
Chapter 5

GABA, Glycine, and Glutamate Co-Release

at Developing Inhibitory Synapses

Deda C. Gillespie and Karl Kandler

Abstract Neurobiologists have long classified synaptic phenotype by a single
neurotransmitter released at that synapse. Research over the past two decades

has made it clear, however, that the classification of neurons and synapses as
purely GABAergic, or even as purely inhibitory or excitatory, is no longer valid.

In this chapter we review evidence showing that inhibitory synapses co-release
multiple inhibitory neurotransmitters, and that some classical inhibitory

synapses also release excitatory neurotransmitters. As multiple transmitter
release is particularly prevalent at immature synapses, we pay special attention

to developmental plasticity in considering possible mechanisms and functions
for release of these seemingly antagonistic neurotransmitters.
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ACh acetylcholine
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ATP adenosine triphosphate
CN cochlear nucleus
GABA gamma-aminobutyric acid
GABAAR GABA (A) receptor
GABABR GABA (B) receptor
GAD glutamic acid decarboxylase
GlyR glycine receptor
GLYT2 glycine transporter 2
IPSC inhibitory postsynaptic current
LSO lateral superior olive
mIPSC miniature inhibitory postsynaptic current
MNTB medial nucleus of the trapezoid body
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mPSC miniature postsynaptic current
MSO medial superior olive
NMDAR N-methyl D-aspartic acid receptor
Pn postnatal day n
SPN superior paraolivary nucleus
VGAT vesicular GABA transporter
VGLUT2 vesicular glutamate transporter 2
VGLUT3 vesicular glutamate transporter 3
VIAAT vesicular inhibitory amino acid transporter

5.1 Introduction

Classically,manyneuroscientists have usedDale’s principle as a first-order descrip-
tor of neuronal phenotype. Although referred to as the idea that the same neuro-
transmitter is released from all terminals of a neuron (Eccles 1964), this principle
has been reduced and simplified into the widely accepted dogma: ‘‘one neuron-one
neurotransmitter.’’ In fact, many students still learn this version ofDale’s principle,
despite a significant and growing number of studies that have provided convincing
counterexamples to invalidate this overly simplified view of neuron and synapse. In
this chapter we will focus on a subset of the evidence supporting a more nuanced
view of the synapse: release of multiple transmitters at inhibitory synapses.We will
first consider co-release of the classic small amino acid neurotransmitters GABA
and glycine and we will then consider release of GABA or glycine with other
neurotransmitters, in particular glutamate. We will pay special attention to a
synapse in the auditory brainstem where the three major fast neurotransmitters
of the brain—GABA, glycine and glutamate—are all released during a develop-
mentally significant period, and we will consider potential hypotheses for the
function of multiple transmitter release.

5.1.1 Co-release of GABA and Glycine

Early evidence that fast inhibitory synapses might use multiple neurotransmitters
came from immunohistochemical studies at the light and electron microsopic
levels, which showed colocalization of markers for GABA and glycine in cerebel-
lum, spinal cord, auditory brainstem, dorsal cochlear nucleus, and oculomotor
nucleus, among others (Triller et al. 1987; Ottersen et al. 1988; Todd and Sullivan
1990; Helfert et al. 1992; Kolston et al. 1992; Wentzel et al. 1993; Juiz et al. 1996).

5.1.1.1 Spinal Cord and Brainstem

More recent studies have presented physiological evidence for concomitant release
of GABA and glycine. Using whole-cell patch clamp recordings in acute slices of
neonatal spinal cord, Jonas et al. (1998) recorded simultaneously from interneur-
ons and postsynaptic presumed motor neurons. By stimulating the presynaptic
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interneuron to induce monosynaptic unitary inhibitory postsynaptic currents

(IPSCs), and applying antagonists of GABAA or glycine receptors (GABAARs

orGlyRs), the authors showed that the unitary IPSC comprises two components, a

strychnine-sensitive component with fast kinetics characteristic of GlyR-mediated

currents and a bicuculline-sensitive component with slower kinetics characteristic

of GABAAR-mediated currents (Fig. 5.1). Physiologically, the most convincing

evidence for co-release of GABA and glycine from single vesicles comes from

Fig. 5.1 GABA-glycine co-release at immature synapses in the spinal cord. (a) Schematic
illustration of simultaneous whole-cell recordings from a presynaptic interneuron and a
postsynaptic motoneuron. (b) Examples of three individual inhibitory postsynaptic currents
in the motoneuron (post) evoked by three presynaptic action potentials in the interneuron
(pre) (traces are overlaid). (c, d) Unitary postsynaptic currents are mediated by both glycine
and GABA receptors. The GlyR antagonist strychnine strongly reduces postsynaptic
responses but leaves a component that is blocked by the GABAAR antagonist bicuculline.
C) Illustrates the average of 3–10 single sweeps. In D) the peak amplitudes of single responses
are plotted against time before and during antagonist application. (e) Glycine and GABA
components of miniature IPSCs can be distinguished by their decay times. Flunitrazepam,
which prolongs specifically GABAAR-mediated currents, increases the decay times of
GABAAR- mediated currents. Average miniature IPSCs in control conditions (upper traces)
and in the presence of bicuculline or strychnine (lower traces). (f) Scatter plots of the
amplitudes of the GABAAR-mediated component against amplitudes of the GlyR-mediated
component of mIPSCs without (left plot) and in the presence of antagonists (right plot).
Points falling outside the dashed lines indicate individual mIPSCs with dual GABA and
glycine components. Adapted with permission from Jonas et al. 1998.
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analysis ofminiature IPSCs (mIPSCs), as eachmIPSC is generally considered to be
a single quantal event resulting from the release of the contents of a single synaptic
vesicle.Miniature IPSCs recorded at the spinal interneuron-motor neuron synapse
exhibit mixed components, distinguished by differing receptor pharmacology and
kinetics (Fig. 5.1e-f). A subset of mIPSCs is mediated purely by GABAARs, and a
larger subset purely by GlyRs, whereas nearly half of all mIPSCs are mediated by
both GABAARs and GlyRs (points above and to right of dotted lines in Fig. 5.1f,
left panel). The group of mixed mIPSCs comprising both GABAergic and glyci-
nergic components indicates that spinal interneurons’ terminals contain synaptic
vesicles that include bothGABAandglycine, and confirms thatGABAandglycine
are packaged together in individual synaptic vesicles from which they are co-
released. Co-release of GABA and glycine is likely to be a common property of
developing inhibitory synapses, as other groups subsequently have revealed mixed
GABA and glycine release onto functional GlyRs and GABAARs at the sympa-
thetic preganglionic neurons of spinal cord laminaX, dorsal horn laminae I-II, and
abducens and hypoglossal motoneuron synapses (O’Brien and Berger 1999; Keller
et al. 2001; Russier et al. 2002; Seddik et al. 2007).

