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Multiscale finite element methods for nonlinear
equations

3.1 MsFEM for nonlinear problems. Introduction

The objective of this chapter is to present a generalization of the MsFEM to
nonlinear problems ([110, 112, 113, 104]) which was first presented in [110].
This generalization, as the MsFEM for linear problems, has two main ingre-
dients: a global formulation and multiscale localized “basis” functions. We
discuss numerical implementation issues and applications.

Let Th be a coarse-scale partition of Ω, as before. We denote by Wh a
usual finite-dimensional space, which possesses approximation properties, for
example, piecewise linear functions over triangular elements, as defined before.
In further presentation,K is a coarse element that belongs to Th. To formulate
MsFEMs for general nonlinear problems, we need (1) a multiscale mapping
that gives us the desired approximation containing the small-scale information
and (2) a multiscale numerical formulation of the equation.

We consider the formulation and analysis of MsFEMs for general nonlinear
elliptic equations

− div k(x, p,∇p) + k0(x, p,∇p) = f in Ω, p = 0 on ∂Ω, (3.1)

where k(x, η, ξ) and k0(x, η, ξ), η ∈ R, ξ ∈ R
d satisfy the general assumptions

(6.42)–(6.46), which are formulated later. Note that here k and k0 are nonlin-
ear functions of p as well as ∇p. Moreover, both k and k0 are heterogeneous
spatial fields. Later, we extend the MsFEM to nonlinear parabolic equations
where k and k0 are also heterogeneous functions with respect to the time
variable.

Multiscale mapping. Unlike MsFEMs for linear problems, “basis” func-
tions for nonlinear problems need to be defined via nonlinear maps that map
coarse-scale functions into fine-scale functions. We introduce the mapping
EMsFEM : Wh → Ph in the following way. For each coarse-scale element
vh ∈ Wh, we denote by vr,h the corresponding fine-scale element (r stands
for resolved), vr,h = EMsFEMvh. Note that for linear problems in Chapter
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2 (also in Chapter 4), we have used the subscript h (e.g., ph) to denote the
approximation of the fine-scale solution, whereas for nonlinear problems ph

stands for the approximation of the homogenized solution and pr,h is the ap-
proximation of the fine-scale solution. The spatial field vr,h is defined via the
solution of the local problem

− div k(x, ηvh ,∇vr,h) = 0 in K, (3.2)

where vr,h = vh on ∂K and ηvh = (1/|K|)
∫

K
vhdx for each K (coarse ele-

ment). The equation (3.2) is solved in eachK for given vh ∈Wh. Note that the
choice of ηvh guarantees that (3.2) has a unique solution. In nonlinear prob-
lems, Ph is no longer a linear space (although we keep the same notation).
We would like to point out that different boundary conditions can be chosen
as in the case of linear problems to obtain more accurate solutions and this
is discussed later. For linear problems, EMsFEM is a linear operator, where
for each vh ∈ Wh, vr,h is the solution of the linear problem. Consequently,
Ph is a linear space that can be obtained by mapping a basis of Wh. This is
precisely the construction presented in [143] for linear elliptic equations (see
Section 3.3).

An illustrating example. To illustrate the multiscale mapping concept, we
consider the equation

div(k(x, p)∇p) = f. (3.3)

In this case, the multiscale map is defined in the following way. For each
vh ∈Wh, vr,h is the solution of

div(k(x, ηvh)∇vr,h) = 0 in K (3.4)

with the boundary condition vr,h = vh on ∂K. For example, ifK is a triangular
element and vh are piecewise linear functions, then the nodal values of vh will
determine vr,h. Equation (3.4) is solved on the fine grid, in general. In the
one-dimensional case, one can obtain an explicit expression for EMsFEM (see
(3.12)). The map EMsFEM is nonlinear; however, for a fixed vh, this map
is linear. In fact, one can represent vr,h using multiscale basis functions as
vr,h =

∑
i αiφ

vh
i , where αi = vh(xi) (xi being nodal points) and φvh

i are
multiscale basis functions defined by

div(k(x, ηvh)∇φvh
i ) = 0 in K, φvh

i = φ0
i on ∂K.

Consequently, linear multiscale basis functions can be used to represent vr,h.
We can further assume that the basis functions can be interpolated via a
simple linear interpolation

φη0
i ≈ β1φ

η1
i + β2φ

η2
i , (3.5)

where β1, β2 are interpolation constants that depend on η0, η1, and η2. For
example, if η1 < η0 < η2, then β1 = (η0−η1)/(η2−η1) and β2 = (η2−η0)/(η2−
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η1). In this case, one can compute the basis functions for some pre-defined
values of ηs and interpolate for any other η. We can also use the combined set
of basis functions {φη1

i , φ
η2
i } for representing the solution for a set of values

of η.
Multiscale numerical formulation. As discussed earlier, one can use various

global formulations for MsFEM. Our goal is to find ph ∈ Wh ( consequently,
pr,h(= EMsFEMph) ∈ Ph) such that pr,h “approximately” satisfies the fine-
scale equations. When substituting pr,h into the fine-scale system, the result-
ing equations need to be projected onto coarse-dimensional space because
pr,h is defined via ph. This projection is done by multiplying the fine-scale
equation with coarse-scale test functions. First, we present a Petrov–Galerkin
formulation of MsFEM for nonlinear problems. The multiscale finite element
formulation of the problem is the following. Find ph ∈ Wh (consequently,
pr,h(= EMsFEMph) ∈ Ph) such that

〈κr,hph, vh〉 =
∫

Ω

fvhdx, ∀vh ∈Wh, (3.6)

where

〈κr,hph, vh〉 =
∑

K∈Th

∫

K

(k(x, ηph ,∇pr,h) · ∇vh + k0(x, ηph ,∇pr,h)vh)dx. (3.7)

As we notice that the fine-scale equation is multiplied by coarse-scale test
functions from Wh. Note that the above formulation of MsFEM is a general-
ization of the Petrov–Galerkin MsFEM introduced earlier for linear problems.

