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Functional Evidence for a Blood-Testis Barrier

The term “blood-testis barrier” appears to have been first used by Chiquoine1 in an
article on effects of cadmium on the testis, but evidence for such a barrier already
existed, dating back to the early years of the twentieth century (see ref. 2 for early

references). In a number of studies, it was shown that some dyes when injected into animals,
stained most tissues, with the notable exceptions of the brain and the seminiferous tubules of
the testis. The former observation was rapidly taken up and developed to form the basis for the
concept of the blood-brain barrier,3,4 but it was only with the studies of Kormano5 that the true
significance of the earlier observations on the testis was recognized. He showed that dyes which
were excluded from the tubules of adult rats readily penetrated those of prepubertal animals. In
addition, Kormano noticed that staining of interstitial cells with acriflavine also fell around the
time of puberty, suggesting a change in the blood vessels as well. At about the same time as
Kormano’s studies, Waites and I showed that testis blood flow measured by indicator dilution
with rubidium gave much lower values that with iodoantipyrine, while similar values were
obtained in most other organs except brain,6 suggesting that rubidium was also excluded to
some extent from parts of the testis, as it was from the brain.

Also around this time, Waites and I devised techniques for collecting fluid from the rete
testis (RTF) of sheep7,8,9 and from the rete testis and seminiferous tubules (STF) of rats,10

and we found that both RTF and STF differed appreciably in composition from either blood
plasma or testicular lymph collected from a vessel in the spermatic cord. That such differ-
ences, especially those for small hydrophilic organic compounds such as inositol11,12 could
be maintained provided further evidence that there was not free communication between
the various fluid compartments inside the testis, and this was confirmed in studies on the
rate of penetration of various radioactive markers from the bloodstream into RTF in rams13

or RTF and STF in rats.14-17

There are three cell types between the fluid inside the blood vessels and that in the lumina
of the seminiferous tubules, namely the endothelial cells lining the blood vessels, the peritubular
tissue and the Sertoli cells. These last are the only cells to extend all the way from the peritubular
tissue to the lumen of the tubule, with the developing germ cells lying either between the base
of a Sertoli cell and the peritubular tissue, or in the intercellular space between a pair of Sertoli
cells or in crypts in the luminal surface of a Sertoli cell.18-20 All three cell types could conceiv-
ably influence the rate of entry of substances into the tubules,21 although most attention has
been directed to the Sertoli cells (see next section).
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Other techniques used to estimate the effectiveness of the blood-testis barrier include the
measurement of the volume of distribution of a marker known to be excluded from STF, such
as Cr-EDTA, inulin or sucrose, and relating this either to the volume of the interstitial tis-
sue22-24 or to the value obtained when the efferent ducts had been ligated 24 h previously, so
that the fluid secreted during that time had been retained in the lumina of the seminiferous
tubules.25 Other studies26,27 used as a marker, hexamethonium iodide, which has been shown
not to penetrate the blood-brain barrier,28 a zinc complex of carnosine labeled with C-14 and
Zn-65,29 or a biotin tracer.30 Another approach is to relate the amount of a labeled compound
to the amount of Tc-99 or I125 labeled albumin appearing in the testis and brain of mice
following an intravenous injection.31-39 From these data, an entry rate (Ki) for the marker can
be calculated, but this value in the testis could be influenced by changes in vascular permeabil-
ity as well as in permeability of the tubular barrier.

The latest development has been the use of magnetic resonance imaging of the testis, before
and after intravenous injection of gadopentetate dimeglumine.40,41 Qualitative evidence for a
barrier in young animals is provided by the development of a lumen and the secretion of fluid
in the tubules.42-44

While most evidence for the involvement of the Sertoli cells is morphological (see next
section) it should be remembered that when isolated Sertoli cells are cultured at high density
on Matrigel in a two-chamber system, they form a confluent layer, which exhibits barrier prop-
erties, as shown by an increase in electrical resistance and directional secretion of a number of
substances.45-47 However, the transepithelial resistance (TER) obtained (usually about 100
ohm.cm2) was usually much less than that seen with MDCK cells or keratinocytes (100-2000
ohm.cm2).48 Nevertheless, treatment of Sertoli cell cultures with FSH and testosterone45 could
raise TER to between 580 and 1200 ohm.cm2, and the cells were usually obtained from prepu-
bertal rats, in which the barrier would not be fully formed (see below).

Structural Evidence for a Barrier

A Sertoli Cells
The existence of specialized junctions between pairs of Sertoli cells was recognised in the

1960’s.49-53 Their significance became apparent when it was shown that electron opaque mark-
ers which were injected into the interstitial tissue or reached there from the blood stream, were
restricted from entering the tubules to some extent by the peritububular myoid cells, but al-
most completely by the specialized junctions between pairs of Sertoli cells. The markers used
included colloidal carbon, ferritin, horseradish peroxidase, lanthanum salts,54-58 and more re-
cently biotin.30

Peritubular Myoid Cells
Peritubular myoid cells form a single layer in rodents and several layers in primates around

the seminiferous tubules.59 As long ago as 1901, it was suggested60 that this cell layer formed “a
sort of dialysing membrane which regulates the compostion of the fluid contained in the space
that it limits” (une sorte de membrane dialysante qui regle la composition du liquide contenu
dans l’espace qu’elle limite). The cells change in shape, structure, marker expression and rate of
cell division around the time of puberty61,62 and respond in culture to endothelin63,64 which as
the name implies, is usually produced by endothelial cells, but in the testis is formed mostly by
the Sertoli cells.65 The myoid cells produce PmodS, a protein which has a powerful influence
on several Sertoli cell functions,66,67 although an effect on the blood-testis barrier has not
apparently been examined.