5.1.1.2 Auditory Brainstem

The lateral superior olive (LSO), a binaural nucleus in the auditory brainstem
that computes interaural level differences (Boudreau and Tsuchitani 1968)
(Fig. 2a), receives a prominent inhibitory input from the medial nucleus of the
trapezoid body (MNTB; Moore and Caspary 1983, Caspary and Finlayson
1991). As in the spinal cord, early electron microscopic studies of immunor-
eactivity for the amino acid neurotransmitters in the LSO showed label for both
GABA and glycine in the same synaptic terminals, and pointed to the possibility
that GABA and glycine might both be released from single synapses onto
principal neurons of the LSO (Helfert et al. 1992) (Fig. 5.2b).

Fig. 5.2 (continued) (c)MNTB-LSO synapses switch from being mainly GABAergic in newborn
animals to being mainly glycinergic around hearing onset. Examples illustrate MNTB-elicited
postsynaptic currents obtained in whole-cell recordings of LSO neurons in slices from 4-day-old
(P4) and 14-day- old (P14) gerbils. At P4, postsynaptic currents are strongly reduced by the
GABAAR antagonist bicuculline (BIC) but only slightly affected by the GlyR antagonist strych-
nine. At P14, bicuculline has little effect whereas strychnine almost completely abolishes the
responses. (d)Developmental down-regulation of GABAARs and up-regulation of GlyRs in the
LSO. Immunoreactivity for the �2, 3 subunits of the GABAAR decreases in the gerbil from P4 to
P14 while immunoreactivity for the � 1 subunit increases in the rat LSO from P4 to P10. (e) Co-
release of GABA and glycine from single synaptic vesicles in isolated LSO neurons. Traces show
examples ofminiature PSCs that are glycinergic (fast decay),GABAergic (slow decay), andmixed
GABA/glycine (fast and slow decay components). The plot shows changes in the proportion of
the three types of mPSCs during development. In newborn rats (P1–2) most mPSCs are
GABAergic whereas at P16–17 most mPSCs are glycinergic. Mixed GABA/glycine mPSCS are
encountered at all ages investigated. (f) Immunoreactivity for glycine increases fromP5 to P18 but
immunoreactivity for glutamic acid decarboxylase (GAD) decreases, indicating a developmental
decrease in the presynaptic release ofGABA.Adaptedwith permission from:B)Helfert et al. 1992;
C, D) Kotak et al. 1998; D) Friauf et al. 1997; E,F ) Nabekura et al. 2004.
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Fig. 5.2 GABA-glycine co-release at developing auditory synapses. (a) Schematic illustration
of the inhibitory MNTB-LSO pathway in the auditory brainstem. Neurons in the medial
nucleus of the trapezoid body (MNTB) receive glutamatergic inputs from the contralateral
cochlear nucleus (CN). MNTB neurons give rise to a tonotopically organized inhibitory
pathway to the lateral superior olive (LSO). This pathway is glycinergic in mature animals
but during development is primarily GABAergic. (b) Electron micrographs of an individual
terminal from serial sections immunolabeled for glycine and GABA. The terminal labels
positively for both glycine and GABA. Gold particles that tag immunopositive sites.
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Further physiological and histological studies not only corroborated coincident
GABA and glycine release, but also showed that the relative balance of GABAer-
gic and glycinergic components in the MNTB-LSO response shifts during early
development. This has been shown in acute brain slices, usingwhole-cell recordings
from LSO principal neurons to measure their physiological response to electrical
stimulation of the MNTB. Using the receptor antagonists strychnine and bicucul-
line to separate the GlyR and GABAAR components of the response to electrical
stimulation of theMNTB shows that in early neonatal (postnatal day 4; P4) gerbil,
a majority of the synaptic current is mediated by GABAARs, whereas by P14 the
majority of the current passes through GlyRs (Kotak et al. 1998) (Fig. 5.2c). This
developmental shift from a primarilyGABAergic to primarily glycinergic response
is accompanied by a shift in the population of receptors expressed postsynaptically
in the dendrites of LSO neurons (Fig. 5.2d). Immunoreactivity for GABAAR
subunits is relatively high in the postsynaptic membrane of LSO neurons at P4
but decreases over the next 10 days. The inverse pattern is seen for markers of
GlyR, as immunoreactivity for the GlyR-associated protein gephyrin increases
between P4 and P14 (Korada and Schwartz 1999). Because transcripts for the
GlyR subunit �2 are present only at low levels in the LSO throughout postnatal
development, whereas transcripts for the GlyR subunit �1 increase over the first
few weeks (Piechotta et al. 2001), this increased expression of GlyRs is probably
determined largely by addition of the GlyR subunit�1. The decrease in GABAAR
expression, concomitant with an increase in GlyR expression, causes a striking
decrease in the GABAAR/GlyR ratio between P4 and P14.

