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Analysis

In this chapter, we present analysis only for some representative cases of Ms-
FEMs from Chapters 2, 3, and 4. We consider simpler cases to convey the
main difficulties that arise in the analysis of MsFEMs. Some of the technical
details are avoided to keep the presentation simple and make it accessible to
a broader audience.

In Section 6.1, the convergence analysis of MsFEMs for linear elliptic prob-
lems is presented. In this chapter, the MsFEM using local information is
studied. First, we present a basic convergence analysis of the MsFEM which
demonstrates the resonance errors. In Section 6.1.2, the analysis of MsFEMs
with oversampling is studied. This analysis shows that an oversampling tech-
nique reduces the resonance errors. In Section 6.1.3, the analysis of mixed
MsFEMs using local information is presented. The results obtained in Section
6.1 use homogenization theory.

In Section 6.2, the convergence analysis of MSFEM for nonlinear prob-
lems is considered. We show the convergence results only for nonlinear elliptic
equations with periodic spatial heterogeneities. The proof relies on homoge-
nization theory and uses a number of auxiliary results that can be found in
[104].

In Section 6.3, the analysis of MsFEMs using limited global information
is presented. We study the convergence of mixed MSFEM (Section 6.3.1) and
a Galerkin MSFEM (Section 6.3.2). The convergence analysis is carried out
under some suitable assumptions. We show that MsFEMs using global infor-
mation converge independent of resonance errors.

Although only some representative cases of MsFEMs are analyzed here,
we have attempted to illustrate basic mathematical tools and ideas used in
the analysis of multiscale methods. We hope the analysis presented in this
chapter will help the reader to understand essential error sources that arise
in multiscale algorithms and guide them in estimating these errors. This will
further help to design more efficient numerical methods for real-life multiscale
processes.
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Surveys and Tutorials in the Applied Mathematical Sciences 4,
DOI 10.1007/978-0-387-09496-0_6, (© Springer Science+Business Media LLC 2009



166 6 Analysis

6.1 Analysis of MsFEMs for linear problems
(from Chapter 2)

For the analysis here, we restrict ourselves to a periodic case k(x) = (k;;(z/c)).
We assume k;;(y), y = x/e are smooth periodic functions in y in a unit cube
Y. We assume that f € L?*(§2). The assumptions on k;; can be relaxed and
one can extend the analysis to the locally periodic case, k = k(z, 2:/€), random
homogeneous case, and other cases. For simplicity, we consider the analysis in
two dimensions. Denote L introduced in (2.1) by L. Let py be the solution of
the homogenized equation (see Appendix B for the background material on
homogenization)

Lopo := —div(k*Vpg) = f in 2, po =0 on 912, (6.1)

— |Y| / zl 5[] )dy7

and x7(y) is the periodic solution of the cell problem in the period Y

where

- 0
divy (E(y)Vyx') = o kij(y) inY, / y)dy = 0.

We note that py € H?(£2) because 2 is a convex polygon. Denote by pi(z,y) =
X’ (y)(Opo(x)/0z;) and let 6. be the solution of the problem

LO.=0 in 2, 0O.(x)=—pi(z,x/e) on Of2. (6.2)

For simplicity of presentation, we denote by || - |la,5,. and | - |a.3,., the
norm and semi-norm in W#(.). If only one subscript is used, for example,
Il - |la,., then the norm or semi-norm in H® is assumed. Also, for simplicity,
we consider when 7}, is a triangular partition. Our analysis of the multiscale
finite element method relies on the following homogenization result obtained
by Moskow and Vogelius [204].

Lemma 6.1. Let py € H?(2) be the solution of (6.1), 0. € H'(£2) be the
solution to (6.2) and p1(z) = x? (x/)Opo(x)/0x;. Then there exists a constant
C' independent of pg,e and {2 such that

lp—po—elpr+0c) 1,0 < Ce(lpo 2,0+ || f o)

6.1.1 Analysis of conforming multiscale finite element methods

The analysis of conforming multiscale finite element methods uses Cea’s
lemma [55].

Lemma 6.2. Let p be the solution of (2.1) and pp, be the solution of (2.3).
Then we have

— < C inf — .
| p— pn ||1,Q S vhlrelm | p— v ||1,!2
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Error Estimates (h < ¢)

Let ITj, : C(2) — W), C HZ(£2) be the usual Lagrange interpolation operator:

J

Mip(z) =Y pe;)dd(x) Vp e O(R2)

J=1

and Ij, : C(2) — Py be the corresponding interpolation operator defined
through the multiscale basis function ¢,,

J

Lip(z) =) _plz))d;(x) VpeC(Q).

j=1
From the definition of the basis function ¢; in (2.2) we have
L.(Ipp) =0 in K, Ipp=1;p on OK, (6.3)
for any K € 7y,.

Lemma 6.3. Let p € H?({2) be the solution of (2.1). Then there exists a
constant C' independent of h,e such that

lp—Inpllo.e +hllp—Inpllie <CR*(|pl2e + || £ llo.0)- (6.4)

Proof. At first it is known from standard finite element interpolation theory
that

Ip = ppllo,e + hllp = Mupllie < Ch*(Ipla.e + | fllo.)- (6.5)

On the other hand, because Ilpp — Ip = 0 on 0K, the standard scaling
argument yields

| IInp — Inpllo,x < Ch|Ilpp — Inplixk VK € Ty. (6.6)

To estimate |II,p — I;p|1,xk we multiply the equation in (6.3) by Inp —Ip €
HY(K) to get

k(2)VIyp - V(Ip — Myp)da = 0.
K

Thus, upon using the equation in (2.1), we get
x
/ K(Z)VInp = Inp) - V(Inp — Unp)de
K
K
K

)V(p —Upp) - V(Inp — Mpp)de — /K k(g)Vp -V(Inp — yp)da

M8 o8

Wi(p—1up)  V(Ipp — Upp)de — /K f(Inp —yp)dz.



168 6 Analysis
This implies that

np —Inpl,x < Chlplox + [ Inp — Wap o,k [ f [lo,x-
Hence

[Tnp —Ippl,k < Ch(|ple,x + || f

l0,K), (6.7)
where we have used (6.6). Now the lemma follows from (6.5)-(6.7). O

In conclusion, we have the following standard estimate by using Lemmas
6.2 and 6.3.

Theorem 6.4. Let p € H?(02) be the solution of (2.1) and pn, € Py be the
solution of (2.3). Then we have

2 —pnllie <CM|pl2,e+ I flloe) (6.8)

Note that the estimate (6.8) blows up as does h/e as ¢ — 0 because
[pl2.2 = O(1/¢). This is insufficient for practical applications. In the next
subsection, we derive an error estimate which is uniform as ¢ — 0.

Error Estimates (h > €)

In this section, we show that the MsFEM gives a convergence result uniform
in € as € tends to zero. This is the main feature of the MsFEM over the
traditional finite element method. The main result in this subsection is the
following theorem.

Theorem 6.5. Let p € H?({2) be the solution of (2.1) and pn, € Py be the
solution of (2.3). Then we have

eN1/2
Ip=prllne < Ch+o flow+C(3) Tlpolioma  (69)

where po € H?(2) N W1°() is the solution of the homogenized equation
(6.1).

To prove the theorem, we first denote

p1r(x) = Inpo(x) = Zpo(ffj)éi’j(x) € Ph.

From (6.3) we know that L.p; = 0in K and p; = IIpg on K for any K € 7p,.
The homogenization theory implies that

| p1 —p1o —elpn — 01c) ||1,x < Ce(|| fllo,x + | Pro|2,K), (6.10)

where pyg is the solution of the homogenized equation on K:
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Lopio=0 in K, py=1Iypy on IK, (6.11)

pr1 is given by the relation

(o) = X0 Z i K, (6.12)
and 0;. € H'(K) is the solution of the problem:
L.O.=0in K, 0.(x)=—pn(xz,z/e) on K. (6.13)
Tt is obvious from (6.11) that
pio = Ilppo in K, (6.14)

because IIj,pg is linear on K. From (6.10) and Lemma 6.1 we obtain that

lp—=prl,e <lpo—mpolie+ep —rn) e
+e(@: = b1e) 11,0 + Cel| f llo,; (6.15)

where we have used the regularity estimate || poll2,0 < C| fllo,2. Now it

remains to estimate the terms on the right-hand side of (6.15). We show that
the dominating resonance error is due to ..

