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Preface

The aim of this monograph is to describe the main concepts and recent ad-
vances in multiscale finite element methods. This monograph is intended for
the broader audience including engineers, applied scientists, and for those who
are interested in multiscale simulations. The book is intended for graduate
students in applied mathematics and those interested in multiscale computa-
tions. It combines a practical introduction, numerical results, and analysis of
multiscale finite element methods. Due to the page limitation, the material
has been condensed.

Each chapter of the book starts with an introduction and description of
the proposed methods and motivating examples. Some new techniques are
introduced using formal arguments that are justified later in the last chapter.
Numerical examples demonstrating the significance of the proposed methods
are presented in each chapter following the description of the methods. In
the last chapter, we analyze a few representative cases with the objective of
demonstrating the main error sources and the convergence of the proposed
methods.

A brief outline of the book is as follows. The first chapter gives a general
introduction to multiscale methods and an outline of each chapter. The second
chapter discusses the main idea of the multiscale finite element method and
its extensions. This chapter also gives an overview of multiscale finite element
methods and other related methods. The third chapter discusses the exten-
sion of multiscale finite element methods to nonlinear problems. The fourth
chapter focuses on multiscale methods that use limited global information.
This is motivated by porous media applications where some type of nonlocal
information is needed in upscaling as well as multiscale simulations. The fifth
chapter of the book is devoted to applications of these methods. Finally, in the
last chapter, we present analyses of some representative multiscale methods
from Chapters 2, 3, and 4.
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1

Introduction

1.1 Challenges and motivation

A broad range of scientific and engineering problems involve multiple scales.
Traditional approaches have been known to be valid for limited spatial and
temporal scales. Multiple scales dominate simulation efforts wherever large
disparities in spatial and temporal scales are encountered. Such disparities
appear in virtually all areas of modern science and engineering, for exam-
ple, composite materials, porous media, turbulent transport in high Reynolds
number flows, and so on. A complete analysis of these problems is extremely
difficult. For example, the difficulty in analyzing groundwater transport is
mainly caused by the heterogeneity of subsurface formations spanning over
many scales. This heterogeneity is often represented by the multiscale fluctua-
tions in the permeability (hydraulic conductivity) of the media. For composite
materials, the dispersed phases (particles or fibers), which may be randomly
distributed in the matrix, give rise to fluctuations in the thermal or elec-
trical conductivity or elastic property; moreover, the conductivity is usually
discontinuous across the phase boundaries. In turbulent transport problems,
the convective velocity field fluctuates randomly and contains many scales
depending on the Reynolds number of the flow.

The direct numerical solution of multiple scale problems is difficult even
with the advent of supercomputers. The major difficulty of direct solutions
is the size of the computation. A tremendous amount of computer memory
and CPU time are required, and this can easily exceed the limit of today’s
computing resources. The situation can be relieved to some degree by parallel
computing; however, the size of the discrete problem is not reduced. Whenever
one can afford to resolve all the small-scale features of a physical problem, di-
rect solutions provide quantitative information of the physical processes at all
scales. On the other hand, from an application perspective, it is often sufficient
to predict the macroscopic properties of the multiscale systems. Therefore, it
is desirable to develop a method that captures the small-scale effect on the
large scales, but does not require resolving all the small-scale features.

Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications, 1

Surveys and Tutorials in the Applied Mathematical Sciences 4,
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2 1 Introduction

Macroscopic region boundariesRepresentative Volume Element;

Fig. 1.1. Schematic description of Representative Volume Element and macroscopic
elements.

The methods discussed in this book attempt to capture the multiscale
structure of the solution via localized basis functions. These basis functions
contain essential multiscale information embedded in the solution and are cou-
pled through a global formulation to provide a faithful approximation of the
solution. Typically, we distinguish between two types of multiscale processes
in this book. The first type has scale separation. In this case, the small-scale
information is captured via local multiscale basis functions computed based
only on the information within local regions (coarse-scale grid blocks). The
other types of multiscale processes do not have apparent scale separation.
For these processes, the information at different scales (e.g., nonlocal infor-
mation) is used for constructing effective properties, such as multiscale basis
functions. Next, we present a more in-depth discussion of scale issues that
arise in multiscale simulations.

When dealing with multiscale processes, it is often the case that input in-
formation about processes or material properties is not available everywhere.
For example, if one would like to study the fluid flows in a subsurface, then
the subsurface properties at the pore scale are not available everywhere in
the reservoir. Similarly, material properties of fine-grained composites are not
often available everywhere. In this case, one can use Representative Volume El-
ement (RVE) which contains essential information about the heterogeneities.
For example, pore scale distribution in an extracted rock core can be re-
garded as representative information about the pore scale distribution over
some macroscale region. Assuming that such information is available over the
entire domain in macroscopic regions (see Figure 1.1 for illustration), one can
perform upscaling (or averaging) and simulate a process over the entire region.
Multiscale methods discussed in this book can easily handle such cases with
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scale separation, and the proposed basis functions can be computed only in
RVE.

We would like to note that there are many methods (see next subsection)
that can solve macroscopic equations given the information in RVE. These
approaches can be divided into two groups: fine-to-coarse approaches and
coarse-to-fine approaches. In fine-to-coarse approaches, the coarse-scale equa-
tions are not formulated explicitly and representative fine-scale information
is carried out throughout the simulations. On the other hand, coarse-to-fine
approaches assume the form of coarse-scale equations and the coarse-scale pa-
rameters are computed based on the calculations in RVE. These approaches
share similarities. The methods discussed in this book belong to the class of
fine-to-coarse approaches.

To illustrate the above discussion in a simple case, we consider a classical
example of steady-state heterogeneous diffusion

div(k(x)∇p) = f(x). (1.1)

Here k(x) is a spatial field varying over multiple scales. It is possible that the
full description (details) of k(x) at the finest resolution is not available, and we
can only access it in small portions of the domain. These small regions are RVE
(see Figure 1.1), and one can attempt to simulate the macroscopic behavior
of the material or subsurface processes based on RVE information. However,
the latter assumes that the material has some type of scale separation because
RVE information is sufficient to determine the macroscopic properties of the
material.

In many other applications, the fine-scale description of the media is given
or can be obtained everywhere based on prior information. This information
is usually not precise and contains uncertainties. However, this information
often contains some important features of the media. For example, in porous
media applications, the subsurface properties typically contain some large-
scale (nonlocal) features such as connected high-conductivity regions. In the
example (1.1), k(x) represents the permeability (or hydraulic conductivity).
Modern geostatistical tools allow us to prescribe k(x) at every grid block which
is usually called the fine-scale grid block. Usually, the detailed subsurface
model is built based on prior information. This information is a combination
of fine-scale information coming from core samples and large-scale information
coming from seismic data and macroscopic inversion techniques. The large-
scale features typically provide the information about the connectivity of the
porous media and can be quite complex, for example, tortuous long channels
with small varying width or multiple connectivity information embedded to
each other.

In Figure 1.2, we illustrate the multiscale nature of the conductivity in
typical subsurface problems. Here, we illustrate that pore scale information is
needed for understanding the conductivity of the core sample. However, it is
also essential to understand the large-scale features of the media in order to
build a comprehensive model of porous media. More complicated situations
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Geological scale

Pore  scale

Core scale

Fig. 1.2. Schematic description of various scales in porous media.

in geomodeling can occur. In Figure 1.3, geological variation over multiple
scales is shown. Here one can observe faults (red lines in Figure 1.3(e)) with
complicated geometry, thin but laterally extensive compaction bands that
represent low-conductivity regions (blue lines in Figure 1.3(e); see also 1.3(d))
as well as other features at different scales. A blowup of the fault zone is
shown in Figure 1.3(c). The fault rock is of low conductivity and the slip
band sets consist of fractures that are filled (fully or partially) with cement.
Pore-scale views of portions of a slip band set are shown in Figures 1.3(a)
and 1.3(b)1. When simulating based only on RVE information as discussed
before, the large-scale nonlocal information is disregarded, and this can lead
to large errors. Thus, it is crucial to incorporate the multiscale structure of
the solution at all scales that are important for simulations.

Materials with multiscale properties occur in many other applications. For
example, composite material properties, similar to subsurface properties, can
vary over many length scales. In Figure 1.42, fiber materials are depicted.
Materials such as papers, filtration materials, and other engineered materials
can have fibers of various sizes and geometry. As we see from Figure 1.4,
the fibers can have complicated geometry and connectivity patterns. As in
subsurface processes, the multiscale features of these materials at different
scales are needed to perform reliable simulations.

Although small-scale features of the media are important, the large-scale
connectivity can play a crucial role. When both fine- and coarse-scale infor-
mation are combined, the resulting media properties have scale disparity and
vary over many scales. In these problems, one cannot simply use RVE because
there is no apparent scale separation. Moreover, the solution of (1.1) can be
prohibitively expensive or unaffordable to compute.This situation is further

1 We are grateful to L. Durlofsky for providing us the figures and the explanations.
We would like to thank the authors (see the caption of Figure 1.3) for allowing
us to use the figures in the book.

2 Published with permission of Engineered Fibers Technology, LLC
(www.EFTfibers.com).
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Fig. 1.3. Schematic description of hierarchy of heterogeneities in subsurface forma-
tions ((a) and (b) are from [20], (c) is from [19], (d) and (e) are courtesy of Kurt
Sternlof).

.

complicated because of the fact that the flow equations (e.g., (1.1)) need to
be solved many times for different source terms (f(x) in (1.1)), mobilities
(λ(x) in (1.2)), and so on. For example, in a simplest situation, two-phase
immiscible flow in heterogeneous porous media is described by

div(λ(x)k(x)∇p) = f(x), (1.2)

where λ(x), f(x) are coarse-scale functions that vary dynamically (in time). As
the physical processes become complicated due to additional physics arising
in multiphase flows, it becomes impossible to simulate these processes without
coarsening model equations. When performing simulations on a coarse grid, it
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Fig. 1.4. Schematic description of fiber materials.

is important to preserve important multiscale features of physical processes.
The multiscale methods considered in this book are intended for these pur-
poses. Our multiscale methods compute effective properties of the media in
the form of basis functions which are used, as in classical upscaling methods,
to solve the processes on the coarse grid (see discussions in Section 1.2 and
Figure 1.5 for an illustration).

As we mentioned earlier, the media properties often contain uncertainties.
These uncertainties are usually parameterized and one deals with a large set
of permeability fields (realizations) with a multiscale nature. This brings an
additional challenge to the fine-scale simulations and necessitates the use of
coarse-scale models. The multiscale methods are important for such prob-
lems. For these problems, one can look for multiscale basis functions that
contain both spatio-temporal scale information and the uncertainties. These
basis functions allow us to reduce the dimension of the problem and simu-
late realistic stochastic processes. We show that the multiscale finite element
methods studied in this book can easily be generalized to take into account
both multiscale features of the solution and the associated uncertainties.

1.2 Literature review

Many multiscale numerical methods have been developed and studied in
the literature. In particular, many numerical methods have been developed
with goals similar to ours. These include generalized finite element methods
[33, 31, 30], wavelet-based numerical homogenization methods [56, 87, 84, 168],
methods based on the homogenization theory (cf. [49, 95, 80]), equation-free
computations (e.g., [166, 238, 224, 176, 242, 241]), variational multiscale meth-
ods [154, 59, 155, 209, 165], heterogeneous multiscale methods [97], matrix-
dependent multigrid-based homogenization [168, 84], generalized p-FEM in
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homogenization [197, 198], mortar multiscale methods [228, 27, 226], upscal-
ing methods (cf. [91, 199]), network methods [48, 44, 45, 46] and other meth-
ods [181, 180, 222, 223, 210, 81, 65, 63, 62, 124, 195]. The methods based on
the homogenization theory have been successfully applied to determine the
effective properties of heterogeneous materials. However, their range of ap-
plications is usually limited by restrictive assumptions on the media, such as
scale separation and periodicity [43, 164].

Before we present a brief discussion about various multiscale methods,
we would like to mention that multiscale finite element methods (MsFEMs)
share similarities with upscaling methods. Upscaling procedures have been
commonly applied and are effective in many cases. The main idea of upscal-
ing techniques is to form coarse-scale equations with a prescribed analytical
form that may differ from the underlying fine-scale equations. In multiscale
methods, the fine-scale information is carried throughout the simulation and
the coarse-scale equations are generally not expressed analytically but rather
formed and solved numerically. For problems with scale separation, one can
establish the equivalence between upscaling and multiscale methods (see Sec-
tion 2.8).

The MsFEMs discussed in this book take their origin from a pioneering
work of Babuška and Osborn [33, 31]. In this paper, the authors propose the
use of multiscale basis functions for elliptic equations with a special multiscale
coefficient which is the product of one-dimensional fields. This approach is
extended in the work of Hou and Wu [145] to general heterogeneities. Hou and
Wu [145] showed that boundary conditions for constructing basis functions
are important for the accuracy of the method. They further proposed an
oversampling technique to improve the subgrid capturing errors. Later on, the
MsFEM of Hou and Wu were generalized to nonlinear problems in [104, 112].
In these papers, various global coupling approaches and subgrid capturing
mechanisms are discussed.

There are a number of approaches with the purpose of forming a general
framework for multiscale simulations. Among them are equation-free [166] and
heterogeneous multiscale method (HMM) [97]. These approaches are intended
for solving macroscopic equations based on the information in RVE and cover
a wide range of applications. When applied to partial differential equations,
MsFEMs are similar to these approaches. For such problems, multiscale basis
functions presented in the book are approximated using the solutions in RVE.
We note that for MsFEMs the local problems can be described by the set of
equations different from the global equations. An important step in multiscale
simulations is often to determine the form of the macroscopic equations and
the variables upon which the basis functions depend. In many linear problems
and problems with scale separation, these issues are well understood. Many
general numerical approaches for multiscale simulations do not address the
issues related to determining the variables on which the macroscopic quantities
(e.g., multiscale basis functions) depend (see [176] where some of these issues
are discussed).
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Fig. 1.5. A schematic illustration of upscaling concept.

MsFEMs also share similarities with variational multiscale methods [59,
154, 155]. In this approach, the solution of the multiscale problem is divided
into resolved (coarse) and unresolved parts. The objective is to compute the
resolved part via the unresolved part of the solution and then approximate
the unresolved part of the solution. This is shown in the framework of linear
equations. Typically, the approximation of the unresolved part of the solution
requires some type of localization (e.g., [154, 24]). The localization leads to
methods similar to the MsFEM. This is discussed in detail in Section 2.8.

There are also many other multiscale techniques with goals similar to
ours. In particular, many methods share similarities in approximating the
subgrid effects (the effects of the scales smaller than the coarse grid block
size). There are a number of approaches that rely on techniques derived from
homogenization theory (e.g., [198]). These methods are often restricted in
terms of structure of multiscale coefficients. However, these approaches are
more robust and accurate when the underlying multiscale structure satisfies
the necessary constraints.

The multiscale methods considered in this book pre-compute the effective
parameters that are repeatedly used for different sources and boundary con-
ditions. In this regard, these methods can be classified as upscaling methods
where upscaled parameters are pre-computed. An illustration for the concept
of upscaling is presented in Figure 1.5. In multiscale approaches discussed in
this book, one can re-use pre-computed quantities to form coarse-scale equa-
tions for different source terms, boundary conditions and so on. Moreover,
adaptive and parallel computations can be carried out with these methods
where one can downscale the computed coarse-scale solution in the regions of
interest. These features of upscaling methods and MsFEMs are exploited in
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subsurface applications. The multiscale methods considered in this book differ
from domain decomposition methods (e.g., [257]) where the local problems are
solved many times. Domain decomposition methods are powerful techniques
for solving multiphysics problems; however, the cost of iterations can be high,
in particular, for multiscale problems. These iterations guarantee the conver-
gence of domain decomposition methods under suitable assumptions. Multi-
scale methods with upscaling concepts in mind, on the other hand, attempt
to find accurate subgrid capturing resolution and avoid the iterations. This
may not be always possible, and for that reason, some type of hybrid methods
with accurate subgrid modeling can be considered in the future (e.g., [93]).

One of the recent directions in multiscale simulations has been the use of
some type of limited global information. The use of limited global informa-
tion is not new in upscaling methods. The main idea of these approaches is to
use some simplified surrogate models to extract important information about
non-local multiscale behavior of physical processes. The surrogate models are
typically solved off-line in a pre-computation step and their computations can
be expensive. However, they allow us to compute effective parameters that will
render a more accurate description of dynamic problems with varying source
terms, boundary conditions, and so on. An example is two-phase immiscible
flow in highly heterogeneous media. In [69, 103], single-phase flow information
is used for accurate upscaling of two-phase flow and transport. In particular,
the global single-phase flow equation is solved several times to compute up-
scaled permeabilities (conductivities) which are then used in the simulations of
two-phase flow and transport on a coarse grid. These upscaling computations
are performed off-line. Similar to upscaling methods using global information,
multiscale finite element methods using limited global information are intro-
duced in [1, 103, 218]. The work of [218] provides a theoretical foundation for
upscaling using limited global information. These methods use limited global
information to construct multiscale basis functions. Finally, we would like to
mention that multiscale methods with limited global information share some
similarities with reduced model techniques (e.g., [234]) where snapshots of
the solution at previous times can be used to construct a reduced basis for
approximating the solution.

There are many other multiscale methods in the literature that discuss
bridging scales in various applications. In this book, we mostly focus on
methods that are most relevant to MsFEMs. We note that a main feature
of MsFEMs is the use of variational formulation at the coarse scale which
allows us to couple multiscale basis functions. Fine-scale formulation of the
problem that allows computing multiscale basis functions is not necessarily
based on partial differential equations and can have a discrete formulation.
In this regard, MsFEMs share conceptual similarities with some approaches
that couple atomistic (discrete) and continuum effects. These approaches use
a variational formulation at the coarse scale, but use a discrete atomistic de-
scription at finest scales (e.g., quasi-continuum method ([251, 252])). This
method has been widely used in material science applications.
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1.3 Overview of the content of the book

The purpose of this book is to review some recent advances in multiscale finite
element methods and their applications. Here, the notion “multiscale finite
element methods” refers to a number of methods, such as multiscale finite
volume, mixed multiscale finite element method, and the like. The concept
that unifies these methods is the coupling of oscillatory basis functions via
various variational formulations. One of the main aspects of this coupling is
the subgrid capturing errors that are extensively discussed in this book.

The book is laid out in a way that it is accessible to a broader audience.
Each chapter is divided into the description of the numerical method and the
computational results. At the end of each chapter, the section “Discussions” is
presented. This section discusses extensions, existing methods, and other rel-
evant research in this area. The analysis of the proposed methods is discussed
in the last chapter. We have attempted to keep the book concise and therefore
present convergence analysis only for a few representative cases. Some of the
results are referred to earlier in the chapter to convey the convergence of the
proposed methods.

The book is organized in the following way. In the second chapter, we
review MsFEM for solving partial differential equations with multiscale solu-
tions; see [145, 147, 146, 107, 71, 260, 14, 103]. The central goal of this ap-
proach is to obtain the large-scale solutions accurately and efficiently without
resolving the small-scale details. The main idea is to construct finite element
basis functions that capture the small-scale information within each element.
The small-scale information is then brought to the large scales through the
coupling of the global stiffness matrix. The basis functions are constructed
from the leading-order homogeneous elliptic equation in each element. As a
consequence, the basis functions are adapted to the local microstructure of the
differential operator. We discuss various global coupling techniques and the
computational issues associated with multiscale methods. Simple examples
and pseudo-codes are presented. Issues such as performance and implemen-
tation of MsFEMs are discussed in Section 2.9. We present the comparison
between the MsFEM and some other multiscale methods in Section 2.8. Some
comments on generalizations of MsFEMs are presented in Section 2.4.

In Chapter 3, we discuss the extension of MsFEMs to nonlinear problems.
Our aim is to show that one can naturally extend the multiscale methods to
nonlinear problems by replacing the multiscale basis functions with multiscale
maps. Indeed, because the underlying equations are nonlinear, the small-scale
features of the problem do not form a linear space. We show that with this
modification MsFEMs can be used for solving nonlinear partial differential
equations. After presenting the methodology, some numerical examples are
presented for solving nonlinear elliptic equations. The chapter also includes
discussions on the extension of the method to nonlinear parabolic equations
and multiphysics problems.
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Multiscale methods discussed in Chapter 2 and Chapter 3 apply lo-
cal calculations to determine basis functions. Although effective in many
cases, global effects can be important for some problems. The importance
of global information has been illustrated within the context of upscaling
procedures as well as multiscale computations in recent investigations (e.g.,
[69, 143, 1, 103, 218]). These studies have shown that the use of limited global
information in the calculation of the coarse-scale parameters (such as basis
functions) can significantly improve the accuracy of the resulting coarse model.
In the fourth chapter of the book, we describe the use of limited global infor-
mation in multiscale simulations. The chapter starts with a motivation and
a motivating numerical example which show that the accuracy of multiscale
methods deteriorates for problems with strong nonlocal effects. We introduce
the basic idea of multiscale methods using limited global information. These
approaches are used if the problem is solved repeatedly for varying parameters
but keeping the source of heterogeneities fixed. Typical problems of this type
arise, for example, in porous media applications. Numerical examples both
for structured and unstructured grids for mixed MsFEM and MsFVEM are
presented in this chapter. In general, one can use simplified global informa-
tion combined with local multiscale basis functions for accurate simulation
purposes which is discussed in Section 4.4.

Chapter 5 is devoted to the applications of multiscale methods to mul-
tiphase flow and transport in highly heterogeneous porous media. We limit
ourselves to a few applications. For two-phase flow and transport simulations,
we consider the applications of multiscale methods to hyperbolic equations de-
scribing the dynamics of the phases and their coupling to multiscale methods
for pressure equations in Section 5.2. In this section, the applications of non-
linear multiscale methods to hyperbolic equations are presented along with
various subgrid treatment techniques for hyperbolic equations. We present
an application of nonlinear MsFEMs to Richards’ equation and fluid flows
in highly deformable porous media in Sections 5.3 and 5.4. We include two
short sections (contributed by J.E. Aarnes and S.H. Lee et al.) summarizing
the applications of mixed MsFEM and multiscale finite volume (MsFV) to
reservoir modeling and simulation in Sections 5.5 and 5.6. These sections dis-
cuss the use of MsFEMs in the simulations of multiphase flow and transport
which include various additional physics arising in more realistic petroleum
applications. The extension of MsFEMs to stochastic differential equations is
described in Section 5.7. To handle the uncertainties in heterogeneous coef-
ficients, we propose to use a few realizations of the permeability to generate
multiscale basis functions for the ensemble. Uncertainty quantification in in-
verse problems using multiscale methods is also discussed in this section. The
aim is to speedup uncertainty quantification in inverse problems using fast
multiscale finite element methods as surrogate models. We finish the chapter
with a discussion on other applications of multiscale finite element methods.

In Chapter 6, we present an analysis of MsFEMs discussed in Chapters 2,
3, and 4. Only some representative cases are studied in the book with the aim
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to demonstrate the main ideas and techniques used in the analysis of MsFEMs.
We try to keep the presentation accessible to a broader audience and avoid
some technical details in the presentation. Some basic analysis of MsFEMs
for linear problems in a homogenization setting is presented in Section 6.1.
We study the convergence of MsFEMs for problems with scale separation.
Our analysis reveals sources of the resonance errors. Next, the convergence of
MsFEM with oversampling is studied. We also present analysis of the mixed
MsFEM for problems with scale separation in Section 6.1. In Section 6.2, we
present the analyses of nonlinear MsFEMs. We restrict ourselves to a periodic
case and refer to [113, 112] where the analysis for more general cases are
studied. In Section 6.3, we study the convergence of MsFEMs with limited
global information. The analysis is performed under the assumption that the
solution can be smoothly approximated via known global fields.

Finally, the brief overview of linear and nonlinear homogenization theory is
presented in Appendix B. We present the formal asymptotic expansion as well
as some partial results on the convergence of these expansions. These results
are used in the convergence analysis of MsFEMs presented in Chapter 6.
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Multiscale finite element methods for linear
problems and overview

2.1 Summary

In this section, the main concept of multiscale finite element methods (Ms-
FEM) is presented. We keep the presentation simple to make it accessible to
a broader audience. Two main ingredients of MsFEMs are the global formula-
tion of the method and the construction of basis functions. We discuss global
formulations using various finite element, finite volume, and mixed finite ele-
ment methods. As for multiscale basis functions, the subgrid capturing errors
are discussed. We present simplified computations of basis functions for cases
with scale separation. We also discuss the improvement of subgrid capturing
errors via oversampling techniques. Finally, we present some representative
numerical examples and discuss the computational cost of MsFEMs. Analysis
of some representative cases is presented in Chapter 6.

2.2 Introduction to multiscale finite element methods

We start our discussion with the MsFEM for linear elliptic equations

Lp = f in Ω, (2.1)

where Ω is a domain in R
d (d = 2, 3), Lp := −div(k(x)∇p), and k(x) is a

heterogeneous field varying over multiple scales. We note that MsFEM can be
easily extended to systems such as elasticity equations, as well as to nonlinear
problems (see Section 2.4 and Chapter 3). The choice of the notations k(x)
and p(x) in (2.1) is used because of the applications of the method to porous
media flows later in the book. We note that the tensor k(x) = (kij(x)) is
assumed to be symmetric and satisfies α|ξ|2 ≤ kijξiξj ≤ β|ξ|2, for all ξ ∈ R

d

and with 0 < α < β. We omit x dependence when there is no ambiguity and
assume the summation over repeated indices (Einstein summation convention)
unless otherwise stated.
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MsFEMs consist of two major ingredients: multiscale basis functions and
a global numerical formulation that couples these multiscale basis functions.
Basis functions are designed to capture the multiscale features of the solu-
tion. Important multiscale features of the solution are incorporated into these
localized basis functions which contain information about the scales that are
smaller (as well as larger) than the local numerical scale defined by the basis
functions. A global formulation couples these basis functions to provide an
accurate approximation of the solution. Next, we discuss some basic choices
for multiscale basis functions and global formulations.

Basis functions. First, we discuss the basis function construction. Let Th

be a usual partition of Ω into finite elements (triangles, quadrilaterals, and
so on). We call this partition the coarse grid and assume that the coarse grid
can be resolved via a finer resolution called the fine grid. For clarity of this
exposition, we plot rectangular coarse and fine grids in Figure 2.1 (left figure).
Let xi be the interior nodes of the mesh Th and φ0

i be the nodal basis of the
standard finite element space Wh = span{φ0

i }. For simplicity, one can assume
that Wh consists of piecewise linear functions if Th is a triangular partition.
Denote by Si = supp(φ0

i ) (the support of φ0
i ) and define φi with support in

Si as follows

Lφi = 0 in K, φi = φ0
i on ∂K, ∀K ∈ Th, K ⊂ Si; (2.2)

that is multiscale basis functions coincide with standard finite element basis
functions on the boundaries of a coarse-grid block K, and are oscillatory in
the interior of each coarse-grid block. Throughout, K denotes a coarse-grid
block. Note that even though the choice of φ0

i can be quite arbitrary, our
main assumption is that the basis functions satisfy the leading-order homo-
geneous equations when the right-hand side f is a smooth function (e.g., L2

integrable). We would like to remark that MsFEM formulation allows one
to take advantage of scale separation which is discussed later in the book.
In particular, K can be chosen to be a domain smaller than the coarse grid
as illustrated in Figure 2.1 (right figure) if the small region can be used to
represent the heterogeneities within the coarse-grid block. In this case, the
basis function has the formulation (2.2), except K is replaced by a smaller
region, Kloc, L(φi) = 0 in Kloc, φi = φ0

i on ∂Kloc, where the values of φ0
i

inside K are used in imposing boundary conditions on ∂Kloc. In general, one
solves (2.2) on the fine grid to compute basis functions. In some cases, the
computations of basis functions can be performed analytically. To illustrate
the basis functions, we depict them in Figure 2.2. On the left, the basis func-
tion is constructed when K is a coarse partition element, and on the right,
the basis function is constructed by taking K to be an element smaller than
the coarse-grid block size. Note that a bilinear function in Figure 2.2 (right
figure) is used to demonstrate boundary conditions on a small computational
domain and this bilinear function is not a part of the basis function. In this
case, the assembly of the stiffness matrix uses only the information in small
computational regions and the basis function can be “periodically” extended



2.2 Introduction to multiscale finite element methods 15

Coarse−grid Fine−grid
domain 

Coarse−grid Fine−gridlocal computational 

Fig. 2.1. Schematic description of a coarse grid.
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Fig. 2.2. Example of basis functions. Left: basis function with K being a coarse
element. Right: basis function with K being RVE (bilinear function demonstrates
only the boundary conditions on RVE and is not a part of the basis function).

to the coarse-grid block, if needed (see later discussions and Section 2.6).
Computational regions smaller than the coarse-grid block are used if one can
use smaller regions to characterize the local heterogeneities within the coarse
grid block (e.g., periodic heterogeneities). We call such regions Representa-
tive Volume Element (RVE) following standard practice in engineering. More
precisely, we assume that the size of the RVE is much larger than the char-
acteristic length scale. In this case, one can use the solution in RVE with
prescribed boundary conditions to represent the solution in the coarse block
as is done in homogenization (e.g., [43, 164]). Later, we briefly discuss an
extension of the method to problems with singular right-hand sides. In this
case, it is necessary to include basis functions with singular right-hand sides.
Once the basis functions are constructed, we denote by Ph the finite element
space spanned by φi

Ph = span{φi}.
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Global formulation. Next, we discuss the global formulation of MsFEM.
The representation of the fine-scale solution via multiscale basis functions
allows reducing the dimension of the computation. When the approximation
of the solution ph =

∑
i piφi(x) (pi are the approximate values of the solution

at coarse-grid nodal points) is substituted into the fine-scale equation, the
resulting system is projected onto the coarse-dimensional space to find pi. This
can be done by multiplying the resulting fine-scale equation with coarse-scale
test functions. Other approaches can be taken for general nonlinear problems.
In the case of Galerkin finite element methods, when the basis functions are
conforming (Ph ⊂ H1

0 (Ω)), the MsFEM is to find ph ∈ Ph such that

∑

K

∫

K

k∇ph · ∇vhdx =
∫

Ω

fvhdx, ∀ vh ∈ Ph. (2.3)

One can choose the test functions from Wh (instead of Ph) and arrive at the
Petrov–Galerkin version of the MsFEM as introduced in [143]. Find ph ∈ Ph

such that
∑

K

∫

K

k∇ph · ∇vhdx =
∫

Ω

fvhdx, ∀ vh ∈Wh. (2.4)

We note that in both formulations (2.3) and (2.4), the fine-scale system is
multiplied by coarse-scale test functions and, thus, the resulting system is
coarse-dimensional.

Equation (2.3) or (2.4) couples the multiscale basis functions. This gives
rise to a linear system of equations for finding the values of the solution at the
nodes of the coarse-grid block, thus, the resulting system of linear equations
determines the solution on the coarse grid. To show this, for simplicity, we
consider the Petrov–Galerkin formulation of the MsFEM (see (2.4)). Repre-
senting the solution in terms of multiscale basis functions, ph =

∑
i piφi, it is

easy to show that (2.4) is equivalent to the following linear system,

Apnodal = b, (2.5)

where A = (aij), aij =
∑

K

∫
K
k∇φi∇φ0

jdx. pnodal = (p1, ..., pi, ...) are the
nodal values of the coarse-scale solution, and b = (bi), bi =

∫
Ω
fφ0

i dx.
Here, we do not consider the discretization of boundary conditions. As in
the case of standard finite element methods, the stiffness matrix A has
sparse structure. We note that the computation of the stiffness matrix re-
quires the integral computation for aij and bi. The computation of aij re-
quires the evaluation of the integrals on the fine grid. One can use a simple
quadrature rule, for example, one point per fine grid cell. In this case,∫

K
k∇φi∇φ0

jdx ≈
∑

τ⊂K(k∇φi)|τ∇φ0
j , where τ denotes a fine grid block and

(k∇φi)|τ is the value of the flux within a fine grid block τ . Note that when
source terms or mobilities change, one can pre-compute the stiffness matrix
once and re-use it. For example, if the source terms change, the stiffness ma-
trix will remain the same and one needs to re-compute bi. If mobilities (λ(x)
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in (1.2)) change and remain a smooth function, one can modify aij using a
piecewise constant approximation for λ(x). In this case, the modified stiffness
matrix elements aλ

ij have the form aλ
ij ≈

∑
K λK

∫
K
k∇φi∇φ0

jdx, where aλ
ij

are the elements of the stiffness matrix corresponding to (1.2), λK are approx-
imate values of λ(x) inK, and the integrals

∫
K
k∇φi∇φ0

jdx are pre-computed.
Later on, we derive some explicit expressions for the elements of the stiffness
matrix in the one-dimensional case.

If the local computational domain is chosen to be smaller than the coarse-
grid block, then one can use an approximation of the basis functions in RVE
(local domain) to represent the left-hand side of (2.4) (or (2.3)). We assume
that the information within RVE can be used to characterize the local solution
within the coarse-grid block such that

1
|K|

∫

K

k∇φidx ≈ 1
|Kloc|

∫

Kloc

k∇φ̃idx, (2.6)

where Kloc refers to local computational region (RVE) and φ̃i is the basis
function defined in Kloc and given by the solution of div(k∇φ̃i) = 0 in Kloc

with boundary conditions φ̃i = φ0
i on ∂Kloc. Equation (2.6) holds, for example,

in the general G-convergence setting where homogenization by periodization
(also called the principle of periodic localization) can be performed (see [164])
and the size of the RVE is assumed to be much larger than the characteristic
length scale. One can approximate the left-hand side of (2.4) based on RVE
computations. In particular, the elements of the stiffness matrix (see (2.5))
aij =

∑
K

∫
K
k∇φi∇φ0

jdx can be approximated using

1
|K|

∫

K

k∇φi∇φ0
jdx ≈ 1

|Kloc|

∫

Kloc

k∇φ̃i∇φ0
jdx.

A similar approximation can be done for (2.3). In the general G-convergence
setting, this approximation holds in the limit limh→0 limε→0 (see Section 2.6
for details), and for periodic problems, one can justify this approximation in
the limit limε/h→0. In periodic problems, one can also take advantage of two-
scale homogenization expansion and this is discussed in Section 2.6 along with
further discussions on the use of smaller regions. Similar approximation can
be done for the right-hand side of (2.4) (or (2.3)).

As we discussed earlier, using multiscale basis functions, a fine-scale ap-
proximation of the solution can be easily computed. In particular, ph =∑

i piφi provides an approximation of the solution, where pi are the values of
the solution at the coarse nodes obtained via (2.5). When regions smaller than
the coarse-grid block are used for computing basis functions, ph =

∑
i piφi

provides approximate fine-scale details of the solution only in RVE regions.
One can use the periodic homogenization concept to extend the fine-scale
features in RVE to the entire domain. This is discussed in Section 2.6.

In the above discussion, we presented the simplest basis function construc-
tion and a global formulation. In general, the global formulation can be easily
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modified and various global formulations based on finite volume, mixed fi-
nite element, discontinuous Galerkin finite element, and other methods can
be derived. Many of them are studied in the literature and some of them are
discussed here.

As for basis functions, the choice of boundary conditions in defining the
multiscale basis functions plays a crucial role in approximating the multiscale
solution. Intuitively, the boundary condition for the multiscale basis function
should reflect the multiscale oscillation of the solution p across the boundary
of the coarse grid element. By choosing a linear boundary condition for the
basis function, we create a mismatch between the exact solution p and the
finite element approximation across the element boundary. In Section 2.3, we
discuss this issue further and introduce a technique to alleviate this difficulty.
We would like to note that in the one-dimensional case this issue is not present
because the boundaries of the coarse element consist of isolated points.

The MsFEM can be naturally extended to solve nonlinear partial differ-
ential equations. As in the case of linear problems, the main idea of MsFEM
remains the same with the exception of basis function construction. Because of
nonlinearities, the multiscale basis functions are replaced by multiscale maps,
which are in general nonlinear maps from Wh to heterogeneous fields (see
Chapter 3).

Pseudo-code. MsFEM can be implemented within an existing finite el-
ement code. Below, we present a simple pseudo-code that outlines the im-
plementation of MsFEM. Here, we do not discuss coarse-grid generation. We
note that the latter is important for the accuracy, robustness, and efficient
parallelization of MsFEM and is briefly discussed in Section 2.9.3.

Algorithm 2.2.1

Set coarse mesh configuration from fine-scale mesh information.
For each coarse grid block n do
– For each vertex i
– Solve for φi

n satisfying – L(φi
n) = 0 and boundary conditions (see (2.2))

– End for.
End do
Assemble stiffness matrix on the coarse mesh (see (2.5), also (2.3) or (2.4)).
Assemble the external force on the coarse mesh (see (2.5), also (2.3) or
(2.4)).
Solve the coarse formulation.

Comments on the assembly of stiffness matrix. One can use the represen-
tation of multiscale basis functions via fine-scale basis functions to assemble
the stiffness matrix. This is particularly useful in code development. Assume
that multiscale basis function (in discrete form) φi can be written as
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φi = dijφ
0,f
j ,

where D = (dij) is a matrix and φ0,f
j are fine-scale finite element basis func-

tions (e.g., piecewise linear functions). The ith row of this matrix contains the
fine-scale representation of the ith multiscale basis function. Substituting this
expression into the formula for the stiffness matrix aij in (2.3), we have

aij =
∫

Ω

k∇φi∇φjdx = dil

∫

Ω

k∇φ0,f
l ∇φ0,f

m dx djm.

Denoting the stiffness matrix for the fine-scale problem by Af = (af
lm), af

lm =
∫

Ω
k∇φ0,f

l ∇φ0,f
m dx we have

A = DAfDT .

Similarly, for the right-hand side, we have b =
∫

Ω
φifdx = Dbf , where bf =

(bfi ), bfi =
∫

Ω
fφ0,f

i dx. This simplification can be used in the assembly of the
stiffness matrix. The similar procedure can be done for the Petrov–Galerkin
MsFEM (see (2.4)).