The developmental progression from primarily GABAergic to primarily
glycinergic transmission at the developing MNTB-LSO synapse, which has
now been confirmed in several studies (Henkel and Brunso-Bechtold 1998;
Kullmann and Kandler 2001; Kullmann et al. 2002), results not only from a
shift in receptor expression, but also from a shift in neurotransmitter release. In
order to isolate and closely examine spontaneous mIPSCs, Nabekura et al.
(2004) mechanically dissociated LSO principal cells along with adherent pre-
synaptic (MNTB) terminals and then distinguished the GABAergic and glyci-
nergic components of spontaneous mIPSCs using receptor pharmacology and
kinetics. They found a mixed population of mIPSCs: at birth the majority of
mIPSCs were purely GABAergic, with the remainder split between purely
glycinergic and mixed gly/GABA mIPSCs; at one week the three populations
were roughly equal in proportion, and at two weeks the majority of the mIPSCs
were purely glycinergic. Although mixed gly/GABAmIPSCs (and hence mixed
gly/GABA vesicles) were present at all ages, a clear developmental trend was
seen, shifting from predominantly GABA release toward predominantly gly-
cine release (Fig. 5.2e). Over the same period, immunolabeling for glycine
increases in presynaptic terminals, while immunolabeling for the GABA mar-
ker glutamic acid decarboxylase (GAD) decreases (Fig. 5.2f). Thus, the physio-
logical shift from GABAergic to glycinergic transmission (Kotak et al. 1998) is
due to both a shift in postsynaptic receptor expression (Korada and Schwartz
1999) and a shift in vesicle content (Nabekura et al. 2004). Whether the
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downregulation of GABAAR expression and the decrease in GABA content of
synaptic vesicles occur simultaneously, or whether one event leads—or even
induces—the other, is not known. Additionally, the mechanism that accounts
for the decrease in GABA-containing synaptic vesicles is an open question, as
indeed is the mechanism that determines whether synaptic vesicles contain
GABA, glycine, or both.

The progression fromGABAergic to glycinergic phenotype at theMNTB-LSO
synapse is mirrored at other synapses in the auditory brainstem. For example, in
the nearby medial superior olive (MSO), synapses in the inhibitory MNTB-MSO
pathway, which are nearly exclusively glycinergic in the adult, also exhibit a
prominent GABAergic component during the first postnatal week (Smith et al.
2000). Inhibitory synapses within the MNTB also show a mixed glycinergic and
GABAergic phenotype during early development, switching to exclusively glyci-
nergic by P25 (Awatramani et al. 2005). Finally, the switch from GABAergic to
glycinergic function is not limited to information transfer in the feed-forward
direction and the shift in receptor expression is not limited to the postsynaptic
membrane. At the well-known Calyx of Held synapse in the MNTB, activation of
presynaptic GlyRs normally causes increased transmitter release (Turecek and
Trussell 2001). Before approximately P11, however, this GlyR modulation of
glutamate release is largely absent (Turecek and Trussell 2002), and glutamate
release is enhanced instead by activation of presynaptic GABAARs.

5.1.2 VGAT and Co-release of GABA/Glycine

The molecular basis for the inhibitory phenotype of MNTB-LSO synapses, as
at all synapses that release inhibitory amino acids, is expression of the vesicular
GABA transporter (VGAT; also known as vesicular inhibitory amino acid
transporter, VIAAT). VGAT, which is localized to synaptic vesicles of glyci-
nergic and GABAergic neurons, was first identified as a proton-coupled high-
affinity GABA transporter that also transports glycine, though with lower
affinity (McIntire et al. 1997; Sagne et al. 1997; Chaudhry et al. 1998). The
only known vesicular transporter for inhibitory amino acids, VGAT underlies
co-release of GABA and glycine (Wojcik et al. 2006). Because GABA and
glycine share the same vesicular transporter, the mechanism that specifies
whether vesicles are GABA- or glycinergic is unknown, though one possibility
is that the relative abundance of glycine and GABA in synaptic vesicles is
determined by the availability of glycine in the presynaptic terminal. At least
in vitro? a glycinergic phenotype can be achieved in cell lines by coexpression of
VGAT with GLYT2, a membrane-bound, high-affinity, Na+-coupled, glycine
uptake transporter expressed in glycinergic neuronal terminals (Liu et al. 1993;
Zafra et al. 1995; Spike et al. 1997; Aubrey et al. 2007), and this mechanismmay
also regulate GABA/glycine vesicular content in the MNTB terminals. In the
LSO, GLYT2 is expressed in presumed presynaptic terminals and GLYT2
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expression levels increase during the first two postnatal weeks (Friauf et al.
1999), the same period during which the glycinergic component ofMNTB-LSO
synapses increases. Because, however, GLYT2 in the LSO is already present
prenatally (Friauf et al. 1999)—whenMNTB-LSO synapses are predominantly
GABAergic—GLYT2 expression alone cannot account for the switch from
predominantly GABA- to predominantly glycine-containing vesicles.

5.1.3 Functional Role for Co-release of GABA and Glycine
in Developing Auditory Brainstem

Although the progression from release ofmixedGABA and glycine to release of
glycine alone is common in several areas during development, it is currently not
known whether this developmental change is primarily a non-functional epi-
phenomenon reflecting other developmental processes (such as the maturation
of glycine transporters) or whether early GABAergic signaling is important in
establishing glycinergic networks. A number of reasons have been proposed for
why early GABAergic transmission might be developmentally significant.

5.1.3.1 Trophic Actions of GABA

GABAergic neurotransmission appears to have trophic effects on several early
developmental processes including synaptogenesis (for reviews, see Owens and
Kriegstein 2000; Represa and Ben-Ari 2005). Although the possible trophic role of
GABA is controversial, and may primarily be due to the depolarizing effect
GABA exerts during early development, GABAergic neurotransmission is a
common feature at many nominally non-GABAergic synapses during develop-
ment (Ben-Ari et al. 1997, rev; Overstreet-Wadiche et al. 2005). If depolarization is
the critical feature of early putative trophic effects of GABA, then is glycine, which
also induces depolarization during early development, able to accomplish the same
task? Glycine might be sufficiently depolarizing for this scenario, but if longer
depolarizations were required, GABAergic transmission would be more effective,
due to the slower kinetics of GABAARs. Results from a VGAT-knockout mouse
(Wojcik et al. 2006), however, showing that synaptogenesis and postsynaptic
receptor clustering can occur in the absence of vesicular GABA release, argue
against a critical trophic role for GABA in synapse formation.

