rules for “!” as standard operations on
functions (in particular, codereliction corresponds to differentiation of a func-
tion at point 0 of a vector space). This extended linear logic is called Differential
Linear Logic (DLL).

This new symmetry adds expressive power to linear logic. In particular, we
show how a fragment of the π-calculus can be translated into differential inter-
action nets (a system if interaction nets where cells correspond to rules of DLL)
and how the dereliction/codereliction reductions of this differential interaction
net simulate the reductions of the process. Last, we present a simple denota-
tional model of differential interaction nets, in a category of sets and relations.
This model, which is also a natural model of the pure lambda-calculus (β and
η), becomes therefore a model of the considered fragment of the π-calculus, and
we explore some of its properties.

Please use the following format when citing this chapter:

Ehrhard, T., 2008, in IFIP International Federation for Information Processing, Volume 273; Fifth IFIP
International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki, Giancarlo
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Abstract. We survey some recent results on iterative methods for approximating the
least solution of a system of monotone fixed-point polynomial equations.

1 Introduction

Consider the following problem formulated by Francis Galton in the (politically incor-
rect) 19th century [26], and quoted by Thomas Harris in his classical text on branching
stochastic processes [20]:

Let p0, p1, p2 . . . be the respective probabilities that a man has 0, 1, 2, . . . sons, let each son have
the same probability for sons of his own, and so on. What is the probability that the male line
is extinct after r generations, and more generally what is the probability for any given number
of descendants in the male line in any given generation?

We are interested here in the probability that the male line eventually becomes extinct.
A little thought shows that this probability is a solution of the fixed-point equation

X = ∑
n≥0

pnXn (1)

and after some more thought one concludes that it is in fact the smallest solution.
Consider now the following stochastic context-free grammar (i.e., a grammar whose

productions are annotated with probabilities) with axiom X :

X
0.4−→ XY, X

0.6−→ a

Y
0.3−→ XY, Y

0.4−→ YZ, Y
0.3−→ b

Z
0.3−→ XZ, Z

0.7−→ b

What is the probability that the grammar eventually generates a word, i.e., a string of
non-terminals? Again, it is not to difficult to show that it is equal to the X-component
of the least solution of the following system of equations.

X = 0.4XY + 0.6

Y = 0.3XY + 0.4YZ + 0.3 (2)

Z = 0.3XZ + 0.7
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Notice that the vector (1,1,1) is a solution of the system. We will later investigate
whether it is the least solution or not.

Equations (1) and (2) are two examples of monotone systems of polynomial equa-
tions (MSPEs for short). MSPEs are systems of the form

X1 = f1(X1, . . . ,Xn)
...

Xn = fn(X1, . . . ,Xn)

where f1, . . . , fn are polynomials with positive real coefficients. In vector form we
denote an MSPE by X = f (X). We call the vector f (X) of polynomials a monotone
system of polynomials, or MSP. Obviously, a solution of X = f (X) is a fixed-point
of f (X), and vice versa. Further, any solution of X = f (X) can be visualized as a
point of intersection of the submanifolds defined by the n implicit functions fi(X)−
Xi = 0. In particular, when the polynomials of f (X) are quadratic the solutions of
X = f (X) correspond to the intersection of n quadrics. Figure 1 shows the graph of
such a quadratic MSPE with n = 2.

X1 = f1(X1,X2)

X2 = f2(X1,X2)

μ f

0.2

0.4

0.5

0.6

0.8

1
X1

X2

Fig. 1 Graphs of the equations X1 = f1(X1,X2) and X2 = f2(X1,X2) with f1(X1,X2) = X1X2 + 1
4 and

f2(X1,X2) = 1
6 X2

1 + 1
9 X1X2 + 2

9 X2
2 + 3

8 . There are two real solutions in R
2
[0,∞], the least one is labelled

with μ f .

We call MSPEs and MSPs “monotone” because x ≤ x′ implies f (x) ≤ f (x′) for
every x,x′ ∈ R

n
≥0. This is a bit imprecise, because not every monotone polynomial has

positive coefficients. Perhaps “positive systems” would be a better name, but since we
have used the term “monotone” in several papers we stick to it.

MSPEs appear naturally in the analysis of many stochastic models, such as stochas-
tic context-free grammars (with numerous applications to natural language processing
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[23, 19], and computational biology [24, 5, 4, 22]), probabilistic programs with pro-
cedures [9, 2, 13, 11, 10, 12, 14], web-surfing models with back buttons [16, 17], and
branching processes [20], a topic in stochastic theory that can be traced back to Gal-
ton’s problem.

In the last years Etessami and Yannakakis [13] and ourselves [21, 8] have studied
the problem of solving MSPEs. This paper gives a succinct—and informal—overview
of our results.

2 Some Definitions and Facts

Let R[0,∞] denote the set of non-negative reals extended with ∞. We extend the def-
initions of sum and product as usual: ∞ + k = ∞ for every k ∈ R[0,∞], ∞ · 0 = 0, and
∞ ·k = ∞ for every k ∈ R[0,∞] \{0}. The resulting algebraic structure is the real semir-
ing. MSPEs are systems of fixed-point equations over the real semiring.

Given two vectors u,v∈R
n
[0,∞], we say that u≤ v holds if ui ≤ vi holds for every 1≤

i≤ n, where ui,vi are the i-th components of u and v, respectively. This is the pointwise
order on vectors of reals. The first positive result on MSPEs is a direct consequence of
Kleene’s theorem:

Theorem 1 (Kleene’s fixed-point theorem). Every MSP f (X) has a least fixed-point

μ f in R
n
[0,∞] with respect to the pointwise order. Moreover, the sequence (κ (k)

f )k∈N

given by

κ (0)
f := 0

κ (k+1)
f := f (κ (k)

f ) = f k+1(0)

is non-decreasing with respect to ≤ (i.e., κ (k)
f ≤ κ (k+1)

f ) and converges to μ f .

We call (κ (k)
f )k∈N the Kleene sequence, and its elements the Kleene approximants of

μ f .

Example 1. For the system (2) we obtain:

κ (0)
f = (0,0,0), κ (1)

f = (0.6,0.3,0.7),

κ (2)
f = (0.672,0.438,0.826), κ (3)

f = (0.718,0.533,0.867),

κ (4)
f = (0.753,0.600,0.887), κ (5)

f = (0.781,0.648,0.900), . . .

The least solution of a system of linear equations (monotone or not) satisfies some
good properties that no longer hold for MSPEs. It is easy to show (using for instance
Cramer’s rule) that if the coefficients are rationals, then the least solution is also ratio-
nal. However, using Galois theory one can prove that the least solution of a polynomial
system may not be expressible by radicals. For instance:

Fact 1. The least fixed-point of
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X =
1
6

X6 +
1
2

X5 +
1
3

. (3)

is not expressible by radicals.

This fact also holds for quadratic systems, i.e., systems in which all polynomials have
at most degree 2. Given an MSP f over a set X of variables, it is easy to construct
a quadratic MSP g over a larger set X ∪Y such that the projection of μg onto X
is equal to μ f . The construction is very similar to the one that brings a context-free
grammar in Chomsky normal form. For instance, it “expands” Equation (3) into the
system

X =
1
6

XX5 +
1
2

XX4 +
1
3

Xn = XXn−1 (for n = 5,4,3)

X2 = X2

Since this expansion involves only a linear blowup, we can take quadratic MSPEs as a
normal form of MSPEs.

The least solution of linear MSPEs is not only rational, but a succinct rational.
Consider a system of dimension n (i.e., with n equations) whose coefficients are given
as ratios of m-bit integers. It is easy to show using Cramer’s rule that the least solution
can be written as the quotient of two natural numbers with at most O(n2m + n logn)
bits. As a consequence, we get

Fact 2. Let X = f (X) be a linear MSPE of dimension n whose coefficients are given
as ratios of m-bit integers. For every component μ fi of the least fixed-point of f : if
0 < μ fi < ∞ then

1

2O(n2m+n logn)
≤ μ fi ≤ 2O(n2m+n logn)

(where the constant of the Big-Oh notation is independent of f ).

Since the least fixed-point of a MSP can be irrational, there is no bound on the number
of digits needed to write it down. However, using results of [8] we can still give a lower
and an upper bound:

Fact 3. Let f be a quadratic MSP of of dimension n whose coefficients are given as
ratios of m-bit integers. For every component μ fi of the least fixed-point of f : if 0 <
μ fi < ∞ then

1

2m·2O(n) ≤ μ fi ≤ 2m·2O(n)

(where the constant of the Big-Oh notation is independent of f ).

So, loosely speaking, while the least fixed-point of a linear system is at most exponen-
tial in the dimension of the system, the least solution of a quadratic system is at most
double exponential.

It is easy to find examples of quadratic MSPs in which the least fixed-point is ratio-
nal and double exponential. The n-th component of the least solution of system
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X1 = k
X2 = X2

1
...

Xn = X2
n−1

is equal to k2(n−1)
.

3 Computational complexity

The fundamental decision problem for MSPs is whether (μ f )i ∼ a holds for a given
MSP f and a component i, where a is some positive rational number and ∼∈ {≤,=,≥
}. Let us call this problem MSP-DECISION. Little is known about its computational
complexity. The problem lies in PSPACE:

Consider e.g. a two-dimensional MSPE X1 = f1(X1,X2),X2 = f2(X1,X2). To de-
cide whether (μ f )1 ≤ a holds one can equivalently decide if the following for-
mula is true:

∃x1 ∈ R,x2 ∈ R : x1 = f1(x1,x2) ∧ x2 = f2(x1,x2) ∧ x1,x2 ≥ 0 ∧ x1 ≤ a

Such formulas can be decided in PSPACE, because the first-order theory of the
reals is decidable, and its existential fragment is even in PSPACE [3].

For a lower bound, we introduce the problem SQUARE-ROOT-SUM:

Given k + 1 natural numbers n1, . . . ,nk and b, determine whether ∑k
i=1

√
ni ≤ b

holds.

The SQUARE-ROOT-PROBLEM is a natural subproblem of many questions in com-
putational geometry. For instance, the length of the boundary of a polygon whose ver-
tices lie in Z

2 is a sum of square roots of integers. It has been a major open problem
since the 70s whether SQUARE-ROOT-SUM belongs to NP. The problem can easily
be reduced to MSP-DECISION:

Suppose we are given n1 = 2, n2 = 3, and b = 3, and we want to decide
if

√
2 +

√
3 ≤ 3. One would like to come up with an MSP f (X) such that

(μ f )1 =
√

2,(μ f )2 =
√

3,(μ f )3 =
√

2 +
√

3, so that deciding
√

2 +
√

3 ≤ 3
is equivalent to deciding (μ f )3 ≤ 3. One has to be careful though, because for
instance the equation X1 = X2

1 + X1 − 2 is not an MSPE. It was shown in [13]
how to overcome this problem: Instead of encoding e.g.

√
2 directly, it suffices

to encode a + b ·√2 for some rationals a,b.

The least solution of the equation X = X2 +(1−λ 2 ·n)/4 equals (1−λ
√

n)/2.
So, by choosing for λ a small enough rational number we get a 1-dimensional
MSP whose least solution is a + b ·√n for some rationals a,b. In our example
we can set λ = 1

max(2,3) = 1
3 which leads to the following MSPE.
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X1 = X2
1 + 1− 2

9
4

X2 = X2
2 + 1− 3

9
4

X3 = X1 + X2

Its least solution is

μ f =
(

1
2
− 1

6

√
2,

1
2
− 1

6

√
3,1− 1

6

(√
2+

√
3
)

)

.

So, the question whether
√

2+
√

3 ≤ 3 holds can be translated into the question
whether (μ f )3 ≥ 1− 1

6 ·3 = 1
2 holds.

It follows from this reduction that proving membership of MSP-DECISION in NP
would be a major breakthrough.

An interesting issue is the complexity of MSP-DECISION in the Blum-Shub-Smale
computational model, in which all operations on rationals take unit time independently
of their size. SQUARE-ROOT-SUM can be decided in polynomial time in this model
[25], but it is open whether the result extends to MSP-DECISION.

4 Approximating the Least Fixed-Point: Newton’s Method

For most practical purposes, the main computational problem concerning MSPs is the
approximation of the least fixed-point up to a given accuracy. Kleene’s method can be
applied, and it is very robust: it always converges when started at 0, for any MSP. On
the other hand, the convergence speed of the Kleene sequence can be very poor. Before
presenting an example, we define a notion of convergence order that differs from the
one commonly used in numerical mathematics, but is particularly natural for computer
science.

Let (ak)k≥0 be a non-decreasing sequence of vectors over the real semiring such that
limk→∞ ak = a < ∞. The convergence order of the sequence is the function β : N → N

defined as follows: β (k) is the greatest natural number i such that

‖a−ak‖
‖a‖ ≤ 2−i

where ‖·‖ is some norm. We say that a sequence has linear, exponential, logarithmic,
etc. convergence order if the function β (k) grows linearly, exponentially, or logarith-
mically in k, respectively. Notice that the asymptotic behaviour of β (k) is independent
of the norm, because all norms are equivalent up to a constant. In the univariate case,
β (k) is the number of bits of ak that coincide with the corresponding bits of a (the
formalization of this intuition requires some care, like identifying 1 and 0.999 . . .). For
instance, for the sequence (1− 2−k)k≥0 we have β (k) = k, i.e., the first k bits of the
k-th element of the sequence coincide with the first k bits of the limit.
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Consider now this very simple but at the same time very illustrative quadratic MSPE
in one variable:

X = 1/2 + 1/2X2 (4)

In Galton’s problem, the least solution of this equation gives the extinction probability
of an individual’s descent line when every individual has 0 or 2 children with proba-
bility 1/2. The least solution is 1. We have:

Fact 4. The i-th Kleene approximant of X = 1/2 + 1/2X2 satisfies κ (i) ≤ 1− 1
i+1 for

every i ≥ 0. So the Kleene sequence only has logarithmic convergence order.

Example 2. Here are some of the Kleene iterates.

κ (0) = 0, κ (1) = 0.5, κ (2) = 0.625
κ (3) = 0.695, κ (4) = 0.742, κ (5) = 0.775
· · ·

κ (20) = 0.920, . . . , κ (200) = 0.990, . . . , κ (2000) = 0.9990, . . .

Faster approximation techniques have been known for a long time. In particular, New-
ton’s method, suggested by Isaac Newton more than 300 years ago, is a standard ef-
ficient technique for approximating a zero of a differentiable function. Since the least
solution of a fixed-point equation X = f (X) is a zero of g(X) = f (X)−X , the method
can be applied to search for fixed-points of f (X).

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

ν (0) ν (1) ν (2)

X

g(X)

Fig. 2 Newton’s method to find a zero of a one-dimensional function g(X)

We briefly recall the method for the case of one variable, see Fig. 2 for an illustra-
tion. Starting at some value ν(0) “close enough” to the zero of g(X), we proceed iter-
atively: given ν(i), we compute a value ν(i+1) closer to the zero than ν(i). For that, we
compute the tangent to g(X) passing through the point (ν(i),g(ν(i))), and take ν(i+1)



292 J. Esparza, S. Kiefer, M. Luttenberger

as the zero of the tangent (i.e., the X-coordinate of the point at which the tangent cuts
the X-axis). A little arithmetic leads to:

ν(i+1) = ν(i) +
f (ν(i))−ν(i)

1− f ′(ν(i))

Newton’s method can be easily generalized to the multivariate case:

ν(i+1) = ν(i) + (Id− f ′(ν(i)))−1( f (ν(i))−ν(i))

where f ′(X) is the Jacobian of f , i.e., the matrix of partial derivatives of f , and Id is
the identity matrix.

Notice that Newton’s method is not restricted to the real semiring, it can be applied
to any differentiable functions over the real field. However, when applied with this
generality it is far less robust than Kleene’s method: it may converge very slowly,
converge only when started at a point very close to the zero—which must be guessed—
or even not converge at all.

However, if we apply Newton’s method to f (X) = 1/2+1/2X2, starting at ν(0) = 0,
we obtain:

Fact 5. The i-th Newton approximant of X = 1/2 + 1/2X2 satisfies ν(i) = 1− 1
2i for

every i ≥ 0. The i-th approximant has i correct bits, i.e., the Newton sequence has
linear convergence.

So in this particular example the Newton sequence converges “exponentially faster”
than the Kleene sequence. The number of arithmetic operations needed to compute i
correct bits of the solution grows polynomially instead of exponentially in i. (Recall,
however, that the operations have to be applied to rationals whose length may grow
exponentially in the number of iterations.) One can ask whether the good behaviour
on this example is just a coincidence, or whether perhaps Newton’s method is robust
on the real semiring. A number of recent results have shown that (with certain ifs and
buts) the latter is the case, and we briefly survey them in the next section.

5 Convergence Order and Thresholds for Newton’s Method

The first positive result on the convergence of Newton’s method was obtained by Etes-
sami and Yannakakis in [13]. They showed that the method always converges to the
least fixed-point starting from ν(0) = 0, and that it converges at least as fast at the
Kleene sequence.1

Inspired by this positive result, we started to study the convergence order. Given an
MSPE X = f (X) whose least solution μ f is finite, it is well-known that the conver-
gence order depends critically on the Jacobian matrix at the least fixed-point, i.e., on

1 More precisely, Etessami and Yannakakis proved the result for a structured version of the method,
and we showed in [8] that this additional structure is not required for convergence (although it is
convenient for efficiency).
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f ′(μ f ). Every textbook proves that the method performs brilliantly when the matrix
(Id− f ′(μ f )) is non-singular: it exhibits exponential convergence order. So we fo-
cused our attention on the singular case, of which f (X) = 1/2+1/2X2 is an example.
By Fact 5 we can expect at most linear convergence. But perhaps the method converges
more slowly on other examples?

It is convenient to start with the special case of strongly connected MSPEs. Loosely
speaking, an MSPE is strongly connected if every variable depends on any other vari-
able, where dependence is defined as follows. Given two variables X and Y , X depends
on Y if either Y appears on the right-hand-side of the equation for X , or if there is a
variable Z such that X depends on Z and Z depends on Y .

5.1 Strongly Connected MSPEs

We proved the following theorem in [21].

Theorem 2. Let f (X) be a strongly connected MSP such that μ f is finite. There is a
number t f such that for every i ≥ 0:

β (t f + i) ≥ i .

In particular, the Newton sequence has linear convergence order.

We call t f the threshold of f (X). Loosely speaking, the theorem states that after
crossing the threshold (i.e., from the t f -th approximant onwards) the Newton sequence
gains at least one bit of accuracy per iteration. The threshold itself is an upper bound
on the number of iterations needed to obtain the first bit of the least fixed-point.

The proof of [21] was based on the following topological property of R
n: if the

infimum of the distances between points of two sets is 0, then the two sets have at least
one common point. As a consequence, it was a purely existential proof, and provided
no information on the size of the threshold. In [7] we obtained the following relation
between the threshold and the minimal component of μ f .

Theorem 3. Let f (X) be a quadratic strongly connected MSP of dimension n whose
coefficients are given as ratios of m-bit integers. Let μmin be the minimal component of
μ f . The threshold t f of Theorem 2 satisfies

t f ≤ 3n2m+ 2n2 |log μmin| .

Moreover, if fi(0) > 0 holds for every 1 ≤ i ≤ n, then t f ≤ 3mn.

Example 3. Consider again the following MSPE, which was given as Equation (2) on
page 285.

X = 0.4XY + 0.6

Y = 0.3XY + 0.4YZ + 0.3

Z = 0.3XZ + 0.7



294 J. Esparza, S. Kiefer, M. Luttenberger

Using a result from [8], slightly stronger than Theorem 3 but technically more dif-
ficult to state, one can prove that the threshold of this system satisfies t f ≤ 6 for
the maximum-norm (i.e., the norm of a vector is the absolute value of its maxi-
mal component). So β (14) ≥ 8. After computing 14 Newton iterates we get ν(14) =
(0.983,0.974,0.993).As we have computed at least β (14)≥ 8 bits, we know that μ f is
at most ν(14) +(2−8,2−8,2−8) which is strictly less than 1 in every component. There-
fore, the stochastic context-free grammar from the introduction produces a terminal
string with probability less than 1.

Combining Theorem 3 with Fact 3 we obtain:

Corollary 1. Let X = f (X) be a quadratic strongly connected MSPE of dimension n
whose coefficients are given as ratios of m-bit integers. The threshold t f of Theorem 2
satisfies t f ∈ m2O(n).

This corollary gives an exponential bound on the number of iterations needed to com-
pute the first bit of the least fixed-point. It is open whether this bound is tight.

5.2 General MSPEs

The following example shows that an exponential number of iterations is sometimes
needed for the first bit, if the MSPE is not strongly connected. We give a family of
MSPEs in which the number of iterations needed to compute the first bit grows expo-
nentially in the dimension of the system.

Example 4. Consider the following family of MSPEs.

X1 = 1/2 + 1/2 ·X2
1

X2 = 1/4 ·X2
1 + 1/2 ·X1X2 + 1/4 ·X2

2

... (5)

Xn = 1/4 ·X2
n−1 + 1/2 ·Xn−1Xn + 1/4 ·X2

n

The variable Xi depends on Xj if and only if j ≤ i. So the dependence graph contains
n strongly connected components, one for each variable. The least fixed-point of the

system is the vector (1,1, . . . ,1). We show in [21] that ν(2n−1)
n ≤ 1/2 holds, and so that

at least 2n−1 iterations of Newton’s method are needed to obtain the first bit of Xn.
The proof goes as follows. We consider a decomposed version of Newton’s method, in
which for a given k we perform k iterations of the normal method on the first equation,

yielding a lower bound a(k)
1 of the first component of the least fixed-point. Then we

perform k iterations on the second equation after setting X1 := a(k)
1 ; by monotonicity,

this yields a lower bound a(k)
2 of the second component. Repeating this procedure we

finally obtain a lower bound a(k)
n of the n-th component. It is easy to see that ν(k)

i ≤
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a(k)
i holds, i.e, the decomposed method converges at least as fast as the method that

performs k iterations on the whole system. Now, let δ (k)
i = 1− a(k)

i be the error of

the decomposed method. A simple analysis reveals that δ (k)
i+1 ≥

√

δ (k)
i holds for every

1 ≤ i < n. By Fact 5 we have δ (2n−1)
1 = (1/2)2n−1

, and so we get δ (2n−1)
n ≥ 1/2, i.e.,

ν(2n−1)
n ≤ 1/2.

So, intuitively, the problem of non-strongly connected systems is that the error gets
“amplified” when we move up the graph of strongly connected components.

For MSPs that are not strongly connected, Newton’s method still has linear conver-
gence order, but a worse rate [8]:

Theorem 4. Let f (X) be a clean (see below) MSP such that μ f is finite. There is a
number t f such that for every i ≥ 0:

β (t f + i · (n + 1) ·2n) ≥ i .

In particular, the Newton sequence has linear convergence order.

In order to make sure that Newton’s method stays well-defined (i.e. that the matrix
inverses exist) Theorem 4 assumes that the MSP is clean, i.e., (μ f )i > 0 for all i.
An MSP can easily be made clean in linear time by identifying and removing the
components with (μ f )i = 0: (μ f )i = 0 holds iff (κ (n))i = 0.

The rate in Theorem 4 is worse than in the strongly connected case: Newton’s
method needs (in the worst case) about 2n iterations per bit, instead of only 1 as in
the strongly connected case. This worst case is attained by the MSPE in Equation (5)
above, so the exponential rate in Theorem 4 cannot be avoided. Unfortunately, we do
not have an upper bound on the threshold t f in this general case.

5.3 min-max-MSPEs

Theorem 4 forms the basis for the convergence analysis of a recent extension [6] of
Newton’s method to min-max-MSPEs, i.e., MSPEs where minimum and maximum
are allowed as additional operators. Here is an example of a min-max-MSPE:

X = max{0.7Y + 0.3 , 0.6XY + 0.4}
Y = min{X , 0.8Y2 + 0.2}

Such systems arise, for instance, in extinction games. Those games add two adversarial
players to Galton’s setting from the beginning: There are n species, each of which is
controlled by one of two players, the terminator and the rescuer. Each player can
apply actions to the individuals controlled by her; an action transforms an individual
(probabilistically) into zero or more individuals. The terminator tries to extinguish all
individuals, whereas the rescuer tries to save them. Natural questions are: What are
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optimal strategies2 for the terminator and the rescuer, and what is the probability of
extinction of all individuals, assuming that there is a single initial individual and the
players follow optimal strategies?

The MSPE above can be thought of as an equation system for the extinction prob-
abilities of two species X and Y . Species X is controlled by the terminator, whereas
Y is controlled by the rescuer. The terminator can apply one of two possible actions
to an X-individual: the first one kills the X-individual with probability 0.3, but with
probability 0.7 transforms it to a Y -individual; the second action kills the X-individual
with probability 0.4, but, with probability 0.6, keeps the X-individual and creates a
Y -individual. What can the rescuer do with a Y -individual? She can choose between
transforming it to an X-individual and a second action which kills the Y -individual
with probability 0.3 and adds another Y -individual with probability 0.7.

It turns out that the X-component (resp. Y -component) of the least solution of the
MSPE above equals the extinction probability assuming a single initial X-individual
(resp. Y -individual) if both the terminator and the rescuer follow optimal strategies.
Such systems also arise in the analysis of recursive simple stochastic games [14, 15].

In order to approximate the least solution of a min-max-MSPE, one could use
Kleene iteration. But, as we have seen before (Fact 4), Kleene iteration may converge
very slowly even without minimum and maximum. Therefore, in [6] we propose two
methods for approximating the least solution of a min-max-MSPE. Both are iterative
procedures based on Newton’s method.

– The first method linearizes each polynomial appearing in the system (possibly inside
a minimum or a maximum expression) by computing the “tangent” at the current
iterate. One obtains a min-max-MSP whose polynomials have degree at most 1. Its
least fixed-point can be computed exactly by a method from [18] that uses strategy
iteration and linear programming. The result is the next iterate.

– The second method linearizes each max-polynomial appearing in the system (pos-
sibly inside a minimum expression) by computing the “tangent” at the current iter-
ate. (A special “tie breaking” policy must be adhered to if the current iterate is at
the “edge” between two polynomials inside a maximum expression.) One obtains
a min-MSP whose polynomials have degree at most 1. Its least fixed-point can be
computed exactly by solving a single linear program. The result is the next iterate.

Both methods have at least linear convergence order [6]:

Theorem 5. Let f (X) be a min-max-MSP such that μ f is finite. There is a number t f

such that for every i ≥ 0:

β (t f + i ·m · (n + 1) ·2n) ≥ i ,

where m is the number of possible strategies of the players. In particular, the two
extensions of Newton’s method have linear convergence order.

The first method converges somewhat faster whereas a single step of the second
method is cheaper. The second method also computes ε-optimal strategies for the

2 A strategy tells a player which action to apply to the individuals controlled by her.
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terminator, i.e., strategies that achieve as extinction probabilities at least the current
iterate.

We have used the second method to approximate the extinction probabilities as-
suming perfect strategies: A population that starts with a single X-individual (resp.
Y -individual) becomes extinct with probability 0.475 (resp. 0.250). We have obtained
those numbers after performing 3 iterations and then rounding, but in this case those
numbers are already the exact solution. The optimal strategy for the terminator is to
apply the first action to the X-individuals. The rescuer should choose her second action
for her Y -individuals.

6 Conclusions

We have shown that Newton’s method is not only efficient but also remarkably robust
when applied to monotone systems of fixed-point equations (MSPEs). Unlike for arbi-
trary systems, the method always converges when started at 0. For strongly connected
systems the method always reaches a point, the threshold, after which it is guaranteed
to gain at least one bit of accuracy per iteration (in favourable cases it doubles the num-
ber per iteration). In fewer words, after crossing the threshold the method has linear
convergence order with rate 1. If the system is not strongly connected the method still
has linear convergence, but the rate deteriorates.

The threshold of the strongly connected case is inversely proportional to the log-
arithm of the minimal component of the least fixed-point. Therefore, if some kind
of analysis can establish that the least fixed-point is not very small, then the method
quickly enters the one-bit-per-iteration zone. We still do not have any threshold for the
general, non-strongly-connected case.

Newton’s method still works for MSPEs that are not strongly connected. We have
shown that the convergence order is still linear, albeit the rate may deteriorate expo-
nentially with the dimension.

Newton’s method can be extended to min-max-MSPEs, preserving its linear con-
vergence order.

MSPEs appear in a large number of stochastic systems. In [1] we have designed a
formal system for establishing the reputation of the individuals of a social network.
The reputation of the individuals (defined as the stationary distribution of a Markov
chain) is the least solution of a MSPE. These case studies lead to very large MSPEs,
and computing their least solutions is an exciting challenge for future research.
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Abstract. This paper presents a general technique for obtaining new results pertain-
ing to the non-finite axiomatizability of behavioral semantics over process algebras
from old ones. The proposed technique is based on a variation on the classic idea
of reduction mappings. In this setting, such reductions are translations between lan-
guages that preserve sound (in)equations and (in)equational proofs over the source
language, and reflect families of (in)equations responsible for the non-finite axioma-
tizability of the target language. The proposed technique is applied to obtain a num-
ber of new non-finite axiomatizability theorems in process algebra via reduction to
Moller’s celebrated non-finite axiomatizability result for CCS. The limitations of the
reduction technique are also studied.
This paper presents a general technique for obtaining new results pertaining to the
non-finite axiomatizability of behavioral semantics over process algebras from old
ones. The proposed technique is based on a variation on the classic idea of reduction
mappings. In this setting, such reductions are translations between languages that
preserve sound (in)equations and (in)equational proofs over the source language,
and reflect families of (in)equations responsible for the non-finite axiomatizability
of the target language. The proposed technique is applied to obtain a number of new
non-finite axiomatizability theorems in process algebra via reduction to Moller’s cel-
ebrated non-finite axiomatizability result for CCS. The limitations of the reduction
technique are also studied.

1 Introduction

A classic and fundamental theoretical question in the study of algebras of processes is
whether they afford a finite (in)equational axiomatization. Apart from being of foun-
dational importance, (finite) axiomatizations of process semantics may form the ba-
sis for implementation verification using tools based on theorem-proving technology
[10]. The first negative results concerning finite axiomatizability of process algebras
go back to the Ph.D. thesis of Faron Moller [20], who showed that strong bisimilarity
is not finitely based over CCS and over ACP without the left-merge operator. Since
then, several other non-finite axiomatizability results have been obtained for a wide
collection of very basic process algebras—see, e.g., [4] for a survey of such results.

In general, results concerning (non-)finite axiomatizability are very vulnerable to
small changes in, and extensions of, the formalism under study. The addition of a
single operator to a non-finitely axiomatizable formalism may make it finitely ax-
iomatizable (e.g., adding the left-merge operator to the synchronization-free subset
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retical Computer Science; Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, Luke Ong; (Boston: Springer), pp. 301–316.
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of CCS [9]). Conversely, the addition of a single operator may ruin the finite axiom-
atizability of a calculus (e.g., adding parallel composition to the sequential subset of
CCS [19, 21]). Also, apparently simple changes to the semantics of process calculi,
e.g., adding aspects such as timing, may ruin the (non-)finite axiomatizability results
and make their proofs obsolete (e.g., adding timing to synchronization-free CCS with
left merge makes it non-finitely axiomatizable, as shown in [8]). Furthermore, proofs
of non-finite axiomatizability results in the concurrency-theory literature are extremely
delicate and error-prone; they are often rather long, and involve intricate syntactic ar-
guments. Hence, we believe that it would be useful to find some general theorems that
can be used to prove non-finite axiomatizability results. Such a general theory would
allow one to relate non-finite axiomatizability theorems for different formalisms, and
spare researchers (some of) the delicate technical analysis needed to adapt the proofs
of such results. Despite some initial proposals, like the one in [2], it is fair to say that
such a general theory is missing to date.

In this paper, we present a meta-theorem offering a general technique that can be
used to prove non-finite axiomatizability results, and present some of its applications
within concurrency theory. In this meta-theorem, we give sufficient criteria to obtain
new non-finite axiomatizability results from known ones. The proposed technique is
based on a variation on the classic idea of reduction mappings, which underlies the
proofs of many classic undecidability results in computability theory and of lower
bounds in complexity theory—see, e.g., [26] for a textbook presentation. In this setting,
reductions are translations between languages that preserve sound (in)equations and
(in)equational proofs over the source language, and reflect families of (in)equations
responsible for the non-finite axiomatizability of the target language. We show the
applicability of our reduction-based technique by obtaining several, to our knowledge
novel, non-finite axiomatizability results for timed and stochastic process algebras. All
these results are proved by showing that the existence of a finite axiomatization for the
seven calculi we consider in this extended abstract would contradict a result of Moller’s
that entails the non-finite axiomatizability of strong bisimilarity over CCS. We also in-
vestigate some of the limitations of our reduction-based technique. In particular we
exhibit a classic variation on CCS that is not finitely based, but whose non-finite ax-
iomatizability cannot be shown by reduction to CCS modulo bisimilarity.

The paper is organized as follows. In Section 2, we review some preliminary def-
initions from universal algebra. Section 3 presents our reduction-based technique for
proving non-finite axiomatizability results. In Section 4 we apply our approach to ob-
tain seven new non-finite axiomatizability results. In Section 5, we illustrate the limita-
tions of our proof methodology by presenting a non-finite axiomatizability result that
cannot be proved using the strategy we employed to obtain the results in Section 4.
These limitations can provide sources of inspiration for future improvements on our
techniques. Finally, Section 6 concludes the paper and presents some directions for
future and ongoing research.

Due to space restrictions, we have omitted most of the proofs of our results in this
extended abstract. The reader is referred to [5] for full details and an in-depth coverage
of the issues discussed in this paper.
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2 Preliminaries

We begin by recalling some basic notions from universal algebra that will be used
throughout the paper. We refer the interested reader to, e.g., [14] for more information.

A signature Σ is a set of function symbols f ,g, . . . with fixed arities. A function
symbol of arity zero is often called a constant (symbol). Given a signature Σ and a
set of variables V , terms t,u, . . . ∈ T (Σ) are constructed inductively (from function
symbols and variables) while respecting the arities of the function symbols. (In what
follows, whenever we write a term f (t1, . . . ,tn) we tacitly assume that the arity of f is
n.) Closed terms p,q, . . . ∈ C (Σ) are terms that do not contain variables. We write ≡
for syntactic equality over terms.

A precongruence � over C (Σ) is a substitutive preorder over C (Σ)—that is, a
preorder over C (Σ) that is preserved by all the function symbols in Σ . A congruence
∼ over C (Σ) is a substitutive equivalence relation. Each precongruence � over C (Σ)
induces a congruence ∼ thus: p ∼ q iff p � q � p.

A (closed) substitution maps variables in V to (closed) terms. For every term t
and substitution σ , the term σ(t) is obtained by replacing every occurrence of a vari-
able x in t by σ(x). Note that σ(t) is closed if σ is a closed substitution. We write
[t1/x1, . . . ,tn/xn], where the xi (1 ≤ i ≤ n) are distinct variables, for the substitution
mapping each variable xi to ti, and acting like the identity function on all the other
variables.

Given a relation R over closed terms, for open terms t and u, we define t R u if
σ(t) R σ(u) for each closed substitution σ .

Consider a signature Σ . A set E of equations t = t ′, where t,t ′ ∈ T (Σ), is called an
axiomatization (on T (Σ)). We write E � t = t ′ when t = t ′ is derivable from E by the
following set of inference rules.

(refl)
E � t = t

(trans)
E � t0 = t1 E � t1 = t2

E � t0 = t2

(cong)
E � t1 = t ′1 . . . E � tn = t ′n
E � f (t1, . . . ,tn) = f (t ′1, . . . ,t

′
n)

(E)
E � σ(t) = σ(t ′)

t = t ′ ∈ E

(Deduction rule (cong) is a rule schema with one instance for each function symbol f
in the signature Σ .) For axiomatizations E and E ′, we write E ′ � E when E ′ � t = u
for each t = u ∈ E . Above, we intentionally did not include the inference rule for sym-

metry, i.e., (symm)
E � t = t ′

E � t ′ = t
. Excluding (symm) does not restrict the applicability

of our results by any measure. Any set of equations can be closed under symmetry
by simply adding to it a symmetric copy of each equation, and this transformation
preserves finiteness. (In what follows, we shall tacitly assume that each equational ax-
iomatization is closed with respect to symmetry.) Furthermore, the omission of the rule
for symmetry allows us to deal with axiomatizations for precongruences, which are not
necessarily symmetric relations. When working with precongruences, our axiomatiza-
tions consist of inequations t ≤ t ′ between terms.
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Given a congruence ∼⊆ T (Σ)×T (Σ), an equation t = t ′ is sound modulo ∼
when t ∼ t ′. An axiomatization is sound modulo ∼ if each of its equations is sound
modulo ∼. An axiomatization E is complete modulo ∼ if for each sound equation
t = t ′, it holds that E � t = t ′. E is ground-complete modulo ∼ if for each closed sound
equation p = q, it holds that E � p = q. We say that ∼ is finitely based over T (Σ)
if there is a finite, sound and complete axiomatization for T (Σ) modulo ∼. Similar
definitions apply to precongruences and inequational axiomatizations.

3 The Reduction Theorem

Our aim in this section will be to present a general result that will allow us to lift non-
finite axiomatizability results from one process algebra to another. Throughout this
section, we fix two signatures Σo and Σe, a common set of variables V and two precon-
gruences �o and �e over T (Σo) and T (Σe), respectively. Intuitively, the signature Σo

stands for the collection of operations in an original process language for which we
already have a non-finite axiomatizability result modulo the precongruence �o. On the
other hand, the signature Σe stands for the collection of operations in an extended pro-
cess language for which we intend to prove a non-finite axiomatizability result modulo
the precongruence �e. Since a congruence is a symmetric precongruence, all the re-
sults we present in the remainder of this section apply equally well when any of �o

and �e is a congruence relation.
Consider a mappinĝ: T (Σe)→T (Σo). For an axiomatization E over T (Σe), we

define the axiomatization ̂E over T (Σo) to be {̂t ≤ û | t ≤ u ∈ E}.

Definition 1. A function ̂ : T (Σe) → T (Σo) is a reduction from T (Σe) to T (Σo),
when for all t,u ∈ T (Σe),

1. t �e u ⇒ ̂t �o û (that is, ̂ preserves sound inequations), and
2. E � t ≤ u ⇒ ̂E � ̂t ≤ û, for each axiomatization E on T (Σe) (that is, ̂ preserves

provability).

Definition 2. Let E be an axiomatization over T (Σo). A reduction ̂ is E-reflecting,
when for each t ≤ u ∈ E , there exists an inequation t ′ ≤ u′ over T (Σe) that is sound
modulo �e such that ̂t ′ ≡ t and ̂u′ ≡ u. The reduction ̂ is called ground E-reflecting
if for each closed inequation p ≤ q ∈ E , there exists a closed inequation p′ ≤ q′ on
T (Σe) that is sound modulo �e such that ̂p′ ≡ p and ̂q′ ≡ q.

We are now ready to state the general tool that we shall use in this paper to lift non-
finite axiomatizability results from T (Σo) modulo �o to T (Σe) modulo �e.

Theorem 1. Assume that there is a set of inequations E on T (Σo) that is sound modulo
�o and that is not provable from any finite sound axiomatization on T (Σo). If there
exists an E-reflecting reduction from T (Σe) to T (Σo), then �e is not finitely based
over T (Σe).
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The above theorem gives us a general technique to lift non-finite axiomatizability re-
sults from a language T (Σo) modulo �o to a language T (Σe) modulo �e. Indeed,
suppose that we know that a precongruence �o is not finitely based over T (Σo). Typ-
ically, such a negative result is shown by exhibiting an infinite collection E of sound
inequations that cannot be proved from any finite sound axiomatization over Σo. (See,
e.g., [1, 3, 4, 6, 8, 11, 12, 20, 22] and the references therein.) In the light of the above
theorem, to show that �e is not finitely based over T (Σe) it suffices only to exhibit an
E-reflecting reduction from T (Σe) to T (Σo).

As the examples we present in Section 4 will show, Theorem 1, albeit not techni-
cally complex, is widely applicable. In all our applications of Theorem 1, the reduction
from Σe to Σo is defined inductively on the structure of terms. Since such “structural”
reductions play an important role in the remainder of the paper, we now proceed to
define them precisely and to state a very useful property such reductions afford.

Definition 3. A mapping ̂ : T (Σe) → T (Σo) is structural if

1. it is the identity on variables, i.e., x̂ ≡ x for each x ∈V ,

2. it does not introduce new variables, i.e., vars( ̂f (x1, . . . ,xn)) ⊆ {x1, . . . ,xn}, for each
f ∈ Σe and sequence of distinct x1, . . . ,xn ∈V , and

3. it is defined compositionally, i.e., ̂f (t1, . . . ,tn) ≡ ̂f (x1, . . . ,xn) [̂t1/x1, . . . , ̂tn/xn], for
each f ∈ Σe, and sequences of distinct x1, . . . ,xn ∈V and of t1, . . . ,tn ∈ T (Σe).

Lemma 1. Let ̂ : T (Σe) → T (Σo) be a structural mapping. Then ̂σ(t) ≡ σ̂(̂t), for
each term t ∈ T (Σe) and each substitution σ over Σe.

The following theorem shows that, if the reduction is structural, one can dispense with
proving item 2 of Definition 1. Since each reduction we consider in this paper is struc-
tural, this result eases our applications of Theorem 1 considerably.

Theorem 2. A structural mapping satisfies item 2 of Definition 1.

If the collection of equations E mentioned in the statement of Theorem 1 is closed,
then one can prove impossibility of a finite ground-complete axiomatization of �e

over T (Σe), which is a stronger result than Theorem 1.

Theorem 3. Assume that there is a set of closed equations E that is sound modulo
�o, and that is not provable from any finite axiomatization over T (Σo) that is sound
modulo �o. If there exists a ground E-reflecting reduction from Σe to Σo, then there
exists no sound and ground-complete finite axiomatization for �e over T (Σe).

For structural reductions whose source is a language over a signature that contains at
least one constant, in order to apply Theorem 3 it suffices to show that the reduction is
E-reflecting by the following theorem. Thus, if the collection of equations E is closed
and the reduction is structural, one can readily obtain impossibility of a finite ground-
complete axiomatization without any further work (by showing that the premises of
Theorem 1 hold).

Theorem 4. An E-reflecting structural reduction ̂ is also ground E-reflecting, pro-
vided that the signature Σe contains at least one constant symbol.
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The set of basic equations that we shall use throughout the rest of this paper in our
applications of Theorem 1 is closed and, furthermore, all our reductions are structural;
thus, all the impossibility results we present in the subsequent section hold for ground-
complete as well as complete axiomatizations.

4 Applications

In this section, we take a well-known non-finite axiomatizability result in the setting
of process algebra due to Moller [20, 21], and use Theorem 1 to establish other, to the
best of our knowledge novel, non-finite axiomatizability results for several notions of
behavioral (pre)congruences over other process algebras. A brief comparison between
the full proof of the original result in [20, 21] and those based on Theorem 1 presented
here (and in the full version of this paper [5]) reveals that our proofs are substantially
more concise and simpler than direct proofs. This is despite the fact that the calculi
and notions of (pre)congruence treated henceforth are more sophisticated than the ones
treated in [20, 21].

Consider the subset of CCS [19] with the following syntax.

P ::= 0 | a.P | P+ P | P ||P

Note that here a.P stands for one unary operator (action-prefixing with one particular
action a) and not, as it is customary, for a collection of unary operators. Henceforth,
we denote the signature of the above-mentioned calculus by Σo since that fragment of
CCS will be the target language in all the applications of Theorem 1 to follow.

The operational semantics of the calculus above is given by the following SOS
rules.

(a)
a.x

a→x
(c0)

x0
a→y

x0 + x1
a→y

(p0)
x0

a→y0

x0 ||x1
a→y0 ||x1

Note that we have omitted the symmetric versions of (c0) and (p0), for brevity; further-
more, since there is only one action (and no co-action) in our signature, the standard
SOS rule for communication in CCS can be safely omitted.

Definition 4. A symmetric relation R ⊆ C (Σo)×C (Σo) is a strong bisimulation when
for all (p,q) ∈ R and p′ ∈ C (Σo), if p

a→ p′ then there exists a q′ such that q
a→q′ and

(p′,q′)∈R. Two closed terms p and q are strongly bisimilar (or just bisimilar), denoted
by p↔b q, when there exists a strong bisimulation R such that (p,q) ∈ R.

Moller showed in [20, 21] that strong bisimilarity affords no finite ground-complete
axiomatization over the above calculus. His negative result was a corollary of the fol-
lowing stronger theorem.

Theorem 5 (Moller [20, 21]). There is no finite axiomatization over the signature Σo

that is sound modulo strong bisimilarity and proves all the equations in the set M
defined below:
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{a1 ||(a1 + a2 + · · ·+ an) = a.(a1 + a2 + · · ·+ an)+ a2 + a3 + · · ·+ an+1 | n ≥ 1} ,

where ai = a. . . . .a.
︸ ︷︷ ︸

i times

0, for each i ≥ 1.

In the remainder of this section, we use Theorems 1 and 5 to obtain other non-finite ax-
iomatizability results, with the aforementioned fragment of CCS as the target language
for our reductions.

4.1 Discrete-time CCS and Timed Bisimilarity

Timed CCS is a timed extension of CCS proposed by Wang Yi [27]. In [8], we proved
some non-finite axiomatizability results for Timed CCS modulo timed bisimilarity un-
der the assumption that the underlying time domain satisfy a density property, and
left open whether those results carry over to the discrete-time fragment of Timed CCS
(referred to as DiTCCS in what follows). In this section, we instantiate our reduction
theorem to show that a finite sound and ground-complete axiomatization for DiTCCS
modulo timed bisimilarity does not exist.

Let A be a set of actions that contains the action a. Following Milner, we write A
for the set of complementary actions {b | b ∈ A}, and assume that α = α for each
α ∈ A∪A. The internal action is denoted by τ /∈ A∪A. The syntax of DiTCCS is given
by the grammar:

P ::= 0 | μ .P | ε(d).P | P+ P | P ||P ,

where μ .P is a set of unary operators, one for each μ ∈ A∪A∪{τ}, and ε(d).P is a
set of unary operators, one for each d ∈ N = {1,2, . . .}. In this subsection, we refer to
the signature of DiTCCS as Σe since we use this language as our source language in
applying Theorem 1. The operational semantics of DiTCCS is given by the following
set of SOS rules, where α ∈ A∪A, μ ∈ A∪A∪{τ} and d,e ∈ N.

(tn)
0

ε(d)→ 0
(a)

μ .x
μ→x

(ta)
α.x

ε(d)→ α.x

(td0)
ε(d).x

ε(d)→ x
(td1)

ε(d + e).x
ε(d)→ ε(e).x

(td2)
x

ε(e)→ y

ε(d).x
ε(d+e)→ y

(c0)
x0

μ→y

x0 + x1
μ→y

(tc)
x0

ε(d)→ y0 x1
ε(d)→ y1

x0 + x1
ε(d)→ y0 + y1

(p0)
x0

μ→y0

x0 ||x1
μ→y0 ||x1

(p2)
x0

α→y0 x1
α→y1

x0 ||x1
τ→y0 ||y1

(tp)
x0

ε(d)→ y0 x1
ε(d)→ y1

x0 ||x1
ε(d)→ y0 ||y1

Sortd(x0)∩Sortd(x1) = /0

These rules define transitions between closed DiTCCS terms. (Again, we have omitted
the symmetric versions of (c0) and (p0).) The side condition in rule (tp) uses the
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timed sort Sortd(p), where p is a closed DiTCCS term and d ∈ N, which is defined

thus: Sortd(p) = {α ∈ A∪A | p
ε(e)→ p′ α→ for some p′ and e < d} .

The notion of equivalence over DiTCCS we shall consider in what follows is timed
bisimilarity, denoted by ↔t . Timed bisimilarity is just bisimilarity over the labelled
transition system whose states are terms in C (Σe) and whose transitions are of the

form p
χ→ p′, where χ ∈ A∪A∪{τ}∪ {ε(d) | d ∈ N}. It is well known that ↔t is a

congruence over DiTCCS; see, e.g., [27, Theorem 5.1], where the congruence result is
stated for dense-time Timed CCS.

Theorem 6. DiTCCS affords no finite ground-complete axiomatization modulo ↔t .

We prove the above result using Theorem 1. To this end, we begin by defining the
following translation ̂ : T (Σe) → T (Σo).

̂0 = 0 x̂ = x μ̂ .p =

{

a.p̂ if μ = a,

0 if μ �= a.

ε̂(d).p = 0 p̂ + q = p̂+ q̂ ̂p ||q = p̂ || q̂

Lemma 2. The mapping ̂defined above is structural.

Consider now the set of Moller’s equations M , which are sound over CCS modulo
bisimilarity. In order to prove that timed bisimilarity is not finitely based over DiTCCS,
by Theorem 1 it suffices only to show the following statements:

1. t ↔t u ⇒ ̂t ↔b û, for each t,u ∈ T (Σe), and
2. ̂ is M -reflecting.

Note that, for each axiomatization E over the signature of DiTCCS,

E � t = u ⇒ ̂E �̂t = û

holds by Theorem 2 sincê is structural (Lemma 2). Therefore, once we prove the two
statements above, Theorem 6 indeed follows as a corollary of Theorem 1.

Next, we give the proofs of the above two statements.

1. Proof of t ↔t u ⇒ ̂t ↔b û.
In order to prove this statement, it suffices to show that the relation

R = {(σ(̂t),σ(û)) | t ↔t u∧σ : V → C (Σo)}

is a bisimulation. To this end, observe, first of all, that R is symmetric. In order to
prove that R satisfies the transfer property in Definition 4, we shall make use of the
following two claims, whose proof will be given later.

a. For all p ∈ C (Σe) and p′ ∈ C (Σo), if p̂
a→ p′ with respect to the operational se-

mantics of CCS, then there exists some p′′ ∈C (Σe) such that p
a→ p′′, with respect

to the operational semantics of DiTCCS, and ̂p′′ ≡ p′.
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b. For all p, p′ ∈ C (Σe), if p
a→ p′ with respect to the operational semantics of

DiTCCS, then p̂
a→ ̂p′ with respect to the operational semantics of CCS.

Assume now that σ(̂t) R σ(û) and σ(̂t) a→ p′0. By Lemmas 1 and 2, σ(̂t) ≡ ̂σ(t). It
follows from item 1a above that σ(t) a→ p0, for some p0 such that p̂0 ≡ p′0. Further-

more, as t and u are timed bisimilar, σ(u) a→ p1, for some p1 such that p0 ↔t p1.

From item 1b and Lemmas 1–2, we have that σ(û) ≡ ̂σ(u) a→ p̂1 and, by the defini-
tion of R, we may conclude that p′0 = p̂0 R p̂1, which was to be shown.
In order to complete the proof of this statement, we are therefore left to show
items 1a and 1b. This we now proceed to do.

a. Proof of item 1a.
We prove this claim by an induction on the structure of p, and only detail the
argument for two representative cases.
– Assume that p ≡ μ .p0. Then p must be of the form a.p0 (in order for p̂ to

make an a-transition) and thus, p̂ = a.p̂0
a→ p̂0 = p′. The claim then follows

since a.p0
a→ p0.

– Assume that p ≡ p0 + p1. Then p̂ ≡ p̂0 + p̂1. Suppose, without loss of gen-
erality, that the transition p̂0 + p̂1

a→ p′ is due to an application of rule (c0);
thus, p̂0

a→ p′. It then follows from the induction hypothesis that p0
a→ p′′

for some p′′ such that ̂p′′ ≡ p′. By applying deduction rule (c0), we obtain
p ≡ p0 + p1

a→ p′′.
b. Proof of item 1b.

By an induction on the depth of the proof for p
a→ p′. We distinguish the following

cases based on the last deduction rule applied to obtain p
a→ p′.

(a) In this case, p is of the form a.p0 and p′ ≡ p0 Thus, using to the same deduction
rule in the semantics of CCS, we have p̂ ≡ a.p̂0

a→ p̂0.
(c0) Then p ≡ p0 + p1 and p0

a→ p′ by a shorter inference. It follows from the in-
duction hypothesis that p̂0

a→ ̂p′ and, using rule (c0) in the semantics of CCS,
we infer that p̂0 + p̂1

a→ ̂p′. Furthermore, by the definition of ,̂ we have that
p̂ ≡ p̂0 + p̂1.

The cases for deduction rules (c1), (p0) and (p1) are similar to the case of (c0).

The proof of the first statement is now complete.

2. Proof of the fact that ̂ is M -reflecting.
We show that all axioms in M are sound modulo ↔t . Since ̂ is the identity over
CCS terms, the statement then follows immediately. To this end, we prove the fol-
lowing two claims.

a. For each p ∈ C (Σo) and positive integer d, p
ε(d)→ p′ iff p ≡ p′. We prove this

claim by an induction on the structure of p. The cases for 0 and a.p0 follow from
deduction rules (tn) and (ta), respectively. The cases for p0 + p1 and p0 || p1

follow from the induction hypothesis, and (tc) and (tp), respectively.
b. For each p,q ∈ C (Σo), if p↔b q then p↔t q.
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We show that ↔b is a timed bisimulation. To this end, note, first of all, that the
relation ↔b is symmetric. Assume now that p

a→ p′ and p↔b q. Since ↔b is a
bisimulation, it follows that q

a→q′ (with respect to the semantics of CCS, and
thus of DiTCCS using the same deduction rules) for some q′ such that p′ ↔b q′,
and we are done. That delay transitions of p may be matched by q follows trivially
from the previous item.

Since all the provisos of Theorem 1 are met, Theorem 6 follows.

4.2 Temporal CCS

In the paper [23], Moller and Tofts proposed another timed extension of Milner’s
CCS, which they called Temporal Calculus of Communicating Systems (referred to
as TCCSMT in what follows to avoid any confusion with Wang Yi’s Timed CCS), and
studied its semantics theory modulo timed bisimilarity. Our order of business in this
section is to use our reduction-based method to show that timed bisimilarity affords no
finite ground-complete axiomatization over TCCSMT.

For our purposes in this section, TCCSMT is the language generated by the follow-
ing grammar:

P ::= 0 | μ .P | (d).P | δ .P | P+ P | P⊕P | P ||P ,

where μ .P is a set of unary operators, one for each μ ∈ A∪A∪{τ}, and (d).P is a set
of unary operators, one for each positive integer d. The intuition underlying each of the
operators in the signature of TCCSMT is carefully described in [23, Pages 402–403].
For the sake of clarity, however, we find it useful to mention that:

– process terms of the form 0 or α.p cannot delay, unlike in DiTCCS;
– (d).p behaves exactly like ε(d).p in DiTCCS;
– δ .p describes a process which behaves like p, but is willing to wait any amount to

time before doing so; and
– p⊕ q is a “weak choice” between p and q. The choice between p and q is made

upon performance of an action from either of the two processes, or at the occurrence
of a time delay which can only be performed by one of the processes. By way of
example, as a.p cannot delay, a process of the form a.p⊕ (1).0 will be transformed
into 0 after a delay of one time unit.

In order to define the operational semantics of the weak choice operator, the Plotkin-
style rules for that operator from [23] make use of the function maxdelay(), which
associates a non-negative integer or ω with each closed TCCSMT term. The function
maxdelay() is defined by structural induction on terms as follows:

maxdelay(0) = maxdelay(μ .p) = 0 maxdelay(δ .p) = ω
maxdelay(p + q) = maxdelay(p ||q) = min(maxdelay(p),maxdelay(q))
maxdelay(p⊕q) = max(maxdelay(p),maxdelay(q)) .
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δ .x
ε(d)→ δ .x (d).x

ε(d)→ x (d + e).x
ε(d)→ (e).x

x
ε(e)→ y

(d).x
ε(d+e)→ y

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 ⊕ x1
ε(d)→ y0 ⊕ y1

x0
ε(d)→ y0 maxdelay(x1) < d

x0 ⊕ x1
ε(d)→ y0

x1
ε(d)→ y1 maxdelay(x0) < d

x0 ⊕ x1
ε(d)→ y1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 + x1
ε(d)→ y0 + y1

x0
ε(d)→ y0 x1

ε(d)→ y1

x0 ||x1
ε(d)→ y0 ||y1

Table 1 Rules defining the delay transitions
ε(d)→ over TCCSMT (d ∈ N)

The operational semantics of closed TCCSMT terms is given by means of two types of

transitions, namely actions transitions
μ→ with μ ∈ A∪A∪{τ} and delay transitions

ε(d)→ , with d ∈ N. The transition relations
μ→ are defined as for DiTCCS, with the

proviso that

– (d).p has no outgoing action transitions,
– p⊕q has the same outgoing action transitions as p + q, and
– the action transitions of δ .p are exactly those of p—i.e., they are those provable

using the rules

x
μ→y

δ .x
μ→y

(μ ∈ A∪A∪{τ}) .

On the other hand, the transition relations
ε(d)→ are the least relations satisfying the

rules on Table 1. Closed TCCSMT terms are considered modulo timed bisimilarity ↔t
(as defined in Section 4.1). Timed bisimilarity is a congruence over TCCSMT as shown
in [23, Proposition 3.4].

Theorem 7. TCCSMT affords no finite ground-complete axiomatization modulo ↔t .

In the remainder of this subsection, we prove the above result using Theorem 1. To
this end, we begin by defining the following translation ̂ from open TCCSMT terms to
open CCS terms.

̂0 = 0 x̂ = x ̂δ .p = p̂

â.p = a.p̂ μ̂ .p = 0 for μ �= a (̂d).p = 0
p̂ + q = p̂+ q̂ p̂⊕q = p̂+ q̂ ̂p ||q = p̂ || q̂

Remark 1. Note that the mapping obtained from the one defined above by associating
0 to p̂⊕q would not be a reduction, since it does not preserve valid equations. For
example, the valid equation x⊕ x = x would not be preserved by such a mapping.

Lemma 3. The mapping ̂defined above is structural.
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Consider now the set of Moller’s equations M , which are sound over CCS mod-
ulo bisimilarity. In order to prove that timed bisimilarity is not finitely based over
TCCSMT, by Theorem 1 it suffices only to show the following statements:

1. t ↔t u implies ̂t ↔b û, for all TCCSMT terms t,u, and
2. ̂ is M -reflecting.

Note that, for all TCCSMT terms t,u and axiomatization E ,

E � t = u ⇒ ̂E �̂t = û

holds by Theorem 2 sincê is structural (Lemma 3). Therefore, once we prove the two
statements above, Theorem 7 indeed follows as a corollary of Theorem 1.

We establish the two statements above in turn. The following lemma will be useful.

Lemma 4.

1. Assume that p̂
a→r holds with respect to the operational semantics of CCS for some

closed TCCSMT term p and CCS term r. Then p
a→ p′ holds with respect to the oper-

ational semantics of TCCSMT for some closed TCCSMT term p′ such that ̂p′ = r.
2. If p

a→ p′ holds with respect to the operational semantics of TCCSMT for some closed
TCCSMT terms p, p′ then p̂

a→ ̂p′ holds with respect to the operational semantics of
CCS.

We are now ready to show that ̂preserves sound equations.

Proposition 1. t ↔t u implies ̂t ↔b û, for all TCCSMT terms t,u.

Proof. It suffices to show that the relation

R = {(p̂, q̂) | p↔t q, with p,q closed TCCSMT terms}

is a strong bisimulation. Indeed, assuming that R is a strong bisimulation, we can show
the proposition as follows.

Suppose that t ↔t u holds for some TCCSMT terms t,u. Let σ be a closed CCS
substitution. We shall argue that σ(̂t)↔b σ(û) holds. This follows because

– σ(̂t) = ̂σ(t) and σ(û) = ̂σ(u) (by Lemma 1, as ̂ is structural and σ = σ̂ ), and

– ̂σ(t)↔b
̂σ(u) (since ̂σ(t) R ̂σ(u) and R is a strong bisimulation).

So we are left to show that R is indeed a strong bisimulation. This can be easily checked
using Lemma 4. ��
To complete the proof of Theorem 7, we now show that ̂ is M -reflecting. Since ̂ is
the identity function over CCS terms, it suffices to prove the following result. (Note
that, since CCS is a reduct of the language TCCSMT, it makes sense to consider CCS
terms modulo ↔t .)

Proposition 2. The relations ↔t and ↔b coincide over CCS terms.
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Proof. The relation ↔t is included in ↔b over the collection of CCS terms by Propo-
sition 1. The converse inclusion follows because ↔b is a timed bisimulation. This can

be shown using Lemma 4 and observing that p
ε(d)
� holds for each closed CCS term p

and positive integer d. ��
Since all the provisos of Theorem 1 are met by our reduction, Theorem 7 follows.

4.3 Other Calculi, Equivalences and Preorders

There are many other extensions of process algebras in the literature, and each of these
languages comes equipped with notions of behavioral equivalence and/or preorder. In
this section, we briefly review the results we obtained using our reduction technique
for a few such extensions and refer the reader to the extended version of this paper [5]
for the full treatment of these cases. Here we limit ourselves to remarking that all the
non-finite axiomatizability results covered by the following theorem are proved using
M -reflecting reductions to CCS.

Theorem 8. The following process algebras afford no finite (ground-)complete axiom-
atization: ATP modulo timed bisimilarity [25]; TACSUT modulo the faster-than pre-
order [16]; TACSLT modulo the MT-preorder [17]; TACS modulo urgent timed bisim-
ilarity [18]; and IMC modulo strong Markovian bisimilarity [15].

5 Limitations of Our Approach

As witnessed by the applications described in the previous section, our reduction-based
method for proving non-finite axiomatizability results, based on Theorem 1, is widely
applicable. Moreover, in all of the applications of Theorem 1 we presented in Sec-
tion 4, we used CCS modulo bisimilarity as our target language for an M -reflecting
reduction. In this section, we give an example of an equational theory within the realm
of classic process algebra, whose non-finite axiomatizability cannot be shown in that
fashion.

The language CCSΩ (a variant of the calculus presented in [7]) is obtained by
adding the constant Ω to the fragment of CCS introduced in Section 4. Intuitively,
Ω stands for a process whose behavior is completely unspecified. The operational se-
mantics of CCSΩ is given by two ingredients:

a→ transitions, which are defined by
the same deduction rules used for CCS (thus, Ω has no outgoing transitions), and a
convergence predicate ↓, which is the least predicate over closed CCSΩ satisfying the
rules given below.

0 ↓ a.p ↓
p ↓ q ↓
p + q ↓

p ↓ q ↓
p ||q ↓

So, for instance a.Ω ↓, but neither Ω ↓ nor a ||Ω ↓ hold.
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The following notion of prebisimilarity is a relevant notion of behavioral preorder
in the presence of divergence as adopted in, e.g., [13]. We refer the interested reader to
that paper and the references therein for a wealth of results on the semantic theory of
CCSΩ modulo prebisimilarity.

Definition 5. The relation
�∼pre is the largest relation over the closed terms of CCSΩ

satisfying the following clauses, whenever p
�∼pre q,

1. for each p′, if p
a→ p′ then there exists a q′ such that q

a→q′ and p′ �∼pre q′;
2. if p ↓, then

a. q ↓ and
b. for each q′, if q

a→q′, then there exists a p′ such that p
a→ p′ and p′ �∼pre q′.

The relation
�∼pre is a preorder and a precongruence over closed CCSΩ terms. More-

over, it coincides with bisimilarity over CCS terms.
Using an argument based on the soundness of the equations in the set M over

CCSΩ modulo
�∼pre , we can show the following theorem.

Theorem 9. CCSΩ affords no finite sound and ground-complete axiomatization mod-

ulo
�∼pre .

It is natural to wonder whether the above result can be established, like all those we
presented in Section 4, by using CCS modulo bisimilarity as our target language for
an M -reflecting reduction. The following theorem shows that this is not possible, and
highlights a limitation of our present proof strategy based on reductions to CCS mod-
ulo bisimilarity.

Theorem 10. There is no M -reflecting reduction from CCSΩ modulo
�∼pre to CCS

modulo strong bisimilarity.

6 Conclusions

In this paper, we have proposed a meta-theorem for proving non-finite axiomatizability
results. This theorem can be used to show such results when there exists a reduction
from the calculus under consideration to a calculus for which non-finite axiomatiz-
ability is known. If the reduction is defined structurally (in the sense of Definition 3),
then one only needs to prove that the reduction preserves sound (in)equalities and
that it reflects a set of “difficult” (in)equations that form the core of the non-finite
axiomatizability result over the target calculus. We have shown seven new non-finite
axiomatizability results in process algebra by applying our meta-theorem and reduc-
ing different calculi (modulo their respective notion of equivalence or preorder) to a
subset of CCS. We intend to apply our reduction technique to obtain several other new
non-finite axiomatizability results in process algebra.
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The above-mentioned conditions on the reductions can be established following
similar lines for the different calculi and different notions of (pre)congruence stud-
ied in this paper. The resulting proofs are substantially more concise and simpler than
typical proofs of non-finite axiomatizability. We believe that the proofs of the afore-
mentioned two conditions can be further simplified if one commits to particular models
such as those given by Plotkin-style SOS rules. A promising future research direction is
to study whether one can apply our meta-theorem in conservative and orthogonal lan-
guage extensions. Using the SOS meta-theory, one can seek sufficient syntactic condi-
tions on the reduction function that would automatically provide us with the properties
required by our meta-theorem. Furthermore, in this paper, we pointed out a limitation
of our meta-theorem by presenting a non-finite axiomatizability result that cannot be
proved using our general strategy of reducing calculi to CCS. Studying the roots of
such limitations may lead to improvements upon the meta-theorem presented in this
paper.
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Abstract We investigate the equational theory of several fragments of CCS modulo
(strong) bisimilarity with special attention to restriction and relabelling. The largest
fragment we consider includes action prefixing, choice, parallel composition without
communication, restriction and relabelling. We present a finite equational base (i.e.,
a finite ground-complete and omega-complete axiomatisation) for it, including the
left merge from ACP as auxiliary operation to facilitate the axiomatisation of parallel
composition.

1 Introduction

The Calculus of Communicating Systems (CCS) was developed by Robin Milner in
the late 1970s [8]. This calculus introduced a formal language for describing processes,
using a transition system to give an operational meaning to the expressions in the lan-
guage. In this paper we pay special attention to the restriction and relabelling operators
of CCS.

The restriction operator takes a process and a set of actions as arguments. It delimits
the scope of actions by preventing the execution by the process of the actions in the
set. Restriction is often used to specify the communication topology of a system by
blocking the execution of interleaving actions of parallel processes so that only the
result of (synchronous) communication remains. Restriction is also present in ACP [3],
where it is called encapsulation.

The relabelling operator takes a process and a function from actions to actions. It
renames the actions in the process according to the function, and can be used to in-
stantiate a generic specification for specific needs. In CCS, relabelling is, e.g., used
in defining the so-called linking operation, which is at the core of many of the spec-
ifications offered in [9]. Relabelling is not present in ACP, but it can be added and
then it increases the expressiveness of the language. Namely, Baeten and Bergstra
prove in [2] that the process Queue cannot be specified by means of a finite guarded
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recursive specification over ACP, whereas it can be specified by means of a finite
guarded recursive specification over ACP with renaming.

In [6] (see also [9]), Hennessy and Milner propose an axiomatisation for CCS mod-
ulo bisimilarity that they prove ground-complete (i.e., all valid equations involving
terms without variables are equationally derivable from it). Their axiomatisation is in-
finite, which is unavoidable as proved by Moller [11]. For a finite axiomatisation it is
necessary to add auxiliary operators, e.g., the left merge and communication merge of
ACP [3].

We want to give an equational base (i.e., an axiomatisation that is not just ground-
complete but complete also for equations involving terms with variables) for CCS
modulo bisimilarity. Perhaps surprisingly, no complete axiomatisations of bisimilarity
over languages including restriction and relabelling have been given to date. In [7],
Milner studied an algebra of flowgraphs with operations of (parallel) composition,
restriction and relabelling, and provided a complete axiomatisation for it. In that ref-
erence, however, the notion of equivalence between expressions is purely “structural”,
since two expressions are equated when they denote the same flowgraph up to isomor-
phism.

In this paper we present finite equational bases for fragments of CCS modulo bisim-
ilarity that include restriction and relabelling operators. The largest fragment we con-
sider here includes all the operators from recursion-free CCS, but the parallel compo-
sition operator is limited to pure interleaving and does not allow for synchronisation
between parallel components. Our completeness proofs build on results and techniques
developed in [1], where a finite axiomatisation for the fragment of CCS without restric-
tion and relabelling operators is proved complete.

For our completeness proofs we adopt the classic normal form strategy. This entails
showing that all process terms can be proved equal to some normal form using the ax-
ioms, followed by the construction of a distinguishing valuation that ensures that two
normal forms are equal under this valuation only if they can be proved equal. Both the
above-mentioned steps involve non-trivial extensions of the techniques from [1] for the
languages we consider because, unlike for ground-complete axiomatisations, restric-
tion and relabelling cannot be eliminated from terms. This means that normal forms
may contain occurrences of these operations, and their form will be more complicated
than that considered thus far in the literature. Moreover, in order to implement the lat-
ter step in the above-mentioned proof technique, distinguishing valuations will need to
be defined in such a way that they allow us to detect the restrictions and relabellings
that occur in the normal forms.

For the shape of the normal forms in the present paper it is crucial that restriction
and relabelling distribute over parallel composition. This is the reason that we now
only consider an operator for parallel composition that is limited to pure interleaving;
neither restriction nor relabelling distribute over parallel composition in the presence of
synchronisation. So an obvious avenue for future work is the technically challenging
problem of giving a complete axiomatisation of full CCS modulo bisimilarity, with
restriction, relabelling and parallel composition that allows for synchronisation.

The paper is organised as follows. In Sect. 2 we introduce the fragments of CCS that
will be discussed in this paper. In Sects. 3–5 we propose equational bases for three
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fragments of CCS: first only with the restriction operator, then only with the relabelling
operator, and finally with both operators.

2 Preliminaries

In this section we introduce a process calculus that is obtained from Milner’s pure
CCS [9] by omitting recursion, replacing parallel composition by an operation for
pure interleaving (i.e., which does not include synchronisation between components),
and adding the left merge of Bergstra and Klop [3]. The calculus gives rise to a process
algebra P for which we will present a (finite) axiomatisation. The main result of this
paper states that this axiomatisation is complete.

We fix a set of action labels L , a set of co-action labels L disjoint from L and a
bijection · : L → L . We define the set of actions A as L ∪L . The inverse of · we
shall also denote by ·, and thus a = a for each a ∈ A . In [9], Milner assumes that L
and L are infinite. However, to obtain a finite axiomatisation, we need to require that
the sets L and L are finite. We also fix a countably infinite set of variables V . The
meta-variables a, b, and c generally range over A ; x, y, and z range over V .

A relabelling function is a function f : A → A such that f (a) = f (a) for each
a ∈ A . With every relabelling function f : A → A we associate a function f−1 :
P(A )→P(A ) such that f−1(A ′)= {a | f (a)∈A ′} for each A ′ ⊆A . The identity
relabelling function Id is defined by Id(a) = a for each a ∈ A . For each relabelling
function f and L ⊆ L , we write f � L for the relabelling function defined by

( f � L)(a) =
{

f (a) if a ∈ L or a ∈ L,
a otherwise.

The meta-variables f and g generally refer to relabelling functions, and K and L
refer to subsets of L .

The set of process terms T\,[] is generated by the following grammar:

T ::= 0 | x | a.T | T+ T | T ‖ T | T � T | T\L | T[ f ]

where a ∈ A , x ∈ V , L ⊆ L , and f : A → A is a relabelling function. The meta-
variables p, q and r generally range over T\,[]. We use the following convention for
the binding power of the operators in decreasing order: relabelling [ f ] and restriction
\ L (tightest binding), prefixing a. , parallel composition ‖ and left merge � ,

alternative composition + . In the remainder of the paper we also need notation for
the following subsets of T\,[]: we use T\ to denote the set of all process terms without
occurrences of relabelling operators, and T[] to denote the set of all process terms
without occurrences of restriction operators.

Process terms that do not contain any variables are called closed. The set of closed
process terms is denoted by T C

\,[]. We give an operational semantics to closed terms
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using the binary relations
a−→ (a ∈ A ) on T C

\,[] defined by means of the specification
in Table 2.1.

1
a.p

a−→ p
2

p
a−→ p′

p+q
a−→ p′

3
q

a−→ q′

p+q
a−→ q′

4
p

a−→ p′

p ‖ q
a−→ p′ ‖ q

5
q

a−→ q′

p ‖ q
a−→ p ‖ q′

6
p

a−→ p′

p � q
a−→ p′ ‖ q

7
p

a−→ p′ a,a 	∈ L

p\L
a−→ p′ \L

8
p

a−→ p′

p[ f ]
f (a)−→ p′[ f ]

Table 2.1: Operational semantics

If p
a−→ p′ for some a ∈ A , then we call p′ a residual of p. If for a term p and an

action a there does not exist a term p′ such that p
a−→ p′, then we write p 	 a−→.

It is technically convenient to extend the usage of the rules in Table 2.1 by letting
them define binary relations

a−→ (a ∈A ) on the full set of terms T\,[]. (Since there are
no operational rules for variables, this effectively means that variables are assigned the
“same behaviour” as 0.)

The depth d(p) can then be defined for all process terms p ∈ T\,[] as the maximum
number of consecutive transitions that can be performed starting from p, i.e.,

d(p) = max{n | ∃p1,...,pn∈T\,[] s.t. p
a1−→ p1

a2−→ . . .
an−→ pn}.

The operational semantics assigns behaviour to closed terms. The notion of bisimi-
larity [12] relates closed process terms that exhibit equal behaviour.

Definition 1. A bisimulation is a symmetric binary relation R on T C
\,[] such that p R q

implies

if p
a−→ p′, then there exists some q′ ∈ T C

\,[] such that q
a−→ q′ and p′ R q′.

Closed process terms p,q ∈ T C
\,[] are said to be bisimilar (notation: p↔ q) if a bisimu-

lation relation R exists such that p R q.

It is well-known that↔ is an equivalence relation. We denote by [p] the equivalence
class of a closed process term p∈T C

\,[] modulo bisimilarity, and by T C
\,[]/↔ the set of all

such equivalence classes. The rules in Table 2.1 are all in de Simone’s format [13], and
from this it follows that bisimilarity is compatible with the syntactic constructs of our
process calculus. So T C

\,[]/↔ is the universe of a process algebra with a distinguished
element 0, unary operators a. (for all a ∈ A ), [ f ] (for all relabelling functions f :
A → A ), and \L (for all L ⊆ L ), and binary operators + , ‖ and � defined
as follows:

0 = [0] , [p] ‖ [q] = [p ‖ q] , [p]\L = [p \L] ,
a.[p] = [a.p] , [p] � [q] = [p � q] , [p][ f ] = [p[ f ] ] ,
[p]+ [q] = [p +q] .
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Henceforth we shall denote this process algebra by P. Members of P are called pro-
cesses and will be ranged over by p, q and r like process terms. This convention will
not lead to confusion because it will be clear from the context which is meant.

To be able to reason syntactically about P, we define how process terms can be used
to denote elements of P and present an inference system for the derivation of equations
between process terms that are valid in P.

Definition 2. A valuation is a mapping ν : V → P. Such a mapping may be applied to
process terms in T\,[] using the evaluation mapping [[·]]ν : T\,[] → P defined inductively
by:

[[0]]ν = 0 , [[q + r]]ν = [[q]]ν+[[r]]ν , [[q \L]]ν = [[q]]ν\L ,
[[x]]ν = ν(x) , [[q ‖ r]]ν = [[q]]ν ‖ [[r]]ν , [[q[ f ]]]ν = [[q]]ν[ f ] ,
[[a.q]]ν = a.[[q]]ν , [[q � r]]ν = [[q]]ν � [[r]]ν .

Note that the evaluation mapping maps process terms to members of the algebra
P, given an assignment of processes to variables. When an evaluation mapping is ap-
plied to a closed process term, the assignment is irrelevant and the evaluation mapping
amounts to interpreting the syntactic constructs as the corresponding operations of the
algebra. Thus, without fixing a specific evaluation mapping, we can use a closed term
to denote an element of P; this element of P is then, of course, the equivalence class
that contains the particular closed term. For example, the closed term a.0+b.0 denotes
the element [[a.0 +b.0]]ν of P.

A process equation is a pair of process terms (p, q) written as p ≈ q. The equation
p ≈ q is valid in P if [[p]]ν = [[q]]ν for all valuations ν : V → P. Henceforth, we write
p↔ q if p ≈ q is valid in P.

(A1) x+ y ≈ y+x
(A2) (x+ y)+ z ≈ x+(y+ z)
(A3) x+ x ≈ x
(A4) x+0 ≈ x

(LM1) x � 0 ≈ x
(LM2) 0 � x ≈ 0
(LM3) a.x � y ≈ a.(x ‖ y)
(LM4) (x+ y) � z ≈ x � z+ y � z
(LM5) (x � y) � z ≈ x � (y ‖ z)

(M) x ‖ y ≈ x � y+ y � x

(RS1a) x\ /0 ≈ x
(RS1b) x\L ≈ 0
(RS2) 0\L ≈ 0

(RS3) a.x\L ≈
{

0 if a,a ∈ L
a.(x\L) if a,a 	∈ L

(RS4) (x+ y)\L ≈ x\L+ y\L
(RS5) (x � y)\L ≈ x\L � y\L
(RS6) (x\L)\K ≈ x\ (L∪K)

(RL1) x[Id] ≈ x
(RL2) 0[ f ] ≈ 0
(RL3) (a.x)[ f ] ≈ f (a).(x[ f ])
(RL4) (x+ y)[ f ] ≈ x[ f ]+y[ f ]
(RL5) (x � y)[ f ] ≈ x[ f ] � y[ f ]
(RL6) (x[ f ])[g] ≈ x[g◦ f ]

(RR1) x[ f ]\L ≈ (x\ f −1(L))[ f ]
(RR2) (x\L)[ f ] ≈ (x\L)[g] if f � (L −L) = g � (L −L)

Table 2.2: The set of axioms E
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Table 2.2 presents a set of process equations E that are all well-known to be valid
in P (see, e.g., [6, 9, 5, 3]). We shall use the process equations in E as the axioms of an
inference system with as rules the familiar rules of equational logic [4]. Henceforth,
whenever we write p ≈ q we mean that the process equation p ≈ q is derivable within
this inference system. (In the cases in which we intend to highlight that only a proper
subset of the axioms in E is needed to derive p ≈ q, we shall explicitly mention the
needed axioms.)

Since the axioms are valid in P and the rules of equational logic preserve validity,
we have the following soundness result.

Proposition 1 (Soundness). For all process terms p,q ∈ T\,[], if p ≈ q, then p↔ q.

The main goal of this paper is to prove that the inference system is also complete,
i.e., that, for all process terms p,q ∈ T\,[], if p ↔ q then p ≈ q; if this is the case,
then it follows that E is an equational base for the algebra P. Our completeness proof
proceeds according to the following strategy:

1. Identify an appropriate notion of normal form and prove that every term in T\,[] is
rewritable according to the axioms in E to a normal form. To establish complete-
ness, it is then enough to prove that s↔ t implies s ≈ t for all normal forms s and t.

2. Associate with every two normal forms s and t a distinguishing valuation, i.e., a
valuation ∗ : V → P such that if s 	≈ t, then [[s]]∗ 	= [[t]]∗. From this it follows that
s ↔ t implies s ≈ t for all normal forms s and t.

The first step is fairly straightforward, even though the normal forms we need to con-
sider involve all the operations in the calculus; the crux of our completeness proof is to
find a suitable distinguishing valuation and prove the property described in the second
step. Our distinguishing valuation combines several ideas that are best explained sepa-
rately. To this end, we shall, as stepping stones towards our main result, first apply the
aforementioned strategy to obtain completeness results for the fragments T\ and T[]

of our calculus. In Sect. 3 we consider the fragment without relabelling. In Sect. 4 we
study the fragment without restriction. Finally, in Sect. 5 we consider the full calculus.

