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Applications of multiscale finite element
methods

5.1 Introduction

In this chapter, we present some applications of MsFEM to fluid flows in
heterogeneous porous media. We discuss multiscale methods for transport
equations and their coupling to flow equations which are solved using Ms-
FEMs. The proposed multiscale techniques for the transport equation share
some similarities with nonlinear multiscale methods introduced in Chapter 3.
Because of sharp interfaces, special treatment is needed near the interface.
Furthermore, due to the hyperbolic nature of the transport equation, some
type of limited global information is needed for constructing multiscale basis
functions. These issues are discussed in Section 5.2.

In Section 5.3, we discuss the applications of MsFEMs to flows in un-
saturated porous media described by Richards’ equations [236]. Multiscale
methods developed in Chapter 3 are applied to solve Richards’ equation in
heterogeneous porous formations on the coarse grid. In Section 5.4, we extend
MsFEMs to solving the fluid-structure problem on the coarse grid where as
a result of fluid flow in the pore region, the porous medium deforms substan-
tially.

Applications of MsFEMs to reservoir modeling are presented using both
the mixed MsFEM and MsFV in Sections 5.5 and 5.6. In these sections, more
complicated porous medium equations involving compressibility, gravity, and
three phases in heterogeneous reservoirs are considered. The authors address
the challenging issues that arise in petroleum applications and describe the
efficient use of MsFEMs in these problems.

The porous medium properties are typically described using geostatistical
techniques because of uncertainties associated with prescribing permeability
values to different locations. The numerical simulation of fluid flows in stochas-
tic porous media is prohibitively expensive because the computation of each
realization is CPU-demanding. In this chapter, we also consider approaches for
constructing multiscale basis functions for the whole ensemble. Furthermore,
the applications of MsFEMs to uncertainty quantification in inverse problems

Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications, 95

Surveys and Tutorials in the Applied Mathematical Sciences 4,

DOI 10.1007/978-0-387-09496-0 5, c© Springer Science+Business Media LLC 2009



96 5 Applications of multiscale finite element methods

consisting of permeability sampling are presented. The objective here is to use
MsFEMs to speedup the computations aimed at quantifying uncertainties in
inverse problems.

5.2 Multiscale methods for transport equation

5.2.1 Governing equations

A prototypical example for problems studied is two-phase immiscible flow and
transport in heterogeneous media. We presented the governing equations in
Section 2.10 neglecting the effects of gravity, compressibility, capillary pressure
and dispersion on the fine scale. We recall that the system of equations consists
of the pressure equation

div(λ(S)k(x)∇p) = qt, (5.1)

where λ(S) is the total mobility and qt = qo+qw is the total volumetric source
term. The saturation equation has the form

φ
∂S

∂t
+ div(vf(S)) = −qw, (5.2)

where f(S) is the fractional flow of water (f is also denoted by fw often to
distinguish between oil and water fractional flows), and φ is porosity. The
total velocity v is given by

v = −λ(S)k∇p. (5.3)

In the presence of capillary effects, an additional diffusion term is present in
(5.2). The above system of equations can be extended to describe the flow
and transport of three-phase flow and transport (see Sections 5.5 and 5.6). In
Sections 5.5 and 5.6, the applications of MsFEMs to three-phase compressible
flow and transport are described.

In this section, we focus on developing multiscale methods for the transport
equation described by (5.2).

5.2.2 Adaptive multiscale algorithm for transport equation

In this section, we present an adaptive multiscale method for solving the
transport equation following [5]. The main idea of this approach is to construct
multiscale basis functions similar to the construction in nonlinear MsFEMs
presented in Chapter 3. Because the solution of the transport equation has
sharp interfaces, a separate treatment is needed for these interfaces.

The adaptive multiscale method that we propose here consists of two parts.
An adaptive criterion determines if a block is in a transient flow region. Here,
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by transient region, we refer to those regions with sharp saturation fronts.
In these regions we use local fine-grid computations to advance the satura-
tion solution to the next time-step. In regions with slow transients, we use a
multiscale coarse-grid solver to advance the saturation solution to the next
time-step. Then, instead of doing a fine-grid calculation, we map the coarse-
grid solution onto a fine-grid solution using special interpolation operators.

Before we give an outline of the algorithm, we need to introduce some addi-
tional notation. First, denote the coarse grid by T = {Ki} and an underlying
fine grid by K = {τi}. The grids used here need not coincide with the coarse
and fine grids for multiscale methods used for the pressure equation and can
be unstructured. In this particular application, we use a mixed MsFEM.

We introduce now the upstream fractional flow function for
γij = ∂Ki

⋂
∂Kj :

Vij(S) = f(Si)max{vij , 0} + f(Si)min{vij , 0}, (5.4)

where vij is the Darcy flux across γij that we get from the mixed MsFEM
solution. Next, let S̄n

i be the coarse-grid saturation in Ki at time tn, and
denote by T n

tr the family of grid blocks that are identified to be in a transient
flow region at time tn. One can use various criteria based on coarse-scale sat-
uration values or their gradients to identify transient regions. In this section,
the following criteria are used to identify transient flow regions:

Ki ∈ T n
tr if max{|S̄n

i − S̄n
j | : |∂Ki ∩ ∂Kj | > 0} ≥ αi. (5.5)

For each Ki ∈ T n
tr , we define

KE
i = Ki ∪ {τ ∈ K : |∂τ ∩ ∂Ki| > 0}.

Hence,KE
i consists of grid cells that are either contained inKi, or that share a

common interface with a cell in Ki. Finally, we introduce a family of operators
{IK : K ∈ T } that map coarse-grid saturations onto fine-grid saturation fields
inside the respective blocks. The adaptive multiscale method is now outlined
in Algorithm 5.2.1.

Next, we briefly describe the algorithm. In this algorithm, first, the fine-
grid saturations in the transient flow regions are updated. This update involves
solving the local transport equation on the fine grid in the transient region.
Coarse-grid saturations in nontransient regions are updated using (5.7). The
equation (5.7) is obtained by averaging the transport equation over the coarse-
grid block K and describes the update for the coarse-scale saturation field.
Once the coarse-scale saturation field is updated, it is mapped onto the fine
grid with the coarse-to-fine grid interpolation operators. This step is similar to
nonlinear MsFEMs as described in Section 3.1. In particular, the basis func-
tions are computed for different levels of average saturation within the coarse
grid block and, then, interpolated. In the algorithm, implicit time integration
methods are used. There are no constraints on the time-steps �t, but they
should be chosen small enough to avoid an excessive numerical diffusion.
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Algorithm 5.2.1 Adaptive multiscale algorithm for modeling flow in porous
media

For each K ∈ T n
tr , do

– For τi ⊂ KE , compute

S
n+1/2
i = Sn

i +
�t
∫

τi
φdx

⎡

⎣
∫

τi

−qw(Sn+1/2)dx−
∑

j �=i

V ∗
ij

⎤

⎦ , (5.6)

where V ∗
ij =

{
Vij(Sn) if γij ⊂ ∂KE and vij < 0.
Vij(Sn+1/2) otherwise.

– Set Sn+1|K = Sn+1/2|K .

For each K �∈ T n
tr , do

– Set Sn+1|K = Sn|K .
– While

∑
j �jt ≤ �t, compute

S̄n+1
K = S̄n

K +
�jt∫

K
φdx

⎡

⎣
∫

K

−qw(Sn+1) dx−
∑

γij⊂∂K

Vij(Sn+1)

⎤

⎦ , (5.7)

and set Sn+1|K = IK(S̄n+1
K ).

The fractional function f is in general a nonlinear function of saturation.
We therefore solve the fine-grid equations (5.6) using a Newton–Raphson
method. Here saturation from the previous time-step is used to determine
boundary conditions along the inflow boundary on ∂KE . This gives rise to a
mass–balance error because the inflow on grid block boundaries corresponding
to the saturation from the previous time-step will not match exactly the inflow
on grid block boundaries corresponding to the saturation at the current time-
step. In our numerical simulations, we observed that this mass–balance error
is usually very small, and generally insignificant. Note also that if Ttr = ∅, and
the coarse-to-fine grid interpolation conserves mass locally, then (5.7) ensures
that mass is conserved, also globally. Thus, under the assumption that the
coarse-to-fine grid interpolation conserves mass locally, the latter part of the
adaptive multiscale algorithm is mass conservative on both coarse and fine
grids.

Next, observe that fluxes across coarse-grid interfaces in (5.7) are evaluated
on fine-grid interfaces γij ⊂ ∂K. Thus, rather than using a flux function that
models the total flux across coarse-grid interfaces as a function of the net
saturation in the upstream block, we evaluate the term fv in (5.2) on the scale
of the fine grid. This requires that we have fine-grid saturation values in all
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cells adjacent to grid block boundaries. The coarse-to-fine grid interpolation
operators {IK} are therefore not just tools to get better resolution. In addition
to improving the global accuracy of Algorithm 5.2.1 by providing a better
approximation to flow across coarse-grid interfaces, they provide initial fine-
grid saturation values for (5.6) in the transition when a block is identified as
being part of a transient flow region. Without the interpolation, the initial
saturation field for (5.6) would be constant in K, and the fractional flow
across the coarse-grid interfaces would have to be based on the net grid block
saturations only, as pseudo-functions generally do [171].

We remark that the proposed adaptive multiscale method has some simi-
larities to the multiscale framework developed for nonlinear equations in which
multiscale basis functions are constructed by mapping the coarse dimensional
space defined over the entire region. Furthermore, this map is used in the
global coarse-grid formulation of the fine-scale problem to compute the coarse-
scale solution. In our multiscale approach, the basis functions are constructed
as a function of average saturation in each coarse block, and then used in the
global formulation of the problem. In both approaches, the main task is to
determine an accurate and efficient multiscale map that improves the global
coarse-grid formulation of the problem.

5.2.3 The coarse-to-fine grid interpolation operator

In the following we attempt to construct operators that map each coarse-grid
saturation field onto a fine-scale saturation profile that is close to the cor-
responding profile that one would get by solving the saturation equation on
the global fine grid. The basic idea is to approximate the fine-scale satura-
tion in Ki as a linear combination of two basis functions Φk

i and Φk+1
i with∫

Ki
Φk

i φdx ≤ S̄n
i

∫
Ki
φdx <

∫
Ki
Φk+1

i φdx:

IKi
(S̄n

i ) = ηΦk
i + (1 − η)Φk+1

i . (5.8)

Here η ∈ [0, 1] is chosen such that the interpolation preserves mass, that is
such that

∫

Ki

IKi
(S̄n

i )φdx = S̄n
i

∫

Ki

φdx. (5.9)

This condition states that the fluid contained in Ki is distributed inside Ki in
such a way that the total fluid volume in Ki is conserved. The basis functions
Φk

i = si(x, τk) represent snapshots of the solution of the following equation:

φ
∂si
∂t

+ div(f(si)v) = −qw in Ki. (5.10)

For the local problem (5.10) to be well defined, we need to specify ini-
tial conditions and boundary conditions, and provide a possibly time-varying
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velocity field in Ki. Unfortunately, we do not know a priori what the veloc-
ity will be during the simulation, nor what boundary conditions to impose.
Assumptions must therefore be made as to how the velocity and saturation
approximately evolve. We describe below an approach that is local in terms
of boundary and initial conditions, however, one can naturally incorporate
global information into this approach. The proposed approach assumes that
global boundary conditions for the pressure equation (5.1) are not changed,
and that the source terms are fixed. We assume also that an upstream method
is used to solve the local equations (5.10). Thus, we need only specify bound-
ary conditions on the inflow boundaries Γ in

K = {γjl ⊂ ∂K : τl ⊂ K, vjl < 0}.
For fixed flow conditions, the fine-scale velocity features will generally not

change significantly during a flow simulation. This is discussed in [5]. One
option is therefore to solve the pressure equation (5.1) at the initial time with
the mixed MsFEM, use v = v(x, t0)|K in (5.10), and the same initial data
as for the global problem (5.2). A local way of generating saturation basis
functions based on this approach requires that sensible boundary conditions
for (5.10) can be imposed for each block independently. In our numerical
simulations, we impose si = 1 on the inflow boundary Γ in

T , although other
boundary conditions can be imposed (see discussions in Section 5.2.7).

An approach that is often used in practice for upscaling the saturation
equation entails the use of so-called pseudo-relative permeabilities (k∗rj)i =
(k∗rj)Ki

in place of the fine-scale krj . Because the fine-scale krj are typi-
cally functions only of saturation S, pseudo-relative permeabilities, or pseudo-
functions for brevity, are commonly assumed to depend only on the coarse-
grid saturation S, though the curves can vary between coarse grid blocks. The
proposed technique shares some similarities with pseudo-function approaches
although there are some important differences. The proposed approach allows
recovering fine-scale features of the saturation field and can be used for accu-
rate upscaling. The relation between proposed methods and pseudo-function
approaches is discussed in [5].

5.2.4 Numerical results

We now use the proposed methodology to model incompressible and immis-
cible two-phase flow on test cases with permeability and porosity from SPE
10 [78]. This model was discussed before and consists of a Tarbert formation
on top of a fluvial upper Ness formation. Although both formations are very
heterogeneous, the upper Ness formation gives rise to more complex flow. We
employ here mostly data modeling parts of the fluvial upper Ness formation.
Because fluvial formations are particularly hard to upscale, the upper Ness
formation should serve as an appropriate model for testing and validation
of the proposed multiscale method. The upper Ness model is Cartesian and
consists of 60 × 220 × 50 = 6.6 · 105 grid cells.

We assume that the reservoir is initially fully oil-saturated, and inject
water at a constant rate in grid cells penetrated by a vertical well at the
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center of the domain. We then produce at the producers which are vertical
wells located at each of the four corners. The water and oil mobilities are
defined by

λw(S) =
S2

μw
and λo(S) =

(1 − S)2

μo
, (5.11)

where the water and oil viscosities are assumed to be equal: μw = μo = 0.003
cp.

To measure the overall accuracy of a saturation solution we compute the
error in the fine- and coarse-grid saturation profiles relative to a reference
solution,

e(S, Sref , t) =
‖φSref(·, t) − φS(·, t)‖L2

‖φSref(·, t) − φSref(·, 0)‖L2
.

Here time is measured in dimensionless time PVI, that is time measures the
fraction of the total accessible pore volume in Ω that has been injected into
Ω.

For all test cases, we use Cartesian coarse grids, and assume that the fine-
grid cells coincide with grid cells in the original Cartesian grid. The reference
solution Sref is computed using an implicit upstream method on the fine grid,
and a corresponding coarse-grid solution is computed using the same method
on a coarse grid. Moreover, note that although we use a fixed set of basis
functions for the mixed MsFEM, we solve the pressure equation repeatedly
to account for mobility variations. Thus, the velocity fields in the simulations
will differ from the velocity field used to generate the saturation basis func-
tions. However, to assess the accuracy of solutions obtained using the adaptive
multiscale algorithm (AMsA), we compute, at each pressure time-step, the ve-
locity field corresponding to the reference solution for saturation, and use this
velocity field in AMsA, and to compute the coarse-grid solution. This allows
us to monitor the error that stems from AMsA only.

5.2.5 Results for a two-dimensional test case

We consider first a test case representing the bottom layer of the SPE model.
The coarse grid is defined so that each grid block contains 10 × 10 grid cells.
The saturation plots in Figure 5.1 show that the solutions obtained using
AMsA with α = 0, α = 0.1, and α = 0.2 (the same threshold is used in all
grid blocks, see (5.5)) are very similar to the reference solution. We recall that
α = 0 corresponds to the case when the saturation update is performed in all
coarse blocks and α = 1 corresponds to the case when no saturation update is
performed. The solution obtained using α = 1 looks quite different compared
to the cases with other values of α. The sharp edges that we see in this plot are
due to the fact that the boundary conditions used to generate the saturation
basis functions overestimate the inflow. We therefore get too much saturation
along the inflow part (with respect to the initial velocity field) of each grid
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block boundary. This indicates that without the adaptive component, AMsA
is not able to provide plausible fine-grid saturation profiles. To achieve this,
one has to build more information about the global flow problem into the
saturation basis functions by specifying appropriate coarse grid blocks using
global information or appropriate dynamic boundary conditions for (5.10).

Fig. 5.1. Saturation profiles at ∼ 0.7 PVI for simulations on the bottom layer.

Figure 5.2 shows that the accuracy of AMsA decays with increasing α.
However, for all α, AMsA gives a significantly more accurate solution on the
coarse grid than the standard upstream method on the coarse grid gives.

Computational efficiency

Except for α = 1, for which local problems are not solved during the course of
a flow simulation, the computational cost of AMsA is dominated by the cost of
solving the local equations (5.6). In particular, for small α the computational
cost C(α) of solving (5.2) using AMsA scales roughly as

C(α) ∼ Fu(α)NtC(0),

where Nt is the total number of time-steps and Fu(α) is the average fraction
of blocks that belong to a transient flow region. Note that C(0) is the cost
when the transient region is the entire domain.
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Fig. 5.2. Saturation errors for saturation solutions obtained from simulations on
the bottom layer of the upper Ness formation. The fine-grid curves measure the
error with e(S, Sref , t) on the fine grid relative to the reference solution, and the
coarse-grid curves measure the error on a coarse grid with e(S̄, S̄ref , t) relative to
the projection of the reference solution onto the coarse grid.