The peritubular myoid cells prevented the passage of larger electron-opaque markers like
colloidal carbon or thorium, and lanthanum penetrated the myoid cell layer in only about
15% of the tubules in rodent testes.54,55 However, in primate testes, the peritubular cells have
much less effect in restricting the penetration of markers.56
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Nevertheless, the myoid cells may have an important influence in restricting the entry of
retinoic acid (RA) into the tubules. Less than 1% of the RA in the testis is derived from plasma
RA, much less than in any other tissue studied.68 This may be due to the presence in the myoid
cells of the RA-degrading enzymes Cyp 26 a1, Cyp 26 b1 and Cyp 26c1,69 while the first stage
of the formation of RA from retinol occurs in the Sertoli cells. It has been known for many
years that spermatogenesis is arrested in Vitamin A-deficient animals, and retinoic acid is effec-
tive in restoring sperm production only in pharmacological doses (10 mg/week compared with
0.1 to 0.2 mg/week for retinol).70 The restricted entry of retinoic acid may explain this differ-
ence. The myoid cells also contain high levels of cellular retinol binding protein,71,72 which is
probably involved in the transport of retinol into the tubules (see below).

Endothelial Cells
The endothelial cells in the testis are unusual for an endocrine tissue in that they are

unfenestrated,74-76 although in the human testis, some capillaries in the lamina propria do have
fenestrations.77 Endothelial cells in the rat testis also have a much lower density of vesicles than
vessels in other tissues, except brain,78 suggesting that vesicular transport is less important in
these tissues than elsewhere in the body.

Structural Constituents of the Sertoli Cell Junctions
In recent times, a large amount of information has appeared about the constituent proteins

of the Sertoli cell junctions which constitute that part of the blood-testis barrier (Fig. 1). The
main components include occludin, one or more of the claudins, zonula occludens (ZO), and
junctional adhesion molecules (JAM’s).Occludin, claudin-11 and JAM-1 are transmembrane
proteins, the extracellular parts of which join with similar structure on an adjacent Sertoli cell
to form a tight junction. In the cytoplasm of the cells, the intracellular tails of the occludin,
claudin and JAM molecules are joined to ZO-1 and ZO-2 molecules, which in turn are linked
to actin chains.48

Occludin is a 60 to 65 kDa protein with four transmembrane domains, one intracellular
and two extracellular loops, and is present in the tight junctions between Sertoli cells in rats
and mice, but not guinea pig or human.79 In mice which carry a null mutation of the occludin
gene, the testes initially develop normally, but by 40 to 60 weeks of age, the tubules become
atrophic, with complete loss of germ cells.80 Therefore, it is rather surprising that occludin first
appears in the fetal testis at about day 13 pc (post-coitus), long before spermatogenesis is initi-
ated, suggesting that occludin has functions other than the establishment of the barrier. In
postnatal rats, at about day 5, the reaction for occludin becomes more intense and is then
located along the lateral plasma membrane of the Sertoli cells. Then at day 14, the reaction
appears as intense focal bands close to the base of the epithelium, near the presumed sites of the
tight junctions which are forming at about that time.81 Injection into rats of a 22-amino acid
synthetic peptide corresponding to the second extracellular loop of occludin perturbs the
blood-testis barrier and disrupts spermatogenesis.82

Claudins are a family of more than 20 proteins, about 22 kDa in size,83 and claudin-11 is
present at tight junctions between Sertoli cells in testes, but again appears first during fetal life.
Its concentration in the testis reaches a peak at about 6 days of age, and then appears to decline,
probably due to the appearance of claudin-negative germ cells.84 Claudin-11 null male mice
are sterile, and tight junctions appear to be absent in these animals as judged by freeze-fracture.85

Claudin-5, which is found only in endothelial cells,86 is present in endothelial cells in the rat
testes,87 but as mice null for this peptide die within a few days of birth,88 it has not been
possible to study the effect of lack of this protein on spermatogenesis.

Integrins are thought to be involved in junctions between testicular cells and extracellular
matrix,48 but there is evidence89 that integrin 6 1 is also present in Sertoli-Sertoli cell junc-
tions, especially at certain stages of spermatogenesis, but also in Sertoli cell-only testes.90 In
testis explants, the development of this suprabasal integrin occurred only in the presence of FSH.90
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Transport Proteins and the Blood-Testis Barrier

Transferrin
Iron is transported into the germ cells inside the blood-testis barrier by a mechanism involv-

ing a specific transport protein, transferrin. In the blood, iron is carried bound to transferrin
secreted by the liver, and on reaching the testis, this complex binds to transferrin receptors on
the basal surface of the Sertoli cells.91 The iron-transferrin complex is then internalised and
dissociated, the apo-transferrin returned to the interstitial extracellular fluid and the iron is
complexed to transferrin produced inside the Sertoli cell and secreted into the space between
the Sertoli cell and the germ cells (Fig. 2). How the iron is moved across the Sertoli cell is still
uncertain, but may involve a ferritin-like molecule.92,93 Sertoli cells in a bicameral culture
system synthesize and secrete transferrin,94 and iron from basally applied human transferrin is
transported through rat Sertoli cells and appears in the apical compartment bound to rat trans-
ferrin.95 Nevertheless, the concentration of transferrin in seminiferous tubule fluid is less than
one-twentieth of that in interstitial extracellular fluid or blood plasma.96

