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Multiscale finite element methods using
limited global information

4.1 Motivation

Previously, we discussed multiscale methods that employ local information in
computing basis functions. The accuracy of these approaches depends on local
boundary conditions. Although effective in many cases, multiscale methods
that only use local information may not accurately capture the solution at all
scales. In particular, in regions with no scale separation, the local multiscale
methods cannot accurately approximate the scales that are comparable to
the computational coarse-grid size. A rich hierarchy of scales can introduce
an important connectivity at different scales that need to be captured at
larger scales. The natural question is how to incorporate the information from
different scales into localized multiscale basis functions such that the resulting
numerical solution provides an accurate approximation of the global solution.

In this chapter, we discuss how to take into account the information that
is not captured by local basis functions. We call this information global infor-
mation although it can be information in some large regions where important
connectivity of the media may occur. For example, subsurface properties often
do not have scale separation and high/low conductivity regions can be con-
nected at various scales (e.g., Figures 1.2–1.4). The connectivity regions are
often very complicated due to conductivity variations within these regions and
their complex geometrical structures. Similar situations can occur in compos-
ite materials where the material properties can vary at different scales. These
complex features are often incorporated into global fields which are used to
construct localized multiscale basis functions. In this chapter, we discuss the
concept of global multiscale methods and their applications.

We demonstrate the main idea of global multiscale methods on the example
of porous media flow, although this concept can be generalized to many other
applications such as composite materials. Consider

− div(λ(x)k(x)∇p) = f, (4.1)
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where k(x) is a heterogeneous field and λ(x) is assumed to be a smooth field.
This equation is derived from two-phase flow equations when gravity and
capillary effects are neglected (see Section 2.10). Our goal is to construct
multiscale basis functions on the coarse grid (with grid size larger than the
characteristic length scale of the problem) such that these basis functions can
be used for various source terms f(x), boundary conditions, and mobilities
λ(x). Here, k(x) does not have scale separation and has a multiscale structure
that may not be captured accurately via local basis functions.

In order to capture the multiscale structure of the media at different scales,
one needs to embed the multiscale information into the global fields. More
precisely, we assume that the solution can be represented by a number of
fields p1, ..., pN , such that

p ≈ G(p1, ..., pN ), (4.2)

where G is a sufficiently smooth function, and p1,.., pN are global fields. These
fields typically contain the essential information about the heterogeneities at
different scales and can also be local fields (see discussion below). In the above
assumption (4.2), pi are solutions of elliptic equations. For the mixed MsFEM,
one can formulate an assumption similar to (4.2) for velocities. We denote by
vi = −k∇pi. Then, the above assumption can be written in the following way.
There exist sufficiently smooth scalar functions A1(x), ..., AN (x), such that
the velocity corresponding to (4.1) (v = −λ(x)k(x)∇p) can be written as

v ≈ A1(x)v1 + · · · +AN (x)vN . (4.3)

Note that it is important that G (or A1, ..., AN ) are smooth functions so
that the multiscale basis functions which span p1, ..., pN (or v1, ..., vN ) can
accurately approximate the global solution. More details on the assumption
on A1, ..., AN or G are formulated later.

For problems without scale separation, the functions p1, ..., pN are often
the solutions of global problems or their approximations. These methods are
effective when (4.1) is solved multiple times. For problems with scale separa-
tion, one can use the solutions of the local problems in constructing multiscale
basis functions. We note that when only local information is used, one still
needs (4.2) (or (4.3) for fluxes) in each coarse-grid block to guarantee that
the local solutions can approximate the global solution in each coarse patch.
Once these global fields are determined, the multiscale basis functions are con-
structed such that they span these global fields. Thus, the multiscale methods
with limited global information can be regarded as an extension of MsFEM
discussed in Chapter 2. One of the main challenges is to determine the global
fields. This is discussed next.

In a general setting, it was shown by Owhadi and Zhang [218] that for an
arbitrary smooth λ(x), the solution of (4.1) is a smooth function of d linearly
independent solutions of single-phase flow equations (N = d), where d is the
space dimension. These results are shown under some suitable assumptions for
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the case d = 2 and more restrictive assumptions for the case d = 3. In [103],
it was shown that for channelized permeability fields, p is a smooth function
of single-phase flow pressure (i.e., N = 1), where the single-phase pressure
equation is described by div(k∇psp) = 0 with boundary conditions as those
corresponding to two-phase flow. Multiple global fields can be used for the
system of equations or for the random coefficients. For the system of equa-
tions, these global fields are the solutions of the homogeneous system subject
to boundary conditions (0, ..., xi, ..., 0) (i = 1, ..., d), where xi is chosen for
each component of the vector field solution and zero otherwise (as in homog-
enization; see [28]). When considering random permeability fields, the perme-
ability field is typically parameterized with a parameter that represents the
uncertainties. In this case, we deal with a family of heterogeneous permeability
fields such as k = k(x, θ), where θ is in a high-dimensional space. For example,
log-Gaussian permeability fields can be characterized using Karhunen–Loéve
expansion (e.g., [182]) as

k(x, θ1, ..., θM ) = exp(
∑

i

θiΦi(x)),

where Φi(x) are pre-computed spatial fields that depend on a covariance ma-
trix associated with k. In many of these parameterized cases, k(x, θ) is a
smooth function of θ = (θ1, ..., θM ), and thus one can use the solutions corre-
sponding to a few realizations of k to represent the heterogeneities across the
ensemble (see Section 5.7.1).

4.1.1 A motivating numerical example

In this section, we present a numerical example where the use of local bound-
ary conditions does not perform well and there is a need to use some type
of global information. We consider the two-phase immiscible flow and trans-
port setting presented in Section 2.10 with quadratic relative permeability
functions and neglect the effects of gravity and capillarity. Multiscale meth-
ods generally perform well for permeability fields generated using two-point
correlation functions (e.g., [85]). However, the local multiscale methods do
not perform well in the presence of strong nonlocal effects as do those that
appear in channelized permeability fields. In our numerical example, we con-
sider strongly channelized permeability fields, and in particular, show that
the local basis functions cannot accurately capture the global effects. These
permeability fields have been proposed in some recent benchmark tests, such
as the Tenth SPE Comparative Solution Project [78].