One-dimensional example. In one-dimensional case, the basis functions
and the stiffness matrix (see (2.5)) can be computed almost explicitly. For
simplicity, we consider

−(k(x)p′)′ = f,

p(0) = p(1) = 0, where ′ refers to the spatial derivative. We assume that the
interval [0, 1] is divided into N segments 0 = x0 < x1 < x2 < · · · < xi <
xi+1 < · · · < xN = 1. The multiscale basis function for the node i is given by

(k(x)φ′i)
′ = 0 (2.7)

with the support in [xi−1, xi+1]. In the interval [xi−1, xi], the boundary con-
ditions for the basis function φi are defined as φi(xi−1) = 0, φi(xi) = 1. In
the interval [xi, xi+1], the boundary conditions for the basis function φi are
defined as φi(xi) = 1, φi(xi+1) = 0. Note that for the computation of the
elements of the stiffness matrix, we do not need an explicit expression of φi

and instead, we simply need to compute k(x)φ′i. From (2.7), it is easy to
see that k(x)φ′i = const, where the constants are different in [xi−1, xi] and
[xi, xi+1]. This constant can be easily computed by writing φ′i = const/k(x)
and integrating it over [xi−1, xi]. This yields

k(x)φ′i =
1

∫ xi

xi−1

dx
k(x)

on [xi−1, xi] and

k(x)φ′i = − 1
∫ xi+1

xi

dx
k(x)



20 2 MsFEMs for linear problems and overview

on [xi, xi+1]. Then, the elements of the stiffness matrix A (see (2.4)) are given
by

aij =
∫ xi

xi−1

k(x)φ
′

i(φ
0
j )

′
dx+

∫ xi+1

xi

k(x)φ
′

i(φ
0
j )

′
dx

=
1

∫ xi

xi−1

dx
k(x)

∫ xi

xi−1

(φ0
j )

′
dx− 1

∫ xi+1

xi

dx
k(x)

∫ xi

xi−1

(φ0
j )

′
dx.

(2.8)

Taking into account that
∫ xi

xi−1
(φ0

i−1)
′
dx = −1,

∫ xi

xi−1
(φ0

i )
′
dx = 1,

∫ xi+1

xi
(φ0

i )
′
dx

= −1,
∫ xi+1

xi
(φ0

i+1)
′
dx = 1, we have

ai,i−1 = − 1
∫ xi

xi−1

dx
k(x)

, aii =
1

∫ xi

xi−1

dx
k(x)

+
1

∫ xi+1

xi

dx
k(x)

, ai,i+1 = − 1
∫ xi+1

xi

dx
k(x)

.

Consequently, the stiffness matrix has a tridiagonal form and the linear system
is (2.5), where bi =

∫ 1

0
fφ0

i dx.
In Figure 2.3, we illustrate the solution and a few multiscale basis func-

tions. We refer to [147] for the analysis in the one-dimensional case.
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Fig. 2.3. An illustration of one-dimensional basis functions and the solution.

2.3 Reducing boundary effects

2.3.1 Motivation

The boundary conditions for the basis functions play a crucial role in cap-
turing small-scale information. If the local boundary conditions for the basis
functions do not reflect the nature of the underlying heterogeneities, MsFEMs
can have large errors. These errors result from the resonance between the
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coarse-grid size and the characteristic length scale of the problem. When the
coefficient k(x) is a periodic function varying over the ε scale (k(x) = k(x/ε)),
the convergence rate of MsFEM contains a term ε/h (see [147]), which is large
when h ≈ ε. Recall that h is the coarse mesh size. As illustrated by the error
analysis of [147], the error due to the resonance manifests as a ratio between
the wavelength of the small-scale oscillation and the grid size; the error be-
comes large when the two scales are close. A deeper analysis based on the
homogenization theory shows the main source of the resonance effect. By a
judicious choice of boundary conditions for basis functions, we can reduce the
resonance errors significantly. Some approaches including the use of reduced
problems based on the solutions of one-dimensional problems along the bound-
aries (e.g., [145, 159, 160]) and oversampling methods (e.g., [145, 107, 73]) are
studied in the literature with the goal of reducing resonance errors. In gen-
eral, one can construct multiscale basis functions in various different ways
(see, e.g., [266, 273] for energy minimizing basis functions). Here, we focus on
oversampling methods.

Next, we present an outline of the analysis that motivates the over-
sampling method. We consider a simple case with two distinct scales (i.e.,
k(x) = k(x, x/ε)) and assume that k is a periodic function with respect to
x/ε. In this case, the solution has a well-known multiscale expansion (see, e.g.,
[43, 164] or Appendix B)

p = p0 + εχj ∂

∂xj
p0 + εθp

ε ,

where p0 satisfies the homogenized equation −div(k∗(x)∇p0) = f . The ho-
mogenized coefficients are defined via an auxiliary (cell) problem over a period
of size ε. To illustrate this, we denote the fast variable by y = x/ε and, thus,
the coefficients have the form k(x, y). Then, k∗(x) = (1/|Y |)

∫
Y
k(x, y)(I +

∇yχ(x, y))dy, where χ = (χ1, ..., χd) is a solution of

divy(k(x, y)(I + ∇yχ(x, y))) = 0 (2.9)

in the period Y for a fixed x (see [43, 164] for more details). For simplicity,
one can assume that x represents a coarse grid block. If there is no slow
dependence with respect to x in the coefficients, k = k(x/ε) = k(y), then
there is only one cell problem (2.9) for the entire domain Ω. It can be shown
that p0 + εχj∂p0/∂xj approximates the solution p in H1 norm for small ε (see
[43, 164] or Appendix B for the details).

Following multiple scale expansion, as discussed above (see also Appendix
B), we can write a similar expansion for the basis function

φi = φ1
i + εθε, (2.10)

where φ1
i = φ0

i + εχj∂φ0
i /∂xj is the part of the basis function that has the

same nature of oscillations near boundaries as the approximation of the fine-
scale solution p0 + εχj∂p0/∂xj . Assuming φ0

i is a linear function, it can be
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Fig. 2.4. An illustration of boundary layer function θε. Left: θε in the coarse ele-
ment with oscillatory boundary conditions. Right: θε in ε distance away from the
boundaries.

easily shown that θε satisfies div(k∇θε) = 0 in K and θε = −χj∂φ0
i /∂xj on

∂K. If one can ignore εθε in (2.10), then MsFEM will converge independently
of the resonance error. The term εθε is due to the mismatch between the fine-
scale solution and multiscale finite element solution along the boundaries of
the coarse-grid block where the multiscale finite element solution is linear.
This mismatch error propagates into the interior of the coarse-grid block. The
analysis shows that the MsFEM error is dominated by θε. In Figure 2.4, we
depict θε(x) and the same θε(x) which is ε distance away from the boundaries.
It is clear from this figure that the oscillations decay quickly as we move away
from the boundaries. To avoid these oscillations, one needs to sample a larger
domain and use only interior information to construct the basis functions. The
decay of these oscillations basically dictates how large the sampling region
should be chosen.

2.3.2 Oversampling technique

Motivated by the above discussion and the convergence analysis of [147], Hou
and Wu proposed an oversampling method in [145] to overcome the difficulty
due to scale resonance. Because the boundary layer in the first-order corrector
is thin, we can sample in a domain with the size larger than h and use only
the interior sampled information to construct the basis functions. By doing
this, we can reduce the influence of the boundary layer in the larger sample
domain on the basis functions significantly. It is intuitively clear from Figure
2.4 that the effects of artificial boundary conditions are significantly reduced
for this special two-scale example.

Specifically, let φE
j be the basis functions satisfying the homogeneous el-

liptic equation in the larger domain KE ⊃ K (see Figure 2.5). We then form
the actual basis φi by linear combination of φE

j ,
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Fig. 2.5. Schematic description of oversampled region.

φi =
d∑

j=1

cijφ
E
j .

The coefficients cij are determined by condition φi(xj) = δij , where xj are
nodal points. Extensive numerical experiments have demonstrated that the
oversampling technique does improve the numerical error substantially in
many applications. Some numerical examples are presented in Section 2.9.
On the other hand, the oversampling technique results in a nonconforming
MsFEM method, where the basis functions are discontinuous along the edges
of coarse-grid blocks. In [107] we perform a careful estimate of the noncon-
forming errors. The analysis shows that the nonconforming error is indeed
small, and consistent with our numerical results [145, 146]. Our analysis also
reveals another source of resonance, which is the mismatch between the mesh
size and the “perfect” sample size. In the case of a periodic structure, the
“perfect” sample size is the length of an integer multiple of the period. We
call the new resonance the “cell resonance”. In the error expansion, this reso-
nance effect appears as a higher-order correction. In numerical computations,
we found that the cell resonance error is generally small, and is rarely ob-
served in practice. Nonetheless, it is possible to completely eliminate this cell
resonance error by using the oversampling technique to construct the basis
functions, but using piecewise linear functions as test functions. This reduces
the resonance error further (see [143]).

2.4 Generalization of MsFEM: A look forward

Next, we present a general framework of MsFEMs (following Efendiev, Hou,
and Ginting [104]) which is further discussed in Chapter 3. Consider

Lp = f, (2.11)
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where L : X → Y is an operator. The objective of the MsFEM is to ap-
proximate p on the coarse grid. Denote by Wh a family of finite-dimensional
space such that it possesses an approximation property (see [274], [229]), as
before. Here h, as before, is a scale of computation (coarse grid). In gen-
eral, multiscale basis functions are replaced by multiscale maps defined as
EMsFEM : Wh → Ph. For each element vh ∈ Wh, vr,h = EMsFEMvh is
defined as

Lmapvr,h = 0 in K, (2.12)

where Lmap can be, in general, different from L (e.g., can be a discrete opera-
tor). Note that vh (the quantity with the subscript h) denotes the coarse-scale
approximation and vr,h (the quantity with the subscript r, h) denotes the fine-
scale approximation. For linear problems, we simply used the subscript h to
denote fine-scale approximations.

Note that Lmap allows us to capture the effects of the small scales. More-
over, the domains different from the target coarse block K can be used in
the computations of the local solutions. To solve (2.12) one needs to impose
boundary and initial conditions. This issue needs to be resolved on a case-
by-case basis, and the main idea is to interpolate vh onto the underlying fine
grid.

To find a solution of (2.11) in Ph, one can substitute ph (which denotes
a coarse-scale solution defined in Wh) into (2.11) discretized on the fine grid.
Because ph is defined on the coarse grid, the resulting system is projected onto
the coarse-dimensional space. This can be done in various ways. A common
approach is to multiply the resulting fine-scale system by coarse-scale test
functions; that is find ph ∈Wh (consequently pr,h ∈ Ph) such that

〈Lglobalpr,h, vh〉 = 〈f, vh〉, ∀vh ∈Wh, (2.13)

where 〈·, ·〉 denotes a duality between X and Y (defined for the discrete vari-
ational formulation), and Lglobal can be, in general, different from L. We note
that the fine-scale system Lglobalpr,h − f is multiplied by coarse-scale test
functions. One can also minimize the residual Lglobalpr,h − f at some nodes
to obtain a coarse-dimensional problem. Other approaches based on upscaled
equations can also be used (see Section 5.4). In general, Lmap and Lglobal can
be different for nonlinear problems. Moreover, ph can represent only some of
the physical variables involved in the simulations (see Section 5.4).

The convergence of the MsFEM is to show that ph ≈ p∗ and pr,h ≈ p
in appropriate spaces for small h, where pr,h = EMsFEMph. Here p∗ is a
coarse-scale solution of (2.11). The correct choices of Lmap and Lglobal are the
essential part of MsFEM and guarantee the convergence of the method. We
note that for linear elliptic equations, Lmap is a linear map, and consequently,
Ph is a linear space spanned by EMsFEMφ0

j , where φ0
j ∈Wh. This formulation

is equivalent to linear MsFEMs introduced earlier.
MsFEMs can be easily extended to the system of linear equations, such as

elasticity equations (e.g., [235]),
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div(C : E(u)) = f,

where C is the fourth-order stiffness tensor representing material properties,
u is the displacement field (vector), and E(u) = 1

2 (∇u+ (∇u)T ) is the small
strain tensor. In this case, multiscale basis functions will satisfy the local
homogeneous equations Lφi = 0 inK, φi = φ0

i on ∂K, where L is the elasticity
operator, Lu = div(C : (1

2 (∇u + (∇u)T ))). Note that the basis functions are
vector fields. Vector fields φ0

i are standard finite element basis functions used
for solving the system of equations. For example, for elasticity equations,
φ0

i are linear functions for each element of the vector field (see [235]). The
variational formulation that couples these basis functions will remain similar
to (2.3) (or (2.4)).

We note that a main feature of MsFEMs presented in this book is the use
of a variational formulation at the coarse scale that allows us to couple mul-
tiscale basis functions. Multiscale basis functions or multiscale maps defined
by (2.12) are not necessarily based on partial differential equations and can
have a discrete structure and satisfy a discrete equation at the fine grid. It is
evident from the above abstract formulation that Lmap is used only for the
computation of pr,h (given ph) and the variational formulation (2.13) can be
chosen in different ways depending on the problem. One can consider general
applications of MsFEMs involving discrete problems where the basis functions
satisfy discrete systems. For example, one can consider an application where
the coarse-scale equations have a continuum formulation and describe porous
media flows, whereas the local problems are discrete and solved via the pore
network model. MsFEMs can be used to deal with these problems.

2.5 Brief overview of various global couplings
of multiscale basis functions

2.5.1 Multiscale finite volume (MsFV) and multiscale finite
volume element method (MsFVEM)

Mass conservative schemes play a central role in subsurface applications. For
this reason, it is important to consider methods that can provide a mass
conservative approximation for the flux defined by v = −k∇p. One of these
methods within a finite volume context was first proposed in [159]. The main
idea of this approach is to use a finite volume global formulation with multi-
scale basis functions and obtain a mass conservative velocity field on a coarse
grid. A similar approach was independently proposed later in [104, 133] where
a finite volume element method was used. These approaches differ in their de-
tails as discussed later. In these approaches, the finite volume element method
is taken as a global coupling mechanism for multiscale basis functions. The
construction of basis functions remains the same as discussed earlier.

To demonstrate the concept of MsFV as well as MsFVEM, we assume Th

is the collection of coarse elements K. We introduce a dual grid and denote
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Fig. 2.6. Schematic of nodal points and coarse grids.

it by Kd (see Figure 2.6 for illustration in the case of simple rectangular
grids). Furthermore, we denote the vertices of dual coarse grids by xKd

(their
collection by ZKd

) and the vertices of target coarse-grid blocks by xK (their
collection by ZK).

As before, the key idea of the method is the construction of basis functions
on the coarse grids, such that these basis functions capture the small-scale in-
formation. As in the case of MsFEM, the basis functions are constructed from
the solution of the leading-order homogeneous elliptic equation on each coarse
element with some specified boundary conditions. To demonstrate MsFV, we
denote by Ph the space spanned by the basis functions {φj}xj∈ZKd

as defined
before (see (2.2)). In MsFV, the basis functions on the dual grid are used
and a mass conservation equation is set up on the target coarse-grid blocks.
In particular, we seek ph ∈ Ph with ph =

∑
xj∈Z0

Kd

pjφj (where pj are the

approximate values of the solution at xKd
and Z0

Kd
is the collection of interior

vertices) such that ∫

∂K

k∇ph · ndl =
∫

K

fdx, (2.14)

for every target coarse-grid block K ∈ Th. Here n defines the normal vector
on the boundary. The equation (2.14) results in a system of linear equations
for the solution values at the nodal points of the coarse mesh. In particular,
we have

Apnodal = b,

where A = (aij), aij =
∑

j

∫
∂Kj

k∇φi · ndl, bj =
∫

Kj
fdx. Here j refers to the

index of the coarse-grid block Kj .
In MsFVEM, the basis functions on the target coarse-grid blocks are cho-

sen and the mass conservation equation is set up on the dual grid. We do
not repeat the formulation here. The resulting multiscale method differs from
the MsFEM, because it employs the finite volume or finite volume element
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method as a global solver. We would like to note that the coarse-scale veloc-
ity field obtained using MsFVEM is conservative in control volume elements,
whereas the velocity field obtained using MsFV is conservative in coarse ele-
ments. Further treatment is needed to obtain a conservative velocity field on
the fine grid (see [159]).

Pseudo-code. We present a pseudo-code for the implementation of MsFV.

Algorithm 2.5.1

Set coarse mesh configuration from fine-scale mesh information.
For each coarse grid block n do
– For each control volume element i associated with the coarse block n
– Solve for φi

n satisfying - L(φi
n) = 0 and boundary conditions (see (2.2))

– End for.
End do.
Assemble the mass balance equation on the coarse grid according to (2.14).
Assemble the external force on the coarse mesh according to (2.14).
Solve the coarse grid formulation.

2.5.2 Mixed multiscale finite element method

MsFV and MsFVEM introduced earlier provide a mass conservative velocity
field (defined as v = −k∇p) on the coarse grid. However, the reconstructed
fine-scale velocity field (using multiscale basis functions) is not conservative
for the fine grid elements adjacent to coarse grid boundaries. For multiphase
flow and transport simulations, the conservative fine-scale velocity is often
needed. A treatment within MsFV is proposed in [159]. In this section, we
present a mixed MsFEM where multiscale basis functions for the velocity
field, which is highly heterogeneous, are constructed. This method allows us
to achieve a mass conservative fine-scale velocity field and is used in Chapter
5 for multiphase flow simulations in heterogeneous porous media.

Our presentation of mixed MsFEM follows [71] (see also [25], [1], and [26]).
First, we re-write the elliptic equation in the form

k−1v + ∇p = 0 in Ω

div(v) = f in Ω
(2.15)

with non-homogeneous Neumann boundary conditions v · n = g on ∂Ω. In
mixed multiscale finite element methods, the basis functions for the velocity
field, v = −k∇p, are needed. As in the case of MsFEM, one can use known
mixed finite element spaces to construct these basis functions. For simplicity,
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we consider multiscale basis functions corresponding to lowest-order Raviart–
Thomas elements (following [71], [25]). The basis functions for the velocity in
each coarse block K is given by

div(k∇φK
i ) =

1
|K| in K

k∇φK
i · n =

{
gK

i on eKi
0 else,

(2.16)

where gK
i = 1/|eKi | and eKi are the edges of K (see Figure 2.7 for the illustra-

tion). Note that these basis functions are defined for each edge by imposing
constant flux along an edge (constant Neumann boundary condition) and zero
flux over all other edges of the coarse-grid block. In order to preserve the total
mass and have a well-posed system, some source term is needed. The source
term is taken to be constant.

We define the finite-dimensional space for the velocity by

Vh = span{ψK
i },

where ψK
i = k∇φK

i . For each edge ei, one can combine the basis functions
in adjacent coarse-grid blocks and obtain the basis function for the edge ei
denoted by ψi (or ψei

). More precisely, if we denote by K1 and K2 adjacent
coarse-grid blocks, then ψi solves (2.16) inK1 and solves div(ψi) = −1/|K2| in
K2, and gK2

i = −1/|ei| on eK2
i and 0 otherwise. In other words, ψi = ψK1

i inK1

and ψi = −ψK2
i in K2, where ψK

i is defined via the solution of (2.16). This is
illustrated in Figure 2.8. In [1], the author proposes a different construction for
mixed multiscale basis functions by solving the local problem in two adjacent
coarse grid blocks with zero Neumann boundary conditions and imposing
positive and negative source terms. For example, div(ψi) = 1/|K1| in K1,
div(ψi) = −1/|K2| in K2, and ψi · n = 0 on outer boundaries of K1

⋃
K2.

The basis functions for the pressure are piecewise constant functions over
each K. We denote the span of these basis functions by Qh. The multiscale
basis functions, as in MsFEM, attempt to capture the small-scale information
of the media. The functions ψK

i are the basis functions for the velocity field
and conservative both on the fine and coarse grids provided the local problems
are solved using a conservative scheme. An approximation of the fine-scale
velocity field can be obtained if average fluxes along the coarse edges are
known, that is if ve is the average normal flux along the edge e and ψe is
the corresponding basis function, then v ≈

∑
e veψe is an approximation of

the fine-scale velocity field. These average fluxes, for example, can be also
obtained from MsFV or MsFVEM or by using upscaling methods as in, for
example, [91]. A similar idea is presented in [159] and [1]. The mixed finite
element framework, presented next, couples the velocity and pressure basis
functions and provides an approximation of the global solution (both p and
v).
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Fig. 2.7. Schematic description of a velocity basis function construction in a coarse
grid block.
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Fig. 2.8. Schematic description of a velocity basis function for an edge combining
adjacent basis functions.

To formulate the mixed MsFEM, we use the numerical approximation
associated with the lowest-order Raviart–Thomas mixed finite element to find
{vh, ph} ∈ Vh × Qh such that vh · n = gh on ∂Ω, where gh = g0,h · n on ∂Ω
and g0,h =

∑
e∈{∂K

⋂
∂Ω,K∈Th}(

∫
e
gds)ψe, ψe ∈ Vh is the corresponding basis

function to edge e,
∫

Ω

k−1vh · whdx−
∫

Ω

div(wh)phdx = 0, ∀wh ∈ V0
h

∫

Ω

div(vh)qhdx =
∫

Ω

fqhdx, ∀qh ∈ Qh,

(2.17)

where V0
h is a subspace of Vh with elements that satisfy homogeneous Neu-

mann boundary conditions. The above formulation was the mixed MsFEM
introduced in [71].
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The discrete formulation of (2.17) can be easily written down as
[
A C
CT 0

] [
vD

−pD

]

=
[

0
b

]

, (2.18)

where v =
∑

i v
D
i ψi and p =

∑
i p

D
i qi with vD

i being normal interface fluxes
and pD

i being the cell average solution. Here A = (aij), C = (cik), and b = (bk)
are defined by

aij =
∫

Ω

ψi · (k)−1ψjdx, cik =
∫

Ω

qk div(ψi)dx and bk =
∫

Ω

qkfdx.

This linear system is indefinite, and thus it is in general harder to solve than
the positive definite systems that arise (e.g., from Galerkin finite element dis-
cretizations). However, it is common to solve the mixed linear system (2.18)
by using a so-called hybrid formulation. In the hybrid formulation the system
(2.18) is localized by introducing an extra set of unknowns representing p at
the grid cell interfaces. By performing some simple algebraic manipulations,
we then obtain a positive definite system that is solved for the interface pres-
sures. Finally, the solution to (2.18) is computed from the solution to the
hybrid system by performing local algebraic calculations.

We note that in [10], a discontinuous Galerkin method has been used as
a global coupling for multiscale basis functions and discontinuous Galerkin
MsFEM is proposed. We refer to [10] for details. We also refer to [16], for the
use of discontinuous Galerkin method within the framework of HMM.

Pseudo-code. Next, we briefly outline the implementation of mixed Ms-
FEM. We have put simple prototype MATLAB codes for solving elliptic equa-
tions with mixed MsFEM (courtesy of J. Aarnes) at
http : //www.math.tamu.edu/ ∼ yalchin.efendiev/codes/.

Algorithm 2.5.2

Set coarse mesh configuration from fine-scale mesh information.
For each coarse-grid block n do
– For each edge of a coarse-grid block
– Solve for ψi

n according to (2.16)
– End for
End do.
Assemble the coarse-scale system according to (2.17).
Assemble the external force on the coarse mesh according to (2.17).
Solve the coarse grid formulation.

Comments on the assembly of stiffness matrix. Similar to the Galerkin
MsFEM, one can use the representation of multiscale basis functions via fine-
scale basis functions to assemble the matrices in (2.18). It can be shown that
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A = DAfDT , where D = (dij) is a matrix defined by

ψi = dijψ
0,f
j

with ψ0,f
j being fine-scale basis functions, Af = (af

lm), af
lm =

∫
Ω
ψ0,f

l ·
(k)−1ψ0,f

m dx. This simplification can be used in the assembly of the stiffness
matrix.

2.6 MsFEM for problems with scale separation

In some applications, regions smaller than the coarse-grid block are sufficient
to represent the small-scale effects. In these applications, one can use the
basis functions constructed in a smaller region, instead of the coarse-grid
block, to capture the small-scale effects. The basic idea behind this localization
is that (1/|K|)

∫
K
k∇φidx in the computation of the stiffness matrix (2.4)

can be approximated by (1/|Kloc|)
∫

Kloc
k∇φ̃idx, where φi is the solution of

div(k∇φi) = 0 inK, φi = φ0
i on ∂K, and φ̃i is the solution of div(k∇φ̃i) = 0 in

Kloc, φ̃i = φ0
i on ∂Kloc. Here, Kloc refers to a smaller region (RVE) as before.

Next, we briefly discuss this approximation. Within the generalG-convergence
theory (e.g., [164]), it can be shown that (e.g., [164])

lim
ε→0

1
|K|

∫

K

k∇φidx =
1
|K|

∫

K

k∗∇φ0
i dx, (2.19)

where ε is the characteristic length scale and φ0
i is the homogenized part of

the basis function. Note that the G-convergence theory does not assume pe-
riodicity and k∗(x) are homogenized coefficients independent of ε such that
the solution and the fluxes of the homogenized equation −div(k∗(x)∇p∗) = f
approximate the solution of fine-scale equation −div(k(x)∇p) = f in appro-
priate norms (we refer to, e.g., [164] for details). The same result holds for
(1/|Kloc|)

∫
Kloc

k∇φ̃idx; that is

lim
ε→0

1
|Kloc|

∫

Kloc

k∇φ̃idx =
1

|Kloc|

∫

Kloc

k∗∇φ̃0
i dx. (2.20)

Assuming that k∗(x) is sufficiently smooth, one can approximate k∗(x) within
each coarse block by a constant and show that the right-hand sides of (2.19)
and (2.20) are close for small h (note that Kloc ⊂ K). Consequently, for small
ε, the left-hand sides of (2.19) and (2.20) will be close; that is

lim
|K|→0

lim
ε→0

1
|K|

∫

K

k∇φidx = lim
|Kloc|→0

lim
ε→0

1
|Kloc|

∫

Kloc

k∇φ̃idx. (2.21)

The relation (2.21) shows that
∫

Kloc
k∇φ̃idx can be used to approximate

∫
K
k∇φidx in the limit limh→0 limε→0 (limit of scale separation). From here,
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one can show that the multiscale finite element solution approximates the
fine-scale solution in limh→0 limε→0. We refer to [108] for the details where
the more general problem is studied. For periodic problems, this approxima-
tion can be shown in the limit ε/hloc → 0 (where hloc is the size of Kloc) if
Kloc is much larger than the period size. If k∗(x) is sufficiently smooth and φ0

i

is piecewise linear, then (2.21) is equal to k∗(x0)∇φ0
i , where x0 is the point to

which the region K or Kloc contracts (see [164] for a more precise definition
of x0). In this case, the location of RVE within the coarse grid block is not
very important and one can choose RVE, for example, at the center of the
mass of the coarse element.

In the case of periodic heterogeneities, where the period is known, the
basis functions can be approximated using homogenization theory by

φj ≈ φ0
j + εχi ∂

∂xi
φ0

j , (2.22)

where the summation over repeated indices occurs. This approach derives
from homogenization and χ is a periodic solution (with average zero) of (2.9).
Consequently, the approximation of the basis functions can be carried out in a
domain of the size of the period that characterizes the small-scale oscillation
of k(x). This reduces the computational cost if the period is much smaller
than the coarse-grid block. With this approximation, the stiffness matrix (see
(2.5)) can be assembled in the periods instead of the coarse grid blocks:

aij =
∑

K

∫

K

k∇φi · ∇φ0
jdx ≈

∑

K

|K|
|Y |

∫

Y

k∇(φ0
j + εχi ∂

∂xi
φ0

j ) · ∇φ0
jdx,

(2.23)

where Y is the period within K. One can further approximate this expres-
sion and show that aij ≈

∑
K(|K|/|Y |)

∫
Y
k(I + ∇χ)∇φ0

j · ∇φ0
jdx. In [269],

the author uses the approximation of the basis functions based on (2.22) for
periodic coefficients and shows that MsFEM converges as the period size and
the mesh size go to zero.

As we discussed earlier, using multiscale basis functions, a fine-scale ap-
proximation of the solution can be easily computed, by ph =

∑
i piφi. When

regions smaller than the coarse-grid block are used for computing basis func-
tions, then the basis functions can be extended to a coarse-grid block based on
homogenization expansion. In particular, from the problem in Kloc (RVE) one
can easily extract χ and use it to construct an extension of the basis function
to the coarse-grid block. These basis functions can be further used to obtain
an approximate fine-scale solution in the entire domain.

We would like to note that this approximation procedure is not limited
to periodic problems and can be applied to problems where homogenization
by periodization (see the principle of periodic localization [164]) is true. The
random homogeneous case with ergodicity is one of these cases. The techniques
discussed in this section can be also used in MsFV, MsFEM, mixed MsFEM,
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and other multiscale methods when the problem has some special features
such as periodicity or strong scale separation.

2.7 Extension of MsFEM to parabolic problems

MsFEM can be naturally extended to parabolic equations. In this section, we
briefly describe the extension of MsFEM to the parabolic equation

∂

∂t
p(x, t) − div(k(x, t)∇p(x, t)) = f (2.24)

with appropriate boundary conditions on the finite time interval [0, T ] and
smooth initial conditions. In general, when there are space and time het-
erogeneities, basis functions are the solutions of the leading-order homo-
geneous parabolic equations. In the absence of time heterogeneities (i.e.,
k(x, t) = k(x)), one can use spatial basis functions developed for elliptic equa-
tions. To introduce MsFEM, we assume for simplicity that the interval [0, T ]
is divided into M equal parts 0 = t0 < t1 < · · · < tM = T . These intervals are
coarse-scale intervals; that is Δt = ti+1 − ti is larger than the characteristic
time scale. The basis functions are constructed in [tn, tn+1] as the solution of

∂

∂t
φi(x, t) − div(k(x, t)∇φi(x, t)) = 0 (2.25)

in each K such that φi = φ0
i on ∂K and φi(x, t = tn) = φ0

i . Here, φ0
i ∈ Wh

are standard finite element basis functions (e.g., piecewise linear functions).
We seek the finite-dimensional approximation of the solution in [tn, tn+1] as

pn+1
h (x, t) =

∑

i

pn+1
i φi(x, t), (2.26)

where pn+1
i (approximate nodal values of the solution) will be determined.

Then, substituting (2.26) into the original equation, multiplying it by φ0
i (as in

the Petrov–Galerkin formulation) and integrating over the space and [tn, tn+1],
we have

pn+1
i

∫

Ω

φi(x, tn+1)φ0
j (x)dx− pn

i

∫

Ω

φi(x, tn)φ0
j (x)dx

+
∫ tn+1

tn

∑

K

∫

K

k(x, t)∇ph(x, t) · ∇φ0
j (x)dxdt =

∫ tn+1

tn

∫

Ω

fφ0
j (x)dxdt,

(2.27)

where ph(x, t) =
∑

i pi(t)φi(x, t). The third term on the right-hand side can
be treated implicitly or explicitly. In particular, the implicit method is given
by
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pn+1
i

∫

Ω

φi(x, tn+1)φ0
j (x)dx− pn

i

∫

Ω

φi(x, tn)φ0
j (x)dx

+ pn+1
i

∫ tn+1

tn

∑

K

∫

K

k(x, t)∇φi(x, t) · ∇φ0
j (x)dxdt =

∫ tn+1

tn

∫

Ω

fφ0
j (x)dxdt.

(2.28)

If the third term is evaluated explicitly, that is it is replaced by

pn
i

∫ tn+1

tn

∑

K

∫

K

k(x, t)∇φi(x, t) · ∇φ0
j (x)dxdt,

then the resulting method is explicit. One can easily write down the corre-
sponding discrete formulation which we omit here.

We note that if there are no temporal heterogeneities (i.e., k(x, t) = k(x)),
the basis functions can be the solutions of elliptic equations as in the case
of elliptic equations. The equations for the basis functions can be simplified
depending on the relation between spatial and temporal heterogeneities (see
Section 3.5). Equation (2.25) defines the basis functions independent of the
relation between spatial and temporal heterogeneities. Furthermore, in the
case of scale separation, (2.25) can be solved in a smaller volume, RVE, and
this solution can be used in Equation (2.27) in a manner similar to the elliptic
case.

Finally, we would like to note that one can couple the basis functions
using different methods, such as finite volume element methods and so on. For
example, the mixed MsFEM for parabolic equations (with time-independent
coefficients, k(x, t) = k(x)) has the following formulation. We seek {vh, ph} ∈
Vh ×Qh, such that

∫

Ω

∂ph

∂t
qhdx+

∫

Ω

div(vh) qhdx =
∫

Ω

fqhdx, ∀qh ∈ Qh

∫

Ω

k−1vh · whdx−
∫

Ω

div(wh) phdx = 0, ∀wh ∈ V0
h,

(2.29)

where Vh, V0
h, and Qh are defined as before (cf. (2.17)) for elliptic equations.

2.8 Comparison to other multiscale methods

MsFEMs share similarities with many other multiscale methods. One of the
early approaches is the upscaling technique (e.g., [91, 260, 47]) which is based
on the homogenization method. The main idea of upscaling techniques is to
form a coarse-scale equation and pre-compute the effective coefficients. In the
case of linear elliptic equations, the coarse-scale equation has the same form
as the fine-scale equation except that the coefficients are replaced by effective
homogenized coefficients. The effective coefficients in upscaling methods are
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computed using the solution of the local problem in a representative volume.
Various boundary conditions can be used for solving the local problems and,
for simplicity, we consider

div(k∇φe) = 0 in K (2.30)

with φe(x) = x·e on ∂K, where e is a unit vector. It is sufficient to solve (2.30)
for d linearly independent vectors e1, ..., ed in R

d because φe =
∑

i βiφei
if e =∑

i βiei. Here K denotes a coarse-grid block, although one can use a smaller
region as discussed in Section 2.6. The effective coefficients are computed in
each K as

k̃∗e =
1
|K|

∫

K

k∇φedx. (2.31)

We note that k̃∗ (which is not the same as the homogenized coefficients) is
a symmetric matrix provided k is symmetric and (2.31) can be computed for
any point in the domain by placing the point at the center of K, i.e.,

k̃∗(x0)e =
1

|Kx0 |

∫

Kx0

k∇φedx,

where Kx0 is the RVE with the center at x0 and φe is the local solution
defined by (2.30) in Kx0 . One can use various boundary conditions, including
periodic boundary conditions as well as oversampling methods. We refer to
[91, 260] for the discussion on the use of various boundary conditions. Once
the effective coefficients are calculated, the coarse-scale equation

− div(k̃∗∇p∗) = f (2.32)

is solved over the entire region.
To show the similarity to MsFEMs, we write down the discretization of

(2.32) using the Galerkin finite element method. Find p∗h ∈Wh, such that

∑

K

∫

K

k̃∗∇p∗h · ∇vhdx =
∫

Ω

fvhdx, ∀vh ∈Wh. (2.33)

Next, we write down the Petrov–Galerkin MsFEM discretization (see
(2.4))

aijpi = bj , (2.34)

where aij =
∑

K

∫
K
k∇φidx · ∇φ0

j (assuming φ0
j is piecewise linear) and bj =

∫
Ω
fφ0

jdx. One can show that

aij =
∑

K

∫

K

k̃∗∇φ0
i · ∇φ0

jdx

because (1/|K|)
∫

K
k∇φidx = k̃∗∇φ0

i . We assumed that φ0
i are piecewise lin-

ear functions. Thus, (2.34) and (2.33) are equivalent. This shows that the
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MsFEM can be derived from traditional upscaling methods. However, the
concept of MsFEMs differs from traditional upscaling methods, because the
local information is directly coupled via a variational formulation and we do
not assume a specific form for coarse-scale equations. Moreover, MsFEMs al-
low us to recover the local information adaptively which makes it a powerful
tool (e.g., for porous media flow simulations). More advantages of MsFEM
are discussed in later chapters.

Next, we briefly discuss the relation between variational multiscale ap-
proaches and MsFEM. These similarities are also shown in [26] in the context
of mixed finite element methods. Here, we discuss Galerkin finite element
methods. We assume that the fine-scale solution space XF is partitioned into
the coarse-dimensional space XC (e.g., Wh), and the space containing the
unresolved scales XU ,

XF = XC ⊕XU .

We assume also that these spaces are the subspaces of H1
0 (Ω), for simplicity.

The fine-scale solution can be written accordingly as

p = pC + pU .

Substituting this into the original equation and multiplying by the test func-
tions from XC , we obtain the equation for the coarse-scale solution

∫

Ω

k∇(pC + pU ) · ∇vhdx =
∫

Ω

fvhdx, ∀vh ∈ XC . (2.35)

Similarly, multiplying the original equation by the test functions from XU , we
obtain the equation for the unresolved part of the solution
∫

Ω

k∇pU · ∇vhdx =
∫

Ω

fvhdx−
∫

Ω

k∇pC · ∇vhdx, ∀vh ∈ XU . (2.36)

To find the coarse-scale solution, pC , one first solves pU from (2.36) and sub-
stitutes it into (2.35) to compute pC . We note that (2.35) is exact and the
solution of (2.36) is nonlocal. In general, the solution of (2.36) can be localized
by imposing local boundary conditions. One can use various choices for the
boundary conditions. Noting the solution of the local problem can be written
via generic basis functions, one can derive a formulation similar to MsFEM.

To show the similarity between MsFEMs and variational multiscale meth-
ods, as an example, we consider the localization based on pU = 0 on the
boundaries of the coarse-grid block K. In this case, it is evident that the so-
lution pC + pU satisfies the local problem div(k∇(pC + pU )) = f in K and
pC + pU is a piecewise linear function on ∂K. This solution can be approx-
imated by multiscale finite element basis functions defined by (2.2). Thus,
we can seek pC + pU =

∑
i piφi. Substituting this expression into (2.35), we

obtain a Petrov–Galerkin formulation of MsFEM if φi are chosen with zero
right-hand side. We note that one of the differences between the variational
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multiscale method and MsFEM is that the former uses source terms in the
formulation of the local problems. The representation of source terms with
MsFEMs in the context of subsurface flows has been extensively studied in
the literature (e.g., see [13, 175], Sections 5.5, and 5.6) within the context of
subsurface flows. Typically, only singular source terms require special treat-
ment with multiscale basis functions.

As we mentioned earlier, one can take advantage of scale separation in Ms-
FEM. There are various ways to do so and these approaches will share similar-
ities, for example, with the application of heterogeneous multiscale methods
(HMM) ([97]), and multiscale enrichment methods ([121]). HMM has been
extensively studied in the literature (e.g., see [17, 15, 98, 203] for the appli-
cations to elliptic equations). The main idea of this approach is to use small
regions at quadrature points for the computation of effective coefficients. This
is performed on-the-fly when the stiffness matrix corresponding to the coarse-
scale problem is assembled. As mentioned above, multiscale basis functions
can be approximated when there is scale separation. The basic idea behind
this localization is that (1/|K|)

∫
K
k∇φidx (in the stiffness matrix, see (2.5))

can be approximated by (1/|Kloc|)
∫

Kloc
k∇φ̃idx, where φi is the solution of

div(k∇φi) = 0 inK, φi = φ0
i on ∂K, and φ̃i is the solution of div(k∇φ̃i) = 0 in

Kloc, φ̃i = φ0
i on ∂Kloc. Using the general G-convergence theory (e.g., [164]),

one can show (2.21). This result holds when k∗(x) is a smooth function and
(2.21) is equal to k∗(x0)∇φ0

i (assuming φ0
i is piecewise linear) at almost every

point x0 to which the region K and Kloc contract. For periodic problems,
k = k(x/ε), it is not difficult to show that

| 1
|K|

∫

K

k∇φidx− k∗∇φ0
i | ≤ C(

ε

h
+ h),

where k∗ is computed for the coarse-grid block according to (2.31). Similarly,

| 1
|Kloc|

∫

Kloc

k∇φ̃idx− k∗∇φ0
i | ≤ C(

ε

hloc
+ hloc).