Clearly, Fu is a decreasing function of α. Hence, there is a trade-off be-
tween high accuracy and low computational cost. Note also that, in addition
to α, Fu depends implicitly on various factors (e.g., the coarse grid, the criteria
used to identify transient flow regions, the fluid parameters, the heterogeneous
structures, etc.). In particular, AMsA is in general more efficient (and accu-
rate) for spatially correlated variogram-based permeability models than for
models with fluvial heterogeneity, as is illustrated in Figure 5.3. Whereas, on
average, 73% and 55% of the blocks in the upper Ness model are identified
as belonging to transient flow regions for α = 0.1 and α = 0.2 respectively,
the corresponding numbers for the Tarbert model are 46 and 27. The poten-
tial efficiency of AMsA is therefore highly dependent on the type of model
to which it is applied. Relative to AMsA with α = 0, we may expect good
accuracy on both coarse and fine grids, with a speed-up factor about two
for models with fluvial heterogeneity, and a speed-up factor three or four for
models with smoother heterogeneity. The speed-up strongly depends on the
adaptivity criteria which can be adjusted for a particular problem. In our
simulations, the criteria based on gradients of the coarse-scale saturation are
used. We have observed an increase in speed-up when the criteria based on
saturation values are used. Without the adaptive component, the computa-
tional complexity of AMsA is comparable to the complexity of coarse-grid
simulations using pseudo-functions. As we mentioned earlier, the accuracy of
AMsA can be improved by choosing adaptive coarse gridding. This procedure
will also enhance the efficiency of AMsA, because it localizes sharp fronts. Fi-
nally, we note that the purpose of the interpolator is not primarily to get the
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fine-scale details correct, but rather to introduce a flexible mechanism that
allows us to capture the subgrid transport effects on a coarse scale.
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Fig. 5.3. Fraction of blocks that are identified to belong to transient flow regions
during the course of two-phase flow simulations on the top layer of the Tarbert
formation (left) and the bottom layer of the upper Ness formation (right).

5.2.6 Three-dimensional test cases

In this section we want to examine the accuracy of AMsA when applied to
two-phase flow simulations on three-dimensional models from the upper Ness
formation. Here we consider only AMsA using α = 0, α = 0.1, and α = 1 in
all blocks. The case α = 0 is referred to as the domain decomposition (DD)
algorithm, the case α = 0.1 is referred to as the adaptive algorithm, and the
case α = 1 is called the multiscale algorithm.

In order for AMsA to provide a valuable tool in reservoir simulation, it
should, in addition to being significantly more accurate than the coarse-grid
solution, capture fine-scale characteristics of the reference solution at well
locations. This is demonstrated by comparing water-cut curves (fraction of
water in the produced fluid) for AMsA with water-cut curves for the reference
solution. To get accurate production characteristics, it is essential that high-
flow channels are resolved adequately because high-flow channels often carry
the majority of the flow that reaches the producers. Thus, if AMsA can be
used to model these regions properly, then they should provide a more robust
alternative to reservoir simulation on upscaled models.

Consider first the ten bottom layers of the upper Ness formation, and
define the coarse grid so that each grid block in the coarse grid consists of
10 × 10 × 5 grid cells. Figures 5.4 and 5.5 demonstrate that all AMsAs give
significantly more accurate results than the solution obtained by solving the
saturation equation on the coarse grid with the implicit upstream method. We
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notice, in particular, that the water-cut curves for the multiscale algorithm are
much more accurate than the corresponding water-cut curves for the coarse-
grid solution. This indicates that AMsA is more capable of resolving high-flow
regions adequately, also without the local fine-grid computations.
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Fig. 5.4. Saturation errors for simulations on the bottom ten layers of the upper
Ness formation.
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Fig. 5.5. Water-cut curves for simulations on the bottom ten layers of the upper
Ness formation.

We turn now to the full three-dimensional model of the upper Ness forma-
tion. The previous examples showed that the DD algorithm seems to produce
solutions that very closely match the reference solution, and it is computa-
tionally very expensive to compute a solution on the full upper Ness model
using the implicit upstream method on the fine grid, therefore we use here the
solution obtained using the DD algorithm as the reference solution. Again we
let the coarse grid be defined so that each grid block in the grid consists of
10 × 10 × 5 grid cells.
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Figure 5.6 demonstrates that the errors are approximately the same as in
the previous example. We observe also that the saturation error on the coarse
grid for the multiscale algorithm is less than half of the corresponding error
for the coarse-grid solution. Furthermore, the water-cut curves for the multi-
scale algorithm depicted in Figure 5.7 closely match the water-cut curves for
the adaptive algorithm and the DD algorithm, except possibly for producer 4
where we observe a mismatch. In contrast, the coarse-grid solution continues
to overestimate the breakthrough times, and thus overpredicts the oil produc-
tion. This shows that the multiscale method may be used as an alternative to
pseudo-functions for enhancing the accuracy of coarse-grid simulations.
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Fig. 5.6. Saturation errors for simulations on the full upper Ness formation.
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Fig. 5.7. Water-cut curves for simulations on the full model of the upper Ness
formation.
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5.2.7 Discussion on local boundary conditions

In our numerical simulations, we imposed si = 1 on the inflow boundary Γ in
T

(see (5.10)). For general coarse grids, these boundary conditions may seem
a bit crude. Indeed, these boundary conditions are exact only if there is a
sharp front in the global solution that, for each block, hits the whole inflow
boundary at approximately the same instant. It should be emphasized that
the purpose of the interpolator is not primarily to get the fine-scale details
correct, but rather to introduce a flexible mechanism that allows us to model
the flow on a coarse scale more correctly.

To get accurate solutions, also on fine grids, one must either use an adap-
tive component to improve the solution in transient flow regions, or build
more information into the interpolator. For instance, note that the inherent
flexibility with respect to coarse grids allows us to reduce the error associated
with this type of boundary condition by using flow-based, non-Cartesian grids.
In particular, by using coarse blocks with boundaries aligned with level sets
of time-of-flight function, one can achieve higher accuracy compared to the
approaches where Cartesian coarse blocks (or coarse blocks selected indepen-
dent of global flow features) are used. This option is discussed in [5]. We note
that our numerical results show that the multiscale approach using Cartesian
coarse blocks still provides a good overall accuracy. One can also use limited
global information, such as the time-of-flight function, in constructing coarse
blocks.

5.2.8 Other approaches for coarsening the transport equation

There are a number of other techniques for coarsening the saturation equation
that can be coupled to the pressure equation. Next, we describe a few of these
approaches very briefly without detailed numerical studies which can be found
in the literature.

A macrodispersion model for transport equation

The approach entails using a macrodispersion formulation for the coarse-scale
saturation equation. We consider the upscaling of the saturation equation
using perturbation techniques following, for example, [102, 101]. We omit the
details of the derivation of the upscaled model. We first consider the case
λ(S) = 1 and f(S) = S in (5.1) and (5.2) (with qw = 0 in (2.41)). The
upscaled model was derived using perturbation arguments for (5.2), in which
the saturation S and the velocity v on the fine scale are assumed to be the
sum of their volume-averaged and fluctuating components,

v = v + v′, S = S + S′. (5.12)

Here the overbar quantities designate the volume average of fine-scale quanti-
ties over coarse blocks. For simplicity, one can assume that the coarse blocks
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are rectangular which allows stating ∇F = ∇F , if averages are taken over
dual volume. In general, one can also perform the perturbation technique di-
rectly on the target coarse block as done in [102]. In this case, the averages of
divergences can be written over the boundaries of the coarse blocks. Substi-
tuting (5.12) into the saturation equation for single-phase and averaging over
coarse blocks we obtain

∂S

∂t
+ v · ∇S + v′ · ∇S′ = 0. (5.13)

The term v′ · ∇S′ represents subgrid effects due to the heterogeneities of con-
vection. This term can be modeled using the equation for S

′
that is derived

by subtracting (5.13) from the fine-scale equation (5.2),

∂S
′

∂t
+ v · ∇S′

+ v
′ · ∇S + v

′ · ∇S′
= v′ · ∇S′ .

This equation can be solved along the characteristics dx/dt = v by neglecting
higher-order terms. Carrying out the calculations in an analogous manner to
the ones performed in [102] we can easily obtain the following coarse-scale
saturation equation

∂S

∂t
+ v · ∇S = div(D(x, t)∇S(x, t)), (5.14)

where D(x, t) is the dispersive matrix coefficient, whose entries are written as

Dij(x, t) =
[∫ t

0

v′i(x)v
′
j(x(τ))dτ

]

. (5.15)

Next it can be easily shown that the diffusion coefficient can be approximated
up to the first order by

Dij(x, t) = v′i(x)L
D
j

where LD
j is the displacement of the particle in the j direction that starts at

the point x and travels with velocity −v. The diffusion term in the coarse
model for the saturation field (5.14) represents the effects of the small scales
on the large ones. Note that the diffusion coefficient is a correlation between
the velocity perturbation and the displacement. This is different from [102]
where the diffusion is taken to be proportional to the length of the coarse-
scale trajectory. Using MsFEMs for the pressure equation we can recover the
small-scale features of the velocity field that allow us to compute the fine-scale
displacement.

For the nonlinear flux f(S), we can use a similar argument by expanding
f(S) = f(S) + fS(S)S

′
+ · · · . In this expansion we take into account only

linear terms and assume that the flux is nearly linear. This case is similar to
the linear case and the analysis can be carried out in an analogous manner.
The resulting coarse-scale equation has the form
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∂S

∂t
+ v · ∇S = div(fS(S)2D(x, t)∇S(x, t)), (5.16)

where D(x, t) is the macrodiffusion corresponding to the linear flow. This for-
mulation has been derived within the stochastic framework in [173]. We note
that the higher-order terms in the expansion of f(S) may result in other ef-
fects that have not been studied extensively to our best knowledge. In [101] the
authors use a similar formulation although their implementation is different
from ours. Numerical results can be found in [102, 101].

Coarsening in a flow-based coordinate system

In [106, 247], a flow-based coordinate system is used to coarsen the saturation
equation. A flow-based coordinate system consists of single-phase pressure
and the corresponding streamfunction fields. The use of global information
can improve the multiscale finite element method. In particular, the solution
of the pressure equation at the initial time is used to construct the boundary
conditions for the basis functions. It is interesting to note that the multiscale
finite element methods that employ limited global information reduce to the
standard multiscale finite element method in a flow-based coordinate system.
This can be verified directly and the reason behind it is that we have already
employed limited global information in a flow-based coordinate system.

To achieve a high degree of speedup in two-phase flow computations, we
consider the upscaling of the transport equation in a flow-based coordinate
system. Flow-based coordinate systems simplify the scale interaction and allow
us to perform upscaling of the transport equation. In particular, in a flow-
based coordinate system, the saturation equation becomes one-dimensional
with a varying velocity field along the streamlines. This allows us to use the
perturbation approach and perform upscaling using macrodispersion models.

Extensive numerical studies are presented in [247, 106]. These numeri-
cal tests use the MsFVEM for two-phase flow. Note that global information
is already incorporated into the multiscale basis functions and the standard
MsFVEM is equivalent to the MsFVEM using limited global information in-
troduced earlier. In our simulations, a moving mesh is used to concentrate the
points of computation near the sharp front. Because the saturation equation is
one-dimensional in the pressure–streamline coordinates, the implementation
of the moving mesh is straightforward and efficient. We have presented the
numerical results for different types of heterogeneities. All numerical results
show that one can achieve accurate results with low computational cost.

Multiscale analysis for convection dominated equations

In this section, we consider a systematic upscaling framework for the transport
equation based on multiscale homogenization. In [144], Hou, Westhead, and
Yang introduced a novel multiscale analysis for the two-phase immiscible flows
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in heterogeneous porous media. In particular they derived the homogenized
equations by projecting the fluctuation of saturation onto a suitable subspace.
Furthermore, they demonstrated by extensive numerical experiments that the
upscaling method can accurately capture the multiscale solution of the two-
phase flow. Very recently, Hou and Liang [142] further improved the multiscale
analysis of Hou et al. [144] and developed a systematic multiscale analysis to
upscale convection-dominated transport equations.

To demonstrate the main idea, we consider the following transport equa-
tion which contains a strong convection term and a weak diffusion term

∂Sε

∂t
+ v(x,

x

ε
, t) · ∇Sε = εmdiv(D(x,

x

ε
, t)∇Sε),

where Sε|t=0 = SI(x), m ∈ [2,∞] is an integer, v(x, y, t) and D(x, y, t) are
assumed to be periodic in y = x/ε, and ε characterizes the small scale in the
media, Moreover, we assume that v is oscillatory divergence-free with respect
to the fast variable y; that is divy(v) = 0. The local Peclet number is of order
O(ε−m+1).

Next, we define a null space N , N = {f ∈ H1
Y , v ·∇yf = 0,∀y ∈ Y } ⊂ L2

Y ,
where L2

Y is the L2 space of periodic functions. This functional space plays
an important role in our multiscale analysis. We also introduce a range space
W, W = {v · ∇yθ : θ ∈ H1

Y }. In [144], the authors have shown that N and W
form an orthogonal decomposition of L2

Y ; that is

L2
Y = N ⊕W.

Let P be the projection H1
Y → N . Define the projection Q: L2

Y → W as

‖g −Q(g)‖ = min
θ∈H1

Y

‖g − v · ∇yθ‖.

As pointed out in [144], P is related to Q via P(g) = g−Q(g), and Q can be
computed by Q(g) = v · ∇yθ, where θ is the solution of

divy(E∇yθ) = v · ∇yg, y ∈ Y, (5.17)

with periodic boundary condition and the matrix is defined by E = vT v whose
(i, j) entry is given by vivj , where v = (v1, v2, v3). Moreover, the projection
operator P is equivalent to the streamline averaging projection operator [144,
142].

Guided by our multiscale analysis, we look for a multiscale expansion of
the concentration in the form

Sε(x, t) = S0(x, x/ε, t) + εS1(x, x/ε, t) +O(ε2),

where Sj (j = 0, 1) are periodic functions of y.
In [142], we showed that the leading-order approximation S0 satisfies the

following homogenized equations
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v · ∇yS0 = 0, (5.18)
∂S0

∂t
+ v · ∇xS0 + v · ∇yw = 0, (5.19)

where w ∈ W, and the initial condition is given by S0|t=0 = SI(x).
Note that there are two equations for S0 given by (5.18) and (5.19), but

there is no evolution equation for w. The equation for w can be derived by
imposing the algebraic constraint (5.18) for S0. The role of w is to enforce
v · ∇yS0 = 0, which is similar to the role that the pressure plays in the
incompressible Navier–Stokes equations. The solution w can be obtained by
solving (5.17). In [144], an effective iterative method was introduced to solve
the degenerate elliptic equation (5.17).

One of the main contributions of [142] is to show that the homogenized
equations (5.18) and (5.19) are well-posed and obtain an optimal error esti-
mate

‖Sε(x, t) − S0(x,
x

ε
, t)‖L2 ≤ Cε.

We now decompose c0 and v into the sum of their average and fluctua-
tion, S0(x, y, t) = S0(x, t) + S′

0(x, y, t), v(x, y, t) = v(x, t) + v′(x, y, t), where
f(x, t) =

∫
Y
f(x, y, t)dy. It is easy to show that S0 and S′

0 satisfy the following
equations

∂S0

∂t
+ v · ∇xS0 + v′ · ∇xS′

0 = 0, (5.20)

∂S′
0

∂t
+ v · ∇xS

′
0 + v′ · ∇xS0 + v′ · ∇xS

′
0 − v′ · ∇xS′

0 + v · ∇yw = 0.

We remark that the term v′ · ∇xS′
0 in (5.20) plays a role similar to the

Reynolds stress term in turbulence modeling. This is the term that introduces
the nonlocal memory effect into the average equation.

The above multiscale analysis has been applied to upscale the saturation in
the two-phase flow in [144]. To solve the coupled elliptic equation for pressure
and the transport equation for saturation, we can use the IMPES method,
where the pressure equation is solved using MsFVEM and then the veloc-
ity approximation is used for upscaling of the transport equation. In [144],
the authors presented many numerical experiments for the immiscible flows
in porous media based on a multiscale analysis similar to the one described
here. They showed that their upscaling method captures both the average
and the small-scale fluctuation very well for permeability fields described us-
ing two-point correlation functions. By using a new reparameterization tech-
nique introduced in [151], we have applied this upscaling method to simulate
more realistic heterogeneous porous media without scale separation or peri-
odic structure in [144].
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5.2.9 Summary

In summary, the main purpose of this section has been to introduce a new
(adaptive) multiscale method for solving the transport equation that arises in
immiscible two-phase flow in porous media. The basic idea is to compute the
global flow on a coarse grid, and map the averaged grid block saturations onto
plausible saturation profiles on a finer subgrid. To enhance the accuracy of the
coarse-grid saturation profile, while at the same time avoiding an upscaling
phase involving, for example, the construction of pseudo-relative permeability
functions, we introduce a numerical scheme for solving the transport equation
on a coarse grid that honors fine-scale structures in the velocity field in a
mathematically consistent manner. Moreover, to capture rapid transitions in
saturation values near propagating saturation fronts accurately, we propose to
include an adaptive component in the algorithm. In the adaptive algorithm,
we solve the saturation locally on a fine grid in transient flow regions. The pro-
posed (adaptive) multiscale method has been analyzed and tested on models
with complex heterogeneous structures. We have also extended and imple-
mented multiscale methods for transport equations on unstructured corner-
point grids (see [6]). In this section, we also discussed a few other approaches
for coarsening transport equations.