In Figure 4.1, one of the layers of this 3D permeability field is depicted. All
the layers have 60×220 fine-scale resolution, and we take the coarse grid to be
6×22. As can be observed, the permeability field contains a high-permeability
channel, where most flow occurs in our simulation. In Figure 4.2, the satu-
ration fields at time PVI = 0.5 are compared (see (2.44) for the definition
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Fig. 4.1. Log-permeability for one of the layers of upper Ness.
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Fig. 4.2. Saturation maps at PVI = 0.5 for fine-scale solution (left figure) and
standard MsFVEM (right figure).

of PVI). We use the MsFVEM as described in Section 2.10, where the ellip-
tic equation is solved on the coarse grid, whereas the transport equation is
solved on the fine grid with the fine-scale velocity field re-constructed using
multiscale basis functions. Thus, the errors are due to the MsFVEM only. We
see that MsFVEMs with local basis functions introduce some errors. In the
bottom left corner, there is a saturation pocket that is not in the reference
solution computed using the fine grid. This is because the local basis func-
tions in the lower-left corner contain a high permeability region. However, this
high permeability region does not have global connectivity, and the local basis
functions cannot take this effect into account. Next, we discuss how global in-
formation can be incorporated into multiscale basis functions to improve the
accuracy of the computations. Later in the book, we show that some more
general multiphase flow and transport numerical results can be improved by
using limited global information.
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4.2 Mixed multiscale finite element methods using
limited global information

4.2.1 Elliptic equations

In this section, we study mixed MsFEMs that employ global information. We
consider elliptic equations with Neumann boundary conditions

−div(λ(x)k(x)∇p) = f(x) in Ω

λ(x)k(x)∇p · n = g on ∂Ω,
(4.4)

where k(x) is a heterogeneous field and λ(x) is a smooth field, as before. We
assume that

∫
Ω
pdx = 0. Denote by v = −λ(x)k(x)∇p the velocity. To con-

struct basis functions for a global mixed MsFEM, we assume that the velocity
field v can be approximated by a priori defined global velocity fields, v1, ..., vN
in the following way. There exist functions v1, ..., vN and A1(x), ..., AN (x) such
that

v(x) ≈
N∑

i=1

Ai(x)vi(x), (4.5)

where Ai(x), i = 1, ..., N , are sufficiently smooth. The assumption (4.5) is
made more precise in Section 6.3. We note that vi = −k∇pi are, in general,
solutions of div(k∇pi) = 0, vi = −k∇pi, with some boundary conditions.
In (4.5), we assume that the velocity field in each coarse-grid block can be
approximated by a linear combination of a priori defined velocity fields.

Next, we construct the multiscale velocity basis functions using the infor-
mation from v1, ..., vN . The main difference between this construction and the
construction presented in Section 2.5.2 is the use of oscillatory boundary con-
ditions that depend on v1, ..., vN . Specifically, we construct the basis functions
for the velocity field as follows:

div(k(x)∇φK
ij ) =

1
|K| in K

k∇φK
ij · n =

{
vi·n∫

ej
vi·nds

on eKj
0 else,

(4.6)

where
∫

K
φK

ij dx = 0, i = 1, ..., N , j = 1, ..., jK (jK is the number of edges
or faces of K), and eKj are edges (or faces in R

3) of K. In Figure 4.3, we
schematically illustrate the basis function construction. Let ψK

ij = k(x)∇φK
ij .

We define the finite-dimensional space spanned by these basis functions by

Vh = span{ψK
ij }.

We denote by V0
h the span of ψK

ij that satisfies homogeneous Neumann bound-
ary conditions. We set Qh to be piecewise constant basis functions that are
used to approximate the pressure p, as in Section 2.5.2.
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As in Section 2.5.2, we can combine the basis functions in adjacent coarse-
grid blocks with a common edge ej and obtain the multiscale basis function
for the edge ej denoted by ψij . Let K1 and K2 be adjacent coarse grid blocks.
Then ψij solves (4.6) in K1 and solves div(ψij) = −1/|K2| in K2, and ψij ·n =
−vi · n/

∫
eK

j
vi · nds on eK2

j and 0 otherwise. In other words, ψij = ψK1
ij in K1

and ψij = −ψK2
ij in K2, where ψK

ij is defined via the solution of (2.16) (cf.
Figure 2.8 for the illustration).

Let {vh, ph} be the numerical approximation of {v, p} with the basis func-
tions defined previously. The numerical mixed formulation of (4.4) is to find
{vh, ph} ∈ Vh ×Qh such that

∫

Ω

(λk)−1vh · whdx−
∫

Ω

div(wh)phdx = 0 ∀wh ∈ V0
h

∫

Ω

div(vh)qhdx =
∫

Ω

fqhdx ∀qh ∈ Qh.

(4.7)

The discrete formulation corresponding to the resulting system is similar to
(2.18).

Note that for each edge, we have N basis functions and we assume that
v1, ..., vN are linearly independent in order to guarantee that the basis func-
tions are linearly independent. To ensure the boundary condition in (4.6) is
well defined, we assume that

∫
eK

l
vi · nds is not zero. To avoid the possibility

that
∫

eK
l
|vi · n|ds is unbounded, we need to make certain assumptions that

bound
∫

eK
l
|vi ·n|ds from above. These assumptions are formulated in Section

6.3.
In Section 6.3, it is shown that the MsFEM using limited global informa-

tion converges without any resonance error. We present numerical results in
the next section as well as in Section 5.7.1 to demonstrate the importance of
the use of global information.