5.1.3.2 Receptor Kinetics

At excitatory synapses in which activity-dependent mechanisms strengthen or
weaken synapses, the timing of inputs relative to postsynaptic membrane depo-
larizations can determine both the direction and the amplitude of the plasticity
(Bi and Poo 1998). This dependence on timing means that the width of the
depolarization window, which is itself determined by the kinetics of response to
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neurotransmitter, can influence synaptic plasticity. For example, decay times for
NMDAR-mediated currents in many systems are long early in development and
decrease with age (Hestrin 1992; Carmignoto and Vicini 1992), following a
timecourse that corresponds to a decrease in developmental plasticity (Crair
and Malenka 1995). The early expression of subunits that confer slower kinetics
may lengthen the postsynaptic membrane depolarization, increasing the window
for coincidence detection and allowing developing circuits access to mechanisms
of synaptic plasticity during a period of long synaptic delays and low conduction
velocities. Our understanding of plasticity at developing inhibitory synapses is
more rudimentary (Gaiarsa et al. 2002, rev;Woodin et al. 2003; Haas et al. 2006),
but if glycinergic synapses do undergo analogous timing-dependent plasticity, it
is possible that the slower kinetics of GABAARs might be better suited to
mediating plasticity at the relatively slow speeds of synaptic transmission and
action potential conduction of developing circuits. In this receptor kinetics
hypothesis, synapses could be established using the slower kinetics ofGABAARs;
the subsequent replacement of GABAARs with GlyRs over time would cause the
maturing synapse to switch to a predominantly fast glycinergic phenotype.

5.1.3.3 Receptor Clustering

An alternate scenario posits that GABAARs are required to establish initial
receptor clusters at developing synapses, and that with maturity GABAARs
are replaced within the synapse by GlyRs. Although much about the devel-
opment of inhibitory synapses in general is still unknown, the GlyR- and
GABAAR- associated protein gephyrin is understood to be critical for
clustering GlyRs at functional synapses, as gephyrin-deficient mice lack
postsynaptic GlyRs clusters (Feng et al. 1998). Although loss of gephyrin
also results in reduced GABAAR clusters (Kneussel et al. 1999), GABAARs
that include certain receptor subunits can cluster independently of gephyrin
(Kneussel et al. 2001). The additional finding that GABAAR clusters can
induce associated gephyrin clustering in cultured hippocampal cells over a
period of several hours (Levi et al. 2004) correlates with a clustering func-
tion for early GABAergic transmission. The clustering hypothesis would
assume that for some reason (as might occur, for example, with develop-
mental regulation of splice variants for gephyrin or the gephyrin-binding
GlyR � subunit; Paarmann et al. 2006; Oertel et al. 2007), gephyrin is not
available to mediate the clustering and maturation of GlyRs during early
developmental stages. In the absence of gephyrin, the postsynaptic compo-
nents of developing inhibitory synapses could nevertheless be established by
GABAAR clustering. GABAAR clusters in these nascent synapses would
then induce gephyrin clustering, and the gephyrin clusters would in turn
seed and organize GlyR clusters. Together with a subsequent loss of
GABAARs, this increase in functional GlyRs would effect the switch from
GABAergic to glycinergic postsynaptic phenotype.
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5.1.4 Function of Co-release at Mature Synapses

Although synapses that are mixed GABA- and glycin- ergic during development
become primarily glycinergic in the adult, a GABAergic component remains in
some cases (Chery and De Koninck 2000; Russier et al. 2002). In the LSO, the
large-scale shift in proportion ofGABA to glycine release and the upregulation of
GlyRs are consistent with a developmental role for GABA. The presence of a
lingering GABAergic component (Helfert et al. 1992; Nabekura et al. 2004),
however, is consistent with an additional role of GABA in the physiology of
the mature synapse. For example, the presence of two transmitters with differing
kinetics could allow the synapse to use a greater range of IPSC shapes that might
be informationally relevant (Russier et al. 2002). Alternatively, co-packaging of
two transmitters could allow a single vesicle released from a presynaptic terminal
to activate receptors in distinct neuronal subpopulations. For example, Golgi
cells in the cerebellar granular layer release both glycine and GABA, but onto
distinct postsynaptic targets: glycine acts on GlyRs on unipolar brush cells,
whereas GABA acts on granule cells (Dugue et al. 2005). At present, two such
separate targets are unknown in the LSO, as is also the relative location of GlyRs
and GABAARs. More generally, it has been suggested that synapses using
vesicles with varying proportions of two neurotransmitters could achieve a
more finely graded range of information transfer than that generally achieved
with single-neurotransmitter quantal release (Somogyi 2006). Because GABA
and glycine share the same vesicular transporter, however, at GABA/glycinergic
synapses this scenario would require involvement of other mechanisms, such as
GLYT2 (Aubrey et al. 2007), to regulate glycine concentrations in presynaptic
terminals and to control the GABA:glycine ratio in synaptic vesicles. Finally, it is
possible that GABA co-released in the adult LSO does not reach postsynaptic
receptors, but acts only on presynaptic GABABRs. Precedence for this idea exists
in the response to glycine and GABA co-release in the adult spinal cord, where
release fails to activate postsynaptic GABAARs, but does activate postsynaptic
GlyRs and presynaptic GABABRs (Chery and De Koninck 2000). Although the
expression of presynaptic GABABRs at the MNTB-LSO synapse is not well
understood, GABABRs have been shown to modulate both glutamate and
glycine release at other synapses in the auditory brainstem (Isaacson 1998, Lim
et al. 2000; though note also presynaptic GlyRs and GABAARs in developing
MNTB (Turecek and Trussell 2001).

