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Analysis

In this chapter, we present analysis only for some representative cases of Ms-
FEMs from Chapters 2, 3, and 4. We consider simpler cases to convey the
main difficulties that arise in the analysis of MsFEMs. Some of the technical
details are avoided to keep the presentation simple and make it accessible to
a broader audience.

In Section 6.1, the convergence analysis of MsFEMs for linear elliptic prob-
lems is presented. In this chapter, the MsFEM using local information is
studied. First, we present a basic convergence analysis of the MsFEM which
demonstrates the resonance errors. In Section 6.1.2, the analysis of MsFEMs
with oversampling is studied. This analysis shows that an oversampling tech-
nique reduces the resonance errors. In Section 6.1.3, the analysis of mixed
MsFEMs using local information is presented. The results obtained in Section
6.1 use homogenization theory.

In Section 6.2, the convergence analysis of MsFEM for nonlinear prob-
lems is considered. We show the convergence results only for nonlinear elliptic
equations with periodic spatial heterogeneities. The proof relies on homoge-
nization theory and uses a number of auxiliary results that can be found in
[104].

In Section 6.3, the analysis of MsFEMs using limited global information
is presented. We study the convergence of mixed MsFEM (Section 6.3.1) and
a Galerkin MsFEM (Section 6.3.2). The convergence analysis is carried out
under some suitable assumptions. We show that MsFEMs using global infor-
mation converge independent of resonance errors.

Although only some representative cases of MsFEMs are analyzed here,
we have attempted to illustrate basic mathematical tools and ideas used in
the analysis of multiscale methods. We hope the analysis presented in this
chapter will help the reader to understand essential error sources that arise
in multiscale algorithms and guide them in estimating these errors. This will
further help to design more efficient numerical methods for real-life multiscale
processes.

Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications, 165

Surveys and Tutorials in the Applied Mathematical Sciences 4,

DOI 10.1007/978-0-387-09496-0 6, c© Springer Science+Business Media LLC 2009



166 6 Analysis

6.1 Analysis of MsFEMs for linear problems
(from Chapter 2)

For the analysis here, we restrict ourselves to a periodic case k(x) = (kij(x/ε)).
We assume kij(y), y = x/ε are smooth periodic functions in y in a unit cube
Y . We assume that f ∈ L2(Ω). The assumptions on kij can be relaxed and
one can extend the analysis to the locally periodic case, k = k(x, x/ε), random
homogeneous case, and other cases. For simplicity, we consider the analysis in
two dimensions. Denote L introduced in (2.1) by Lε. Let p0 be the solution of
the homogenized equation (see Appendix B for the background material on
homogenization)

L0p0 := −div(k∗∇p0) = f in Ω, p0 = 0 on ∂Ω, (6.1)

where

k∗ij =
1
|Y |

∫

Y

kil(y)(δlj +
∂χj

∂yl
) dy,

and χj(y) is the periodic solution of the cell problem in the period Y

divy(k(y)∇yχ
j) = − ∂

∂yi
kij(y) in Y,

∫

Y

χj(y) dy = 0.

We note that p0 ∈ H2(Ω) because Ω is a convex polygon. Denote by p1(x, y) =
χj(y)(∂p0(x)/∂xj) and let θε be the solution of the problem

Lεθε = 0 in Ω, θε(x) = −p1(x, x/ε) on ∂Ω. (6.2)

For simplicity of presentation, we denote by ‖ · ‖α,β,· and | · |α,β,·, the
norm and semi-norm in Wα,β(·). If only one subscript is used, for example,
‖ · ‖α,·, then the norm or semi-norm in Hα is assumed. Also, for simplicity,
we consider when Th is a triangular partition. Our analysis of the multiscale
finite element method relies on the following homogenization result obtained
by Moskow and Vogelius [204].

Lemma 6.1. Let p0 ∈ H2(Ω) be the solution of (6.1), θε ∈ H1(Ω) be the
solution to (6.2) and p1(x) = χj(x/ε)∂p0(x)/∂xj. Then there exists a constant
C independent of p0, ε and Ω such that

‖ p− p0 − ε(p1 + θε) ‖1,Ω ≤ Cε(| p0 |2,Ω + ‖ f ‖0,Ω).

6.1.1 Analysis of conforming multiscale finite element methods

The analysis of conforming multiscale finite element methods uses Cea’s
lemma [55].

Lemma 6.2. Let p be the solution of (2.1) and ph be the solution of (2.3).
Then we have

‖ p− ph ‖1,Ω ≤ C inf
vh∈Ph

‖ p− vh ‖1,Ω .
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Error Estimates (h < ε)

Let Πh : C(Ω̄) →Wh ⊂ H1
0 (Ω) be the usual Lagrange interpolation operator:

Πhp(x) =
J∑

j=1

p(xj)φ0
i (x) ∀p ∈ C(Ω̄)

and Ih : C(Ω̄) → Ph be the corresponding interpolation operator defined
through the multiscale basis function φi,

Ihp(x) =
J∑

j=1

p(xj)φj(x) ∀p ∈ C(Ω̄).

From the definition of the basis function φi in (2.2) we have

Lε(Ihp) = 0 in K, Ihp = Πhp on ∂K, (6.3)

for any K ∈ Th.

Lemma 6.3. Let p ∈ H2(Ω) be the solution of (2.1). Then there exists a
constant C independent of h, ε such that

‖ p− Ihp ‖0,Ω + h‖ p− Ihp ‖1,Ω ≤ Ch2(| p |2,Ω + ‖ f ‖0,Ω). (6.4)

Proof. At first it is known from standard finite element interpolation theory
that

‖ p− Πhp ‖0,Ω + h‖ p− Πhp ‖1,Ω ≤ Ch2(| p |2,Ω + ‖ f ‖0,Ω). (6.5)

On the other hand, because Πhp − Ihp = 0 on ∂K, the standard scaling
argument yields

‖Πhp− Ihp ‖0,K ≤ Ch|Πhp− Ihp|1,K ∀K ∈ Th. (6.6)

To estimate |Πhp− Ihp|1,K we multiply the equation in (6.3) by Ihp−Πhp ∈
H1

0 (K) to get ∫

K

k(x
ε )∇Ihp · ∇(Ihp− Πhp)dx = 0.

Thus, upon using the equation in (2.1), we get
∫

K

k(
x

ε
)∇(Ihp− Πhp) · ∇(Ihp− Πhp)dx

=
∫

K

k(
x

ε
)∇(p− Πhp) · ∇(Ihp− Πhp)dx−

∫

K

k(
x

ε
)∇p · ∇(Ihp− Πhp)dx

=
∫

K

k(
x

ε
)∇(p− Πhp) · ∇(Ihp− Πhp)dx−

∫

K

f(Ihp− Πhp)dx.
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This implies that

|Ihp− Πhp|1,K ≤ Ch| p |2,K + ‖ Ihp− Πhp ‖0,K‖ f ‖0,K .

Hence

|Ihp− Πhp|1,K ≤ Ch(| p |2,K + ‖ f ‖0,K), (6.7)

where we have used (6.6). Now the lemma follows from (6.5)–(6.7). ��

In conclusion, we have the following standard estimate by using Lemmas
6.2 and 6.3.

Theorem 6.4. Let p ∈ H2(Ω) be the solution of (2.1) and ph ∈ Ph be the
solution of (2.3). Then we have

‖ p− ph ‖1,Ω ≤ Ch(| p |2,Ω + ‖ f ‖0,Ω). (6.8)

Note that the estimate (6.8) blows up as does h/ε as ε → 0 because
| p |2,Ω = O(1/ε). This is insufficient for practical applications. In the next
subsection, we derive an error estimate which is uniform as ε→ 0.

Error Estimates (h > ε)

In this section, we show that the MsFEM gives a convergence result uniform
in ε as ε tends to zero. This is the main feature of the MsFEM over the
traditional finite element method. The main result in this subsection is the
following theorem.

Theorem 6.5. Let p ∈ H2(Ω) be the solution of (2.1) and ph ∈ Ph be the
solution of (2.3). Then we have

‖ p− ph ‖1,Ω ≤ C(h+ ε)‖ f ‖0,Ω + C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω , (6.9)

where p0 ∈ H2(Ω) ∩ W 1,∞(Ω) is the solution of the homogenized equation
(6.1).

To prove the theorem, we first denote

pI(x) = Ihp0(x) =
∑

j

p0(xj)φj(x) ∈ Ph.

From (6.3) we know that LεpI = 0 in K and pI = Πhp0 on ∂K for any K ∈ Th.
The homogenization theory implies that

‖ pI − pI0 − ε(pI1 − θIε) ‖1,K ≤ Cε(‖ f ‖0,K + | pI0 |2,K), (6.10)

where pI0 is the solution of the homogenized equation on K:
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L0pI0 = 0 in K, pI0 = Πhp0 on ∂K, (6.11)

pI1 is given by the relation

pI1(x, y) = χj(y)
∂pI0
∂xj

in K, (6.12)

and θIε ∈ H1(K) is the solution of the problem:

LεθIε = 0 in K, θIε(x) = −pI1(x, x/ε) on ∂K. (6.13)

It is obvious from (6.11) that

pI0 = Πhp0 in K, (6.14)

because Πhp0 is linear on K. From (6.10) and Lemma 6.1 we obtain that

‖ p− pI ‖1,Ω ≤ ‖ p0 − pI0 ‖1,Ω + ‖ ε(p1 − pI1) ‖1,Ω

+‖ ε(θε − θIε) ‖1,Ω + Cε‖ f ‖0,Ω , (6.15)

where we have used the regularity estimate ‖ p0 ‖2,Ω ≤ C‖ f ‖0,Ω . Now it
remains to estimate the terms on the right-hand side of (6.15). We show that
the dominating resonance error is due to θIε.

Lemma 6.6. We have

‖ p0 − pI0 ‖1,Ω ≤ Ch‖ f ‖0,Ω , (6.16)
‖ ε(p1 − pI1) ‖1,Ω ≤ C(h+ ε)‖ f ‖0,Ω . (6.17)

Proof. The estimate (6.16) is a direct consequence of standard finite element
interpolation theory because pI0 = Πhp0 by (6.14). Next we note that χj(x/ε)
satisfies

‖χj ‖0,∞,Ω + ε‖∇χj ‖0,∞,Ω ≤ C (6.18)

for some constant C independent of h and ε. Thus we have, for any K ∈ Th,

‖ ε(p1 − pI1) ‖0,K ≤ Cε‖χj ∂

∂xj
(p0 − Πhp0) ‖0,K ≤ Chε| p0 |2,K ,

‖ ε∇(p1 − pI1) ‖0,K = ε‖∇(χj ∂(p0 − Πhp0)
∂xj

) ‖0,K

≤ C‖∇(p0 − Πhp0) ‖0,K + Cε| p0 |2,K

≤ C(h+ ε)| p0 |2,K .

This completes the proof. ��

Lemma 6.7. We have

‖ εθε ‖1,Ω ≤ C
√
ε‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω . (6.19)
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Proof. Let ζ ∈ C∞
0 (R2) be the cut-off function that satisfies ζ ≡ 1 in Ω\Ωδ/2,

ζ ≡ 0 in Ωδ, 0 ≤ ζ ≤ 1 in R
2, and |∇ζ| ≤ C/δ in Ω, where for any δ > 0

sufficiently small, we denote Ωδ as

Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ}.