We use the summation ∑i∈I pi (modulo A1, A2 and A4) to denote an alternative
composition of the form p1 + p2 + . . . for a finite set I and processes pi (i ∈ I). We also
define 0 = ∑i∈ /0 pi for the empty index set. Furthermore, we shall use an abbreviation
for iterated prefixing, defining a0.0 = 0 and ai+1.0 = a.(ai.0).

We conclude this section with a few properties pertaining to the algebra P that we
shall need in the rest of the paper.

The binary relations
a−→ (a ∈ A ) defined earlier for T C

\,[] induce binary relations
a−→ (a ∈ A ) on P as follows: for all p, p′ ∈ T C

\,[] we define that [p] a−→ [p′] iff for all

q ∈ [p] there exists a q′ ∈ [p′] such that q
a−→ q′.

Proposition 2. For all p,q,r ∈ P

1. p = 0 iff p 	 a−→ for all a ∈ A ;

2. a.p
b−→ r iff a = b and p = r;

3. p +q
a−→ r iff p

a−→ r or q
a−→ r;
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4. p � q
a−→ r iff there exists some p′ ∈ P such that p

a−→ p′ and r = p′ ‖ q;
5. p ‖ q

a−→ r iff p � q
a−→ r or q � p

a−→ r;
6. p \L

a−→ r iff a,a 	∈ L and there exists some q ∈ P such that p
a−→ q and r = q \L;

7. p[ f ] b−→ r iff there exist some a ∈ A and q ∈ P such that f (a) = b, p
a−→ q and

r = q[ f ].

Bisimulation equivalence preserves the notion of depth (i.e., the closed process
terms in an equivalence class have the same depth). Therefore we can define the depth
d(p) of a process p ∈ P as the depth of any of its members. As a technical tool we shall
also need the notion of branching degree b(p) of a process p ∈ P defined by

b(p) = |{(a, p′) | p
a−→ p′}|.

Lemma 1. For all p,q ∈ P, it holds that

1. b(0) = 0;
2. b(a.p) = 1;
3. b(p + q)≤ b(p)+ b(q);
4. b(p � q) = b(p);
5. b(p ‖ q) ≥ b(p) and b(p ‖ q) ≥ b(q).

An element p ∈ P is parallel prime if p 	= 0, and p = q ‖ r implies q = 0 or r = 0. A
parallel decomposition of p is a finite multiset [p1, . . . , pn] of parallel primes such that
p = p1 ‖ · · · ‖ pn. The following theorem and corollary are proved in [10].

Theorem 1. Every element of P has a unique parallel decomposition.

Corollary 1. Let p,q,r ∈ P. If p ‖ q = p ‖ r, then q = r.

3 Restriction

In this section we establish a completeness result for the fragment of our process cal-
culus that includes the restriction operators, but excludes relabelling operators.

The set of normal forms N\ is generated by the following grammar:

N ::= 0 | a.N | (x\L) � N | N+ N

where a ∈ A , x ∈ V , and L ⊂ L . We refer to a.s and (x \ L) � s as simple normal
forms.

Lemma 2. Every process term p ∈ T\ has a normal form s ∈ N\ such that p ≈ s is
provable using RS1a–RS6, LM1–LM5, and M.

Because of Lemma 2, each term can be written using the following general form:

∑
i∈I

ai.si + ∑
j∈J

(x j \Lj) � s j (modulo A1, A2 and A4)
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for finite index sets I,J and with ai ∈ A , si,s j ∈ N\, x j ∈ V , and Lj ⊂ L .
For our completeness proof, we define a valuation that allows us to distinguish non-

bisimilar normal forms. The definitions of the distinguishing valuations we use in this
paper are geared towards achieving the properties stated in Lemmas 5 and 6 to follow
(or similar lemmas in the subsequent sections). In particular, distinguishing valuations
will allow us to tell apart the different types of simple normal forms (Lemma 5).

Definition 3. Let w ≥ 1 and let �·� : V → (N−{0,1}) be an injective function. We
define the valuation �w for each variable x ∈ V by:

�w(x) = ∑
a∈L

a.ξ�x�·w with ξi = ∑
a∈L

i

∑
j=1

ai.0.

Note that if s is a simple normal form, then [[s]]�w has a unique residual. In the
following lemmas we establish some special properties pertaining to the valuation �w

when applied to normal forms. These properties will be used to show that �w is indeed
a distinguishing valuation.

First we state two properties of the process ξ�x�·w \L, which is a parallel component
of the unique residual of [[(x\L) � s]]�w.

Lemma 3. For all i ≥ 1 and L ⊂ L , the process ξi \ L is parallel prime, and its
branching degree b(ξi \L) is i · |L −L|.

The valuation �w is such that if the parameter w is greater than an estimated high-
est branching degree occurring already in s, then it is possible to determine from the
process [[s]]�w whether s has action prefixing or a left merge as head operator. This will
be explained in Lemma 5 below; first we formalise an appropriate estimation of the
highest branching degree occurring in a normal form s.

Definition 4. For all s ∈ N\, the estimated highest branching degree esb(s) occurring
in s is defined inductively as follows:

esb(0) = 0, esb(s+ t) = esb(s)+ esb(t),
esb(a.t) = max(1,esb(t)), esb((x\L) � t) = max(|L −L|,esb(t)),

with a ∈ A , x ∈ V , L ⊂ L and t ∈ N\.

Note 1. The lower bound |L −L| in the definition of esb((x\L) � t) follows from the
definition of �w (see Definition 3), since [[x\L]]�w

a−→ ξ�x�·w \L for all a ∈ L −L.

The following lemma shows that the estimated branching degree of s is an upper
bound on the branching degree of [[s]]�w.

Lemma 4. For every normal form s ∈ N\, b([[s]]�w) ≤ esb(s).

Lemma 5. Let s,s′ ∈ N\ with s simple, and let x ∈ V , L ⊂ L and w > esb(s).

1. If s = a.s′, then the branching degree of the unique residual of [[s]]�w is smaller than
w.
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2. If s = (x\L) � s′, then the branching degree of the unique residual of [[s]]�w is larger
than w.

Proof. Assume that p is the residual of s: [[s]]�w
a−→ p for some a ∈ L . We have the

following two cases:

1. If s = a.s′, then p = [[s′]]�w. Because esb(s) < w, by Definition 4 esb(s′)≤ esb(s) < w.
Hence, by Lemma 4, the branching degree of [[s′]]�w is smaller than w.

2. If s = (x\L) � s′, then p = (ξ�x�·w \L) ‖ [[s′]]�w. We have by Lemma 3 that b(ξ�x�·w \
L) = �x� ·w · |L −L| > w (given that L ⊂ L and �x� > 1). Because [[s′]]�w does not
decrease the branching degree of the residual p (by Lemma 1), we may conclude
that the residual p has a branching degree that exceeds w. ��
When it has been determined from the unique residual of [[s]]�w that s has a left

merge as head operator, then the following key lemma allows us to determine which
variable occurs in its left argument, and by which proper subset of L this variable is
restricted.

Lemma 6. For i, j ≥ 1 and K,L ⊂ L , if ξi \K = ξ j \L, then K = L and i = j.

Proof. We first show that K = L. Assume that a ∈ L −K. By Definition 3 and Propo-
sition 2(6) there exists some r ∈ P such that ξi \K

a−→ r. Therefore ξ j \L
a−→ r also

holds. However, by Proposition 2(6) this also means that a ∈ L − L. The case that
a ∈ L − L is symmetrical. Hence, since a ∈ L −K iff a ∈ L − L, it follows that
K = L.

Because K = L and ξi \K = ξ j \L, we know that b(ξi \K) = b(ξ j \K) and therefore
i · |L −K|= j · |L −K| by Lemma 3. Since K ⊂ L , it follows that i = j. ��

The following result states that the valuation �w is indeed distinguishing.

Theorem 2. For every two normal forms s,t ∈N\ with w > esb(s),esb(t), it holds that
if [[s]]�w = [[t]]�w, then s ≈ t modulo A1–A4.

Proof. Assume that [[s]]�w = [[t]]�w holds; we prove that s ≈ t is derivable using A1–
A4 by induction on the sum of the depths of s and t. We do this by showing that for
every summand si of s there exists a summand t j of t such that si ≈ t j modulo A1–A4.
Consider the following case analysis based on the syntax of an arbitrary summand si

of s:

1. If si = a.s′i, then [[si]]�w
a−→ [[s′i]]�w. Because [[s]]�w = [[t]]�w, there must also be a sum-

mand t j of t such that [[t j]]�w
a−→ [[s′i]]�w. By Lemma 5 we know that t j must have the

form b.t ′j, because the branching degree of the unique residual of [[t j]]�w does not
exceed w.
Given that t j has this form, it can only perform one transition: [[t j]]�w

b−→ [[t ′j]]�w.

Since also [[t j]]�w
a−→ [[s′i]]�w it follows that a = b and [[s′i]]�w = [[t ′j]]�w. By induction

hypothesis we have that s′i ≈ t ′j modulo A1–A4. Hence, we may conclude that si =
a.s′i ≈ b.t ′j = t j.
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2. If si = (x\K) � s′i, then, since K ⊂ L , [[si]]�w
a−→ p for some a ∈ L −K. We know

that also a summand t j of t exists such that [[t j]]�w
a−→ p. Definition 3 gives us that

p = (ξ�x�·w \K) ‖ [[s′i]]�w. Similarly to the previous case, by Lemma 5 we also know
that t j must have the form (y\L) � t ′j for some y ∈ V and L ⊂ L . The residual of t j

after performing an action a ∈ L −L is (ξ�y�·w \L) ‖ [[t ′j]]�w (also by Definition 3).
This residual is equal to p, so we know that (ξ�x�·w\K) ‖ [[s′i]]�w = (ξ�y�·w\L) ‖ [[t ′j]]�w.
By Lemma 3 we have that the process ξ�x�·w \K is parallel prime and has a branch-
ing degree that exceeds w. This process cannot occur in the unique parallel decom-
position of [[t ′j]]�w because, by Lemmas 1 and 4, and the assumption of the theo-
rem that w > esb(t), the branching degrees of all processes in the decomposition of
[[t ′j]]�w do not exceed w. Conversely, this also holds in a symmetric way for the pro-
cess ξ�y�·w \ L with respect to the unique parallel decomposition of [[s′i]]�w. Hence,
ξ�x�·w \K = ξ�y�·w \L.
From ξ�x�·w \K = ξ�y�·w \L it follows by Lemma 6 that K = L and �x� ·w = �y� ·w.
Therefore, x = y by injectivity of �·�.
We have established that K = L and x = y, so (ξ�x�·w \K) ‖ [[s′i]]�w = (ξ�y�·w \L) ‖
[[t ′j]]�w = (ξ�x�·w \K) ‖ [[t ′j]]�w, and hence, by Corollary 1, [[s′i]]�w = [[t ′j]]�w. By induction
hypothesis it follows that s′i ≈ t ′j modulo A1–A4, so we may conclude that si = (x \
K) � s′i ≈ (y\L) � t ′j = t j modulo A1–A4.

It follows by a symmetric argument that every summand of t is also provably equal
to a summand of s using the above mentioned equations. Hence, s ≈ s+ t ≈ t modulo
A1–A4. ��
Corollary 2. For all p,q ∈T\ it holds that p ≈ q is provable using A1–A4, RS1a–RS6,
LM1–LM5, and M if, and only if, p↔ q.

Proof. The implication from left to right follows from Proposition 1.
For the proof of the implication from the right to the left, we assume that p↔ q. By

Lemma 2, there are two normal forms s and t such that the equations p ≈ s and q ≈ t
are provable using RS1a–RS6, LM1–LM5, and M. If p↔ q, then by Proposition 1 and
transitivity of ↔ we also know that s↔ t and thus [[s]]�w = [[t]]�w. Hence, by Theorem 2
we know that s ≈ t is provable using A1–A4 and we can conclude that p ≈ s ≈ t ≈ q.

��

4 Relabelling

In this section we establish a completeness result for the fragment of our process cal-
culus that includes relabelling operators, but excludes restriction operators.

The set of normal forms N[] is generated by the following grammar:

N ::= 0 | a.N | x[ f ] � N | N+ N,

where a ∈ A , x ∈ V , and f : L → L is a relabelling function. We refer to a.N and
x[ f ] � N as simple normal forms.
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Lemma 7. Every process term p ∈ T[] has a normal form s ∈ N[] such that p ≈ s is
provable using RL1–RL6, LM1–LM5, and M.

Because of Lemma 7, each term can be written using the following general form:

∑
i∈I

ai.si + ∑
j∈J

(x j[ f j]) � s j (modulo A1, A2 and A4)

for finite index sets I,J and with ai ∈ A , si,s j ∈ N[], x j ∈ V , and relabelling functions
f j : L → L .

Our goal now is to find a distinguishing valuation for each pair of non-bisimilar
normal forms. In the following definitions and lemmas P denotes the set of prime
numbers.

Definition 5. Let �·� : L → P be an injective function, w a prime number larger than
any prime number in the range of �·�, and let �·� : V → {m ∈ P | m > w} be another
injective function. We define the valuation �w for each variable x ∈ V by:

�w(x) = a.ζ�x�,w with ζi,w = a.0 + ∑
b∈L

w

∑
j=1

bi·�b� j
.0,

where a is an arbitrary action in A .

Our aim in defining the valuation �w is again to be able to distinguish the different
types of simple normal forms that may occur as summands of a normal form. As in
Sect. 3, we will be able to distinguish summands of the form a.s from those of the
form x[ f ] � s′ since the unique residual of terms with the latter form will have a larger
branching degree than the unique residual of action-prefixed terms—see Lemma 10 to
follow. However, in the definition of �w we also want to ensure that terms of the form
ζi,w[ f ] are prime, and that the sequences of actions those terms afford “encode” the
relabelling function f . We obtain the primality of ζi,w[ f ] by means of the summand a.0
of ζi,w, whereas we encode relabelling functions by taking sequences of actions whose
lengths are powers of distinct prime numbers. This is enough to ensure that if ζi,w[ f ]
and ζi,w[g] are bisimilar, then f = g—see Lemma 11 to follow.

Lemma 8. For all i ≥ 1 and relabelling functions f : L → L , the process ζi,w[ f ] is
parallel prime, and its branching degree is b(ζi,w[ f ]) = 1 + |L | ·w.

Again, the distinguishing ability of the valuation �w depends on the value of the pa-
rameter w being greater than an estimated highest branching degree occurring already
in s. This is explained in Lemma 10 below; first we formalise an appropriate estimation
of the highest branching degree occurring in a normal form s.

Definition 6. For all s ∈ N[], the estimated highest branching degree esb(s) is defined
inductively as follows:

esb(0) = 0, esb(s+ t) = esb(s)+ esb(t),
esb(a.t) = max(1,esb(t)), esb(x[ f ] � t) = max(1,esb(t)),
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with a ∈ A , x ∈ V , relabelling function f : L → L and t ∈ N[].

The following lemma shows that the estimated branching degree of s is an upper
bound on the branching degree of [[s]]�w.

Lemma 9. For every normal form s ∈ N[], b([[s]]�w) ≤ esb(s).

Lemma 10. Let s,s′ ∈ N[] be simple normal forms, x ∈ V , f : L → L a relabelling
function and let w > esb(s).

1. If s = a.s′, then the unique residual of [[s]]�w has a branching degree smaller than w.
2. If s = (x[ f ]) � s′, then the unique residual of [[s]]�w has a branching degree larger

than w.

When it has been determined from the unique residual of [[s]]�w that s has a left
merge as head operator, then the following key lemma allows us to determine which
variable and which relabelling function occur in its left argument.

Lemma 11. For i, j ≥ 1 and relabelling functions f ,g : L → L , if ζi,w[ f ] = ζ j,w[g],
then i = j and f = g.

Proof. From ζi,w[ f ] = ζ j,w[g] it follows that d(ζi,w[ f ]) = d(ζ j,w[g]) and therefore i ·
�b�w = j · �b�w for that b ∈ L for which �b� is largest. Since �b� is positive, i =

j. It remains to prove that f = g. Let b ∈ L . Then ζi,w[ f ]
f (b)−→ (

b(i·�b�w)−1
)

[ f ]. By
the assumption that ζi,w[ f ] = ζ j,w[g] and since i = j, it follows that there also exists

some c ∈ L such that f (b) = g(c), ζi,w[g]
f (c)−→ (

c(i·�c�v)−1
)

[ f ] and
(

b(i·�b�w)−1
)

[ f ] =
(

c(i·�c�v)−1
)

[g]. Hence i · �b�w = i · �c�v and since �b� and �c� are prime, it follows that
b = c and w = v. Therefore, f (b) = g(b). ��

Using the previous lemmas, and reasoning as in the proof of Theorem 2, we can
now prove that the valuation defined in Definition 5 is indeed distinguishing.

Theorem 3. For every two normal forms s,t ∈N[] with w > esb(s),esb(t), it holds that
if [[s]]�w = [[t]]�w, then s ≈ t modulo A1–A4.

Proof. Assume that [[s]]�w = [[t]]�w holds; we prove that s ≈ t is derivable using A1–A4
by induction on the sum of the depths of s and t. We do this by showing that for each
summand si of s there exists a summand t j of t such that si ≈ t j modulo A1–A4. By
symmetry this suffices to prove the claim.

1. If si = a.s′i, then [[si]]�w
a−→ [[s′i]]�w, Because [[s]]�w = [[t]]�w, there must also be a sum-

mand t j of t such that [[t j]]�w
a−→ [[s′j]]�w. By Lemma 10 we know that t j must have

the form b.t ′j, because the branching degree of the unique residual of [[t ′j]]�w does not
exceed w.
Given that t j has this form, it can only perform one transition: [[t j]]�w

b−→ [[t ′j]]�w.

Since also [[t j]]�w
a−→ [[s′i]]�w it follows that a = b and [[s′i]]�w = [[t ′j]]�w. By induction

hypothesis we have that s′i ≈ t ′j modulo A1–A4. Hence, we may conclude that si =
a.s′i ≈ b.t ′j = t j.
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2. If si = x[ f ] � s′i, then [[si]]�w

f (a)−→ ζ�x�,w[ f ] ‖ [[s′i]]�w = p. Since [[s]]�w = [[t]]�w, there must

be a summand t j = y[g] � t ′j of t such that [[t j]]�w

g(b)−→ ζ�y�,w[g] ‖ [[t ′j]]�w = q and p = q.
By Lemma 9, the right-hand side parallel components of p and q have branching
degrees not exceeding w whereas, by Lemma 8, the left-hand side parallel compo-
nents are parallel prime and have branching degree 1 + |L | · w. Using Theorem 1
it follows that ζ�x�,w[ f ] = ζ�y�,w[g] and [[s′j]]�w = [[t ′j]]�w. By Lemma 11 we have that
�x� = �y� and f = g. Hence, x = y by injectivity of �·�. By induction, we have that
s′i ≈ t ′j modulo A1–A4. Therefore x[ f ] � s′j is provably equal to a summand of t.

It follows by a symmetric argument that every summand of t is also provably equal
to a summand of s using the above mentioned equations. Hence, s ≈ s+ t ≈ t modulo
A1–A4. ��
Corollary 3. For all process terms p,q ∈ T[] it holds that p ≈ q is provable using A1–
A4, RL1–RL6, LM1–LM5, and M if, and only if, p↔ q.

5 Restriction and Relabelling

In this section, we consider the language that includes both restriction and relabelling
operators.

The set of normal forms N\,[] is generated by the following grammar:

N ::= 0 | a.N | (x\L)[ f ] � N | N+ N

where a ∈ A , x ∈ V , L ⊂ L , and f : L → L is a relabelling function satisfying
f = f � (L −L) (i.e., f is the identity on all a ∈ L). We refer to the normal forms a.N
and (x\L)[ f ] � N as simple normal forms.

Lemma 12. Every process term p ∈ T\,[] has a normal form s ∈ N\,[] such that p ≈ s
is provable using RS1a–RS6, RL1–RL6, RR1, RR2, LM1–LM5, and M.

Now, using the previous lemma, each term can be written using the following gen-
eral form:

∑
i∈I

ai.si + ∑
j∈K

(x j \Lj)[ f j] � s j (modulo A1, A2, A4, and RR2)

for finite index sets I,J and with ai ∈A , si,s j ∈N\,[], x j ∈ V , Lj ⊂L , and relabelling
functions f j : L → L with f j = f j � (L −Lj).

A valuation that distinguishes an action prefix from a variable under restriction and
relabelling can be constructed by combining the ideas underlying the valuations pre-
sented in Definitions 3 and 5. The result shown below uses powers of distinct prime
numbers to “encode” the relabelling function and employs a summation over all ac-
tions to allow for the detection of the restricting set.
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Definition 7. Let �·� : L → P be an injective function, w a prime number larger than
any prime number in the range of �·�, and let �·� : V → {m ∈ P | m > w} be another
injective function. We define the valuation �w for each variable x ∈ V by:

�w(x) = ∑
a∈L

a.χ�x�,w with χi,w = ∑
a∈L

(

a.0 +
w

∑
j=1

ai·�a� j
.0

)

.

First, we establish two properties of the process (χ�x�,w \L)[ f ], which is a parallel
component of the unique residual of [[(x\L)[ f ] � s]]�w.

Lemma 13. For all i > 1, L ⊂ L , and relabelling functions f : L → L , the process
(χi,w \L)[ f ] is parallel prime, and its branching degree is | f (L −L)|+ |L −L| ·w.

To enable the valuation �w to distinguish between an action prefix and a term with
the left merge as head operator, as explained in Lemma 15 below, we need an appro-
priate estimation of the highest branching degree occurring in a normal form s.

Definition 8. For all s ∈ N\,[], the lower bound estimate of the branching degree of s,
denoted with esb(s), is defined inductively as follows:

esb(0) = 0, esb(s+ t) = esb(s)+ esb(t),
esb(a.t) = max(1,esb(t)), esb((x\L)[ f ] � t) = max(|L |,esb(t)).

with a ∈ A , x ∈ V , L ⊂ L , relabelling function f : L → L and t ∈ N\,[].

The following lemma shows that the estimated branching degree of s is an upper
bound on the branching degree of [[s]]�w.

Lemma 14. For every normal form s ∈ N\,[], b([[s]]�w) ≤ esb(s).

Lemma 15. Let s,s′ ∈ N\,[] be simple normal forms, x ∈ V , L ⊂ L , f : L → L a
relabelling function and let w > esb(s).

1. If s = a.s′, then the unique residual of [[s]]�w has a branching degree smaller than w.
2. If s = (x\L)[ f ] � s′, then the unique residual of [[s]]�w has a branching degree larger

than w.

The following lemma allows us to determine the variable, the restriction set and
relabelling function in a simple normal form of the shape (x\L)[ f ] � s.

Lemma 16. For w ∈ P, i, j ∈ {m ∈ P | m > w}, K,L ⊂ L , and relabelling functions
f ,g : L →L , if (χi,w \K)[ f ] = (χ j,w \L)[g], then K = L, f � (L −K) = g � (L −K)
and i = j.

By following the strategy we adopted in the proofs of Theorems 2 and 3, we can
show that the valuation defined above is indeed distinguishing.

Theorem 4. For every two normal forms s,t ∈ N\,[] with w > esb(s),esb(t), it holds
that if [[s]]�w = [[t]]�w, then s ≈ t modulo A1–A4 and RR2.
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Proof. We now prove that s ≈ t assuming that [[s]]�w = [[t]]�w by induction on the sum of
the depths of s and t. We do so by proving that for every summand si of s a summand
t j of t exists such that si ≈ t j modulo A1–A4 and RR2. Consider the following case
analysis based on the syntax of an arbitrary summand si of s.

1. If si = a.s′i, then [[si]]�w
a−→ [[s′i]]�w. Because [[s]]�w = [[t]]�w, there also must be a sum-

mand t j of t such that [[t j]]�w
a−→ [[s′i]]�w. By Lemma 15 we know that t j must have the

form b.t ′j, because the branching degree of the residual [[t ′j]]�w does not exceed w.

Given that t j has this form, it can only perform one transition: [[t j]]�w
b−→ [[t ′j]]�w.

Since also [[t j]]�w
a−→ [[s′i]]�w if follows that a = b and [[s′i]]�w = [[t ′j]]�w. By induction

hypothesis we have that s′i ≈ t ′j modulo A1–A4 and RR2. Hence, we may conclude
that si = a.s′i ≈ b.t ′j = t j.

2. If si = (x\K)[ f ] � s′i, then, since K ⊂ L , [[si]]�w

f (a)−→ (χ�x�,w \K)[ f ] ‖ [[s′i]]�w = p (by
Definition 7) for some a ∈ L −K. We know that also a summand t j of t exists such

that [[t j]]�w

f (a)−→ p. Similarly as in previous case, by Lemma 15, we also know that t j

must have the form (y \ L)[g] � t ′j for some y ∈ V , L ⊂ L , g : L → L such that
g(b)= f (a) for some b∈L −L, and t ′j . The residual of t j after performing an action
g(b) with b ∈ L −L is (χ�y�,w \L) ‖ [[t ′j]]�w (also by Definition 7). This residual is
equal to p, so we know that (χ�x�,w \K)[ f ] ‖ [[s′i]]�w = (χ�y�,w \L)[g] ‖ [[t ′j]]�w.
By Lemma 13 we have that the process (χ�x�,w \K)[ f ] is parallel prime and has a
branching degree that exceeds w. This process cannot occur in the unique parallel
decomposition of [[t ′j]]�w because, by Lemma 1 and the fact that w > esb(t)≥ esb(t ′j),
the branching degrees of all processes in the parallel decomposition of [[t ′j]]�w do
not exceed w. Conversely, this also holds in a symmetric way for the process
(χ�y�,w \ L)[g] with respect to the unique parallel decomposition of [[s′i]]�w. Hence
by Theorem 1, (χ�x�,w \K)[ f ] = (χ�y�,w \L)[g] and [[s′i]]�w = [[t ′j]]�w.
From (χ�x�,w \K)[ f ] = (χ�y�,w \L)[g] it follows by Lemma 16 that �x� = �y�, K = L
and f � (L −K) = g � (L −K). By the injectivity of �·� we know also that x = y.
Since [[s′i]]�w = [[t ′j]]�w, by induction hypothesis it follows that s′i ≈ t ′j modulo A1–A4
and RR2.
Summing up, we have established that K = L, f � (L −K) = g � (L −K), x = y,
and s′i ≈ t ′j modulo A1–A4 and RR2, We may therefore conclude that si = (x\K)[ f ] �
s′i ≈ (y\L)[g] � t ′j = t j.

The above analysis shows that for each summand si of s there exists a summand t j

of t such that si ≈ ti modulo A1–A4 and RR2. It follows by a symmetric argument
that every summand of t is also provably equal to a summand of s using the above
mentioned equations. Hence, s ≈ s+ t ≈ t modulo A1–A4 and RR2. ��
Corollary 4. For all process terms p,q ∈ T\,[] it holds that p ≈ q if, and only if, p↔ q.
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Abstract. The model checking problem for open systems (module checking)
has recently been the subject of extensive study. The problem was first studied
by Kupferman, Vardi, and Wolper for finite-state systems and properties ex-
pressed in the branching time logicsCTL andCTL∗. Further study continued
mainly in two directions: considering systems equipped with a pushdown store,
and considering environments with imperfect information about the system.
A recent paper combined the two directions and considered theCTL pushdown
module checking problem in the imperfect information setting, i.e., in the case
where the environment has only a partial view of the system control states and
pushdown store content. It has been shown that this problem is undecidable
when the environment has imperfect information about the pushdown store
content, while it is decidable and 2Exptime-complete when the imperfect in-
formation only concerns control states. It was left open whether the latter
remains decidable also for more expressive logics. In this paper, we answer
this question in the affirmative, showing that the pushdown module check-
ing problem with imperfect information about the control states is decidable
and 2Exptime-complete for the propositional and the graded μ-calculus, and
3Exptime-complete forCTL∗.

1 Introduction

A main distinction in system modeling is between closed systems, whose behav-
ior is totally determined by the program, and open systems, which are systems
where the program interacts with an external environment [HP85,Hoa85]. In
order to check whether a closed system satisfies a required property we translate
the system into a formal model (such as a transition system), specify the prop-
erty with a temporal-logic formula (such as CTL [CE81], CTL∗ [EH86], and
μ-calculus [Koz83]), and check formally that the model satisfies the formula.
This process is called model checking ( [CE81, QS81]). Checking whether an
open system satisfies a required temporal logic formula is much harder, as one
has to consider the interaction of the system with all possible environments.

In this paper, we consider open systems which are modeled in the framework
introduced by Kupferman, Vardi, and Wolper. Concretely, in [KV96,KVW01],
an open finite-state system is described by an extended transition system called
a module, whose set of states is partitioned into system states (where the

Please use the following format when citing this chapter:

Aminof, B., et al., 2008, in IFIP International Federation for Information Processing, Volume 273; Fifth IFIP
International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki, Giancarlo
Mauri, Luke Ong; (Boston: Springer), pp. 333–348.
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system makes a transition) and environment states (where the environment
makes a transition). Given a module M, describing the system to be verified,
and a branching time temporal logic formula ϕ, specifying the desired behavior
of the system, the problem of model checking a module, called module checking,
asks whether for all possible environments, M satisfies ϕ. In particular, it might
be that the environment does not enable all the external choices. Module check-
ing thus involves not only checking that the full computation tree obtained by
unwinding M (which corresponds to the interaction of M with a maximal en-
vironment) satisfies the specification ϕ, but also that every tree obtained from
it by pruning children of environment nodes (this corresponds to the different
choices of different environments) satisfies ϕ. For example, consider an ATM
machine that allows customers to deposit money, withdraw money, check bal-
ance, etc. The machine is an open system, and an environment for it is a subset
of the set of all possible infinite lines of customers, each with their own plans.
Accordingly, there are many different possible environments to consider.

The finite-state system module checking problem, forCTL andCTL∗ formu-
las, has been investigated in [KV96,KVW01]; while for propositional μ-calculus
formulas it has been investigated in [FM07]. In all these cases, it has been shown
that module checking is exponentially harder than model checking. However,
an interesting aspect of these results is that they bear on the corresponding
automata-based results for closed systems [KVW00], which gives the hope for
practical implementations and applications.

Recently, the module checking idea has been extended to pushdown sys-
tems [BMP05], and it has been shown thatCTL and μ-calculus pushdown mod-
ule checking is 2Exptime-complete, whileCTL∗ pushdown module checking is
3Exptime-complete [BMP05,FMP07]. Another extension of the module check-
ing idea has been the investigation of environments with imperfect information.
The first results on the subject were dedicated to finite-state systems [KV97].
In this framework, every state of the module is a composition of visible and
invisible variables, where the latter are hidden from the environment. While a
composition of a module M with an environment with perfect information cor-
responds to arbitrary disabling of transitions in M, the composition of M with
an environment with imperfect information is such that whenever two compu-
tations of the system differ only in the values of invisible variables along them,
the disabling of transitions along them coincide. In [KV97] it has been shown
thatCTL andCTL∗ module checking with imperfect information is harder than
module checking with perfect information. The results in [KV97] were recently
extended in [AMV07] to pushdown systems. In this framework, environments
with imperfect information about the system’s control state and pushdown
store content are considered. Like in the finite-state case, the control states
are assignments to Boolean control variables, some of which are visible and
some of which are not. Similarly, symbols of the pushdown store are assign-
ments to Boolean visible and invisible pushdown store variables. It has been
shown in [AMV07] that in the presence of imperfect information, CTL push-
down module-checking becomes undecidable, and that the undecidability relies
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upon hiding information about the pushdown store. Indeed, it was shown that
CTL pushdown module checking with imperfect state information but visible
pushdown store is decidable and 2Exptime-complete.

[AMV07] left open the question whether the pushdown module checking
problem with imperfect state information, but visible pushdown store, is still
decidable when more expressive logics are considered. In this paper we answer
this question in the affirmative. Our main contribution is showing that this
problem is decidable and 2Exptime-complete for the propositional μ-calculus
and the graded μ-calculus [KSV02]1, and 3Exptime-complete for CTL∗. The
lower bound follows from the known perfect information case. For the upper
bound we use an automata theoretic approach, and reduce the problem to
the emptiness problem of a semi-alternating pushdown parity tree automaton
(PD-SPT). These are alternating pushdown parity tree automata that behave
deterministically on the pushdown store content. That is, two copies of the
automaton that read the same input, from two configurations that have the
same top of pushdown store, must push the same value into the pushdown store.
In this paper, we show that unlike alternating pushdown parity tree automata,
for which the emptiness problem is undecidable2, the emptiness problem for
PD-SPT is solvable in 2Exptime, which allows us to get the required upper
bound for our problem.

2 Preliminaries

In this section, we first recall the concept of open system. Then, we introduce
the logics that will be model checked.

2.1 Open Systems.

Let Υ be a finite set. An Υ -tree is a prefix closed subset T ⊆ Υ ∗. The elements
of T are called nodes and the empty word ε is the root of T . For v ∈ T , the
set of children of v (in T ) is child(T, v) = {v · x ∈ T | x ∈ Υ}. Given a node
v = u · x, with u ∈ Υ ∗ and x ∈ Υ , we define last(v) to be x. The complete
Υ -tree is the tree Υ ∗. For v ∈ T , a (full) path π of T from v is a minimal set
π ⊆ T , such that v ∈ π and for each v′ ∈ π, such that child(T, v′) �= ∅, there
is exactly one node in child(T, v′) belonging to π. Note that every w ∈ Υω can
be thought of as an infinite path in the tree Υ ∗, namely the path containing all

1 The graded μ-calculus extends the propositional μ-calculus by allowing graded modalities,
which enable statements about the number of successors of a state.
2 Since the emptiness problem of the intersection of two context free languages is undecid-

able [HU79], the emptiness problem of alternating pushdown automata is undecidable, already
in the case of finite words.
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the finite prefixes of w. For an alphabet Σ, a Σ-labeled Υ -tree is a pair 〈T, V 〉
where T is an Υ -tree and V : T → Σ maps each node of T to a symbol in Σ.

An open system is a system that interacts with its environment and whose
behavior depends on this interaction. We consider the case where the environ-
ment has imperfect information about the system, i.e., when the system has
internal variables that are not visible to its environment. We describe such a
system by a module M = 〈AP, Ws, We, w0, R, L,∼=〉, where AP is a finite set of
atomic propositions, Ws is a set of system states, and We is a set of environment
states. We assume that Ws ∩ We = ∅, and call W = Ws ∪ We the set of M’s
states. The state w0 ∈ W is the initial state, R ⊆ W × W is a total transition
relation, L : W → 2AP is a labeling function that maps each state of M to the
set of atomic propositions that hold in it, and ∼= is an equivalence relation on
W . A module M is closed if We = ∅. States that are indistinguishable by the
environment are equivalent according to ∼=. We write [W ] for the set of equiv-
alence classes of W under ∼=. For the environment, the states of the system
are actually the equivalence classes themselves. The equivalence class [w] of a
state w ∈ W is called the visible part of w. We write vis(w), instead of [w], to
emphasize this.

Given 〈w, w′〉 ∈ R, w′ is a successor of w. For each state w ∈ W , we denote
by succ(w) the set (possibly empty) of w’s successors. A computation of M is
a sequence w0 · w1 · · · of states, such that for all i ≥ 0 we have 〈wi, wi+1〉 ∈ R.
The set of all (maximal) computations of M starting from the initial state w0

can be described by an AP -labeled W -tree 〈TM, VM〉 called a computation tree,
which is obtained by unwinding M in the usual way. Each node v = v1 · · · vk

of 〈TM, VM〉 describes the (partial) computation w0 · v1 · · · vk of M, with the
root ε corresponding to w0. The children of v are exactly all nodes of the form
v1 · · · vk · w, where w ranges over all the successors of vk in M. We extend
the definition of vis to nodes in the natural way. Thus, the visible part of a
node v is vis(v) = vis(v1) · · · vis(vk). The labeling VM of a node v depends on
the state it corresponds to (its last state), i.e., VM(v) = L(last(v)). Also, if v
corresponds to an environment state we say that v is an environment node.

Whenever M interacts with an environment ξ, its possible moves from envi-
ronment states (i.e., states in We) depend on the behavior of ξ. We can think of
an environment to M as a strategy ξ : [W ]∗ → {,⊥} that maps a finite his-
tory s of a computation, as seen by the environment, to either  or ⊥, meaning
that the environment respectively allows or disallows M to trace s (obviously,
if s is a successor of a system state, the decision whether to trace s or not is
made by the system, and we ignore the environment’s value of ξ(s)). Observe
that if an environment disallows M to trace s, it effectively disallows M to
trace any of the successors of s. Note that one can either require that for every
y ∈ [W ]∗, if ξ(x) = ⊥ then ξ(x · y) = ⊥, or simply ignore the value ξ(x · y). We
chose the latter. We say that the tree 〈[W ]∗, ξ〉 maintains the strategy applied
by ξ, and we call it a strategy tree. We denote by M� ξ the AP -labeled W -tree
induced by the composition of 〈TM, VM〉 with ξ; that is, the AP -labeled W -tree
obtained by pruning from 〈TM, VM〉 subtrees according to ξ. Note that by the
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definition above, ξ may disable all the children of a node v. Since we usually do
not want the environment to completely block the system, we require that at
least one child of each node is enabled. In this case, we say that the composition
M� ξ is deadlock-free. Given a module M, and a strategy tree 〈[W ]∗, ξ〉 for an
environment ξ, an AP -labeled W -tree 〈T, V 〉 corresponds to M � ξ iff:

– The root of T corresponds to w0.
– For v ∈ T with last(v) ∈ Ws, we have child(T, v) = {v ·w1, . . . , v ·wn}, where

succ(last(v)) = {w1, . . . , wn}.
– For v ∈ T with last(v) ∈ We, there exists a nonempty subset {w1, . . . , wk}

of succ(last(v)) such that child(T, v) = {v · w1, . . . , v · wk}. Furthermore,
for all w in {w1, . . . , wk} we have that ξ(vis(v · w)) = , while for all w in
succ(last(v)) \ {w1, . . . , wk} we have that ξ(vis(x · w)) = ⊥.

– For every node v ∈ T , we have that V (v) = L(last(v)).

For a module M and a temporal logic formula ϕ defined over AP , we say that
M reactively satisfies ϕ, denoted M |=r ϕ, if M� ξ satisfies ϕ, for every envi-
ronment ξ for which M � ξ is deadlock-free. The problem of deciding whether
M |=r ϕ is called the module checking problem with imperfect information.

2.2 Logics.

In this paper, we consider ϕ to be either a CTL∗ or a propositional/graded
μ-calculus formula. The syntax and semantics ofCTL∗ and μ-calculus are well
known, and we assume that the reader is familiar with them (for references,
see [Koz83] and [KVW00]). In the rest of this section, we focus on graded μ-
calculus, which is an extension of the propositional μ-calculus that allows graded
modalities. These modalities are denoted by 〈n〉 (“exist at least n-successors”)
and [n] (“all but at most n successors”), respectively.

Formally, we have the following. Let AP and Var be finite and pairwise
disjoint sets of atomic propositions and propositional variables. The set of graded
μ–calculus formulas is the smallest set such that (i) true and false are formulas;
(ii) p and ¬p, for p ∈ AP , are formulas; (iii) x ∈ Var is a formula; (iv) if ϕ1

and ϕ2 are formulas, n is a non negative integer, and y ∈ V ar, then ϕ1 ∨ ϕ2,
ϕ1∧ϕ2, 〈n〉ϕ1, [n]ϕ1, μy.ϕ1(y), and νy.ϕ1(y) are also formulas. Observe that we
use positive normal form, i.e., negation is applied only to atomic propositions.
We often refer to the graded modalities 〈n〉ϕ1 and [n]ϕ1 as, respectively, atleast
formulas and allbut formulas, and assume that the integers in these operators
are given in binary coding: the contribution of n to the length of each of the
formulas 〈n〉ϕ and [n]ϕ is �log n�, rather than n.

The definition of the semantics of graded μ-calculus w.r.t an AP -labeled W -
tree 〈T, V 〉 is similar to that of the standard μ-calculus, except for the graded
modalities. Informally, an atleast formula 〈n〉ϕ holds at a node w of the tree if
ϕ holds in at least n + 1 children of the node. Dually, the allbut formula [n]ϕ
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holds in a node of the tree K if ϕ holds in all but at most n of its successors.
Due to space limitation, we refer the reader to [KSV02] (also [BLMV06]) for a
formal description of the full semantics.

3 Imperfect Information Pushdown Module Checking

In this section, we consider infinite-state modules which are induced by Open
Pushdown Systems (OPD) [AMV07]. In our framework, the environment has
imperfect information about the internal control states of the system, but the
pushdown store is visible.

Definition 1. An OPD is a tuple S = 〈AP, Q, q0, Γ, 
, δ, η, Env〉, where AP is a
finite set of atomic propositions; Q is a finite set of (control) states ; and q0 ∈ Q
is an initial state. We assume that Q ⊆ 2V ∪H , where V and H are disjoint
finite sets of visible and invisible control variables, respectively. Γ is a finite
pushdown store alphabet; 
 �∈ Γ is the pushdown store bottom symbol, and we
use Γ� to denote Γ ∪ {
}. The transition relation δ ⊆ (Q × Γ�) × (Q × Γ ∗

� ) is
finite; η : Q × Γ� → 2AP is a labeling function; and Env ⊆ Q × Γ� is used to
specify the set of environment configurations. The size |S| of S is |Q|+ |Γ |+ |δ|,
with |δ| =

∑

((p,γ),(q,β))∈δ |β|.

A configuration of S is a pair (q, α), where q is a control state and α ∈ Γ ∗ ·
 is
a pushdown store content. We write top(α) for the leftmost symbol of α, and call
it the top of the pushdown store α. The OPD moves according to the transition
relation. Thus, ((p, γ), (q, β)) ∈ δ implies that if the OPD is in state p, and the
top of the pushdown store is γ, then it can move to state q, pop γ and push
β. We assume that 
 is always present at the bottom of the pushdown store,
and nowhere else. Note that we make this assumption also about the various
pushdown automata we use later. For a control state q ∈ Q, the visible part of q
is vis(q) = q∩V . The visible part of a configuration (q, α), is thus vis((q, α)) =
(vis(q), α). As for modules, the designation of a configuration of an OPD as an
environment configuration is known to the environment. Thus, we require that
for every two configurations (q, α) and (q′, α′), such that vis(q) = vis(q′), it
holds that (q, top(α)) ∈ Env iff (q′, top(α′)) ∈ Env.

Definition 2. An OPD S = 〈AP, Q, q0, Γ, 
, δ, η, Env〉 induces an infinite-state
module MS = 〈AP, Ws, We, w0, R, L,∼=〉, possibly with invisible information,
where AP is a set of atomic propositions; Ws ∪ We = Q × Γ ∗ · 
 is the set
of configurations; We is the set of configurations (q, α) such that (q, top(α)) ∈
Env; w0 = (q0, 
) is the initial configuration; R is a transition relation, where
((q, γ · α), (q′, β)) ∈ R iff there exist ((q, γ), (q′, β′)) ∈ δ such that β = β′ · α;
L((q, α)) = η(q, top(α)) for all (q, α) ∈ W ; and for every two configurations
w, w′ ∈ W , we have that w ∼= w′ iff vis(w) = vis(w′).
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To describe the interaction of an OPD S with its environment we consider the
interaction of the environment with the induced module MS. Indeed, every
environment ξ of S can be represented by a strategy tree 〈[W ]∗, ξ〉, and the
composition MS � ξ of 〈[W ]∗, ξ〉 with 〈TMS , VMS 〉 describes all the computa-
tions of S allowed by the environment ξ.

We consider the pushdown module checking problem with imperfect state in-
formation, i.e., given an OPD S and a formula ϕ, decide whether MS |=r ϕ.

The pushdown module checking problem with imperfect state information is
known to be 2Exptime-complete when ϕ is a CTL formula [AMV07]. In this
paper, we answer an open question of [AMV07] and show that the problem
remains 2Exptime-complete when considering ϕ to be a propositional or a
graded μ-calculus formula, and that it becomes 3Exptime-complete when ϕ is
aCTL∗ formula. For the upper bound, we reduce our problem to the emptiness
problem of a semi-alternating pushdown parity tree automata.

3.1 Semi-Alternating Pushdown Tree Automata.

We start with the definition of semi-alternating pushdown parity tree automata
(PD-SPT ), first introduced in [AMV07] w.r.t. a Büchi acceptance condition.
A PD-SPT is a tuple A = 〈Σ, D, Γ, Q, q0, 
, δ, F 〉, where Σ is a finite input
alphabet, D is a finite set of directions, Γ is a finite pushdown store alphabet,
Q is a finite set of states, q0 ∈ Q is the initial state, 
 �∈ Γ is the pushdown store
bottom symbol, and F is a parity acceptance condition (to be defined later).
Moreover, δ is a finite transition relation defined as a function δ : Q×Σ×Γ� →
B+(D × Q × Γ ∗

� ), where, as usual, Γ� = Γ ∪ {
}, and B+(D × Q × Γ ∗
� ) is the

set of all finite positive Boolean combinations of triples (d, q, β), where d is a
direction, q is a state, and β is a word made of pushdown store symbols. We
also allow the formulas true and false. We write S ∈ δ(p, σ, γ) to denote that
S is a set of tuples (d, q, β) that satisfy δ(p, σ, γ).

What makes the automaton semi-alternating is the requirement that for
every d ∈ D, σ ∈ Σ, p, p′ ∈ Q (possibly the same state), and γ ∈ Γ , if (d, q, β)
appears in δ(p, σ, γ), and (d, q′, β′) appears in δ(p′, σ, γ), then β = β′. That is,
two copies of the automaton that read the same input, from two configurations
that have the same top symbol of the pushdown store, and proceed in the same
direction, must push the same value into the pushdown store. In particular, it
follows that in every run, two copies of the automaton that are reading the
same node of an input tree have the same pushdown store content. Note that if
we remove the semi-alternation requirement the resulting automaton is called
alternating pushdown parity tree automaton (PD-APT ).

As a special case of PD-APT, we consider nondeterministic pushdown parity
tree automata (PD-NPT ), where the concurrency feature (i.e., the ∧ operator
in δ) is not allowed. That is, whenever a PD-NPT visits a node x of the input
tree, it sends to each successor (direction) of x at most one copy of itself. More
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formally, a PD-NPT is a PD-APT in which δ is in disjunctive normal form, and
in each conjunct each direction appears at most once. Note that if A is a PD-
APT with Γ = ∅, its pushdown store is neutralized, hence, A is simply called
an alternating parity tree automaton (APT ), and we can abbreviate and write
A = 〈Σ, D, Q, q0, δ, F 〉, where δ : Q × Σ → B+(D × Q). Similarly, a PD-NPT
with an empty pushdown store alphabet is called a nondeterministic parity tree
automaton (NPT ).

A run of a PD-SPT A, on a Σ-labeled tree 〈T, V 〉, with T = D∗, is a
(D∗× Q × Γ ∗ · 
)-labeled N-tree 〈Tr, r〉, such that the root is labeled with
(ε, q0, 
) and the labels of each node and its successors satisfy the transition
relation. Formally, a (D∗×Q×Γ ∗ · 
)-labeled tree 〈Tr, r〉 is a run of A on 〈T, V 〉
iff

– r(ε) = (ε, q0, 
), and
– for all x ∈ Tr such that r(x) = (y, p, γ · α), there is an n ∈ N such that the

successors of x are exactly x·1, . . . x·n, and for all 1 ≤ i ≤ n we have r(x·i) =
(y · di, pi, βi · α) for some {(d1, p1, β1), . . . , (dn, pn, βn)} ∈ δ(p, V (y), γ).

For a path π ⊆ Tr, let infr(π) ⊆ Q be the set of states that appear in the
labels of infinitely many nodes in π. For a parity condition F = {F1, F2, . . . , Fk},
with F1 ⊆ F2 ⊆ · · · ⊆ Fk = Q, we have that π is accepting iff the minimal index
i, for which infr(π) ∩ Fi �= ∅, is even. The number k is called the index of
the automaton. A run 〈Tr, r〉 is accepting iff all its paths are accepting. The
automaton A accepts an input tree 〈T, V 〉 iff there is an accepting run of A
on 〈T, V 〉. The language of A, denoted L(A), is the set of Σ-labeled trees with
branching degree D accepted by A. We say that an automaton A is nonempty
iff L(A) �= ∅. Given a PD-SPT A = 〈Σ, D, Γ, Q, q0, 
, δ, F 〉, we define the size
of δ as the sum of the lengths of the satisfiable (i.e., not false) formulas that
appear in δ(q, σ, γ), for some q, σ, and γ.

3.2 Simulating a PD-SPT by a PD-NPT.

As mentioned in [AMV07], alternating pushdown automata are not equivalent
to nondeterministic ones. However, as we show here, the limitations imposed on
semi-alternating automata allow us to translate a PD-SPT to an equivalent PD-
NPT3. A key observation is that since a pushdown store operation performed by
a semi-alternating automaton does not depend on the current (or next) control
states, we can split the transition function of a PD-SPT into two functions:
a state transition function δQ, and a pushdown store update function δΓ , as
follows. Given a PD-SPT A = 〈Σ, D, Γ, Q, q0, 
, δ, F 〉, let δQ : Q × Σ × Γ� →
B+(D×Q) be the projection of δ on B+(D×Q). That is, δQ(q, σ, γ) is obtained

3 The translation used in [AMV07], for semi-alternating pushdown Büchi tree automata,
made a crucial use of the Büchi acceptance condition, and can not be extended to the parity
acceptance condition.
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from δ(q, σ, γ) by replacing every element (d, q, β) that appears in δ(q, σ, γ) with
(d, q). The pushdown store update function δΓ : Σ × Γ� ×D → Γ ∗

� , is a partial
function; for every (p, σ, γ) ∈ Q × Σ × Γ� and every (d, q, β) ∈ D × Q × Γ ∗

� ,
such that (d, q, β) appears in δ(p, σ, γ), we let δΓ (σ, γ, d) = β. Since A is semi-
alternating, δΓ is well defined. Observe that for every (p, σ, γ) ∈ Q×Σ ×Γ� we
have that δ(p, σ, γ) can be obtained from δQ(p, σ, γ) by replacing every (d, q)
that appears in δQ(p, σ, γ) with (d, q, δΓ (σ, γ, d)).

Consider a Σ-labeled tree 〈T, V 〉, with T = D∗. Note that for every node
x ∈ T and every run of A on 〈T, V 〉, the pushdown store content of all the
copies of A that visit x is the same, and only depends on x. We can thus define
a function ΔΓ : T → Γ ∗

� , giving for every node x its associated pushdown
store content, as follows: (1) ΔΓ (ε) = 
, and (2) for all x · d ∈ T we have
ΔΓ (x · d) = δΓ (V (x), γ, d) · β, where ΔΓ (x) = γ · β, and γ ∈ Γ�.

Annotating input trees with pushdown store symbols enables us to simulate
a PD-SPT by an APT running on the annotated version of an input tree. Given
a Σ-labeled tree 〈T, V 〉, we define its ΓA-annotation to be the (Σ ×Γ�)-labeled
tree 〈T, U〉, obtained by letting U(x) = (V (x), top(ΔΓ (x))), for every x ∈ T .

Lemma 1. Let A = 〈Σ, D, Γ, Q, q0, 
, δ, F 〉 be a PD-SPT. There is an APT Ã,
such that A accepts 〈T, V 〉 iff Ã accepts the ΓA-annotation of 〈T, V 〉.
Proof. Consider the APT Ã = 〈Σ × Γ�, D, Q, q0, δ̃, F 〉, where δ̃(q, (σ, γ)) =
δQ(q, σ, γ). It is not hard to see that every run r = 〈Tr, r〉 of A on 〈T, V 〉
induces a corresponding run r′ = 〈Tr, r

′〉 of Ã on the ΓA-annotation of 〈T, V 〉,
and vice versa. The connection between r and r′ being that for every x ∈ Tr,
we have that r(x) = (y, p, α) iff r′(x) = (y, p) and ΔΓ (x) = α. ��

By [MS87], every APT can be translated to an equivalent NPT. Hence,
Lemma 1 implies that if A is a PD-SPT, then there is an NPT A′ such that
A accepts 〈T, V 〉 iff A′ accepts the ΓA-annotation of 〈T, V 〉. This allows us to
translate A to an equivalent PD-NPT A′′ (running on the same input trees as
A). Given a Σ-labeled tree, A′′ generates on the fly its ΓA-annotation and runs
A′ on the annotated tree. Formally, we have the following:

Theorem 1. Every PD-SPT can be translated to an equivalent PD-NPT.

Proof. Let A = 〈Σ, D, Γ, Q, q0, 
, δ, F 〉 be a PD-SPT and Ã = 〈Σ×Γ�, D, Q, q0, δ̃,
F 〉 be an APT derived from A by Lemma 1. By [MS87], Ã has an equiv-
alent NPT A′ = 〈Σ × Γ�, D, Q′, q′0, δ

′, F ′〉. Consider the PD-NPT A′′ =
〈Σ, D, Γ, Q′, q′0, 
, δ

′′, F ′〉, where for every (p, σ, γ) ∈ Q′ × Σ × Γ�, we have that
δ′′(p, σ, γ) is obtained from δ′(p, (σ, γ)) by replacing every (d, q) that appears
in δ′(p, (σ, γ)), with (d, q, δΓ (σ, γ, d)). Since A′ is nondeterministic, so is A′′.
Given a Σ-labeled tree 〈T, V 〉, it is not hard to see that for every x ∈ T , the
pushdown store of every copy of A′′ that visits x contains exactly ΔΓ (x). Hence,
A′′ accepts 〈T, V 〉 iff A′ accepts the ΓA-annotation of 〈T, V 〉, i.e., iff A accepts
〈T, V 〉. ��
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3.3 The Emptiness Problem of PD-SPT.

Looking at the automata transformations performed in Theorem 1 and Lemma 1
we see that the only transformation that incurs a blowup in the size of the
automaton is the transformation of the APT Ã to the NPT A′. By [MS87],
given an APT with n states and index k, running over D∗ trees, one can build
an equivalent NPT with (nk)O(nk) states, an O(nk) index, and a transition
relation of size (nk)O(|D|nk). Hence, starting with a PD-SPT A with n states
and index k, our algorithm yields an equivalent PD-NPT A′′ with (nk)O(nk)

states, an O(nk) index, and a transition relation of size (nk)O(|D|nk). It is worth
noting that the blowup is independent of the size of the transition relation of
A. By [KPV02], the emptiness of A′′ can be decided in time exponential in
the product of the number of states, the index, and the size of the transition
relation of A′′. Overall, we get the following corollary:

Corollary 1. The emptiness problem for a PD-SPT with n states and index k,
running on D∗ trees, can be solved in time double-exponential in |D|nk.

4 Solving Pushdown Module Checking with Imperfect
State Information

We first show that the pushdown module checking problem with imperfect state
information, for μ-calculus, graded μ-calculus, andCTL∗, can be reduced to the
emptiness problem of PD-SPT.

Basically, we extend the automata theoretic approach used in [AMV07]
for CTL pushdown module checking with imperfect state information. Be-
fore presenting the formal reduction, let us briefly recap the approach taken
by [AMV07], and discuss the main changes required to adapt it to the problem
we address. Given an OPD S, and a CTL formula ϕ, one builds an automa-
ton AS,ϕ that accepts {,⊥}-labeled trees corresponding to strategies ξ, whose
composition with MS is deadlock-free and satisfies ϕ. Intuitively, a run of AS,ϕ

on an input strategy tree ξ proceeds by simulating an unwinding of the module
MS, pruned at each step accordingly to the strategy ξ; copies of the automaton
which simulate nodes in the computation tree of MS that are indistinguishable
by the environment are sent to the same direction in the input tree. The re-
sulting run tree of AS,ϕ on ξ is basically a replica of the composition MS � ξ,
and the fact that it satisfies the formula ϕ is checked on the fly, by employing
in AS,ϕ the classical alternating-automata approach for model checkingCTL.

When considering CTL∗ or μ-calculus, adapting the construction used in
[AMV07] basically amounts to replacing the embedded alternating automaton
that does the on-the-fly model checking: instead of using an automaton that
handlesCTL, one uses an automaton that handlesCTL∗ (or μ-calculus). Since
an alternating automaton that does μ-calculus model checking is linear in the
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size of the formula, while one that doesCTL∗ model checking is exponential in
the size of the formula [KVW00], the automaton AS,ϕ has O(|S| ∗ |ϕ|) states
in the case of μ-calculus, and O(|S| ∗ 2|ϕ|) states in the case of CTL∗. It is
important to note that the acceptance condition of AS,ϕ is essentially that of
the embedded model checking automaton. Hence, unlike in [AMV07], where a
Büchi condition was enough, for the more expressive logics that we consider
here, we need a stronger acceptance condition, namely, a parity condition, for
which solving the emptiness problem requires stronger machinery.

The extension of the construction used in [AMV07] is slightly more deli-
cate when considering graded μ-calculus. Given a graded μ-calculus formula
ϕ, one possible approach is to translate ϕ into an equivalent μ-calculus for-
mula (without graded modalities). Essentially, as pointed out in [KSV02], one
introduces new atomic propositions p1, . . . , pb, (where b is the largest number
used in the graded modalities in ϕ) and replaces every atleast formula 〈n〉ψ by
∨

{i1,...,in+1}⊆{1,...,b}
∧

1≤j≤n+1〈0〉(ψ ∧ pij ), and dually for allbut formulas. One
also has to conjoin ϕ with a formula stating that exactly one of the p1, . . . , pb

holds at each state, and that successors that are labeled with the same pi agree
on their label with respect to all the formulas in the closure of ϕ. Unfortunately,
since the numbers in the graded modalities are coded in binary, such a trans-
lation may result in a μ-calculus formula which is exponentially larger than ϕ;
resulting in an overall exponentially worse complexity for the graded μ-calculus,
compared to the un-graded one. In order to avoid this extra exponent, in the
context of satisfiability, [KSV02] introduced graded automata. However, graded
automata do not transfer directly to the imperfect information setting. Fortu-
nately, there is another solution. Instead of expanding the graded modalities
at the formula stage, as suggested above, we can expand them as we build the
transition relation of AS,ϕ. Thus, for example, the transition relation of AS,ϕ

will specify that a copy of the automaton, that is responsible for verifying that
an atleast formula 〈n〉ψ holds at a certain configuration of the OPD, should
send n + 1 copies of itself to one of the exponentially many possible subsets
of n + 1 successors of the current configuration. This expansion of the graded
modalities allows AS,ϕ to handle graded μ-calculus formulas using an embed-
ded regular μ-calculus model checker (without graded modalities). This comes
at the price of AS,ϕ having an exponentially larger transition relation than if
graded modalities were not present; but does not affect the number of states,
or the index, of AS,ϕ. Since our algorithm for checking the emptiness of PD-
SPT is such that its complexity does not depend on the size of the transition
relation of the PD-SPT, we handle graded μ-calculus formulas with the same
complexity as we do regular μ-calculus formulas.

Theorem 2. Consider an OPD S and a propositional, or a graded, μ-calculus
(resp. CTL∗) formula ϕ, over S’s atomic propositions. There is a PD-SPT
AS,ϕ with O(|S| ∗ |ϕ|) states (resp. O(|S| ∗ 2|ϕ|)), and an index O(|ϕ|), such
that L(AS,ϕ) is exactly the set of strategies ξ for which MS � ξ is deadlock-free
and satisfies ϕ.
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Proof (Sketch). We give the construction of AS,ϕ for the graded μ-calculus.
The construction for the propositional μ-calculus is very similar, and the one
forCTL∗ is obtained by replacing the embedded classical alternating-automata
model checker with a CTL∗ one.

We first give some extra definitions regarding graded μ-calculus. From now
on, we refer to μ and ν as fixpoint operators. A propositional variable y occurs
free in a formula if it is not in the scope of a fixpoint operator, and bounded
otherwise. We use λ to denote a fixpoint operator μ or ν. For a formula λy.ϕ(y),
we write ϕ(λy.ϕ(y)) to denote the formula that is obtained from λy.ϕ(y) by
one-step unfolding; i.e., ϕ(λy.ϕ(y)) is obtained by replacing each free occurrence
of y in ϕ with λy.ϕ(y). For technical convenience, we restrict our attention to
formulas without free variables (also called sentences). The closure cl(ϕ) of a
graded μ-calculus sentence ϕ is the smallest set of graded μ-calculus formulas
that contains ϕ and is closed under sub-formulas (that is, if ψ is in the closure,
then so do all its sub-formulas that are sentences) and fixpoint applications (that
is, if λy.ϕ(y) is in the closure, then so is ϕ(λy.ϕ(y))). As proved in [BLMV06],
for every graded μ-calculus formula ϕ, the number of elements in cl(ϕ) is linear
in the length of ϕ. Accordingly, we define the size |ϕ| of ϕ to be the number of
elements in cl(ϕ).

Let S = 〈AP, Q, q0, Γ, 
, δ, η, Env〉 be an OPD, let ϕ be a graded μ-calculus
formula (guarded4, without free variables, and in positive normal form), and
let MS = 〈AP, Ws, We, w0, R, L,∼=〉 be the module induced by S. We build an
automaton AS,ϕ that accepts {,⊥}-labeled trees corresponding to strategies
ξ, whose composition with MS is deadlock-free and satisfy ϕ. Intuitively, a run
of AS,ϕ on an input strategy tree ξ, proceeds by simulating an unwinding of
the module MS , pruned at each step according to the strategy ξ; copies of the
automaton simulating nodes in the computation tree of MS that are indistin-
guishable by the environment are sent to the same direction in the input tree.
The resulting run tree of AS,ϕ on ξ is essentially a replica of the composition
MS � ξ, and the fact that it satisfies the formula ϕ is checked on the fly
by employing in AS,ϕ the usual alternating-automata approach for μ-calculus
model checking. In the full computation tree of MS, the set of directions is
G = {(q, β) | ((p, α), (q, β)) ∈ R for some p, α and β}. Since in S the pushdown
store is completely visible to the environment, the set of directions of the input
strategy trees is D = {(vis(q), β) | ((p, α), (q, β)) ∈ R for some p, q, α and β}.

Finally, due to the fact that all copies of the automaton sent to direction
(vis(q), β) push β into the pushdown store, the resulting automaton AS,ϕ is

4 A graded μ-calculus formula is guarded if for every variable y, all the occurrences of y that
are in a scope of a fixpoint modality λ are also in the scope of a graded modality that is itself
in the scope of λ. For example, the formula νy.(p∨ [0]y) is guarded, but the formula νy.(p∨y)
is not. Given a graded μ-calculus formula, we can construct in linear time an equivalent
guarded formula (see [KVW00] for a proof for μ-calculus, which is easily extendible to the
graded setting). Accordingly, we assume that all formulas are guarded. This is essential for
the correctness of our construction (it guarantees that transitions involving fixpoint formulas
are well defined).
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semi-alternating. As in [KVW00] we are going to use a function split to avoid
the problem of having states with a component in cl(ϕ) that is a disjunction or a
conjunction. Without the use of split, a run of the automaton may have no states
that correspond to a fixpoint sub-formula of ϕ that is part of a conjunction or
a disjunction, which makes it impossible to correctly define the acceptance
condition.

We formally define AS,ϕ = 〈{,⊥}, D, Γ, Q′, q′0, 
, δ
′, F 〉, where

– Q′ = (Q × (cl(ϕ) ∪ {p�})× {∀, ∃} × {pe, ps}) ∪ {q′0}. States with the compo-
nent p� are used to check that the composition of MS with the strategy is
deadlock-free, while states with a component in cl(ϕ) check that this compo-
sition satisfies ϕ. The components pe and ps are used to flag that the currently
simulated node, of the computation tree of MS, is a child of an environment
or a system node, respectively. Clearly, the simulation should respect the
strategy pruning specifications only if they correspond to children of envi-
ronment nodes; that is, only if the current state q contains pe. Every state
is either in an existential or a universal mode, as specified by the ∀ and ∃
components. When the automaton is in a universal state (q, ϕ, ∀, pe) with a
pushdown store content α, it accepts all strategies for which (q, α) in MS is
either pruned or satisfies ϕ (where p� is satisfied iff the root of the strategy
is labeled ). When the automaton is in an existential state (q, ϕ, ∃, pe) with
a pushdown store content α, it accepts all strategies for which (q, α) in MS

is not pruned and satisfies ϕ.
– δ′ is a function δ′ : Q′×Σ×Γ� → B+(D×Q′×Γ ∗

� ). Before giving the formal
definition, we show an example. Consider, a transition from the configuration
(〈p, ∀Xψ, ∃, pe〉, γ ·α), where (p, γ) ∈ Env. First, if the transition to (p, γ ·α)
is disabled (that is, the automaton reads ⊥), then, as the current mode is
existential, the run is rejecting. If the transition to (p, γ · α) is enabled, then
the successors of (p, γ · α) that are enabled should satisfy ψ. Note that all
the successors of (p, γ · α) that are indistinguishable by the environment are
sent by the automaton to the same direction v. This guarantees that either
all these successors are enabled by the strategy (in case the letter to be read
in direction v is ) or all are disabled (in case the letter in direction v is
⊥). In addition, since the requirement to satisfy ψ concerns only successors
of (p, γ · α) that are enabled, the mode of the new states is universal. The
copies of AS,ϕ that check the composition with the strategy to be deadlock-
free guarantee that at least one successor of (p, γ · α) is enabled. As noted
earlier, the enable/disable instructions of the strategy are ignored in every
configuration (p, γ ·α) that is a successor of a system configuration. Also note
that since we assume that no configuration in MS has no successors, the
conjunctions and disjunctions in δ′ cannot be empty.
We now formally define the transition function δ′. For (p, γ · α) ∈ W , we
define the set of successors of (p, γ · α) in MS , to be s(p, γ) = {(q, β) |
((p, γ), (q, β)) ∈ δ}. The transition function δ′ : Q′×Σ×Γ� → B+(D×Q′×Γ ∗

� )
is defined as follows. In the rules below, for the sake of succinctness, we
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consider m ∈ {∃, ∀}×{pe, ps}, h ∈ AP∪{true, false}. Also, given a transition
from (〈p, ψ, m〉,, γ), we let px = pe if (p, γ) ∈ Env and px = ps, otherwise.

– δ′(q′0,⊥, 
) = false and
δ′(q′0,, 
)= δ′(〈q0, p�, ∃, ps〉,, 
) ∧ δ′(〈q0, ϕ, ∃, ps〉,, 
).

– For all p, ψ, and γ, we have
δ′(〈p, ψ, ∀, pe〉,⊥, γ) = true and δ′(〈p, ψ, ∃, pe〉,⊥, γ) = false.

– For all p, ψ, and γ, we have
δ′(〈p, ψ, ∀, ps〉,⊥, γ) = δ′(〈p, ψ, ∀, ps〉,, γ) and
δ′(〈p, ψ, ∃, ps〉,⊥, γ) = δ′(〈p, ψ, ∃, ps〉,, γ).

– δ′(〈p, p�, m〉,, γ) = (
∨

(q,β)∈s(p,γ)(vis(q, β), 〈q, p�, ∃, px〉, β))∧
(
∧

(q,β)∈s(p,γ)(vis(q, β), 〈q, p�, ∀, px〉, β)).
– δ′(〈p, h, m〉,, γ) = true if h ∈ η((p, γ)), or h = true.
– δ′(〈p, h, m〉,, γ) = false if h �∈ η((p, γ)), or h = false.
– δ′(〈p,¬h, m〉,, γ) = true if h �∈ η((p, γ)), or h = false.
– δ′(〈p,¬h, m〉,, γ) = false if h ∈ η((p, γ)), or h = true.
– δ′(〈p, ψ1 ∧ ψ2, m〉,, γ) = split(δ′(〈p, ψ1, m〉,, γ) ∧ δ′(〈p, ψ2, m〉,, γ)).
– δ′(〈p, ψ1 ∨ ψ2, m〉,, γ) = split(δ′(〈p, ψ1, m〉,, γ) ∨ δ′(〈p, ψ2, m〉,, γ)).
– δ′(〈p, [n]ψ, m〉,, γ) =

split(
∨

Y ⊆s(p,γ)∧|Y |=|s(p,γ)|−n

∧

(q,β)∈Y (vis(q, β), 〈q, ψ, ∀, px〉, β)).
– δ′(〈p, 〈n〉ψ, m〉,, γ) =

split(
∨

Y ⊆s(p,γ)∧|Y |=n+1

∧

(q,β)∈Y (vis(q, β), 〈q, ψ, ∃, px〉, β)).
– δ′(〈p, μy.ϕ(y), m〉,, γ) = split(δ′(〈p, ϕ(μy.ϕ(y)), m〉,, γ)).
– δ′(〈p, νy.ϕ(y), m〉,, γ) = split(δ′(〈p, ϕ(νy.ϕ(y)), m〉,, γ)).

The definition of the function split : B+(D×Q′ ×Γ ∗
� ) → B+(D×Q′ ×Γ ∗

� ) is
a simple adaptation of the definition found in [KVW00]. For every d ∈ D, q ∈
Q, m ∈ {∃, ∀} × {pe, ps} and β ∈ Γ ∗

� we have the following:

– split(true) = true, split(false) = false.
– split(θ1 ∨ θ2) = split(θ1) ∨ split(θ2) and split(θ1 ∧ θ2) = split(θ1) ∧ split(θ2).
– If ψ ∈ cl(ϕ) is of the form p,¬p, [n]ψ′, 〈n〉ψ′, μy.ψ′(y) or νy.ψ′(y), then

split(d, 〈p, ψ, m〉, β) = (d, 〈p, ψ, m〉, β).
– split(d, 〈p, ψ1 ∨ ψ2, m〉, β) = split(d, 〈p, ψ1, m〉, β) ∨ split(d, 〈p, ψ2, m〉, β).
– split(d, 〈p, ψ1 ∧ ψ2, m〉, β) = split(d, 〈p, ψ1, m〉, β) ∧ split(d, 〈p, ψ2, m〉, β).

– It remains to define the acceptance condition F . Let d be the maximal
alternation level of (fixpoint) sub-formulas of ϕ. Denote by Gi the set
of all ν-formulas in cl(ϕ) of alternation level i. Denote by Bi the set of
all μ-formulas in cl(ϕ) of alternation depth less than or equal to i. Now,
F = {F0, F1, . . . , F2d}, where F0 = ∅ and for every 1 ≤ i ≤ d we have F2i−1 =
F2i−2∪(Q×Bi×{∀, ∃}×{pe, ps}), and F2i = F2i−1∪(Q×Gi×{∀, ∃}×{pe, ps}).
Clearly, F0 ⊆ F1 ⊆ F2 ⊆ . . . ⊆ F2d. Since by the definition of PD-SPT a path
π of a run r is accepting if the minimal i with Inf(π)∩Fi �= ∅ is even, by our
definition of F , such an index i corresponds to the outermost fixpoint formula
that was visited infinitely often. Thus, the acceptance condition makes sure
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that, if a fixpoint formula is visited infinitely often, then this is a greatest
fixpoint formula, and that all of its least fixpoint super-formulas are visited
only finitely many times.

Let us now discuss the size of AS,ϕ. It is easy to see that |Q′| = O(|Q| ∗ |ϕ|),
and |δ′| = O(|δ| ∗ |ϕ|). Hence, the size of AS,ϕ is O(|S| ∗ |ϕ|).

Finally, we show that AS,ϕ is semi-alternating. It is sufficient to show that
for every (t, β) ∈ D, σ ∈ Σ, p, p′ ∈ Q′, and γ ∈ Γ , if ((t, β), p′, β′) appears
in δ′(p, σ, γ) then β = β′. To see that, notice that ((t, β), p′, β′) appears in
δ′(p, σ, γ) only if vis(q, β′) = (t, β), for some q ∈ Q. Since by definition (because
the pushdown store is completely visible) we have that vis(q, β′) = (vis(q), β′),
and we are done. ��

Theorem 2 implies that MS |=r ψ iff the language of the automaton AS,¬ψ

is empty. We can now show the main result of the paper.

Theorem 3. Given an OPD S and a formula ϕ, the pushdown module check-
ing problem with imperfect state information is 2Exptime-complete if ϕ is a
propositional or a graded μ-calculus formula, and 3Exptime-complete if ϕ is a
CTL∗ formula.

Proof. The lower bound follows from the known bound for pushdown module
checking with perfect information (see [FMP07] for propositional and graded
μ-calculus, and [BMP05] for CTL∗). For the upper bound, by Theorem 2,
it is enough to check that AS,¬ϕ is empty. Recall that when considering
propositional and graded μ-calculus (resp. CTL∗) AS,¬ϕ is a PD-SPT with
n = O(|S| ∗ |ϕ|) (resp. n = O(|S| ∗ 2|ϕ|)) states, and index k = O(|ϕ|).
Let MS = 〈AP, Ws, We, w0, R, L,∼=〉 be the module induced by S. Observe
that the set of directions of the strategy trees that are the input of AS,¬ϕ is
D = {(vis(q), β) | ((p, α), (q, β)) ∈ R for some p, q, α and β}, and it is bounded
from above by |S|. By Corollary 1, the emptiness of AS,¬ϕ can be decided in
time double exponential in |D|nk. Thus, deciding if MS |=r ϕ can be done in
time double-exponential in |S| ∗ |ϕ| when considering propositional and graded
μ-calculus, and triple-exponential in |S| ∗ |ϕ| when considering CTL∗. ��
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Abstract. We investigate here a new version of the Calculus of Inductive Construc-
tions (CIC) on which the proof assistant Coq is based: the Calculus of Congruent
Inductive Constructions, which truly extends CIC by building in arbitrary first-order
decision procedures: deduction is still in charge of the CIC kernel, while computa-
tion is outsourced to dedicated first-order decision procedures that can be taken from
the shelves provided they deliver a proof certificate. The soundness of the whole sys-
tem becomes an incremental property following from the soundness of the certificate
checkers and that of the kernel. A detailed example shows that the resulting style of
proofs becomes closer to that of the working mathematician.

1 Introduction

Proof assistants based on the Curry-Howard isomorphism such as Coq [9] allow to
build the proof of a given proposition by applying appropriate proof tactics available
from existing libraries or that can otherwise be developed for achieving a specific task.
These tactics generate a proof term that can be checked with respect to the rules of
logic. The proof-checker, also called the kernel of the proof assistant, implements the
deduction rules of the logic on top of a term manipulation layer. In this model, the
mathematical correctness of a proof development relies entirely on the kernel. Trusting
the kernel is therefore vital.

The (intuitionist) logic on which Coq is based is the Calculus of Constructions (CC)
of Coquand and Huet [10], an impredicative type theory incorporating polymorphism,
dependent types and type constructors. Unlike logics without dependent types, CC
enjoys a powerful type-checking rule, called conversion, which incorporates compu-
tations within deductions, making decidability of type-checking a non-trivial property
of the calculus.

In CC, computation reduces to (pure) functional evaluation in the underlying
lambda calculus. The notion of computation is richer in the Calculus of Inductive
Constructions of Coquand and Paulin (CIC), obtained from CC by adding inductive
types and the corresponding rules for higher-order primitive recursion [11]. The re-
cent versions of Coq are based on a slight generalization of this calculus [15]. Still,
such a simple function as reverse of a dependent list cannot be defined in CIC as
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one would expect, because (reverse l :: l′) and (reverse l′) :: (reverse l), assuming ::
is list concatenation, have non-convertible types list(n+m) and list(m+n), assuming
(reverse l) has for type the type of its argument l. This is so because the usual definition
of + by induction on one of its arguments does not reduce the proof of m+ n = n + m
to a computation.

We do believe that scaling up the proof development process requires being able to
mimic the mathematician when replacing the proof of a proposition P by the proof of
an equivalent proposition P’ obtained from P thanks to possibly complex calculations
in which easy steps are hidden away. It is our program to make this view a reality.

A way to incorporate decision procedures to Coq is by developing a tactic and
then use a reflexion technique to omit checking the proof term being built by proving
the decision procedure itself. But the soundness of the entire mechanism cannot be
guaranteed in general [12]. Further, this does not answer the question of hiding easy
steps away.

A first attempt towards our goal is the Calculus of Algebraic Constructions (CAC),
obtained by adding to CC user-defined computations as rewrite rules [5, 3]. Although
conceptually quite powerful since CAC captures CIC [4], this paradigm does not yet
fulfill all needs. In particular, the user needs to hide away the easy steps by himself,
that is by giving the necessary rewrite rules and by verifying that they satisfy the as-
sumptions of the general schema [5, 3].

The proof assistant PVS uses a potentially stronger paradigm than Coq by com-
bining its deduction mechanism with a notion of computation based on the powerful
Shostak’s method for combining decision procedures [20], a framework dubbed little
proof engines by Shankar [19]. Indeed, the little engines of proof hide away the easy
computational steps, without any user assistance. Unfortunately, proof-checking is not
decidable in PVS. Further, since the little engines of proofs involve complex coding,
as well as Shostak’s algorithm itself, one can only believe a PVS proof, while one can
check and trust a Coq proof.

Two steps in the direction of integrating decision procedures into CC are Stehr’s
Open Calculus of Constructions (OCC) [21] and Oury’s Extensional Calculus of Con-
structions (ECC) [17]. Implemented in Maude, OCC allows for the use of an arbitrary
equational theory in conversion. ECC can be seen as a particular case of OCC in which
all provable equalities can be used in conversion, which can also be achieved by adding
the extensionality and Streicher’s axioms to CC [22], hence the name of this calculus.
Unfortunately, strong normalization and decidability of type checking are then lost,
which shows that we should seek for more restrictive extensions.

In a preliminary work, we designed a new, quite restrictive framework, the Calculus
of Congruent Constructions (CCC), which incorporates the congruence closure algo-
rithm in CC’s conversion [7], while preserving the good properties of CC, including
the decidability of type checking. In [6], we have described CCN, in which the deci-
sion procedure was Presburger arithmetic and strong elimination ruled out. The present
work is a continuation of the latter.

Theoretical contribution. Our main theoretical contribution is the definition and
the meta-theoretical investigation of the Calculus of Congruent Inductive Construc-
tions (CCIC), which incorporates arbitrary first-order theories for which entailment
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is decidable into deductions via an abstract conversion rule of the calculus. A major
technical innovation of this work lies in the computation mechanism: goals are sent
to the decision procedure together with the set of user hypotheses available from the
current context. Our main result shows that this extension of CIC does not compro-
mise its properties: confluence, strong normalization, coherence and decidability of
proof-checking are all preserved.

Unlike previous calculi, the difficulty with CCIC is not strong normalization, for
which we have reused the strong normalization proof of CAC [3]. A major diffi-
culty was a traditional step towards subject-reduction: compatibility of conversion with
products. Decidability of type checking required restricting conversions below recur-
sors [23].

Practical contribution. We give several examples showing the usefulness of this
new calculus, in particular for using dependent types such as dependent lists, which has
been an important weakness of Coq until now. Further studies are needed to explore
other potential applications, to match inductive definition-by-case modulo theories of
constructors-destructors, another very different weakness of Coq. A detailed example
shows that the resulting style of proofs becomes closer to that of the working mathe-
matician.

Methodological contribution. The safety of proof assistants is based on their ker-
nel. In the early days of Coq, the safety of its kernel relied on its small size and its clear
structure reflecting the inference rules of the intuitionist type theory, CC, on which it
was based. The slogan was that of a readable kernel. Moving later to CIC allowed to
ease the specification tasks, making the system very popular among proof developers,
but resulted in a more complex kernel that can now hardly be read except by a few
specialists. The slogan changed to a provable kernel, and indeed one version of it was
once proved with an earlier version (using strong normalization as an assumption), and
a new safe kernel extracted from that proof.

Of course, there has been many changes in the kernel since then, and its correctness
proof was not maintained. This is a first weakness with the readable kernel paradigm:
it does not resist changes. There is a second which relates directly to CCIC: there is
no guarantee that a decision procedure taken from the shelf implements correctly the
complex mathematical theorem on which it is based, since carrying out such a proof
may require an entire PhD work. Therefore, these procedures cannot be part of the
kernel.