5.2 Dual Release of GABA or Glycine and Other

Neurotransmitters

The discovery that GABA and glycine can be co-released at many synapses has
necessitated a change in the stereotypical model of the inhibitory synapse, but
because GABA and glycine are both fast inhibitory neurotransmitters, it has
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not forced a complete rethinking of the inhibitory synapse. More surprising
have been studies suggesting that GABA, and/or glycine, is released with quite
different neurotransmitters at several synapses. The following represent a sub-
set of a growing list of such examples.

5.2.1 Release of Multiple Transmitters in the Retina

GABA or glycine co-release with other neurotransmitters appears to be a
common theme in amacrine cells of the retina. One population of glycine-
immunoreactive amacrine cells is immunoreactive for the vesicular glutamate
transporter VGLUT3 (Johnson et al. 2004; Haverkamp and Wassle 2004), and
is thought to release glutamate vesicularly. It is unclear whether glycine func-
tions primarily as a neurotransmitter in these synapses, though the lack of
VGAT in these cells suggests that any synaptic release is likely via a membrane
transporter; regardless, as glycine and glutamate are not both vesicularly
released they are unlikely to be co-released from single vesicles.

A second retinal population, the starburst amacrine cells, release both ACh and
GABA.Although at these synapsesGABAmaybe released either vesicularly or via
reversal of a membrane transporter, it is unlikely to be released together with ACh
from single vesicles (Vaney et al. 1988;O’Malley andMasland 1989; O’Malley et al.
1992; Zheng et al. 2004). The role of cholinergic amacrine cells in generating
spontaneous retinal waves that drive early visual plasticity (Meister et al. 1991;
Feller et al. 1996; Hooks and Chen 2006; Huberman et al. 2006), suggests that
release of GABA in the cholinergic amacrine network may affect developmental
refinement by shaping spontaneous retinal activity (Wang et al. 2007).

Yet a third retinal amacrine synapse comprises both dopaminergic and
GABAergic elements. At synapses between the dopaminergic amacrine cell and
the AII amacrine cell, immunoreactivity for GABA colocalizes with immunor-
eactivity for the dopamine marker tyrosine hydroxylase (Wulle and Wagner
1990). In addition, VGAT and the dopamine-associated vesicular monoamine
transporter 2 are both expressed presynaptically, while GABAARs are expressed
postsynaptically (Contini and Raviola 2003), suggesting that at these synapses
both dopamine and GABA are released as functional neurotransmitters.

5.2.2 Release of Multiple Transmitters in Other Brain Areas

Retinal amacrine cells are not the only neurons that may share cholinergic and
GABAergic phenotypes, as subpopulations of neurons in the dorsal horn and
basal forebrain likely release both GABA and ACh (Todd 1991, Tkatch et al.
1998). GlyRs and nAChRs are found together in the same postsynaptic mem-
branes in chick ciliary ganglion, though glycine andACh are not truly co-released
at this synapse, as ACh undergoes vesicular release and glycine is released by
reversal of the glycine transporter GLYT1 (Tsen et al. 2000). In culture, a
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majority of dorsal horn laminae I-III neurons co-release GABA and ATP, which

probably acts on presynaptic receptors to modulate transmitter release (Jo and

Schlichter 1999; Hugel and Schlichter 2003). Moving up the neuraxis, brainstem

medullary raphe neurons exhibit markers correlating with release of serotonin,

glutamate and GABA (Stornetta et al. 2005). Even more surprising is a recent

study suggesting that the developing neuromuscular junction can express an

array of phenotypes ranging from cholinergic, to glutamatergic, to glycinergic

or GABAergic (Borodinsky and Spitzer 2007, see chapter 3 in this volume).
Immuno studies at the light and electron microscopic level showing GABA-

immunoreactivity in glutamatergic mossy fiber terminals of hippocampus

(Ottersen and Storm-Mathisen 1984; Sandler and Smith 1991) initially

appeared to pose a paradox, as they suggested the possibility of co-release of

excitatory and inhibitory neurotransmitters. More recently, these findings have

been validated and expanded on by physiological studies showing GABA

release from glutamatergic hippocampal mossy fibers in young brains (Walker

et al. 2001) or after epileptic activity (Gutierrez 2000), a phenomenon discussed

in a separate chapter of this volume (Gutierrez, Chapter 10).

5.2.3 Release of GABA, Glycine, and Glutamate in Auditory
Brainstem

A surprise in the co-release field was that developing synapses in the MNTB-

LSO projection, already shown to co-release GABA and glycine (Nabekura

et al. 2004), also release glutamate as a third, and seemingly opposing, neuro-

transmitter (Gillespie et al. 2005) (Fig. 5.3b). The authors used whole-cell

voltage-clamp recordings in acute slices of auditory brainstem to demonstrate

dual release of GABA/glycine and glutamate in the LSO in response to photo-

uncaging of glutamate in MNTB (to focally activate MNTB cell bodies) or to

single-fiber electrical stimulation of MNTB fibers (Fig. 5.3c). Additional evi-

dence came from immunocytochemistry showing that markers for GABAergic

(VGAT) and glutamatergic (VGLUT3) transmission colocalize within the LSO

in synaptic terminals of the MNTB (Fig. 5.3d, e). Just as GABA release at

MNTB-LSO synapses predominates initially and declines during postnatal life,

so too glutamate release is highest during the first postnatal week and declines

thereafter. In the LSO, VGLUT3 expression is highest during the first two

weeks, after which it declines rapidly (Gillespie et al. 2004; Blaesse et al. 2005).