Remark 4.1. We note that local mixed MsFEMs introduced in Section 2.5.2
can be obtained from mixed MsFEMs introduced in this section. To do this,
one needs to use one global field v1 which is a constant vector and v1 · n �= 0
along each edge e. Taking into account that v1 ·n is constant along each edge,
we have v1 ·n/

∫
e
v1 ·nds = 1/|e|. This is the same as the boundary conditions

introduced for local problems in Section 2.5.2.

Remark 4.2. The representative coarse grid K can be nonconvex (c.f., Figure
4.3). The analysis presented in Section 6.3 implies that the global mixed mul-
tiscale finite element method works for nonconvex meshes. Strongly stretched
meshes can have an impact on the convergence rate of the method following
the analysis in Section 6.3.

Remark 4.3. The construction of velocity basis functions in (4.6) and the anal-
ysis in Section 6.3 imply that K is not necessarily a polygon domain and the
interface normal can be a spatial function.
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Neighboring coarse grid block

Nonzero flux boundary condition

Zero flux boundary condition

K

φi,jdiv(k        )= 
|K|
−−
1

Fig. 4.3. Schematic description of velocity basis function construction.

Remark 4.4. We note that the global mixed MsFEMs presented in the book
can be used when meshes have hanging nodes and when fine grids do not
necessarily match across coarse grid interfaces.

Pseudo-code. Next, we briefly outline the implementation of mixed Ms-
FEMs. We note that the implementation of mixed MsFEMs is similar to
Algorithm 2.5.2, except one needs to compute or obtain global fields. Note
that global fields can be defined iteratively (see Section 4.4). We have posted
simple prototype MATLAB codes for solving elliptic equations with mixed
MsFEMs (courtesy of J.E. Aarnes) at
http : //www.math.tamu.edu/ ∼ yalchin.efendiev/codes/.

4.2.2 Parabolic equations

Mixed MsFEMs using limited global information can be easily extended to
parabolic equations. We consider the following model parabolic equation,

∂

∂t
p− div(λ(x)k(x)∇p) = f(x, t) in Ω × [0, T ]

p = 0 on ∂Ω × [0, T ]
p(t = 0) = p(0) in Ω,

(4.8)

where k(x) is a bounded symmetric and positive definite matrix in Ω, and
p(0) is a smooth spatial field. Denote by v = −λ(x)k(x)∇p.
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Algorithm 4.2.1

Set coarse mesh configuration from fine-scale mesh information.
Define global fields v1, ..., vi, ..., vN used in the simulations.
For each coarse-grid block n and for each global field i do
– For each edge j of a coarse-grid block
– Solve for ψn

ij according to (4.6)
– End for
End do.
Assemble the coarse-scale system according to (4.7).
Assemble the external force on the coarse mesh according to (4.7).
Solve the coarse-grid formulation.

For parabolic equations, we assume that the velocity v can be approx-
imated by multiple global fields. In particular, we assume that there exist
v1, ..., vN and sufficiently smooth functions A1(t, x), ..., AN (t, x) such that

v(t, x) ≈
N∑

i=1

Ai(t, x)vi(x).

This assumption is made more precise in Section 6.3.1.
The mixed formulation associated with (4.8) is to find {v, p} such that

∫

Ω

∂

∂t
p qdx+

∫

Ω

div(v) qdx =
∫

Ω

fq ∀q ∈ L2(Ω)
∫

Ω

(λk)−1v · wdx−
∫

Ω

div(w) pdx = 0 ∀w ∈ H(div, Ω)

p(t = 0) = p(0).

(4.9)

Let finite-dimensional space Vh and Qh be defined as in the elliptic case. The
space-discrete mixed formulation is to find {vh, ph} : [0, T ] −→ Vh ×Qh such
that

∫

Ω

∂

∂t
phqhdx+

∫

Ω

div(vh) qhdx =
∫

Ω

fqhdx ∀qh ∈ Qh

∫

Ω

(λk)−1vh · whdx−
∫

Ω

div(wh) phdx = 0 ∀wh ∈ Vh

ph(t = 0) = p0,h,

(4.10)

where p0,h is the L2 projection of p(0) onto Qh. This problem can be also
re-written in matrix form

A
∂

∂t
P +BU = F

BTP −DU = 0
(4.11)
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with P (0) given, where A and D are symmetric positive and definite. After
eliminating U , (4.11) is a linear system ODE for P ,

A
∂

∂t
P +BD−1BTP = F.

The analysis of the method is presented in Section 6.3.

4.2.3 Numerical results

The use of single global information

In our numerical simulations, we perform two-phase flow and transport sim-
ulations with the same setting as before, except we assume that the source
terms (qt in (2.40)) are given by a standard five-spot problem (see e.g., [1]),
where the injection well is placed at the middle and the four production wells
are placed at four corners of the rectangular global domain. We assume no
flow along the boundaries. Initially, it is assumed that S = 0 in the whole
domain. In the simulations, we solve the pressure equation on the coarse grid
and reconstruct the fine-scale velocity field which is used to solve the satu-
ration equation. The fine-scale velocity is reconstructed simply by using the
multiscale basis function as

v =
∑

e

veψe,

where the sum is taken over all edges e (or faces), ve is the coarse-scale normal
velocity field for edge e obtained via the solution of mixed MsFEMs, and ψe

is the velocity basis function for edge e. If there are several multiscale basis
functions for each edge, then

v =
∑

e,i

ve,iψe,i,

where i corresponds to the global field vi (see (4.3)). Because we use a recon-
structed fine-scale velocity field, the errors will be due to mixed MsFEMs only.
The basis functions are constructed at time zero and not changed throughout
the simulations. As for permeability fields, we use heterogeneous permeability
fields from the Tenth SPE Comparative Solution Project [78] (also referred
to as SPE 10). Because of channelized structure of the permeability fields,
the localized approaches do not perform well, as we observed earlier. On the
other hand, the use of limited global information based on single-phase flow
information improves the accuracy.