Lemma 6.6. We have

[ Po = proll1,2 < Ch| £ lo,2; (6.16)
letr =pn) e < C(h+ )l fllo.e- (6.17)
Proof. The estimate (6.16) is a direct consequence of standard finite element

interpolation theory because prg = Il;po by (6.14). Next we note that x7 (z/¢)
satisfies

1 llo,00,2 + €ll VX llo,00,2 < € (6.18)

for some constant C' independent of i and €. Thus we have, for any K € 7},

-0
lle(pr —pn) llo,x < Cel ng(po —1IIupo) llo,x < Chelpo 2.k,
J

0(po — Inp
11 —pu) lose = ol Vo0 2B Tr0)y
J

< Ol V(po — Oupo) llo,x + Celpo |2,x
< C(h+¢€)|pol2,x-

This completes the proof. 0O
Lemma 6.7. We have

|| €6-

1,0 < CVellpo 1,000 + Celpo |2,0- (6.19)
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Proof. Let ¢ € C§°(R?) be the cut-off function that satisfies ¢ = 1 in £2\ 0252,
¢(=0in 25,0 < ¢ <1inR? and [V(¢| < C/§ in 2, where for any § > 0
sufficiently small, we denote (25 as

25 = {x € 2 :dist(z,002) > §}.
With this definition, it is clear that 0. + (p1 = 0. + ((x?Opo/0x;) € H{(£2).
Multiplying the equation in (6.2) by 6. + (p1, we get

Ty jOpo,,
/Q KV (0. + (0 52 =0

which yields, by using (6.18),

0,2 < C||V(¢x!Opo/0z;) ||o,2
< O V- X 0po/0x; [Jo,2 + C|| VX Opo/0; 0,02
+C| X %po 0Pz ||o, 0

D D
< V19955 + V[0 5= +Clpo

where D = || po ||1,00,2 and the constant C' is independent of the domain (2.
From (6.20) we have

VO |

2,02, (6.20)

e
€0 [lo,2 < C(—= + V)| po l1,00,2 + Cel po |2,

Vi

< CVel po 1,002 + Cel po |2, (6.21)

where we have taken § = e. Moreover, by applying the maximum principle to
(6.2), we get

10: llo.cc.2 < 1X70po/0z; llo.0c.02 < Cllpo ll1.00,0- (6.22)

Combining (6.21) and (6.22), we complete the proof. O

Lemma 6.8. We have
e 1/2
Ithe e < C(5) w0 e (6:23)

Proof. First we remember that for any K € 7, 61. € H'(K) satisfies

) 2ULipo) e (6.24)
e’ Oxj

x

Lb. =0 in K, 6. =—’(

By applying the maximum principle and (6.18) we get

[ 01¢ 10,00, < || X?0(npo)/0; l0,00,06 < C|l o |

1,00,K -

Thus we have
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| €0rc [lo,2 < Cell po ||1,00,02- (6.25)

On the other hand, because the constant C' in (6.20) is independent of 2, we
can apply the same argument leading to (6.20) to obtain

1V o, < Cell Tapo 11,005 (VIOK|/V3 + V/[0K]5 /) + Ce| Wpo |2,k

< CVhl|po| I,W,K% +V5)

< CVhe||lpo ||1,00,K

which implies that

ey 1/2
1661 o0 < C(5) " lpollvoc.0:
This completes the proof. 0O

Proof. Theorem 6.5 is now a direct consequence of (6.15) and Lemmas 6.6-6.8
and the regularity estimate || pg ||2.0 < C| fllo,0- O

Remark 6.9. As we pointed out earlier, the MsFEM indeed gives a correct
homogenized result as e tends to zero. This is in contrast to the traditional
FEM which does not give the correct homogenized result as ¢ — 0. The
Ly error would grow as O(h?/€®). On the other hand, we also observe that
when h ~ ¢, the multiscale method attains a large error in both H' and L?
norms. This is called the resonance effect between the coarse-grid scale (h)
and the small scale (€) of the problem. This estimate reflects the intrinsic
scale interaction between the two scales in the discrete problem. Extensive
numerical experiments confirm that this estimate is indeed generic and sharp.
From the viewpoint of practical applications, it is important to reduce or
completely remove the resonance error for problems with many scales because
the chance of hitting a resonance sampling is high.

Remark 6.10. It can be shown that [147]

lp —pullo,e < C (h+ %) )

6.1.2 Analysis of nonconforming multiscale finite element methods

Let ¢; be multiscale basis functions obtained using the oversampling technique
on K as introduced in Section 2.3.2 and ¢! (piecewise linear function if 7}, is
a triangulation) be its homogenized part. We keep the same notation for the
space spanned by multiscale basis functions as in the conforming case; that is
P = span{¢;}. The analysis follows the proof presented in [143].

The Petrov—Galerkin formulation of the original problem is to seek p, € Py,
such that
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En(pn,vn) = f(vn), Yo, € Wy,

where
bpo) = 3 [ Vo EVods, f0)= [ foda.
K € o}
KeTy,
Define || - |52 to be the discrete H! semi-norm as
1/2
ol = (Z / |Vv2dz> .
KeTy, K

We use the following result [107].

Lemma 6.11. Assume that K C Kg is at least a distance of h away from
O0Kpg. Then '
V7' || e () < C/h, (6.26)

where C is a constant that is independent of € and h. Here, n° is the solution

of Len' =0 in K, n* = —x' on OK.

Theorem 6.12. Let py, be the Petrov—-Galerkin MsFEM solution. Assume
Lemma 6.11 holds and €/h is sufficiently small. If the homogenized part of
P, po, is in H?(£2), we have

€
I = plln.e < Cih + Cop + C3/e. (6.27)

Proof. To estimate ||py, — pln, 02, we first show that the following inf-sup con-
dition or coercivity condition of the bilinear form kj (-, ) holds for sufficiently
small e. There exists C' > 0, independent of € and h such that

k )
sup M > CthHh_’Q, Vph € Py,. (6.28)
vew, vl
Define i (y)
- X’ (y
kij(y) = ka(y) <5lj + a0 >
and

k(u,v) = Z /KVU-/;(E)Vud:c, ve Wy

€
KeTy,

Thus, by the expansion pj, = p) + ex(z/e€) - Vp) + €0, we have
En(pn,vn) = kDY, vn) + ekn (0%, v1) = f(v),  Yon € Wi, (6.29)
Taking vj, = p) € W), in (6.29), we get

ken(pn, ) = k(p5, b)) + ekn (07, p}). (6.30)
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Moreover, using [|0" |52 < (C/h)||VpY 0.2 (which follows from Lemma 6.11),

we obtain that
C
[k (07, p3)| < Cll0 .2l VP)llo.2 < glle?Lllao (6.31)

Next, we note that ||pn|n.e < C(1+ ¢/h)||Vpllo.o (see [143]) and k(p),p?)
is bounded below and bounded above uniformly when e/h < C (see (3.5)
in [143]). Consequently, (6.30) and (6.31) imply that when e/h is sufficiently
small

~ €
kn (pn, p3)| = [k (pf, )| — €lkn (02, p0)] > C(1 — VIR,

> C|Vpyllo.ellpnlln,o-

Thus, (6.28) holds.
Let p; € Py, be the interpolation from Pj. Using inf-sup condition (6.28)

we have
Ipn — plln,2 < llpr — plln,e + lpn — p1lln0

kn(pn — p1,vn
<llpr = plln,e +C sup M

v EWp th||1,9 6.32
kn(pr — p,vn (6.32)
= |lpr = plln,e +C sup M
v €EWp ”Uh”l,!?
< (A +0O)llpr = plln.g-

Here, we have used the fact
kh(ph - D Uh) =0, VYo, €W

Following the derivation of the proof of Theorem 3.1 in [107] (where p; =
> po(x;)¢pi(x) is chosen) and using Lemma 6.11, we can easily show that

€
”pl _th,(Z < Clh + CQE + Cgﬁ

Therefore, (6.27) follows from (6.32).

6.1.3 Analysis of mixed multiscale finite element methods

In this section, we present the analysis of mixed multiscale finite element
methods. We slightly modify the problem and consider a more general case
with varying smooth mobility A(z). We consider the elliptic equation

—div(A(x)ke(z)Vp) =f in 2

M)k (x)Vp-n = g(z) on 012, / pdx =0,
Q

where A\(x) is a positive smooth function and k.(z) = k(z/€) is a symmetric
positive and definite periodic tensor with periodicity e. We note that A(x)
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appears in two-phase flows (see (2.40)). Under the assumption that A(z) is
sufficiently smooth, one can analyze the convergence (dominant resonance
error) of MsFEMs with basis functions constructed with A = 1. The basis
functions are constructed with A = 1 and satisfy (2.16).

Let X = k.(x)V¢X and the basis function space for the velocity field be
defined by

Vi = @P{uI} ¢ H(div, ),

where H(div, (2) is the space of functions such that || - |0, + [|div(-)||o,e is
bounded. The variational problem is to find {v,p} € H(div,2) x L?(£2)/R
such that v-n = g on 0f2 and they solve the following variational problem,

/ (M) ™Yo - wdx — / div(w) pde =0 Yw € Hy(div, 2)
@ « (6.33)
/ div(v) gdz = f Vg€ L*(2)/R,
2

where Hy(div, 2) is the subspace of H(div, 2) which consists of functions with
homogeneous Neumann boundary conditions.

Set Q, = D Po(K)NL?(2)/R, a set of piecewise constant functions. The
approximation problem is to find {vp,pn} € Vi, X Q) such that v, - n = gj, on
01?2

/ ()\ke)*lvh -wpdx —/ div(wy) prdz =0 Vwy, € V,Ol
@ @ (6.34)

/ div(vp) qrndz = f Van € Q.
Q

We state the convergence theorem as the following.

Theorem 6.13. Let {v,p} € H(div, 2) x L*(2)/R solve variational problem
(6.33) and {vn,pr} € Vi X Qp solve the discrete variational problem (6.34).
If the homogenized solution py € H?(2) N W12°(£2), then

0,2 < Ci(po, A\)e
, (6.35)

+02(p07f7>\79)h+C3(p0,)\)\/£+O4(p07>\) Ea

where the coefficients are defined in (6.38), (6.41), (6.39), and (6.40).

v = vrllz@iv,2) + |p — Pl

First, we state a stability estimate [71].