Glutamatergic transmission at these synapses is mediated by ionotropic gluta-

mate receptors, largely by NMDARs. These data provide the first physiological

evidence for glutamate release fromGABA/glycine terminals in themammalian

brain and offer physiological support for earlier anatomical studies suggesting

that glutamate and glycine might both be released at MNTB-LSO synapses

(Glendenning et al. 1991; Helfert et al. 1992) (Fig. 5.3a).
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Fig. 5.3 Glutamate co-release at developing GABA/glycine auditory synapses. (a) Electron
micrographs of an individual terminal from serial sections immunolabeled for glutamate,
glycine, and GABA. Terminal 3 is immunoreactive for all three neurotransmitters, terminal 2
for glutamate and glycine. Arrows point to gold particles that tag immunopositive sites.
(b) Blocking GABAARs and GlyRs with bicuculline and strychnine uncovers a MNTB-
elicited glutamatergic response in LSO neurons. In these recordings, magnesiumwas excluded
from the bath to unblock NMDA receptors. Glutamatergic responses are mediated by
NMDA and AMPA receptors, as they are partially blocked by the NMDAR antagonist
APV and completely blocked by addition of the AMPAR antagonist CNQX. (c) Single
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A second auditory brainstem nucleus, the superior paraolivary nucleus
(SPN) also receives a prominent inhibitory input from the MNTB (Banks and
Smith 1992). Early expression of VGLUT3 in the SPN is at least as striking as
that in the LSO, and immunohistochemistry in the SPN shows a decrease in
VGLUT3 expression that parallels the decrease in the LSO (Gillespie et al.
2004; Boulland et al. 2004; Blaesse et al. 2005). Although the synaptic circuitry
of the SPN, and even the role of this nucleus in auditory processing, is still
poorly understood and controversial (Dehmel et al. 2002; Behrend et al. 2002;
Kulesza et al. 2003), the high neonatal expression levels of VGLUT3 and the
subsequent developmental decline of VGLUT3 expression suggest that, similar
to what has been proposed for the LSO, VGLUT3 also plays an important role
in the development of SPN circuitry.

5.2.4 VGLUT3 and Co-release of Glutamate

The basis for glutamate release from MNTB terminals is almost certainly
expression of the vesicular glutamate transporter 3 (VGLUT3), as immunohis-
tochemistry for vesicular transporters has revealed high levels of VGLUT3
expression in MTNB cell bodies and in MNTB synaptic terminals within the
LSO (Gillespie et al. 2005). The colocalization of immunofluorescence for
VGLUT3 with that for VGAT in identified synaptic terminals in the LSO is
consistent with the idea that individual terminals release both glutamate and
GABA/glycine. VGLUT3 is a relatively rare vesicular glutamate transporter
whose function has been a puzzle since its first description, when it was found to
be expressed at many non-glutamatergic synapses (Fremeau et al. 2002, Gras
et al. 2002, Schafer et al. 2002, Takamori et al. 2002, Seal and Edwards 2006).
The temporal correlation of glutamatergic synaptic transmission with high
levels of VGLUT3 expression in the LSO constituted the first experimental
corroboration for the hypothesis that VGLUT3 in fact underlies vesicular
glutamate release at nominally non-glutamatergic synapses.

Fig. 5.3 (continued) GABA/glycinergic MNTB axons can co-release glutamate. Activation of
singleMNTB axons byminimal stimulation elicits postsynaptic currents in LSO neurons (black
trace is average of grey, overlaid responses) that are only partially blocked by bicuculline and
strychnine. (d) Expression of the vesicular glutamate transporter 3 (VGLUT3) in the MNTB-
LSO pathway. MNTB neurons are immunopositive for both the vesicular GABA transporter
(VGAT) and VGLUT3. In the LSO, VGAT co-labels with VGLUT3 in small clusters, which
also label for the synaptic vesicle protein 2 (SV2).Arrows point to presumedpresynaptic endings
(SV2-positive) that also label with bothVGLUT3 andVGAT. (e) IdentifiedMNTB terminals in
the LSO express VGLUT3. A single MNTB neuron was filled with the dye Alexa 568 (red). In
the LSO anAlexa-filled terminal of this neuron is identified by expression of SV2 (yellow). This
terminal also expresses VGLUT3 (white). Adapted with permission from: A) Helfert et al. 1992;
B-E) Gillespie et al. 2005. (See Color Plate 3)
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5.2.4.1 Possible Glutamate Co-release at GABA/Glycinergic or Other Synapses

in Other Brain Areas

The expression of VGLUT3 in many nominally non-glutamatergic synapses
suggests that glutamate co-release may be a widespread phenomenon in the
mammalian brain (Fremeau et al. 2002; Gras et al. 2002; Schafer et al. 2002;
Takamori et al. 2002; Herzog et al. 2004; Somogyi et al. 2004; Gabellec et al.
2007). VGLUT3 expression correlates with markers for non-glutamatergic
synapses within certain restricted neuronal populations, and in other cases
within a restricted temporal window. For example, VGLUT3 mRNA and
protein are found at high levels in the developing cerebellar nuclei, where
VGAT and VGLUT3 colocalize in synaptic terminals of presumed Purkinje
cells (Boulland et al. 2004; Gras et al. 2005), and where VGLUT3 is down-
regulated during the first postnatal weeks. Like theMNTB-LSO synapses, these
cerebellar synapses are inhibitory in the adult; unlike theMNTB-LSO synapses,
glutamate release at these developing synapses has not (yet?) been demon-
strated. Nevertheless, an attractive hypothesis is that VGLUT3 supports an
early glutamate release that is important for establishing these inhibitory
synapses.

VGLUT3 is not the only vesicular glutamate transporter found in close
proximity to GABA release machinery, as both mRNA and protein for both
vesicular glutamate transporter 2 (VGLUT2) and glutamic acid decarboxylase
(GAD) appear to colocalize in neurons of the anteroventral periventricular
nucleus of the preoptic area (Ottem et al. 2004). The expression of both
VGLUT2 and VGAT in the same cells further suggests that these neurons
may release both GABA and glutamate, though at present no physiological
evidence supports this prediction.

5.2.5 Functional Role for Coincident Release of Glutamate, GABA,
and Glycine

Glutamate release at GABA/glycinergicMNTB-LSO terminals is a new finding
and the functional role of this triple release is unknown. Understanding the role
of the inhibitory MNTB-LSO synapse in auditory processing, and what is
known about synaptic refinement in the LSO, may cast light on this question.