Other elements besides iron are bound by transferrin, and this may be important in causing
the accumulation inside the tubules of potentially mutagenic radioactive substances like in-
dium97,98 and plutonium.99

Transferrin production by Sertoli cells is greater if the cells are derived from 17 day old
rather than 10 day old rats,100 is reduced following hypophysectomy and not restored by test-
osterone treatment.101 It is stimulated by FSH,102 cytokines,103 a factor PmodS produced by
the peritubular myoid cells,104 and heregulins, which may also come from the same source.105

The presence of germ cells in the tubule may also have an effect on transferrin production by
the Sertoli cells,105,106 although different results were obtained when the germ cells were de-
pleted with methoxyacetic acid.107 Sertoli cells also secrete an copper-transporting protein,
ceruloplasmin,108 but it is not known whether this substance is involved in copper transport
into the tubules.

Figure 2. A diagram illustrating the role of transferrin in the transport of iron and other metals
into the seminiferous tubules. Diferric serum transferrin (Fe-sTF-Fe) binds to a transferrin recep-
tor on the basal surface of the Sertoli cell. The transferrin-ferric ion-transferrin receptor complex
is internalized into special compartments in the cell, acidified and broken down. The
apotransferrin and the transferrin receptor are recycled to the cell surface, and the iron is moved
through the cell to newly synthesized testicular transferrin (tTf) or is incorporated into ferritin
in the Sertoli cell. The testicular transferrin with the ferric ions is released into the intercellular
space between the Sertoli and germ cell and then binds to transferrin receptors on the surface
of the germ cells. The net result is transport of ferric ions from the basal surface of the Sertoli
cell to the adluminal compartment of the tubule. Reproduced with permission from: Sylvester
SR, Griswold MD. J Androl 1994; 15:381-385, ©1994 American Society of Andrology.93
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Another divalent metal transporter DMT1 (Slc1 1a2) is also present in the Sertoli cells of
the rat testis, although it is not primarily responsible for translocating iron across the epithe-
lium, but in intracellular handling of iron during spermatogenesis.109,110

P-Glycoprotein
P-glycoprotein (Pgp) is the product of the multidrug resistance 1 gene (MDR1 or ABC B1

in humans, and mdr 1a (sometimes called mdr 3) and 1b in mice and rats). It was originally
identified in cancer cells which had become resistant to chemotherapeutic drugs.111-114 Subse-
quently, it was found that this protein was present in a number of normal tissues, and especially
in the endothelial cells of the brain and testis.115-118 It is also present in other cells in the testis,
including Leydig cells, macrophages, peritubular cells, Sertoli cells and late spermatids,
although not detectable in spermatogonia, spermatocytes or early spermatids.119,120 However,
the relative concentrations in the various cell types has apparently not yet been determined and
another group has detected mdr 1 in germ cells, probably spermatogonia, in rats, as well as in
endothelial cells in the testis.121 In endothelial cells from brain, Pgp is expressed only on the
luminal surface, consistent with a role in protecting the brain from circulating lipophilic mol-
ecules which would otherwise cross the blood-brain barrier. However, in endothelial cells in
the testis, Pgp is expressed on both luminal and abluminal sufaces, which suggests that it acts to
exclude substrates of the transporter from the endothelial cells themselves.122 A mRNA from a
related gene mdr 2 is also present in Sertoli cells, but at a lower concentration than in liver.109

The testes and brains of mice in which the gene for mdr-1a has been deleted accumulate more
ivermectin, digoxin, cyclosporin A, ondasetron, loperamide and vinblastine than controls.123-126

In other studies,127,128 similar results were obtained with amitriptyline and some of its metabo-
lites, but not with fluoxetine. In mice in which both mdr 1a and 1b have been knocked out, the
entry of the anti-Parkinson drug budipine into the testes and brains was enhanced.129 In these
double knockout mice, the penetration of the steroids, corticosterone, cortisol, aldosterone and
progesterone into the testes was also enhanced,130 although cortisol131 or prednisolone132 entry
into the testis was unaffected in mdr 1a single knockout mice. Pgp also transports HIV protease
inhibitors (HPI) used in the treatment of AIDS133 and pharmacological inhibition of the trans-
porter enhances the penetration of the HPI nelfinavir into the testes of mice treated with LY-335979,
a potent Pgp inhibitor, as well as in mdr-1a knockout mice.134 The penetration of saquinivir,
another HPI into the testes of mice was also enhanced by treatment of the animals with another
inhibitor of Pgp, GF120918.135 However, treatment of mice with a variety of Pgp inhibitors
failed to increase the penetration of vinblastine into either testis or brain,136 and vincristine enters
seminiferous tubule fluid reasonably rapidly,137 although it is a substrate for both Pgp and MRP.126