Lemma 6.14. If {v,p} and {vn,pr}, respectively, solve the continuous vari-
ational problem (6.33) and the discrete variational problem (6.34), then

10 = vnllH(aiv.2) + [IP = Pallo.c

: ot - ' mf [jp — : 6.36
< C(uhgl}hl v — unll r(aiv,2) + of I — anllo.c) (6.36)

0
Up—go,nEV)
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The well-posedness of the discrete problem is verified in [71]. To obtain the
convergence rate, we need to estimate the right-hand side of (6.36). The fol-
lowing proposition is used in the proof.

Proposition 6.15. Let p and pp, be the solutions of (6.33) and (6.34), re-
spectively; then

inf — <Ch - :
ot [P = anllo,e < Chllgllz-1/2(50)

Proof. Define g, = (1/|K|) [} pdx in each coarse block K. Furthermore, we
apply the Poincaré inequality and standard regularity estimate for elliptic
equations to obtain

inf |[p —qnllo,e < [lp — @nllo.e < CR|[Vpllo,e < Chl|g|lg-1/20)-
an€Qn
Next, we define the interpolation operator IIj, : H(div, £2) (H'(2) — V
by

M| = (/Kv~nds)wiK.

Let RTy = span{RX i = 1,2,...,n; K € 7} be the lowest-order Raviart—
Thomas finite element space and define the interpolation operator P,

H(div, 2)(H'(£2) — RT, by

Pyl = (/ v-nds)RE.
eff
It is easy to check that divIlyv = divPyv and IIpv - n = Pyo - n.

Next, we need to estimate the first term on the right-hand side of (6.36).
The basic idea is to choose a particular w;, approximating v. Let the ho-
mogenized flux vg = Mk*Vpo and choose t|x = IIpvg. Then we have
th — go.n € Vy, where gop = Zeean(fe gds)wE . Consequently, it remains
to estimate |[v — i g (div,). From the definition of ¢, an easy calculation

gives rise to div(ts|x) = (f)x and div(v) = f, where (f)x = (1/|K]) [} fd.
Therefore, we have

[div(v) — div(ta)llo,e < Clfl1,e.

The next step is to estimate ||[v — tp]l0,o. We use the homogenization
technique for this purpose. Set ¢ = af ¢ where off = feK v - nds. Then
th = k. Vo and div(k.-VoX) = div(Pyvg) = 0 in K, where ¢& € H'(K)/R
satisfies the following equation

div(k Ve"¥) =0 in K
k€V¢>K ‘n=Pyvg-n on eZK.

Let ¢ be the solution of the corresponding homogenization equation,
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div(k*Vei) =0 in K
k*qué( ‘n=Pyvg-n on elK.
To complete the estimation of ||v — t3]|0,2, we need the following lemma.
Lemma 6.16. Let p; = po + €x - Vpo and ¢ = ¢& + ex - VoI, Then
|66 = polix < CRIAT! = 10,0,k [IA

Ip1 — ¢t 1,k < CRIA™ = Llo,00,x + )l AlI1,00, IP0|2,
_a
|66 11,00, < Ch™ 2 | A|l1,00,xIP0 |2, + C|IA

1,00, K Hp0||2,K

0,00, K |P0] 1,00, 5 - (6.37)

Proof. Tt is easy to prove that k*V¢l = Pyvg € L>°(K). Then we have
ok € H?(K) N Wh>°(K). Applying the interpolation estimate of Raviart—
Thomas finite elements, we obtain

66 — pol1.x = I(K*) ™" Pavo — (Ak*) " wolfo,x
< CIIAN! = 10,00, & | Phvo — vollo, i
< ChIIA™ = 1|o,00, 5 V01,
< ChIATY = 10,00, [ Mll1,00,5¢ [P0 |2, 5

Because Vol = (k*) "' Pyvg and Py is a bounded operator, it is easy to show
that

|68 11,5 < C|Alo,00,IP0]1, 56
168 2,5 < ClIA|l1,00,5 P02, -

Applying the above estimates, we obtain

Ip1 — o 1.k <o — &8 1.k + [|(Vy - X)V(po — 65 ) |0, 5
+ e x(V2po = V20§ ) lo.x < ChIA™" = 1l0,00,k | A
+ Ce|| Al

1,00, ||Po |2,

1,00,K |02, 5 -

As for the estimation of (6.37), we invoke the inverse inequality of finite ele-
ments and get

168 11,00, < C||Prvo — (v0) i |0.00.5 + Cll{(v0) k¢ [|0,00. 5
< Ch™ || Pyvo — (vo)k llo,x + Cll{vo)  llo,00,
< Ch™ 2 |\ |11 00,k IP0ll2, 5 + CllM0,00,5 [P0 1,00, 5

where d = 2. The proof of the lemma is complete.

Next, we return to estimate ||v —t3]|o,2. Applying the definitions of v and
tn, and the Lemma 6.16, we obtain that
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0.5 < ClIA = 10,00, [[ VD — V'
< CIA = lo,oo.c (IVP = Vpillo,x + IVP1 = VT [0,
+ Vot — Vo lo.x) < CIA = 10,00,k [€(Ml]0,00, lP0 ]2,
+ 1166 [l2,5) + VT ([ Mlo,00, [P0l 1,00,k + 68 11,00,1)]
+ ClIA = 1o,00, 5 [(RIIA™ = 1[0,00,5 + €)IA]I1,00,x |20
< Ck1(po, Ne + Cre2(po, N + Cre 3(po, \)Veh
+ Ok 4 (po, \)Vehd—1,

v —th

0,K

2,K|

where d refers to the dimension of the space R? (d = 2 for simplicity). Here we
have used the corrector estimates (see Appendix B for discussions on corrector
estimates for the Dirichlet problem and [71] for the corrector results that
are used in the Neumann problem). Note that the constants in the above
inequality are given by

Cr,1(po, A) = ClIA = 10,00, [ All1,00, 5 [|P0 |2, i
Cr 2o, A) = ClIA = 10,00, 5 1A = 10,00, 5 IA 11,00, 5 | P0]
Crk,3(pos A) = C|IA = 10,00,k |All1,00,5 P02, 5
Cra(po, A) = ClIA = 1f[o,00,5 (1 4 [|A

Taking the summation all over K, we have

2,K

0,00.K ) [Poll1,00.5 -

v — thllo,2 < Ci(po, N)e + Calpo, \)h + Ca(po, \)Veh + Ca(po, /\)\/%-

Here we have used the assumption that the triangulation is quasi-uniform,
and the notations of the above coefficients are

C1(po, A) = C[[A = 1lo,00,2lIAll1,00, 2P0 l2,2 (6.38)
Ca(po, ) = ClIA = 10,00, A" = Llo.00,2lIAl[1.00.2 [P0 |22

C3(po;s A) = ClIA = 1|o,00,2[[All1,00,2P0ll2,2 (6.39)
Ci(po; A) = ClIA = 1|o,00,2(1 + | M]l0,00,2) [P0 [11,00,52- (6.40)

Finally, applying Proposition 6.15, we get
|0,_Q S Cl(pOa )‘)6 + CZ(p07 )‘a g)h

+ Cs(po, A)Veh + Ca(po, A)ﬁ,

llv — vnllm(div,0) + |Pe — P

where

CQ(va fv A,g) = 02(]90, )‘) + C||g||—1/2,89 + C|f|119' (641)

Remark 6.17. From the proof, we see that the resonance term O(\/e/_h) comes
from the terms estimated by [pol1,c0,x - If the po can be exactly solved by some
finite element method on the coarse grid, then we can use an inverse inequality
to improve the convergence to O(e + h 4 \/eh).
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Remark 6.18. From the proof of the convergence theorem, one can see that it
is sufficient to require A € WH°(£2) and A\~! € L>°(2).

Remark 6.19. If the oversampling technique is used to approximate the flux v
(see [71]), the resonance error can be reduced to O(e/h).

6.2 Analysis of MsFEMs for nonlinear problems
(from Chapter 3)

For the analysis of MsFEMs, we assume the following conditions for k(z,n, )
and ko(z,71,€), n € R and &€ € R™

|k(z,m, )] + ko (x,m, )] < C (L + [~ + €771, (6.42)
(k(z,n,&) — k(z,1,82)) - (61— &2) =2 C'l& — &7, (6.43)
k(z,n,€) - €+ ko(z,n,&)n = CI¢]". (6.44)
Denote
H(m,&,m2,62,m) = (L4 |m|" + [m2l" + [&]" + [&2]"), (6.45)

for arbitrary n1, 72 € R, &1, & € R?, and r > 0. We further assume that

|k(.’177’l’]1,§1) - k(x77727€2)| + ‘k0<x7n17€1) - k0($7772)€2)|
S CH(771»§177727§277_1)V(|771—772|) (646)
+ CH(nlaglan%g%"Y -1- 5) ‘51 - 52‘83

where s > 0,v > 1, s € (0,min(y—1, 1)) and v is the modulus of continuity, a
bounded, concave, and continuous function in R such that v(0) =0, v(t) =
1 for t > 1, and v(t) > 0 for ¢ > 0. Throughout, 7' is defined by 1/v +
1/9 = 1, y = x/e. In further analysis K € 7, is referred to simply by
K. Inequalities (6.42)-(6.46) are the general conditions that guarantee the
existence of a solution and are used in homogenization of nonlinear operators
[220]. Here v represents the rate of the polynomial growth of the fluxes with
respect to the gradient and, consequently, it controls the summability of the
solution. We do not assume any differentiability with respect to n and £ in the
coefficients. Our objective is to present a MsFEM and study its convergence for
general nonlinear equations, where the fluxes can be discontinuous functions
in space. These kinds of equations arise in many applications such as nonlinear
heat conduction, flow in porous media, and so on. (see, e.g., [207, 244, 245]).