Our solution to these problems is a new shift of paradigm to that of an incremental
kernel. The calculus on which a proof assistant is based should come in two parts:
a stable calculus implementing deduction, CIC in our case, which should satisfy the
readable or provable kernel paradigm; a collection of independent decision procedures
implementing computations, that produce checkable proof certificates. The certificate
checker should of course itself satisfy the readable or provable code paradigm. Note
that a Coq proof is a particular case of a checkable certificate.

This paradigm has many advantages. First, it allows for a modular, cooperative
development of the system, by separating the development of the kernel from that
of the decision procedures. Second, it allows for an unsafe mode in case a decision
procedure is used that does not have a certificate generator yet. Third, it allows to
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better trace errors in case the system rejects a proof, by using decision procedures
that output explanations when they fail. Last, it allows the user to use any decision
procedure she needs by simply hooking it to the system, possibly in unsafe mode.

This incremental schema is quite flexible, assuming that decision procedures come
one by one. However, even so, they are not independent, they must be combined. Com-
bining first-order decision procedures is not a new problem, it was considered in the
early 80’s by Nelson and Oppen on the one hand, by Shostak on the other hand, and has
generated much work since then. There are several possibilities to build in this mecha-
nism: in the kernel, via a certificate generator and checker again, or by reflection. This
design decision has not been made yet.

2 Congruent Inductive Constructions

The Calculus of Congruent Inductive Constructions (CCIC) is an extension of CIC
which embeds in its conversion rule the validity entailment of a fixed first order theory.
First, we recall the basics of CIC before to introduce parametric multi-sorted algebras
and then embed these first-order algebras into CIC. We are then able to define our cal-
culus relative to a specific congruence that is defined last. For simplicity, we will only
consider here the particular case of parametric lists and that of the natural numbers
equipped with Presburger arithmetic. This simple case allows us to build lists of nat-
ural numbers, as well as lists of lists of natural numbers, and so on. It indeed has the
complexity of the whole calculus, which is not at all the case when natural numbers
only are considered as in [6].

2.1 Calculus of Inductive Constructions

Terms. We start our presentation by first describing the terms of CIC.
CIC uses two sorts: � (or Prop, or object level universe), � (or Type, or predicate

level universe) and �. We denote {�,�,�}, the set of CIC sorts, by S .
Following the presentation of Pure Type Systems (PTS) [14], we use two classes

of variables: X � and X � are countably infinite sets of term variables and predicate
variables such that X � and X � are disjoint. We write X for X � ∪X �.

We shall use u for a list (u1, . . . ,un), s for a sort in S , x,y, . . . for variables in X �,
X ,Y, . . . for variables in X �.

Definition 1 (Pseudo-terms). The algebra L of pseudo-terms of CIC is defined by:
t,u,T,U, . . . := s ∈ S | x ∈ X | ∀(x : T ).t | λ [x : T ]. t

| t u | Ind(X : t){Ti} | t [n] | Elim(t : T [ui] →U){wj}
The notion of free variables is as usual - the binders being λ , ∀ and Ind (in Ind(X :

t){Ti}, X is bound in the Ti’s). We write FV(t) for the set of free variables of t. We say
that t is closed if FV(t) = /0. A variable x freely occurs in t if x ∈ FV(t).
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Inductive types. The novelty of CIC was to introduce inductive types, denoted by
I = Ind(X : T ){Ci} where the Ci’s describe the types of the constructors of I, and T
the type (or arity) of I which must be of the form ∀(xi : Ti).�. The k-th constructor of
the inductive type I, of type Ck{X �→ I}, will be denoted by I[k].

As an easy first example, we define natural numbers: nat := Ind(X : �){X ,X → X}.
We shall use 0 and S as constructors for natural numbers, of respective types nat and
nat→ nat, obtained by replacing X by nat in the above two expressions X and X →X .
Elimination rules for nat are as follows:

ElimN(0,Q){v0,vS} ι−→ v0

ElimN(Sx,Q){v0,vS} ι−→ vS x(ElimN(x,Q){v0,vS}) with Q : nat → s, ∈ S .

Similarly, we now define parametric lists: list := λ [T : �]. Ind(X : �){X ,T → X → X}. We
shall use nil and cons as constructors for parametrized lists, of respective types
∀(T : �). list(T ) and ∀(T : �).T → list(T ) → list(T ). Elimination rules for list are:

ElimL(nil,Q){vnil,vcons} ι−→ vnil

ElimL(consx l,Q){vnil,vcons} ι−→ vcons x l ElimL(l,Q){vnil,vcons})

Finally, we define dependent words over an alphabet A:

word = Ind(X : nat → �){X 0,A → X (S0),∀(y, z : nat).X y → X z → X(y+ z)}

We shall use ε , char and app for its three constructors, of respective types word0,
A→word(S0), and ∀(n,m : nat).wordn → wordm → word(n + m) obtained as pre-
viously by replacing X by word in the three expressions X 0,A → X (S0), and
∀(y,z : nat).X y → X z → X(y + z). Elimination rules for dependent words are:

ElimW(ε ,Q){vε ,vchar,vapp} ι−→ vε

ElimW(charx,Q){vε ,vchar,vapp} ι−→ vchar x

ElimW(appnml l ′,Q){vε ,vchar,vapp} ι−→ vapp nml l ′ (ElimW(l,Q){vε ,vchar,vapp})
(ElimW(l ′,Q){vε ,vchar,vapp})

Definitions by induction. We can now define functions by induction over natural
numbers, lists or words. Since using the CIC syntax is a bit painful, we give only a
quite simple example defining append (written @) for lists of natural numbers, of type
∀(T : �). list(T ) → list(T ) → list(T ):

@ := λ [l : listnat][l ′ : listnat].ElimL(l,Q)

⎧

⎨

⎩

l ′,
λ [x : nat][l ′′ : listnat].

λ [l1 : listnat][l2 : listnat].
λ [L : Ql1 l2].consxL

⎫

⎬

⎭

Strong and Weak reductions. CIC distinguishes strong ι-elimination when the
type Q of terms constructed by induction is at predicate level, from weak ι-elimination
when Q is at object level. Strong elimination is restricted to small inductive types to
ensure logical consistency [24].

Typing judgments. A typing environment Γ is a sequence of pairs xi : Ti made of a
variable xi and a term Ti (we say that Γ binds xi to the type Ti), such that Γ does not
bind a variable twice. The typing judgments are classically written Γ 	 t : T , meaning
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that the well formed term t is a proof of the proposition T (has type T ) under the well
formed environment Γ . xΓ will denote the type associated to x in Γ , and we write
dom(Γ ) for the domain of Γ as well.

The typing rules of CIC given in 1 are made of the typing rules for CC and the
typing rules for inductive types, given for the particular case of nat and list.

[AX-1]
	 � : �

[AX-2]
	 � : �

Γ 	 T : sT Γ , [x : T ] 	U : sU
[PROD]

Γ 	 ∀(x : T ).U : sU

Γ 	 ∀(x : T ).U : s Γ , [x : T ] 	 u : U
[ABS]

Γ 	 λ [x : T ].u : ∀(x : T ).U

Γ 	 t : ∀(x : U).V Γ 	 u : U
[APP]

Γ 	 t u : V{x �→ u}

Γ 	V : s Γ 	 t : T s ∈ {�,�}
x ∈ X s −dom(Γ ) [WEAK]

Γ , [x : V ] 	 t : T

x ∈ dom(Γ )∩X sx Γ 	 xΓ : sx
[VAR]

Γ 	 x : xΓ

Γ 	 t : T Γ 	 T ′ : s′ T
βι←→∗ T ′

[CONV]
Γ 	 t : T ′

	 τ f : s ∈ {�,�}
[SYMB]

	 f : τ f

Γ 	 Q : nat → s ∈ {�,�}
Γ 	 n : nat Γ 	 v0 : Q0

Γ 	 vS : ∀(p : nat).Q p → Q(S p)
[ELIM]

ElimN(n,Q){v0,vS} : Qn

Γ 	 T : � Γ 	 p : nat Γ 	 l : listT p

Γ 	 Q : ∀(n : nat). listT n → s ∈ {�,�}
Γ 	 vnil : Q0(nilT )

Γ 	 vcons :
∀(x : T )(n : nat)(l : listT n).

Qnl → Q(Sn)(cons T xnl)
[ELIM]

ElimL(l,Q){v0,vS} : Q pl

Fig. 1 CIC typing rules for nat and list

We did not give the general typing elimination rule for arbitrary inductive types,
which is quite complicated. Instead, we gave the elimination rules obtained for our
three inductive types nat, list and word. We refer to [18, 24] for the general case, and
for the precise typing rule of ElimW.

2.2 Parametric sorted algebras

Parametric sorted signature. Order-sorted algebras were introduced as a formal
framework for the OBJ language in [13], before to be generalized as membership equa-
tional logic in [8]. We use here a polymorphic version of a restriction of the latter, by
assuming given a signature (Λ ,Σ), Λ for the sort constructors, and Σ for the function
symbols made of a set of constructors for each sort constructor, and of a set of defined
symbols. We shall use the notation f : ∀α.σ1 ×·· ·×σn → τ for symbol declarations.
As an example, we describe natural numbers and parametric (non-dependent) list using
an OBJ-like syntax. We rule out here partiality, as introduced in practice by destructor
symbols, for sake of clarity.
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We shall use V = {α,β , . . .} for the set of sort variables, and T (Σ ,V ) = {σ ,τ, . . .}
for the set of sort expressions.

sort nat : ∗
sort list : ∗→ ∗
svar α : ∗
cons 0 : nat

cons S : nat → nat
fun +̇ : nat×nat → nat
cons nil : list(α)
cons cons : α × list(α) → list(α)
fun @ : list(α)× list(α) → list(α)

Definition 2 (Terms). For any sort σ , let X σ be a countably infinite set of variables
of sort σ , s.t. all the X σ ’s are pairwise disjoint. Let X =

⋃

σ X σ . For any x ∈ X ,
we say that x has sort σ if x ∈X σ . For any sort σ , the set Tσ (Σ ,X ) of terms of sorts
σ with variables X is the smallest set s.t.:

1. if x ∈ X τ , then x ∈ Tτ(Σ),
2. if t1, · · · , tn ∈Tσ1ξ (Σ ,X )×·· ·×Tσ2ξ (Σ ,X ) where f : ∀α.σ1 ×·· ·×σn → τ and

ξ is a sort substitution, then f (t1, . . . ,tn) ∈ Tτξ (Σ ,X ).

Let T (Σ ,X ) =
⋃

σ (Tσ (Σ ,X )). A term t has sort σ if t ∈ Tσ (Σ ,X ).

Note that the sets X σ play the role of a typing context.

Example 1. Assuming that x is a variable of sort nat, then 0 and 0 + x are of sort nat,
while nil is of sort list(α), list(nat), list(list(nat)), etc.

Definition 3 (Equations). Equations t =σ u are pairs of terms of the same sort σ .

Example 2. Assuming x of sort nat and l of sort list(list((nat)), x + 0 =nat x is an
equation of sort nat and cons(x,nil) =list(nat) car(l) is an equation of sort list(nat).

We can therefore as usual build parametrized algebras for list, algebras for nat
and therefore get algebras for nat, list(nat), etc. Satisfaction of an equation in these
algebras is defined as usual. In practice, type superscripts may be omitted when they
can be infered from the context.

2.3 Embedding parametric algebras in CIC

Our purpose here is to embed parametric multi-sorted algebra into CIC. As a result,
two different, but related kinds of symbols will coexist, in CIC and in the embedded
algebraic sub-world. We shall distinguish them by underlying symbols in CIC.

The first step of the translation maps, respectively sort constructors and constructor
symbols to CIC inductive types and constructors. We start with natural numbers and its
sort constructor nat. Constructor symbols of nat are simply all the constructors sym-
bols whose codomain is nat, i.e. here 0 and S. We thus define nat (the CIC inductive
type attached to nat) as an inductive type with two constructor types (one for 0, and
one for S): nat := Ind(X : �){C1(X),C2(X)}.

The constructor types of nat are simply the arities of 0 and S where nat is replaced
with the constructor type variable: C1(X) = X and C2(X) = X → X . As expected, we
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obtain here the standard inductive definition of natural numbers given in Section 2.1:
Ind(X : �){X ,X → X}. The translation 0 of 0 (resp. S of S) is then simply nat[1] (resp.
nat[2]).

Translating list is not very different. Being of arity 1, with two associated construc-
tor symbols (nil and cons), list is mapped to the already seen parametrized inductive
type list = λ [A : T ]. Ind(�){X ,A → X → X}. Translation of constructors is done the
same way. We just need to care about curryfication of symbols, and to replace sort
variables with CIC type variables.

Finally, defined symbols are mapped to CIC defined symbols, after translating their
type appropriately.

2.4 Building in a first-order theory

We now start describing our new calculus CCIC.

Terms. CCIC uses the same set of sorts S = {�,�,�} and sets of variables X =
X �∪X � of CIC. For any sort σ ∈ Λ , let Xσ ⊆ X � a infinite set of variables of sort
σ s.t. {Xσ}σ is a family of pairwise disjoint sets. We also assume that X −⋃

σ Xσ
is infinite.

Let A = {r,u} a set of two constants, called annotations, totally ordered by u≺A r,
where r stands for restricted and u for unrestricted. We use a for an arbitrary annota-
tion. The role of annotations will be explained later.

Definition 4 (Pseudo-terms of CCIC). Given a parametric sorted signature (Λ ,Σ),
the algebra L of pseudo-terms of CCIC is defined as:

t,u,T,U, . . . := s ∈ S | x ∈ X | ∀(x :a T ).t | λ [x :a T ].t | t u | f ∈ Σ | σ ∈ Λ
| =̇ | EqT (t) | Ind(X : t){Ti} | t [n] | Elim(t : T [ui] →U){wj}

In order to make definitions more convenient, we assume in the following that Λ
contains the symbols =̇,nat and list, and that Σ contains the symbols 0,S and Eq.

Compared with CIC, the differences are:

– the internalization of the first-order symbols,
– the internalization of the equality predicate:

- t =̇T u denotes the equality of the two terms (of type T ) t and u,
- EqT (t) represents the reflexivity proof of t =̇T t.

– annotations in products and abstractions are used to control the formation of appli-
cations as it can be seen from the new [APP] rule given at Figure 2.

Notation 2.1 When x is not free in t, ∀(x :a T ).t is written T →a t. The default anno-
tation, when not specified in a product or abstraction, is the unrestricted one.

As usual, there is a layered set of syntactic classes for L :

Definition 5 (Syntactic classes). The pairwise disjoint syntactic classes of CCIC
called objects (O), predicates (P), kinds (K ), kinds predicates (M ), and � are de-
fined as usual:



From Formal Proofs to Mathematical Proofs 357

− O ::= X � | f ∈ Σ | O O | O P | λ [x� :a P].O | λ [x� :a K ].O | Elim(O : P [O] → O){O}
− P ::= X � | σ ∈ Λ | P O | P P | λ [x� :a P].P | λ [x� :a K ].P

| Elim(O : P [O] → P){P} | ∀(x� :a P).P | ∀(x� :a K ).P
− K ::= � | K O | K P | λ [x� :a P].K | λ [x� :a K ].K | ∀(x� :a P).K | ∀(x� :a K ).K
− M ::= � | ∀(x� :a P).M | ∀(x� :a K ).M
−� ::= �
This enumeration defines a successor function +1 on classes (O + 1 = P , P + 1 = K ,

K + 1 = M , M + 1 = �). We also define Class(t) = D if t ∈ D and D ∈ {O,P,K ,
M ,�}.

From now on, we only consider well-constructed terms (i.e. terms whose class is
not ⊥) and well-constructed substitution (i.e. substitutions s.t. Class(x) = Class(xθ )
for any x in its domain). It is easy to check that if t is a well-constructed term and θ
a well-constructed substitution, then Class(t) = Class(tθ ). It is also well-known that
β ι−→-reduction preserves term classes.

Definition 6 (Pseudo-contexts of CCIC). The typing environments of CIC are de-
fined as Γ ,Δ ::= [] |Γ , [x :a T ] s.t. a variable cannot be declared twice. We use dom(Γ )
for the domain of Γ and xΓ for the type associated to x in Γ .

The rules defining the CCIC typing judgment Γ 	 t : T are the same as for CIC
except the rules for application and conversion given at Figure 2.

Γ 	 t : ∀(x :a U).V Γ 	 u : U

if a = r and U
β−→∗ t1 =̇T t2 with t1, t2 ∈ O

then t1∼Γ t2 must hold
[APP]

Γ 	 t u : V{x �→ u}

Γ 	 t : T Γ 	 T ′ : s′ T ∼Γ T ′
[CONV]

Γ 	 t : T ′

Fig. 2 CCIC modified typing rules

2.5 Conversion

We are now left with defining the conversion relation ∼Γ , whose definition needs some
preparation, since:

– conversion is defined on CCIC terms, but the first-order decision procedures operate
on algebraic terms. We therefore need to translate CCIC terms into algebraic terms,
a process we call algebraisation.

– conversion will operate on weak terms only, a notion introduced in Section 2.5.
Non-weak terms will be converted with β ι-reduction only, to forbid lifting up in-
consistencies from the object level to the type level. This is crucial to avoid breaking
strong normalization, and therefore decidability of type-checking in presence of in-
consistent user’s assumptions.

Algebraisation. Our calculus has a complex notion of computation reflecting its
rich structure made of three ingredients: the typed lambda calculus, the inductive types
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with their recursors and the integration of the first order theory T in its conversion. To
achieve this integration, goals are sent to the first order theory T together with a set
of proof hypotheses extracted from the current context.

Algebraisation is the first step of this extraction: it allows transforming a CCIC
term into its first-order counterpart. We illustrate this with an example, T being Pres-
burger’s arithmetic.

We begin by the simplest case, directly taken from CCN, the extraction of pure
algebraic, non parametric, equations. Suppose that the proof environment contains
equations of the form c=̇1 + d and d =̇2 with c and d variables of sort nat. What
is expected is that the set of hypotheses sent to the theory T contains the two well
formed T -formulas c = 1 + d and d = 2. This leads to a first definition of equations
extraction:

1. a term is algebraic if it is of the form 0, or St, or t + u, or x ∈ XN. The al-
gebraisation A (t) of an algebraic term is then defined by induction: A (0) = 0,
A (St) = S(A (t)), A (t + u) = A (t)+A (u) and A (xN) = xN,

2. a term is an extractable equation if it is of the form t =̇u with t and u algebraic terms.
The extracted equation is then A (t) = A (u).

The definition becomes harder for parametric signatures. The theory of lists gives
us a paradigmatic example. From the definition of embedding a polymorphic multi-
sorted algebra into CIC, we know that the symbol @ has ∀(T : �). listT → listT → listT

for type. Thus, a fully applied, well formed term having the symbol @ at head posi-
tion must be of the form (@T l1 l2), T being the type of the elements of the lists l1
and l2. Algebraisation of such a term will erase all type parameters: in our example,
A (@T l1 l2) = @(A (l1),A (l2)).

Algebraisation of non-pure algebraic terms is done by abstracting non-algebraic
subterms with fresh variables. For example, algebraisation of 1+t with t non-algebraic
will lead to 1+ xnat where xnat is an abstraction variable of sort nat for t. Of course, if
the proof context contains two equations of the form c=̇1+ t and d =̇1+u with t and
u β ι-convertible, t and u should be abstracted by a unique variable so that c = d can
be deduced in T from c = 1 + ynat and d = 1 + ynat. The problem is harder for:

– parametric symbols: in (consT t (nilU)) with t non algebraic, should t be abstracted
by a variable of sort nat or list(nat) ?

– ill-formed terms: should (consT 0(consT (nilU)(nilT ))) be abstracted as a list of
natural numbers or as a list of lists ?

Our solution is to postpone decisions: A (t) will be a function from Λ to the terms of
T s.t. A (t)(σ) is the algebraisation of t under the condition that t is a CCIC repre-
sentation of a first order term of sort σ .

We now give the formal definition of A (·). We assume:
- a Λ -sorted family {Yσ}σ of pairwise disjoint countable infinite sets of variables

of sort σ . Let Y =
⋃

σ Yσ ;
- for any equivalence relation R and sort σ ∈ Λ , we assume a function πσ

R :
CCIC(X ) → Yσ s.t. πσ

R(t) = πσ
R(u) if and only if t R u (i.e. πσ

R(t) is the element
of Yσ representing the class of t modulo R).
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Definition 7 (Well applied term). A term is well applied if it is of the form f [Tα ]α∈α t1 · · · tn
with f : ∀α.σ1 ×·· ·×σn → σ .

Example 3. Example of well applied terms are 0, St, or consT xl, T being the type
parameter here. Note that we do not require the term to be well formed.

In case of partial symbols, such as car for lists, this definition must be changed
slightly by adding a new argument, the proof that the input satisfies the appropriate
guard, here that it is not nil.

Definition 8 (Algebraisation). The algebraisation of t ∈ CCIC modulo an equiva-
lence relation R is the function A R(t) : Λ → T (X �∪Y ) defined by:

A R(xσ )(σ) = xσ
A R( f T [ui]i∈n)(τξ ) = f (A R(u1)(σ1ξ ), . . . ,A R(un)(σnξ ))

A R(t)(τ) = πτ
R(t) otherwise

where f : ∀α.σ1 ×·· ·σn → σ , f T [ui]i∈n is well applied, and ξ is a Λ -substitution.
For any relation R, A R is defined as A R where R is the smallest equivalence

relation containing R. We call σ -alien (or alien when the context is clear) a subterm of t
abstracted by a variable in Yσ , and say that t is algebraic w.r.t. σ if contains no σ -alien.
We denote by A lgσ the set of algebraic terms w.r.t. σ , and by A lg =

⋃

σ∈Λ A lgσ the
set of algebraic terms.

Example 4. Let t ≡ consT 0(consU (nilV )(nilU)), R be a relation on CCIC terms,
σ = list(nat), and xnat,ylist,znat,xα and yα be abstraction variables. Then:

A R(t)(σ ) = cons(A R(0)(nat),A R(consU(nilV )(nilU))(σ ))

= cons(0,cons(A R(nilV )(nat),A R(nilU)(σ ))) = cons(0,cons(xnat,nil))

A R(t)(list(σ )) = cons(A R(0)(σ ),A R(consU(nilV )(nilU))(list(σ )))

= cons(ylist,cons(A R(nilV )(σ ),A R(nilU)(list(σ )))) = cons(ylist,cons(nil,nil))

A R(t)(list(α)) = cons(xα ,cons(yα ,nil)) and A R(t)(nat) = znat.
It is clear from the above example that the algebraisation of a term depends on the

expected sort of the result: when abstracting the (heterogeneous and ill-formed) list
0 :: nil :: nil as a list of lists, 0 is seen as an alien which must be abstracted. When this
list is abstracted as a list of natural numbers or as a polymorphic list, 0 is considered
algebraic and the first occurrence of nil as an alien to be abstracted. Finally, if the list
is algebraised as a natural number, it is abstracted by a variable.

Weak terms. We first distinguish a class of terms called weak. This class of terms
will play an important role in the following as they restrict the interaction between the
conversion at object level and the strong ι-reduction.

An example of non weak term is

t = λ [x : nat].ElimS (x : nat [] → Q){nat,λ [x : nat][T : Qx].nat → nat}
Such a term is problematic in the sense that when applied to convertible terms, it can
β ι-reduce to type-level terms that are not β ι-convertible. Suppose that the conversion
relation is canonically extended to CCIC. Assume a typing environment Γ s.t. 0∼Γ S0,
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and hence, by congruence, t 0∼Γ t (S0). Now, it is easy to check that t 0
β ι−→∗ nat and

t (S0)
β ι−→∗(nat → nat). Strong normalization of β -reduction is then broken by encod-

ing the term ω = λ [x : nat].xx.
In contrast, weak terms lift no inconsistencies from object level to a higher level:

Definition 9 (Weak terms). A term is weak if it contains no i) applied type-level vari-
able, and ii) term of the form Elim(t : I [u] → Q){ f} with t open.

Extractable terms. From now on, let O+ be an arbitrary set of CCIC terms. This
set will be used in the conversion definition to restrict the set of extractable equations
of a given environment: only equation of the form t =̇u with t and u in O+ will be
considered.

At the moment, we only require O+ to be a subset of O . Note that taking O+ = O
does not compromise the standard calculus properties (subject reduction, type unic-
ity, strong normalization of β ι-reduction, . . .) but the decidability. E.g., if T is the
Presburger arithmetic, allowing the extraction of

λ [x :a nat]. f x=̇λ [x :a nat]. f (x+̇2)

would require - for checking conversion - to decide any statement of the form

T � (∀x. f (x) = f (x + 2)) → t = u,

which is well known to be impossible.

Conversion relation. We have now all necessary ingredients to define our conver-
sion relation ∼Γ :

Definition 10 (Conversion relation). Rules of Figure 3 define a family {∼Γ } of CCIC
binary relations indexed by a (non-necessarily well-formed) context Γ .

Note that the rule [DED] performing deductions in the first order theory, here Pres-
burger arithmetic, outputs a certificate [ , , ] made of the environment and the two
terms to be proved equivalent under this environment, each time it is called. While this
certificate must depend on these three data, it may of course carry additional informa-
tion depending on the considered first-order theory.

The main differences with the calculus CCN defined in [6] are the following:

– The [APP] rule has been split into two rules: [APPS ] and [APPW ]. Conversion for
strong terms is restricted to β ι-conversion.

– Conversion for the first argument of an Elim is restricted to β ι-conversion.
– The rules for transitivity and symmetry have been removed, which eases the proofs,

notably that the deduction part of the conversion relation works at object level only.
We prove later that the conversion relation is transitive and symmetric on well
formed terms, thus recovering type unicity.

– The rules for β ι-conversion perform one reduction step only, which also eases

proofs. Therefore u
β ι←→∗ v should be understood as ∃w s.t. u

β ι−→w and v
β ι−→w.
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[REFL]
t∼Γ t

[x :r T ] ∈ Γ T
βι−→∗ t =̇u t,u ∈ O+

[EQ]
t∼Γ u

T ∼Γ U t ∼Γ ,[x:aT ] u
[LAM]

λ [x :a T ]. t∼Γ λ [x :a U ].u

T ∼Γ U t ∼Γ ,[x:aT ] u
[PROD]

∀(x :a T ). t∼Γ ∀(x :a U).u

t
βι−→t ′ t ′ ∼Γ u

[β ι -LEFT]
t∼Γ u

t, t ′, f , f ′ are weak

t
βι←→∗ t ′ I∼Γ I′ Q∼Γ Q′ v∼Γ v′ f ∼Γ f

′

Elim(t : I [v] → Q){ f}∼Γ Elim(t ′ : I′ [v′] → Q′){ f
′}

u
βι−→u′ t∼Γ u′

[β ι -RIGHT]
t∼Γ u

t1∼Γ u1 t2∼Γ u2 ti,ui are weak
[APPW ]

t1 t2∼Γ u1 u2

E � A ∼Γ (t)(τ) = A ∼Γ (u)(τ) t,u ∈ O+

E = {A ∼Γ (w1)(σ ) = A ∼Γ (w2)(σ )
| w1∼Γ w2,σ ∈ Λ ,w1,w2 ∈ O+}

[DED]
t ∼Γ u [Γ , t,u]

Fig. 3 CCIC conversion relation

2.6 Decidability of type-checking

CCIC enjoys all needed meta-theoretical properties (strong normalization, confluence,
subject reduction), and therefore consistency follows:

Theorem 1. There is no proof of ∀(x : �).x in the empty environment.

All proofs are similar to those made for PTSs with the same succession of meta-
theoretical lemmas, but need more preparation. This is in particular the case with the
substitution lemma which is much harder than usual.

As said, type-checking in a dependent type theory is non-trivial, since the rule
[CONV] is not syntax-oriented. The classical solution to this problem is to eliminate
[CONV] and replace [APP] by the following rule.The proof is not difficult.

Γ 	 t : ∀(x :a U).V Γ 	 u : U ′ U ∼Γ U ′

if a = r and U
β−→∗ t1 =̇T t2 with t1,t2 ∈ Othen t1∼Γ t2 must hold

[APP]
Γ 	 t u : V{x �→ u}

Decidability of type-checking in CCIC therefore reduces to decidability of ∼Γ , the
environment Γ being arbitrary, possibly containing ill-formed terms or even being in-
consistent. To show that ∼Γ is decidable, we proceed as previously, by modifying the
definition in order to make it syntax-oriented: we show that two arbitrary terms are
convertible iff their β ι-normal forms are convertible by the syntax-oriented weak con-
vertibility relation ≈Γ given at Figure 4, in which, to any environment Γ , we associate
the set Eq(Γ ) = {t = u | [x :u T ] ∈ Γ ,xΓ −→∗ t =̇u,t,u ∈ A }.
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Lemma 1. Given Γ an environment and t,u two terms, t∼Γ u iff t ↓β ι ≈Γ u ↓β ι .

This is the main technical result of the decidability proof, which proceeds by
induction on the definition of ∼Γ . Note that the numerous conditions of the form
T ,Eq(Γ ) �� 0 = 1 in the rules defining ≈Γ are required to make them mutually ex-
clusive.

[REFL-�]
�≈Γ �

[REFL-�]
�≈Γ �

x ∈ X T ,Eq(Γ ) �� 0 = 1 or x �∈ X �

[REFL-X ]
x≈Γ x

t,u ∈ O T ,Eq(Γ ) � 0 = 1
[UNSAT]

t ≈Γ u

T ≈Γ U t ≈Γ ,[x:aT ] u
T ,Eq(Γ ) �� 0 = 1 or

λ [x :a T ]. t and λ [x :a U ].u not in O
[LAM]

λ [x :a T ]. t≈Γ λ [x :a U ].u

T ≈Γ U t ≈Γ ,[x:aT ] u
[PROD]

∀(x :a T ). t≈Γ ∀(x :a U).u

t = t ′ I≈Γ I′ Q≈Γ Q′ v≈Γ v′ f ≈Γ f
′

t, t ′, f , f
′

are weakT ,Eq(Γ ) �� 0 = 1 or
Elim(t, . . .){. . .} and Elim(t ′, . . .){· · ·} not in O

[W ]
Elim(t : I [v] → Q){ f}≈Γ Elim(t ′ : I′ [v′] → Q′){ f

′}
t1 ≡ u1 t2 ≡ u2

T ,Eq(Γ ) �� 0 = 1 or
t1 t2 and u1 u2 not in O

t1 t2 or/and u1 u2 is not weak
[APPS ]

t1 t2≈Γ u1 u2

t1≈Γ u1 t2≈Γ u2 ti,ui weak
T ,Eq(Γ ) �� 0 = 1 or

t1 t2 and u1 u2 not in O
[APPW ]

t1 t2≈Γ u1 u2

T ,Eq(Γ ) �� 0 = 1)
t = Ct [a1, . . . ,ak] u = Cu[ak+1, . . . ,ak+l]
Ct or Cu is a non-empty algebraic context

all the ai’s have empty algebraic caps
the ci’s are fresh constants s.t. ci = c j iff ai ≈Γ b j

T ,Eq(Γ ) � Ct [c1, . . .,ck] = Cu[ck+1, . . .,ck+l ] [DED]
t ≈Γ u

Fig. 4 CCIC syntax-oriented conversion

Example 5. Let Γ = [c : nat], [p :r (λ [x : nat].x)0=̇c]. Then (λ [x : nat].x + x)0≈Γ c
and (λ [x : nat].x + x)0≈Γ c, using congruence and deduction of ∼Γ and ≈Γ .

In contrast, β -reducing (λ [x : nat].x + x)0 yields 0+̇0∼Γ c, but not 0+̇0≈Γ c. In-
deed, (λ [x : nat].x+̇x)0 and 0+̇0 are no more ≈Γ -convertible, a direct consequence
of removing β ι-reduction from ∼Γ : the equation (λ [x : nat].x)0=̇c cannot be used
anymore, since 0+̇0 is not ≈Γ convertible to (λ [x : nat].x)0).

Now, normalizing all terms as well as the environment Γ , we can recover convert-
ibility for ≈: 0+̇0≈Γ↓βι c, the extractable equation of Γ↓β ι being now 0=̇c.

As a consequence, we obtain:

Theorem 2. ∼Γ is decidable for any environment Γ when taking for O+ the set of
terms that are reducible to an algebraic terms.

and therefore, our main result follows:

Theorem 3. The type-checking relationship Γ 	 t : T is decidable in CCIC.
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3 Using CCIC

We give here a detailed example illustrating the advantages of CCIC, based on the
inductive type of words introduced in Section 2.1.

In Coq. First, we give a development in Coq, therefore based on CIC.

Variable T : Set.

Inductive word : nat -> Set :=
| epsilon : word 0
| char : T -> word 1
| append : forall n p, word n -> word p -> word (n+p).

Lemma plus_n_0_transparent : forall n, n+0=n.
Proof. induction n as [| n IHn]; simpl;

[idtac | rewrite -> IHn]; trivial. Defined.

Lemma plus_n_Sm_transparent: forall n m, n+(S m)=S(n+m).
Proof. intros n m; induction n as [| n IHn];

simpl; [idtac | rewrite -> IHn]; trivial. Defined.

Lemma plus_assoc_transparent: forall n p q, (n+p)+q=n+(p+q).
Proof. intros n p q; elim n; [trivial | intros k].

simpl; intros H; rewrite -> H; trivial. Defined.

Definition reverse_acc : forall n, word n -> forall p, word p -> word (p+n).
Proof. intros n wn; induction wn as [| c | n p wn IHwn wp IHwp];

intros k wk. rewrite plus_n_0_transparent; exact wk.
rewrite plus_n_Sm_transparent; rewrite plus_n_0_transparent;

exact (append (char c) wk).
rewrite <- plus_assoc_transparent; exact (IHwp _ (IHwn _ wk)). Defined.

Fixpoint reverse n (w : word n) {struct w} : word n :=
match w in word k return word k with
| epsilon => epsilon
| char c => char c
| append n1 n2 w1 w2 => reverse_acc w2 w1 end.

The example of palindromes as words satisfying the property word_eq m reverse

m is carried out in Strub’s thesis (see his website). It yields a much more complex Coq
development than the above, since it involves the equality over (quotients) of words.

In CCIC. We now make the similar development in CCIC, using a self-explanatory
syntax. The definition of reverse reduces then to:

Fixpoint reverse n (w : word n) {struct w} : word n := match w with
| epsilon => epsilon
| char c => char c
| append _ _ w1 w2 => append (reverse w2) (reverse w1) end.

Typing of the third clause of reverse will use here Presburger’s arithmetic, since
append n1 n2 w1 w2 has type word (n1 + n2), while append n2 n1 w2 w1 has
type word (n2 + n1), two types that are not convertible in CIC, but which become
convertible in CCIC. We can easily see with this example the immense benefit brought
by internalizing Presburger’s arithmetic. Note that a single certificate is generated for
this conversion:
[n1 : nat, n2: nat, w1 : word n1, w2: word n2, n1 + n2, n2 + n1]
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4 Conclusion

CCIC is an extension of CIC by arbitrary first-order decision procedures for equality.
We have shown here with a detailed example using Presburger’s arithmetic the bene-
fit of the approach with respect to the current implementation of Coq based on CIC:
more terms can be typed especially in presence of types such as dependent lists which
become easy to use; many proofs get automated, making the life of the user easier
(developing the example of reverse for dependent lists in the currently distributed ver-
sion of Coq took us a day of work, and we don’t believe this can be shrinked to one
hour); and proofs are much smaller, some seemingly complex proofs becoming simple
reflexivity proofs. We believe that the resulting style of proofs becomes much closer
to that of the working mathematician.

We have also explained the advantage of the approach insofar as it allows to clearly
separate computation from deduction, therefore allowing for an incremental develop-
ment of the kernel of the system.

So far, we have considered only decidable -equality- theories. However, thanks
to the decidability assumption, a decidable non-equality theory can always be trans-
formed into a decidable equality theory over the type Bool of truth values equipped
with its usual operations.

There are still many directions to be investigated. A first is to embed membership
equational logic in CIC along the lines of the simpler embedding described here. A
second is to consider the case of dependent algebras instead of the simpler parametric
algebras. This is a much more difficult question, which requires using a stronger no-
tion of conversion in the main argument of an elimination, but would further help us
addressing other weaknesses of Coq.

Finally, we strongly believe that the use of decision procedures outputing certifi-
cates when they succeed and explanations when they fail will change our way of mak-
ing formal, and enlarge the audience of proof assistants.

Acknowledgement. We thank the Coq group for many useful discussions and sug-
gestions, and the referees for their useful remarks.
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15. E. Giménez. Structural recursive definitions in type theory. In Proceedings of ICALP’98, volume
1443 of LNCS, pages 397–408, July 1998.

16. G. Gonthier. The four color theorem in Coq. In TYPES 2004 International Workshop, 2004.
17. N. Oury. Extensionality in the calculus of constructions. In Proceedings 18th TPHOL, Oxford,

UK. LNCS 3603, 2005.
18. C. Paulin-Mohring. Inductive definitions in the system COQ. In Typed Lambda Calculi and

Applications, pages 328–345. Springer Verlag, 1993. LNCS 664.
19. N. Shankar. Little engines of proof. In G. Plotkin, editor, Proceedings of the Seventeenth Annual

IEEE Symp. on Logic in Computer Science. IEEE Computer Society Press, 2002.
20. R. E. Shostak. An efficient decision procedure for arithmetic with function symbols. J. of the

Association for Computing Machinery, 26(2):351–360, 1979.
21. M. Stehr. The Open Calculus of Constructions: An equational type theory with dependent types

for programming, specification, and interactive theorem proving (part I and II). Fundamenta
Informaticae 68(1-2), p. 131-174, 2005.

22. T. Streicher. Investigations into intensional type theory, Habilitation, Münich University, 1993.
23. P.-Y. Strub. The Calculus of Congruent Inductive Constructions. PhD thesis, École Polytech-
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Abstract. Both single and multiple class-based inheritance are often inap-
propriate as a reuse mechanism, because classes play two competing roles.
Namely, a class is both a generator of instances and a unit of reuse. Traits
are composable pure units of behavior reuse, consisting only of methods, that
have been proposed as an add-on to single class-based inheritance in order to
improve reuse. However, adopting traits as an add-on to traditional class-based
inheritance is not enough: classes, besides their primary role of generators of
instances, still play the competing role of units of reuse. Therefore, a style of
programming oriented to reuse is not enforced by the language, but left to
the programmer’s skills. Traits have been originally proposed in the setting of
dynamically typed language. When static typing is also taken into account,
the role of unit of reuse and the role of type are competing, too.
We argue that, in order to support the development of reusable program com-

ponents, object oriented programming languages should be designed according
to the principle that each software structuring construct must have exactly one
role. We propose a realignment of the class-based object-oriented paradigm by
presenting programming language features that separate completely the dec-
larations of object type, behavior and generator. We illustrate our proposal
through a core calculus and prove the soundness of the type system w.r.t. the
operational semantics.

Key words: Type System, Inheritance, Composition, Flattening.

1 Introduction

It is common opinion that standard class-based inheritance does not support
low coupling and, therefore, does not support well code reuse. This phenomenon
is often described as the fragile base-class problem and it is well-described in the
work by Mikhajlov and Sekerinski [20]. A well-known technique to circumvent
the fragile base-class problem is to promote the use of interface-based polymor-
phism. This idea is also present in most of the design patterns, such as the GoF
design patterns [14], in order to make the patterns as higher-level as possible
with respect to the implementation details.

Class-based inheritance was criticized again recently by Schärli et al. [25, 10],
by pointing out that both single and multiple class-based inheritance are often
inappropriate as a reuse mechanism. They identify the problem in the fact that
classes play two competing roles. Namely, a class is both a generator of instances
(hence it must provide a complete set of basic features) and a unit of reuse

Please use the following format when citing this chapter:

Bono, V., Damiani, F. and Giachino, E., 2008, in IFIP International Federation for Information Processing,
Volume 273; Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani
Karhumäki, Giancarlo Mauri, Luke Ong; (Boston: Springer), pp. 367–382.
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(hence it should provide a minimal set of sensibly reusable features). Schärli et
al. also observed that mixins [7, 17, 13, 3], which are subclasses parameterized
over their superclasses, are not necessarily appropriate for composing units of
reuse. The problem is due to the fact that, being based on the ordinary single
inheritance operator, mixing composition is linear. Indeed, the formulation of
mixins given by Bracha in Jigsaw [6] does not suffer of this problem,1 but most
of the subsequent formulations of the mixin construct do.

To overcome these problems, Schärli et al. proposed traits, composable pure
units of behavior reuse consisting only of methods, that can be composed in an
arbitrary order via operations ensuring that the composite unit (trait or class)
has complete control over the composition and must resolve conflicts explicitly.
However, both in the original proposal and (to the best of our knowledge) in
all the trait-based approaches that can be found in the literature (with the ex-
ception of the Fortress language proposal [1], currently under development),
traits live together with the traditional class-based inheritance. Therefore, be-
sides their primary role of generators of instances, classes can still play the
competing role of units of reuse, and a style of programming oriented to reuse
is not enforced by the language, but left to the programmer’s skills.

The original proposal of Schärli et al. does not address typing issues. Various
proposals for using traits in connection with static typing can be found in the
literature (we refer to [21] for a brief overview). In some of these proposals
(notably in the Scala [22] and in the Fortress [1] languages) each trait, like
each class, also defines a type. However, as a matter of fact, the role of unit
of reuse and the role of type are competing. For instance, in order be able to
define the subtyping relation on traits in such a way that a trait (or a class)
is always a subtype of the component traits, Scala and Fortress rule out
operations on traits such as method exclusion and renaming, limiting the reuse
potential of traits. The distinction between the role of type and the role of unit
of reuse, described in terms of type and class, dates back at least to Snyder [27]
(see also Cook et al. [9]).

Having in mind the need of promoting interface-based polymorphism and
arbitrarily composable units of reuse, we would like to go further and give
classes the role of object generators only.

We argue that, in order to support the development of reusable program com-
ponents, object oriented programming languages should be designed according
to the principle that each software structuring construct must have exactly one
role. We propose programming language features that separate completely the
declarations of object type, behavior and generator. Namely, we consider:

– Interfaces, as pure types.
– Traits, as pure units of behavior reuse.
– Classes, as pure generators of instances.

1
Jigsaw introduces very general operators for module manipulation. Some of them have been

later, independently, developed for traits.
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Interfaces can be defined by extending other interfaces (the interface hierarchy
induces subtyping). Traits can be defined by composing other traits. Classes
are defined by composing traits, implementing interfaces, and defining fields.

Note that there are no hierarchical dependencies among classes. Therefore,
a first outcome of the complete role separation is that problems of fragility in
a class hierarchy (that arise with class-based and mixin-based inheritance) are
avoided a priori : there is no class hierarchy. Since traits and classes do not
define types, another outcome of the complete role separation is that the use
of operations like method exclusion and renaming is not limited by the need
of ensuring that each trait (or class) is a subtype of the composing traits (see
Sect. 2).

Recently, Bergel et al. [4] pointed out several limitations of the trait model. In
order to overcome these limitations, they propose (in a Smalltalk-like setting)
to make traits stateful by allowing traits to have private fields that, through
a variable access operator, may be accessed from the clients possibly under a
new name, and possibly merged with other variables. Our proposal provides (in
a Java-like setting) an alternative solution to the limitations of the stateless
trait model. Also, Bergel et al. observed that: “An open question for further
study is whether trait composition can subsume class-based inheritance, leading
to a programming language based on composition rather than inheritance as
the primary mechanism for structuring code following Jigsaw [6] design.” Our
investigation addresses the previous question by providing a foundation for a
realignment of the class-based object-oriented paradigm to support the system-
atic structuring of code in “single-role” reusable units. Besides their power of
reuse, traits have attracted a great deal of attention in the programming lan-
guage research community because of their simple semantics. We believe that
our proposal is a step forward towards simplicity.

A preliminary version of the results presented in this paper appeared as [5].
Organization of the Paper. Section 2 illustrates our proposal through an
example. Section 3 presents the syntax of FRJ (a core calculus for reusable
units based on the constructs introduced above), outlines its type system and
its operational semantics, and states a type soundness result. We conclude by
discussing some related work and outlining possible directions for further work.

2 An Example

In this section we provide a simple example of code that cannot lead to unan-
ticipated reuse both in traditional class-based languages and in trait-based lan-
guages where a composite trait is a subtype of the component traits, but that
can be reused in an unanticipated way in a language based on our proposal.
We exploit a standard Java-like notation, in particular we use a more general
syntax for constructors than the one that will be presented in Section 3.1.

Consider the task of developing a class Stack that implements the interface:
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interface IStack { boolean isEmpty(); void push(Object o); Object pop(); }

In a traditional class-based language (like, e.g., Java) it is natural to write a
class like:

class Stack implements IStack { List l; Stack() { l=new LinkedList(); }

boolean isEmpty() { return (l.size() == 0); }

void push(Object o) { l.addFirst(); }

Object pop() { Object o=l.getFirst(); l.removeFirst(); return o; }

}

Suppose that later on it becomes necessary to develop a class Stack’ that
implements the interface:

interface IStack’ { Boolean isEmpty(); void push(Object o); void pop();

Object top(); }

In a traditional class-based language there is no straightforward way to reuse
the code in class Stack and the simplest thing to do is to write a class like:

class Stack’ implements IStack’ { List l; Stack’() { l=new LinkedList(); }

boolean isEmpty() { return (l.size() == 0); }

void push(Object o) { l.addFirst(); }

void pop() { l.removeFirst(); }

Object top() { return l.getFirst(); }

}

To illustrate our proposal, we exploit a Java-like syntax (we still do not have
an implementation). In a class the only (implicitly) public methods are those
declared in the interfaces implemented by the class. All the other methods and
the fields are (implicitly) private. All the constructors must be declared and are
(implicitly) public. Moreover, for every library class (such as Object, Integer,
etc.) we assume an interface and a trait. The same name can be used to denote
the interface, the trait and the class. The Object interface is implicity extended
by any interface and the Object trait is implicity used by any class.

A class Stack, whose instance type is the interface IStack, can be naturally
written by defining separately instance behaviour and generation as follows:

trait TStack is { List l;

boolean isEmpty() { return (l.size() == 0); }

void push(Object o) { l.addFirst(); }

Object pop() { Object o=l.getFirst(); l.removeFirst(); return o; } }

class Stack implements IStack by TStack

{ List l; Stack() { l=new LinkedList(); } }

A class Stack’ that implements the interface IStack’ can be straightforwardly
written as follows by defining a trait TStack’ that reuses the trait TStack:

trait TStack’ is (TStack exclude pop)

+ { List l; void pop() { l.removeFirst(); }

Object top() { return l.getFirst(); } }

class Stack’ implements IStack’ by TStack’

{ List l; Stack’() { l=new LinkedList(); } }
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ID ::= interface I extends Ī { S; }
S ::= I m (Ī x̄)

TD ::= trait T is TE

TE ::= { F̄; S; M̄ } | T | TE + TE | TE exclude m | TE alias m as m

| TE duplicate m as m | TE rename m to m | TE rename f to f

F ::= I f

M ::= S { return e; }
e ::= x | e.f | e.m(ē) | new C(ē) |(I)e

CD ::= class C implements Ī by TE { F̄; K }
K ::= C(Ī f̄) { this.f̄ = f̄; }

Fig. 1 FRJ: Syntax

The trait TStack’ above can be alternatively defined as follows:

trait TStack’ is (TStack rename pop to poptop)

+ { Object poptop(); void push(Object);

void pop() { poptop(); }

Object top() { Object o=poptop(); push(o); return o; } }

Note that, if traits were types and composed traits were subtypes of the com-
ponent traits, both the declarations of the trait TStack’ would not typecheck.

3 FRJ: a Calculus for Reusable Units

In this section we provide a formal account of our idea by presenting FRJ

(Featherweight Reusable Java), a minimal core calculus for interfaces,
traits and classes, in the spirit of FJ (Featherweight Java) [15].

3.1 Syntax

The syntax of our calculus, FRJ, is presented in Fig. 1. We also consider a
calculus, FFRJ (Flat FRJ), obtained by removing the portions of the syntax
highlighted in grey.

We use the overbar sequence notation according to [15]. For instance:
“f̄” denotes the possibly empty sequence “f1, ..., fn”, the pair “Ī x̄” stands
for “I1 x1, ..., In xn”, “Ī f̄;” stands for “I1 f1; ...; In fn;”, and the assignment
“this.f̄ = f̄;” stands for “this.f1 = f1; ...; this.fn = fn;”. The empty se-
quence is denoted by “•”.

Sequences of named elements (e.g., methods signatures, fields declarations,...)
are assumed to contain no duplicate names, the sequence of the names of the
elements of S is denoted by names(S), the subsequence of the elements of S with
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the names n̄ is denoted by extract(n̄, S), and discard(n̄, S) denotes the sequence
obtained from S by removing the elements with the names n̄. Following [15],
we use a set-based notation for operators over sequences of named elements.
For instance, M = I m (Ī x){return e} ∈ M̄ means that the method declaration M
occurs in M̄. In the union and in the intersection of sequences of named elements,
denoted by S∪ Z and S∩ Z, respectively, it is assumed that if n ∈ names(S) and
n ∈ names(Z) then extract(n, S) = extract(n, Z).

The concatenation of two sequences S and Z is denoted by S·Z, where, if S and
Z are sequences of named elements, it is assumed that names(S)∩names(Z) = ∅.

A class table CT is a map from class names to class declarations. Similarly, an
interface table IT and a trait table TT map interface and trait names to interface
and trait declarations, respectively. A FRJ program is a 4-tuple (IT, TT, CT, e).
In presenting the type system and the flattening translation we assume fixed,
global tables IT, TT, and CT. We also assume that these tables are well-formed,
i.e., they contain an entry for each interface/trait/class mentioned in the pro-
gram, and the interface subtyping and trait reuse graphs are acyclic.

The distinguishing features of FRJ w.r.t. the original trait proposal [10] and
to other proposals of traits for Java-like setting [26, 18, 21] are the following:

– Classes and traits are not types and class-based inheritance is not present.
– Traits (and classes) can be typechecked in isolation (as in Chai2 [26]).
– A basic trait expression { F̄; S; M̄ } provides the methods M̄ and declares the

type of the required fields F̄ and methods S (that can can be directly accessed
by the bodies of the methods M̄).2

– In the symmetric sum operation (that merges two traits to form a new trait)
we require that the summed traits must be disjoint (that is, they must not
provide identically named methods).3

– The operation exclude, that forms a new trait by removing a method from
an existing trait, is the usual one (i.e., as in [10, 26, 18, 21]).

– We have the operations alias and duplicate that form a new trait by giv-
ing a new name to an existing method. The two operations are identical on
non-recursive methods. When a recursive method is aliased, its recursive in-
vocation refers to the original method (as in [10]). When a recursive method
is duplicated, its recursive invocation refers to the duplicate (as in the inter-
pretation of aliasing proposed in [18]).

– We have the operation rename that creates a new trait by renaming all the
occurrences of a required field name or of a required/provided method name
from an existing trait.4

2 Field requirements were not present in [10] and in [26, 18, 21]. They have been introduced
in [12] in the setting of ML-like languages.
3 According to other proposals, two methods with the same name do not conflict if they are
syntactically equal [10, 21] or if they originate from the same subtrait [18].
4 Method renaming is not present in [10] and in [26, 18, 21]. It has been introduced in [23]
in the setting of ML-like languages. At the best of our knowledge, required field renaming is
new.
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– The override operation, that layers additional methods over an existing trait,
is not present. It can be simulated by exclusion and symmetric sum.

– We use interfaces to explicitly declare the public methods of a class.

3.2 Typing

The FRJ type system combines nominal and structural typing. Within a basic
trait expression, the uses of method parameters are type-checked according to
the nominal notion of typing defined by the interface hierarchy, while the uses
of the this metavariable are type-checked according to a structural notion of
typing that takes into account the field and methods required by the trait and
the methods provided by the trait.

3.2.1 Types, Constraints and Subtying. Pure signatures, ranged over by
σ and ζ, are method signatures deprived of parameter names. For instance, the
pure signature associated to the signature I m(I1 x1, ..., In xn) is I m(I1, ..., In).

The syntax of nominal types is as follows: η ::= C | I . (I.e., a nominal
type is either a class name or an interface name.) The syntax of types for
expressions is as follows: θ ::= 〈 F̄ � σ 〉 | η . The type of the expression
this is a pair 〈 F̄ � σ 〉, specifying that this has the fields F̄ and methods with
(pure) signatures σ. The type of an object creation expression new C(· · · ) is the
class C. The type of any other expressions e is an interface name.

Besides assigning to each expression e a type describing the object yielded
by the evaluation of e, the FRJ type system infers also the constraints on
this imposed by its use within e. Constraints, ranged over by γ, are triples
〈 F̄ � σ � Ī 〉 specifying that the expression e selects the fields F̄ and the
methods σ on this, and requires that this has the nominal types (interfaces) Ī.
In particular, the interfaces in Ī are the types of the method formal parameters
to which this is passed inside the expression e. We recall that this will assume
a meaning according to the class where the traits will be used. The typing rule
for classes will check that such a class satisfies the constraints inferred for the
bodies of the methods declared in the composing traits.

The subtyping relation for nominal types is the reflexive and transitive
closure of the interface implementatation/extension relation declared by the
implements clauses in the class table CT and by the extends clauses in the
interface table IT. It is formalized by the judgement η1 <: η2 to be read: “η1

is a subtype of η2”.

3.2.2 Typing Rules. An environment Γ is either a finite mapping form vari-
able names (including this) to types, written “x̄ : Ī, this : 〈 F̄ � σ 〉”, or the
empty mapping, written “•”. The typing rules for interface declarations, expres-
sions, method declarations, trait declarations and class declarations are syntax
directed, with one rule for each form of term, except that (following [15]) there
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are three different rules for casts (to distinguish between upcasts, downcasts,
and stupid casts). The typing judgements are the following:

– � interface I extends Ī { S; } OK to be read: “the declaration of the
interface I is well-typed”.

– Γ � e : θ � γ to be read: “under the assumption in Γ , the expression e is
well-typed with type θ and constraints γ”.

– this : 〈 F̄ � σ 〉 � I m (Ī x̄){return e; } : μ where μ = ζ � γ. To be read:
“under the assumption that this has fields F̄ and methods σ, the declaration
of method m is well-typed with type μ”. I.e., the method m has signature ζ
and its body enforces the constraints γ.

– � TE : μ̄ where μ̄ = μ1...μn (n ≥ 0). To be read: “the trait expression TE

is well-typed with type μ̄”. I.e., TE provides n methods with types μ1, ..., μn,
respectively.

– � trait T is TE : μ̄ to be read: “the declaration of trait T is well-typed with
type μ̄”.

– � class C implements Ī by TE { F̄; K } OK to be read: “the declaration of
the class C is well-typed”.

Note that, within a basic trait expression { F̄; S; M̄ }, we ask the programmer
to declare exactly the fields F̄ and the methods S selected on this within the
method bodies in M̄. Declaring the types of fields and methods has two benefits:
(i) it provides a form of documentation that enforces awareness of what it is
actually used in a program; (ii) it simplifies the inferred constraints. We decided
not to ask to declare the name of the interfaces that are used as types of this
within the method bodies in M̄, as this would not introduce any benefits to
counterbalance the overhead.

3.2.3 Well-typed FRJ programs. We write �FRJ (IT, TT, CT, e) : η, to be
read: “the program (IT, TT, CT, e) is well-typed with type η”, to mean that the
interfaces in IT, the traits in TT and the classes in CT are well-typed, and the
expression e is well typed with type η and empty constraints under the empty
set of assumptions (i.e., the judgement • � e : η � 〈 • � • � • 〉 holds).

3.3 Flattening and Reduction

Our traits enjoy the flattening property [21], i.e., when a class uses a trait the
semantics of the methods defined within the trait declaration is the same as if
the methods were defined within the class declaration.5 The semantics of FRJ

is specified by means of a flattening translation that maps a FRJ program into
a FFRJ program and of a reduction semantics for FFRJ programs.

5 Flattening just aims to provide a canonical semantics to traits, it is not an especially effective
implementation technique.



On Traits and Types in a Java-like Setting 375

�class C implements Ī by TE { F̄; K }� def
= class C implements Ī by { F̄; •; �TE� } { F̄; K }

�{ F̄; S; M̄ }� def
= M̄

�T�
def
= �TE� if TT(T) = trait T is TE

�TE1 + TE2�
def
= �TE1� · �TE2�

�TE exclude m�
def
= discard(m, �TE�)

�TE alias m as m′�
def
= M̄ · (I m′(Ī x̄){return e; })

if �TE� = M̄ and I m(Ī x̄){return e; } ∈ M̄

�TE duplicate m as m′�
def
= M̄ · (I m′(Ī x̄){return e[this.m

′
/this.m]; })

if �TE� = M̄ and I m(Ī x̄){return e; } ∈ M̄

�TE rename f to f′�
def
= �TE�[f

′
/f]

�TE rename m to m′�
def
= mR(�TE�, m, m′)

mR(I n(Ī x̄){return e; }, m, m′) def
= I n[m

′
/m](Ī x̄){return e[this.m

′
/this.m]; }

mR(M1 · ... · Mn, m, m′)
def
= (mR(M1, m, m′)) · ... · (mR(Mn, m, m′))

Fig. 2 Flattening FRJ to FFRJ

3.3.1 Flattening Translation for FRJ. A FFRJ program is a FRJ pro-
gram with an empty trait table. The translation removes the trait table and
replaces the class table with a suitable one containing only FFRJ classes. The
translation is specified through the function �·�, given in Fig. 2, that maps a
FRJ class declaration to a FFRJ class declaration and a trait expression to a
sequence of method declarations. We will write �CT� to denote the class table
containing the translation of all the classes in CT. The clauses in Fig. 2 are self-
explanatory. Note that the clause for field renaming is simpler than the clause
for method renaming (which uses the auxiliary function mR); this is due to the
fact that fields can be accessed only on this.

3.3.2 Reduction for FFRJ. A FFRJ program is a 4-tuple (IT, •, CT, e). A
FFRJ class “class C implements Ī by { F̄; •; M̄ } { F̄; K }” can be understood
as the Java class “class C implements Ī { F̄; K M̄ }”. Following FJ [15], we
give the semantics of FFRJ by means of a reduction relation of the form e → e′,
to be read “expression e reduces to expression e′ in one step”. We write →�

to denote the reflexive and transitive of →. Values are defined by the following
syntax: v ::= new C(v̄) .

3.4 Properties

The flattening translation preserves the type of programs.

Theorem 1 (Flattening Preserves the Type of Programs).
If �FRJ (IT, TT, CT, e) : η, then �FRJ (IT, •, �CT�, e) : η.
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To prove the type soundness result for FFRJ we need to consider a suitable
notion of typing for runtime expressions. As for FJ [15], the syntax of runtime
expressions is the same of expressions. Constraints are not needed to prove
the type soundness for FFRJ, therefore the typing for runtime expressions do
not consider constraints. An environment for runtime expressions Δ is either
a finite mapping from variable names (including this) to types, written “x̄ :
Ī, this : C”, or the empty mapping, written “•”. The typing judgement for
runtime expressions is Δ �′ e : η to be read: “under the assumption in Δ, the
runtime expression e is well-typed with type η”.

The type soundness result comes in two parts: first it relates the typing of
expressions with the typing of runtime expressions, then it proves the type
soundness with respect to the runtime expression typing.

Theorem 2 (Well-typed FFRJ expressions are well-typed runtime ex-
pression with a more specific type).
If • � e : η, then • �′ e : η′ for some η′ such that η′ <: η.

The following theorem can be proved by using the standard technique of subject
reduction and soundness theorems.

Theorem 3 (FFRJ Type Soundness).
If • �′ e : η and e →� e′ with e′ a normal form, then e′ is: Either a value v with
• �′ v : C and C <: η; Or an expression containing (I)new C(ē) where C �<: I.

Following FJ [15], we say that a well-typed program (IT, TT, CT, e) is cast-safe
if the type derivations involved in �FRJ (IT, TT, CT, e) : η include no downcasts
or stupid casts. The following results hold.

Theorem 4 (Flattening Preserves Cast-Safeness).
If (IT, TT, CT, e) is cast-safe, then (IT, •, �CT�, e) is cast-safe.

Theorem 5 (No Typecast Errors in Cast-Safe FFRJ Programs).
If (IT, •, �CT�, e) is cast-safe and e →� e′ with e′ a normal form, then e′ is a
value.

4 Conclusions, Related and Further Work

The competing roles played by the same software structuring construct compli-
cate the semantics and limits the reuse potential in mainstream object-oriented
class-based programming languages.

To the best of our knowledge, the conflict between the roles of unit of reuse
and generator of instances was firstly described by Schärli et al. [25, 10]. We
claim also that the roles of unit of reuse and type are competing (see Sect. 1).
In this respect, we propose to increase both the simplicity and the flexibility of
the object-oriented paradigm by adopting programming language features that
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separate completely the declarations of object type, behavior, and generator. We
developed a hybrid nominal/structural type system that allows to typecheck
traits in isolation and proved its soundness.

The literature related to our proposal has been partially quoted through
the paper. We add here comparisons and remarks concerning the type system
and the recent proposals on trait-based metaproprograming [24] and stateful
traits [4].

Sophisticated hybrid nominal/structural type systems have been already
proposed [11, 19, 24]. In particular, in [24], the combination of nominal and
structural types is conceptually similar to ours, but exploited at a different
level. Namely, it is exploited to type trait functions, that provide a mechanism
(termed trait-based metaproprograming) to obtain reusable class-member-level
patterns. Another important difference between our proposal and the one in [24]
is that, in the latter, traits play also the competing role of type, which instead
we want to avoid.

Stateful traits [4] were introduced (in the setting of Smalltalk-like lan-
guages) to avoid duplication of code connected directly with field initialization
and manipulation. Our traits are stateless, however, since they can have re-
quired fields, it is possible to avoid the same kind of duplication of code that
motivated the introduction of stateful traits. Moreover required fields names
are unimportant because we provide a field rename operation. As byproducts,
since required field renaming works synergically with method renaming, exclu-
sion, aliasing, and duplication, we obtain more reuse potential.

In further work, we would like to formulate our proposal in a Smalltalk-like
setting (this would allow a careful comparison with the stateful trait proposal),
to extend our type system to deal with generics, and to adapt our proposal to
deal with dynamic trait substitution (see Chai3 [26]). We also plan to develop
prototypical implementations.

A special form of reuse is at the base of the contemporary agile software
development methodologies [2]. Such methodologies are based on an iterative
approach, where each iteration may include all of the phases necessary to re-
lease a small increment of a new functionality: planning, requirements analysis,
design, coding, testing, and documentation. While an iteration may not add
enough functionality to guarantee the release of a final product, an agile soft-
ware project intends to be capable of releasing new software at the end of every
iteration, but this means that the next iteration will reuse the software produced
in the previous ones. We believe that an interesting future research direction
is to investigate whether the programming language features proposed in this
paper may help in writing software following an agile methodology. In this re-
spect, we plan both to develop a trait-oriented agile methodology, suitable to
be used directly within trait-based languages, and some trait-mining strategies,
in order to re-engineer class-based libraries into trait-based ones. Some work in
this respect was already done in the Smalltalk-like setting [8, 16].
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5 FRJ Typing Rules

The typing rules use the auxiliary functions given in Fig. 3: fields (that returns
the sequence of the fields declared in a class C), interfaces (that when applied
to an interface name I returns the name I itself, and when applied to a class
name C returns the sequence of the interface names implemented by the class
C), methods (that returns the sequence of the methods declared in a class C)
and mPSig (that returns the sequence of the pure signatures of the methods
associated to a sequence of method non-pure signatures, or interfaces, or method
declarations).

Fields lookup (function fields)

fields(C) = F̄ if CT(C) = class C · · · { F̄; C(F̄){· · · } }

Interfaces lookup (function interfaces)

interfaces(C) = Ī if CT(C) = class C implements Ī by · · ·
interfaces(I) = I

Methods lookup (function methods)

methods(C) = M̄ if CT(C) = class C · · · by { · · · ; •; M̄ } { · · · }

Method pure signatures lookup (function mPSig)

mPSig(I m (Ī x̄)) = I m (Ī)
mPSig(S1; ...;Sn; ) = mPSig(S1) · ... · mPSig(Sn)
mPSig(I) = mPSig(Ī) ∪ mPSig(S; ) if IT(I) = interface I extends Ī { S; }
mPSig(I1, ...,In) = mPSig(I1) ∪ ... ∪ mPSig(In)
mPSig(S {return e; }) = mPSig(S)
mPSig(M1...Mn) = mPSig(M1) · ... · mPSig(Mn)
mPSig(C) = mPSig(methods(C))

Fig. 3 FRJ: Auxiliary function fields, interfaces, methods and mPSig
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The typing rule for interface declarations, the typing rules for expressions
and method declarations, the typing rules for trait expressions and trait dec-
larations, and the typing rule for class declarations are given in Fig.s 6, 4, 5
and 7. Some of the typing rules use assumptions of the form “E ok” to mean
that the expression E (involving operations on sequences of named elements)
yields a (well defined) sequence of named elements. For instance, the asser-
tion “(σ ∪ ζ) ok” holds if and only if n ∈ names(σ) and n ∈ names(ζ) imply
extract(n, σ) = extract(n, ζ).

Expression typing:

Γ � x : Γ (x) � 〈• � • � •〉 (T-Var)

Γ � this : 〈 F̄ � ... 〉 � 〈• � • � •〉 extract(f, F̄) = I f

Γ � this.f : I � 〈 I f � • � • 〉 (T-Field)

Γ � e : θ � 〈 F̄(0)
� σ(0)

� Ī(0) 〉
θ = Γ (this) = 〈 ... � σ 〉 implies I m (I1, ...,In) = extract(m, σ)
θ �= Γ (this) implies I m (I1, ...,In) = extract(m, mPSig(interfaces(θ)))

∀i ∈ 1..n, Γ � ei : θi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
T = {i | i ∈ 1..n and θi = Γ (this)}
∀i ∈ 1..n − T , θi <: Ii ∀i ∈ T , σ ∪ mPSig(Ii) ok

Γ � e.m(e1, ...,en) : I � 〈 ∪i∈0..nF̄
(i)

� ∪i∈0..nσ(i)
� (∪i∈0..nĪ

(i)) ∪ (∪i∈T Ii 〉)
(T-Invk)

fields(C) = I1 f1; ...;In fn; ∀i ∈ 1..n, Γ � ei : θi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
T = {i | i ∈ 1..n and θi = Γ (this) = 〈 ... � σ 〉}
∀i ∈ 1..n − T , θi <: Ii ∀i ∈ T , σ ∪ mPSig(Ii) ok

Γ � new C(e1, ..., en) : C � 〈 ∪i∈1..nF̄
(i)

� ∪i∈1..nσ(i)
� (∪i∈1..nĪ

(i)) ∪ (∪i∈T Ii 〉)
(T-New)

Γ � e : η � γ η <: I

Γ � (I)e : I � γ
(T-UCast)

Γ � e : J � γ I <: J I �= J

Γ � (I)e : I � γ
(T-DCast)

Γ � e : η � γ η �<: I I �<: η stupid warning

Γ � (I)e : I � γ
(T-SCast)

Method declaration typing:

this : 〈 F̄ � σ 〉, x̄ : J̄ � e : θ � 〈 F̄′ � σ′
� Ī 〉

θ = 〈 F̄ � σ 〉 implies ( σ ∪ mPSig(J) ok and Ī′ = Ī ∪ J )
θ �= 〈 F̄ � σ 〉 implies ( θ <: J and Ī′ = Ī )

this : 〈 F̄ � σ 〉 � J m (J̄ x̄){return e; } : J m (J̄) � 〈 F̄′ � σ′
� Ī′ 〉 (M-Ok)

Fig. 4 FRJ: Typing rules for expressions and method declarations
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Trait expression typing:

mPSig(S) = σ mPSig(M1...Mp) = ζ1...ζp p ≥ 0

∀i ∈ 1..p, this : 〈 F̄ � σ · ζ1...ζp 〉 � Mi : μi μi = ζi � 〈 F̄(i)
� ζ

(i)
� Ī(i) 〉

F̄ = ∪i∈1..pF̄
(i) σ = discard(names(ζ1...ζp), (∪i∈1..pζ

(i)
))

ζ1...ζp ∪ (∪i∈1..pζ
(i)

) ∪ mPSig(∪i∈1..pĪ
(i)) ok

� { F̄; S; M1...Mp } : μ1...μp

(T-TEbasic)

� trait T · · · : μ̄

� T : μ̄ (T-TE)

� TE1 : μ1...μp � TE2 : μp+1...μp+q

p, q ≥ 1 ∀i ∈ 1..p + q, μi = ζi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
∪i∈1..p+q F̄

(i) ok ζ1...ζp+q ∪ (∪i∈1..p+qσ(i)) ∪ mPSig(∪i∈1..p+q Ī
(i)) ok

� TE1 + TE2 : μ1...μp+q

(T-TEsum)

� TE : μ̄ · μ · μ̄′ names(μ) = m

� TE exclude m : μ̄ · μ̄′ (T-TEex)

� TE : μ1...μn n ≥ p ≥ 1 ∀i ∈ 1..n, μi = ζi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
names(ζp) = m m′ �∈ names(ζ1...ζn) ζp[m

′
/m] ∪ (∪i∈1..nσ(i)) ok

μ = ζp[m
′
/m] � 〈 F̄(p)

� σ(p)
� Ī(p) 〉

� TE alias m as m′ : μ1...μnμ
(T-TEal)

� TE : μ1...μn n ≥ p ≥ 1 ∀i ∈ 1..n, μi = ζi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
names(ζp) = m m′ �∈ names(ζ1...ζn) ζp[m

′
/m] ∪ (∪i∈1..nσ(i)) ok

μ = ζp[m
′
/m] � 〈 F̄(p)

� σ(p)[m
′
/m] � Ī(p) 〉

� TE duplicate m as m′ : μ1...μnμ
(T-TEdu)

� TE : μ1...μn n ≥ 1 ∀i ∈ 1..n, μi = ζi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
ζ = ζ1...ζn σ = σ(1) ∪ ... ∪ σ(n) m ∈ names(ζ ∪ σ) m′ �∈ names(ζ)

(ζ ∪ σ)[m/m′] ∪ mPSig(∪i∈1..nĪ
(i)) ok

∀i ∈ 1..n, μ′
i = ζi[m

′
/m] � 〈 F̄(i)

� σ(i)[m
′
/m] � Ī(i) 〉

� TE rename m to m′ : μ′
1...μ′

n

(T-TEreM)

� TE : μ1...μn n ≥ 1 ∀i ∈ 1..n, μi = ζi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
F̄ = F̄(1) ∪ ... ∪ F̄(n) f ∈ names(F̄) F̄[f

′
/f] ok

∀i ∈ 1..n, μ′
i = ζi � 〈 F̄(i)[f

′
/f] � σ(i)

� Ī(i) 〉
� TE rename f to f′ : μ′

1...μ′
n

(T-TEreF)

Trait declaration typing:

� TE : μ̄

� trait T is TE : μ̄
(T-Ok)

Fig. 5 FRJ: Typing rules for trait expressions and trait declarations



382 V. Bono, F. Damiani, E. Giachino

Interface declaration typing:
mPSig(I) ok

� interface I extends J̄ { S } OK
(I-Ok)

Fig. 6 FRJ: Typing rule for interface declarations

Class declaration typing:

� TE : μ1...μp p ≥ 0 ∀i ∈ 1..p, μi = ζi � 〈 F̄(i)
� σ(i)

� Ī(i) 〉
∪i∈1..pF̄

(i) = J̄ ḡ ζ1...ζp ⊇ ((∪i∈1..pσ(i)) ∪ mPSig(Ī))

∀I′ ∈ ∪i∈1..pĪ
(i), ∃I ∈ Ī, I <: I′

� class C implements Ī by TE { J̄ ḡ; C(J̄ ḡ) { this.ḡ = ḡ; } } OK (C-Ok)

Fig. 7 FRJ: Typing rule for class declarations

6 FFRJ Reduction Rules

The FFRJ reduction rules are given in Fig. 8 (the auxiliary functions fields,
methods and interfaces are given in Fig. 3).

Evaluation contexts and redexes:

E ::= [ ] | E.f | E.m(ē) | v.m(v̄, E, ē) | (I)E | new C(v̄, E, ē)
r ::= (new C(v̄)).f | (new C(v̄)).m(v̄) | (I)(new C(ē))

Reduction rules:

fields(C) = I1 f1; ...; In fn

E[(new C(v1, ..., vn)).fi] → E[vi]
(R-Field)

I m (Ī x̄) { return e; } ∈ methods(C)

E[(new C(v̄)).m(ū)] → E[e[ū/̄x, new C(v̄)/this]]
(R-Invk)

∃J ∈ interfaces(C), J <: I

E[(I)(new C(ē))] → E[new C(ē)]]
(R-Cast)

Fig. 8 FFRJ: Reduction rules
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Abstract. The sequent calculus admits many proofs of the same conclusion that
differ only by trivial permutations of inference rules. In order to eliminate this “bu-
reaucracy” from sequent proofs, deductive formalisms such as proof nets or natural
deduction are usually used instead of the sequent calculus, for they identify proofs
more abstractly and geometrically. In this paper we recover permutative canonicity
directly in the cut-free sequent calculus by generalizing focused sequent proofs to
admit multiple foci, and then considering the restricted class of maximally multi-
focused proofs. We validate this definition by proving a bijection to the well-known
proof-nets for the unit-free multiplicative linear logic, and discuss the possibility of
a similar correspondence for larger fragments.

1 Introduction

Sequent calculus proofs are much less proof objects than they are traces of the compu-
tation of a more abstract proof object. In particular, the infernece rules of the sequent
calculus are minute and there are many choices in the order of their application that
seem equivalent although, formally, they result in different sequent proofs. One way to
get a more abstract notion of proof is to declare that two cut-free proofs are equivalent
if it is possible to permute the inference rules in one to get the other. Such equivalence
classes are unsatisfactory for at least two reasons. First, computing permutations of
inference rules might require examining and reorganizing arbitrary parts of a proof: at-
tempting to move a given inference rule to the bottom of a proof could cause changes to
many parts of the proof. Second, since equivalence classes are not, themselves, induc-
tive structures, familiar arguments involving inductive reasoning over proof structures
cannot be applied easily to equivalence classes. Many people working in proof theory
and particularly those interested in the problem of the identity of proofs discard sequent
proofs for more abstract proof structures like natural deduction proofs or proof nets. In
these later objects, a more geometric structure of proofs requires less sequentialization
of inference rules and allows one to work on proofs more abstractly.

We shall argue in this paper that one does not need to discard the sequent calculus
in order to factor out many of these irrelevant sequentializations of inference rules. We
shall show that there are, in fact, normal forms of sequent proofs that provide unique
representatives of their permutative equivalence classes. To be concrete, we shall as-
sume a setting of the standard cut-free sequent calculus for multiplicative-additive lin-
ear logic (MALL), including units and literals. Motivating the construction of canon-
ical representatives is as follows. A first step is to consider only focused proofs [2],
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with a strict alternation of negative (invertible) and positive (focused) phases. Focused
proofs systems can be used to distinguish between micro rules, i.e., introduction rules
in the ordinary sequent calculus, and the macro rules that comprise an entire focus-
ing phases and correspond to the introduction of synthetic connectives [5]. A first ab-
straction is then to consider proofs as built up from macro rules introducing synthetic
connectives. Unfortunately, this layer of abstraction does not yield canonical repre-
sentatives of equivalence classes since the selection of foci is still sequentialized even
when the selection order is irrelevant. Such parallelism can be captured by the addition
of the multi-focus rule that permits focusing on several formulas within one phase. If
we then require that such multi-focus inference rules select a “maximal focus” then,
as we show in Section 4, we have achieved canonical representatives of equivalence
classes of proofs.

Proof nets for MLL and MALL have been used also as abstractions of the class
of cut-free proofs under the equivalence of permuting inference rules. We show that
maximally multi-focused sequent proofs (modulo the weak “iso-polar” equivalence)
are in one-to-one correspondence with MLL proof nets [9]: we show how to uniquely
associate a maximally multi-focused proof to an MLL proof net. We also discuss proof
nets in MALL without units [10, 12] and for other fragments of linear logic: maximal
multi-focusing proofs should also be applicable in various other richer logics where
the nature of proof nets is less well developed or satisfying, such as linear logic with
units and exponentials.

This paper is organized as follows: in Sec. 2 we recall the sequent calculus for
MALL. In Sec. 3 we present our multi-focal generalization of Andreoli’s focusing cal-
culus. In Sec. 4 we define the notion of maximality and prove the key canonicity result
(Theorem 7). In Sec. 5 we exhibit a one-to-one correspondence between maximally
multi-focused proofs and proof-nets for MLL without units.

2 Sequent calculus for MALL

MALL formulas are defined by the following grammar:

A, B, . . .� a | a⊥ | A ⊗ B | 1 | A� B | ⊥ | A & B | � | A ⊕ B | 0

A literal is either an atomic formula, written using minuscule scheme variables
(a, b, . . .), or it is a negated atom (a⊥, b⊥, . . .). As usual, MALL formulas are assumed
to be in negation-normal form, and the pairs (⊗,�), (1,⊥), (&,⊕), and (�, 0) are de
Morgan duals, i.e., (A ⊗ B)⊥ = A⊥ � B⊥, etc. The sequent calculus for MALL uses
one-sided sequents of the form � Γ, where the context Γ is a multiset of formulas.
Figure 1 contains the standard proof rules for such sequents [9].

Script majuscule letters D,E , . . . are used to denote proofs and the expression D � Γ
signifies that D is a proof of � Γ. It is well-known that the following cut and (non-
atomic) initial rules are admissible.
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� a, a⊥
I

� Γ, A � Δ, B
� Γ, Δ, A ⊗ B

⊗ � 1
1

� Γ, A, B
� Γ, A� B

�
� Γ
� Γ,⊥ ⊥

� Γ, A � Γ, B
� Γ, A & B

& � Γ,� �
� Γ, Ai

� Γ, A1 ⊕ A2
⊕i

Fig. 1 Sequent calculus for MALL. In the ⊕i rule, i ∈ {1, 2}.

� Γ, A � Δ, A⊥
� Γ, Δ C and � A, A⊥

I*

Local permutations of inference rules form a natural relation between cut-free
proofs [13]. For example, in a proof of the form

D � Γ, A
E � Δ, B,C F � Δ, B,D

� Δ, B,C & D &

� Γ, Δ, A ⊗ B,C & D
⊗,

(1)

the order of the ⊗ and & rules may be locally switched to yield the proof

D � Γ, A E � Δ, B,C
� Γ, Δ, A ⊗ B,C

⊗ D � Γ, A F � Δ, B,D
� Γ, Δ, A ⊗ B,D

⊗

� Γ, Δ, A ⊗ B,C & D &.
(2)

This switching causes the proof D to be duplicated in (2), but does not alter the con-
stituent sub-proofs D, E and F . We denote a site of a local permutation, i.e., a pair of
neighbouring inference rules r1 followed by r2 as r1/r2; for example, (1) ends with a
&/⊗ along the right branch of the final rule.

Consider, instead, the following proof figures.

D � Γ, A � Δ, B,� �

� Γ, Δ, A ⊗ B,� ⊗ � Γ, Δ, A ⊗ B,� � (3)

Moving from left-to-right can be seen as moving the � inference rule below the ⊗ rule:
in the process the entire proof D is deleted. Since we wish to establish an equivalence
based on permutations, moving from right-to-left can be seen as “creating” the proof
D. While deletion of proofs can be seen as problematic when one is attempting to cap-
ture the “essence” of proofs, creation is certainly problematic in this sense. Thus, we
introduce the following restriction on permutations to avoid this kind of proof creation
within equivalent proofs.