5.3 Applications to Richards’ equation

5.3.1 Problem statement

In this section we consider the applications of MsFEMs to Richards’ equation
([236]), which describes the infiltration of water flow into porous media whose
pore space is filled with air and some water. The equation describing Richards’
equation under some assumptions is given by

∂

∂t
θ(p) − div(k(x, p)∇(p+ x3)) = 0 inΩ, (5.21)

where θ(p) is the volumetric water content and p is the pressure. The following
are assumed ([236]) for (5.21): (1) the porous media and water are incompress-
ible; (2) the temporal variation of the water saturation is significantly larger
than the temporal variation of the water pressure; (3) the air phase is infinitely
mobile so that the air pressure remains constant (in this case it is atmospheric
pressure which equals zero); and (4) neglect the source/sink terms.

Constitutive relations between θ and p and between k(x, p) and p are devel-
oped appropriately, which consequently gives nonlinearity behavior in (5.21).
The relation between the water content and pressure is referred to as the mois-
ture retention function. The equation written in (5.21) is called the coupled-
form of Richards’ equation. This equation is also called the mixed form of
Richards’ equation, due to the fact that there are two variables involved in
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it, namely, the water content θ and the pressure head p. Taking advantage of
the differentiability of the soil retention function, one may rewrite (5.21) as
follows

C(p)
∂

∂t
p− div(k(x, p)∇(p+ x3)) = 0 inΩ, (5.22)

where C(p) = dθ/dp is the specific moisture capacity. This version is referred
to as the head-form (h-form) of Richards’ equation. Another formulation of
the Richards’ equation is based on the water content θ,

∂

∂t
θ − div(D(x, θ)∇θ) − ∂k

∂x3
= 0 inΩ, (5.23)

where D(θ) = k(θ)/(dθ/dp) defines the diffusivity. This form is called the
θ-form of Richards’ equation.

The sources of nonlinearity of Richards’ equation come from the moisture
retention and relative hydraulic conductivity functions, θ(p) and k(x, p), re-
spectively. Reliable approximations of these relations are in general tedious
to develop and thus also challenging. Field measurements or laboratory ex-
periments to gather the parameters are relatively expensive, and furthermore,
even if one can come up with such relations from these works, they will be
somehow limited to the particular cases under consideration.

Perhaps the most widely used empirical constitutive relations for the mois-
ture content and hydraulic conductivity is due to the work of van Genuchten
[131]. He proposed a method of determining the functional relation of rela-
tive hydraulic conductivity to the pressure head by using the field observation
knowledge of the moisture retention. In turn, the procedure would require
curve-fitting to the proposed moisture retention function with the experimen-
tal/observational data to establish certain parameters inherent to the resulting
hydraulic conductivity model. There are several widely known formulations
of the constitutive relations: the Haverkamp model

θ(p) =
α (θs − θr)
α+ |p|β + θr, k(x, p) = ks(x)

A

A+ |p|γ ;

van Genuchten model [131]

θ(p) =
α (θs − θr)

[1 + (α|p|)n]m
+θr, k(x, p) = ks(x)

{
1 − (α|p|)n−1 [1 + (α|p|)n]−m

}2

[1 + (α|p|)n]m/2
;

exponential model [268]

θ(p) = θs eβp, k(x, p) = ks(x) eαp.

5.3.2 MsFVEM for Richards’ equations

The spatial field ks(x) in the above models is also known as the saturated hy-
draulic conductivity. It has been observed that the hydraulic conductivity has
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a broad range of values, which together with the functional forms presented
above confirm the nonlinear behavior of the process. Furthermore, the water
content and hydraulic conductivity approach zero as the pressure head goes
to very large negative values. In other words, the Richards’ equation has a
tendency to degenerate in a very dry condition, that is conditions with a large
negative pressure. Because we are interested in mass conservative schemes, fi-
nite volume formulation (3.13) of the global problem instead of finite element
formulation is used. For (5.21), it is to find ph ∈Wh such that
∫

Vz

(θ(ηph) − θn−1) dx−Δt
∫

∂Vz

k(x, ηph)∇pr,h · nds = 0, ∀z ∈ Z0
h, (5.24)

where θn−1 is the value of θ(ηph) evaluated at time-step n− 1, and pr,h ∈ Ph

is a function that satisfies the boundary value problem:

−div(k(x, ηph)∇pr,h) = 0 in K,

pr,h = ph on ∂K.

Here Vz is the control volume surrounding the vertex z ∈ Z0
h and Z0

h is the
collection of all vertices that do not belong to the Dirichlet boundary (see
Section 3.2).

MsFEM (or MsFVEM) offers a great advantage when the nonlinearity and
heterogeneity of k(x, p) are separable; that is

k(x, p) = ks(x) kr(p). (5.25)

In this case, as we discussed earlier, the local problems become linear and the
corresponding Ph is a linear space; that is we may construct a set of basis
functions {φz}z∈Z0

h
(as before) such that they satisfy

−div(ks(x)∇φz) = 0 in K,

φz = φ0
z on ∂K,

where φ0
z is a piecewise linear function. We note that if ph has a discontinuity

or a sharp front region, then the multiscale basis functions need to be updated
only in that region. The latter is similar to the use of MsFEM in two-phase
flow applications. In this case the basis functions are only updated along the
front. Now, we may formulate the finite-dimensional problem. We want to
seek pr,h ∈ Ph with pr,h =

∑
z∈Z0

h
pzφz such that

∫

Vz

(θ(ηph) − θn−1) dx−Δt
∫

∂Vz

ks(x) kr(ηph)∇pr,h · nds = 0,

for every control volume Vz ⊂ Ω. To this equation we can directly apply the
linearization procedure described in [133]. Let us denote

rm = pm
r,h − pm−1

r,h , m = 1, 2, 3, ..., (5.26)
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where pm
r,h is the iterate of pr,h at the iteration level m. Thus, we would like

to find rm =
∑

z∈Z0
h
rmz φz such that for m = 1, 2, 3, ... ‖rm‖ ≤ δ with δ being

some pre-determined error tolerance
∫

Vz

C(ηpm−1
h ) rm dx−Δt

∫

∂Vz

ks(x) kr(ηpm−1
h )∇rm · nds = Rh,m−1,

with

Rh,m−1 = −
∫

Vz

(θ(ηpm−1
h )−θn−1) dx+Δt

∫

∂Vz

ks(x) kr(ηpm−1
h )∇pm−1

r,h ·nds.

(5.27)
The superscript m at each of the functions means that the corresponding
functions are evaluated at an iteration level m.

5.3.3 Numerical results

We present several numerical experiments that demonstrate the ability of the
coarse models presented in the previous subsections. The coarse models are
compared with the fine model solved on a fine mesh. We have employed a
finite volume difference to solve the fine-scale equations. This solution serves
as a reference for the proposed coarse models. The problems that we consider
are typical water infiltration into an initially dry soil. The porous media that
we consider is a rectangle of size L1×L2 (see Figure 5.8). The fine model uses
256×256 rectangular elements, and the coarse model uses 32×32 rectangular
elements.

Γ
L

Γ
R

Γ
B

Γ
T

L 1

L 2

Fig. 5.8. Rectangular layout of porous media.

A realization of the hydraulic conductivity field ks(x) is generated using
geostatistical package GSLIB ([85]). We have used a spherical variogram with
prescribed correlation lengths (l1, l2) and the variance (σ) for this purpose.
All examples use σ = 1.5.



116 5 Applications of multiscale finite element methods

The first problem is a soil infiltration, which was first analyzed by
Haverkamp (cf. [64]). The porous media dimension is L1 = 40 and L2 = 40.
The boundary conditions are as follows. ΓL and ΓR are impermeable, and
Dirichlet conditions are imposed on ΓB and ΓT , namely pT = −21.7 in ΓT ,
and pB = −61.5 in ΓB . The initial pressure is p0 = −61.5. We use the
Haverkamp model to construct the constitutive relations. The related param-
eters are α = 1.611 × 106, θs = 0.287, θr = 0.075, β = 3.96, A = 1.175 × 106,
and γ = 4.74. For this problem we assume that the nonlinearity and hetero-
geneity are separable, where the latter comes from ks(x) with ks = 0.00944.
We assume that appropriate units for these parameters hold. There are two
cases that we consider for this problem, namely the isotropic heterogeneity
with l1 = l2 = 0.1, and the anisotropic heterogeneity with l1 = 0.01 and
l2 = 0.20. For the backward Euler scheme, we use Δt = 10. Note that the
large value of Δt is due to the smallness of ks (average magnitude of the dif-
fusion). The comparison is shown in Figures 5.9 and 5.10, where the solutions
are plotted at t = 360.

The second problem is a soil infiltration through porous media whose di-
mension is L1 = 1 and L2 = 1. The boundary conditions are as follows.
ΓL and ΓR are impermeable. Dirichlet conditions are imposed on ΓB with
pB = −10. The boundary ΓT is divided into three parts. On the middle part,
a zero Dirichlet condition is imposed, and the rest are impermeable. We use
the exponential model to construct the constitutive relations. with the fol-
lowing related parameters: β = 0.01, θs = 1, ks = 1, and α = 0.01. The
heterogeneity comes from ks(x) and α(x). Clearly, for this problem the non-
linearity and heterogeneity are not separable. Again, isotropic and anisotropic
heterogeneities are considered with l1 = l2 = 0.1 and l1 = 0.20, l2 = 0.01,
respectively. For the backward Euler scheme, we use Δt = 2. The comparison
is shown in Figures 5.11 and 5.12, where the solutions are plotted at t = 10.

We note that the problems that we have considered are vertical infiltration
on the porous media. Hence, it is also useful to compare the cross-sectional
vertical velocity that will be plotted against the depth z. Here, the cross-
sectional vertical velocity is obtained by taking an average over the horizontal
direction (x-axis).

Figure 5.13 shows comparison of the cross-sectional vertical velocity for
the Haverkamp model. The average is taken over the entire horizontal span
because the boundary condition on ΓT (and also on ΓB) is all Dirichlet con-
dition. Both plots in this figure show a close agreement between the fine
and coarse models. For the exponential model, as we have described above,
there are three different segments for the boundary condition on ΓT ; that is a
Neumann condition on the first and third part, and a Dirichlet condition on
the second/middle part of ΓT . Thus, we compare the cross-sectional vertical
velocity in each of these segments separately. Figure 5.14 shows the compar-
ison for one of these segments. The agreement between the coarse-grid and
fine-grid calculations is excellent.
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Fig. 5.9. Haverkamp model with isotropic heterogeneity. Comparison of water pres-
sure between the fine model (left) and the coarse model (right).

Fig. 5.10. Haverkamp model with anisotropic heterogeneity. Comparison of water
pressure between the fine model (left) and the coarse model (right).

Fig. 5.11. Exponential model with isotropic heterogeneity. Comparison of water
pressure between the fine model (left) and the coarse model (right).
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Fig. 5.12. Exponential model with anisotropic heterogeneity. Comparison of water
pressure between the fine model (left) and the coarse model (right).
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Fig. 5.13. Comparison of vertical velocity on the coarse grid for Haverkamp model:
isotropic heterogeneity (left) and anisotropic heterogeneity (right).

5.3.4 Summary

In summary, the main goal of this section has been to apply MsFEMs to
Richards’ equations described by nonlinear parabolic equations. In particular,
the MsFVEM for nonlinear problems developed in Section 3.2 is used for
solving Richards’ equation on the coarse grid. We presented numerical results
for various heterogeneous hydraulic conductivity fields. Our numerical results
show that MsFEMs can be used with success in predicting the solution on the
coarse grid.
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Fig. 5.14. Comparison of vertical velocity on the coarse grid for exponential model:
isotropic heterogeneity (left) and anisotropic heterogeneity (right). The average is
taken over the second third of the domain.

5.4 Applications to fluid–structure interaction

5.4.1 Problem statement

MsFEMs can also be used to solve complex multiphysics problems. In this
section, we extend the MsFEM to solving a fluid–structure interaction (FSI)
problem on the coarse grid. At the fine scale, we consider Stokes flow past
an elastic skeleton. Thus, our domain Ω has two parts: a fluid domain Ωf

0

and a solid domain Ωs
0. The subscript 0 indicates that these are the domains

of the two constituents (solid and fluid) at rest. As macroscopic boundary
conditions are applied, the fluid starts to flow, thus exerting forces on the
solid, causing them to deform. As a steady state is achieved the fluid flows
in a domain Ωf = Ω \ Ωs, and the forces that the fluid exerts on the solid
at their interface Γ =

(
∂Ωf ∩ ∂Ωs

)
\ ∂Ω are balanced by the elastic stresses

inside the solid. The precise formulation of the FSI problem is:

Γ ={X + u(X)|∀X ∈ Γ0}, (5.28)

− μΔv + ∇p = b in Ωf , div(v) = 0 in Ωf , v = 0 on Γ, (5.29)
− div(S(E)) = b0 in Ωs

0, (5.30)

det(∇u+ I)(−pI + 2μD(x(X))) (∇u+ I)−T
n0 = S(E)n0 on Γ0.

(5.31)

Note that Γ is the set of points X + u(X). The above equation utilizes
the standard notation from continuum mechanics. The deformation gradi-
ent F (X) = ∇x(X), the displacements in the solid u(X) = x(X) − X, the
infinitesimal strain E(X) = 1

2

(
∇u(X) + ∇u(X)T

)
, the fluid velocity v(x)

and, finally, the symmetric part of its gradient D(x) = 1
2

(
∇v(x) + ∇v(x)T

)
.

Furthermore, the usual Cauchy stress tensor is denoted by T (x), which is the



120 5 Applications of multiscale finite element methods

1 mm1 mm

Macroscopic discretization Microscopic R V E

1 mm1 mm

Macroscopic discretization Microscopic R V E

Fig. 5.15. Schematic of nonlinear MsFEM for FSI. The microstructure shown is an
actual sample of porous shape memory alloy [172].

convenient stress measure when describing the fluid. Observe that Cauchy
stress tensor is a spatial field, defined on the deformed configuration of the
body. For the solid part, the first Piola-Kirchhoff stress tensor S(X) is more
appropriate as it gives a description of the stresses in Lagrangian coordinates.
The two are related by the identity (see, e.g., [157]):

S(X) = det(F (X))T (x(X))F−T (X). (5.32)

In the above formulation of the FSI system the constitutive equation for the
Piola-Kirchoff stress S is left unspecified. It has to be specified taking into
account the particular solid at hand (see [157] for details). In our numerical
examples, the linear elasticity model will be used; that is S(E) = C : E. We
refer, for example, to [158, 232] for full details on deriving the FSI problem.

Observe that the position of the interface is a part of the boundary value
problem, and the solid–fluid coupling term (5.31) is nonlinear in u. Therefore,
the FSI problem is nonlinear, even when the constitutive equation for the
solid is a linear one.

5.4.2 Multiscale numerical formulation

The mapping EMsFEM , which couples the coarse scale pressure p0 and dis-
placements u0 to the fine-scale fluid velocity v, pressure p and displacements
u is defined through the fine-scale FSI problem (5.28)-(5.31). In our problem,
we use RVE for local computations (see Figure 5.15 for the illustration1).
Note that EMsFEM defines a map from a coarse-scale solution {ph, uh} with
given Γ0 to a fine-scale approximation {pr,h, vr,h, ur,h} via the local solution of
(5.28)-(5.31). Various boundary conditions can be chosen for local problems.
In our simulations, we use periodic boundary conditions such that the spatial
averages of pr,h and ur,h are the same as those for ph and uh. In general, one
can also take ph and uh as boundary conditions. In the computation of the lo-
cal FSI solution with given ph, uh and the reference interface Γ0, one solves an

1 The right figure is the courtesy of the Shape Memory Alloy Research Team
(SMART) at Texas A & M University
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iterative problem. We assume that this iterative problem converges and pro-
vides a unique fine-scale solution {pr,h, vr,h, ur,h}. This condition guarantees
that EMsFEM is a single-valued map.

