Chapter 4 Management of Fluids, Electrolytes, and Blood Products in Neurosurgical Patients

Renata Rusa and Sadeq A. Quraishi

Overview

- The major fluid compartments of the body are the intracellular compartment and the extracellular compartment, which is subdivided into intravascular and interstitial spaces.
- The volume of the individual compartments may change in a disease state or as the body adapts to environmental stress.
- In peripheral tissues, the primary determinant of fluid movement across capillaries (i.e., between the intravascular and interstitial spaces) is the oncotic gradient produced by large plasma proteins such as albumin.
- Unlike the peripheral tissues, the brain and spinal cord are isolated from the intravascular compartment by the blood-brain barrier.
- The primary determinant of water movement across the intact blood-brain barrier is the osmotic pressure gradient produced by osmotically active particles including plasma sodium and other electrolytes.
- Intravenous infusion of solutions hyperosmolar to plasma (e.g., 3% sodium chloride, mannitol) will lead to a decrease in brain water content and intracranial pressure (ICP). Administration of excess free water (e.g., hypoosmolar or dextrose-containing electrolyte-free solutions) will lead to increased brain water content and ICP.
- Osmotically active particles as well as plasma proteins may "leak" into the cerebral tissue where the blood-brain barrier has been disrupted and thus contribute to worsening cerebral edema in such regions.

R. Rusa, MD (🖂)

S. Quraishi, MD, MHA Department of Anaesthesia, Harvard Medical School, Boston, MA, USA

Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA e-mail: rusar@ohsu.edu

• Intravenous administration of hyperosmolar solutions results in a decrease in water content in brain where blood brain barrier is intact to make room for the injured brain.

Implications for the Neurosurgical Patient

Perioperative fluid management in neurosurgical patients poses special challenges.

• The presence and treatment of elevated ICP, surgical bleeding, and a variety of pathophysiological derangements associated with neurologic injury may lead to significant hypovolemia, electrolyte abnormalities, anemia, and coagulopathy.

Care must be taken to:

- Maintain hemodynamic stability, optimal cerebral perfusion pressure, and oxygen delivery to the CNS tissue and
- Minimize the impact of fluid resuscitation on the development or exacerbation of cerebral edema.

The goals of fluid resuscitation are (see Tables 4.1–4.5):

- · Restore intravascular volume and cerebral perfusion pressure and
- Achieve a slightly hyperosmolar state.

The clinician can choose from a variety of intravenous fluids including crystalloid, hypertonic saline, colloid, and blood products as dictated by the clinical scenario. The typical initial fluid choice for an elective craniotomy is a combination of Lactated Ringer's and 0.9% saline (Table 4.6).

Commonly used intravenous solutions	Osmolarity (mOsm/L)
Plasma osmolarity	270–295
Crystalloid	
Lactated Ringer's	273
0.9% Normal saline	308
D5 Lactated Ringer's	525
20% Mannitol	1,098
3% Hypertonic saline (HS)	1,026
Colloids	
6% Hetastarch	310
Pentastarch	326
6% Dextran (70)	300
5% Albumin	300
25% Albumin	1,500
HS colloid mixture	
7.5% HS 6% Dextran ^a	2,568