Based on these results, one can show the convergence of MsFEMs using the
local information inKloc. We refer to [108] for the details where a more general
problem is studied. This approximation of the basis functions and the corre-
sponding approximation of the stiffness matrix elements can save CPU time
if there is a strong scale separation. The method obtained in this way is very
similar to the application of HMM to elliptic equations, although it differs in
some details (e.g., the computations are not performed at quadrature points).
We would like to note that one can also use first-order corrector approxima-
tion for the basis functions as discussed earlier. In this case, the local solution
in RVE can be used as a cell problem solution εχ in (2.22). We would like to
mention that there are other approaches (e.g., [121, 122, 153]) which use the
solution of the cell problem to construct multiscale basis functions based on
the partition of unity method.
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As we mentioned in Section 1.2, multiscale methods considered in this book
differ from domain decomposition methods (e.g., [257]) where the local prob-
lems are solved many times iteratively to obtain an accurate approximation
of a fine-scale solution. Multiscale methods studied in this book share similar-
ities with upscaling/homogenization methods, where the basis functions are
computed based on coarse-grid information. Figure 2.9 illustrates the main
concept of the MsFEM and its advantages (see also Section 2.9). The multi-
scale methods attempt to find the coarse-scale solution and can also compute
an approximation of the fine-scale solution via downscaling. One can use iter-
ations (e.g., [93]) similar to domain decomposition methods or some type of
global information to improve the accuracy of multiscale methods when there
is no scale separation (see Chapter 4).

Finally, we remark that we restricted ourselves only to a few multiscale
methods due to the page limitation. One can find similarities between mul-
tiscale finite element methods and other multiscale methods known in the
literature. Some of these similarities may not be so apparent. Some of these
algorithms are designed for periodic problems and have advantages when the
underlying heterogeneities are periodic. For example, the approach proposed
in [198] is based on two-scale convergence concept ([21]). This approach is gen-
eralized to problems with multiple separable scales ([139]) using hierarchical
basis functions. In this book, we do not want to discuss the similarities be-
tween different multiscale methods to a great extent and instead focus on our
work on extensions and applications of various MsFEMs. We again stress that
the main idea of MsFEM stems from the earlier work of Babuška and Osborn
[33]. In Chapters 3 and 4, we show that the MsFEM can take advantage of
global information and can be naturally extended to nonlinear problems.

2.9 Performance and implementation issues

We outline the implementation of a Galerkin MsFEM for a simple test prob-
lem (following [145]) and define some notations that are used in the discus-
sion below. We consider solving problems in a unit square domain. Let N be
the number of elements in each coordinate direction. The mesh size is thus
h = 1/N . To compute the basis functions, each element is discretized into
M ×M subcell elements with mesh size hf = h/M . To implement the over-
sampling method, we partition the domain into sampling domains where each
of them contains many elements. Analysis and numerical tests indicate that
the size of the sampling domains can be chosen freely as long as the boundary
layer is avoided. In practice, though, one wants to maximize the efficiency of
oversampling by choosing the largest possible sample size that reduces the
redundant computation of overlapping domains to a minimum.

In general, the multiscale basis functions are constructed numerically, ex-
cept for certain special cases. They are solved in each K or KE using a stan-
dard FEM. The global linear system on Ω is solved using the same method.
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Numerical tests show that the accuracy of the final solution is weakly insen-
sitive to the accuracy of basis functions.

Because the basis functions are independent of each other, their construc-
tion can be carried out in parallel perfectly. In a parallel implementation of
oversampling, the sample domains are chosen such that they can be handled
within each processor without communication. More implementation details
can be found in [145].

2.9.1 Cost and performance

In computations, a large amount of overhead time comes from constructing
the basis functions. This is also true for classical upscaling methods discussed
in Section 2.8. On a sequential machine, the operation count of the MsFEM
is about twice that of a conventional FEM for a 2D problem. However, due to
good parallel efficiency, this difference is reduced significantly on a massively
parallel computer (see [145] for a detailed study of the MsFEM’s parallel
efficiency). This overhead can be reduced if there is scale separation.

In practice, multiple solves are often required for different source terms,
boundary conditions, mobilities and so on. MsFEMs have advantages in such
situations and the overhead of basis construction can be negligible because
the basis functions can be re-used. This is illustrated in Figure 2.9, where
pre-computed multiscale basis functions can be re-used for different external
parameters such as source terms, boundary conditions and the like. Moreover,
multiscale basis functions can be used to re-construct the fine-scale features
of the solution in the regions of interest. This adaptivity is often used in
subsurface applications where the fine-scale features of the velocity (−k∇p)
are re-constructed in some regions where the detailed velocity information
is needed, for example, for updating sharp interfaces. In summary, MsFEMs
provide the following advantages in simulations: (1) parallel multiscale basis
function construction (which can be very cheap if there is scale separation);
(2) re-use of basis functions for different external parameters and inexpensive
coarse-scale solve; and (3) adaptive downscaling of the fine-scale features of
the solution in the regions of interest.

Significant computational savings are obtained for time-dependent prob-
lems such as those that occur in subsurface applications. In these problems,
the heterogeneities representing porous media properties do not change and
the basis functions are pre-computed at the initial time. These basis functions
are used throughout the simulations and the elliptic equations are solved on
the coarse grid each time. In this sense, our approaches are similar to classi-
cal upscaling methods where the upscaled quantities are pre-computed before
solving the equations on the coarse grid. In some situations, local basis func-
tion update is required, for example, if there is a sharp interface dividing two
propagating fluids. The interface modifies the permeability and this requires
local updates of the basis functions.
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Fig. 2.9. A schematic illustration of multiscale simulations and advantages.

2.9.2 Convergence and accuracy

Because we need to use an additional grid to compute the basis function
numerically, it makes sense to compare our MsFEM with a traditional FEM
at the subcell (fine) grid, hf = h/M . Note that the MsFEM captures the
solution at the coarse grid h, whereas FEM tries to resolve the solution at
the fine grid hf . Our extensive numerical experiments demonstrate that the
accuracy of the MsFEM on the coarse grid h is comparable to that of FEM
on the fine grid.

As an example, in Table 2.9.2 we present the results from [145] for

k(x/ε) =
2 +A sin(2πx1/ε)
2 +A cos(2πx2/ε)

+
2 + sin(2πx2/ε)

2 +A sin(2πx1/ε)
(A = 1.8), (2.37)

f(x) = −1 and p|∂Ω = 0. (2.38)

The convergence of three different methods is compared for fixed ε/h = 0.64,
where “-L” indicates that a linear boundary condition is imposed on the mul-
tiscale basis functions, “os” indicates the use of oversampling, and LFEM
stands for the standard FEM with bilinear basis functions.

We see clearly the scale resonance in the results of MsFEM-L and the
(almost) first-order convergence (i.e., no resonance) in MsFEM-os-L. The error
of MsFEM-os-L is smaller than that of LFEM obtained on the fine grid. In
[147, 145], more extensive convergence tests have been presented.

There have been many numerical studies of MsFEM, in particular, in the
context of multiphase flow simulations. Some of these results are presented
and discussed in the book.
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Table 2.1. Convergence for periodic case

MsFEM-L MsFEM-os-L LFEM
N ε ||E||l2 Rate ||E||l2 Rate MN ||E||l2
16 0.04 3.54e-4 7.78e-5 256 1.34e-4
32 0.02 3.90e-4 -0.14 3.83e-5 1.02 512 1.34e-4
64 0.01 4.04e-4 -0.05 1.97e-5 0.96 1024 1.34e-4
128 0.005 4.10e-4 -0.02 1.03e-5 0.94 2048 1.34e-4

2.9.3 Coarse-grid choice

We would like to remark that in MsFEM simulations, one is not restricted to
rectangular or box-shaped coarse and fine grids. In fact, as demonstrated in
a number of papers [11, 5], one can use an unstructured fine grid. Moreover,
the coarse grid can have an arbitrary shape and the only requirement on the
coarse grid is that every coarse grid consists of a connected union of fine-grid
blocks. In Figure 2.10, we present an example from [11]. As one can observe
from this figure the coarse-grid blocks have quite irregular shapes. In [9], the
authors develop gridding techniques that use single-phase flow information
(surrogate global information) to construct a coarse grid. The coarse grid is
chosen such that it minimizes the magnitude of the single-phase velocity field
variation within each coarse-grid block. This automatic coarse-grid generator
allows one to use an optimal coarse grid for accurate simulation purposes in
two-phase flow simulations. In Chapter 4, we discuss an extension of mixed
MsFEM to unstructured coarse grids and include a few numerical examples to
demonstrate its effectiveness. We would like to note that the fine grid blocks
in neighboring coarse-grid blocks do not need to match along the interface.

In general, an appropriate choice of the coarse-grid will improve the effi-
ciency and accuracy of multiscale methods. It is often possible that the so-
lution may have smooth variation along coarse grid boundaries if the coarse
grid is judiciously selected. This can lead to improved numerical results. Some
of these issues are discussed in Chapter 4. For computational purposes, it is
important that the coarse grid is more regular (for accuracy purposes) and
the number of fine-grid blocks within a coarse grid is approximately the same
(for load-balancing purposes).

2.10 An application to two-phase flow

MsFEMs and their modifications have been used with success in two-phase
flow simulations through heterogeneous porous media. First, we briefly de-
scribe the underlying fine-scale equations. We present two-phase flow equa-
tions neglecting the effects of gravity, compressibility, capillary pressure, and
dispersion on the fine scale. Porosity, defined as the volume fraction of the void
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Fig. 2.10. Unstructured fine and coarse grids (from [11]).

space, is taken to be constant and therefore serves only to rescale time. The
two phases are referred to as water and oil and designated by the subscripts
w and o, respectively. We can then write Darcy’s law, with all quantities
dimensionless, for each phase j (j = w, o) as follows;

vj = −λj(S)k∇p, (2.39)

where vj is phase velocity, S is water saturation (volume fraction), p is pres-
sure, λj = krj(S)/μj is phase mobility, where krj and μj are the relative
permeability and viscosity of phase j, respectively, and k is the permeability
tensor.

Combining Darcy’s law with conservation of mass, div(vw +vo) = 0, allows
us to write the flow equation in the following form

div(λ(S)k∇p) = qt, (2.40)

where the total mobility λ(S) is given by λ(S) = λw(S) + λo(S) and qt is a
source term representing wells/sources. The term qt = qw + qo represents the
total volumetric source term. The saturation dynamics affects the flow equa-
tions. One can derive the equation describing the dynamics of the saturation

∂S

∂t
+ div(vfw(S)) = −qw, (2.41)

where fw(S) is the fractional flow of water, given by fw = λw/(λw +λo). The
signs of the source terms that appear in (2.40) and (2.41) can be inter-changed.
The total velocity v is given by

v = vw + vo = −λ(S)k∇p. (2.42)

In the presence of capillary effects, an additional degenerate diffusion term is
present in (2.41).
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If krw = S, kro = 1 − S, and μw = μo, then the flow equation reduces to

div(k∇psp) = qt.

This equation is called single-phase flow equation.
For two-phase flow simulations, we first solve the coarse-scale pressure

equation using MsFVEM. More precisely, assuming that the solution S(x, t)
is known at time t = tn, we solve div(λ(S(x, tn))k∇p) = qt using MsFVEM
to compute p(x, tn+1) on the coarse grid. The fine-scale velocity v(x, tn+1) is
then re-constructed by solving a local fine-scale problem over each dual cell
with flux boundary conditions, as determined from the pressure solution. This
velocity is then used in the explicit solution of the saturation equation using
a first-order upwind method to compute S(x, tn+1). The overall procedure
is thus an IMPES (implicit pressure, explicit saturation) approach. We also
consider an approach where the coarse-scale velocity is used to update the
saturation field.

As we see from (2.40) and (2.41), the pressure equation is solved many
times for different saturation profiles. Thus, computing the basis functions
once at time zero is very beneficial and the basis functions are only updated
near sharp interfaces. In fact, our numerical results show that only slight
improvement can be achieved by updating the basis functions near sharp
fronts.

We present a representative numerical example for a permeability field
generated using two-point geostatistics. To generate this permeability field,
we have used the GSLIB algorithm [85]. The permeability is log-normally
distributed with prescribed variance σ2 = 1.5 (σ2 here refers to the variance
of log k) and some correlation structure. The correlation structure is specified
in terms of dimensionless correlation lengths in the x1- and x2-directions,
l1 = 0.4, and l2 = 0.04, nondimensionalized by the system length. Linear
boundary conditions are used for constructing multiscale basis functions. A
spherical variogram is used. In this numerical example, the fine-scale field is
120×120, and the coarse-scale field is 12×12 defined in the rectangle with the
length 5 and the width 1. For the two-phase flow simulations, the system is
considered to initially contain only oil (S = 0) and water is injected at inflow
boundaries (S = 1 is prescribed); that is we specify p = 1, S = 1 along the
x = 0 edge and p = 0 along the x = 5 edge, and no flow boundary conditions
on the lateral boundaries. Relative permeability functions are specified as
krw = S2, kro = (1 − S)2; water and oil viscosities are set to μw = 1 and
μo = 5. Source terms qw and qt are zero. Results are presented in terms of the
fraction of oil in the produced fluid, called fractional flow or oil-cut (designated
F ), against pore volume injected (PVI). Fractional flow is given by

F (t) = 1 −
∫

∂Ωout(v · n)f(S)ds
∫

∂Ωout v · nds
, (2.43)

where Ωout refers to the part of the boundary with outer flow; that is v ·n > 0.
PVI represents dimensionless time and is computed via
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Fig. 2.11. Fractional flow comparison for a permeability field generated using two-
point geostatistics.

PVI =
∫

Qdt/Vp, (2.44)

where Vp is the total pore volume of the system and Q =
∫

∂Ωout v · nds is the
total flow rate.

In Figure 2.11, we compare the fractional flows (oil-cut). The dashed line
corresponds to the calculations performed using a simple saturation upscaling
(no subgrid treatment) where (2.41) is solved with v replaced by the coarse-
scale v obtained from MsFVEM. Note that the coarse-scale v is defined as
a normal flux,

∫
∂K
v · ndl along the edge for each coarse-grid block. We call

this the primitive model because it ignores the oscillations of v within the
coarse-grid block in the computation of S. The dotted line corresponds to
the calculations performed by solving the saturation equation on the fine grid
using the reconstructed fine-scale velocity field. The fine-scale details of the
velocity are reconstructed using the multiscale basis functions. In these simu-
lations, the errors are due to MsFVEM. In the primitive model, the errors are
due to both MsFVEM for flow equations (2.40) and the upscaling in the satu-
ration equation (2.41). We observe from this figure that the second approach,
where the saturation equation is solved on the fine grid, is very accurate, but
the first approach overpredicts the breakthrough time. We note that the sec-
ond approach contains the errors only due to MsFVEM because the saturation
equation is solved on the fine grid. The first approach contains in addition to
MsFVEM’s errors, the errors due to saturation upscaling which can be large
if no subgrid treatment is performed. The saturation snapshots are compared
in Figure 2.12. One can observe that there is a very good agreement between
the fine-scale saturation and the saturation field obtained using MsFVEM.
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saturation plot at PVI=0.5 using standard MsFVEM
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Fig. 2.12. Saturation maps at PVI = 0.5 for fine-scale solution (left figure) and
standard MsFVEM (right figure).

2.11 Discussions

In this chapter, we presented an introduction to MsFEMs. We attempted
to keep the presentation accessible to a broader audience and avoided some
technical details in the presentation. One of the main ingredients of MsFEM
is the construction of basis functions. Various approaches can be used to
couple multiscale basis functions. This leads to multiscale methods, such as
mixed MsFEM, MsFVEM, DG-MsFEM, and so on. Most of the discussions
here focus on linear problems and local multiscale basis functions. We have
discussed the effects of localized boundary conditions and the approaches to
improve them. The relation to some other multiscale methods is discussed.

We would like to note that various multiscale methods are compared nu-
merically in [167]. In particular, the authors in [167] perform comparisons of
MsFVM, mixed MsFEM, and variational multiscale methods. Numerical re-
sults are performed for various uniform coarse grids and the sensitivities of
these approaches with respect to coarse grids are discussed. As we mentioned
earlier, one can use general, nonuniform, coarse grids to improve the accuracy
of local multiscale methods.

We discussed approximations of basis functions in the presence of strong
scale separation. In this case, the basis functions and the elements of the
stiffness matrix can be approximated using the solutions in smaller regions
(RVE). One can also approximate basis functions by solving the local prob-
lems approximately, for example, using approximate analytical solutions [250]
for some types of heterogeneities. In [192], the authors propose an approach
where the multiscale basis functions are computed inexpensively via multigrid
iterations. They show that the obtained method gives nearly the same accu-
racy on the coarse grid as MsFEM with accurately resolved basis functions.

In this chapter, we did not discuss adaptivity issues that are important for
multiscale simulations (see, e.g., [213, 38] for discussions on error estimates and
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adaptivity in multiscale simulations). The adaptivity for periodic numerical
homogenization within HMM is studied in [214]. In general, one would like to
identify the regions where the localization can be performed and the regions
where some type of limited global information is needed (see Chapter 4 for
the use of limited global information in multiscale simulations). To our best
knowledge, such adaptivity issues are not addressed in the literature with a
mathematical rigor.

In Section 6.1, we present analysis only for a few multiscale finite element
formulations. Our objective is to give the reader a flavor of the analysis, and
in particular, stress the subgrid capturing errors. We would like to note that
a lot of effort has gone into analyzing multiscale finite element methods. For
example, multiscale finite element methods have been analyzed for random ho-
mogeneous coefficients [99, 72], for highly oscillatory coefficients with multiple
scales [99], for problems with discontinuous coefficients [99], and for various
settings of MsFEMs. Our main objective in this book is to give an overview
of multiscale finite element methods and present representative cases for the
analysis. We believe the results presented in Section 6.1 will help the reader
who is interested in the analysis of multiscale finite element methods and, in
particular, in estimating subgrid capturing errors.
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Multiscale finite element methods for nonlinear
equations

3.1 MsFEM for nonlinear problems. Introduction

The objective of this chapter is to present a generalization of the MsFEM to
nonlinear problems ([110, 112, 113, 104]) which was first presented in [110].
This generalization, as the MsFEM for linear problems, has two main ingre-
dients: a global formulation and multiscale localized “basis” functions. We
discuss numerical implementation issues and applications.

Let Th be a coarse-scale partition of Ω, as before. We denote by Wh a
usual finite-dimensional space, which possesses approximation properties, for
example, piecewise linear functions over triangular elements, as defined before.
In further presentation,K is a coarse element that belongs to Th. To formulate
MsFEMs for general nonlinear problems, we need (1) a multiscale mapping
that gives us the desired approximation containing the small-scale information
and (2) a multiscale numerical formulation of the equation.

We consider the formulation and analysis of MsFEMs for general nonlinear
elliptic equations

− div k(x, p,∇p) + k0(x, p,∇p) = f in Ω, p = 0 on ∂Ω, (3.1)

where k(x, η, ξ) and k0(x, η, ξ), η ∈ R, ξ ∈ R
d satisfy the general assumptions

(6.42)–(6.46), which are formulated later. Note that here k and k0 are nonlin-
ear functions of p as well as ∇p. Moreover, both k and k0 are heterogeneous
spatial fields. Later, we extend the MsFEM to nonlinear parabolic equations
where k and k0 are also heterogeneous functions with respect to the time
variable.

Multiscale mapping. Unlike MsFEMs for linear problems, “basis” func-
tions for nonlinear problems need to be defined via nonlinear maps that map
coarse-scale functions into fine-scale functions. We introduce the mapping
EMsFEM : Wh → Ph in the following way. For each coarse-scale element
vh ∈ Wh, we denote by vr,h the corresponding fine-scale element (r stands
for resolved), vr,h = EMsFEMvh. Note that for linear problems in Chapter
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2 (also in Chapter 4), we have used the subscript h (e.g., ph) to denote the
approximation of the fine-scale solution, whereas for nonlinear problems ph

stands for the approximation of the homogenized solution and pr,h is the ap-
proximation of the fine-scale solution. The spatial field vr,h is defined via the
solution of the local problem

− div k(x, ηvh ,∇vr,h) = 0 in K, (3.2)

where vr,h = vh on ∂K and ηvh = (1/|K|)
∫

K
vhdx for each K (coarse ele-

ment). The equation (3.2) is solved in eachK for given vh ∈Wh. Note that the
choice of ηvh guarantees that (3.2) has a unique solution. In nonlinear prob-
lems, Ph is no longer a linear space (although we keep the same notation).
We would like to point out that different boundary conditions can be chosen
as in the case of linear problems to obtain more accurate solutions and this
is discussed later. For linear problems, EMsFEM is a linear operator, where
for each vh ∈ Wh, vr,h is the solution of the linear problem. Consequently,
Ph is a linear space that can be obtained by mapping a basis of Wh. This is
precisely the construction presented in [143] for linear elliptic equations (see
Section 3.3).

An illustrating example. To illustrate the multiscale mapping concept, we
consider the equation

div(k(x, p)∇p) = f. (3.3)

In this case, the multiscale map is defined in the following way. For each
vh ∈Wh, vr,h is the solution of

div(k(x, ηvh)∇vr,h) = 0 in K (3.4)

with the boundary condition vr,h = vh on ∂K. For example, ifK is a triangular
element and vh are piecewise linear functions, then the nodal values of vh will
determine vr,h. Equation (3.4) is solved on the fine grid, in general. In the
one-dimensional case, one can obtain an explicit expression for EMsFEM (see
(3.12)). The map EMsFEM is nonlinear; however, for a fixed vh, this map
is linear. In fact, one can represent vr,h using multiscale basis functions as
vr,h =

∑
i αiφ

vh
i , where αi = vh(xi) (xi being nodal points) and φvh

i are
multiscale basis functions defined by

div(k(x, ηvh)∇φvh
i ) = 0 in K, φvh

i = φ0
i on ∂K.

Consequently, linear multiscale basis functions can be used to represent vr,h.
We can further assume that the basis functions can be interpolated via a
simple linear interpolation

φη0
i ≈ β1φ

η1
i + β2φ

η2
i , (3.5)

where β1, β2 are interpolation constants that depend on η0, η1, and η2. For
example, if η1 < η0 < η2, then β1 = (η0−η1)/(η2−η1) and β2 = (η2−η0)/(η2−
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η1). In this case, one can compute the basis functions for some pre-defined
values of ηs and interpolate for any other η. We can also use the combined set
of basis functions {φη1

i , φ
η2
i } for representing the solution for a set of values

of η.
Multiscale numerical formulation. As discussed earlier, one can use various

global formulations for MsFEM. Our goal is to find ph ∈ Wh ( consequently,
pr,h(= EMsFEMph) ∈ Ph) such that pr,h “approximately” satisfies the fine-
scale equations. When substituting pr,h into the fine-scale system, the result-
ing equations need to be projected onto coarse-dimensional space because
pr,h is defined via ph. This projection is done by multiplying the fine-scale
equation with coarse-scale test functions. First, we present a Petrov–Galerkin
formulation of MsFEM for nonlinear problems. The multiscale finite element
formulation of the problem is the following. Find ph ∈ Wh (consequently,
pr,h(= EMsFEMph) ∈ Ph) such that

〈κr,hph, vh〉 =
∫

Ω

fvhdx, ∀vh ∈Wh, (3.6)

where

〈κr,hph, vh〉 =
∑

K∈Th

∫

K

(k(x, ηph ,∇pr,h) · ∇vh + k0(x, ηph ,∇pr,h)vh)dx. (3.7)

As we notice that the fine-scale equation is multiplied by coarse-scale test
functions from Wh. Note that the above formulation of MsFEM is a general-
ization of the Petrov–Galerkin MsFEM introduced earlier for linear problems.

We note that the method presented above can be extended to systems of
nonlinear equations.

Pseudo-code. In the computations, we seek ph =
∑

i piφ
0
i ∈ Wh which

satisfies (3.6). This equation can be written as a nonlinear system of equations
for pi,

A(p1, ..., pi, ...) = b, (3.8)

where A is given by (3.7). Here, pi can be thought as nodal values of ph on
the coarse grid. To find the form of A, we take vh = φ0

i in (3.7). This yields
the ith equation of the system (3.8) denoted by Ai(p1, ..., pi, ...) = bi, where
bi =

∫
Ω
fφ0

i dx. Denote by Ki triangles with the common vertex xi. Then,

Ai(p1, ..., pi, ...) =
∑

Ki

∫

Ki

(k(x, ηph ,∇pr,h) · ∇φ0
i + k0(x, ηph ,∇pr,h)φ0

i )dx.

In each Ki, ηph =
∑

j pj

∫
Ki
φ0

jdx, where j are the nodes of the triangles
with common vertex i. Later, we present a one-dimensional example, where
an explicit expression for Ai is presented. It is clear that Ai will depend only
on the nodal values of pj which are defined at the nodes of the triangles with
common vertex i. This system is usually solved by an iterative method on a
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Algorithm 3.1.1

Construct a coarse grid.
Until convergence, do
– For each coarse element, compute the multiscale map E : Wh → Ph

according to (3.2).
– Solve the coarse variational formulation using (3.6) and (3.7).

coarse grid and the local solutions can be re-used and treated independently
in each coarse-grid block. In Section 3.7, we discuss some of the iterative
methods.

One dimensional example. We consider a simple one-dimensional case

−(k(x, p)p′)′ = f,

p(0) = p(1) = 0, where ′ refers to the spatial derivative. We assume that the
interval [0, 1] is divided into N segments

0 = x0 < x1 < x2 < · · · < xi < xi+1 < · · · < xN = 1.

For a given ph ∈Wh, pr,h is the solution of

(k(x, ηph)p′r,h)′ = 0, (3.9)

where pr,h(xi) = ph(xi) for every interior node xi. In the interval [xi−1, xi],
(3.9) can be solved. To compute (3.7), we only need to evaluate k(x, ηph)p′r,h.
Noting that this quantity is constant, k(x, ηph)p′r,h = c(xi−1, xi) (directly
follows from (3.9)), we can easily find that

p′r,h = c(xi−1, xi)/k(x, ηph), (3.10)

where ηph = 1
2 (ph(xi−1)+ph(xi)). Taking the integral of (3.10) over [xi−1, xi],

we have
ph(xi) − ph(xi−1) = c(xi−1, xi)

∫ xi

xi−1

1
k(x, ηph)

dx.

Consequently,

c(xi−1, xi) = k(x, ηph)p′r,h =
ph(xi) − ph(xi−1)∫ xi

xi−1

1
k(x,ηph )dx

.

To evaluate (3.7) (note that k0 = 0) with vh = φ0
i , we have

Ai(ph) =
∫ xi

xi−1

c(xi−1, xi)(φ0
i )

′
dx+

∫ xi+1

xi

c(xi, xi+1)(φ0
i )

′
dx

=
ph(xi) − ph(xi−1)∫ xi

xi−1

1
k(x,ηph )dx

∫ xi

xi−1

(φ0
i )

′
dx+

ph(xi+1) − ph(xi)∫ xi+1

xi

1
k(x,ηph )dx

∫ xi+1

xi

(φ0
i )

′
dx.
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Denoting pi = ph(xi) and taking into account that
∫ xi

xi−1
(φ0

i )
′
dx = 1,

∫ xi+1

xi
(φ0

i )
′
dx = −1, we have

Ai(pi−1, pi, pi+1) =
pi − pi−1∫ xi

xi−1

1
k(x, 1

2 (pi−1+pi))
dx

− pi+1 − pi∫ xi+1

xi

1
k(x, 1

2 (pi+pi+1))
dx
. (3.11)

Using the above calculations, one can easily write down an explicit expres-
sion for the multiscale map, EMsFEM : ph → pr,h. In particular, from (3.10),
it can be shown that pr,h in [xi−1, xi] is given by

pr,h(x) = ph(xi−1) +
ph(xi) − ph(xi−1)∫ xi

xi−1

1
k(x,ηph )dx

∫ x

xi−1

dx

k(x, ηph)
. (3.12)

One can use explicit solutions (see page 117, [220]) in a general case

−(k(x, p, p′)′) = f

to write down the variational formulation of (3.7) via the nodal values pi. In
particular, denote ξ = ξ(x, η, c) to be the solution of

k(x, η, ξ) = c.

Then, from (3.2), we obtain p′r,h = ξ(x, ηph , c(xi−1, xi)). Taking the integral
of this equation over [xi−1, xi], we obtain

ph(xi) − ph(xi−1) =
∫ xi

xi−1

ξ(x, ηph , c(xi−1, xi))dx.

Because ηph = 1
2 (pi−1 + pi), we have the following implicit equation for

c(xi−1, xi)

pi − pi−1 =
∫ xi

xi−1

ξ(x,
1
2
(pi−1 + pi), c(xi−1, xi))dx.

With this implicit expression for c(xi−1, xi), we have

Ai(ph) =
∫ xi

xi−1

c(xi−1, xi)(φ0
i )

′
dx+

∫ xi+1

xi

c(xi, xi+1)(φ0
i )

′
dx

= c(xi−1, xi) − c(xi, xi+1).

This expression shows that Ai(ph) nonlinearly depends on pi−1, pi, and pi+1

and provides an explicit expression for the system of nonlinear equations that
result from (3.7).
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3.2 Multiscale finite volume element method (MsFVEM)

Next, we present a different formulation that provides a mass conservative
method. By its construction, the finite volume method has local conservative
properties [118] and it is derived from a local relation, namely the balance
equation/conservation expression on a number of subdomains which are called
control volumes. The finite volume element method can be considered as a
Petrov–Galerkin finite element method, where the test functions are constants
defined in a dual grid. For simplicity, we consider a triangular coarse grid.
Consider a triangle K, and let zK be its barycenter. The triangle K is divided
into three quadrilaterals of equal area by connecting zK to the midpoints of
its three edges. We denote these quadrilaterals by Kz, where z ∈ Zh(K) are
the vertices of K. Also we denote Zh =

⋃
K Zh(K), and Z0

h are all vertices
that do not lie on ∂ΩD, where ∂ΩD are Dirichlet boundaries. In this case, the
control volume Vz is defined as the union of the quadrilaterals Kz sharing the
vertex z (see Figure 3.1). The MsFVEM is to find ph ∈ Wh (consequently,

K

Vz

z

K

zK

z

Kz

Fig. 3.1. Left: Portion of triangulation sharing a common vertex z and its control
volume. Right: Partition of a triangle K into three quadrilaterals.

pr,h = EMsFEMph) such that

−
∫

∂Vz

k (x, ηph ,∇pr,h)·nds+
∫

Vz

k0 (x, ηph ,∇pr,h) dx =
∫

Vz

f dx ∀z ∈ Z0
h,

(3.13)
where n is the unit normal vector pointing outward on ∂Vz. Note that the
number of control volumes which satisfies (3.13) is the same as the dimen-
sion of Wh. The equation (3.13) gives rise to the finite-dimensional system of
equations that provide the solution at the coarse nodes.
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3.3 Examples of Ph

Linear case. For linear operators, Ph can be obtained by mapping a ba-
sis of Wh because EMsFEM is a linear operator. Define a basis of Wh,
Wh = span(φ0

i ), where φ0
i are standard linear basis functions (assuming K

is a triangular or tetrahedral element). Denote by φi the map of each basis
function φ0

i (i.e., φi = EMsFEMφ0
i ). From the definition of EMsFEM it follows

that φi satisfies
− div(k(x)∇φi) = 0 in K ∈ Th (3.14)

and φi = φ0
i on ∂K. These are the basis functions defined for MsFEM in

Chapter 2.
Special nonlinear case. For the special case, k(x, p,∇p) = k(x)b(p)∇p, Ph

can be related to the linear case. Indeed, for this case, the local problems
associated with the multiscale mapping EMsFEM (see (3.2)) have the form

−div(k(x)b(ηvh)∇vr,h) = 0 in K.

Because ηvh are constants over K, the local problems satisfy the linear equa-
tions,

− div(k(x)∇φi) = 0 in K,

and Ph can be obtained by mapping a basis of Th as it is done in the linear
case. Thus, for this case, the basis functions are the same as those for the
linear problem.

Ph using subdomain problems. One can use the solutions of smaller sub-
domain (smaller than K ∈ Th), RVE, problems to approximate the solutions
of the local problems (3.2). This can be done if the small region can be used
to represent the heterogeneities within the coarse-grid block, for example, pe-
riodic heterogeneities when the size of the period is much smaller than the
coarse-grid block size. As in the linear case, we would like to use the solution
in smaller regions to approximate the integrals on the right-hand side of (3.7).
In these cases, we can solve (3.2) in a subdomain RVE with boundary con-
ditions vh restricted onto the subdomain boundaries as done in Section 2.6.
More precisely, instead of (3.2), the following local problem is solved,

− div k(x, ηvh ,∇ṽr,h) = 0 in Kloc, (3.15)

where ṽr,h = vh on ∂Kloc and ηvh = 1
|K|
∫

K
vhdx for each K (coarse element).

The integrals in (3.7) can be computed using Kloc,

〈κr,hph, vh〉 ≈
∑

K∈Th

|K|
|Kloc|

∫

Kloc

(k(x, ηph ,∇p̃r,h)·∇vh+k0(x, ηph ,∇p̃r,h)vh)dx,

(3.16)
where p̃r,h are only computed in Kloc using (3.15). The equations (3.15) and
(3.16) provide the formulation of MsFEM when using regions smaller than
the coarse-grid block.
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As in the case of linear problems, it was shown that ([220])

lim
ε→0

1
|K|

∫

K

k(x, ηvh ,∇vr,h)dx =
1
|K|

∫

K

k∗(x, ηvh ,∇v0r,h)dx, (3.17)

where ε is the characteristic length scale and v0r,h is the homogenized part of
vr,h defined in a G-convergence setting (e.g., [220]). In particular, v0r,h satisfies
div k∗(x, ηvh , v0r,h) = 0 in K, v0r,h = vh on ∂K; a similar result holds in Kloc

(cf. (2.21)). As in the linear case, it is easy to show that if k∗(x, η, ξ) is
smooth spatial function, then v0r,h is approximately equal to vh for small h.
From here, one can show that (1/|Kloc|)

∫
Kloc

k(x, ηvh ,∇ṽr,h)dx approximates
(1/|K|)

∫
K
k(x, ηvh ,∇vr,h)dx in the limit limh→0 limε→0. Based on (3.17), one

can evaluate the integrals on the right-hand side of (3.7). To find the fine-
scale approximation, the local solutions defined by (3.15) can be extended to
the whole domain. This is based on the homogenization concept and ∇ṽr,h is
extended periodically in each coarse-grid block.

One can also use periodic homogenization and first-order correctors to ap-
proximate the solution of the local problem if k(x, x/ε, η, ξ) and k0(x, x/ε, η, ξ)
are locally periodic with respect to y = x/ε. In this case, for each coarse grid
block and vh ∈Wh, the following cell problem is solved,

divy(k(x, y, ηvh ,∇xvh + ∇yNvh
)) = 0 in Y, (3.18)

where Y is the period and Nvh
is the periodic function with zero average

(assume vh is piecewise linear; i.e., ∇vh is constant within K). Then, it can
be shown that

1
|K|

∫

K

k(x, x/ε, ηvh ,∇vr,h)dx ≈ 1
|Y |

∫

Y

k(x, y, ηvh ,∇vh + ∇Nvh
)dx

in the limit as ε/h→ 0. Consequently, the local periodic solution (3.18) can be
used to approximate the right-hand side of (3.7). This provides CPU savings
when there is strong scale separation (cf. Section 2.6).

3.4 Relation to upscaling methods

One can draw a parallel between multiscale methods and upscaling/homoge-
nization techniques. First, we briefly describe an upscaling technique for (3.1)
which is derived from homogenization methods (e.g., [220]). The main idea of
upscaling techniques is to form a coarse-scale equation and pre-compute the
effective coefficients. In the case of nonlinear elliptic equations, the coarse-
scale equation has the same form as the fine-scale equation except that the
fluxes k(·, ·, ·) and k0(·, ·, ·) are replaced by effective homogenized fluxes. The
effective coefficients in upscaling methods are computed using the solution of
the local problem in a representative volume. For each η ∈ R and e ∈ R

d, the
following local problem is solved
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div k(x, η,∇φe) = 0 in K (3.19)

with φe(x) = x · e on ∂K. The effective coefficients are computed in each K
as

k̃∗(η, e) =
1
|K|

∫

K

k(x, η,∇φe)dx, k̃∗0(η, e) =
1
|K|

∫

K

k0(x, η,∇φe)dx. (3.20)

We note that k̃∗ and k̃∗0 are not the same as the homogenized coefficients and
(3.20) can be computed for any point in the domain by placing the point at
the center of K. If k and k0 are periodic with respect to spatial variables, one
can solve the local problems (3.19) over the period (with periodic boundary
conditions) and perform averaging (3.20) over the period. One can also use
various boundary conditions, including oversampling methods, when solving
(3.19). Once the effective coefficients are calculated, the coarse-scale equation

div k∗(x, p∗,∇p∗) + k∗0(x, p∗,∇p∗) = f

with k∗ = k̃∗ and k∗0 = k̃∗0 is solved. In practice, one can pre-compute k∗ and
k∗0 for different values of η ∈ R and e ∈ R

d, and use interpolation for evaluating
k∗ and k∗0 for other values of η ∈ R and e ∈ R

d. Note that for linear problems,
it is sufficient to solve (3.19) for d linearly independent vectors e1, ..., ed in
R

d because φe =
∑

i βiφei
if e =

∑
i βiei. This is not the case for nonlinear

problems and one needs to consider all possible η ∈ R and e ∈ R
d.

MsFEMs do not compute effective parameters explicitly. One can show
that, as in the case of linear problems, MsFEM for nonlinear problems is sim-
ilar to upscaling methods. However, in MsFEMs, “the effective parameters”
(in the form of local solutions) are computed on-the-fly. Note that one can
compute the effective parameters based on these local solutions. The compu-
tation of the local solutions on-the-fly is more efficient when one deals with
a limited range of values of η = (1/|K|)

∫
K
vhdx and e = ∇vh. Indeed, many

simulations in practice do not require a lookup table of k∗ and k∗0 for all possi-
ble values of η ∈ R and e ∈ R

d, and the computation on-the-fly can save CPU
time. Moreover, one can still use pre-computed local solutions to compute the
effective coefficients, and then store them. These effective coefficients can be
used in the simulation to approximate k∗ and k∗0 for those values of η ∈ R and
e ∈ R

d that are not computed. Moreover, in MsFEMs, one can use a larger set
of multiscale basis functions for more accurate approximation. For example,
for the simple nonlinear elliptic equation (3.3), one can use multiscale basis
functions corresponding to several values of η and avoid the interpolation step
(cf. (3.5)).