Next, we discuss the coarse-scale formulation of the problem. In coarse-
scale simulations, our goal is to find approximations of p0 and u0, denoted
by ph and uh. When substituting (pr,h, vr,h, ur,h) (given ph and uh) into the
fine-scale equations, one needs to solve the resulting system on the coarse-
dimensional space. There are various approaches as discussed earlier (see
Section 2.4). In particular, one can multiply the fine-scale residual by coarse-
scale test functions, or minimize the residual at some coarse points, or use
coarse-scale equations when available. These procedures result in a nonlinear
equation for finding (ph, uh)

G(ph, uh) = 0, (5.33)

where G is the reduced variational formulation. This equation is solved via a
fixed-point iteration. Here, we consider a simple, physically intuitive, iterative
method. In particular, we assume that the coarse-scale equation for the pres-
sure is given by the Darcy equation (see (1.1)) and the coarse-scale equation
for the elasticity has the same form as the underlying fine-scale equations,
but with upscaled elastic properties that are computed based on local RVE
computations. We carry out numerical simulations iteratively. Given pn

h and
un

h at the nth iteration, pn
r,h, vn

r,h, and un
r,h are computed. This is done by

using a local problem in RVE as described above. This step involves the so-
lution of the elasticity problem and yields new pore geometry based on the
deformations. Furthermore, taking into account local geometry of the pore
space, the permeabilities kn and upscaled elastic properties are computed via
standard cell problems (e.g., [240, 42]). Once the permeabilities are computed,
the global problem

div(kn(x)∇pn+1) = f

is solved and pn+1
h (finite element projection of pn+1) is calculated. Similarly,

un+1
h is computed by solving elasticity equation with upscaled elastic proper-

ties (e.g., C∗ for linear solids). This iterative procedure can be summarized in
Algorithm 5.4.1. Modifications of this algorithm are presented in [232].

Algorithm 5.4.1 Iterative homogenization of strongly coupled FSI problem

• Initialize all micro- and macro-fields to zero.
• Project pn

h and un
h using EMsFEM .

• Evaluate the permeability and elastic properties in a coarse-grid block that
involves the computation of the deformed pore geometry.

• Compute macroscopic quantities pn+1
h and un+1

h .
• Check for convergence and, if necessary, return to Step 2.
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In the numerical examples, we consider flow past elastic obstacles. The
fluid surrounds the obstacles and the obstacles are supported rigidly in their
center. Note that the rigid support is necessary, otherwise the flow will move
them. Observe also that in 2D either the fluid or the solid domains can be
connected, but not both. Therefore, to study upscaling of deformable porous
media the solid domain has to be disconnected, so that the fluid can flow
throughout the domain and interact with the solid. This simplification allows
us to formulate a coarse-scale equation for the macroscopic pressure p0 only,
and thus, EMsFEM is defined for a given ph.

5.4.3 Numerical examples

In the numerical examples, we consider flow past a 2D periodic arrangement
of elastic obstacles (Figure 5.16). The obstacles are, in the reference configura-
tion, circular and centered in the middle of a square unit cell (Figure 5.16(a)).
The macroscopic domain is assumed periodic (with the period size ε) in the
reference configuration and we consider a series of macroscopic domains with
ε−1 = 4, 8, 16, .... The case ε = 1/16 is shown in Figure 5.16(b).

Fluid

Elastic Solid

Rigid support

Fluid

Elastic Solid

Rigid support

(a) Unit cell

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b) Macroscopic domain

Fig. 5.16. The unit cell (a) consists of circular linear elastic material, surrounded
by the fluid. The elastic media is supported rigidly in the center. The unit cell is
arranged periodically to form the macroscopic domain. (b) Macroscopic domain with
a 16 × 16 periodic arrangement of the unit cell (a).

The elastic material under consideration is linear and isotropic with
Young’s modulus E = 1.44 and Poisson’s ratio ν = 0.1. The fluid has vis-
cosity 0.1. These non-dimensional properties are selected such that a pressure
in the range 0.1−0.5 will produce a sizeable deformation in the solid and lead
to strongly coupled FSI problems.

The main objectives of this example are to demonstrate the behavior of
the iterative Algorithm 5.4.1. There are two main questions that need to be



5.4 Applications to fluid–structure interaction 123

illuminated: first, whether the nonlinear iteration converges, and second, the
approximation that Algorithm 5.4.1 provides to the fine-scale solution of the
FSI problem needs to be investigated with respect to the scale parameter ε.

The boundary value problem is thus designed to meet both of these goals.
The macroscopic domain is the unit square (Figure 5.16(b)) and a uniform
pressure Pl is applied at the left side of the domain. The pressure at the
right side is 0 and no-flow boundary conditions are considered at the top and
bottom sides of the domain. These boundary conditions imply the fine-scale
solution is periodic in the x2-direction with the period being one horizontal
strip of (1/ε) unit cells. Also, the averaged macroscopic quantities are essen-
tially one-dimensional. This very simple boundary value problem is selected to
allow direct numerical simulations (DNS) of the fine-scale solution to the FSI
problem. A DNS is computationally very intensive both in memory consump-
tion and CPU time. However, with the selected boundary conditions, a DNS
can be performed on a single strip of unit cells and then periodically repeated
in the x2-direction. This leads to a factor of 1/ε reduction in computational
effort and allows us to compute the DNS solution on a series of domains with
ε−1 = 4, 8, 16, 32, 64.

We perform a series of computations with Pl = 0.1 and Pl = 0.2. The first
observation is that Algorithm 5.4.1 in fact behaves as a contraction operator
and converges. The approximate upscaled pressure is plotted in Figure 5.17.
Because, as already discussed, the upscaled pressure does not vary in the
x2 due the boundary conditions, the plot is a cross-section of the upscaled
pressure at a fixed location x2 = const. The number of iterations it took for
Algorithm 5.4.1 to reach a relative accuracy of ×10−6 is reported in Table 5.1.
Based on the results it is seen that the algorithm behaves as a contraction

Table 5.1. Performance of Algorithm 5.4.1. Listed are the iteration number it took
Algorithm 5.4.1 to converge as well as the error between the ”exact” DNS and the
MsFEM (fine-scale) solution for fine-scale displacements.

ε Pl = 0.1
Iterations L∞ Error L∞ Rel. Error L2 Error L2 Rel. Error

1/4 6 1.23 × 10−3 0.18 2.48 × 10−4 0.23
1/8 6 3.18 × 10−4 0.10 4.39 × 10−5 0.13
1/16 6 8.07 × 10−5 0.053 7.75 × 10−6 0.069
1/32 6 2.03 × 10−5 0.027 1.37 × 10−6 0.0351

Pl = 0.2
Iterations L∞ Error L∞ Rel. Error L2 Error L2 Rel. Error

1/4 8 2.96 × 10−3 0.22 4.93 × 10−4 0.22
1/8 8 7.94 × 10−4 0.126 8.78 × 10−5 0.127
1/16 8 2.06 × 10−4 0.068 1.56 × 10−5 0.067
1/32 8 5.25 × 10−5 0.035 2.75 × 10−6 0.034
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Fig. 5.17. Comparison of coarse-scale pressure profiles at x2 = 0.5.

operator and the number of iterations is independent of the length scale ε. The
same table also lists the comparisons of the DNS solution with the projected
fine-scale displacements (via the mapping EMsFEM ). Based on the error be-
tween the DNS displacements and the fine-scale displacements obtained via
the MsFEM, it is seen that the method is convergent in terms of ε. The actual
convergence rate requires a detailed theoretical analysis which is reported in
[232]. [232].

5.4.4 Discussions

In this section, the application of nonlinear MsFEM to complex multiphysics
problems was studied. Here, our goal was simply to discuss an application
of the MsFEM to FSI problems and we did not discuss many other existing
methods (e.g., [141, 123, 123, 174]). Note that the governing equations do not
have elliptic or parabolic forms such as those discussed in Chapter 3, but the
general concept of MsFEMs (see Section 2.4) can be applied for solving such
systems.

5.5 Applications of mixed MsFEMs to reservoir
modeling and simulation (by J. E. Aarnes)

Reservoir simulation — the modeling of flow and transport of hydrocarbons
in oil and gas reservoirs — is perhaps the most widely considered applica-
tion in the literature on numerical models for porous media flow. In fact,
numerical reservoir simulation has a history that goes back to the early days
of the computer. Due to constraints on computational capability, reservoir
simulation has been performed on very coarse models with limited spatial
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(a) Fine-scale solution

(b) First-order corrector ur,h

(c) Error between fine-scale solution and ur,h

Fig. 5.18. Displacements in a typical solution to the model problem. The macro-
scopic domain has 8 × 8 unit cells, and due to periodicity in the x2-direction, only
one horizontal row of unit cells is shown. The exact fine-scale displacements (a) can
be compared with the first-order corrector (b). The difference between the two is
shown in (c).

resolution. However, the current trend in geomodeling – the process of devel-
oping a conceptual geological description of the reservoir – is to build detailed
high-resolution models that match as closely as possible the geologists’ per-
ception of the reservoir. As a result, there is a steadily increasing gap between
the size of the geological model built by geologists, and the model used for
reservoir simulation. The reservoir simulation model is normally obtained by
coarsening or upscaling the geological model.

As an alternative to upscaling it has been suggested that multiscale meth-
ods can be used to run simulations directly on geological models. To this end
it is generally assumed that the fine and coarse grids overlap such that each
block in the coarse grid simply consists of a number of cells from the under-
lying fine grid. This means that one can perform the coarsening of the grid in
index space rather than in physical space, and thereby significantly simplify
the process of generating the coarse grid. In particular, one avoids the practi-
cal problems of resampling nonoverlapping cells/blocks in the fine/coarse grid
that are traditionally associated with upscaling.

In this section we make an effort to demonstrate some applications where
multiscale flow solvers used in combination with various methods for fast
computation of fluid transport may spur new ways of using flow information
as part of reservoir planning and management. In particular, we demonstrate
how the multiscale methods can be used to
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• Accelerate the solution of the pressure equation in three-phase black oil
reservoir simulation models (and retain the solution accuracy).

• Provide very rapid estimation of production characteristics on flow-grids
that are tuned to reservoir flow patterns.

• Almost instantly estimate injector–producer pairs and swept volumes.

The simulations were performed in Matlab on a desktop computer with a dual
AMD Athlon X2 4400+ processor with 1 MB cache and 2 GB memory.

5.5.1 Multiscale method for the three-phase black oil model

The mixed MsFEM discussed before, which was first introduced by Chen
and Hou [71], has later been modified in a sequence of papers [1, 11, 13,
12] to handle the geometric and physical complexity of real-field reservoir
models. For instance, whereas the original method was developed for solving
elliptic problems on Cartesian grids, the most recent version [12] is designed
for solving the parabolic pressure equation of three-phase black oil models
on real-field corner-point grids with faults. The three-phase black oil model
describes the flow of an aqueous phase (a), usually water, a liquid phase (l)
containing oil and liquefied gas, and a vapor phase (v) containing gas and
vaporized oil. The pressure equation for the three-phase black oil model may
be expressed on the following form:
⎛

⎝∂φpor

dpl
+ φpor

∑

j

cjSj

⎞

⎠ ∂pl

dt
+ ∇ ·

⎛

⎝
∑

j

vj

⎞

⎠+
∑

j

cjvj · ∇pl = q, (5.34)

where pl is liquid pressure, φpor is porosity, vj , cj and Sj are phase veloc-
ities, compressibilities, and saturations, respectively, and q is a volumetric
source term. The phase velocities are related to the phase pressures pj through
Darcy’s law:

vj = −kkrj

μj
(∇pj + ρjge3) , j = a, l, v. (5.35)

Here ρj is the density of phase j, g is the magnitude of acceleration of gravity,
e3 is the unit normal pointing vertically upwards, k is the absolute perme-
ability, and krj and μj are the relative permeability and viscosity of phase j,
respectively. See [12] for the definition of the phase compressibilities.

When applied to the three-phase black oil model the mixed MsFEM ap-
proximates the liquid pressure pl and the total velocity v =

∑
j vj in finite-

dimensional subspaces defined over the coarse grid. Recall that the pressure is
approximated in a regular mixed finite-element space consisting of functions
that are constant on each coarse block, and the velocity is approximated in
a special multiscale space spanned by special multiscale basis functions that
correspond to localized solutions of the pressure equation with a prescribed
direction of flow; see [1, 13]. Given these basis functions, the mixed MsFEM
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finds the best linear superposition (in a certain sense) under the constraint
that the velocity field is mass conservative on the coarse scale. Moreover, if
the local flow solutions are mass conservative on the fine grid, then so will the
global mixed MsFEM solution be.

To perform a reservoir simulation using the mixed MsFEM one proceeds
as follows.

1. Introduce a coarse grid, for instance, by partitioning in index space as
seen in Figure 2.10.

2. Detect all pairs of adjacent blocks.
3. For each pair, compute a velocity basis function.
4. Start simulation, for each time-step, do

a) Assemble and solve the coarse-grid system.
b) Recover fine-grid velocities/fluxes.
c) Solve the fluid-transport equations.

For increased stability, one may iterate on solving the pressure and transport
equations before advancing to the next time-step and thereby obtain a fully
implicit method [183]. Similarly, for cases with strong displacement fronts, one
may also update a few basis functions throughout the simulation to account
more accurately for a strong saturation dependence; see [1, 167].

To illustrate the accuracy of the multiscale solutions, we consider a two-
dimensional test-case modeling layer 68 from model 2 of the SPE comparative
solution project [78], henceforth called the SPE 10 model. This particular
layer is known to be a very difficult model, (see, e.g., [167]). The simulations
start with 0.4 PVI of gas injection followed by 0.6 PVI of water injection.
The reservoir is initially filled with 5% gas and 95% oil, four injection wells
constrained to inject at 300 bar are located at each corner, and one rate-
constrained production well is located in the middle.

We consider both the mixed MsFEM in [13] and the corresponding method
using limited global information to define the multiscale basis functions. The
fine grid is a 60-by-220 Cartesian grid and the coarse grid for the mixed
MsFEM is defined to be a 5-by-11 Cartesian grid. Accuracy of the mixed
MsFEM solutions is assessed by comparing the water-cut (fraction of water in
produced fluid) and gas-cut (fraction of gas in produced fluid) curves obtained
using a mixed MsFEM with the corresponding curves obtained by solving the
pressure equation on the fine grid using a mimetic finite difference method
(FDM) [177, 41]. The latter solution is referred to as the reference solution.
In all simulations the saturation equations are solved on the fine grid.

Figure 5.19 shows the logarithm of permeability, magnitude of velocity at
initial time, and water-cut and gas-cut as functions of PVI (pore volume in-
jected). Although there are certain differences between log |v| computed using
a mixed MsFEM (without limited global information) and the fine-grid solu-
tion depicted in Figure 5.19(b), we see that the mismatch has limited influence
on the production curves. Indeed, even with a coarse grid with only 55 blocks
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the mixed MsFEM produces water-cut and gas-cut curves that match the ref-
erence solution closely. This demonstrates that the mixed MsFEM captures
the main flow characteristics.

(a) Logarithm of permeability (b) log |v| computed using mimetic
FDM on fine grid

(c) log |v| computed using mixed
MsFEM on coarse grid

(d) log |v| computed using mixed
MsFEM with limited global in-
formation

(e) Water saturation at 0.6 PVI
computed using mimetic FDM
on fine grid

(f) Gas saturation at 0.6 PVI com-
puted using mimetic FDM on
fine grid

(g) Water saturation at 0.6 PVI
computed using mixed MsFEM

(h) Gas saturation at 0.6 PVI com-
puted using mixed MsFEM

(i) Water saturation at 0.6 PVI
computed using mixed MsFEM
with limited global information

(j) Gas saturation at 0.6 PVI
computed using mixed MsFEM
with limited global information

Fig. 5.19. Velocity solutions at initial time and saturation profiles at 0.6 PVI.
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(a) Simulations on layer 68 from the
SPE10 model

(b) Simulations on layers 81–85 from the
SPE10 model

Fig. 5.20. Water-cut and gas-cut for simulations on a two-dimensional model (layer
68 from SPE 10) and a three-dimensional model (layers 81–85 from SPE10).

When solving the pressure equation on the fine grid using the mimetic
FDM the time spent on solving the pressure equation stands for 86% of the
computation time. In the multiscale simulations, on the other hand, the time
spent on solving the saturation equations dominates the computation time
(54%). With our current Matlab implementation the multiscale simulations
run seven times faster than the fine-grid simulation. On larger models the
difference will generally be more substantial because the computational com-
plexity of the mixed MsFEM scales linearly with the model size. Moreover,
the mixed MsFEM is very easily parallelized: the assembly of the coarse-grid
system, which accounts for nearly 100% of the computation time, is called
embarrassingly parallel, and perfectly suited for the multicore computers and
distributed memory computing platforms. A further reduction in the com-
putation time spent on solving the pressure equation, or alternatively an in-
crease in model size, can therefore easily be achieved with parallel computing
resources. However, to reduce the total computation time further one should
also consider alternative strategies for solving the saturation equations.