Sound localization and binaural detection of signal in noise depend on the
precise tonotopic alignment of inputs to the principal cells of the LSO. Neurons
of the ipsilateral cochlear nucleus (CN) project directly to the LSO where they
form glutamatergic synapses (Cant and Casseday 1986, Wu and Kelly 1992).
Neurons from the contralateral CN make glutamatergic synapses onto princi-
pal cells of the MNTB (Smith et al. 1991), which in turn make inhibitory
synapses onto LSO neurons (Moore and Caspary 1983, Caspary and Finlayson
1991). Both the excitatory and the inhibitory projections are tonotopic, but in
order to establish an adult LSO in which individual principal neurons receive

5 GABA, Glycine, and Glutamate Co-Release 69



inhibitory and excitatory inputs responding to the same frequency of sound,
each projection also must achieve a precise tonotopic match with the comple-
mentary projection.

Why might developing GABA/glycinergic MNTB-LSO synapses release glu-
tamate? Several converging strands of evidence lead to the hypothesis that
glutamate co-release plays a critical role in developmental plasticity and refine-
ment of the MNTB-LSO pathway. During LSO development, glutamatergic
transmission at MNTB-LSO synapses is developmentally regulated, as is also
the expression level of VGLUT3, the protein that presumably supports this
glutamate release. In addition, the period when glutamatergic transmission is
most prominent corresponds to the period of major functional refinement in the
MNTB-LSO projection by synapse elimination (Kim and Kandler 2003). Addi-
tionally, decreased glutamatergic transmission and VGLUT3 expression persist
for a short period after hearing onset, during a time of increased sharpness in the
frequency tuning and alignment of excitatory and inhibitory responses of LSO
neurons (Sanes and Rubel 1988). Furthermore, glutamate released at MNTB-
LSO synapses activates postsynaptic NMDA receptors (NMDARs), the subtype
of ionotropic glutamate receptor closely linked to induction of synaptic plasticity
in a variety of excitatory and inhibitory synapses (Kullmann et al. 2000, rev).
Finally, the peak of the period of glutamatergic transmission corresponds to the
peak period when GABA and glycine are still depolarizing in the LSO (Kandler
and Friauf 1995). The depolarizing action of GABA and glycine may be func-
tionally relevant, as it could provide the critical step necessary for NMDAR-
dependent plasticity: it could relieve the voltage-sensitive magnesium block of
NMDARs, thus allowing co-released glutamate to activate NMDARs.

The temporal correlation of these three transient developmental periods: (1)
major functional refinement, (2) glutamate release onto NMDARs, and (3)
depolarizing action of GABA and glycine—supports the hypothesis that gluta-
mate release from MNTB terminals onto NMDAR-containing LSO dendrites
participates in synaptic refinement in this system. This could occur at one (or
both) of two stages: either (a) functional refinement of the MNTB-LSO path-
way that occurs before hearing onset and is thought to be directed by sponta-
neous patterned activity from the cochlea (Lippe 1994; Kros et al. 1998; Beutner
and Moser 2001), or (b) subsequent fine-tuning of CN-LSO and MNTB-LSO
pathway alignment that may be guided by auditory experience after hearing
onset (Sanes and Rubel 1988; Echteler et al. 1989).

During the first stage of synaptic refinement in the MNTB-LSO pathway,
local GABA/glycinergic depolarization could relieve the Mg++ block of
NMDARs (Leinekugel et al. 1997), inducing Ca-influx through NMDA recep-
tors at active MNTB-LSO synapses. In many developing systems, NMDAR-
mediated calcium influx is essential for excitatory synaptic plasticity, such as
elimination of glutamatergic synapses (Rabacchi et al. 1992, Kakizawa et al.
2000) or insertion of AMPA receptors at ‘‘silent’’ synapses (Isaac et al. 1997,
Liao et al. 1999). In the LSO, NMDAR-mediated Ca-influx could play a role in
clustering or insertion of GABA and glycine receptors (Kano et al. 1992, Otis
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et al. 1994; Charpier et al. 1995;Kirsch andBetz 1998;Moss and Smart 2001). Ca-
dependent and/or NMDAR-dependent plasticity at inhibitory synapses has been
demonstrated in a number of inhibitory systems (Kano et al. 1992,Komatsu 1994,
Oda et al. 1995, McLean et al. 1996, Wang and Stelzer 1996, Caillard et al. 1999,
Ouardouz and Sastry 2000), although the route by whichNMDARs are activated
in the absence of synaptically released glutamate has remained an open question.
Glutamate release, accompanied by release of depolarizing GABA/glycine, pro-
vides an answer to this question by allowing inhibitory synapses to access
NMDARs and their downstream machinery of synaptic plasticity, independent
of glutamate from other sources. Although at LSO-MNTB synapses a form of
LTD can be induced through non-NMDAR-dependent mechanisms involving
GABABRs (Kotak et al. 2001, Chang et al. 2003), additional forms of activity-
dependent synaptic plasticity may also occur at this synapse, hypothetically
induced through glutamate release and activation of NMDARs.