3.5 Multiscale finite element methods for nonlinear
parabolic equations

In this section, we present an extension of MsFEM to nonlinear parabolic
equations. We consider
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∂

∂t
p − div k(x, t, p,∇p) + k0(x, t, p,∇p) = f. (3.21)

For the nonlinear parabolic equations, the space–time operator EMsFEM is
constructed in the following way. For each vh ∈ Wh there is a corresponding
element vr,h = EMsFEMvh that is defined by

∂

∂t
vr,h − div k(x, t, ηvh ,∇vr,h) = 0 in K × [tn, tn+1], (3.22)

with boundary condition vr,h = vh on ∂K, and vr,h(t = tn) = vh. Here
ηvh = (1/|K|)

∫
K
vhdx.

Next, we present a global formulation of MsFEM. Our goal is to find
ph ∈Wh (pr,h = EMsFEMph) at time t = tn+1 such that

∫ tn+1

tn

∫

Ω

(
∂

∂t
ph

)

vhdxdt+ κ(ph, vh) =
∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh ∈Wh,

(3.23)
where

κ(ph, wh) =
∑

K

∫ tn+1

tn

∫

K

(k(x, t, ηph ,∇pr,h)·∇wh+k0(x, t, ηph ,∇pr,h)wh)dxdt.

The expression (3.23) can be further simplified to
∫

Ω

ph(x, tn+1)vhdx−
∫

Ω

ph(x, tn)vhdx+κ(ph, vh)=
∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh∈Wh.

Here pr,h is the solution of the local problem (3.22) for a given ph, ηph =
(1/|K|)

∫
K
phdx, and ph is known at t = tn. If ph at time t = tn+1 is used in

κ(ph, vh), then the resulting method is implicit; that is
∫

Ω

ph(x, tn+1)vhdx−
∫

Ω

ph(x, tn)vhdx+ κ(ph(x, tn+1), vh)

=
∫ tn+1

tn

∫

Ω

fvhdxdt, ∀vh ∈Wh.

If ph at time t = tn is used in κ(ph, vh), then the resulting method is explicit.
The Petrov–Galerkin formulation of the MsFEM can be replaced by the finite
volume formulation as is done for nonlinear elliptic equations.

We would like to note that the operator EMsFEM can be constructed
using larger domains as is done in MsFEMs with oversampling [145]. This way
one reduces the effects of the boundary conditions and initial conditions. In
particular, for temporal oversampling it is sufficient to start the computations
before tn and end them at tn+1. Consequently, the oversampling domain for
K × [tn, tn+1] consists of [t̃n, tn+1] × KE , where t̃n < tn and K ⊂ KE . We
would like to note that oscillatory initial conditions can be imposed (without
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using oversampling techniques) based on the solution of the elliptic part of
the local problems (3.22). These initial conditions at t = tn are the solutions
of

− div(k(x, t, η,∇pr,h)) = 0 in K, (3.24)

or
− div(k(x, η,∇pr,h)) = 0 in K, (3.25)

where k(x, η, ξ) = (1/(tn+1 − tn))
∫ tn+1

tn
k(x, τ, η, ξ)dτ and pr,h = ph on ∂K.

The latter can become efficient depending on the interplay between the tem-
poral and spatial scales.

Note that in the case of periodic media the local problems can be solved
in a single period in order to construct κ(ph, wh). In general, one can solve
the local problems in a domain different from K (an element) to calculate
κ(ph, wh). Note that the numerical advantages of our approach over the fine
scale simulation are similar to those of MsFEMs. In particular, for each New-
ton’s iteration a linear system of equations on a coarse grid is solved. Moreover,
the local solutions can be re-used and treated independently in each coarse
grid block.

For some special cases the operator EMsFEM introduced in the previ-
ous section can be simplified (see [112]). In general one can avoid solv-
ing the local parabolic problems if the ratio between temporal and spatial
scales is known, and solve instead a simplified equation. For example, let
the spatial scale be εβ and the temporal scale be εα; that is, k(x, t, η, ξ) =
k(x/εβ , t/εα, η, ξ). If α < 2β one can solve instead of (3.22) the local problem
−div(k(x, t, ηph ,∇pr,h)) = 0, if α > 2β one can solve instead of (3.22) the
local problem −div(k(x, ηph ,∇pr,h)) = 0, where k(x, η, ξ) is an average over
time of k(x, t, η, ξ), and if α = 2β we need to solve the parabolic equation in
K × [tn, tn+1], (3.22).

We would like to note that, in general, one can use (3.24) or (3.25) as
oscillatory initial conditions and these initial conditions can be efficient for
some cases. For example, for α > 2β with initial conditions given by (3.25) the
solutions of the local problems (3.22) can be computed easily because they are
approximated by (3.25). Moreover, one can expect better accuracy with (3.25)
for the case α > 2β because this initial condition is more compatible with the
local heterogeneities compared to the artificial linear initial conditions (cf.
(3.22)).

One-dimensional example. We consider a simple one-dimensional case

∂p

∂t
− (k(x, t, p)p′)′ = f,

p(0) = p(1) = 0, p(t = 0) = p0(x). As before, we assume that the interval
[0, 1] is divided into N segments 0 = x0 < x1 < x2 < · · · < xi < xi+1 <
· · · < xN = 1 and the time interval [0, T ] is divided into M segments 0 = t0 <
t1 < t2 < · · · < ti < ti+1 < · · · < tM = T . We present a discrete formulation
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for the fully implicit method where the local problem (3.22) is elliptic (see
discussion above); that is (k(x, t, ηvh , v′r,h))′ = 0.

Denote by pn
i = p(x = xi, t = tn). Taking vh = φ0

i in (3.23) and using
(3.11), one can easily get

(pn+1
j − pn

j )
∫

Ω

φ0
jφ

0
i dx+A(pn+1

i−1 , p
n+1
i )(pn+1

i − pn+1
i−1 )

−A(pn+1
i , pn+1

i+1 )(pn+1
i+1 − pn+1

i ) =
∫

Ω

fφ0
i dx,

where

A(pn+1
i−1 , p

n+1
i ) =

1
∫ xi

xi−1

1
k(x,tn+1, 1

2 (pn+1
i−1 +pn+1

i ))
dx
,

A(pn+1
i , pn+1

i+1 ) =
1

∫ xi+1

xi

1
k(x,tn+1, 1

2 (pn+1
i +pn+1

i+1 ))
dx
.

3.6 Summary of convergence of MsFEM for nonlinear
partial differential equations

The convergence of MsFEM for nonlinear problems has been studied for prob-
lems with scale separation (not necessarily periodic). These convergence re-
sults use homogenization or G-convergence results for nonlinear partial differ-
ential equations (see, e.g., [220] and Appendix B). To discuss these results, we
assume that the fine scale is ε. It can be shown that the solution p converges
(up to a subsequence) to p0 in an appropriate norm, where p0 ∈ W 1,γ

0 (Ω) is
a solution of a homogenized equation

− div k∗(x, p0,∇p0) + k∗0(x, p0,∇p0) = f, (3.26)

where k∗ and k∗0 are homogenized coefficients.
In [112] it was shown using G-convergence theory that

lim
h→0

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (3.27)

(up to a subsequence) where p0 is a solution of (3.26) and ph is a MsFEM
solution given by (3.6). Here γ is a parameter related to the monotonicity
(see (6.42)–(6.46)). This result can be obtained without any assumption on
the nature of the heterogeneities and cannot be improved because there could
be infinitely many scales α(ε) present such that α(ε) → 0 as ε→ 0.

For the periodic case, it can be shown that MsFEM converges in the limit
as ε/h → 0. To show the convergence for ε/h → 0, we consider h = h(ε),
such that h(ε) � ε and h(ε) → 0 as ε → 0. We would like to note that this
limit as well as the proof of the periodic case is different from (3.27), where
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the double-limit is taken. In contrast to the proof of (3.27), the proof of the
periodic case requires the correctors for the solutions of the local problems.

We present the convergence results for MsFEM solutions. For general non-
linear elliptic equations under the assumptions (stated later) (6.42)–(6.46) the
strong convergence of MsFEM solutions can be shown. In the proof of this
fact we show the form of the truncation error (in a weak sense) in terms of the
resonance errors between the mesh size and small scale ε and explicitly derive
the resonance errors. Under the general conditions, such as (6.42)–(6.46), one
can prove strong convergence of MsFEM solutions without an explicit con-
vergence rate (cf. [245]). To convert the obtained convergence rates for the
truncation errors into the convergence rate of MsFEM solutions, additional
assumptions, such as monotonicity, are needed.

Next, we formulate convergence theorems (see Section 6.2 and [104] for
details).

Theorem 3.1. Assume k(x, η, ξ) and k0(x, η, ξ) are ε periodic functions with
respect to x and let p0 be a solution of (3.26) and ph is a MsFEM solu-
tion given by (3.6). Moreover, we assume that ∇ph is uniformly bounded in
Lγ+α(Ω) for some α > 0. Then

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (3.28)

where h = h(ε) � ε and h→ 0 as ε→ 0 (up to a subsequence).

Theorem 3.2. Let p0 and ph be the solutions of the homogenized prob-
lem (3.26) and MsFEM (3.6), respectively, with the coefficient k(x, η, ξ) =
k(x/ε, ξ) and k0 = 0. Then

‖ph − p0‖W 1,γ
0 (Ω) ≤ C(

( ε

h

)β

+ hδ), (3.29)

where γ and δ depend on operator constants defined in (6.42)–(6.46).

We note that in Theorem 3.2, we assume that the equation is monotone,
whereas in Theorem 3.1, we assume that the equation is pseudo-monotone.
As discussed in Section 6.2, the monotonicity allows us to obtain explicit
convergence rates. For parabolic equations, one can prove similar results (see
[112]). One can also prove the convergence of pr,h to the fine-scale solution p
inW 1,γ (e.g., [104, 112, 113]). Finally, we refer to [136] for convergence results
of oversampling methods for nonlinear problems and applications to material
science.

3.7 Numerical results

In this section we present some numerical results for MsFEMs for nonlinear el-
liptic equations. More numerical examples relevant to subsurface applications
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can be found in [104]. We present numerical results for both the MsFEM
and MsFVEM. We use an inexact-Newton algorithm as an iterative tech-
nique to tackle the nonlinearity. For the numerical examples below, we use
k(x, p,∇p) = k(x, p)∇p. Let {φ0

i }
Ndof

i=1 be the standard piecewise linear basis
functions of Wh. Then MsFEM solution may be written as

ph =
Ndof∑

i=1

αi φ
0
i (3.30)

for some α = (α1, α2, ..., αNdof
)T . Recall that ph ∈Wh is an approximation for

a homogenized solution, and pr,h is an approximation for a fine-scale solution.
We need to find α such that

F (α) = 0, (3.31)

where F : R
Ndof → R

Ndof is a nonlinear operator such that

Fi(α) =
∑

K∈Kh

∫

K

k(x, ηph)∇pr,h · ∇φ0
i dx−

∫

Ω

f φ0
i dx. (3.32)

We note that in (3.32) α is implicitly buried in ηph and pr,h. An inexact-
Newton algorithm is a variation of Newton’s iteration for a nonlinear system
of equations, where the Jacobian system is only approximately solved. To be
specific, given an initial iterate α0, for k = 0, 1, 2, · · · until convergence do the
following

• Solve F ′(αk)δk = −F (αk) by some iterative technique until ‖F (αk) +
F ′(αk)δk‖ ≤ βk ‖F (αk)‖.

• Update αk+1 = αk + δk.

In this algorithm F ′(αk) is the Jacobian matrix evaluated at iteration k. We
note that when βk = 0 we have recovered the classical Newton iteration. Here
we have used

βk = 0.001
(

‖F (αk)‖
‖F (αk−1)‖

)2

, (3.33)

with β0 = 0.001. Choosing βk this way, we avoid oversolving the Jacobian
system when αk is still considerably far from the exact solution.

Next we present the entries of the Jacobian matrix. For this purpose,
we use the following notations. Let Kh

i = {K ∈ Th : zi is a vertex of K},
Ii = {j : zj is a vertex of K ∈ Kh

i }, and Kh
ij = {K ∈ Kh

i : K shares zizj}.
We note that we may write Fi(α) as follows

Fi(α) =
∑

K∈Kh
i

(∫

K

k(x, ηph)∇pr,h · ∇φ0
i dx−

∫

K

f φ0
i dx

)

, (3.34)

with
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− div(k(x, ηph)∇pr,h) = 0 in K and pr,h =
∑

zm∈ZK

αm φ
0
m on ∂K, (3.35)

where ZK is all the vertices of element K. It is apparent that Fi(α) is not
fully dependent on all α1, α2, ..., αd. Consequently, ∂Fi(α)/∂αj = 0 for j /∈
Ii. To this end, we denote ψj = ∂pr,h/∂αj . By applying the chain rule of
differentiation to (3.35) we have the following local problem for ψj

− div(k(x, ηph)∇ψj) =
1
3

div(
∂k(x, ηph)

∂p
∇pr,h) in K and ψj = φj on ∂K.

(3.36)
The fraction 1/3 comes from taking the derivative in the chain rule of differen-
tiation. In the formulation of the local problem, we have replaced the nonlin-
earity in the coefficient by ηph , where for each triangle K ηph = 1/3

∑3
i=1 α

K
i ,

which gives ∂ηph/∂αi = 1/3. Moreover, for a rectangular element the fraction
1/3 should be replaced by 1/4.

Thus, provided that vr,h has been computed, then we may compute ψj

using (3.36). Using the above descriptions we have the expressions for the
entries of the Jacobian matrix:

∂Fi

∂αi
=
∑

K∈Kh
i

(
1
3

∫

K

∂k(x, ηph)
∂p

∇pr,h · ∇φ0
i dx+

∫

K

k(x, ηph)∇ψi · ∇φ0
i dx

)

(3.37)
∂Fi

∂αj
=
∑

K∈Kh
ij

(
1
3

∫

K

∂k(x, ηph)
∂p

∇pr,h · ∇φi dx+
∫

K

k(x, ηph)∇ψj · ∇φ0
i dx

)

(3.38)
for j �= i, j ∈ Ii.

The implementation of the oversampling technique is similar to the proce-
dure presented earlier, except the local problems in larger domains are used.
As in the nonoversampling case, we denote ψj = ∂vr,h/∂αj , such that after
applying the chain rule of differentiation to the local problem we have:

−div(k(x, ηph)∇ψj) =
1
3

div(
∂k(x, ηph)

∂p
∇vr,h) in KE

ψj = φ0
j on ∂KE ,

(3.39)

where ηph is computed over the corresponding elementK and φ0
j is understood

as the nodal basis functions on oversampled domain KE . Then all the rest of
the inexact-Newton algorithms are the same as in the nonoversampling case.
Specifically, we also use (3.37) and (3.38) to construct the Jacobian matrix of
the system. We note that we only use ψj from (3.39) pertaining to the element
K.

From the derivation (both for oversampling and nonoversampling) it is
obvious that the Jacobian matrix is not symmetric but sparse. Computation
of this Jacobian matrix is similar to computing the stiffness matrix resulting
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from standard finite elements, where each entry is formed by accumulation of
element-by-element contributions. Once we have the matrix stored in memory,
then its action to a vector is straightforward. Because it is a sparse matrix, de-
voting some amount of memory for entry storage is inexpensive. The resulting
linear system is solved using a preconditioned biconjugate gradient stabilized
method.

An an example to illustrate the convergence of the nonlinear MsFEM, we
consider the following problem

−div(k(x/ε, p)∇p) = −1 in Ω,
p = 0 on ∂Ω,

(3.40)

where Ω = [0, 1] × [0, 1], k(x/ε, p) = k(x/ε)/ (1 + p)l(x/ε), with

k(x/ε) =
2 + 1.8 sin(2πx1/ε)
2 + 1.8 cos(2πx2/ε)

+
2 + sin(2πx2/ε)

2 + 1.8 cos(2πx1/ε)
(3.41)

and l(x/ε) is generated from k(x/ε) such that the average of l(x/ε) = Ck(x/ε)
over Ω is 2 with an appropriate choice of C. Here we use ε = 0.01. Because
the exact solution for this problem is not available, we use a well-resolved
numerical solution using the standard finite element method as a reference
solution. The resulting nonlinear system is solved using the inexact-Newton
algorithm. The reference solution is solved on a 512×512 mesh. Tables 3.1 and
3.3 present the relative errors of the solution with and without oversampling,
respectively. Here N is the number of coarse blocks in each direction. In Tables
3.2 and 3.4, the relative errors for the multiscale finite volume element method
are presented. The relative errors are computed as the corresponding error
divided by the norm of the solution. In each table, the second, third, and fourth
columns list the relative error in the L2, H1, and L∞ norm, respectively. As
we can see from these two tables, the oversampling significantly improves the
accuracy of the multiscale method.

In our next example, we consider the problem with nonperiodic coefficients,
where k(x, η) = k(x)/(1 + η)α(x). The coefficient k(x) = exp(β(x)) is chosen
such that β(x) is a realization of a random field with the spherical variogram
[85], the correlation lengths l1 = 0.2, l2 = 0.02, and with the variance σ = 1.
The function α(x) is chosen such that α(x) = k(x) + const with the spatial
average of 2. As for the boundary conditions we use “left-to-right flow” in the
Ω = [0, 5] × [0, 1] domain, p = 1 at the inlet (x1 = 0), p = 0 at the outlet
(x1 = 5), and no flow boundary conditions on the lateral sides x2 = 0 and
x2 = 1. In Table 3.5 we present the relative error for a multiscale method
with oversampling. Similarly, in Table 3.6 we present the relative error for a
multiscale finite volume method with oversampling. Clearly, the oversampling
method captures the effects induced by the large correlation features. Both
H1 and horizontal flux errors are under five percent. Similar results have been
observed for various kinds of nonperiodic heterogeneities.
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In the next set of numerical examples, we test the MsFEM for problems
with fluxes k(x, η) that are discontinuous in space. The discontinuity in the
fluxes is introduced by multiplying the underlying permeability function k(x)
by a constant in certain regions, while leaving it unchanged in the rest of the
domain. As an underlying permeability field, k(x), we choose the random field
used for the results in Table 3.5. In the numerical example, the discontinuities
are introduced along the boundaries of the coarse elements. In particular, k(x)
on the left half of the domain is multiplied by a constant J , where J = exp(4).
The results in Table 3.7 show that the MsFEM converges and the error falls
below five percent for relatively large coarsening. For the second numerical
example (Table 3.8), the discontinuities are not aligned with the boundaries
of the coarse elements. In particular, the discontinuity boundary is given by
x2 = x1

√
2+0.5; that is the discontinuity line intersects the coarse-grid blocks.

Similar to the aligned case, exp(4) jump magnitude is considered. The results
presented above demonstrate the robustness and accuracy of our approach for
anisotropic fields, where h and ε are nearly the same, and the fluxes that are
discontinuous spatial functions.

As for CPU comparisons, we have observed more than 92% CPU savings
when using MsFEMs without oversampling. With the oversampling approach,
the CPU savings depend on the size of the oversampled domain. For example,
if the oversampled domain size is two times larger than the target coarse block
(half coarse block extension on each side) we have observed 70% CPU savings
for a 64 × 64 and 80% CPU savings for a 128 × 128 coarse grid. In general,
the computational cost will decrease if the oversampled domain size is close
to the target coarse block size, and this cost will be close to the cost of the
MsFEM without oversampling. Conversely, the error decreases if the size of
the oversampled domains increases. In the numerical examples, we have ob-
served the same errors for the oversampling methods using either one coarse
block extension or half coarse block extensions. The latter indicates that the
leading resonance error is eliminated for the problems under consideration by
using a smaller oversampled domain. Oversampled domains with one coarse
block extension are previously used in simulations of flow through hetero-
geneous porous media. As indicated in [145], one can use large oversampled
domains for simultaneous computations of the several local solutions. More-
over, parallel computations will improve the speed of the method because the
MsFEM is well suited for parallel computation [145]. For the problems where
k(x, η, ξ) = k(x)b(η)ξ (see Section 3.3 and Section 5.3 for applications) our
multiscale computations are very fast because the basis functions are built in
the beginning of the computations. In this case, we have observed more than
95% CPU savings. We again would like to remark that the local solutions can
be re-used in our multiscale simulations. This is similar to homogenization
where the homogenized fluxes are computed once.
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Table 3.1. Relative MsFEM Errors Without Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.029 0.115 0.03
64 0.053 -0.85 0.156 -0.44 0.0534 -0.94

128 0.10 -0.94 0.234 -0.59 0.10 -0.94

Table 3.2. Relative MsFVEM Errors Without Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.03 0.13 0.04
64 0.05 -0.65 0.19 -0.60 0.05 -0.24

128 0.058 -0.19 0.25 -0.35 0.057 -0.19

Table 3.3. Relative MsFEM Errors with Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.0016 0.036 0.0029
64 0.0012 0.38 0.019 0.93 0.0016 0.92

128 0.0024 -0.96 0.0087 1.14 0.0026 -0.71

Table 3.4. Relative MsFVEM Errors with Oversampling

N L2-Norm H1-Norm L∞-Norm
Error Rate Error Rate Error Rate

32 0.002 0.038 0.005
64 0.003 -0.43 0.021 0.87 0.003 0.72

128 0.001 1.10 0.009 1.09 0.001 1.08

Table 3.5. Relative MsFEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0505 0.0025 0.025
64 0.0002 1.58 0.029 0.8 0.001 1.32 0.017 0.57

128 0.0001 1 0.016 0.85 0.0005 1 0.011 0.62
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Table 3.6. Relative MsFVEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0006 0.0515 0.0025 0.027
64 0.0002 1.58 0.029 0.81 0.0013 0.94 0.018 0.58

128 0.0001 1 0.016 0.85 0.0005 1.38 0.012 0.58

Table 3.7. Relative MsFEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0, Aligned Discontinuity, Jump = exp(4)

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0011 0.1010 0.0068 0.195
64 0.0006 0.87 0.0638 0.66 0.0045 0.59 0.109 0.84

128 0.0003 1.00 0.0349 0.87 0.0024 0.91 0.063 0.79

Table 3.8. Relative MsFEM Errors for Random Heterogeneities, Spherical Vari-
ogram, l1 = 0.20, l2 = 0.02, σ = 1.0, Nonaligned Discontinuity, Jump = exp(4)

N L2-Norm H1-Norm L∞-Norm hor. flux
Error Rate Error Rate Error Rate Error Rate

32 0.0067 0.1775 0.1000 0.164
64 0.0016 2.07 0.0758 1.23 0.0288 1.80 0.077 1.09

128 0.0009 0.83 0.0687 0.14 0.0423 -0.55 0.039 0.98

3.8 Discussions

An alternative approach for solving nonlinear problems using MsFEM is to
linearize them. For example, the nonlinear elliptic or parabolic equations con-
sidered in this chapter can be linearized, for example, as

∂pn

∂t
− div(b(x, t, pn−1,∇pn−1)∇pn) + k0(x, t, pn−1,∇pn−1) = f, (3.42)

where b(x, t, η, ξ) · ξ = k(x, t, η, ξ). At this point, we assume that the solutions
of this linearized equation converge to a solution of the original nonlinear
equation. Then, at every iteration, one can apply the MsFEM where the basis
functions are constructed based on heterogeneous coefficients b that change
at every iteration. Assuming that we can approximate the solution accurately
with the MsFEM at every iteration and the error of approximation does not
propagate, one can show that this procedure converges under some conditions.

One can also perform upscaling based on a linearized equation (3.42). In
this case, the approximation of the upscaled solution of the limiting equation
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(in the sense of linearized iterations) can be obtained. More precisely, if one de-
notes bn−1(x, t) = b(x, t, pn−1,∇pn−1) and gn−1(x, t) = k0(x, t, pn−1,∇pn−1),
then the upscaled equation corresponding to (3.42) will have the form

∂p∗,n

∂t
− div(b∗n−1(x, t)∇p∗,n) + g∗n−1(x, t) = f.

Assuming that the solution of this iterative procedure converges, the final
upscaled equation will have the form

∂p∗

∂t
− div(b∗(x, t)∇p∗) + g∗(x, t) = f.

Note that the obtained effective parameters (e.g., b∗) implicitly contain the
information about the upscaled solution p∗. Because the upscaled solution
contains the information about the global boundary conditions and source
terms in a nonlinear fashion, one cannot re-use the upscaled coefficients (e.g.,
b∗) if the source or boundary conditions are changed.

The approximation of the local problems in the presence of scale separation
or periodicity is discussed in this chapter. In particular, the local solutions and
the evaluation of the variational formulation (see (3.7)) can be carried out
in smaller regions. These issues are discussed in greater detail in [136]. One
can attempt to use approximate solutions in the variational formulation (3.7)
to compute the resulting system of nonlinear equations (e.g., fewer Newton
iterations). To our best knowledge, these approximations are not considered
in the literature.

In this section, we considered nonlinear elliptic and parabolic equations;
however, the proposed methods can be applied in more general situations (see
Section 2.4). In Chapter 5, we discuss the application of nonlinear MsFEMs to
Richards’ equations and to fluid flows in deformable porous media. The latter
involves coupled nonlinear equations involving the interface dynamics between
the fluid and solid components of the media. The methods discussed in this
chapter can also be applied in material sciences. For example, in [136], the
author applies numerical homogenization methods similar to those discussed
in this chapter to nonlinear elasticity. In particular, the paper [136] explores
oversampling techniques in nonlinear heterogeneous equations both numeri-
cally and analytically. The author proves the convergence of the method with
oversampling, for convex and quasi-convex energies, in the context of general
heterogeneities. This analysis provides an interesting variational interpreta-
tion of the Petrov–Galerkin formulation of the nonconforming multiscale finite
element method for periodic problems.
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Multiscale finite element methods using
limited global information

4.1 Motivation

Previously, we discussed multiscale methods that employ local information in
computing basis functions. The accuracy of these approaches depends on local
boundary conditions. Although effective in many cases, multiscale methods
that only use local information may not accurately capture the solution at all
scales. In particular, in regions with no scale separation, the local multiscale
methods cannot accurately approximate the scales that are comparable to
the computational coarse-grid size. A rich hierarchy of scales can introduce
an important connectivity at different scales that need to be captured at
larger scales. The natural question is how to incorporate the information from
different scales into localized multiscale basis functions such that the resulting
numerical solution provides an accurate approximation of the global solution.

In this chapter, we discuss how to take into account the information that
is not captured by local basis functions. We call this information global infor-
mation although it can be information in some large regions where important
connectivity of the media may occur. For example, subsurface properties often
do not have scale separation and high/low conductivity regions can be con-
nected at various scales (e.g., Figures 1.2–1.4). The connectivity regions are
often very complicated due to conductivity variations within these regions and
their complex geometrical structures. Similar situations can occur in compos-
ite materials where the material properties can vary at different scales. These
complex features are often incorporated into global fields which are used to
construct localized multiscale basis functions. In this chapter, we discuss the
concept of global multiscale methods and their applications.

We demonstrate the main idea of global multiscale methods on the example
of porous media flow, although this concept can be generalized to many other
applications such as composite materials. Consider

− div(λ(x)k(x)∇p) = f, (4.1)
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where k(x) is a heterogeneous field and λ(x) is assumed to be a smooth field.
This equation is derived from two-phase flow equations when gravity and
capillary effects are neglected (see Section 2.10). Our goal is to construct
multiscale basis functions on the coarse grid (with grid size larger than the
characteristic length scale of the problem) such that these basis functions can
be used for various source terms f(x), boundary conditions, and mobilities
λ(x). Here, k(x) does not have scale separation and has a multiscale structure
that may not be captured accurately via local basis functions.

In order to capture the multiscale structure of the media at different scales,
one needs to embed the multiscale information into the global fields. More
precisely, we assume that the solution can be represented by a number of
fields p1, ..., pN , such that

p ≈ G(p1, ..., pN ), (4.2)

where G is a sufficiently smooth function, and p1,.., pN are global fields. These
fields typically contain the essential information about the heterogeneities at
different scales and can also be local fields (see discussion below). In the above
assumption (4.2), pi are solutions of elliptic equations. For the mixed MsFEM,
one can formulate an assumption similar to (4.2) for velocities. We denote by
vi = −k∇pi. Then, the above assumption can be written in the following way.
There exist sufficiently smooth scalar functions A1(x), ..., AN (x), such that
the velocity corresponding to (4.1) (v = −λ(x)k(x)∇p) can be written as

v ≈ A1(x)v1 + · · · +AN (x)vN . (4.3)

Note that it is important that G (or A1, ..., AN ) are smooth functions so
that the multiscale basis functions which span p1, ..., pN (or v1, ..., vN ) can
accurately approximate the global solution. More details on the assumption
on A1, ..., AN or G are formulated later.

For problems without scale separation, the functions p1, ..., pN are often
the solutions of global problems or their approximations. These methods are
effective when (4.1) is solved multiple times. For problems with scale separa-
tion, one can use the solutions of the local problems in constructing multiscale
basis functions. We note that when only local information is used, one still
needs (4.2) (or (4.3) for fluxes) in each coarse-grid block to guarantee that
the local solutions can approximate the global solution in each coarse patch.
Once these global fields are determined, the multiscale basis functions are con-
structed such that they span these global fields. Thus, the multiscale methods
with limited global information can be regarded as an extension of MsFEM
discussed in Chapter 2. One of the main challenges is to determine the global
fields. This is discussed next.

In a general setting, it was shown by Owhadi and Zhang [218] that for an
arbitrary smooth λ(x), the solution of (4.1) is a smooth function of d linearly
independent solutions of single-phase flow equations (N = d), where d is the
space dimension. These results are shown under some suitable assumptions for
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the case d = 2 and more restrictive assumptions for the case d = 3. In [103],
it was shown that for channelized permeability fields, p is a smooth function
of single-phase flow pressure (i.e., N = 1), where the single-phase pressure
equation is described by div(k∇psp) = 0 with boundary conditions as those
corresponding to two-phase flow. Multiple global fields can be used for the
system of equations or for the random coefficients. For the system of equa-
tions, these global fields are the solutions of the homogeneous system subject
to boundary conditions (0, ..., xi, ..., 0) (i = 1, ..., d), where xi is chosen for
each component of the vector field solution and zero otherwise (as in homog-
enization; see [28]). When considering random permeability fields, the perme-
ability field is typically parameterized with a parameter that represents the
uncertainties. In this case, we deal with a family of heterogeneous permeability
fields such as k = k(x, θ), where θ is in a high-dimensional space. For example,
log-Gaussian permeability fields can be characterized using Karhunen–Loéve
expansion (e.g., [182]) as

k(x, θ1, ..., θM ) = exp(
∑

i

θiΦi(x)),

where Φi(x) are pre-computed spatial fields that depend on a covariance ma-
trix associated with k. In many of these parameterized cases, k(x, θ) is a
smooth function of θ = (θ1, ..., θM ), and thus one can use the solutions corre-
sponding to a few realizations of k to represent the heterogeneities across the
ensemble (see Section 5.7.1).

4.1.1 A motivating numerical example

In this section, we present a numerical example where the use of local bound-
ary conditions does not perform well and there is a need to use some type
of global information. We consider the two-phase immiscible flow and trans-
port setting presented in Section 2.10 with quadratic relative permeability
functions and neglect the effects of gravity and capillarity. Multiscale meth-
ods generally perform well for permeability fields generated using two-point
correlation functions (e.g., [85]). However, the local multiscale methods do
not perform well in the presence of strong nonlocal effects as do those that
appear in channelized permeability fields. In our numerical example, we con-
sider strongly channelized permeability fields, and in particular, show that
the local basis functions cannot accurately capture the global effects. These
permeability fields have been proposed in some recent benchmark tests, such
as the Tenth SPE Comparative Solution Project [78].

In Figure 4.1, one of the layers of this 3D permeability field is depicted. All
the layers have 60×220 fine-scale resolution, and we take the coarse grid to be
6×22. As can be observed, the permeability field contains a high-permeability
channel, where most flow occurs in our simulation. In Figure 4.2, the satu-
ration fields at time PVI = 0.5 are compared (see (2.44) for the definition
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Fig. 4.1. Log-permeability for one of the layers of upper Ness.
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Fig. 4.2. Saturation maps at PVI = 0.5 for fine-scale solution (left figure) and
standard MsFVEM (right figure).

of PVI). We use the MsFVEM as described in Section 2.10, where the ellip-
tic equation is solved on the coarse grid, whereas the transport equation is
solved on the fine grid with the fine-scale velocity field re-constructed using
multiscale basis functions. Thus, the errors are due to the MsFVEM only. We
see that MsFVEMs with local basis functions introduce some errors. In the
bottom left corner, there is a saturation pocket that is not in the reference
solution computed using the fine grid. This is because the local basis func-
tions in the lower-left corner contain a high permeability region. However, this
high permeability region does not have global connectivity, and the local basis
functions cannot take this effect into account. Next, we discuss how global in-
formation can be incorporated into multiscale basis functions to improve the
accuracy of the computations. Later in the book, we show that some more
general multiphase flow and transport numerical results can be improved by
using limited global information.
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4.2 Mixed multiscale finite element methods using
limited global information

4.2.1 Elliptic equations

In this section, we study mixed MsFEMs that employ global information. We
consider elliptic equations with Neumann boundary conditions

−div(λ(x)k(x)∇p) = f(x) in Ω

λ(x)k(x)∇p · n = g on ∂Ω,
(4.4)

where k(x) is a heterogeneous field and λ(x) is a smooth field, as before. We
assume that

∫
Ω
pdx = 0. Denote by v = −λ(x)k(x)∇p the velocity. To con-

struct basis functions for a global mixed MsFEM, we assume that the velocity
field v can be approximated by a priori defined global velocity fields, v1, ..., vN
in the following way. There exist functions v1, ..., vN and A1(x), ..., AN (x) such
that

v(x) ≈
N∑

i=1

Ai(x)vi(x), (4.5)

where Ai(x), i = 1, ..., N , are sufficiently smooth. The assumption (4.5) is
made more precise in Section 6.3. We note that vi = −k∇pi are, in general,
solutions of div(k∇pi) = 0, vi = −k∇pi, with some boundary conditions.
In (4.5), we assume that the velocity field in each coarse-grid block can be
approximated by a linear combination of a priori defined velocity fields.

Next, we construct the multiscale velocity basis functions using the infor-
mation from v1, ..., vN . The main difference between this construction and the
construction presented in Section 2.5.2 is the use of oscillatory boundary con-
ditions that depend on v1, ..., vN . Specifically, we construct the basis functions
for the velocity field as follows:

div(k(x)∇φK
ij ) =

1
|K| in K

k∇φK
ij · n =

{
vi·n∫

ej
vi·nds

on eKj
0 else,

(4.6)

where
∫

K
φK

ij dx = 0, i = 1, ..., N , j = 1, ..., jK (jK is the number of edges
or faces of K), and eKj are edges (or faces in R

3) of K. In Figure 4.3, we
schematically illustrate the basis function construction. Let ψK

ij = k(x)∇φK
ij .

We define the finite-dimensional space spanned by these basis functions by

Vh = span{ψK
ij }.

We denote by V0
h the span of ψK

ij that satisfies homogeneous Neumann bound-
ary conditions. We set Qh to be piecewise constant basis functions that are
used to approximate the pressure p, as in Section 2.5.2.
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As in Section 2.5.2, we can combine the basis functions in adjacent coarse-
grid blocks with a common edge ej and obtain the multiscale basis function
for the edge ej denoted by ψij . Let K1 and K2 be adjacent coarse grid blocks.
Then ψij solves (4.6) in K1 and solves div(ψij) = −1/|K2| in K2, and ψij ·n =
−vi · n/

∫
eK

j
vi · nds on eK2

j and 0 otherwise. In other words, ψij = ψK1
ij in K1

and ψij = −ψK2
ij in K2, where ψK

ij is defined via the solution of (2.16) (cf.
Figure 2.8 for the illustration).

Let {vh, ph} be the numerical approximation of {v, p} with the basis func-
tions defined previously. The numerical mixed formulation of (4.4) is to find
{vh, ph} ∈ Vh ×Qh such that

∫

Ω

(λk)−1vh · whdx−
∫

Ω

div(wh)phdx = 0 ∀wh ∈ V0
h

∫

Ω

div(vh)qhdx =
∫

Ω

fqhdx ∀qh ∈ Qh.

(4.7)

The discrete formulation corresponding to the resulting system is similar to
(2.18).

Note that for each edge, we have N basis functions and we assume that
v1, ..., vN are linearly independent in order to guarantee that the basis func-
tions are linearly independent. To ensure the boundary condition in (4.6) is
well defined, we assume that

∫
eK

l
vi · nds is not zero. To avoid the possibility

that
∫

eK
l
|vi · n|ds is unbounded, we need to make certain assumptions that

bound
∫

eK
l
|vi ·n|ds from above. These assumptions are formulated in Section

6.3.
In Section 6.3, it is shown that the MsFEM using limited global informa-

tion converges without any resonance error. We present numerical results in
the next section as well as in Section 5.7.1 to demonstrate the importance of
the use of global information.

Remark 4.1. We note that local mixed MsFEMs introduced in Section 2.5.2
can be obtained from mixed MsFEMs introduced in this section. To do this,
one needs to use one global field v1 which is a constant vector and v1 · n �= 0
along each edge e. Taking into account that v1 ·n is constant along each edge,
we have v1 ·n/

∫
e
v1 ·nds = 1/|e|. This is the same as the boundary conditions

introduced for local problems in Section 2.5.2.

Remark 4.2. The representative coarse grid K can be nonconvex (c.f., Figure
4.3). The analysis presented in Section 6.3 implies that the global mixed mul-
tiscale finite element method works for nonconvex meshes. Strongly stretched
meshes can have an impact on the convergence rate of the method following
the analysis in Section 6.3.

Remark 4.3. The construction of velocity basis functions in (4.6) and the anal-
ysis in Section 6.3 imply that K is not necessarily a polygon domain and the
interface normal can be a spatial function.
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Neighboring coarse grid block

Nonzero flux boundary condition

Zero flux boundary condition

K

φi,jdiv(k        )= 
|K|
−−
1

Fig. 4.3. Schematic description of velocity basis function construction.

Remark 4.4. We note that the global mixed MsFEMs presented in the book
can be used when meshes have hanging nodes and when fine grids do not
necessarily match across coarse grid interfaces.

Pseudo-code. Next, we briefly outline the implementation of mixed Ms-
FEMs. We note that the implementation of mixed MsFEMs is similar to
Algorithm 2.5.2, except one needs to compute or obtain global fields. Note
that global fields can be defined iteratively (see Section 4.4). We have posted
simple prototype MATLAB codes for solving elliptic equations with mixed
MsFEMs (courtesy of J.E. Aarnes) at
http : //www.math.tamu.edu/ ∼ yalchin.efendiev/codes/.