Definition 1 Two proofs D and E � Γ are iso-initial, written D � E , if each can be
rewritten to the other using local permutations and the set of initial sequents in both D
and E are the same. The sets under consideration are of pairs of formula occurrences.

The additional restriction on the sets of initial sequents allows the deletion and cre-
ation of subproofs during permutation only when such proofs are without initial rules.
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For the �-free fragment of MALL, this restriction is trivial, as all permutations pre-
serve the set of initial sequents. However, because � can arbitrarily rewrite a branch of
a proof, allowing all permutations with�would identify too many proofs. This restric-
tion is further motivated by the observation from unit-free multiplicative proof nets,
where the axiom links (which correspond to the initial sequents) contain the essential
dynamics of a proof. These dynamics should not be suppressed by trivial permutations.
Note that because we don’t allow all permutations of �, we are decidedly not equat-
ing all proofs that are equated in the standard categorical model of MALL proofs; i.e.,
� is no longer a terminal object in a suitable �-autonomous category where & is the
Cartesian product.

3 Multi-focusing for MALL

In the remainder of this paper, we shall consider only cut-free proofs.
The formulas of MALL can be classified, based on their permutative affinities or

polarity, into the following two classes.

(positive) P,Q, . . . � a | A ⊗ B | 1 | A ⊕ B | 0
(negative) N, M, . . . � a⊥ | A� B | ⊥ | A & B | �

A logical rule that applies to a positive (resp. negative) formula will henceforth be
called a positive (resp. negative) rule. If r1 is a positive rule and r2 is a negative rule,
then r1/r2 is an instance of the local permutation class pos/neg; similarly for pos/pos,
neg/neg, and neg/pos. All pos/pos and neg/neg permutations are valid. Furthermore,
neg/pos permutations are also valid since the negative rules are invertible and, hence,
may be applied arbitrarily early (reading bottom-up). From a proof-search perspective,
the negative rules are, therefore, asynchronous since their application does not depend
on the structure of the side contexts. The positive rules, on the other hand, are non-
invertible and, therefore, synchronous: their application depends on the structure of
the remaining context and the sequence of rules that have been applied lower in the
proof.

Andreoli [2] presented a focused proof system (for all of first-order linear logic)
in which proofs have two phases. When reading proofs from the conclusion to the
premises, a focal phase begins by granting focus to a positive formula from the avail-
able positive formulas: this focus can be indicated explicitly in the sequents by writing
them as � Γ ⇓ A where A is under focus. Once the focused formula becomes negative,
i.e., the sequent is of the form � Γ ⇓ N, the focus is released and the search enters the
negative (asynchronous) phase where the negative connectives are decomposed; this
phase is indicated in sequents of the form � Γ ⇑ Δ. This phase separation is complete
for cut-free proofs, i.e., every provable sequent has a focused proof [2, 16].

In this paper, we generalize this usual focusing strategy further in the following
way: when deciding to focus, we may focus on more than one positive formula at a
time, i.e., our positive sequents are now of the form � Γ ⇓ Δ (with Δ non-empty). All
the formulas under focus are decomposed until only negative formulas remain in focus;
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� Γ1 ⇓ A, Δ1 � Γ2 ⇓ B, Δ2

� Γ1, Γ2 ⇓ A ⊗ B, Δ1, Δ2
[⊗] � · ⇓ 1

[1]
� Γ ⇓ Ai, Δ

� Γ ⇓ A1 ⊕ A2, Δ
[⊕i]

� Γ ⇑ A, Δ � Γ ⇑ B, Δ
� Γ ⇑ A & B, Δ

[&] � Γ ⇑ �, Δ [�]
� Γ ⇑ A, B, Δ
� Γ ⇑ A� B, Δ

[�]
� Γ ⇑ Δ
� Γ ⇑ ⊥, Δ [⊥]

� a⊥ ⇓ a
[I]

� Γ ⇓ Δ
� Γ, Δ ⇑ · [MF]

� Γ, A ⇑ Δ
� Γ ⇑ A, Δ

[R⇑]
� Γ ⇑ Δ
� Γ ⇓ Δ [R⇓]

Fig. 2 Multi-focusing sequent calculus, mf. The contexts on the left of ⇓ and ⇑ contain only positive
formulas or negated atoms. In the [MF] rule, Δ contains at least one positive formula. In the [R⇑] rule,
A is positive or a negated atom. In the [R⇓] rule, Δ is all negative. In [⊕i], i ∈ {1, 2}.

then, the focus is released and the negative formulas are decomposed in the negative
phase. The rules of this calculus of multi-focused proofs are presented in Figure 2.

Definition 2 If D � Γ ⇑ Δ or D � Γ ⇓ Δ, then we write �D� for that proof of � Γ, Δ that
replaces every sequent of the form � Γ′ ⇑ Δ′ or � Γ′ ⇓ Δ′ in D with � Γ′, Δ′, elides all
instances of [R⇑], [R⇓] and [MF], and renames all other rules to their unbracketed
forms ([⊗] to ⊗, etc).

Theorem 3 (Correctness of multi-focusing)
1. If D � Γ ⇓ Δ or if D � Γ ⇑ Δ, then �D� � Γ, Δ (soundness).
2. If � Γ, then � · ⇑ Γ (completeness).

Proof. Soundness is immediate. Completeness follows by observing that Andreoli’s
focusing calculus for MALL is recovered in mf by restricting the context Δ in [MF] to
a singleton, and then using the analogous completeness theorem there [2, 16]. Note
that the proof in [2] is for full first-order, multiplicative-additive-exponential linear
logic. ��

Given the phase separation induced by focusing, we define the following primitive
equivalence on proofs that identifies proofs that differ from each other only inside a
phase.

Definition 4 Two proofs D and D′ � Γ � Δ are iso-polar, written D ≈ D′, if they are
equal up to permutations restricted to the pos/pos and neg/neg types.

This equivalence seems natural because the interchange of the pos/pos and neg/neg
inference rules are truly parallel and non-interacting. Indeed, two iso-polar proofs have
the same synthetic inference rules, i.e., the derived rules where the details of the pos-
itive and negative phases are elided, and only [I] and the phase transitions [R⇓] and
[MF] are noted. For example, one proof of � a⊥, a ⊗ (b & c), d ⊕ � ⇑ · using only syn-
thetic rules is:

� a⊥ ⇓ a
[I]

� · ⇑ b & c,�
� · ⇓ b & c,� [R⇓]

� a⊥, a ⊗ (b & c), d ⊕ � ⇑ ·
[MF]



388 Kaustuv Chaudhuri, Dale Miller, Alexis Saurin

The instance of [MF] focuses on a ⊗ (b & c) and d ⊕ �, but the instances of [⊗] and
[⊕] above it are elided, as are any [&] and [�] rules used above the instance of [R⇓].

A single representative of the≈-classes can be constructed by treating the contextsΔ
to the right of ⇑ and ⇓ in mf as ordered contexts, similar to Andreoli’s original focusing
proof system [2]. This order on the context induces a fixed but arbitrary order of the
pos/pos and neg/neg rules.

4 Maximality and canonicity

We now revisit the question of permutations of the synthetic inference rules induced by
focusing. In the unfocused calculus, it is easy to see that the synthetic rule for a negative
synthetic connective, which is a sequence of negative rules for the constituents of the
synthetic connective, permutes with that of another synthetic negative connective: it
is a simple matter of sequencing permutations. Similarly, the positive synthetic rules
commute with other positive synthetic rules, and likewise for a neg/pos permutation of
synthetic rules. As before, the only disallowed permutations in general are the pos/neg
permutations.

Definition 5 Suppose D =
D′ � Γ ⇓ Δ
� Γ, Δ ⇑ · [MF]. Then, Δ are called the roots of D, written

roots(D).

We intend to show that every member of an iso-initial class of proofs of � Γ is
equivalent to a unique proof (upto iso-polarity) of � · ⇑ Γ. In fact, we shall call these
representatives of the iso-initial equivalence class the maximally multi-focused proofs.

Definition 6 A proof D of � Γ � Δ is maximal if for every sub-proof E � Γ′ ⇑ · of D, it
is the case for any E ′ � E � Γ′ ⇑ · that roots(E ′) ⊆ roots(E).

Our goal with maximal proofs is the following canonicity result:

Theorem 7 (canonicity) If D � E � Γ ⇑ · are both maximal, then D ≈ E .

The proof of this theorem will require considering permutations of entire synthetic
connectives. Following Andreoli [2], we call a neighbouring pair of phases, with the
bottom phase having a positive synthetic connective as its principal formula, and the
top phase being its corresponding negative synthetic rules, a bipole. Consider two
neighbouring bipoles: if the positive phase of the top bipole permutes with the negative
phase of the bottom bipole, then in an unfocused form we can perform the permuta-
tion and merge the two bipoles by uniting their positive and negative phases, obtaining
another (multi-)focused proof.

The mf rules are, however, too rigid to express any but the final points of the permu-
tation. Thus, in this section we shall consider a comparitively more relaxed focusing
calculus where a negative phase (of the bottom bipole) can be “carried through” the
positive phase (of the top bipole). The bottom negative phase is first (temporarily) pre-
empted by the top positive phase; for this, we use sequents of the form � Γ ↓ Δ ; Ξ
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� Γ1 ↓ A, Δ1 ; Ξ1 � Γ2 ↓ B, Δ2 ; Ξ2

� Γ1, Γ2 ↓ A ⊗ B, Δ1, Δ2 ; Ξ1, Ξ2
[⊗] � · ↓ 1 ; · [1]

� Γ ↓ Ai, Δ ; Ξ
� Γ ↓ A1 ⊕ A2, Δ ; Ξ

[⊕i]

� Γ ⇑ A, Δ � Γ ⇑ B, Δ
� Γ ⇑ A & B, Δ

[&] � Γ ⇑ �, Δ [�]
� Γ ⇑ A, B, Δ
� Γ ⇑ A� B, Δ

[�]
� Γ ⇑ Δ
� Γ ⇑ ⊥, Δ [⊥]

� a⊥ ↓ a ; ·
[I]

� Γ ↓ Δ ; Ξ
� Γ, Δ ⇑ Ξ [PMF1]

� Γ ↓ Δ, Ψ ; Ξ
� Γ, Δ ↓ Ψ ; Ξ

[PMF2]

� Γ, A ⇑ Δ
� Γ ⇑ A, Δ

[R⇑]
� Γ ↓ Δ ; N, Ξ
� Γ ↓ Δ, N ; Ξ

[R↓]
� Γ ⇑ Ξ
� Γ ↓ · ; Ξ [R]

Fig. 3 Rules of the pre-emptive multi-focusing calculus, pmf. All side conditions from mf (Fig. 2) are
carried over; in particular, for [PMF1] and [PMF2], the context Δ is non-empty.

where Δ is under focus, and Ξ is a suspended context. Later, when the positive phase
has permuted down, the negative phases are awakened into active sequents of the form
� Γ ⇑ Δ. The rules of this pre-emptive multi-focusing calculus, called pmf, are in Fig-
ure 3. A straightforward injection (−)# from mf to pmf derivations is assumed.

Fact 8 The following are seen by straightforward induction.

1. If �mf Γ ⇓ Δ, then �pmf Γ ↓ Δ ; ·.
2. If �pmf Γ ↓ Δ ; Ξ, then �mf Γ ⇓ Δ, Ξ.
3. �mf Γ ⇑ Δ if and only if �pmf Γ ⇑ Δ.

Because both positive and negative phases can be pre-empted using the [PMFi]
rules, we can explicitly sequence two positive phases by introducing new instances
of [PMF2]. Note that focus, once granted, cannot be removed until the formula be-
comes negative; thus, pmf does not destroy synthetic positive connectives, which are
the essential innovation of focusing. After the positive phase of the top bipole has per-
muted through the negative phase of the bottom bipole, the suspended negative phases
are awakened, which might give rise to a number of different sub-derivations (due to
&). If D is this multiset of sub-derivations, then we indicate that it finishes with the
negative phase for Ξ as D / Ξ.

Definition 9
1. (D / Ξ) � Γ ↓ Δ ; Ξ, where D is a multiset of derivations, has one of the following

forms:

(D / N, Ξ) � Γ ↓ Δ ; N, Ξ
� Γ ↓ Δ, N ; Ξ

[R↓]
(D / Ξ) � Γ ⇑ Ξ
� Γ ↓ · ; Ξ [R]

(D / Ξ) � Γ ↓ Δ, Ai ; Ξ
� Γ ↓ Δ, A1 ⊕ A2 ; Ξ

[⊕i]

(D / Ξ) � Γ1 ↓ Δ1, A ; Ξ E � Γ2 ↓ Δ2, B ; ·
� Γ1, Γ2 ↓ Δ1, Δ2, A ⊗ B ; Ξ

[⊗]
(D / Ξ) � Γ ↓ Δ, Δ′ ; Ξ
� Γ, Δ′ ↓ Δ ; Ξ

[PMF2]

(And the symmetric case for [⊗].)
2. (D / Ξ) � Γ ⇑ Δ, Ξ where D is a multiset of derivations, has one of the following

forms:
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(D1 / Ξ
′, A) � Γ ⇑ Δ, Ξ′, A (D2 / Ξ

′, B) � Γ ⇑ Δ, Ξ′, B
� Γ ⇑ Δ, Ξ′, A & B

[&] . . . and D = D1,D2

� Γ ⇑ Δ, Ξ′,� [�] . . . and D = ·
(D / Ξ′, A, B) � Γ ⇑ Δ, Ξ′, A, B

� Γ ⇑ Δ, Ξ′, A� B
[�]

(D / Ξ′) � Γ ⇑ Δ, Ξ′

� Γ ⇑ Δ, Ξ′,⊥
[⊥]

(D / Ξ′) � Γ, P ⇑ Δ, Ξ′

� Γ ⇑ Δ, Ξ′, P [R⇑]

with Ξ = Ξ′, F for F being A� B, A & B, �, ⊥, or P. Additionally, (D / ·) = D.

We define the merge operation in terms of a rewrite −→ between pmf proofs such
that in each case of the rewrite at least one root of a [PMF1] is permuted lower in
the derivation. Eventually, this will bring two instances of [PMFi] next to each other,
at which point they are merged. All negative rules encountered during the rewrite are
immediately suspended, causing them to permute above the positive phase rooted at
the [PMFi] being permuted. To obtain confluence globally, we must first split the roots
to obtain the subset that can merge with the roots of the bottom bipole; otherwise, we
might merge bipoles in the wrong order and block possible merges.

Definition 10 The rewrite −→ between pmf proofs has the following rules.

D � Γ ↓ Δ, Δ′ ; Ξ
� Γ, Δ, Δ′ ⇑ Ξ [PMF1] −→

D � Γ ↓ Δ, Δ′ ; Ξ
� Γ, Δ ↓ Δ′ ; Ξ

[PMF2]

� Γ, Δ, Δ′ ⇑ Ξ [PMF1]

(D / Ξ) � Γ, P ↓ Δ ; Ξ
� Γ, P, Δ ⇑ Ξ [PMF1]

� Γ, Δ ⇑ Ξ, P [R⇑] −→
(D / Ξ, P) � Γ ↓ Δ ; P, Ξ

� Γ, Δ ⇑ Ξ, P [PMF1]

(D1 / Ξ,C) � Γ ↓ Δ ; Ξ,C
� Γ, Δ ⇑ Ξ,C [PMF1]

(D2 / Ξ,D) � Γ ↓ Δ ; Ξ,D
� Γ, Δ ⇑ Ξ,D [PMF1]

� Γ, Δ ⇑ Ξ,C & D
[&]

−→
(D1 ,D2 / Ξ,C & D) � Γ ↓ Δ ; Ξ,C & D

� Γ, Δ ⇑ Ξ,C & D
[PMF1]

(D / Ξ,C,D) � Γ ↓ Δ ; Ξ,C,D
� Γ, Δ ⇑ Ξ,C,D [PMF1]

� Γ, Δ ⇑ Ξ,C � D
[�] −→

(D / Ξ,C � D) � Γ ↓ Δ ; Ξ,C � D
� Γ, Δ ⇑ Ξ,C � D

[PMF1]

(D / Ξ) � Γ ↓ Δ ; Ξ
� Γ, Δ ⇑ Ξ [PMF1]

� Γ, Δ ⇑ Ξ,⊥ [⊥] −→
(D / Ξ,⊥) � Γ ↓ Δ ; Ξ,⊥

� Γ, Δ ⇑ Ξ,⊥ [PMF1]

(D / N, Ξ) � Γ ↓ Δ, Ψ ; N, Ξ
� Γ, Δ ↓ Ψ ; N, Ξ

[PMF1]

� Γ, Δ ↓ Ψ, N ; Ξ
[R↓] −→

(D / N, Ξ) � Γ ↓ Δ, Ψ ; N, Ξ
� Γ ↓ Δ, Ψ, N ; Ξ

[R↓]

� Γ, Δ ↓ Ψ, N ; Ξ
[PMF1]

(D / Ξ) � Γ ↓ Δ ; Ξ
� Γ, Δ ⇑ Ξ [PMF1]

� Γ, Δ ↓ · ; Ξ [R] −→
(D / Ξ) � Γ ↓ Δ ; Ξ
� Γ, Δ ↓ · ; Ξ [PMF2]
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D � Γ1 ↓Ψ, Δ1, A ; Ξ1

� Γ1, Ψ ↓ Δ1, A ; Ξ1
[PMF2]

E � Γ1 ↓ Δ2, B ; Ξ2

� Γ1, Γ2, Ψ ↓ Δ1, Δ2, A ⊗ B ; Ξ1, Ξ2
[⊗]

−→

D � Γ1 ↓ Ψ, Δ1, A ; Ξ1 E � Γ1 ↓ Δ2, B ; Ξ2

� Γ1, Γ2 ↓ Ψ, Δ1, Δ2, A ⊗ B ; Ξ1, Ξ2
[⊗]

� Γ1, Γ2, Ψ ↓ Δ1, Δ2, A ⊗ B ; Ξ1, Ξ2
[PMF2]

D � Γ ↓ Ψ, Δ, Ai ; Ξ
� Γ, Ψ ↓ Δ, Ai ; Ξ

[PMF2]

� Γ, Ψ ↓ Δ, A1 ⊕ A2 ; Ξ
[⊕i] −→

D � Γ ↓ Ψ, Δ, Ai ; Ξ
� Γ ↓ Ψ, Δ, A1 ⊕ A2 ; Ξ

[⊕i]

� Γ, Ψ ↓ Δ, A1 ⊕ A2 ; Ξ
[PMF2]

D � Γ ↓ Ψ1, Ψ2, Δ ; Ξ
� Γ, Ψ1 ↓ Δ, Ψ2 ; Ξ

[PMF2]

� Γ, Ψ1, Ψ2 ↓ Δ ; Ξ
[PMF2] −→

D � Γ ↓ Ψ1, Ψ2, Δ ; Ξ
� Γ, Ψ1, Ψ2 ↓ Δ ; Ξ

[PMF2]

D � Γ ↓ Ψ1, Ψ2, Δ ; Ξ
� Γ, Ψ1 ↓ Ψ2 ; Ξ

[PMF2]

� Γ, Ψ1, Ψ2 ⇑ Ξ
[PMF1] −→

D � Γ ↓ Ψ1, Ψ2 ; Ξ
� Γ, Ψ1, Ψ2 ⇑ Ξ

[PMF1]

The symmetric cases for [PMF1] / [⊗] and [PMF1] / [⊕]i are elided.

The rewrite in defn. 10 is a permutation on mf derivations modulo the injection into
pmf. The intermediate points of the permutation after the injection are not interesting,
but the reflexive-transitive closure of the pmf rewrite also defines the following mf

rewrite.

Definition 11 If D,E �mf Γ � Δ, and D# −→∗ E#, then D −→ E .

We shall show that this rewrite on mf derivations will generate the maximal proofs.
The proof itself will be a trivial consequence of two decomposition lemmas. The left-
decomposition lemma below shows that the maximal proofs are −→-normal upto iso-
polarity.

Lemma 12 (left decomposition)
If D � Γ � Δ is maximal and D −→ E , then D ≈ E .

Proof. Note that in every case of the rewrite −→ on pmf derivations, an instance of
[PMF1] is brought closer to the root of the derivation. Therefore, the rewrite −→ on
mf proofs can only enlarge the lowermost roots in D. But, D is already maximal. So E
has the same instances of [MF] as D, i.e., D ≈ E . ��

The second key lemma is a right-decomposition that establishes that the maximal
proofs are reachable by −→.

Lemma 13 (right decomposition)
If D � E �mf Γ � Δ and E is maximal, then D −→ E .

Proof (Sketch). We have to show that all ways of permuting a root downwards in a
proof can be generated by −→. But this is easily seen because the −→ is allowed to
divide the roots and permute only the necessary fragment downwards. For a represen-
tative example, suppose the following is a sub-derivation of D#:
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F =

F ′ � Γ, P ↓ Δ,Q ; ·
� Γ, P,Q, Δ ⇑ · [PMF1]

� Γ, Δ ⇑ P,Q [R⇑]2

� Γ, Δ ⇑ P� Q
[�]

Of the roots Δ,Q, only Δ can possibly permute below P� Q, because Q is one of its
sub-formulas. According to the rewrite rules, we first remove Q from the roots of the
[PMF] rule by inserting another [PMF]. The permutation can now proceed (for some
F / P,Q � F ′′):

F ′′ =
F ′ � Γ, P ↓ Δ,Q ; ·
� Γ, P,Q ↓ Δ ; · [PMF2]

� Γ, P,Q, Δ ⇑ · [PMF1]

� Γ, Δ ⇑ P,Q [R⇑]2

� Γ, Δ ⇑ P� Q
[�] −→

(F / P,Q) � Γ ↓ Δ ; P,Q
� Γ, Δ ⇑ P,Q

[PMF1]

� Γ, Δ ⇑ P� Q
[�]

−→ (F / P� Q) � Γ ↓ Δ ; P� Q
� Γ, Δ ⇑ P� Q

[PMF1]

The instance of [PMF1] that permutes down is free of the disallowed root Q. ��

Proof (of theorem 7). Let D � E �mf Γ � Δ be given such that both D and E are max-
imal. By lemma 13, D −→ E ; hence, by lemma 12, D ≈ E . ��

5 Multi-focusing and proof nets

The usual approach to the proof identity problem in linear logic (and to providing a
canonical representation of proofs) consists in using proof nets which were first in-
troduced by Girard [9]. Since we proved that maximally multi-focused proofs also
provide such a canonical approach to proofs it is natural to compare our approach with
proof nets. This is the aim of the present section where we deal with a restricted frag-
ment of MALL proofs, the unit-free cut-free multiplicative fragment, MLL−, for which
proof nets are especially well-behaved: we shall provide a direct proof that maximally
multi-focused proofs in MLL− are in a one-to-one correspondence with cut-free MLL−

proof nets.
The previous results of the paper already ensure that such a result is true but we

shall now give a direct evidence of this fact by actually building the class of iso-polar
maximally multi-focused proofs corresponding to a given proof net. The converse,
namely that two iso-polar maximally multi-focused proofs correspond to the same
proof nets is trivial.

Proof nets are structures that do not retain all the unnecessary ordering informa-
tion contained in a sequent proof. A MLL− proof structure is thus a graph structure
consisting in the formula tree of the sequent � Γ together with some more structure
representing the initial rules:
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A� B

A B

�

A ⊗ B

A B

⊗ ini

a a⊥ cut

A⊥A

Fig. 4 Unit-free cut-free MLL proof nets. ini is restricted to the atomic formulas.

Definition 14 (MLL− proof structure) A MLL− proof structure on � Γ is a graph
made of cells represented in Figure 4 which are linked by edges labeled with MLL−

formulas. There is one pending edge for each formula F in � Γ which is labeled with
F and which is called a conclusion.

Additional conditions are imposed in order to ensure that this proof structure is
actually a logical object and represents a proof:

Definition 15 (MLL− proof net) A MLL− proof net on � Γ is a proof structure that
results from the desequentialization of a sequent proof π of � Γ by forgetting the infer-
ence rule ordering1.

The previous definition does not provide a convenient criterion that can be helpful to
check that a given proof structure is indeed a proof net. Many more satisfying criteria
have been provided to characterize proof nets, they all have in common not to be
inductive but geometric criteria (they deal with the structure as a whole, not as made
of elementary components). In the following, we shall only consider cut-free MLL−

proof structures.
As already mentioned, we shall now be interested in providing a direct proof of the

following theorem:

Theorem 16 Two maximally multi-focused MLL− proofs of � · ⇑ Γ are iso-polar iff
they have the same MLL− proof net.

The theorem will be proved by showing that for every proof net there is a unique
maximally multi-focused proof (up to iso-polarity) associated with it. We first recall
two definitions from [1] which develops a focused sequentialization algorithm for
MLL− proof nets:

Definition 17 (split(π), foc(π), from [1]) Let π be an MLL− proof net.

1. split(π) is the set of positive conclusions P of π such that removing the conclud-
ing ⊗-link of P disconnects π in two proof nets π1 and π2.

2. foc(π) is the set of conclusions F of π such that F is a positive atom and π is
just an ini link; or F ∈ split(π) and its premisses A and B are conclusions of
the two sub-nets π1 and π2 where A (resp. B) is negative or A ∈ foc(π1) (resp.
B ∈ foc(π2)).

1 A MLL− inference rule is turned to the corresponding cell of Figure 4 and the cells are combined
by tracing the formulas occurrences in the sequent proof.
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Proof (of Theorem 16). Let π be a MLL− proof net of conclusions Γ. We outline a
sequentialization algorithm producing a maximally multi-focused proof of conclusion
� · ⇑ Γ if Γ contains some negative non-atomic formula or � Γ \ foc(π) ⇓ foc(π) oth-
erwise. We reason by induction on the size of π.

Case Γ contains at least one negative formula. We remove all negative cells (that is,
the � cells) of π up to reaching a positive cell or an initial cell. The resulting
proof structure is a proof net π′ and its conclusions Γ′ are positive. By induction
hypothesis, we can sequentialize it into a maximally multi-focused proof D′ of
conclusion � Γ′ \ foc(π′) ⇓ foc(π′) by sequentializing in an arbitrary order (the
different possibilities give rise to iso-polar proofs) the negative rules that have
been removed in the previous step, we obtain a proof D of the form:

D′ � Γ′ \ foc(π′) ⇓ foc(π′)
� Γ′ ⇑ · [MF]

...

[�]

D � · ⇑ Γ [�]

Case Γ contains only positive formulas. Since π is a proof net, foc(π) � ∅. Consider
the formulas in [(] π) and remove the top-most positive connectives of every
F ∈ foc(π). The resulting proof structure is not a proof net since it is not con-
nected; however, each of its connected components is. Let them be π1, . . . , πn.
For 1 ≤ i ≤ n, πi has conclusions Γi which has at least one negative formula or
which is reduced to an axiom link. In the first case, one can inductively sequen-
tialize it into of maximally multi-focused proof Di. In order to conclude, we only
need to show that one can obtain a proof of � · ⇑ Γ from the Di and the positive
cells of the formulas of foc(π), which follows from the fact that the formulas in
foc(π) are hereditarily splitting: applying these formulas in any order (as long
as the sub-formula priority is maintained), gives rise to a way to sequentialize π.

We finally need to check that the proof obtained with this process is indeed maxi-
mal, but this is done very easily: let F be a formula that could potentially enlarge the
set of foci and let us consider a proof DF that witnesses this fact (DF focuses on F).
By desequentializing DF , we get a proof net π and since DF is a sequentialization of π
that focuses on F which is positive, then F is hereditarily splitting, that is F ∈ foc(π),
so foc(π) is maximal.

The process considered in this proof is non-deterministic (within a negative or pos-
itive phase, we sequentialize in any order) and we can check that the different proofs
that can result from this process are exactly all the iso-polar maximally multi-focused
proofs of the iso-polarity class corresponding to proof net π. ��

We showed in this section that there is a bijection between MLL− proof nets and
classes of iso-polar maximally multi-focused proofs. MLL− proof nets are certainly
the most concise canonical structures for this fragment. There are candidates to extend
MLL− proof nets to broader fragments (MLL with units [14], MALL [12] or MELL)
but they are not as satisfactory as for MLL−. The analysis we just made could be
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carried to MALL proof nets as introduced by Hughes and van Glabbeek [12] for the
appropriate extension of definition 17 (in particular to take into account the fact that
with MALL proof nets there is not only one linking but a set of linkings corresponding
to the additive slices of the proof net).

The problem of proof-nets for MALL with units is still open. Yet, these fragments
have standard sequent calculi with well understood focusing systems. We expect that
an analysis of the maximally multi-focused sequent proofs would yield a better under-
standing of proof net-like structures for such fragments.

6 Conclusion

The contributions of this paper are three-fold: (i) we extend Andreoli’s definition of
focused proofs to multi-focused proofs, for which we define a notion of maximality;
(ii) we show that the maximally multi-focused proofs are representatives of their �-
equivalence class upto a trivial iso-polar equivalence; and (iii) we prove that unit-free
multiplicative proof nets are in bijective correspondence with maximal multi-focused
proofs for unit-free multiplicative linear logic.

The notion of multi-focusing in this paper was first considered by Saurin and
Miller [16] as naturally arising in the structure of focalization graphs to prove the
focalization theorem. Multi-focusing was subsequently also used by Delande and
Miller [7] as a necessary generalization of Andreoli’s asymmetric treatment of the
positive formulas. Andreoli studied focusing in proof nets [1, 3] and defined a notion
of “multi-focus” [3] with a different meaning: there, it refers to a part of the context
which is needed in order to apply the decide rule. He also investigates the use of fo-
cusing to construct proof nets for a restricted fragment of MLL−.

Faggian et al [8, 6] introduced L-nets as a generalization of designs from Girard’s
ludics [11]: L-nets can be seen as designs with a flexible degree of sequentiality, falling
between sequent proofs and proof nets. This appears similar to multi-focusing which
covers the spectrum from singly focused proofs to maximally multi-focused proofs,
and thus exhibits some flexibility about the degree of sequentiality. This flexibility is
also observed in [7] which presents the search for proofs and refutations as a pair of
mutually normalizing interpretations of a neutral procedure for the cut and atom-free
MALL. Relating these diverse approaches is an important matter for future work.

Several other open questions remain about multi-focused proofs. Firstly, we lack a
cut-elimination theorem for multi-focused proofs that generalizes similar theorems for
singly focused proofs (see, eg. [4, 15]). Moreover, it is considerably unclear how max-
imality interacts with cut-elimination, for the standard procedure would not preserve
maximality. In terms of larger fragments of linear logic, multi-focusing generalizes
easily to admit the exponentials and first-order quantification; however, the respective
notions of maximality remain to be developed for these fragments.
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Abstract. We present a theoretical framework which allows to define in a
uniform way coinductive characterisations of nearly any semantic preorder or
equivalence between processes, by means of simulations up-to and bisimula-
tions up-to. In particular, all the semantics in the linear time-branching time
spectrum are covered. Constrained simulations, that generalise plain simula-
tions by including a constraint that all the pairs of related processes must
satisfy, are the key to obtain such a general framework. We provide a sim-
ple axiomatisation of any constrained simulation preorder and also for the
corresponding equivalence. These axiomatizations allow us to prove in a uni-
form way that each constrained simulation preorder (equivalence) defines a
class of process preorders (equivalences) which share commons properties, like
the possibility of giving coinductive characterisations for all of them, or the
existence of a canonical preorder inducing each of these equivalences.

1 Introduction and Related Work

One of the essential decisions that should be taken when defining a process alge-
bra is to settle in the most adequate way its underlying semantics. Occasionally
the semantics is directly determined by an equivalence relation but more often
it is based on a preorder relation, although certainly every preorder induces an
equivalence by means of its kernel; besides, the ordering relations can be used
to compare non-equivalent processes or to define continuous domains in order
to apply fix point arguments to define the behaviour of recursive processes.

Every semantics sets forth a level of abstraction that determines which as-
pects of the behaviour of processes are of importance and which are not. Mainly
because of the generality and diversity of the applications of process algebras,
there is no prevailing semantic notion, but rather a number of different propos-
als have arisen from diverse approaches, contexts and applications.

We consider that this variety of process semantics is a good sign of the
applicability of process algebras just proving the healthiness of the formalism.
However, this plurality of semantics becomes a hindrance when the goal is to
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study general properties for all of them, to compare different semantics or to
determine what semantics suits a given application better.

That is why it would be nice to have a unified model that could provide
us with a general and uniform approach to the different semantics. Our work
targets this goal and looks for a common framework in which to include the
semantics for processes. Bisimulation semantics [Par81,Mil89] is one of the most
elegant and powerful equivalences defined for processes and it was our starting
point to achieve this goal of uniformity. In [dFG05] we showed how to weaken the
notion of bisimulation defining our bisimulations up-to that characterise many
other interesting equivalences. In [dFG07] we continued that work, extending
our results by considering process preorders instead of equivalences, and we
have found out that this approach is indeed even more general, giving rise to a
richer and more elegant theory. In both cases ready simulation [BIM95] was our
main support, and that meant that we could only apply our results to preorders
that were coarser than ready simulation. This restriction also appear in other
related works such as [AFI07].

However, it was not clear that only the semantics coarser than ready simu-
lation would satisfy our results. In fact, we had already presented in [dFG05]
a result (Theorem 2, there) proving that we could also get coinductive charac-
terisations of some equivalences finer than the ready simulation equivalence. To
prove that theorem we required a quite ad-hoc property, that we called Hoare-
Equivalence, but in [dFG07] we did not find the way to transfer these results
to the framework of semantic preorders.

This paper focuses on the generalisation of the simulations up-to, and pro-
vides a general coinductive characterisation of a great variety of semantics pre-
orders, either coarser or finer than the ready simulation preorder, in particular,
this characterisation can be applied to all the semantics in the linear time-
branching time spectrum [Gla01]. This generalisation has been possible after
the observation that ready simulation was just a significant example of what
we have called constrained simulations. This kind of simulations preserve the
properties we need in order to prove the generalisation of previous results.

The rest of the paper is structured as follows. In Section 2 we introduce
the basic definitions and notations on processes and preorders, and we recall
some results from our previous works [dFG05, dFG07]. In Section 3 we define
the family of constrained simulations, where simulations are constrained by
the obligation to relate processes that satisfy some adequate condition. We
provide a sound and complete axiomatization for the preorders and the induced
equivalence relations (see Theorem 4 and 5). These axiomatizations are one of
the key points in the proofs of the main results of the paper that follow in the
next sections.

The core of our results is collected in Sections 4 and 5, where we define the no-
tion of constrained simulation up-to a preorder ; we develop our theory through
a number of results that provide characterisations of the semantic preorders
and equivalences in terms of constrained simulations up-to (see Theorem 6, 7, 8
and 9). Some additional results that illustrate the applications of the theory are
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also included (see Theorem 10). Finally in Section 6 we conclude by discussing
some research lines for future work.

2 Preliminaries and Previous Work

The behaviour of processes is usually described using the well-established for-
malism of labelled transition systems [Plo81] or lts for short.

Definition 1. A labelled transition system is a structure T = (P ,Act,→)
where

– P is a set of processes, agents or states,
– Act is a set of actions, and
– →⊆ P × Act × P is a transition relation.

A rooted lts is a pair (T , p0) with p0 ∈ P .

Act is the set of actions that processes can perform and the relation → de-
scribes the process transitions after the execution of actions. The triple 〈p, a, q〉
is represented by p

a−→ q, indicating that process p performs action a evolving to
process q. A rooted lts describes the semantics of a process: that corresponding
to its initial state p0.

Some usual notations on lts are used. We write p
a−→ if there exists a

process q such that p
a−→ q. The function I calculates the set of initial actions

of a process, I (p) = {a | a ∈ Act and p
a−→}.

Lts for finite processes are just directed graphs which become finite trees if
expanded. These finite trees can be syntactically described by the basic process
algebra BCCSP, which was also used, for instance, in [Gla01,dFG05].

Definition 2. Given a set of actions Act, the set of BCCSP processes is defined
by the following BNF-expression:

p ::= 0 | ap | p + q

where a ∈ Act. 0 represents the process that performs no action; for every
action in Act, there is a prefix operator; and + is a choice operator.

All the definitions we present in the paper are valid for arbitrary processes,
that is, for arbitrary rooted lts, either finite or infinite. We are going to prove
the results in this paper mainly by induction on the depth of BCCSP processes.
Then, by using continuity arguments (in a similar way as we did in [dFG05])
these results can be extended to arbitrary finitely branching transition systems,
since by unfolding any of them we can get an equivalent finitary tree process.

The operational semantics for BCCSP terms is defined in Fig. 1. The depth
of a BCCSP process is the depth of the tree it denotes.
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ap
a−→ p

p
a−→ p′

p + q
a−→ p′

q
a−→ q′

p + q
a−→ q′

Fig. 1 Operational Semantics for BCCSP Terms

As usual, trailing occurrences of the constant 0 are omitted: we write a
instead of a0. By using

∑

as a shorthand for multiple choice (which is commu-
tative and associative) we can define any process as

∑

i

∑

j aipij . A process aq′

is a summand of the process q if and only if q
a−→ q′. Given a ∈ Act we define

p|a as the (sub)process we get by adding all the a-summands of p. That is, if
p =

∑

i

∑

j aipij , then p|ai =
∑

j aipij .
Preorders, that we represent by �, are reflexive and transitive relations. We

use the symbol � to represent the preorder relation �−1. Every preorder induces
an equivalence relation that we denote by ≡, that is p ≡ q if and only if p � q
and q � p. Finally, bisimulation equivalence is denoted by =B.

Definition 3. A preorder relation � over processes is a behaviour preorder if
it is coarser than the bisimulation equivalence, i.e. p =B q ⇒ p � q, and it is
a precongruence with respect to the prefix and choice operators, i.e. if p � q
then ap � aq and p + r � q + r. Besides, if the relation is symmetric, i.e. is an
equivalence relation, we say that it is a behaviour equivalence.

In [dFG05] we introduced bisimulations up-to a preorder (that we denote
by ��) in order to weaken the definition of bisimulations in such a way that
weaker equivalences could be captured by a coinductive definition.

Definition 4. Let � be a behaviour preorder. Then a binary relation S over
processes is a bisimulation up-to �, if pSq implies that:

– For every a, if p
a−→ p′a, then there exist q′ and q′a, q � q′

a−→ q′a and p′aSq′a;
– For every a, if q

a−→ q′a, then there exist p′ and p′a, p � p′
a−→ p′a and p′aSq′a.

Two processes are bisimilar up-to �, written p �� q, if there exists a bisimula-
tion up-to �, S, such that pSq.

The added capability introduced by the �-reduction generalises the origi-
nal definition of bisimulation, so that we have now more chances to prove the
equivalence of two processes. When the behaviour preorder is just the identity
relation we get the bisimulation equivalence, but, as we proved in [dFG05], we
get other interesting semantics (traces, failures, ready simulation and so on)
by considering other behaviour preorders. One of the main results in that pa-
per (see Theorem 1 below) required the preorders to satisfy the axiom (RS),
ax � ax + ay (that characterises the ready simulation preorder [BIM95]) so
that it could only be applied to semantics coarser than the ready simulation.
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Definition 5. A behaviour preorder � is initials preserving when p � q implies
I (p) ⊆ I (q). It is action factorised (or just factorised) when p � q implies
p|a � q|a, for all a ∈ I (p).

Theorem 1 ( [dFG05]). For every behaviour preorder � that is initials pre-
serving, action factorised and satisfying the axiom (RS), we have that p �� q
if and only if p ≡ q.

This theorem provides a symmetric, coinductive, bisimulation-like characterisa-
tion for any equivalence in the linear time-branching time spectrum from trace
equivalence to ready simulation equivalence.

Once we had coinductive characterisations for many semantic equivalences
we shifted the focus from equivalences to preorders. In [dFG07] we first achieved
characterisations of some semantic preorders in terms of simulations up-to.

Definition 6. Let � be a behaviour preorder, we say that a binary relation S
over processes is a simulation up-to �, if pSq implies that:

– For every a, if p
a−→ p′a there exist q′ and q′a, q � q′

a−→ q′a and p′aSq′a.

We say that process p is simulated up-to � by process q, or that q simulates p
up-to �, written p �∼� q, if there exists a simulation up-to �, S, such that pSq.

Theorem 2 ( [dFG07]). For every behaviour preorder � that satisfies the
axiom (S) x � x + y , we have p �∼� q if and only if p � q.

This result only applies to preorders coarser than the simulation preorder
and therefore it falls short of the generality we got in Theorem 1. In order to
regain this generality we needed to strengthen the simulation relation to achieve
a greater discriminating power. Ready simulation was again called to play an
essential role.

Definition 7. Let I be the binary relation that captures the equivalence of
initial actions and is defined over pairs of processes by pIq ⇔ I (p) = I (q). Let
� be a behaviour preorder, we say that a binary relation S over processes is
an I-simulation up-to �, if S ⊆ I (that is, pSq ⇒ pIq), and S is a simulation
up-to �. Or, equivalently, in a coinductive way, whenever we have pSq we also
have:

– For every a, if p
a−→ p′a there exist q′, q′a such that q � q′

a−→ q′ and p′aSq′a;
– pIq;

We say that process p is I-simulated up-to � by process q, or that q I-simulates
p up-to �, written p �∼

I

� q, if there exists an I-simulation up-to �, S, such that
pSq.

By using this definition we were able to characterise all the preorders finer
than failures and coarser than ready simulation.
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Theorem 3 ( [dFG07]). For every behaviour preorder � that satisfies the
axiom (RS), and � ⊆ I, we have that p �∼

I

� q if and only if p � q.

Once again, we needed the axiom (RS) to prove the theorem above. In the
rest of the paper we will generalise our results by taking as starting point a
more general class of simulations that we have called constrained simulations.

3 Constrained Simulations

C-constrained simulations are just plain simulations to which we impose that
their pairs should also be related by the constraint C.

Definition 8. Given a relation C over BCCSP processes, a relation SC is a
C-constrained simulation, if pSCq implies:

– For every a, if p
a−→ p′ there exists q′, q

a−→ q′ and p′SCq′, and
– pCq.

We say that process p is C-simulated by process q, or that q C-simulates p,
written p �→

C
q, whenever there exists a C-constrained simulation SC , such

that pSCq.

Since we want to characterise behaviour preorders by using C-simulations it
is reasonable to impose on these simulations the condition of being themselves
behaviour preorders; that is guaranteed whenever the constraints are also be-
haviour preorders. Given that the operators in our basic algebra BCCSP are
those generating finite trees, this condition is quite natural and the results we
will prove based on it are indeed rather general.

Example 1. Let us briefly present several examples of constrained simulations,
all of them corresponding to relations being behaviour preorders.

– Ordinary simulation is a constrained simulation taking as C the universal
relation, xCy for every x and y.

– Ready simulation is just the I-constrained simulation, where pIq ⇔ I (p) =
I (q).

– Ready simulation is perhaps the most important C-constrained simulation
but we can also achieve a greater discriminating power. Let us consider, for
instance, the simulation preorder �S and C =�−1

S ; then 2-nested simula-
tions [GV92] are just the corresponding class of C-constrained simulations.

One could argue that, whenever we admit a nearly arbitrary constraint when
defining the constrained simulations, we are vitiating the local character of the
notion of simulation, thus spoiling the coinductive nature of the generalisation.
We do not agree with such an opinion for several reasons. First, we can still
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consider local constraints that provide interesting results, such as I, as we are
going to see. More in general, this family of constrained simulations will allow us
to set a benchmark to compare and classify the complexity of process semantics,
most of these semantics can be characterised with a local constraint, but others,
such as 2-nested simulation, are intrinsically non-local (see [AFGI04]). To have
a common framework to unify all these simulation semantics is very useful
because we can prove general results for all of then as we present in the rest of
this section.

C-constrained similarity, �→
C , can be conditionally axiomatized in a simple

way. For any constraint C we just need to consider the axiom

(PC) xCy ⇒ x � x + y

We define the axiomatization PC as the set of axioms obtained by adding the
axiom PC to the set of axioms that characterises bisimulation equivalence (Fig-
ure 2), PC = {B1, B2, B3, B4, PC}. As usual, we write PC  p � q when the
relation p � q is provable from PC using the rules of inequational logic. PC is
sound and complete with respect to �→

C .

(B1) x + y = y + x (B3) x + x = x
(B2) (x + y) + z = x + (y + z) (B4) x + 0 = x

Fig. 2 Axiomatisation for the (Strong) Bisimulation Equivalence

Theorem 4. For every constraint C being a behaviour preorder, we have that

PC  p � q ⇐⇒ p �→
C

q

Proof. Soundness. Bisimilarity axioms are sound for both the relation C and for
the C-constrained simulation preorder. Therefore, we only need to prove that the
axiom (PC) is also sound. Process p + q can obviously simulate p and since we
have pCq and C is a congruence with respect to choice, we also have pC(q + p)
and we conclude that p �→

C
p + q.

Completeness. By induction on the depth of processes. If p = 0 then 0Cq
and, applying (PC), (B1) and (B4), PC  0 � q. Consider now the general case
p =

∑

aipi. On the one hand, if p �→
C

q then pCq and we can use (PC) to

prove that PC  p � p+ q. On the other hand, whenever p
ai−→ pi then q

ai−→ qji

with pi �→
C

qji ; by induction hypothesis we have PC  pi � qji , therefore we
have PC  q +

∑

aipi � q +
∑

aiqji , equivalently PC  q + p � q. Combining
both cases, PC  p � q + p � q.

We next study the axiomatization of the equivalence relation associated to
the C-constrained simulation, →C← =�→

C ∩ �←
C . We propose the following axiom



404 D. de Frutos Escrig, C.G. Rodŕıguez

for each constraint C:

(EC) xCy ⇒ a(x + y) = a(x + y) + ay

We define the set EC = {B1, B2, B3, B4, EC}, containing the axioms that
characterise bisimulation equivalence (Figure 2) and the axiom EC . We write
EC  p = q when the equation p = q is provable from EC .

EC is sound and complete with respect to →C← . However, in this case, to prove
this result the constraint has to be symmetric, that is, it has to be a behaviour
equivalence; below we will comment more on this subject.

Theorem 5. For every constraint C being a behaviour equivalence, we have
that

EC  p = q ⇔ p →C← q

Proof. Soundness. Let us just prove that (EC) is sound. Whenever pCq we also
have EC  a(p+q) = a(p+q)+aq. We have to prove that a(p+q) �→

C
a(p+q)+aq

and a(p+q)+aq �→
C

a(p+q). Let us start by proving a(p+q) �→
C

a(p+q)+aq,
processes in both sides of the relation can trivially simulate each other and taking
into account that C is a behaviour preorder, from pCq we derive a(p+q) C a(p+
q) + aq and, we immediately conclude that we have a C-simulation.

Let us prove now that a(p + q) + aq �→
C

a(p + q), as before, processes in both
sides can simulate each other, to have a C-simulation we just need to prove
a(p+ q)+aq C a(p+ q). As before, from pCq we derive a(p+ q) C a(p+ q)+aq
and, since C is symmetric, we conclude a(p + q) + aq C a(p + q).

Completeness. The proof of the completeness of the axiomatization of the
simulation equivalence in [Gla01] (Section 17.2) can be transferred without any
changes just checking the additional proof obligations imposed by the condition
in the axiom (EC).

It is interesting to note that the cases in which C is not symmetric are not
completely excluded from the result above. This can be concluded from the
following results.

Definition 9. We say that two constraints C1 and C2 are cs-equivalent, which
we denote by C1 ∼ C2, iff they define the same C-constrained similarity relation,
that is �→

C1=�→
C2 .

Next proposition is just a snapshot of a nice algebraic theory that can be
developed around constrained simulations and cs-equivalence.

Proposition 1. For any behaviour preorders C, C1 and C2 we have:

1. C1 ∼ C2 ⇒ (C1 ∩ C2) ∼ C1.
2. C ∼�→

C and �→
C is the smallest C-simulation that is cs-equivalent to C.

3. If C1 ∼ C2 and C1 ⊇ C ⊇ C2, then C ∼ C1.
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4. For the simulation preorder �S we have that C ∼ (C ∩ �S).

Example 2. Next we show some illustrative examples of cs-equivalent con-
straints.

– Let us consider the classical simulation preorder, �S . �S=�→
U where U is

the universal relation, xUy for every x and y. On the other hand, if we use
�S as constraint, it is immediate to see that �S=�→

�S and therefore U ∼�S ,
but while U is symmetric, �S is not.

– Taking the constraint I⊇ given by pI⊇q ⇔ I (p) ⊇ I (q), we have that the
ready simulation preorder is �→

I⊇ , as it was originally defined in [BIM95]. It

is well known that the ready simulation preorder also coincides with �→
I , see

for instance [Gla01]. Again, I is a symmetric relation, I⊇ is not, and I ∼ I⊇.
– In a similar way, we can define the 2-nested simulation as a constrained

simulation using either �−1
S or the equivalence relation �−1

S ∩ �S .

From the examples above, one could guess that any constraint might be
cs-equivalent to some symmetric one. This is indeed the case for any “interest-
ing” constraint we have found, but in general it is not true, as the following
counterexample shows.

Example 3. If we consider the behaviour preorder � defined by the axioms of
bisimulation equivalence (Figure 2) together with the axiom x � x + aa, where
a represents any arbitrary action in Act, it can be checked that there is no
symmetric constraint cs-equivalent to �.

4 Constrained Simulations Up-to a Preorder

Starting from constrained simulations we define a general notion of constrained
simulation up-to a preorder that will allow us to provide simulation-like char-
acterisations for behaviour preorders.

Definition 10. Let � be a behaviour preorder, and C a relation over processes.
We say that a binary relation S over processes is a C-simulation up-to �, if
S ⊆ C (that is, pSq ⇒ pCq), and S is a simulation up-to �. Or, equivalently,
in a coinductive way, whenever we have pSq, we also have:

– For every a, if p
a−→ p′a there exist q′, q′a such that q � q′

a−→ q′a and p′aSq′a;
– pCq.

We say that process p is C-simulated up-to � by process q, or that process q

C-simulates process p up-to �, written p �∼
C

� q, if there exists a C-simulation
up-to �, S, such that pSq.
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We often just write �∼
C , instead of �∼

C

�, when the behaviour preorder is clear
from the context.

The following proposition highlights the tight relation between a behaviour
preorder and its kernel equivalence.

Proposition 2. Given a behaviour preorder � and a behaviour equivalence C

such that �→
C⊆ � ⊆ C, we have p � q ⇐⇒ q ≡ q + p ∧ pCq.

Proof. First we prove the right to left implication. Given that processes p and
q satisfy the constraint C, we can apply the axiomatic characterisation for �→

C

in Theorem 4, and using the axiom (PC) we obtain p �→
C

p + q. Now, since

�→
C⊆ �, we also have p � p + q ≡ q and therefore p � q.
We now prove the left to right implication. On the one hand, since � is a

behaviour preorder we have p � q ⇒ p + q � q. On the other hand, if p � q
then pCq and also qCp, since C is symmetric. As before, we use the axiom for
C-similarity to obtain q �→

C
q + p. Since �→

C ⊆ �, we conclude q � q + p.

Next we show that whenever p is C-simulated up-to � by q we also have
q ≡ q + p. Using this lemma and the previous proposition we will prove later
our Theorem 6.

Lemma 1. For every behaviour preorder � and every behaviour equivalence C,
such that �→

C⊆ � ⊆ C, we have p �∼
C

� q ⇒ q ≡ q + p

Proof. We prove it by induction on the depth of process p. Since ≡ is a congru-
ence with respect to the choice operator, it is enough to show that p �∼

C

� q ⇒ q ≡
q + p|a for every a ∈ I(p). Whenever p

a−→ p′a then there exist qa and q′a such
that q � qa

a−→ q′a with p′a �∼
C

� q′a, so that p′aCq′a and, applying the induction

hypothesis, q′a ≡ q′a +p′a. Since �→
C⊆ �, we can use the axiomatization given in

Theorem 5 and apply the axiom (EC) to obtain p′aCq′a ⇒ aq′a ≡ a(q′a+p′a)+ap′a;
therefore aq′a ≡ aq′a + ap′a. Hence we get

∑

aq′a ≡ ∑

aq′a + p|a. On the other
hand, qa = aq′a + ra and since ≡ is a congruence with respect to choice
∑

aq′a +
∑

ra ≡ ∑

aq′a +
∑

ra + p|a, that is,
∑

qa ≡ ∑

qa + p|a. We can
also add q in both sides, getting

∑

qa + q ≡ ∑

qa + q + p|a. Now, applying
Proposition 2 to �, since for every qa we have qa � q, we conclude q ≡ q + qa,
and therefore q ≡ q + p|a, as we wanted to prove.

Theorem 6. For every behaviour preorder � and every behaviour equivalence
C such that �→

C⊆ � ⊆ C, we have p �∼
C

� q ⇔ p � q.

Proof. The right to left implication is obvious: we have pCq and if p
a−→ p′a

then we can take q � p
a−→ p′a. To prove the left to right implication we use

Lemma 1, p �∼
C

� q ⇒ q ≡ q + p and, since pCq is also satisfied, we can now

apply Proposition 2, to conclude p �∼
C

� q ⇒ p � q.
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The condition of symmetry imposed to C is necessary, as the following coun-
terexample shows.

Example 4. Let us consider the non-symmetric constraint I⊇ defined in Exam-
ple 2. Let us consider the preorder � defined by the axioms that define the
ready simulation preorder (that is, the axioms that characterise bisimulation
equivalence plus the axiom ax � ax + ay), together with the axiom x + bb � x.
The constrained simulation �→

I⊇ is the ready simulation preorder and thus it is

immediate to check both �→
I⊇ ⊆ � and � ⊆ I⊇. However this preorder does not

satisfy the thesis of Theorem 6, because if we consider the processes p = a + bb

and q = a + b, we have p �� q but p �∼
I⊇

� q, because I(p) = I(q) and if p
a−→ 0

then q
a−→ 0, while for p

b−→ b we can take q � a + bb + b
b−→ b.

Theorem 6 generalises Theorem 2 and 3 (and also Theorem 44 in [dFG08]).
And what is even more important, it provides a uniform framework that allows
to better understand the role of the premises in the previous results we had on
simulations up-to. Thanks to the use of constrained simulations up-to, now we
can clearly see that a great deal of semantic preorders both coarser and finer
than the ready simulation preorder can be characterised by using simulations
up-to. In particular, we can characterise not only all the preorders coarser than
the ready simulation that appear in Van Glabbeek’s linear time-branching time
spectrum but also the rest of semantics there. Next example illustrates the case
of possible-futures semantics that is not coarser than the ready simulation and
therefore falls outside the scope of Theorem 3.

Example 5. If we denote by �PF the possible-futures preorder [RB81,Gla01],
then, taking the constraint pT q ⇔ traces(p) = traces(q), we have that T is a be-
haviour equivalence and that �→

T⊆ �PF⊆ T . Thus we are under the hypothesis

of Theorem 6 and therefore �∼
T

�PF
and �PF are the same relation.

Once again, the next result shows the interplay between preorders and the
induced equivalences. For a given preorder, we could use the induced equivalence
relation ≡ to characterise the preorder by means of a C-simulation up-to ≡.

Theorem 7. For every behaviour preorder � and its induced equivalence re-
lation ≡, for every behaviour equivalence C such that �→

C⊆ � ⊆ C, we have

p �∼
C

� q ⇔ p �∼
C

≡ q.

Proof. The right to left implication is obvious. The left to right implication is
a consequence of Proposition 2; whenever q would reduce into q′ by applying
q � q′ we could also reduce it by ≡, by applying q ≡ q + q′, and then we could
execute all the transitions of q′.



408 D. de Frutos Escrig, C.G. Rodŕıguez

5 Constrained Simulations up-to an Equivalence

The previous section was devoted to the study of constrained simulations up-to
a preorder. The starting point there was a given preorder, instead in this sec-
tion we show that the theory of constrained simulations up-to can be developed
even if we do not have such a preorder to start from. It is true that equiva-
lence relations are particular cases of preorders but equivalences are symmetric
relations and cannot be characterised by means of proper simulations that are
intrinsically non-symmetric. An interesting result that we present in this section
is how to use our up-to technique to build up an adequate preorder for a given
equivalence relation.

Lemma 2. For every behaviour equivalence ≡, and for every constraint C that
is a behaviour equivalence such that →C← ⊆ ≡, we have p �∼

C

≡ q ⇒ q ≡ q + p.

Proof. The proof uses the same notations and follows similar arguments to those
in the proof of Lemma 1. We use induction on the depth of process p. Since ≡
is a congruence with respect to the choice operator, it is enough to show that
p �∼

C

≡ q ⇒ q ≡ q +p|a for every a ∈ I(p). Whenever p
a−→ p′a then q ≡ qa

a−→ q′a

and p′a �∼
C

≡ q′a, and by applying the induction hypothesis we obtain q′a ≡ q′a +p′a.

On the other hand, since →C← ⊆≡, we can use the axiomatic characterisation
given in Theorem 5 and apply the axiom (EC) to obtain aq′a ≡ a(q′a +p′a)+ap′a;
therefore aq′a ≡ a(q′a+p′a)+ap′a ≡ aq′a+ap′a. Adding all up

∑

aq′a ≡ ∑

aq′a+p|a.
Since ≡ is a congruence with respect to the choice operator we can add subterms
in both sides of the equivalence, in particular, every qa = aq′a + ra and therefore
∑

aq′a +
∑

ra ≡ ∑

aq′a +
∑

ra + p|a, that is,
∑

qa ≡ ∑

qa + p|a. Since for all
qa we have q ≡ qa, then we conclude that q ≡ q + p|a.
Theorem 8. For every behaviour equivalence ≡, and every constraint C that
is a behaviour equivalence such that →C← ⊆ ≡ ⊆ C, we have p �∼

C

≡ q ∧ p �∼
C

≡ q ⇔
p ≡ q.

Proof. The right to left implication is obvious, just considering that ≡ ⊆ C.
We prove the left to right implication. Since p �∼

C

≡ q then, by Lemma 2, we have

that q ≡ q+p; symmetrically, from q �∼
C

≡ p we get p ≡ q+p and therefore p ≡ q.

As desired, for any equivalence relation fulfilling the hypothesis of the the-
orem above, we get a preorder such that its kernel is the original equivalence.
Moreover, this preorder satisfies some interesting properties.

Proposition 3. For every behaviour equivalence ≡, and for every constraint C

that is a behaviour equivalence such that →C← ⊆ ≡ ⊆ C, we have that �∼
C

≡ is a

behaviour preorder and �→
C⊆ �∼

C

≡ ⊆ C.
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Proof. That �∼
C

≡ is a precongruence with respect to the choice operator follows
from the congruence with respect to the choice of ≡. The rest of the properties
are immediate.

Now we can say that for any behaviour equivalence fulfilling the hypothesis of
Theorem 8, the preorder �∼

C

≡ is canonical in the sense specified in the following
result.

Theorem 9. For every behaviour equivalence ≡, and for every constraint C

that is a behaviour equivalence, such that →C← ⊆ ≡ ⊆ C, the preorder �∼
C

≡ is the

only behaviour preorder that satisfies �→
C⊆ �∼

C

≡ ⊆ C, and whose kernel is ≡.
Therefore, it can be said to be the canonical preorder under the constraint C
that induces the equivalence ≡.

Proof. Proposition 3 says that �∼
C

≡ satisfies the hypothesis of the results in Sec-
tion 4. On the other hand, if there is any other behaviour preorder � such that
≡ = � ∩ �, then by applying Theorem 6 and 7 we conclude � ⇔ �∼

C

� ⇔ �∼
C

≡.

The canonicity of the preorder �∼
C

≡ is bounded by the constraint C appearing

in its definition. For instance, trace equivalence ≡T satisfies →U← ⊆ ≡T , and
therefore we can obtain the U -canonical preorder �∼

U

≡T
, which is just the classic

preorder �T . But we also have →I← ⊆ ≡T ⊆ I, and then we also consider the I-
canonical preorder �∼

I

≡T
whose kernel is also trace equivalence, but it is strictly

finer than �T . Then we could even conclude that we should not call canonical
to these generated preorders. We have decided to maintain this term because
it is true that given both the equivalence ≡ and the constraint C, then the
generated preorder �∼

C

≡ is unique indeed.
Anyway, if we want to associate to an equivalence a unique canonical preorder

we can define it as the C-canonical preorder with the coarsest constraint C.
That is, the coarsest C such that →C← ⊆ ≡ ⊆ C that generates the preorder
�∼

C

≡. We have not been able to prove the existence of such a coarser constraint
for any arbitrary behaviour equivalence. However, if we restrict ourselves to the
semantics in the linear time-branching time spectrum, it is easy to see that such
a coarsest constraint exists.

Proposition 4. Let O ∈ {T, S, CT, CS, F, R, FT, RT, PW, RS, 2N, PF} be any
of the semantics in the linear time-branching time spectrum [Gla01]. Then, there

exists a coarsest constrained CO such that →CO← ⊆ ≡O ⊆ CO and that is defined
in Table 1.

Proof. We prove some of the results, the rest can be proved in a similar way.

T Since →U← ⊆ ≡T , we have immediately CT = U .
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T S CT CS F R FT RT PW RS PF 2N

CO U U V V I I I I I I W X

pUq ∀p, q pWq ⇐⇒ p ≡T q
pV q ⇐⇒ (p = 0 ⇔ q = 0) pXq ⇐⇒ p ≡S q
pIq ⇐⇒ I(p) = I(q)

Table 1 Coarsest Constraints for the Semantics in the ltbt Spectrum

F We have →I← ⊆ ≡F ⊆ I. We know that →I← can be axiomatized by pIq ⇒
a(p + q) ≡ a(p + q) + ap. If we consider any other →C← ⊆ ≡F ⊆ C with
→I← �⊆→C← we should have I �⊆ C and therefore there should be some processes
such that p′Cq′ and some action b ∈ I(q′) − I(p′). From the axiomatization

of →C← we would obtain a(p′ + q′) ≡ a(p′ + q′) + ap′ but these two processes
are not failure equivalent, since the right one can reject {b} after executing
a, and the leftone cannot.

2N As for the other simulation semantics, O2N is just the constraint used in
the definition.

PF We have →T← ⊆ ≡PF ⊆ T . As above, if we have another constraint
→T← �⊆→C← we should have some processes such that p′Cq′, and therefore
a(p′ + q′) ≡ a(p′ + q′) + ap′, but T (p) �= T (q). This is not possible because
a possible future for the process in the right side after executing a is T (p′),
that is not a possible future for the process on the left side.

As a byproduct, we have detected a new simulation semantics that does not
appear in the linear time-branching time spectrum, the T -constrained simu-
lation, which we could call trace equivalence simulation semantics. This new
semantics should be added in the spectrum between ready simulation and 2-
nested simulation, and above possible futures.

We can take advantage of the close relation between any behaviour equiva-
lence and the corresponding canonical preorder by turning an axiomatic char-
acterisation of the former into an axiomatization of the latter.

Theorem 10. Let ≡ be a behaviour equivalence and C a constraint that is a
behaviour equivalence such that →C← ⊆ ≡ ⊆ C. If AE is an axiomatization of
the equivalence ≡, taking the axiom (PC) to be xCy ⇒ x � x + y, we have that
AP = AE ∪ {PC} is an axiomatization of the relation �∼

C

≡.

Proof. As usual we write AP  p � q when the inequality p � q is provable from
the set of axioms AP . We prove that AP  p � q iff p �∼

C

≡ q.

Soundness. On the one hand, ≡⊆�∼
C

≡; on the other hand, from Proposition 3

we know that �→
C⊆ �∼

C

≡ ⊆ C; besides, from Theorem 4 we have that PC is one

of the axioms that characterise �→
C .
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Completeness. By Lemma 2 we know that p �∼
C

≡ q ⇒ q ≡ q + p and therefore
AP  q ≡ q + p. On the other hand, we have also pCq and then, using PC , we
get AP  p � p + q. All together, AP  p � p + q ≡ q.

With this result, the correctness and completeness of the axiomatization for
the preorders are proved once and for all for a great variety of semantics.

6 Conclusions and Future Work

In this paper we have universalised the presentation of our theory of simulation
up-to by means of which we provide coinductive characterisations for a great
variety of semantics either coarser or finer than the ready simulation, including
those in the linear time-branching time spectrum. Constrained simulations have
played an essential role in our development; we have provided an axiomatization
of the preorders defined by them and also of the induced equivalences.

An interesting result was that any behaviour equivalence induces a canonical
preorder whose kernel is the given equivalence relation. It is nice to find that for
all the semantics in the linear time-branching time spectrum the so obtained
canonical preorder coincides with the one we already knew from the literature.
As a consequence of the canonicity, some properties can be proved in general,
once and for all. We have illustrated this fact by giving a general axiomatization
of the preorders in terms of the axiomatization of the equivalences and the
axiomatization of the constrained simulations.

There are several directions in which we plan to continue the study of the
relations between preorders and equivalences. For instance, the axiomatization
of the preorders that we have obtained is conditional. It would be interesting
to know in which cases the axiom (PC) can be turned into an equivalent finite
collection of equational axioms. This is in fact the case for the semantics in
the linear time-branching time spectrum coarser than the ready simulation, for
which there exists an equational axiomatization equivalent to our conditional
axiomatization.

In [AFIL05] you can find a review of (in)axiomatizability results, that its au-
thors have recently completed giving other new results on the subject. We think
that our characterisation of the semantics using constrained simulations up-to
will be useful to get other new (in)axiomatizability general results. For instance,
we conjecture that any interesting preorder stronger than the ready simulation
is not finitely axiomatizable (see [AFGI04] for the seed results supporting this
conjecture).
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References

[AFGI04] Luca Aceto, Wan Fokkink, Rob van Glabbeek, and Anna Ingólfsdóttir. Nested
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Abstract. A process terminates if all its reduction sequences are finite. We propose
two type systems that ensure termination of π-calculus processes.
Our first type system is purely static. It refines previous type systems by Deng and
Sangiorgi by taking into account certain partial order information on names so to
enhance the techniques from term rewriting (based on lexicographic and multiset or-
derings) that underpin the proof of termination. The second system is mixed, in that
it combines a static and a dynamic analysis. During the static analysis, processes
are annotated with assertions. These are then used at run time to monitor the execu-
tion of processes. An exception may be raised if certain conditions that may lead to
divergence are met.
We illustrate the expressiveness of the solutions proposed with a few examples of
programming idioms that were beyond reach for previous type systems.

1 Termination of Concurrent Processes

Following the introduction of the π-calculus, a lot of research has been put into the
study of languages for process mobility in which computing is exchange of messages
between processes. Programs of these languages often produce dynamic recursive
structures, that is, systems consisting of a variable number of components (at run time,
new components may be created, and existing ones may be removed).

In this paper we study the problem of termination for mobile processes. We focus
on the π-calculus, the commonly accepted model for them. A process terminates if all
its internal runs are finite; that is, the process has no infinite sequence of reductions.
Termination is a fundamental property in sequential languages. It is also important in
concurrency. For instance, termination can be used to guarantee that interaction with
a resource will eventually end (avoiding denial of service situations), or to ensure that
the participants in a transaction will eventually reach an agreement. Unfortunately,
termination is also a hard property to ensure, both in functional languages and in con-
currency. Termination is particularly hard in the π-calculus, due to the expressiveness
of this formalism. A number of programming language features can be encoded into
the π-calculus, including functions, objects, and state (in the sense of imperative lan-
guages) [8]. Thus the notoriously hard problems of termination for these features hit
the π-calculus too.

Previous work on termination in the π-calculus relies on type systems to guaran-
tee the property. Languages of terminating processes are proposed in [10] and [7]. In
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both cases, the proofs of termination make use of logical relations, a well-known tech-
nique from functional languages. The languages of terminating processes so obtained
are however rather ‘functional’, in that the structures allowed are similar to those de-
rived when encoding functions as processes. For this reason, subsequent work [3, 2]
has explored type systems in which termination is proved using techniques from term
rewriting systems, essentially defining a measure (a ‘weight’) that decreases with re-
ductions. These type systems maintain however limitations on the form of recursive
structures handled.

To explain the kind of problems encountered, consider a tree-like data structure,
where search along the tree may involve recursive calls on all the subtrees of a given
node. Termination of a call to the search procedure should intuitively follow from the
acyclicity of the data structure. However, the tree cannot be type checked in [3], for
the following reason. The type systems in [3] are based on an assignment of levels to
π-calculus names, where a level is a positive integer. Since all nodes in a tree play the
same role, names used in different nodes must have the same type and hence also the
same level. As a consequence, when a search at a given node triggers several searches
in subtrees of the node, the weight of the process (roughly, the multiset of the levels of
the names in the “active” nodes) may increase (since the number of active nodes may
be bigger). This breaks the reasoning needed in the proof of termination.

The contribution of the present paper is twofold. First, we refine the type systems in
[3] so to be able to handle more complex recursive structures. The main improvement
is given by the addition, into the type system, of a partial order that is used to com-
pare names with the same level. While this possibility was already suggested in [3],
only a very restrictive form of it had been investigated. In the present paper the idea
is explored in depth. As we illustrate in Section 3, setting the balance between partial
order and levels (or weight) is delicate, as counterexamples easily arise as soon as we
abandon a purely lexicographical ordering between the weight and partial order infor-
mation. Major problems are updating the partial order when new names are created,
and ensuring that only well-founded partial orders are generated (a non-terminating
computation could be produced following the step-by-step generation of an infinite
descending path).

All type systems mentioned above are purely static: the whole type analysis is made
before the processes are run. There is a tradeoff between expressiveness and complex-
ity of the type systems (here complexity refers both to the intricacy of the typing rules
and to the actual complexity of the type inference problem). We think that our new
static type system is justified by the gain in expressiveness. We do not present, in
contrast, other static type systems that we have examined, as the overall gain is more
dubious.

We discuss, instead, as the second main contribution of the paper, an alternative
approach: a simple and efficient static type system enhanced with dynamic (i.e., run
time) checks. The static type system we adopt only exploits information about the level
of names; however it annotates the positions where extra information (a partial order),
is needed to justify termination. At runtime, these annotations are used to perform
dynamic checks. Correctness of the resulting mixed type system is stated as follows:
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if the first phase succeeds on a process, then the resulting annotated process cannot
exhibit an infinite computation: its execution either terminates or raises an exception.

The advantage of dynamic typing is that only the parts of a process that are actually
executed need to be analysed. This may considerably reduce the type constraints gen-
erated, especially in computations with data dependencies and/or non-determinism.
For instance, in our case, dynamic typing reduces the risk of generating non-well-
founded paths in the partial order over the names. We illustrate the expressive power
of the mixed type system on some non-trivial examples. They include recursive struc-
tures created through merges of smaller structures, like, for instance, trees created from
smaller trees via append operations (where a tree may be appended onto one or more
leaves of another tree). In previous type systems, manipulations of this kind are not
allowed, intuitively because all names connecting components of a recursive structure
must be created locally. This forbids extensions of the structure with components (or
just names) coming from the outside.

The price to pay with dynamic typing is the time for the additional checks at run
time and the space for the data structure needed in the checks. In our mixed type sys-
tem, the time for a dynamic check is at most linear in the number of annotated names
created (the annotated names are those in positions that have been marked during the
initial phase of static typing). The mixed system could be used in cases where the
termination property is important and other, purely static, type systems have failed.

In type systems, the idea of extending static analyses with forms of dynamic check-
ing is certainly not new. Works on the addition of dynamic types to statically typed
languages include [1, 4]. We can also mention stack inspection, as, e.g., in [5], where
checks on the access to resources are made at run time. Similar mechanisms are also
employed in incremental garbage collectors, through read- or write-barriers, to prevent
the program from accessing data that need to be processed by the collector (see [9]). In
the present work, we use the phrase ‘dynamic typing’ by analogy with the aforemen-
tioned approaches, although the analysis that we make at runtime boils down to some
lightweight sanity checks on partial orders.

2 The π-Calculus

We let a,b,c, . . . , p,q, . . . ,x,y,z range over an infinite set of names. Processes, ranged
over using P,Q, are described by the following grammar (we use notation ñ to range
over possibly empty tuples of names):

P ::= 000
∣

∣ P1|P2
∣

∣ (νc)P
∣

∣ P1 + P2
∣

∣ a(x̃).P
∣

∣ a〈ṽ〉.P ∣

∣ !a(x̃).P .

The constructs of input, replicated input and restriction are binding. We sometimes
call a bound name a variable and a free name a channel. We implicitly suppose that
in all processes bound names are pairwise distinct and distinct from all free names.
In an input a(x̃).P and an output a〈ṽ〉.P we call a the subject name. As usual, trailing
occurrences of 000 are omitted, and emissions and receptions of empty tuples of names
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along a are respectively abbreviated a.P and a.P. The reduction relation of the calculus
is standard (see Appendix 6).

Strict partial orders. As the rules of our type system heavily rely on partial orders,
we first introduce some notations for partial orders on names. We use R to range over
strict partial orders on names, and dom(R) is the domain of the order (the set of related
elements). In the sequel, the phrase ‘partial order’ will always be used to denote a strict
partial order, since we are only interested in these. Partial orders will be represented as
the set of all pairs of related elements. However, for writing convenience, we usually
indicate only a subset of the pairs, namely a subset whose transitive closure gives the
induced partial order. For instance, the set {(a,b),(b,c)} stands for the (strict) partial
order {(a,b),(b,c),(a,c)}.

3 A purely static type system

3.1 Previous Type Systems: a Motivating Example

We recall here the basic ideas behind the type systems of [3, 2], using an example that
also illustrates some of the limitations of these systems on recursive structures. Here
and in the sequel, we shall use extensions of the π-calculus of Section 2 for the presen-
tation of examples: the additional constructs are standard, and do not raise any partic-
ular difficulty for type checking termination. The example is about the implementation
of a symbol table as a binary tree. Each node in the tree is a simple π-calculus process.
The process T0 below is the generator of nodes. An output node〈a, l,r,s,e〉 produces
a node that stores a string s whose key is e, that is connected to its parent node (or to
the environment, in case of the root node) with name a, and to its children nodes with
names l and r. A tree at a (that is, a tree whose root uses a for interactions with the
outside) is searched for a value v via requests of the form a〈search,v,ans〉 where ans
is a return channel. When the search reaches a node, if the value is found in the node,
then the corresponding key is sent back on ans; otherwise the request is concurrently
propagated to both subtrees of the node. (We omit the details of a search operation that
fails.)

T0
def= !node(a, l,r,s,e).a(mode,v,ans).

if mode = search then
if v = s then ans〈e〉 | node〈a, l,r,s,e〉
else l〈mode,v,ans〉 | r〈mode,v,ans〉 | node〈a, l,r,s,e〉

else . . .

The type systems in [3, 2] recognise a system as terminating if the continuations ac-
tivated in an interaction (i.e., the processes underneath the interacting prefixes) have
a smaller “weight” than that of the output that has been consumed to trigger the in-
teraction. This notion of weight is formalised with an assignment of levels (positive
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R � 000

R1 � P1 R2 � P2

R1 +R2 � P1 | P2

R1 � P1 R2 � P2

R1 +R2 � P1 + P2

R � P

R ⇓c � (νc)P

R � P
� a : �la

SS
˜T � ṽ : ˜T SS∗ ṽ ⊆ R

R � a〈ṽ〉.P

R +(SS∗ x̃) � P
� a : �la

SS
˜T � x̃ : ˜T

R � a(x̃).P

Fig. 1 Static system: typing rules (see main text for the typing of replication)

integers) to the types of the names. Now, consider the system composed by a tree at
a and a search request a〈search,v,ans〉. Names a, l and r play the same role in the
structure, and therefore must have the same level. As the consumption of the output at
a may produce outputs at l and r (the ‘else’ branch in T0), the overall weight of the sys-
tem increases (indeed, ensuring termination essentially boils down to controlling the
outputs that can be generated along computation, since outputs may be used to trigger
new copies of replicated processes). Due to this increase, T0 is not typable. (The sys-
tems of [3, 2] allow the weight of the derivatives of an interaction to be at most the
same as that of the initial process, and for this they rely on a rudimentary partial order
information on names; however, the weight may never increase, as is instead the case
for T0.)

In the new type system that we propose below, replications in which the weight
increases may be typed (indeed T0 is typable, see Section 3.3). The greater expres-
siveness is achieved by enforcing a tight coupling between weight and a well-founded
partial order. Increases in weight through reductions are possible, provided they are ap-
propriately compensated in the partial order. This schema, while intuitively simple, is
rather delicate. As an example of the possible problems (other examples will be given
later in the paper), consider the system

T1
def= u |v |U1 |U2 with

{

U1
def= !p(a,b,c).a.(b | c)

U2
def= !u.v.(w | p〈w,u,v〉)

where names w,u,v have the same level k and p has level k′ < k (this can be imposed,
e.g., by adding extra processes in parallel). In U1, the weight increases underneath the
initial inputs at p and a; but the new outputs are smaller in the partial order, if we set a
above b and c. In U2, the weight decreases underneath the top two inputs. The system
seems to meet the termination conditions; however, it does not terminate (the outputs
at u and v trigger U2, which in turn triggers U1 and we are back to T1).
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3.2 The Type System

Figure 1 presents the typing rules for our new system. As in [3, 2], the type system
follows the Church style, in the sense that each name is assigned a type a priori. We
write � a : T if T is the type so assigned to name a. We add the termination analysis
on top of the simply-typed polyadic π-calculus. Accommodating other standard type
constructs would be straightforward; indeed, in examples, we sometimes use primitive
types for values (integers and booleans, with the related if-then-else operator in the
syntax of processes) and, in one case, recursive types. The grammar for types is given
by

T ::= �l
SS

˜T .

In � p : �l
SS

˜T , integer l is called the level of p, written lvl(p) = l; and SS is the partial
order associated to tuples of names carried along p, in which the i-th component is
represented by integer i. For instance, if SS = {(2,3)}, then the second component of
a tuple should be above the third one; thus an output p〈u,v,w〉.P is typable only if v is
above w in the partial order with which the output is typed. We let SS range over partial
orders on integers of this kind, and use operator ∗ to ‘project’ them onto a relation on
names. For example, if SS = {(1,2),(4,3)}, then, if R = SS∗ (u,v,w,t), we have uRv
and tRw.

We need some further notations to define the type system. Two partial orders R1

and R2 are compatible if R1 ∪R2 yields a partial order. If R1 and R2 are compatible
then R1 +R2 is the partial order (induced by) R1 ∪R2; if they are not compatible,
then R1 +R2 is undefined. R ⇓c stands for the relation obtained by removing all pairs
involving c after closing R by transitivity.

The typing judgements for processes are of the form R � P, where R is a partial
order. They are defined by the rules of Figure 1, plus the rules for replication below.
The rules of Figure 1 are similar to those in [3]. The typing of replication, however,
is different. We comment on the main typing rules. In the rule for output, the partial
order R must include SS ∗ ṽ, which is the partial order derived from the type of the
subject a. Similarly, in the rule for input, the partial order is extended with constraints
on bound names of the input as derived from the type of its subject. We now present
the two rules for replication. They are defined on processes of the form !κ .P, where
κ is a sequence of inputs, such as a1(x̃1).a2(x̃2) . . .an(x̃n); moreover the sequence is
maximal, in the sense that the outermost process operator in P is not an input. If κ =
a1(x̃1).a2(x̃2) . . .an(x̃n), then Mκ is the multiset of the names a1, . . . ,an that occur in
subject position in κ . Moreover, if �li

SSi
˜Ti is the type of ai, for i = 1, ..,n, then Rκ stands

for (SS1 ∗ x̃1)∪·· · ∪ (SSn ∗ x̃n). For a given multiset M of names, M|l is the multiset of
names in M whose level is equal to l, and card(M) is the cardinality of M.

[Rep1]

R � κ .P ∃l > 0 s.t.