The closely related efflux pump, breast cancer resistance protein (BCRP) is also found in the
endothelial cells and peritubular myoid cells in the testis,120 but the structurally related protein
encoded by the cystic fibrosis gene is not found in endothelial cells, but is expressed in spermatids
in a stage-specific fashion.121,138

Multidrug Resistance Protein
Multidrug resistance proteins (MRP) are other members of the ATP-binding cassette super-

family distantly related to Pgp. MRP1 is present in high concentrations in testes139 and is local-
ized to the Leydig and Sertoli cells in human and mice,120,140 but cannot be detected in endot-
helial cells in the rat testis.141 Mice lacking the gene for this protein are much more sensitive to
the damaging effects of etoposide phosphate141 and methoxychlor142 than normal mice, sug-
gesting that it acts to exclude these drugs from the seminiferous tubules. MRP1 is also involved
in glutathione-mediated transport of sulfated estrogens, and it has been suggested that the high
levels of MRP1 in the Leydig cells may be responsible for the efflux of the hydrophilic sulfated
conjugates from the cell.143 The anticancer drug methotrexate, which is transported out of cells
by MRP, but poorly by Pgp,144 is virtually excluded from seminferous tubule fluid.145
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Other Transport Mechanisms
Endothelial cells in the testis contain high levels of -glutamyl transpeptidase,118,146 an

enzyme usually associated with amino acid transport, and it has also been shown that endothe-
lial cells of the larger blood vessels in the rat testis transport leucine with transport kinetics
similar to those of brain and much lower than for other tissues.147 There is also a large amino
acid transporter present in rat testis as well as brain and heart, but not other tissues.148 Endot-
helial cells in the rat testis also contain an endothelial barrier antigen (EBA), previously thought
to be confined to nervous tissue,149 and an isoform GLUT-1 of the glucose transporter family,
usually associated with brain and retina.118

The peritubular cells in the mouse testis contain a specialized transporter protein involved
in urea movement across plasma membranes, UT-A5, the levels of which are not related to the
stage of spermatogenesis in adults but are coordinated with the stage of testis development,
increasing around 15 days post partum.150 In rat Sertoli cells, there are also 4 other urea trans-
porters, UT-A 1, 2, 3 and 4 present at all stages of spermatogenesis, and UT-B is present at
stages II and III. UT-A3 was also present in some interstitial cells. Flux of urea across the walls
of isolated perfused seminiferous tubules is inhibited by phloretin.151 It is interesting that there
is some evidence for the active accumulation of radioactively labeled urea inside the seminifer-
ous tubules of rats.152

Evidence has recently been presented for the presence of a family of saturable nucleoside
transporters in isolated Sertoli cells, as primary cultures or as polarized layers on Matrigel, some
of which is sodium-dependent and can be inhibited with nitrobenzylthioinosine.153

Binding proteins may also be important in the regulating the entry of retinol into the tu-
bules. Homogenates of rat testis bind more retinol and retinoic acid (RA) than any other tissue
examined,154 but in vivo, very little RA enters the tubules from blood.68 Both myoid and
Sertoli cells in the testis contain a cellular retinol-binding protein (CRBP).155-157 The Sertoli
cells also contain a number of retinoic acid receptors.68,69 Retinol circulates in the plasma
bound to a retinol-binding protein (RBP), a 21 kDa protein which normally is present as a
76kDa 1:1 complex with transthyretin. This complex in the testis is confined to the interstitial
tissue.158 When retinol bound to RBP was injected into the testis158 or under the capsule,159 it
appeared in the tubules only after at least 30 minutes, whereas tritiated retinol injected mixed
with albumin, spread rapidly throughout the testis. Early studies could not detect any interac-
tion of RBP with cells in or on the seminiferous tubules.158 Nevertheless, both peritubular
myoid and Sertoli cells appear to be involved in the transport of retinoids to the germ cells.
Both cell types in culture are able to accumulate retinol from serum RBP by a saturable and
competable process, which involves recognition of the retinol-RBP complex at the cell surface,
with subsequent internalization of the retinol but not the RBP. The first step involves the
myoid cells, which bind the retinol inside the cell to newly formed CRBP, and the new com-
plex is released into the space between the myoid cells and the Sertoli cells. The latter then take
up just the retinol and complex it with new CRBP, before releasing the complex again to reach
the germ cells.71,72,160

Sertoli cells also contain a prostaglandin D2 synthetase, which also binds retinoic acid but
not retinol.161 This protein is secreted into rete testis fluid,162 but its role in the transport of
retinoids into the tubules in not yet clear.