With this definition, it is clear that θε + ζp1 = θε + ζ(χj∂p0/∂xj) ∈ H1
0 (Ω).

Multiplying the equation in (6.2) by θε + ζp1, we get
∫

Ω

k(
x

ε
)∇θε · ∇(θε + ζχj ∂p0

∂xj
)dx = 0,

which yields, by using (6.18),

‖∇θε ‖0,Ω ≤ C‖∇(ζχj∂p0/∂xj) ‖0,Ω

≤ C‖∇ζ · χj∂p0/∂xj ‖0,Ω + C‖ ζ∇χj∂p0/∂xj ‖0,Ω

+C‖ ζχj∂2p0/∂
2xj ‖0,Ω

≤ C
√

|∂Ω| · δD
δ

+ C
√

|∂Ω| · δD
ε

+ C| p0 |2,Ω , (6.20)

where D = ‖ p0 ‖1,∞,Ω and the constant C is independent of the domain Ω.
From (6.20) we have

‖ εθε ‖0,Ω ≤ C(
ε√
δ

+
√
δ)‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω

≤ C
√
ε‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω , (6.21)

where we have taken δ = ε. Moreover, by applying the maximum principle to
(6.2), we get

‖ θε ‖0,∞,Ω ≤ ‖χj∂p0/∂xj ‖0,∞,∂Ω ≤ C‖ p0 ‖1,∞,Ω . (6.22)

Combining (6.21) and (6.22), we complete the proof. ��

Lemma 6.8. We have

‖ εθIε ‖1,Ω ≤ C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω . (6.23)

Proof. First we remember that for any K ∈ Th, θIε ∈ H1(K) satisfies

LεθIε = 0 in K, θIε = −χj(
x

ε
)
∂(Πhp0)
∂xj

on ∂K. (6.24)

By applying the maximum principle and (6.18) we get

‖ θIε ‖0,∞,K ≤ ‖χj∂(Πhp0)/∂xj ‖0,∞,∂K ≤ C‖ p0 ‖1,∞,K .

Thus we have



6.1 Analysis of MsFEMs for linear problems (from Chapter 2) 171

‖ εθIε ‖0,Ω ≤ Cε‖ p0 ‖1,∞,Ω . (6.25)

On the other hand, because the constant C in (6.20) is independent of Ω, we
can apply the same argument leading to (6.20) to obtain

‖ ε∇θIε ‖0,K ≤ Cε‖Πhp0 ‖1,∞,K(
√

|∂K|/
√
δ +
√

|∂K|δ/ε) + Cε|Πhp0 |2,K

≤ C
√
h‖ p0 ‖1,∞,K(

ε√
δ

+
√
δ)

≤ C
√
hε‖ p0 ‖1,∞,K ,

which implies that

‖ ε∇θIε ‖0,Ω ≤ C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω .

This completes the proof. ��

Proof. Theorem 6.5 is now a direct consequence of (6.15) and Lemmas 6.6–6.8
and the regularity estimate ‖ p0 ‖2,Ω ≤ C‖ f ‖0,Ω . ��

Remark 6.9. As we pointed out earlier, the MsFEM indeed gives a correct
homogenized result as ε tends to zero. This is in contrast to the traditional
FEM which does not give the correct homogenized result as ε → 0. The
L2 error would grow as O(h2/ε2). On the other hand, we also observe that
when h ∼ ε, the multiscale method attains a large error in both H1 and L2

norms. This is called the resonance effect between the coarse-grid scale (h)
and the small scale (ε) of the problem. This estimate reflects the intrinsic
scale interaction between the two scales in the discrete problem. Extensive
numerical experiments confirm that this estimate is indeed generic and sharp.
From the viewpoint of practical applications, it is important to reduce or
completely remove the resonance error for problems with many scales because
the chance of hitting a resonance sampling is high.

Remark 6.10. It can be shown that [147]

‖p− ph‖0,Ω ≤ C
(
h+

ε

h

)
.

6.1.2 Analysis of nonconforming multiscale finite element methods

Let φi be multiscale basis functions obtained using the oversampling technique
on K as introduced in Section 2.3.2 and φ0

i (piecewise linear function if Th is
a triangulation) be its homogenized part. We keep the same notation for the
space spanned by multiscale basis functions as in the conforming case; that is
Ph = span{φi}. The analysis follows the proof presented in [143].

The Petrov–Galerkin formulation of the original problem is to seek ph ∈ Ph

such that
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kh(ph, vh) = f(vh), ∀vh ∈Wh,

where
kh(p, v) =

∑

K∈Th

∫

K

∇p · k(x
ε
)∇vdx, f(v) =

∫

Ω

fvdx.

Define ‖ · ‖h,Ω to be the discrete H1 semi-norm as

‖v‖h,Ω =

(
∑

K∈Th

∫

K

|∇v|2dx
)1/2

.

We use the following result [107].

Lemma 6.11. Assume that K ⊂ KE is at least a distance of h away from
∂KE. Then

‖∇ηi‖L∞(K) ≤ C/h, (6.26)

where C is a constant that is independent of ε and h. Here, ηi is the solution
of Lεη

i = 0 in K, ηi = −χi on ∂K.

Theorem 6.12. Let ph be the Petrov–Galerkin MsFEM solution. Assume
Lemma 6.11 holds and ε/h is sufficiently small. If the homogenized part of
p, p0, is in H2(Ω), we have

‖ph − p‖h,Ω ≤ C1h+ C2
ε

h
+ C3

√
ε. (6.27)

Proof. To estimate ‖ph − p‖h,Ω , we first show that the following inf-sup con-
dition or coercivity condition of the bilinear form kh(·, ·) holds for sufficiently
small ε. There exists C > 0, independent of ε and h such that

sup
v∈Wh

|kh(ph, v)|
‖v‖1,Ω

≥ C‖ph‖h,Ω , ∀ph ∈ Ph. (6.28)

Define

k̃ij(y) = kil(y)
(

δlj +
∂χj(y)
∂yl

)

and
k̃(u, v) =

∑

K∈Th

∫

K

∇v · k̃(x
ε
)∇udx, v ∈Wh.

Thus, by the expansion ph = p0h + εχ(x/ε) · ∇p0h + εθh
ε , we have

kh(ph, vh) = k̃(p0h, vh) + εkh(θh
ε , vh) = f(vh), ∀vh ∈Wh. (6.29)

Taking vh = p0h ∈Wh in (6.29), we get

kh(ph, p
0
h) = k̃(p0h, p

0
h) + εkh(θh

ε , p
0
h). (6.30)
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Moreover, using ‖θh
ε ‖h,Ω ≤ (C/h)‖∇p0h‖0,Ω (which follows from Lemma 6.11),

we obtain that

|kh(θh
ε , p

0
h)| ≤ C‖θh

ε ‖h,Ω‖∇p0h‖0,Ω ≤ C

h
‖∇p0h‖2

0,Ω . (6.31)

Next, we note that ‖ph‖h,Ω ≤ C(1 + ε/h)‖∇p0h‖0,Ω (see [143]) and k̃(p0h, p
0
h)

is bounded below and bounded above uniformly when ε/h ≤ C (see (3.5)
in [143]). Consequently, (6.30) and (6.31) imply that when ε/h is sufficiently
small

|kh(ph, p
0
h)| ≥ |k̃(p0h, p0h)| − ε|kh(θh

ε , p
0
h)| ≥ C(1 − ε

h
)‖∇p0h‖2

0,Ω

≥ C‖∇p0h‖0,Ω‖ph‖h,Ω .

Thus, (6.28) holds.
Let pI ∈ Ph be the interpolation from Ph. Using inf-sup condition (6.28)

we have
‖ph − p‖h,Ω ≤ ‖pI − p‖h,Ω + ‖ph − pI‖h,Ω

≤ ‖pI − p‖h,Ω + C sup
vh∈Wh

|kh(ph − pI , vh)|
‖vh‖1,Ω

= ‖pI − p‖h,Ω + C sup
vh∈Wh

|kh(pI − p, vh)|
‖vh‖1,Ω

≤ (1 + C)‖pI − p‖h,Ω .

(6.32)

Here, we have used the fact

kh(ph − p, vh) = 0, ∀vh ∈Wh.

Following the derivation of the proof of Theorem 3.1 in [107] (where pI =∑
p0(xi)φi(x) is chosen) and using Lemma 6.11, we can easily show that

‖pI − p‖h,Ω ≤ C1h+ C2
ε

h
+ C3

√
ε.

Therefore, (6.27) follows from (6.32).

6.1.3 Analysis of mixed multiscale finite element methods

In this section, we present the analysis of mixed multiscale finite element
methods. We slightly modify the problem and consider a more general case
with varying smooth mobility λ(x). We consider the elliptic equation

−div(λ(x)kε(x)∇p) =f in Ω

−λ(x)kε(x)∇p · n = g(x) on ∂Ω,
∫

Ω

pdx = 0,

where λ(x) is a positive smooth function and kε(x) = k(x/ε) is a symmetric
positive and definite periodic tensor with periodicity ε. We note that λ(x)
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appears in two-phase flows (see (2.40)). Under the assumption that λ(x) is
sufficiently smooth, one can analyze the convergence (dominant resonance
error) of MsFEMs with basis functions constructed with λ = 1. The basis
functions are constructed with λ = 1 and satisfy (2.16).

Let ψK
i = kε(x)∇φK

i and the basis function space for the velocity field be
defined by

Vh =
⊕

K

{ψK
i } ⊂ H(div, Ω),

where H(div, Ω) is the space of functions such that ‖ · ‖0,Ω + ‖div(·)‖0,Ω is
bounded. The variational problem is to find {v, p} ∈ H(div, Ω) × L2(Ω)/R
such that v · n = g on ∂Ω and they solve the following variational problem,

∫

Ω

(λkε)−1v · wdx−
∫

Ω

div(w) pdx = 0 ∀w ∈ H0(div, Ω)
∫

Ω

div(v) qdx = f ∀q ∈ L2(Ω)/R,
(6.33)

whereH0(div, Ω) is the subspace ofH(div, Ω) which consists of functions with
homogeneous Neumann boundary conditions.

Set Qh = ⊕KP0(K)∩L2(Ω)/R, a set of piecewise constant functions. The
approximation problem is to find {vh, ph} ∈ Vh ×Qh such that vh · n = gh on
∂Ω

∫

Ω

(λkε)−1vh · whdx−
∫

Ω

div(wh) phdx = 0 ∀wh ∈ V0
h

∫

Ω

div(vh) qhdx = f ∀qh ∈ Qh.

(6.34)

We state the convergence theorem as the following.

Theorem 6.13. Let {v, p} ∈ H(div, Ω)×L2(Ω)/R solve variational problem
(6.33) and {vh, ph} ∈ Vh × Qh solve the discrete variational problem (6.34).
If the homogenized solution p0 ∈ H2(Ω) ∩W 1,∞(Ω), then

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C1(p0, λ)ε

+C2(p0, f, λ, g)h+ C3(p0, λ)
√
εh+ C4(p0, λ)

√
ε

h
,

(6.35)

where the coefficients are defined in (6.38), (6.41), (6.39), and (6.40).