⎧

⎨

⎩

(i) ∀ j > l,Mκ | j = os(P)| j

(ii) ∀ j ≥ l,rs(P)| j = /0
(iii) os(P)|l � Mκ |l

R �!κ .P
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[Rep2]

R � κ .P ∃l > 0 s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(i) ∀ j > l,Mκ | j = os(P)| j

(ii) ∀ j ≥ l,rs(P)| j = /0
(iii) card(Mκ |l) ≤ card(os(P)|l)
(iv) Mκ |l (Rκ)mul os(P)|l

R �!κ .P

Although the definition of rules [Rep1] and [Rep2] is complex, the checks made are
fairly simple. The rules differ only in conditions (iii) and (iv). Besides the expected
condition on the typing of κ .P, the most important aspect is the comparison between
Mκ , the multiset of the subjects of the inputs in κ , and os(P), the multiset of the
subjects of the outputs in P not occurring under a replication. In the two rules, l is
the maximal level on which the weights of Mκ and os(P) differ (at higher levell they
are the same: condition (i)). In [Rep1], intuitively, levels are sufficient to guarantee
termination. We indeed check in (iii) that, at level l, Mκ strictly contains os(P), as a
multiset. This condition enforces two properties: first, the weight decreases at level l
when consuming the sequence κ ; second, the partial order cannot be used to produce
diverging computations, by compensating the loss in weight with an increase in the
partial order.

In rule [Rep2] (that uses the same notations as [Rep1]), condition (iii) says that at
level l the weight of Mκ is not bigger. Hence weight alone is not sufficient to guarantee
termination, and the partial order becomes crucial: we check in (iv) that, at level l,
Mκ dominates os(P) according to the strict partial order associated to the multiset
extension of Rκ . Precisely, Mκ |l (Rκ)mul os(P)|l holds if Mκ |l �= os(P)|l , and there is
a multiset C included in Mκ and os(P) s.t. for all b ∈ os(P)|l \C, there is a ∈ Mκ |l \C
with aRb.

In both rules, the remaining condition (ii) ensures that no name is created at level l
or higher; the need for this technical condition will be shown in the second example of
Section 3.3.

3.3 Examples

We present two examples that illustrate some of the technicalities of the type system.
The first example explains the need for condition (iv) in rule [Rep1]. Consider the
system T1 in Section 3.1. The system diverges. We explain why it is rejected by our
system, supposing, as we did in Section 3.1, that we must have lvl(a) > lvl(p); e.g.,
p has level 1 and all other names have level 2. This way, we can type U2 using [Rep1]
(two inputs at level 2 ‘weight more’ than one at level 2 and one at level 1). For U1, since
the weight is increasing, we must resort to the partial order, and impose that the first
component of tuples transmitted on p dominates the two other components (so that
name a dominates b and c), and we can use [Rep2]. However, this renders the typing
of U2 invalid, because condition (iv) of [Rep1] is not satisfied: Mκ |2 = {u,v} does not
contain os(P)|2 = {w}. It can be shown, more generally, that for any assignment of
levels to names, T1 cannot be typed.
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Another delicate aspect of the type system is the control of the creation of new
names. In a replication !κ .P, a new name that is created should have a level smaller
than the maximal level that decreases when moving from κ to P (this is imposed by
condition (ii) in [Rep1] and [Rep2]). The need for this constraint is illustrated by the
following process.

T2
def= !p(a,e, f ).a.(e | f | p〈a,e, f 〉) | !p(a,e, f ).e. f .(νc)(c | p〈c,e, f 〉) .

Without the constraint on the creation of new names, T2 could be typed, by setting the
level of p to 1, the level of all the other names to 2, and annotating the type of p with
a partial order that forces a to be above e and f . But T2, when put in parallel with
u | p〈u,v,w〉 (which would also be typable), diverges:

T2 | u | p〈u,v,w〉 →→ T2 | v | w | p〈u,v,w〉 →→ (νc)
(

T2 | c | p〈c,v,w〉)

At the end, c plays the role played by u in the initial state. In the second replication in
T2, where the new name c is created, the maximal level that decreases is 2 (at level 2,
two outputs are consumed to reach the body of the replication, namely e and f , and
only one output is produced, namely c). The newly created name has precisely level 2,
hence typing fails.

Process T0 presented in Section 3.1 can be type-checked, by assigning type Ta to
names a, l,r, type Tans to ans, and type Tnode to node, with

Ta = �3(M,S,Tans) , Tans = �2(K) , Tnode = �1
{(1,2),(1,3)}(Ta,Ta,Ta,S,K) ,

where S is the type of the value v (strings in the example), K the type of the key
associated to a value, M the type of tags indicating the method that is invoked on the
tree. In the typing, the critical part is the ‘else’ branch in T0; here the input on a at
level 1 is traded for two outputs, on names l and r, at the same level, and we rely on
the partial order derived from p to conclude the typing ([Rep2] – a dominates both l
and r). Note that at the higher level, level 3, the weight does not change, as the input
at node is followed by an output on the same channel.

3.4 Soundness of the Type System

Theorem 1. If R � P then P terminates.

Proof (Sketch). Suppose P is non-terminating, i.e. there exists an infinite derivation
D : P1 = P → P2 → . . . We write κ1, . . . ,κn for the (finitely many) prefix sequences
occurring in P. The typing for P determines, for each κi, a level, written lvl(κi), which
is the maximal level at which either the order or the weight decreases (this is integer l
in [Rep1] and [Rep2]).

Some steps in D correspond to a communication that erases the last input pre-
fix of one of the κis – we call such steps gaps; there are necessarily infinitely
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many gaps, otherwise no divergence could arise. Since there are finitely many κis,
at least one of the κi is involved in an infinite number of gaps in D . We let k =
max{lvl(κi).κi is fired an infinite number of times in D}. We focus on reductions that
involve gaps at level k to derive a contradiction.

By definition of k, and because P is typable, there exists a step in D after which:
(i) no new name is created at a level ≥ k (and hence the support of the partial order
involving free names remains the same at level k); (ii) no output occurring at a level
strictly greater than k is triggered. After that step, there are necessarily infinitely many
gaps involving some κ at level k along which the order decreases: if this was not the
case, there would exist a step after which all such gaps would correspond to a strictly
decreasing weight, which is impossible. Since for such gaps the partial order cannot
grow (condition (iv) in [Rep1]), and since the support of the partial order remains the
same, we derive a contradiction (Rmul is well-founded whenever R is). ��

The proof of Theorem 1 departs considerably from the correctness proof of the sys-
tems in [3]. The strategy of the latter proof is less robust, because it exploits additional
syntactical hypotheses about prefixes in processes to rearrange reductions in an infi-
nite computation. In the present proof, we extract some ordering information from a
diverging computation in order to derive a contradiction.

4 The Mixed Type System

In this section we discuss another approach to typing termination. We present a mixed
system in which the type checks are performed in two separated phases: a phase that
precedes execution, and the phase of execution itself. Below, these two phases are re-
ferred to as static and dynamic, respectively; correspondingly we distinguish between
static and dynamic typing.

The static typing, besides making the type checks, inserts into the processes asser-
tions on names of the form [a > b]. We call a process with assertions an annotated
process. The grammar for annotated processes is the same as that of ordinary pro-
cesses in Section 2, with the addition of the production [a > b]P for assertions. We use
A,B, . . . to range over annotated processes.

The assertions are needed in the dynamic typing. Precisely, at run time we check
that the transitive closure of the assertions encountered during execution is well-
founded. Thus the operational semantics is defined on pairs (A,R) where A is an
annotated process and R a partial order (as usual, represented by a set of pairs whose
reflexive and transitive closure induces the partial order).

Failure in the dynamic checks occurs when the addition of a new assertion intro-
duces a cycle; in this case the special term ⊥ is produced, meaning that an exception
has been raised. We call ⊥ and the pairs (A,R) configurations. We first define the
dynamic system, and then the static system.
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4.1 The dynamic system

The operational semantics on ordinary processes is extended to configurations as ex-
pected, and we write �→ for the reduction relation on configurations. The only new rule
is the following (see Appendix 6.2 for a complete presentation).

[a > b]A,R �→
{

A,(R∪{(a,b)}) if R ∪{(a,b)} is a partial order
⊥ otherwise

An annotated process A is divergent if there is an infinite sequence of reductions ema-
nating from (A, /0) (where /0 is the empty relation).

4.2 The static system

The static type system takes an ordinary process, performs some type checks on it,
and returns an annotated process. Judgements for processes are of the form � P � A,
meaning that P is well typed and A is the annotated version of P that is produced.

The rules are presented in Figure 2. As in Figure 1, the main termination analysis
is performed in the rule for replication. To type a replication !a(x̃).P, we insert an
assertion whenever we encounter an output in P that is not under a replication and
whose subject has the same level as a; in this situation, levels alone are not sufficient
to guarantee termination, and further checks, via the assertions, are postponed at run
time.

We explain the notations used in the rule for replication. If A is an annotated pro-
cess and a a name, then C(A,a) stands for the annotated process obtained from A by
inserting an assertion [a > b] in front of each output (not guarded by replication) whose
subject name b has the same level as a. Intuitively, [a > b] is a sanity check: a has to
dominate b according to the partial order to guarantee that the process does not loop
(see examples in Section 4.4). We write lvl(os(P)) and lvl(rs(P)) for the sets of the
levels of the names in os(P) and rs(P), respectively. Thus la � lvl(os(P)) means that la
is greater than, or equal to, the level of each name in os(P); and la � lvl(rs(P)) means
that la is strictly greater than the level of each name in rs(P).

Remark 1. In the rule for replication, only the initial input of the replication is exam-
ined. The system can be made more powerful by taking into account sequences of
inputs, along the lines of the type system of Section 3 (where sequences are indicated
by the κ prefix). We have not done so for simplicity of presentation and for efficiency:
as discussed in Section 4.5, inference for the present system is polynomial. It would
become NP-complete with sequences (as a matter of fact, it can be proved along the
lines of [2] that type inference is NP-complete for the inference problem for the type
system of Section 3).

Since we do not take sequences into account, the systems of Sections 3 and 4 are
incomparable: none of them captures more processes than the other.
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� P � A � a : �la ˜T � ṽ : ˜T

� a〈ṽ〉.P � a〈ṽ〉.A
� P � A � a : �la ˜T � x̃ : ˜T

� a(x̃).P � a(x̃).A

� P � A � Q � B

� P | Q � A | B

� P � A � Q � B

� P+Q � A+B

� P � A

� (νc)P � (νc)A
� 000 � 000

� P � A � a : �la ˜T � x̃ : ˜T a /∈ os(A)
la � lvl(os(P)) la � lvl(rs(P)) A′ = C(A,a)

�!a(x̃).P � !a(x̃).A′

Fig. 2 The static type analysis in the mixed system

4.3 Soundness

Theorem 2. If � P � A, then A has no diverging computation.

For lack of space, we omit the proof of this result, that follows the same general
strategy as the proof of Theorem 1.

The following proposition says that a process and its annotated version perform the
same reductions, unless the annotated one raises an exception. Relation →∗ (resp. �→∗)
is the reflexive transitive closure of → (resp. �→). We write erase(A) for the process
obtained by removing the assertions from A.

Proposition 1. Suppose�P � A. If P→∗ P′, then either A, /0 �→∗ A′,R with erase(A′)=
P′ for some R, or A, /0 �→∗ ⊥. Conversely, if A, /0 �→∗ A′,R, then P →∗ P′ for some P′
with erase(A′) = P′.

4.4 Examples

The first example shows a divergent process that passes the static phase of the mixed
system and produces a failure exception at run time. Let

R
def= !p(a,b,c).(!a.b | !b.c | !c.a) | p〈u,v,w〉 | u .

R is typable: we have a derivation for

� R � A
def=!p(a,b,c).(!a.[a > b].b | !b.[b > c].c | !c.[c > a].a) | p〈u,v,w〉 | u

by assigning the same level to a,b,c. At run time we have the following (deterministic)
sequence of reductions:
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!build(a, s0,e0). (νstate) (
state〈nil,nil, s0,e0〉
| !a(chan,mode).state(l, r, s,e).chan(v,ans,n).

if mode = merge then
if l = nil then state〈n, r, s,e〉
else if r = nil then state〈l,n, s,e〉
else (νchan′) ( l〈chan′,merge〉.chan′〈v,ans,n〉.state〈l, r, s,e〉

+ r〈chan′,merge〉.chan′〈v,ans,n〉.state〈l, r, s,e〉)
else . . .)

Fig. 3 Merging tree structures

(A, /0) →→ (A | !u.[u > v].v | !v.[v > w].w | !w.[w > u].u) | [u > v].v, /0)
→→ (A | !u.[u > v].v | !v.[v > w].w | !w.[w > u].u) | [v > w].w,R1)
→→ (A | !u.[u > v].v | !v.[v > w].w | !w.[w > u].u) | [w > u].u,R2)

→ ⊥
where R1 is {(u,v)} and R2 is {(u,v),(v,w)}. Process A eventually produces ⊥ as the
three inner replications create a cycle in the relation.

The next example illustrates an advantage of dynamic typing on data-dependent or
non-deterministic computations. Let

Q
def= (Q0 | p〈u,v〉 | u | g) where Q0

def= !p(a,b).(!a.b | (g.!b.a+ g.b)) .

When the output at p is consumed we obtain the process

Q′ def= Q0 | !u.v | (g.!v.u+ g.v) | u | g .

If the output on g synchronises with the left summand, a loop is produced by the two
replications. If the right summand is selected, the divergence is avoided. A static type
system would necessarily reject Q, due to the potential loop in the two replications. In
our mixed system, with appropriate choice of levels, Q passes the static analysis. At
run time, one computation of Q will yield ⊥, the other will not. We omit the details for
lack of space.

We now discuss the typing of recursive structures as those in Section 1 and Sec-
tion 3.1: trees with operations of remote allocation, that allow one to merge two trees
by attaching the root of a tree to a leaf of another tree. To type the tree T0 of Section 3.1,
we need to take into account sequences of inputs in replications, that is, replications
of the form !κ .P as we do in the type system of Section 3. (Precisely, in the subterm
!node(a, . . .).a(. . .) . . ., we need to compare the sum of the levels of names node and
a against the weight of the continuation.) This can be easily done, as discussed in Re-
mark 1, by strengthening the typing rule for replication in the static phase of the mixed
system. Alternatively, we can keep the present typing rules and make some modifica-
tions to the programs. We discuss this solution in the remainder. Figure 3 presents the
modified tree structure. The topmost replication, !build(a,s0,e0), acts as a constructor,
invoked for the creation of a new node; this new node carries values e0,s0, and interacts
with the parent node via channel a. The state of this node is represented by the floating
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message on state (in which the first two components are the names for accessing the
children, and are set to the special value nil if the node is a leaf). We only show the
code for the merge operation: the code for a search can be adapted from the example
in Section 3.1. When merge is invoked, the transmitted channel should be attached to
a leaf; if there is room, this happens in the current node; otherwise the merge is nonde-
terministically delegated to one of the children. (This is a simplified version of merge:
the new tree is attached anywhere in the tree, without, for instance, ensuring that the
tree remains well-balanced.) The code above is accepted by the static analysis of the
mixed type system1 modulo the insertion of just a few annotations: the highest level
is affected to names a, l,r, and an annotation [a > l] (resp. [a > r]) is inserted before
the output at l (resp. at r). The resulting annotated process does not lead to failure
exceptions at run time.

The mixed system remains, of course, incomplete — there are terminating processes
whose annotated version yields ⊥ — as the problem of the termination of a process is
not decidable.

4.5 Efficiency

The static analysis of the mixed system can be made in time that is polynomial w.r.t. the
size of the process being checked, by adapting the type inference algorithms in [2] (the
modifications are mild). (Our system is more flexible than the one of [2], in that, e.g.,
we allow constraints relating a name received in some input prefix and a name defined
above that prefix, but this does not affect the overall inference procedure for levels,
which remains polynomial.) With such an algorithm, the static analysis introduces only
the necessary assertions. More precisely, if the termination of a process can be proved
by only relying on levels and weights (without referring to a partial order), then the
static analysis will introduce no assertions and there will be no dynamic checks at run
time.

Note that a trivial (and linear) static analysis would assign the same level to all
names, and add assertions in front of all outputs prefixes. This would however mean
that: all type checks are performed at run time; useful weight information is lost, so
that the final termination analysis is rather rough.

The inference problem would become NP-complete if the system were refined by
taking into account sequences of inputs underneath a replication as suggested in Re-
mark 1 (this is proved by adapting the NP-completeness result for the system with
sequences of inputs in [2]).

Concerning the efficiency of dynamic checks, each time a new constraint is added
to the R component of a configuration, we have to check for acyclicity of the resulting
relation. This can be done via a depth-first traversal of R, whose cost is linear in
#R + |R|, where #R (resp. |R|) stands for the size of dom(R) (resp. the number of

1 Recursive types are needed for typing, independently from the termination analysis; as mentioned
in Section 3.1, recursive types, as well as other common type constructs, are straightforward to ac-
commodate.
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pairs in R). In [6], an online algorithm is shown, that allows one to perform the same
task in linear amortised time in #R only.

5 Conclusion

In this paper we have investigated type systems for termination in which techniques of
previous systems based on a lexicographical measure are enhanced with partial orders
on names. The first system is purely static, the second mixes static and dynamic typing.

We have illustrated the expressiveness of the mixed system on a remote allocation
example in which a recursive structure is extended with names and substructures im-
ported from the environment. It would be difficult to handle this kind of system using
a purely static system, due to the mobility of the names involved. The reason is that,
intuitively, one cannot statically predict the precise name that is received in an input,
and therefore one must make a worst-case approximation, using a set of names, guided
by the type system. Further, in this situation, if a name is exported, then one has also
to foresee the possibility that the name is sent back, which can easily create cycles that
break the partial order on the names.
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6 Formal Definition of the Operational Semantics

6.1 π-calculus Processes

Structural congruence for the π-calculus is the least equivalence relation that is closed
under α-conversion, satisfies the laws of an abelian monoid for | and + (with 000 as
neutral element), and moreover validates the following axioms:

(νx)(νy)P ≡ (νy)(νx)P !P | P ≡ !P (νz)000 ≡ 000 P+ P ≡ P

(νx)(P | Q) ≡ (νx)P | Q if x is not a free name of Q

We moreover let ≡ be closed by parallel composition, restriction, and replication, but
not under prefixes (this is due to a technical reason related to the handling of κ in
Section 3). The reduction relation is defined as follows.

(x〈ṽ〉.P1 + M1) | (x(z̃).P2 + M2) → P1 | P2{ṽ/z̃}

P1 → P′
1

P1 | P2 → P′
1 | P2

P → P′

(νc) P → (νc) P′
P1 ≡ P2 → P′

2 ≡ P′
1

P1 → P′
1

6.2 Annotated Processes

Structural congruence for annotated processes is defined as above. If R is a relation
on names, we write ok(R) if R induces a partial order, and ¬ok(R) otherwise. The
reduction relation for configurations, written �→, is defined by the following rules.

(x〈ṽ〉.A1 + M1) | (x(z̃).A2 + M2),R �→ A1 | A2{ṽ/z̃},R

A1,R �→ A′
1,R

A1 | A2,R �→ A′
1 | A2,R

A,R �→ A′,R
νc A,R �→ νc A′,R

A1 ≡ A2 A2,R �→ A′
2,R A′

2 ≡ A′
1

A1,R �→ A′
1,R

ok(R∪{(a,b)})
[a > b]A,R �→ A,R ∪{(a,b)}

¬ok(R∪{(a,b)})
[a > b]A,R �→ ⊥
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Abstract. Regular n-ary queries in trees are queries which are definable by
an MSO formula with n free first-order variables. We investigate the variable
independence problem – originally introduced for databases – in the context of
trees. In particular, we show how to decide whether a regular query is equiv-
alent to a union of cartesian products, independently of the input tree. As an
intermediate step, we reduce this problem to the problem of deciding whether
the number of answers to a regular query is bounded by some constant, in-
dependently of the input tree. As a (non-trivial) generalization, we introduce
variable independence w.r.t. a dependence forest between blocks of variables,
which we prove to be decidable.

1 Introduction

Querying a tree consists of selecting nodes of its domain. This task has received
a special interest from the XML community as it is fundamental to informa-
tion extraction and document transformation. Several formalisms have been
proposed to express unary queries [13], but less work has been done on n-ary
queries, ie the selection of n-tuples of nodes [1, 10, 15]. Nevertheless, n-ary
queries are of special interest, for instance to select tuples of the form (name,
addr, email, phone, fax) in an XML document representing a directory. Since
the arity of the query can easily get up to 10, efficiency becomes crucial to
evaluate (n-ary) queries.

On the other hand, the notion of variable independence has been introduced
in the context of (infinite) constraint databases [3, 5, 11, 12]. Query evaluation
can be improved considerably when variables are independent. In particular,
complexities of many evaluation algorithms on constraint databases are related
to some independence between the components of the output tuples. For in-
stance if the query can be decomposed into a Cartesian product of queries of
lower arities, then all sub-queries of the product can be evaluated indepen-
dently. Orthographic dimension has been proposed as a measure for variable
independence [11]. It corresponds to the size of the largest block of dependent
variables. It is shown in [5] that this notion is well-defined, since every pair of
decompositions can be intersected into a decomposition of lower maximal block
size.

Please use the following format when citing this chapter:

Filiot, E. and Tison, S., 2008, in IFIP International Federation for Information Processing, Volume 273;
Fifth IFIP International Conference on Theoretical Computer Science; Giorgio Ausiello, Juhani Karhumäki,
Giancarlo Mauri, Luke Ong; (Boston: Springer), pp. 429–443.
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Fig. 1 A tree representing a directory

However, in the context of constraint databases, the structure is infinite but
fixed. A natural question is whether these results carry over into the context of
an infinite number of finite tree structures. The notion of variable independence
is also closely related to the representation of the set of answers of an n-ary
query. In particular, if the variables are independent, this allows to represent
the set of answers as a Cartesian product of sets of (sub)answers of lower sizes.
More generally, aggregated answers have been introduced in [14] as a compact
representation of the set of answers. Basically, these are multipartite dags such
that each part corresponds to a free variable, and the branching structure of
the parts is a tree. This branching structure somehow reflects the structure of
the input tree. Consider for instance the tree of Fig. 1 representing a directory.
Data are omitted in this picture. Consider the ternary query q which selects
all triples (x, y, z) where x is labeled person, y is the first name of this person,
and z one of its emails. Once x is selected, then y and z are independent. The
set of answers to this query can be represented as a 3-partite graph with sets
of vertices {Vx, Vy, Vz}, where there is a directed edge from a node u of Vx to
a node v of Vy, if v is the name of u. Similarly, edge relations between Vy and
Vz correspond to the (person, email) relations of the input tree. A person may
have several emails, making this representation more compact than the set of all
answers. Moreover, as argued in [14], this representation keeps the information
on how the components of the output tuples are related in the tree. It is also
particularly appropriate for post-processing tasks, such as answer searching,
answer browsing, statistical computing, answer enumeration, and cascade-style
querying. It raises the fundamental question of how compact this representa-
tion is. We answer this question by extending variable independence to relative
independence. In particular, it allows more complex dependencies between vari-
ables, as emphasized by the previous example. We measure compactness in the
settings of data-complexity, as we want to be independent of the query formal-
ism.

To achieve the formal study of variable independence, we choose Monadic
Second Order Logic to express n-ary queries, as it is often used as a yardstick
logic in the context of trees [13].
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We show that variable independence is decidable for MSO queries in trees,
and that a decomposition is computable. We reduce this problem to testing
whether a query is bounded, i.e. its number of answers is bounded by some
constant independent of the input tree. We prove this problem to be decid-
able. We show that the notion of orthographic dimension is also well-defined
in the context of trees. Finally, we introduce variable independence w.r.t. to a
dependence forest, which introduces dependencies between blocks of variables.

Note that in the context of trees, a restricted notion of variable independence
has been investigated in [15] and proved to be equivalent to non-ambiguity of
tree automata.

Acknowledgments We are very grateful to the anonymous referees for their
valuable comments, to Bruno Courcelle who pointed out some references and
to Slawomir Staworko for his careful re-reading.

2 Preliminaries

Although XML documents are usually modeled as unranked trees [13], we con-
sider finite binary trees only. All our results can easily be lifted to unranked
trees via a binary encoding [13].

Binary trees We consider a finite alphabet Σ consisting of symbols ranged
over by a, f, g. A binary tree t over Σ is inductively defined by the following
grammar: t ::= a | a(t, t) a ∈ Σ
The set of binary trees over Σ is denoted by TΣ. The set of nodes Nt of a tree
t ∈ TΣ is a set of words over {0, 1}. We write ε for the empty word and u.u′

for the concatenation of u and u′. The set Nt is inductively defined by Na = ε
and Na(t0,t1) = {ε} ∪ {b.u | b ∈ {0, 1}, u ∈ Ntb

}. Nodes u ∈ Nt for which there
is some b ∈ {0, 1} such that u.b ∈ Nt are called inner-nodes. Other nodes are
called leaves, and the node ε is called the root of t.
Let Σ′ be another finite alphabet. Let t ∈ TΣ and t′ ∈ TΣ′ be two binary trees
such that Nt = Nt′ . The product tree t × t′ is the tree over Σ × Σ′ inductively
defined by: a × b = (a, b), for all a ∈ Σ, b ∈ Σ′, and f(t0, t1) × g(t′0, t

′
1) =

(f, g)(t0 × t′0, t1 × t′1), for all f ∈ Σ, g ∈ Σ′, t0, t1 ∈ TΣ and t′0, t
′
1 ∈ TΣ′ . More

generally, we can define the product of n trees modulo associativity of ×.
Trees are also viewed as structures over the signature consisting of the binary
successor symbols S0 and S1 and the unary symbols laba, for all a ∈ Σ, inter-
preted by their intuitive meanings.

MSO Monadic Second Order (MSO) logic extends first-order logic with
quantification over sets. We consider first-order (resp. second-order) variables
ranged over by x, y (resp. X, Y ). MSO formulas consists of atomic formulas
laba(x), S0(x, y), S1(x, y) or x ∈ X , and are closed by boolean connectives ∧,¬
and quantification ∃x, ∃X . We let t, ρ |= φ denotes the satisfaction relation and
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say that the formula φ holds in the tree t under the variable assignment ρ. We
refer the reader to [13] for more details about the semantics of MSO.

Definition 1 (regular n-ary queries). Let n ≥ 0. An n-ary query q is a
mapping from trees t ∈ TΣ into subsets of Nn

t . It is regular (or MSO-definable)
if there is an MSO-formula φ(x1, . . . , xn) with n free first-order variables such
that for all trees t, we have: q(t) = {(ρ(x1), . . . , ρ(xn)) | t, ρ |= φ(x1, . . . , xn)}

If n = 0 (resp. n = 1, n = 2), q is called Boolean (resp. unary, binary). We
also say that φ defines q and denote q by qφ.

Those queries are called regular since there is a close correspondence between
MSO-definable queries and tree automata. In particular, it is well-known that
every MSO-definable n-ary query φ(x1, . . . , xn) on trees over Σ can be repre-
sented as a tree automaton A over the alphabet Σ × {0, 1}n [15, 19, 4]. More-
over, we can assume that A is canonical, i.e. for any tree t ∈ L(A), and any
i ∈ {1, . . . , n}, there is exactly one node of t such that the (i+1)-th component
of its label is 1 [19, 4]. The following holds: for all its nodes u1, . . . , un of t,
t |= φ(u1, . . . , un) iff t×χu1 ×· · ·×χun ∈ L(A), where for all i ∈ {1, . . . , n}, χui

is the tree on {0, 1} such that Nt = Nχui
and all nodes except ui are labeled 0.

3 Boundedness Properties of Regular Queries

In this section, we prove intermediate results which are useful for Section 4, but
might be of independent interest.
Let φ(x1, . . . , xn) be an MSO formula whose free variables are first-order. We
say that φ is bounded if there is K ∈ N such that for all t ∈ TΣ , the number of
assignments ρ of variables xis into Nt such that t, ρ |= φ is bounded by K.

Lemma 1. Given an MSO formula φ(x1, . . . , xn) with n free first-order vari-
ables x1, . . . , xn, it is decidable whether φ is bounded and, in this case, a bound
is computable.

Proof. As said at the end of Section 2, φ can be represented as a canonical
tree automaton A over Σ × {0, 1}n. Now, we can easily transform A in linear
time into a bottom-up transducer TA which takes trees t1 over Σ as inputs and
outputs trees t2 over {0, 1}n such that Nt1 = Nt2 and t1 × t2 ∈ L(A). Since
for all trees t, we have |TA(t)| = |qφ(t)|, it suffices to test whether |TA(t)| is
bounded by some constant, which is decidable in polynomial time (in the size
of TA). This is called finite valuedness in [17, 18]. Moreover, for all fixed k ∈ N,
one can decide in non-deterministic polynomial time whether the number of
images by TA is greater than k [17, 18] (with a constant factor which is several
exponentials in the size of k). Moreover, the bound is lesser than 22p(|TA|)

for
some polynomial p independent of TA. Hence, based on a dichotomy algorithm,
one can compute the smallest upper bound. The time complexity however is
several exponentials in the size of TA. �
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Concerning time complexity, it is known that the size of the tree automaton
associated with φ might be non-elementary in the size of φ [19], making the
whole procedure possibly non-elementary. However, if the query is given by a
canonical tree automaton A, testing boundedness becomes polynomial in the
size of A, since testing finite valuedness of a tree transducer can be done in
polynomial time [18, 17].

Lemma 1 could also be deduced from a result of [2]. This paper considers
an extension of MSO on infinite trees with bounding quantifiers. In particular,
for any MSO formula ψ(X), the bounding quantified formula BX.ψ(X) holds
in an infinite tree t, if there is a bound b ∈ N such that the size of any subset
of the set of nodes of t that satisfies ψ(X) is bounded by b.
Two fragments are proved to be decidable: formulas of the form ¬BX.ψ(X),
where ψ is in MSO, and formulas built from arbitrary MSO formulas and B, ∃,∨
and ∧.
We can easily reduce our problem to satisfiability of some formula in the first
fragment. First, boundedness of an n-ary query reduces to boundedness of all its
projections. Hence, we only need to consider unary queries. Now, from a formula
ψ(x) in one free variable, we construct a closed formula γ such that ψ(x) is
bounded iff γ is unsatisfiable. The formula γ is a conjunction γ = γ1 ∧ γ2. The
first formula γ1 checks whether the model is a tree (possibly infinite) of the form
#(t1, #(t2, #(t3, . . .), for some fresh symbol # �∈ Σ and t1, t2, t3, . . . ∈ TΣ are
finite trees over Σ. The second formula γ2 has the form ¬BX.γ′(X), where γ′(X)
is an MSO formula which holds in #(t1, #(t2, #(t3, . . .) under some assignment
ρ if there is i ≥ 1 such that such that ρ(X) corresponds to the set of nodes u of
ti such that ti |= ψ(u). The formula γ′ is defined by first choosing some node
x0 labeled # and then relating ψ(x) under x0.
However, we cannot benefit from this reduction if the query is given by a tree
automaton (in term of time complexity).

An equivalence relation on n-tuples is a 2n-ary query , often denoted ≡, such
that for all trees t, ≡ (t) is an equivalence relation on Nn

t . We let ≡t stands
for ≡ (t). It is regular if ≡ is regular. We say that ≡ is of bounded index if for
all trees t, the number of ≡t-equivalence classes is bounded by some constant
which does not depend on the tree. We can define a regular query which selects
the minimal representatives of the equivalence classes, for some MSO-definable
order on tuples. Hence, as a corollary of Lemma 1, we get:

Corollary 1 (bounded index property). Let ≡ be a regular equivalence re-
lation on n-ary tuples. It is decidable whether ≡ is of bounded index.

Proof. Let t be a tree, we define a total order ≤t on Nn
t . It suffices to start from

a total order on Nt and to extend it to a lexicographic order ≤t on Nn
t . Take

for instance the lexicographic order on words over {0, 1} which is a total order
on Nt. We can easily show that the query t �→≤t is regular. Now, we define the
n-ary query qmin : t �→ {u | ∀u′ ∈ Nn

t , u ≡t u′ =⇒ u ≤t u′}. The query qmin

is regular. Finally it suffices to verify boundedness of qmin, which is decidable
by Lemma 1. �
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Beyond Trees Deciding boundedness of an MSO formula can be done for classes
of structures which are images of a regular set of trees by an MSO-transduction.
We refer the reader to [6] for a definition of MSO-transductions. Given a set
of integers I ⊆ N, we say that I is linear if there are integers α0, . . . , αn ∈ N

such that I = {α0 +
∑n

i=1 αixi | x1, . . . , xn ∈ N}. It is semi-linear if it is a
finite union of linear sets. Let σ be a signature and C be a class of σ-structures,
θ an MSO-transduction from binary trees to σ-structures such that C is the
image by θ of a set of binary trees. In [6], Courcelle proves1 that given an MSO
formula φ(X) over the signature σ with one free second-order variable X , the
set {#ρ(X) | M, ρ |= φ(X), M ∈ C} is semi-linear, and we can compute the
coefficients of the polynomials if the transduction θ is known (#ρ(X) denotes
the cardinality of ρ(X)). This is the case for instance for the class of graphs of
clique-width less than k, for any fixed k [8]. To decide boundedness of an MSO
formula φ(x) (where x is first-order), it suffices to compute the above coefficients
for the formula Φ(X) = ∀x, x ∈ X ↔ φ(x). The formula φ(x) is bounded iff the
coefficients α0 of the linear sets are the unique (possibly) non-null coefficients.
Finally, boundedness of a formula φ(x1, . . . , xn) reduces to boundedness of every
projection of φ on a single variable xi, for all i ∈ {1, . . . , n}. Hence, boundedness
is decidable, for instance, for structures of clique-width less than k, for any fixed
k, or for unranked trees. However, to decide the bounded index property, we
need an MSO-definable total order.

4 Variable Independence

The definition of variable independence was originally defined over a fixed struc-
ture [3, 12]. We state it over the class of binary trees. We let φ be an MSO
formula with free variables x1, . . . , xn, and P = {B1, . . . , Bk} be a partition of
{x1, . . . , xn}. We write xBi , i = 1, . . . , k, to denote the tuple formed by vari-
ables of Bi given in order. We say that φ conforms to P , denoted φ ∼ P , if φ
is equivalent to a formula of the form

∨N
j=1 φj,1(xB1) ∧ · · · ∧ φj,k(xBk

), where
N is a natural and φj,i are MSO formulas with free variables in Bi. Note that
if we require N to be equal to 1, the problem becomes easy, since it suffices to
test whether φ is equivalent to the conjunction of the k projections of φ on the
variables from each block Bi.

W.l.o.g., we assume that free variables of φ are ranked in order given by
B1, . . . , Bk. In other words, we assume x1, . . . , xn = xB1 , . . . , xBk

(modulo as-
sociativity). Now, for any i ∈ {1, . . . , k}, and any tuples of variables x, y such
that |x| = |y| = |Bi|, we let ψi

φ(x, y) be the formula defined by:

1 Courcelle proves a more general result where several free variables are allowed
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ψi
φ(x, y) = ∀xB1 . . . ∀xBi−1∀xBi+1 . . . ∀xBk

φ(xB1 , . . . , xBi−1 , x, xBi+1 , . . . , xBk
)

↔
φ(xB1 , . . . , xBi−1 , y, xBi+1 , . . . , xBk

)

For any i ∈ {1, . . . , k}, and any tree t ∈ TΣ, we let Rt
i be the binary relation

on N
|Bi|
t defined by Rt

i = {(u, v) | t |= ψi
φ(u, v)}. Intuitively, u and v are

equivalent if one can substitute u with v, in any tuple selected by φ whose i-th
block is u, and conversely.

Lemma 2. Let i ∈ {1, . . . , k} and t ∈ TΣ. The following are true:

1. Rt
i is an equivalence relation on N

|Bi|
t ;

2. if φ is equivalent to some formula of the form
∨N

j=1 φj,1(xB1)∧· · ·∧φj,k(xBk
),

then the number of Rt
i-equivalence classes is bounded by 2N .

Proof. We only prove the second point, as the first is easy. Given some natural
i ∈ {1, . . . , k}, some tree t and some node tuples u, v of length |Bi|, we let u ≡t

i v
if there is some set F ⊆ {1, . . . , N} (possibly empty) such that for all j ∈ F , we
have t |= φj,i(u)∧ φj,i(v), and for all j ∈ {1, . . . , N}\F , we have t |= ¬φj,i(u)∧
¬φj,i(v). We can easily prove that ≡t

i is an equivalence relation on N
|Bi|
t which

has at most 2N equivalence classes. We now prove that ≡t
i is a refinement of

Rt
i, which will be sufficient to conclude. Let u, v be two node tuples of length

|Bi| such that u ≡t
i v. Let w1, . . . , wi−1, wi+1, . . . , wk be node tuples. We have

t |= φ(w1, . . . , wi−1, u, wi+1, . . . , wk) iff t |= ∨N
j=1 φj,1(w1) ∧ · · · ∧ φj,i(u) ∧ · · · ∧

φj,k(wk) iff (by definition of ≡t
i) t |= ∨N

j=1 φj,1(w1)∧· · ·∧φj,i(v)∧· · ·∧φj,k(wk)
iff t |= φ(w1, . . . , wi−1, v, wi+1, . . . , wk). Hence we get (u, v) ∈ Rt

i. �

Lemma 3. If for all i ∈ {1, . . . , k}, there is some mi ∈ N such that for all trees
t ∈ TΣ, the number of equivalence classes of Rt

i is bounded by mi, then φ ∼ P .

Proof. Let i ∈ {1, . . . , n}. We define a successor relation between equivalence
classes, then we introduce formulas clli(x),l = 1, . . . , mi, to define the l-th equiv-
alence class of Rt

i, in any tree t ∈ TΣ.
As already seen in the proof of Corollary 1, there is an MSO-definable total

order ≤ on node tuples. We now define a successor relation Si
φ between the

minimal representatives (for ≤) of the equivalence relation defined by ψi
φ. Now,

let the formula mini
φ(x) holds if x is the minimal representative of some equiv-

alence class. It can be defined by ∀y, ψi
φ(x, y) → x ≤ y. The relation Si

φ is now
defined by the following MSO formula:

Si
φ(x, y) = x < y ∧ mini

φ(x) ∧ mini
φ(y) ∧¬(∃z, x < z < y ∧ mini

φ(z))

We let s0(x) stand for ¬∃z, Si
φ(z, x) and sl(x), l ∈ N stands for ∃y, sl−1(y) ∧

Si
φ(y, x). We now define clli(x) by ∃y, sl(y) ∧ ψi

φ(x, y), for all 1 ≤ l ≤ mi.
Intuitively sl(x) holds in t under some assignment ρ if ρ(x) is the minimal
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representative of the l-th equivalence class of Rt
i, while clli(x) holds in t under

ρ if ρ(x) belongs to the l-th equivalence class of Rt
i.

Finally, we let L be the set of tuples of naturals l = (l1, . . . , lk) such that 1 ≤ li ≤
mi, i = 1, . . . , k, and we denote by βl(x1) the formula ∃x2 . . . xk, φ(x1, x2, . . . , xk)∧
∧k

j=1 cl
lj
j (xj). We let φl be the formula βl(x1) ∧ cll22 (x2) · · · ∧ cllkk (xk). We now

prove that φ is equivalent to
∨

l∈L φl.
Let t ∈ TΣ and u1, . . . , uk node tuples of t such that t |= φ(u1, . . . , uk).

For all i ∈ {1, . . . , k}, we necessarily have t |= ψi
φ(ui, ui). Hence, there is some

natural li ∈ {1, . . . , mi} such that t |= cllii (ui), i = 1, . . . , k. Let l = (l1, . . . , lk).
It is easy to see that t |= φl(u1, u2, . . . , uk).
Conversely, suppose there is some tuple l = (l1, . . . , lk) ∈ L such that t |=
φl(u1, . . . , uk). In particular, we have t |= βl(u1), hence there are some node
tuples u′

2, . . . , u
′
k, such that t |= φ(u1, u

′
2, . . . , u

′
k), and for each i ∈ {2, . . . , k},

t |= cllii (u′
i). We now prove by induction that for all p ∈ {2, . . . , k}, we have t

|= φ(u1, . . . , up, u
′
p+1, . . . , u

′
k). It is true for p = 1 by hypothesis. Suppose that it

is true at rank p > 1. Since t |= cl
lp+1
p+1 (up+1), we also have t |= ψp+1

φ (up+1, u
′
p+1).

By induction hypothesis, we have t |= φ(u1, . . . , up, u
′
p+1, . . . , u

′
k), and by defi-

nition of ψp+1
φ , we easily get t |= φ(u1, . . . , up, up+1, u

′
p+2, . . . , u

′
k). �

As a consequence of Lemma 2 and 3, and Corollary 1, we get the main result:

Theorem 1. Given an MSO formula φ with free variables x1, . . . , xn and a
partition P of {x1, . . . , xn}, it is decidable whether φ ∼ P holds or not. If it
holds, a decomposition of φ is computable.

Orthographic Dimension The notion of orthographic dimension has been
introduced in [11] to measure the degree of independence between variables,
over a fixed database. We define it for any tree structure. Given a for-
mula φ(x1, . . . , xn), the orthographic dimension dφ of φ is defined by dφ =
minP : φ∼P maxB∈P |B|.
Theorem 1 gives us a naive algorithm to compute dφ: for each partition P of
{1, . . . , n}, test whether φ ∼ P and compute maxB∈P |B|. But as we next show,
we can restrict the tests to 2-partitions.
Given two partitions P, P ′ of {1, . . . , n}, we write P �P ′ for the refinement of P
and P ′. Formally, we have P �P ′ = {B ∩B′ | B ∈ P, B′ ∈ P ′}−∅. Theorem 1
of [5] states well-definedness of the notion of orthographic dimension, for first-
order logic on any vocabulary, over a fixed structure. In particular, it means
that there is a unique partition whose largest block is equal to the orthographic
dimension, such that the formula conforms to it. However, the proof given in
[5] also works if the structure is not fixed. Moreover, it also works as soon as
the logic contains first-order quantifiers, negations, and Boolean connectives.
Hence, it also proves the following:

Theorem 2. Let φ be an MSO formula in n free first-order variables x1, . . . , xn,
and P, P ′ be two partitions of {1, . . . , n}. If φ ∼ P and φ ∼ P ′, then φ ∼ P �P ′.
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Now, let P = {P |P is a 2-partition of {1, . . . , n} and φ ∼ P}. From Theorem
2, we can deduce that the orthographic dimension of φ is the size of the largest
block of �P∈PP . Moreover, by Theorem 1, we can compute a decomposition
which corresponds to the orthographic dimension.

Relation to the Answer Set Representation If φ ∼ P , then for any tree t ∈ TΣ ,
we can represent qφ(t) by an aggregated answer of size O(n|t|dφ), computable
in time O(n|t|dφ) (φ is assumed to be fixed). Indeed, φ is equivalent to a (com-
putable) formula of the form:

∨N
i=1 φi,1(xB1 ) ∧ . . . ∧ φi,k(xBk

) for some natural
N . For every i ∈ {1, . . . , N}, and j ∈ {1, . . . , k}, we compute an automaton
Ai,j over Σ × {0, 1}|Bj| such that we can compute in time O(|t||Bj ||Ai,j |) the
set qφi,j (t) [7]. The answer representation can be identified to the collection of
k-tuples (qφi,1(t), . . . , qφi,k

(t)).

5 Relative Variable Independence

In this section, we generalize variable independence w.r.t. a partition to variable
independence w.r.t. a dependence forest on free variables. Consider for instance
the tree of Fig. 1, and let φ(x, y, z) be an MSO formula, where x denotes a
person, y its first name and z one of its emails. Once the interpretation of x
is fixed, then y and z are independent. We call this relative independence. Let
T be the tree x(y, z), we say that φ conforms to T , denoted φ ∼ T . We next
show that relative independence is decidable as a consequence of Theorem 1.

As a slight generalization, we allow dependence forests to specify dependences
between sets of variables instead of single variables. For example, if a formula
φ(x, y, z, w) conforms to some dependence forest {x, y}({z}, {w}), it means that
once x and y are selected, then z and w are independent.
Formally, let V = {x1, . . . , xn} be a finite set of variables. A dependence forest
F over V is a forest whose nodes are labeled by subsets of 2V and such that the
set of labels occurring in F form a partition of V . If F has only one root, then it
is called a dependence tree. We often denote by {T1, . . . , Tk} a dependence forest
consisting of the dependence trees T1, . . . , Tk, and by V ′(F ) a dependence tree
consisting of a dependence forest F rooted by a set V ′ ⊆ V . Although we take
a graph point of view, we use the same notations as for binary trees to denote
the set of nodes of some forest F over V and its labeling function, respectively
by NF and labF : NF → 2V . Finally, we confuse the set and tuple notations for
variables, so that we sometimes write V = x, for some tuple of variables x.
Let φ(x1, . . . , xn) be an MSO formula in n free first-order variables x1, . . . , xn.
Let μ be a mapping from NF into MSO formulas. We say that μ is admissible
for F if for all nodes u, v ∈ NF , if u is the parent of v, then μ(v) is an MSO
formula ψ whose free variables are labF (u)∪ labF (v); if u is the root of F , then
we require that μ(u) is an MSO formula whose free variables are labF (u). If μ
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is admissible, we naturally extend it to an MSO formula μ(F ) =
∧

u∈NF
μ(u)

in free variables x1, . . . , xn.

Definition 2. We say that φ conforms to F , denoted φ ∼ F , if there is a finite
sequence μ1, . . . , μN of admissible mappings for F such that φ is equivalent to
∨N

i=1 μi(F ).

We prove decidability of relative independence. We start by a base lemma
(Lemma 4), for forests of the form x({y, z}). Then we give a recursive algo-
rithm for the general case, that uses Lemma 4 and Theorem 1.

Lemma 4. Given an MSO formula φ(x, y, z) with free variables x, y, z, it is
decidable whether φ is equivalent to some disjunction of the form

∨n
i=1 αi(x, y)∧

βi(x, z), for some natural n, and MSO formulas αi, βi for i = 1, . . . , n. Moreover
if it holds, a disjunction is computable.

Proof. Intuitively, we fix the interpretation of x by extending the alphabet with
Boolean tuples. This gives a formula φx(y, z), and we test whether φx(y, z) ∼
{y, z}.

More formally, we first transform φ(x, y, z) into φx(y, z), interpreted on trees
over the alphabet Σ×{0, 1}m, where m = |x|, such that the following property
holds (P1): for all trees t, all nodes u1, . . . , um ∈ Nt, and all node tuples v, w,
we have t |= φ(u1, . . . , um, v, w) iff t × χu1 × · · · × χum |= φx(v, w), where the
trees χui are defined at the end of Section 2.
This can be done by repeating exhaustively the following transformation rule
on φ: replace each atom of the form P (x1, x, x2), where x is the i-th component
of x and is a free occurrence in φ, by ∃x,

∨

(f,b)∈Σ×Bi
lab(f,b)(x) ∧P (x1, x, x2),

where Bi ⊆ {0, 1}m is the set of Boolean tuples whose i-th component is 1
for i = 1, . . . , m. Hence, φ(x, y, z) rewrites to some formula φ′

x(y, z). We define
φx by φ′

x ∧ φcan, where φcan is a sentence which ensures that all models t ∈
TΣ×{0,1}m of φx are canonical (ie all nodes except one have their i-th component
set to 0 i = 1, . . . , n). We call R1 the transformation from φ to φx.

Then it suffices to test whether φx(y, z) ∼ {y, z}, which is decidable by
Theorem 1. If it holds, then φx(y, z) is equivalent to some formula of the
form ψx(y, z) =

∨n
i=1 αi,x(y) ∧ βi,x(z), for some MSO formulas αi,x, βi,x. We

next consider the following transformation rule R2: replace each atom of the
form labf,b(x) by labf (x) ∧ ∧

bi=1 xi = x, where bi denotes the i-th com-
ponent of b, i = 1, . . . , m. Suppose that x = x1, . . . , xm. Applying exhaus-
tively this transformation rule on ψx leads to a formula ψ(x, y, z) of the form
∨n

i=1 αi(x, y)∧βi(x, z) interpreted on trees over Σ. We have the following prop-
erty (P2): for all trees t, all nodes u1, . . . , um ∈ Nt, and all node tuples v, w, we
have t |= ψ(u1, . . . , um, v, w) iff t × χu1 × · · · × χum |= ψx(v, w).

Finally, we prove this algorithm to be correct. Suppose that it returns a
decomposition. By combining properties P1 and P2, we can prove correctness
of this decomposition. Conversely, suppose that φ is equivalent to some formula
of the form

∨n
i=1 αi(x, y) ∧ βi(x, z). It is easy to see that φx is equivalent (here
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Algorithm 1 Testing Relative Independence
procedure D(φ,F )

2: case F is a leaf or is of the form x(y):
return φ

4:
case F is of the form {x1, . . . , xk}:

6: test whether φ ∼ {x1, . . . , xk} as in the proof of Theorem 1 and return a decomposi-
tion. Otherwise breaks.

8: case F is of the form x(y, z):
test whether φ ∼ x(y, z) as in the proof of Lemma 4 and return a decomposition.

Otherwise breaks.
10:

case F is of the form x(y(F ′), F ′′):
12: z′, z′′ ← sets of variables occurring in F ′, F ′′

∨

i αi(x, y, z′) ∧ βi(x, z′′) ← D(φ, x({y ∪ z′, z′′}))
14: return

∨

i D(αi, y(F ′, x)) ∧ D(βi, x(F ′′))

16: case F is of the form {T1, . . . , Tk}:
for i ∈ {1, . . . , k} do

18: xi ← set of variables occurring in Ti
∨n

i=1

∧k
j=1 αj

i (xj) ← D(φ, {x1, . . . , xk})
20: return

∨n
i=1 D(α1

i , T1) ∧ · · · ∧ D(αk
i , Tk)

we use canonicity of its models) to
∨n

i=1 αi,x(y)∧βi,x(z), where φx, αi,x(y) and
βi,x(z) are obtained by applying the rewrite rule R1 on respectively φ, αi(x, y)
and βi(x, z). Hence, φx ∼ {y, z}, and the proof follows since the algorithm of
the proof of Theorem 1 is sound. �
Now, we extend the result of Lemma 4 to full independence forests:

Theorem 3. Given a formula φ in free variables V = {x1, . . . , xn} and a de-
pendence forest F over V , it is decidable whether φ ∼ F holds or not.

Proof. Consider Algorithm 1. The inputs are a formula φ with free variables V
and a dependence forest F over V . The symbols T1, . . . , Tk denote dependence
trees while F ′, F ′′ denote (possibly empty) dependence forests.
First note that the algorithm terminates. Indeed, the number of nodes of the
forest strictly decreases at each recursive call except for the 4th case when F ′′

is empty, but in this case the height of the forest strictly decreases.
Now, we can prove (inductively and by using Theorem 1 and Lemma 4 for the
basic cases) that if this algorithm returns a formula, then it is a decomposition
of the input formula φ w.r.t. the input forest F . It suffices to push up the
disjunctive connectives to get a sequence of admissible mappings for F .
Conversely, let φ (resp. F ) be an input formula (resp. an input dependence
forest), such that we have φ ∼ F . We prove by induction that the algorithm
outputs a decomposition. We use the fact that the decomposition is not arbi-
trary, but has a particular form, derived from the algorithms given in the proofs
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of Theorem 1 and Lemma 4. The first case is obvious, and the two next cases
have already been proved. First remark that we have the following property
(*): let F be a dependence forest, γ1, γ2 two formulas, α a sentence and β(x) a
formula such that x is a label of F . If γ1 ∼ F and γ2 ∼ F , we have γ1∨γ2 ∼ F ,
γ1 ∧ γ2 ∼ F , ¬γ1 ∼ F , α ∧ γ1 ∼ F , and β(x) ∧ γ1 ∼ F .

Suppose that F is of the form x(y(F ′), F ′′). Since φ ∼ F , in particular,
φ ∼ x(y ∪ z′, z′′), where z′, z′′ are defined as in Algorithm 1. Now, we inspect
the proof of Lemma 4. Let φx be the result of applying the rewriting rule
R1 of this proof. It is clear, by hypothesis, that we have φx ∼ {y ∪ z′, z′′}.
Hence, algorithm of the proof of Theorem 1 outputs a decomposition of the
form

∨

l∈L βl
1(y, z′)∧ cll22 (z′′), exactly as defined in the proof of Theorem 1. We

let ψ−1 be the result of applying exhaustively the rewrite rule R2 of the proof of
Lemma 4 on ψ, for all formulas ψ. Hence, D(φ, x(y∪z′, z′′)) returns the formula
∨

l∈L(βl
1)

−1(x, y, z′)∧ (cll22 )−1(x, z′′)). It remains to prove that formulas (βl
1)

−1

and (cll22 )−1 satisfy (βl
1)

−1 ∼ y(x, F ′) and (cll22 )−1 ∼ x(F ′′). We only prove
it for formulas (cll22 )−1, as the proof for formulas (βl

1)−1 is analogous. So let
us fix some natural l2. By going back to the definition of formula cll22 , we can
prove that (cll22 )−1 is equivalent to a formula of the form Γ = ∃z0, γ(x, z0) ∧
∀u, φ(x, u, z′′) ↔ φ(x, u, z0), for some γ. Now, since φ ∼ F , it easy to see that φ
is equivalent to a formula of the form Ψ =

∨n
i=1 ε1i (x, y, z′)∧ ε2i (x, z′′), such that

ε1i ∼ y(x, F ′) and ε2i ∼ x(F ′′) for i = 1, . . . , n. We replace in Γ the formula φ by
Ψ , and, after a series of rewritings (by pushing up disjunctions and pushing down
quantifiers), we can prove that (cll22 )−1 is equivalent to a formula of the form
∨n

i=1 γi(x)ε2i (x, z′′) ∨ ∨

P⊆{1,...,n} γ′
P (x) ∧ ∧

i∈P ¬ε2i (x, z′′), for formulas γi, γ
′
P

depending only on i and P . The conclusion follows by property (∗) and the fact
that every ε2i satisfies ε2i ∼ x(F ′′).

Suppose now that F is of the form {T1, . . . , Tk}, let xi be the variables
occurring in Ti for i = 1, . . . , k, and let P = {x1, . . . , xk}. Since φ ∼ F ,
in particular, φ ∼ P . Hence D(φ, P ) outputs a decomposition of the form
∨

l∈L βl
1(x1) ∧ cll22 (x2) ∧ . . . ∧ cllkk (xk), exactly as defined in the proof of The-

orem 1. We have to prove that for all l = (l1, . . . , lk) ∈ L, we have βl
1 ∼ T1,

and cllii ∼ Ti for i = 2, . . . , k. This is sufficient, since by induction hypothe-
sis, D will output a decomposition of every βl

1 and cllii . We only prove it for
formulas cllii (xi), as it is similar for formulas βl

1. Let us fix some l and i. We
come back to the definition of cllii , and we can easily show that it is of the
form ∃y, γ(y) ∧ ψi

φ(xi, y), for some formula γ which selects the minimal repre-
sentatives of the li-th equivalence class of the relation defined by ψi

φ, where ψi
φ

has been defined in Section 4. Now, since φ ∼ F , φ is equivalent to a formula
of the form Ψ =

∨n
p=1

∧k
j=1 εj

p(xj) such that every εj
p satisfy εj

p ∼ Tj . Next, in
∃y, γ(y)∧ψi

φ(xi, y), we replace φ by Ψ (ψi
φ can be viewed as the result of applying

the function ψi
. on φ, and we just replace ψi

φ(xi, y) by ψi
Ψ (xi, y)). We get a for-

mula equivalent to cllii which, after a series of rewritings preserving equivalence
(by moving up disjunctions and pushing down quantifiers), rewrites to a formula
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(equivalent to cllii ) of the form
∨n

p=1 φp∧εi
p(xi)∨

∨

Q⊆{1,...,n} ψQ∧∧

p∈Q ¬εi
p(xi),

for some closed formulas φp, ψQ depending on p and Q. The conclusion follows
by using property (*) and the fact that every εi

p satisfies εi
p ∼ Ti. �

Similarly as the case of variable independence, if φ(x1, . . . , xn) conforms to
F , then for any tree t ∈ TΣ , qφ(t) can be represented by an aggregated answer of
size O(n|t|b) (φ is assumed to be fixed, and necessarily |F | ≤ n). The parameter
b denotes the maximal sum of the size of a label of F plus the size of the label
of its father if it exists.

Note that variable independence w.r.t. a dependence forest subsumes variable
independence w.r.t. a partition, since a partition can be viewed as a dependence
forest consisting of a set of leaves. Moreover, as stated by the next theorem,
there is an MSO formula φ such that there is no dependence forest F such
that: (i) labels of F are singletons (ii) φ ∼ F . Nevertheless, we know that on
trees, every MSO formula is equivalent to an existentially quantified Boolean
combination of MSO formulas in two free variables [16, 10].

Theorem 4. There is an MSO formula φ such that there is no dependence
forest F whose labels are singletons and such that φ ∼ F .

Proof. Let x � y be an MSO formula which holds in a tree if y is a descendant
of x. It is well-known that it can easily be defined as the reflexive and transitive
closure of S1 ∨ S2, this closure being definable in MSO.
Now, let φ(x, y, z) be an MSO formula defined by:

φ(x, y, z) = ∃α α � x ∧ α � y ∧ α � z
∧∀α′ α′ � x ∧ α′ � y =⇒ α′ � α
∧∀α′ α′ � x ∧ α′ � z =⇒ α′ � α

For all trees t and all nodes u, v, w of t, we have t |= φ(u, v, w) iff the least
common ancestor of u and v is equal to the least common ancestor of u and w.

We now prove by applying algorithm 1 that there is no forest F whose labels
are singletons such that φ ∼ F , by proving it for each forest over {x, y, z}. Let
n ≥ 0 and tn be the tree over the alphabet {a} inductively defined by t0 = a and
tn = a(tn−1, a). For all n, we denote by v0, v1, . . . , vn the nodes 1n, 1n−1, . . . , ε
respectively, and, if n > 0, by w1, . . . , wn the nodes 1n−1.2, 1n−2.2, . . . , 2 re-
spectively.

1. F = {x, y, z} or F = {x, y(z)} or F = {x, z(y)}. We apply algorithm 1. The
formula ψ1

φ(x, x′) is defined by ∀y, z φ(x, y, z) ↔ φ(x′, y, z). We prove that
for all n, and all i, j ≤ n, vi �= vj implies tn �|= ψ1

φ(vi, vj). Indeed, if vi �= vj

such that desc(vi, vj), then we have t |= φ(vi, vi, vj) but t �|= φ(vj , vi, vj).
Hence, the number of classes of the equivalence relation defined by ψ1

φ is at
least n, which is unbounded. So Algorithm 1 breaks;

2. F = {y, x(z)} or F = {y, z(x)}. The formula ψ2
φ(y, y′) is defined by

∀x, y, z φ(x, y, z) ↔ φ(x, y′, z). We prove that for all n, and all i, j ≤ n,
vi �= vj implies tn �|= ψ2

φ(vi, vj). Indeed, if vi �= vj such that desc(vi, vj),
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then we have t |= φ(vj , vi, vi) but t �|= φ(vj , vj , vi). Hence, the number of
classes of the equivalence relation defined by ψ2

φ is at least n, which is un-
bounded. So Algorithm 1 breaks;

3. F = {z, y(x)} or F = {z, x(y)}. Those cases are symmetric to the previous
ones.

4. F = x(y, z). We let ψ(y, y′) = ∀z, φx(y, z) ↔ φx(y′, z) where φx has been
defined in the proof of Lemma 4. By definition of Algorithm 1, if the equiv-
alence relation defined by ψ has an unbounded index, then the algorithm
fails. This is what we next prove. Let n ≤ 0. We fix x by a Boolean in the
tree tn: we let t′n be the tree over {a} × {0, 1} such that Ntn = Nt′n

and
all nodes are labeled (a, 0) except v0 which is labeled (a, 1). It is easy to
see that for all i ≥ 1, we have t′n |= φx(vi, wi) and for all j > i, we have
t′n �|= φx(vj , wi. Hence there are at least n equivalence classes for the relation
defined by ψ. So Algorithm 1 breaks.

5. F = y(x, z). Similarly to the previous case, we fix a variable. Let ψ(z, z′) =
∀x, φy(x, z) ↔ φy(x, z′). Let t′n be the tree defined in the previous case.
Hence y is fixed to denote the node v0. We can prove that for all i > 0, we
have t′n |= φy(vi, wi) but for all j > i, we have t′n �|= φy(vi, wj). Hence there
are at least n equivalence classes for the relation defined by ψ. So Algorithm
1 breaks.

6. F = z(x, y). This case is symmetric to the previous one. �

Further Extensions First note that all the results presented in the paper also
hold for FO-queries, as we do not use second order variables in decompositions
(but in this case we need to add in the tree structure a total order on the nodes).
We would like to investigate independence problems for more general classes of
structures C. Indeed, we can give two sufficient conditions for relative indepen-
dence to be decidable on C: (i) boundedness of an MSO formula with first-order
variables is decidable on C, (ii) there is a computable MSO-definable total or-
der on the elements of the structures of C. The first point has already been
detailed in Section 3, while the second point is studied in [9]. This is the case
for instance for unranked tree structures, over the signature consisting of the
first-child and next-sibling predicates, and predicates to test the labels.
Finally, we would like to extend independence w.r.t. a dependence forest to
independence w.r.t. a dependence graph. The techniques presented here do not
seem to be easily extendable to graphs, even for a clique of size 3 for instance.
In particular, we cannot use an inductive proof based on Lemma 4 anymore.
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Abstract. It is shown that the existence of a Hamiltonian path in a planar automatic
graph of bounded degree is complete for Σ 1

1 , the first level of the analytical hierarchy.
This sharpens a corresponding result of Hirst and Harel for highly recursive graphs.
Furthermore, we also show: (i) The Hamiltonian path problem for finite planar graphs
that are succinctly encoded by an automatic presentation is NEXPTIME-complete,
(ii) the existence of an infinite path in an automatic successor tree is Σ 1

1 -complete,
and (iii) an infinite version of the set cover problem is decidable for automatic graphs
(it is Σ 1

1 -complete for recursive graphs).

1 Introduction

The theory of recursive structures has its origins in computability theory. A structure
is recursive, if its domain is a recursive set of naturals, and every relation is again
recursive. Starting with the work of Manaster and Rosenstein [23] and Bean [1, 2],
infinite variants of classical graph problems for finite graphs were studied for recursive
graphs. It is not surprising that these problems are mostly undecidable for recursive
graphs. This motivates the search for the precise level of undecidability. It turned out
that some of the problems reside on low levels of the arithmetic hierarchy (e.g. the
question whether a given recursive graph has an Eulerian path [3]), whereas others are
complete for Σ1

1 — the first level of the analytic hierarchy [21]. A classical example
for the latter situation is the question whether a given recursive tree has an infinite
path. With a technically quite subtle reduction from the latter problem, Harel proved
in [13] that also the existence of a Hamiltonian path (i.e., a one-way infinite path that
visits every node exactly once) in a recursive graph is Σ1

1 -complete. Σ1
1 -hardness holds

already for highly recursive graphs, where a list of the neighbors of a node v can be
computed effectively from v.

Hamiltonian paths in infinite graphs were also studied under a purely graph the-
oretic view. An important result of Dean, Thomas, and Yu [6] states that an infinite
undirected graph G has a Hamiltonian path if it is (i) planar, (ii) 4-connected, and (iii)
has only one end (see [7] for definitions). This extends a result of Tutte [27] for finite
graphs.

In computer science, in particular in the area of automatic verification, focus has
shifted in recent years from arbitrary recursive graphs to subclasses that have more
amenable algorithmic properties. An important example for this is the class of auto-
matic graphs [5, 16]. A graph is called automatic if it has an automatic presentation,
which consists of a finite automaton that generates the set of nodes and a two-tape
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automaton with synchronously moving heads, which accepts the set of edges. One of
the main motivations for investigating automatic graphs is the fact that every auto-
matic graph has a decidable first-order theory [16], this result extends to first-order
logic with infinity and modulo quantifiers [5, 19]. In contrast to these positive results,
Khoussainov, Nies, and Rubin have shown that the isomorphism problem for automatic
graphs is Σ1

1 -complete [17]. Results on the model theoretic complexity of automatic
structures can be found in [15].

The main result of this paper states that the existence of a Hamiltonian path be-
comes Σ1

1 -complete already for a quite restricted subclass of recursive graphs, namely
for automatic graphs, which are planar and of bounded degree. The latter means that
there exists a constant c such that every node has at most c many neighbors. The proof
of the Σ1

1 lower bound (the non-trivial part) in Section 3 is based on a reduction from
the recurring tiling problem [10, 12]. This is a variant of the classical tiling problem
[29, 4] that asks whether a given finite set of tiles allows a tiling of the infinite quar-
ter plane such that a distinguished color occurs infinitely often at the lower border.
Harel proved that the recurring tiling problem is Σ1

1 -complete [10, 12]. In our reduc-
tion we use as building blocks some of the graph gadgets from the NP-hardness proof
of the Hamiltonian path problem for finite planar graphs [9]. These gadgets have to be
combined in a non-trivial way for the whole reduction.

The main purpose of automatic presentations is the finite representation of infinite
structures. But automatic presentations can be also used as a tool for the succinct rep-
resentation of large finite structures. An automatic presentation of size n may generate
a finite graph of size 2O(n). A straightforward adaptation of our proof for infinite au-
tomatic graphs shows that it is NEXPTIME-complete to check whether a finite planar
graph given by an automatic presentation has a Hamiltonian path, see Section 4. With-
out the restriction to planar graphs, this result was already shown by Veith [28] in the
slightly different context of graphs represented by ordered binary decision diagrams
(OBDDs). The special OBDDs considered by Veith in [28] can be seen as automatic
presentations of finite graphs.

Finally, in Section 5 we investigate some other graph problems in the automatic
setting. Using a proof technique from [20, 15], we prove that the fundamental Σ1

1 -
complete problem in recursion theory, namely the existence of an infinite path in a
recursive tree remains Σ1

1 -complete if the input tree is automatic. For this result it is
crucial that the tree is a successor tree, which means that it is an acyclic graph, where
every node is reachable from a root node and every node except the root has exactly
one incoming edge. If trees are given as particular partially ordered sets (order trees),
then the existence of an infinite path is decidable for automatic trees [20].

From the above results, one might get the feeling that graph problems always have
the same degree of undecidability in the recursive and in the automatic world. To the
contrary, there are problems that are Σ1

1 -complete for recursive graphs [14] but de-
cidable for automatic graphs. This applies to the existence of an infinite branch in
an automatic order tree (i.e., the reflexive and transitive closure of a successor tree,
Khoussainov, Rubin, and Stephan [20]) as well as to the existence of an infinite clique
in an automatic graph (Rubin [25]). We show that also an infinite version of the set
cover problem is decidable for automatic graphs. This result is achieved by providing
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a decision procedure for a fragment of second-order logic that allows to express the set
cover problem as well as the two other decidable problems mentioned before.

Proofs, which are not included in this extended abstract will appear in the long
version of this paper.

2 Preliminaries

Infinite graphs and Hamiltonian paths For details on graph theory see [7]. A graph
is a pair G = (V,E), where V is the (possibly infinite) set of nodes and E ⊆V ×V is the
set of edges. It is undirected if (u,v) ∈ E implies (v,u) ∈ E . The graph G has degree at
most c, where c∈N, if every node is contained in at most c many edges. If G has degree
at most c for some constant c, then G has bounded degree. If it is only required that
every node is involved in only finitely many edges then G is called locally finite. The
graph G is planar if it can be embedded in the Euclidean plane without crossing edges
and without accumulation points; any such embedding is a plane graph. A finite path
in G is a sequence [v1,v2, . . . ,vn] of nodes such that (vi,vi+1) ∈ E for all 1 ≤ i ≤ n. The
nodes v1 and vn are the end points of this path. The graph G = (V,E) is connected if for
all u,v ∈V there exists a finite path in the undirected graph (V,E ∪{(x,y) | (y,x) ∈ E}
with end points u and v. An infinite path in G is an infinite sequence [v1,v2, . . .] such
that every initial segment is a finite path. A Hamiltonian path (or spanning ray) of an
infinite graph G is an infinite path [v1,v2, . . .] in G that visits every node of G exactly
once, i.e. the mapping i �→ vi (i ∈ N) is a bijection between N and the set of nodes.

Recursive graphs and automatic graphs A recursive graph is a graph G = (V,E)
such that V and E are recursive subsets of N and N×N, respectively. In case G is
infinite, one can w.l.o.g. assume that V = N. A recursive graph G is highly recursive
if it is locally finite and for every node v a list of its finitely many neighbors can be
computed from v. Harel [13] has shown the following result:

Theorem 1 ([13]). It is Σ1
1 -complete to determine, whether a given highly recursive

undirected graph of bounded degree has a Hamiltonian path.

Recall that Σ1
1 is the first level of the analytic hierarchy [21]. More precisely, it is

the class of all subsets of N of the form {n ∈ N | ∃Aϕ(A)}, where ϕ(A) is a formula
of first-order arithmetic. In Thm. 1, a recursive graph is encoded by a pair of Gödel
numbers for machines for the node and edge set, respectively.

In [14], Hirst and Harel proved that for planar recursive graphs the existence of a
Hamiltonian path is still Σ1

1 -complete. The aim of this paper is to extend the results
from [13, 14] to the class of planar automatic graphs of bounded degree. We introduce
this class of graphs briefly, more details can be found in [16, 5]

Let us fix n ∈ N and a finite alphabet Γ . Let # 	∈ Γ be an additional padding
symbol. For words w1, . . . ,wn ∈ Γ ∗ we define the convolution w1 ⊗w2 ⊗ ·· · ⊗ wn,
which is a word over the alphabet (Γ ∪{#})n, as follows: Let wi = ai,1ai,2 · · ·ai,ki with
ai, j ∈ Γ and k = max{k1, . . . ,kn}. For ki < j ≤ k define ai, j = #. Then w1 ⊗·· ·⊗wn =
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(a1,1, . . . ,an,1) · · · (a1,k, . . . ,an,k). Thus, for instance aba⊗ bbabb = (a,b)(b,b)(a,a)
(#,b)(#,b). An n-ary relation R ⊆ (Γ ∗)n is called automatic if the language {w1 ⊗
·· ·⊗wn | (w1, . . . ,wn) ∈ R} is a regular language.

Now let A = (A,(Ri)i∈J) be a relational structure with finitely many relations,
where Ri ⊆ Ani . A tuple (Γ ,L,h) is called an automatic presentation for A if (i) Γ
is a finite alphabet, (ii) L ⊆Γ ∗ is a regular language, (iii) h : L → A is a surjective func-
tion, (iv) the relation {(u,v) ∈ L×L | h(u) = h(v)} is automatic, and (v) the relation
{(u1, . . . ,uni) ∈ Lni | (h(u1), . . . ,h(uni)) ∈ Ri} is automatic for every i ∈ J. We say that
A is automatic if there exists an automatic presentation for A . In the rest of the paper
we will mainly restrict to automatic graphs. Such a graph can be represented by an
automaton for the node set and an automaton for the edge set. Clearly, a (locally finite)
automatic graph is (highly) recursive.

In contrast to recursive graphs, automatic graphs have some nice algorithmic prop-
erties. In [16] it was shown that the first-order theory of an automatic structure is decid-
able. This result extends to first-order logic with infinity and modulo quantifiers [5, 19].
For general automatic structures, these logics do not allow elementary algorithms [5].
On the other hand, for automatic structures with a Gaifman graph of bounded degree
first-order logic extended by a rather general class of counting quantifiers can be de-
cided in triply exponential space [22].

In contrast to these positive results, several strong undecidability results show that
algorithmic methods for automatic structures are quite limited. Since the configuration
graph of a Turing machine is automatic, it follows easily that reachability in automatic
graphs is undecidable. Khoussainov, Nies, and Rubin have shown that the isomorphism
problem for automatic graphs is Σ1

1 -complete [17], whereas isomorphism of locally
finite automatic graphs is Π 0

3 -complete [24]. Our main result is the following:

Theorem 2. It is Σ1
1 -complete to determine, whether a given planar automatic undi-

rected graph of bounded degree has a Hamiltonian path.

Note that the Σ1
1 upper bound in Thm. 2 follows immediately from the corresponding

result for general recursive graphs (Thm. 1). For the lower bound we use a special
variant of the tiling problem [29, 4] that was introduced by Harel.

Tilings Our main tool for proving Σ1
1 -hardness of the existence of a Hamiltonian

path in a planar automatic graph of bounded degree is the recurring tiling problem
[10, 12]. An instance of the recurring tiling problem consists of (i) a finite set of colors
C = {c0,c1, . . . ,cn}, (ii) a distinguished color c0, and (iii) a set T ⊆ C4 of tile types.
For a tile type t ∈ T we write t = (tW ,tN ,tE ,tS) (“W” for west, “N” for north, “E” for
east, and “S” for south); a visualization looks as follows:

tN
tW

tS

tE

A mapping f : N
2 → T is a tiling if, for every (i, j) ∈ N

2, we have f (i, j)N =
f (i + 1, j)S and f (i, j)E = f (i, j + 1)W . A recurring tiling is a tiling f such that for
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u1 u2

v1 v2

u1 u2

v1 v2

u1 u2

v1 v2

u′1 u′2

v′1 v′2

u′

v′

u′1 u′2

v′1 v′2

u′

v′

×

Fig. 1 The graph X , its use and abbreviation

infinitely many j ∈ N, we have f (0, j)S = c0. Now the recurring tiling problem asks
whether a given problem instance has a recurring tiling. Harel has shown the following
result:

Theorem 3 ([10]). The recurring tiling problem is Σ1
1 -complete.

The recurring tiling problem turned out be very useful for proving Σ1
1 lower bounds

for certain satisfiability problems in logic [11].

3 Hamiltonicity for automatic graphs

In this section, we reduce the recurring tiling problem to the existence of a Hamiltonian
path in a planar automatic graph of bounded degree. This proves Thm. 2 by Thm. 3.

3.1 Building blocks

Let us introduce several building blocks from which we assemble our final planar
automatic graph of bounded degree. These building blocks are variants of graphs
taken from the NP-hardness proof for the Hamiltonian path problem in finite planar
graphs [9].

Exclusive or Consider the finite plane graph X in Fig. 1 (first picture). It has a Hamil-
tonian path from u1 to u2 (and similarly from v1 to v2) indicated in the second picture.
Now suppose G′ is some graph containing the edges u′ and v′. Then we build a graph
G as follows: in the disjoint union of G′ and X , delete the edges u′ and v′ and connect
their endpoints to u1 and u2 (to v1 and v2, resp., see Fig. 1, third picture). Now suppose
H is a Hamiltonian path in G with no endpoint in X . Suppose u1 is the first vertex from
X in H. Then the restriction of H to X has to coincide with the Hamiltonian path from
u1 to u2. Hence H gives rise to a Hamiltonian path in G′ that coincides with H on G′
but passes through the edge u′ instead of taking the detour through X . Note that H ′
does not contain the edge v′. Conversely, every Hamiltonian path H ′ of G′ that con-
tains the edge u′ but not the edge v′ induces a Hamiltonian path H of G in a similar
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Fig. 3 Paths through the graph A

way. Joining X to the graph G′ in this manner restricts the Hamiltonian paths to those
that either contain the edge u′ or the edge v′, but not both. This also explains the name
X : this graph acts as an “exclusive-or”. Note that, if G′ is planar and the two edges u′
and v′ belong to the same face, then also G can be constructed as a planar graph. Since
we will make repeated use of this construction, we abbreviate it as in Fig. 1, fourth
picture.

Boolean functions Let f : {0,1}n → {0,1} be a Boolean function. In the NP-
hardness proof of [9], a planar graph G together with distinguished edges e1, . . . ,en

is constructed such that f (b1, . . . ,bn) = 1 iff G has a Hamiltonian cycle H with
bi = 1 ⇔ ei ∈ H. We modify this construction slightly in order to place the edges
ei and two vertices u and v in a specified order at the boundary of the outer face.

Theorem 4. There exists a constant c such that from given k, �,n ∈ N and F ⊆
2{1,...,k+�+n}, one can construct effectively in logspace a finite plane graph GF of de-
gree at most c such that:

– At the boundary of the outer face of GF , we find (in this counter-clockwise order)
edges e1, . . .ek, a vertex u, edges ek+1, . . . ,ek+�, a vertex v, and edges ek+�+1, . . . ,
ek+�+n.

– For every M ⊆ {1, . . . ,k + �+ n}, M ∈ F iff there is a Hamiltonian path H from u to
v such that M = {i | ei belongs to H}.
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A A A A
. . . . . .

Fig. 4 The infinite graph L

A A A A
. . . . . .

Fig. 5 A visit of a Hamiltonian path to the graph L

Infinity checking Next consider Fig. 2 – it depicts a graph A that is connected to some
context via the edges �, a, a′, b, b′, and r. If the complete graph has a Hamiltonian path,
then locally, it has to be of one of the four forms depicted in Fig. 3.

Now consider Fig. 4 – it consists of infinitely many copies of the graph A arranged
in a line, the edges a′ and b′ connect these copies of A with a line of nodes. Suppose the
edges a and b of the copies of A are connected to some infinite graph G. Then, every
Hamiltonian path H of the resulting graph has to enter and leave L infinitely often.
Since the possibilities to pass A are restricted as shown in Fig.3, any such visit has to
look as described in Fig. 5, i.e., the path enters from a into some copy of A, moves
left to some copy of A (possibly without doing any step), moves down to the third line
where it goes all the way back until it can enter the A-copy visited first via the edge b′
and leave it via the edge b.

3.2 Assembling

From an instance of the recurring tiling problem, we construct in this section a planar
automatic graph G of bounded degree that has an Hamiltonian path iff the instance of
the recurring tiling problem admits a solution. So, we fix a finite set C = {c0,c1, . . . ,cn}
of colors, a distinguished color c0, and a set T ⊆C4 of tile types. Next let

V = {W0,W1, . . . ,Wn,S0,S1, . . . ,Sn,N0,N1, . . . ,Nn,E0,E1, . . . ,En}.

We will describe tile types by certain subsets of V whereWi expresses that the left color
is ci, and Ni denotes that the top color is not ci (Si and Ei refer to the bottom and right
color and are to be understood similarly). More precisely, the tile d = (ci,c j,ck,c�)
is denoted by the set Sd = {Wi}∪{Nm | m 	= j}∪{Em | m 	= k}∪{S�}. Now let F =
{Sd | d ∈ T } be the descriptions of all the tile types d in T . Then, by Thm. 4, there
are finite plane graphs G1, G2, G3, and G4 with the following properties: (i) at the
outer face, we find edges e for e ∈ V and nodes u and v in the order indicated in
Fig. 6 and (ii) M ∈ F iff there exists a Hamiltonian path H of Gx from u to v such that
M = {v ∈ V | v belongs to H} (for all 1 ≤ x ≤ 4 and M ⊆ V ).
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Fig. 6 The graphs Gx

Next we choose mutually disjoint graphs G(k, �) (for k, � ∈ N) such that

G(k, �) ∼=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

G1 if k + � is even and k > 0

G2 if k + � is odd and � = 0

G3 if k + � is odd and � > 0

G4 if k + � is even and k = 0.

Then u(k, �) and v(k, �) refer to the nodes u and v of the graph G(k, �); similarly, e(k, �)
for e ∈ V refers to the edge e of the graph G(k, �). In the disjoint union of these graphs
G(k, �), we connect the node v(k, �) by a new edge with the following node:

u(k + 1, �) for k + � even and � = 0

u(k + 1, �−1) for k + � even and � > 0

u(k−1, �+ 1) for k + � odd and k > 0

u(k, �+ 1) for k + � odd and k = 0.

The result G1 of this construction is visualized in Fig. 7 where the vertices u(k, �)
are denoted by empty nodes and v(k, �) by filled nodes. From G1 we construct G2 by
replacing the edges Ei(k, �) and Wi(k, �+1) as well as Ni(k, �) and Si(k+1, �) (k, �∈N,
0≤ i≤ n) by a copy of the exclusive-or graph X , see Fig. 8. In a third step, we construct
G3 by adding to G2 the graph L from Fig. 4. To connect L to G2, the start node of the
edges a and b, resp., of the ith copy of A in L is the left and right, resp., node of the
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Fig. 8 Second step in global construction – the graph G2 (for two colors c0 and c1)

edge S0(0, i). The final graph G is obtained from G3 by adding a new node ⊥ together
with an edge between ⊥ and u(0,0).