Factors Affecting Blood-Testis Barrier Function

Age and Hormones
As already mentioned, studies on the penetration of certain dyes into the seminiferous

tubules showed that these dyes were excluded only from the tubules of rats older than about 20
days.5 Subsequently, it was shown that electron-opaque markers injected into the interstitial
tissue of the testes of rats entered the tubules freely up to 16 days of age, but between 16 and 19
days , the occluding junctions between the Sertoli cells appear and the tracers are effectively
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prevented from reaching the tubular lumen.163 In immature rat testes, occluding junctions, as
demonstrated by freeze-fracture, are absent, although gap junctions are present. Furthermore,
perfusion with hypertonic lithium chloride caused the cells outside the Sertoli cells junctions
in adult testes to shrivel, with no effect on those inside the junctions, whereas in the testes of 13
day old rats, cellular shrinkage occurred throughout the tubules.164 Shrinkage of adluminal
cells in response to exposure to a hypertonic solution decreased between 14 and 18 days of
age.43 Similarly in guinea pigs, Sertoli cell junctional complexes appeared around 15 days after
birth165 and in mice at about 16 days.166 In rats around 15 days of age, the barrier appears only
in those parts of the tubule where germ cells have reached pachytene.167

In seasonal breeders such as mink,168,169 viscacha,170 and Djungarian hamsters171 electron
opaque markers are excluded by the Sertoli cell junctions during the breeding season, but
during testicular regression, the tracer penetrates throughout the tubules. In the study on mink,
the exclusion of the marker from the tubule was associated with the presence of a tubular
lumen, rather than any particular type of germ cells. At the other end of life, the barrier in 24
month old rats was grossly deficient, with associated failure in spermatogenesis.172 The devel-
opment of the barrier in young rats and mice can be retarded by the neonatal administrations
of diethylstilboestrol.173,174

The development of a lumen in the tubules is more gradual, beginning at around 10 days
after birth, and with the diameter continuing to increase slowly to day 30 and then more
rapidly to around day 50.22,43 Fluid secretion per unit weight of testis also continued to in-
crease until about 45 days of age,42,44 and the volume of distribution of Cr-EDTA, which is
normally excluded from the tubules, continues to fall until after 30 days of age,22 so the func-
tional barrier appears to develop more gradually than the anatomical one.

The development of transepithelial electrical resistance (TER) in two-compartment Sertoli
cell cultures is delayed by FSH for several days, and once established is decreased and then
returns to control levels or increases. Testosterone alone caused a rapid increase in TER, and
testosterone and FSH together resulted in the highest TER levels. Dihydrotestosterone was
more effective than testosterone, whereas estradiol was without effect.45 Dibutryl cyclic ad-
enosine monophosphate (cAMP) in low concentrations stimulated TER development, whereas
higher doses were inhibitory. Cholera toxin mimicked the FSH effects.175 The effect of cAMP
on the Sertoli cell tight junctions is probably mediated by a proteasome-sensitive ubiquitination
of occludin.47 TGF- 3 also regulates blood-testis barrier dynamics, probably by determining
the steady-state levels of occludin and ZO-1 via the p38 MAP kinase signaling pathway.176

Tumour necrosis factor  injected directly into rat testes caused a temporary disruption of the
blood-testis barrier, by reducing the levels of occludin, zonula occludens-1 and N-cadherin.177

Testosterone, acting through its receptor in the Sertoli cells, regulates the expression of claudin-3,
which encodes a transient component of newly formed tight junctions. Sertoli cell-specific abla-
tion of androgen receptor results in increased permeability of the barrier to biotin.30 The effect of
androgen withdrawal on the Sertoli cell junctions was studied either by hypophysectomy or by
treatment of rats with ethane dimethane sulfonate to destroy the Leydig cells. These treatments
led to degeneration of germ cells and the formation of numerous basally-located vacuoles, formed
by multiple focal dilations of the intercellular space associated with the junctional complexes. As
this occurred also in Sertoli cell-only testes, produced by fetal irradiation, it cannot be explained
by spaces left by degenerating germ cells.178 The expression of occludin is also reduced by treat-
ment of rats with the anti-androgen, flutamide.179 In an intratesticular androgen suppression
model, using subcutaneous implants of testosterone and estrogen to suppress LH secretion and
hence endogenous androgen production, the adherens junctions between the Sertoli cells and
spermatids can be disrupted, without affecting blood-testis barrier integrity.180

The Sertoli cell barrier to lanthanum develops normally in rats treated in utero with busul-
fan but at a later age around 30 days of age, at the time of the appearance of the first zygotene
and pachytene cells in these animals.181 However, in prenatally irradiated rats, tight junctions,
as detected by freeze fracture, were extensive by 3 months of age, although their ability to block
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the penetration of markers was not examined.167 It is probably relevant that the fluid inside the
Sertoli cell only tubules of prenatally irradiated or busufan-treated rats was plasma-like in its
potassium content, in contrast to the high potassium of normal fluid.16,183

Vitamin A Deficiency
In rats made Vitamin A-deficient from weaning (20 days old), Sertoli cell junctions were

intact and complete spermatogenesis was maintained up to 80 days of age. However, by 90
days, lanthanum could penetrate through the junctions and by 100 days severe regression of
spermatogenesis had occurred.184 Different results were obtained by Ismail and Morales,185

who found that the junctions remained impermeable to lanthanum, even when spermatogen-
esis had failed in rats 104 days old, deficient since 20 days old. In a later study, following
long-term deprivation of Vitamin A, the Sertoli cell junctions became permeable to lanthanum
when spermatogenesis was arrested and remained so even when spermatogenesis was first
reinitiated. Spermatocytes normally found in the adluminal compartment were apoptotic, while
spermatocytes normally found in the basal compartment remained normal.186