We first present numerical results where one global field (single-phase flow
solution) is used (N = 1 in (4.3)). More precisely, div(k∇p1) = qt, where qt
represents the source terms corresponding to the five-spot problem and v1 =
−k∇p1. We compare a mixed MsFEM with limited global information and a
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mixed MsFEM which uses only local information. In Tables 4.1–4.6 numerical
results for different layers of SPE 10 using different viscosity ratios (see (2.39))
and different coarse grid sizes are shown. In these tables, the L1 saturation
errors over the time interval from 0 to 1 PVI as well as fractional flow errors are
compared. It is evident from these tables that a mixed MsFEM using limited
global information performs much better than a mixed MsFEM which only
uses local information. Moreover, we observe that a mixed MsFEM converges
as the mesh size decreases. We present saturation snapshots in Figure 4.4.
These results indicate that for general complicated media such as SPE 10
with high contrast, one can expect the convergence of a mixed MsFEM as the
coarse mesh size decreases when using limited global information.

Table 4.1. Relative Errors (Layer 40, μo/μw = 3)

Coarse Grid Frac. Flow
Error

Saturation
Error

Frac. Flow
Error

Saturation
Error

(Global) (Global) (Local) (Local)

6 × 10 0.0144 0.0512 0.1172 0.2755

12 × 22 0.0039 0.0370 0.1867 0.3158

Table 4.2. Relative Errors (Layer 50, μo/μw = 3)

Coarse Grid Frac. Flow
Error

Saturation
Error

Frac. Flow
Error

Saturation
Error

(Global) (Global) (Local) (Local)

6 × 10 0.0129 0.0871 0.1896 0.5061

12 × 22 0.0046 0.0568 0.1702 0.4578

Table 4.3. Relative Errors (Layer 70, μo/μw = 3)

Coarse Grid Frac. Flow
Error

Saturation
Error

Frac. Flow
Error

Saturation
Error

(Global) (Global) (Local) (Local)

6 × 10 0.0106 0.0562 0.0408 0.2291

12 × 22 0.0039 0.0421 0.0976 0.2530

Mixed MsFEM on unstructured grids and the coupling to
coarse-scale transport equation

In [4], the mixed MsFEM is used for simulations on unstructured coarse grids.
The use of unstructured coarse grids has advantages in subsurface simula-
tions because they provide flexibility and can render more accurate upscaled
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Table 4.4. Relative Errors (Layer 40, μo/μw = 10)

Coarse Grid Frac. Flow Error Saturation Error Frac. Flow Error Saturation Error
(Global) (Global) (Local) (Local)

6 × 10 0.0080 0.0534 0.0902 0.2721

12 × 22 0.0026 0.0403 0.1414 0.3153

Table 4.5. Relative Errors (Layer 50, μo/μw = 10)

Coarse Grid Frac. Flow Error Saturation Error Frac. Flow Error Saturation Error
(Global) (Global) (Local) (Local)

6 × 10 0.0049 0.0957 0.1577 0.5137

12 × 22 0.0041 0.0628 0.1404 0.4613

Table 4.6. Relative Errors (Layer 70, μo/μw = 10)

Coarse Grid Frac. Flow Error Saturation Error Frac. Flow Error Saturation Error
(Global) (Global) (Local) (Local)

6 × 10 0.0044 0.0629 0.0280 0.2262

12 × 22 0.0025 0.0473 0.0678 0.2397

solutions for flow and transport equations. It is often necessary to use an un-
structured coarse grid when highly heterogeneous reservoirs are discretized via
irregular anisotropic fine grids. Our study is motivated by the development of
coarse-scale models for coupled flow and transport equations in a multiphase
system. An unstructured coarse grid is often used to upscale the transport
equation with hyperbolic nature in a highly heterogeneous reservoir. Solving
the flow equation on the same coarse grid provides a general robust coarse-
scale model for the multiphase flow and transport at a low CPU cost. We note
that most of the previous studies employ a two-grid approach where the flow
equation is solved on a coarse grid and the transport equation is solved on
a fine grid. We consider the nonuniform coarsening developed in [9] for the
transport equation (also described in Section 5.5). The coarse grid we obtain
is highly anisotropic and is not quasi-uniform. We present numerical results
when both the flow and transport equations are solved on the coarse grid. In
[4], numerical examples involving highly channelized permeability as well as
a 3D reservoir model using an unstructured fine grid are presented. Next, we
present a few numerical examples.

For our numerical example, we consider layer 65 of SPE 10. Using the
algorithm for upscaling of the transport equation ([9]), we generate a coarse
grid. In Figure 4.5, the fine-scale permeability and the coarse grid are plotted.
In Figure 4.6, we present the results for the saturation fields at PVI= 1 when
both the flow and the transport equations are solved on the coarse grid. One
can see from this figure that the saturation profile looks realistic when an
adaptive coarse grid is used and we preserve the geological realism reasonably
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Fig. 4.4. Comparison of saturation fields between reference solution and MsFEM
solution at PVI = 1, layer 50, 12 × 11 coarse grid and μo/μw = 10; top: refer-
ence saturation; middle: saturation using global mixed MsFEM; bottom: multiscale
saturation using local mixed MsFEM.

well. In Table 4.7 we present L1 relative errors for the saturation when different
resolutions of the coarse grid are used. In the same table, we show the errors
corresponding to the structured grids with a comparable number of coarse-
grid blocks (shown in parentheses). We can make two important observations
from this table. First, the errors are small (less than 1%). Second, the mixed
MsFEM on an unstructured grid performs better. The latter is due to the fact
that the unstructured grid is constructed using some relevant limited global
information which usually increases the accuracy of the method.

In our next numerical example, we test the method on a synthetic reservoir
with a corner-point grid geometry. The corner-point grid has vertical pillars,
as shown in Figure 4.7, 100 layers, and 29,629 active cells (cells with positive
volume). The permeability ranges from 0.1 mD to 1.7 D and the porosity is
assumed to be constant. The corner-point grid (or pillar grid) format [231]
is a very flexible grid format that is used in many commercial geomodeling
softwares. Essentially a corner-point grid consists of a set of hexahedral cells
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Fig. 4.5. 60×220 permeability field and the coarse grid with 180 blocks. A random
color is assigned to each coarse-grid block.
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Fig. 4.6. Saturation comparisons.