Let us now prove that G has a Hamiltonian path iff T admits a recurring tiling.
First suppose there is a recurring tiling f : N×N → T . Let k, � ∈ N and f (k, �) =
(cW ,cN ,cE ,cS). Then the graph G(k, �) ∈ {Gx | 1 ≤ i ≤ 4} has a Hamiltonian path
H(k, �) from u(k, �) to v(k, �) such that for all 1 ≤ i ≤ n

1. the edge Si belongs to H(k, �) iff cS = ci,
2. the edge Wi belongs to H(k, �) iff cW = ci,
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3. the edge Ni belongs to H(k, �) iff cN 	= ci, and
4. the edge Ei belongs to H(k, �) iff cE 	= ci.

Then we find a Hamiltonian path H1 of the infinite graph G1 in Fig. 7 by appending
these Hamiltonian paths suitably:

H1 = H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0) . . .

Since f is a tiling, we get

Ei(k, �) /∈ H1 ⇐⇒ f (k, �)E = ci

⇐⇒ f (k, �+ 1)W = ci

⇐⇒ Wi(k, �+ 1) ∈ H1

and similarly Ni(k, �) /∈ H1 iff Si(k +1, �)∈ H1. Hence the Hamiltonian path H1 can be
extended to a Hamiltonian path H2 of the graph G2 obtained from G1 by adding all the
copies of the exclusive-or graph X . Observe also that f is recurring, i.e., there are in-
finitely many �∈N with f (0, �)S = c0. For every such �, the path H1 passes through the
edge S0(0, �). Instead of passing through this edge, we now enter the graph L (Fig. 4)
via the edge a of the �th copy of A and leave it via its edge b. We can ensure that after
this visit, all nodes of L to the left of the �th copy of A have been visited (cf. Fig. 5).
This results in a Hamiltonian path H3 of the graph G3 starting in u(0,0). Prepending
the node ⊥ gives a Hamiltonian path H of the final graph G.

Conversely, let H be a Hamiltonian path of the final graph G. Since ⊥ has degree
1, the path H has to start in ⊥ – deleting ⊥ from H gives a Hamiltonian path H3 of G3

that starts in u(0,0). Since G3 contains infinitely many nodes outside of L, this path
has to enter and leave L infinitely often. Any such visit has to enter via the edge a some
copy of A and leave via the edge b of the same copy of A (or vice versa, see Fig. 5).
Hence, deleting all the vertices of L from the path H, we obtain a Hamiltonian path H2

of the graph G2 that contains infinitely many edges of the form S0(0, �). Recall that
G2 is obtained from G1 by replacing some pairs of edges by the exclusive-or graph X .
Hence, the restriction of H2 to the nodes of G1 gives rise to a Hamiltonian path H1 of
G1 that

(a) contains infinitely many edges of the form S0(0, �),
(b) contains the edge Wi(k, �+ 1) iff it does not contain the edge Ei(k, �), and
(c) contains the edge Si(k + 1, �) iff it does not contain the edge Ni(k, �)

for all 0 ≤ i ≤ n and k, � ∈ N. Since H1 has to pass through all the graphs G(k, �), it has
to be of the form

H(0,0),H(1,0),H(0,1),H(0,2),H(1,1),H(2,0) . . .

where H(k, �) is a Hamiltonian path of the graph G(k, �) from u(k, �) to v(k, �). Now
we are ready to define the mapping f : N

2 →C4: set

(1) f (k, �)W = ci iff H(k, �) contains the edge Wi(k, �),
(2) f (k, �)N = ci iff H(k, �) does not contain the edge Ni(k, �),
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(3) f (k, �)E = ci iff H(k, �) does not contain the edge Ei(k, �), and
(4) f (k, �)S = ci iff H(k, �) contains the edge Si(k, �).

Since H(k, �) is a Hamiltonian path of G(k, �) from u(k, �) to v(k, �), we get f (k, �)∈T
from the construction of the graphs G1,G2,G3,G4. By (1), (b), and (3), we have

f (k, �)W = ci ⇐⇒ Wi(k, �) belongs to H(k, �)

⇐⇒ Ei(k, �+ 1) does not belong to H(k, �+ 1)
⇐⇒ f (k, �+ 1) = ci

and similarly f (k, �)N = f (k + 1, �)S follows from (2), (c), and (4). Thus, f is a tiling.
Since H1 contains infinitely many edges of the form S0(0, �), there are infinitely many
� ∈ N such that S0(0, �) belongs to H(0, �), i.e., f (0, �)S = c0.

Thus, we showed that indeed the graph G contains a Hamiltonian path iff the set of
tiles T admits a recurring tiling.

Clearly, the undirected graph G is planar and has bounded degree. Thus, in order to
finish the proof of Thm. 2, it remains to prove that G is automatic. Note that the graph
G has a highly regular structure. It results from the infinite grid N×N by replacing each
grid point by a finite graph and connecting these finite graphs in a regular pattern. It is
not surprising that such a graph is automatic, in particular since the grid is automatic.
Let us provide some more formal arguments for the automaticity of G.

Recall that G can be obtained from N×N by replacing every grid point (k, �) ∈ N×
N by a finite graph G′(k, �). This graph is a copy of one of the graphs G′

1,G
′
2,G

′
3,G

′
4,

where G′
i is the graph Gi together with copies of the XOR-graph X that connect G(k, �)

with G(k + 1, �) and G(k, �+ 1). Whether G′(k, �) is G′
i only depends on the parity of

k + � and whether k and � are zero or non-zero, respectively.
The alphabet of our presentation consists of the elements of {0,1,#}2\{(#,#)} and

the nodes of the graphs G′
1, . . . ,G

′
4. Then, the node set of G can be represented by the

regular language

{(bin(k)⊗bin(�))v | k, � ≥ 0, v is a node of G′(k, �)}, (1)

where bin(n) is the binary encoding of a number n (note that the parity of k + � can be
determined by a finite automaton from bin(k)⊗ bin(�)). Constructing from this node
representation an automaton that recognizes the edge set of G is straightforward but
tedious. This concludes the proof of Thm. 2.

There also exists the variant of two-way Hamiltonian paths in infinite graphs. A
two-way Hamiltonian path in G = (V,E) is a two-way infinite sequence (vi)i∈Z such
that (vi,vi+1) ∈ E for all i ∈ Z and for every node v ∈ V there is exactly one i ∈ Z

such that v = vi. From the previous construction, it follows that also the existence of
a two-way Hamiltonian path in a given planar automatic graph of bounded degree is
Σ1

1 -complete. Take the disjoint union of two copies of our main graph G and connect
the two ⊥-nodes with an edge. The resulting graph G′ has a two-way Hamiltonian path
iff G has a (one-way) Hamiltonian path. Moreover, since G is automatic and the class
of automatic graphs is closed under disjoint unions, G′ is automatic as well.
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4 Remarks about large finite graphs

The main purpose of automatic presentations is the finite representation of infinite
structures. But automatic presentations can be also used as a tool for the succinct rep-
resentation of large finite structures. Note that a finite automaton with n states can
accept a finite language with 2O(n) elements, which may serve as the domain of a finite
structure.

In general, given an automatic presentation (Γ ,L,h) for a finite graph (V,E) to-
gether with an automaton A for the node set language L, it is clear that |V | is bounded
by |Γ |n, where n is the number of states of A. It follows that for every graph problem L
in NP, the succinct version of L, where the input graph is given by an automatic presen-
tation, belongs to NEXPTIME. In particular, the Hamiltonian path problem belongs to
NEXPTIME for this succinct input representation.

For the lower bound, consider for n ≥ 1 the finite planar graph Gn that results from
our main infinite graph G by restricting it to the graphs G(k, �) for k + � ≤ n and the
connecting XOR-graphs between these graphs. Then Gn has a Hamiltonian path if and
only if the finite set of tiles T admits a tiling of the “triangle” Dn = {(k, �) ∈ N×N |
k + � ≤ n} (tilings of finite parts of the grid N×N are defined analogously to tilings
of the whole grid). Now we can use a result of Fürer [8]: It is NEXPTIME-complete
(under logspace reductions) to check for a given number n (encoded in binary) and a
finite set of tiles T whether T admits a tiling of Dn. Let us make a few remarks on
Fürer’s proof before continuing:

– Fürer proved NEXPTIME-completeness for tilings of the square {(k, �) ∈ N×N |
k, � ≤ n} instead of the triangle Dn. It is straightforward to adapt Fürer’s proof for
Dn.

– Fürer actually does not speak about NEXPTIME-completeness in his paper, but
states explicit lower bounds. But in his proof he presents a generic reduction from
the acceptance problem for nondeterministic exponential time Turing-machines to
the problem of tiling {(k, �) ∈ N×N | k, � ≤ n} for a given number coded in binary.

– Fürer states that all his construction can be carried out in polynomial time, but it is
straightforward to check that they can be carried out even in logspace.

Finally, it is easy to construct from a number n coded in binary in logarithmic space
an automatic presentation of the graph Gn. For this, we can basically use the automatic
presentation of the infinite graph G, but restrict it to numbers of size at most n. Hence,
we obtain:

Theorem 5. It is NEXPTIME-complete under logspace reductions to check for a given
automatic presentation of a finite planar graph, whether it has a Hamiltonian path.

A variant of Thm. 5 was shown by Veith [28]. He considers finite structures that are
represented by OBDDs (ordered binary decision diagrams). In this context, the node
set of a graph is {0,1}n for some fixed n. The edge set is represented by an OBDD over
variables x1, . . . ,xn,y1, . . . ,yn. Here the tuple (x1, . . . ,xn)∈ {0,1}n represents the initial
vertex of an edge, whereas (y1, . . . ,yn)∈ {0,1}n represents the final node. The variable
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order of the OBDDs in [28] is fixed to the interleaved order x1,y1,x2,y2, . . . ,xn,yn. Un-
der this variable order, OBDDs exactly correspond to deterministic acyclic automata
that work on the convolution (x1 · · ·xn)⊗ (y1 · · ·yn).

In [28], the following upgrading theorem was shown (here, only formulated for the
classes NP and NEXPTIME): If a graph problem L is NP-complete under quantifier
free first-order reductions then obdd(L) (the class of all OBDDs of the above form
that encode a graph from L) is NEXPTIME-complete under polynomial time reduc-
tions. Since the Hamiltonian path problem (HP) is NP-compete under quantifier free
first-order reductions [26], it follows that obdd(HP) is NEXPTIME-complete under
polynomial time reductions. Thm. 5 strengthens this result in two points: we obtain
NEXPTIME-completeness (i) under logspace reductions and (ii) for planar graphs. It
is not clear for us, whether the planar Hamiltonian path problem is still NP-complete
under quantifier free first-order reductions.

5 Further graph problems

An order tree is a partial order (A,�) with a least element such that the set {a ∈ A |
a � b} is finite and linearly ordered for every b ∈ A, a successor tree is the covering
relation of an order tree. It is decidable, whether an automatic order tree has an infinite
path [20]. The following result is in sharp contrast to this positive result.

Theorem 6. It is Σ1
1 -complete to determine whether a given automatic successor tree

T has an infinite path.

The proof idea is to transform a recursive successor tree into an automatic one by
adding the computation (i.e., sequence of transitions) that verifies the edge (u,v) as a
path between the nodes u and v; a similar idea was used in [20, 15].

Let us now present some graph problems which are Σ1
1 -complete for recursive

graphs, but decidable in automatic graphs. For this, we introduce, inspired by [18, 25],
a fragment SOr of second-order logic, which extends first-order logic with the infinity
quantifier and modulo quantifiers. Every relation that is definable in first-order logic
with the infinity quantifier and modulo quantifiers has a regular set of representatives
[16, 5, 19]. We will extend this result to SOr. The set of all formulas of SOr is induc-
tively defined as follows:

– Every atomic first-order formula is an SOr-formula.
– X(x1, . . . ,xk) for x1, . . . ,xk first-order variables and X a k-ary second-order variable

is an SOr-formula.
– If ϕ and ψ are SOr-formulas, then also ϕ ∨ψ is an SOr-formula.
– If ϕ is an SOr-formula, then also ¬ϕ , ∃xϕ , ∃∞xϕ (“there are infinitely many x

satisfying ϕ”), ∃(k,p)xϕ for 0 ≤ k < p ∈ N (“the number of x satisfying ϕ is finite
and congruent k modulo p”) are SOr-formulas.

– If ϕ is an SOr-formula and X is a second-order variable of arity k such that for every
k-tuple of first-order variables x1, . . . ,xk, ϕ contains the subformula X(x1, . . . ,xk)
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only negatively (i.e. within an odd number of negations), then also ∃X infinite : ϕ is
an SOr-formula.

Note that the restriction on ϕ in the last point ensures that if ϕ is satisfied for some
k-ary relation X = R and Q ⊆ R, then ϕ is also satisfied for X = Q.

Using the proof ideas from [18] and [25], one can show the following two theo-
rems. The first theorem refers to the decidability of the SOr-theory of every automatic
structure, the second theorem implies that from a SOr-formula ∃X infinite : α(X) true
in an automatic structure A , one can construct a regular witness to the validity of this
formula.

Theorem 7. From an automatic presentation (Γ ,L,h) of an automatic structure A
and an SOr-formula ϕ(x) one can compute effectively an automaton for the convolu-
tion of the relation {(u1, . . . ,un) ∈ Ln | A |= ϕ(h(u1), . . . ,h(un))}. Hence, if ϕ is an
SOr-sentence, then A |= ϕ can be checked effectively.

Theorem 8. From an automatic presentation (Γ ,L,h) of an automatic structure A
and an SOr-sentence β = ∃X infinite : α(X) with A |= β , one can construct H ⊆ Ln

regular such that h(H) is infinite and A |= α(h(H)).

We use Thm. 7 and 8 to show that two problems, which are Σ1
1 -complete for recursive

structures [14], are decidable for automatic structures. First, by taking the SOr-formula
∃X infinite ∀x,y : (x,y ∈ X ⇒ (x,y) ∈ E), we get:

Corollary 1 (cf. [25, Thm. 3.20]). It is decidable whether a given automatic graph
contains an infinite clique. If an infinite clique exists, a regular set of representatives
of an infinite clique can be computed.

The second problem is the infinite version of maximal set cover considered by Hirst
and Harel [14]. It asks whether, given a set X = {Xi | i ∈ N} of sets Xi ⊆ N, there
exists A ⊆ N with

⋃

a∈A Xa = N and N \A infinite. Note that the collection X can be
represented as a set of pairs E with (i, j) ∈ E iff j ∈ Xi. Then there exists A as required
iff the directed graph (N,E) satisfies ∃B infinite ∀ j∃i : i /∈ B∧ (i, j) ∈ E (then A is the
complement of B). Hence we get:

Corollary 2. The infinite version of maximal set cover is decidable if the collection X
is given as an automatic set of pairs. In case a set cover as required exists, an infinite
such can be computed.
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Abstract. Interval Temporal Logic [11] is a highly expressive and succinct logic
whose satisfiability over finite words is non-elementary in the number of alternations
of chop and negation operators. All the sublogics of ITL with elementary decidabil-
ity known to us restrict this alternation depth. In this paper, we define a sublogic
of Interval Temporal Logic by replacing chops with marked chops but without any
restriction on the alternation depth. We show that the resulting logic admits unique
parsing of a word matching a formula, with the consequence that membership is in
LOGDCFL and satisfiability is in PSPACE. As our first result, we give an effective
model-preserving reduction from UITL to the partially ordered two-way determinis-
tic finite automata of Schwentick, Thérien and Vollmer [14]. We show that the size
of the resulting automaton is quadratic in the size of the formula. We also have an
exponential converse reduction from po2dfa to UITL. It follows from the work of
Schützenberger [13], Thérien and Wilke [19] that this unambiguous ITL has same
expressive power as the first-order logic with two variables [10].

1 Introduction

Two-variable first-order logic FO2 was first studied by Mortimer [10]. In recent years,
a lot of research has centred around this logic, on words [5], data [1], Mazurkiewicz
traces [7], trees [2], etc. In particular for words, the article by Tesson and Thérien
[18] reveals the many facets of the class of languages defined by sentences of this
logic. The logic was shown to be NEXPTIME-complete and equivalent to a natural
fragment of linear temporal logic called Unary TL by Etessami, Vardi and Wilke [5]
and to partially ordered two-way deterministic finite automata (henceforth po2dfa) by
Schwentick, Thérien and Vollmer [14]. Thérien and Wilke showed [19] that it corre-
sponds to the variety DA of unambiguous languages studied by Schützenberger [13].
Weis and Immerman [20] and Kufleitner and Weil [8] have recently examined the
quantifier alternation hierarchy within FO2[<].

A proper treatment of syntax, we feel, is lacking. Tesson and Thérien’s paper [18]
does give a rudimentary syntax in terms of deterministic and co-deterministic products,
which we close under boolean operations and call an deterministic or unambiguous
subclass of propositional interval temporal logic ITL [11].

ITL is a highly succinct logic for specifying properties of finite words. The un-
constrained chop operator (similar to concatenation of star-free expressions) leads to
high decision complexity: the satisfiability of ITL is non-elementary in the number of
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alternations of the negation and chop operator [17]. Sublogics of ITL with elementary
satisfiability have been obtained by constraining this alternation depth in some manner.
UITL replaces chops with marked chops but without any restriction on their alterna-
tion depth with negation. Our first theorem is a consequence of the unique parsability:
membership of a word w in the language of a formula is in LOGDCFL and nonempti-
ness is in NP.

Also exploiting exploiting this unique parsability, an effective quadratic translation
from UITL to FO2[<] has been given by Shah [15]. From the work of Thérien and
Wilke [19] it follows that UITL is expressively contained in in the unambiguous lan-
guages of Schützenberger [13]. That it was an open problem whether this UITL syntax
matches the expressive power of FO2 we learnt from [8], which was written concur-
rently and independently of this paper. We answer the question positively in this paper.

Our second theorem is an O(n2) translation from a formula of our logic to a po2dfa
which accepts exactly the models of the formula. A partially ordered 2DFA [14] (also
called linear by Löding and Thomas [9]) is a two-way DFA which has the property
that once the automaton exits a state, it is never entered again. The translation from
formulae to automata illustrates the difficulty of working with weak models such as
po2dfa. To complete the characterisation of the expressive power, as our third theorem
we construct for each po2dfa a formula exactly specifying its language. This solves
the open problem mentioned above, as does the paper [8] using completely different
techniques. The constructed formula is exponential in the size of the automaton.

FO2[<] and Unary TL are at a remove from the very deterministic notion of po2dfa.
Our logic, which can be thought of as ITL but where the chop operator is forced to be
deterministic, is much closer to the automata. As a consequence, satisfiability drops
from nonelementary for ITL to PSPACE for our logic. In earlier work [6], we found that
such unambiguity considerably improves the computational performance of a validity
checking tool for ITL.

The idea of having deterministic temporal logics has been explored before. A
“marked” operator in temporal logic atnext was studied by Borchert and Tesson [3].
Kufleitner simplified it to deterministic marked next and previous modalities Xa and
Ya to define a point-based linear temporal logic, and showed that it is expressively
complete for FO2[<] over Mazurkiewicz traces (and hence also over words) [7]. How-
ever, a concrete exploitation of this to give explicit and efficient reduction from logic
to automata seems new.

The rest of the paper is organized as follows. Section 2 defines the syntax and se-
mantics of UITL. Section 3 discusses the partially ordered 2DFA and some expressions
we use as a convenient notation for them. Section 4 gives the reduction from formu-
lae of UITL to po2dfa. Section 5 gives the construction of a formula specifying the
language accepted by a po2dfa. We end with some perspectives.

Acknowledgements The authors thank Manfred Kufleitner, Pascal Weil and Meena Mahajan for
valuable inputs. The first author acknowledges the Indo-French project Timed-Discoveri for support.
The second and the third authors acknowledge partial support from the Microsoft Research Grant for
the project “formal specification and analysis of component-based designs.”.
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2 Unambiguous interval temporal logic: its syntax and semantics

We propose a fragment of ITL [11] where the chop operator is replaced by marked chop
operators Fa and La. Our syntax derives from closing the ∗n,k-expressions of Tesson
and Thérien [18] under Boolean operations.

Fix an alphabet Σ . Let a ∈ Σ , A ⊆ Σ . Let D,D1,D2 range over formulas in UITL.
The abstract syntax of UITL is given below.

��A�� | ��A� | �A�� | �A� | D1 ∨D2 | ¬D | D1FaD2 | D1LaD2 | ⊕D | 	D

Let w be a nonempty finite word over Σ and let pos(w) = {1, . . . ,#w} be the set of
positions. Let INTV (w) = {[i, j] | i, j ∈ pos(w), i ≤ j} be the set of intervals overs w.
The satisfaction of a formula D is defined over intervals of a word model w as follows.

w, [i, j] |= ��A�� iff for all k : i ≤ k ≤ j. w[k] ∈ A
w, [i, j] |= �A� iff for all k : i < k < j. w[k] ∈ A
w, [i, j] |= ��A� iff for all k : i ≤ k < j. w[k] ∈ A
w, [i, j] |= �A�� iff for all k : i < k ≤ j. w[k] ∈ A
w, [i, j] |= D1FaD2 iff for some k : i ≤ k ≤ j. w[k] = a and

(for all m : i ≤ m < k. w[m] �= a) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= D1LaD2 iff for some k : i ≤ k ≤ j. w[k] = a and
(for all m : k < m ≤ j. w[m] �= a) and
w, [i,k] |= D1 and w, [k, j] |= D2

w, [i, j] |= ⊕D iff i < j and w, [i+ 1, j] |= D
w, [i, j] |= 	D iff i < j and w, [i, j−1] |= D

As usual, w |= D iff w, [1,#w] |= D and L(D) def= {w | w |= D} is the language defined
by D.

The proposition ��A�� states that letters of all positions in the interval (including
the endpoints) are in A. Similarly, �A� says that all the strictly interior positions in an
interval have only letters from A; thus it trivially holds for point (i.e. [i, i]) and unit (i.e.

[i, i + 1]) intervals. By similar reasoning, � � def= �� /0� holds only on point intervals,
and ¬�� /0�∧� /0� only on unit intervals. The semantics of the “first” and “last” marked
chops and the “next” and “previous” operators should be clear.

The derived operators ∧,⊃,⇔ have their usual definitions. The constant � (de-
noting true) can be defined as ��Σ��. We take both these to be of constant size, but
in general the size of ��A�� is O(|A|). Conversely, ��A�� ⇔

∧

a/∈A
¬(�Fa�). Similar

equivalences can be given for ��A�, �A�� and �A�. Negations can be pushed inwards to
the level of literals using ¬(D1FaD2) ⇔ (��Σ \ {a}��∨ (�Fa¬D2)∨ (¬D1Fa�)) and
¬(⊕D)⇔� �∨⊕(¬D). All these translations are linear in the size of the formula. For
later use in Section 5, we also designate as simple formulae those made of the atomic
formulae and the marked chop operators Fa and La as well as operators 	 and ⊕ with
the Boolean operators being disallowed.
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Example 1. Consider the formula D
def= (�La((¬(�Fb�))Fd�)) over the alphabet

Σ = {a,b,c,d}. Intuitively, it states that between the last occurrence of a and sub-
sequent first occurrence of d there is no occurrence of letter b. Thus it specifies the
language Σ∗ac∗d{b,c,d}∗. ��
Example 2. Formula � �Fa(⊕(� �Fa(⊕(� �Fa� �)))) holds exactly for the word aaa.
Note that it is impossible to express this without using ⊕ or 	 operators. ��

Following Kufleitner and Weil [8], we define two hierarchies of formulae. R1 = L1

consists of the formulae made up of the four kinds of atomic formulae and the Boolean
operations, marked chops being disallowed. Rn+1 extends Ln by allowing Fa operators
(deterministic products) over formulas of Ln and closing under Boolean operations;
symmetrically, Ln+1 is the Boolean closure of La operators (co-deterministic prod-
ucts) over Rn. Thus UITL =

⋃

n
Rn =

⋃

n
Ln is the full deterministic/co-deterministic

hierarchy over the piecewise testable languages of Simon [16], which are character-
ized by R1 (e.g. see the survey of Diekert, Gastin and Kufleitner [4]). R1, R2 and L2 are
known as J, R and L in the literature.

2.1 Unique parsing

Fdn3

�n5¬n4

�n7 �n8

�n2

n1 La

Fbn6

Fig. 1 Syntax Tree of Formula in Example 1

It is convenient to represent UITL a formula D by its consider the syntax tree of
a formula D, where each interior node n is labelled by an operator and the subtree
rooted at n represents a subformula of D, denoted by Subf (n). For the root of the tree,
Subf (root) = D. For example, a node n with Subf (n) = D1FaD2 has two children, say
n1 and n2 with Subf (n1) = D1 and Subf (n2) = D2. We will say n matches n1Fan2. A
leaf node n is labelled by one of ��A��,��A�,�A��,�A�.
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Fix a formula D and let Nodes be the set of nodes in its syntax tree with root being
the root node. Let MNodes⊂Nodes be the subset of nodes whose operator has the form
Fa, La, ⊕, or 	. For any node n, let Ancestry(n) be the sequence of Nodes encountered
on the unique path from n to the root node. For technical convenience we will append
two fresh nodes n� followed by n� to the ancestry. Formally, Ancestry(root) = n�.n�.
Also if n matches n1 op n2, then Ancestry(n1) = Ancestry(n2) = n.Ancestry(n). We
will follow the convention that n� is an L� operator and n� is an F� operator. Let
�Ancestry(n) be the subsequence of nodes from n to the root which are labelled with
marked chops or 	 such that n is in their right subtree; rAncestry(n) is similarly de-
fined with left subtrees, marked chops and 	.

Example 3. Consider the formula D in Example 1. Figure 1 gives the syntax tree
of D. At n4, we have Subf (n4) = ¬(�Fb�). It is easy to see that Ancestry(n7) =
n6n4n3n1n�n� with rAncestry(n7) = n6n3n� and �Ancestry(n7) = n1n�. ��

Next we consider the evaluation of D over a word w. For any word w and any sub-
formula of a formula D we can associate a unique interval (or none) where the formula
must be evaluated. This interval is fixed by the context in which the subformula oc-
curs and does not depend upon the subformula itself. For example, the subformula
D1 = ¬(�Fb�) of D in Example 1 is associated with the interval which begins with
the last occurrence of a in w and it ends at the first subsequent occurrence of d. We
call this property unique parsability. Formally, given word w, we can associate with
each n ∈ Nodes either a unique interval [i, j] where Subf (n) needs to be evaluated,
or u denoting that the subformula of the node need not be evaluated. This is denoted
by Intvw(n). Moreover, for each n ∈ MNodes (which corresponds to a marked chop
operator) we associate a chopping position cPosw(n).

Definition 1. Intvw : Nodes → INTV (w)∪{u} and cPosw : MNodes → pos(w)∪{u}
are defined by induction on the depth of the node (from root) as follows.

– Intvw(root) = [1,#w].
– If n matches n1 ∨n2 then Intvw(n1) = Intvw(n2) = Intvw(n). Similarly, If n matches
¬n1 then Intvw(n1) = Intvw(n).

– If n matches n1Fan2 or n1Lan2 or 	n1 or ⊕n1 and Intvw(n) = u then Intvw(n1) =
Intvw(n2) = u and cPosw(n) = u.

– If n matches n1Fan2 or n1Lan2, Intvw(n) = [i, j] and if for all k : i ≤ k ≤ j we have
w[k] �= a then Intvw(n1) = Intvw(n2) = u and cPosw(n) = u.

– Let n match n1Fan2 with Intvw(n) = [i, j]. Let k : i ≤ k ≤ j be such that w[k] = a and
for all m : i≤m < k we have w[m] �= a. Then, Intvw(n1) = [i,k] and Intvw(n2) = [k, j].
Also, cPosw(n) = k.

– n matches n1Lan2 with Intvw(n)= [i, j]. Let Let k : i≤ k≤ j be such that w[k] = a and
for all m : k < m≤ j we have w[m] �= a. Then, Intvw(n1)= [i,k] and Intvw(n2)= [k, j].
Also, cPosw(n) = k.

– If n matches ⊕n1 or 	n1 and Intvw(n) = [i, i] then intv(n1) = u and cPosw(n) = u.
– If n matches ⊕n1 and Intvw(n) = [i, j] with i < j then intv(n1) = [i + 1, j] and

cPosw(n) = i+ 1.
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– If n matches 	n1 and Intvw(n) = [i, j] with i < j then intv(n1) = [i, j − 1] and
cPosw(n) = j−1.

These definitions are extended to endmarker nodes n� and n� as follows.
Intvw(n�) = Intvw(n�) = [1,#w]. Also, cPosw(n�) = 1 and cPosw(n�) = #w.

Proposition 1. Let Ancestry(n) = n1,n2, . . . ,nk for a node n. For all i, j such that 1 ≤
i ≤ j ≤ k, Intvw(ni) is u or included in Intvw(n j). Also, if ni is labelled Fa or La and
cPosw(ni) �= u then w[cPosw(ni)] = a. ��

Using the notion of unique interval associated with a node, we can define the truth
value of a node n in word w as follows.

Definition 2. Define Valw : Nodes → {t, f,u} as follows. (Observe that Valw(root) is
never u since Intvw(root) is always [1,#w].)

Valw(n) = u iff Intvw(n) = u
Valw(n) = t iff Intvw(n) = [i, j] and w, [i, j] |= Subf (n)
Valw(n) = f iff Intvw(n) = [i, j] and w, [i, j] �|= Subf (n)

Example 4. Consider the formula D with syntax tree as given in Figure 1. Con-
sider the word w = acdabacbcdbcbd with pos(w) = {1, . . . ,14}. Then, we have
Intvw(n1) = [1,14]. As n1 is labelled La we have cPosw(n1) = 6 and Intvw(n2) = [1,6]
and Intvw(n3) = [6,14]. Also, n3 is labelled Fd and we get cPosw(n3) = 10. This gives
us Intvw(n4) = [6,10] and Intvw(n5) = [10,14]. Then, Intvw(n6) = [10,14] and as n6

is labelled Fb we have cPosw(n6) = 6 and Intvw(n7) = [6,8] and Intvw(n8) = [8,10].
Note that n4 = ¬n6 and n6 = n7Fbn8 and n7 = � and n8 = �. Hence, Valw(n7) = t,
Valw(n7) = t giving Valw(n6) = t and Valw(n4) = f. Similarly we can compute that
Valw(n1) = f. ��
Theorem 1. Membership of a word w in the language of a formula D is NC1-hard and
in the class LOGDCFL. Nonemptiness of the language of a formula D is NP-hard and
in NP if the size of the alphabet Σ is fixed.

Proof. After pushing negations inward and constructing the syntax tree, the Valw func-
tion can be evaluated by a 2DPDA with auxiliary storage O(log(|D|+ |w|)) in time
O(poly(|D|+ |w|)). This yields a LOGDCFL procedure. If a formula D is satisfiable,
we can translate it to a sentence of FO2 of quadratic size [15] and use Weis and Im-
merman’s result [20] to show the existence of a model of size O((|D|2)|Σ |). For a fixed
size alphabet Σ , guessing the model and verifying its truth value is an NP procedure.

For the lower bounds, a Boolean assignment over n variables can be coded as a
word of length n over a two-letter alphabet. The truth value of the i’th variable can
be accessed using the ⊕ modality, which is also used to say that a model is of size n.
These formulas are linear in n. Hence, any Boolean formula can be encoded as a UITL
formula by replacing each variable by its corresponding UITL formula. Now we use
the standard results for Boolean formulas. ��



Marking the chops 467

2.2 Handling context

We can further refine the characterisation of the intervals of a node. The following
lemma relates intervals of nodes in an ancestry to their chopping positions in the same
ancestry. Figure 2 depicts some of these relationships.

Let w be a word and let i, j ∈ pos(w) with i ≤ j. Then, a /∈ w[i : j) will abbreviate
∀k : i ≤ k < j. a �= w[k]. Similarly, we can define a /∈ w(i : j].

a1 a2 a3 ... ak ak+1

n

m1

m2
m3

mk

mk+1

Fig. 2 Right handle and its intervals

Lemma 1. For a node n, let �Ancestry(n) = n1,n2, . . . ,np,np+1 and rAncestry(n) =
m1,m2, . . . ,mr,mr+1. (So np+1 = n� and mr+1 = n�.) Then,

– Intvw(n) = [cPosw(n1),cPosw(m1)]. If either of these chopping positions is u then
Intvw(n) = u.

– cPosw(n1) ≥ cPosw(n2) ≥ . . . ≥ cPosw(np) ≥ cPosw(np+1) = 1, and
cPosw(m1) ≤ cPosw(m2) ≤ . . . ≤ cPosw(mr) ≤ cPosw(mr+1) = #w.

– Intvw(ni) = [cPosw(ni+1),cPosw(mk)] for some mk ∈ rAncestry(n). Also,
Intvw(mi) = [cPosw(nk),cPosw(mi+1)] for some mk ∈ �Ancestry(n).

– If mi is a La node then w[cPosw(mi)] = a and a /∈ w(cPosw(mi) : cPosw(mi+1)].
– If mi is a Fa node then w[cPosw(mi)] = a and a /∈ w[cPosw(n1) : cPosw(mi)).
– If mi is 	 node then cPosw(mi+1) = cPosw(mi)+ 1.
– If ni is ⊕ node then cPosw(ni+1) = cPosw(ni)−1.

Proof. By induction on depth of n from the root. ��
As opposed to the bottom-up evaluation of truth value, the identification of chop-

ping positions and subintervals is defined top-down. This enables us to find the context
necessary for checking whether a position m is within Intvw(n).

Definition 3. Let �Handle(n) be the smallest prefix of �Ancestry(n) ending with an L
operator. Symmetrically let rHandle(n) smallest prefix of rAncestry(n) ending with an
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F operator. The sequence of labels of rHandle(n) will have the form H1H2 . . .HkFak+1

where Hi is either Lai or 	. When clear from context we will often directly refer to
such a sequence of labels as rHandle(n). Given rHandle(n), and indices i, j such that
1 ≤ i ≤ j ≤ k + 1 let rGap(n, i, j) be the count of 	 labels occurring within labels Hi

to Hj−1. For example, given rHandle(n) = La1 			Fa5 we have rGap(n,1,4) = 2.
Symmetrically, we can define lGap(n, i, j) for �Handle(n). ��

In our running example, rHandle(n7) = Fb (the label of n6) and �Handle(n7) = La,
the label of n1.

Definition 4. Let Intvw(n) = [i, j], rHandle(n) = H1H2 . . .HkFak+1 as in Definition 3
and let m be a position. Then define rwithin(n,m) as follows, and lwithin(n,m) sym-
metrically.

rwithin(n,m) def= ∃r1 ≤ r2 ≤ . . . ≤ rk ≤ rk+1. (i ≤ m ≤ r1)
and (∀1 ≤ p ≤ k + 1. (Hp = Gap ⇒ w[rp] = ap))
and (∀1 ≤ i ≤ j ≤ k + 1. (r j − ri ≥ rGap(n, i, j))
and ak+1 /∈ w[i : rk+1)

Lemma 2 (Context). Let Intvw(n) = [i, j]. Then, for all m ∈ pos(w) we have
(a) i ≤ m ≤ j iff rwithin(n,m), and (b) i ≤ m ≤ j iff lwithin(n,m).

Proof. We prove (a). Let Intvw(n) = [i, j] and rHandle(n) = n1 . . .nk+1 with labels
H1H2 . . .HkFak+1 . Let jp = cPosw(np) for 1 ≤ p ≤ k +1. As Intvw(n) �= u we also have
that cPosw(np) �= u as np is ancestor of n.

For the forward direction, suppose i ≤ m ≤ j. Take rp = jp. Then, by Lemma 1, we
have r1 ≤ r2 ≤ . . . ≤ rk+1 and w[rp] = ap, for all p with Hp = Gap . Also, by Lemma
1, when np has label 	, then jp+1 = jp + 1. Hence, for any 1 ≤ p ≤ q ≤ n, we have
rq − rp ≥ rGap(n, p,q). Also denote Intvw(nk+1) = [bk+1,ek+1] then bk+1 ≤ i. Since
nk+1 is labelled Fak+1 , from its semantics we have that ak+1 /∈ w[i : jk+1). Hence the
result follows.

Conversely, suppose there exist r1 ≤ r2 ≤ . . . ≤ rk+1 such that i ≤ m ≤ r1 and for
all 1 ≤ p ≤ k + 1 if Hp = Gap then w[rp] = ap and for all 1 ≤ p ≤ q ≤ k + 1 we have
rq−rp ≥ rGap(n.p,q). We have to show that m≤ j. Assume to the contrary that m > j.
By Lemma 1, j1 = j and r1 ≥ m. Hence, r1 > j1.

Consider any 1 ≤ p ≤ k such that rp > jp. There are two cases. In case 1, if p is
labelled Lap then by its semantics ap /∈ w( jp, jp+1]. Hence, as rp > jp and w[rp] = ap,
it follows that rp > jp+1 which implies that rp+1 > jp+1. In the second case, if p is
labelled with 	 then rGap(n, p, p + 1) = 1 and hence rp+1 − rp ≥ 1. Also, by Lemma
1, we have jp+1 = jp + 1. Hence, as rp > jp, it follows that rp+1 > jp+1.

We already have that r1 > j1. Hence by induction and using the previous step we can
prove that rk+1 > jk+1. But by the condition that w[rk+1] = ak+1 and ak+1 /∈ w[i : rk+1)
we have that jk+1 = rk+1, which is a contradiction. Hence we conclude that m ≤ j. ��
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3 Partially ordered two-way deterministic finite automata

Partially ordered two-way DFA were introduced by Schwentick, Thérien and Vollmer
[14] to characterize the unambiguous languages. We present a variant of their definition
and propose a set of operators to compose these automata. Let Σ ′ = Σ ∪{�,�} include
two endmarkers. Given w ∈ Σ∗, the two way automaton actually scans string w′ = �w�
with letters � and � at positions 0 and |w|+ 1 respectively.

Definition 5. A po2dfa over Σ ′ is a tuple M = (Q,≤,δ ,s, t,r) where (Q,≤) is a poset
of states such that r,t are the only minimal elements. s is the initial state, t is the
accept state and r is the rejecting state. The set Q \ {t,r} is partitioned into Ql and
Qr (the states reached from the left and the right) with s ∈ Ql . δ : ((Ql ∪Qr)×Σ) →
Q)∪((Ql ×{�})→ Q\Qr)∪((Qr ×{�})→ Q\Ql) is a transition function satisfying
δ (q,a) ≤ q. ��

If M is in a state q, reading a symbol a, it enters a state δ (q,a), and moves its
head to the right if δ (q,a) ∈ Ql , left if δ (q,a) ∈ Qr, and stays in the same position if
δ (q,a) ∈ {t,r}. The transition function is designed to ensure that the automaton does
not ”fall off” either end of the input. A transition with δ (q,a) < q is said to make
progress.

A po2dfa M running over word w is said to be in a configuration (q, p) if it is in a
state q and head reading the position p in word. The run of a po2dfa M on an input
word w starting with input head position p0 is a sequence (q0, p0),(q1, p1), ...(q f , p f )
of configurations such that:

– q0 = s and q f ∈ {t,r}, for all i(1 ≤ i < l), δ (qi,w(pi)) = qi+1, and
– pi+1 = pi + 1 if qi+1 ∈ Ql or pi+1 = pi −1 if qi+1 ∈ Qr.

We abbreviate such a run by writing M(w, p0) = (q f , p f ). The run is accepting if
q f = t; rejecting if q f = r. A pass is a contiguous partial run where the automaton
moves in one direction. An n-pass automaton is one which makes at most n passes on
any input before accepting or rejecting. The automaton M is said to be start-free if for
any w, M accepts w from some position iff M accepts w starting from any position.

3.1 Composition of automata

For the description of po2dfa we will use turtle expressions, which are extensions of
the turtle programs introduced by Schwentick, Thérien and Vollmer [14]. The syntax
follows and we explain the semantics below. Let A,B range over subsets of Σ ′.

E ::= Acc | Re j | A
1→ | A

1← | A
B→ | A

B← | E1?E2,E3

Automaton Acc accepts immediately without moving the head. Similarly, Re j re-

jects immediately. A
B→ accepts at the next occurrence of a letter from B to the right,
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maintaining the constraint that the intervening letters are from A \B. If no such oc-
currence exists the automaton rejects at the right end-marker or if a letter outside A

intervenes, the automaton rejects at its position. Automaton A
1→ accepts one position

to the right if the current letter is from A, else rejects at the current position. A
B← and

A
1← are symmetric in the leftward direction. The conditional construct E1?E2,E3 first

executes E1 on w. On its accepting w at position j it continues with execution of E2

from j. On E1 rejecting w at position j it continues with E3 from position j.
Here are some abbreviations which illustrate the power of the notation: E1;E2 =

E1?E2,Re j, ¬E1 = E1?Re j,Acc. Moreover, if E2 is start-free then E1∨E2 = E1?Acc,E2

and E1 ∧E2 = E1?E2,Re j. Notice that automata for these expressions are start-free if

E1 is start-free. We will use A
a→ for A

{a}→,
a→ for (Σ ′ a→) and

1→ for (Σ ′ 1→). Similarly

define
a← and

1←. We will use the convention that a1, . . . ,ak denotes Σ ′ \ {a1, . . . ,ak}.

Proposition 2. Given turtle expression E we can construct a po2dfa accepting the
same language with number of states linear in |E|.

We have to resort to Section 2 for the correctness of the next construction.

Definition 6. Consider a node n with rHandle(n) = H1H2 . . .HkFak+1 as in Definition

3 and let A ⊆ Σ ′. Define the one-pass automata C +(n,A) and C +(n,
1→) as follows,

and symmetrically also C−(n,A) and C−(n,
1←). Let per f (Hi) be (ak+1

ai→) if Hi = Lai

and ak+1
1→ if Hi = 	.

C +(n,A) = (ak+1
A→); per f (H1); . . . ; per f (Hk);(ak+1

ak+1→ )
C +(n,

1→) = (ak+1
1→); per f (H1); . . . ; per f (Hk);(ak+1

ak+1→ )

Since rHandle(n) and �Handle(n) are linear in the depth of n it follows that the
sizes of the C−(n),C +(n) automata are also linear in the depth of n.

Lemma 3. Let Intvw(n) = [i, j].

– Started at position i, C +(n,A) accepts iff ∃k. rwithin(n,k) and w[k] ∈ A and w[i :
k) /∈ A.

– Started at position i, C +(n,
1→) accepts iff i + 1 ≤ j.

Symmetric properties hold for C−.

Proof. The context lemma (Lemma 2) proved the required “within” property. That the
automata check this “within” is easy to see. ��

4 From formulae to automata

Now we are all set to construct a po2dfa M (D) which precisely accepts the word
models of a given formula D. Our turtle expressions are a convenient syntax for the
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two-way movement of po2dfa. For example, expression
�→;

a←;
d→ denotes an automa-

ton which first finds the endpoint of the word (by looking for endmarker �) it then re-
verses its direction and searches for the first a in backward direction and then searches
in the forward direction for the first subsequent d. Clearly, such an automaton locates
the right endpoint of the interval of the subformula D1 = ¬(�Fb�) of D in Example
1. In general, for each subformula D1 we can construct automata L (D1) and R(D1)
which locate the left and right endpoints of the unique interval associated with D1.
Now it remains to check that the subword of this interval satisfies the subformula D1.
D1 evaluates to true iff there is no (first) occurrence of letter b within its unique inter-
val. While turtle expressions lack a simple way of checking a property within a specific
subinterval,Lemma 3 shows how we can use “handles” to code this checking. Putting
all this together, we give a construction of a language equivalent po2dfa of size d2 for
a formula of size d.

Definition 7. By induction on depth of a node n, define automata L (n) and R(n).

– L (root) = �←;
1→ and R(root) = �→;

1←.
– Let n match ¬n1. Then L (n1) = L (n) and R(n1) = R(n).
– Let n match n1 ∨n2. Then L (n1) = L (n2) = L (n) and R(n1) = R(n2) = R(n).
– Let n match n1Fan2. Then L (n1) = L (n) and R(n2) = R(n).

Also, R(n1) = L (n); a→ and L (n2) = R(n1).
– Let n match n1Lan2. Then L (n1) = L (n) and R(n2) = R(n).

Also, R(n1) = R(n); a← and L (n2) = R(n1).
– Let n match ⊕n1. Then, L (n1) = L (n); 1→ and R(n1) = R(n).
– Let n match 	n1. Then, L (n1) = L (n) and R(n1) = R(n); 1←.

Lemma 4. As the inductive automaton construction follows the inductive definition of
Intvw(n), it is immediate that for any node n with Intvw(n) = [i, j] (not u), for any
position k in w, L (n)(w,k) = (t, i) and R(n)(w,k) = (t, j). Thus, L (n) and R(n) are
start-free. Note that L (n) and R(n) grow linearly with the depth of n. ��
Definition 8. We define M (n) for each node n by induction on the height of n.

– If n is labelled ��A�� then M (n) = L (n);C +(n,A)?Re j,Acc. The translations for
��A�, �A�� and �A� are similar.

– For a Boolean expression, M (n) is defined by the corresponding turtle expression.
E.g. if n matches n1 ∨n2 then M (n) = M (n1)∨M (n2).

– Let n match n1Fan2. Let M (n) = L (n);C +(n,a);M (n1);M (n2).
– Let n match n1Lan2. Let M (n) = R(n);C −(n,a);M (n1);M (n2).
– Let n match ⊕n1. Let M (n) = L (n);C +(n,

1→);M (n1).
– Let n match 	n1. Let M (n) = R(n);C−(n,

1←);M (n1).

Example 5. For the formula D
def= �La((¬(�Fb�))Fd�) of Example 1 we give the

construction of po2dfa. The formula is represented as syntax tree in Figure 1.
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– The root n1 matches n2Lan3. Hence, M (n1) = R(n1);C−(n1,a);M (�);M (n3).
Also L (n1) = �←;

1→ and R(n1) = �→;
1← giving C−(n1,a) = a←. Since n2 = �,

we have M (n2) = Acc.
– n3 matches n4Fdn4 with n5 = �. Hence M (n3) = L (n3);C +(n3,d);M (n4);Acc.

Now, L (n3) = R(n1);
a← and R(n3) = R(n1). Also rHandle(n3) = F�. Hence,

C +(n3,Fd) = d→.
– n4 matches ¬n6. Hence M (n4) = M (n6)?Re j,Acc.
– Subf (n6) = �Fb�. Hence, M (n6) = L (n6);C +(n6,b);Acc;Acc. We have

rHandle(n6) = Fd . Hence, C +(n6,Fb) = (d b→); d→ and L (n6) = L (n3) = �→
;

1←;
a←. ��

Theorem 2. Given a formula D, the language L(D) is accepted by the po2dfa automa-
ton M (root) of Definition 8 where root is the root node of parse tree of D. Moreover,
M (root) has O(|D|2) states.

Proof. Construct the syntax tree and let Intvw(n) = [i, j] for any node n. By induction
on the height of node n, for any word w, we prove that M (n) accepts w iff Valw(n) = t.
Note that M (n) is start-free since each M (n) is either Acc or it begins with L (n) or
R(n), which are start-free by the previous lemma. Below are the proofs of three cases,
the rest are similar.

– Let n = ��A��. Let Intvw(n) = [i, j]. Then,
Valw(n) = t
iff ∀k : i ≤ k ≤ j : w[k] ∈ A
iff ∀k : i ≤ k : w[k] /∈ A implies k /∈ Intvw(n)
iff not (∃k : i ≤ k : w[k] /∈ A and rwithin(n,k))
iff the C +(n,A) automaton rejects starting from (w, i). (by Lemma 3)
iff M (n) accepts w.

– Let n match a Boolean expression. The result holds since the smaller automata are
start-free.

– Let n match n1Fan2. Let Intvw(n) = [i, j]. Then,
Valw(n) = t
iff w, [i, j] |= (Subf (n1))Fa(Subf (n2))
iff ∃k : i ≤ k ≤ j s.t. w[k] = a and a /∈ w[i : k) and Valw(n1) = t

and Valw(n2) = t (giving Intvw(n1) = [i,k] and Intvw(n2) = [k, j])
iff ∃k s.t. rwithin(n,k) and w[k] = a and a /∈ w[i : k) and

M (n1) accepts w and M (n2) accepts w (by induction hypothesis)
iff C +(n,a) accepts (w, i) (by Lemma 3) and M (n1),M (n2) accept w.
iff M (n) accepts w

– Let n match ⊕n1. Let intv(n) = [i, j] Then,
Valw(n) = t
iff i+ 1 ≤ j and w, [i+ 1, j] |= (Subf (n1))
iff i+ 1 ≤ j and M (n1) accepts w (By induction hypothesis)
iff rwithin(n, i+ 1) and M (n1) accepts w
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iff C +(n,
1→) accepts (w, i) and M (n1) accepts w

iff M (n) accepts w

The number of nodes in the syntax tree of a formula is linear in its size |D|. At each
node, at most O(|D|) states to the automaton are added before recursively translating
sub-nodes. Hence, the the number of states of M (root) is O(|D|2). ��

The complexities of membership and satisfiability problem for the logic UITL
were analysed in Theorem 1. Here we give alternate upperbounds on these complex-
ities which are obtained using the formula automaton construction. Note that even
when automaton based procedures have higher complexities, in practice, they are very
amenable to implementation.

Corollary 1. Membership of a word w in the language a formula D is in DTIME(|w|×
|D|2). The satisfiability of D can be checked in NSPACE(|D|2 log |D|).
Proof. Since the number of states of M (root) in the theorem above is O(|D|2),
whether a word model w satisfies D can be checked in time O(|w| × |D|2) by simu-
lating the po2dfa.

We can also check satisfiability of D by reducing the po2dfa of size O(|D|2) to a
one-way DFA of size O((|D|2)|D|2) using the standard 2DFA to 1DFA reduction. The
emptiness of this one-way DFA is contained in nondeterministic log((|D|2)|D|2) space,
i.e.NSPACE(|D|2 log |D|). ��

5 From automata to formulae

Fix a po2dfa M. We give the construction of a formula exactly specifying the language
of M. Consider a progress transition e of M. For simplicity, we assume that e is not
labelled by the endmarkers � or �. We construct a formula ψ(e) such that the following
lemma holds. Its proof is by induction on the partial order.

Lemma 5. w |= ψ(e) iff there exists a partial run of M on w (starting at position 1)
and ending with the e transition. ��

The formula ψ(e) =
∨

i∈I(e)
ξi consists of finitely many disjoint disjuncts where

each ξi is a pointed simple formula. Such a formula does not use boolean operators,
has a pointer to one of its sub formulas. For example, see ψ(eb) in Example 6 Such
ψ(e) defines a class of words with a unique factorization [13]. For convenience a
pointed simple formula is represented as (T,n) with syntax tree T and pointer node n.

Fix a progress transition e with δ (p,c) = q such that the incoming progress transi-
tions into p are e1, . . . ,ek. Also assume that A = {a ∈ Σ | δ (p,a) = p} are the letters
on which the automaton loops in state p. Inductively assume that ψ(ei) has been con-
structed. Then, we define ψ(e) = ∨ {Extend(ξ ,e) | ξ ∈ ψ(ei),1 ≤ i ≤ k}. Here
Extend(ξ ,e) extends the partial runs satisfying ξ to their extensions ending with e. We
now define Extend(ξ ,e).
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An execution ending with one of the ei can be extended with finitely many steps
involving letters of A and then taking the transition e. Moreover the head moves
backwards iff p ∈ Qr (except at the last step where it moves in the direction of q).
To take the direction into account, let Extend(ξ ,e) = rExtend(ξ ,e) if p ∈ Ql and
Extend(ξ ,e) = �Extend(ξ ,e) if p ∈ Qr. We define these below.

Let the inorder traversal of T be n1,n2, . . . ,nr (thus n1 is the leftmost leaf and
nr is the rightmost leaf) and n = ni. It is easy to see that nodes n1 and n2 in in-
order traversal nodes are adjacent iff Intvw(n1) and Intv(n2) are adjacent. Then,

rExtend(T,ni)
def= rChange(T,ni) if ni = nr (last node in inorder), and rExtend(T,ni)

def= rChange(T,ni) ∨ rExtend(rSkip(T,ni),ni+1) otherwise.
The function rChange(T,ni) modifies (T,ni) by propagating a subalphabet (corre-

sponding to the selfloop of the state). If ni is labelled with any of the four atomic for-
mulas ��B��, or �B��, ( or ��B� or �B�), and c ∈ B, then the corresponding leaf node ni

is replaced by the subtree corresponding to ⊕(��A∩B�Fa�B��) (or ⊕(��A∩B�Fa�B�),
respectively). The new pointer points to the subformula to the left of Fa if q ∈ Qr and
to the right of Fa otherwise.” If c /∈ B, then rChange(T,ni) = ⊥. If ni is an Fc or Lc

node, then the parse tree remains unchanged. However, if ni is labelled Fb or Lb, for
some b �= c, then rChange(T,ni) = ⊥.

The function rSkip(T,ni) alters (T,ni) as follows. If ni is labelled with any of the
atomic formulas ��B��, �B��, ��B� or �B�, then this node is replaced by �A∩B�. If ni

is a Fb or Lb node, then rSkip(T,ni) = T if b ∈ A and rSkip(T,ni) = ⊥ if b /∈ A.
The base case of finding formula ψ(e) for an outgoing transition e from the initial

state s ∈ Ql is ψ(e) def= rExtend((��Σ�,1),e).

A B C D

t
a

b
c d

Fig. 3 A simple automaton with reversals

Example 6. Consider the automaton given in Figure 3. In this automaton, we have the
conditions a /∈ A,b /∈ B,c /∈ C,d /∈ D, required for determinism, and we assume that
c∈B∩A and a,b∈C. Let ea,eb,ec,ed be the edges labelled with a,b,c,d, respectively.

For convenience, a pointed simple formula T,n is denoted by underlining the sub-
formula of node n.

– ψ(ea) = rExtend(��Σ�,ea) = ��A�Fa�Σ��.
– ψ(eb) = rExtend(ψ(ea),eb) = ��A�Fa(⊕(��B�Fb�Σ��)).
– ψ(ec) = �Extend(ψ(eb),ec) = �Extend(��A�Fa(⊕(��B�Fb�Σ��)),ec)

= ��A�Fa(⊕(	(��B�Lc�B∩C��)Fb�Σ��))
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∨ �Extend(��A�Fa(⊕(	(��B∩C�)Fb�Σ��)),ec)
= ��A�Fa(⊕(	(��B�Lc�B∩C��)Fb�Σ��))
∨ lChange(��A�Fa(⊕(	(��B∩C�)Fb�Σ��)))
∨ �Extend(��A�Fa(⊕(	(��B∩C�)Fb�Σ��)),ec)

(The above step follows from the assumption that a ∈C)
= ��A�Fa(⊕(	(��B�Lc�B∩C��)Fb�Σ��)) ∨ f alse
∨ 	 (��A�Lc�A∩C��)Fa(⊕(	(��B∩C�)Fb�Σ��))

(The above step follows from the assumptions that a �= c and c ∈ A)

– ψ(ed) may be similarly worked out.

Theorem 3. Given an n-pass po2dfa M, there is a formula in Rn ∪Ln of size exponen-
tial in the number of its transitions, which defines the language accepted by M.

Proof. Let E be the set of transitions leading into the accepting state t. Define the

formula F(M) def=
∨

e∈E
ψ(e). Then by the previous lemma M accepts the language

L(F(M)). From the definition of Extend we see that the alternation between Fa and
La modalities takes place only when the automaton changes direction, hence the con-
structed formula is in Rn ∪Ln.

For any transition e let depth(e) denote the length of the longest progress path
from the start state to e. By examining the construction, it can be seen that in
ψ(e) =

∨

i∈I(e)
ξi the size of each ξi is linear in depth(e). However, each Extend(T,e)

gives rise to up to |depth(e)| disjuncts. Hence the number of disjuncts |I(e)| can be ex-
ponential in depth(e) as also the size of the F(M). ��
This also shows that unambiguous polynomials over the piecewise testable languages
[16] are matched by deterministic and co-deterministic products, a result indepen-
dently obtained by Kufleitner and Weil [8]. From the main theorem of [8], we get
the corollary that there is an FO2[<] formula with n quantifier alternations for the
language of M above.
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1. M. Bojańczyk, C. David, A. Muscholl, T. Schwentick and L. Segoufin. Two-variable logic
on words with data, Proc. LICS, Seattle, 2006, 7–16.
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Abstract. We investigate the class PBD of π-Calculus processes that are
bounded in the function depth. First, we show that boundedness in depth
has an intuitive characterisation when we understand processes as graphs:
a process is bounded in depth if and only if the length of the simple paths
is bounded. The proof is based on a new normal form for the π-Calculus
called anchored fragments. Using this concept, we then show that processes of
bounded depth have well-structured transition systems (WSTS). As a conse-
quence, the termination problem is decidable for this class of processes. The
instantiation of the WSTS framework employs a new well-quasi-ordering for
processes in PBD .

1 Introduction

Concurrent systems are known to be hard to design correctly. Dynamically
reconfigurable systems add to concurrency the problem of changing connec-
tion structures between system components. To ensure the correct behaviour
of systems, automatic verification techniques have proven useful. This automa-
tion comes with a tradeoff. To automate the analysis requires a decidable class
of models, but to model the systems of interest requires an expressive class.
We use the π-Calculus to model dynamically reconfigurable systems [17, 18].
The contribution of this paper is the up-to-now most expressive subclass of
π-Calculus for which termination is decidable. The importance of termination
for the π-Calculus has been recognised in [19, 5].

The class PBD we propose contains the processes that are bounded in depth.
The function depth measures the interdependence of restricted names in process
terms. Boundedness in depth is a very liberal requirement as it turns out that all
decidable subclasses of π-Calculus known so far are subclasses of PBD : finitary
agents [9], finite control processes [4], bounded processes [3], unique receiver
and bounded input systems (up to bisimilarity) [2], finite handler processes
[14], structurally stationary processes [14], and restriction-free processes [2].

But the definition of depth is difficult to grasp as the function refers to all
processes in a congruence class. To provide an intuition to PBD , we make use of
the standard graph-theoretic interpretation of the π-Calculus [17, 18]. Our first
main result states that boundedness in depth is equivalent to boundedness in the
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length of the simple paths (i.e., without repetition of edges) in the graphs. The
proof is based on a new normal form for processes called anchored fragments.

The decidability result for PBD is obtained by viewing this class as an in-
stance of well-structured transition systems (WSTS) [10, 1, 11]. WSTS are a
framework for infinite state systems that generalises decidability results for par-
ticular models. Technically, a WSTS is a transition system with an ordering re-
lation on the states which is compatible with the transition relation. Depending
on the ordering, the compatibility, and decidability properties the framework
yields decision procedures, e.g., for termination [10, 11] or simulation [1].

Our second main result is the instantiation of the WSTS framework for
processes of bounded depth. As a consequence, we inherit the decision procedure
for termination in [10, 11]. The technical contribution is a new ordering �PBD on
processes which we show to be a well-quasi-ordering (wqo) (i.e., in every infinite
sequence of processes two comparable processes can be found) for processes of
bounded depth. In the proof, anchored fragments again play a vital role. Since
the ordering �PBD is a simulation relation it is compatible with the reaction
relation of the π-Calculus in a strong sense.

2 Preliminaries

The π-Calculus We use a π-Calculus with parameterised recursion as proposed
in [18]. Let the set (a, b ∈) N of names contain the channels and messages that
occur in communications. A process consumes prefixes π to communicate with
other processes or to perform silent actions. The prefixes are

π ::= a〈b〉 | a(x) | τ.

The output action a〈b〉 sends the name b on channel a. The input action a(x)
receives a name that replaces x on a. The τ symbol stands for a silent action.

To denote recursive processes we use process identifiers K, each defined by
an equation K(x̃) := P . When the identifier is called, K�ã�, it is replaced by the
process P where the names x̃ are replaced by ã. More precisely, a substitution
σ = {ã/x̃} is a function that maps the names in x̃ to ã and is the identity
on all names not in x̃. The application of a substitution, P{ã/x̃}, is defined in
the standard way [18]. A π-Calculus process is a call to an identifier, K�ã�, a
choice process deciding between prefixes, Σi∈Iπi.Pi, a parallel composition of
processes, P1 | P2, or the restriction of a name in a process, νa.P :

P ::= K�ã� | Σi∈Iπi.Pi | P1|P2 | νa.P .

The set of all processes is P . We abbreviate empty sums (with I = ∅) by 0 and
arbitrary sums by M or N . By Πi∈IPi we denote the parallel composition of
several processes Pi with i ∈ I. The processes K�ã� and Σi∈I �=∅πi.Pi are called
sequential. By S(P ) we refer to the set of sequential processes in P . The function
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is defined inductively by S(0) := ∅, S(K�ã�) := {K�ã�}, S(Σi∈I �=∅πi.Pi) :=
{Σi∈I �=∅πi.Pi}, S(P1 | P2) := S(P1) ∪ S(P2), and S(νa.P ) := S(P ).

The input action a(b) and the restriction νc.P bind b and c, respectively.
The set of bound names in P is bn (P ). If we refer to the set of restricted names
in P , rn (P ) ⊆ bn (P ), we mean the restricted names that are not covered by
prefixes. A name which occurs not bound in P is free and the set of free names
in P is fn (P ). We permit α-conversion of bound names. Therefore, wlog. we
assume bn (P ) ∩ fn (P ) = ∅. Unless otherwise stated, we assume that a name
is bound at most once in a process. In a defining equation K(x̃) := P we
require fn (P ) ⊆ x̃. If a substitution {ã/x̃} is applied to a process P , we assume
bn (P ) ∩ (ã ∪ x̃) = ∅.

The results achieved in this paper make heavy use of the structural congru-
ence relation ≡ of processes. It is the smallest congruence where α-conversion
of bound names is allowed, + and | are commutative and associative and have
0 as neutral element, and the following laws for restriction hold:

νx.νy.P ≡ νy.νx.P νx.0 ≡ 0

νx.(P | Q) ≡ P | (νx.Q), if x /∈ fn (P ).

The latter law is called scope extrusion.
We distinguish two normal forms for processes. A process νã.(P1 | . . . | Pn)

where ã ⊆ fn (P1 | . . . | Pn) and all Pi are sequential is in standard form [17].
Via structural congruence every process P can be rewritten as a process Psf

in standard form as follows. First, the scope of every restricted name not un-
der a prefix is extruded over all processes composed in parallel. Then unused
restricted names and empty sums are removed. Since all bound names are dif-
ferent and disjoint with the free names, α-conversion is not required. Thus, the
rewriting does not change the sequential processes, S(P ) = S(Psf ).

The restricted form [14] is based on the notion of fragments, i.e., processes
where the scopes of restricted names are minimal:

F ::= K�ã� | Σi∈I �=∅πi.Pi | νa.(F1 | . . . | Fn),

where a ∈ fn (Fi) for all i. The set of all fragments is (F, G ∈) PF . Fragments
that are sequential processes, K�ã� or Σi∈I �=∅πi.Pi, are elementary and referred
to by Fe. A process Pν is in restricted form, if it is a parallel composition of
fragments, Pν = Πi∈IFi. The set of fragments in Pν is Frag (Pν) :=

⋃

i∈I{Fi}.
The set of all processes in restricted form is Pν .

To compute the restricted form Pν ∈ Pν of a process P ∈ P , we minimise the
scopes of all restricted names not under a prefix and remove processes congruent
with 0, in particular unused restricted names. Again, this does not change the
sequential processes, S(P ) = S(Pν). The restricted form of a process is invariant
under structural congruence up to rewriting of fragments: P ≡ Q iff Pν ≡̂Qν ,
where ≡̂ is the smallest equivalence on processes in restricted form that permits
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(1) associativity and commutativity with regard to | and (2) replacing fragments
by structurally congruent ones, i.e., F | Pν ≡̂G | Pν if F ≡ G.

The behaviour of π-Calculus processes is determined by the reaction relation
→ ⊆ P ×P defined by the following rules:

(Tau) τ.P + M → P

(React) (x(y).P + M) | (x〈z〉.Q + N) → P{z/y} | Q

(Const) K�ã� → P{ã/x̃}, if K(x̃) := P

(Par)
P → P ′

P | Q → P ′ | Q
(Res)

P → P ′

νa.P → νa.P ′

(Struct)
P → P ′

Q → Q′ , if P ≡ Q and P ′ ≡ Q′.

By Reach (P ) we denote the set of all processes reachable from P with the
reaction relation. The reaction relation is image finite, i.e., for every process P
there are up to structural congruence only finitely many Q with P → Q.

To relate a reachable fragment F ∈ Frag (Reach (P )) with the initial process
P , we recall that F consists of derivatives of P [14]. Derivatives are sequen-
tial subprocesses of P gained by removing prefixes as if they were commu-
nicated. Let P use n ∈ N = {0, 1, 2, . . .} recursive definitions Ki(x̃i) := Pi.
We define derivatives(P ) := der(P ) ∪ ⋃n

i=1 der (Pi), where der (0) := ∅,
der(K�ã�) := {K�ã�}, der(Σi∈I �=∅πi.Pi) := {Σi∈I �=∅πi.Pi} ∪ ⋃

i∈Ider(Pi),
der(P1|P2) := der(P1) ∪ der (P2), and der(νa.P ) := der(P ). Then every
F ∈ Frag (Reach (P )) is structurally congruent with νã.(Πi∈I �=∅Qiσi), where
Qi ∈ derivatives(P ) and σi : fn (Qi) → fn (P ) ∪ ã.

To define the function depth, we require the nesting of restrictions mea-
sured as follows: nestν (K�ã�) := 0, nestν (Σi∈Iπi.Pi) := 0, nestν (P1 | P2) :=
max{nestν (P1) ,nestν (P2)}, and nestν (νa.P ) := 1 + nestν (P ).

Definition 1. The depth of F ∈ PF is the minimal nesting of restrictions in
all fragments in the congruence class: depth(F ) := min{nestν (F ′) | F ′ ≡ F}.
A process P ∈ P is bounded in depth, iff there is kD ∈ N such that the depth of
all reachable fragments is less or equal to kD , i.e.,

∃kD ∈ N : ∀Q ∈ Reach (P ) : ∀F ∈ Frag (Qν) : depth(F ) ≤ kD .

The set of all processes that are bounded in depth is PBD . ♦

Well-Quasi-Orderings A quasi-ordering (qo) on a set of elements A is a reflexive
and transitive relation �A ⊆ A×A. We also call (A,�A) a qo. The qo (A,�A)
is a well-quasi-ordering (wqo), iff in every infinite sequence (ai)i∈N in A there
are two comparable elements, i.e., there are indices i < j with ai �A aj .

A result by Higman [13] lifts a wqo �A on a set of elements A to a wqo
�H

A on the set of finite sequences A∗. The ordering u �H
A v demands u to be a

subsequence of v which is dominated elementwise wrt. �A, i.e., u = (u1, . . . , um)
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and v = (v1, . . . , vn) and there are 1 ≤ i1 < . . . < im ≤ n such that uk �A vik

for all 1 ≤ k ≤ m.
In Section 4 we define a qo on fragments. To prove it is a wqo, we relate it

with a wqo on trees. Consider a qo (A,�A). The trees over A are defined by

T ::= a | (a, (T1, . . . , Tn)),

where a ∈ A. The set of all trees over A is T (A). The height of a tree is
measured similar to the nesting of restrictions in fragments, height(a) := 0 and
height((a, (T1, . . . , Tn))) := 1 + max{height(Ti) | 1 ≤ i ≤ n}. For n ∈ N we
denote by T (A)n the trees of height less or equal to n.

We use the rooted tree embedding �T (A) as qo on the trees in T (A). In-
tuitively, T1 �T (A) T2 if T1 is a subtree of T2 so that the levels of T1 are
preserved in T2. In particular, the root of T1 is mapped to the root of T2 and
the leaves in T1 are leaves in T2. Technically, the rooted tree embedding is de-
fined by two rules. If a �A a′ then a �T (A) a′ (Elem) and if a �A a′ and
(T1, . . . , Tm) �H

T (A) (T ′
1, . . . , T

′
n) then (a, (T1, . . . , Tm)) �T (A) (a′, (T ′

1, . . . , T
′
n))

(Comp). It is not hard to see that the relation �T (A) ⊆ T (A) × T (A) is a qo.
It is a wqo on trees of bounded height.

Lemma 1. If (A,�A) is a wqo then (T (A)n,�T (A)) is a wqo for all n ∈ N.

3 A Characterisation of Boundedness in Depth

In this section, we interpret fragments F as hypergraphs G[[F ]]. With this in-
terpretation we call the process P ∈ P bounded in the simple paths, iff there is
kSim ∈ N such that the length of the longest simple path in the hypergraphs of
all reachable fragments is less or equal to kSim , i.e.,

∃kSim ∈ N : ∀Q ∈ Reach (P ) : ∀F ∈ Frag (Qν) : lsp(G[[F ]]) ≤ kSim ,

where lsp(G[[F ]]) denotes the length of the longest simple path in G[[F ]]. We prove
that a process is bounded in depth if and only if it is bounded in the simple
paths. Thus, processes in PBD can be intuitively understood as hypergraphs
where the length of the simple paths is bounded.

The main technical contribution is the definition of anchored fragments. In
this section, we use them to derive boundedness in depth from boundedness in
the simple paths (Lemma 3). In Section 4 they help us prove that the given
qo is a wqo. In particular we need that the nesting of restrictions in anchored
fragments is bounded if the depth is (Corollary 1). Before we turn to anchored
fragments, we make the interpretation of processes as hypergraphs precise.
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3.1 The Graph-theoretic Interpretation of the π-Calculus

A hypergraph [12] is a graph where several vertices may be connected with one
hyperedge, i.e., it is a tuple G = (V, E, l, inc), where V is a finite set of vertices,
E is a finite set of hyperedges, l : V → P is a vertex labelling function, and
inc : E → P(V ) is an incidence function. In the graphical representation we
draw a dot labelled by l(v) for each v ∈ V and a box labelled by e for every
e ∈ E. There is an arc between v and e, if v ∈ inc(e). In our setting edges are
names, E ⊆ N . We also call hypergraphs graphs and hyperedges edges.

Two graphs G1 and G2 are equal, G1 = G2, if E1 = E2 and there is a bijection
f : V1 → V2 that is compatible with the labelling and the incidence functions.
Hence, the identity of elements v ∈ V is not important and we can always
assume V1 ∩ V2 = ∅.

A path in G is a finite sequence p = (v1, e1, . . . , vn, en, vn+1) such that the
edges ei connect vi and vi+1, i.e., vi, vi+1 ∈ inc(ei) for all i. The length of p,
length(p), is the number of edges in p. By fe(p) we refer to the first element in
p, v1. A path is simple, if ei �= ej for all i �= j. By lsp(G) we denote the length
of the longest simple path in G. The set of all paths in G is Paths(G).

We require three operations on graphs. The disjoint union of G1 and G2,
where E1 ∩ E2 = ∅, puts both graphs side by side. Formally, it is the graph
G1 � G2 := (V1 � V2, E1 � E2, l1 � l2, inc1 � inc2). The connect operator takes a
graph G and a name a /∈ E. The result is the graph G⊗a, where a is added to E.
The new edge connects the processes that have a as a free name, i.e., G ⊗ a :=
(V, E � {a}, l, inc � {(a, Va)}), where Va ⊆ V with v ∈ Va iff a ∈ fn (l(v)). We
define the application of a substitution {a/x} to G by G{a/x} := (V, E, l′, inc),
where l′(v) := l(v){a/x} for all v ∈ V .

The graph-theoretic interpretation (1) creates a vertex for every sequential
process, (2) takes the restricted names not under prefixes as the edges, and (3)
inserts an arc where a name is free in a process. Technically, it is the func-
tion G[[−]] defined by G[[0]] := (∅, ∅, ∅, ∅), G[[K�ã�]] := ({v}, ∅, {(v, K�ã�)}, ∅),
G[[Σi∈I �=∅πi.Pi]] := ({v}, ∅, {(v, Σi∈I �=∅πi.Pi)}, ∅), G[[P | Q]] := G[[P ]] � G[[Q]],
and G[[νa.P ]] := G[[P ]] ⊗ a if a ∈ fn (P ), G[[P ]] otherwise.

Structurally congruent processes P1 ≡ P2 are mapped to equivalent hyper-
graphs G[[P1]] ≈ G[[P2]]. The relation ≈ is the smallest equivalence on hyper-
graphs where replacement of vertex labels by structurally congruent processes
is allowed, (V � {v}, E, l � {(v, P )}, inc) ≈ (V � {v}, E, l � {(v, Q)}, inc), if
P ≡ Q, and renaming of edges together with the attached processes is possible,
G ⊗ a ≈ (G{b/a})⊗ b, if b /∈ fn (l(v)) for all v ∈ V . The equivalence ≈ preserves
the length of the longest simple path, G1 ≈ G2 implies lsp(G1) = lsp(G2).
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3.2 Anchored Fragments

By definition, all fragments under a restriction νa share the name a. In an-
chored fragments, we demand that distinguished processes inside the fragments,
the anchors, share the name a. The corresponding function anc gives for a
fragment FAi in νa.(FA1 | . . . | FAn) the process anc(FAi) = P ∈ S(FAi)
that knows the name, i.e., a ∈ fn (P ). When descending an anchored fragment
FA = νa.(FA1 | . . . | FAn) using the function nestν , this guarantees that the
vertices labelled by the anchors anc(FAi) are connected via a in G[[FA]].

Definition 2. The set of anchored fragments (FA, GA ∈) PA is defined by

FA ::= K�ã� | Σi∈I �=∅πi.Pi | νa.(FA1 | . . . | FAn),

where a ∈ fn (anc(FAi)) for all i, with anc(K�ã�) := K�ã�, anc(Σi∈I �=∅πi.Pi) :=
Σi∈I �=∅πi.Pi, and anc(νa.(FA1 | . . . | FAn)) := anc(FA1). ♦

Of course, anchored fragments are fragments. We now show that every fragment
can be rewritten as an anchored fragment using structural congruence. In the
proof, it is important that every sequential process inside a fragment can be
chosen as the anchor.

Lemma 2. Consider F ∈ PF and a process P ∈ S(F ). Then there is an an-
chored fragment FA ∈ PA such that FA ≡ F , S(FA) = S(F ), and anc(FA) = P .

We explain the induction step in the proof of Lemma 2. Given fragment F we
compute the standard form νã.(P1 | . . . | Pn). Since this does not change the
sequential processes, one process Pi is the given process P , wlog. P1. We split
the set of names ã into three subsets ã1, ã2, ã3 as follows. A name a that is
shared by P and P2 | . . . | Pn, i.e., a ∈ fn (P ) ∩ fn (P2 | . . . | Pn), is in the
set ã1. A name which is only in the free names of P is in ã2. The remaining
names are in ã3. Shrinking the scopes yields νã1.(νã2.P | νã3.(P2 | . . . | Pn)).
To transform νã3.(P2 | . . . | Pn) into a parallel composition of anchored
fragments, we compute the restricted form. It consists of several fragments,
(νã3.(P2 | . . . | Pn))ν = G1 | . . . | Gm. By construction, every Gi contains
a process PAi sharing a name with P . Since each Gi contains less processes
than F we can apply the induction hypothesis. This yields anchored frag-
ments GAi where anc(GAi) = PAi shares a name with P . We now have
νã1.(νã2.P | GA1 | . . . | GAm). As the names in ã1 are shared by different
GAi, we minimise their scopes to get the required anchored fragment.

Example 1. Let F = νb1, b2, b3, a.(K�a, b1� | L�a, b2� | L�a, b3�). We construct
the anchored fragment FA that has K�a, b1� as the anchor, anc(FA) = K�a, b1�.
The fragment F already is in standard form. We split the set of names
{a, b1, b2, b3} into ã1 = {a}, ã2 = {b1}, and ã3 = {b2, b3}. We shrink the scopes
of all ãi which gives νa.(νb1.K�a, b1� | νb2, b3.(L�a, b2� | L�a, b3�)). The re-
stricted form of νb2, b3.(L�a, b2� | L�a, b3�) is νb2.L�a, b2� | νb3.L�a, b3�. Both
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fragments, νb2.L�a, b2� and νb3.L�a, b3�, are also anchored fragments where
the anchors share the name a with K�a, b1�. The scope of a is minimal. Our
computation returns νa.(νb1.K�a, b1� | νb2.L�a, b2� | νb3.L�a, b3�). ♦
For anchored fragments FA, the nesting of restrictions corresponds to the length
of a simple path p in the graph G[[FA]], nestν (FA) = length(p) for some simple
path p ∈ Paths(G[[FA]]). In the proof, we need that the first element of p is
labelled by the anchor of FA, l(fe(p)) = anc(FA). We illustrate the construction
of a suitable path p in the induction step. The idea is to extend a path p′ that
exists by the hypothesis by an edge and a vertex.

Example 2. Consider FA = νa.(νb1.K�a, b1� | νb2.L�a, b2� | νb3.L�a, b3�).

•
•L�a, b2�

•ab1

b2

b3

G[[νb3.L�a, b3�]]

L�a, b3�K�a, b1�

The figure to the left shows a simple path p
in G[[FA]] with length(p) = 2 = nestν (FA) and
l(fe(p)) = K�a, b1� = anc(FA). By the hypoth-
esis, there is a simple path p′ in G[[νb3.L�a, b3�]]
with length(p′) = 1 = nestν (νb3.L�a, b3�) and
l(fe(p′)) = L�a, b3� = anc(νb3.L�a, b3�). This
path is p′ = (L�a, b3�, b3, L�a, b3�), depicted by

dashed lines. As G[[νb3.L�a, b3�]] is embedded in G[[FA]] (dotted line), p′ is a path
in G[[FA]]. The anchor L�a, b3� and the anchor of FA, K�a, b1�, are connected
with a. We define p = (anc(FA), a, p′) = (K�a, b1�, a, L�a, b3�, b3, L�a, b3�). It
extends p′ by the bold lines. ♦

3.3 The Characterisation of Boundedness in Depth

Fragment F is structurally congruent with an anchored fragment FA (Lemma 2).
As depth(F ) ≤ nestν (FA) = length(p) for some simple path p in G[[FA]] and as
the length of the simple paths is bounded, the depth is bounded as well.

Lemma 3. If P ∈ P is bounded in the simple paths by kSim then P is bounded
in depth by kSim as well.

It is easy to check that the length of the longest simple path in G[[F ]] is bounded
by the nesting of restrictions in F as follows: lsp(G[[F ]]) ≤ 2nestν(F ) − 1. Let
F be bounded in depth. There is a fragment FD ≡ F where the nesting of
restrictions is minimal, nestν (FD) = min{nestν (F ′) | F ′ ≡ F} = depth(F ).
Since the graphs of F and FD are equivalent, lsp(G[[F ]]) = lsp(G[[FD]]) holds.
The mentioned inequality and the choice of FD yield the following lemma.

Lemma 4. If P ∈ P is bounded in depth by kD then P is bounded in the simple
paths by 2kD − 1.

Combined, Lemma 3 and Lemma 4 prove our first main theorem.

Theorem 1. A process P ∈ P is bounded in depth if and only if it is bounded
in the simple paths.
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In the following section we understand anchored fragments as trees of bounded
height. The boundedness is justified by the following corollary of Lemma 4.

Corollary 1. Let P be bounded in depth by kD and FA ∈ Frag (Reach (P )) then
nestν (FA) ≤ 2kD − 1.