Finer scale synaptic refinement during the initial period after hearing onset
presents a different problem. Despite our ever-deepening understanding of
synaptic plasticity at individual synapses, it has generally been difficult—with
some exceptions (e.g., Lien et al. 2006, Nugent et al. 2007)—to determine how
the finely tuned coordinate refinement of inhibitory and excitatory inputs to a
single neuron might occur. It is tempting to speculate that the reduced levels of
VGLUT3 expression, glutamate release, and NMDAR activation that remain
in the auditory brainstem after hearing onset might play a role in stimulus-
driven alignment of glutamatergic andGABA/glycinergic inputs. By the time of
hearing onset, GABA and glycine are hyperpolarizing in the LSO (Kandler and
Friauf 1995; Ehrlich et al. 1999), and the major period of functional refinement
in the MNTB-LSO pathway is complete (Kim and Kandler 2003), although
anatomical refinement occurs during the first few days after hearing onset
(Sanes and Siverls 1991). One specific hypothesis for NMDAR-mediated align-
ment is that the CN-LSO pathway could signal to MNTB-LSO synapses
through back-propagating action potentials—or through sufficiently strong
depolarization arising in nearby excitatory (CN-LSO) synapses—that relieve
theMg++-block at NMDARs inMNTB-LSO synapses. Simultaneous relief of
Mg++ block and release of glutamate from MNTB terminals would activate
NMDARs inMNTB-LSO synapses, allowing the postsynaptic neuron to detect
coincident input from the excitatory CN-LSO pathway and the inhibitory
MNTB-LSO pathway. In this strategy, late finescale refinement mediated by
NMDARactivation would likely occur not at the excitatory CN-LSO synapses,
but rather at the GABA/glycinergic MNTB-LSO synapses. An alternative,
reversed, scenario is that glutamate spillover from MNTB-LSO synapses
reaches nearby CN-LSO synapses to allow NMDARs in the CN-LSO synapses
to detect coincident inputs. Although we know very little about the locations of
developing synaptic inputs on LSO principal cells, this scenario would more
strongly depend on parameters such as reuptake and the physical locations of
excitatory and inhibitory synapses (Rusakov and Kullmann 1998). These addi-
tional constraints on NMDAR activation appear to make this scenario less
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generally applicable than one dependent on backpropagating spiking activity.
Nevertheless, both options offer models for how inputs of opposite sign might
signal each other through the postsynaptic neuron to achieve coordinated
refinement of excitatory and inhibitory synapses.

5.2.6 Molecular Basis for Release of Glutamate with GABA
and Glycine

For the strong version of this glutamate-in-inhibitory-plasticity hypothesis to
hold in the most limiting case, we might expect that glutamate and GABA/
glycine would be released from the same synapse even when stimulation of the
presynaptic terminal resulted in release of only a single vesicle. This would
require that GABA/glycine and glutamate be packaged together in individual
synaptic vesicles. This limiting case version of the hypothesis predicts the
existence of individual synaptic vesicles whose membranes contain both
VGLUT3 and VGAT. Immuno-EM methods are unfortunately insufficiently
precise to answer this question (see e.g. Bergersen et al. 2003), though paired
MNTB-LSO recordings or recordings of spontaneous mIPSCs at the MNTB-
LSO synapse could offer insight into this question.

Alternatively, glutamate and GABA/glycine may be packaged in distinct
populations of synaptic vesicles. This would not necessarily invalidate the
hypothesis that glutamate release plays a central role in activity-dependent
plasticity at glycinergic synapses. Separate vesicle populations with distinct spa-
tial distributions could participate differently in transmission and plasticity, or
release probabilities for GABA/glycinergic vesicles relative to those for glutama-
tergic vesicles—perhaps via differential expression of distinct synaptotagmin
isoforms (Xu et al. 2007)—could be adjusted to maximize the probability of
glutamate release within a certain range of firing rates. Under this scenario, the
distribution of mPSCs seen at the MNTB-LSO synapses would include at least
some purely glutamatergic and/or some purely GABA/glycinergic mPSCs.

Regardless of whether VGLUT3, glutamate release andNMDARactivation
mediate plasticity at MNTB-LSO synapses, it will be of great interest to
determine whether VGLUT3 and VGAT are in fact inserted in the membrane
of the same synaptic vesicles. This possibility seems unlikely, but it may not be
preposterous. Although in Drosophila a single vesicular glutamate transporter
is sufficient to load a glutamatergic vesicle (Daniels et al. 2006), a given
mammalian synaptic vesicle may contain approximately 10 transporters
(Takamori et al. 2006). Furthermore, two distinct vesicular transporter types,
VGLUT1 and VGLUT2, have been found coexpressed in the same synaptic
vesicles in the developing hippocampus (Herzog et al. 2006). It may be possible
in the developing LSO, by extension, that VGLUT3 and VGAT are transiently
co-expressed in the same synaptic vesicles and that single synaptic vesicles
contain both excitatory and inhibitory classical fast neurotransmitters.

72 D.C. Gillespie and K. Kandler



5.3 Summary

Evidence gleaned over the past decade has forced us to dramatically change our
picture of inhibitory synapses. In the first place, nominally inhibitory synapses
do not always inhibit their postsynaptic neurons; at early periods, GABA and
glycinergic synapses in many parts of the nervous system are depolarizing and
even excitatory. Inhibitory information transfer is not strictly unidirectional;
presynaptic GABARs and glyRs can modulate release of GABA and glycine.
Glycinergic synapses do not always release (much) glycine; immature glyciner-
gic synapses in brainstem and spinal cord in fact release primarily GABA. And
finally, at the synapse formerly known as glycinergic, the GABA/glycinergic
MNTB-LSO synapse of the auditory brainstem, ‘‘inhibitory’’ synapses do not
release solely inhibitory neurotransmitters; nascent glycinergic synapses release
the inhibitory neurotransmitters GABA and glycine and the excitatory neuro-
transmitter glutamate. These findings have forced us to begin to see the inhibi-
tory synapse as a much more complex and exciting unit than it previously
appeared.

These findings also force us to consider what the function of multiple
transmitter release might be. Of particular interest is the triple release of
glutamate, GABA and glycine in the developing MNTB-LSO pathway. This
pathway exhibits a rich repertoire of developmental changes, including synapse
elimination and strengthening, during the period corresponding to glutamate
release andNMDARactivation. TheMNTB-LSO pathway has been seen as an
elegant model system for understanding the mechanisms by which inhibitory
circuits are assembled and refined. With its precisely converging tonotopic
projections from excitatory and inhibitory pathways, the LSO offers an excep-
tionally well-organized model for delving into questions of inhibitory circuit
development and of the more complex coordinated refinement of inhibitory
and excitatory inputs. The unexpected discovery that the ‘‘purely inhibitory’’
pathway is not so pure has forced us to redraw our model system, but it has also
opened up new and exciting research directions.
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