Table 4.7. Relative L1 Errors (Layer 65)

Unstruct. Coarse Sat. Err. Sat. Err. (Struct. Grid)
(Number of Blocks) (Total) (Total)

180 0.0097 0.0130 (10×20)
299 0.0080 0.0125 (15×22)
913 0.0062 0.009 (20×44)

that are aligned in a logical Cartesian fashion where one horizontal layer in the
logical grid is assigned to each sedimentary bed to be modeled. In its simplest
form, a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each
cell in the volumetric corner-point grid is restricted by four pillars and is
defined by specifying the eight corner points of the cell, two on each pillar.

We consider only 60 vertical layers of the permeability field. The coarse grid
is constructed by subdividing the fine-scale model on 30-by-30-by-60 corner-
point cells into 202 coarse-grid blocks. In Figure 4.8, we plot: coarse-grid
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Fig. 4.7. A corner-point model with vertical pillars and 100 layers. To the right is
a plot of the permeability field on a logarithmic scale. The model is generated with
SBEDTM , and is courtesy of Alf B. Rustad at STATOIL.

Fig. 4.8. Left: schematic description of unstructured coarsening (each coarse grid
block is assigned a random color). Middle: a horizontal slice of unstructured coars-
ening presented on the left. Right: a coarse grid block (enlarged).

partitioning (left plot) where a random color is assigned to each coarse-grid
block; a horizontal slice of coarse partitioning presented on the left plot; and
several coarse-grid blocks. In Figure 4.9, we plot the water-cut curves. As
we see from this figure, our method provides an accurate approximation of
water-cut data. The error that is due to the mixed MsFEM is only 2% (here,
we consider L1 error in the saturation field at PVI = 0.5). We have observed
17% error in the saturation field when both flow and transport equations are
solved on the coarse grid. This error is mainly due to the saturation upscaling.
The detailed numerical studies when both flow and transport equations are
coarsened can be found in [4]. In particular, we show that the errors due to
mixed MsFEMs for solving the flow equation are much smaller than the errors
due to upscaling of the transport equation. This suggests that more accurate
upscaling methods for transport equations are needed. Multiscale methods for
transport equations are discussed in Section 5.2.
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Fig. 4.9. Water-cut for reference and multiscale solutions.

The use of multiple global information in parameter-dependent
permeability

In our next set of numerical experiments, we consider a case where one needs
to use multiple global fields to construct multiscale basis functions. One can
consider this case as a simplified case for the more general stochastic case
which is presented in Section 5.7. In our numerical experiments, we con-
sider k(x, θ) = exp(θY (x)). We investigate a range of θ, θ1 ≤ θ ≤ θ2,
and use the global single-phase flow solutions corresponding to endpoints
θ = θ1 and θ = θ2 to construct the multiscale basis functions. In partic-
ular, v1 = −k(x, θ1)∇p(x, θ1) and v2 = −k(x, θ2)∇p(x, θ2) (where p(x, θ1)
and p(x, θ2) solve the global single-phase flow problem) are used to construct
mixed multiscale basis functions as described earlier.

In Figure 4.10, the water-cut (which is equal to 1−F , F being the fractional
flow) and the saturation profiles for a value of θ = 0.75 are compared. The
global fields corresponding to single-phase flow solutions are computed at
θ1 = 0.5 and θ2 = 1. The simulations are run with μo/μw = 5. We note that
the value of θ is different from the values used in generating basis functions.
We observe from these figures that the mixed MsFEM provides an accurate
representation of the solution. In particular, there is almost no difference in
the water-cut curve and the error in the saturation profile at PVI = 1 is less
than 5%. This observation is consistent for all other values between θ1 and
θ2, and it is demonstrated next.

In our next set of numerical experiments, water-cut errors and saturation
errors for values of θ between θ1 = 0.5 and θ2 = 1.5 are presented. We also
compare these results with the results obtained using only one value of θ,
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Fig. 4.10. Top: comparison of water-cut between reference solution and multiscale
solution; middle: the reference saturation at PVI = 1; bottom: multiscale saturation
at PVI = 1 (layer 85).

θ = 1. More precisely, we only use the global solution corresponding to θ = 1
to construct multiscale basis functions. Furthermore, these basis functions are
used for solving the two-phase flow on the coarse grid for other values of θ. We
observe from Figures 4.11 and 4.12, that the results are substantially better if
two global solutions are employed in characterizing the solutions for the entire
range of θ. In Figure 4.11, μo/μw = 0.1 is taken and in Figure 4.12, μo/μw = 10
is taken. It is clear from these figures that the use of two global solutions in
mixed MsFEMs gives us an accurate approximation. The presented numerical
results show that one can use a few realizations of the permeability field to
construct basis functions that can be employed for solving two-phase flow
and transport on the coarse grid accurately. Similar ideas have been used in
applications of mixed MsFEMs to stochastic equations (see Section 5.7.1).

One of our goals with presented numerical results is to show that the so-
lution can be approximated using multiple global fields. Next, we discuss the
numerical convergence of global mixed MsFEMs with limited global informa-
tion. For this reason, we consider different coarse grids, 6 × 22, 12 × 44, and
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Fig. 4.11. L1 saturation error and water-cut error using one single-phase flow so-
lution and two single-phase flow solutions, μo/μw = 0.1 (layer 85).
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Fig. 4.12. L1 saturation error and water-cut error using one single-phase flow so-
lution and two single-phase flow solutions, μo/μw = 10 (layer 85).