4 The Transition Systems of PBD are Well-structured

Our second main result states that processes of bounded depth have well-
structured transition systems (WSTS) [10, 1, 11]. A WSTS is a tuple (S, �,�),
where (S, �) is an image finite transition system and � ⊆ S × S is a wqo on
the states (s, t ∈) S which is required to be a simulation. By definition, the re-
lation s � t is a simulation if state t imitates the transition behaviour of s, i.e.,
s � t and s � s′ implies there is t′ with t � t′ and s′ � t′. To instantiate the
framework, we define a qo �PBD on processes and prove it (1) to be a wqo on
Reach (P ) where P is bounded in depth (Section 4.1) and (2) to be a simulation
(Section 4.2). We conclude with a decision procedure for termination.

4.1 A Well-Quasi-Ordering for PBD

Our wqo �PBD on processes is derived from a wqo on fragments. The idea of
the fragment ordering �F is to use the rooted tree embedding and close it
under structural congruence. The leafs in Rule (Elem) correspond to elemen-
tary fragments: Fe �F Fe (Rule (1)). Fragment νa.(Πi∈IFi) is dominated by
νa.(Πi∈IGi | Πj∈JGj) if the Gi dominate the Fi. This mimics Rule (Comp). If
F ′ is smaller than G′ then every F ≡ F ′ is smaller than G ≡ G′ (Rule (3)).

Definition 3. The fragment ordering �F ⊆ PF × PF is defined by:

(1)
Fe �F Fe

(2)
Fi �F Gi for all i ∈ I

νa.(Πi∈IFi) �F νa.(Πi∈IGi | Πj∈JGj)

(3)
F ≡ F ′ �F G′ ≡ G

F �F G
. ♦

Reflexivity of �F is immediate, transitivity follows from Lemma 8. To relate
the fragment ordering �F with the rooted tree embedding �T (A), we inter-
pret fragments F as (syntax) trees T [[F ]] as follows: an elementary fragment
is a single leaf, T [[Fe]] := Fe, a fragment νa.(F1 | . . . | Fn) is the tree
T [[νa.(F1 | . . . | Fn)]] := (a, (T [[F1]], . . . , T [[Fn]])). If we assume that the set
A contains the sequential processes and the restricted names in F that are not
under prefixes, i.e., S(F )∪rn (F ) ⊆ A, then T [[F ]] is a tree over A, T [[F ]] ∈ T (A).
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If we furthermore assume that A is ordered by the identity, i.e., we consider the
qo (A, id), then the rooted tree embedding implies the fragment ordering.

Lemma 5. Consider the qo (A, id). If T [[F ]] �T (A) T [[G]] then F �F G for all
fragments F, G ∈ PF .

To conclude �F is a wqo from the fact that �T (A) is a wqo with Lemma 5,
(A, id) needs to be a wqo (cf. Lemma 1). This is the case if A is finite. Thus,
we need fragments that consist of a finite set of sequential processes and a
finite set of restricted names. The idea is to reuse restricted names in parallel
compositions, i.e., here we relax the requirement that a name is bound at most
once. For every i ∈ N we define coni : PF → PF by con i(Fe) := Fe and
coni(νa.(F1 | . . . | Fn)) := νui.(coni+1(F1){ui/a} | . . . | con i+1(Fn){ui/a}),
where wlog. ui is fresh for F1, . . . , Fn. Of course, F ≡ con i(F ) and the restricted
names are determined by nestν (F ) since rn (coni(F )) ⊆ {ui, . . . , ui+nestν(F )}.
Example 3. Consider FA = νa.(νb1.K�a, b1� | νb2.L�a, b2� | νb3.L�a, b3�). We
compute con0(FA) = νu0.(νu1.K�u0, u1� | νu1.L�u0, u1� | νu1.L�u0, u1�). ♦
Following the argumentation above, we now build particular anchored fragments
FA that consist of derivatives where the restricted names are changed by con0.

Lemma 6. Let F ∈ Frag (Reach (P )) for some P ∈ P. There is an anchored
fragment FA ≡ F with rn (FA) ⊆ {u0, . . . , unestν(FA)} and S(FA) ⊆ {Qσ | Q ∈
derivatives(P ) and σ : fn (Q) → fn (P ) ∪ {u0, . . . , unestν(FA)}}.
Proof. Let F ∈ Frag (Reach (P )). We recalled that F ≡ νã.(Q1σ1 | . . . | Qnσn)
where Qi ∈ derivatives(P ) and σi : fn (Qi) → ã ∪ fn (P ) in Section 2. We
compute the restricted form, (νã.(Q1σ1 | . . . | Qnσn))ν =: F ′. It is a fragment
F ′ according to ≡̂ . For F ′ we compute FA

′ with Lemma 2. We now have
F ≡ FA

′ and S(FA
′) ⊆ {Qσ | Q ∈ derivatives(P ) and σ : fn (Q) → ã∪ fn (P )}.

With the function con0 we change the restricted names: con0(FA
′) ≡ FA

′

and rn
(

con0(FA
′)

) ⊆ {u0, . . . , unestν(FA′)}. The renaming changes the set of
sequential processes. They are now derivatives where the substitutions map into
fn (P ) ∪ {u0, . . . , unestν(FA′)}. Thus, con0(FA

′) satisfies the requirements. ��
To see that �F is a wqo on the reachable fragments of P ∈ PBD , let kD be
a bound on the depth. We define the set A := {u0, . . . , u2kD −1} ∪ {Qσ | Q ∈
derivatives(P ) and σ : fn (Q) → fn (P ) ∪ {u0, . . . , u2kD−1}}. Obviously, A is
finite and thus (A, id) is a wqo.

Let (Fi)i∈N be a sequence in Frag (Reach (P )). Every Fi is structurally
congruent with an anchored fragment FAi in Lemma 6. Corollary 1 yields
nestν (FAi) ≤ 2kD − 1. Thus T [[FAi]] ∈ T (A) with the set A we just defined.
The height of T [[FAi]] is equal to the nesting of restrictions in FAi. Thus, we
have a sequence (T [[FAi]])i∈N of trees in T (A)2kD −1. According to Lemma 1,
(T (A)2kD −1,�T (A)) is a wqo and so there are i < j with T [[FAi]] �T (A) T [[FAj ]].
Since A is ordered by the identity, FAi �F FAj with Lemma 5. With Rule (3)
we conclude Fi �F Fj . The following lemma holds.
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Lemma 7. Let P ∈ PBD . Then (Frag (Reach (P )) ,�F) is a wqo.

We define the qo �PBD on Reach (P )/≡ by [Πi∈IFi] �PBD [Πi∈IGi | Πj∈JGj ] if
Fi �F Gi for all i ∈ I. Wqo follows from Lemma 7 and Higman’s result.

Proposition 1. Let P ∈ PBD . Then (Reach (P )/≡,�PBD ) is a wqo.

4.2 The Relation �PBD
is a Simulation

In the proof that �PBD is a simulation, the following Lemma 8 is crucial. It
relates the fragment ordering F �F G with the standard form of F . This
standard form is covered by G in a way that reveals �F is a simulation.

Lemma 8. For all F, G ∈ PF : F �F G if and only if F ≡ νã.(P1 | . . . | Pn)
in standard form and G ≡ νã.(P1 | . . . | Pn | R) for some R ∈ P.

Let [P ] = [Πi∈IFi] �PBD [Πi∈IGi | Πj∈JGj ] = [Q], which means Fi �F Gi

for all i ∈ I. With Lemma 8 we get Πi∈IFi ≡ Πi∈Iνai.(P1i | . . . | Pni). We
extrude the names νai and check that [P ] → [P ′] implies [Q] → [Q′] with a case
distinction. The direction from right to left in Lemma 8 yields [P ′] �PBD [Q′].

Proposition 2. The relation �PBD is a simulation on P/≡.

With Proposition 1, Proposition 2, and the fact that → is image finite up to ≡,
we conclude that processes of bounded depth have WSTS.

Theorem 2. Let P ∈ PBD . Then (Reach (P )/≡,→,�PBD ) is a WSTS.

4.3 Decidability of Termination for PBD

The WSTS (S, �,�) has a non-terminating computation from s0 ∈ S iff an
infinite sequence s0 � s1 � . . . exists. If � is effectively computable and � is
decidable the following algorithm decides the termination problem [10, 11].

Let s0 ∈ S. We construct the finite reachability tree FRT (s0). The root is
labelled by s0. For every node labelled by s in the tree, we create a new node
for every successor t of s. We connect the node labelled by s and the new node.
If there is a node labelled by s′ on the path from the root to the new node with
s′ � t, we label the new node by t+. Otherwise we label it by t. We do not
create successors for nodes t+. The idea is that t with s′ � t can simulate the
behaviour of s′ and thus repeat s′ � . . . � t.

Proposition 3 ([10, 11]). A WSTS (S, �,�) has a non-terminating compu-
tation from s0 ∈ S if and only if FRT (s0) contains a node t+. As � is a wqo,
the tree FRT (s0) is finite and containment of t+ is decidable.
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The reaction relation is effectively computable and �PBD is decidable.

Corollary 2. For P ∈ PBD it is decidable whether there is a non-terminating
computation starting from [P ].

Example 4. Let P0 = νu0.(νu1.K�u0, u1� | νu1.L�u0, u1� | νu1.L�u0, u1�)
with K(x, y) := K�x, y� | νz.y〈z〉 and L(x, y) := x〈y〉. Then FRT ([P0]) is

•[P0] •[P1]+•[P2] •[P3]+•[P4] •[P5]+

P1 = νu0.(νu1.(K�u0, u1� | νu2.u1〈u2〉) | νu1.L�u0, u1� | νu1.L�u0, u1�)
P2 = νu0.(νu1.K�u0, u1� | νu1.u0〈u1〉 | νu1.L�u0, u1�)
P3 = νu0.(νu1.(K�u0, u1� | νu2.u1〈u2〉) | νu1.u0〈u1〉 | νu1.L�u0, u1�)
P4 = νu0.(νu1.K�u0, u1� | νu1.u0〈u1〉 | νu1.u0〈u1〉)
P5 = νu0.(νu1.(K�u0, u1� | νu2.u1〈u2〉) | νu1.u0〈u1〉 | νu1.u0〈u1〉).

The

root of FRT ([P0]) is labelled by [P0]. We have [P0] → [P1] and [P0] → [P2].
Thus, we insert two new nodes. For the first node, [P0] �PBD [P1] holds, so
we label it by [P1]+. Since [P0] �PBD [P2] does not hold, the second node is
labelled by [P2]. With [P2] → [P3] we construct a new node. As [P0] ��PBD [P3]
but [P2] �PBD [P3], we label it by [P3]+. The remaining nodes are constructed
similarly with [P4] �PBD [P5]. The existence of [P1]+ implies the system has a
non-terminating computation from [P0]. ♦

5 Related Work and Conclusion

The interpretation of processes as graphs was proposed in [15, 16] and has been
recalled in [17, 18] for the π-Calculus. We related the depth of a process P with a
function on the graph G[[P ]]. We are not aware of similar results in the literature.
The proof required an intricate normal form called anchored fragments.

In [6, 8] decidability of structural congruence relations was investigated. The
authors proposed normal forms related with the restricted form in [14]. The
standard form of processes is due to [17]. Anchored fragments are more stringent
than the normal forms above, and thus reveal more information about the
connection structure of process terms.

Finkel generalised the coverability graph procedure for Petri nets to what he
called WSTS [10]. He presented algorithms to decide termination and bound-
edness problems in the general setting. Abdulla et. al. generalised decidability
results of temporal properties and simulation relations for lossy channel systems
to their notion of WSTS [1]. Both definitions were unified in [11]. This paper is
the first to instantiate the WSTS framework for the π-Calculus. Compatibility
with the reaction relation required a non-trivial ordering �PBD .

Based on a translation of π-Calculus into multisets, orderings on processes
defined by multiset containment relations were studied in [7]. We considered
the more intricate wqos, i.e., �PBD needed to be well-behaved under reaction.
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In [19, 5] type systems for the π-Calculus were presented that ensure ter-
mination of well-typed processes. We observe that terminating processes are
always bounded in depth due to the finite number of reachable processes. Fur-
thermore, our result is more general in that we instantiate the WSTS framework
for PBD and then derive decidability of termination as a corollary. To turn our
decidability result into a practical procedure, approximations on �PBD should
be developed to prune the finite reachability tree.
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Abstract. We propose an extension of tree automata, called N-automata,
which captures some of the features of term schematisation languages, for
instance the use of counter variables and parameters. We show that the sat-
isfiability problem is decidable for positive, purely existential, membership
formulae which permits to include the proposed formalism into most existing
symbolic computation procedures (such as SLD-resolution).

1 Introduction

Formalisms able to handle infinite sets of terms (and manipulate them) are
useful in various domains of computer science, for instance for preventing di-
vergence of symbolic computation procedures (such as resolution, superposi-
tion, etc.). Among these formalisms, tree automata (TA) play a central rôle,
mainly due to their nice computational properties [4]: the set of regular term
languages (i.e. the languages representable by a tree automaton) is closed under
all boolean operations (intersection, union and complement) and the emptiness
problem (i.e. the problem of deciding whether a given automaton denotes an
empty set of terms) is decidable. TA have many applications, for instance in
rewriting [7, 13] or constraint solving [12]. As for word automata, a TA can be
defined by a set of states and by a transition function, and the set of recognized
terms is specified by a final state. Alternatively, it can be seen as a set of (Horn)
monadic clauses satisfying some additional properties, where each predicate cor-
responds to a state. The recognized language is simply the interpretation of the
final predicate in the minimal model of this set of clauses. Using this view, TA
can be easily extended by considering non-monadic predicate symbols [1, 9, 10],
representing (synchronized) term tuple languages.

Other formalisms, called term schematisations (TS), have been proposed
during the 90’s to denote infinite sequences of structurally similar terms. The
idea is to denote infinite sequences of terms obtained by starting from a given
base term s and by iterating from s a particular “context” C[�], where � is
a distinguished subterm in C (denoting a “hole”). If C[x] denotes the term
obtained from C by replacing � in C by x, we get the sequence s, C[s], C[C[s]],
. . . Cn[s]. For instance, the set of terms x, g(g(x)), g(g(g(g(x)))), . . . , g2m(x) is
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obtained by iterating m times the context C = g(g(�)) on the base term x (m
denotes an arithmetic variable).

There exist several classes of term schematisation languages corresponding
to different classes of contexts: the recurrent terms [2] (unique context with
only one hole), the terms with integer exponents [3] (arbitrary contexts with
one hole), the R-terms [14] (contexts containing several holes) and the most
expressive language of primal grammars [8], in which the contexts can depend
on the rank in the iteration. Unification is decidable for all these languages.

There are important differences between TA and TS and the representable
languages are not comparable. TS allow one to denote terms containing several
occurrences of the same (non ground) term, which is not possible using TA1. For
instance, one can denote using a TS a list of the form [x, x, x, x, . . . , x], where
x is an arbitrary term. The list is obtained by iterating the context cons(x , �)
on the base term nil . This set of terms cannot be denoted by a TA because
this would require an arbitrary number of equality tests. Moreover, TS use
arithmetic variables to count the number of iterations in the sequences. This
feature can be used for instance to denote the sequence (fn(gn(a)))n∈N which
is well known to be non regular, i.e. not representable be a (tree) automaton.

On the other hand, TA can denote many sets of terms that are not rep-
resentable by a TS. Indeed, a TS cannot denote a term containing an arbi-
trary number of variables: for instance it is not possible to denote the sequence
a, f(x1, a), f(x2, f(x1, a)), f(x3, f(x2, f(x1, a))), . . ., because the variables can-
not depend on the rank of the iteration2. Moreover, more flexible iterations can
be denoted using TA, with non-unique contexts, for instance one can denote
the term f(t1, f(t2, f(t3, . . . (f(tn, x)) . . .))) where for all i ∈ [1..n], ti ∈ {b, c}.
Such a term cannot be described using existing TS. More generally, one can
denote iterations combining different contexts.

A very natural question arises: is it possible to unify these two approaches?
The goal is to define a formalism that combines all the above features: use
of counter variables, indexed and non-indexed variables and non-unique con-
texts. Ideally, it should be strictly more expressive than both approaches, and
hopefully also more expressive than the union of the two languages, because
some “hybrid” terms representable neither by TA nor by TS could be denoted
by combining both approaches. Of course, a basic requirement is that both
emptiness and unification problems should remain decidable.

The present paper is a first answer to this problem. More precisely, we pro-
pose a (strict) extension of tree automata, called N-automata. We shall prove
that this formalism strictly subsumes the terms with integer exponents of [3].
Other, more expressive term schematisation languages are non comparable with
N -automata.

1 Some limited equality tests can be safely considered [4].
2 The formalism of non flat primal grammar does offer the possibility of considering “indexed”
(or marked) variables but unification is decidable only for flat primal grammars, i.e. for primal
grammars without indexed variables.
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As in [1, 9], we extend TA by adding additional parameters to the states.
Some of these parameters are arithmetic variables allowing one to count the
number of times the automaton enters some specific states. The other ones
denote standard terms, that are allowed to occur several times into the terms
recognized by the automaton. They play the same rôle as (non-indexed) vari-
ables in TS. The language recognized by the N -automaton depends on the value
of the above parameters.

We shall show that the emptiness problem is decidable for N -automata.
Moreover, the set of recognized languages is stable under intersection. More
generally, we define a notion of N+-formulae, which are positive and purely
existential logical formulae combining arithmetic (linear) equality with atoms
of the form p(t1, . . . , tn, s), meaning that s occurs in the language recognized
by the N -automaton at state p, using t1, . . . , tn as parameters (one can view
N+-formulae as existential, positive, “membership” formulae [5]). With these
semantics, we show that the satisfiability problem is decidable by providing
an algorithm transforming any (closed) N+-formula into a purely arithmetic
formula. N+-formulae subsume both emptiness and unification problems. To
the best of our knowledge there is no formalism sharing these features3. Our
results do not follow from the ones in [15] since the iterations we consider cannot
be expressed using positive formulae built on equality and subterm ordering,
nor from the ones in [11], because the (ground) rewrite rules in [11] are not
comparable with the iterations we use in the present paper, and also because
the considered problems are different.

Due to space restriction the proofs are not included.

2 Preliminaries

We denote by TΣ the set of terms constructed as usual on a set of function
symbols Σ and on a set of ordinary variables X and by TN the set of arith-
metic terms built on the function symbols 0, succ, + and on a set of arithmetic
variables XN disjoint from X , Σ. As usual the term succn(0) is simply denoted
by n. A term (arithmetic or standard) is said to be ground iff it contains no
variable.

We shall consider predicate symbols whose arguments will be either natural
numbers or standard terms. Thus, we assume a set of predicate symbols Ω is
given with a function pr mapping each symbol p ∈ Ω to a profile pr(p), which is
a finite sequence τ1× . . .×τn where n denotes the arity of p and where for every
i ∈ [1..n], τi is either int (natural numbers) or t (standard terms). A predicate
is said to be monadic if its arity is 1. If O is a subset of Ω then Atom(O) denotes
the set of atoms of the form p(t1, . . . , tn) where p is a predicate symbol of profile

3 For instance the languages in [1] or [9] are very expressive, but lack the same decidability
results.
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(τ1, . . . , τn) and for all i ∈ [1..n], if τi = t then ti ∈ TΣ, and if τi = int then
ti ∈ TN .

A substitution is a function mapping each ordinary variable in X to a term
in TΣ and each arithmetic variable in XN to an arithmetic term in TN . As usual
a substitution can be extended to a homomorphism of TΣ , TN and Atom(Ω).
The image of a term t by a substitution σ is denoted by tσ. Two terms t, s are
said to be unifiable iff there exists a substitution σ s.t. tσ = sσ. As usual two
unifiable terms have a most general unifier. A substitution is ground if for all
variables x, xσ is ground.

A rule is a formula of the form H1 ∧ . . .∧Hn ⇒ C, where H1, . . . , Hn, C are
atoms such that all the variables occurring in H1, . . . , Hn also occur in C. C
is called the head of the rule and H1, . . . , Hn are the premises. We may have
n = 0, in this case H1 ∧ . . . ∧ Hn ⇒ C is to be read as C.

The notions of interpretations, models etc. are defined as usual. It is well
known that any set of rules S has a minimal model, denoted by Mod(S).

3 N -Automata

For technical convenience we use a clausal view of tree automata. A tree au-
tomaton (in the usual sense) can be seen as a set of Horn monadic clauses. In
this section we extend the definition to handle (some classes of) non-monadic
predicate symbols.

3.1 Rules and Automata

We assume that the profile of every predicate symbol p (corresponding to a
state) is of the form τ1× . . .×τn×t. The last argument can be seen as the term
to be recognized by the automaton, and the first ones correspond to parameters.
We denote by Aint(p) the set of indices i ∈ [1..n] s.t. τi = int and by At(p)
the set of indices s.t. τi = t.

We associate to every predicate p:

– a unique natural number level(p) used to control the “dependencies” between
the predicates (recursive calls): if a predicate symbol p depends on another
predicate symbol q, then the level of q must be lower or equal to the one of
p.

– two disjoint sets Ac(p) ⊆ Aint(p) and A=(p) ⊆ At(p). The elements of
Ac(p) are called the counters of p. Intuitively, A=(p) denotes the set of non
arithmetic parameters that must be equal to the terms accepted by p (this
corresponds to a kind of equality test: at any state p one can test that the
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consider term is equal to a non arithmetic parameter, see Condition 1 below)
and Ac(p) denotes the arithmetic parameters used by p.

Definition 1. An N -rule is a rule H ⇒ p(t1, . . . , tn, s) satisfying the following
conditions.

1. For all i ∈ At(p), if i ∈ A=(p) then ti = s, otherwise ti is a variable occurring
only once in the head.

2. For all i ∈ Aint(p), ti is either ni or 0 or succ(ni), where ni is a variable
occurring only once in the head, and ti �= ni then i ∈ Ac(p).

3. s is either a term of the form f(x1, . . . , xk) where x1, . . . , xk are distinct
variables, or a variable and in this case H is empty.

4. If s is of the form f(x1, . . . , xk) then H =
∧k

i=1 qi(si
1, . . . , s

i
n, xi) where:

a. For all i ∈ [1..k], level(qi) ≤ level(p) and qi has the same profile as p.
b. For any i ∈ [1..k], j ∈ Aint(p), if tj = succ(nj), then si

j = nj or si
j = 0.

Otherwise we have either si
j = tj or si

j = 0. Moreover, if si
j �= tj then

j ∈ Ac(p).
c. For any i ∈ [1..k], j ∈ At(p), si

j = tj .
d. There exists at most one i ∈ [1..k] s.t. the two following conditions hold:

level(qi) = level(p) and there exists j ∈ Ac(qi) s.t. si
j �= 0.

Moreover, for all j ∈ Ac(p) and for all l �= i, we must have sl
j = 0. A

rule containing such a literal is called inductive and in this case the lit-
eral qi(si

1, . . . , s
i
n, xi) satisfying the above conditions is called the principal

literal4.
e. If level(qi) = level(p) then Ac(qi) = Ac(p) and A=(qi) = A=(p) = ∅.
In the particular case where n = 0, our definition coincides with the standard

rules of tree automata (all the predicate symbols have the same level and there
is no inductive rule).

Example 1. Here are examples of N -rules:

p(x, n, m, y1) ∧ r(x, 0, m, y2) ∧ p(x, 0, m, y3) ⇒ p(x, succ(n), m, f(y1, y2, y3))
q(x, 0, m, y) ⇒ p(x, 0, m, g(y))
r(h(y), n, m, y) ⇒ q(h(y), n, m, h(y))
r(x, n, m, y) ⇒ r(x, n, succ(m), i(y))

r(x, n, 0, a)

We have
level(p) = 2, level(q) = level(r) = 1. Aint(p) = Aint(q) = Aint(r) = {2, 3},

At(p) = At(q) = At(r) = {1}. Ac(p) = {2}, Ac(q) = ∅, Ac(r) = {3}, A=(p) =
A=(r) = ∅, A=(q) = {1}. The first and fourth clauses are inductive and the
first literal is principal in these clauses.

4 This condition is the most complex and non-intuitive one. Roughly speaking, it states
that the counter variables can only be used along one position in the term. The remaining
subterms should not depend on the variables in Ac(p).
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The reader can check that the minimal model of the above set of rules is the
set of terms of the form p(h(v), n, m, u), q(h(v), n, m, h(v)), r(t, n, m, v)
where t ∈ TΣ , n, m ∈ N, v = im(a) and u =
f(f(. . . (f(f(g(h(v)), v, g(h(v)), v, g(h(v))), . . . , v, g(h(v)) . . .), v, g(h(v))))).

On the other hand the following rules are not N -rules:

q(x, n, m, y) ⇒ p(g(x), n, m, f(y)) Condition 1 is violated
p(x, n, n, y) ⇒ p(x, n, n, g(y)) Condition 2
p(x, n, m, y) ⇒ p(x, n, m, f(y, y)) Condition 3, f(y, y) non linear
p(x, n, m, y) ∧ q(x, n, m, y) ⇒ p(x, n, m, g(y)) Condition 4, y occurs twice
p(a, n, m, y) ⇒ p(x, n, m, g(y)) Condition 4.c, a should be x
p(x, n, m, y1) ∧ r(x, n, m, y2) ⇒ p(x, s(n), m, j(y1, y2)) Cond. 4.d, arg. 2 of r is not 0

A rule is called a p-rule if its head is of the form p(t) for some vector of
terms t.

Definition 2. An N -automaton A is a pair (SA, ρA), where SA is a set of
predicate symbols (of arity > 0) and ρA is a set of N -rules built on the set of
predicates SA s.t. for every p ∈ SA:

– ρA contains at most one inductive p-rule.
– There exists no pair of distinct rules with unifiable heads (in the usual setting

this means that the automaton is deterministic).

For any n + 1-ary predicate symbol p ∈ SA, (t1, . . . , tm) is said to be a p-
vector iff m = n and for every i ∈ [1..n], ti ∈ TΣ if i ∈ At(p) and ti ∈ TN if
i ∈ Aint(p). This implies that p(t1, . . . , tm, s) is an atom (where s denotes an
arbitrary term in TΣ).

Definition 3. (Accepted Language) Let A be an automaton and p ∈ SA. For
any p-vector t, we denote by pA(t) the set of terms s s.t. Mod(ρA) |= p(t, s).
pA(t) is the language recognized by A at state p with parameters t.

Note that by definition, if s ∈ pA(t1, . . . , tn) then for every i ∈ A=(p), we
have ti = s.

We need to introduce some additional notations. Let A be an N -automaton.
We write p ≥A q iff there exists a p-rule H ⇒ p(t) s.t. q occurs in H . ≥∗

A
denotes the reflexive and transitive closure of ≥A. An index i is said to be an
inductive counter for p if there exists a predicate symbol q s.t. p ≥∗

A q and i
is a counter for q. The set of inductive counters of a predicate p is denoted by
ICA(p).

A natural number i is said to be active for a predicate symbol p if i ∈
Ac(p)∪A=(p). It is said to be inductively active if there exists a predicate symbol
q s.t. p ≥∗

A q and i is active for q. The set of inductively active arguments of
a predicate p is denoted by IAA(p). An essential property of IAA(p) is that if
i �∈ IAA(p) (i.e. if i is not inductively active for p) then the language pA(t) does
not depend on the i-th component of the vector t.



A Unified View of Tree Automata and Term Schematisations 497

Lemma 1. Let A be an N -automaton. Let p be a n + 1-ary predicate symbol
in SA and let (s1, . . . , sn), (s′1, . . . , s

′
n) be two p-vectors s.t. for all i ∈ [1..n], if

si �= s′i then i �∈ IAA(p).
We have pA(s1, . . . , sn) = pA(s′1, . . . , s′n).

A N -automaton is said to be normal iff all its rules are of the form H ⇒
p(t, f(x1, . . . , xk)) for some function symbol f (with possibly k = 0). It is easy
to see that any N -automaton can be transformed into an equivalent normal
automaton.

Lemma 2. For any N -automata A one can construct a normal A-automaton
A′ s.t. for all p ∈ SA and for all ground p-vectors t: pA(t) = pA′(t).

3.2 N+-Formulae

Sometimes N -automata alone are not expressive enough and one has to add
conditions on the parameters, in particular arithmetic conditions. Rather than
including them into the rules, it is more convenient to put them outside the
automaton, yielding the following definition:

Definition 4. The set of N+-formulae for an N -automaton A is the smallest
set of formulae satisfying the following properties:

– true, false are N+-formulae.
– Any atom p(t1, . . . , tn) in Atom(SA) is an N+-formula.
– If t, s ∈ TΣ or t, s ∈ TN then t = s is an N+-formula.
– If φ, ψ are N+-formulae, then φ ∨ ψ and φ ∧ ψ are N+-formulae.
– If φ is an N+-formula and x is a variable (occurring either in X or in XN )

then (∃x)φ is an N+-formula.

Definition 5. A ground substitution σ is said to be a solution of an N+-formula
φ w.r.t. an N -automaton A iff one of the following condition holds:

– φ is t = s, t, s ∈ TΣ and tσ = sσ.
– φ is t = s, t, s ∈ TN and tσ and sσ can be reduced to the same natural number

by the usual rules of Presburger arithmetic: 0 + x → x and succ(x) + y →
succ(x + y).

– φ is p(t1, . . . , tn, s) and sσ ∈ pA(t1σ, . . . , tnσ).
– φ is φ1 ∨ φ2 (resp. φ1 ∧ φ2) and σ is a solution of φ1 or φ2 (resp. φ1 and φ2).
– φ is (∃x)φ and there exists a term t s.t. σ is a solution of φ{x → t}.

We denote by solA(φ) the set of solutions of φ w.r.t. A and we write φ ≡A ψ
iff solA(φ) = solA(ψ).
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3.3 Examples and Comparisons

Example 2. Let Σ = {a, f, g}. Let A be the N -automaton defined as follows:
SA

def= {p, q, r, s}, Aint(u) = {1}, for all u ∈ SA.

ρA
def=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

q(0, x, y) ∧ p(n, x, l) ⇒ p(succ(n), x, cons(y, l))
⇒ p(0, x,nil)

r(0, x, y1) ∧ s(0, x, y2) ⇒ q(0, x, f(y1, y2))
⇒ r(0, x, x)
⇒ s(0, x, y)

We have Ac(p) = {1}, Ac(q) = Ac(r) = Ac(s) = ∅, A=(p) =
A=(q) = A=(s) = ∅, A=(r) = 2. pA(n, x) denotes the set of terms
of the form {cons(f(x, y1), cons(f(x, y2), . . . , cons(f(x, yn),nil) . . .))} where
x, y1, . . . , yn are arbitrary terms, i.e. the lists of the form [f(x, y1), . . . , f(x, yn)].
Notice that this set of terms cannot be denoted by a standard tree automaton
(due to the several occurrences of x), nor by any known term schematisation
for which unification is decidable (due to the indexed variables y1, . . . , yn).

The N+-formula (∃m, x)[n = m+m∧r(0, x, a)∧p(n, x, y)] has the following
set of solutions: {x → a, n → 2m, y → [f(a, y1), . . . , f(a, y2m)]}, where m ∈ N.

As already seen, N -automata are strict extensions of usual TA. Some of
the existing extensions of TA could be included into N -automata, for instance
we could add equality or disequality tests between brothers (i.e. between the
variables x1, . . . , xk in Definition 1). We did not consider these additional pos-
sibilities in the present paper for the sake of simplicity and conciseness. We now
compare N -automata and I-terms.

N-automata and I-Terms The terms with integer exponents (or I-terms
[3]) are a particular class of term schematisations. Formally speaking, the set
of I-terms TI and the set of contexts (terms with one hole) T� are the least sets
that satisfies the following conditions:

– X ⊆ TI and � ∈ T�.
– If t1, . . . , tn ∈ T n

I , and f is a function of arity n in Σ, then f(t1, . . . , tn) ∈ TI .
– If t1, . . . , ti−1, ti+1, . . . , tn ∈ T n−1

I , f is a function of arity n in Σ and ti ∈ T�,
then f(t1, . . . , tn) ∈ T�.

– If t ∈ T�, t �= �, n ∈ TN and s ∈ TI , then tn.s ∈ TI .

If t is a term in T� and s ∈ TI then t[s] denotes the term of TI obtained
by replacing � with s, formally defined as follows: �[s] def= s, f(t1, . . . , tn)[s] def=
f(t1[s], . . . , tn[s]) and (tn.u)[s] def= tn.u. Then the semantics of (ground) I-terms
is given by the following rewriting rules: t0.s → s and tn+1.s → t[tn.s]. Using
these two rules (and the usual arithmetic rules), any ground I-term t can be
transformed into a standard term t↓. For instance, the I-term f(x, �)n.a denotes
the term f(x, f(x, . . . , f(x, a) . . .)). The next lemma shows that I-terms can be
denoted by N+-formulae.
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Lemma 3. Let t be an I-term of free variables x1, . . . , xn. There exist an N -
automaton At and an N+-formula φt(y) of free variables x1, . . . , xn, y (where
y does not occur in x1, . . . , xn) s.t. for every ground substitution σ, we have:
σ ∈ solAt(φt(y)) iff yσ = tσ↓. Moreover, φt(y) contains no equation between
non-arithmetic terms.

Remark 1. Consequently, any unification problem t = s between I-terms can
be associated to an N+-formula ψ = (∃x)[φt(x) ∧ φs(x)] s.t. (tσ)↓= (sσ)↓ iff σ
is a solution of ψ w.r.t. the union of the automata At and As.

Example 3. The equation y = f(g(�), x)n.a is equivalent to the N+-formula:
p(x, n, y) where p is defined by the rules:

q(x, n, y1) ∧ r(x, 0, y2) ⇒ p(x, succ(n), f(y1, y2)) p(x, 0, a)
p(x, n, y) ⇒ q(x, n, g(y)) r(x, 0, x)

We have Aint(u) = {2} and At(u) = {1}, for every u ∈ {p, q, r}, Ac(p) =
Ac(q) = {2}, Ac(r) = A=(p) = A=(q) = ∅ and A=(r) = {1}.

Unfortunately, the previous result does not extend to other more expressive
term schematisation languages such as primal grammars. This is mainly due
to the possibility of “diagonalisation” i.e. inductive contexts depending on the
rank of the iteration, as in the term f(gn(x), f(gn−1(. . . , f(g(x), x)))). Such a
term can be expressed easily by a primal grammar, but it cannot be denoted
by an N -automaton. Thus N -automata do not subsume primal grammars and
the two formalisms are not comparable.

4 Intersection

In this section, we show how to compute the intersection of two languages
denoted by N -automata, which is the first step toward solving N+-formulae.
The obtained language can itself be denoted by an N -automaton. This is more
complicated than in the case of standard tree automata, because one has to
handle the additional parameters, but the procedure is similar.

Two predicate symbols p, q are said to be disjoint in an N -automaton A
if pr(p) = pr(q) and ICA(p) ∩ ICA(q) = ∅. We first show how to handle this
particular case.

Let A be an N -automaton. We denote by S�
A the set of predicates [p, q]I

where p, q are disjoint symbols of arity n + 1 in SA and I ⊆ [1..n]. Intuitively,
we will have [p, q]IA(t) = pA(t) ∩ pA(t), if the I-components of t are 0 (I is
useful mainly to ensure that the level decreases). We construct an automaton
Â defined on the set of predicate symbols SA ∪ S�

A as follows.
We first define: level([p, q]I) def= level(p)+ level(q)+arity(p)−|I|, pr([p, q]I) def=

pr(p) = pr(q), Ac([p, q]I) def= Ac(p) ∪ Ac(q) and A=([p, q]I) def= A=(p) ∪ A=(q).
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A substitution θ is said to be a I-unifier of two vectors (t1, . . . , tn) and
(s1, . . . , sn) iff for every i ∈ [1..n] we have tiθ = siθ and if i ∈ I then tiθ =
siθ = 0.

We denote by RA the set of rules of the form Hθ ∧ H ′θ → [p, q]I(tθ) s.t.
p, q are two n + 1-ary predicate symbols in SA, I is a subset of [1..n], H ⇒
p(t), H ′ → q(s) are two rules in ρA and θ is the most general I-unifier of t and
s.

Lemma 4. Let A be an N -automaton. Let I = Mod(ρA) and J = Mod(RA ∪
ρA). For any pair of disjoint predicate symbols (p, q) of arity n, for every I ⊆
[1..n] for every term s and for every ground p-vector (t1, . . . , tn) we have J |=
[p, q]I(t1, . . . , tn, s) iff ∀i ∈ I, ti = 0 and I |= p(t1, . . . , tn, s) ∧ q(t1, . . . , tn, s).

In particular, Lemma 4 shows that the language denoted by the predicate
[p, q]∅ is the intersection of the languages denoted by p and q, which is the desired
result, but of course the rules in RA are not N -rules. In order to transform them
into N -rules with the same minimal model, we introduce the following rewrite
rules (operating on rules):

Merging: [p(t1, . . . , tn, x) ∧ q(t1, . . . , tn, x) ∧ H ⇒ C] −→
[p, q]I(t1, . . . , tn, x) ∧ H ⇒ C

if p, q are disjoint and I is the set of indices i ∈ [1..n] s.t. ti = 0.
Agreement: [p(t1, . . . , tn, x) ∧ q(s1, . . . , sn, x) ∧ H ⇒ C] −→

[p(t1, . . . , ti−1, si, ti+1, . . . , tn, x) ∧ q(s1, . . . , sn, x) ∧ H ⇒ C]
if p ∈ SA and i �∈ IAA(p).

It is clear that these rules terminate on any set of rules. We denote by RA↓
an arbitrarily chosen normal form of RA w.r.t. the two rules above. The two
following lemmata show in some sense the soundness and completeness of the
above rules.

Lemma 5. Let A be an N -automaton. Mod(RA ∪ ρA) = Mod(RA↓ ∪ρA).

Lemma 6. Let A be an N -automaton. (S�
A∪SA, RA↓ ∪ρA) is an N -automaton.

We take Â def= (S�
A ∪ SA, RA↓ ∪ρA). By the above lemmata, for every pair of

disjoint predicates p, q and for every ground p-vector s, we have t ∈ [p, q]∅Â(s)
iff t ∈ pA(s) ∩ qA(s).

We need the following:

Lemma 7. Let A be an automaton. Let p ∈ SA and let l ∈ At(p). For
all ground terms t1, . . . , tn, t, Mod(ρA) |= p(t1, . . . , tl−1,⊥, tl+1, . . . , tn, t) iff
Mod(ρA) |= p(t1, . . . , tn, t) and tl does not occur in t.

The next lemma handles the more general case of non-disjoint intersection.

Lemma 8. Let A be an N -automaton. For any N+-formula φ = p(t, x) ∧
q(t′, x), one can compute an extension A′ of A and an N+-formula Λ(φ) of
the form r(s, x) s.t. all the components of s are components of t or t′ and
solA(φ) = solA′(Λ(φ)).
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5 Solving N+-Formulae

In this section, we show (constructively) that there exists an algorithm checking
whether a given (closed) N+-formula has solutions or not. This entails in par-
ticular that emptiness problems or unification problems are decidable since they
can be easily encoded into N+-formulae. According to Lemma 3, any equation
t = s between terms in TI (hence also between terms in TΣ) can be eliminated
and replaced by an equivalent N+-formula φ not containing any such equa-
tions (see Remark 1). Moreover, we assume, w.l.o.g., that for all non-arithmetic
atoms p(t1, . . . , tn) occurring in the formula, t1, . . . , tn are either variables, or
0 or ⊥, where ⊥ is a special constant symbol not occurring in the considered
automaton.

5.1 Emptiness Problems

We first consider a particular case. An N+-formula φ of the form
(∃x)p(t1, . . . , tn, x) where x does not occur in t1, . . . , tn is called an emptiness
problem. φ is said to be simple if A=(p) = ∅, and for all i ∈ Ac(p), ti = 0.

If S is a set of rules, and p(t) an atom (where t denotes a vector of terms),
we denote by S[p(t)] the set of rules (H ⇒ p(s))θ s.t. H ⇒ p(s) ∈ S and θ is a
most general unifier of t and s. Note that the heads of the rules in S[p(t)] are
instances of p(t).

Let φ = (∃x)p(t, x) be an emptiness problem (e.p. for short) and let A
be an N -automaton. We denote by DA(φ) the set of formulae of the form
(∃z)[t = s ∧ ∧k

i=1(∃xi)qi(vi, xi)], where
∧k

i=1 qi(ui, xi) ⇒ p(s, f(x1, . . . , xk)) is
a rule occurring in ρA[p(t,x)], z denotes the variables in s and vi is obtained from
ui by replacing any occurrence of f(x1, . . . , xk) by ⊥. We denote by UA(φ) the
disjunction of all the formulae occurring in DA(φ).

Proposition 1. For any e.p. φ and for every N -automaton A, φ ≡A UA(φ).

For any e.p. φ, we shall define an equivalent N+-formula ΓA(φ) containing no
existential non-arithmetic variable. To this purpose, we need to introduce some
additional definitions. If p is a predicate symbol, then we denote by n(p) the
(necessarily unique) predicate q s.t. the principal atom of the inductive p-rule is
of the form q(. . .) (if there is no inductive p-rule then n(p) is defined arbitrarily),
and by m(p) the smallest integer k s.t. there exists l s.t. nl(nk(p)) = nk(p) (k, l
exist since the number of predicate symbols is finite).

Let A be an N -automaton and let φ = (∃x)p(t, x) and ψ = (∃y)q(s, y) be
two e.p.’s. We write φ > ψ iff:

– Either level(p) > level(q), or level(p) = level(q) and |var(s)| < |var(t)|.
– Or level(p) = level(q), |var(s)| = |var(t)|, φ is simple and ψ is not.
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– Or level(p) = level(q), |var(s)| = |var(t)|, neither φ nor ψ is simple and
m(p) > m(q).

ΓA(φ) is constructed by induction on the ordering >. If ξ is a complex
formula then we shall denote by ΓA(ξ) the formula obtained by replacing each
e.p. ψ occurring in ξ by ΓA(ψ). Of course this definition makes sense only if
ΓA(ψ) has been defined, i.e. if φ > ψ for every e.p. ψ occurring in ξ.

Let φ = (∃x)p(t, x) where t = (t1, . . . , tn). ΓA(φ) is defined as follows:

1. If A=(p) is non empty, then ΓA(φ) def= p(t1, . . . , tn, ti) where i is an arbi-
trarily chosen index in A=(p).

2. If there exists j ∈ Ac(p) s.t. tj �= 0 and if either ρA contains no
inductive p-rule or m(p) > 0, then ΓA(φ) def= ΓA(UA(φ)).

3. If for all j ∈ Ac(p), tj = 0:
We denote by E the smallest set of conjunctions of e.p. s.t. φ ∈ E and if
φ ∧ ψ ∈ E, φ is simple, and (∃u)[t = s ∧ γ] is in DA(φ) then γ ∧ ψ ∈ E.
E must be finite. Indeed, since the head of the rules contains all the variables,
all the variables in E must occur in φ, hence the number of possible e.p. is
finite (up to equivalence). Thus the number of distinct disjunctions is finite.
Let ξ be the disjunction of conjunctions ψ ∈ E that contain no simple e.p.
We define ΓA(φ) def= ΓA(ξ).

4. If ρA contains an inductive p-rule and m(p) = 0:
Let {i1, . . . , im} be the elements in Ac(p) s.t. tij is a variable. Starting from
the formula φ we repeatedly replace any e.p. of the form (∃x)ni(p)(vi, x)
(initially we have i = 0) by UA((∃x)ni(p)(vi, xi)), until we obtain another
e.p. of head p (which is possible since m(p) = 0). The obtained formula
can be reduced (by miniscoping and distributivity) to a formula of the form
ψ ∨ [(∃z)

∧m
j=1 tij = succkj (zj) ∧ γ ∧ (∃x)p(vk, x)], where k1, . . . , km ∈ N,

z1, . . . , zm are either 0 or variables not occurring in γ, z denotes the vec-
tor of variables in z1, . . . , zm and vk is obtained from t by replacing each
component tij by zj.
We define: ΓA(φ) def= (∃l, z)[

∧m
j=1(tij = l×ki+zj)∧ΓA(γ)∧ΓA(ψ′)], where ψ′

is obtained from ψ by replacing tij by zj (l×ki denotes the term l+ l+ . . .+ l
(ki times)).

Lemma 9. ΓA(φ) is well defined, for every emptiness problem φ and for every
automaton A. Moreover, φ ≡A ΓA(φ) and the quantified variables in ΓA(φ) are
arithmetic.

5.2 Reduction to Presburger Arithmetic

By distributivity and miniscoping, any N+-formula φ can be reduced into a
formula of the form

∨n
i=1(∃xi)ψi where ψi =

∧ki

j=1 γij and where the γij ’s are
atoms. The algorithm is defined by the following rules, applied in the specified
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order, on the disjuncts ψi (and not on the formulae occurring in them). The
formulae are normalized after each rule application.

(r0) (∃x) [ψ ∧ p(t,⊥)] → false
(r1) (∃x) [ψ ∧ p(t, x) ∧ q(t′ , x)] → (∃x)[ψ ∧ Λ(p(t, x) ∧ q(t′, x))]

(r2) (∃x1, . . . , xk) (∃n) φ →
∨k

i=1(∃x1, . . . , xk) ∃n rmxi(φ)
If for all i ∈ [1..k] there exists an atom p(t, xj) in φ s.t. j �= i
and xi occurs in t, x1, . . . , xk ∈ X and n is a vector of variables in XN .
rmx(φ) is defined below.

(r3) (∃x1, . . . , xk) (ψ ∧ p(t, xk)) → (∃x1, . . . , xk−1) [ψ ∧ p(t, xk){xk → ti}]
If xk does not occur in ψ and i is an index in A=(p) s.t. ti �= xk.

(r4) (∃x1, . . . , xk) [ψ ∧ p(t, xk)] → (∃x1, . . . , xk−1) [ψ ∧ UA((∃xk) p(t, xk))]
If xk occurs in t but not in ψ.

(r5) (∃x1, . . . , xk) [ψ ∧ p(t, xk)] → (∃x1, . . . , xk−1) [ψ ∧ ΓA((∃xk)p(t, xk))]
If A=(p) = ∅, xk does not occur in t nor in ψ.

rmx(φ) is defined by the following (auxiliary) rule:
(rmx) (∃x1, . . . , xn, y) (p(t, y) ∧ ψ) → (∃x1, . . . , xn) (p(t, y) ∧ ψ){y → x}

∨(∃x1, . . . , xn, y) (p(t{x → ⊥}, y) ∧ ψ)
If x occurs in t and y �= x.

Lemma 10. Let φ be a N+-formula. The rules r0, . . . , r5 (with the above strat-
egy) terminate on φ and preserve equivalence. Moreover, any irreducible formula
is purely arithmetic.

Since Presburger arithmetic is known to be decidable, Lemma 10 provides
an algorithm for checking whether a given closed N+-formula is satisfiable or
not.

6 A Simple Application

We show a simple example of application in the context of Logic Programming.
If the satisfiability problem is decidable for N+-formulae (as shown by Lemma
10), then N -automata can be integrated in Logic Programs. The corresponding
unification problems can be solved by our constraint solving algorithm.

Assume that one wants to define a predicate last(l, x) which is true iff x is
the last element of the list l. Using standard Horn clauses, last(l, x) is defined
as follows: {last(cons(x ,nil), x ), last(cons(y, l), x ) ⇐ last(l , x )}.

Using N -automata we obtain: last(l, x) ⇐ p(x, l), where p is defined by the
following N -rules:

{q(x, y) ⇒ p(x, cons(y,nil)), p(x , l) ⇒ p(x , cons(y, l)), q(x , x )}.
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Both techniques yield exactly the same result (from a semantic point of
view). But the use of N -automata allows one to compute the solution of a
request last(l, x) in a symbolic way, rather than enumerating all possible lists.

Thus a request of the form last(l, 1)∧last(l, 2) diverges with the first approach
and simply terminates and fails using our technique. Of course, the program-
mer does not need to write the N -automaton explicitly: it could be compiled
automatically from the set of Horn clauses (in case they are of the required
form).

7 Conclusion

We have presented a framework unifying tree automata [4] with some term
schematisation languages [3]. By combining the features of both approaches,
we obtained a formalism which is strictly more expressive than the original
ones. We provided an algorithm to check the satisfiability of positive, purely
existential membership formulae, which allows one to include N -automaton
into most existing symbolic computation procedures (such as SLD-resolution in
Logic Programming). Our work extends the power of tree automata by showing
how to include integer counters and parameters. It also strictly enhances the
expressive power of term schematisations by using more general contexts.

Future works include the extension of the presented approach in order to
capture more expressive term schematisation languages such as R-terms or pri-
mal grammars, and the extension of the class of considered formulae in order to
handle formulae with negations and universal quantifiers. In the context of tree
automata this corresponds to the complement problem (i.e. compute the com-
plement of the set of terms recognized by a tree automaton) and in the context
of term schematisations, this corresponds to disunification problems [6].
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Abstract. We re-examine the standard structural operational semantics of
the π-calculus with the view that both process structure and contextual obser-
vational power should play roles in describing the behavioural theory. To that
end we provide a decomposition of the operational semantics of π which al-
lows for a systematic definition of labelled transitions. These are derived from
the calculus’ underlying reduction rules by following the contexts-as-labels
philosophy while being presented using the structural approach. Our novel
transition system refines to a composite description of the standard early lts.
We generalise our technique to higher-order and asynchronous variants.

Introduction

The π-calculus [6,14] is a foundational model for the study of mobile processes.
It has become one of the most well-known and widely studied process calculi
and extensions of it are now beginning to be used in a variety of application
areas. Each of these applications is typically based on specialising the π-calculus
to the particular domain; usually by extending one or more features of the
language. However, a weak point of this approach is that with each change, the
behavioural theory of the language must be reworked in order to accommodate
the new language features. This can be a non-trivial task and often leads to ad
hoc solutions based upon a tailor-made lts. This is an undesirable situation
and our goal is thus to develop methods by which suitable labelled transition
systems for general process languages can be systematically defined based upon
both structural rules [15] and contextual observable power [12]. This will be
difficult to achieve in general but in this paper we take our first step by showing
our approach to the problem as it applies to some π-calculus variants.

It may seem churlish of us to re-examine the well-established and finely
crafted labelled transition semantics of the π-calculus [14] but we believe a
deconstructive reading of these will deepen the understanding of ltss more
generally. In particular, we challenge the notion that structure is paramount in
giving operational semantics (cf. Plotkin’s sos [15]) and argue that if observa-
tional power is also taken in to consideration when building labelled transition
systems then the transition systems can be defined in a systematic manner such
that the resulting bisimulation equivalences are better suited for characterising
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contextually defined equivalences. In this paper we support this argument by
first considering the π-calculus without matching.

Traditional presentations of the lts of the π-calculus emphasise the struc-
tural approach while neglecting observational power. To exemplify this, consider
the standard early labelled transition rule for output actions:

a!b.P a!b−−→ P

From a purely structural point of view this rule is perfectly sensible. But, if we
consider the underlying reduction rule of π-calculus:

a!b.P ‖ a?x.Q → P ‖ Q[b/x] (1)

we see that the specific name b is parametric in this rule and does not genuinely
play a structural role in the transition labelled a!b – any context that provides an
input on a enables the passing of any other name. Indeed, in a π-calculus without
name-equality tests there actually is no context that justifies the observation of
the specific name b being communicated and the standard ‘structural’ rule is
inappropriate. This makes it untenable for us to accept the standard label above
as a canonical labelled transition of the π-calculus. However, we can resolve this
by focusing on the structure of the underlying reduction rule: we decompose
the rule in to structure provided by the process and parameters to the rule
provided by the context. In the case for output, the former of these provides a
(partial) labelled transition of the form:

a!b.P a!−→ λX.(P ‖ X(b))

in which the communication, but no further non-structural information, is rep-
resented. Here, the contribution from the context (process Q) is abstracted
away. The complete labelled transition is then obtained by allowing the context
to supply the missing parameters by applying the resulting abstraction above
to an arbitrary process. Doing this may or may not subsequently ascertain the
identity of b, depending on the power of the contexts of the language. Such out-
put transitions do not rely on subtle observational powers regarding matching
– they are generated from the reduction rule alone. A similar approach can be
taken for input transitions and thus an entire lts can be derived systematically
thereby avoiding ad hoc solutions.

The focus on the relationship of an lts with an underlying reduction sys-
tem is clearly shared with previous work on systematically deriving transition
systems from reductions [11, 12, 20, 21]. Indeed, the labels of our derived lts

have corresponding contexts which justify them from the point of view of the
contexts-as-labels approach. This does not hold for the standard early lts as
for instance there is no context that accounts for the bound-output label.

In the above-mentioned approaches, labels are defined to be contexts which
trigger reduction. However, while tied closely to observability, they suffer from
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a lack of a structural presentation. Our lts enjoys the best of both approaches
as it is presented structurally yet satisfies the contexts-as-labels criteria.

Related work We use a meta-syntax based on the simply-typed λ-calculus in
order to denote terms that have a context-component as a result of an interac-
tion. The technically related approaches in the literature include [4, 22] which
use variants of the λ-calculus as a metasyntax. The difference in approaches
arises from different underlying goals: the aforementioned works use the meta-
syntax to study systems of sos rules a posteriori, we are interested in defining
new ltss.

Milner’s [13] approach to capturing the late semantics of π using abstractions
and concretions is closer to our approach in spirit. Abstractions and concretions
are syntactic entities that arise as a result of the complementary roles of inputs
and outputs in π. In contrast to Milner, we do not need to define a special
notion of application and substitution for abstractions and concretions because
our ‘concretions’ retain structural information from the reduction rules which
enables us to use the standard notion of capture-avoiding substitution.

Structure In §1 we introduce our base-calculus, a typed version of π with-
out choice or matching, together with the meta-syntax for expressing partial
interactions. In §2 we give the sos rules which define our lts and show that
ordinary bisimilarity agrees with contextual equivalence. In §3 we show that the
sos methodology can be used also to define the standard early lts. In §4 we
show that the technique naturally generalises to higher-order and asynchronous
settings.

1 A simply-typed π-calculus (without matching)

Here we revisit the syntax, structural congruence and the reduction semantics
of π in a typed setting. We study a core language without choice and without
name equality testing as this serves to demonstrate our point well.

The syntax, the types and the axioms of structural congruence are given in
Fig. 1. A significant departure from the π-calculus is the inclusion of simply-
typed λ-terms and applications in the language. These features are not to be
considered as an extension of π-calculus, rather as a meta-language. λ-bindings
are used as meta-syntax for manipulating terms.

The type system, presented in the upper section of Fig. 2 is very simple: there
are three base types; a name type Nm and a process type Pr and a unit type
1. Our type system is used only in order to formalise the meta-syntax and is
simpler than usual π-calculus type systems based on channel types [18, Part III].
We will consider only typeable terms.

A type context consist of a finite set of names Δ together with a finite map
Γ from variables to types. We use the notation Γ, x : σ to mean the context Γ
extended with the mapping x �→ σ; implicitly it is always assumed that x is not
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σ ::= Nm | Pr | 1 | σ→σ

M ::= x | a | 0 | M‖M | M!MM | M?xM | νaM | rp(M) | 1 | λx:σ.M | M(M)

(P‖Q)‖R≡ P‖(Q‖R) P‖Q≡ Q‖P P‖0≡P

νaνbP ≡ νbνaP νa0≡ 0 νa(P‖Q)≡P‖νaQ (a/∈P ) νaP ≡ νbP [b/a] (b/∈P )

rp(P )≡ P‖rp(P ) rp(P‖Q)≡ rp(P )‖rp(Q) rp(0)≡ 0

k?xP ≡ k?yP [y/x] (y /∈fr(P )) (λx:σ.M)(N)≡ M[N/x] λx:σ.M ≡λy:σ.M[y/x] (y/∈fr(M))

Fig. 1 Types, syntax and structural congruence.

a∈Δ

(:Name)

Δ;Γ � a:Nm

Γ (x)=σ

(:Var)

Δ;Γ � x:σ

(:Null)

Δ;Γ � 0:Pr

(:Unit)

Δ;Γ � 1:1

Δ;Γ � k:Nm Δ;Γ � l:Nm Δ;Γ � P :Pr

(:OutPref)

Δ;Γ � k!lP :Pr

Δ;Γ � k:Nm Δ;Γ,x � P :Pr

(:InPref)

Δ;Γ � k?xP :Pr

Δ,a;Γ � P :Pr

(:Nu)

Δ;Γ � νaP :Pr

Δ;Γ � P :Pr Δ;Γ � Q:Pr

(:Par)

Δ;Γ � P‖Q:Pr

Δ;Γ � P :Pr

(:Rep)

Δ;Γ � rp(P ):Pr

Δ;Γ,X:σ � M:σ′

(:λ)

Δ;Γ � λX:σ.M:σ→σ′

Δ;Γ � M:σ→σ′ Δ;Γ � N:σ

(:App)

Δ;Γ � M(N):σ′

Fig. 2 Type rules of first-order π.

already in the domain of Γ . Similarly, for names, Δ, a = Δ+ {a}. We assume a
countable supply of variables of each type in addition to a separate countable
supply of name constants. We shall use the syntactic convention of a, b for name
constants, k, l for terms of name type (either constants or variables), x, y for
variables of name type, X, Y for variables generally, P, Q for terms of process
type and M, N for general terms.

A closed term V is a typeable term that does not contain free variables –
i.e. there exist Δ, σ such that Δ;∅ � V :σ (we will often write just Δ � V :σ).

Structural congruence ≡ is the smallest relation over terms that satisfies
the axioms and is closed under all the syntactic features of the calculus: the
output prefix, the input binder, the ν binder, the λ-binder and the parallel
composition. Exhibiting the non-computational role of the meta-language, β-
reduction is part of structural congruence. Our language contains three binders.
Substitution within the β-rule is the usual capture-avoiding notion with respect
to all three. Structurally congruent terms have the same type.

Definition 1 (Indexed transition system) An indexed transition system
T has states comprising pairs of a set of names Δ and a closed term V which
has its free names in Δ; i.e. the states are contained in the set { (Δ, V ) |
∃σ. Δ � V :σ }. We shall use the notation 〈Δ � V 〉 to refer to a state. Our transi-
tion systems are presented in the structural style. We make one non-standard
assumption: we work with abstract syntax and thus assume the implicit pres-
ence of the rule:
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P ′≡P 〈Δ � P 〉
α−→〈Δ′ � Q 〉 Q≡Q′

(StrCng)

〈Δ � P ′ 〉
α−→〈Δ′ � Q′ 〉

.

The choice of including the rule (StrCng) in our transition system for the
full structural congruence is a technical convenience rather than necessity and
greatly reduces the number of rules required. This allows us to concentrate on
the more interesting cases and not on the rather standard “structural” rules.
The price is that proofs based on structural induction over terms become less
straightforward. The bare minimum we require in (StrCng) is a congruence which
contains the axioms for alpha- and beta-equivalence. To implement our lts in
the absence of the full ≡ relation one would need to include symmetric rules for
parallel composition and suitable versions of the exisiting rules for replicated
processes. Notably, though, no extra rules for scoping are required as no scope
extrusion is performed in our lts.

Our first transition system is the reduction semantics for the π-calculus: rule

〈Δ � a!bP‖a?xQ 〉→〈Δ � P‖Q[b/x] 〉

and rules which close the relation under parallel composition and the ν binder.
Subject reduction is easily shown using a straightforward induction on the
derivation of the transition.

We can give an alternative definition of the reduction relation as the re-
duction relation of a reactive system [11, 12]; this style of definition makes the
parametric nature of π-reductions more explicit.

We shall first need to define a general notion of context. Contexts are con-
structed in two stages. Firstly, for each type σ, we add σ-typed holes −σ and
n-tuples (for any n ∈ N) to the syntax, together with two additional type rules,
given below. We refer to a term (V1, . . . , Vn) as a pre-context.

M ::= ... | −σ | (M,...,M) (:Hole)

Δ;Γ � −σ:σ

Δ � V1:σ1 ... Δ � Vn:σn (n∈N)
(:Tup)

Δ � (V1,...,Vn):[σ1...σn]
.

Secondly, given a pre-context of type [σ1 . . . σn] which contains m holes, we
replace each hole symbol with a unique integer from 1 to m. Such a numbering
uniquely determines a word over the set of types; the ith-letter being the type
σ′

i of the ith-numbered hole. We say that the resulting tuple (V ′
1 , . . . , V ′

n) is
a [σ′

1 . . . σ′
m] → [σ1 . . . σn] context. Each hole appears exactly once, thus the

contexts are linear.
Note that ordinary closed terms of type σ are in 1-1 correspondence (and can

be identified with) the [] → [σ] contexts. A π-context is a [Pr] → [Pr] context
that does not contain elements of the meta-language – i.e. does not contain λ-
terms or applications. An evaluation context is a π-context in which the process
hole does not appear within the scope of a prefix. Substitution is syntactic: given
a [−→σ1] → [−→σ2] context g and a [−→σ2] → [−→σ3] context f , f ◦ g is the [σ1] → [σ3]
context obtained by substituting the ith component of g for the ith hole of
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f . Context substitution may involve free names of g being captured by name
restrictions of f . The input-binder cannot capture because, by construction,
contexts do not contain free variables. A λ-term of type σ′ → σ is inherently
different from a context [σ′] → [σ], since the former is possibly non-linear and
in the latter the substitution is not capture-avoiding.

In order to consider π as a reactive system, we start with a set of name-
indexed reduction rules: pairs la, ra of [Nm, Pr, Nm→Pr]→[Pr] contexts defined

la
def= a!1Nm.2Pr ‖ a?y.3Nm→Pr(y) and ra

def= 2Pr ‖ 3Nm→Pr(1Nm).

We construct the reduction relation as follows: 〈Δ � P 〉 → 〈Δ � P ′ 〉 iff there exist
a name a, a [] → [Nm, Pr Nm → Pr] context p (the parameters) and an evalua-
tion context d such that P ≡ d◦ la ◦p and P ′ ≡ d◦ ra ◦p. The transition system
defined is the same relation as given by the inductive, structural presentation.

The reduction semantics naturally leads to a notion of contextually-defined
equivalence, the barb-congruence; defined here in the dynamic style [9]. Al-
though the results of [19] suggest that this rendering of contextual equivalence
does not coincides with that in [18] say, it is useful to point out that the results
in [19] depend crucially upon the blurring of the distinction between names
and variables and hence, as suggested in [7], we believe the two approaches to
barbed congruence to coincide in our setting.

We use the notion of strong barb: the ability to immediately input or output
on a particular channel a, denoted↓a. The natural notion of equivalence relation
on states of a typed transition system is an indexed relation.

Definition 2 (Indexed relation) A name-indexed relation R is a set of
triples (Δ, P, Q) where Δ is a finite set of names and P and Q are closed
terms typeable in Δ (Δ;∅ � P,Q:σ). We write PRΔQ for (Δ, P, Q) ∈ R.

Definition 3 (Reduction barbed congruence) Barb-congruence, denoted 
,
is the largest symmetric relation that, for any P 
Δ Q is:

(i) Reduction-preserving: if 〈Δ � P 〉 → 〈 Δ � P ′ 〉 then there exists a reduction
〈Δ � Q 〉 → 〈Δ � Q′ 〉 such that P ′ 
Δ Q′;

(ii) Barb-preserving: if 〈 Δ � P 〉↓a then 〈Δ � Q 〉↓a;
(iii) A congruence: for all π-contexts Δ′ � C:[Pr]→[Pr] we have C◦P 
Δ∪Δ′ C◦Q.

2 A structured LTS

In this section we shall describe our approach to endowing the π-calculus with
an lts. We split a labelled transition which corresponds to an interaction of
a term with a context into a process-view of the interaction (Fig. 3) and a
context-view (Fig. 4). The complete lts is obtained by combining the two (Fig.
5). We emphasise that this lts is obtained systematically from the underlying
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(In)

〈 Δ � a?xP 〉 a?−−→〈 Δ � λx:Nm. P 〉
(Out)

〈 Δ � a!MP 〉 a!−→〈 Δ � λX:Nm→Pr. P‖X(M) 〉

〈 Δ � P 〉 a!−→〈 Δ � T 〉 〈 Δ � Q 〉 a?−−→〈 Δ � U 〉
(Tau)

〈 Δ � P‖Q 〉 τ−→〈 Δ � λ·:1. T (U) 〉

〈 Δ � P 〉 α−→〈 Δ � V 〉
(Par)

〈 Δ � P‖Q 〉 α−→〈 Δ � λX. V (X)‖Q 〉

〈 Δ,a � P 〉 α−→〈 Δ,a � V 〉 a/∈α

(Res)

〈 Δ � νaP 〉 α−→〈 Δ � λX. νaV (X) 〉

Fig. 3 Process-view fragment (C).

Δ⊆Δ′ Δ′ � N:σ

(Inst)

〈 Δ � λx:σ.M 〉 N−→〈 Δ′ � (λx:σ.M)(N) 〉

Fig. 4 Canonical context actions (A).

〈 Δ � P 〉 α−→C〈 Δ � V 〉 〈 Δ � V 〉
β−→A〈 Δ′ � P ′ 〉

(Comb)

〈 Δ � P 〉
αβ−−→〈 Δ′ � P ′ 〉

Fig. 5 Combined system of complete actions (CA).

reduction rule of the π-calculus and, as such, may appear less elegant than an
optimised or ad hoc system for the same language.

We begin with the process-view lts C, with its structural rules given in Fig.
3. Here and henceforward we shall use the syntactic convention of writing T for
terms of type (Nm→Pr)→Pr and U for terms of type Nm→Pr and omit the types of
variables where they are clear from context. First, we focus on output transi-
tions: a process a!MP offering an output on a channel a, matches a subterm
of the source of the single π-calculus reduction rule. Thus, in some context,
it can engage in an interaction to evolve into (according to the target of the
same reduction rule) a process consisting of its continuation P , in parallel with
the continuation of the interacting context, Q, say. Furthermore, Q, has been
passed the communicated name M . In the process-view, the interacting context
is left unspecified and the target of the transition is a λ-abstraction that binds
a variable of type Nm → Pr (cf (Out)).

On the other hand, a process offering an input on a channel a can interact
and obtain some unspecified name – the result is a λ-abstraction that binds
a variable of type Nm (cf (In)). A process with both capabilities can perform
the synchronisation by itself – the abstractions are combined via an application
(cf (Tau)). Note that the subtleties of scope extrusion are dealt with cleanly by
leveraging the capture-free substitution of the λ-calculus metalanguage. The re-
maining rules ((Par) and (Res)) account for interaction within evaluation contexts
and are purely structural.
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Transitions which arise from process terms, as presented in Fig. 3, represent
the part of the interaction which is controlled by the process. In fact, if the sole
purpose of the lts were to structurally define the reduction relation we could
stop here as Fig. 3 fulfills this role. However, in order to characterise a contextu-
ally defined equivalence as a bisimilarity we need to account for the interactions
with arbitrary contexts. The transitions which arise from λ-abstracted terms,
presented in Fig. 4, represent these parts of interactions controlled by the con-
text. Combining the process and context views allows us to completely describe
behaviour in π. We do this in Fig. 5 by a simple conjunction of the two views
of the interaction. The labels γ here are composite actions (αβ) consisting of
both the structural process contribution α and contextual contribution β. The
context-view transitions take a very simple form, that is, applicative labels car-
rying any well-typed process. This quantification may appear rather crude but
it does at least provide a robust means of defining the context contribution
of parameters to the completed labelled transition which is insensitive to sub-
tleties in observational power of the underlying calculus. The same cannot be
said of the standard semantics of π-calculus in which the identities of trans-
mitted names are directly observed. We return to this point in §3 where we
refine CA by limiting the contextual contributions β to a more tractable class
of terms.

Owing to the construction of the lts, there are contexts which witness the
labels of CA in the sense that they induce a reduction with the same result;
moreover they are parametric in the context component provided in A. Let
μa?

def= 1Pr ‖ a!2Nm and μa!
def= 1Pr ‖ a?y.2Nm→Pr(y).

Lemma 4 (Witness contexts)

(i) If 〈Δ � P 〉
αβ−−→CA〈Δ′ � P ′ 〉 then 〈Δ′ � μα◦(1Pr,β)◦P 〉 → 〈 Δ′ � P ′ 〉 (α ∈ {a?, a!});

(ii) if 〈Δ � P 〉
τ1−→CA〈Δ � P ′ 〉 then 〈Δ � P 〉 → 〈 Δ � P ′ 〉. ��

The converse of the the first part of above lemma does not hold; the context
which triggers a reduction may provide redundant parts not vital to the actual
interaction with the term. However, a converse relationship between reductions
and labels from CA can be established provided the context can be forced to
interact with a term; this is done with the aid of a fresh auxiliary name constant
to provide a barb. This relationship is used in order to prove that contextual
equivalence is contained in bisimilarity (completeness) and in general does not
follow from our systematic derivation.

Lemma 5 (Characterising contexts) Given a name constant u fresh for P ,
let χu(a?b) def= a!b.u!, χu(a!U) def= a?x.u!.U(x) and χu(τ1) def= u!. If

〈Δ � P‖χu(γ) 〉 → 〈Δ � P ′′ 〉 with 〈Δ � P ′′ 〉↓u

and
〈Δ � P ′′‖u? 〉 → 〈Δ � P ′ 〉 with 〈Δ � P ′ 〉  ↓u



Deconstructing behavioural theories of mobility 515

M ::= . . . | M↑
Δ;Γ � k:Nm

(:Lk)

Δ;Γ � k↑:Pr

Δ⊆Δ′ a∈Δ′

(InstNm)

〈 Δ � λx.M 〉 a−→〈 Δ′ � (λx.M)(a) 〉

〈 Δ � λX.M(λx.x↑) 〉
α↑−−→〈 Δ′ � P 〉

(InstPr)

〈 Δ � λX.M 〉 α−→〈 Δ′ � P 〉

(InstUn)

〈 Δ � λ·.P 〉 1−→〈 Δ � P 〉
(Lk)

〈 Δ � a↑ 〉
a↑−−→〈 Δ � 0 〉

〈 Δ,a � P 〉
a↑−−→〈 Δ,a � P ′ 〉

(Fr)

〈Δ � νa.P 〉
(a)↑−−−→〈 Δ,a � P ′ 〉

〈 Δ � P 〉
α↑−−→〈 Δ′ � P ′ 〉

(‖Lk)

〈 Δ � P‖Q 〉
α↑−−→〈 Δ′ � P ′‖Q 〉

〈 Δ,b � P 〉
α↑−−→〈 Δ′,b � P ′ 〉

( νLk )

〈 Δ � νb.P 〉
α↑−−→〈 Δ′ � νb.P ′ 〉

Fig. 6 Refined context actions: syntax and rules (R).

then 〈Δ � P 〉
γ−→ 〈 Δ � P ′ 〉. The converse of this also holds. ��

Given the lts generated by CA, we can make use of the standard notion
of (strong) bisimilarity which we denote by ∼CA. The close relationship of CA
with the underlying reduction system means that it is straightforward to prove
that bisimilarity is a congruence.

Proposition 6 ∼CA is preserved by all π-contexts. ��
These propositions and the fact that bisimilarity is barb-preserving are sufficient
to establish soundness (∼CA implies 
). The conclusion of Lemma 5 also lets
us demonstrate completeness (
 implies ∼CA) because every label of CA can
be simulated as a barb-sensitive reduction.

Theorem 7 ∼CA = 
. ��
The reader may like to compare this with a related result in [2] in which so-
phisticated mappings of extruded names are required in the definition of the
lts. Although the result there captures the equivalence using a more tractable
lts, our approach captures the same equivalence in a systematic way which
extends immediately to π-calculus with matching and further variants. It is the
robustness of our technique which is of value here.

3 Refining context actions

In the calculus above we did not include a choice operator and test for name
equality. It can be shown that in this setting standard early bisimilarity does
not agree with barbed congruence [2]. However, bisimilarity on our novel lts

does (cf. Theorem 7). More significantly though, the proof of this theorem does
not rely on the ability to compare names and remains true in the presence of
matching.
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As is well known, when name equality is present in the π-calculus, standard
early bisimilarity does happen to provide a labelled characterisation of barbed
congruence. In this section we shall show that the early lts for π can itself be
decomposed into our process and context views analogously to the presentation
of CA. Although we do not derive this refinement in a systematic manner, it
turns out that the standard lts can still usefully be construed as combination
of the base structural rules C and a refinement of the context-view transitions
A. We include the standard early lts S in Appendix 5 for reference.

Technically the refinement is achieved by introducing a new part of the meta-
language – a term k↑ of process type where k is a term of name type; the syntax
and the additional type rule are presented in the upper section of Fig. 6. This
meta-term interacts with the syntactic features of π as shown by rules (Lk), (‖Lk),
(νLk) and (Fr) in the lower part of Fig. 6. The label k↑ is an abbreviation for the
observation of a successful interaction of a context that tests the identity of the
name k, while the label (x)↑ is an abbreviation for the observation of a fresh
name. Thus, the rule (Fr) is related to the (Open) rule in S but, unlike (Open), this
rule is divorced from the underlying communication rules. Instead of allowing
an instantiation by an arbitrary process as we find in A, (InstPr) simply relays
the observation of the meta-process λx.x↑; name bindings are dealt canonically,
as shown by (InstNm).

We shall consider the system CR that is obtained by combining the C system
with the refined system R, analogously to how the system CA was obtained via
the rules presented in Fig. 5. Using structural analysis it is not difficult to
prove that CR and S are equal in the sense that (up to minor relabeling on τ
transitions) exactly the same transitions are derived.

Theorem 8 CR = S. ��
As an immediate corollary of Theorem 7 (with matching), Theorem 8 and the

known result that standard early bisimilarity ∼S coincides with 
 we obtain:

Corollary 9 ∼S = ∼CR = ∼CA = 
. ��

4 Modular variants of the π-calculus

We believe that splitting an lts into a process-view and a context-view, based on
the underlying reductions, naturally leads to more modular and robust theories.
In order to justify this belief, we now apply these ideas to two variants of the π-
calculus: the higher-order π-calculus and the asynchronous π-calculus. For the
former, it should be of no surprise that this can be done as the original ltss for
the higher-order π-calculus are presented using concretions and abstractions and
so avoid difficulties with scope extrusion [17]. For the asynchronous language
only the communication fragment differs and thus we expect to isolate any
changes to the lts to that for the process-view C.
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Δ;Γ � M:Pr Δ;Γ � k:Nm Δ;Γ � R:Pr

(:OutPref)

Δ;Γ � k!RM:Pr

Δ;Γ,x:Pr � M:Pr Δ;Γ � k:Nm

(:InPref)

Δ;Γ � k?xM:Pr

Fig. 7 Type rules for second-order.

(InstTr)

〈 Δ � λx.M 〉 Tr−→〈 Δ,a � (λx.M)(a↑) 〉

(InstAb)

〈 Δ � λX.M 〉 Ab−−→〈 Δ,a � (λX.M)(λy.a↓(y)) 〉

(TrOut)

〈 Δ � a↑ 〉
a↑−−→〈 Δ � 0 〉

(TrIn)

〈 Δ � a↓(P ) 〉
a↑−−→〈 Δ � P‖a↓(P ) 〉

〈 Δ � P 〉
a↑−−→ 〈 Δ � P ′ 〉

(‖Tr)

〈 Δ � P‖Q 〉
a↑−−→ 〈 Δ � P ′‖Q 〉

〈 Δ,b � P 〉
a↑−−→ 〈 Δ,b � P ′ 〉

(νTr)

〈 Γ � νbP 〉
a↑−−→ 〈 Γ � νbP ′ 〉

Fig. 8 Refined context actions: second-order (Rso).

4.1 The higher-order π-calculus

Following [17], to simplify the presentation we will actually present the lts for
the second-order π-calculus In order to define the second-order π-calculus we
simply need to modify the type system in Fig. 2 to allow the communication of
process terms rather than names. The new type rules for input and output are
given in Fig. 7.

Now, remarkably, modulo types, the rules of Fig. 3 need no modifications
whatsoever. That is, up to typing, the ccs style communication core is identical
for both first and higher-order languages. Perhaps more remarkably, the rules
in Fig. 4 and Fig. 5 need no modifications either. The differences between the
first- and second-order languages are dealt with using types alone.

In essence, the notion of bisimilarity yielded by CA for the second-order
language is Sangiorgi’s context bisimilarity [17]. It is therefore interesting to
note by analogy that ∼CA provides a definition of context bisimulation for the
first-order π-calculus. As for the first-order case though, context bisimulation
is unattractive due to its reliance upon context actions containing arbitrary
(typed) process terms. It is known [10, 17] that context bisimulation can be
refined to so-called ‘normal’ bisimulation, much in the same way as the CA
system is refined to R by using a limited form of context action. We give the
rules for the second-order refined system Rso, in Fig. 8. In this case however,
we need to adjust the completed actions system, CA, to include the rule

〈Δ � P 〉
a↑−→Rso 〈Δ � P ′ 〉

(CTr)

〈Δ � P 〉
a↑−→ 〈Δ � P ′ 〉
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and by combining C and Rso using this augmented CA, we obtain the refined
system CRso for second-order π-calculus.

In order to present the refined system, again we introduce an augmented
meta-language. This takes the form of processes a ↑ : Pr and process abstrac-
tions a ↓ : Pr → Pr. These are entirely analogous to the triggers and abstractions
of [17]. The behaviour of the ‘trigger’ process a ↑ is simply to announce itself
whenever it is executed and the ‘abstraction’ a ↓ (P ) will repeatedly allow
copies of P to be accessed by calling on the name a. We know from [10, 17]
that these syntactic gadgets actually have real syntactic counterparts in the
second-order language and are in effect just macros. We also know from [10,17]
that bisimulation equivalence generated by this refined lts (∼CRso) coincides
with context bisimilarity over second-order processes (∼CA).

4.2 The asynchronous π-calculus

There is an established [3, 8] presentation of the variant of the π-calculus in
which all communication is done asynchronously. This involves simply restrict-
ing the syntax of the language such that the residual of any output prefix is the
nil process. The obvious effect of this is such that no process can be blocked
waiting on a send of data. A less obvious effect is that this language restric-
tion actually impacts upon the behavioural theory of the language considerably
and makes inputs unobservable. This is well-accounted for in the literature [1],
but here we show that a simple modification to the combined module CA only
can also account for the change in behavioural theory. We think of the CA
transitions as observations that an interacting process can make. We include an
additional rule which allows one to make an artificial a?b observation predicated
upon some unobservable activity in P when offered a!b by the context.

To obtain an lts appropriate for the asynchronous language we define the
system CAa by adding the following rule to CA:

〈Δ � P 〉
τ−→C〈Δ � P ′ 〉 〈Δ � λx. P ′‖a!x 〉

b−→A〈 Δ′ � P ′′ 〉
(aIn)

〈Δ � P 〉
a?b−−→CA〈Δ′ � P ′′ 〉

This CAa system can also be used to combine the R system with C to yield the
corresponding system CRa and the techniques described above can easily be
applied to the asynchronous variant of the language also to establish analogous
results.
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Conclusion and future work

We have provided a new way of understanding the well-trodden labelled transi-
tion semantics of the π-calculus. Our approach attempts to combine the struc-
tural approach to semantics with the contexts-as-labels approach in order to
obtain systematically defined labelled transition systems for process calculi. In
this paper we have shown that this approach works very well for the π-calculus
and we believe that the technique is robust and widely applicable. We have
applied our approach to the ambient calculus [5] for which we have obtained a
new, systematically derived, labelled transition system along with a sound and
complete context-bisimilarity for that language [16]. Furthermore we plan to
develop a general setting for our approach to pursue the synthesis of labelled
transition systems from reduction rules in the spirit of [11, 12, 20, 21].
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5 Standard early labelled transitions, typed (S)

For reference purposes, we list below the standard early labelled transition
system semantics for the π-calculus. They have been adapted to our typed
setting but remain substantially the same as can be found in say, [18].