Our numerical results show that mixed MsFEMs using limited global in-
formation give two-fold improvement in water and gas saturation errors when
single-phase flow information is used in the construction of multiscale basis
functions as discussed in Section 4.2. These results will be reported elsewhere.

5.5.2 Adaptive coarsening of the saturation equations

For large problems solving the saturation equations on the fine grid with a
finite difference method may not be feasible, or may become a bottleneck. An
alternative is to employ streamline methods [83] that advect the fluid phases
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along one-dimensional trajectories tangential to the velocity. These methods
are generally very fast provided large time-steps between each pressure step
can be taken. But it is also natural to ask if it is possible to exploit fine-grid
velocity resolution in a multiscale type approach for the saturation equation.
However, modeling the flow and transport accurately on coarse grids is diffi-
cult due to the dynamic nature of coarse-grid relative permeability functions
[37] and the need to capture sharp propagating fronts. Fortunately, recent
work [9] shows that one can model the main flow characteristics on relatively
coarse grids without using pseudo-functions provided the coarse grid adapts
to the local heterogeneity and resolves the dominant features in the velocity
field (e.g., high-flow channels). In the following, we present an approach for
generating such coarse grids and demonstrate how these grids can be used to
get accurate production data.

Assume that the velocity is modeled on a high-resolution model (e.g., using
the subresolution in mixed MsFEMs), and that it is prohibitively computa-
tionally expensive to solve the saturation equations on the same grid. Thus, we
propose creating an upscaled model only for the saturation equation. This is
done by generating a coarse grid that resolves underlying flow patterns more
accurately than traditional coarse grids used in reservoir simulation. These
grids allow us to capture more accurately flow quantities of interest, such as
production characteristics, without resorting to multiphase upscaling.

As for a mixed MsFEM, we use the term block to denote a cell in the
coarse grid to distinguish it from a cell in the fine grid. The coarsening strat-
egy presented in [9], henceforth called the nonuniform coarsening algorithm,
is essentially based on grouping cells according to flow magnitude. The al-
gorithm involves two parameters that determine the degree of coarsening: a
lower bound Vmin on the volume of each block and an upper bound Gmax on
total amount of flow through each block. These parameters are selected to
give the desired resolution of the saturation. A general rule for how to select
the parameters is given in [9].

The steps in the nonuniform coarsening algorithm are as follows:

1. Use the logarithm of the velocity magnitude in each cell to segment the
cells in the fine grid into ten different bins; that is, each cell c is assigned
a number n(c) = 1, . . . , 10 by upper-integer interpolation in the range of
g(c) = 10(log |v(c)|−min log |v|)

max log |v|−min log |v| .
2. Create an initial coarse grid with one block assigned to each connected

collection of cells with the same value of n(c).
3. Merge each block with less volume than Vmin with a neighboring block.
4. Refine each block that has more flow than Gmax.
5. Repeat Step 3 and terminate.

Note that only the saturation equations are discretized on this grid. To this
end, we employ a backward Euler method where the spatial discretization is a
finite volume method that is upstream weighted at the fine-grid level; see [9].
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This implies that we utilize the fine-grid resolution in the velocity field when
solving for saturation on the coarse grid.

Figures 5.21(b)–5.21(d) show the logarithm of a velocity field as a piece-
wise constant function on the fine grid, on a coarse Cartesian grid with 240
blocks, and on a nonuniformly coarsened grid with 236 blocks. If we denote
the reservoir by Ω, and N is the number of cells in the fine grid, then the
nonuniform coarse grid is generated under the constraint that each block B
satisfies

∫

B

dx ≥ 15
N

∫

Ω

dx and
∫

B

log |v|dx ≤ 75
N

∫

Ω

log |v| dx.

We clearly see that the nonuniformly coarsened grid adapts to underlying flow
patterns. In contrast, the channels with high velocity are almost impossible to
detect in Figure 5.21(c). The fact that the coarse grid is capable of resolving
the main flow trends leads to improved accuracy in modeled production char-
acteristics. This is illustrated in Figure 5.21(e) which shows water-cut curves
obtained on the nonuniform coarse grid are closer to the water-cut curve ob-
tained on the fine grid than the water-cut curve obtained on the Cartesian
coarse grid.

The robustness and accuracy of the nonuniform coarsening approach rel-
ative to modeling saturation on uniformly coarsened grids is demonstrated in
a series of numerical examples in [9]. Instead of including further numerical
results here, we only state the main conclusions from [9]:

• Nonuniformly coarsened grids give significantly more accurate water-cut
curves than one obtains using uniformly coarsened grids with a similar
number of blocks.

• It is very easy to select parameters Vmin and Gmax to give a desired level of
upscaling. Moreover, the accuracy of water-cut curves obtained on nonuni-
form coarse grids is nearly insensitive to the degree of upscaling.

• Although the nonuniform coarsening algorithm employs an initial veloc-
ity field, the coarse grid does not have to be regenerated if the flow field
changes significantly, for example, if new wells are opened, or choke set-
tings are altered. This is due to the fact that the nonuniform coarse grid
essentially adapts to high permeable regions with good connectivity.

• The grid needs to be regenerated if the geology is altered significantly. How-
ever, the time spent on generating the coarse grid is usually small relative
to the simulation time. The nonuniform coarsening algorithm therefore
allows grids to be generated at run-time.

Hence, in combination with mixed MsFEM the nonuniform coarsening ap-
proach provides a foundation for a simulation technology that is capable of
selecting grids at run-time and performing simulations in a matter of minutes,
rather than hours or days. This type of simulation time may open up for us-
ing reservoir simulation for operational decision support. In the next section
we discuss how the mixed MsFEM alone may be used to provide flow-based
information that can be used in operational reservoir management workflows.
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(a) Logarithm of permeability. (b) log |v| projected onto the fine grid
(13,200 cells).

(c) log |v| projected onto a grid
with 240 blocks.

(d) log |v| projected onto a nonuniformly
coarsened grid with 239 blocks.

(e) Water-cut curves

Fig. 5.21. Illustration of the nonuniform coarsening algorithm ability to generate
grids that resolve flow patterns and produce accurate production estimates.
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5.5.3 Utilization of multiscale methods for operational decision
support

Reservoir simulation is used today as part of long term strategic planning
(e.g., to predict production, quantify uncertainty, and evaluate the objective
function in history matching). But to our knowledge, it is not common to
utilize reservoir simulations or static flow-based information (for instance, a
snapshot of the reservoir pressure and velocity fields) for operational decision
support. A reason may be that traditional reservoir simulators are built as
black-box tools targeting applications where only the phase saturations and
production data are needed or used. Another reason may be that reservoir
simulation is generally time-consuming and limited to low-resolution models,
or localized high-resolution models. Hence, using reservoir simulation for de-
cision support is not regarded as an option when decisions need to be made
on a daily, hour-by-hour, or minute-by-minute basis.

With state-of-the-art multiscale techniques it is possible to evaluate flow
responses of suggested well locations almost instantly. These techniques can
of course also be used to run very fast reservoir simulations, but to release
the full potential of multiscale methods one should not see them only as tools
to accelerate simulations. Indeed, because multiscale methods can provide
(accurate) information about flow patterns almost instantly, also on large-scale
high-resolution models, they may have a huge potential for improving current
decision support tools and work processes where flow information is not used,
for example, due to too long response-time of conventional simulators. Using
a multiscale solver will be particularly efficient if the flow field needs to be
updated due to small or localized changes in the reservoir parameters, well
configuration, and so on. Then, all that is needed is to update a few local
basis functions to reflect changes in reservoir properties and so on, before the
global flow can be solved very efficiently on a relatively coarse grid in (less
than) a few seconds.

In the following we discuss various ways of using a snapshot of the reservoir
velocity field to extract information that we believe can be valuable in opera-
tional reservoir management. Examples of information that can be extracted
from a snapshot of the velocity field include:

• Injector–producer dependence
• Estimated well-sweep, that is, regions flooded by each injector
• How the flow changes by altering choke settings or inserting new wells
• How the flow is affected by perturbing the geology

One option for utilizing a velocity solution for these applications is to map
streamlines (lines tangential to the velocity). This option is available today
with commercial streamline simulators (e.g., FrontSim and 3DSL) or certain
geomodeling tools (e.g., IRAP). Although streamline tracing scales very well
with model sizes, current methods for solving the flow field do not. Utilizing a
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multiscale pressure solver will improve the scaling dramatically and open up
significantly faster response times or larger model sizes.

For complex reservoirs with strong heterogeneity, many wells, and/or a
large number of faults, streamlines typically form complex intertwined bundles
and it can be difficult for the naked eye to distinguish the different well-sweep
regions. In addition, accurate tracing of streamlines on models with complex
grid geometry is nontrivial. For such cases, it may be more advantageous to
provide information about reservoir partitioning and communication patterns
in terms of volumetric objects that are bounded by surface patches or consist
of a collection of grid cells. In the following, we present means to provide much
of the same information one can extract from a streamline map directly on
the physical grid in a way that is easy to compute and visualize.

Consider two equations of the same form: the time-of-flight equation

v · ∇τ = φpor, τ(∪win
i ) = 0, (5.36)

where win
i denotes injection well i, and the stationary tracer equation

v · ∇ci = 0, ci(win
i ) = 1. (5.37)

Here ci models the eventual concentration of a tracer if released continually
from injection well i, that is, if the injected substance is a unique tracer.

Presuming now that the velocity v is known, the time-of-flight equa-
tion (5.36) and the tracer equations (5.37) can be solved efficiently using an
upstream-weighted discontinuous Galerkin (dG) method [206]. For instance,
to compute the time-of-flight τ using a first-order upstream weighted dG
method, we solve the following system of equations,

∫

∂Ti

τ+v · nds =
∫

Ti

φpor dx, (5.38)

for all cells Ti. Here τ is a cellwise constant function, n is the unit normal
on ∂Ti pointing outward, and τ+ is τ evaluated on the upstream side of each
interface; that is

∫

∂Ti

τ+v · nds =
∑

j

(τ(Ti)max{vij , 0} + τ(Tj)min{vij , 0}) ,

where vij is the flux from Ti to Tj . Using an optimal reordering of the cells,
the discretized system can be cast as a block-triangular system that can be
solved hyperfast [206].

Figure 5.22 shows time-of-flight and stationary tracer distribution for a
case with ten pressure-constrained injection wells - eight along the perimeter
and two in the middle — and six rate-constrained production wells. In the
tracer profile plots the color of a cell corresponds to the tracer with the highest
concentration. We see here that the reservoir is neatly divided into separate
regions. Combining the time-of-flight information with the tracer data (i.e.,
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(a) Logarithm of time-of-flight
distribution

(b) Compartmentalization of reservoir
based on stationary tracer profiles for
each well

(c) Tracer profile with τ ≤ 0.3 PVI (d) Tracer profile with τ ≤ 0.7 PVI

Fig. 5.22. Example of how time-of-flight and stationary tracer profiles can be used
to give a visual picture of flooded regions.

by only coloring cells with τ ≤ T ), we can easily estimate and visualize the
regions that are expected to be flooded at time t = T by a unit displacement
front arising from each injector at time t = 0.

One area where plots of synthetic tracer profiles can be valuable is planning
of new wells, where tracer/time-of-flight data may be used to visually inspect
how adding a new or moving an existing well affects the injector-producer
coupling, breakthrough times, and flooded/drained regions. It is also easy to
add a mathematical measure indicating the quality of a well location. This
may be useful for reservoirs with many wells where it can be difficult to
assess the quality of a potential well location visually. When a new well is
added or a well is moved, the flow field needs to be updated before the tracer
distribution can be computed. Using mixed MsFEM with precomputed basis
functions, this can be performed very efficiently by only updating the basis
functions affected by the change in the given well (one basis function for each
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block the associated well-bore penetrates) and then assembling and solving
the coarse-grid system.

With an implementation in a compiled language one should be able to re-
compute and visualize tracer profiles in a matter of seconds or minutes, also for
large models with a large number of wells. With this type of computation time
one may foresee visual and interactive ways for the early-stage optimization
of the well placement, for example, by using simple trial and error. Optimiza-
tion methods can also be used to semi-automate the selection of well location
candidates. More accurate optimization will of course require more fine-tuned
simulations. Similarly, the visual power of tracer/time-of-flight type data can
be utilized in other workflows, such as ranking of multiple realizations, place-
ments of faults, to reveal regions of interest in an assisted history-matching
approach, and so on.

5.5.4 Summary

We have discussed the application of a multiscale finite element-based simula-
tion technology for three-phase black oil reservoir simulation. In particular, we
have discussed how the multiscale mixed finite element method allows faster
discretization of the pressure equation in reservoir simulation, or simulation
directly on high resolution geomodels.

Computation time/model size when saturation equations are solved with
– Conventional finite difference method: 10–30 times faster/larger
– Streamline methods/cell reordering: 20–100 times faster/larger
– Finite difference method on nonuniformly coarsened grid: 100– times

faster/larger

We have also discussed how using MsFEMs may open up for using flow-based
information for operational decision support, for instance by allowing almost
instant computation and visualization of well-sweep and injector-producer
pairs. Providing tools for rapid computation of this type of flow-based in-
formation can be instrumental in increasing the interactivity and reduce the
turnaround time for various reservoir management workflows. In particular,
to bridge the gap between the geomodel and the simulation model, it may
be necessary that simulation grids and suitable simulation technology can be
selected in a semi-automated manner at run-time to fit response-time require-
ments and available resources.

5.6 Multiscale finite volume method for black oil systems
(by S. H. Lee, C. Wolfsteiner and H. A. Tchelepi)

Most practical reservoir simulation studies are performed using the so-called
black oil model, in which the phase behavior is represented using solubilities
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and formation volume factors. We extend the multiscale finite volume (MsFV)
method to deal with nonlinear immiscible three-phase compressible flow in the
presence of gravity and capillary forces (i.e., black oil model). Consistent with
the MsFV framework, flow and transport are treated separately and differently
using a sequential implicit algorithm. A multiscale operator splitting strategy
is used to solve the overall mass balance (i.e., the pressure equation). The black
oil pressure equation, which is nonlinear and parabolic, is decomposed into
three parts. The first is a homogeneous elliptic equation, for which the original
MsFV method is used to compute the dual basis functions and the coarse-
scale transmissibilities. The second equation accounts for gravity and capillary
effects; the third equation accounts for mass accumulation and sources/sinks
(wells). With the basis functions of the elliptic part, the coarse-scale operator
can be assembled. The gravity/capillary pressure part is made up of an elliptic
part and a correction term, which is computed using solutions of gravity-driven
local problems. A particular solution represents accumulation and wells. The
reconstructed fine-scale pressure is used to compute the fine-scale phase fluxes,
which are then used to solve the nonlinear saturation equations. For this
purpose, a Schwarz iterative scheme is used on the primal coarse grid. The
framework is demonstrated using challenging black oil examples of nonlinear
compressible multiphase flow in strongly heterogeneous formations.

5.6.1 Governing equations and discretized formulation

The standard black oil model has two hydrocarbon phases (i.e., oil and gas)
and one aqueous phase (water) with rock and fluid compressibility, gravity
effects, and capillary pressure. The thermodynamic equilibrium between the
hydrocarbon phases is modeled via the solubility of the gas pseudo-component
in the oil phase. The conservation equations are nonlinear due to the strong
nonlinear character of the relative permeability and capillary pressure rela-
tions, the large gas compressibility, phase appearance and disappearance ef-
fects, and large density and viscosity differences.

The governing equations for the black oil formulation [29] are:

∂

∂t
(φporboSo) = div (boλo (∇po − gρoe3)) − qo, (5.39)

∂

∂t
(φporbwSw) = div (bwλw (∇pw − gρwe3)) − qw, (5.40)

∂

∂t
(φpor (bgSg +RsboSo)) = div (bgλg (∇pg − gρge3)) − qg (5.41)

+ div (Rsboλo (∇po − gρoe3)) −Rsqo,

on the domain Ω, with boundary conditions on ∂Ω. Here, λl = k(x)krl
/μl is

the mobility of phase l, where l = o, w, g (i.e., oil, water, and gas); bl = 1/Bl
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where Bl is the formation volume factor (i.e., ratio of volume at reservoir con-
ditions to volume at standard conditions). Sl, krl

, μl, ρl denote, respectively,
the saturation, relative permeability, viscosity, and density of phase l. The
well volumetric flow rate is ql. The tensor k describes the permeability field,
which is usually represented as a complex multiscale function of space. Poros-
ity is denoted by φpor, pl is the phase pressure, g is gravitational acceleration,
e3 denotes the unit vector along the reservoir depth, and Rs is the solubility
of gas in oil. In general, μl, ρl, Bl, Rs, and φpor are functions of pressure. The
relative permeabilities, krl

, are functions of saturation.
Saturations are constrained by 1 = So + Sw + Sg, and the three phase

pressures pw, po, and pg are related by two independent capillary pressure
functions:

pw − po = pcwo(So, Sg, Sw), pg − po = pcgo(So, Sg, Sw).