We present the main part of the analysis. For additional proofs of some
auxiliary lemma, we refer to [104]. The analysis is presented for problems with
scale separation. For this reason, we assume that the smallest scale is € and
denote the coefficients by k(z,-,-) = ke(x, -, -) and ko(x,-, ) = ko,c(z, -, ).

In [111] we have shown using G-convergence theory that
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}llli% lli% lpn — POHW(}W(Q) =0, (6.47)

(up to a subsequence) where pg is a solution of (3.26) and pp is a MsFEM
solution given by (3.6). This result can be obtained without any assumption
on the nature of the heterogeneities and cannot be improved because there
could be infinitely many scales a(€) present such that a(e) — 0 as e — 0.
Next we present the convergence results for MsFEM solutions. In the proof
of this theorem we show the form of the truncation error (in a weak sense)
in terms of the resonance errors between the mesh size and small-scale e. The
resonance errors are derived explicitly. To obtain the convergence rate from
the truncation error, one needs some lower bounds. Under the general con-
ditions, such as (6.42)—(6.46), one can prove strong convergence of MsFEM
solutions without an explicit convergence rate (cf. [245]). To convert the ob-
tained convergence rates for the truncation errors into the convergence rate of
MsFEM solutions, additional assumptions, such as monotonicity, are needed.

Theorem 6.20. Assume ke(xz,n,&) and ko (z,n,§) are periodic functions
with respect to x, let py be a solution of (3.26), and py, is a MsFEM solu-
tion given by (3.6). Moreover, we assume that Vpy, is uniformly bounded in
LY*(82) for some o > 0. Then

Lim [l — pollw () = 0; (6.48)
where h = h(e) > € and h — 0 as e — 0 (up to a subsequence).

Theorem 6.21. Let pg and pn be the solutions of the homogenized prob-
lem (3.26) and MsFEM (3.6), respectively, with the coefficient ke(x,n,£) =
k(z/e &) and ko = 0. Then

e\ s/(r=1)(v—s)) e\v/(v=1) _
lPh—=poll 1) < © <(h) + (E) + R/ 1>> . (6.49)

We first prove Theorem 6.20. Then, using the estimates obtained in the
proof of this theorem, we show (6.49). The main idea of the proof of The-
orem 6.20 is the following. First, the boundedness of the discrete solutions
independent of € and h is shown. This allows us to extract a weakly con-
verging subsequence. The next task is to prove that a limit is a solution of
the homogenized equation. For this reason correctors for v, (see (3.2)) are
used and their convergence is demonstrated. We would like to note that the
known convergence results for the correctors assume a fixed (given) homoge-
nized solution, whereas the correctors for v, ), are defined for only a uniformly
bounded sequence vy, that is, the homogenization limits of v,., (with respect
to €) depend on h, and are only uniformly bounded. Because of this, more

! Please see Remark 6.28 at the end of the proof of Theorem 6.20 for more discus-
sions and partial results regarding this assumption.
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precise corrector results need to be obtained where the homogenized limit of
the solution is tracked carefully in the analysis. Note that to prove (6.47) (see
[112]), one does not need correctors and can use the fact of the convergence of
fluxes, and, thus, the proof of the periodic case differs from the one in [112].
Some results (Lemmas 6.22, 6.23, and their proofs) do not require periodicity
assumptions. For these results we use the notations ke(x,n, ) and ko (x,n,§)
to distinguish the two cases. The rest of the proofs require periodicity, and we
use k(z/e,n, &) and ko(z/€,n, ) notations.

Lemma 6.22. There exists a constant C' > 0 such that for any v, € W,
<kr,hvh7vh> > C”vvhnz—y(g)a
for sufficiently small h.

The proof of this lemma is provided in [104]. The following lemma is used in
the proof of Lemma 6.24.

Lemma 6.23. Let v, — vy € W (K) and w, — wy € Wy (K) satisfy the
following problems, respectively,

—divke(z,n,Vu.) =0 in K (6.50)
—divkc(z,n, Vw.) =0 in K, (6.51)

where n is constant in K. Then the following estimate holds:
IV (ve = we)ll ey < € Ho ||V (vo — wo) [0 (6.52)

where

7

(v=s=1)/(v—s)
Ho = (IK] + 10l ey + 190035 0 + 19200 )
where s € (0, min(1,v — 1)), v > 1.

For the proof of this lemma, we refer to [104].

Next, we introduce, as before, the fast variable y = z/e. Regarding n",
where n"* = (1/|K|) [, vndz in each K, we note that Jensen’s inequality
implies

7" 22 (2) < CllvallLo)- (6.53)

In addition, the following estimates hold for n"»,
[vn = 0" L7 () < Ch|[Vorll Ly (x).- (6.54)

At this stage we define a numerical corrector associated with v, =
EMsFEMy, v, € Wy, First, let

Pe(y) =&+ VyNye(y), (6.55)
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for n € R and & € R?, where N, ¢ € W) 1(Y) is the periodic solution (with
average zero) of

— div(k(y, n,§ + VyNye(y))) =0 in Y, (6.56)

where Y is a unit period. The homogenized fluxes are defined as follows:

K (,€) = /Y By, €+ Vy Ny () dy, (6.57)

K (1, €) = /Y Koy, 1€ + VN () dy, (6.58)

where k* and k§ satisfy the conditions similar to (6.42)—(6.46). We refer to
[220] for further details. Using (6.55), we denote our numerical corrector by
Pyen v, which is defined as

Pyon vv, = Vo, + VyNyon vy, (y)- (6.59)

Here n"" is a piecewise constant function defined in each K € 7 by n'» =
(1/|K]|) [ vhdx. Consequently, Pyon v, is defined in §2 by using (6.59) in
each K € 7Tj,. For the linear problem Pen vy, = Vv, + N(y) - Vou,. Our
goal is to show the convergence of these correctors for the uniformly bounded
family of v;, in W7(£2). We note that the corrector results known in the
literature are for a fixed homogenized solution.

Lemma 6.24. Let v, satisfy (3.2), where k.(x,n,§) is a periodic function
with respect to x, and assume that vy, is uniformly bounded in Wol"y(()). Then

IV rh—=Pren v, || L7 (2)

1/(r(r=9)) iy (6.60)
) (1920 + el o + IV 2RI L))

€

<c(;

We note that here s € (0, min(y — 1,1)), v > 1. For the proof of this lemma,
we need the following proposition.

Proposition 6.25. For every n € R and £ € R? we have
1Prellay.y < e 1+ 0" + € Yel, (6.61)

where Ye is a period of size e.

An easy consequence of this proposition is the following estimate for N, ¢ (see
(6.56)).

Corollary 6.26. For every n € R and £ € R? we have
IVyNnell 1o v,y < c (L4 [nl" + [€]7) [Ye]. (6.62)

The proof of Proposition 6.25 is presented in [104].
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Proof. (Lemma 6.24) Recall that by definition
Poer v, = Von + Vy Ny 9o, (y) = Vup +e V Npon wu, (z/e),

where by using (6.56) Nyvn vo, (y) is a zero-mean periodic function satisfying
the following,

—div(k(z/e,n"", Vv + €V Nyon vy,)) =0 in K. (6.63)
We expand v,.j, as
Vrh = Up(2) + € Nyon o, (/€) + 0(z, 2 /€). (6.64)

We note that here 0(x,z/e€) is similar to the correction terms that arise in
linear problems because of the mismatch between linear boundary conditions
and the oscillatory corrector, Nyvn vy, (2/€) = N(z/€) - V. Next we denote
by wyn = vp(x) + € Nyon v, (z/€). Clearly w,j satisfies (6.63). Taking all
these into account, the claim in the lemma is the same as proving

VO]l 2) = IV (0rn — wrn)ll ()
e\ 1/ (v(v=5)) 1/~ (6.65)
<c(5) (1920 + lonl 3 o) + IV00 )
Here we may write w,;, as a solution of the following boundary value problem:
—div(k(z/e,n"", Vw, ) =0 in K and w, = vp + € Nyon vo, on K,

with ]\an«/h,7vvh = ¢ Nyvn v, where ¢ is a sufficiently smooth function whose
value is 1 on a strip of width e adjacent to 0K and 0 elsewhere. We denote
this strip by Se. This idea has been used in [164]. By Lemma 6.23 we have
the following estimate:

||V0”27(K) = HV(U,- h — wT'h)Hzﬁv(K)

< C Ho |[V(0n — o — € Ny w0720 (6.66)
< O Ho e VNpn 90, 1120057,
where
Hy =
- ol
(T + 10" gy + 100 iy + 19 0n + € Ny 2013 1)
(6.67)