Δ⊆Δ′ b∈Δ′

(In)

〈Δ � a?xP 〉
a?b−−→〈Δ′ � P [b/x] 〉

(Out)

〈 Δ � a!bP 〉
a!b−−→〈Δ � P 〉

〈 Δ � P 〉
a!b−−→〈Δ � P ′ 〉 〈Δ � Q 〉

a?b−−→〈Δ � Q′ 〉
(Comm)

〈Δ � P‖Q 〉
τ−→〈Δ � P ′‖Q′ 〉

〈Δ,b � P 〉
a!b−−→〈 Δ,b � P ′ 〉 (a�=b)

(Open)

〈Δ � νbP 〉
a!(b)−−−→〈Δ,b � P ′ 〉

〈 Δ � P 〉
a!(b)−−−→〈Δ,b � P ′ 〉 〈 Δ � Q 〉

a?b−−→〈Δ,b � Q′ 〉
(Close)

〈Δ,b � P‖Q 〉
τ−→〈Δ � νb(P ′‖Q′) 〉

〈 Δ � P 〉
α−→〈Δ′ � P ′ 〉

(Par)

〈 Δ � P‖Q 〉
α−→〈 Δ � P ′‖Q 〉

〈Δ,a � P 〉
α−→〈Δ′,a � P ′ 〉 a/∈α

(Res)

〈Δ � νaP 〉
α−→〈Δ′ � νaP ′ 〉



Adequacy of Compositional Translations for
Observational Semantics

Manfred Schmidt-Schauß1, Joachim Niehren2, Jan Schwinghammer3, and
David Sabel4

1 J. W. Goethe-Universität, Frankfurt, Germany,
schauss@ki.informatik.uni-frankfurt.de

2 INRIA, Lille, France, Mostrare Project
3 Saarland University, Saarbrücken, Germany

4 J. W. Goethe-Universität, Frankfurt, Germany,
sabel@ki.informatik.uni-frankfurt.de

Abstract. We investigate methods and tools for analysing translations between pro-
gramming languages with respect to observational semantics. The behaviour of pro-
grams is observed in terms of may- and must-convergence in arbitrary contexts, and
adequacy of translations, i.e., the reflection of program equivalence, is taken to be
the fundamental correctness condition. For compositional translations we propose a
notion of convergence equivalence as a means for proving adequacy. This technique
avoids explicit reasoning about contexts, and is able to deal with the subtle role of
typing in implementations of language extensions.

1 Introduction

Proving correctness of program translations on the basis of operational semantics is an
ongoing research topic (see e.g. the recent [7, 18]) that is still poorly understood when
it comes to concurrency and mutable state. We are motivated by implementations of
language extensions that are often packaged into the language’s library. Typical exam-
ples are implementations of channels, buffers, or semaphores using mutable reference
cells and futures in Alice ML [1, 12], or using MVars in Concurrent Haskell [13]. En-
suring the correctness of such implementations of higher-level constructs is obviously
important.

In this paper we adopt an observational semantics based on may- and must-
convergence. Two programs are considered equivalent if they exhibit the same may-
and must-convergence behaviour in all contexts. This definition is flexible and has
been applied to a wide variety of programming languages and calculi in the past. The
observation of may- and must-convergence is particularly well-suited for dealing with
nondeterminism as it arises in concurrent programming [2, 17, 11].

We study implementations of language extensions in the compilation paradigm, i.e.,
by viewing them as translations T : L → L′ from a language L into another language
L′. Such translations are usually compositional in that T (C[t]) = T (C)[T (t)] for all
contexts C and programs t of L. In a naive approach, one might even want to assume
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that L is a conservative extension of L′ so that (non-)equivalences of L′ continue to
hold in L. However, this fails in many cases (see below) due to subtle typing problems.

A translation T : L → L′ is adequate if T (s) ∼L′ T (t) implies s ∼L t for all pro-
grams s and t of L, where ∼L and ∼L′ are the program equivalences of the respec-
tive languages. Adequacy is the basic correctness requirement to ensure that program
transformations of the target language L′ can be soundly applied with respect to obser-
vations made in the source language L.

Suppose a translation T (s) is optimized to an equivalent program s′ ∼L′ T (s) and that
s′ is the translation of some t, i.e. T (t) = s′. Any useful notion of correctness must
enforce that s and t are indistinguishable, i.e. s ∼L t. This is precisely what adequacy
of T guarantees. With respect to implementations, adequacy opens the possibility of
transferring contextual equivalences from the target language L′ to the source language
L. For non-deterministic and concurrent languages, such equivalences have been estab-
lished for instance by inductive reasoning using diagram-based methods directly on an
underlying small-step operational semantics [6, 11].

Full abstraction extends adequacy by the inverse property, i.e., that program equiv-
alence is also preserved by the translation. In the general situation, however, the lan-
guage L′ may be more expressive than L and allows us to make more distinctions,
also on the image T (L). Thus we can have T (s)�∼L′T (t) for some expressions s,t with
s ∼L t.

In denotational semantics, adequacy and full abstraction are well-studied concepts.
In contrast, in this paper we provide a general criterion for proving adequacy of trans-
lations that is not tied to specific models. More precisely, we show that convergence
equivalence implies adequacy of compositional translations, meaning it is enough to
establish that all convergence tests yield the same results before and after the transla-
tion. We also provide a criterion for the full abstractness of compositional translations
for which the target language is a conservative extension of the source language.

In order to demonstrate these tools, we consider the standard Church encoding of
pairs in a call-by-value lambda calculus with a fixed point operator and nondetermin-
istic choice. In order to reason that the encoding of pairs is adequate, one needs to
check, for all lambda terms t with pairs and projections, that reduction from t may-
converges (must-converges, respectively) if and only if reduction from its encoding
T (t) may-converges (must-converges, respectively). However, even in this seemingly
well-understood example, this condition fails if the lambda calculus is untyped, since
the implementation may remove errors, i.e., T (t) terminates more often than t. If the
source-language is typed so that stuck expressions are excluded, then our tools apply in
a smooth way and show the adequacy of the standard translation, even for differently
typed versions of the lambda calculus that is used as target language. Since neither
simple typing nor Hindley-Milner polymorphic typing are sufficient to make the source
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language an extension of the target language, we cannot expect to have an extension
situation under type systems that are commonly used in programming languages.

Related work. Various proof methods have been developed for establishing con-
textual equivalences. These include context lemmas (e.g., [9]), bisimulation methods
(for instance, [5]), diagram-based methods (e.g., [6, 11]), and characterizations of con-
textual equivalence in terms of logical relations (e.g. [14]). In most cases, language
extensions and their effect on equivalences are not discussed. There are some notable
exceptions: a translation from the core of Standard ML into a typed lambda calculus
is given in [16], and full abstraction is shown by exhibiting an inverse mapping, up to
contextual equivalence. Adequate translations (with certain additional constraints) be-
tween call-by-name and call-by-value versions of PCF are considered in [15], via fully
abstract models (necessitating the addition of parallel constructs to the languages) and
domain-theoretic techniques. The fact that adequate (and fully abstract) translations
compose is exploited in [8], where a syntactic translation is used to lift semantic mod-
els for FPC to ones for the lazy lambda calculus. In a similar vein, the recent [18]
develops a translation from an aspect-oriented language to an ML-like language, to
obtain a model for the former. The adequacy proof follows a similar pattern to ours,
but does not abstract away from the particularities of the concrete languages.

Shapiro [20] categorizes implementations and embeddings in concurrent scenarios,
but does not provide concrete proof methods based on contextual equivalence. For
deterministic languages (where may- and must-convergence agree), frameworks simi-
lar to our proposal were considered by Felleisen [4] and Mitchell [10]. Their focus is
on comparing languages with respect to their expressive power; the non-deterministic
case is only briefly mentioned by Mitchell. Mitchell’s work is concerned with (the im-
possibility of) translations that additionally preserve representation independence of
ADTs, and consequently assumes, for the most part, source languages with expres-
sive type systems. Felleisen’s work is set in the context of a Scheme-like untyped
language. Although the paper discusses the possibility of adding types to get stronger
expressiveness statements, the theory of expressiveness is developed by abandoning
principles similar to adequacy.

Outline. Section 2 recalls the encoding of pairs in the non-deterministic lambda cal-
culus, introduces rigorous notions of observables, and illustrates the need for types. In
Section 3 a general framework for proving observational correctness as well as ade-
quacy of translations is introduced. Section 4 shows the adequacy of the pair encoding
using a simple type system and discusses two extensions.

2 Non-deterministic Call-by-Value Lambda Calculi

In this section, we recall the call-by-value lambda calculus with a fixed point opera-
tor and nondeterministic choice, and present its observational semantics on the basis
of may- and must-convergence. We illustrate why Church’s encoding of pairs in this
calculus fails to be observationally correct in the untyped case.



524 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

x,y ∈ Var

r, s, t ∈ Expcp ::= w | t1 t2 | t1 ⊕ t2
v,w ∈ Valcp ::= x | λ x.t | unit | fix

| (w1,w2) | fst | snd

Fig. 1 Syntax of λcp

E ::= [] | E t | wE | | E⊕ t | w⊕E

Fig. 2 Evaluation Contexts E

(β -CBV) E[(λ x.t) w] → E[t[w/x]]

(FIX) E[fix λ x.t] → E[t[(λ y.(fix λ x.t)y)/x]]

(⊕L) E[w1 ⊕w2] → E[w1]

(⊕R) E[w1 ⊕w2] → E[w2]

(SEL-F) E[fst(w1,w2)] → E[w1]

(SEL-S) E[snd(w1,w2)] → E[w2]

Fig. 3 Small-Step Reduction

2.1 Languages

The calculus λcp is the usual call-by-value lambda calculus extended by a (demonic,
see [21]) choice operator, a call-by-value fixed point operator for recursion, pairs
(w1,w2) and selectors fst and snd as data structure, and a constant unit. Fixing a set of
variables Var, the syntax of expressions Expcp and values Valcp is shown in Fig. 1. The
subcalculus λc is the calculus without pairs and selectors and will be used as target
language. We use Expc (Valc, resp.) for the set of λc-expressions (λc-values, resp.).

A context C is an expression with a hole denoted with [ ], C[s] is the result of placing
the expression s in the hole of C. For both calculi we require call-by-value evaluation
contexts E which are introduced in Fig. 2. With s1[s2/x] we denote the capture-free
substitution of variable x with s2 for all free occurrences of x in s1. To ease reasoning
we assume that the distinct variable convention holds for all expressions, i.e. that the
bound variables of an expression are all distinct and free variables are distinct from
bound variables.

The reduction rules for both calculi are defined in Fig. 3. Small step reduction →cp

of λcp is the union of all six rules, and small step reduction →c of λc is the union of the
first four rules. We assume that reduction preserves the distinct variable convention by
implicitly performing α-renaming if necessary.

2.2 Contextual Equivalence

Let Exp be a language, let Val ⊆ Exp be a set of values and → be a reduction relation.
Then may-convergence for expressions s ∈ Exp is defined as s↓ iff ∃v ∈ Val : s

∗−→ v,
and must-convergence is defined as s⇓ iff ∀s′ : s

∗−→ s′ =⇒ s′ ↓. For a discussion and
motivations for the latter notion see [2, 17, 11]. Note that there is also another notion
of must-convergence found in the literature (e.g. [3]), which holds if an expression has
only evaluations to values, in particular, if the expression has no infinite evaluations
(i.e. if s �→ω ).

For an expression s we also write s⇑ if s ↓ does not hold, and say that s is must-
divergent. We write s ↑ if s is not must-convergent and then say s is may-divergent.
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enc(x) = x enc(fix) = fix
enc(unit) = unit enc((w1,w2)) = λ s. (s enc(w1) enc(w2))
enc(λ x.t) = λ x.enc(t) enc(fst) = λ p. (p λ x.λ y.x)
enc(t1 t2) = enc(t1) enc(t2) enc(snd) = λ p. (p λ x.λ y.y)
enc(t1 ⊕ t2) = enc(t1)⊕ enc(t2)

Fig. 4 Translation of λcp into λc

Note that may-divergence can equivalently be defined as s ↑ iff ∃s′ ∈ Exp : s
∗−→

s′ and s′ ⇑. This view allows us to use inductive proofs for showing may-divergences.
For Expc,Valc, and →c we use ↓c for may-convergence and ⇓c for must-convergence.
Accordingly for Expcp,Valcp, and →cp we use ↓cp and ⇓cp for the predicates.

Contextual equivalence for a (non-deterministic) calculus (Exp,Val,→) is defined
by observing may- and must-convergence in all contexts. We first define two preorders
for both predicates:

s1 ≤↓ s2 iff ∀C : C[s1]↓ =⇒ C[s2]↓ s1 ≤⇓ s2 iff ∀C : C[s1]⇓ =⇒ C[s2]⇓

These are combined to obtain the contextual preorder ≤ as their intersection ≤↓ ∩ ≤⇓,
and the contextual equivalence ∼ as ≤ ∩ ≥. To distinguish between the relations for
λc and λcp, we index the symbols for the preorders and equivalence with c or cp,
respectively, e.g. contextual equivalence in λc is ∼c, and contextual preorder in λcp is
≤cp.

2.3 Implementation of Pairs

We will mainly investigate the translation enc of λcp into λc as defined in Fig. 4 under
different restrictions. Conversely, it is trivial to encode λc into λcp via the identity
inc(s) = s (which is more an embedding than a translation).

The following counter example shows that the implementation of pairs is not correct
in the untyped setting.

Example 2.1. Let t := fst(λ z.z). Then t⇑cp, since t is irreducible and not a value. How-
ever, the translation enc(t) results in the expression t ′ := (λ p.p (λ x.λ y.x)) (λ z.z),
which deterministically reduces by some (β -CBV)-reductions to λ x.λ y.x, hence
enc(t)⇓c. This is clearly not a correct translation, since it removes an error. There-
fore, the observations are not preserved by this translation. This example also invali-
dates the implication T (p1) ≤c T (p2) =⇒ p1 ≤cp p2, since enc(t ′) = t ′, and hence
enc(t ′) = t ′ ≤c t ′ = enc(t), but t ′ �≤cp t by the arguments above. In the terminology of
Definition 3.2 below, the translation enc is not adequate.

This counter example is also valid for deterministic calculi, where may- and must-
convergence coincide. There, it is possible to circumvent the problem by weaken-
ing the definition of correctness to only one direction of the logical equivalence,
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s ↓ =⇒ T (s) ↓, but this results in weaker properties and is not the appropriate no-
tion for compilations. In particular, this notion of correctness of a translation (which
is called weak expressibility in [4]) implies the correctness of a trivial translation that
maps all expressions to a (may-) convergent expression.

One potential remedy to the failure of the untyped approach to correctness of trans-
lations is to distinguish divergence from typing errors. From a different point of view,
this simply means that only correctly typed programs should be considered by a trans-
lation: in Section 4.1 we will obtain adequacy after adding a type system to λcp.

3 Adequacy of Translations

We present a general framework for reasoning about different notions of language
translations which are related to correctness.

We assume that languages come equipped with a small-step operational seman-
tics and a notion of observables, expressed through convergence tests, with respect to
which contextual equivalence can be defined. Since we are interested in concurrent
calculi, a typical case will be the observations of may- and must-termination behavior,
as introduced in the previous section. In the following we generalize slightly and, in-
stead of contexts, speak of observers: this makes it easier to fit formalisms without an
obvious notion of context into the framework, like abstract machines.

Definition 3.1. A program calculus with observational semantics (OSP-calculus) con-
sists of the following components:

- A set T of types, ranged over by τ .
- For every type τ , a set Pτ of programs, ranged over by p.
- For every pair τ1,τ2 of types, a set of functions Oτ1,τ2 with O : Pτ1 → Pτ2 for O ∈

Oτ1,τ2 , called observers, such that also the identity function Idτ is included in Oτ,τ
for every type τ , and such that

⋃

τ1,τ2∈T Oτ1,τ2 is closed under function composition
whenever the types are appropriate.

- A set {⇓1, . . . ,⇓n} of convergence tests with ⇓i:
⋃

τ∈T Pτ → {true, false} for all
i = 1, . . . ,n.

This definition is also applicable to the special case of deterministic calculi, where usu-
ally only a single termination predicate is considered. Moreover, it allows for untyped
calculi like λcp by considering a single, ‘universal’ type. The calculus λcp then fits this
definition of OSP-calculus, after identifying a context C with the map t �→ C[t], and
taking {⇓1,⇓2} = {↓cp, ⇓cp}.

Since this framework has arbitrary observers (not only contexts) and there are types,
the observational preorders at type τ are defined as follows, where p1, p2 ∈ Pτ :

- p1 ≤⇓i,τ p2 iff for all τ ′ ∈ T and all O : τ → τ ′, O(p1) ⇓i implies O(p2) ⇓i.
- p1 ≤τ p2 iff ∀i : p1 ≤⇓i,τ p2.
- p1 ∼τ p2 iff p1 ≤τ p2 and p2 ≤τ p1.
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The relations ≤⇓i,τ and ≤τ are precongruences, i.e. they are preorders, and p1 ≤⇓i,τ
p2 implies ∀O : τ → τ ′ : O(p1) ≤⇓i,τ ′ O(p2). For proving the latter implication let
O′ be an observer with O′(O(p1)) ⇓i. Then O′ ◦ O is also an observer, hence O′ ◦
O(p2) ⇓i. Obviously, the same holds for ≤τ . The relation ∼τ is a congruence, i.e. it is
a precongruence and an equivalence relation.

In the following we only consider translations between OSP-calculi that have the
same number n of convergence tests {⇓1, . . . ,⇓n}, in a fixed ordering. We define some
characterizing notions of translations. In the remainder of this section we exhibit their
dependencies and prove some consequences.

Definition 3.2. A translation T : C → C ′ between two calculi C = (T ,P,O,≤) and
C ′ = (T ′,P ′,O ′,≤′) maps types to types T : T → T ′, programs to programs T :
Pτ →P ′

T (τ), and observers to observers T : Oτ,τ ′ →O ′
T (τ),T (τ ′) such that their types

correspond for all τ,τ ′ ∈ T and such that T (Idτ) = IdT (τ) for all τ .

Adequacy. A translation T is adequate iff for all τ , and p1, p2 ∈ Pτ , T (p1) ≤′
T (τ)

T (p2) =⇒ p1 ≤τ p2.
Full abstraction. A translation T is fully abstract iff for all τ , and p1, p2 ∈ Pτ ,

p1 ≤τ p2 ⇐⇒ T (p1) ≤′
T (τ) T (p2).

Observational correctness. A translation T is observationally correct iff for all τ ,
p ∈ Pτ ,O ∈ Oτ,τ ′ and all i: O(p) ⇓i if and only if T (O)(T (p)) ⇓′

i.
Convergence equivalence. A translation T is convergence equivalent (i.e. preserves

and reflects convergence) iff for all p and convergence tests ⇓i: p ⇓i if and only if
T (p) ⇓′

i.
Compositionality. A translation T is compositional iff for all types τ,τ ′ ∈ T , for

all observers O ∈ Oτ,τ ′ and all programs p ∈ Pτ we have T (O(p)) = T (O)(T (p)).

If in the following types are omitted, we implicitly assume that type information fol-
lows from the context.

As motivated in the Introduction, we consider adequacy as the right notion of cor-
rectness. Observational correctness is a sufficient criterion for adequacy (see Propo-
sition 3.3). Convergence equivalence is implied by observational correctness, since T
preserves identity observers. For compositional translations, the converse is true, i.e.,
it is sufficient to prove convergence equivalence in order to prove observational cor-
rectness. Full abstraction is not necessary for the adequacy of translations. If it holds
in addition, for surjective translations it means that both program calculi are identical
w.r.t. ≤.

Note that Definition 3.2 is stated only in terms of convergence tests and sets of
observers, and hence only relying on the syntax and the operational semantics. Thus
it can be used in all calculi with such a description. In the case of two calculi with
convergence tests defined in terms of a small-step semantics, the definition also allows
for reduction sequences in the translation that may lead outside of the image of the
translation, i.e., that may not be retranslatable.

Proposition 3.3. For a translation T the following hold:
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1. If T is compositional, then T is convergence equivalent if and only if T is observa-
tionally correct.

2. If T is observationally correct, then T is adequate.

Proof. 1. The only if direction holds, since T preserves identity observers: Idτ (p) ⇓i

⇐⇒ T (Idτ)T (p) ⇓′
i ⇐⇒ IdT (τ)T (p) ⇓′

i ⇐⇒ T (p) ⇓′
i.

For the if-direction let us assume that T is compositional and convergence equiv-
alent. If O(p) ⇓i, then preservation of convergence yields T (O(p)) ⇓′

i. Composi-
tionality implies T (O(p)) = T (O)(T (p)), hence T (O)(T (p)) ⇓′

i. If T (O)(T (p)) ⇓′
i

then compositionality implies T (O(p)) ⇓′
i so that reflection of convergence yields

O(p) ⇓i.
2. To show adequacy, let us assume that T (p1)≤T (τ) T (p2). We must prove that p1 ≤τ

p2. Thus let O be such that O(p1) ⇓i. By observational correctness this implies
T (O)(T (p1)) ⇓′

i. From T (p1) ≤T(τ) T (p2), we obtain T (O)(T (p2)) ⇓′
i, since T (O)

is an admissible observer. Observational correctness in the other direction implies
O(p2) ⇓i. This proves p1 ≤τ p2. ��
As the following counter examples show, convergence equivalence is in general not

sufficient for adequacy, and full abstraction is not implied by observational correctness.
Similarly, convergence equivalence is not even implied by full abstraction (and thus
neither by adequacy):

Example 3.4 (Convergence equivalence does not imply adequacy). Let the OSP-
calculus L have three programs: a,b,c with a ↑, b ↓ and c ↓. Assume there are two
observers O1,O2 with O1(x) = x and O2(a) = a,O2(b) = a,O2(c) = c. Then b �∼L c.
The language L′ has three programs A,B,C with A↑, B↓ and C↓. There is only the iden-
tity observer O in L′. Then B ∼L′ C. Let the translation be defined as T : L → L′ with
T (a) = A,T (b) = B,T (c) = C, and T (O1) = T (O2) = O. Then convergence equiva-
lence holds, but neither equational adequacy nor observational correctness. Note that
T is not compositional, since T (O2(b)) = A while T (O2)(T (b)) = O(B) = B.

Example 3.5 (Observational correctness does not imply full abstraction). A simple ex-
ample taken from [10] is the identity encoding from the OSP-calculus λcp without the
projections fst and snd into full λcp. Then, in the restricted OSP-calculus, all pairs
are indistinguishable but the presence of the observers (here simply taken as contexts)
fst [·] and snd [·] in λcp permits more distinctions to be made.

Example 3.6 (Convergence equivalence is not implied by full abstraction). A trivial
example is given by two calculi C with p⇓ for all p, and C ′ with the same programs
and ¬p⇓′ for all p. For the translation T (p) = p for all p it is clear that ∀p1, p2 : p1 ≤
p2 ⇐⇒ T (p1) ≤′ T (p2) holds, but T does not preserve convergence.

By standard arguments it can be shown that translations compose:

Proposition 3.7. Let C ,C ′,C ′′ be program calculi, and T : C → C ′ , T ′ : C ′ → C ′′
be translations. Then T ′ ◦T : C → C ′′ is also a translation, and for every property P
from Definition 3.2, if T,T ′ have property P, then also the composition T ′ ◦T.
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We now consider the case that only new language primitives are added to a lan-
guage, together with their operational semantics, which are then encoded by the trans-
lation. This is usually known as removing ‘syntactic sugar’.

Definition 3.8. An OSP-calculus C is an extension of the OSP-calculus C ′ iff there is
a compositional translation ι : C ′ → C , called an embedding, which is injective on the
expressions, types and observers, and is convergence equivalent.

Informally, this can be described (after identifying C ′-programs with their image
under ι) as follows: every C ′-type is also a C -type, P ′

τ ⊆ Pτ , and O ′
τ,τ ′ is a subset of

Oτ,τ ′ , and the test-predicates coincide on C ′-programs. The embedding of O ′
τ,τ ′ into

Oτ,τ ′ is slightly more involved, since the C ′-observers are restrictions (as functions) of
C -observers. Note that for the case of contexts as observers, the embedding of O ′

τ,τ ′
into Oτ,τ ′ is unique. The conditions imply that an embedding ι is adequate, but not
necessarily fully abstract.

If C is an extension of C ′, then an observationally correct translation T : C →C ′ (plus
some obvious conditions) has the nice consequence of T and ι being fully abstract.

An example for an embedding is the trivial embedding inc : λc → λcp, which is ad-
equate by Proposition 3.3, since the embedding inc is compositional and convergence
equivalent. This allows us to reason about contextual equivalence in λcp and transfer
this result to λc, i.e. a proof of t1 ∼cp t2 where t1,t2 are also expressions of λc directly
shows t1 ∼c t2. Disproving an equivalence in λcp, however, does not imply that this
equivalence is false in λc.

Proposition 3.9 (Full Abstraction for Extensions). Let C be an extension of C ′, and
let T : C → C ′ be an observationally correct translation, such that T ◦ ι is the identity
on C ′-programs, on C ′-observers, and on C ′-types. Then the translation T as well as
the embedding ι are fully abstract.

Proof. First we show that T is fully abstract. Adequacy follows from Proposition 3.3. It
remains to show the converse condition for full abstraction. Let p1, p2 be C -programs
of type τ , and assume p1 ≤⇓i,τ p2. We have to show that T (p1) ≤′

⇓i,T (τ) T (p2). Let O′

be a C ′-observer with O′(T (p1)) ⇓′
i. Then by definition of ι there exists an observer O

of C with O := ι(O′). Since T ◦ ι is the identity, we have T (O) = O′ and thus we obtain
T (O)(T (p1))⇓′

i. Observational correctness implies that O(p1)⇓i. From p1 ≤⇓i,τ p2 we
now derive O(p2) ⇓i. Again observational correctness can be applied and shows that
T (O)(T (p2)) ⇓′

i. This is equivalent to O′(T (p2)) ⇓′
i. Since the observer O′ was chosen

arbitrarily, we have T (p1) ≤′
⇓i,T (τ) T (p2).

The embedding ι is already shown to be adequate. The missing direction, i.e. that
ι(p1) ≤′

⇓i,T (τ) ι(p2) implies p1 ≤′
⇓i,τ p2 follows from full abstraction of T and the

assumption that T ◦ ι is the identity. ��



530 M. Schmidt-Schauß, J. Niehren, J. Schwinghammer, D. Sabel

(.,.) :: ∀α ,β .α → β → (α ,β )
fst :: ∀α ,β .(α ,β )→ α
snd :: ∀α ,β .(α ,β )→ β

unit :: unit
⊕ :: ∀α .α → α → α
fix :: ∀α ,β .((α → β ) → (α → β )) → (α → β )

Fig. 5 Types of constants

4 Adequacy of Pair Encoding

We analyze the translation enc on the untyped language λc. Inspecting the definition
of enc the following lemma is easy to verify:

Lemma 4.1. For all s ∈ λcp: s is a λcp-value iff enc(s) is a λc-value.

Lemma 4.2. Let t ∈ λcp with t ↓cp, then enc(t)↓c.

Proof. Let t0 ∈ λcp with t ↓cp, so t0 →cp t1 →cp · · · →cp tn where tn is a value. We
show by induction on n that enc(t0) ↓c. If n = 0 then t0 is a value and enc(t0) must
be a value, too, by Lemma 4.1. For the induction step we assume the induction hy-
pothesis enc(t1) ↓c. Hence, it suffices to show enc(t0)

∗−→c enc(t1). If t0 →cp t1 is a
(β -CBV), (FIX), (⊕L), or (⊕R) reduction, then the same reduction can be used in λc,
and enc(t0) →c enc(t1). If t0 →cp t1 by (SEL-F) or (SEL-S), then three (β -CBV) steps

are necessary in λc, i.e., enc(t0)
3−→c enc(t1). ��

For the other direction, i.e., for proving the claim enc(t) ↓c =⇒ t ↓cp the counter
example 2.1 shows that the translation enc is not adequate and not observationally
correct. Moreover, this example shows that an untyped language does in general not
permit an adequate – and hence also not an observationally correct – translation into a
subset of itself.

4.1 Typing λcp

One solution to prevent the counter example 2.1 is to consider a simply typed variant
λ T

cp of λcp as follows. The types are given by τ ::= unit | τ → τ | (τ,τ), and only
typed expressions and typed contexts are in the language λ T

cp, where we assume a hole
[·]τ for every type τ . For typing, we treat pairs, projections, the unit value, and the
operators ⊕ and fix as a family of constants with the types given in Fig. 5. Type safety
can be stated by a preservation theorem for all expressions and a progress theorem for
closed expressions. The framework now permits to prove adequacy via observational
correctness of the translations.

Proposition 4.3. For λ T
cp, the (correspondingly restricted) translation enc : λ T

cp → λc

is compositional and convergence equivalent, and hence adequate.

Proof. Compositionality follows from the definition of enc (see Fig. 4). Lemma 4.1
also holds if enc is restricted to λ T

cp. We split the proof into four parts:
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1. t ↓cp =⇒ enc(t)↓c: Follows from Lemma 4.2.
2. enc(t) ↓c =⇒ t ↓cp: An inspection of the reductions shows that if t1 is reducible,

then for every reduction Red of enc(t1) to a value, there is some t2 with t1 −→cp

t2 and enc(t1)
+−→c enc(t2) is a prefix of Red. We use induction on the length

of a reduction Red of enc(t) to a value to show that a corresponding reduc-
tion can be constructed. The base case is proved in Lemma 4.1. If t is an irre-
ducible non-value, then due to typing it is an open expression of one of the forms
E[(x r)],E[fix x],E[fst x],E[snd x], where x is a free variable. But the cases are not
possible, since enc(t) is either an irreducible non-value, or enc(t) reduces in one
step to an irreducible non-value.

3. enc(t)⇓c =⇒ t⇓cp: We prove that t ↑cp =⇒ enc(t)↑c by induction on the length of

a reduction t
∗−→cp t ′, where t ′⇑cp. For the base case t⇑cp and (2) show that enc(t)⇑c.

The induction consists in computing a reduction sequence enc(t) ∗−→c r where r⇑cp

and the correspondence is as in the proof of Lemma 4.2, such that t
∗−→cp t ′ and

r = enc(t ′). By type preservation, t ′ is well-typed and now the base-case reasoning
applies.

4. t ⇓cp =⇒ enc(t)⇓c: Proving enc(t)↑c =⇒ t ↑cp can be done using the same tech-
nique as in the previous parts. ��
Note that Proposition 3.9 cannot be applied since λ T

cp is not an exten-
sion of untyped λc. As expected, full abstraction does not hold. For instance,
let s = λ p.((λ y.λ z.(y,z)) (fst p) (snd p)), and t = λ p.p. Then the equation
s ∼cp,(unit,unit)→(unit,unit) t holds in λ T

cp by standard reasoning, but after translation to
λc, we have enc(s) �∼c enc(t). The latter can be seen with the context C = ([·] unit),
since C[enc(s)] is must-divergent while C[enc(t)] must-converges.

The extension situation could perhaps be regained by a System F-like type system,
which we leave for future research. Here we just observe that the use of a simple type
system for λc is insufficient since the encoding of pairs with components of different
types cannot be simply typed. The same holds for Hindley-Milner polymorphic typing:
to see this, let s,r ∈ λcp where s is defined as before and r = s (unit,λ x.x). The most
general type of enc(s) in a Hindley-Milner system is ((α → α → α) → β ) → (β →
β → γ) → γ , which essentially means that the encoding requires the components of a
pair to have equal type. The reason for the insufficient type is the monomorphic use
of the argument variable p of enc(s). Hence, enc(r) is not typeable using a Hindley-
Milner type system.

One can establish a fully-abstract translation between λ T
cp and a variant of λc by us-

ing a ‘virtual typing’ in λc which, intuitively, restricts λc to the image of the translation
(see [19, Appendix C]).

4.2 Modifying Reduction Strategies

As a final example we extend λ T
cp in two steps. First, in λcpg, we allow pairs with arbi-

trary expressions as components (see Fig. 6). Second, in λcpig, we relax the reduction
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w ∈ Valcpig iff w ∈ Valcpg iff w ∈ Valcp

t ∈ Expcp(i)g ::= w | t1 t2 | t1 ⊕ t2 | (t1,t2)

Fig. 6 Syntax of λcpg and λcpig

Ecpig ::= [] | Ecpig t | wEcpig | | Ecpig ⊕ t
| t ⊕Ecpig | (Ecpig,t) | (t,Ecpig)

Fig. 7 Evaluation Contexts Ecpig for λcpig

Ecpg ::= [] | Ecpg t | wEcpg | Ecpg ⊕ t | w⊕Ecpg | (Ecpg,t) | (w,Ecpg)

Fig. 8 Evaluation Contexts for λcpg

enci : λcpg → λ T
cp : enci(t) = t

encg : λcpig → λcpg: encg((t1,t2)) = (λ x y.(x,y)) encg(t1) encg(t2) if {t1, t2} �⊆ Var
: encg((x,y)) = (x,y)
: encg(t) = descending, not changing the structure otherwise;

encig : λcpig → λ T
cp : encig = encg ◦ enci

Fig. 9 Translations between λcpig, λcpg and λ T
cp

strategy by allowing interleaving evaluation of pair components and of the arguments
of the choice-operator. The corresponding evaluation contexts Ecpig for the calculus
λcpig are in Fig. 7.

4.2.1 Permitting General Pairs We consider the extension λcpg of the language λ T
cp

where λcpg is simply typed, and where pairs are not restricted to values. The syntax is
shown in Fig. 6, the evaluation contexts in λcpg are introduced in Fig. 8. The reductions
are as in λ T

cp. We show that encg : λcpg → λ T
cp is a fully abstract translation and hence

nothing is lost by restricting pairs to values. Type preservation and progress also hold
for λcpg. Moreover, encg is compositional and is easily seen to map well-typed terms
of λcpg to well-typed terms of λ T

cp.

Lemma 4.4. For the translation encg the following holds: For all s, if s is a λcpg-
value, then encg(s) is must-convergent and has a deterministic reduction to a value.
Moreover, for all s, if encg(s) is a value, then s is a λcpg-value.

Proof. By induction on the size of expressions and inspection of all cases. This holds
also for the case (w1,w2) �→ (λ x y.(x,y)) encg(w1) encg(w2), since encg(w1), encg(w2)
are must-convergent and independently reduce to values, and then two deterministic
beta-reductions reduce the resulting expression to a value. ��
Proposition 4.5. The translation encg is fully abstract.

Proof. By Proposition 3.9, and since the identity: λ T
cp → λcpg is an embedding (see

Definition 3.8), it suffices to prove observational correctness of the translation. Note
that encg(t) = t, for all λ T

cp-terms t, which makes Proposition 3.9 applicable. We have
to show four implications.

1. t ↓cpg =⇒ encg(t)↓cp: This follows by a straightforward translation from the t ↓cpg-
reduction into a reduction of encg(t). In the case of non-value pairs, (β -CBV)-
reductions have to be added to produce pairs in λ T

cp.
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2. encg(t)↓cp =⇒ t ↓cpg: A reduction encg(t)↓cp can be re-translated into one of t, by
observing that (t1,t2) on the λcpg-side may correspond to three different possibilities
on the λcp-side: it may be (t ′1,t

′
2), (λ xy.(x,y)) t ′1 t ′2 or (λ y.(t ′1,y)) t ′2.

3. t ⇓cpg =⇒ encg(t)⇓cp: We show encg(t)↑cp =⇒ t ↑cpg. Again the reductions cor-
respond, up to the (β -CBV)-reductions for the pair-encoding. The base case is that
encg(t)⇑cp =⇒ t⇑cpg, which follows from (1).

4. encg(t)⇓cp =⇒ t ⇓cpg: We show t ↑cpg =⇒ encg(t)↑cp. As above, the reductions
correspond up to the (β -CBV)-reductions for the pair-encoding. The base case is
t⇑cpg =⇒ encg(t)⇑cp, and follows from (2). ��

Remark 4.6. The combined translation from λcpg to λc is encgc := enc ◦
encg. It operates on pairs of non-variables s, t as follows: encgc((s,t)) =
enc(λ xy.(x,y)) encgc(s) encgc(t)= (λ xy.(λ p.p x y)) encgc(s) encgc(t). The naive trans-
lation T ′((s,t)) = (λ p.p T ′(s) T ′(t))) is not convergence equivalent, since for example
T ′((Ω ,Ω)) = λ p.p Ω Ω . However, (Ω ,Ω) must-diverges, whereas λ p.p Ω Ω is a
value and thus converges.

4.2.2 Permitting Interleaved Reductions In this subsection we will show that it is also
correct to modify the reduction strategy in the OSP-calculus λcpg, where we allow that
the arguments of choice and of pairs may be evaluated independently (i.e. interleaved,
in any order). The OSP-calculus λcpig, i.e. its syntax and the evaluation contexts Ecpig

used for reduction have been introduced in Fig. 6 and Fig. 7. The translation enci :
λcpig → λcpg is just the identity (see Fig. 9). However, it is not immediately obvious
that the convergence predicates of λcpig and λcpg are the same, due to the independent
reduction possibilities in λcpig. We denote the reduction in λcpig with −→cpig and the
reduction in λcpg with −→cpg.

Proposition 4.7. The identity translation enci from λcpig into λcpg is fully abstract.

Proof. Obviously enci (and its inverse) are compositional. Thus, to prove observational
correctness it suffices to establish convergence equivalence. We have to show four
implications:

1. enci(t)↓cpg =⇒ t ↓cpig: This follows by using the same reduction sequence.
2. t ↓cpig =⇒ enci(t)↓cpg: A reduction corresponding to t ↓cpig can be rearranged until

it is a reduction w.r.t. λcpg, since the reductions are at independent positions, and
the final result is a value without any reductions.

3. enci(t)⇓cpg =⇒ t⇓cpig: We show the equivalent t ↑cpig =⇒ enci(t)↑cpg. Let Red be
a λcpig-reduction of enci(t) to a must-divergent expression. We use induction on the
measure (l,n), where l is the number of reductions and n is the number of non-value
surface positions of enci(t), i.e. positions not within abstractions. Now consider the
λcpg-redex in enci(t). If the reduction of the redex is contained in Red, then we can
shift it to the start, and we obtain a shorter reduction, i.e. l is decreased. Otherwise,
if the reduction of the redex is not contained in Red, there are two possibilities. If
the redex is must-divergent, then we are finished, since then enci(t) is also must-
divergent. Otherwise, if the redex is not must-divergent, then we simply select a
converging reduction of the redex to a value. This reduction can be integrated into
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Red. In this case the number of reductions does not change, but the number n of the
measure will be reduced. In any case, we can use induction. The base case follows
from (1).

4. t⇓cpig =⇒ enci(t)⇓cpg: We show enci(t)↑cpg =⇒ t↑cpig. We can leave the reduction
unchanged. The base case is enci(t)⇑cpg =⇒ t⇑cpig, which follows from (2).

Finally, full abstraction follows from Proposition 3.9, since the proof also shows that
the inverse of enci is convergence equivalent. ��
Remark 4.8. Note that in languages with shared variable concurrency (for instance, ex-
tensions of λcp with reference cells) the modification of the reduction strategy given
in this subsection is no longer correct: permitting interleaving reductions of the argu-
ments can be observed through their read and write effects on shared variables.

Using Proposition 3.7 we have:

Theorem 4.9. The translation encig is fully abstract. For enc : λ T
cp → λc the combined

translation enc◦ encig : λcpig → λc is adequate.

Conclusions and Outlook

Motivated by translation problems between concurrent programming languages, this
paper succeeded in clarifying the methods, and providing tools, to assess the correct-
ness of translations. The framework is general enough to apply directly to an opera-
tional semantics and the derived contextual equivalences, without relying on the avail-
ability of models.

In future research we want to exploit these results, to prove the correctness of vari-
ous implementations of synchronization constructs in concurrent languages.

Acknowledgements We thank the anonymous referees for their valuable comments.
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Abstract. We investigate reachability (or equivalently, safety) for timed sys-
tems modelled as Timed Automata (TA) under notions of “robustness”, i.e.,
when the clocks of the TA may drift by small amounts. Our contributions are
two-fold: (1) We first consider the model of clock-drift introduced by Puri [1]
and subsequently studied in other works [2, 3, 4]. We show that the standard
zone-based forward reachability analysis performed by tools such as UPPAAL
is in fact exact for TA with closed guards, invariants, and targets, when test-
ing robust safety of timed systems having an arbitrary, but finite lifetime. (2)
Next, we consider a more realistic model of drifting clocks that takes into ac-
count the regular resynchronization performed in most practical systems. We
then show that the standard reachability analysis of tools like UPPAAL again
suffices to test for robust safety in this model of clock-drift, for TA with closed
guards, invariants, and targets, but now without any restrictions on system
life-time.

1 Introduction

Real-time systems, which have strict timing requirements, have emerged as an
enabling technology for several important application domains such as air traffic
control, telecommunications, and medicine, to name a few. Such systems are
becoming increasingly pervasive, and hence rigorous methods and techniques
to ensure their correct functioning are of utmost importance. Timed Automata
(TA) [5] have been extensively studied as a formalism for modelling real-time
systems. TA extend ω-automata by augmenting them with “clock” variables
based on a dense-time model, which quantitatively capture the behaviour of
the system with time. TA model checkers such as UPPAAL [10] and KRONOS
[7] are now available and have been successfully used in several industrial case
studies, such as [8].

A key result for the decidability properties of TA is the region-automaton
construction [5], which partitions the inherently infinite state space of the TA
into finitely many equivalence classes or “regions”. The number of such regions
is, however, exponential in the number of clocks, and the region construction
is therefore not suited in practice for model checking TA when the number
of clocks is large. Most available tools for model checking TA (such as UP-
PAAL) instead use on-the-fly algorithms that dynamically search through the

Please use the following format when citing this chapter:
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state space of the TA, which is partitioned into “zones” [10]. Associated data
structures such as Difference Bound Matrices (DBMs) [10] are used to represent
zones in TA-based verification. Reachability analysis forms the core of such veri-
fication tools [9] and is implemented by a Forward Reachability Analysis (FRA)
algorithm that computes the set of successors of a zone, with termination being
enforced by zone-widening using k-normalization [10].

However, such analyses, whether region- or zone-based, assume that the
clocks of the TA are perfectly synchronous, which is not the case in practice,
where the clocks could drift by small amounts. It is shown in [1] that the usual
region-based analysis is not correct w.r.t. reachability when considering pertur-
bations in the clocks, in the sense that an unsafe state, reported as unreachable
for perfect clocks, might well be reachable by iterating often enough through a
cycle in the TA, even when the clocks drift by infinitesimally small amounts,
and such a TA is therefore not “robustly safe”. This insight leads to the defi-
nition of robust reachability, where a reachability property is considered to be
“robustly (in-)valid” iff it does not change its validity for some small relative
drift between clocks.

“Robust” reachability analysis [1, 2] therefore computes the set of states
that are reachable for every (i.e., even the slightest) drift, reporting the TA
as not being robustly safe iff that enlarged reach-set contains an unsafe state
(where the guards and invariants of the TA, and the unsafe target state, are
all assumed to be closed). Robust reach-set computation in [1, 2] is based on
searching the strongly connected components of the region-graph, thus suffering
from the exponential size of the region-graph in the number of clocks. Zone-
based algorithms that compute this reach-set more efficiently are presented
in [3, 4]. For a given TA with maximum clock-drift parameterized by ε > 0,
with the corresponding reachable state-space being Reachε, the algorithms in
[1, 2, 3] compute the set ∩ε>0Reachε and test it for empty intersection with the
(closed) target. It is shown in [1] that ∩ε>0Reachε has an empty intersection
with the closed target state iff there exists some ε > 0 such that the intersection
of Reachε with the (closed) target state is again empty. The algorithms in all
these works however alternate between forward and backward analysis, and
thus induce a performance overhead compared to the standard FRA algorithm
used within tools like UPPAAL. All the above works (except [4]) assume that
the guards, invariants, and targets of the TA are closed. Furthermore, all of
them assume that each cycle of the TA is a progress cycle, wherein every clock
is reset at-least once per cycle. The unsafe states that become reachable with
drifting clocks (but which are unreachable with perfect clocks) are added to such
robust reach-sets only by iterating an unbounded number of times through the
(progress) cycles of the TA, thereby requiring that the life-time of the systems
be infinite. Moreover, the model of clock-drift considered in these works is one
of unbounded relative drift between the clocks, which does not take into account
the regular resynchronization of clocks that is performed in practical real-time
systems. This paper addresses these two issues, with two main contributions:
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1. We first consider the model of clock-drift introduced by Puri [1] and studied
subsequently by others [2, 3, 4]. We show that, under the assumption of
closed guards, invariants, and targets, the standard zone-based FRA of TA
performed by tools such as UPPAAL is indeed exact when testing for robust
safety of timed systems having an arbitrary, but finite life-time. We test
here whether the TA can robustly avoid the target arbitrarily long, in the
following sense: for any given number i of iterations of the transition relation,
there is εi > 0 such that Reachεi

i has an empty intersection with the target
state, where Reachεi

i is the reachable state space after i iterations of the
transition relation under maximum perturbation εi of the clocks. Note that
εi may depend on the number i of executed iterations, with εi decreasing
(not necessarily strictly) with i, and potentially tending to 0 as i tends to
∞. Thus, robust safety under our notion does not imply the existence of
a homogeneous ε > 0 that is independent of the number of iterations and
such that Reachε has an empty intersection with the target state (which is
the notion considered in previous works [1, 2, 3, 4]). However, our notion of
robust safety implies avoidance of the target state by some strictly positive
value of the perturbation for any arbitrary, but finite number of iterations.
This is applicable to all systems having a finite life-time.

2. Next, we introduce a more realistic model of clock-drift that takes into ac-
count the regular resynchronization performed in practical real-time systems
(such as bit-stuffing in communication protocols), which results in a bounded
relative clock-drift. Under the assumption of closed guards, invariants, and
targets, we show that the standard zone-based FRA of TA is again exact
when testing for robust safety of such timed systems with clock resynchro-
nization. In this case, a certification of robust safety imposes no restriction
on the life-time of the system — it implies avoidance of the (closed) target
by all 0 < ε < 1 (where the ε now parameterizes the maximum relative
bounded clock-drift subject to periodic resynchronization) independent of
the number of iterations.

The rest of the paper is organized as follows: Section 2 briefly reviews TA
definitions and semantics, along with our assumptions. It also presents the stan-
dard algorithm for zone-based FRA. Section 3 describes the robustness problem
for TA in the context of the model of clock-drift considered by Puri and others,
and shows the exactness of the standard zone-based FRA algorithm w.r.t robust
safety for systems having a finite life-time. Section 4 then introduces our model
of bounded clock-drift that accounts for regular clock resynchronization, and
shows the exactness of the standard zone-based FRA algorithm w.r.t robust
safety, but now without any restrictions on the life-time of the system. Section
5 concludes the paper and sketches future research directions.
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2 Timed Automata (TA)

Given a finite set C of clocks, a clock valuation over C is a map v : C → R≥0

that assigns a non-negative real value to each clock in C. If n is the number of
clocks, a clock valuation is basically a point in R

n
≥0, which we henceforth denote

by u,v etc.

Definition 1. A zone over a set of clocks C is a system of constraints defined
by the grammar g ::= x � d | x − y � d | g ∧ g, where x, y ∈ C, d ∈ N, and
� ∈ {<,≤, >,≥}. The set of zones over C is denoted Z(C).

A closed zone is one in which � ∈ {≤,≥}, and we denote the set of closed
zones over C by Zc(C). A zone with no bounds on clock differences (i.e., with
no constraint of the form x − y � d) is said to be diagonal-free, and we denote
the corresponding set of zones by Zd(C). The set Zcd(C) denotes zones that
are both closed and diagonal-free. The set ZcdU (C) denotes the set of closed,
diagonal-free zones having no lower bounds on the clocks.

Definition 2. A TA is a tuple A = (L, C, (l0,0), T, Inv), with

– a finite set L of locations and a finite set C of clocks, with |C| = n.
– An initial location l0 ∈ L together with the initial clock-valuation 0 where

all clocks are set to 0 1

– a set T ⊆ L × Zcd(C) × 2C × L of possible transitions between locations.
A transition t between two locations (l, l′) is denoted l

t→ l′, and involves a
guard G(t) ∈ Zcd(C) and a reset set Rest ⊆ C.

– Inv : L → ZcdU(C) assigns invariants to locations

In the sequel, we will denote by k the clock ceiling of the TA A under investi-
gation, which is the largest constant among the constraints of A (including the
predicate defining the unsafe state). Note that we assume that the guards of
the automaton are closed and diagonal-free zones. Invariants in addition have
only upper-bounds on clocks. Diagonal constraints of the form x − y � d thus
are not part of the TA syntax, but are of relevance, since they occur during the
course of forward reachability analysis as a result of the time-passage operation
defined as follows:

Definition 3. For a clock valuation x, its time-passage is
timepass(x) = {x + d | d > 0}, where x + d denotes the addition of a strictly
positive scalar d to each component of x. This is canonically lifted to clock-zones
Z as timepass(Z) =

⋃

x∈Z timepass(x).

Definition 4. 
x�k denotes the k-region containing x, which is the equivalence
class induced by the k-region-equivalence relation ≈k. For two clock valuations
x and y, x ≈k y iff

1 We assume without loss of generality that all clocks are initially set to 0.
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∀i ≤ n :

⎛

⎝

(xi > k) ∧ (yi > k)
∨ ((int(xi) = int(yi)) ∧ (fr(xi) = 0 ⇔ fr(yi) = 0)∧
∀j ≤ n : (fr(xi) ≤ fr(xj) ⇔ fr(yi) ≤ fr(yj)))

⎞

⎠

Here, for a clock valuation x ∈ R
n
≥0, xi denotes its i-th component, i.e., the

value of the i-th clock, and int(xi) and fr(xi) respectively denote the integer
and fractional parts of xi.

Definition 5. [11] A k-bounded zone (k-zone) has no constant exceeding k
among its constraints. For a zone Z, its k-normalization, denoted normk(Z), is
the smallest k-bounded zone containing Z.

If Z is a k-zone, normk(Z) = Z. k is taken to be the largest constant ap-
pearing in the constraints (including the unsafe state) of the TA.

Definition 6. Reach ⊆ L×(C → R≥0) is the reach-set of the TA A, consisting
of an infinite set of (concrete) states of the TA of the form (l,x), where l ∈ L and
x ∈ R

n
≥0. It is defined inductively as follows, with Reachi denoting the reach-set

under i ∈ N steps, starting from the initial state (l0,0) and alternating between
time-passage and discrete-location transitions:2

– Reach0 = {(l0,0)}.

– if i even Succ(Reachi) =
{

(l,x)
∣

∣

∣

∣

∃u ∈ Inv(l) : (l,u) ∈ Reachi

∧ x ∈ timepass(u) ∩ Inv(l)

}

– if i odd Succ(Reachi) =

⎧

⎨

⎩

(l,x)

∣

∣

∣

∣

∣

∣

∃t ∈ T, l′ ∈ L,u ∈ Inv(l′) ∩ G(t) :
l′

t→ l ∧ (l′,u) ∈ Reachi

∧ x ∈ Inv(l) ∩ Rest(u)

⎫

⎬

⎭

,

where Rest(u)(c) = u(c) iff c �∈ Rest, else Rest(u)(c) = 0.

– ∀i ≥ 0, Reachi+1 = Reachi ∪ Succ(Reachi).
– Reach =

⋃

i∈N
Reachi.

Reach is computed in tools like UPPAAL by the following zone-based for-
ward reachability algorithm. Given a timed automaton A with the target (l, B),
it decides whether Reach ∩ (l, B) �= ∅. Reachable state sets are represented by
lists 〈(l1, Z1), . . . , (lm, Zm)〉 of location-zone pairs. Let Ri denote the (symbolic)
reachable state-space at the i-th (i ≥ 0) iteration.

1. Start with the state-set R0 = {(l0,0)}, or equivalently, in DBM form,
R0 = l0 × {∧x∈C x − x0 ≤ 0)}, where x0 �∈ C is a pseudo-clock used to
represent the constant 0.

2. For i ≥ 0, compute the symbolic successors of Ri, denoted Post(Ri), sepa-
rately for even and odd values of i, as follows:

– If i even, Post(Ri) = {(l, Z) | ∃(l, Z ′) ∈ Ri

: Z = normk(timepass(Z ′)) ∧ Inv(l)}
2 To simplify the proofs, we use even- and odd-numbered steps to distinguish between time-
passage (of possibly zero duration) and transitions between discrete locations.
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– If i odd, Post(Ri) = {(l, Z) | ∃(l′, Z ′) ∈ Ri, t ∈ T : l′
t→ l

∧ Z = Rest(Z ′ ∧ G(t)) ∧ Inv(l)}
3. Build Ri+1 = Ri · Post(Ri), where · denotes conditional concatenation that

suppresses subsumed zones, i.e., removes (l, Z) if there is another (l, Z ′) with
Z implying Z ′.

4. Repeat steps (2) and (3) until Ri+1 = Ri. Denote the last set Ri thus
computed as R. Termination is guaranteed by the use of k-normalization, as
there are only finitely many different k-zones such that only subsumed zones
arise eventually.

5. Test whether Z∧B is satisfiable for some (l, Z) ∈ R. If so then report “(l, B)
is reachable”, otherwise report “(l, B) is un-reachable”.

It has been shown that this algorithm is sound and complete w.r.t. reachability
[10] in the sense that Reach ∩ (l, B) = ∅ iff R ∩ (l, B) = ∅.

3 Robustness w.r.t. Clock-Drift

We have hitherto considered perfectly synchronous clocks. We now consider
drifting clocks that could occur in practice, as introduced in [1] and studied
subsequently by others [2, 3, 4]. This phenomenon is modelled by introducing
a parameter ε > 0 that characterizes the relative drift between the clocks. The
slopes of the clocks are assumed to be within the range

[

1
1+ε , 1 + ε

]

. This is

equivalent to a relative drift in the range
[

( 1
1+ε)2, (1 + ε)2

]

between the clocks.
We could alternatively consider the slopes to be in the range [1 − ε, 1 + ε]. The
behaviour of both models w.r.t. infinitesimally small values of ε is identical,
only that in our case, the slope of a clock never becomes negative no matter
how large ε is. We then have a modification of the time-passage operation as
follows:

Definition 7. For a clock valuation x, its time-passage under perturbation of ε

is: timepassε(x) =
{

x + d · e
∣

∣

∣d > 0, e ∈
[

1
1+ε , 1 + ε

]n }

.
For a Zone Z, timepassε(Z) =

⋃

x∈Z timepassε(x)

While this model restricts the slopes of the clocks based on the value of pa-
rameter ε, the actual relative drift between the clocks increases without bound
with increasing delay d > 0. The reachable state space also gets enlarged. For a
given perturbation of ε, the corresponding perturbed reach-set Reachε is defined
inductively, similar to the non-perturbed case, by accounting for drifting clocks
through the replacement of the deterministic timepass() by an appropriate
non-deterministic timepassε() for steps corresponding to time-passage.

We now consider the effect of clock-drift on deciding whether some location-
zone pair (l, B) is reachable. As an example (cf. Fig. 1), consider a timed au-
tomaton A, consisting of a single location l0, two clocks x, y, the invariant of l0
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being x ≤ 2, and a self-looping transition t consisting of a guard x = 2?, with
the associated resets x := 0, y := 0. Let the unsafe state of A be characterized
by (l0, B) = (l0, y > 2). Assuming perfect clocks, the state-space of A is given
by Reach = (l0, Z), where Z ≡ (x ≤ 2 ∧ y = x), and A is clearly safe, as
Reach∩ (l0, B) = ∅. For drift characterized by a given ε > 0, the corresponding
state space is Reachε = (l0, Zε), where Zε ≡ x ≤ 2 ∧ x

(1+ε)2 ≤ y ≤ x(1 + ε)2.
Thus, ∀ε > 0 : Reachε ∩ (l0, B) �= ∅ and A is therefore not “robustly” safe. The
automaton along with the associated state-space for each case is illustrated in
Fig. 1.

x = 2? / x := 0
y := 0

t

x ≤ 2

y := 0
x := 0

l0

(a) Z ≡ y = x ∧ x ≤ 2
l0y

2

1

(0, 0) 1 2 x

(b) Zε ≡ x
(1+ε)2 ≤ y ≤ x(1 + ε)2 ∧ x ≤ 2

Fig. 1 A timed automaton A along with its state-spaces (a) without drift: (l0, Z), (b) for a
drift of ε : (l0, Zε).

Related work on robust reachability of TA [1, 2, 3] compute the set ∩ε>0Reachε.
For this example, ∩ε>0Reachε = Reach. This is because, for a zone Z,
∩ε>0 timepassε(Z) = timepass(cl(Z)), where cl(Z) is the closure of Z, ob-
tained by relaxing each strict inequality of Z to the corresponding non-strict
one. In the present case, Z ≡ 0 is closed, as is (Z ∪ timepass(Z)) ∩ Inv(l0) ≡
y = x∧x ≤ 2, so ∩ε>0Reachε ∩ (l0, B) = ∅. Hence, if open target states were
allowed, the algorithms in [1, 2, 3] would all report this automaton as being
robustly safe, while even the slightest perturbation would actually make the
unsafe state reachable. However, if B ≡ y ≥ 2, we see that the automaton of
Fig. 1 is unsafe even with perfect clocks, while for B ≡ y ≥ 3, the automaton
is now safe even for drifting clocks, for all 0 < ε <

√
1.5 − 1.

We thus observe that closed constraints give consistent results while testing
the automaton of Fig. 1 for safety, both with perfect clocks and under drift.
Note also that this automaton has a single progress cycle, which additionally
resets all clocks simultaneously in a single transition. The remit of this paper is
to formulate conditions under which tests on TA for robust safety give identical
results for both perfect and drifting clocks. We define for this purpose a grid-
point and its associated neighbourhood as follows:

Definition 8. Grid denotes the set-of all grid-points in R
n
≥0, i.e.,

Grid = {xg ∈ R
n
≥0 | ∀1 ≤ i ≤ n : fract(xgi) = 0}. For x ∈ R

n
≥0,
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grid(x) = {xg ∈ Grid | dist(x,xg) < 1}, where
dist(x,xg) = max1≤i≤n|xi − xgi|. The subset of Grid that contains only those
grid-points bounded by k is denoted k − Grid.

Thus, ∀xkg ∈ k − Grid: 
xkg�k = xkg. We will henceforth denote points in
Grid by the suffix g (xg etc.) and points in k−Grid by the suffix kg (xkg etc.).

Definition 9. For ug ∈ Grid, we define its neighbourhood
Nk(ug) =

⋂

ε>0 
timepassε(ug)�k. For a zone Z, its neighbourhood is
defined as: Nk(Z) =

⋃

ug∈Z∩Grid Nk(ug)

Nk(ug) is the union of all neighbouring k-regions of ug, where a k-region r
is said to neighbour ug iff a point in r is reachable by time-passage from ug for
every drift, i.e., ∀ε > 0 : timepassε(ug) ∩ r �= ∅. Thus Nk(ug) is the result of
adding to ug all k-regions of Hausdorff distance 0 in temporally non-backward
directions.

It must be understood here that the neighbourhood is defined only for
grid-points3. It then follows that for any zone Z, Nk(Z) is idempotent, i.e.,
Nk(Nk(Z)) = Nk(Z), and that for a zone Z that has no closed diagonal bor-
ders, Nk(Z) contains exactly the same grid-points as normk(timepass(Z)), and
thus Nk(Z) = normk(timepass(Z)) for such a zone. Also, ∀ug /∈ k − Grid :
Nk(ug) = normk(timepass(ug)). The following lemmas establish some useful
properties of the neighbourhood operator.

Lemma 1. ∀x ∈ R
n
≥0, ∀ug ∈ Grid :

x ∈ Nk(ug) ⇔ ∀ε > 0 ∃y ∈ 
x�k : y ∈ timepassε(ug)

The proof is immediate from the definition of Nk(ug).

Lemma 2. For any ug ∈ Grid, Nk(ug) is given by:

Nk(ug) = normk

{

ug + d +
n

∑

i=1

ai · ei | d > 0, ai ∈ [0, 1)

}

,

where ei is the i-th unit vector.

Here ug+d denotes the addition of d to each component of ug. The proof follows
from Lemma 1 and the definition of 
x�k for x ∈ R

n
≥0 . This means that for any

zone Z, Nk(Z) is obtained as follows: First apply the standard unperturbed
time-passage operator on Z, and then widen the diagonal constraints which
are non-strict inequalities of the resulting conjunctive system by 1, to the next
higher strict inequalities, i.e., x− y ≤ c is widened to x− y < c +1, followed by
standard k-normalization.

3 By considering only closed guards and invariants for the automaton, we ensure that all the
zones we encounter during FRA contain at least one grid-point.
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Lemma 3. Given any (diagonal-free) k-zone Z, x ∈ R
n
≥0, ug ∈ Grid,

x ∈ Nk(ug) ∩ Z ⇔ ∀ε > 0 ∃y ∈ 
x�k : y ∈ timepassε(ug) ∩ Z

The proof follows from Lemma (1) and the following property of any diagonal-
free k-zone B [11]:

Property 1. ∀x, ∀y ∈ 
x�k : x ∈ B ⇔ y ∈ B.

Lemma 4. For any two closed zones Z1 and Z2,

Z1 ∩ Nk(Z2) = ∅ ⇔ Z1 ∩ normk(timepass(Z2)) = ∅

The proof of “⇒” is immediate, as Nk(Z2) ⊇ normk(timepass(Z2)). The proof
of “⇐” is also obvious if Nk(Z2) = normk(timepass(Z2)).
When Nk(Z2) ⊃ normk(timepass(Z2)), we prove “⇐” as follows:
Z1, Z2 (and thus timepass(Z2), except for its “bottom”) are closed. For
Nk(Z2) ⊃ normk(timepass(Z2)), it must be the case that Z2 is a k-zone and so
normk(timepass(Z2)) = timepass(Z2) is also closed (except for its “bottom”).
Thus, in order for Z1 to have an empty intersection with normk(timepass(Z2)),
the two must be separated by a (max. norm) distance of at least 1. It also fol-
lows that the only additions to normk(timepass(Z2)) to form Nk(Z2) are the
open diagonal borders (obtained by relaxing the diagonal constraints of Z2 by
1). These borders thus added being open, can at most touch, but not intersect
Z1, which entails our result.

Lemma 5. For any closed k-zone Z, for any ug ∈ Grid, any v ∈ R
n
≥0

v ∈ Z ∩ Nk(ug) ⇒ ∃vg ∈ (grid(v) ∩ Z ∩ normk(timepass(ug)))

The proof follows as a consequence of Lemma 4 and the definition of grid(v).
This means that any closed guard (Z, referring to Lemma 5) that is enabled by
a point (v) obtained by time-passage from a grid-point (ug) under the smallest
of drifts (and thus included into that point’s (ug’s) neighbourhood) is also
enabled by a different grid-point (vg) obtained by time-passage (without drift)
from that grid-point (ug).

Lemma 6. For any closed, diagonal-free k-zone Z, any x,u ∈ R
n
≥0,

u ∈ Z ∧ ∀ε > 0 : (
x�k ∩ timepassε(u) ∩ Z) �= ∅
⇒ ∃ug ∈ grid(u) ∩ Z ∧ x ∈ Nk(ug) ∩ Z

The proof is immediate from Lemmas 3 and 5, and the definition of grid(u).

Definition 10. Let R∗
i be the reach-set at the i-th iteration, computed by

modifying the time-passage steps of the standard FRA algorithm as follows:
the normk(timepass()) operator is replaced by its neighbourhood Nk(). R∗

i is
termed the corresponding robust reach-set.



546 M. Swaminathan, M. Fränzle, J.-P. Katoen

Let R∗ be the robust reach-set that is ultimately computed by the FRA
algorithm by using Nk() instead of normk(timepass()), while computing the
time-passage successors of zones 4, and R be the reach-set that is computed by
the standard zone-based FRA (cf. Definition 6).
From Lemma 4, we get R∗ = {(l, Z ∪ (Nk(Z) ∧ Inv(l))) | (l, Z) ∈ R}, thereby
resulting in the following corollary:

Corollary 1. For any closed zone B and any l ∈ L,
R∗ ∩ (l, B) = ∅ ⇔ R ∩ (l, B) = ∅.

We now establish useful properties of the sets R∗
i through the following lem-

mas.

Lemma 7. Given any i ∈ N, any l ∈ L, and any x ∈ R
n
≥0,

(l,x) |= R∗
i ⇒ ∀ε > 0 ∃y ∈ 
x�k : (l,y) ∈ Reachε

i

Here, by (l,x) |= R∗
i , we mean that there exists a zone Z ∈ R∗

i such that x ∈ Z.
This lemma shows that the set R∗

i collects the regions that can be “touched”
in the sense of some (but not necessarily all) points within being reachable for
every perturbation. The proof is by induction over the number i of iterations,
separately for even and odd values of i, using Lemma 3, Property 1, and the
definitions of R∗

i and Reachε
i .

Lemma 8. For any l ∈ L, any diagonal-free k-zone B, any i ∈ N,
R∗

i ∩ (l, B) �= ∅ ⇒ ∀ε > 0 : Reachε
i ∩ (l, B) �= ∅. 5

This lemma implies that at any iteration depth i, if the set R∗
i intersects

with a target state, then the corresponding perturbed reach-set under even the
smallest of perturbations likewise intersects with the target state. The proof
follows from Lemma 7 and Property 1.

Lemma 9. For any even i, l ∈ L, ug ∈ Grid ∩ Inv(l), v ∈ R
n
≥0,

(l,ug) |= R∗
i ∧ ∃l′ ∈ L ∃t ∈ T : l

t→ l′ ∧ v ∈ Nk(ug) ∩ Inv(l) ∩ G(t)
⇒ ∃vg ∈ normk(timepass(ug)) ∩ grid(v) ∩ Inv(l) ∩ G(t) :

∃wg ∈ (Inv(l′) ∩ Rest(vg) : (l′,wg) |= R∗
i+2

The proof is immediate from Lemma 5 and the definition of R∗
i . Here we

assume, in addition to the guards and invariants being closed and diagonal-free,
the following condition of admissible target locations, which ensures consistency
between the invariants of a location and the guards of the transitions entering
and leaving that location:
For any locations l and l′, and any transition t with l

t→ l′:
Inv(l) ∩ G(t) �= ∅ ∧ Inv(l′) ∩ G(t) �= ∅.
4 Termination is guaranteed for such an algorithm by the use of k-normalization in the
computation of the neighbourhood Nk() of zones encountered during the FRA.
5 Here R∗

i ∩ (l, B) �= ∅ denotes Z ∧ B being satisfiable for some (l, Z) ∈ R∗
i .
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Lemma 10. For any even i, any l ∈ L, any x ∈ R
n
≥0,

∀ug ∈ Grid ∩ Inv(l) : (l,ug) |= R∗
i , x /∈ Nk(ug) ∩ Inv(l)

⇒ ∃εi > 0 ∀y ∈ 
x�k , ∀u ∈ Inv(l) : (l,u) ∈ Reachεi

i :
y /∈ timepassεi(u) ∩ Inv(l)

The proof follows from Lemma 6 and Lemma 9, by induction over even i. A
consequence is that the following converse of Lemma 7 also holds:

Lemma 11. Given any i ∈ N, any l ∈ L, and any x ∈ R
n
≥0,

(l,x) |�= R∗
i ⇒ ∃εi > 0 ∀y ∈ 
x�k : (l,y) /∈ Reachεi

i

The proof is by induction over the number i of iterations, separately for even
and odd values of i, using Lemmas 3 and 10, Property 1, and the definitions of
R∗

i and Reachεi

i .

Lemma 12. For any l ∈ L, i ∈ N, any diagonal-free k-zone B,

R∗
i ∩ (l, B) = ∅ ⇒ ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅.

The above lemma implies that at any iteration depth i, the set R∗
i does not

intersect with a target state iff there exists a strictly positive value of the per-
turbation, such that the corresponding perturbed reach-set at that iteration
depth likewise avoids the target state. The proof follows from Lemma 11 and
Property 1. The following corollary is then a direct consequence of Lemmas 8
and 12.

Corollary 2. Given any l ∈ L, any diagonal-free k-zone B,
R∗ ∩ (l, B) = ∅ ⇔ ∀i ∈ N ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅
Corollaries 1 and 2 lead us to the following theorem, which is a main result

of this paper.

Theorem 1. Let R be the final reach-set computed by the standard zone-based
FRA, for a TA with closed and diagonal-free guards and invariants. Then for
any closed and diagonal-free k-zone B and any l ∈ L, R ∩ (l, B) = ∅ ⇔ ∀i ∈
N ∃εi > 0 : Reachεi

i ∩ (l, B) = ∅
It follows from this theorem that the standard zone-based FRA used in tools

like UPPAAL is exact (sound and complete) while testing TA with closed guards
and invariants for robust safety against closed targets.

The “⇐” part of Theorem 1 states that a closed target is reported as reach-
able by standard zone-based FRA only if it is also reachable in a finite number
of iterations of the transition relation of the TA, under even the slightest of
perturbations. This result is intuitively obvious, because even the smallest per-
turbed reach-set is a strict superset of its non-perturbed version. The “⇒” part
of Theorem 1 states that a closed target is reported as unreachable by zone-
based FRA only if for any given number of iterations i of the transition relation,
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there exists a strictly positive value of the perturbation εi that the automaton
can tolerate and yet remains safe, in the sense that the corresponding perturbed
reach-set Reachεi

i has an empty intersection with the (closed) target state. It
must be noted here that this does not mean the existence of a homogeneous
ε > 0 independent of the number of iterations, for which the unsafe state can
be avoided, which is the notion considered in related works [1, 2, 3, 4]. Rather,
as mentioned in the introduction, the magnitude of the tolerated perturbation
εi could (but not necessarily) decrease with the number i of iterations, with εi

potentially tending to 0 as i tends to ∞6. However, so long as we execute an
arbitrary, but finite number of iterations, we are guaranteed a positive value of
the tolerable perturbation for robust safety.

The analyses in [1, 2, 3, 4], on the other hand, add states that can be reached
in any (unbounded) number of iterations through the (progress) cycles of the
automaton7, for even the slightest perturbation. Therefore, a state (l,x) is con-
sidered to be robustly unreachable in our sense (i.e., not included in R∗), but
reachable in the sense of the works in [1, 2, 3, 4] iff limε→0 min{i ∈ N | (l,x) ∈
Reachε

i } = ∞.

4 Robustness w.r.t. Imperfect Synchronization

In the previous section, we considered a model of drifting clocks where the rela-
tive drift between the clocks increases without bound with the passage of time,
although the clock-slopes are themselves bounded according to the parameter
ε. This is, however, rarely the case in practice, where the clocks, though subject
to drift, are regularly resynchronized by diverse means, ranging from bit-stuffing
in communication protocols to high-level clock synchronisation schemes. A pa-
rameter Δ characterizes the post-synchronization-gap and a parameter μ the
longest possible gap between synchronizations. If the slopes of the clocks (w.r.t
absolute time) are in the range

[

1
1+θ , 1 + θ

]

between synchronizations, such a
resynchronization enforces a uniform bound given by

ε = max

(

Δ + μ

(

1
1 + θ

)2

, Δ + μ(1 + θ)2
)

= Δ + μ(1 + θ)2

6 For closed TA in which each cycle has at-least one transition that resets all clocks simul-
taneously, the robust reach-sets computed by the algorithms in [2, 3, 4] coincide with the
standard reach-set computed by UPPAAL, as seen in automaton of Fig. 1. Thus, a certifi-
cate of safety by standard UPPAAL for such TA w.r.t. closed targets implies a robust safety
margin independent of iteration depth.
7 We make no assumption on the cycles of the automaton.
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Fig. 2 Periodic resynchronization resulting in a bound ε on relative drift between clocks

on the relative drift between the clocks, irrespective of the extent of time-
passage. The phenomenon is illustrated for two clocks x and y in Fig. 2.
Throughout this section, we assume 0 < ε < 1.

We incorporate such a resynchronization into TA by associating a drift-offset
δ ∈ [−ε, ε]n for each clock valuation x ∈ R

n
≥0. This drift-offset keeps track of

the extent to which the individual clocks in x have deviated from an implicit
reference clock maintained by the synchronization scheme. The states of a TA
in this semantics are thus tuples (l,x, δ) ∈ L×R

n
≥0 × [−ε, ε]n. As the deviation

δ is controlled by the synchronization scheme such that it always remains below
ε, the (perturbed) time-passage under synchronization is as follows:

Definition 11. Given any x ∈ R
n
≥0, any δ ∈ [−ε, ε]n,

timepassε
sync(x, δ) = {(x′, δ′) | δ′ ∈ [−ε, ε]n ∧ ∃d > 0 : x′ = x − δ + d + δ′}

A run of a perturbed TA subject to clock synchronization with accuracy ε
is a sequence 〈(l0,x0, δ0), (l1,x1, δ1), . . .〉 of states such that

1. l0 is the initial location and x0 = δ0 = 0,
2. For even i, li+1 = li, xi+1 ∈ Inv(li)

∧ (xi+1, δi+1) ∈ {(xi, δi)} ∪ timepassε
sync(xi, δi) 8

3. For odd i, ∃ti ∈ T : li
ti→ li+1 : xi ∈ Inv(li) ∩ G(ti),

xi+1 ∈ Inv(li+1) ∩ Resti(xi), δi+1 = Resti(δi).

Due to memorizing the current deviation δ and adjusting it consistently to the
constraint that the overall accuracy is better than ε, this semantics is subtly
more constrained than the —superficially similar— semantics permitting an
arbitrarily directed ε-deviation upon every time passage.

SReachε is the corresponding perturbed reach-set, defined inductively as
follows, with SReachε

i denoting the perturbed reach-set in i ∈ N steps, starting

8 By abuse of notation, the subscripts i here denote the sequence of tuples in a run, and not
individual vector components.
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from the initial state (l0,0,0) and alternating between (perturbed) time-passage
and (exact) discrete-location transitions:

– SReachε
0 ≡ {(l0,0,0)}

– For i even, Succ(SReachε
i ) = {(l,x, δ) | x ∈ Inv(l)

∧ ∃x′ ∈ Inv(l), ∃δ′ ∈ [−ε, ε]n : (l′,x′, δ′) ∈ SReachε
i

∧ (x, δ) ∈ timepassε
sync(x

′, δ′)}
– For i odd, Succ(SReachε

i) = {(l,x, δ) | ∃t ∈ T, l′ ∈ L : l′
t→ l,

∃x′ ∈ Inv(l′) ∩ G(t) ∃δ′ ∈ [−ε, ε]n : (l′,x′, δ′) ∈ SReachε
i :

∧ x ∈ Inv(l) ∩ Rest(x′) ∧ δ = Rest(δ′)}
– ∀i ≥ 0, SReachε

i+1 = SReachε
i ∪ Succ(SReachε

i )
– SReachε =

⋃

i∈N
SReachε

i

As before, we assume that all guards and invariants are closed and diagonal-free.
Let Reach denote the reach-set obtained by considering perfectly synchronous
clocks (ε = 0), where Reachi denotes the reach-set at step i, as defined previ-
ously (cf. Definition 6). We establish the relationship between the sets SReachε

and Reach through the following lemmas.

Lemma 13. For any i ∈ N, l ∈ L, x ∈ R
n
≥0, δ ∈ [−ε, ε]n,

(l,x, δ) ∈ SReachε
i ⇒ ∃xg ∈ grid(x) : (l,xg) ∈ Reachi

The proof is by induction over i, from the definitions of SReachε
i and Reachi.

The following corollary is an immediate consequence.

Corollary 3. For any i ∈ N, it holds that:

sups∈SReachε
i

dist(s, Reachi) < 1 ,

where for s = (l,x, δ) ∈ SReachε
i , dist(s, Reachi) = inf(l,x′)∈Reachi

dist(x,x′).

Corollary 3 intuitively means that irrespective of the iteration depth i, the
perturbed reach-set SReachε

i stays “close-enough” to the standard reach-set
Reachi, in the sense that even the “farthest” point in the perturbed reach-set
is less than unit distance away from the standard reach-set.

Lemma 14. For a TA with only closed and diagonal-free guards and invariants,
and any closed target location-zone pair of the form (l, B):

Reach ∩ (l, B) = ∅ ⇔ ∀0 < ε < 1 : SReachε ∩ (l, B) = ∅ ,

where SReachε ∩ (l, B) = ∅ denotes ∀(l,x, δ) ∈ SReachε : x /∈ B.

The proof of “⇐” is obvious as ∀ε > 0 : SReachε ⊃ Reach, in the following
sense: ∀(l,x) ∈ Reach : (l,x,0) ∈ SReachε. The proof of “⇒” follows from
Corollary 3, in conjuction with the fact that B is a closed zone, as are all the
guards and invariants of the TA, and 0 < ε < 1. This lemma, together with the
soundness and completeness result for standard zone-based FRA [10], leads us
to the following theorem, which is the second main result of this paper:
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Theorem 2. For a TA with only closed and diagonal-free guards and invari-
ants, any location l, and any closed, diagonal-free k-zone B :

R ∩ (l, B) = ∅ ⇔ ∀0 < ε < 1 : SReachε ∩ (l, B) = ∅ ,

where R is the symbolic reachable state-space that is ultimately computed by the
standard zone-based FRA.

Theorem 2 thus establishes the exactness of standard zone-based forward
analysis using a tool like UPPAAL for TA with closed guards and invariants,
when testing for robust safety against closed targets, with drifting clocks subject
to periodic resynchronizations that enforce accuracy better than 1. A certifica-
tion of robust safety in this case implies that the target state could be avoided
by all values of the perturbation ε that are strictly less than 1, independent of
the depth of iteration, unlike the case for unbounded relative clock-drift that
was considered in the previous section.

Theorem 2 may also be proven using the neighbourhood construction for
grid-points, as was previously done for Theorem 1.

5 Conclusion

We have investigated reachability (and thus, safety) of TA subject to drifting
clocks – a phenomenon that occurs in practical implementations of timed sys-
tems. We first considered the model of clock-drift introduced in [1] and studied
in [2, 3, 4], and analyzed the reachability for TA with closed guards, invariants,
and targets, but without the assumption of progress cycles, as was made in
[1, 2, 3, 4]. We showed the exactness of the standard zone-based FRA of UP-
PAAL for such TA, under a notion of robustness weaker than that in [1, 2, 3, 4],
in the sense that we do not add states that require an unbounded number of
iterations in order to be reached, under infinitesimally small clock-drift (cf.
Theorem 1). Our notion is applicable to all systems having a finite life-time,
where for any particular projected life-time, an appropriate worst-case clock
drift enforcing behavior indistinguishable from the ideal can be chosen. For
long life-times, the permissible clock drift may become extremely small. As
technical realizations in many systems (like, e.g., bit-stuffing in communication
protocols or the central-master synchronization incorporated in GPS-controlled
systems) address this problem by regular clock resynchronization, thus bound-
ing the relative drift within an set of clocks even over arbitrarily long life-times,
we have also modelled and analyzed such synchronization schemes. We have
shown that the standard zone-based analysis of UPPAAL is again exact while
testing such models for robust safety, but now with the assertion of a uniform
strictly positive robustness margin of 1, independent of system life-time.
Note that our definition of TA admits only diagonal-free constraints for the
guards, invariants, and targets. This is because TA with diagonal constraints
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of the form x − y � c have been shown to be incompatible with forward reach-
ability analysis that employs standard k-normalization for termination, and a
modified normalization that takes into account the diagonal constraints of the
TA is in fact necessary for dealing with such cases [11, 10]. However, the tech-
niques of this paper extend quite naturally to TA with diagonal constraints and
a suitably modified normalization operation. An extension of these techniques
to Probabilistic TA [12] (TA with discrete probability distributions annotating
transitions between locations) also appears straight-forward.
We finally wish to mention the following alternate notions of robustness for
TA: [13] imposes a topological closure on timed traces, which has been shown
in [14] to affect digitization of TA. [15] considers robust model-checking of LTL
properties, while [16] considers robustness analysis via channel machines.
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