We note that the method presented above can be extended to systems of
nonlinear equations.

Pseudo-code. In the computations, we seek ph =
∑

i piφ
0
i ∈ Wh which

satisfies (3.6). This equation can be written as a nonlinear system of equations
for pi,

A(p1, ..., pi, ...) = b, (3.8)

where A is given by (3.7). Here, pi can be thought as nodal values of ph on
the coarse grid. To find the form of A, we take vh = φ0

i in (3.7). This yields
the ith equation of the system (3.8) denoted by Ai(p1, ..., pi, ...) = bi, where
bi =

∫
Ω
fφ0

i dx. Denote by Ki triangles with the common vertex xi. Then,

Ai(p1, ..., pi, ...) =
∑

Ki

∫

Ki

(k(x, ηph ,∇pr,h) · ∇φ0
i + k0(x, ηph ,∇pr,h)φ0

i )dx.

In each Ki, ηph =
∑

j pj

∫
Ki
φ0

jdx, where j are the nodes of the triangles
with common vertex i. Later, we present a one-dimensional example, where
an explicit expression for Ai is presented. It is clear that Ai will depend only
on the nodal values of pj which are defined at the nodes of the triangles with
common vertex i. This system is usually solved by an iterative method on a
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Algorithm 3.1.1

Construct a coarse grid.
Until convergence, do
– For each coarse element, compute the multiscale map E : Wh → Ph

according to (3.2).
– Solve the coarse variational formulation using (3.6) and (3.7).

coarse grid and the local solutions can be re-used and treated independently
in each coarse-grid block. In Section 3.7, we discuss some of the iterative
methods.

One dimensional example. We consider a simple one-dimensional case

−(k(x, p)p′)′ = f,

p(0) = p(1) = 0, where ′ refers to the spatial derivative. We assume that the
interval [0, 1] is divided into N segments

0 = x0 < x1 < x2 < · · · < xi < xi+1 < · · · < xN = 1.

For a given ph ∈Wh, pr,h is the solution of

(k(x, ηph)p′r,h)′ = 0, (3.9)

where pr,h(xi) = ph(xi) for every interior node xi. In the interval [xi−1, xi],
(3.9) can be solved. To compute (3.7), we only need to evaluate k(x, ηph)p′r,h.
Noting that this quantity is constant, k(x, ηph)p′r,h = c(xi−1, xi) (directly
follows from (3.9)), we can easily find that

p′r,h = c(xi−1, xi)/k(x, ηph), (3.10)

where ηph = 1
2 (ph(xi−1)+ph(xi)). Taking the integral of (3.10) over [xi−1, xi],

we have
ph(xi) − ph(xi−1) = c(xi−1, xi)

∫ xi

xi−1

1
k(x, ηph)

dx.

Consequently,

c(xi−1, xi) = k(x, ηph)p′r,h =
ph(xi) − ph(xi−1)∫ xi

xi−1

1
k(x,ηph )dx

.

To evaluate (3.7) (note that k0 = 0) with vh = φ0
i , we have

Ai(ph) =
∫ xi

xi−1

c(xi−1, xi)(φ0
i )

′
dx+

∫ xi+1

xi

c(xi, xi+1)(φ0
i )

′
dx

=
ph(xi) − ph(xi−1)∫ xi

xi−1

1
k(x,ηph )dx

∫ xi

xi−1

(φ0
i )

′
dx+

ph(xi+1) − ph(xi)∫ xi+1

xi

1
k(x,ηph )dx

∫ xi+1

xi

(φ0
i )

′
dx.
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Denoting pi = ph(xi) and taking into account that
∫ xi

xi−1
(φ0

i )
′
dx = 1,

∫ xi+1

xi
(φ0

i )
′
dx = −1, we have

Ai(pi−1, pi, pi+1) =
pi − pi−1∫ xi

xi−1

1
k(x, 1

2 (pi−1+pi))
dx

− pi+1 − pi∫ xi+1

xi

1
k(x, 1

2 (pi+pi+1))
dx
. (3.11)

Using the above calculations, one can easily write down an explicit expres-
sion for the multiscale map, EMsFEM : ph → pr,h. In particular, from (3.10),
it can be shown that pr,h in [xi−1, xi] is given by

pr,h(x) = ph(xi−1) +
ph(xi) − ph(xi−1)∫ xi

xi−1

1
k(x,ηph )dx

∫ x

xi−1

dx

k(x, ηph)
. (3.12)

One can use explicit solutions (see page 117, [220]) in a general case

−(k(x, p, p′)′) = f

to write down the variational formulation of (3.7) via the nodal values pi. In
particular, denote ξ = ξ(x, η, c) to be the solution of

k(x, η, ξ) = c.

Then, from (3.2), we obtain p′r,h = ξ(x, ηph , c(xi−1, xi)). Taking the integral
of this equation over [xi−1, xi], we obtain

ph(xi) − ph(xi−1) =
∫ xi

xi−1

ξ(x, ηph , c(xi−1, xi))dx.

Because ηph = 1
2 (pi−1 + pi), we have the following implicit equation for

c(xi−1, xi)

pi − pi−1 =
∫ xi

xi−1

ξ(x,
1
2
(pi−1 + pi), c(xi−1, xi))dx.

With this implicit expression for c(xi−1, xi), we have

Ai(ph) =
∫ xi

xi−1

c(xi−1, xi)(φ0
i )

′
dx+

∫ xi+1

xi

c(xi, xi+1)(φ0
i )

′
dx

= c(xi−1, xi) − c(xi, xi+1).