We need to show that Hp is bounded and |le VN,,vh,th,sz(m uniformly

vanishes as € — 0. For this purpose, we use the followin_g notations. Let
JE={ieZ" :Y'NK #0,K\Y" # 0} and FX = U;c;x Y. In other words,
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FX is the union of all periods Y that cover the strip S.. Using these notations

and because ( is zero everywhere in K, except in the strip Se, we may write
the following

||GVN7]”’I,V1)}L”Z'Y(K) =¢’ /I{ |V(CN7]“h,V1)h)|A/ dx

= / V(¢ Ny g |7

€

IN

“ /FK |V(CN Uh wh)W dx

= Y / V(¢ Nyon wu,)|

eJK

dx

<y / (IV N 7on €17+ [Nyon 0 [[VC]) dee
ieJK

(6.68)

where we have used the product rule on the partial derivative in the last line
of (6.68). Our aim now is to show that the sum of integrals in the last line of
(6.68) is uniformly bounded. We note that (see Corollary 6.26)

IV Ny wun 1 vy < COA 77+ Von ) V], (6.69)
from which, using the Poincaré-Friedrich inequality we have

”N’V]”h ,Vup

Trviy S CA+ ™ [+ [Vor|") Y], (6.70)

We note also that n*» and Vo are constant in K. Because ( is sufficiently
smooth, and whose value is one on the strip S. and zero elsewhere, we know
that |V¢| < C/e (cf. [164]). Applying all these facts to (6.68) we have

le VN o 1Ty < C€ (L I [+ [Vou") 32 (L4 €)Y
ieJK
= C(E D) U ™+ [Ven) D2 1Y
e JK
C(1+ "7+ [Vua[?) D V.
ieJK
Moreover, because all Y/, i € JX, cover the strip S, we know that >, [V
< C h?1¢. Hence, we have
d

. h
eV Nyon ol 5y < C g (L+ [0 + [Voa|) h% e
7Y ILY(E) hd (6.71)

< = (IK1+ 1™ [ ey + 19081 )
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Furthermore, using this estimate and noting that ¢/h < 1, we obtain from
(6.67) that

o 5 (v=s=1)/(v—9)
Ho < C (IKT+ 10" 175 ey + Nonl o ey + 19011 ) .
(6.72)
Summarizing the results from (6.66) combined with (6.72) and (6.71), we get

V6117 1) < C Ho lle VNn v, 17456,
1/(v—
<o (3) 7 (L4 17 ey + 10 iy + 1900 ) -

Finally summing over all K € 7}, and applying (6.53) to > cr |19 HZW(K),
we obtain

IVl Z V017 )
1/r-s)
<c (5) 5™ (K + ol ey + IVl ) ) (6.73)
K

e\ 1/ (v=s)

The last inequality uniformly vanishes as e approaches zero, thus we have
completed the proof of Lemma 6.24.

The next lemma is crucial for the proof of Theorem 6.20 and it guarantees
the convergence of MsFEM solutions to a solution of the homogenized equa-
tion. This lemma also provides us with the estimate for the truncation error
(in a weak sense).

Lemma 6.27. Suppose v, wy, € Wy where Vv, and Vwy, are uniformly
bounded in LVT*(82) and L7(12), respectively, for some o > 0. Let k* be
the operator associated with the homogenized problem (3.26), such that

(K" vp, wp) Z / *(vn, Vop)-Vwp+k§ (vp, Vop)wp) de,  Yop,wp, € Wh,.
KeTy,
(6.74)

Then we have
lim </frh Vp — /Q* vh,wh> =0.
e—0 ’

The proof of this lemma is presented in [104]. Now we are ready to prove
Theorem 6.20.

Proof. (Theorem 6.20) Because k.., is coercive, it follows that py, is bounded,
which implies that it has a subsequence (which we also denote by pj) such
that p, — p in WH7(§2) as € — 0. Because the operator x* is of type Sy
(see, e.g., [245], page 3, for the definition), then by its definition, the strong
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convergence would be true if we can show that limsup,_,, (x*pn, pn — D) — 0.
Moreover, by adding and subtracting the term, we have the following equality

(K*Dhyph — D) = (K"Ph — Kr wDhy Db — D) + (Kr hDhs Dh —

= (K*Ph — KrhPh, Ph) — (K"DPh — Kr.hDhs D / f(pn —p)de.
(6.75)

Lemma 6.27 implies that the first and second term vanish as € — 0 provided
Vpp, is uniformly bounded in L7 for @ > 0, and the last term vanishes
as € — 0 (up to a subsequence) by the weak convergence of p,. One can
assume additional mild regularity assumptions [201] for input data and obtain
Meyers type estimates, || Vpol|zr+a (o) < C, for the homogenized solutions. In
this case it is reasonable to assume that the discrete solutions are uniformly
bounded in L7T*(£2). We have obtained results on Meyers type estimates for
our approximate solutions in the case v = 2 [114]. Finally, because * is also
of type M (see, e.g., [244], page 38, for the definition), all these conditions
imply that kK*p = f, which means that p = py.

Remark 6.28. We would like to point out that for the proof of Theorem 6.20
it is assumed that Vpy, is uniformly bounded in L7T*(§2) for some a > 0 (see
discussions after (6.75)). This has been shown for v = 2 in [114]. To avoid
this assumption, one can impose additional restrictions on k*(n, &) (see, [112],
pages 254, 255). We note that the assumption, Vp;, is uniformly bounded in
LYT(£2), is not used for the estimation of the resonance errors.

Next we present some explicit estimates for the convergence rates of Ms-
FEM. First, we note that from the proof of the Lemma 6.27 it follows that
the truncation error of MSFEM (in a weak sense) is given by

(krnpn — K prswn) = (f — App, wn)
€\ s/(v(v—s)) 5 (1/+")
¢ (ﬁ) ('m +lpallza o) + 1VPRIlL o) ) Vw1~ (2)

€ ¥ v vy
O (1214 IpalLo oy + IVPRI T o)) IVl + B Vn] 2o

’

e\s/(v(y=9) € 1/y
—((5) #5) (1205 Iy + 1900 ) 19070

+ e(h)[[Vwp | L+ 02y
(6.76)

where e(h) is a generic sequence independent of small-scale €, such that e(h) —
0 as h — 0. We note that the first term on the right side of (6.76) is the leading
order resonance error caused by the linear boundary conditions imposed on
0K, and the second term is due to the mismatch between the mesh size and
the small scale of the problem. These resonance errors are also present in the



186 6 Analysis

linear case as we discussed in Section 6.1. If one uses the periodic solution of
the auxiliary problem for constructing the solutions of the local problems, then
the resonance error can be removed. To obtain explicit convergence rates, we
first derive upper bounds for (k*p, — £* Prpo, pr — Prpo), where Ppu denotes
a finite element projection of u onto Wj; that is,

(k™ Prpo, vn) :/ fopdz,  Novp € Wy,
1%

and (K*pp,vy) is defined by (6.74). Then using estimate (6.76), we have

(K"pn — K" Pppo, pn — Pru) = (K*ph — kv nDh, Db — Prio)
+ (krnpn — K" Prpo, o — Papo) = (K*Pr — krnPh, Ph — Prpo)
+ (f = K" Pupo, pn — Prpo) = (K"pn — kv nPhs Pn — Prpo)

e\s/(v(v=s)) € /9
— _ Y Y
<c ((h) + h) (1214 P13 o) + 199013 0) %

IV (pr — Prpo)ll~(2) + e(R)||[V(Pn — Prpo)ll v (2)-

(6.77)

The estimate (6.77) does not allow us to obtain an explicit convergence
rate without some lower bound for the left side of the expression. In the proof
of Theorem 6.20, we only use the fact that «* is the operator of type S,
which guarantees that the convergence of the left side of (6.77) to zero implies
the convergence of the discrete solutions to a solution of the homogenized
equation. Explicit convergence rates can be obtained by assuming some kind
of an inverse stability condition, ||*u — k*v|| > C||u — v||. In particular, we
may assume that x* is a monotone operator; that is,

(K*u — K*v,u —v) > C||V(u—v)||zv(9). (6.78)

A simple way to achieve monotonicity is to assume ke(x,n,&) = k.(z,£) and
ko.e(z,n,€) = 0, although one can impose additional conditions on ke(z,7,&)
and ko (z,n,§), such that monotonicity condition (6.78) is satisfied. For our
further calculations, we only assume (6.78). Then from (6.77) and (6.78), and
using the Young inequality, we have

s/((v=1)(v=s)) e/ (v=1)
_ ¥ € €
IV (= Papo)l ] (o) < C ((h) + (h) ) +e(h).

Next taking into account the convergence of standard finite element solutions
of the homogenized equation we write

|V Pnp — Vol (o) < ei1(h),

where ej(h) — 0 (as h — 0) is independent of e. Consequently, using the
triangle inequality we have

e\ s/ ((v=1)(v=s)) €
) +(

IV (pr = o)l 7 () < C (<h h)v/(v—1)> Ce(h) + ex(h).
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Proof. (Theorem 6.21).

For monotone operators, k.(z,n,&) = ke(x,€) and ko(z,n,§) = 0, n €
R and ¢ € RY, the estimates for e(h) and e;(h) can be easily derived. In
particular, because of the absence of 1 in k., e(h) = 0, and e (h) < Ch'/(—D
(see, e.g., [75]). Combining these estimates we have

e\ s/ ((r=1)(v=s)) e\7/(v=1) B
19— po) [ gc((h) MO 1>),

From here one obtains (6.49).