Tissue and Blood Pressures
If the efferent ducts leading from the testis to the epididymis are ligated close to the testis,

the fluid normally secreted by the Sertoli cells to transport the immotile spermatozoa is re-
tained inside the seminiferous tubules. These become progressively distended for between 24
and 36 h in rats, so that the testis becomes enlarged and turgid. Then the testis weight falls
again and eventually by 21 days, spermatogenesis is completely deranged.42 During this time
the blood-testis barrier, judged by the ratio of the space of distribution of Cr-EDTA to the
measured volume of the interstitial tissue remained normal during the phase of fluid accumu-
lation, but increased sharply as testis weight begins to fall again, indicating breakdown of the
barrier. Surprisingly, by the time testis weight had returned to control levels, the barrier ap-
peared to be functioning again, and it remained functional even when spermatogenesis was
completely disrupted up to 3 weeks later.24,187 One author188 found that lanthanum pen-
etrated more readily through the Sertoli cell junctions as early as 24 h after efferent duct liga-
tion. However, other studies with electron opaque markers gave contradictory results.188-191

In chronically hypertensive rats, the penetration of sucrose and 2-methyl-4-chlorophenoxyacetic
acid into the testis is reduced, while that of the highly permeable antipyrine is unaffected.192 In
rats with testicular degeneration induced by epinephrine, the barrier remains able to exclude
lanthanum.193

Cadmium and Other Toxic Substances
The testes of most mammals are extremely sensitive to the effects of cadmium salts, in doses

which have little effect on other tissues. Early observations1 concentrated attention on the
blood vessels in the testis, and there is no doubt that testis blood flow is reduced in rats as a
result of increases in vascular permeability as early as several hours after a single injection of
cadmium chloride.6 Later studies showed that permeability of the blood-testis barrier to ru-
bidium probably preceded the changes in vascular permeability.194 In guinea pigs on the other
hand, increased staining of the interstitial tissue with acriflavine injected subcutaneously oc-
curred before an increase in staining of the seminiferous tubules.195 However, lower doses of
cadmium affect spermatogenesis without noticeable changes in the vascular system, and these
effects can be reduced by coadministration of zinc salts.196

Exposure of bicameral Sertoli cell cultures to cadmium salts caused a progressive and
dose-dependent drop in TER.197,198 The expression of occludin is decreased and u-plasminogen
activator is increased in the presence of cadmium.198 Treatment of rats with low doses of cad-
mium chloride caused changes in the tight junction-associated microfilaments in the Sertoli
cells by 24 h after injection, although no changes were found after 4 h.199 The fall in TER in
the presence of cadmium was reduced if testosterone and FSH were added.198 The disruption
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of the barrier is associated with a transient increase in testicular TGF- 2 and 3 and the phos-
phorylated p38 mitogen activated protein (MAP) kinase, concomitant with a loss of occludin
and ZO-1 from the barrier site.200 There is also a surge in 2-macroglobulin at the Sertoli-Sertoli
cell junctions at the time of disruption of the barrier.201

It is interesting that there are some strains of mice whose testes are much more resistant to
the effects of cadmium, and this is associated with reduced transport of cadmium into the
testes. The cadmium transporter is saturable and can be competitively inhibited by zinc, but
not calcium, and appears not to be associated with any tubular cells, but is probably located in
the endothelial cells.36

The integrity of the blood-testis barrier is altered by intratesticular treatment of rats with
cytochalasin D, a known microfilament inhibitor.202 Evidence for this was obtained from stud-
ies on the penetration of electron-opaque markers, from the effects of perfusion with hyper-
tonic solutions and from the entry of radioactive inulin into seminiferous tubular fluid.

Another substance which has been shown to disrupt the blood-testis barrier is glycerol
when injected into the testes of rats. These animals showed increased entry of radioactive inu-
lin and albumin into seminiferous tubular and rete testis fluids,203 and also disrupted tight
junction-associated actin microfilaments, occludin and microtubules in the Sertoli cells.204

Other substances which appear to affect the blood-testis barrier include hexanedione,205

cis-platinum,206 sarin,26 and DEET27 but stainless steel corrosion products affects spermato-
genesis without apparently interfering with the blood-testis barrier.207 Other treatments such
as bisphenol A208 or Adjudin (AF 2364)48 disrupt the junctions between Sertoli cells and
spermatids without affecting the blood-testis barrier. Freunds complete adjuvant injected
into guinea pigs 7 days previously increased the entry of horseradish peroxidase into the
seminiferous tubules.209

Temperature and Cryptorchidism
The entry of radioactive albumin into rete testis fluid of rats was unaffected during or

following heating of the testes, but the entry of K, Rb, Na, lysine and some steroids was in-
creased during heating.210 The entry of Cr-EDTA into the tubules was not affected when
spermatogenesis had been disrupted in rats by local heating of their testes.23 In surgically-induced
cryptorchidism in rats, the blood-testis barrier appears to remain intact,211,212 but in spontane-
ous cases in humans, the penetration of lanthanum between the Sertoli cells depended on the
extent of the loss of germ cells.213 In other conditions of spermatogenic cycle breakdown in
humans, lanthanum entry is increased in maturation arrest and in irregular hypospermatogenesis,
but in germ cell aplasia the barrier remains efficient.214

Mutants and Hybrids
The blood-testis barrier is less efficient in Tfm and Sxr mice, but normal in Movbr/Y and