We choose the oil phase pressure as the primary variable, p = po. Multiplica-
tion of the semi-discretized equations of (5.39) to (5.41) with

αo =
1
bn+1
o

− Rn+1
s

bn+1
g

, αw =
1
bn+1
w

, and αg =
1
bn+1
g

,

respectively, and summation of the resulting equations gives the pressure equa-
tion:

LBO p
ν+1 = −Cw

Δt
(pν+1 − pν) +RHS1 +RHS2,

where the operator for black oil is defined by

LBO ≡ −
∑

�

α� div
(
λ′

ν
�∇
)

and the right-hand sides are given by

RHS1 = −
∑

�

α� div
(
gρ�λ

′ν
�∇z
)

+
∑

�=w,g

α� div (λ′� · ∇pc�o)
ν

RHS2 =
φn

por

Δt

(
∑

�

α�b
n
� S

n
� + αgR

n
s b

n
oS

n
o

)

−
φν

por

Δt
−
∑

�

α�q
ν
� − αg(Rsqo)ν .

The Cw is a weak function of pressure defined in Lee et al. [175].

5.6.2 Multiscale finite volume formulation

In the multiscale finite volume (MsFV) algorithm introduced in [159, 160,
161], the global (fine-scale) problem is partitioned into primal and dual coarse
volumes as illustrated in Section 2.5.1. A set of basis functions is computed
for each dual volume, and the coarse-scale problem is assembled. Using the
coarse-scale system, the coarse-scale pressure is computed. The same basis
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functions allow for local reconstruction of the fine-scale pressure from the
coarse solution.

The original MsFV algorithm [159] was designed to solve the (elliptic)
pressure equation of incompressible flow in highly heterogeneous formations.
The black oil model, which accounts for compressibility and capillarity, yields
a nonlinear parabolic pressure equation. However, these effects are, in gen-
eral, local in nature, and the pressure equation usually exhibits near-elliptic
behavior. We construct a multiscale algorithm that takes advantage of this
characteristic.

A multiscale, operator splitting approach is used to solve the nonlinear
parabolic overall mass balance equation for the pressure field. Specifically, the
black oil pressure equation is decomposed into three equations, one homoge-
neous and two inhomogeneous. The homogeneous (elliptic) equation is used to
compute the dual basis functions and the coarse-scale transmissibilities. The
first inhomogeneous part, pg, accounts for gravity and capillarity. The second
inhomogeneous equation is solved for the particular solution pp, which ac-
counts for accumulation (i.e., rock and fluid compressibility) and sink/source
terms. Specifically, the black oil pressure equation is decomposed as follows.

LBO p
ν+1
h = 0, (5.42)

LBO p
ν+1
g = RHS1, (5.43)

LBO p
ν+1
p = −Cw

Δt
[(ph + pg + pp)ν+1 − (ph + pg + pp)ν ] +RHS2.(5.44)

Homogeneous pressure solution

The original MsFV method [159] employs locally computed basis functions
(on the fine scale) and a pressure operator on a coarse grid. The fine-scale
pressure field can then be obtained via a reconstruction step. Recently, Lunati
and Jenny [186] presented a MsFV method for compressible multiphase flow.
Their third proposed algorithm is somewhat similar to the scheme presented in
this section; however, we do not use explicitly computed coarse-scale formation
volume factors.

A conforming coarse grid with N nodes and M cells is constructed on
the original fine grid. Each coarse cell Ki

c with i ∈ {1, ...,M} is composed of
multiple fine cells. A dual coarse grid is constructed such that each dual coarse
cell Kj

d, j ∈ {1, ..., N} contains exactly one coarse node. The coarse dual grid
has M nodes, xi (i ∈ {1, ...,M}), each in the interior of a coarse cell Ki

d. Each
dual grid has Nc corners (for a Cartesian grid, four in two dimensions and
eight in three dimensions). A set of dual basis functions, φi

j , is constructed,
one for each corner i of each dual coarse cell Kj

d.
The dual basis functions are used to assemble the coarse-scale transmis-

sibility field for computation of the coarse-scale pressure pc
i . The dual basis

function φi
j , for example, is the local solution of (5.42):
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αo div
(
λ′

ν
o∇φi

j

)
+ αw div

(
λ′

ν
w∇φi

j

)
+ αg div

(
λ′

ν
g∇φi

j

)
= 0 on Kj

d,

where properties from the underlying fine grid (e.g., total mobility) are used.
The boundary conditions are obtained by solving the reduced problems [175],
although one can easily use different boundary conditions as discussed earlier.
Finally, given a coarse-scale solution pc

i , the phase transmissibilities of the
coarse grid can be readily computed from the fluxes across the coarse grid
interface [175].

Inhomogeneous solution: Gravity and capillary pressure

As shown in (5.43), the inhomogeneous solution pg accounts for gravity and
capillary forces. Due to the complexity of the fractional flow function in the
presence of gravity, the potential field cannot be represented by a simple su-
perposition of the basis functions. Lunati and Jenny [187] proposed a method
where pg is split into two parts. The first part is represented by the original
dual basis functions; the second part is a locally computed correction term
that accounts for buoyancy effects. Following their approach, pg can be written
as

pg = pa
g + pb

g =
∑

i

φi
jp

c,i
g + pb

g in Kj
d. (5.45)

Note that within a dual coarse grid, pa
g is represented by a linear combination

of basis functions, weighted by the coarse-scale pressures.
The additional correction term pb

g is obtained using (5.43),

−αo div
(
λ′

ν
o∇pb

g

)
− αw div

(
λ′

ν
w∇pb

g

)
− αg div

(
λ′

ν
g∇pb

g

)

= RHS1 in Kd,
(5.46)

where solutions of reduced problems consistent with (5.46) serve as boundary
conditions. Note that the correction term pb

g is computed with the simple
boundary conditions for the reduced system that is independent of the global
pressure distribution. This particular localization assumption to compute pb

g is
analogous to the one used to construct the dual basis function in the absence
of gravity effects. Lunati and Jenny [187] showed its effectiveness in resolving
the fine-scale structures of complex heterogeneous problems, when buoyancy
plays an important role.

Substitution of (5.45) in (5.43) and applying Green’s theorem to the coarse
operator [187], one can readily show that pb

g acts as an additional source/sink
term in the coarse-scale pressure system.

Particular solution: Mass accumulation and wells

The particular solution pp, governed by (5.44), is used to model sources and
sinks and the effects of compressibility (i.e., fluid accumulation). Accurate
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modeling of wells is crucial for any practical reservoir simulation problem. A
treatment of wells specifically designed for the MsFV method has recently
been proposed by Wolfsteiner, Lee and Tchelepi [259]. The framework allows
for modeling wells that penetrate one or multiple fine cells, and accommo-
dates fixed-rate or fixed-pressure operating conditions. In their approach, the
near-singular pressure distribution around the well is removed by a change of
variables. The well effects are approximated using special basis functions that
are then added to a smoothly varying background solution computed using
the standard MsFV method. Here, we employ a very simple model, where
wells are represented only on the coarse grid. The corresponding fine cells
receive source terms of equal strength [159].

Once the coarse-scale pressure is computed, the fine-grid pressure in the
dual grid can be obtained using the basis functions.:

pp(x) + pg(x) =
Nc∑

i=1

φi
j(x)(p

c
p,i + pc

g,i) + pb
g(x), for x ∈ Kj

d. (5.47)

The pressure from the particular solution and the linear gravity part are
interpolated using the dual basis functions, and then the gravity correction
term, pb

g, is added.
Jenny, Lee and Tchelepi [159, 160] found that the fine-scale velocity field

computed directly from the reconstructed pressure (i.e., using the coarse-
grid solution and the dual basis functions) suffered from local mass balance
errors along the dual coarse cell boundaries. As a remedy, they proposed a
second set of (primal) basis functions that guarantee a conservative fine-scale
velocity field. In doing so, it is critical to honor the fine-scale fluxes from the
overlapping dual basis functions as boundary conditions. That approach can
be expensive, however. This is because the number of primal basis functions
is large, and even if they need to be recomputed occasionally, the cost can be
significant.

Here, we do not use this second set of bases. Instead we solve local prob-
lems on the primal coarse grid as follows. The reconstructed fine-scale pres-
sure at the boundaries of a primal coarse cell is used to compute the fine-scale
fluxes, which then serve as boundary conditions for local problems on the
primal coarse grid. These local problems solve the nonlinear black oil equa-
tions, which may include compressibility, capillarity, and solubility effects. In
essence the multiscale pressure approximation is used to prescribe flux bound-
ary conditions for the full black oil equation set on the local primal coarse-cell
level. Our experience is that the fine-scale pressure solution obtained from
these local Neumann problems is quite accurate (i.e., locally consistent with
the velocity field) when compared to the pressure that is reconstructed using
the dual basis.



142 5 Applications of multiscale finite element methods

5.6.3 Sequential fully implicit coupling and adaptive computation

In the algorithm presented in the previous sections, flow and transport are
solved sequentially. First, a fine-scale pressure field together with a compat-
ible (and conservative) fine-scale velocity field is computed using the black
oil MsFV method. Then, the transport problem is solved on local fine-grid
domains with an implicit upwind scheme. A Schwarz overlap method is used
with saturation at the boundaries from the previous iteration, which has been
found to be very efficient for the saturation equations. The updated satura-
tion distribution defines a new total mobility field for the subsequent elliptic
problem (i.e., the next Newton iteration). Note that, in general, some of the
basis functions have to be recomputed. These steps can be iterated until con-
vergence of all variables at the current time level.

The MsFV approach can be easily adapted to a sequential fully implicit
treatment [161]. The MsFV implementation allows for performing an IMPES,
traditional sequential [29], or a fully implicit scheme. Here, the full nonlinear
transmissibility terms at the new time-step level are retained so that stability
is guaranteed [160]. The converged solution using this sequential approach
should be identical to the solution obtained using the simultaneous solution
strategy, which is usually used to deal with coupled fully implicit systems.

The MsFV approach is well suited for adaptive computation, which can
lead to significant efficiency gains. The most expensive part of the algorithm
is computation of the dual basis functions. In general, this is performed every
iteration due to changes in the saturation (mobility) field. As discussed in
Jenny et al. [160], an adaptive scheme can be used to update the dual basis
functions. Because the basis functions are constructed with local support, the
change of the total mobility is used to decide when and where to update the
basis functions in the domain. For compressible fluid, we employ an effective
total mobility change criterion for adaptable computation of the pressure field
[175].

5.6.4 Numerical examples

Waterflood in linear geometries

This test case is a two-dimensional problem with 220×60 fine cells. A uniform
coarse grid of 22×6 is used for the multiscale run. The permeability description
is taken from the first layer of the Tenth SPE Comparative Solution Project
[78]. As shown in Figure 5.23(a), a highly correlated area of low permeability
is found on the left-hand-side of the model, and a high-permeability area is
present on the right end of the model.

The black oil model includes three compressible fluid phases (i.e., oil, wa-
ter, and gas). The pressure dependence of the densities is described using
formation volume factors, and the phase equilibrium between the oil and gas
phases is described using the solution gas–oil ratio [79]. Typical black oil
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properties are listed in Lee, Wolfsteiner, and Tchelepi [175]. For this example,
we did not consider gravity effects, and we used a high oil compressibility,
namely, 4.8 · 10−4 for p < pb (pb is the bubble point pressure) for a stringent
test of compressibility. As the pressure decreases, some solution gas is liber-
ated from the oil phase and forms a free immiscible gas phase. Moreover, the
oil-phase volume decreases as the pressure decreases below the bubble point,
p < pb. The solution-gas is constant above the bubble point pressure, and the
oil-phase volume decreases as the pressure increases (i.e., p > pb).

The model is initialized with oil (So = 1) and constant pressure (4000
psia). At t = 0, water is injected at a constant pressure of 5000 psia from
the left side; the right boundary is maintained at 2000 psia. This numerical
example is a challenging test due to the large pressure drop across the model
and the large variations in permeability. A constant time-step size of 1 day is
used. In Figure 5.23, the results from the black oil MsFV simulator and fine-
scale reference simulations are shown at 50 days. For example, Figure 5.23(c)-
(d) indicate that the water and gas distributions obtained from the MsFV
approach are in excellent agreement with the reference fine-scale solutions.
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Fig. 5.23. Depletion with constant pressure boundary conditions: at time = 50days:
(a) logarithm of permeability; (b) pressure from MsFV; (c) Sw from MsFV,(d) Sg

from MsFV; (e) Sw from fine-scale simulation; (f) Sg from fine-scale simulation.

A three-dimensional heterogeneous model with two wells

This example employs a three-dimensional model with two wells at two oppo-
site corners and a heterogeneous permeability field. The permeability distri-
bution is generated by the sequential Gaussian simulation method [85]. The
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logarithm of permeability has a Gaussian histogram with mean and standard
deviation of 50 md and 1.5, respectively. The variogram is spherical with
ranges of 30 m and 15 m in directions that are at 45 and 135 degrees with
respect to the horizontal, and 7.5 m in the vertical direction. The permeabil-
ity is shown in Figure 5.24(a). The model is 150 × 150 × 48 m in size and is
uniformly discretized using 45×45×30 fine cells. The uniform 9×9×6 coarse
grid is used in the MsFV computations.

The permeability distribution is shown in Figure 5.24(a). The fluid prop-
erties for the first example are also employed. The reservoir is initially at
gravitational equilibrium with 4000 psia at the bottom of the model. Water is
injected at a constant rate from the bottom left corner (i.e., coarse cell 1,1,1)
displacing the oil toward the producer located at the top right corner (cell
9,9,6). Figure 5.24(b) shows the oil saturation distribution at water break-
through. The pressure around the production well is below the bubble point,
and a free gas phase is present. In Figure 5.25, the production rates from
MsFV are compared with those from the fine-scale reference simulation. The
comparison shows that the black oil MsFV approach is able to model difficult
multiphase flow problems in heterogeneous media when strong gravity and
compressibility effects are present.

We also performed computations using an upscaled model for this problem.
We used the basis functions to compute an upscaled (effective coarse-scale)
transmissibility field, and we computed the pressure and saturation using the
coarse-scale model. The results are also depicted in Figure 5.25. Even though
the results from the upscaled model are qualitatively similar to those from
the fine-scale reference simulation, the presence of large numerical dispersion
in the upscaled model gives less accurate production rates compared with the
multiscale method. This numerical example shows that reconstruction of the
fine-scale information by the MsFV is an important step in obtaining accurate
transport predictions.

5.6.5 Remarks

We developed a multiscale finite volume (MsFV) method for the black oil
formulation of multiphase flow and transport in heterogeneous porous media.
The black oil formulation, which involves immiscible three-phase flow with
compressibility, gravity, capillary, and mass transfer, in the form of gas solu-
bility, is widely used in practical field-scale simulations.

Our approach extends the sequential implicit MsFV method [161, 256] to
the nonlinear black oil model. An operator-splitting multiscale algorithm is
devised to compute the fine-scale pressure field, which is used to compute the
fine-scale velocity field. The nonlinear saturation equations of the black oil
model are solved on the local primal coarse grid using the fine-scale velocity
field. The black oil MsFV method extends our ability to deal with large-scale
problems of practical interest. The treatment ensures that the nonlinearity
due to rock and fluid compressibility, gravity, and capillarity can be resolved
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(a) (b)

Fig. 5.24. A heterogeneous model with two wells (Example 3): (a) log-permeability
distribution, (b) oil saturation just after breakthrough.
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by solving specially constructed local boundary value problems. The method-
ology is demonstrated using several numerical examples. These examples show
clearly that the MsFV scheme yields results that are in excellent agreement
with reference fine-grid solutions.

Although the numerical efficiency of this new black oil MsFV simulator
has not been fully examined, the numerical efficiency gains shown in refer-
ences [160, 161, 256] are expected to hold (e.g., 10 ∼ 20 times faster than
the conventional finite difference method). This is because all the nonlineari-
ties due to the presence of compressibility, gravity, and capillary pressure are
resolved locally.
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5.7 Applications of multiscale finite element methods
to stochastic flows in heterogeneous media

The media properties often contain uncertainties. These uncertainties are usu-
ally parameterized and one has to deal with a large set of permeability fields
(realizations). This brings an additional challenge to the fine-scale simulations
and necessitates the use of coarse-scale models. The multiscale methods are
important for such problems. In this section, we describe the extensions of
MsFEMs to stochastic equations where the basis functions are constructed
such that they span both spaces and uncertainties. We also consider the ap-
plications of MsFEMs to uncertainty quantification in inverse problems when
the media properties are estimated based on coarse-scale data.

First, we briefly discuss stochastic flow equations from an application point
of view. Assume that the media properties are random and denoted by k(x, ω),
where ω refers to a realization. Then, the solution of the flow equation is given
by p(x, ω) for each realization ω.