4.2.2 Parabolic equations

Mixed MsFEMs using limited global information can be easily extended to
parabolic equations. We consider the following model parabolic equation,

∂

∂t
p− div(λ(x)k(x)∇p) = f(x, t) in Ω × [0, T ]

p = 0 on ∂Ω × [0, T ]
p(t = 0) = p(0) in Ω,

(4.8)

where k(x) is a bounded symmetric and positive definite matrix in Ω, and
p(0) is a smooth spatial field. Denote by v = −λ(x)k(x)∇p.
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Algorithm 4.2.1

Set coarse mesh configuration from fine-scale mesh information.
Define global fields v1, ..., vi, ..., vN used in the simulations.
For each coarse-grid block n and for each global field i do
– For each edge j of a coarse-grid block
– Solve for ψn

ij according to (4.6)
– End for
End do.
Assemble the coarse-scale system according to (4.7).
Assemble the external force on the coarse mesh according to (4.7).
Solve the coarse-grid formulation.

For parabolic equations, we assume that the velocity v can be approx-
imated by multiple global fields. In particular, we assume that there exist
v1, ..., vN and sufficiently smooth functions A1(t, x), ..., AN (t, x) such that

v(t, x) ≈
N∑

i=1

Ai(t, x)vi(x).

This assumption is made more precise in Section 6.3.1.
The mixed formulation associated with (4.8) is to find {v, p} such that

∫

Ω

∂

∂t
p qdx+

∫

Ω

div(v) qdx =
∫

Ω

fq ∀q ∈ L2(Ω)
∫

Ω

(λk)−1v · wdx−
∫

Ω

div(w) pdx = 0 ∀w ∈ H(div, Ω)

p(t = 0) = p(0).

(4.9)

Let finite-dimensional space Vh and Qh be defined as in the elliptic case. The
space-discrete mixed formulation is to find {vh, ph} : [0, T ] −→ Vh ×Qh such
that

∫

Ω

∂

∂t
phqhdx+

∫

Ω

div(vh) qhdx =
∫

Ω

fqhdx ∀qh ∈ Qh

∫

Ω

(λk)−1vh · whdx−
∫

Ω

div(wh) phdx = 0 ∀wh ∈ Vh

ph(t = 0) = p0,h,

(4.10)

where p0,h is the L2 projection of p(0) onto Qh. This problem can be also
re-written in matrix form

A
∂

∂t
P +BU = F

BTP −DU = 0
(4.11)



4.2 Mixed MsFEMs using limited global information 75

with P (0) given, where A and D are symmetric positive and definite. After
eliminating U , (4.11) is a linear system ODE for P ,

A
∂

∂t
P +BD−1BTP = F.

The analysis of the method is presented in Section 6.3.

4.2.3 Numerical results

The use of single global information

In our numerical simulations, we perform two-phase flow and transport sim-
ulations with the same setting as before, except we assume that the source
terms (qt in (2.40)) are given by a standard five-spot problem (see e.g., [1]),
where the injection well is placed at the middle and the four production wells
are placed at four corners of the rectangular global domain. We assume no
flow along the boundaries. Initially, it is assumed that S = 0 in the whole
domain. In the simulations, we solve the pressure equation on the coarse grid
and reconstruct the fine-scale velocity field which is used to solve the satu-
ration equation. The fine-scale velocity is reconstructed simply by using the
multiscale basis function as

v =
∑

e

veψe,

where the sum is taken over all edges e (or faces), ve is the coarse-scale normal
velocity field for edge e obtained via the solution of mixed MsFEMs, and ψe

is the velocity basis function for edge e. If there are several multiscale basis
functions for each edge, then

v =
∑

e,i

ve,iψe,i,

where i corresponds to the global field vi (see (4.3)). Because we use a recon-
structed fine-scale velocity field, the errors will be due to mixed MsFEMs only.
The basis functions are constructed at time zero and not changed throughout
the simulations. As for permeability fields, we use heterogeneous permeability
fields from the Tenth SPE Comparative Solution Project [78] (also referred
to as SPE 10). Because of channelized structure of the permeability fields,
the localized approaches do not perform well, as we observed earlier. On the
other hand, the use of limited global information based on single-phase flow
information improves the accuracy.

We first present numerical results where one global field (single-phase flow
solution) is used (N = 1 in (4.3)). More precisely, div(k∇p1) = qt, where qt
represents the source terms corresponding to the five-spot problem and v1 =
−k∇p1. We compare a mixed MsFEM with limited global information and a
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mixed MsFEM which uses only local information. In Tables 4.1–4.6 numerical
results for different layers of SPE 10 using different viscosity ratios (see (2.39))
and different coarse grid sizes are shown. In these tables, the L1 saturation
errors over the time interval from 0 to 1 PVI as well as fractional flow errors are
compared. It is evident from these tables that a mixed MsFEM using limited
global information performs much better than a mixed MsFEM which only
uses local information. Moreover, we observe that a mixed MsFEM converges
as the mesh size decreases. We present saturation snapshots in Figure 4.4.
These results indicate that for general complicated media such as SPE 10
with high contrast, one can expect the convergence of a mixed MsFEM as the
coarse mesh size decreases when using limited global information.

Table 4.1. Relative Errors (Layer 40, μo/μw = 3)

Coarse Grid Frac. Flow
Error

Saturation
Error

Frac. Flow
Error

Saturation
Error

(Global) (Global) (Local) (Local)

6 × 10 0.0144 0.0512 0.1172 0.2755

12 × 22 0.0039 0.0370 0.1867 0.3158

Table 4.2. Relative Errors (Layer 50, μo/μw = 3)

Coarse Grid Frac. Flow
Error

Saturation
Error

Frac. Flow
Error

Saturation
Error

(Global) (Global) (Local) (Local)

6 × 10 0.0129 0.0871 0.1896 0.5061

12 × 22 0.0046 0.0568 0.1702 0.4578

Table 4.3. Relative Errors (Layer 70, μo/μw = 3)

Coarse Grid Frac. Flow
Error

Saturation
Error

Frac. Flow
Error

Saturation
Error

(Global) (Global) (Local) (Local)

6 × 10 0.0106 0.0562 0.0408 0.2291

12 × 22 0.0039 0.0421 0.0976 0.2530

Mixed MsFEM on unstructured grids and the coupling to
coarse-scale transport equation

In [4], the mixed MsFEM is used for simulations on unstructured coarse grids.
The use of unstructured coarse grids has advantages in subsurface simula-
tions because they provide flexibility and can render more accurate upscaled
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Table 4.4. Relative Errors (Layer 40, μo/μw = 10)

Coarse Grid Frac. Flow Error Saturation Error Frac. Flow Error Saturation Error
(Global) (Global) (Local) (Local)

6 × 10 0.0080 0.0534 0.0902 0.2721

12 × 22 0.0026 0.0403 0.1414 0.3153

Table 4.5. Relative Errors (Layer 50, μo/μw = 10)

Coarse Grid Frac. Flow Error Saturation Error Frac. Flow Error Saturation Error
(Global) (Global) (Local) (Local)

6 × 10 0.0049 0.0957 0.1577 0.5137

12 × 22 0.0041 0.0628 0.1404 0.4613

Table 4.6. Relative Errors (Layer 70, μo/μw = 10)

Coarse Grid Frac. Flow Error Saturation Error Frac. Flow Error Saturation Error
(Global) (Global) (Local) (Local)

6 × 10 0.0044 0.0629 0.0280 0.2262

12 × 22 0.0025 0.0473 0.0678 0.2397

solutions for flow and transport equations. It is often necessary to use an un-
structured coarse grid when highly heterogeneous reservoirs are discretized via
irregular anisotropic fine grids. Our study is motivated by the development of
coarse-scale models for coupled flow and transport equations in a multiphase
system. An unstructured coarse grid is often used to upscale the transport
equation with hyperbolic nature in a highly heterogeneous reservoir. Solving
the flow equation on the same coarse grid provides a general robust coarse-
scale model for the multiphase flow and transport at a low CPU cost. We note
that most of the previous studies employ a two-grid approach where the flow
equation is solved on a coarse grid and the transport equation is solved on
a fine grid. We consider the nonuniform coarsening developed in [9] for the
transport equation (also described in Section 5.5). The coarse grid we obtain
is highly anisotropic and is not quasi-uniform. We present numerical results
when both the flow and transport equations are solved on the coarse grid. In
[4], numerical examples involving highly channelized permeability as well as
a 3D reservoir model using an unstructured fine grid are presented. Next, we
present a few numerical examples.

For our numerical example, we consider layer 65 of SPE 10. Using the
algorithm for upscaling of the transport equation ([9]), we generate a coarse
grid. In Figure 4.5, the fine-scale permeability and the coarse grid are plotted.
In Figure 4.6, we present the results for the saturation fields at PVI= 1 when
both the flow and the transport equations are solved on the coarse grid. One
can see from this figure that the saturation profile looks realistic when an
adaptive coarse grid is used and we preserve the geological realism reasonably
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Fig. 4.4. Comparison of saturation fields between reference solution and MsFEM
solution at PVI = 1, layer 50, 12 × 11 coarse grid and μo/μw = 10; top: refer-
ence saturation; middle: saturation using global mixed MsFEM; bottom: multiscale
saturation using local mixed MsFEM.

well. In Table 4.7 we present L1 relative errors for the saturation when different
resolutions of the coarse grid are used. In the same table, we show the errors
corresponding to the structured grids with a comparable number of coarse-
grid blocks (shown in parentheses). We can make two important observations
from this table. First, the errors are small (less than 1%). Second, the mixed
MsFEM on an unstructured grid performs better. The latter is due to the fact
that the unstructured grid is constructed using some relevant limited global
information which usually increases the accuracy of the method.

In our next numerical example, we test the method on a synthetic reservoir
with a corner-point grid geometry. The corner-point grid has vertical pillars,
as shown in Figure 4.7, 100 layers, and 29,629 active cells (cells with positive
volume). The permeability ranges from 0.1 mD to 1.7 D and the porosity is
assumed to be constant. The corner-point grid (or pillar grid) format [231]
is a very flexible grid format that is used in many commercial geomodeling
softwares. Essentially a corner-point grid consists of a set of hexahedral cells
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Fig. 4.5. 60×220 permeability field and the coarse grid with 180 blocks. A random
color is assigned to each coarse-grid block.
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Fig. 4.6. Saturation comparisons.

Table 4.7. Relative L1 Errors (Layer 65)

Unstruct. Coarse Sat. Err. Sat. Err. (Struct. Grid)
(Number of Blocks) (Total) (Total)

180 0.0097 0.0130 (10×20)
299 0.0080 0.0125 (15×22)
913 0.0062 0.009 (20×44)

that are aligned in a logical Cartesian fashion where one horizontal layer in the
logical grid is assigned to each sedimentary bed to be modeled. In its simplest
form, a corner-point grid is specified in terms of a set of vertical or inclined
pillars defined over an areal Cartesian 2D mesh in the lateral direction. Each
cell in the volumetric corner-point grid is restricted by four pillars and is
defined by specifying the eight corner points of the cell, two on each pillar.

We consider only 60 vertical layers of the permeability field. The coarse grid
is constructed by subdividing the fine-scale model on 30-by-30-by-60 corner-
point cells into 202 coarse-grid blocks. In Figure 4.8, we plot: coarse-grid
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Fig. 4.7. A corner-point model with vertical pillars and 100 layers. To the right is
a plot of the permeability field on a logarithmic scale. The model is generated with
SBEDTM , and is courtesy of Alf B. Rustad at STATOIL.

Fig. 4.8. Left: schematic description of unstructured coarsening (each coarse grid
block is assigned a random color). Middle: a horizontal slice of unstructured coars-
ening presented on the left. Right: a coarse grid block (enlarged).

partitioning (left plot) where a random color is assigned to each coarse-grid
block; a horizontal slice of coarse partitioning presented on the left plot; and
several coarse-grid blocks. In Figure 4.9, we plot the water-cut curves. As
we see from this figure, our method provides an accurate approximation of
water-cut data. The error that is due to the mixed MsFEM is only 2% (here,
we consider L1 error in the saturation field at PVI = 0.5). We have observed
17% error in the saturation field when both flow and transport equations are
solved on the coarse grid. This error is mainly due to the saturation upscaling.
The detailed numerical studies when both flow and transport equations are
coarsened can be found in [4]. In particular, we show that the errors due to
mixed MsFEMs for solving the flow equation are much smaller than the errors
due to upscaling of the transport equation. This suggests that more accurate
upscaling methods for transport equations are needed. Multiscale methods for
transport equations are discussed in Section 5.2.
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Fig. 4.9. Water-cut for reference and multiscale solutions.

The use of multiple global information in parameter-dependent
permeability

In our next set of numerical experiments, we consider a case where one needs
to use multiple global fields to construct multiscale basis functions. One can
consider this case as a simplified case for the more general stochastic case
which is presented in Section 5.7. In our numerical experiments, we con-
sider k(x, θ) = exp(θY (x)). We investigate a range of θ, θ1 ≤ θ ≤ θ2,
and use the global single-phase flow solutions corresponding to endpoints
θ = θ1 and θ = θ2 to construct the multiscale basis functions. In partic-
ular, v1 = −k(x, θ1)∇p(x, θ1) and v2 = −k(x, θ2)∇p(x, θ2) (where p(x, θ1)
and p(x, θ2) solve the global single-phase flow problem) are used to construct
mixed multiscale basis functions as described earlier.

In Figure 4.10, the water-cut (which is equal to 1−F , F being the fractional
flow) and the saturation profiles for a value of θ = 0.75 are compared. The
global fields corresponding to single-phase flow solutions are computed at
θ1 = 0.5 and θ2 = 1. The simulations are run with μo/μw = 5. We note that
the value of θ is different from the values used in generating basis functions.
We observe from these figures that the mixed MsFEM provides an accurate
representation of the solution. In particular, there is almost no difference in
the water-cut curve and the error in the saturation profile at PVI = 1 is less
than 5%. This observation is consistent for all other values between θ1 and
θ2, and it is demonstrated next.

In our next set of numerical experiments, water-cut errors and saturation
errors for values of θ between θ1 = 0.5 and θ2 = 1.5 are presented. We also
compare these results with the results obtained using only one value of θ,
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Fig. 4.10. Top: comparison of water-cut between reference solution and multiscale
solution; middle: the reference saturation at PVI = 1; bottom: multiscale saturation
at PVI = 1 (layer 85).

θ = 1. More precisely, we only use the global solution corresponding to θ = 1
to construct multiscale basis functions. Furthermore, these basis functions are
used for solving the two-phase flow on the coarse grid for other values of θ. We
observe from Figures 4.11 and 4.12, that the results are substantially better if
two global solutions are employed in characterizing the solutions for the entire
range of θ. In Figure 4.11, μo/μw = 0.1 is taken and in Figure 4.12, μo/μw = 10
is taken. It is clear from these figures that the use of two global solutions in
mixed MsFEMs gives us an accurate approximation. The presented numerical
results show that one can use a few realizations of the permeability field to
construct basis functions that can be employed for solving two-phase flow
and transport on the coarse grid accurately. Similar ideas have been used in
applications of mixed MsFEMs to stochastic equations (see Section 5.7.1).

One of our goals with presented numerical results is to show that the so-
lution can be approximated using multiple global fields. Next, we discuss the
numerical convergence of global mixed MsFEMs with limited global informa-
tion. For this reason, we consider different coarse grids, 6 × 22, 12 × 44, and
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Fig. 4.11. L1 saturation error and water-cut error using one single-phase flow so-
lution and two single-phase flow solutions, μo/μw = 0.1 (layer 85).
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Fig. 4.12. L1 saturation error and water-cut error using one single-phase flow so-
lution and two single-phase flow solutions, μo/μw = 10 (layer 85).

15 × 55 for the previous example with μo/μw = 10. Our convergence anal-
ysis (see Section 6.3) indicates that the proposed method converges up to a
small parameter that represents how well the two-phase velocity field can be
approximated by a single-phase velocity field in each coarse patch. Moreover,
the convergence rate also depends on the smoothness of Ai in (4.5). One can
consider an ideal toy problem where the convergence rate can be verified by
specifying the form of the solution up to smooth functions Ai (see (4.5)). In-
stead, we would like to consider the SPE 10 example and show that as the
coarse mesh size decreases the error decreases. We note that this is in contrast
to standard MsFEMs where one can observe the resonance error. As a result,
the mixed MsFEM does not converge as h approaches zero. As we see from
Figure 4.13, the mixed MsFEM using limited global information converges as
the coarse mesh size decreases. This is again an indication that for general
complicated media such as SPE 10 with high contrast, one can expect the
convergence of mixed MsFEMs using limited global information.

We note that the method can be used for stochastic flow equations. This is
presented in Section 5.7.1. In this case, one can take vi to be the realizations
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Fig. 4.13. L1 saturation error and water-cut error using one single-phase flow solu-
tion and two single-phase flow solutions, μo/μw = 10 for different degrees of coars-
ening (layer 85).

of the random fields. This way multiscale basis functions capture the small-
scale information across the realizations of stochastic porous media equations.
Because these approaches do not necessarily require global information and
can be considered as an application of MsFEMs, we present them in the last
chapter of the book.

4.3 Galerkin multiscale finite element methods using
limited global information

4.3.1 A special case

First, we consider a special case where only one global field is used for generat-
ing multiscale basis functions. We denote the solution of the pressure equation
at time zero by psp(x), where the superscript sp refers to single-phase flow
(λ = 1 in (4.1)). In defining psp(x), we use the actual boundary conditions of
the global problem. The boundary conditions for modified basis functions are
defined in the following way. For simplicity of the presentation, we consider
a rectangular partition in 2D. For each rectangular element K with vertices
xi (i = 1, 2, 3, 4), denote by φi(x) a restriction of the nodal basis on K, such
that φi(xj) = δij . At the edges where φi(x) = 0 at both vertices, we take the
boundary condition for φi(x) to be zero. Consequently, the basis functions are
localized. We only need to determine the boundary condition at two edges that
have the common vertex xi (φi(xi) = 1). Denote these two edges by [xi−1, xi]
and [xi, xi+1] (see Figure 4.14). We only need to describe the boundary condi-
tion gi(x) for the basis function φi(x) along the edges [xi, xi+1] and [xi, xi−1].
If psp(xi) �= psp(xi+1), then

gi(x)|[xi,xi+1] =
psp(x) − psp(xi+1)
psp(xi) − psp(xi+1)

, gi(x)|[xi,xi−1] =
psp(x) − psp(xi−1)
psp(xi) − psp(xi−1)

.
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Fig. 4.14. Schematic description of nodal points.

If psp(xi) = psp(xi+1) �= 0, then

gi(x)|[xi,xi+1] = φ0
i (x) +

1
2psp(xi)

(psp(x) − psp(xi+1)),

where φ0
i (x) is a linear function on [xi, xi+1] such that φ0

i (xi) = 1 and
φ0

i (xi+1) = 0. Similarly,

gi+1(x)|[xi,xi+1] = φ0
i+1(x) +

1
2psp(xi+1)

(psp(x) − psp(xi+1)),

where φ0
i+1(x) is a linear function on [xi, xi+1] such that φ0

i+1(xi+1) = 1
and φ0

i+1(xi) = 0. If psp(xi) = psp(xi+1) �= 0, then one can also use simply
linear boundary conditions. If psp(xi) = psp(xi+1) = 0 then linear boundary
conditions are used. Finally, the basis function φi(x) is constructed by solving
the leading-order homogeneous equation div(k∇φi) = 0. The choice of the
boundary conditions for the basis functions is motivated by the analysis. In
particular, we would like our basis functions to span the fine-scale solution
psp(x). Using this property and Cea’s lemma one can show that the pressure
obtained from the numerical solution is equal to the underlying fine-scale
pressure. The latter combined with the fact that the two-phase flow solution
p is a smooth function of psp (see [103]) allows us to show that the proposed
multiscale finite element method converges independent of resonance error.
This approach is effective when the solution of (4.1) is a smooth function of
psp.

4.3.2 General case

The MsFEMs considered above employ information from only one single-
phase flow solution. In general, it might be necessary to use information from
multiple global solutions for the computation of an accurate two-phase flow
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solution. The previous MsFEMs can be extended to take into account ad-
ditional global information. Next, we present an extension of the Galerkin
MsFEM that is based on the partition of unity method [32] (also see e.g.,
[248], [121], [153]).

As we mentioned before, we assume (4.2); that is ‖p−G(p1, ..., pN )‖L2(Ω)

is sufficiently small for a priori selected global fields p1, ..., pN . Here G is a
smooth function. Here, p1, ..., pN are global (or local) fields that can approxi-
mate the solution.

Let ωi be a coarse-grid patch (see Figure 4.15), and define φ0
i to be par-

tition of unity functions (e.g., piecewise linear basis functions) such that
φ0

i (xj) = δij . For simplicity of notation, denote p1 = 1. Then, the MsFEM for
each patch ωi is constructed by

Ψij = φ0
i pj ,

where j = 1, .., N and i is the index of nodes (see Figure 4.15). We note that
in each coarse patch

∑n
i=1 Ψij = pj is the desired global field. Because the

solution can be approximated by pj , one can show that the MsFEM converges
independent of resonance errors ([162]). Note that the form of the function
G is not important for the computations; however, it is crucial that the basis
functions span p1,..., pN in each coarse block. The convergence results are
presented in Section 6.3.

i

xi

ω
K

Fig. 4.15. Schematic description of patch.

4.3.3 Numerical results

Next, we show numerical results obtained for MsFEMs using limited global
information presented in Section 4.3.1. We consider two-phase flow and trans-
port and use only one global field, single-phase flow information (N = 1), as
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Fig. 4.16. Fractional flow comparison for standard MsFVEM and global MsFVEM.

described in Section 4.3.1 in the construction of basis functions. The basis
functions are coupled via the finite volume formulation of the problem (see
Section 2.5.1). We refer to this method as the global MsFVEM. Our first
numerical example is for the permeability layer depicted in Figure 4.1 and
two-phase flow parameters presented earlier in Section 2.10. As before, we
specify p = 1, S = 1 along the x = 0 edge and p = 0 along the x = 5 edge. On
the rest of the boundaries, we assume a no-flow boundary condition. Results
are also presented in terms of the fraction of oil in the produced fluid (i.e.,
oil-cut, designated by F ) against pore volume injected (PVI). Recall that PVI
represents dimensionless time and is computed via

∫
Qdt/Vp, where Vp is the

total pore volume of the system and Q is the total flow rate (see (2.44) for
the definition of PVI).

In Figure 4.16, the fractional flows are plotted for standard and global
MsFVEMs. We observe from this figure that the global MsFVEM is more
accurate and provides nearly the same fractional flow response as the direct
fine-scale calculations. In Figure 4.17, we compare the saturation fields at
PVI = 0.5. As we see, the saturation field obtained using the global MsFVEM
is very accurate and there is no longer the saturation pocket at the left bottom
corner (cf. Section 4.1.1). Thus, the global MsFVEM captures the connectivity
of the media accurately.

In the next set of numerical results, we test global MsFVEMs for a differ-
ent layer (layer 40) of the SPE comparative solution project. In Figures 4.18
and 4.19, the fractional flows and total flow rates (Q) are compared for two
different boundary conditions. One can see clearly that the global MsFVEM
gives nearly exact results for these integrated responses. The standard Ms-
FVEM tends to overpredict the total flow rate at time zero. This initial error
persists at later times. This phenomenon is often observed in the upscaling of
two-phase flows. More numerical results and discussions can be found in [103].
These numerical results demonstrate that global MsFEMs which use limited
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Fig. 4.17. Saturation maps at PVI = 0.5 for fine-scale solution (left figure) and
global MsFVEM (right figure).
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Fig. 4.18. Fractional flow (left figure) and total production (right figure) comparison
for standard MsFVEM and global MsFVEM (layer 40).

global information are more accurate. Moreover, global MsFEMs are capable
of capturing long-range flow features accurately for channelized permeability
fields.

In the next set of numerical results, we consider another layer of the upper
Ness (layer 59). In Figure 4.20, both fractional flow (left figure) and total
flow (right figure) are plotted. We observe that the global MsFVEM gives
almost the exact results for these quantities, whereas the standard MsFVEM
overpredicts the total flow rate, and there are deviations in the fractional flow
curve around PVI ≈ 0.6. Note that unlike the previous case, fractional flow for
standard MsFVEM is nearly exact at later times (PVI ≈ 2). In Figure 4.21,
the saturation maps are plotted at PVI = 0.5. The left figure represents the
fine scale, the middle figure represents the results obtained using a standard
MsFVEM, and the right figure represents the results obtained using a global
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Fig. 4.19. Fractional flow (left figure) and total production (right figure) comparison
for the standard MsFVEM and global MsFVEM (layer 40).
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Fig. 4.20. Fractional flow (left figure) and total production (right figure) comparison
for the standard MsFVEM and global MsFVEM.

MsFVEM. We observe from this figure that the saturation map obtained using
a standard MsFVEM has some errors. These errors are more evident near the
lower left corner. The results of the saturation map obtained using the global
MsFVEM are almost the same as the fine-scale saturation field. It is evident
from these figures that the global MsFVEM performs better than the standard
MsFVEM.

4.4 The use of approximate global information

In the above discussions, the global fields are computed by solving simplified
fine-scale equations. One can also use approximate global solutions instead of
solving fine-scale elliptic equations. There are various ways one can attempt to
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Fig. 4.21. Saturation maps at PVI = 0.5 for fine-scale solution (left figure), stan-
dard MsFVEM (middle figure), and global MsFVEM (right figure).

approximate the global fields and we briefly discuss two types of approximate
global solutions. In the first approach, approximate global fields that capture
nonlocal effects are computed iteratively. In the second approach, we attempt
to compute global fields with fewer fine-scale details by homogenizing some
small-scale features that can be localized.

4.4.1 Iterative MsFEM

One can attempt to capture nonlocal effects iteratively by using the approxi-
mate solutions obtained from MsFEMs. This procedure is schematically pre-
sented in Figure 4.22. At each iteration, approximations of the global solutions
obtained via MsFEMs are used in the computation of multiscale basis func-
tions. The computations of multiscale basis functions are the same as discussed
above (e.g., (4.6)). Once the basis functions are computed, the global problem
is solved on the coarse grid and updated approximations of the global solu-
tions are computed. These global solutions are again used for multiscale basis
function computation after possible post-processing with smoothers if needed.
A convergence criterion based on the difference of consecutive approximate
MsFEM solutions can be used to stop the iterations. In order to avoid using
the same space of multiscale basis functions, one can use different sizes of
oversampling domains in the computation of basis functions.

An algorithm with a similar concept was introduced in [93]. In [93], the
authors proposed the use of a MsFVEM solution as a global solution. Numer-
ical results show that one can achieve substantial improvement when small
oversampling is employed in computing the global solutions. Moreover, one
can apply this approach iteratively, by re-computing the MsFVEM solution.
This iterative procedure converges in two to three iterations for heteroge-
neous permeability fields such as SPE 10. In general, the correction to the
multiscale solution via iterations can be very useful in many practical appli-
cations. Indeed, computing a global solution each time when heterogeneities
or flow fields change can be expensive. On the other hand, the iterative ap-
proaches that can compute the approximate global solution by updating a few
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Fig. 4.22. An outline of iterative MsFEM.

multiscale basis functions can be very useful in fast flow simulations. These
approaches share some similarities with domain decomposition methods (e.g.,
[137]), although there are important differences. The approach proposed in
[93] iteratively computes multiscale basis functions that can be re-used for
different source terms and boundary conditions, and domain decomposition
methods correct the solution in the iterations. One can also keep multiscale
basis functions the same during the iterations and compute the corrections to
the solution in the iterations.

4.4.2 The use of approximate global information

Another possible approximation of global solutions can be obtained by remov-
ing the small-scale details that can be localized. This way, one will compute
only important nonlocal features of the global fields by homogenizing some of
the small-scale features that can be recovered in the basis function construc-
tion (see Figure 4.23 for the illustration). This can provide CPU savings in
global solution computations because not all small-scale features are resolved.
To demonstrate this concept, we assume that the coefficients are described by
kδ>,ε(x), where δ> refers to the hierarchy of scales that are larger than δ, and
the parameter ε (ε � δ) refers to the small scale that can be homogenized.
Denote the partially homogenized coefficients by k∗δ>(x). By homogenizing ε
scales, one can use k∗δ>(x) to compute the global fields. The use of nonuniform
coarsening will allow us to discretize the equation with the coefficients k∗δ>(x)
on a coarser grid compared to the equation with the coefficients kδ>,ε(x).
Indeed, many fine-scale features are due to ε scales. This will provide CPU
savings in the computation of auxiliary global fields. Moreover, one can use
smaller regions (RVE) as in Section 2.6 in the computation of k∗δ>(x). In [108],
we use the global solutions computed with the coefficients k∗δ>(x) to construct
multiscale basis functions and investigate the convergence of the method.
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4.5 Discussions

One of the theoretical works on using limited global information in MsFEMs is
by Owhadi and Zhang [218]. In this work, the authors show that the solution
is smooth in a harmonic coordinate system. These results are shown under
some suitable assumptions for the case d = 2 and more restrictive assump-
tions for the case d = 3. The use of harmonic coordinates in homogenization
is not new. In [169], the author used harmonic coordinates to transform the
elliptic equations with random coefficients into the elliptic equations in non-
divergence forms (without lower-order terms). The homogenization of elliptic
equations in non-divergence form is carried out by using spatial averaging.
Harmonic coordinates in [218] consist of directional solutions of the single-
phase flow equation. This suggests that one can solve the flow equation with
an arbitrary right-hand side or smooth mobility λ(x) in a harmonic coordi-
nate system using standard finite element basis functions on a coarse grid. In
the original (physical) coordinate system, this method entails solving the flow
equations with multiscale basis functions that span the global solutions and,
perhaps, constant or low-order polynomials. Moreover, the coarse grid in the
original coordinate system is the image of the regular coarse-grid block in the
harmonic coordinate system. This image is taken under the inverse of har-
monic coordinate transformation. These coarse-grid blocks are usually highly
distorted [218].

The multiscale methods using limited global information usually perform
well (numerically) for high-contrast media. However, rigorous analysis for gen-
eral high-contrast media is still an open question. Some results along this
direction have been obtained recently in [137, 76, 67]. In [76], piecewise con-
stant heterogeneities are considered. The authors show that by constructing
some appropriate multiscale boundary conditions for the basis functions that
take into account the local geometric property of the solution, the MsFEM
converges with an optimal convergence rate independent of the aspect ratio
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of the heterogeneous coefficient. This is perhaps the first result in which one
can obtain an optimal convergence rate independent of the high-contrast of
the coefficients for a finite element method which does not require alignment
of the finite element mesh with the interface boundary. In [67], the high con-
trast problem is formulated as an interface problem without a high contrast.
Then the basis functions for the interface on the coarse grid are computed in
addition to regular multiscale basis functions.

The question of whether local changes in the permeability can be treated
by modifying multiscale basis functions locally is addressed in [77]. The au-
thors consider the mobility functions λ(S) in (4.1) which are discontinuous
functions. It is shown that by changing the basis functions only near the dis-
continuities, one can achieve a convergent method for problems without scale
separation.

The limited global information can be very useful in coarsening. In [218],
the authors use the level sets of the directional solutions to generate the
coarse grid. The use of level sets of the directional solutions has limitations.
In previous findings, the pressure-streamline coordinates have been used in
coarsening. In a recent work [93], we propose a generic algorithm, extending
the main idea of [69], for performing nonuniform coarsening using a single-
phase velocity field. We show that one can achieve higher accuracy with fewer
degrees of freedom (compared to uniform coarsening).

As we mentioned earlier the use of limited global information in coarsening
is not new. The single-phase information has been used in upscaling methods
for porous media flows before. One of the main difficulties in upscaling meth-
ods when using limited global information is to recover exactly the average
response of the global fine-scale information. In [140], the authors solve an op-
timization problem for computing the upscaled permeabilities that give nearly
the same average response as the global solution. In [69], the authors propose
an iterative method using global information which converges in a few iter-
ations. The resulting upscaled coefficients give nearly the same average flow
response as the global single-phase flow solution. Limited global information
is also used in multiphase upscaling for upscaling of relative permeabilities.

As we mentioned above one can use multiple global solutions in computing
basis functions. This is particularly useful for stochastic problems, where dif-
ferent realizations are used in computing basis functions, or in the situations
where a priori knowledge about the change in heterogeneities or boundary
conditions is known. Then, multiple global solutions can be used in construct-
ing multiscale basis functions. In this way, one can use the same set of basis
functions throughout the simulation.

We would like to note that the use of limited global information in non-
linear problems does not seem to be possible, in general. This is due to the
fact that the heterogeneities depend on nonlinearities and the solution. The
use of limited global information usually assumes knowledge about the spatial
heterogeneities. For nonlinear problems, one does not have a priori knowl-
edge about the heterogeneities. One approach is to identify a set of hetero-
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geneities that will occur in nonlinear problems. For example, in nonlinear
elliptic or parabolic problems, this will involve finding spatial information
about k(x, p,∇p) for all p. Once this has been determined, one can construct
a larger set of basis functions that are capable of capturing all the long-range
effects. To our best knowledge, these issues have not been addressed so far.

Finally, we mention that the multiscale methods using limited global in-
formation can be extended to other linear equations, such as wave equations
[163].



5

Applications of multiscale finite element
methods

5.1 Introduction

In this chapter, we present some applications of MsFEM to fluid flows in
heterogeneous porous media. We discuss multiscale methods for transport
equations and their coupling to flow equations which are solved using Ms-
FEMs. The proposed multiscale techniques for the transport equation share
some similarities with nonlinear multiscale methods introduced in Chapter 3.
Because of sharp interfaces, special treatment is needed near the interface.
Furthermore, due to the hyperbolic nature of the transport equation, some
type of limited global information is needed for constructing multiscale basis
functions. These issues are discussed in Section 5.2.

In Section 5.3, we discuss the applications of MsFEMs to flows in un-
saturated porous media described by Richards’ equations [236]. Multiscale
methods developed in Chapter 3 are applied to solve Richards’ equation in
heterogeneous porous formations on the coarse grid. In Section 5.4, we extend
MsFEMs to solving the fluid-structure problem on the coarse grid where as
a result of fluid flow in the pore region, the porous medium deforms substan-
tially.

Applications of MsFEMs to reservoir modeling are presented using both
the mixed MsFEM and MsFV in Sections 5.5 and 5.6. In these sections, more
complicated porous medium equations involving compressibility, gravity, and
three phases in heterogeneous reservoirs are considered. The authors address
the challenging issues that arise in petroleum applications and describe the
efficient use of MsFEMs in these problems.

The porous medium properties are typically described using geostatistical
techniques because of uncertainties associated with prescribing permeability
values to different locations. The numerical simulation of fluid flows in stochas-
tic porous media is prohibitively expensive because the computation of each
realization is CPU-demanding. In this chapter, we also consider approaches for
constructing multiscale basis functions for the whole ensemble. Furthermore,
the applications of MsFEMs to uncertainty quantification in inverse problems
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consisting of permeability sampling are presented. The objective here is to use
MsFEMs to speedup the computations aimed at quantifying uncertainties in
inverse problems.

5.2 Multiscale methods for transport equation

5.2.1 Governing equations

A prototypical example for problems studied is two-phase immiscible flow and
transport in heterogeneous media. We presented the governing equations in
Section 2.10 neglecting the effects of gravity, compressibility, capillary pressure
and dispersion on the fine scale. We recall that the system of equations consists
of the pressure equation

div(λ(S)k(x)∇p) = qt, (5.1)

where λ(S) is the total mobility and qt = qo+qw is the total volumetric source
term. The saturation equation has the form

φ
∂S

∂t
+ div(vf(S)) = −qw, (5.2)

where f(S) is the fractional flow of water (f is also denoted by fw often to
distinguish between oil and water fractional flows), and φ is porosity. The
total velocity v is given by

v = −λ(S)k∇p. (5.3)

In the presence of capillary effects, an additional diffusion term is present in
(5.2). The above system of equations can be extended to describe the flow
and transport of three-phase flow and transport (see Sections 5.5 and 5.6). In
Sections 5.5 and 5.6, the applications of MsFEMs to three-phase compressible
flow and transport are described.

In this section, we focus on developing multiscale methods for the transport
equation described by (5.2).

5.2.2 Adaptive multiscale algorithm for transport equation

In this section, we present an adaptive multiscale method for solving the
transport equation following [5]. The main idea of this approach is to construct
multiscale basis functions similar to the construction in nonlinear MsFEMs
presented in Chapter 3. Because the solution of the transport equation has
sharp interfaces, a separate treatment is needed for these interfaces.

The adaptive multiscale method that we propose here consists of two parts.
An adaptive criterion determines if a block is in a transient flow region. Here,
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by transient region, we refer to those regions with sharp saturation fronts.
In these regions we use local fine-grid computations to advance the satura-
tion solution to the next time-step. In regions with slow transients, we use a
multiscale coarse-grid solver to advance the saturation solution to the next
time-step. Then, instead of doing a fine-grid calculation, we map the coarse-
grid solution onto a fine-grid solution using special interpolation operators.

Before we give an outline of the algorithm, we need to introduce some addi-
tional notation. First, denote the coarse grid by T = {Ki} and an underlying
fine grid by K = {τi}. The grids used here need not coincide with the coarse
and fine grids for multiscale methods used for the pressure equation and can
be unstructured. In this particular application, we use a mixed MsFEM.

We introduce now the upstream fractional flow function for
γij = ∂Ki

⋂
∂Kj :

Vij(S) = f(Si)max{vij , 0} + f(Si)min{vij , 0}, (5.4)

where vij is the Darcy flux across γij that we get from the mixed MsFEM
solution. Next, let S̄n

i be the coarse-grid saturation in Ki at time tn, and
denote by T n

tr the family of grid blocks that are identified to be in a transient
flow region at time tn. One can use various criteria based on coarse-scale sat-
uration values or their gradients to identify transient regions. In this section,
the following criteria are used to identify transient flow regions:

Ki ∈ T n
tr if max{|S̄n

i − S̄n
j | : |∂Ki ∩ ∂Kj | > 0} ≥ αi. (5.5)

For each Ki ∈ T n
tr , we define

KE
i = Ki ∪ {τ ∈ K : |∂τ ∩ ∂Ki| > 0}.

Hence,KE
i consists of grid cells that are either contained inKi, or that share a

common interface with a cell in Ki. Finally, we introduce a family of operators
{IK : K ∈ T } that map coarse-grid saturations onto fine-grid saturation fields
inside the respective blocks. The adaptive multiscale method is now outlined
in Algorithm 5.2.1.