Gy/Y mutants.215 There are defects in both the germ cells and in the blood-testis barrier in
as-mutant rats, as demonstrated by the distribution of cytochrome-c in the testis, as well as
from studies involving spermatogonial transplantation.216 The blood-testis barrier is deficient
in hybrids between blue and silver foxes, and spermatogenesis is arrested at early pachytene.217

Significance of the Blood-Testis Barrier
As has already been discussed,218 there are several obvious consequences of the operation

of the blood-testis barrier. The first is immunological. The barrier isolates the developing
germ cells from circulating antibodies in the bloodstream. It also means that the body’s
immunological system does not “see” the haploid germ cells, and therefore a male can be
immunized against his own spermatozoa.219 However, the isolation is not complete and
Tung220 has concluded that “tissue barriers and antigen sequestration are important but not
sufficient to protect germ cell antigens and prevent experimental allergic orchitis”. Some
germ cells outside the barrier can certainly provoke an immunological reaction,221 even
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peritubular cells,222 leading to autoimmune orchitis.220,223 Furthermore, mice immunized
with syngeneic testis antigen have IgG deposits surrounding cells at the periphery of about
half the tubule cross-sections, particularly those at stage 7 to 12. Also sera from testis-immune
orchidectomized donors are able to transfer IgG passively into the testes of normal syngeneic
recipients in an antigen-specific manner,221 although there is evidence that the rete testis and
tubuli recti are the sites of the earliest and most frequent lesions.224 Therefore, other factors
must be involved in making rodent testes, but not those of sheep225 or monkeys,226 immu-
nologically privileged sites. Possible factors have been discussed recently by Hedger.227

The second effect of the barrier relates to the endocrine system. Peptide hormones such as
FSH and LH do not instantaneously pass from the blood even into the extracellular interstitial
fluid, so that the Leydig cells begin to respond to a rise in blood LH even before there is any
change in the LH levels in the immediate vicinity of these cells.228 FSH on the other hand acts
principally on the Sertoli cells, and therefore must penetrate both the endothelial cell and
peritubular cell layers. This is probably less important as the concentration of FSH does not
seem to show such pronounced peaks as LH does,229 and therefore changes in its concentra-
tions in blood are more likely to be reflected in the concentrations at the basal surface of the
Sertoli cells.

The situation with steroids is less clear cut. Because of their relatively high lipid solubility,
they should pass more readily through the barrier than the hydrophilic peptides, but there is
some evidence,218,230 that the concentration of testosterone in RTF and STF does not change
as much as that in blood. This may suggest that there is a transport system for steroids in the
tubules, but no further evidence for this idea has been presented. It is clear from the relative
concentrations inside and outside the tubules that the androgen-binding protein secreted by
the Sertoli cells preferentially inside the barrier certainly does not produce a higher concentra-
tion of the total (free plus bound) steroid there. In fact the concentration of free testosterone
may be appreciably lower in STF. Conjugated steroids, which are produced in large amounts in
the testes of some species such as pig231 and horse232 tend to be less lipophilic than the free
steroids and therefore remain in higher concentrations in the interstitial extracellular fluid than
inside the barrier.

Glucose is transported across the barrier by a transport system the capacity of which appears
to be less than the capacity of the Sertoli cells to convert the sugar to lactate. The consequence
of this is that there is very little glucose in the fluid inside the tubules8-12 and the developing
germ cells prefer to metabolize lactate even in vitro.233

An interesting recent development has been the identification of a number of specific trans-
port proteins for xenobiotics in various cells in the testis. These transporters, Pgp and MDR
have important consequences in determining whether a particular toxicant will affect spermato-
genesis, but in the case of transferrin, it may result in the accumulation of mutagenic sub-
stances in the environment of the germ cells.

One of the most interesting aspects of the function of the blood-testis barrier is the fact that it
cannot remain closed all the time, but must open at different points along each tubule at specific
times in the spermatogenic cycle to allow developing spermatocytes to pass from the basal to the
adluminal compartment.57 How this is achieved is still a matter of debate. Four theories have
been advanced to explain this phenomenon: zipper, intermediate compartment, repetitive re-
moval of membrane segments and junction restructuring. However, junction disassembly and
reassembly seems to be the most likely explanation.48 Opening of the Sertoli-Sertoli cell junctions
in a limited part of the tubule must occur without affecting the Sertoli-Sertoli cell junctions
elsewhere in that tubule or Sertoli cell-germ cell adherens junctions in the same and other parts of
the tubule. It appears that cytokines may be involved234 and 2-macroglobulin also appears to
play a part.48,201 One of the most intriguing questions which remains to be answered is how
spermatogonia injected into the lumen of a single seminiferous tubule either directly or via the
rete testis235 can pass between pairs of Sertoli cells to take up a position adjacent to the peritubular
tissue and repopulate that area of the tubules with developing germ cells. The recipient animals
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have usually been treated with busulfan or irradiation to eliminate endogenous spermatogenesis,
but nothing appears to be known about the efficacy of the barrier in these animals. It is interesting
that transmissible leukemic cells, when injected together with testicular cells into the tubules
through the rete in normal rats can reach the intertubular tissue where they resume their uncon-
trolled multiplication and make the recipient animals leukemic.236

It has also been repeatedly stated that the specialized environment created by the barrier
may be necessary for the germ cells to proceed through meiosis. However, just what these
conditions are has yet to be defined, but the fact that spermatogenesis can proceed, albeit to a
limited extent, in aggregates of testicular cells encased in alginate237 may indicate that as long
as Sertoli and germ cells are in reasonably close association, that is sufficient.