One of the commonly used stochastic descriptions of spatial fields is based
on a two-point correlation function of log-permeability. To describe it, we de-
note by Y (x, ω) = log[k(x, ω)]. For permeability fields described with the two-
point correlation function, it is assumed that R(x, y) = E [Y (x, ω)Y (y, ω)] is
known, where E[·] refers to the expectation (i.e., average over all realizations)
and x, y are points in the spatial domain. In applications, the permeability
fields are considered to be defined on a discrete grid. In this case, R(x, y) is a
square matrix with Ndof rows and Ndof columns, where Ndof is the number
of grid blocks in the domain. For permeability fields described by the two-
point correlation function, one can use the Karhunen–Loève expansion (KLE)
[182, 271] to obtain a permeability field description with possibly fewer de-
grees of freedom. This is done by representing the permeability field in terms
of an optimal L2 basis. By truncating the expansion, we can represent the
permeability matrix by a small number of random parameters.

We briefly recall some properties of the KLE. For simplicity, we assume
that E[Y (x, ω)] = 0. Suppose Y (x, ω) is a second-order stochastic process
with E

∫
Ω
Y 2(x, ω)dx < ∞. Given an orthonormal basis {Φi} in L2(Ω), we

can expand Y (x, ω) as a general Fourier series

Y (x, ω) =
∞∑

i=1

Yi(ω)Φi(x), Yi(ω) =
∫

Ω

Y (x, ω)Φi(x)dx.

We are interested in the special L2 basis {Φi} that makes the random variables
Yi uncorrelated. That is, E(YiYj) = 0 for all i �= j. The basis functions {Φi}
satisfy

E[YiYj ] =
∫

Ω

Φi(x)dx
∫

Ω

R(x, y)Φj(y)dy = 0, i �= j.

Because {Φi} is a complete basis in L2(Ω), it follows that Φi(x) are eigen-
functions of R(x, y):
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∫

Ω

R(x, y)Φi(y)dy = λiΦi(x), i = 1, 2, . . . , (5.48)

where λi = E[Y 2
i ] > 0. Furthermore, we have

R(x, y) =
∞∑

i=1

λiΦi(x)Φi(y). (5.49)

Denote θi = Yi/
√
λi; then θi satisfy E(θi) = 0 and E(θiθj) = δij . It follows

that

Y (x, ω) =
∞∑

i=1

√
λiθi(ω)Φi(x), (5.50)

where Φi and λi satisfy (5.48). We assume that the eigenvalues λi are ordered
as λ1 ≥ λ2 ≥ · · · . The expansion (5.50) is called the Karhunen–Loève expan-
sion. In the KLE (5.50), the L2 basis functions Φi(x) are deterministic and
resolve the spatial dependence of the permeability field. The randomness is
represented by the scalar random variables θi. After we discretize the domain
Ω by a rectangular mesh, the continuous KLE (5.50) is reduced to finite terms
and Φi(x) are discrete fields. Generally, we only need to keep the leading or-
der terms (quantified by the magnitude of λi) and still capture most of the
energy of the stochastic process Y (x, ω). For an N -term KLE approximation
YN =

∑N
i=1

√
λiθiΦi, define the energy ratio of the approximation as

e(N) :=
E‖YN‖2

E‖Y ‖2
=
∑N

i=1 λi∑∞
i=1 λi

.

If λi, i = 1, 2, . . . , decay very fast, then the truncated KLE would be a good
approximation of the stochastic process in the L2 sense.

Next, we discuss some example cases. Suppose the permeability field
k(x, ω) is a log-normal homogeneous stochastic process; then Y (x, ω) =
log(k(x, ω)) is a Gaussian process, and θi are independent standard Gaus-
sian random variables. In this case, the covariance function of Y (x, ω) has the
form

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
. (5.51)

In the above formula, l1 and l2 are the correlation lengths in each dimension,
and σ2 = E(Y 2) is the variance. We first solve the eigenvalue problem (5.48)
numerically on the rectangular mesh and obtain the eigenpairs {λi, Φi}. We
put 8 points per correlation length in our numerical simulations. Because the
eigenvalues decay fast, the truncated KLE approximates the stochastic process
Y (x, ω) fairly well in the L2 sense. Therefore, we can sample Y (x, ω) from the
truncated KLE (5.50) by generating Gaussian random variables θi. In Figure
5.26, we plot eigenvalues and three eigenvectors corresponding to eigenvalues
(in decreasing order) 1, 6, and 15. In particular, we plot eigenvalues for the
log-normal permeability field described by (5.51) as well as by
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R(x, y) = σ2 exp
(
−|x1 − y1|

l1
− |x2 − y2|

l2

)
. (5.52)

As we see from these figures the eigenvalues decay quickly for log-normal
permeability fields compared to log-permeability fields described by (5.52).
Moreover, the eigenvectors corresponding to smaller (in value) eigenvectors
contain finer-scale features of the media.

For some simplified cases, one can derive formulas for eigenvalues and
eigenvectors (e.g., [277]). In the one-dimensional case, R(x, y) = σ2 exp(−|x1−
y1|/l1), the eigenvalues have the form

λn =
2l1σ2

l21ζ
2
n + 1

and
Φn(x) =

1
√

(l21ζ2n + 1)L/2 + l1
(l1ζn cos(ζnx) + sin(ζnx)),

where L is the length of the domain and ζn are positive roots of the charac-
teristic equation

(ζ2l21 − 1) sin(ζL) = 2ζl1 cos(ζL). (5.53)

For problems in a multidimension, if the covariance function is in the form
R(x, y) = σ2 exp(−|x1 − y1|/l1 − |x2 − y2|/l2), the eigenvalues have the form

λij =
4l1l2σ2

(l21(ζ
1
i )2 + 1)(l22(ζ

2
j )2 + 1)

and
Φij(x) = Φi(x1)Φj(x2),

where ζ1i and ζ2j are positive roots of (5.53) using parameters (L1, l1) and
(L2, l2), respectively, with L1 and L2 being the lengths of the whole domain
in the x1− and x2−directions.

5.7.1 Multiscale methods for stochastic equations

In this section, we present a multiscale approach for solving stochastic flow
equations. The main idea of the proposed approaches is to construct multiscale
basis functions that capture the small-scale information across the realizations
of stochastic equations. Once the basis functions are constructed, the solution
is projected into the finite-dimensional space spanned by the multiscale basis
functions. The pre-computed basis functions are constructed based on se-
lected realizations of the stochastic permeability field and the method can be
regarded as an extension of MsFEMs to stochastic porous media equations.
The proposed approaches, although they do not require any interpolation
in stochastic space, can be combined with interpolation-based approaches to
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Fig. 5.26. Top left: Eigenvalue distribution. Top right: 1st eigenvector. Bottom left:
6th eigenvector. Bottom right: 15th eigenvector.

predict the solution on the coarse grid. The permeability fields under consid-
eration do not have scale separation. For this reason, we employ multiscale
methods using limited global information in our simulations. The main idea
of these approaches is to use some global fields that contain nonlocal informa-
tion as discussed in Chapter 4. We use the mixed MsFEM framework here,
although other global couplings can also be used.

To present the approach, we consider realizations of permeability fields ki

sampled from a stochastic distribution. For each ki, let pi and vi be a solution
obtained by solving the flow equation on a fine grid using a suitable mass
conservative numerical method. Then, we define Vh(ki) the space spanned by
mixed multiscale basis functions, ψK

il , defined via (4.6) that have the following
boundary conditions

ψK
il · n =

vi · n∫
el
vi · nds

,

on el for eachK. We employ N realizations of the permeability field and define
a finite-dimensional space that consists of a direct sum of mixed multiscale
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finite element basis functions corresponding to all realizations:

Vh = ⊕N
i=1Vh(ki).

Hence, in this case we obtain N basis functions for each edge (face) in the
coarse grid. Once the basis functions are constructed, the solution of the
stochastic flow equation for an arbitrary realization is projected onto this
finite-dimensional space. Note that this approach does not require any inter-
polation formula in uncertainty space, although interpolation techniques, if
easily available, can be used to reduce the size of Vh locally in uncertainty
space (see later the use of interpolation techniques). We assume that v1, ..., vN
are linearly independent in order to guarantee that the basis functions are
linearly independent. Note that the local basis functions can be used in the
proposed multiscale approach for stochastic flow equations.

Next, we present a formal analysis of the method under the assumption
that the chosen realizations can be used to interpolate an arbitrary realiza-
tion. To show this, we assume that the uncertainties of the permeability field
can be parameterized. As a result of this parameterization, the permeability
is expressed as k = k(x, θ) where θ ∈ R

L. One such example is the Karhunen–
Loève expansion (KLE) as discussed earlier. KLE can be used in representing
the permeability fields given via the two-point correlation function, where
k(x, θ) = exp (Y (x, θ)), Y (x, θ) =

∑L
i=1ΘiΦi(x), Φi(x) pre-determined func-

tions, and θ = (Θ1, ..., ΘL).
When the uncertainties are parameterized and L is not large, one can

employ sparse interpolation techniques in R
L (e.g., [272]), where the solution

is computed for some values of θ = (Θ1, ..., ΘL), denoted by θk, and then
interpolated for an arbitrary θ ∈ R

L. Assuming that k(x, θ) smoothly depends
on θ, we can approximate the solution for an arbitrary θ as

p(x, θ) ≈
∑

i

p(x, θi)βi(θ), (5.54)

where βi(θ) are the corresponding weights which are in general difficult to
obtain. We note that the interpolation error depends on the choice of inter-
polation points and the smoothness of p(x, θ) with respect to θ. Denoting the
velocity field for two-phase flow by v, we have

v(x, θ) ≈
∑

i

v(x, θi)βi(θ). (5.55)

Equation (5.54) shows that the solution of the stochastic flow equation can be
approximated if we provide approximations of p(x, θi) for each θi. Because the
solution for each selected realization can be approximated using corresponding
global fields, we have

v(x, θi) ≈
∑

j

c∗ij(x)vj(x, θi).
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In our numerical simulations, we use single-phase velocity fields following pre-
vious discussions in Section 4.2 (see also [1, 3]). One can, in general, use direc-
tional flows as proposed in a more general setting in [218]. We note that in our
multiscale simulations, the basis functions are constructed using vj(x, θi). One
can show the convergence of the proposed approach following, for example,
[8].

We note that the proposed method can be applied in a local region of
the uncertainty space by selecting realizations that correspond to this region.
The latter is useful when one would like to perform uncertainty quantification
in a subregion of the uncertainty space. One can use the localization in the
uncertainty space for more accurate probabilistic estimations by partitioning
the uncertainty space. To our best knowledge, the idea of local partitioning
of uncertainty space in the context of stochastic PDEs was first investigated
in [267] where the authors introduced a multi-element generalized polynomial
chaos approach. In our approaches, we can borrow this idea and combine it
with MsFEMs. To describe the procedure, we denote by U the uncertainty
space and assume that U is partitioned into Ui. In each region Ui, we choose
selected realizations θi

j representing these local regions. Then, the basis func-
tions are defined as before for these selected realizations in each Ui. This
approach is an implementation of the earlier proposed technique simply in
local regions of uncertainty space. In particular, the multiscale basis functions
are constructed as before although with local support both in spatial and
uncertainty spaces. When performing simulations for a particular (arbitrary)
realization, the multiscale basis functions from the local uncertainty region
that contains this particular realization will be used. This will provide high
accuracy and reduce the computational cost.

We note that the proposed method can be applied in local regions of
uncertainty space and, consequently, the support of basis functions can be
localized in uncertainty space. To describe the procedure, we denote by U
the uncertainty space and assume that U is partitioned into Ui. Here Ui can
be regions larger than the characteristic length scale in uncertainty space.
Furthermore, in each region Ui, we choose realizations θi

j representing these
local regions. Then, the basis functions are defined as before for these realiza-
tions in each Ui. This approach is an implementation of the earlier proposed
technique simply in local regions of uncertainty space. In particular, the mul-
tiscale basis functions are constructed as before although with local support.
One can draw a parallel between this approach and a general multiscale ap-
proach where the coefficients strongly vary with respect to spatial variables
and uncertainties. In particular, we would like to construct multiscale basis
functions for permeability fields k(x, θ) over a coarse region that is larger than
spatial and uncertainty heterogeneities. In this case, one needs to construct
the local spatial basis functions for each θi

j in Ui. Because the dependence on
θ is parametric, one needs to capture the spatial heterogeneities for all values
of θ in Ui. In this case, the basis functions are derived from the solution of
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div(k(x, θ)∇wK
i (x, θ)) = 0.

These basis functions, which are smooth with respect to θ, can be approxi-
mated by choosing appropriate realizations. Thus, the proposed approach can
be regarded as an extension of the mixed MsFEM to problems with uncertain-
ties. When using local patches in uncertainty space, one needs to determine a
partition to which a particular realization belongs. We note that pre-computed
multiscale basis functions can be repeatedly used for different boundary condi-
tions/source terms and for dynamic two-phase flow and transport simulations.

The main practical advantage of the proposed mixed MsFEM is that one
does not need interpolation formulas. Indeed, when an approximation space
consists of a union of subspaces generated using the solutions corresponding to
different permeability realizations, one is actually projecting the true solution
onto this enriched approximation space. Thus, the velocity solution will be
a superposition of basis functions corresponding to each of the sample fields,
but the interpolation weights are determined automatically from the projec-
tion property of the mixed MsFEM. In particular, the interpolation weights
will vary throughout the uncertainty domain. This approach is interpolation-
free, easy to use, and provides a computationally cost-efficient methodology
for performing multiple simulations, for instance, to quantify uncertainty. We
also note that when an interpolation formula is easily available, one can inter-
polate the set of pre-computed multiscale basis functions to calculate the basis
functions for a particular realization. However, the nature of this interpola-
tion (pointwise or L2 or so on) will be pre-determined. Our proposed approach
chooses the best interpolation both in spatial and stochastic space. Finally,
we would like to note that in upscaling approaches, to our best knowledge,
one cannot avoid interpolation techniques.

Numerical results

Experimental setup. In our simulations below, we take krw(S) = S2, μw = 0.1,
kro(S) = (1 − S)2, and μo = 1 in two-phase flow and transport simulations
(see (5.1), (5.2)). The log-permeability field Y (x) is given on a 100× 100 fine
Cartesian grid. This grid is then coarsened to form a uniform 5× 5 Cartesian
grid so that each block in the coarse grid contains a 20×20 cell partition from
the fine grid. We solve the pressure equation on the coarse grid using the mixed
MsFEM and then reconstruct the fine-scale velocity field as a superposition
of the multiscale basis functions. The reconstructed field is used to solve the
saturation equation on the fine grid. The saturation equation is solved using an
implicit upstream finite volume (discontinuous Galerkin) method. We would
like to emphasize that the multiscale basis functions are constructed at time
zero, that is, they are not recomputed during the simulations.

In the numerical examples that are reported below we consider a tra-
ditional quarter-of-a-five-spot problem. That is, Ω is taken to be a square
domain, we inject water at the upper left corner, and produce the fluid that
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reaches the producer at the lower right corner. To assess the quality of the
respective saturation solutions obtained using the mixed MsFEM, we com-
pute for each realization a reference solution Sref obtained by solving the
time-dependent pressure equation on the fine grid with the given permeabil-
ity field (using the lowest-order Raviart–Thomas mixed finite element method
for Cartesian grids). Then, in addition to measuring the relative saturation
error in the L1-norm:

‖S − Sref‖L1/‖Sref‖L1 ,

we compare various production characteristics. We use the water-cut curve
defining the fraction of water in the produced fluid as a function of time
measured in pore volumes injected (PVI) (see (2.44)). We recall that

w(t) =
qw(t)

qw(t) + qo(t)
,

where qo and qw are flow rates of oil and water at the producer at time t.
We monitor the following quantities

• The relative water-cut error in the L2-norm:

‖w − wref‖L2/‖wref‖L2 .

• The breakthrough time (defined as w−1(0.05)) at the producer.
• The cumulative oil production at 0.6 PVI:

Qo = − 1
∫

Ω
φdx

∫ 0.6PV I

0

(∫

Ω

min(qo(x, τ), 0) dx
)

dτ.

Before we embark on the numerical experiments, we note that the Raviart–
Thomas mixed finite element discretization of the pressure equation results in
a linear system with N2

fine + 2× (Nfine − 1)×Nfine = 29800 unknowns, where
Nfine = 100. In comparison, when using a sample of N permeability fields to
generate the mixed MsFEM basis functions, the stochastic multiscale method
gives rise to a linear system with N2

coarse + 2 × (Ncoarse − 1) ×Ncoarse ×N =
25 + 40N unknowns, where Ncoarse = 5. Hence, when using a sample size
of 25, for instance, the number of the unknowns in the fine-grid system is
roughly 30 times larger than the number of unknowns in the mixed MsFEM
system. In this section, we present our results which employ samples of 10–50
permeability fields. In other words, we compute 10–50 velocity basis functions
for each interface in the coarse grid. We note that in order for the proposed
methods to be computationally efficient one needs to use fewer basis func-
tions in each coarse-grid block to represent the heterogeneities across space
and uncertainties. In particular, the number of basis functions needs to be
less than the number of fine-grid blocks within the target coarse-grid block.
Otherwise, one can simply use fine-scale basis functions which are the same
for an arbitrary realization. In the case of the latter, the stochasticity does
not affect the choice of the finite element function space.
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Gaussian fields. For Gaussian fields, one can reduce the dimension of the
uncertainty space dramatically due to the fast decay of eigenvalues. To sample
the realizations that are used to generate the multiscale basis functions, we
use the first order Smolyak collocation points θi in [−3, 3]L (see, e.g., [272]).
That is, θ0 = 0, θ2i−1 = 3δij , and θ2i = −3δij , i = 1, ..., L. We note that
the choice of interpolation points does not affect the implementation of our
approach.