Remark 6.29. One can impose various conditions on the operators to obtain
different kinds of convergence rates. For example, under the additional as-
sumptions (cf. [207])

oK (1.€) Ok (n.€)

| I+ Ok} (n, )
on o3

Q. 2
| é C» Té.jﬁzﬁj Z C|ﬁ‘ 9

where 8 € R? is an arbitrary vector, and v = 2, following the analysis pre-
sented in [207] (pages 51, 52), the convergence rate in terms of the L7-norm
of pp, — Pyp can be obtained,

s/((v=1)(y—5)) e/ (v=1)
=Pl <€ (£ z
IV(r = Papo)ll o) < C <(h) + (h) ) (6.79)

+6(h’) + C”ph - PhpOHZw(_o)a

where s € (0,1), v = 2.

Remark 6.30. For the linear operators (7 = 2, s = 1), we recover the conver-

gence rate Ch + C1\/¢/h.

Remark 6.31. We have shown that the MsFEM for nonlinear problems has the
same error structure as for linear problems. In particular, our studies revealed
two kinds of resonance errors for nonlinear problems with the same nature as
those that arise in linear problems.

6.3 Analysis for MsFEMs with limited global
information (from Chapter 4)

6.3.1 Mixed finite element methods with limited global
information

Elliptic case

We begin by restating the main assumption in a rigorous way.
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Assumption Al. There exist functions vi,...,un and sufficiently smooth

Ai(x), ..., An(z) such that

N

v(x) = ZAi(:E)vi, (6.80)

i=1

where v; = kVp; and p; solves div(k(z)Vp;) = 0 in 2 with appropriate bound-
ary conditions.

For our analysis, we assume A;(z) € WH4(02), and v; = k(x)Vp; € L"(£2)
for some & and 7, i = 1,..., N. Throughout this section, we do not use the
FEinstein summation convention.

Remark 6.32. As an example of two global fields in R? (similar results hold in
RY; see [218] for details), we use the results of Owhadi and Zhang [218]. Let
v; = k(z)Vp; (i = 1,2) be defined by the elliptic equation

div(k(z)Vp;)) =0 in 2 (6.81)
pi = x; on OS2,

where # = (21, x2). In the harmonic coordinate (py, p2), p = p(p1,p2) € W2*

(s > 2). Consequently, v = A(z)k(z)Vp = >, N(Op/0p:)kVp; == >, Ai(x)v;,

where A;(z) = \(9p/dp;) € W=,

To avoid the possibility that fel v; -nds is zero or unbounded, we make the
following assumption for our analysis.
Assumption A2. There exist positive constants C such that

/m nlds < O and |-y < ORI (682)
el

f vi -
uniformly for all edges e;, where By < 1, B2 > 0,and r > 1.

Remark 6.33. The second part of Assumption A2 is to assure | fel v; - nds|
remains positive. It can be also written as

I —

VN

fel v; - nds

fv nds >ez||LT(e,)SC’h’ﬁﬁl/T*l7
7

where (-) = (1/]e1]) fel (+)ds, which is used to estimate the velocity basis func-
tion. If v; are bounded, then 5 = 0. Note that

VN Vi + N

. s .
”fel v; - nds <f v - nd5> e e =

if v;|x is an RT} basis function or standard mixed MsFEM basis functions
introduced in [71]. Finally, we note that if » = 1 and |fel v; - nds| > ChPr,
then 62 =0.
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We recall the definition of basis functions 1/15» = k(x)ngSf]{ and
Vi = @{ww } mH div, ‘Q Vh - @{wu } ﬂ HO le

Let Qp = @ Py(K) C L?(£2)/R (i.e., piecewise constants), be the basis func-
tion for the pressure. We define

go,h = Z (/gds)wi,e

ec{OK N 002, KeTy}

for some fixed i € {1,2,..., N}, where ;. is the corresponding multiscale
basis function to the edge e. Let g, = go,» - n on 0f2. The numerical mixed
formulation is to find {vy, pr} € Vi, X Qp, which satisfies (4.7) and vy, -n = gy,
on 0f2.

First, we note the following result.

Lemma 6.34.
vilk €span{yfi}, i=1,.,N; j=1,2,3.

Proof. First we prove the lemma for v1. For this proof, we would like to find
constants s such that ), J ﬂ = vy. That is,

1
Zzﬁf(dw( (2)Veij) = @Zﬁf; =0
;ﬁgk(w) Z ij Jlan:;dS:UI'nel-

Noticing that v; = k(z)Vp; and div(k(z)Vp;) = 0, we have p; = >, . ﬁfj K
C for some constant C' because p; and ), g ﬂ i K satisfy the same elliptic
equation with Neumann boundary condition as p;, and then we have v, =
> ﬂfj{wg The second equation in (6.83) implies that we can take 5{5 =
fe,- v1 - nds and 65 = 0 for 7 # 1. Consequently,

= Z/ vy - nds = / div(vy)dz =0,
j € K

which is the first equation in (6.83). One can obtain similar results for other
(% (Z = 2, ooy N)

(6.83)

Following our assumption, let

N
X =A{ulu= Zai(x)v }
i=1
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be a subspace of H(div,(2). For our analysis, we require that the integrals

/ a;(x)v; - nds are well defined. This is also needed in our computations be-
€

cause / a;(z)v; - nds determines the fluxes along the edges in two-phase flow
simulati(J)ns. One way to achieve this is to assume, as we did earlier, that
ai(z) € WHE(02), v; € L"(£2), 2 = 1/£ + 1/n. Because a;(z) € W'4(£2) and
v; € L"(2) (3 = % + %), Hélder inequality implies that (Va;)v; € L*(92).
Noticing that div(v;) = 0, we have div(a;(z)v;) € L?(§2) immediately. Invok-
ing the Sobolev embedding theorem (see [18]), we get a;v; € L"7({2) because
WLE() — L*(£2). The integrals / a;(r)v; - nds are well defined by the
fact that a;v; € LP(2) (p > 2) and div(a;(z)v;) € L*(£2) (see page 125 of
[57]). We define an interpolation operator Il : X — V), such that in each
element K, for any v =), a;(x)v; € X

M|k (D ai(@)vi) =Y alsfs,
i i

where a{j- = / a;(x)v; - nds.
e

The proof of the following lemma can be found in [8].

Lemma 6.35. Let IT;, be defined as above. Then Yv = Zfil a;v; € X, qp €
Qh;

(1) [, div(v —pv)gpda = 0;

(2) Ipv|| g aiv,0) < Cllvllx,a, if B1 > 202,

where ||v]|x o = ||div(v)]o,2 + Zi\il llaill1, and C only depends on N, the
constants in Assumption A2 (see (6.82)) and the pre-computed global fields
Vi .

Remark 6.56. If v; € L*°(£2), then 8; = 1, §2 = 0, and the proof of Lemma
6.35 implies that [|II,v g (aiv, ) < C(max; ||vil|Le(2)) > llaill1,e-

Remark 6.37. For v = Zi\;l a;v;, where a; € WH4(2) and v; € L"(2) (1/2 =
1/€+1/n), one can also show that

TR o] (aiv,0) < C'Z laillie 0
;

if a+1—pP2—1 > 0, where C only depends on N, the constants in Assumption
A2 (see (6.82)), and the pre-computed global fields v;.

Remark 6.58. We note that ||v|| x, may not be a norm in general because v =
>, a;v; = 0 may not imply that a; are zero (this does not affect the derivation
of the discrete inf-sup condition). In the problem setting considered here,
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one can assume that ||v||x o is a norm. Indeed, a; are coarse-scale functions,
and v; are fine-scale functions. Thus, in each coarse-grid block, the linear
combination ZZ a;v; zero will imply that a; are zero unless v; are also coarse-
scale functions. In the latter case, one can use standard mixed finite element
basis functions. If N = d (d being the dimension of the space), ||[v] x,o is a
norm when v; are linearly independent. In the discrete setting, a; are vectors
defined on the coarse grid, whereas v; are defined on the fine grid. If )", a;v;
is zero, this implies that the vectors v; are linearly dependent, and thus, the
basis functions are linearly dependent.

Lemma 6.35 and the continuous inf-sup condition imply the discrete inf-
sup condition (see page 58 of [57]). We assume that the continuous inf-sup
condition holds (see [8] for more details). Assuming a continuous inf-sup con-
dition, we have that for any g5 € Qp, there exists a constant C' such that

di d
“up Jo div(vy)gndz

> Cllqnllo,e- (6.84)
v €V ||'UhHH(div,.Q)

Because of the inf-sup condition (6.84), we have the following optimal
approximation (see [57, 71]).

Lemma 6.39. Let {v,p} and {vn,pn} be the solution of (4.4) and (4.7) re-
spectively. Then

lv — vl g(div,0) + P — palloe < C inf lv — wall #(aiv,2)
wh EVH WL —go,nEVS
+C' inf - .
s o = qnllo,2
(6.85)

Next, we formulate our main result.

Theorem 6.40. Let {v,p} and {vn,pn} be the solution of (4.4) and (4.7),
respectively. If o + By — B2 — 1 > 0, we have

v — vl H(aiv,0) + P — prllo,e < CROTPI—P2=1,
where « =1 —2/€, € and A; are defined in Assumption Al, and B; (i =1,2)
are defined in Assumption A2. Here C' is independent of h and depends on
N, the constants in Assumption A2, ||Ail e (i=1,..,N) and | fl1,0-

Proof. For the proof, we need to choose a proper u; and a proper q; such
that the right-hand side of (6.85) is small.