First, we state a stability estimate [71].

Lemma 6.14. If {v, p} and {vh, ph}, respectively, solve the continuous vari-
ational problem (6.33) and the discrete variational problem (6.34), then

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω

≤ C( inf
uh∈Vh

uh−g0,h∈V0
h

‖v − uh‖H(div,Ω) + inf
qh∈Qh

‖p− qh‖0,Ω). (6.36)



6.1 Analysis of MsFEMs for linear problems (from Chapter 2) 175

The well-posedness of the discrete problem is verified in [71]. To obtain the
convergence rate, we need to estimate the right-hand side of (6.36). The fol-
lowing proposition is used in the proof.

Proposition 6.15. Let p and ph be the solutions of (6.33) and (6.34), re-
spectively; then

inf
qh∈Qh

‖p− qh‖0,Ω ≤ Ch‖g‖H−1/2(∂Ω).

Proof. Define q̄h = (1/|K|)
∫

K
pdx in each coarse block K. Furthermore, we

apply the Poincaré inequality and standard regularity estimate for elliptic
equations to obtain

inf
qh∈Qh

‖p− qh‖0,Ω ≤ ‖p− q̄h‖0,Ω ≤ Ch‖∇p‖0,Ω ≤ Ch‖g‖H−1/2(∂Ω).

Next, we define the interpolation operator Πh : H(div, Ω)
⋂
H1(Ω) −→ Vh

by

Πhv|K = (
∫

eK
i

v · nds)ψK
i .

Let RT0 = span{RK
i , i = 1, 2, ..., n; K ∈ Th} be the lowest–order Raviart–

Thomas finite element space and define the interpolation operator Ph :
H(div, Ω)

⋂
H1(Ω) −→ RT0 by

Phv|K = (
∫

eK
i

v · nds)RK
i .

It is easy to check that divΠhv = divPhv and Πhv · n = Phv · n.
Next, we need to estimate the first term on the right-hand side of (6.36).

The basic idea is to choose a particular uh approximating v. Let the ho-
mogenized flux v0 = λk∗∇p0 and choose th|K = Πhv0. Then we have
th − g0,h ∈ V0

h, where g0,h =
∑

e∈∂Ω(
∫

e
gds)ψK

i . Consequently, it remains
to estimate ‖v − th‖H(div,Ω). From the definition of th, an easy calculation
gives rise to div(th|K) = 〈f〉K and div(v) = f , where 〈f〉K = (1/|K|)

∫
K
fdx.

Therefore, we have

‖div(v) − div(th)‖0,Ω ≤ C|f |1,Ω .

The next step is to estimate ‖v − th‖0,Ω . We use the homogenization
technique for this purpose. Set φK = αK

i φ
K
i , where αK

i =
∫

eK
i
v0 · nds. Then

th = kε∇φK and div(kε∇φK) = div(Phv0) = 0 in K, where φK ∈ H1(K)/R
satisfies the following equation

div(kε∇φK) = 0 in K
kε∇φK · n = Phv0 · n on eKi .

Let φK
0 be the solution of the corresponding homogenization equation,
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div(k∗∇φK
0 ) = 0 in K

k∗∇φK
0 · n = Phv0 · n on eKi .

To complete the estimation of ‖v − th‖0,Ω , we need the following lemma.

Lemma 6.16. Let p1 = p0 + εχ · ∇p0 and φK
1 = φK

0 + εχ · ∇φK
0 . Then

|φK
0 − p0|1,K ≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

|p1 − φK
1 |1,K ≤ C(h‖λ−1 − 1‖0,∞,K + ε)‖λ‖1,∞,K‖p0‖2,K

|φK
0 |1,∞,K ≤ Ch− d

2 +1‖λ‖1,∞,K‖p0‖2,K + C‖λ‖0,∞,K |p0|1,∞,K . (6.37)

Proof. It is easy to prove that k∗∇φK
0 = Phv0 ∈ L∞(K). Then we have

φK
0 ∈ H2(K) ∩ W 1,∞(K). Applying the interpolation estimate of Raviart–

Thomas finite elements, we obtain

|φK
0 − p0|1,K = ‖(k∗)−1Phv0 − (λk∗)−1v0||0,K

≤ C‖λ−1 − 1‖0,∞,K‖Phv0 − v0‖0,K

≤ Ch‖λ−1 − 1‖0,∞,K |v0|1,K

≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K .

Because ∇φK
0 = (k∗)−1Phv0 and Ph is a bounded operator, it is easy to show

that

|φK
0 |1,K ≤ C|λ|0,∞,K |p0|1,K

|φK
0 |2,K ≤ C‖λ‖1,∞,K |p0|2,K .

Applying the above estimates, we obtain

|p1 − φK
1 |1,K ≤ |p0 − φK

0 |1,K + ‖(∇y · χ)∇(p0 − φK
0 )‖0,K

+ ε‖χ(∇2p0 −∇2φK
0 )‖0,K ≤ Ch‖λ−1− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

+ Cε‖λ‖1,∞,K |p0|2,K .

As for the estimation of (6.37), we invoke the inverse inequality of finite ele-
ments and get

|φK
0 |1,∞,K ≤ C‖Phv0 − 〈v0〉K‖0,∞,K + C‖〈v0〉K‖0,∞,K

≤ Ch−d/2‖Phv0 − 〈v0〉K‖0,K + C‖〈v0〉K‖0,∞,K

≤ Ch−d/2+1‖λ‖1,∞,K‖p0‖2,K + C‖λ‖0,∞,K |p0|1,∞,K ,

where d = 2. The proof of the lemma is complete.

Next, we return to estimate ‖v− th‖0,Ω . Applying the definitions of v and
th and the Lemma 6.16, we obtain that
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‖v − th‖0,K ≤ C‖λ− 1‖0,∞,K‖∇p−∇φK‖0,K

≤ C‖λ− 1‖0,∞,K(‖∇p−∇p1‖0,K + ‖∇p1 −∇φK
1 ‖0,K

+ ‖∇φK
1 −∇φK‖0,K) ≤ C‖λ− 1‖0,∞,K [ε(‖λ‖0,∞,K‖p0‖2,K

+ ‖φK
0 ‖2,K) +

√
εhd−1(‖λ‖0,∞,K |p0|1,∞,K + |φK

0 |1,∞,K)]

+ C‖λ− 1‖0,∞,K [(h‖λ−1 − 1‖0,∞,K + ε)‖λ‖1,∞,K‖p0‖2,K ]

≤ CK,1(p0, λ)ε+ CK,2(p0, λ)h+ CK,3(p0, λ)
√
εh

+ CK,4(p0, λ)
√
εhd−1,

where d refers to the dimension of the space R
d (d = 2 for simplicity). Here we

have used the corrector estimates (see Appendix B for discussions on corrector
estimates for the Dirichlet problem and [71] for the corrector results that
are used in the Neumann problem). Note that the constants in the above
inequality are given by

CK,1(p0, λ) = C‖λ− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,2(p0, λ) = C‖λ− 1‖0,∞,K‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,3(p0, λ) = C‖λ− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,4(p0, λ) = C‖λ− 1‖0,∞,K(1 + ‖λ‖0,∞,K)‖p0‖1,∞,K .

Taking the summation all over K, we have

‖v − th‖0,Ω ≤ C1(p0, λ)ε+ C̃2(p0, λ)h+ C3(p0, λ)
√
εh+ C4(p0, λ)

√
ε

h
.

Here we have used the assumption that the triangulation is quasi-uniform,
and the notations of the above coefficients are

C1(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (6.38)

C̃2(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ−1 − 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω

C3(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (6.39)
C4(p0, λ) = C‖λ− 1‖0,∞,Ω(1 + ‖λ‖0,∞,Ω)‖p0‖1,∞,Ω . (6.40)

Finally, applying Proposition 6.15, we get

‖v − vh‖H(div,Ω) + ‖pε − ph‖0,Ω ≤ C1(p0, λ)ε+ C2(p0, λ, g)h

+ C3(p0, λ)
√
εh+ C4(p0, λ)

√
ε

h
,

where
C2(p0, f, λ, g) = C̃2(p0, λ) + C‖g‖−1/2,∂Ω + C|f |1,Ω . (6.41)

Remark 6.17. From the proof, we see that the resonance term O(
√
ε/h) comes

from the terms estimated by |p0|1,∞,K . If the p0 can be exactly solved by some
finite element method on the coarse grid, then we can use an inverse inequality
to improve the convergence to O(ε+ h+

√
εh).
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Remark 6.18. From the proof of the convergence theorem, one can see that it
is sufficient to require λ ∈W 1,∞(Ω) and λ−1 ∈ L∞(Ω).

Remark 6.19. If the oversampling technique is used to approximate the flux v
(see [71]), the resonance error can be reduced to O(ε/h).

6.2 Analysis of MsFEMs for nonlinear problems
(from Chapter 3)

For the analysis of MsFEMs, we assume the following conditions for k(x, η, ξ)
and k0(x, η, ξ), η ∈ R and ξ ∈ R

d.

|k(x, η, ξ)| + |k0(x, η, ξ)| ≤ C (1 + |η|γ−1 + |ξ|γ−1), (6.42)

(k(x, η, ξ1) − k(x, η, ξ2)) · (ξ1 − ξ2) ≥ C |ξ1 − ξ2|γ , (6.43)

k(x, η, ξ) · ξ + k0(x, η, ξ)η ≥ C|ξ|γ . (6.44)

Denote
H(η1, ξ1, η2, ξ2, r) = (1 + |η1|r + |η2|r + |ξ1|r + |ξ2|r), (6.45)

for arbitrary η1, η2 ∈ R, ξ1, ξ2 ∈ R
d, and r > 0. We further assume that

|k(x, η1, ξ1) − k(x, η2, ξ2)| + |k0(x, η1, ξ1) − k0(x, η2, ξ2)|
≤ C H(η1, ξ1, η2, ξ2, γ − 1) ν(|η1 − η2|)
+ C H(η1, ξ1, η2, ξ2, γ − 1 − s) |ξ1 − ξ2|s,

(6.46)

where s > 0, γ > 1, s ∈ (0,min(γ−1, 1)) and ν is the modulus of continuity, a
bounded, concave, and continuous function in R+ such that ν(0) = 0, ν(t) =
1 for t ≥ 1, and ν(t) > 0 for t > 0. Throughout, γ′ is defined by 1/γ +
1/γ′ = 1, y = x/ε. In further analysis K ∈ Th is referred to simply by
K. Inequalities (6.42)-(6.46) are the general conditions that guarantee the
existence of a solution and are used in homogenization of nonlinear operators
[220]. Here γ represents the rate of the polynomial growth of the fluxes with
respect to the gradient and, consequently, it controls the summability of the
solution. We do not assume any differentiability with respect to η and ξ in the
coefficients. Our objective is to present a MsFEM and study its convergence for
general nonlinear equations, where the fluxes can be discontinuous functions
in space. These kinds of equations arise in many applications such as nonlinear
heat conduction, flow in porous media, and so on. (see, e.g., [207, 244, 245]).