One fascinating possibility is that retinoic acid (RA), not derived from blood but newly
formed from retinol by a two-stage process, may be involved in the switch of the germ cells
from mitosis to meiosis in the testis. The first stage of this conversion involves the Sertoli cells
and the second the germ cells.69,238 RA has been shown to cause the germ cells in the fetal ovary
to enter meiosis, while in the fetal testis, meiosis is inhibited by destruction of RA by Cyp26
b1239,240 the same enzyme that in the myoid cells, prevents the entry of RA into the tubules.68

A premeiotic germ cell-specific cytoplasmic protein encoded by the RA-responsive gene Stra8
is present in only less than half the tubule cross-sections in a mouse testis,241 although unfortu-
nately these authors did not identify the stage of spermatogenesis at which this protein was
expressed. It is interesting that in mice in which the gene for p27kip1 is knocked out, spermato-
cytes were often arrested at preleptotene242 and this mitotic inhibitor can be induced in cul-
tured Sertoli cells by RA.243 Furthermore, the expression of mRNA for CRBP is highest in
spermatogenic stage IX to XIV, when most of the mitoses in the tubules occur. Preleptotene
spermatocytes appear first at stage VII but CRBP mRNA rises significantly only in stage VIII,157

when the meiotic DNA synthesis is occurring. The expression of mRNA for the retinoic acid
receptor RAR  is also highest at stage VIII in the rat testis, and this receptor is present in
preleptotene spermatocytes as well as in round spermatids.244 This receptor is required for
synchronization of the spermatogenic cycle, and in its absence, preleptotene spermatocytes do
not proceed to leptotene in the first, second and third waves.245,246 However, others have shown
that in mice lacking plasma RBP, Vitamin A deficiency does not delay the entry of preleptotene
spermatocytes into meiosis, while spermatogenesis is blocked by delayed or arrested differen-
tiation of spermatogonia.247- 250 This suggests that Vitamin A may have several functions in the
testis, and furthermore, there may be important difference between mice and rats in the re-
sponses of their testes to Vitamin A deficiency.247

The observation that when spermatogenesis is restored in previously Vitamin A-deficient
rats, spermatocytes progress to pachytene but then degenerate until the barrier is reformed,186

would add emphasis to the need for the barrier for complete meiosis. Likewise, the finding that
the barrier is disrupted by the injection of a 22-amino acid peptide corresponding to the sec-
ond loop of occludin, accompanied by a cessation of spermatogenesis82 would strongly emphasise
the importance of the barrier for spermatogenesis.

However, as already mentioned, there are a number of conditions in which spermatogenesis
is disrupted but the barrier function appears to be intact, suggesting that other factors are also
important for normal sperm production. Nevertheless, the blood-testis barrier remains an im-
portant factor in the physiology of the testis, in particular in relation to spermatogenesis.

Future Directions
There are a number of lines of research on the blood-testis barrier which could yield impor-

tant results in the future. First, possible roles of the endothelial and peritubular cells in regulat-
ing entry of substances into the testis or of influencing the Sertoli cell barrier need reevaluating.
This is because of the many peculiarities of the testicular endothelial cells, many of which they
share with brain endothelial cells, the site of the blood-brain barrier3,4 and the recent demon-
stration of transport systems for urea in the peritubular cells. Studies on endothelial cells should
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now be possible following the recent demonstration that these cells can be isolated from rat
testes, and that when cocultured with interstitial cells, the endothelial cells enhance the pro-
duction of testosterone.251 Techniques for isolation and culture of peritubular cells have been
available for some years.63,64 While cocultures of peritubular and Sertoli cells have been used252

to study basement membrane gene expression, and the effect of proteins from pachytene sperma-
tocytes253 and spermatids254 have been used to study their effects on secretion by Sertoli cells,
no-one appears to have used cocultures of peritubular or germ cells and Sertoli cells in bicam-
eral chambers (as illustrated in Fig. 1B,C in ref. 46) to study the effects of other cells on barrier
function.

However, probably the most interesting problem in this area is the mechanism by which the
Sertoli cell barrier is opened and closed again to allow the passage of the developing germ cells.
Various theories have been advanced48 but more evidence is needed on local factors controlling
the distribution of this process in relation to spatially and temporally determined stages of
spermatogenesis. Related to this problem is the need for an explanation of the occurrence in
fetal testes of the structural proteins associated with the Sertoli-Sertoli cell junctions, occludin
and claudin.

One new area of interest in relation to the blood-testis barrier is the involvement of specific
transport proteins, such as Pgp and MDR. These may have important toxicological conse-
quences in determining whether a particular compound disrupts spermatogenesis. It is con-
ceivable that toxins could either be normally excluded or concentrated inside the tubules by
these transporters, and further information on their distribution and specificity is needed. This
may be particularly important for the disruptors of the barrier, cadmium salts and glycerol, and
studies on the transport of these substances should be undertaken.

Finally, there is the old question of the role of the barrier in creating the conditions neces-
sary for meiosis which needs further study. Recent progress in stem cell transplantation235 and
in vitro spermatogenesis237 may provide the tools for further study of this fascinating problem.
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