The second term on the right hand in (6.85) can be easily estimated. In
fact, with the choice qn|x = (p)k (i.e., the average of p in K), we have

inf |lp — prllo,e < Chlp

1,0
qhE€EQH
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Next, we try to find a up € Vi, say un|x = 3, ; ¢i; z/;lj, and estimate the
first term on the right-hand side in (6.85). Invoking Lemma 6.34 and its proof,
it follows that in each K,

v—uh—ZA chww
= Z( Z )= civi (6.86)
0.
- Z zg )wzlj(a

where f v; - nds . Set c f A;i( -nds.
Because Ix ZZ div(A;(z )vl)dx = f , we get by the divergence theorem

Ai(x)v; - =/
/81(21: (z)v; -nds = f

This gives rise to

||d1vv—Zcm Vi llox = |If — ZCU K| llo.x

(6.87)
—lr-% / - nds o = I = () i
After summation over all K for (6.87), we have
|div(v — up)llo,0 < Ch|f|i 0. (6.88)

Next we estimate [[v—3", - ¢f59f5 [lo, k. Because A;(x) € W4(£2), by using
the Sobolev embedding theorem and Taylor expansion (or definition of C'%)

we have

|Ai(@)le, — A]| < Ch[|Aillce (o,

where Ag is the average A;(z) along e; and o =1 —2/£. So

|AS — Al ‘7|/ Aivrndsffig/ v; - nds|

B (6.89)
= |/,(Ai — Al)(v; - n)ds| < ChoFP| Al co (),

where we have used the Assumption A2 (see (6.82)).

Next, we present an estimate for ||wf]( llo,x- For this reason, we introduce
the lowest Raviart—Thomas basis functions RJK for velocity. We know that
div(RE) = 1/|K| and RE - n = 6;/]e;] (e.g., [57]). We multiply (4.6) by a
test function w; we have
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/ kV ¢ Vwds=— / wdiv(kVe)dx + / (kVoE - n)wds
K oK
=— / wdivR} dx + / (kV o5 - n)wds
K oK (6.90)
:/ (Vw)RJdenL/ (quSfj(- “n— Rf -n)wds
K

v n Vi n
d ) : — : e )wd
= [wwnfaes || ot s

_ pK 1
=R} ne; = -

where we have used that <—f S e,
<

If we set w = gbfj( , then it follows that

< IIV¢K||0K||R§<||O,K
Vi n K
* H f nds <f v; - nd8>ej||LT(ej)H¢ij HL* (8K)

K
CIVek|3

< CHV¢ lo,x + Ch= I L oy

< OV llosc+CR= =T 0= 6o se -1 [V o.x)

< C|IVoE llo.xc + Ch=P =101 |0 K ||o

< CHV@J‘ llo,x +Ch™ BZHV(%‘ llo.x
where 1/ satisfies 1/r+1/r' =1 (r is defined in Assumption A2), and we have
used Assumption A2 (see (6.82)) and ||RK||0 k < C (e.g., [57]) in the second
step, the trace inequality (by rescaling) in the third step, and <¢u> =0

along with the Poincaré—Friedrichs inequality (by rescaling) in the fourth step.
Consequently, we have

5 lo.x < C(1+h7), (6.91)

where C only depends on Assumption A2 and the constants in trace inequality
and Poincaré inequality in a fixed reference domain. Combining (6.89) and
(6.91), it follows immediately

o = wnllo = | Z(Axx)ﬁf; S

<||Z = ADB 0 o + 1 3(ALBE — A5 llo.x

,J

<||Z|A — A5 v o + 111485 — AT ok (6.92)

,J

< Ch‘“rﬁ1 ZHA lca) ZH?/) llo,x

]

< Chawl_ﬁz(z [Aillca(2),
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where we have used Assumption A2 (see (6.82)) and C' depends on N and the
constants in Assumption A2. After summation over all K for (6.92) we have

| =3
K
< C(Z ||AiHC’“(Q))2 Z p2(etB1—02)

K

Z || A HCa h2(a+51 B2)

Z | Aill e () ) 2P = 0270,

Consequently,

[v=wnllo.e < CO_ Aillga () h o=t (6.93)
i
According to (6.85), for those K, 0K N 012, we adjust proper c - such

that ), . c j U — go,n € Vh, but this does not affect our Convergence rate.
Therefore, 1nvok1ng Lemma 6.39, (6.88), (6.93), and the Sobolev embedding
theorem from W1¢ into C, Theorem 6.40 follows.

From the proof of Theorem 6.40, one can easily get the following result.
Let v and vy, be the velocity in (4.4) and (4.7), respectively; then we have

lo = vallo.e < CY_ NAsllca(oy)hotFr =271,

i

Remark 6.41. 1f A;(z) € C*(2) in Assumption Al and v; are defined such
that 81 = 1 and 8y = 0 (e.g., v; are bounded), then Theorem 6.40 implies
that

lv =il H(div,0) + [P — Prllo,e < Ch.

Remark 6.42. We note that the local mixed MsFEMs suffer from a resonance
error and a typical convergence rate for periodic coefficients is

e\
v = vnlmcaiv.) + Ipe = pulloe < Ch+ (£) ),

where 7 = 1/2 for the mixed multiscale method introduced in [71]. In our
global mixed MsFEM, the boundary condition for the velocity basis is hetero-
geneous and Theorem 6.40 implies that stability is independent of the small
scale and the resonance error is removed.

Remark 6.43. One can relax the main assumption used here and assume that

[[o(z ZA )| m(aiv,2) < C6.

In this case, we can expect the convergence as

lv = vallaraiv,) + 1P = pallo,e < C(REFH=P271 46).
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Parabolic equations

Next, we extend the analysis to parabolic equations. We use the following
assumption for the parabolic equation.

Assumption Alp. There exist functions vy,...,un and sufficiently smooth
Ai(t,x), ..., An(t,x) such that

N

v(t,x) = Z Ai(t, z)vi,

i=1

where v; = kVp; and p; solves div(k(x)Vp;) = 0 in 2 with appropriate bound-
ary conditions.

For our analysis, we assume, as before, A;(t,z) € ( T;WhE(92))(€ > 2)
and v; = k(x)Vp; € L"(12) (1/2 =1/6+1/n),i=1,..,N

Remark 6.44. Let v; = k(z)Vp; (i = 1,2) be defined in (6.81), then Owhadi
and Zhang in [217] show that p(¢,z) = p(t,p1,p2) € L*(0,T; W?%) (s > 2).
Consequently, v(t,x) = k(x)Vp = >_.(0p/0pi)kVp; = >, Ai(t, x)v;, where
A;(t,z) = dp/dp; € L*(0,T; VV1 ).

We define
ity = [ ek auds

and

HUHLZ(QTLZ(Q)) —/ /U k™~ udmds

Let II;, : H(div) — V), be the interpolation operator defined as in Section
6.3.1 and Pg, : L?(2) — Qp, be the L? projection onto Q.
From (4.9) and (4.10), we have

0 .
/ 5 = (p — pn)qndx +/ div(v — vp)qndxz =0, Vg € Qn
“ (6.94)

/ E~ v — ) - wpde — / div(wp)(p — pp)dx =0, Ywy, € V.
] 0]

Taking wy, = IIpv — vy, and q, = Py, p — pn, we have

B . -
| 50— Paup =)o+ | divtw =) (Po,p = ) = 0 o

/ E~Y v —wp) - (v — vp)dx — / div(Ilpv — vp)(p — ppdx) = 0.
Q 2

Rewriting p —pp, =p — Pg,p+ Pg,p —pr and v — vy, = v — v + 10 — vy,
in (6.95) and summation of the two equalities, we obtain
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0
/ &(Pth —pn)(Pg,p — pr)dx + / kil(Hhv —wvp) - (ITpv — vp)dz
12 10,

0
= - / 5P~ Faup)(Poup — pn)dz — / k= (v = ) - (M — vp)d
£2 02

+ /Q[diV(HhU —vp)(p — Pg,p) — div(v — v)(Pg, p — pn)]dz.
(6.96)

Because Py, is the L?(£2) projection onto Qy, Pg, commutes with the time
derivative operator 9/0t. Consequently, the first and third terms of the right-
hand side in (6.96) vanish. By Lemma 6.35, the fourth term of the right-hand
side in (6.96) also vanishes. Consequently, (6.96) becomes

1o}
/ a(Pth —pn)(Pg,p — pr)dx + / kil(Hhv —op) - (ITpv — vy )dz
I} 0
= _/ E~l (v —TIw) - (T — vp)de.
1)

The Schwarz inequality and Young’s inequality give rise to

Lo
2 0t

1
< Ao = vn72 ) + ol = 4vl|72 (g)-

|Pg,p — Ph||g,9 + 2y — vh”%g(o)

Integrating with respect to time and applying Gronwall’s inequality and after
choosing the proper value for A\, we have

| Pq,p — ph”QCO(O,T;L?(_Q)) + [Ty — Uh“i?(o,T;Li(Q))
< C(||Pq,p(0) = po,n

5.0+ lv— Hhv”%%o,T;Li(Q)))-
Invoking the triangle inequality, we have
Ip = allEo 0,2 () + 10 — Uh||%2(o,T;L§(Q))
< C(||Pg,p(0) — po,n| (2),9 + v - HhUHiQ(O,T;Li(Q))) (6.97)
+[lp — Pq,p

€ 0,20
Hence, we obtain the following lemma.