We present the main part of the analysis. For additional proofs of some
auxiliary lemma, we refer to [104]. The analysis is presented for problems with
scale separation. For this reason, we assume that the smallest scale is ε and
denote the coefficients by k(x, ·, ·) = kε(x, ·, ·) and k0(x, ·, ·) = k0,ε(x, ·, ·).

In [111] we have shown using G-convergence theory that
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lim
h→0

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (6.47)

(up to a subsequence) where p0 is a solution of (3.26) and ph is a MsFEM
solution given by (3.6). This result can be obtained without any assumption
on the nature of the heterogeneities and cannot be improved because there
could be infinitely many scales α(ε) present such that α(ε) → 0 as ε→ 0.

Next we present the convergence results for MsFEM solutions. In the proof
of this theorem we show the form of the truncation error (in a weak sense)
in terms of the resonance errors between the mesh size and small-scale ε. The
resonance errors are derived explicitly. To obtain the convergence rate from
the truncation error, one needs some lower bounds. Under the general con-
ditions, such as (6.42)–(6.46), one can prove strong convergence of MsFEM
solutions without an explicit convergence rate (cf. [245]). To convert the ob-
tained convergence rates for the truncation errors into the convergence rate of
MsFEM solutions, additional assumptions, such as monotonicity, are needed.

Theorem 6.20. Assume kε(x, η, ξ) and k0,ε(x, η, ξ) are periodic functions
with respect to x, let p0 be a solution of (3.26), and ph is a MsFEM solu-
tion given by (3.6). Moreover, we assume that ∇ph is uniformly bounded in
Lγ+α(Ω) for some α > 01. Then

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (6.48)

where h = h(ε) � ε and h→ 0 as ε→ 0 (up to a subsequence).

Theorem 6.21. Let p0 and ph be the solutions of the homogenized prob-
lem (3.26) and MsFEM (3.6), respectively, with the coefficient kε(x, η, ξ) =
k(x/ε, ξ) and k0,ε = 0. Then

‖ph−p0‖γ

W 1,γ
0 (Ω)

≤ C
(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)

+ hγ/(γ−1)

)

. (6.49)

We first prove Theorem 6.20. Then, using the estimates obtained in the
proof of this theorem, we show (6.49). The main idea of the proof of The-
orem 6.20 is the following. First, the boundedness of the discrete solutions
independent of ε and h is shown. This allows us to extract a weakly con-
verging subsequence. The next task is to prove that a limit is a solution of
the homogenized equation. For this reason correctors for vr,h (see (3.2)) are
used and their convergence is demonstrated. We would like to note that the
known convergence results for the correctors assume a fixed (given) homoge-
nized solution, whereas the correctors for vr,h are defined for only a uniformly
bounded sequence vh, that is, the homogenization limits of vr,h (with respect
to ε) depend on h, and are only uniformly bounded. Because of this, more

1 Please see Remark 6.28 at the end of the proof of Theorem 6.20 for more discus-
sions and partial results regarding this assumption.
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precise corrector results need to be obtained where the homogenized limit of
the solution is tracked carefully in the analysis. Note that to prove (6.47) (see
[112]), one does not need correctors and can use the fact of the convergence of
fluxes, and, thus, the proof of the periodic case differs from the one in [112].
Some results (Lemmas 6.22, 6.23, and their proofs) do not require periodicity
assumptions. For these results we use the notations kε(x, η, ξ) and k0,ε(x, η, ξ)
to distinguish the two cases. The rest of the proofs require periodicity, and we
use k(x/ε, η, ξ) and k0(x/ε, η, ξ) notations.

Lemma 6.22. There exists a constant C > 0 such that for any vh ∈Wh

〈kr,hvh, vh〉 ≥ C‖∇vh‖γ
Lγ(Ω),

for sufficiently small h.

The proof of this lemma is provided in [104]. The following lemma is used in
the proof of Lemma 6.24.

Lemma 6.23. Let vε − v0 ∈ W 1,γ
0 (K) and wε − w0 ∈ W 1,γ

0 (K) satisfy the
following problems, respectively,

− div kε(x, η,∇vε) = 0 in K (6.50)

− div kε(x, η,∇wε) = 0 in K, (6.51)

where η is constant in K. Then the following estimate holds:

‖∇(vε − wε)‖Lγ(K) ≤ C H0 ‖∇(v0 − w0)‖γ/(γ−s)
Lγ(K) , (6.52)

where

H0 =
(
|K| + ‖η‖γ

Lγ(K) + ‖∇v0‖γ
Lγ(K) + ‖∇w0‖γ

Lγ(K)

)(γ−s−1)/(γ−s)

,

where s ∈ (0,min(1, γ − 1)), γ > 1.

For the proof of this lemma, we refer to [104].
Next, we introduce, as before, the fast variable y = x/ε. Regarding ηvh ,

where ηvh = (1/|K|)
∫

K
vhdx in each K, we note that Jensen’s inequality

implies
‖ηvh‖Lγ(Ω) ≤ C‖vh‖Lγ(Ω). (6.53)

In addition, the following estimates hold for ηvh ,

‖vh − ηvh‖Lγ(K) ≤ C h ‖∇vh‖Lγ(K). (6.54)

At this stage we define a numerical corrector associated with vr,h =
EMsFEMvh, vh ∈Wh. First, let

Pη,ξ(y) = ξ + ∇yNη,ξ(y), (6.55)
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for η ∈ R and ξ ∈ R
d, where Nη,ξ ∈ W 1,γ

per (Y ) is the periodic solution (with
average zero) of

− div(k(y, η, ξ + ∇yNη,ξ(y))) = 0 in Y, (6.56)

where Y is a unit period. The homogenized fluxes are defined as follows:

k∗(η, ξ) =
∫

Y

k(y, η, ξ + ∇yNη,ξ(y)) dy, (6.57)

k∗0(η, ξ) =
∫

Y

k0(y, η, ξ + ∇yNη,ξ(y)) dy, (6.58)

where k∗ and k∗0 satisfy the conditions similar to (6.42)–(6.46). We refer to
[220] for further details. Using (6.55), we denote our numerical corrector by
Pηvh ,∇vh

which is defined as

Pηvh ,∇vh
= ∇vh + ∇yNηvh ,∇vh

(y). (6.59)

Here ηvh is a piecewise constant function defined in each K ∈ Th by ηvh =
(1/|K|)

∫
K
vhdx. Consequently, Pηvh ,∇vh

is defined in Ω by using (6.59) in
each K ∈ Th. For the linear problem Pηvh ,∇vh

= ∇vh + N(y) · ∇vh. Our
goal is to show the convergence of these correctors for the uniformly bounded
family of vh in W 1,γ(Ω). We note that the corrector results known in the
literature are for a fixed homogenized solution.

Lemma 6.24. Let vr,h satisfy (3.2), where kε(x, η, ξ) is a periodic function
with respect to x, and assume that vh is uniformly bounded in W 1,γ

0 (Ω). Then

‖∇vr,h−Pηvh ,∇vh
‖Lγ(Ω)

≤ C
( ε

h

)1/(γ(γ−s)) (
|Ω| + ‖vh‖γ

Lγ(Ω) + ‖∇vh‖γ
Lγ(Ω)

)1/γ

.
(6.60)

We note that here s ∈ (0,min(γ − 1, 1)), γ > 1. For the proof of this lemma,
we need the following proposition.

Proposition 6.25. For every η ∈ R and ξ ∈ R
d we have

‖Pη,ξ‖γ
Lγ(Yε)

≤ c (1 + |η|γ + |ξ|γ) |Yε|, (6.61)

where Yε is a period of size ε.

An easy consequence of this proposition is the following estimate for Nη,ξ (see
(6.56)).

Corollary 6.26. For every η ∈ R and ξ ∈ R
d we have

‖∇yNη,ξ‖γ
Lγ(Yε)

≤ c (1 + |η|γ + |ξ|γ) |Yε|. (6.62)

The proof of Proposition 6.25 is presented in [104].
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Proof. (Lemma 6.24) Recall that by definition

Pηvh ,∇vh
= ∇vh + ∇yNηvh ,∇vh

(y) = ∇vh + ε∇Nηvh ,∇vh
(x/ε),

where by using (6.56) Nηvh ,∇vh
(y) is a zero-mean periodic function satisfying

the following,

− div(k(x/ε, ηvh ,∇vh + ε∇Nηvh ,∇vh
)) = 0 in K. (6.63)

We expand vr,h as

vr,h = vh(x) + εNηvh ,∇vh
(x/ε) + θ(x, x/ε). (6.64)

We note that here θ(x, x/ε) is similar to the correction terms that arise in
linear problems because of the mismatch between linear boundary conditions
and the oscillatory corrector, Nηvh ,∇vh

(x/ε) = N(x/ε) · ∇vh. Next we denote
by wr,h = vh(x) + εNηvh ,∇vh

(x/ε). Clearly wr,h satisfies (6.63). Taking all
these into account, the claim in the lemma is the same as proving

‖∇θ‖Lγ(Ω) = ‖∇(vr,h − wr,h)‖Lγ(Ω)

≤ C
( ε

h

)1/(γ(γ−s)) (
|Ω| + ‖vh‖γ

Lγ(Ω) + ‖∇vh‖γ
Lγ(Ω)

)1/γ

.
(6.65)

Here we may write wr,h as a solution of the following boundary value problem:

−div(k(x/ε, ηvh ,∇wr,h)) = 0 in K and wr,h = vh + ε Ñηvh ,∇vh
on ∂K,

with Ñηvh ,∇vh
= ζ Nηvh ,∇vh

, where ζ is a sufficiently smooth function whose
value is 1 on a strip of width ε adjacent to ∂K and 0 elsewhere. We denote
this strip by Sε. This idea has been used in [164]. By Lemma 6.23 we have
the following estimate:

‖∇θ‖γ
Lγ(K) = ‖∇(vr,h − wr,h)‖γ

Lγ(K)

≤ C H0 ‖∇(vh − vh − ε Ñηvh ,∇vh
)‖γ/(γ−s)

Lγ(K)

≤ C H0 ‖ε∇Ñηvh ,∇vh
‖γ/(γ−s)

Lγ(K) ,

(6.66)

where

H0 =
(
|K| + ‖ηvh‖γ

Lγ(K) + ‖∇vh‖γ
Lγ(K) + ‖∇(vh + ε Ñηvh ,∇vh

)‖γ
Lγ(K)

) (γ−s−1)
(γ−s)

.