Next, we briefly describe the algorithm. In this algorithm, first, the fine-
grid saturations in the transient flow regions are updated. This update involves
solving the local transport equation on the fine grid in the transient region.
Coarse-grid saturations in nontransient regions are updated using (5.7). The
equation (5.7) is obtained by averaging the transport equation over the coarse-
grid block K and describes the update for the coarse-scale saturation field.
Once the coarse-scale saturation field is updated, it is mapped onto the fine
grid with the coarse-to-fine grid interpolation operators. This step is similar to
nonlinear MsFEMs as described in Section 3.1. In particular, the basis func-
tions are computed for different levels of average saturation within the coarse
grid block and, then, interpolated. In the algorithm, implicit time integration
methods are used. There are no constraints on the time-steps �t, but they
should be chosen small enough to avoid an excessive numerical diffusion.
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Algorithm 5.2.1 Adaptive multiscale algorithm for modeling flow in porous
media

For each K ∈ T n
tr , do

– For τi ⊂ KE , compute

S
n+1/2
i = Sn

i +
�t
∫

τi
φdx

⎡

⎣
∫

τi

−qw(Sn+1/2)dx−
∑

j �=i

V ∗
ij

⎤

⎦ , (5.6)

where V ∗
ij =

{
Vij(Sn) if γij ⊂ ∂KE and vij < 0.
Vij(Sn+1/2) otherwise.

– Set Sn+1|K = Sn+1/2|K .

For each K �∈ T n
tr , do

– Set Sn+1|K = Sn|K .
– While

∑
j �jt ≤ �t, compute

S̄n+1
K = S̄n

K +
�jt∫

K
φdx

⎡

⎣
∫

K

−qw(Sn+1) dx−
∑

γij⊂∂K

Vij(Sn+1)

⎤

⎦ , (5.7)

and set Sn+1|K = IK(S̄n+1
K ).

The fractional function f is in general a nonlinear function of saturation.
We therefore solve the fine-grid equations (5.6) using a Newton–Raphson
method. Here saturation from the previous time-step is used to determine
boundary conditions along the inflow boundary on ∂KE . This gives rise to a
mass–balance error because the inflow on grid block boundaries corresponding
to the saturation from the previous time-step will not match exactly the inflow
on grid block boundaries corresponding to the saturation at the current time-
step. In our numerical simulations, we observed that this mass–balance error
is usually very small, and generally insignificant. Note also that if Ttr = ∅, and
the coarse-to-fine grid interpolation conserves mass locally, then (5.7) ensures
that mass is conserved, also globally. Thus, under the assumption that the
coarse-to-fine grid interpolation conserves mass locally, the latter part of the
adaptive multiscale algorithm is mass conservative on both coarse and fine
grids.

Next, observe that fluxes across coarse-grid interfaces in (5.7) are evaluated
on fine-grid interfaces γij ⊂ ∂K. Thus, rather than using a flux function that
models the total flux across coarse-grid interfaces as a function of the net
saturation in the upstream block, we evaluate the term fv in (5.2) on the scale
of the fine grid. This requires that we have fine-grid saturation values in all



5.2 Multiscale methods for transport equation 99

cells adjacent to grid block boundaries. The coarse-to-fine grid interpolation
operators {IK} are therefore not just tools to get better resolution. In addition
to improving the global accuracy of Algorithm 5.2.1 by providing a better
approximation to flow across coarse-grid interfaces, they provide initial fine-
grid saturation values for (5.6) in the transition when a block is identified as
being part of a transient flow region. Without the interpolation, the initial
saturation field for (5.6) would be constant in K, and the fractional flow
across the coarse-grid interfaces would have to be based on the net grid block
saturations only, as pseudo-functions generally do [171].

We remark that the proposed adaptive multiscale method has some simi-
larities to the multiscale framework developed for nonlinear equations in which
multiscale basis functions are constructed by mapping the coarse dimensional
space defined over the entire region. Furthermore, this map is used in the
global coarse-grid formulation of the fine-scale problem to compute the coarse-
scale solution. In our multiscale approach, the basis functions are constructed
as a function of average saturation in each coarse block, and then used in the
global formulation of the problem. In both approaches, the main task is to
determine an accurate and efficient multiscale map that improves the global
coarse-grid formulation of the problem.

5.2.3 The coarse-to-fine grid interpolation operator

In the following we attempt to construct operators that map each coarse-grid
saturation field onto a fine-scale saturation profile that is close to the cor-
responding profile that one would get by solving the saturation equation on
the global fine grid. The basic idea is to approximate the fine-scale satura-
tion in Ki as a linear combination of two basis functions Φk

i and Φk+1
i with∫

Ki
Φk

i φdx ≤ S̄n
i

∫
Ki
φdx <

∫
Ki
Φk+1

i φdx:

IKi
(S̄n

i ) = ηΦk
i + (1 − η)Φk+1

i . (5.8)

Here η ∈ [0, 1] is chosen such that the interpolation preserves mass, that is
such that

∫

Ki

IKi
(S̄n

i )φdx = S̄n
i

∫

Ki

φdx. (5.9)

This condition states that the fluid contained in Ki is distributed inside Ki in
such a way that the total fluid volume in Ki is conserved. The basis functions
Φk

i = si(x, τk) represent snapshots of the solution of the following equation:

φ
∂si
∂t

+ div(f(si)v) = −qw in Ki. (5.10)

For the local problem (5.10) to be well defined, we need to specify ini-
tial conditions and boundary conditions, and provide a possibly time-varying
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velocity field in Ki. Unfortunately, we do not know a priori what the veloc-
ity will be during the simulation, nor what boundary conditions to impose.
Assumptions must therefore be made as to how the velocity and saturation
approximately evolve. We describe below an approach that is local in terms
of boundary and initial conditions, however, one can naturally incorporate
global information into this approach. The proposed approach assumes that
global boundary conditions for the pressure equation (5.1) are not changed,
and that the source terms are fixed. We assume also that an upstream method
is used to solve the local equations (5.10). Thus, we need only specify bound-
ary conditions on the inflow boundaries Γ in

K = {γjl ⊂ ∂K : τl ⊂ K, vjl < 0}.
For fixed flow conditions, the fine-scale velocity features will generally not

change significantly during a flow simulation. This is discussed in [5]. One
option is therefore to solve the pressure equation (5.1) at the initial time with
the mixed MsFEM, use v = v(x, t0)|K in (5.10), and the same initial data
as for the global problem (5.2). A local way of generating saturation basis
functions based on this approach requires that sensible boundary conditions
for (5.10) can be imposed for each block independently. In our numerical
simulations, we impose si = 1 on the inflow boundary Γ in

T , although other
boundary conditions can be imposed (see discussions in Section 5.2.7).

An approach that is often used in practice for upscaling the saturation
equation entails the use of so-called pseudo-relative permeabilities (k∗rj)i =
(k∗rj)Ki

in place of the fine-scale krj . Because the fine-scale krj are typi-
cally functions only of saturation S, pseudo-relative permeabilities, or pseudo-
functions for brevity, are commonly assumed to depend only on the coarse-
grid saturation S, though the curves can vary between coarse grid blocks. The
proposed technique shares some similarities with pseudo-function approaches
although there are some important differences. The proposed approach allows
recovering fine-scale features of the saturation field and can be used for accu-
rate upscaling. The relation between proposed methods and pseudo-function
approaches is discussed in [5].

5.2.4 Numerical results

We now use the proposed methodology to model incompressible and immis-
cible two-phase flow on test cases with permeability and porosity from SPE
10 [78]. This model was discussed before and consists of a Tarbert formation
on top of a fluvial upper Ness formation. Although both formations are very
heterogeneous, the upper Ness formation gives rise to more complex flow. We
employ here mostly data modeling parts of the fluvial upper Ness formation.
Because fluvial formations are particularly hard to upscale, the upper Ness
formation should serve as an appropriate model for testing and validation
of the proposed multiscale method. The upper Ness model is Cartesian and
consists of 60 × 220 × 50 = 6.6 · 105 grid cells.

We assume that the reservoir is initially fully oil-saturated, and inject
water at a constant rate in grid cells penetrated by a vertical well at the
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center of the domain. We then produce at the producers which are vertical
wells located at each of the four corners. The water and oil mobilities are
defined by

λw(S) =
S2

μw
and λo(S) =

(1 − S)2

μo
, (5.11)

where the water and oil viscosities are assumed to be equal: μw = μo = 0.003
cp.

To measure the overall accuracy of a saturation solution we compute the
error in the fine- and coarse-grid saturation profiles relative to a reference
solution,

e(S, Sref , t) =
‖φSref(·, t) − φS(·, t)‖L2

‖φSref(·, t) − φSref(·, 0)‖L2
.

Here time is measured in dimensionless time PVI, that is time measures the
fraction of the total accessible pore volume in Ω that has been injected into
Ω.

For all test cases, we use Cartesian coarse grids, and assume that the fine-
grid cells coincide with grid cells in the original Cartesian grid. The reference
solution Sref is computed using an implicit upstream method on the fine grid,
and a corresponding coarse-grid solution is computed using the same method
on a coarse grid. Moreover, note that although we use a fixed set of basis
functions for the mixed MsFEM, we solve the pressure equation repeatedly
to account for mobility variations. Thus, the velocity fields in the simulations
will differ from the velocity field used to generate the saturation basis func-
tions. However, to assess the accuracy of solutions obtained using the adaptive
multiscale algorithm (AMsA), we compute, at each pressure time-step, the ve-
locity field corresponding to the reference solution for saturation, and use this
velocity field in AMsA, and to compute the coarse-grid solution. This allows
us to monitor the error that stems from AMsA only.

5.2.5 Results for a two-dimensional test case

We consider first a test case representing the bottom layer of the SPE model.
The coarse grid is defined so that each grid block contains 10 × 10 grid cells.
The saturation plots in Figure 5.1 show that the solutions obtained using
AMsA with α = 0, α = 0.1, and α = 0.2 (the same threshold is used in all
grid blocks, see (5.5)) are very similar to the reference solution. We recall that
α = 0 corresponds to the case when the saturation update is performed in all
coarse blocks and α = 1 corresponds to the case when no saturation update is
performed. The solution obtained using α = 1 looks quite different compared
to the cases with other values of α. The sharp edges that we see in this plot are
due to the fact that the boundary conditions used to generate the saturation
basis functions overestimate the inflow. We therefore get too much saturation
along the inflow part (with respect to the initial velocity field) of each grid
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block boundary. This indicates that without the adaptive component, AMsA
is not able to provide plausible fine-grid saturation profiles. To achieve this,
one has to build more information about the global flow problem into the
saturation basis functions by specifying appropriate coarse grid blocks using
global information or appropriate dynamic boundary conditions for (5.10).

Fig. 5.1. Saturation profiles at ∼ 0.7 PVI for simulations on the bottom layer.

Figure 5.2 shows that the accuracy of AMsA decays with increasing α.
However, for all α, AMsA gives a significantly more accurate solution on the
coarse grid than the standard upstream method on the coarse grid gives.

Computational efficiency

Except for α = 1, for which local problems are not solved during the course of
a flow simulation, the computational cost of AMsA is dominated by the cost of
solving the local equations (5.6). In particular, for small α the computational
cost C(α) of solving (5.2) using AMsA scales roughly as

C(α) ∼ Fu(α)NtC(0),

where Nt is the total number of time-steps and Fu(α) is the average fraction
of blocks that belong to a transient flow region. Note that C(0) is the cost
when the transient region is the entire domain.
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Fig. 5.2. Saturation errors for saturation solutions obtained from simulations on
the bottom layer of the upper Ness formation. The fine-grid curves measure the
error with e(S, Sref , t) on the fine grid relative to the reference solution, and the
coarse-grid curves measure the error on a coarse grid with e(S̄, S̄ref , t) relative to
the projection of the reference solution onto the coarse grid.

Clearly, Fu is a decreasing function of α. Hence, there is a trade-off be-
tween high accuracy and low computational cost. Note also that, in addition
to α, Fu depends implicitly on various factors (e.g., the coarse grid, the criteria
used to identify transient flow regions, the fluid parameters, the heterogeneous
structures, etc.). In particular, AMsA is in general more efficient (and accu-
rate) for spatially correlated variogram-based permeability models than for
models with fluvial heterogeneity, as is illustrated in Figure 5.3. Whereas, on
average, 73% and 55% of the blocks in the upper Ness model are identified
as belonging to transient flow regions for α = 0.1 and α = 0.2 respectively,
the corresponding numbers for the Tarbert model are 46 and 27. The poten-
tial efficiency of AMsA is therefore highly dependent on the type of model
to which it is applied. Relative to AMsA with α = 0, we may expect good
accuracy on both coarse and fine grids, with a speed-up factor about two
for models with fluvial heterogeneity, and a speed-up factor three or four for
models with smoother heterogeneity. The speed-up strongly depends on the
adaptivity criteria which can be adjusted for a particular problem. In our
simulations, the criteria based on gradients of the coarse-scale saturation are
used. We have observed an increase in speed-up when the criteria based on
saturation values are used. Without the adaptive component, the computa-
tional complexity of AMsA is comparable to the complexity of coarse-grid
simulations using pseudo-functions. As we mentioned earlier, the accuracy of
AMsA can be improved by choosing adaptive coarse gridding. This procedure
will also enhance the efficiency of AMsA, because it localizes sharp fronts. Fi-
nally, we note that the purpose of the interpolator is not primarily to get the
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fine-scale details correct, but rather to introduce a flexible mechanism that
allows us to capture the subgrid transport effects on a coarse scale.
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Fig. 5.3. Fraction of blocks that are identified to belong to transient flow regions
during the course of two-phase flow simulations on the top layer of the Tarbert
formation (left) and the bottom layer of the upper Ness formation (right).

5.2.6 Three-dimensional test cases

In this section we want to examine the accuracy of AMsA when applied to
two-phase flow simulations on three-dimensional models from the upper Ness
formation. Here we consider only AMsA using α = 0, α = 0.1, and α = 1 in
all blocks. The case α = 0 is referred to as the domain decomposition (DD)
algorithm, the case α = 0.1 is referred to as the adaptive algorithm, and the
case α = 1 is called the multiscale algorithm.

In order for AMsA to provide a valuable tool in reservoir simulation, it
should, in addition to being significantly more accurate than the coarse-grid
solution, capture fine-scale characteristics of the reference solution at well
locations. This is demonstrated by comparing water-cut curves (fraction of
water in the produced fluid) for AMsA with water-cut curves for the reference
solution. To get accurate production characteristics, it is essential that high-
flow channels are resolved adequately because high-flow channels often carry
the majority of the flow that reaches the producers. Thus, if AMsA can be
used to model these regions properly, then they should provide a more robust
alternative to reservoir simulation on upscaled models.

Consider first the ten bottom layers of the upper Ness formation, and
define the coarse grid so that each grid block in the coarse grid consists of
10 × 10 × 5 grid cells. Figures 5.4 and 5.5 demonstrate that all AMsAs give
significantly more accurate results than the solution obtained by solving the
saturation equation on the coarse grid with the implicit upstream method. We
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notice, in particular, that the water-cut curves for the multiscale algorithm are
much more accurate than the corresponding water-cut curves for the coarse-
grid solution. This indicates that AMsA is more capable of resolving high-flow
regions adequately, also without the local fine-grid computations.
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Fig. 5.4. Saturation errors for simulations on the bottom ten layers of the upper
Ness formation.
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Fig. 5.5. Water-cut curves for simulations on the bottom ten layers of the upper
Ness formation.

We turn now to the full three-dimensional model of the upper Ness forma-
tion. The previous examples showed that the DD algorithm seems to produce
solutions that very closely match the reference solution, and it is computa-
tionally very expensive to compute a solution on the full upper Ness model
using the implicit upstream method on the fine grid, therefore we use here the
solution obtained using the DD algorithm as the reference solution. Again we
let the coarse grid be defined so that each grid block in the grid consists of
10 × 10 × 5 grid cells.
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Figure 5.6 demonstrates that the errors are approximately the same as in
the previous example. We observe also that the saturation error on the coarse
grid for the multiscale algorithm is less than half of the corresponding error
for the coarse-grid solution. Furthermore, the water-cut curves for the multi-
scale algorithm depicted in Figure 5.7 closely match the water-cut curves for
the adaptive algorithm and the DD algorithm, except possibly for producer 4
where we observe a mismatch. In contrast, the coarse-grid solution continues
to overestimate the breakthrough times, and thus overpredicts the oil produc-
tion. This shows that the multiscale method may be used as an alternative to
pseudo-functions for enhancing the accuracy of coarse-grid simulations.
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Fig. 5.6. Saturation errors for simulations on the full upper Ness formation.
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Fig. 5.7. Water-cut curves for simulations on the full model of the upper Ness
formation.
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5.2.7 Discussion on local boundary conditions

In our numerical simulations, we imposed si = 1 on the inflow boundary Γ in
T

(see (5.10)). For general coarse grids, these boundary conditions may seem
a bit crude. Indeed, these boundary conditions are exact only if there is a
sharp front in the global solution that, for each block, hits the whole inflow
boundary at approximately the same instant. It should be emphasized that
the purpose of the interpolator is not primarily to get the fine-scale details
correct, but rather to introduce a flexible mechanism that allows us to model
the flow on a coarse scale more correctly.

To get accurate solutions, also on fine grids, one must either use an adap-
tive component to improve the solution in transient flow regions, or build
more information into the interpolator. For instance, note that the inherent
flexibility with respect to coarse grids allows us to reduce the error associated
with this type of boundary condition by using flow-based, non-Cartesian grids.
In particular, by using coarse blocks with boundaries aligned with level sets
of time-of-flight function, one can achieve higher accuracy compared to the
approaches where Cartesian coarse blocks (or coarse blocks selected indepen-
dent of global flow features) are used. This option is discussed in [5]. We note
that our numerical results show that the multiscale approach using Cartesian
coarse blocks still provides a good overall accuracy. One can also use limited
global information, such as the time-of-flight function, in constructing coarse
blocks.

5.2.8 Other approaches for coarsening the transport equation

There are a number of other techniques for coarsening the saturation equation
that can be coupled to the pressure equation. Next, we describe a few of these
approaches very briefly without detailed numerical studies which can be found
in the literature.

A macrodispersion model for transport equation

The approach entails using a macrodispersion formulation for the coarse-scale
saturation equation. We consider the upscaling of the saturation equation
using perturbation techniques following, for example, [102, 101]. We omit the
details of the derivation of the upscaled model. We first consider the case
λ(S) = 1 and f(S) = S in (5.1) and (5.2) (with qw = 0 in (2.41)). The
upscaled model was derived using perturbation arguments for (5.2), in which
the saturation S and the velocity v on the fine scale are assumed to be the
sum of their volume-averaged and fluctuating components,

v = v + v′, S = S + S′. (5.12)

Here the overbar quantities designate the volume average of fine-scale quanti-
ties over coarse blocks. For simplicity, one can assume that the coarse blocks
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are rectangular which allows stating ∇F = ∇F , if averages are taken over
dual volume. In general, one can also perform the perturbation technique di-
rectly on the target coarse block as done in [102]. In this case, the averages of
divergences can be written over the boundaries of the coarse blocks. Substi-
tuting (5.12) into the saturation equation for single-phase and averaging over
coarse blocks we obtain

∂S

∂t
+ v · ∇S + v′ · ∇S′ = 0. (5.13)

The term v′ · ∇S′ represents subgrid effects due to the heterogeneities of con-
vection. This term can be modeled using the equation for S

′
that is derived

by subtracting (5.13) from the fine-scale equation (5.2),

∂S
′

∂t
+ v · ∇S′

+ v
′ · ∇S + v

′ · ∇S′
= v′ · ∇S′ .

This equation can be solved along the characteristics dx/dt = v by neglecting
higher-order terms. Carrying out the calculations in an analogous manner to
the ones performed in [102] we can easily obtain the following coarse-scale
saturation equation

∂S

∂t
+ v · ∇S = div(D(x, t)∇S(x, t)), (5.14)

where D(x, t) is the dispersive matrix coefficient, whose entries are written as

Dij(x, t) =
[∫ t

0

v′i(x)v
′
j(x(τ))dτ

]

. (5.15)

Next it can be easily shown that the diffusion coefficient can be approximated
up to the first order by

Dij(x, t) = v′i(x)L
D
j

where LD
j is the displacement of the particle in the j direction that starts at

the point x and travels with velocity −v. The diffusion term in the coarse
model for the saturation field (5.14) represents the effects of the small scales
on the large ones. Note that the diffusion coefficient is a correlation between
the velocity perturbation and the displacement. This is different from [102]
where the diffusion is taken to be proportional to the length of the coarse-
scale trajectory. Using MsFEMs for the pressure equation we can recover the
small-scale features of the velocity field that allow us to compute the fine-scale
displacement.

For the nonlinear flux f(S), we can use a similar argument by expanding
f(S) = f(S) + fS(S)S

′
+ · · · . In this expansion we take into account only

linear terms and assume that the flux is nearly linear. This case is similar to
the linear case and the analysis can be carried out in an analogous manner.
The resulting coarse-scale equation has the form
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∂S

∂t
+ v · ∇S = div(fS(S)2D(x, t)∇S(x, t)), (5.16)

where D(x, t) is the macrodiffusion corresponding to the linear flow. This for-
mulation has been derived within the stochastic framework in [173]. We note
that the higher-order terms in the expansion of f(S) may result in other ef-
fects that have not been studied extensively to our best knowledge. In [101] the
authors use a similar formulation although their implementation is different
from ours. Numerical results can be found in [102, 101].

Coarsening in a flow-based coordinate system

In [106, 247], a flow-based coordinate system is used to coarsen the saturation
equation. A flow-based coordinate system consists of single-phase pressure
and the corresponding streamfunction fields. The use of global information
can improve the multiscale finite element method. In particular, the solution
of the pressure equation at the initial time is used to construct the boundary
conditions for the basis functions. It is interesting to note that the multiscale
finite element methods that employ limited global information reduce to the
standard multiscale finite element method in a flow-based coordinate system.
This can be verified directly and the reason behind it is that we have already
employed limited global information in a flow-based coordinate system.

To achieve a high degree of speedup in two-phase flow computations, we
consider the upscaling of the transport equation in a flow-based coordinate
system. Flow-based coordinate systems simplify the scale interaction and allow
us to perform upscaling of the transport equation. In particular, in a flow-
based coordinate system, the saturation equation becomes one-dimensional
with a varying velocity field along the streamlines. This allows us to use the
perturbation approach and perform upscaling using macrodispersion models.

Extensive numerical studies are presented in [247, 106]. These numeri-
cal tests use the MsFVEM for two-phase flow. Note that global information
is already incorporated into the multiscale basis functions and the standard
MsFVEM is equivalent to the MsFVEM using limited global information in-
troduced earlier. In our simulations, a moving mesh is used to concentrate the
points of computation near the sharp front. Because the saturation equation is
one-dimensional in the pressure–streamline coordinates, the implementation
of the moving mesh is straightforward and efficient. We have presented the
numerical results for different types of heterogeneities. All numerical results
show that one can achieve accurate results with low computational cost.

Multiscale analysis for convection dominated equations

In this section, we consider a systematic upscaling framework for the transport
equation based on multiscale homogenization. In [144], Hou, Westhead, and
Yang introduced a novel multiscale analysis for the two-phase immiscible flows
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in heterogeneous porous media. In particular they derived the homogenized
equations by projecting the fluctuation of saturation onto a suitable subspace.
Furthermore, they demonstrated by extensive numerical experiments that the
upscaling method can accurately capture the multiscale solution of the two-
phase flow. Very recently, Hou and Liang [142] further improved the multiscale
analysis of Hou et al. [144] and developed a systematic multiscale analysis to
upscale convection-dominated transport equations.

To demonstrate the main idea, we consider the following transport equa-
tion which contains a strong convection term and a weak diffusion term

∂Sε

∂t
+ v(x,

x

ε
, t) · ∇Sε = εmdiv(D(x,

x

ε
, t)∇Sε),

where Sε|t=0 = SI(x), m ∈ [2,∞] is an integer, v(x, y, t) and D(x, y, t) are
assumed to be periodic in y = x/ε, and ε characterizes the small scale in the
media, Moreover, we assume that v is oscillatory divergence-free with respect
to the fast variable y; that is divy(v) = 0. The local Peclet number is of order
O(ε−m+1).

Next, we define a null space N , N = {f ∈ H1
Y , v ·∇yf = 0,∀y ∈ Y } ⊂ L2

Y ,
where L2

Y is the L2 space of periodic functions. This functional space plays
an important role in our multiscale analysis. We also introduce a range space
W, W = {v · ∇yθ : θ ∈ H1

Y }. In [144], the authors have shown that N and W
form an orthogonal decomposition of L2

Y ; that is

L2
Y = N ⊕W.

Let P be the projection H1
Y → N . Define the projection Q: L2

Y → W as

‖g −Q(g)‖ = min
θ∈H1

Y

‖g − v · ∇yθ‖.

As pointed out in [144], P is related to Q via P(g) = g−Q(g), and Q can be
computed by Q(g) = v · ∇yθ, where θ is the solution of

divy(E∇yθ) = v · ∇yg, y ∈ Y, (5.17)

with periodic boundary condition and the matrix is defined by E = vT v whose
(i, j) entry is given by vivj , where v = (v1, v2, v3). Moreover, the projection
operator P is equivalent to the streamline averaging projection operator [144,
142].

Guided by our multiscale analysis, we look for a multiscale expansion of
the concentration in the form

Sε(x, t) = S0(x, x/ε, t) + εS1(x, x/ε, t) +O(ε2),

where Sj (j = 0, 1) are periodic functions of y.
In [142], we showed that the leading-order approximation S0 satisfies the

following homogenized equations
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v · ∇yS0 = 0, (5.18)
∂S0

∂t
+ v · ∇xS0 + v · ∇yw = 0, (5.19)

where w ∈ W, and the initial condition is given by S0|t=0 = SI(x).
Note that there are two equations for S0 given by (5.18) and (5.19), but

there is no evolution equation for w. The equation for w can be derived by
imposing the algebraic constraint (5.18) for S0. The role of w is to enforce
v · ∇yS0 = 0, which is similar to the role that the pressure plays in the
incompressible Navier–Stokes equations. The solution w can be obtained by
solving (5.17). In [144], an effective iterative method was introduced to solve
the degenerate elliptic equation (5.17).

One of the main contributions of [142] is to show that the homogenized
equations (5.18) and (5.19) are well-posed and obtain an optimal error esti-
mate

‖Sε(x, t) − S0(x,
x

ε
, t)‖L2 ≤ Cε.

We now decompose c0 and v into the sum of their average and fluctua-
tion, S0(x, y, t) = S0(x, t) + S′

0(x, y, t), v(x, y, t) = v(x, t) + v′(x, y, t), where
f(x, t) =

∫
Y
f(x, y, t)dy. It is easy to show that S0 and S′

0 satisfy the following
equations

∂S0

∂t
+ v · ∇xS0 + v′ · ∇xS′

0 = 0, (5.20)

∂S′
0

∂t
+ v · ∇xS

′
0 + v′ · ∇xS0 + v′ · ∇xS

′
0 − v′ · ∇xS′

0 + v · ∇yw = 0.

We remark that the term v′ · ∇xS′
0 in (5.20) plays a role similar to the

Reynolds stress term in turbulence modeling. This is the term that introduces
the nonlocal memory effect into the average equation.

The above multiscale analysis has been applied to upscale the saturation in
the two-phase flow in [144]. To solve the coupled elliptic equation for pressure
and the transport equation for saturation, we can use the IMPES method,
where the pressure equation is solved using MsFVEM and then the veloc-
ity approximation is used for upscaling of the transport equation. In [144],
the authors presented many numerical experiments for the immiscible flows
in porous media based on a multiscale analysis similar to the one described
here. They showed that their upscaling method captures both the average
and the small-scale fluctuation very well for permeability fields described us-
ing two-point correlation functions. By using a new reparameterization tech-
nique introduced in [151], we have applied this upscaling method to simulate
more realistic heterogeneous porous media without scale separation or peri-
odic structure in [144].
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5.2.9 Summary

In summary, the main purpose of this section has been to introduce a new
(adaptive) multiscale method for solving the transport equation that arises in
immiscible two-phase flow in porous media. The basic idea is to compute the
global flow on a coarse grid, and map the averaged grid block saturations onto
plausible saturation profiles on a finer subgrid. To enhance the accuracy of the
coarse-grid saturation profile, while at the same time avoiding an upscaling
phase involving, for example, the construction of pseudo-relative permeability
functions, we introduce a numerical scheme for solving the transport equation
on a coarse grid that honors fine-scale structures in the velocity field in a
mathematically consistent manner. Moreover, to capture rapid transitions in
saturation values near propagating saturation fronts accurately, we propose to
include an adaptive component in the algorithm. In the adaptive algorithm,
we solve the saturation locally on a fine grid in transient flow regions. The pro-
posed (adaptive) multiscale method has been analyzed and tested on models
with complex heterogeneous structures. We have also extended and imple-
mented multiscale methods for transport equations on unstructured corner-
point grids (see [6]). In this section, we also discussed a few other approaches
for coarsening transport equations.

5.3 Applications to Richards’ equation

5.3.1 Problem statement

In this section we consider the applications of MsFEMs to Richards’ equation
([236]), which describes the infiltration of water flow into porous media whose
pore space is filled with air and some water. The equation describing Richards’
equation under some assumptions is given by

∂

∂t
θ(p) − div(k(x, p)∇(p+ x3)) = 0 inΩ, (5.21)

where θ(p) is the volumetric water content and p is the pressure. The following
are assumed ([236]) for (5.21): (1) the porous media and water are incompress-
ible; (2) the temporal variation of the water saturation is significantly larger
than the temporal variation of the water pressure; (3) the air phase is infinitely
mobile so that the air pressure remains constant (in this case it is atmospheric
pressure which equals zero); and (4) neglect the source/sink terms.

Constitutive relations between θ and p and between k(x, p) and p are devel-
oped appropriately, which consequently gives nonlinearity behavior in (5.21).
The relation between the water content and pressure is referred to as the mois-
ture retention function. The equation written in (5.21) is called the coupled-
form of Richards’ equation. This equation is also called the mixed form of
Richards’ equation, due to the fact that there are two variables involved in
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it, namely, the water content θ and the pressure head p. Taking advantage of
the differentiability of the soil retention function, one may rewrite (5.21) as
follows

C(p)
∂

∂t
p− div(k(x, p)∇(p+ x3)) = 0 inΩ, (5.22)

where C(p) = dθ/dp is the specific moisture capacity. This version is referred
to as the head-form (h-form) of Richards’ equation. Another formulation of
the Richards’ equation is based on the water content θ,

∂

∂t
θ − div(D(x, θ)∇θ) − ∂k

∂x3
= 0 inΩ, (5.23)

where D(θ) = k(θ)/(dθ/dp) defines the diffusivity. This form is called the
θ-form of Richards’ equation.

The sources of nonlinearity of Richards’ equation come from the moisture
retention and relative hydraulic conductivity functions, θ(p) and k(x, p), re-
spectively. Reliable approximations of these relations are in general tedious
to develop and thus also challenging. Field measurements or laboratory ex-
periments to gather the parameters are relatively expensive, and furthermore,
even if one can come up with such relations from these works, they will be
somehow limited to the particular cases under consideration.

Perhaps the most widely used empirical constitutive relations for the mois-
ture content and hydraulic conductivity is due to the work of van Genuchten
[131]. He proposed a method of determining the functional relation of rela-
tive hydraulic conductivity to the pressure head by using the field observation
knowledge of the moisture retention. In turn, the procedure would require
curve-fitting to the proposed moisture retention function with the experimen-
tal/observational data to establish certain parameters inherent to the resulting
hydraulic conductivity model. There are several widely known formulations
of the constitutive relations: the Haverkamp model

θ(p) =
α (θs − θr)
α+ |p|β + θr, k(x, p) = ks(x)

A

A+ |p|γ ;

van Genuchten model [131]

θ(p) =
α (θs − θr)

[1 + (α|p|)n]m
+θr, k(x, p) = ks(x)

{
1 − (α|p|)n−1 [1 + (α|p|)n]−m

}2

[1 + (α|p|)n]m/2
;

exponential model [268]

θ(p) = θs eβp, k(x, p) = ks(x) eαp.

5.3.2 MsFVEM for Richards’ equations

The spatial field ks(x) in the above models is also known as the saturated hy-
draulic conductivity. It has been observed that the hydraulic conductivity has
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a broad range of values, which together with the functional forms presented
above confirm the nonlinear behavior of the process. Furthermore, the water
content and hydraulic conductivity approach zero as the pressure head goes
to very large negative values. In other words, the Richards’ equation has a
tendency to degenerate in a very dry condition, that is conditions with a large
negative pressure. Because we are interested in mass conservative schemes, fi-
nite volume formulation (3.13) of the global problem instead of finite element
formulation is used. For (5.21), it is to find ph ∈Wh such that
∫

Vz

(θ(ηph) − θn−1) dx−Δt
∫

∂Vz

k(x, ηph)∇pr,h · nds = 0, ∀z ∈ Z0
h, (5.24)

where θn−1 is the value of θ(ηph) evaluated at time-step n− 1, and pr,h ∈ Ph

is a function that satisfies the boundary value problem:

−div(k(x, ηph)∇pr,h) = 0 in K,

pr,h = ph on ∂K.

Here Vz is the control volume surrounding the vertex z ∈ Z0
h and Z0

h is the
collection of all vertices that do not belong to the Dirichlet boundary (see
Section 3.2).

MsFEM (or MsFVEM) offers a great advantage when the nonlinearity and
heterogeneity of k(x, p) are separable; that is

k(x, p) = ks(x) kr(p). (5.25)

In this case, as we discussed earlier, the local problems become linear and the
corresponding Ph is a linear space; that is we may construct a set of basis
functions {φz}z∈Z0

h
(as before) such that they satisfy

−div(ks(x)∇φz) = 0 in K,

φz = φ0
z on ∂K,

where φ0
z is a piecewise linear function. We note that if ph has a discontinuity

or a sharp front region, then the multiscale basis functions need to be updated
only in that region. The latter is similar to the use of MsFEM in two-phase
flow applications. In this case the basis functions are only updated along the
front. Now, we may formulate the finite-dimensional problem. We want to
seek pr,h ∈ Ph with pr,h =

∑
z∈Z0

h
pzφz such that

∫

Vz

(θ(ηph) − θn−1) dx−Δt
∫

∂Vz

ks(x) kr(ηph)∇pr,h · nds = 0,

for every control volume Vz ⊂ Ω. To this equation we can directly apply the
linearization procedure described in [133]. Let us denote

rm = pm
r,h − pm−1

r,h , m = 1, 2, 3, ..., (5.26)
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where pm
r,h is the iterate of pr,h at the iteration level m. Thus, we would like

to find rm =
∑

z∈Z0
h
rmz φz such that for m = 1, 2, 3, ... ‖rm‖ ≤ δ with δ being

some pre-determined error tolerance
∫

Vz

C(ηpm−1
h ) rm dx−Δt

∫

∂Vz

ks(x) kr(ηpm−1
h )∇rm · nds = Rh,m−1,

with

Rh,m−1 = −
∫

Vz

(θ(ηpm−1
h )−θn−1) dx+Δt

∫

∂Vz

ks(x) kr(ηpm−1
h )∇pm−1

r,h ·nds.

(5.27)
The superscript m at each of the functions means that the corresponding
functions are evaluated at an iteration level m.

5.3.3 Numerical results

We present several numerical experiments that demonstrate the ability of the
coarse models presented in the previous subsections. The coarse models are
compared with the fine model solved on a fine mesh. We have employed a
finite volume difference to solve the fine-scale equations. This solution serves
as a reference for the proposed coarse models. The problems that we consider
are typical water infiltration into an initially dry soil. The porous media that
we consider is a rectangle of size L1×L2 (see Figure 5.8). The fine model uses
256×256 rectangular elements, and the coarse model uses 32×32 rectangular
elements.

Γ
L

Γ
R

Γ
B

Γ
T

L 1

L 2

Fig. 5.8. Rectangular layout of porous media.

A realization of the hydraulic conductivity field ks(x) is generated using
geostatistical package GSLIB ([85]). We have used a spherical variogram with
prescribed correlation lengths (l1, l2) and the variance (σ) for this purpose.
All examples use σ = 1.5.
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The first problem is a soil infiltration, which was first analyzed by
Haverkamp (cf. [64]). The porous media dimension is L1 = 40 and L2 = 40.
The boundary conditions are as follows. ΓL and ΓR are impermeable, and
Dirichlet conditions are imposed on ΓB and ΓT , namely pT = −21.7 in ΓT ,
and pB = −61.5 in ΓB . The initial pressure is p0 = −61.5. We use the
Haverkamp model to construct the constitutive relations. The related param-
eters are α = 1.611 × 106, θs = 0.287, θr = 0.075, β = 3.96, A = 1.175 × 106,
and γ = 4.74. For this problem we assume that the nonlinearity and hetero-
geneity are separable, where the latter comes from ks(x) with ks = 0.00944.
We assume that appropriate units for these parameters hold. There are two
cases that we consider for this problem, namely the isotropic heterogeneity
with l1 = l2 = 0.1, and the anisotropic heterogeneity with l1 = 0.01 and
l2 = 0.20. For the backward Euler scheme, we use Δt = 10. Note that the
large value of Δt is due to the smallness of ks (average magnitude of the dif-
fusion). The comparison is shown in Figures 5.9 and 5.10, where the solutions
are plotted at t = 360.

The second problem is a soil infiltration through porous media whose di-
mension is L1 = 1 and L2 = 1. The boundary conditions are as follows.
ΓL and ΓR are impermeable. Dirichlet conditions are imposed on ΓB with
pB = −10. The boundary ΓT is divided into three parts. On the middle part,
a zero Dirichlet condition is imposed, and the rest are impermeable. We use
the exponential model to construct the constitutive relations. with the fol-
lowing related parameters: β = 0.01, θs = 1, ks = 1, and α = 0.01. The
heterogeneity comes from ks(x) and α(x). Clearly, for this problem the non-
linearity and heterogeneity are not separable. Again, isotropic and anisotropic
heterogeneities are considered with l1 = l2 = 0.1 and l1 = 0.20, l2 = 0.01,
respectively. For the backward Euler scheme, we use Δt = 2. The comparison
is shown in Figures 5.11 and 5.12, where the solutions are plotted at t = 10.

We note that the problems that we have considered are vertical infiltration
on the porous media. Hence, it is also useful to compare the cross-sectional
vertical velocity that will be plotted against the depth z. Here, the cross-
sectional vertical velocity is obtained by taking an average over the horizontal
direction (x-axis).