Table 4.1 Commonly used IV solutions

^aAvailable in Europe

Table 4.2 Common causes of hyponatremia Image: Common causes	Dilution		
or hypothaticinia	Excess water intake		
	Administration of hypoosmolar fluids		
	Use of diuretics		
	Mannitol, thiazides		
	Adrenal insufficiency Hypothyroidism		
	Hyperglycemia		
	Cerebral salt wasting syndrome		
	Common in subarachnoid hemorrhage		
	Associated with hypovolemia		
	SIADH		
	CNS disorders		
	Chronic infections		
	Medications, e.g., carbamazepine		
	Organ failure		
	Cirrhosis, congestive heart failure, nephrotic syndrome		
	Associated with hypervolemia		
	SIADH syndrome of inappropriate antidiuretic hormone secretion		
Table 4.3 Common causes	Dehydrotion		
of hypernatremia	Dishetes incinidus		
	Use of hypertonic seline		
Table 4.4 Common causes	Conclused use of compting and loop distration		
of hypokalemia			
огнуроканта	Hypomagnesenna		
	Intracenular polassium sinit secondary to		
	Inculin infusion		
Table 4.5 Considerations	History		
for assessing intravascular	Propagative facting and inconsible losses		
volume	Presence of hemorrhage		
	Use of divertics		
	Use of hyperosmotic intravenous contrast		
	Physical exam		
	Vital signs: presence of favor techycordia hypotonsion		
	Orthostatic tachycardia and hypotension		
	Status of pack value, skin turgor, mucous membranes		
	Oligurio		
	Pulmonary edema		
	Monitors		
	Trend in CVD or DAOD		
	Marked reduction in arterial pulsa prossura or stroke volume		
	with positive pressure ventilation signifying intravascular		
	depletion		
	CVP central venous pressure, PAOP pulmonary artery occlusion pressure		

Indication	Fluid or blood product	Amount
Fluid maintenance Insensible and interstitial losses	Lactated Ringer's 0.9% Saline (normal saline, NS)	1:1 Crystalloid/fluid loss ratio; (usual rate: NS at 1.5 mL/kg/h)
Brain relaxation for exposure during craniotomy	20% Mannitol 3% Sodium chloride (hypertonic saline, HS)	0.25–2 g/kg 5 mL/kg
Treatment of elevated ICP	20% Mannitol 3% Saline (HS)	0.25–2 g/kg 200 mL
Replacement of blood loss	Lactated Ringer's, NS	3:1 Crystalloid/blood loss ratio
	Colloid	1:1 Colloid/blood loss ratio
	Hetastarch 6%	If used, limit to 20 mL/ kg/24 h
	Red cells – ideally washed, leukoreduced, <15 days old	1 Unit should raise Hgb by 1 g/dL or Hct by 3%
Disseminated intravascular coagul	ation (DIC)	
Elevated INR, PTT Fibrinogen < 100 mg/dL	Fresh Frozen Plasma Cryoprecipitate	Start at 10–15 mL/kg 1 Pool (6 bags) raises fibrinogen by 45 mg/dL
Thrombocytopenia<100,000 in a bleeding patient	Platelets pheresed	1 Bag (4 pooled units) raise platelets by 30,000/μL

Table 4.6 Indications for commonly used intravenous fluids and blood products

Concerns and Risks (Table 4.7)

Anemia

- Has been associated with worse neurologic outcome in cardiopulmonary bypass surgery and with perioperative visual loss in prone spine surgery.
- The ideal hematocrit for optimizing cerebral blood flow and oxygen delivery in focal ischemia model is currently believed to be 30–34%. Higher hematocrit results in increased blood viscosity; hematocrit≤25% results in decreased oxygen-carrying capacity.
- Normovolemic hemoglobin levels of 7–9 g/dL appear to be safe for the general ICU patient population.
- There is insufficient evidence to allow recommendations regarding:
 - The "safe" level of anemia for patients with neurologic injury; or
 - Whether correction of anemia by transfusing red cells has beneficial or detrimental effects on neurologic outcome.

Tuble III Concerns a	ind none of nate management in neurosurgical parents
Under-resuscitation	Hypotension, inadequate cerebral perfusion pressure, secondary brain injury
Over-resuscitation	Exacerbation of cerebral edema
Hyponatremia	<120–125 mEq/L – change in mental status, seizures
Hypernatremia	>160–170 mEq/L – change in mental status, seizures
Lactated Ringer's	Hypoosmolar state, hyponatremia
0.9% Saline	Hyperchloremic metabolic acidosis
Dextrose solutions 20% Mannitol	Hypoosmolar state, hyperglycemia exacerbating cerebral injury Hyponatremia
2070 144111101	Loss of bicarbonate – metabolic acidosis
	Excessive diuresis – intravascular volume depletion, electrolyte losses Rebound cerebral edema
	Hyperkalemia with high doses (2 g/kg)
Hypertonic saline	Hypernatremia
	Hyperchloremic metabolic acidosis
	Rebound cerebral edema when plasma sodium falls
	Tearing of cerebral veins – intracerebral hemorrhage
	Excessive diuresis - intravascular volume depletion, renal failure
	Central pontine myelinolysis – with rapid rise of plasma sodium from hyponatremic levels; malnourished and alcoholic patients at increased risk
	Sclerosis of veins
	Interference with coagulation and platelet aggregation
Synthetic colloids	Interference with coagulation, factor VIII complex; potential increased risk for intracranial hemorrhage
	No clear benefit compared with crystalloid as a resuscitative fluid
	Renal impairment
	Allergic reactions
	Pruritus
	Interference with blood cross-matching with dextran
Albumin	Expensive
	No clear benefit compared with crystalloid as a resuscitative fluid; potential harm in patients with traumatic brain injury