(6.67)

We need to show that H0 is bounded and ‖ε∇Ñηvh ,∇vh
‖γ

Lγ(Ω) uniformly
vanishes as ε → 0. For this purpose, we use the following notations. Let
JK

ε = {i ∈ Z
d : Y i

⋂
K �= 0,K\Y i �= 0} and FK

ε = ∪i∈JK
ε
Y i. In other words,



6.2 Analysis of MsFEMs for nonlinear problems (from Chapter 3) 183

FK
ε is the union of all periods Y i that cover the strip Sε. Using these notations

and because ζ is zero everywhere in K, except in the strip Sε, we may write
the following

‖ε∇Ñηvh ,∇vh
‖γ

Lγ(K) =εγ
∫

K

|∇(ζ Nηvh ,∇vh
)|γ dx

= εγ
∫

Sε

|∇(ζ Nηvh ,∇vh
)|γ dx

≤ εγ
∫

F K
ε

|∇(ζ Nηvh ,∇vh
)|γ dx

= εγ
∑

i∈JK
ε

∫

Y i
ε

|∇(ζ Nηvh ,∇vh
)|γ dx

≤ εγ
∑

i∈JK
ε

∫

Y i
ε

(|∇Nηvh ,∇vh
|γ |ζ|γ + |Nηvh ,∇vh

|γ |∇ζ|γ) dx,

(6.68)

where we have used the product rule on the partial derivative in the last line
of (6.68). Our aim now is to show that the sum of integrals in the last line of
(6.68) is uniformly bounded. We note that (see Corollary 6.26)

‖∇y Nηvh ,∇vh
‖γ

Lγ(Y i
ε ) ≤ C(1 + |ηvh |γ + |∇vh|γ) |Y i

ε |, (6.69)

from which, using the Poincaré-Friedrich inequality we have

‖Nηvh ,∇vh
‖γ

Lγ(Y i
ε ) ≤ C(1 + |ηvh |γ + |∇vh|γ) |Y i

ε |. (6.70)

We note also that ηvh and ∇vh are constant in K. Because ζ is sufficiently
smooth, and whose value is one on the strip Sε and zero elsewhere, we know
that |∇ζ| ≤ C/ε (cf. [164]). Applying all these facts to (6.68) we have

‖ε∇Ñηvh ,∇vh
‖γ

Lγ(K) ≤ C ε
γ (1 + |ηvh |γ + |∇vh|γ)

∑

i∈JK
ε

(1 + ε−γ) |Y i
ε |

= C (εγ + 1) (1 + |ηvh |γ + |∇vh|γ)
∑

i∈JK
ε

|Y i
ε |

≤ C (1 + |ηvh |γ + |∇vh|γ)
∑

i∈JK
ε

|Y i
ε |.

Moreover, because all Y i
ε , i ∈ JK

ε , cover the strip Sε, we know that
∑

i∈JK
ε

|Y i
ε |

≤ C hd−1 ε. Hence, we have

‖ε∇Ñηvh ,∇vh
‖γ

Lγ(K) ≤ C
hd

hd
(1 + |ηvh |γ + |∇vh|γ) hd−1 ε

≤ C ε
h

(
|K| + ‖ηvh‖γ

Lγ(K) + ‖∇vh‖γ
Lγ(K)

)
.

(6.71)
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Furthermore, using this estimate and noting that ε/h < 1, we obtain from
(6.67) that

H0 ≤ C
(
|K| + ‖ηvh‖γ

Lγ(K) + ‖vh‖γ
Lγ(K) + ‖∇vh‖γ

Lγ(K)

)(γ−s−1)/(γ−s)

.

(6.72)
Summarizing the results from (6.66) combined with (6.72) and (6.71), we get

‖∇θ‖γ
Lγ(K) ≤ C H0 ‖ε∇Ñηvh ,∇vh

‖γ/(γ−s)
Lγ(K)

≤ C
( ε

h

)1/(γ−s) (
|K| + ‖ηvh‖γ

Lγ(K) + ‖vh‖γ
Lγ(K) + ‖∇vh‖γ

Lγ(K)

)
.

Finally summing over all K ∈ Th and applying (6.53) to
∑

K∈Th
‖ηvh‖γ

Lγ(K),
we obtain

‖∇θ‖γ
Lγ(Ω) =

∑

K

‖∇θ‖γ
Lγ(K)

≤ C
( ε

h

)1/(γ−s) ∑

K

(
|K| + ‖vh‖γ

Lγ(K) + ‖∇vh‖γ
Lγ(K)

)

= C
( ε

h

)1/(γ−s) (
|Ω| + ‖vh‖γ

Lγ(Ω) + ‖∇vh‖γ
Lγ(Ω)

)
.

(6.73)

The last inequality uniformly vanishes as ε approaches zero, thus we have
completed the proof of Lemma 6.24.

The next lemma is crucial for the proof of Theorem 6.20 and it guarantees
the convergence of MsFEM solutions to a solution of the homogenized equa-
tion. This lemma also provides us with the estimate for the truncation error
(in a weak sense).

Lemma 6.27. Suppose vh, wh ∈ Wh where ∇vh and ∇wh are uniformly
bounded in Lγ+α(Ω) and Lγ(Ω), respectively, for some α > 0. Let κ∗ be
the operator associated with the homogenized problem (3.26), such that

〈κ∗ vh, wh〉=
∑

K∈Th

∫

K

(k∗(vh,∇vh)·∇wh+k∗0(vh,∇vh)wh) dx, ∀vh, wh ∈Wh.

(6.74)
Then we have

lim
ε→0

〈κr,h vh − κ∗ vh, wh〉 = 0.

The proof of this lemma is presented in [104]. Now we are ready to prove
Theorem 6.20.

Proof. (Theorem 6.20) Because κr,h is coercive, it follows that ph is bounded,
which implies that it has a subsequence (which we also denote by ph) such
that ph ⇀ p̃ in W 1,γ(Ω) as ε → 0. Because the operator κ∗ is of type S+

(see, e.g., [245], page 3, for the definition), then by its definition, the strong
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convergence would be true if we can show that lim supε→0 〈κ∗ph, ph − p̃〉 → 0.
Moreover, by adding and subtracting the term, we have the following equality

〈κ∗ph, ph − p̃〉 = 〈κ∗ph − κr,hph, ph − p̃〉 + 〈κr,hph, ph − p̃〉

= 〈κ∗ph − κr,hph, ph〉 − 〈κ∗ph − κr,hph, p̃〉 +
∫

Ω

f(ph − p̃)dx.

(6.75)

Lemma 6.27 implies that the first and second term vanish as ε→ 0 provided
∇ph is uniformly bounded in Lγ+α for α > 0, and the last term vanishes
as ε → 0 (up to a subsequence) by the weak convergence of ph. One can
assume additional mild regularity assumptions [201] for input data and obtain
Meyers type estimates, ‖∇p0‖Lγ+α(Ω) ≤ C, for the homogenized solutions. In
this case it is reasonable to assume that the discrete solutions are uniformly
bounded in Lγ+α(Ω). We have obtained results on Meyers type estimates for
our approximate solutions in the case γ = 2 [114]. Finally, because κ∗ is also
of type M (see, e.g., [244], page 38, for the definition), all these conditions
imply that κ∗p̃ = f , which means that p̃ = p0.

Remark 6.28. We would like to point out that for the proof of Theorem 6.20
it is assumed that ∇ph is uniformly bounded in Lγ+α(Ω) for some α > 0 (see
discussions after (6.75)). This has been shown for γ = 2 in [114]. To avoid
this assumption, one can impose additional restrictions on k∗(η, ξ) (see, [112],
pages 254, 255). We note that the assumption, ∇ph is uniformly bounded in
Lγ+α(Ω), is not used for the estimation of the resonance errors.

Next we present some explicit estimates for the convergence rates of Ms-
FEM. First, we note that from the proof of the Lemma 6.27 it follows that
the truncation error of MsFEM (in a weak sense) is given by

〈kr,hph − κ∗ph, wh〉 = 〈f −A∗ph, wh〉

≤ C
( ε

h

)s/(γ(γ−s)) (
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)(1/γ′)
‖∇wh‖Lγ(Ω)

+ C
ε

h

(
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)1/γ′

‖∇wh‖Lγ(Ω) + e(h)‖∇wh‖Lγ(Ω)

= C
(( ε

h

)s/(γ(γ−s))

+
ε

h

)(
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)1/γ′

‖∇wh‖Lγ(Ω)

+ e(h)‖∇wh‖Lγ(Ω),

(6.76)

where e(h) is a generic sequence independent of small-scale ε, such that e(h) →
0 as h→ 0. We note that the first term on the right side of (6.76) is the leading
order resonance error caused by the linear boundary conditions imposed on
∂K, and the second term is due to the mismatch between the mesh size and
the small scale of the problem. These resonance errors are also present in the
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linear case as we discussed in Section 6.1. If one uses the periodic solution of
the auxiliary problem for constructing the solutions of the local problems, then
the resonance error can be removed. To obtain explicit convergence rates, we
first derive upper bounds for 〈κ∗ph − κ∗Php0, ph − Php0〉, where Phu denotes
a finite element projection of u onto Wh; that is,

〈κ∗Php0, vh〉 =
∫

Ω

fvhdx, ∀vh ∈Wh,

and 〈κ∗ph, vh〉 is defined by (6.74). Then using estimate (6.76), we have

〈κ∗ph − κ∗Php0, ph − Phu〉 = 〈κ∗ph − kr,hph, ph − Php0〉
+ 〈kr,hph − κ∗Php0, ph − Php0〉 = 〈κ∗ph − kr,hph, ph − Php0〉
+ 〈f − κ∗Php0, ph − Php0〉 = 〈κ∗ph − kr,hph, ph − Php0〉

≤ C
(( ε

h

)s/(γ(γ−s))

+
ε

h

)(
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)1/γ′

×

‖∇(ph − Php0)‖Lγ(Ω) + e(h)‖∇(ph − Php0)‖Lγ(Ω).

(6.77)

The estimate (6.77) does not allow us to obtain an explicit convergence
rate without some lower bound for the left side of the expression. In the proof
of Theorem 6.20, we only use the fact that κ∗ is the operator of type S+,
which guarantees that the convergence of the left side of (6.77) to zero implies
the convergence of the discrete solutions to a solution of the homogenized
equation. Explicit convergence rates can be obtained by assuming some kind
of an inverse stability condition, ‖κ∗u − κ∗v‖ ≥ C‖u − v‖. In particular, we
may assume that κ∗ is a monotone operator; that is,

〈κ∗u− κ∗v, u− v〉 ≥ C‖∇(u− v)‖γ
Lγ(Ω). (6.78)

A simple way to achieve monotonicity is to assume kε(x, η, ξ) = kε(x, ξ) and
k0,ε(x, η, ξ) = 0, although one can impose additional conditions on kε(x, η, ξ)
and k0,ε(x, η, ξ), such that monotonicity condition (6.78) is satisfied. For our
further calculations, we only assume (6.78). Then from (6.77) and (6.78), and
using the Young inequality, we have

‖∇(ph − Php0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)
)

+ e(h).

Next taking into account the convergence of standard finite element solutions
of the homogenized equation we write

‖∇Php−∇p0‖Lγ(Ω) ≤ e1(h),

where e1(h) → 0 (as h → 0) is independent of ε. Consequently, using the
triangle inequality we have

‖∇(ph − p0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)
)

+ e(h) + e1(h).
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Proof. (Theorem 6.21).
For monotone operators, kε(x, η, ξ) = kε(x, ξ) and k0,ε(x, η, ξ) = 0, η ∈

R and ξ ∈ R
d, the estimates for e(h) and e1(h) can be easily derived. In

particular, because of the absence of η in kε, e(h) = 0, and e1(h) ≤ Ch1/(γ−1)

(see, e.g., [75]). Combining these estimates we have

‖∇(ph − p0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)

+ hγ/(γ−1)

)

.

From here one obtains (6.49).