This expression shows that Ai(ph) nonlinearly depends on pi−1, pi, and pi+1

and provides an explicit expression for the system of nonlinear equations that
result from (3.7).
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3.2 Multiscale finite volume element method (MsFVEM)

Next, we present a different formulation that provides a mass conservative
method. By its construction, the finite volume method has local conservative
properties [118] and it is derived from a local relation, namely the balance
equation/conservation expression on a number of subdomains which are called
control volumes. The finite volume element method can be considered as a
Petrov–Galerkin finite element method, where the test functions are constants
defined in a dual grid. For simplicity, we consider a triangular coarse grid.
Consider a triangle K, and let zK be its barycenter. The triangle K is divided
into three quadrilaterals of equal area by connecting zK to the midpoints of
its three edges. We denote these quadrilaterals by Kz, where z ∈ Zh(K) are
the vertices of K. Also we denote Zh =

⋃
K Zh(K), and Z0

h are all vertices
that do not lie on ∂ΩD, where ∂ΩD are Dirichlet boundaries. In this case, the
control volume Vz is defined as the union of the quadrilaterals Kz sharing the
vertex z (see Figure 3.1). The MsFVEM is to find ph ∈ Wh (consequently,

K

Vz

z

K

zK

z

Kz

Fig. 3.1. Left: Portion of triangulation sharing a common vertex z and its control
volume. Right: Partition of a triangle K into three quadrilaterals.

pr,h = EMsFEMph) such that

−
∫

∂Vz

k (x, ηph ,∇pr,h)·nds+
∫

Vz

k0 (x, ηph ,∇pr,h) dx =
∫

Vz

f dx ∀z ∈ Z0
h,

(3.13)
where n is the unit normal vector pointing outward on ∂Vz. Note that the
number of control volumes which satisfies (3.13) is the same as the dimen-
sion of Wh. The equation (3.13) gives rise to the finite-dimensional system of
equations that provide the solution at the coarse nodes.
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3.3 Examples of Ph

Linear case. For linear operators, Ph can be obtained by mapping a ba-
sis of Wh because EMsFEM is a linear operator. Define a basis of Wh,
Wh = span(φ0

i ), where φ0
i are standard linear basis functions (assuming K

is a triangular or tetrahedral element). Denote by φi the map of each basis
function φ0

i (i.e., φi = EMsFEMφ0
i ). From the definition of EMsFEM it follows

that φi satisfies
− div(k(x)∇φi) = 0 in K ∈ Th (3.14)

and φi = φ0
i on ∂K. These are the basis functions defined for MsFEM in

Chapter 2.
Special nonlinear case. For the special case, k(x, p,∇p) = k(x)b(p)∇p, Ph

can be related to the linear case. Indeed, for this case, the local problems
associated with the multiscale mapping EMsFEM (see (3.2)) have the form

−div(k(x)b(ηvh)∇vr,h) = 0 in K.

Because ηvh are constants over K, the local problems satisfy the linear equa-
tions,

− div(k(x)∇φi) = 0 in K,

and Ph can be obtained by mapping a basis of Th as it is done in the linear
case. Thus, for this case, the basis functions are the same as those for the
linear problem.

Ph using subdomain problems. One can use the solutions of smaller sub-
domain (smaller than K ∈ Th), RVE, problems to approximate the solutions
of the local problems (3.2). This can be done if the small region can be used
to represent the heterogeneities within the coarse-grid block, for example, pe-
riodic heterogeneities when the size of the period is much smaller than the
coarse-grid block size. As in the linear case, we would like to use the solution
in smaller regions to approximate the integrals on the right-hand side of (3.7).
In these cases, we can solve (3.2) in a subdomain RVE with boundary con-
ditions vh restricted onto the subdomain boundaries as done in Section 2.6.
More precisely, instead of (3.2), the following local problem is solved,

− div k(x, ηvh ,∇ṽr,h) = 0 in Kloc, (3.15)

where ṽr,h = vh on ∂Kloc and ηvh = 1
|K|
∫

K
vhdx for each K (coarse element).

The integrals in (3.7) can be computed using Kloc,

〈κr,hph, vh〉 ≈
∑

K∈Th

|K|
|Kloc|

∫

Kloc

(k(x, ηph ,∇p̃r,h)·∇vh+k0(x, ηph ,∇p̃r,h)vh)dx,

(3.16)
where p̃r,h are only computed in Kloc using (3.15). The equations (3.15) and
(3.16) provide the formulation of MsFEM when using regions smaller than
the coarse-grid block.
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As in the case of linear problems, it was shown that ([220])

lim
ε→0

1
|K|

∫

K

k(x, ηvh ,∇vr,h)dx =
1
|K|

∫

K

k∗(x, ηvh ,∇v0r,h)dx, (3.17)

where ε is the characteristic length scale and v0r,h is the homogenized part of
vr,h defined in a G-convergence setting (e.g., [220]). In particular, v0r,h satisfies
div k∗(x, ηvh , v0r,h) = 0 in K, v0r,h = vh on ∂K; a similar result holds in Kloc

(cf. (2.21)). As in the linear case, it is easy to show that if k∗(x, η, ξ) is
smooth spatial function, then v0r,h is approximately equal to vh for small h.
From here, one can show that (1/|Kloc|)

∫
Kloc

k(x, ηvh ,∇ṽr,h)dx approximates
(1/|K|)

∫
K
k(x, ηvh ,∇vr,h)dx in the limit limh→0 limε→0. Based on (3.17), one

can evaluate the integrals on the right-hand side of (3.7). To find the fine-
scale approximation, the local solutions defined by (3.15) can be extended to
the whole domain. This is based on the homogenization concept and ∇ṽr,h is
extended periodically in each coarse-grid block.

One can also use periodic homogenization and first-order correctors to ap-
proximate the solution of the local problem if k(x, x/ε, η, ξ) and k0(x, x/ε, η, ξ)
are locally periodic with respect to y = x/ε. In this case, for each coarse grid
block and vh ∈Wh, the following cell problem is solved,

divy(k(x, y, ηvh ,∇xvh + ∇yNvh
)) = 0 in Y, (3.18)

where Y is the period and Nvh
is the periodic function with zero average

(assume vh is piecewise linear; i.e., ∇vh is constant within K). Then, it can
be shown that

1
|K|

∫

K

k(x, x/ε, ηvh ,∇vr,h)dx ≈ 1
|Y |

∫

Y

k(x, y, ηvh ,∇vh + ∇Nvh
)dx

in the limit as ε/h→ 0. Consequently, the local periodic solution (3.18) can be
used to approximate the right-hand side of (3.7). This provides CPU savings
when there is strong scale separation (cf. Section 2.6).