 Table 4.7
 Concerns and risks of fluid management in neurosurgical patients

Transfusion of Blood Products

Current concerns regarding blood product transfusion in the developed world focus more on the immunomodulating effects of transfusion rather than transmission of infectious agents (Table 4.8). Transfusion-related acute lung injury (TRALI) is thought to be the leading cause of transfusion-related mortality.

Risk	Risk per unit transfused
Infectious risks	
HIV	1:1.5–4.7 million
Hepatitis C	1: 1.9–3.1 million
Hepatitis B	1: 31,000-205,000
Hemolytic reactions	
Acute	1:13,000
Delayed	1:1,600
Alloimmunization	1:1,600
Immunosuppression	1:1
TRALI	1:5,000

Table 4.8 Examples of risks associated with transfusion of blood products

Adapted in part from reference by Marik and Corwin 2008

Traumatic brain injury	Subarachnoid hemorrhage
Risk of coagulopathy and DIC	Electrolyte abnormalities
Multitrauma	Hypocalcemia, hypomagnesemia,
massive hemorrhage	Hypokalemia
dilutional coagulopathy	Hyponatremia
Neurogenic pulmonary edema	Cerebral Salt Wasting Syndrome
Hyponatremia	SIADH
Cerebral salt wasting syndrome	Avoid hypovolemia
SIADH	Vasospasm - therapeutic goal: hypervolemia

 Table 4.9
 Special circumstances

Special Circumstances (Table 4.9)

Key Points

- Fluid management goal is a euvolemic, slightly hyperosmolar state.
- Avoid hypoosmolar fluids and dextrose-containing solutions unless needed to treat hypoglycemia.
- Consider using hypertonic saline, unless contraindicated, to treat elevated ICP in a hypovolemic, hemodynamically unstable patient.
- In anemic patients with neurologic injury, there is insufficient evidence regarding transfusion thresholds. Do not use an arbitrary hemoglobin number; weigh risks of transfusion (e.g.,TRALI, immunosuppression) with benefits of oxygen delivery to injured CNS tissue.

4 Management of Fluids, Electrolytes, and Blood Products...

Suggested Reading

- Barron ME, Wilkes MM, Naviskis RJ. A systematic review of the comparative safety of colloids. Arch Surg. 2004;139:552–63.
- Hare GM, Tsui AK, McLaren AT, et al. Anemia and cerebral outcomes: Many questions, fewer answers. Anesth Analg. 2008;107:1356–70.
- Himmelseher S. Hypertonic saline solutions for treatment of intracranial hypertension. Cur Opin Anaesthesiol. 2007;20:414–26.
- Madjdpour C, Spahn DR. Allogeneic red blood cell transfusions: Efficacy, risks, alternatives and indications. BJA. 2005;95:33–42.
- Marik PE, Corwin HL. Efficacy of red blood cell transfusion in the critically ill: A systematic review of the literature. Crit Care Med. 2008;36:2667–74.
- Patel PM, Drummond JC. Cerebral physiology and the effects of anesthetics and techniques. In: Miller RD et al., editors. Miller's anesthesia. 6th ed. Philadelphia: Elsevier; 2005. p. 817–8.
- The American Thoracic Society Documents. Evidence-based colloid use in the critically ill: American thoracic society consensus statement. Am J Respir Crit Care Med. 2004;170: 1247–59.