Remark 6.29. One can impose various conditions on the operators to obtain
different kinds of convergence rates. For example, under the additional as-
sumptions (cf. [207])

|∂k
∗(η, ξ)
∂η

| + |∂k
∗(η, ξ)
∂ξ

| ≤ C, ∂k∗i (η, ξ)
∂ξj

βiβj ≥ C|β|2,

where β ∈ R
d is an arbitrary vector, and γ = 2, following the analysis pre-

sented in [207] (pages 51, 52), the convergence rate in terms of the Lγ-norm
of ph − Php can be obtained,

‖∇(ph − Php0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)
)

+e(h) + C‖ph − Php0‖γ
Lγ(Ω),

(6.79)

where s ∈ (0, 1), γ = 2.

Remark 6.30. For the linear operators (γ = 2, s = 1), we recover the conver-
gence rate Ch+ C1

√
ε/h.

Remark 6.31. We have shown that the MsFEM for nonlinear problems has the
same error structure as for linear problems. In particular, our studies revealed
two kinds of resonance errors for nonlinear problems with the same nature as
those that arise in linear problems.

6.3 Analysis for MsFEMs with limited global
information (from Chapter 4)

6.3.1 Mixed finite element methods with limited global
information

Elliptic case

We begin by restating the main assumption in a rigorous way.
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Assumption A1. There exist functions v1, ..., vN and sufficiently smooth
A1(x), ..., AN (x) such that

v(x) =
N∑

i=1

Ai(x)vi, (6.80)

where vi = k∇pi and pi solves div(k(x)∇pi) = 0 in Ω with appropriate bound-
ary conditions.

For our analysis, we assume Ai(x) ∈W 1,ξ(Ω), and vi = k(x)∇pi ∈ Lη(Ω)
for some ξ and η, i = 1, ..., N . Throughout this section, we do not use the
Einstein summation convention.

Remark 6.32. As an example of two global fields in R
2 (similar results hold in

R
d; see [218] for details), we use the results of Owhadi and Zhang [218]. Let
vi = k(x)∇pi (i = 1, 2) be defined by the elliptic equation

div(k(x)∇pi) = 0 in Ω

pi = xi on ∂Ω,
(6.81)

where x = (x1, x2). In the harmonic coordinate (p1, p2), p = p(p1, p2) ∈ W 2,s

(s ≥ 2). Consequently, v = λ(x)k(x)∇p =
∑

i λ(∂p/∂pi)k∇pi :=
∑

iAi(x)vi,
where Ai(x) = λ(∂p/∂pi) ∈W 1,s.

To avoid the possibility that
∫

el
vi ·nds is zero or unbounded, we make the

following assumption for our analysis.
Assumption A2. There exist positive constants C such that
∫

el

|vi · n|ds ≤ Chβ1 and ‖ vi · n∫
el
vi · nds

‖Lr(el) ≤ Ch−β2+1/r−1 (6.82)

uniformly for all edges el, where β1 ≤ 1, β2 ≥ 0,and r ≥ 1.

Remark 6.33. The second part of Assumption A2 is to assure |
∫

el
vi · nds|

remains positive. It can be also written as

‖ vi · n∫
el
vi · nds

− 〈 vi · n∫
el
vi · nds

〉el
‖Lr(el) ≤ Ch−β2+1/r−1,

where 〈·〉 = (1/|el|)
∫

el
(·)ds, which is used to estimate the velocity basis func-

tion. If vi are bounded, then β2 = 0. Note that

‖ vi · n∫
el
vi · nds

− 〈 vi · n∫
el
vi · nds

〉el
‖Lr(el) = 0

if vi|K is an RT0 basis function or standard mixed MsFEM basis functions
introduced in [71]. Finally, we note that if r = 1 and |

∫
el
vi · nds| ≥ Chβ1 ,

then β2 = 0.
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We recall the definition of basis functions ψK
ij = k(x)∇φK

ij and

Vh =
⊕

K

{ψK
ij }
⋂
H(div, Ω), V0

h =
⊕

K

{ψK
ij }
⋂
H0(div, Ω).

Let Qh = ⊕KP0(K) ⊂ L2(Ω)/R (i.e., piecewise constants), be the basis func-
tion for the pressure. We define

g0,h =
∑

e∈{∂K
⋂

∂Ω,K∈τh}
(
∫

e

gds)ψi,e

for some fixed i ∈ {1, 2, ..., N}, where ψi,e is the corresponding multiscale
basis function to the edge e. Let gh = g0,h · n on ∂Ω. The numerical mixed
formulation is to find {vh, ph} ∈ Vh ×Qh which satisfies (4.7) and vh · n = gh
on ∂Ω.

First, we note the following result.

Lemma 6.34.

vi|K ∈ span{ψK
ij }, i = 1, .., N ; j = 1, 2, 3.

Proof. First, we prove the lemma for v1. For this proof, we would like to find
constants βK

ij s such that
∑

i,j β
K
ij ψ

K
ij = v1. That is,

∑

i,j

βK
ij div(k(x)∇φK

ij ) =
1
|K|
∑

i,j

βK
ij = 0

∑

i,j

βK
ij k(x)∇φK

ij · nel
=
∑

i,j

βK
ij δjl

vi · nel∫
el
vi · nds

= v1 · nel
.

(6.83)

Noticing that vi = k(x)∇pi and div(k(x)∇pi) = 0, we have pi =
∑

i,j β
K
ij φ

K
ij +

C for some constant C because pi and
∑

i,j β
K
ij φ

K
ij satisfy the same elliptic

equation with Neumann boundary condition as pi, and then we have vi =∑
i,j β

K
ij ψ

K
ij . The second equation in (6.83) implies that we can take βK

1j =
∫

ej
v1 · nds and βK

ij = 0 for i �= 1. Consequently,

∑

i,j

βK
ij =

∑

j

∫

ej

v1 · nds =
∫

K

div(v1)dx = 0,

which is the first equation in (6.83). One can obtain similar results for other
vi (i = 2, ..., N).

Following our assumption, let

X = {u|u =
N∑

i=1

ai(x)vi}
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be a subspace of H(div, Ω). For our analysis, we require that the integrals∫

ej

ai(x)vi · nds are well defined. This is also needed in our computations be-

cause
∫

ej

ai(x)vi · nds determines the fluxes along the edges in two-phase flow

simulations. One way to achieve this is to assume, as we did earlier, that
ai(x) ∈ W 1,ξ(Ω), vi ∈ Lη(Ω), 1

2 = 1/ξ + 1/η. Because ai(x) ∈ W 1,ξ(Ω) and
vi ∈ Lη(Ω) (1

2 = 1
ξ + 1

η ), Hölder inequality implies that (∇ai)vi ∈ L2(Ω).
Noticing that div(vi) = 0, we have div(ai(x)vi) ∈ L2(Ω) immediately. Invok-
ing the Sobolev embedding theorem (see [18]), we get aivi ∈ Lη(Ω) because

W 1,ξ(Ω) ↪→ L∞(Ω). The integrals
∫

ej

ai(x)vi · nds are well defined by the

fact that aivi ∈ Lρ(Ω) (ρ > 2) and div(ai(x)vi) ∈ L2(Ω) (see page 125 of
[57]). We define an interpolation operator Πh : X −→ Vh such that in each
element K, for any v =

∑
i ai(x)vi ∈ X

Πh|K(
∑

i

ai(x)vi) =
∑

i,j

aK
ijψ

K
ij ,

where aK
ij =

∫

ej

ai(x)vi · nds.

The proof of the following lemma can be found in [8].

Lemma 6.35. Let Πh be defined as above. Then ∀v =
∑N

i=1 aivi ∈ X, qh ∈
Qh,
(1)
∫

Ω
div(v − Πhv)qhdx = 0;

(2) ‖Πhv‖H(div,Ω) ≤ C‖v‖X,Ω, if β1 ≥ 2β2,
where ‖v‖X,Ω := ‖div(v)‖0,Ω +

∑N
i=1 ‖ai‖1,Ω and C only depends on N , the

constants in Assumption A2 (see (6.82)) and the pre-computed global fields
vi.

Remark 6.36. If vi ∈ L∞(Ω), then β1 = 1, β2 = 0, and the proof of Lemma
6.35 implies that ‖Πhv‖H(div,Ω) ≤ C(maxi ‖vi‖L∞(Ω))

∑
i ‖ai‖1,Ω .

Remark 6.37. For v =
∑N

i=1 aivi, where ai ∈W 1,ξ(Ω) and vi ∈ Lη(Ω) (1/2 =
1/ξ + 1/η), one can also show that

‖Πhv‖H(div,Ω) ≤ C
∑

i

‖ai‖1,ξ,Ω ,

if α+β1−β2−1 ≥ 0, where C only depends onN , the constants in Assumption
A2 (see (6.82)), and the pre-computed global fields vi.

Remark 6.38. We note that ‖v‖X,Ω may not be a norm in general because v =∑
i aivi = 0 may not imply that ai are zero (this does not affect the derivation

of the discrete inf-sup condition). In the problem setting considered here,



6.3 Analysis for MsFEMs with limited global information (from Chapter 4) 191

one can assume that ‖v‖X,Ω is a norm. Indeed, ai are coarse-scale functions,
and vi are fine-scale functions. Thus, in each coarse-grid block, the linear
combination

∑
i aivi zero will imply that ai are zero unless vi are also coarse-

scale functions. In the latter case, one can use standard mixed finite element
basis functions. If N = d (d being the dimension of the space), ‖v‖X,Ω is a
norm when vi are linearly independent. In the discrete setting, ai are vectors
defined on the coarse grid, whereas vi are defined on the fine grid. If

∑
i aivi

is zero, this implies that the vectors vi are linearly dependent, and thus, the
basis functions are linearly dependent.

Lemma 6.35 and the continuous inf-sup condition imply the discrete inf-
sup condition (see page 58 of [57]). We assume that the continuous inf-sup
condition holds (see [8] for more details). Assuming a continuous inf-sup con-
dition, we have that for any qh ∈ Qh, there exists a constant C such that

sup
vh∈Vh

∫
Ω

div(vh)qhdx
‖vh‖H(div,Ω)

≥ C‖qh‖0,Ω . (6.84)

Because of the inf-sup condition (6.84), we have the following optimal
approximation (see [57, 71]).

Lemma 6.39. Let {v, p} and {vh, ph} be the solution of (4.4) and (4.7) re-
spectively. Then

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C inf
wh∈Vh,wh−g0,h∈V0

h

‖v − wh‖H(div,Ω)

+C inf
qh∈Qh

‖p− qh‖0,Ω .

(6.85)

Next, we formulate our main result.

Theorem 6.40. Let {v, p} and {vh, ph} be the solution of (4.4) and (4.7),
respectively. If α+ β1 − β2 − 1 > 0, we have

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Chα+β1−β2−1,

where α = 1− 2/ξ, ξ and Ai are defined in Assumption A1, and βi (i = 1, 2)
are defined in Assumption A2. Here C is independent of h and depends on
N , the constants in Assumption A2, ‖Ai‖1,ξ,Ω (i = 1, .., N) and ‖f‖1,Ω.

Proof. For the proof, we need to choose a proper uh and a proper qh such
that the right-hand side of (6.85) is small.