15 × 55 for the previous example with μo/μw = 10. Our convergence anal-
ysis (see Section 6.3) indicates that the proposed method converges up to a
small parameter that represents how well the two-phase velocity field can be
approximated by a single-phase velocity field in each coarse patch. Moreover,
the convergence rate also depends on the smoothness of Ai in (4.5). One can
consider an ideal toy problem where the convergence rate can be verified by
specifying the form of the solution up to smooth functions Ai (see (4.5)). In-
stead, we would like to consider the SPE 10 example and show that as the
coarse mesh size decreases the error decreases. We note that this is in contrast
to standard MsFEMs where one can observe the resonance error. As a result,
the mixed MsFEM does not converge as h approaches zero. As we see from
Figure 4.13, the mixed MsFEM using limited global information converges as
the coarse mesh size decreases. This is again an indication that for general
complicated media such as SPE 10 with high contrast, one can expect the
convergence of mixed MsFEMs using limited global information.

We note that the method can be used for stochastic flow equations. This is
presented in Section 5.7.1. In this case, one can take vi to be the realizations
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Fig. 4.13. L1 saturation error and water-cut error using one single-phase flow solu-
tion and two single-phase flow solutions, μo/μw = 10 for different degrees of coars-
ening (layer 85).

of the random fields. This way multiscale basis functions capture the small-
scale information across the realizations of stochastic porous media equations.
Because these approaches do not necessarily require global information and
can be considered as an application of MsFEMs, we present them in the last
chapter of the book.

4.3 Galerkin multiscale finite element methods using
limited global information

4.3.1 A special case

First, we consider a special case where only one global field is used for generat-
ing multiscale basis functions. We denote the solution of the pressure equation
at time zero by psp(x), where the superscript sp refers to single-phase flow
(λ = 1 in (4.1)). In defining psp(x), we use the actual boundary conditions of
the global problem. The boundary conditions for modified basis functions are
defined in the following way. For simplicity of the presentation, we consider
a rectangular partition in 2D. For each rectangular element K with vertices
xi (i = 1, 2, 3, 4), denote by φi(x) a restriction of the nodal basis on K, such
that φi(xj) = δij . At the edges where φi(x) = 0 at both vertices, we take the
boundary condition for φi(x) to be zero. Consequently, the basis functions are
localized. We only need to determine the boundary condition at two edges that
have the common vertex xi (φi(xi) = 1). Denote these two edges by [xi−1, xi]
and [xi, xi+1] (see Figure 4.14). We only need to describe the boundary condi-
tion gi(x) for the basis function φi(x) along the edges [xi, xi+1] and [xi, xi−1].
If psp(xi) �= psp(xi+1), then

gi(x)|[xi,xi+1] =
psp(x) − psp(xi+1)
psp(xi) − psp(xi+1)

, gi(x)|[xi,xi−1] =
psp(x) − psp(xi−1)
psp(xi) − psp(xi−1)

.
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Fig. 4.14. Schematic description of nodal points.

If psp(xi) = psp(xi+1) �= 0, then

gi(x)|[xi,xi+1] = φ0
i (x) +

1
2psp(xi)

(psp(x) − psp(xi+1)),

where φ0
i (x) is a linear function on [xi, xi+1] such that φ0

i (xi) = 1 and
φ0

i (xi+1) = 0. Similarly,

gi+1(x)|[xi,xi+1] = φ0
i+1(x) +

1
2psp(xi+1)

(psp(x) − psp(xi+1)),

where φ0
i+1(x) is a linear function on [xi, xi+1] such that φ0

i+1(xi+1) = 1
and φ0

i+1(xi) = 0. If psp(xi) = psp(xi+1) �= 0, then one can also use simply
linear boundary conditions. If psp(xi) = psp(xi+1) = 0 then linear boundary
conditions are used. Finally, the basis function φi(x) is constructed by solving
the leading-order homogeneous equation div(k∇φi) = 0. The choice of the
boundary conditions for the basis functions is motivated by the analysis. In
particular, we would like our basis functions to span the fine-scale solution
psp(x). Using this property and Cea’s lemma one can show that the pressure
obtained from the numerical solution is equal to the underlying fine-scale
pressure. The latter combined with the fact that the two-phase flow solution
p is a smooth function of psp (see [103]) allows us to show that the proposed
multiscale finite element method converges independent of resonance error.
This approach is effective when the solution of (4.1) is a smooth function of
psp.

4.3.2 General case

The MsFEMs considered above employ information from only one single-
phase flow solution. In general, it might be necessary to use information from
multiple global solutions for the computation of an accurate two-phase flow
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solution. The previous MsFEMs can be extended to take into account ad-
ditional global information. Next, we present an extension of the Galerkin
MsFEM that is based on the partition of unity method [32] (also see e.g.,
[248], [121], [153]).

As we mentioned before, we assume (4.2); that is ‖p−G(p1, ..., pN )‖L2(Ω)

is sufficiently small for a priori selected global fields p1, ..., pN . Here G is a
smooth function. Here, p1, ..., pN are global (or local) fields that can approxi-
mate the solution.

Let ωi be a coarse-grid patch (see Figure 4.15), and define φ0
i to be par-

tition of unity functions (e.g., piecewise linear basis functions) such that
φ0

i (xj) = δij . For simplicity of notation, denote p1 = 1. Then, the MsFEM for
each patch ωi is constructed by

Ψij = φ0
i pj ,

where j = 1, .., N and i is the index of nodes (see Figure 4.15). We note that
in each coarse patch

∑n
i=1 Ψij = pj is the desired global field. Because the

solution can be approximated by pj , one can show that the MsFEM converges
independent of resonance errors ([162]). Note that the form of the function
G is not important for the computations; however, it is crucial that the basis
functions span p1,..., pN in each coarse block. The convergence results are
presented in Section 6.3.

i

xi

ω
K

Fig. 4.15. Schematic description of patch.