3.4 Relation to upscaling methods

One can draw a parallel between multiscale methods and upscaling/homoge-
nization techniques. First, we briefly describe an upscaling technique for (3.1)
which is derived from homogenization methods (e.g., [220]). The main idea of
upscaling techniques is to form a coarse-scale equation and pre-compute the
effective coefficients. In the case of nonlinear elliptic equations, the coarse-
scale equation has the same form as the fine-scale equation except that the
fluxes k(·, ·, ·) and k0(·, ·, ·) are replaced by effective homogenized fluxes. The
effective coefficients in upscaling methods are computed using the solution of
the local problem in a representative volume. For each η ∈ R and e ∈ R

d, the
following local problem is solved
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div k(x, η,∇φe) = 0 in K (3.19)

with φe(x) = x · e on ∂K. The effective coefficients are computed in each K
as

k̃∗(η, e) =
1
|K|

∫

K

k(x, η,∇φe)dx, k̃∗0(η, e) =
1
|K|

∫

K

k0(x, η,∇φe)dx. (3.20)

We note that k̃∗ and k̃∗0 are not the same as the homogenized coefficients and
(3.20) can be computed for any point in the domain by placing the point at
the center of K. If k and k0 are periodic with respect to spatial variables, one
can solve the local problems (3.19) over the period (with periodic boundary
conditions) and perform averaging (3.20) over the period. One can also use
various boundary conditions, including oversampling methods, when solving
(3.19). Once the effective coefficients are calculated, the coarse-scale equation

div k∗(x, p∗,∇p∗) + k∗0(x, p∗,∇p∗) = f

with k∗ = k̃∗ and k∗0 = k̃∗0 is solved. In practice, one can pre-compute k∗ and
k∗0 for different values of η ∈ R and e ∈ R

d, and use interpolation for evaluating
k∗ and k∗0 for other values of η ∈ R and e ∈ R

d. Note that for linear problems,
it is sufficient to solve (3.19) for d linearly independent vectors e1, ..., ed in
R

d because φe =
∑

i βiφei
if e =

∑
i βiei. This is not the case for nonlinear

problems and one needs to consider all possible η ∈ R and e ∈ R
d.

MsFEMs do not compute effective parameters explicitly. One can show
that, as in the case of linear problems, MsFEM for nonlinear problems is sim-
ilar to upscaling methods. However, in MsFEMs, “the effective parameters”
(in the form of local solutions) are computed on-the-fly. Note that one can
compute the effective parameters based on these local solutions. The compu-
tation of the local solutions on-the-fly is more efficient when one deals with
a limited range of values of η = (1/|K|)

∫
K
vhdx and e = ∇vh. Indeed, many

simulations in practice do not require a lookup table of k∗ and k∗0 for all possi-
ble values of η ∈ R and e ∈ R

d, and the computation on-the-fly can save CPU
time. Moreover, one can still use pre-computed local solutions to compute the
effective coefficients, and then store them. These effective coefficients can be
used in the simulation to approximate k∗ and k∗0 for those values of η ∈ R and
e ∈ R

d that are not computed. Moreover, in MsFEMs, one can use a larger set
of multiscale basis functions for more accurate approximation. For example,
for the simple nonlinear elliptic equation (3.3), one can use multiscale basis
functions corresponding to several values of η and avoid the interpolation step
(cf. (3.5)).

3.5 Multiscale finite element methods for nonlinear
parabolic equations

In this section, we present an extension of MsFEM to nonlinear parabolic
equations. We consider
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∂

∂t
p − div k(x, t, p,∇p) + k0(x, t, p,∇p) = f. (3.21)

For the nonlinear parabolic equations, the space–time operator EMsFEM is
constructed in the following way. For each vh ∈ Wh there is a corresponding
element vr,h = EMsFEMvh that is defined by

∂

∂t
vr,h − div k(x, t, ηvh ,∇vr,h) = 0 in K × [tn, tn+1], (3.22)

with boundary condition vr,h = vh on ∂K, and vr,h(t = tn) = vh. Here
ηvh = (1/|K|)

∫
K
vhdx.

Next, we present a global formulation of MsFEM. Our goal is to find
ph ∈Wh (pr,h = EMsFEMph) at time t = tn+1 such that

∫ tn+1

tn

∫

Ω

(
∂

∂t
ph

)

vhdxdt+ κ(ph, vh) =
∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh ∈Wh,

(3.23)
where

κ(ph, wh) =
∑

K

∫ tn+1

tn

∫

K

(k(x, t, ηph ,∇pr,h)·∇wh+k0(x, t, ηph ,∇pr,h)wh)dxdt.

The expression (3.23) can be further simplified to
∫

Ω

ph(x, tn+1)vhdx−
∫

Ω

ph(x, tn)vhdx+κ(ph, vh)=
∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh∈Wh.

Here pr,h is the solution of the local problem (3.22) for a given ph, ηph =
(1/|K|)

∫
K
phdx, and ph is known at t = tn. If ph at time t = tn+1 is used in

κ(ph, vh), then the resulting method is implicit; that is
∫

Ω

ph(x, tn+1)vhdx−
∫

Ω

ph(x, tn)vhdx+ κ(ph(x, tn+1), vh)

=
∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh ∈Wh.

If ph at time t = tn is used in κ(ph, vh), then the resulting method is explicit.
The Petrov–Galerkin formulation of the MsFEM can be replaced by the finite
volume formulation as is done for nonlinear elliptic equations.