Our first results are for the isotropic case with l1 = l2 = 0.2 and σ2 = 2.
In this case, we can reduce the dimension of the stochastic permeability to
10. From this stochastic model for the permeability we draw randomly 100
realizations and perform simulations on the corresponding permeability fields.

In Figure 5.27 we compare breakthrough times and cumulative oil pro-
duction at 0.6 PVI. We see that there is nearly a perfect match between the
results obtained with the mixed MsFEM and the corresponding results de-
rived from the reference solutions. Next, in Figure 5.28, we plot L2 errors in
the saturation field for these realizations as well as the water-cut errors. It
can be observed from this figure that the saturation errors are mostly below
3%. Finally, we plot in Figure 5.29 a histogram of the breakthrough times
and cumulative oil production values depicted in Figure 5.27 to demonstrate
that the mixed MsFEM essentially provides the same statistics as one obtains
from the set of reference solutions. These results suggest that with a few pre-
computed basis functions in each coarse grid block we can solve two-phase flow
equations on the coarse grid for an arbitrary realization and obtain nearly the
same results as one obtains by doing fine-grid simulations for each realization.

We have also considered numerical results for an anisotropic Gaussian field
with l1 = 0.5, l2 = 0.1, and σ2 = 2 in [7]. Due to anisotropy, KLE requires 12
terms. We sample the realizations that are used to generate the multiscale ba-
sis functions using the first order Smolyak collocation points as in the isotropic
case. The numerical results obtained for the anisotropic Gaussian fields are
qualitatively the same as the results shown in Figure 5.27 – Figure 5.29. We
include only the anisotropic equivalent of Figure 5.29. Histograms of break-
through time and cumulative oil production at 0.6 PVI for 100 randomly
chosen realizations are depicted in Figure 5.30. The histograms confirm that
the multiscale method essentially provides the same breakthrough time and
cumulative oil production statistics as one obtains from the set of reference
solutions.

Exponential variogram fields. For our second set of results, we consider
permeability fields with exponential covariance matrix

R(x, y) = σ2 exp
(
−|x1 − y1|

l1
− |x2 − y2|

l2

)
. (5.56)

Because of the slow decay of eigenvalues, one usually needs to keep many
terms in KLE and deal with a large uncertainty space. To approximate the
permeability fields, KLE requires 300 to 400 eigenvectors depending on corre-
lation lengths and variance. This is a large-dimensional problem for performing
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Fig. 5.27. Breakthrough time and cumulative oil production at 0.6 PVI for 100
random realizations from a Gaussian field with l1 = l2 = 0.2 and σ2 = 2.
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Fig. 5.28. L2 errors of the saturation field and water-cut errors for 100 randomly
chosen realizations (the number of a realization is indicated along the horizontal
axis). Gaussian field with l1 = l2 = 0.2, σ2 = 2.
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Fig. 5.29. Histograms of the breakthrough times and cumulative oil production
values shown in Figure 5.27.
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Fig. 5.30. Histograms of breakthrough time and cumulative oil production at 0.6
PVI for 100 random Gaussian fields with l1 = 0.5 and l2 = 0.1 and σ2 = 2.

direct interpolation using multiscale basis functions. Instead we suggest using
few independent realizations in constructing basis functions, and then per-
forming statistical studies on a much larger set of realizations. We note that
for independent realizations, we do not have an easily available interpolation
formula. Moreover, the use of independent realizations is quite easy and one
can use this technique for more general permeability fields in as much as it
only requires independent samples of the permeability field.

To demonstrate the performance of the stochastic multiscale method for
these fields, we present results for a case where the permeability fields are
drawn from an anisotropic exponential variogram distribution with l1 = 0.5,
l2 = 0.1, and σ2 = 2 (the results for the isotropic case are similar, and not
reported here). The KLE requires 350 eigenvectors to represent this stochastic
permeability distribution. From this distribution we sample 20 independent
realizations and use these realizations to generate the multiscale basis func-
tions. Figure 5.31 displays one randomly chosen realization and corresponding
saturation profiles at 0.6 PVI obtained by solving the pressure equation on the
fine grid, and on the 5 × 5 coarse grid with the mixed MsFEM, respectively.

Figures 5.32, 5.33, and 5.34, show: breakthrough time at producer and
cumulative oil production at 0.6 PVI for 100 randomly chosen realizations
for both the reference solution and the multiscale solution; relative overall
saturation error and water-cut error; and histograms of the breakthrough
times and cumulative oil production values depicted in Figure 5.32. Figure 5.32
demonstrates that there is generally a good match between the breakthrough
time and cumulative oil production curves for the reference and multiscale
solutions. However, we now observe that there is a slight bias in the multiscale
results, for example, there is a small time-lag in the breakthrough times for
the multiscale method. The bias can also be observed from the histograms
in Figure 5.34, but the magnitude of the bias is small, and the multiscale
solutions are generally quite close to the reference solution, as is illustrated in
Figures 5.31 and 5.33.
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Fig. 5.31. An exponential variogram field with l1 = 0.5, l2 = 0.1, and σ2 = 2,
and a comparison of the reference saturation field at 0.6 PVI and the corresponding
saturation field obtained using the stochastic multiscale method.

We now demonstrate that the bias in breakthrough time and cumulative
oil production persists, but is efficiently reduced by increasing the number of
realizations used to generate the multiscale basis functions. Figures 5.35, 5.36,
and 5.37 show, respectively, the saturation and water-cut error for each of the
100 randomly selected realizations for the stochastic multiscale method with
different sample sizes, the cumulative probability distribution of breakthrough
times and cumulative oil production, and the corresponding histograms of the
breakthrough times and the cumulative oil production values. Here, the sam-
ple size refers to the number of realizations selected in constructing multiscale
basis functions. The plots show the following: the saturation and water-cut
errors decay with increasing sample size; the time lag in the breakthrough
times (also observed in the cumulative oil production) decays rapidly with
increasing sample size, and that using 50 basis functions for each coarse-grid
interface generates statistics that are nearly unbiased, and generally match
the statistics derived from the set of reference solutions very well. Observe
that a sample size of 50 gives rise to a linear system with 2025 unknowns,
roughly 1/15 as many as in the fine-grid system.

Summary

In conclusion, we have developed and studied the stochastic mixed multiscale
finite element method. This method solves stochastic porous media flow equa-
tion on the coarse grid using a set of pre-computed basis functions. The pre-
computed basis functions are constructed based on selected realizations of the
stochastic permeability field, and thus span both spatial scales and uncertain-
ties. The proposed method can be regarded as an extension of mixed MsFEM
to stochastic porous media flow equations. The proposed approach does not
require any interpolation in stochastic space and is capable of predicting the
solution on the coarse grid. We present numerical results for two-phase im-
miscible flow in stochastic porous media which show that one can use few
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Fig. 5.32. Breakthrough time and cumulative oil production at 0.6 PVI for 100
random realizations from an exponential variogram field with l1 = 0.5, l2 = 0.1, and
σ2 = 2.
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Fig. 5.33. L2 errors of the saturation field and water-cut errors for 100 randomly
chosen exponential variogram fields with l1 = 0.5, l2 = 0.1, and σ2 = 2.
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Fig. 5.34. Histograms of the breakthrough times and cumulative oil production
values shown in Figure 5.32.
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Fig. 5.35. Saturation and water-cut errors for solutions obtained using different
number of permeability realizations to generate the multiscale basis functions.
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Fig. 5.36. Cumulative probability distribution for breakthrough time and cumula-
tive oil production at 0.6 PVI.
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Fig. 5.37. Histograms of the breakthrough times and cumulative oil production.
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basis functions in approximating the solutions of permeability fields with
large uncertainty space. Finally, we would like to note that the proposed ap-
proaches can be easily combined with interpolation-based approaches in order
to achieve greater flexibility.

5.7.2 The applications of MsFEMs to uncertainty quantification
in inverse problems

In a number of papers [105, 89, 109, 88], applications of MsFEMs or upscal-
ing methods to uncertainty quantification in inverse problems are discussed.
The problem under consideration consists of finding stochastic realizations
of the conductivity (or permeability) field given the measurement data and
measurement errors (e.g., fractional flow (oil-cut) measurements defined by
(2.43)). From the probabilistic point of view, this problem can be regarded
as the conditioning of the permeability field to the measured data with as-
sociated measurement errors. Consequently, our goal is to sample from the
conditional distribution P (k|D), where k is the fine-scale permeability field
and D is the measured data. Using the Bayes’ theorem (e.g., [237]) we can
write π(k) = P (k|D) ∝ P (D|k)P (k).

The techniques based on Metropolis–Hastings Markov chain Monte Carlo
(MCMC) (see [237]) provide a rigorous framework for sampling the probability
distribution π(k) and obtaining the realizations of the conductivity field given
measurements, albeit at high computational cost. The main idea of MCMC is
to generate a Markov chain with π(k) as its stationary distribution. A key step
to this approach is to construct the desired transition probability distribution
for the Markov chain. In Metropolis–Hastings MCMC, permeability samples,
k1, ..., kn, ... are generated. In particular, at kn, a proposal k is generated using
instrumental probability distribution q(k|kn). Furthermore, k is accepted as
a sample with probability

p(kn, k) = min
(

1,
q(kn|k)π(k)
q(k|kn)π(kn)

)

;

that is, take kn+1 = k with probability p(kn, k), and kn+1 = kn with proba-
bility 1 − p(kn, k).

In the Metropolis–Hastings MCMC algorithm, the major computational
cost is to compute the value of the target distribution π(k), which involves
solving the coupled nonlinear PDE system (5.1) and (5.2) on the fine grid.
Generally, the Metropolis–Hastings MCMC method requires many iterations
before it converges to the steady state. To assess the uncertainty accurately,
one needs to generate a large number of different samples. Thus, the direct
(full) MCMC simulations are usually prohibitively expensive. Moreover, the
acceptance rate of the direct MCMC method can be very low, due to the
large dimensions of the permeability field. As a result, most of the CPU time
is spent on rejected samples.
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An important way to improve the direct MCMC method is to increase the
acceptance rate by modifying the proposal distribution q(k|kn). Typically,
some simplified models can be used to do so (e.g., [66, 179]). In [105, 89,
109], we discuss algorithms that use approximate and inexpensive coarse-scale
simulations based on MsFEMs to speedup MCMC calculations. In particular,
we consider an application to two-phase flow and transport simulations where
the pressure equation is upscaled using the MsFVEM or mixed MsFEM or
stochastic mixed MsFEM, and the saturation equation is upscaled using a
simple volume averaging

∂S

∂t
+ v · ∇f(S) = 0. (5.57)

Although, this type of upscaling can introduce some errors (see Figure 2.11),
it can be used in uncertainty quantification in inverse problems for the follow-
ing reasons. First, this approach, which combines MsFEMs for the pressure
equation and primitive upscaled model for the saturation equation, is very in-
expensive. Second, we have observed that there is a strong correlation between
the misfit corresponding to fine- and coarse-scale fractional flows.

Denote by D∗
k the coarse-scale data computed using MsFEMs. In the ap-

plications to two-phase flow and transport, MsFEMs are used for the pressure
equation with permeability k and (5.57) for the saturation equation. Further-
more, we denote by π∗(k) = P (k|D∗) the corresponding coarse-scale approx-
imation of the target distribution π(k). In general, one can perform offline
simulations to estimate a statistical relation between the coarse-scale output
D∗

k and the fine-scale output Dk via offline simulations for different k s sam-
pled from the prior distribution. Based on this relation, π∗ can be estimated
(see [109]). Our main emphasis is the use of physics-based coarse-scale models
for uncertainty quantification in inverse problems.

Using the coarse-scale distribution π∗(k) as a filter, the preconditioned
MCMC was proposed in [105]. In this approach, the coarse-scale simulation
is used in the second stage to screen the proposal before running a fine-scale
simulation. More precisely, after making a proposal as in Metropolis–Hastings
MCMC, the coarse-scale simulation is performed and the proposal is screened
using π∗ distribution. If the proposal is accepted at this stage, only then a
fine-scale simulation is performed for the proposed permeability field to decide
whether to accept the proposal. Because the computation of the coarse-scale
solution is very cheap, this step can be implemented very quickly to decide
whether to run fine-scale simulations. The second step of the algorithm serves
as a filter that avoids unnecessary fine-scale runs for the rejected samples. In
[105], we show that the modified Markov chain is ergodic and converges to the
correct distribution. We present numerical results for permeability fields gen-
erated using two-point correlation functions (see (5.50)) in [105]. Our results
demonstrate that preconditioned MCMC has similar convergence properties,
it has higher acceptance rates, and provides an order of magnitude of CPU
saving. We refer to [105] for details.
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An important type of proposal distribution can be derived from the
Langevin diffusion, as proposed by Grenander and Miller [138], which uses
the gradient of the posterior in the proposal. The use of the gradient informa-
tion in inverse problems for subsurface characterization is not new (e.g., see
[216]). The use of gradient information allows us to achieve high acceptance
rates (e.g., [249]). In [89], we proposed the preconditioned coarse-gradient
Langevin algorithm, where the gradient information based on π∗ was used
for generating a proposal. This step is much cheaper than the corresponding
step involving a fine-scale gradient of π because the simulations are performed
on the coarse grid. Furthermore, this proposal is screened using coarse-scale
models as in preconditioned MCMC discussed above. The details of this algo-
rithm can be found in [89], where we presented numerical results. Numerical
results show that preconditioned coarse-gradient Langevin algorithms are ef-
ficient and can give similar performance as the fine-scale Langevin algorithms
with much less computational cost. We refer to [89] for details.

The MCMC method used in these simulations employs either the mixed
MsFEM or MsFVEM in the preconditioning step. If a proposal is accepted
by the preconditioning step, the proposed algorithms compute the fine-scale
solutions corresponding to the proposed permeability field. At this stage, we
have already precomputed basis functions that can be further used to re-
construct the velocity field on the fine scale. Then the transport equation
can be solved on the fine grid coupled with the coarse-grid pressure equation.
This approach provides an accurate approximation to the production data
on the fine grid as discussed earlier and can be used to replace the fine-scale
computation in the last stage. In this procedure, the basis functions are not
updated in time, or updated only in a few coarse blocks. Thus the fine-scale
computation in the last stage of MCMC algorithms can also be implemented
quickly. Because the basis functions from the first-stage is re-used for the fine-
scale computation, this combined multiscale approach can be very efficient for
our sampling problem.

For problems involving a very high dimensional uncertainty space, such
as permeability fields described by the exponential variogram, it is often ad-
vantageous to use an approximate response surface in computing Langevin
proposals. We proposed the use of sparse interpolation techniques based on
coarse-scale models in obtaining the approximation of the response surface in
[88]. In this case, the posterior distribution is interpolated using sparse in-
terpolation techniques. We first compute the posterior distribution at sparse
locations that correspond to some selected realizations of the permeability
field. These computations are performed on the coarse grid as before with
MsFVEM and thus they are inexpensive. Furthermore, the posterior distri-
bution is approximated using polynomial interpolation. Based on the interpo-
lated posterior distribution, Langevin samples are proposed using analytical
gradients of the posterior distribution. The numerical simulations show that
one can achieve further gains in CPU if interpolation is used. We refer to [88]
for further details.
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We note that there are other efficient approaches (e.g., [275, 185, 128, 129])
which are used in uncertainty quantification in inverse problems for porous
media flows. Here, our goal was simply to discuss an application of MsFEM
to porous media flows within MCMC methods.

5.8 Discussions

In this chapter, we discussed the applications of MsFEMs to porous media
flow and transport in the context of two-phase immiscible flow and transport.
In a number of recent findings, the latter has been extended to more com-
plicated porous media equations involving compressibility, gravity, and three
phases as demonstrated in Sections 5.5 and 5.6. In general, MsFEMs offer a
great advantage when the heterogeneities do not change significantly or these
changes can be localized. This allows us to solve the flow equations on a coarse
grid. In a more complex situation, this may not be the case and one has to
be careful applying multiscale methods.

Another interesting application of multiscale finite element methods is
to inverse problems. In [246], the authors took advantage of the adaptivity
of multiscale methods to speedup inverse problems associated with finding
permeability fields given average flow rates at the well and some other prior
information. During the inversion procedure, the permeability is updated only
in local regions using time travel inversion. Because of local changes in the
permeability heterogeneities, multiscale basis functions are constructed only
in a few coarse blocks and the solution is rapidly computed. This leads to very
fast inversion and the CPU time for finding appropriate permeability samples
defined on a multi million grid block is very small (less than two minutes on
a PC).