The second term on the right hand in (6.85) can be easily estimated. In
fact, with the choice qh|K = 〈p〉K (i.e., the average of p in K), we have

inf
qh∈Qh

‖p− ph‖0,Ω ≤ Ch|p|1,Ω .
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Next, we try to find a uh ∈ Vh, say uh|K =
∑

i,j c
K
ijψ

K
ij , and estimate the

first term on the right-hand side in (6.85). Invoking Lemma 6.34 and its proof,
it follows that in each K,

v − uh =
∑

i

Ai(x)vi −
∑

i,j

cKijψij

=
∑

i

(Ai(x)
∑

j

βK
ij ψ

K
ij ) −

∑

i,j

cKijψ
K
ij

=
∑

i,j

(Ai(x)βK
ij − cKij )ψK

ij ,

(6.86)

where βK
ij =

∫
ej
vi · nds . Set cKij = AK

ij =
∫

ej
Ai(x)vi · nds.

Because
∫

K

∑
i div(Ai(x)vi)dx = f , we get by the divergence theorem

∫

∂K

∑

i

Ai(x)vi · nds = f.

This gives rise to

‖div(v −
∑

i,j

cKijψ
K
ij )‖0,K = ‖f −

∑

i,j

cKij
1
|K| ‖0,K

= ‖f −
∑

i,j

∫

ej

Ai(x)vi · nds
1
|K| ‖0,K = ‖f − 〈f〉K‖0,K ≤ Ch|f |1,K .

(6.87)

After summation over all K for (6.87), we have

‖div(v − uh)‖0,Ω ≤ Ch|f |1,Ω . (6.88)

Next we estimate ‖v−
∑

i,j c
K
ijψ

K
ij ‖0,K . Because Ai(x) ∈W 1,ξ(Ω), by using

the Sobolev embedding theorem and Taylor expansion (or definition of Cα)
we have

|Ai(x)|ej
− Āj

i | ≤ Chα‖Ai‖Cα(Ω),

where Āj
i is the average Ai(x) along ej and α = 1 − 2/ξ. So

|AK
ij − Āj

iβ
K
ij | = |

∫

ej

Aivi · nds− Āj
i

∫

ej

vi · nds|

= |
∫

ej

(Ai − Āj
i )(vi · n)ds| ≤ Chα+β1‖Ai‖Cα(Ω),

(6.89)

where we have used the Assumption A2 (see (6.82)).
Next, we present an estimate for ‖ψK

ij ‖0,K . For this reason, we introduce
the lowest Raviart–Thomas basis functions RK

j for velocity. We know that
div(RK

j ) = 1/|K| and RK
j · n = δjl/|ej | (e.g., [57]). We multiply (4.6) by a

test function w; we have
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∫

K

k∇φK
ij∇wdx=−

∫

K

w div(k∇φK
ij )dx+

∫

∂K

(k∇φK
ij · n)wds

=−
∫

K

w divRK
j dx+

∫

∂K

(k∇φK
ij · n)wds

=
∫

K

(∇w)RK
j dx+

∫

∂K

(k∇φK
ij · n−RK

j · n)wds

=
∫

K

(∇w)RK
j dx+

∫

∂K

δjl(
vi · n∫

el
vi · nds

− 〈 vi · n∫
el
vi · nds

〉el
)wds,

(6.90)

where we have used that 〈 vi·n∫
ej

vi·nds
〉ej

= RK
j · nej

= 1
|ej | .

If we set w = φK
ij , then it follows that

C‖∇φK
ij ‖2

0,K ≤ ‖∇φK
ij ‖0,K‖RK

j ‖0,K

+ ‖ vi · n∫
ej
vi · nds

− 〈 vi · n∫
ej
vi · nds

〉ej
‖Lr(ej)‖φK

ij ‖Lr′ (∂K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+1/r−1‖φK

ij ‖Lr′ (∂K)

≤ C‖∇φK
ij ‖0,K +Ch−β2+1/r−1(h−1+1/r′‖φK

ij ‖0,K +h
1
r′ ‖∇φK

ij ‖0,K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+1/r−1h1/r′‖∇φK

ij ‖0,K

≤ C‖∇φK
ij ‖0,K + Ch−β2‖∇φK

ij ‖0,K ,

where r′ satisfies 1/r+1/r′ = 1 (r is defined in Assumption A2), and we have
used Assumption A2 (see (6.82)) and ‖RK

j ‖0,K ≤ C (e.g., [57]) in the second
step, the trace inequality (by rescaling) in the third step, and 〈φK

ij 〉K = 0
along with the Poincaré–Friedrichs inequality (by rescaling) in the fourth step.
Consequently, we have

‖ψK
ij ‖0,K ≤ C(1 + h−β2), (6.91)

where C only depends on AssumptionA2 and the constants in trace inequality
and Poincaré inequality in a fixed reference domain. Combining (6.89) and
(6.91), it follows immediately

‖v − uh‖0,K = ‖
∑

i,j

(Ai(x)βK
ij −AK

ij )ψK
ij ‖0,K

≤ ‖
∑

i,j

(Ai(x) − Āj
i )β

K
ij ψ

K
ij ‖0,K + ‖

∑

i,j

(Āj
iβ

K
ij −AK

ij )ψK
ij ‖0,K

≤ ‖
∑

i,j

|Ai(x) − Āj
i |βK

ij ψ
K
ij ‖0,K + ‖

∑

i,j

|Āj
iβ

K
ij −AK

ij |ψK
ij ‖0,K

≤ Chα+β1(
∑

i

‖Ai‖Cα(Ω))
∑

i,j

‖ψK
ij ‖0,K

≤ Chα+β1−β2(
∑

i

‖Ai‖Cα(Ω)),

(6.92)
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where we have used Assumption A2 (see (6.82)) and C depends on N and the
constants in Assumption A2. After summation over all K for (6.92) we have

‖v − uh‖2
0,Ω =

∑

K

‖u− uh‖2
0,K

≤ C(
∑

i

‖Ai‖Cα(Ω))2
∑

K

h2(α+β1−β2)

≤ C(
∑

i

‖Ai‖Cα(Ω))2
1
h2
h2(α+β1−β2)

= C(
∑

i

‖Ai‖Cα(Ω))2h2(α+β1−β2−1).

Consequently,

‖v − vh‖0,Ω ≤ C(
∑

i

‖Ai‖Cα(Ω))hα+β1−β2−1. (6.93)

According to (6.85), for those K, ∂K ∩ ∂Ω, we adjust proper cKij such
that

∑
i,j c

K
ijψ

K
i,j − g0,h ∈ V0

h, but this does not affect our convergence rate.
Therefore, invoking Lemma 6.39, (6.88), (6.93), and the Sobolev embedding
theorem from W 1,ξ into Cα, Theorem 6.40 follows.

From the proof of Theorem 6.40, one can easily get the following result.
Let v and vh be the velocity in (4.4) and (4.7), respectively; then we have

‖v − vh‖0,Ω ≤ C(
∑

i

‖Ai‖Cα(Ω))hα+β1−β2−1.

Remark 6.41. If Ai(x) ∈ C1(Ω) in Assumption A1 and vi are defined such
that β1 = 1 and β2 = 0 (e.g., vi are bounded), then Theorem 6.40 implies
that

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Ch.
Remark 6.42. We note that the local mixed MsFEMs suffer from a resonance
error and a typical convergence rate for periodic coefficients is

‖vε − vh‖H(div,Ω) + ‖pε − ph‖0,Ω ≤ C(h+
( ε

h

)γ

),

where γ = 1/2 for the mixed multiscale method introduced in [71]. In our
global mixed MsFEM, the boundary condition for the velocity basis is hetero-
geneous and Theorem 6.40 implies that stability is independent of the small
scale and the resonance error is removed.

Remark 6.43. One can relax the main assumption used here and assume that

‖v(x) −
∑

i

Ai(x)vi(x)‖H(div,Ω) ≤ Cδ.

In this case, we can expect the convergence as

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C(hα+β1−β2−1 + δ).
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Parabolic equations

Next, we extend the analysis to parabolic equations. We use the following
assumption for the parabolic equation.

Assumption A1p. There exist functions v1, ..., vN and sufficiently smooth
A1(t, x), ..., AN (t, x) such that

v(t, x) =
N∑

i=1

Ai(t, x)vi,

where vi = k∇pi and pi solves div(k(x)∇pi) = 0 in Ω with appropriate bound-
ary conditions.

For our analysis, we assume, as before, Ai(t, x) ∈ L2(0, T ;W 1,ξ(Ω))(ξ > 2)
and vi = k(x)∇pi ∈ Lη(Ω) (1/2 = 1/ξ + 1/η), i = 1, ..., N .

Remark 6.44. Let vi = k(x)∇pi (i = 1, 2) be defined in (6.81), then Owhadi
and Zhang in [217] show that p(t, x) = p(t, p1, p2) ∈ L2(0, T ;W 2,s) (s > 2).
Consequently, v(t, x) = k(x)∇p =

∑
i(∂p/∂pi)k∇pi :=

∑
iAi(t, x)vi, where

Ai(t, x) = ∂p/∂pi ∈ L2(0, T ;W 1,s).

We define
‖u‖2

L2
k(Ω) =

∫

Ω

u · k−1(x)udx

and

‖u‖2
L2(0,T ;L2

k(Ω)) =
∫ T

0

∫

Ω

u · k−1(x)udxds.

Let Πh : H(div) −→ Vh be the interpolation operator defined as in Section
6.3.1 and PQh

: L2(Ω) −→ Qh be the L2 projection onto Qh.
From (4.9) and (4.10), we have

∫

Ω

∂

∂t
(p− ph)qhdx+

∫

Ω

div(v − vh)qhdx = 0, ∀qh ∈ Qh

∫

Ω

k−1(v − vh) · whdx−
∫

Ω

div(wh)(p− ph)dx = 0, ∀wh ∈ Vh.

(6.94)

Taking wh = Πhv − vh and qh = PQh
p− ph, we have

∫

Ω

∂

∂t
(p− ph)(PQh

p− ph)dx+
∫

Ω

div(v − vh)(PQh
p− ph)dx = 0

∫

Ω

k−1(v − vh) · (Πhv − vh)dx−
∫

Ω

div(Πhv − vh)(p− phdx) = 0.
(6.95)

Rewriting p− ph = p− PQh
p+ PQh

p− ph and v − vh = v − Πhv + Πhv − vh
in (6.95) and summation of the two equalities, we obtain
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∫

Ω

∂

∂t
(PQh

p− ph)(PQh
p− ph)dx+

∫

Ω

k−1(Πhv − vh) · (Πhv − vh)dx

= −
∫

Ω

∂

∂t
(p− PQh

p)(PQh
p− ph)dx−

∫

Ω

k−1(v − Πhv) · (Πhv − vh)dx

+
∫

Ω

[div(Πhv − vh)(p− PQh
p) − div(v − Πhv)(PQh

p− ph)]dx.

(6.96)

Because PQh
is the L2(Ω) projection onto Qh, PQh

commutes with the time
derivative operator ∂/∂t. Consequently, the first and third terms of the right-
hand side in (6.96) vanish. By Lemma 6.35, the fourth term of the right-hand
side in (6.96) also vanishes. Consequently, (6.96) becomes
∫

Ω

∂

∂t
(PQh

p− ph)(PQh
p− ph)dx+

∫

Ω

k−1(Πhv − vh) · (Πhv − vh)dx

= −
∫

Ω

k−1(v − Πhv) · (Πhv − vh)dx.