We would like to note that the operator EMsFEM can be constructed
using larger domains as is done in MsFEMs with oversampling [145]. This way
one reduces the effects of the boundary conditions and initial conditions. In
particular, for temporal oversampling it is sufficient to start the computations
before tn and end them at tn+1. Consequently, the oversampling domain for
K × [tn, tn+1] consists of [t̃n, tn+1] × KE , where t̃n < tn and K ⊂ KE . We
would like to note that oscillatory initial conditions can be imposed (without
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using oversampling techniques) based on the solution of the elliptic part of
the local problems (3.22). These initial conditions at t = tn are the solutions
of

− div(k(x, t, η,∇pr,h)) = 0 in K, (3.24)

or
− div(k(x, η,∇pr,h)) = 0 in K, (3.25)

where k(x, η, ξ) = (1/(tn+1 − tn))
∫ tn+1

tn
k(x, τ, η, ξ)dτ and pr,h = ph on ∂K.

The latter can become efficient depending on the interplay between the tem-
poral and spatial scales.

Note that in the case of periodic media the local problems can be solved
in a single period in order to construct κ(ph, wh). In general, one can solve
the local problems in a domain different from K (an element) to calculate
κ(ph, wh). Note that the numerical advantages of our approach over the fine
scale simulation are similar to those of MsFEMs. In particular, for each New-
ton’s iteration a linear system of equations on a coarse grid is solved. Moreover,
the local solutions can be re-used and treated independently in each coarse
grid block.

For some special cases the operator EMsFEM introduced in the previ-
ous section can be simplified (see [112]). In general one can avoid solv-
ing the local parabolic problems if the ratio between temporal and spatial
scales is known, and solve instead a simplified equation. For example, let
the spatial scale be εβ and the temporal scale be εα; that is, k(x, t, η, ξ) =
k(x/εβ , t/εα, η, ξ). If α < 2β one can solve instead of (3.22) the local problem
−div(k(x, t, ηph ,∇pr,h)) = 0, if α > 2β one can solve instead of (3.22) the
local problem −div(k(x, ηph ,∇pr,h)) = 0, where k(x, η, ξ) is an average over
time of k(x, t, η, ξ), and if α = 2β we need to solve the parabolic equation in
K × [tn, tn+1], (3.22).

We would like to note that, in general, one can use (3.24) or (3.25) as
oscillatory initial conditions and these initial conditions can be efficient for
some cases. For example, for α > 2β with initial conditions given by (3.25) the
solutions of the local problems (3.22) can be computed easily because they are
approximated by (3.25). Moreover, one can expect better accuracy with (3.25)
for the case α > 2β because this initial condition is more compatible with the
local heterogeneities compared to the artificial linear initial conditions (cf.
(3.22)).

One-dimensional example. We consider a simple one-dimensional case

∂p

∂t
− (k(x, t, p)p′)′ = f,

p(0) = p(1) = 0, p(t = 0) = p0(x). As before, we assume that the interval
[0, 1] is divided into N segments 0 = x0 < x1 < x2 < · · · < xi < xi+1 <
· · · < xN = 1 and the time interval [0, T ] is divided into M segments 0 = t0 <
t1 < t2 < · · · < ti < ti+1 < · · · < tM = T . We present a discrete formulation
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for the fully implicit method where the local problem (3.22) is elliptic (see
discussion above); that is (k(x, t, ηvh , v′r,h))′ = 0.

Denote by pn
i = p(x = xi, t = tn). Taking vh = φ0

i in (3.23) and using
(3.11), one can easily get

(pn+1
j − pn

j )
∫

Ω

φ0
jφ

0
i dx+A(pn+1

i−1 , p
n+1
i )(pn+1

i − pn+1
i−1 )

−A(pn+1
i , pn+1

i+1 )(pn+1
i+1 − pn+1

i ) =
∫

Ω

fφ0
i dx,

where

A(pn+1
i−1 , p

n+1
i ) =

1
∫ xi

xi−1

1
k(x,tn+1, 1

2 (pn+1
i−1 +pn+1

i ))
dx
,

A(pn+1
i , pn+1

i+1 ) =
1

∫ xi+1

xi

1
k(x,tn+1, 1

2 (pn+1
i +pn+1

i+1 ))
dx
.

3.6 Summary of convergence of MsFEM for nonlinear
partial differential equations

The convergence of MsFEM for nonlinear problems has been studied for prob-
lems with scale separation (not necessarily periodic). These convergence re-
sults use homogenization or G-convergence results for nonlinear partial differ-
ential equations (see, e.g., [220] and Appendix B). To discuss these results, we
assume that the fine scale is ε. It can be shown that the solution p converges
(up to a subsequence) to p0 in an appropriate norm, where p0 ∈ W 1,γ

0 (Ω) is
a solution of a homogenized equation

− div k∗(x, p0,∇p0) + k∗0(x, p0,∇p0) = f, (3.26)

where k∗ and k∗0 are homogenized coefficients.
In [112] it was shown using G-convergence theory that

lim
h→0

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (3.27)

(up to a subsequence) where p0 is a solution of (3.26) and ph is a MsFEM
solution given by (3.6). Here γ is a parameter related to the monotonicity
(see (6.42)–(6.46)). This result can be obtained without any assumption on
the nature of the heterogeneities and cannot be improved because there could
be infinitely many scales α(ε) present such that α(ε) → 0 as ε→ 0.

For the periodic case, it can be shown that MsFEM converges in the limit
as ε/h → 0. To show the convergence for ε/h → 0, we consider h = h(ε),
such that h(ε) � ε and h(ε) → 0 as ε → 0. We would like to note that this
limit as well as the proof of the periodic case is different from (3.27), where
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the double-limit is taken. In contrast to the proof of (3.27), the proof of the
periodic case requires the correctors for the solutions of the local problems.