Lemma 6.45. Let {v,p} and {vn,pr} be the solution of (4.9) and (4.10),
respectively. Under Assumption Alp and the definition of Vy, in Section 6.3.1,
the estimate (6.97) holds.

Utilizing Lemma 6.45 and the proof of Theorem 6.40, we can derive the
convergence result.
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Theorem 6.46. Let {v,p} and {vn,pn} be the solution of (4.9) and (4.10),
respectively. If a + 51 — P2 — 1 > 0 then
lp = prllco,rr22) + lv = vnllL20,102 (2)) < Choth=Fa—t,

where « = 1—=2/& and & is from Assumption Alp, and §; (i = 1,2) are defined
i Assumption A2.

Proof. Owing to the fact that Pg, is the L?({2) projection onto Qp,

P — Pq,pllcoo.rie22)) < Chlpleoo, 1 (@) (6.98)

we estimate the first and the third term of right-hand side in (6.97). Next we
: 2
estimate the term |jv — HhUHLQ(O,T;Li(Q))' Define

_ / Ait, 8)(v; - n)ds

in each element K. Because k~!(z) is bounded, we have in each element K,

[l — Hh”||:22 0,T;L2(K))

/ / Z (t,2) B — AK (1) Z AE ()0 dudt
<c/ / ()5 — A (1)gK)2dadt
=C Z i(t, @) ﬁK AR O 720,722 (1)) (6.99)
< Z i(t,x) — Al(t)Bl 132 0.1:12(x))
+C Z (Al(t ﬁK AK( t)) g”%%o,T;L?(K))

4,J

< ORI 18,

In the last step, we used that facts that A; € L?(0,T; W¢), Assumption A2
(see (6.82)) and proof of Theorem 6.40 (see (6.92)). After summation over all
K for (6.99), we have

[o = Tl 20,7522 () < CROHHA=F271, (6.100)

Now, the proof can be completed taking into account (6.98) and (6.100).
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6.3.2 Galerkin finite element methods with limited global
information

We have proposed some analysis for modified MsFEMs in [103] and [3]. The
main idea is to show that the pressure evolution in two-phase flow simulations
is strongly influenced by the initial pressure. To demonstrate this, we consider
a channelized permeability field, where the value of the permeability in the
channel is large. We assume the permeability has the form kI, where [ is an
identity matrix. In a channelized medium, the dominant flow is within the
channels. Our analysis assumes a single channel and is restricted to 2D. Here,
we briefly mention the main findings. Denote the initial stream function and
pressure by n = ¢(x,t = 0) and ¢ = p(z,t = 0) (¢ is also denoted by p°P
previously). The stream function is defined as

8¢/8$1 = —Ug, 8¢/8x2 = V1. (6101)

Then the equation for the pressure can be written as

8% <|k|2/\(s)gf;> + a% (A(S)?ﬁ) =0. (6.102)

For simplicity, S = 0 at time zero is assumed. We consider a typical boundary
condition that gives high flow within the channel, such that the high flow
channel will be mapped into a large slab in (7, () coordinate system. If the
heterogeneities within the channel in the 7 direction are not strong (e.g., a
narrow channel in Cartesian coordinates), the saturation within the channel
will depend on (. In this case, the leading-order pressure will depend only on
¢, and it can be shown that

p(n,(,t) = po(¢, t) + high-order terms, (6.103)

where po((,t) is the dominant pressure. Note that this result is shown when
A is smooth. This asymptotic expansion shows that the time-varying pressure
strongly depends on the initial pressure (i.e., the leading-order term in the
asymptotic expansion is a function of initial pressure and time only). We note
that (6.103) does not hold when A has discontinuities. In this case, our results
hold away from the sharp interfaces and one can localize the interface by
updating some basis functions. Our numerical results show that this update
does not improve the results substantially. We believe this is because the
discontinuities in A\ are small compared to heterogeneities in porous media, the
effects of which we capture using limited global information. In our analysis,
we assume that |[p(x,t) — p(p®P, t)| g is small.

Because the analysis of the multiscale finite element methods is carried
out only for the pressure equation, we assume ¢ (time) is fixed. We recall the
assumption.

Assumption G. There exists a sufficiently smooth scalar-valued function
G(n) (G e W32s/(s=4) s > 4) such that
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lp— G(p™)|,e < C6, (6.104)

where p°P is single-phase flow pressure and § is sufficiently small.

We note G is po({, ) at fixed ¢ in (6.103). Moreover, one does not need to
know the function G for computing the multiscale approximation of the solu-
tion. It is only necessary that G have certain smoothness properties, however,
it is important that the basis functions span p°? in each coarse block.

Theorem 6.47. Under Assumption G and p* € W14(Q2) (s > 4), the Ms-
FEM converges with the rate given by

[p— pul1e < C8 + Ch' 25, (6.105)

The proof of this theorem is given in [3]. Note that Theorem 6.47 shows
that MsFEM converges for problems without any scale separation and the
proof of this theorem does not use homogenization techniques. Next, we
present the proof.

Proof. Following standard practice of finite element estimation, we seek
pr = ¢;¢;, where ¢; are single-phase flow-based multiscale finite element basis
functions. In the proof, we assume that | |1k < C. Then from Cea’s lemma,
we have

0 =il < [p—G@P)|1,0 + |GPF) — cidil1,0- (6.106)

Next, we present an estimate for the second term. We choose ¢; = G(p*P(x;)),
where x; are vertices of K. Furthermore, using a Taylor expansion of G around
D, which is the average of p°P over K,

G(p°F(x:)) =G (Px) + G (D) 0P (i) — Dye)
S — 2 ! (. .S — S 56107)
() < F)? [ G @) + s(Fi (@)
We have in each K
civi =G (Prc) Z bi + G' () (p° (#5) — Dre ) b

0 (0) =P o |G @) + (i = (0] s
= G@g) + G Pr) PP (2:)d; — Dx)

1
+ (" (x1) = Pr) 0 /O sG"(p* (i) + s(Px — p* (1)) ds.

(6.108)

In the last step, we have used ), ¢; = 1. Similarly, in each K,
G (v)) =G(pk) + G’ (Pk) (P (x) — Pk)
(6.109)

+ (PP(2) - Dr)? / G (p () + 5(By — p(x)))ds.
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Using (6.108) and (6.109), we get
|G(p*) = cidili, ik <|G'(Pr) (PP () — PP (i) i) 1, K¢

+ 1P (@) — i) / S (0 (@:) + s(Brc — 7 @))dslie (g 1)

1
P (@) — i) / SG"(p () + s(Bx — p(2)))ds]1 x.

Because |p*?(z) — p*P (z;) d;
is the following,

1,k < Ch| f]

0,k the estimate of the first term

G (B ) (P (x) = p™(2:)di) 1 < Ch|f o,k
For the second term on the right-hand side of (6.110), assuming p*?(x) €
Whs(£2) and s > 4, we have

1
(0 (2:) — i) *o1 ; sG"(p™ (xi) + s(Px — P (wi)))ds|1,x

< Ch|psp|%,4,K|¢f<|l,K
< ChIp™ |} 4

where we have used the assumption |[¢X|; x < C and Wb € W4 (s > 4).
Here, we have used the inequality (e.g., [18])

lu(@) = u(y)| < Clae =y *|ul1s,x-

For the third term, a straightforward calculation gives

1
|(p*" () —ﬁK)2/0 sG"(p(z) + s(Px — ™ (x)))ds|1,x

<||(p*(z) - ﬁx)2Vp5”(33)/0 (1= 5)sG"(p(2) + s(Dx — p*()))ds]|

0,K

207 (@) — i)V () / SG" (P () + 5By — pP(2)))ds]

< R\ Vp |1 (i) |G | 2esc-0 ey + CR 219 |1 6 i [P 1,16
< Ch272/s‘|vpsp| %S(K) + Oh172/s|psp|17K

0,K

where we used the Holder inequality in the second step.
Combining the above estimates, we have for s > 4

G(0°") = o' [1.c <ChIp™P [ 4

(6.111)
+ Ch?—?/s + Chl_Q/s‘pSPh,K + Cth”O,K

Summing (6.111) over all K and taking into account Assumption G, we have
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p—pali,0 < CE+R72%) + Chlp™ |3 4 0 + Ch' 7*|p* 1,0 + Chl|fllo,0
< OB +h'72) + Chlp™|F o + Ch* =191 s 0 + Chl|f o,

Consequently, if s > 4 (see e.g., [28]), the single-phase flow-based MsFEM
converges.

Remark 6.48. We can relax the assumption on G. In particular, it is sufficient
to assume G € W?2™ (m > 1). In this case, the proof can be carried out
using Taylor polynomials in Sobolev spaces. Also, if Vp*P € L>°({2), then the
convergence rate in (6.105) is C'§ + Ch.

Remark 6.49. One can similarly analyze Galerkin MsFEMs using multiple
global fields (see [3]). This analysis can be extended to parabolic equations
(see [163]).