Figure 5.13 shows comparison of the cross-sectional vertical velocity for
the Haverkamp model. The average is taken over the entire horizontal span
because the boundary condition on ΓT (and also on ΓB) is all Dirichlet con-
dition. Both plots in this figure show a close agreement between the fine
and coarse models. For the exponential model, as we have described above,
there are three different segments for the boundary condition on ΓT ; that is a
Neumann condition on the first and third part, and a Dirichlet condition on
the second/middle part of ΓT . Thus, we compare the cross-sectional vertical
velocity in each of these segments separately. Figure 5.14 shows the compar-
ison for one of these segments. The agreement between the coarse-grid and
fine-grid calculations is excellent.
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Fig. 5.9. Haverkamp model with isotropic heterogeneity. Comparison of water pres-
sure between the fine model (left) and the coarse model (right).

Fig. 5.10. Haverkamp model with anisotropic heterogeneity. Comparison of water
pressure between the fine model (left) and the coarse model (right).

Fig. 5.11. Exponential model with isotropic heterogeneity. Comparison of water
pressure between the fine model (left) and the coarse model (right).
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Fig. 5.12. Exponential model with anisotropic heterogeneity. Comparison of water
pressure between the fine model (left) and the coarse model (right).
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Fig. 5.13. Comparison of vertical velocity on the coarse grid for Haverkamp model:
isotropic heterogeneity (left) and anisotropic heterogeneity (right).

5.3.4 Summary

In summary, the main goal of this section has been to apply MsFEMs to
Richards’ equations described by nonlinear parabolic equations. In particular,
the MsFVEM for nonlinear problems developed in Section 3.2 is used for
solving Richards’ equation on the coarse grid. We presented numerical results
for various heterogeneous hydraulic conductivity fields. Our numerical results
show that MsFEMs can be used with success in predicting the solution on the
coarse grid.



5.4 Applications to fluid–structure interaction 119

0 0.2 0.4 0.6 0.8 1
−18

−16

−14

−12

−10

−8

−6

−4

z

V
e

rt
ic

a
l 
V

e
lo

c
it
y

Fine Model
Coarse Model

0 0.2 0.4 0.6 0.8 1
−10

−9

−8

−7

−6

−5

−4

−3

z

V
e

rt
ic

a
l 
V

e
lo

c
it
y

Fine Model
Coarse Model

Fig. 5.14. Comparison of vertical velocity on the coarse grid for exponential model:
isotropic heterogeneity (left) and anisotropic heterogeneity (right). The average is
taken over the second third of the domain.

5.4 Applications to fluid–structure interaction

5.4.1 Problem statement

MsFEMs can also be used to solve complex multiphysics problems. In this
section, we extend the MsFEM to solving a fluid–structure interaction (FSI)
problem on the coarse grid. At the fine scale, we consider Stokes flow past
an elastic skeleton. Thus, our domain Ω has two parts: a fluid domain Ωf

0

and a solid domain Ωs
0. The subscript 0 indicates that these are the domains

of the two constituents (solid and fluid) at rest. As macroscopic boundary
conditions are applied, the fluid starts to flow, thus exerting forces on the
solid, causing them to deform. As a steady state is achieved the fluid flows
in a domain Ωf = Ω \ Ωs, and the forces that the fluid exerts on the solid
at their interface Γ =

(
∂Ωf ∩ ∂Ωs

)
\ ∂Ω are balanced by the elastic stresses

inside the solid. The precise formulation of the FSI problem is:

Γ ={X + u(X)|∀X ∈ Γ0}, (5.28)

− μΔv + ∇p = b in Ωf , div(v) = 0 in Ωf , v = 0 on Γ, (5.29)
− div(S(E)) = b0 in Ωs

0, (5.30)

det(∇u+ I)(−pI + 2μD(x(X))) (∇u+ I)−T
n0 = S(E)n0 on Γ0.

(5.31)

Note that Γ is the set of points X + u(X). The above equation utilizes
the standard notation from continuum mechanics. The deformation gradi-
ent F (X) = ∇x(X), the displacements in the solid u(X) = x(X) − X, the
infinitesimal strain E(X) = 1

2

(
∇u(X) + ∇u(X)T

)
, the fluid velocity v(x)

and, finally, the symmetric part of its gradient D(x) = 1
2

(
∇v(x) + ∇v(x)T

)
.

Furthermore, the usual Cauchy stress tensor is denoted by T (x), which is the
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Fig. 5.15. Schematic of nonlinear MsFEM for FSI. The microstructure shown is an
actual sample of porous shape memory alloy [172].

convenient stress measure when describing the fluid. Observe that Cauchy
stress tensor is a spatial field, defined on the deformed configuration of the
body. For the solid part, the first Piola-Kirchhoff stress tensor S(X) is more
appropriate as it gives a description of the stresses in Lagrangian coordinates.
The two are related by the identity (see, e.g., [157]):

S(X) = det(F (X))T (x(X))F−T (X). (5.32)

In the above formulation of the FSI system the constitutive equation for the
Piola-Kirchoff stress S is left unspecified. It has to be specified taking into
account the particular solid at hand (see [157] for details). In our numerical
examples, the linear elasticity model will be used; that is S(E) = C : E. We
refer, for example, to [158, 232] for full details on deriving the FSI problem.

Observe that the position of the interface is a part of the boundary value
problem, and the solid–fluid coupling term (5.31) is nonlinear in u. Therefore,
the FSI problem is nonlinear, even when the constitutive equation for the
solid is a linear one.

5.4.2 Multiscale numerical formulation

The mapping EMsFEM , which couples the coarse scale pressure p0 and dis-
placements u0 to the fine-scale fluid velocity v, pressure p and displacements
u is defined through the fine-scale FSI problem (5.28)-(5.31). In our problem,
we use RVE for local computations (see Figure 5.15 for the illustration1).
Note that EMsFEM defines a map from a coarse-scale solution {ph, uh} with
given Γ0 to a fine-scale approximation {pr,h, vr,h, ur,h} via the local solution of
(5.28)-(5.31). Various boundary conditions can be chosen for local problems.
In our simulations, we use periodic boundary conditions such that the spatial
averages of pr,h and ur,h are the same as those for ph and uh. In general, one
can also take ph and uh as boundary conditions. In the computation of the lo-
cal FSI solution with given ph, uh and the reference interface Γ0, one solves an

1 The right figure is the courtesy of the Shape Memory Alloy Research Team
(SMART) at Texas A & M University
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iterative problem. We assume that this iterative problem converges and pro-
vides a unique fine-scale solution {pr,h, vr,h, ur,h}. This condition guarantees
that EMsFEM is a single-valued map.

Next, we discuss the coarse-scale formulation of the problem. In coarse-
scale simulations, our goal is to find approximations of p0 and u0, denoted
by ph and uh. When substituting (pr,h, vr,h, ur,h) (given ph and uh) into the
fine-scale equations, one needs to solve the resulting system on the coarse-
dimensional space. There are various approaches as discussed earlier (see
Section 2.4). In particular, one can multiply the fine-scale residual by coarse-
scale test functions, or minimize the residual at some coarse points, or use
coarse-scale equations when available. These procedures result in a nonlinear
equation for finding (ph, uh)

G(ph, uh) = 0, (5.33)

where G is the reduced variational formulation. This equation is solved via a
fixed-point iteration. Here, we consider a simple, physically intuitive, iterative
method. In particular, we assume that the coarse-scale equation for the pres-
sure is given by the Darcy equation (see (1.1)) and the coarse-scale equation
for the elasticity has the same form as the underlying fine-scale equations,
but with upscaled elastic properties that are computed based on local RVE
computations. We carry out numerical simulations iteratively. Given pn

h and
un

h at the nth iteration, pn
r,h, vn

r,h, and un
r,h are computed. This is done by

using a local problem in RVE as described above. This step involves the so-
lution of the elasticity problem and yields new pore geometry based on the
deformations. Furthermore, taking into account local geometry of the pore
space, the permeabilities kn and upscaled elastic properties are computed via
standard cell problems (e.g., [240, 42]). Once the permeabilities are computed,
the global problem

div(kn(x)∇pn+1) = f

is solved and pn+1
h (finite element projection of pn+1) is calculated. Similarly,

un+1
h is computed by solving elasticity equation with upscaled elastic proper-

ties (e.g., C∗ for linear solids). This iterative procedure can be summarized in
Algorithm 5.4.1. Modifications of this algorithm are presented in [232].

Algorithm 5.4.1 Iterative homogenization of strongly coupled FSI problem

• Initialize all micro- and macro-fields to zero.
• Project pn

h and un
h using EMsFEM .

• Evaluate the permeability and elastic properties in a coarse-grid block that
involves the computation of the deformed pore geometry.

• Compute macroscopic quantities pn+1
h and un+1

h .
• Check for convergence and, if necessary, return to Step 2.
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In the numerical examples, we consider flow past elastic obstacles. The
fluid surrounds the obstacles and the obstacles are supported rigidly in their
center. Note that the rigid support is necessary, otherwise the flow will move
them. Observe also that in 2D either the fluid or the solid domains can be
connected, but not both. Therefore, to study upscaling of deformable porous
media the solid domain has to be disconnected, so that the fluid can flow
throughout the domain and interact with the solid. This simplification allows
us to formulate a coarse-scale equation for the macroscopic pressure p0 only,
and thus, EMsFEM is defined for a given ph.

5.4.3 Numerical examples

In the numerical examples, we consider flow past a 2D periodic arrangement
of elastic obstacles (Figure 5.16). The obstacles are, in the reference configura-
tion, circular and centered in the middle of a square unit cell (Figure 5.16(a)).
The macroscopic domain is assumed periodic (with the period size ε) in the
reference configuration and we consider a series of macroscopic domains with
ε−1 = 4, 8, 16, .... The case ε = 1/16 is shown in Figure 5.16(b).

Fluid

Elastic Solid

Rigid support

Fluid

Elastic Solid

Rigid support

(a) Unit cell

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

(b) Macroscopic domain

Fig. 5.16. The unit cell (a) consists of circular linear elastic material, surrounded
by the fluid. The elastic media is supported rigidly in the center. The unit cell is
arranged periodically to form the macroscopic domain. (b) Macroscopic domain with
a 16 × 16 periodic arrangement of the unit cell (a).

The elastic material under consideration is linear and isotropic with
Young’s modulus E = 1.44 and Poisson’s ratio ν = 0.1. The fluid has vis-
cosity 0.1. These non-dimensional properties are selected such that a pressure
in the range 0.1−0.5 will produce a sizeable deformation in the solid and lead
to strongly coupled FSI problems.

The main objectives of this example are to demonstrate the behavior of
the iterative Algorithm 5.4.1. There are two main questions that need to be
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illuminated: first, whether the nonlinear iteration converges, and second, the
approximation that Algorithm 5.4.1 provides to the fine-scale solution of the
FSI problem needs to be investigated with respect to the scale parameter ε.

The boundary value problem is thus designed to meet both of these goals.
The macroscopic domain is the unit square (Figure 5.16(b)) and a uniform
pressure Pl is applied at the left side of the domain. The pressure at the
right side is 0 and no-flow boundary conditions are considered at the top and
bottom sides of the domain. These boundary conditions imply the fine-scale
solution is periodic in the x2-direction with the period being one horizontal
strip of (1/ε) unit cells. Also, the averaged macroscopic quantities are essen-
tially one-dimensional. This very simple boundary value problem is selected to
allow direct numerical simulations (DNS) of the fine-scale solution to the FSI
problem. A DNS is computationally very intensive both in memory consump-
tion and CPU time. However, with the selected boundary conditions, a DNS
can be performed on a single strip of unit cells and then periodically repeated
in the x2-direction. This leads to a factor of 1/ε reduction in computational
effort and allows us to compute the DNS solution on a series of domains with
ε−1 = 4, 8, 16, 32, 64.

We perform a series of computations with Pl = 0.1 and Pl = 0.2. The first
observation is that Algorithm 5.4.1 in fact behaves as a contraction operator
and converges. The approximate upscaled pressure is plotted in Figure 5.17.
Because, as already discussed, the upscaled pressure does not vary in the
x2 due the boundary conditions, the plot is a cross-section of the upscaled
pressure at a fixed location x2 = const. The number of iterations it took for
Algorithm 5.4.1 to reach a relative accuracy of ×10−6 is reported in Table 5.1.
Based on the results it is seen that the algorithm behaves as a contraction

Table 5.1. Performance of Algorithm 5.4.1. Listed are the iteration number it took
Algorithm 5.4.1 to converge as well as the error between the ”exact” DNS and the
MsFEM (fine-scale) solution for fine-scale displacements.

ε Pl = 0.1
Iterations L∞ Error L∞ Rel. Error L2 Error L2 Rel. Error

1/4 6 1.23 × 10−3 0.18 2.48 × 10−4 0.23
1/8 6 3.18 × 10−4 0.10 4.39 × 10−5 0.13
1/16 6 8.07 × 10−5 0.053 7.75 × 10−6 0.069
1/32 6 2.03 × 10−5 0.027 1.37 × 10−6 0.0351

Pl = 0.2
Iterations L∞ Error L∞ Rel. Error L2 Error L2 Rel. Error

1/4 8 2.96 × 10−3 0.22 4.93 × 10−4 0.22
1/8 8 7.94 × 10−4 0.126 8.78 × 10−5 0.127
1/16 8 2.06 × 10−4 0.068 1.56 × 10−5 0.067
1/32 8 5.25 × 10−5 0.035 2.75 × 10−6 0.034
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Fig. 5.17. Comparison of coarse-scale pressure profiles at x2 = 0.5.

operator and the number of iterations is independent of the length scale ε. The
same table also lists the comparisons of the DNS solution with the projected
fine-scale displacements (via the mapping EMsFEM ). Based on the error be-
tween the DNS displacements and the fine-scale displacements obtained via
the MsFEM, it is seen that the method is convergent in terms of ε. The actual
convergence rate requires a detailed theoretical analysis which is reported in
[232]. [232].

5.4.4 Discussions

In this section, the application of nonlinear MsFEM to complex multiphysics
problems was studied. Here, our goal was simply to discuss an application
of the MsFEM to FSI problems and we did not discuss many other existing
methods (e.g., [141, 123, 123, 174]). Note that the governing equations do not
have elliptic or parabolic forms such as those discussed in Chapter 3, but the
general concept of MsFEMs (see Section 2.4) can be applied for solving such
systems.

5.5 Applications of mixed MsFEMs to reservoir
modeling and simulation (by J. E. Aarnes)

Reservoir simulation — the modeling of flow and transport of hydrocarbons
in oil and gas reservoirs — is perhaps the most widely considered applica-
tion in the literature on numerical models for porous media flow. In fact,
numerical reservoir simulation has a history that goes back to the early days
of the computer. Due to constraints on computational capability, reservoir
simulation has been performed on very coarse models with limited spatial
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(a) Fine-scale solution

(b) First-order corrector ur,h

(c) Error between fine-scale solution and ur,h

Fig. 5.18. Displacements in a typical solution to the model problem. The macro-
scopic domain has 8 × 8 unit cells, and due to periodicity in the x2-direction, only
one horizontal row of unit cells is shown. The exact fine-scale displacements (a) can
be compared with the first-order corrector (b). The difference between the two is
shown in (c).

resolution. However, the current trend in geomodeling – the process of devel-
oping a conceptual geological description of the reservoir – is to build detailed
high-resolution models that match as closely as possible the geologists’ per-
ception of the reservoir. As a result, there is a steadily increasing gap between
the size of the geological model built by geologists, and the model used for
reservoir simulation. The reservoir simulation model is normally obtained by
coarsening or upscaling the geological model.

As an alternative to upscaling it has been suggested that multiscale meth-
ods can be used to run simulations directly on geological models. To this end
it is generally assumed that the fine and coarse grids overlap such that each
block in the coarse grid simply consists of a number of cells from the under-
lying fine grid. This means that one can perform the coarsening of the grid in
index space rather than in physical space, and thereby significantly simplify
the process of generating the coarse grid. In particular, one avoids the practi-
cal problems of resampling nonoverlapping cells/blocks in the fine/coarse grid
that are traditionally associated with upscaling.

In this section we make an effort to demonstrate some applications where
multiscale flow solvers used in combination with various methods for fast
computation of fluid transport may spur new ways of using flow information
as part of reservoir planning and management. In particular, we demonstrate
how the multiscale methods can be used to
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• Accelerate the solution of the pressure equation in three-phase black oil
reservoir simulation models (and retain the solution accuracy).

• Provide very rapid estimation of production characteristics on flow-grids
that are tuned to reservoir flow patterns.

• Almost instantly estimate injector–producer pairs and swept volumes.

The simulations were performed in Matlab on a desktop computer with a dual
AMD Athlon X2 4400+ processor with 1 MB cache and 2 GB memory.

5.5.1 Multiscale method for the three-phase black oil model

The mixed MsFEM discussed before, which was first introduced by Chen
and Hou [71], has later been modified in a sequence of papers [1, 11, 13,
12] to handle the geometric and physical complexity of real-field reservoir
models. For instance, whereas the original method was developed for solving
elliptic problems on Cartesian grids, the most recent version [12] is designed
for solving the parabolic pressure equation of three-phase black oil models
on real-field corner-point grids with faults. The three-phase black oil model
describes the flow of an aqueous phase (a), usually water, a liquid phase (l)
containing oil and liquefied gas, and a vapor phase (v) containing gas and
vaporized oil. The pressure equation for the three-phase black oil model may
be expressed on the following form:
⎛

⎝∂φpor

dpl
+ φpor

∑

j

cjSj

⎞

⎠ ∂pl

dt
+ ∇ ·

⎛

⎝
∑

j

vj

⎞

⎠+
∑

j

cjvj · ∇pl = q, (5.34)

where pl is liquid pressure, φpor is porosity, vj , cj and Sj are phase veloc-
ities, compressibilities, and saturations, respectively, and q is a volumetric
source term. The phase velocities are related to the phase pressures pj through
Darcy’s law:

vj = −kkrj

μj
(∇pj + ρjge3) , j = a, l, v. (5.35)

Here ρj is the density of phase j, g is the magnitude of acceleration of gravity,
e3 is the unit normal pointing vertically upwards, k is the absolute perme-
ability, and krj and μj are the relative permeability and viscosity of phase j,
respectively. See [12] for the definition of the phase compressibilities.

When applied to the three-phase black oil model the mixed MsFEM ap-
proximates the liquid pressure pl and the total velocity v =

∑
j vj in finite-

dimensional subspaces defined over the coarse grid. Recall that the pressure is
approximated in a regular mixed finite-element space consisting of functions
that are constant on each coarse block, and the velocity is approximated in
a special multiscale space spanned by special multiscale basis functions that
correspond to localized solutions of the pressure equation with a prescribed
direction of flow; see [1, 13]. Given these basis functions, the mixed MsFEM
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finds the best linear superposition (in a certain sense) under the constraint
that the velocity field is mass conservative on the coarse scale. Moreover, if
the local flow solutions are mass conservative on the fine grid, then so will the
global mixed MsFEM solution be.

To perform a reservoir simulation using the mixed MsFEM one proceeds
as follows.

1. Introduce a coarse grid, for instance, by partitioning in index space as
seen in Figure 2.10.

2. Detect all pairs of adjacent blocks.
3. For each pair, compute a velocity basis function.
4. Start simulation, for each time-step, do

a) Assemble and solve the coarse-grid system.
b) Recover fine-grid velocities/fluxes.
c) Solve the fluid-transport equations.

For increased stability, one may iterate on solving the pressure and transport
equations before advancing to the next time-step and thereby obtain a fully
implicit method [183]. Similarly, for cases with strong displacement fronts, one
may also update a few basis functions throughout the simulation to account
more accurately for a strong saturation dependence; see [1, 167].

To illustrate the accuracy of the multiscale solutions, we consider a two-
dimensional test-case modeling layer 68 from model 2 of the SPE comparative
solution project [78], henceforth called the SPE 10 model. This particular
layer is known to be a very difficult model, (see, e.g., [167]). The simulations
start with 0.4 PVI of gas injection followed by 0.6 PVI of water injection.
The reservoir is initially filled with 5% gas and 95% oil, four injection wells
constrained to inject at 300 bar are located at each corner, and one rate-
constrained production well is located in the middle.

We consider both the mixed MsFEM in [13] and the corresponding method
using limited global information to define the multiscale basis functions. The
fine grid is a 60-by-220 Cartesian grid and the coarse grid for the mixed
MsFEM is defined to be a 5-by-11 Cartesian grid. Accuracy of the mixed
MsFEM solutions is assessed by comparing the water-cut (fraction of water in
produced fluid) and gas-cut (fraction of gas in produced fluid) curves obtained
using a mixed MsFEM with the corresponding curves obtained by solving the
pressure equation on the fine grid using a mimetic finite difference method
(FDM) [177, 41]. The latter solution is referred to as the reference solution.
In all simulations the saturation equations are solved on the fine grid.

Figure 5.19 shows the logarithm of permeability, magnitude of velocity at
initial time, and water-cut and gas-cut as functions of PVI (pore volume in-
jected). Although there are certain differences between log |v| computed using
a mixed MsFEM (without limited global information) and the fine-grid solu-
tion depicted in Figure 5.19(b), we see that the mismatch has limited influence
on the production curves. Indeed, even with a coarse grid with only 55 blocks
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the mixed MsFEM produces water-cut and gas-cut curves that match the ref-
erence solution closely. This demonstrates that the mixed MsFEM captures
the main flow characteristics.

(a) Logarithm of permeability (b) log |v| computed using mimetic
FDM on fine grid

(c) log |v| computed using mixed
MsFEM on coarse grid

(d) log |v| computed using mixed
MsFEM with limited global in-
formation

(e) Water saturation at 0.6 PVI
computed using mimetic FDM
on fine grid

(f) Gas saturation at 0.6 PVI com-
puted using mimetic FDM on
fine grid

(g) Water saturation at 0.6 PVI
computed using mixed MsFEM

(h) Gas saturation at 0.6 PVI com-
puted using mixed MsFEM

(i) Water saturation at 0.6 PVI
computed using mixed MsFEM
with limited global information

(j) Gas saturation at 0.6 PVI
computed using mixed MsFEM
with limited global information

Fig. 5.19. Velocity solutions at initial time and saturation profiles at 0.6 PVI.
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(a) Simulations on layer 68 from the
SPE10 model

(b) Simulations on layers 81–85 from the
SPE10 model

Fig. 5.20. Water-cut and gas-cut for simulations on a two-dimensional model (layer
68 from SPE 10) and a three-dimensional model (layers 81–85 from SPE10).

When solving the pressure equation on the fine grid using the mimetic
FDM the time spent on solving the pressure equation stands for 86% of the
computation time. In the multiscale simulations, on the other hand, the time
spent on solving the saturation equations dominates the computation time
(54%). With our current Matlab implementation the multiscale simulations
run seven times faster than the fine-grid simulation. On larger models the
difference will generally be more substantial because the computational com-
plexity of the mixed MsFEM scales linearly with the model size. Moreover,
the mixed MsFEM is very easily parallelized: the assembly of the coarse-grid
system, which accounts for nearly 100% of the computation time, is called
embarrassingly parallel, and perfectly suited for the multicore computers and
distributed memory computing platforms. A further reduction in the com-
putation time spent on solving the pressure equation, or alternatively an in-
crease in model size, can therefore easily be achieved with parallel computing
resources. However, to reduce the total computation time further one should
also consider alternative strategies for solving the saturation equations.

Our numerical results show that mixed MsFEMs using limited global in-
formation give two-fold improvement in water and gas saturation errors when
single-phase flow information is used in the construction of multiscale basis
functions as discussed in Section 4.2. These results will be reported elsewhere.

5.5.2 Adaptive coarsening of the saturation equations

For large problems solving the saturation equations on the fine grid with a
finite difference method may not be feasible, or may become a bottleneck. An
alternative is to employ streamline methods [83] that advect the fluid phases
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along one-dimensional trajectories tangential to the velocity. These methods
are generally very fast provided large time-steps between each pressure step
can be taken. But it is also natural to ask if it is possible to exploit fine-grid
velocity resolution in a multiscale type approach for the saturation equation.
However, modeling the flow and transport accurately on coarse grids is diffi-
cult due to the dynamic nature of coarse-grid relative permeability functions
[37] and the need to capture sharp propagating fronts. Fortunately, recent
work [9] shows that one can model the main flow characteristics on relatively
coarse grids without using pseudo-functions provided the coarse grid adapts
to the local heterogeneity and resolves the dominant features in the velocity
field (e.g., high-flow channels). In the following, we present an approach for
generating such coarse grids and demonstrate how these grids can be used to
get accurate production data.

Assume that the velocity is modeled on a high-resolution model (e.g., using
the subresolution in mixed MsFEMs), and that it is prohibitively computa-
tionally expensive to solve the saturation equations on the same grid. Thus, we
propose creating an upscaled model only for the saturation equation. This is
done by generating a coarse grid that resolves underlying flow patterns more
accurately than traditional coarse grids used in reservoir simulation. These
grids allow us to capture more accurately flow quantities of interest, such as
production characteristics, without resorting to multiphase upscaling.

As for a mixed MsFEM, we use the term block to denote a cell in the
coarse grid to distinguish it from a cell in the fine grid. The coarsening strat-
egy presented in [9], henceforth called the nonuniform coarsening algorithm,
is essentially based on grouping cells according to flow magnitude. The al-
gorithm involves two parameters that determine the degree of coarsening: a
lower bound Vmin on the volume of each block and an upper bound Gmax on
total amount of flow through each block. These parameters are selected to
give the desired resolution of the saturation. A general rule for how to select
the parameters is given in [9].

The steps in the nonuniform coarsening algorithm are as follows:

1. Use the logarithm of the velocity magnitude in each cell to segment the
cells in the fine grid into ten different bins; that is, each cell c is assigned
a number n(c) = 1, . . . , 10 by upper-integer interpolation in the range of
g(c) = 10(log |v(c)|−min log |v|)

max log |v|−min log |v| .
2. Create an initial coarse grid with one block assigned to each connected

collection of cells with the same value of n(c).
3. Merge each block with less volume than Vmin with a neighboring block.
4. Refine each block that has more flow than Gmax.
5. Repeat Step 3 and terminate.

Note that only the saturation equations are discretized on this grid. To this
end, we employ a backward Euler method where the spatial discretization is a
finite volume method that is upstream weighted at the fine-grid level; see [9].
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This implies that we utilize the fine-grid resolution in the velocity field when
solving for saturation on the coarse grid.

Figures 5.21(b)–5.21(d) show the logarithm of a velocity field as a piece-
wise constant function on the fine grid, on a coarse Cartesian grid with 240
blocks, and on a nonuniformly coarsened grid with 236 blocks. If we denote
the reservoir by Ω, and N is the number of cells in the fine grid, then the
nonuniform coarse grid is generated under the constraint that each block B
satisfies

∫

B

dx ≥ 15
N

∫

Ω

dx and
∫

B

log |v|dx ≤ 75
N

∫

Ω

log |v| dx.

We clearly see that the nonuniformly coarsened grid adapts to underlying flow
patterns. In contrast, the channels with high velocity are almost impossible to
detect in Figure 5.21(c). The fact that the coarse grid is capable of resolving
the main flow trends leads to improved accuracy in modeled production char-
acteristics. This is illustrated in Figure 5.21(e) which shows water-cut curves
obtained on the nonuniform coarse grid are closer to the water-cut curve ob-
tained on the fine grid than the water-cut curve obtained on the Cartesian
coarse grid.

The robustness and accuracy of the nonuniform coarsening approach rel-
ative to modeling saturation on uniformly coarsened grids is demonstrated in
a series of numerical examples in [9]. Instead of including further numerical
results here, we only state the main conclusions from [9]:

• Nonuniformly coarsened grids give significantly more accurate water-cut
curves than one obtains using uniformly coarsened grids with a similar
number of blocks.

• It is very easy to select parameters Vmin and Gmax to give a desired level of
upscaling. Moreover, the accuracy of water-cut curves obtained on nonuni-
form coarse grids is nearly insensitive to the degree of upscaling.

• Although the nonuniform coarsening algorithm employs an initial veloc-
ity field, the coarse grid does not have to be regenerated if the flow field
changes significantly, for example, if new wells are opened, or choke set-
tings are altered. This is due to the fact that the nonuniform coarse grid
essentially adapts to high permeable regions with good connectivity.

• The grid needs to be regenerated if the geology is altered significantly. How-
ever, the time spent on generating the coarse grid is usually small relative
to the simulation time. The nonuniform coarsening algorithm therefore
allows grids to be generated at run-time.

Hence, in combination with mixed MsFEM the nonuniform coarsening ap-
proach provides a foundation for a simulation technology that is capable of
selecting grids at run-time and performing simulations in a matter of minutes,
rather than hours or days. This type of simulation time may open up for us-
ing reservoir simulation for operational decision support. In the next section
we discuss how the mixed MsFEM alone may be used to provide flow-based
information that can be used in operational reservoir management workflows.
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(a) Logarithm of permeability. (b) log |v| projected onto the fine grid
(13,200 cells).

(c) log |v| projected onto a grid
with 240 blocks.

(d) log |v| projected onto a nonuniformly
coarsened grid with 239 blocks.

(e) Water-cut curves

Fig. 5.21. Illustration of the nonuniform coarsening algorithm ability to generate
grids that resolve flow patterns and produce accurate production estimates.
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5.5.3 Utilization of multiscale methods for operational decision
support

Reservoir simulation is used today as part of long term strategic planning
(e.g., to predict production, quantify uncertainty, and evaluate the objective
function in history matching). But to our knowledge, it is not common to
utilize reservoir simulations or static flow-based information (for instance, a
snapshot of the reservoir pressure and velocity fields) for operational decision
support. A reason may be that traditional reservoir simulators are built as
black-box tools targeting applications where only the phase saturations and
production data are needed or used. Another reason may be that reservoir
simulation is generally time-consuming and limited to low-resolution models,
or localized high-resolution models. Hence, using reservoir simulation for de-
cision support is not regarded as an option when decisions need to be made
on a daily, hour-by-hour, or minute-by-minute basis.

With state-of-the-art multiscale techniques it is possible to evaluate flow
responses of suggested well locations almost instantly. These techniques can
of course also be used to run very fast reservoir simulations, but to release
the full potential of multiscale methods one should not see them only as tools
to accelerate simulations. Indeed, because multiscale methods can provide
(accurate) information about flow patterns almost instantly, also on large-scale
high-resolution models, they may have a huge potential for improving current
decision support tools and work processes where flow information is not used,
for example, due to too long response-time of conventional simulators. Using
a multiscale solver will be particularly efficient if the flow field needs to be
updated due to small or localized changes in the reservoir parameters, well
configuration, and so on. Then, all that is needed is to update a few local
basis functions to reflect changes in reservoir properties and so on, before the
global flow can be solved very efficiently on a relatively coarse grid in (less
than) a few seconds.

In the following we discuss various ways of using a snapshot of the reservoir
velocity field to extract information that we believe can be valuable in opera-
tional reservoir management. Examples of information that can be extracted
from a snapshot of the velocity field include:

• Injector–producer dependence
• Estimated well-sweep, that is, regions flooded by each injector
• How the flow changes by altering choke settings or inserting new wells
• How the flow is affected by perturbing the geology

One option for utilizing a velocity solution for these applications is to map
streamlines (lines tangential to the velocity). This option is available today
with commercial streamline simulators (e.g., FrontSim and 3DSL) or certain
geomodeling tools (e.g., IRAP). Although streamline tracing scales very well
with model sizes, current methods for solving the flow field do not. Utilizing a
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multiscale pressure solver will improve the scaling dramatically and open up
significantly faster response times or larger model sizes.

For complex reservoirs with strong heterogeneity, many wells, and/or a
large number of faults, streamlines typically form complex intertwined bundles
and it can be difficult for the naked eye to distinguish the different well-sweep
regions. In addition, accurate tracing of streamlines on models with complex
grid geometry is nontrivial. For such cases, it may be more advantageous to
provide information about reservoir partitioning and communication patterns
in terms of volumetric objects that are bounded by surface patches or consist
of a collection of grid cells. In the following, we present means to provide much
of the same information one can extract from a streamline map directly on
the physical grid in a way that is easy to compute and visualize.

Consider two equations of the same form: the time-of-flight equation

v · ∇τ = φpor, τ(∪win
i ) = 0, (5.36)

where win
i denotes injection well i, and the stationary tracer equation

v · ∇ci = 0, ci(win
i ) = 1. (5.37)

Here ci models the eventual concentration of a tracer if released continually
from injection well i, that is, if the injected substance is a unique tracer.

Presuming now that the velocity v is known, the time-of-flight equa-
tion (5.36) and the tracer equations (5.37) can be solved efficiently using an
upstream-weighted discontinuous Galerkin (dG) method [206]. For instance,
to compute the time-of-flight τ using a first-order upstream weighted dG
method, we solve the following system of equations,

∫

∂Ti

τ+v · nds =
∫

Ti

φpor dx, (5.38)

for all cells Ti. Here τ is a cellwise constant function, n is the unit normal
on ∂Ti pointing outward, and τ+ is τ evaluated on the upstream side of each
interface; that is

∫

∂Ti

τ+v · nds =
∑

j

(τ(Ti)max{vij , 0} + τ(Tj)min{vij , 0}) ,

where vij is the flux from Ti to Tj . Using an optimal reordering of the cells,
the discretized system can be cast as a block-triangular system that can be
solved hyperfast [206].

Figure 5.22 shows time-of-flight and stationary tracer distribution for a
case with ten pressure-constrained injection wells - eight along the perimeter
and two in the middle — and six rate-constrained production wells. In the
tracer profile plots the color of a cell corresponds to the tracer with the highest
concentration. We see here that the reservoir is neatly divided into separate
regions. Combining the time-of-flight information with the tracer data (i.e.,
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(a) Logarithm of time-of-flight
distribution

(b) Compartmentalization of reservoir
based on stationary tracer profiles for
each well

(c) Tracer profile with τ ≤ 0.3 PVI (d) Tracer profile with τ ≤ 0.7 PVI

Fig. 5.22. Example of how time-of-flight and stationary tracer profiles can be used
to give a visual picture of flooded regions.

by only coloring cells with τ ≤ T ), we can easily estimate and visualize the
regions that are expected to be flooded at time t = T by a unit displacement
front arising from each injector at time t = 0.

One area where plots of synthetic tracer profiles can be valuable is planning
of new wells, where tracer/time-of-flight data may be used to visually inspect
how adding a new or moving an existing well affects the injector-producer
coupling, breakthrough times, and flooded/drained regions. It is also easy to
add a mathematical measure indicating the quality of a well location. This
may be useful for reservoirs with many wells where it can be difficult to
assess the quality of a potential well location visually. When a new well is
added or a well is moved, the flow field needs to be updated before the tracer
distribution can be computed. Using mixed MsFEM with precomputed basis
functions, this can be performed very efficiently by only updating the basis
functions affected by the change in the given well (one basis function for each
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block the associated well-bore penetrates) and then assembling and solving
the coarse-grid system.

With an implementation in a compiled language one should be able to re-
compute and visualize tracer profiles in a matter of seconds or minutes, also for
large models with a large number of wells. With this type of computation time
one may foresee visual and interactive ways for the early-stage optimization
of the well placement, for example, by using simple trial and error. Optimiza-
tion methods can also be used to semi-automate the selection of well location
candidates. More accurate optimization will of course require more fine-tuned
simulations. Similarly, the visual power of tracer/time-of-flight type data can
be utilized in other workflows, such as ranking of multiple realizations, place-
ments of faults, to reveal regions of interest in an assisted history-matching
approach, and so on.

5.5.4 Summary

We have discussed the application of a multiscale finite element-based simula-
tion technology for three-phase black oil reservoir simulation. In particular, we
have discussed how the multiscale mixed finite element method allows faster
discretization of the pressure equation in reservoir simulation, or simulation
directly on high resolution geomodels.

Computation time/model size when saturation equations are solved with
– Conventional finite difference method: 10–30 times faster/larger
– Streamline methods/cell reordering: 20–100 times faster/larger
– Finite difference method on nonuniformly coarsened grid: 100– times

faster/larger

We have also discussed how using MsFEMs may open up for using flow-based
information for operational decision support, for instance by allowing almost
instant computation and visualization of well-sweep and injector-producer
pairs. Providing tools for rapid computation of this type of flow-based in-
formation can be instrumental in increasing the interactivity and reduce the
turnaround time for various reservoir management workflows. In particular,
to bridge the gap between the geomodel and the simulation model, it may
be necessary that simulation grids and suitable simulation technology can be
selected in a semi-automated manner at run-time to fit response-time require-
ments and available resources.

5.6 Multiscale finite volume method for black oil systems
(by S. H. Lee, C. Wolfsteiner and H. A. Tchelepi)

Most practical reservoir simulation studies are performed using the so-called
black oil model, in which the phase behavior is represented using solubilities
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and formation volume factors. We extend the multiscale finite volume (MsFV)
method to deal with nonlinear immiscible three-phase compressible flow in the
presence of gravity and capillary forces (i.e., black oil model). Consistent with
the MsFV framework, flow and transport are treated separately and differently
using a sequential implicit algorithm. A multiscale operator splitting strategy
is used to solve the overall mass balance (i.e., the pressure equation). The black
oil pressure equation, which is nonlinear and parabolic, is decomposed into
three parts. The first is a homogeneous elliptic equation, for which the original
MsFV method is used to compute the dual basis functions and the coarse-
scale transmissibilities. The second equation accounts for gravity and capillary
effects; the third equation accounts for mass accumulation and sources/sinks
(wells). With the basis functions of the elliptic part, the coarse-scale operator
can be assembled. The gravity/capillary pressure part is made up of an elliptic
part and a correction term, which is computed using solutions of gravity-driven
local problems. A particular solution represents accumulation and wells. The
reconstructed fine-scale pressure is used to compute the fine-scale phase fluxes,
which are then used to solve the nonlinear saturation equations. For this
purpose, a Schwarz iterative scheme is used on the primal coarse grid. The
framework is demonstrated using challenging black oil examples of nonlinear
compressible multiphase flow in strongly heterogeneous formations.

5.6.1 Governing equations and discretized formulation

The standard black oil model has two hydrocarbon phases (i.e., oil and gas)
and one aqueous phase (water) with rock and fluid compressibility, gravity
effects, and capillary pressure. The thermodynamic equilibrium between the
hydrocarbon phases is modeled via the solubility of the gas pseudo-component
in the oil phase. The conservation equations are nonlinear due to the strong
nonlinear character of the relative permeability and capillary pressure rela-
tions, the large gas compressibility, phase appearance and disappearance ef-
fects, and large density and viscosity differences.