We present the convergence results for MsFEM solutions. For general non-
linear elliptic equations under the assumptions (stated later) (6.42)–(6.46) the
strong convergence of MsFEM solutions can be shown. In the proof of this
fact we show the form of the truncation error (in a weak sense) in terms of the
resonance errors between the mesh size and small scale ε and explicitly derive
the resonance errors. Under the general conditions, such as (6.42)–(6.46), one
can prove strong convergence of MsFEM solutions without an explicit con-
vergence rate (cf. [245]). To convert the obtained convergence rates for the
truncation errors into the convergence rate of MsFEM solutions, additional
assumptions, such as monotonicity, are needed.

Next, we formulate convergence theorems (see Section 6.2 and [104] for
details).

Theorem 3.1. Assume k(x, η, ξ) and k0(x, η, ξ) are ε periodic functions with
respect to x and let p0 be a solution of (3.26) and ph is a MsFEM solu-
tion given by (3.6). Moreover, we assume that ∇ph is uniformly bounded in
Lγ+α(Ω) for some α > 0. Then

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (3.28)

where h = h(ε) � ε and h→ 0 as ε→ 0 (up to a subsequence).

Theorem 3.2. Let p0 and ph be the solutions of the homogenized prob-
lem (3.26) and MsFEM (3.6), respectively, with the coefficient k(x, η, ξ) =
k(x/ε, ξ) and k0 = 0. Then

‖ph − p0‖W 1,γ
0 (Ω) ≤ C(

( ε

h

)β

+ hδ), (3.29)

where γ and δ depend on operator constants defined in (6.42)–(6.46).

We note that in Theorem 3.2, we assume that the equation is monotone,
whereas in Theorem 3.1, we assume that the equation is pseudo-monotone.
As discussed in Section 6.2, the monotonicity allows us to obtain explicit
convergence rates. For parabolic equations, one can prove similar results (see
[112]). One can also prove the convergence of pr,h to the fine-scale solution p
inW 1,γ (e.g., [104, 112, 113]). Finally, we refer to [136] for convergence results
of oversampling methods for nonlinear problems and applications to material
science.

3.7 Numerical results

In this section we present some numerical results for MsFEMs for nonlinear el-
liptic equations. More numerical examples relevant to subsurface applications
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can be found in [104]. We present numerical results for both the MsFEM
and MsFVEM. We use an inexact-Newton algorithm as an iterative tech-
nique to tackle the nonlinearity. For the numerical examples below, we use
k(x, p,∇p) = k(x, p)∇p. Let {φ0

i }
Ndof

i=1 be the standard piecewise linear basis
functions of Wh. Then MsFEM solution may be written as

ph =
Ndof∑

i=1

αi φ
0
i (3.30)

for some α = (α1, α2, ..., αNdof
)T . Recall that ph ∈Wh is an approximation for

a homogenized solution, and pr,h is an approximation for a fine-scale solution.
We need to find α such that

F (α) = 0, (3.31)

where F : R
Ndof → R

Ndof is a nonlinear operator such that

Fi(α) =
∑

K∈Kh

∫

K

k(x, ηph)∇pr,h · ∇φ0
i dx−

∫

Ω

f φ0
i dx. (3.32)

We note that in (3.32) α is implicitly buried in ηph and pr,h. An inexact-
Newton algorithm is a variation of Newton’s iteration for a nonlinear system
of equations, where the Jacobian system is only approximately solved. To be
specific, given an initial iterate α0, for k = 0, 1, 2, · · · until convergence do the
following

• Solve F ′(αk)δk = −F (αk) by some iterative technique until ‖F (αk) +
F ′(αk)δk‖ ≤ βk ‖F (αk)‖.

• Update αk+1 = αk + δk.

In this algorithm F ′(αk) is the Jacobian matrix evaluated at iteration k. We
note that when βk = 0 we have recovered the classical Newton iteration. Here
we have used

βk = 0.001
(

‖F (αk)‖
‖F (αk−1)‖

)2

, (3.33)

with β0 = 0.001. Choosing βk this way, we avoid oversolving the Jacobian
system when αk is still considerably far from the exact solution.

Next we present the entries of the Jacobian matrix. For this purpose,
we use the following notations. Let Kh

i = {K ∈ Th : zi is a vertex of K},
Ii = {j : zj is a vertex of K ∈ Kh

i }, and Kh
ij = {K ∈ Kh

i : K shares zizj}.
We note that we may write Fi(α) as follows

Fi(α) =
∑

K∈Kh
i

(∫

K

k(x, ηph)∇pr,h · ∇φ0
i dx−

∫

K

f φ0
i dx

)

, (3.34)

with
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− div(k(x, ηph)∇pr,h) = 0 in K and pr,h =
∑

zm∈ZK

αm φ
0
m on ∂K, (3.35)

where ZK is all the vertices of element K. It is apparent that Fi(α) is not
fully dependent on all α1, α2, ..., αd. Consequently, ∂Fi(α)/∂αj = 0 for j /∈
Ii. To this end, we denote ψj = ∂pr,h/∂αj . By applying the chain rule of
differentiation to (3.35) we have the following local problem for ψj

− div(k(x, ηph)∇ψj) =
1
3

div(
∂k(x, ηph)

∂p
∇pr,h) in K and ψj = φj on ∂K.

(3.36)
The fraction 1/3 comes from taking the derivative in the chain rule of differen-
tiation. In the formulation of the local problem, we have replaced the nonlin-
earity in the coefficient by ηph , where for each triangle K ηph = 1/3

∑3
i=1 α

K
i ,

which gives ∂ηph/∂αi = 1/3. Moreover, for a rectangular element the fraction
1/3 should be replaced by 1/4.

Thus, provided that vr,h has been computed, then we may compute ψj

using (3.36). Using the above descriptions we have the expressions for the
entries of the Jacobian matrix:

∂Fi

∂αi
=
∑

K∈Kh
i

(
1
3

∫

K

∂k(x, ηph)
∂p

∇pr,h · ∇φ0
i dx+

∫

K

k(x, ηph)∇ψi · ∇φ0
i dx

)

(3.37)
∂Fi

∂αj
=
∑

K∈Kh
ij

(
1
3

∫

K

∂k(x, ηph)
∂p

∇pr,h · ∇φi dx+
∫

K

k(x, ηph)∇ψj · ∇φ0
i dx

)

(3.38)
for j �= i, j ∈ Ii.