4.3.3 Numerical results

Next, we show numerical results obtained for MsFEMs using limited global
information presented in Section 4.3.1. We consider two-phase flow and trans-
port and use only one global field, single-phase flow information (N = 1), as
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Fig. 4.16. Fractional flow comparison for standard MsFVEM and global MsFVEM.

described in Section 4.3.1 in the construction of basis functions. The basis
functions are coupled via the finite volume formulation of the problem (see
Section 2.5.1). We refer to this method as the global MsFVEM. Our first
numerical example is for the permeability layer depicted in Figure 4.1 and
two-phase flow parameters presented earlier in Section 2.10. As before, we
specify p = 1, S = 1 along the x = 0 edge and p = 0 along the x = 5 edge. On
the rest of the boundaries, we assume a no-flow boundary condition. Results
are also presented in terms of the fraction of oil in the produced fluid (i.e.,
oil-cut, designated by F ) against pore volume injected (PVI). Recall that PVI
represents dimensionless time and is computed via

∫
Qdt/Vp, where Vp is the

total pore volume of the system and Q is the total flow rate (see (2.44) for
the definition of PVI).

In Figure 4.16, the fractional flows are plotted for standard and global
MsFVEMs. We observe from this figure that the global MsFVEM is more
accurate and provides nearly the same fractional flow response as the direct
fine-scale calculations. In Figure 4.17, we compare the saturation fields at
PVI = 0.5. As we see, the saturation field obtained using the global MsFVEM
is very accurate and there is no longer the saturation pocket at the left bottom
corner (cf. Section 4.1.1). Thus, the global MsFVEM captures the connectivity
of the media accurately.

In the next set of numerical results, we test global MsFVEMs for a differ-
ent layer (layer 40) of the SPE comparative solution project. In Figures 4.18
and 4.19, the fractional flows and total flow rates (Q) are compared for two
different boundary conditions. One can see clearly that the global MsFVEM
gives nearly exact results for these integrated responses. The standard Ms-
FVEM tends to overpredict the total flow rate at time zero. This initial error
persists at later times. This phenomenon is often observed in the upscaling of
two-phase flows. More numerical results and discussions can be found in [103].
These numerical results demonstrate that global MsFEMs which use limited
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Fig. 4.17. Saturation maps at PVI = 0.5 for fine-scale solution (left figure) and
global MsFVEM (right figure).
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Fig. 4.18. Fractional flow (left figure) and total production (right figure) comparison
for standard MsFVEM and global MsFVEM (layer 40).

global information are more accurate. Moreover, global MsFEMs are capable
of capturing long-range flow features accurately for channelized permeability
fields.

In the next set of numerical results, we consider another layer of the upper
Ness (layer 59). In Figure 4.20, both fractional flow (left figure) and total
flow (right figure) are plotted. We observe that the global MsFVEM gives
almost the exact results for these quantities, whereas the standard MsFVEM
overpredicts the total flow rate, and there are deviations in the fractional flow
curve around PVI ≈ 0.6. Note that unlike the previous case, fractional flow for
standard MsFVEM is nearly exact at later times (PVI ≈ 2). In Figure 4.21,
the saturation maps are plotted at PVI = 0.5. The left figure represents the
fine scale, the middle figure represents the results obtained using a standard
MsFVEM, and the right figure represents the results obtained using a global
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Fig. 4.19. Fractional flow (left figure) and total production (right figure) comparison
for the standard MsFVEM and global MsFVEM (layer 40).
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Fig. 4.20. Fractional flow (left figure) and total production (right figure) comparison
for the standard MsFVEM and global MsFVEM.

MsFVEM. We observe from this figure that the saturation map obtained using
a standard MsFVEM has some errors. These errors are more evident near the
lower left corner. The results of the saturation map obtained using the global
MsFVEM are almost the same as the fine-scale saturation field. It is evident
from these figures that the global MsFVEM performs better than the standard
MsFVEM.

4.4 The use of approximate global information

In the above discussions, the global fields are computed by solving simplified
fine-scale equations. One can also use approximate global solutions instead of
solving fine-scale elliptic equations. There are various ways one can attempt to
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Fig. 4.21. Saturation maps at PVI = 0.5 for fine-scale solution (left figure), stan-
dard MsFVEM (middle figure), and global MsFVEM (right figure).

approximate the global fields and we briefly discuss two types of approximate
global solutions. In the first approach, approximate global fields that capture
nonlocal effects are computed iteratively. In the second approach, we attempt
to compute global fields with fewer fine-scale details by homogenizing some
small-scale features that can be localized.

4.4.1 Iterative MsFEM

One can attempt to capture nonlocal effects iteratively by using the approxi-
mate solutions obtained from MsFEMs. This procedure is schematically pre-
sented in Figure 4.22. At each iteration, approximations of the global solutions
obtained via MsFEMs are used in the computation of multiscale basis func-
tions. The computations of multiscale basis functions are the same as discussed
above (e.g., (4.6)). Once the basis functions are computed, the global problem
is solved on the coarse grid and updated approximations of the global solu-
tions are computed. These global solutions are again used for multiscale basis
function computation after possible post-processing with smoothers if needed.
A convergence criterion based on the difference of consecutive approximate
MsFEM solutions can be used to stop the iterations. In order to avoid using
the same space of multiscale basis functions, one can use different sizes of
oversampling domains in the computation of basis functions.

An algorithm with a similar concept was introduced in [93]. In [93], the
authors proposed the use of a MsFVEM solution as a global solution. Numer-
ical results show that one can achieve substantial improvement when small
oversampling is employed in computing the global solutions. Moreover, one
can apply this approach iteratively, by re-computing the MsFVEM solution.
This iterative procedure converges in two to three iterations for heteroge-
neous permeability fields such as SPE 10. In general, the correction to the
multiscale solution via iterations can be very useful in many practical appli-
cations. Indeed, computing a global solution each time when heterogeneities
or flow fields change can be expensive. On the other hand, the iterative ap-
proaches that can compute the approximate global solution by updating a few
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Fig. 4.22. An outline of iterative MsFEM.

multiscale basis functions can be very useful in fast flow simulations. These
approaches share some similarities with domain decomposition methods (e.g.,
[137]), although there are important differences. The approach proposed in
[93] iteratively computes multiscale basis functions that can be re-used for
different source terms and boundary conditions, and domain decomposition
methods correct the solution in the iterations. One can also keep multiscale
basis functions the same during the iterations and compute the corrections to
the solution in the iterations.