The Schwarz inequality and Young’s inequality give rise to

1
2
∂

∂t
‖PQh

p− ph‖2
0,Ω + 2‖Πhv − vh‖2

L2
k(Ω)

≤ λ‖Πhv − vh‖2
L2

k(Ω) +
1
4λ

‖v − Πhv‖2
L2

k(Ω).

Integrating with respect to time and applying Gronwall’s inequality and after
choosing the proper value for λ, we have

‖PQh
p− ph‖2

C0(0,T ;L2(Ω)) + ‖Πhv − vh‖2
L2(0,T ;L2

k(Ω))

≤ C(‖PQh
p(0) − p0,h‖2

0,Ω + ‖v − Πhv‖2
L2(0,T ;L2

k(Ω))).

Invoking the triangle inequality, we have

‖p− ph‖2
C0(0,T ;L2(Ω)) + ‖v − vh‖2

L2(0,T ;L2
k(Ω))

≤ C(‖PQh
p(0) − p0,h‖2

0,Ω + ‖v − Πhv‖2
L2(0,T ;L2

k(Ω)))

+‖p− PQh
p‖2

C0(0,T ;L2(Ω)).

(6.97)

Hence, we obtain the following lemma.

Lemma 6.45. Let {v, p} and {vh, ph} be the solution of (4.9) and (4.10),
respectively. Under Assumption A1p and the definition of Vh in Section 6.3.1,
the estimate (6.97) holds.

Utilizing Lemma 6.45 and the proof of Theorem 6.40, we can derive the
convergence result.
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Theorem 6.46. Let {v, p} and {vh, ph} be the solution of (4.9) and (4.10),
respectively. If α+ β1 − β2 − 1 > 0 then

‖p− ph‖C0(0,T ;L2(Ω)) + ‖v − vh‖L2(0,T ;L2
k(Ω)) ≤ Chα+β1−β2−1,

where α = 1−2/ξ and ξ is from Assumption A1p, and βi (i = 1, 2) are defined
in Assumption A2.

Proof. Owing to the fact that PQh
is the L2(Ω) projection onto Qh,

‖p− PQh
p‖C0(0,T ;L2(Ω)) ≤ Ch|p|C0(0,T ;H1(Ω)), (6.98)

we estimate the first and the third term of right-hand side in (6.97). Next we
estimate the term ‖v − Πhv‖2

L2(0,T ;L2
k(Ω))

. Define

AK
ij (t) =

∫

ej

Ai(t, s)(vi · n)ds

in each element K. Because k−1(x) is bounded, we have in each element K,

‖v − Πhv‖2
L2(0,T ;L2

k(K))

=
∫ T

0

∫

K

∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij · k−1

∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij dxdt

≤ C
∫ T

0

∫

K

(
∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij )2dxdt

= C‖
∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij ‖2

L2(0,T ;L2(K))

≤ C‖
∑

i,j

(Ai(t, x) − Āj
i (t))β

K
ij ψ

K
ij ‖2

L2(0,T ;L2(K))

+ C‖
∑

i,j

(Āj
i (t)β

K
ij −AK

ij (t))ψK
ij ‖2

L2(0,T ;L2(K))

≤ Ch2(α+β1)
∑

‖ψK
ij ‖2

0,K .

(6.99)

In the last step, we used that facts that Ai ∈ L2(0, T ;W 1,ξ), Assumption A2
(see (6.82)) and proof of Theorem 6.40 (see (6.92)). After summation over all
K for (6.99), we have

‖v − Πhv‖L2(0,T ;L2
k(Ω)) ≤ Ch(α+β1−β2−1). (6.100)

Now, the proof can be completed taking into account (6.98) and (6.100).
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6.3.2 Galerkin finite element methods with limited global
information

We have proposed some analysis for modified MsFEMs in [103] and [3]. The
main idea is to show that the pressure evolution in two-phase flow simulations
is strongly influenced by the initial pressure. To demonstrate this, we consider
a channelized permeability field, where the value of the permeability in the
channel is large. We assume the permeability has the form kI, where I is an
identity matrix. In a channelized medium, the dominant flow is within the
channels. Our analysis assumes a single channel and is restricted to 2D. Here,
we briefly mention the main findings. Denote the initial stream function and
pressure by η = ψ(x, t = 0) and ζ = p(x, t = 0) (ζ is also denoted by psp

previously). The stream function is defined as

∂ψ/∂x1 = −v2, ∂ψ/∂x2 = v1. (6.101)

Then the equation for the pressure can be written as

∂

∂η

(

|k|2λ(S)
∂p

∂η

)

+
∂

∂ζ

(

λ(S)
∂p

∂ζ

)

= 0. (6.102)

For simplicity, S = 0 at time zero is assumed. We consider a typical boundary
condition that gives high flow within the channel, such that the high flow
channel will be mapped into a large slab in (η, ζ) coordinate system. If the
heterogeneities within the channel in the η direction are not strong (e.g., a
narrow channel in Cartesian coordinates), the saturation within the channel
will depend on ζ. In this case, the leading-order pressure will depend only on
ζ, and it can be shown that

p(η, ζ, t) = p0(ζ, t) + high-order terms, (6.103)

where p0(ζ, t) is the dominant pressure. Note that this result is shown when
λ is smooth. This asymptotic expansion shows that the time-varying pressure
strongly depends on the initial pressure (i.e., the leading-order term in the
asymptotic expansion is a function of initial pressure and time only). We note
that (6.103) does not hold when λ has discontinuities. In this case, our results
hold away from the sharp interfaces and one can localize the interface by
updating some basis functions. Our numerical results show that this update
does not improve the results substantially. We believe this is because the
discontinuities in λ are small compared to heterogeneities in porous media, the
effects of which we capture using limited global information. In our analysis,
we assume that |p(x, t) − p̂(psp, t)|H1 is small.

Because the analysis of the multiscale finite element methods is carried
out only for the pressure equation, we assume t (time) is fixed. We recall the
assumption.

Assumption G. There exists a sufficiently smooth scalar-valued function
G(η) (G ∈W 3,2s/(s−4), s > 4), such that
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|p−G(psp)|1,Ω ≤ Cδ, (6.104)

where psp is single-phase flow pressure and δ is sufficiently small.
We note G is p0(ζ, t) at fixed t in (6.103). Moreover, one does not need to

know the function G for computing the multiscale approximation of the solu-
tion. It is only necessary that G have certain smoothness properties, however,
it is important that the basis functions span psp in each coarse block.

Theorem 6.47. Under Assumption G and psp ∈ W 1,s(Ω) (s > 4), the Ms-
FEM converges with the rate given by

|p− ph|1,Ω ≤ Cδ + Ch1−2/s. (6.105)

The proof of this theorem is given in [3]. Note that Theorem 6.47 shows
that MsFEM converges for problems without any scale separation and the
proof of this theorem does not use homogenization techniques. Next, we
present the proof.

Proof. Following standard practice of finite element estimation, we seek
pI = ciφi, where φi are single-phase flow-based multiscale finite element basis
functions. In the proof, we assume that |φK

i |1,K ≤ C. Then from Cea’s lemma,
we have

|p− ph|1,Ω ≤ |p−G(psp)|1,Ω + |G(psp) − ciφi|1,Ω . (6.106)

Next, we present an estimate for the second term. We choose ci = G(psp(xi)),
where xi are vertices ofK. Furthermore, using a Taylor expansion of G around
pK , which is the average of psp over K,

G(psp(xi)) =G(pK) +G′(pK)(psp(xi) − pK)

+ (psp(xi) − pK)2
∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds.
(6.107)

We have in each K

ciφi =G(pK)
∑

i

φi +G′(pK)(psp(xi) − pK)φi

+ (psp(xi) − pK)2φi

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds

= G(pK) +G′(pK)(psp(xi)φi − pK)

+ (psp(xi) − pK)2φi

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds.

(6.108)

In the last step, we have used
∑

i φi = 1. Similarly, in each K,

G(psp(x)) =G(pK) +G′(pK)(psp(x) − pK)

+ (psp(x) − pK)2
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds.
(6.109)
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Using (6.108) and (6.109), we get

|G(psp) − ciφi|1,K ≤ |G′(pK)(psp(x) − psp(xi)φi)|1,K

+ |(psp(xi) − pK)2φi

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds|1,K

+ |(psp(x) − pK)2
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds|1,K .

(6.110)

Because |psp(x)−psp(xi)φi|1,K ≤ Ch‖f‖0,K , the estimate of the first term
is the following,

|G′(pK)(psp(x) − psp(xi)φi)|1,K ≤ Ch‖f‖0,K .

For the second term on the right-hand side of (6.110), assuming psp(x) ∈
W 1,s(Ω) and s > 4, we have

|(psp(xi) − pK)2φK
i

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds|1,K

≤ Ch|psp|21,4,K |φK
i |1,K

≤ Ch|psp|21,4,K ,

where we have used the assumption |φK
i |1,K ≤ C and W 1,s ⊂ W 1,4 (s ≥ 4).

Here, we have used the inequality (e.g., [18])

|u(x) − u(y)| ≤ C|x− y|1−2/s|u|1,s,K .

For the third term, a straightforward calculation gives

|(psp(x) − pK)2
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds|1,K

≤‖(psp(x) − pK)2∇psp(x)
∫ 1

0

(1 − s)sG′′′(psp(x) + s(pK − psp(x)))ds‖0,K

+ ‖2(psp(x) − pK)∇psp(x)
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds‖0,K

≤ Ch2−2/s‖∇psp‖3
Ls(K)‖G′′′‖L2s/(s−4)(K) + Ch1−2/s|psp|1,s,K |psp|1,K

≤ Ch2−2/s‖∇psp‖3
Ls(K) + Ch1−2/s|psp|1,K

where we used the Hölder inequality in the second step.
Combining the above estimates, we have for s > 4

|G(psp) − ciφK
i |1,K ≤Ch|psp|21,4,K

+ Ch2−2/s + Ch1−2/s|psp|1,K + Ch‖f‖0,K .
(6.111)

Summing (6.111) over all K and taking into account Assumption G, we have



6.3 Analysis for MsFEMs with limited global information (from Chapter 4) 201

|p− ph|1,Ω ≤ C(δ + h1−2/s) + Ch|psp|21,4,Ω + Ch1−2/s|psp|1,Ω + Ch‖f‖0,Ω

≤ C(δ + h1−2/s) + Ch|psp|21,s,Ω + Ch1−2/s|psp|1,s,Ω + Ch‖f‖0,Ω .

Consequently, if s > 4 (see e.g., [28]), the single-phase flow-based MsFEM
converges.

Remark 6.48. We can relax the assumption on G. In particular, it is sufficient
to assume G ∈ W 2,m (m ≥ 1). In this case, the proof can be carried out
using Taylor polynomials in Sobolev spaces. Also, if ∇psp ∈ L∞(Ω), then the
convergence rate in (6.105) is Cδ + Ch.

Remark 6.49. One can similarly analyze Galerkin MsFEMs using multiple
global fields (see [3]). This analysis can be extended to parabolic equations
(see [163]).