The implementation of the oversampling technique is similar to the proce-
dure presented earlier, except the local problems in larger domains are used.
As in the nonoversampling case, we denote ψj = ∂vr,h/∂αj , such that after
applying the chain rule of differentiation to the local problem we have:

−div(k(x, ηph)∇ψj) =
1
3

div(
∂k(x, ηph)

∂p
∇vr,h) in KE

ψj = φ0
j on ∂KE ,

(3.39)

where ηph is computed over the corresponding elementK and φ0
j is understood

as the nodal basis functions on oversampled domain KE . Then all the rest of
the inexact-Newton algorithms are the same as in the nonoversampling case.
Specifically, we also use (3.37) and (3.38) to construct the Jacobian matrix of
the system. We note that we only use ψj from (3.39) pertaining to the element
K.

From the derivation (both for oversampling and nonoversampling) it is
obvious that the Jacobian matrix is not symmetric but sparse. Computation
of this Jacobian matrix is similar to computing the stiffness matrix resulting
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from standard finite elements, where each entry is formed by accumulation of
element-by-element contributions. Once we have the matrix stored in memory,
then its action to a vector is straightforward. Because it is a sparse matrix, de-
voting some amount of memory for entry storage is inexpensive. The resulting
linear system is solved using a preconditioned biconjugate gradient stabilized
method.

An an example to illustrate the convergence of the nonlinear MsFEM, we
consider the following problem

−div(k(x/ε, p)∇p) = −1 in Ω,
p = 0 on ∂Ω,

(3.40)

where Ω = [0, 1] × [0, 1], k(x/ε, p) = k(x/ε)/ (1 + p)l(x/ε), with

k(x/ε) =
2 + 1.8 sin(2πx1/ε)
2 + 1.8 cos(2πx2/ε)

+
2 + sin(2πx2/ε)

2 + 1.8 cos(2πx1/ε)
(3.41)

and l(x/ε) is generated from k(x/ε) such that the average of l(x/ε) = Ck(x/ε)
over Ω is 2 with an appropriate choice of C. Here we use ε = 0.01. Because
the exact solution for this problem is not available, we use a well-resolved
numerical solution using the standard finite element method as a reference
solution. The resulting nonlinear system is solved using the inexact-Newton
algorithm. The reference solution is solved on a 512×512 mesh. Tables 3.1 and
3.3 present the relative errors of the solution with and without oversampling,
respectively. Here N is the number of coarse blocks in each direction. In Tables
3.2 and 3.4, the relative errors for the multiscale finite volume element method
are presented. The relative errors are computed as the corresponding error
divided by the norm of the solution. In each table, the second, third, and fourth
columns list the relative error in the L2, H1, and L∞ norm, respectively. As
we can see from these two tables, the oversampling significantly improves the
accuracy of the multiscale method.

In our next example, we consider the problem with nonperiodic coefficients,
where k(x, η) = k(x)/(1 + η)α(x). The coefficient k(x) = exp(β(x)) is chosen
such that β(x) is a realization of a random field with the spherical variogram
[85], the correlation lengths l1 = 0.2, l2 = 0.02, and with the variance σ = 1.
The function α(x) is chosen such that α(x) = k(x) + const with the spatial
average of 2. As for the boundary conditions we use “left-to-right flow” in the
Ω = [0, 5] × [0, 1] domain, p = 1 at the inlet (x1 = 0), p = 0 at the outlet
(x1 = 5), and no flow boundary conditions on the lateral sides x2 = 0 and
x2 = 1. In Table 3.5 we present the relative error for a multiscale method
with oversampling. Similarly, in Table 3.6 we present the relative error for a
multiscale finite volume method with oversampling. Clearly, the oversampling
method captures the effects induced by the large correlation features. Both
H1 and horizontal flux errors are under five percent. Similar results have been
observed for various kinds of nonperiodic heterogeneities.
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In the next set of numerical examples, we test the MsFEM for problems
with fluxes k(x, η) that are discontinuous in space. The discontinuity in the
fluxes is introduced by multiplying the underlying permeability function k(x)
by a constant in certain regions, while leaving it unchanged in the rest of the
domain. As an underlying permeability field, k(x), we choose the random field
used for the results in Table 3.5. In the numerical example, the discontinuities
are introduced along the boundaries of the coarse elements. In particular, k(x)
on the left half of the domain is multiplied by a constant J , where J = exp(4).
The results in Table 3.7 show that the MsFEM converges and the error falls
below five percent for relatively large coarsening. For the second numerical
example (Table 3.8), the discontinuities are not aligned with the boundaries
of the coarse elements. In particular, the discontinuity boundary is given by
x2 = x1

√
2+0.5; that is the discontinuity line intersects the coarse-grid blocks.

Similar to the aligned case, exp(4) jump magnitude is considered. The results
presented above demonstrate the robustness and accuracy of our approach for
anisotropic fields, where h and ε are nearly the same, and the fluxes that are
discontinuous spatial functions.