4.4.2 The use of approximate global information

Another possible approximation of global solutions can be obtained by remov-
ing the small-scale details that can be localized. This way, one will compute
only important nonlocal features of the global fields by homogenizing some of
the small-scale features that can be recovered in the basis function construc-
tion (see Figure 4.23 for the illustration). This can provide CPU savings in
global solution computations because not all small-scale features are resolved.
To demonstrate this concept, we assume that the coefficients are described by
kδ>,ε(x), where δ> refers to the hierarchy of scales that are larger than δ, and
the parameter ε (ε � δ) refers to the small scale that can be homogenized.
Denote the partially homogenized coefficients by k∗δ>(x). By homogenizing ε
scales, one can use k∗δ>(x) to compute the global fields. The use of nonuniform
coarsening will allow us to discretize the equation with the coefficients k∗δ>(x)
on a coarser grid compared to the equation with the coefficients kδ>,ε(x).
Indeed, many fine-scale features are due to ε scales. This will provide CPU
savings in the computation of auxiliary global fields. Moreover, one can use
smaller regions (RVE) as in Section 2.6 in the computation of k∗δ>(x). In [108],
we use the global solutions computed with the coefficients k∗δ>(x) to construct
multiscale basis functions and investigate the convergence of the method.
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4.5 Discussions

One of the theoretical works on using limited global information in MsFEMs is
by Owhadi and Zhang [218]. In this work, the authors show that the solution
is smooth in a harmonic coordinate system. These results are shown under
some suitable assumptions for the case d = 2 and more restrictive assump-
tions for the case d = 3. The use of harmonic coordinates in homogenization
is not new. In [169], the author used harmonic coordinates to transform the
elliptic equations with random coefficients into the elliptic equations in non-
divergence forms (without lower-order terms). The homogenization of elliptic
equations in non-divergence form is carried out by using spatial averaging.
Harmonic coordinates in [218] consist of directional solutions of the single-
phase flow equation. This suggests that one can solve the flow equation with
an arbitrary right-hand side or smooth mobility λ(x) in a harmonic coordi-
nate system using standard finite element basis functions on a coarse grid. In
the original (physical) coordinate system, this method entails solving the flow
equations with multiscale basis functions that span the global solutions and,
perhaps, constant or low-order polynomials. Moreover, the coarse grid in the
original coordinate system is the image of the regular coarse-grid block in the
harmonic coordinate system. This image is taken under the inverse of har-
monic coordinate transformation. These coarse-grid blocks are usually highly
distorted [218].

The multiscale methods using limited global information usually perform
well (numerically) for high-contrast media. However, rigorous analysis for gen-
eral high-contrast media is still an open question. Some results along this
direction have been obtained recently in [137, 76, 67]. In [76], piecewise con-
stant heterogeneities are considered. The authors show that by constructing
some appropriate multiscale boundary conditions for the basis functions that
take into account the local geometric property of the solution, the MsFEM
converges with an optimal convergence rate independent of the aspect ratio
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of the heterogeneous coefficient. This is perhaps the first result in which one
can obtain an optimal convergence rate independent of the high-contrast of
the coefficients for a finite element method which does not require alignment
of the finite element mesh with the interface boundary. In [67], the high con-
trast problem is formulated as an interface problem without a high contrast.
Then the basis functions for the interface on the coarse grid are computed in
addition to regular multiscale basis functions.

The question of whether local changes in the permeability can be treated
by modifying multiscale basis functions locally is addressed in [77]. The au-
thors consider the mobility functions λ(S) in (4.1) which are discontinuous
functions. It is shown that by changing the basis functions only near the dis-
continuities, one can achieve a convergent method for problems without scale
separation.

The limited global information can be very useful in coarsening. In [218],
the authors use the level sets of the directional solutions to generate the
coarse grid. The use of level sets of the directional solutions has limitations.
In previous findings, the pressure-streamline coordinates have been used in
coarsening. In a recent work [93], we propose a generic algorithm, extending
the main idea of [69], for performing nonuniform coarsening using a single-
phase velocity field. We show that one can achieve higher accuracy with fewer
degrees of freedom (compared to uniform coarsening).

As we mentioned earlier the use of limited global information in coarsening
is not new. The single-phase information has been used in upscaling methods
for porous media flows before. One of the main difficulties in upscaling meth-
ods when using limited global information is to recover exactly the average
response of the global fine-scale information. In [140], the authors solve an op-
timization problem for computing the upscaled permeabilities that give nearly
the same average response as the global solution. In [69], the authors propose
an iterative method using global information which converges in a few iter-
ations. The resulting upscaled coefficients give nearly the same average flow
response as the global single-phase flow solution. Limited global information
is also used in multiphase upscaling for upscaling of relative permeabilities.

As we mentioned above one can use multiple global solutions in computing
basis functions. This is particularly useful for stochastic problems, where dif-
ferent realizations are used in computing basis functions, or in the situations
where a priori knowledge about the change in heterogeneities or boundary
conditions is known. Then, multiple global solutions can be used in construct-
ing multiscale basis functions. In this way, one can use the same set of basis
functions throughout the simulation.

We would like to note that the use of limited global information in non-
linear problems does not seem to be possible, in general. This is due to the
fact that the heterogeneities depend on nonlinearities and the solution. The
use of limited global information usually assumes knowledge about the spatial
heterogeneities. For nonlinear problems, one does not have a priori knowl-
edge about the heterogeneities. One approach is to identify a set of hetero-



94 4 MsFEMs using limited global information

geneities that will occur in nonlinear problems. For example, in nonlinear
elliptic or parabolic problems, this will involve finding spatial information
about k(x, p,∇p) for all p. Once this has been determined, one can construct
a larger set of basis functions that are capable of capturing all the long-range
effects. To our best knowledge, these issues have not been addressed so far.

Finally, we mention that the multiscale methods using limited global in-
formation can be extended to other linear equations, such as wave equations
[163].