As for CPU comparisons, we have observed more than 92% CPU savings
when using MsFEMs without oversampling. With the oversampling approach,
the CPU savings depend on the size of the oversampled domain. For example,
if the oversampled domain size is two times larger than the target coarse block
(half coarse block extension on each side) we have observed 70% CPU savings
for a 64 × 64 and 80% CPU savings for a 128 × 128 coarse grid. In general,
the computational cost will decrease if the oversampled domain size is close
to the target coarse block size, and this cost will be close to the cost of the
MsFEM without oversampling. Conversely, the error decreases if the size of
the oversampled domains increases. In the numerical examples, we have ob-
served the same errors for the oversampling methods using either one coarse
block extension or half coarse block extensions. The latter indicates that the
leading resonance error is eliminated for the problems under consideration by
using a smaller oversampled domain. Oversampled domains with one coarse
block extension are previously used in simulations of flow through hetero-
geneous porous media. As indicated in [145], one can use large oversampled
domains for simultaneous computations of the several local solutions. More-
over, parallel computations will improve the speed of the method because the
MsFEM is well suited for parallel computation [145]. For the problems where
k(x, η, ξ) = k(x)b(η)ξ (see Section 3.3 and Section 5.3 for applications) our
multiscale computations are very fast because the basis functions are built in
the beginning of the computations. In this case, we have observed more than
95% CPU savings. We again would like to remark that the local solutions can
be re-used in our multiscale simulations. This is similar to homogenization
where the homogenized fluxes are computed once.
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Table 3.1. Relative MsFEM Errors Without Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.029 0.115 0.03
64 0.053 -0.85 0.156 -0.44 0.0534 -0.94

128 0.10 -0.94 0.234 -0.59 0.10 -0.94

Table 3.2. Relative MsFVEM Errors Without Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.03 0.13 0.04
64 0.05 -0.65 0.19 -0.60 0.05 -0.24

128 0.058 -0.19 0.25 -0.35 0.057 -0.19

Table 3.3. Relative MsFEM Errors with Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.0016 0.036 0.0029
64 0.0012 0.38 0.019 0.93 0.0016 0.92

128 0.0024 -0.96 0.0087 1.14 0.0026 -0.71

Table 3.4. Relative MsFVEM Errors with Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.002 0.038 0.005
64 0.003 -0.43 0.021 0.87 0.003 0.72

128 0.001 1.10 0.009 1.09 0.001 1.08

Table 3.5. Relative MsFEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0505 0.0025 0.025
64 0.0002 1.58 0.029 0.8 0.001 1.32 0.017 0.57

128 0.0001 1 0.016 0.85 0.0005 1 0.011 0.62
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Table 3.6. Relative MsFVEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0515 0.0025 0.027
64 0.0002 1.58 0.029 0.81 0.0013 0.94 0.018 0.58

128 0.0001 1 0.016 0.85 0.0005 1.38 0.012 0.58

Table 3.7. Relative MsFEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0, Aligned Discontinuity, Jump = exp(4)

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0011 0.1010 0.0068 0.195
64 0.0006 0.87 0.0638 0.66 0.0045 0.59 0.109 0.84

128 0.0003 1.00 0.0349 0.87 0.0024 0.91 0.063 0.79

Table 3.8. Relative MsFEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0, Nonaligned Discontinuity, Jump = exp(4)

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0067 0.1775 0.1000 0.164
64 0.0016 2.07 0.0758 1.23 0.0288 1.80 0.077 1.09

128 0.0009 0.83 0.0687 0.14 0.0423 -0.55 0.039 0.98

3.8 Discussions

An alternative approach for solving nonlinear problems using MsFEM is to
linearize them. For example, the nonlinear elliptic or parabolic equations con-
sidered in this chapter can be linearized, for example, as

∂pn

∂t
− div(b(x, t, pn−1,∇pn−1)∇pn) + k0(x, t, pn−1,∇pn−1) = f, (3.42)

where b(x, t, η, ξ) · ξ = k(x, t, η, ξ). At this point, we assume that the solutions
of this linearized equation converge to a solution of the original nonlinear
equation. Then, at every iteration, one can apply the MsFEM where the basis
functions are constructed based on heterogeneous coefficients b that change
at every iteration. Assuming that we can approximate the solution accurately
with the MsFEM at every iteration and the error of approximation does not
propagate, one can show that this procedure converges under some conditions.

One can also perform upscaling based on a linearized equation (3.42). In
this case, the approximation of the upscaled solution of the limiting equation
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(in the sense of linearized iterations) can be obtained. More precisely, if one de-
notes bn−1(x, t) = b(x, t, pn−1,∇pn−1) and gn−1(x, t) = k0(x, t, pn−1,∇pn−1),
then the upscaled equation corresponding to (3.42) will have the form

∂p∗,n

∂t
− div(b∗n−1(x, t)∇p∗,n) + g∗n−1(x, t) = f.

Assuming that the solution of this iterative procedure converges, the final
upscaled equation will have the form

∂p∗

∂t
− div(b∗(x, t)∇p∗) + g∗(x, t) = f.

Note that the obtained effective parameters (e.g., b∗) implicitly contain the
information about the upscaled solution p∗. Because the upscaled solution
contains the information about the global boundary conditions and source
terms in a nonlinear fashion, one cannot re-use the upscaled coefficients (e.g.,
b∗) if the source or boundary conditions are changed.

The approximation of the local problems in the presence of scale separation
or periodicity is discussed in this chapter. In particular, the local solutions and
the evaluation of the variational formulation (see (3.7)) can be carried out
in smaller regions. These issues are discussed in greater detail in [136]. One
can attempt to use approximate solutions in the variational formulation (3.7)
to compute the resulting system of nonlinear equations (e.g., fewer Newton
iterations). To our best knowledge, these approximations are not considered
in the literature.

In this section, we considered nonlinear elliptic and parabolic equations;
however, the proposed methods can be applied in more general situations (see
Section 2.4). In Chapter 5, we discuss the application of nonlinear MsFEMs to
Richards’ equations and to fluid flows in deformable porous media. The latter
involves coupled nonlinear equations involving the interface dynamics between
the fluid and solid components of the media. The methods discussed in this
chapter can also be applied in material sciences. For example, in [136], the
author applies numerical homogenization methods similar to those discussed
in this chapter to nonlinear elasticity. In particular, the paper [136] explores
oversampling techniques in nonlinear heterogeneous equations both numeri-
cally and analytically. The author proves the convergence of the method with
oversampling, for convex and quasi-convex energies, in the context of general
heterogeneities. This analysis provides an interesting variational interpreta-
tion of the Petrov–Galerkin formulation of the nonconforming multiscale finite
element method for periodic problems.