The governing equations for the black oil formulation [29] are:

∂

∂t
(φporboSo) = div (boλo (∇po − gρoe3)) − qo, (5.39)

∂

∂t
(φporbwSw) = div (bwλw (∇pw − gρwe3)) − qw, (5.40)

∂

∂t
(φpor (bgSg +RsboSo)) = div (bgλg (∇pg − gρge3)) − qg (5.41)

+ div (Rsboλo (∇po − gρoe3)) −Rsqo,

on the domain Ω, with boundary conditions on ∂Ω. Here, λl = k(x)krl
/μl is

the mobility of phase l, where l = o, w, g (i.e., oil, water, and gas); bl = 1/Bl
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where Bl is the formation volume factor (i.e., ratio of volume at reservoir con-
ditions to volume at standard conditions). Sl, krl

, μl, ρl denote, respectively,
the saturation, relative permeability, viscosity, and density of phase l. The
well volumetric flow rate is ql. The tensor k describes the permeability field,
which is usually represented as a complex multiscale function of space. Poros-
ity is denoted by φpor, pl is the phase pressure, g is gravitational acceleration,
e3 denotes the unit vector along the reservoir depth, and Rs is the solubility
of gas in oil. In general, μl, ρl, Bl, Rs, and φpor are functions of pressure. The
relative permeabilities, krl

, are functions of saturation.
Saturations are constrained by 1 = So + Sw + Sg, and the three phase

pressures pw, po, and pg are related by two independent capillary pressure
functions:

pw − po = pcwo(So, Sg, Sw), pg − po = pcgo(So, Sg, Sw).

We choose the oil phase pressure as the primary variable, p = po. Multiplica-
tion of the semi-discretized equations of (5.39) to (5.41) with

αo =
1
bn+1
o

− Rn+1
s

bn+1
g

, αw =
1
bn+1
w

, and αg =
1
bn+1
g

,

respectively, and summation of the resulting equations gives the pressure equa-
tion:

LBO p
ν+1 = −Cw

Δt
(pν+1 − pν) +RHS1 +RHS2,

where the operator for black oil is defined by

LBO ≡ −
∑

�

α� div
(
λ′

ν
�∇
)

and the right-hand sides are given by

RHS1 = −
∑

�

α� div
(
gρ�λ

′ν
�∇z
)

+
∑

�=w,g

α� div (λ′� · ∇pc�o)
ν

RHS2 =
φn

por

Δt

(
∑

�

α�b
n
� S

n
� + αgR

n
s b

n
oS

n
o

)

−
φν

por

Δt
−
∑

�

α�q
ν
� − αg(Rsqo)ν .

The Cw is a weak function of pressure defined in Lee et al. [175].

5.6.2 Multiscale finite volume formulation

In the multiscale finite volume (MsFV) algorithm introduced in [159, 160,
161], the global (fine-scale) problem is partitioned into primal and dual coarse
volumes as illustrated in Section 2.5.1. A set of basis functions is computed
for each dual volume, and the coarse-scale problem is assembled. Using the
coarse-scale system, the coarse-scale pressure is computed. The same basis
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functions allow for local reconstruction of the fine-scale pressure from the
coarse solution.

The original MsFV algorithm [159] was designed to solve the (elliptic)
pressure equation of incompressible flow in highly heterogeneous formations.
The black oil model, which accounts for compressibility and capillarity, yields
a nonlinear parabolic pressure equation. However, these effects are, in gen-
eral, local in nature, and the pressure equation usually exhibits near-elliptic
behavior. We construct a multiscale algorithm that takes advantage of this
characteristic.

A multiscale, operator splitting approach is used to solve the nonlinear
parabolic overall mass balance equation for the pressure field. Specifically, the
black oil pressure equation is decomposed into three equations, one homoge-
neous and two inhomogeneous. The homogeneous (elliptic) equation is used to
compute the dual basis functions and the coarse-scale transmissibilities. The
first inhomogeneous part, pg, accounts for gravity and capillarity. The second
inhomogeneous equation is solved for the particular solution pp, which ac-
counts for accumulation (i.e., rock and fluid compressibility) and sink/source
terms. Specifically, the black oil pressure equation is decomposed as follows.

LBO p
ν+1
h = 0, (5.42)

LBO p
ν+1
g = RHS1, (5.43)

LBO p
ν+1
p = −Cw

Δt
[(ph + pg + pp)ν+1 − (ph + pg + pp)ν ] +RHS2.(5.44)

Homogeneous pressure solution

The original MsFV method [159] employs locally computed basis functions
(on the fine scale) and a pressure operator on a coarse grid. The fine-scale
pressure field can then be obtained via a reconstruction step. Recently, Lunati
and Jenny [186] presented a MsFV method for compressible multiphase flow.
Their third proposed algorithm is somewhat similar to the scheme presented in
this section; however, we do not use explicitly computed coarse-scale formation
volume factors.

A conforming coarse grid with N nodes and M cells is constructed on
the original fine grid. Each coarse cell Ki

c with i ∈ {1, ...,M} is composed of
multiple fine cells. A dual coarse grid is constructed such that each dual coarse
cell Kj

d, j ∈ {1, ..., N} contains exactly one coarse node. The coarse dual grid
has M nodes, xi (i ∈ {1, ...,M}), each in the interior of a coarse cell Ki

d. Each
dual grid has Nc corners (for a Cartesian grid, four in two dimensions and
eight in three dimensions). A set of dual basis functions, φi

j , is constructed,
one for each corner i of each dual coarse cell Kj

d.
The dual basis functions are used to assemble the coarse-scale transmis-

sibility field for computation of the coarse-scale pressure pc
i . The dual basis

function φi
j , for example, is the local solution of (5.42):
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αo div
(
λ′

ν
o∇φi

j

)
+ αw div

(
λ′

ν
w∇φi

j

)
+ αg div

(
λ′

ν
g∇φi

j

)
= 0 on Kj

d,

where properties from the underlying fine grid (e.g., total mobility) are used.
The boundary conditions are obtained by solving the reduced problems [175],
although one can easily use different boundary conditions as discussed earlier.
Finally, given a coarse-scale solution pc

i , the phase transmissibilities of the
coarse grid can be readily computed from the fluxes across the coarse grid
interface [175].

Inhomogeneous solution: Gravity and capillary pressure

As shown in (5.43), the inhomogeneous solution pg accounts for gravity and
capillary forces. Due to the complexity of the fractional flow function in the
presence of gravity, the potential field cannot be represented by a simple su-
perposition of the basis functions. Lunati and Jenny [187] proposed a method
where pg is split into two parts. The first part is represented by the original
dual basis functions; the second part is a locally computed correction term
that accounts for buoyancy effects. Following their approach, pg can be written
as

pg = pa
g + pb

g =
∑

i

φi
jp

c,i
g + pb

g in Kj
d. (5.45)

Note that within a dual coarse grid, pa
g is represented by a linear combination

of basis functions, weighted by the coarse-scale pressures.
The additional correction term pb

g is obtained using (5.43),

−αo div
(
λ′

ν
o∇pb

g

)
− αw div

(
λ′

ν
w∇pb

g

)
− αg div

(
λ′

ν
g∇pb

g

)

= RHS1 in Kd,
(5.46)

where solutions of reduced problems consistent with (5.46) serve as boundary
conditions. Note that the correction term pb

g is computed with the simple
boundary conditions for the reduced system that is independent of the global
pressure distribution. This particular localization assumption to compute pb

g is
analogous to the one used to construct the dual basis function in the absence
of gravity effects. Lunati and Jenny [187] showed its effectiveness in resolving
the fine-scale structures of complex heterogeneous problems, when buoyancy
plays an important role.

Substitution of (5.45) in (5.43) and applying Green’s theorem to the coarse
operator [187], one can readily show that pb

g acts as an additional source/sink
term in the coarse-scale pressure system.

Particular solution: Mass accumulation and wells

The particular solution pp, governed by (5.44), is used to model sources and
sinks and the effects of compressibility (i.e., fluid accumulation). Accurate
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modeling of wells is crucial for any practical reservoir simulation problem. A
treatment of wells specifically designed for the MsFV method has recently
been proposed by Wolfsteiner, Lee and Tchelepi [259]. The framework allows
for modeling wells that penetrate one or multiple fine cells, and accommo-
dates fixed-rate or fixed-pressure operating conditions. In their approach, the
near-singular pressure distribution around the well is removed by a change of
variables. The well effects are approximated using special basis functions that
are then added to a smoothly varying background solution computed using
the standard MsFV method. Here, we employ a very simple model, where
wells are represented only on the coarse grid. The corresponding fine cells
receive source terms of equal strength [159].

Once the coarse-scale pressure is computed, the fine-grid pressure in the
dual grid can be obtained using the basis functions.:

pp(x) + pg(x) =
Nc∑

i=1

φi
j(x)(p

c
p,i + pc

g,i) + pb
g(x), for x ∈ Kj

d. (5.47)

The pressure from the particular solution and the linear gravity part are
interpolated using the dual basis functions, and then the gravity correction
term, pb

g, is added.
Jenny, Lee and Tchelepi [159, 160] found that the fine-scale velocity field

computed directly from the reconstructed pressure (i.e., using the coarse-
grid solution and the dual basis functions) suffered from local mass balance
errors along the dual coarse cell boundaries. As a remedy, they proposed a
second set of (primal) basis functions that guarantee a conservative fine-scale
velocity field. In doing so, it is critical to honor the fine-scale fluxes from the
overlapping dual basis functions as boundary conditions. That approach can
be expensive, however. This is because the number of primal basis functions
is large, and even if they need to be recomputed occasionally, the cost can be
significant.

Here, we do not use this second set of bases. Instead we solve local prob-
lems on the primal coarse grid as follows. The reconstructed fine-scale pres-
sure at the boundaries of a primal coarse cell is used to compute the fine-scale
fluxes, which then serve as boundary conditions for local problems on the
primal coarse grid. These local problems solve the nonlinear black oil equa-
tions, which may include compressibility, capillarity, and solubility effects. In
essence the multiscale pressure approximation is used to prescribe flux bound-
ary conditions for the full black oil equation set on the local primal coarse-cell
level. Our experience is that the fine-scale pressure solution obtained from
these local Neumann problems is quite accurate (i.e., locally consistent with
the velocity field) when compared to the pressure that is reconstructed using
the dual basis.
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5.6.3 Sequential fully implicit coupling and adaptive computation

In the algorithm presented in the previous sections, flow and transport are
solved sequentially. First, a fine-scale pressure field together with a compat-
ible (and conservative) fine-scale velocity field is computed using the black
oil MsFV method. Then, the transport problem is solved on local fine-grid
domains with an implicit upwind scheme. A Schwarz overlap method is used
with saturation at the boundaries from the previous iteration, which has been
found to be very efficient for the saturation equations. The updated satura-
tion distribution defines a new total mobility field for the subsequent elliptic
problem (i.e., the next Newton iteration). Note that, in general, some of the
basis functions have to be recomputed. These steps can be iterated until con-
vergence of all variables at the current time level.

The MsFV approach can be easily adapted to a sequential fully implicit
treatment [161]. The MsFV implementation allows for performing an IMPES,
traditional sequential [29], or a fully implicit scheme. Here, the full nonlinear
transmissibility terms at the new time-step level are retained so that stability
is guaranteed [160]. The converged solution using this sequential approach
should be identical to the solution obtained using the simultaneous solution
strategy, which is usually used to deal with coupled fully implicit systems.

The MsFV approach is well suited for adaptive computation, which can
lead to significant efficiency gains. The most expensive part of the algorithm
is computation of the dual basis functions. In general, this is performed every
iteration due to changes in the saturation (mobility) field. As discussed in
Jenny et al. [160], an adaptive scheme can be used to update the dual basis
functions. Because the basis functions are constructed with local support, the
change of the total mobility is used to decide when and where to update the
basis functions in the domain. For compressible fluid, we employ an effective
total mobility change criterion for adaptable computation of the pressure field
[175].

5.6.4 Numerical examples

Waterflood in linear geometries

This test case is a two-dimensional problem with 220×60 fine cells. A uniform
coarse grid of 22×6 is used for the multiscale run. The permeability description
is taken from the first layer of the Tenth SPE Comparative Solution Project
[78]. As shown in Figure 5.23(a), a highly correlated area of low permeability
is found on the left-hand-side of the model, and a high-permeability area is
present on the right end of the model.

The black oil model includes three compressible fluid phases (i.e., oil, wa-
ter, and gas). The pressure dependence of the densities is described using
formation volume factors, and the phase equilibrium between the oil and gas
phases is described using the solution gas–oil ratio [79]. Typical black oil
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properties are listed in Lee, Wolfsteiner, and Tchelepi [175]. For this example,
we did not consider gravity effects, and we used a high oil compressibility,
namely, 4.8 · 10−4 for p < pb (pb is the bubble point pressure) for a stringent
test of compressibility. As the pressure decreases, some solution gas is liber-
ated from the oil phase and forms a free immiscible gas phase. Moreover, the
oil-phase volume decreases as the pressure decreases below the bubble point,
p < pb. The solution-gas is constant above the bubble point pressure, and the
oil-phase volume decreases as the pressure increases (i.e., p > pb).

The model is initialized with oil (So = 1) and constant pressure (4000
psia). At t = 0, water is injected at a constant pressure of 5000 psia from
the left side; the right boundary is maintained at 2000 psia. This numerical
example is a challenging test due to the large pressure drop across the model
and the large variations in permeability. A constant time-step size of 1 day is
used. In Figure 5.23, the results from the black oil MsFV simulator and fine-
scale reference simulations are shown at 50 days. For example, Figure 5.23(c)-
(d) indicate that the water and gas distributions obtained from the MsFV
approach are in excellent agreement with the reference fine-scale solutions.
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Fig. 5.23. Depletion with constant pressure boundary conditions: at time = 50days:
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A three-dimensional heterogeneous model with two wells

This example employs a three-dimensional model with two wells at two oppo-
site corners and a heterogeneous permeability field. The permeability distri-
bution is generated by the sequential Gaussian simulation method [85]. The
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logarithm of permeability has a Gaussian histogram with mean and standard
deviation of 50 md and 1.5, respectively. The variogram is spherical with
ranges of 30 m and 15 m in directions that are at 45 and 135 degrees with
respect to the horizontal, and 7.5 m in the vertical direction. The permeabil-
ity is shown in Figure 5.24(a). The model is 150 × 150 × 48 m in size and is
uniformly discretized using 45×45×30 fine cells. The uniform 9×9×6 coarse
grid is used in the MsFV computations.

The permeability distribution is shown in Figure 5.24(a). The fluid prop-
erties for the first example are also employed. The reservoir is initially at
gravitational equilibrium with 4000 psia at the bottom of the model. Water is
injected at a constant rate from the bottom left corner (i.e., coarse cell 1,1,1)
displacing the oil toward the producer located at the top right corner (cell
9,9,6). Figure 5.24(b) shows the oil saturation distribution at water break-
through. The pressure around the production well is below the bubble point,
and a free gas phase is present. In Figure 5.25, the production rates from
MsFV are compared with those from the fine-scale reference simulation. The
comparison shows that the black oil MsFV approach is able to model difficult
multiphase flow problems in heterogeneous media when strong gravity and
compressibility effects are present.

We also performed computations using an upscaled model for this problem.
We used the basis functions to compute an upscaled (effective coarse-scale)
transmissibility field, and we computed the pressure and saturation using the
coarse-scale model. The results are also depicted in Figure 5.25. Even though
the results from the upscaled model are qualitatively similar to those from
the fine-scale reference simulation, the presence of large numerical dispersion
in the upscaled model gives less accurate production rates compared with the
multiscale method. This numerical example shows that reconstruction of the
fine-scale information by the MsFV is an important step in obtaining accurate
transport predictions.

5.6.5 Remarks

We developed a multiscale finite volume (MsFV) method for the black oil
formulation of multiphase flow and transport in heterogeneous porous media.
The black oil formulation, which involves immiscible three-phase flow with
compressibility, gravity, capillary, and mass transfer, in the form of gas solu-
bility, is widely used in practical field-scale simulations.

Our approach extends the sequential implicit MsFV method [161, 256] to
the nonlinear black oil model. An operator-splitting multiscale algorithm is
devised to compute the fine-scale pressure field, which is used to compute the
fine-scale velocity field. The nonlinear saturation equations of the black oil
model are solved on the local primal coarse grid using the fine-scale velocity
field. The black oil MsFV method extends our ability to deal with large-scale
problems of practical interest. The treatment ensures that the nonlinearity
due to rock and fluid compressibility, gravity, and capillarity can be resolved
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(a) (b)

Fig. 5.24. A heterogeneous model with two wells (Example 3): (a) log-permeability
distribution, (b) oil saturation just after breakthrough.
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by solving specially constructed local boundary value problems. The method-
ology is demonstrated using several numerical examples. These examples show
clearly that the MsFV scheme yields results that are in excellent agreement
with reference fine-grid solutions.

Although the numerical efficiency of this new black oil MsFV simulator
has not been fully examined, the numerical efficiency gains shown in refer-
ences [160, 161, 256] are expected to hold (e.g., 10 ∼ 20 times faster than
the conventional finite difference method). This is because all the nonlineari-
ties due to the presence of compressibility, gravity, and capillary pressure are
resolved locally.
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5.7 Applications of multiscale finite element methods
to stochastic flows in heterogeneous media

The media properties often contain uncertainties. These uncertainties are usu-
ally parameterized and one has to deal with a large set of permeability fields
(realizations). This brings an additional challenge to the fine-scale simulations
and necessitates the use of coarse-scale models. The multiscale methods are
important for such problems. In this section, we describe the extensions of
MsFEMs to stochastic equations where the basis functions are constructed
such that they span both spaces and uncertainties. We also consider the ap-
plications of MsFEMs to uncertainty quantification in inverse problems when
the media properties are estimated based on coarse-scale data.

First, we briefly discuss stochastic flow equations from an application point
of view. Assume that the media properties are random and denoted by k(x, ω),
where ω refers to a realization. Then, the solution of the flow equation is given
by p(x, ω) for each realization ω.

One of the commonly used stochastic descriptions of spatial fields is based
on a two-point correlation function of log-permeability. To describe it, we de-
note by Y (x, ω) = log[k(x, ω)]. For permeability fields described with the two-
point correlation function, it is assumed that R(x, y) = E [Y (x, ω)Y (y, ω)] is
known, where E[·] refers to the expectation (i.e., average over all realizations)
and x, y are points in the spatial domain. In applications, the permeability
fields are considered to be defined on a discrete grid. In this case, R(x, y) is a
square matrix with Ndof rows and Ndof columns, where Ndof is the number
of grid blocks in the domain. For permeability fields described by the two-
point correlation function, one can use the Karhunen–Loève expansion (KLE)
[182, 271] to obtain a permeability field description with possibly fewer de-
grees of freedom. This is done by representing the permeability field in terms
of an optimal L2 basis. By truncating the expansion, we can represent the
permeability matrix by a small number of random parameters.

We briefly recall some properties of the KLE. For simplicity, we assume
that E[Y (x, ω)] = 0. Suppose Y (x, ω) is a second-order stochastic process
with E

∫
Ω
Y 2(x, ω)dx < ∞. Given an orthonormal basis {Φi} in L2(Ω), we

can expand Y (x, ω) as a general Fourier series

Y (x, ω) =
∞∑

i=1

Yi(ω)Φi(x), Yi(ω) =
∫

Ω

Y (x, ω)Φi(x)dx.

We are interested in the special L2 basis {Φi} that makes the random variables
Yi uncorrelated. That is, E(YiYj) = 0 for all i �= j. The basis functions {Φi}
satisfy

E[YiYj ] =
∫

Ω

Φi(x)dx
∫

Ω

R(x, y)Φj(y)dy = 0, i �= j.

Because {Φi} is a complete basis in L2(Ω), it follows that Φi(x) are eigen-
functions of R(x, y):
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∫

Ω

R(x, y)Φi(y)dy = λiΦi(x), i = 1, 2, . . . , (5.48)

where λi = E[Y 2
i ] > 0. Furthermore, we have

R(x, y) =
∞∑

i=1

λiΦi(x)Φi(y). (5.49)

Denote θi = Yi/
√
λi; then θi satisfy E(θi) = 0 and E(θiθj) = δij . It follows

that

Y (x, ω) =
∞∑

i=1

√
λiθi(ω)Φi(x), (5.50)

where Φi and λi satisfy (5.48). We assume that the eigenvalues λi are ordered
as λ1 ≥ λ2 ≥ · · · . The expansion (5.50) is called the Karhunen–Loève expan-
sion. In the KLE (5.50), the L2 basis functions Φi(x) are deterministic and
resolve the spatial dependence of the permeability field. The randomness is
represented by the scalar random variables θi. After we discretize the domain
Ω by a rectangular mesh, the continuous KLE (5.50) is reduced to finite terms
and Φi(x) are discrete fields. Generally, we only need to keep the leading or-
der terms (quantified by the magnitude of λi) and still capture most of the
energy of the stochastic process Y (x, ω). For an N -term KLE approximation
YN =

∑N
i=1

√
λiθiΦi, define the energy ratio of the approximation as

e(N) :=
E‖YN‖2

E‖Y ‖2
=
∑N

i=1 λi∑∞
i=1 λi

.

If λi, i = 1, 2, . . . , decay very fast, then the truncated KLE would be a good
approximation of the stochastic process in the L2 sense.

Next, we discuss some example cases. Suppose the permeability field
k(x, ω) is a log-normal homogeneous stochastic process; then Y (x, ω) =
log(k(x, ω)) is a Gaussian process, and θi are independent standard Gaus-
sian random variables. In this case, the covariance function of Y (x, ω) has the
form

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
. (5.51)

In the above formula, l1 and l2 are the correlation lengths in each dimension,
and σ2 = E(Y 2) is the variance. We first solve the eigenvalue problem (5.48)
numerically on the rectangular mesh and obtain the eigenpairs {λi, Φi}. We
put 8 points per correlation length in our numerical simulations. Because the
eigenvalues decay fast, the truncated KLE approximates the stochastic process
Y (x, ω) fairly well in the L2 sense. Therefore, we can sample Y (x, ω) from the
truncated KLE (5.50) by generating Gaussian random variables θi. In Figure
5.26, we plot eigenvalues and three eigenvectors corresponding to eigenvalues
(in decreasing order) 1, 6, and 15. In particular, we plot eigenvalues for the
log-normal permeability field described by (5.51) as well as by
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R(x, y) = σ2 exp
(
−|x1 − y1|

l1
− |x2 − y2|

l2

)
. (5.52)

As we see from these figures the eigenvalues decay quickly for log-normal
permeability fields compared to log-permeability fields described by (5.52).
Moreover, the eigenvectors corresponding to smaller (in value) eigenvectors
contain finer-scale features of the media.

For some simplified cases, one can derive formulas for eigenvalues and
eigenvectors (e.g., [277]). In the one-dimensional case, R(x, y) = σ2 exp(−|x1−
y1|/l1), the eigenvalues have the form

λn =
2l1σ2

l21ζ
2
n + 1

and
Φn(x) =

1
√

(l21ζ2n + 1)L/2 + l1
(l1ζn cos(ζnx) + sin(ζnx)),

where L is the length of the domain and ζn are positive roots of the charac-
teristic equation

(ζ2l21 − 1) sin(ζL) = 2ζl1 cos(ζL). (5.53)

For problems in a multidimension, if the covariance function is in the form
R(x, y) = σ2 exp(−|x1 − y1|/l1 − |x2 − y2|/l2), the eigenvalues have the form

λij =
4l1l2σ2

(l21(ζ
1
i )2 + 1)(l22(ζ

2
j )2 + 1)

and
Φij(x) = Φi(x1)Φj(x2),

where ζ1i and ζ2j are positive roots of (5.53) using parameters (L1, l1) and
(L2, l2), respectively, with L1 and L2 being the lengths of the whole domain
in the x1− and x2−directions.

5.7.1 Multiscale methods for stochastic equations

In this section, we present a multiscale approach for solving stochastic flow
equations. The main idea of the proposed approaches is to construct multiscale
basis functions that capture the small-scale information across the realizations
of stochastic equations. Once the basis functions are constructed, the solution
is projected into the finite-dimensional space spanned by the multiscale basis
functions. The pre-computed basis functions are constructed based on se-
lected realizations of the stochastic permeability field and the method can be
regarded as an extension of MsFEMs to stochastic porous media equations.
The proposed approaches, although they do not require any interpolation
in stochastic space, can be combined with interpolation-based approaches to
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predict the solution on the coarse grid. The permeability fields under consid-
eration do not have scale separation. For this reason, we employ multiscale
methods using limited global information in our simulations. The main idea
of these approaches is to use some global fields that contain nonlocal informa-
tion as discussed in Chapter 4. We use the mixed MsFEM framework here,
although other global couplings can also be used.

To present the approach, we consider realizations of permeability fields ki

sampled from a stochastic distribution. For each ki, let pi and vi be a solution
obtained by solving the flow equation on a fine grid using a suitable mass
conservative numerical method. Then, we define Vh(ki) the space spanned by
mixed multiscale basis functions, ψK

il , defined via (4.6) that have the following
boundary conditions

ψK
il · n =

vi · n∫
el
vi · nds

,

on el for eachK. We employ N realizations of the permeability field and define
a finite-dimensional space that consists of a direct sum of mixed multiscale



150 5 Applications of multiscale finite element methods

finite element basis functions corresponding to all realizations:

Vh = ⊕N
i=1Vh(ki).

Hence, in this case we obtain N basis functions for each edge (face) in the
coarse grid. Once the basis functions are constructed, the solution of the
stochastic flow equation for an arbitrary realization is projected onto this
finite-dimensional space. Note that this approach does not require any inter-
polation formula in uncertainty space, although interpolation techniques, if
easily available, can be used to reduce the size of Vh locally in uncertainty
space (see later the use of interpolation techniques). We assume that v1, ..., vN
are linearly independent in order to guarantee that the basis functions are
linearly independent. Note that the local basis functions can be used in the
proposed multiscale approach for stochastic flow equations.

Next, we present a formal analysis of the method under the assumption
that the chosen realizations can be used to interpolate an arbitrary realiza-
tion. To show this, we assume that the uncertainties of the permeability field
can be parameterized. As a result of this parameterization, the permeability
is expressed as k = k(x, θ) where θ ∈ R

L. One such example is the Karhunen–
Loève expansion (KLE) as discussed earlier. KLE can be used in representing
the permeability fields given via the two-point correlation function, where
k(x, θ) = exp (Y (x, θ)), Y (x, θ) =

∑L
i=1ΘiΦi(x), Φi(x) pre-determined func-

tions, and θ = (Θ1, ..., ΘL).
When the uncertainties are parameterized and L is not large, one can

employ sparse interpolation techniques in R
L (e.g., [272]), where the solution

is computed for some values of θ = (Θ1, ..., ΘL), denoted by θk, and then
interpolated for an arbitrary θ ∈ R

L. Assuming that k(x, θ) smoothly depends
on θ, we can approximate the solution for an arbitrary θ as

p(x, θ) ≈
∑

i

p(x, θi)βi(θ), (5.54)

where βi(θ) are the corresponding weights which are in general difficult to
obtain. We note that the interpolation error depends on the choice of inter-
polation points and the smoothness of p(x, θ) with respect to θ. Denoting the
velocity field for two-phase flow by v, we have

v(x, θ) ≈
∑

i

v(x, θi)βi(θ). (5.55)

Equation (5.54) shows that the solution of the stochastic flow equation can be
approximated if we provide approximations of p(x, θi) for each θi. Because the
solution for each selected realization can be approximated using corresponding
global fields, we have

v(x, θi) ≈
∑

j

c∗ij(x)vj(x, θi).



5.7 Applications of MsFEMs to stochastic flows 151

In our numerical simulations, we use single-phase velocity fields following pre-
vious discussions in Section 4.2 (see also [1, 3]). One can, in general, use direc-
tional flows as proposed in a more general setting in [218]. We note that in our
multiscale simulations, the basis functions are constructed using vj(x, θi). One
can show the convergence of the proposed approach following, for example,
[8].

We note that the proposed method can be applied in a local region of
the uncertainty space by selecting realizations that correspond to this region.
The latter is useful when one would like to perform uncertainty quantification
in a subregion of the uncertainty space. One can use the localization in the
uncertainty space for more accurate probabilistic estimations by partitioning
the uncertainty space. To our best knowledge, the idea of local partitioning
of uncertainty space in the context of stochastic PDEs was first investigated
in [267] where the authors introduced a multi-element generalized polynomial
chaos approach. In our approaches, we can borrow this idea and combine it
with MsFEMs. To describe the procedure, we denote by U the uncertainty
space and assume that U is partitioned into Ui. In each region Ui, we choose
selected realizations θi

j representing these local regions. Then, the basis func-
tions are defined as before for these selected realizations in each Ui. This
approach is an implementation of the earlier proposed technique simply in
local regions of uncertainty space. In particular, the multiscale basis functions
are constructed as before although with local support both in spatial and
uncertainty spaces. When performing simulations for a particular (arbitrary)
realization, the multiscale basis functions from the local uncertainty region
that contains this particular realization will be used. This will provide high
accuracy and reduce the computational cost.

We note that the proposed method can be applied in local regions of
uncertainty space and, consequently, the support of basis functions can be
localized in uncertainty space. To describe the procedure, we denote by U
the uncertainty space and assume that U is partitioned into Ui. Here Ui can
be regions larger than the characteristic length scale in uncertainty space.
Furthermore, in each region Ui, we choose realizations θi

j representing these
local regions. Then, the basis functions are defined as before for these realiza-
tions in each Ui. This approach is an implementation of the earlier proposed
technique simply in local regions of uncertainty space. In particular, the mul-
tiscale basis functions are constructed as before although with local support.
One can draw a parallel between this approach and a general multiscale ap-
proach where the coefficients strongly vary with respect to spatial variables
and uncertainties. In particular, we would like to construct multiscale basis
functions for permeability fields k(x, θ) over a coarse region that is larger than
spatial and uncertainty heterogeneities. In this case, one needs to construct
the local spatial basis functions for each θi

j in Ui. Because the dependence on
θ is parametric, one needs to capture the spatial heterogeneities for all values
of θ in Ui. In this case, the basis functions are derived from the solution of
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div(k(x, θ)∇wK
i (x, θ)) = 0.

These basis functions, which are smooth with respect to θ, can be approxi-
mated by choosing appropriate realizations. Thus, the proposed approach can
be regarded as an extension of the mixed MsFEM to problems with uncertain-
ties. When using local patches in uncertainty space, one needs to determine a
partition to which a particular realization belongs. We note that pre-computed
multiscale basis functions can be repeatedly used for different boundary condi-
tions/source terms and for dynamic two-phase flow and transport simulations.

The main practical advantage of the proposed mixed MsFEM is that one
does not need interpolation formulas. Indeed, when an approximation space
consists of a union of subspaces generated using the solutions corresponding to
different permeability realizations, one is actually projecting the true solution
onto this enriched approximation space. Thus, the velocity solution will be
a superposition of basis functions corresponding to each of the sample fields,
but the interpolation weights are determined automatically from the projec-
tion property of the mixed MsFEM. In particular, the interpolation weights
will vary throughout the uncertainty domain. This approach is interpolation-
free, easy to use, and provides a computationally cost-efficient methodology
for performing multiple simulations, for instance, to quantify uncertainty. We
also note that when an interpolation formula is easily available, one can inter-
polate the set of pre-computed multiscale basis functions to calculate the basis
functions for a particular realization. However, the nature of this interpola-
tion (pointwise or L2 or so on) will be pre-determined. Our proposed approach
chooses the best interpolation both in spatial and stochastic space. Finally,
we would like to note that in upscaling approaches, to our best knowledge,
one cannot avoid interpolation techniques.

Numerical results

Experimental setup. In our simulations below, we take krw(S) = S2, μw = 0.1,
kro(S) = (1 − S)2, and μo = 1 in two-phase flow and transport simulations
(see (5.1), (5.2)). The log-permeability field Y (x) is given on a 100× 100 fine
Cartesian grid. This grid is then coarsened to form a uniform 5× 5 Cartesian
grid so that each block in the coarse grid contains a 20×20 cell partition from
the fine grid. We solve the pressure equation on the coarse grid using the mixed
MsFEM and then reconstruct the fine-scale velocity field as a superposition
of the multiscale basis functions. The reconstructed field is used to solve the
saturation equation on the fine grid. The saturation equation is solved using an
implicit upstream finite volume (discontinuous Galerkin) method. We would
like to emphasize that the multiscale basis functions are constructed at time
zero, that is, they are not recomputed during the simulations.

In the numerical examples that are reported below we consider a tra-
ditional quarter-of-a-five-spot problem. That is, Ω is taken to be a square
domain, we inject water at the upper left corner, and produce the fluid that



5.7 Applications of MsFEMs to stochastic flows 153

reaches the producer at the lower right corner. To assess the quality of the
respective saturation solutions obtained using the mixed MsFEM, we com-
pute for each realization a reference solution Sref obtained by solving the
time-dependent pressure equation on the fine grid with the given permeabil-
ity field (using the lowest-order Raviart–Thomas mixed finite element method
for Cartesian grids). Then, in addition to measuring the relative saturation
error in the L1-norm:

‖S − Sref‖L1/‖Sref‖L1 ,

we compare various production characteristics. We use the water-cut curve
defining the fraction of water in the produced fluid as a function of time
measured in pore volumes injected (PVI) (see (2.44)). We recall that

w(t) =
qw(t)

qw(t) + qo(t)
,

where qo and qw are flow rates of oil and water at the producer at time t.
We monitor the following quantities

• The relative water-cut error in the L2-norm:

‖w − wref‖L2/‖wref‖L2 .

• The breakthrough time (defined as w−1(0.05)) at the producer.
• The cumulative oil production at 0.6 PVI:

Qo = − 1
∫

Ω
φdx

∫ 0.6PV I

0

(∫

Ω

min(qo(x, τ), 0) dx
)

dτ.

Before we embark on the numerical experiments, we note that the Raviart–
Thomas mixed finite element discretization of the pressure equation results in
a linear system with N2

fine + 2× (Nfine − 1)×Nfine = 29800 unknowns, where
Nfine = 100. In comparison, when using a sample of N permeability fields to
generate the mixed MsFEM basis functions, the stochastic multiscale method
gives rise to a linear system with N2

coarse + 2 × (Ncoarse − 1) ×Ncoarse ×N =
25 + 40N unknowns, where Ncoarse = 5. Hence, when using a sample size
of 25, for instance, the number of the unknowns in the fine-grid system is
roughly 30 times larger than the number of unknowns in the mixed MsFEM
system. In this section, we present our results which employ samples of 10–50
permeability fields. In other words, we compute 10–50 velocity basis functions
for each interface in the coarse grid. We note that in order for the proposed
methods to be computationally efficient one needs to use fewer basis func-
tions in each coarse-grid block to represent the heterogeneities across space
and uncertainties. In particular, the number of basis functions needs to be
less than the number of fine-grid blocks within the target coarse-grid block.
Otherwise, one can simply use fine-scale basis functions which are the same
for an arbitrary realization. In the case of the latter, the stochasticity does
not affect the choice of the finite element function space.
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Gaussian fields. For Gaussian fields, one can reduce the dimension of the
uncertainty space dramatically due to the fast decay of eigenvalues. To sample
the realizations that are used to generate the multiscale basis functions, we
use the first order Smolyak collocation points θi in [−3, 3]L (see, e.g., [272]).
That is, θ0 = 0, θ2i−1 = 3δij , and θ2i = −3δij , i = 1, ..., L. We note that
the choice of interpolation points does not affect the implementation of our
approach.

Our first results are for the isotropic case with l1 = l2 = 0.2 and σ2 = 2.
In this case, we can reduce the dimension of the stochastic permeability to
10. From this stochastic model for the permeability we draw randomly 100
realizations and perform simulations on the corresponding permeability fields.

In Figure 5.27 we compare breakthrough times and cumulative oil pro-
duction at 0.6 PVI. We see that there is nearly a perfect match between the
results obtained with the mixed MsFEM and the corresponding results de-
rived from the reference solutions. Next, in Figure 5.28, we plot L2 errors in
the saturation field for these realizations as well as the water-cut errors. It
can be observed from this figure that the saturation errors are mostly below
3%. Finally, we plot in Figure 5.29 a histogram of the breakthrough times
and cumulative oil production values depicted in Figure 5.27 to demonstrate
that the mixed MsFEM essentially provides the same statistics as one obtains
from the set of reference solutions. These results suggest that with a few pre-
computed basis functions in each coarse grid block we can solve two-phase flow
equations on the coarse grid for an arbitrary realization and obtain nearly the
same results as one obtains by doing fine-grid simulations for each realization.

We have also considered numerical results for an anisotropic Gaussian field
with l1 = 0.5, l2 = 0.1, and σ2 = 2 in [7]. Due to anisotropy, KLE requires 12
terms. We sample the realizations that are used to generate the multiscale ba-
sis functions using the first order Smolyak collocation points as in the isotropic
case. The numerical results obtained for the anisotropic Gaussian fields are
qualitatively the same as the results shown in Figure 5.27 – Figure 5.29. We
include only the anisotropic equivalent of Figure 5.29. Histograms of break-
through time and cumulative oil production at 0.6 PVI for 100 randomly
chosen realizations are depicted in Figure 5.30. The histograms confirm that
the multiscale method essentially provides the same breakthrough time and
cumulative oil production statistics as one obtains from the set of reference
solutions.

Exponential variogram fields. For our second set of results, we consider
permeability fields with exponential covariance matrix

R(x, y) = σ2 exp
(
−|x1 − y1|

l1
− |x2 − y2|

l2

)
. (5.56)

Because of the slow decay of eigenvalues, one usually needs to keep many
terms in KLE and deal with a large uncertainty space. To approximate the
permeability fields, KLE requires 300 to 400 eigenvectors depending on corre-
lation lengths and variance. This is a large-dimensional problem for performing
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Fig. 5.27. Breakthrough time and cumulative oil production at 0.6 PVI for 100
random realizations from a Gaussian field with l1 = l2 = 0.2 and σ2 = 2.
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Fig. 5.28. L2 errors of the saturation field and water-cut errors for 100 randomly
chosen realizations (the number of a realization is indicated along the horizontal
axis). Gaussian field with l1 = l2 = 0.2, σ2 = 2.
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Fig. 5.29. Histograms of the breakthrough times and cumulative oil production
values shown in Figure 5.27.
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Fig. 5.30. Histograms of breakthrough time and cumulative oil production at 0.6
PVI for 100 random Gaussian fields with l1 = 0.5 and l2 = 0.1 and σ2 = 2.

direct interpolation using multiscale basis functions. Instead we suggest using
few independent realizations in constructing basis functions, and then per-
forming statistical studies on a much larger set of realizations. We note that
for independent realizations, we do not have an easily available interpolation
formula. Moreover, the use of independent realizations is quite easy and one
can use this technique for more general permeability fields in as much as it
only requires independent samples of the permeability field.

To demonstrate the performance of the stochastic multiscale method for
these fields, we present results for a case where the permeability fields are
drawn from an anisotropic exponential variogram distribution with l1 = 0.5,
l2 = 0.1, and σ2 = 2 (the results for the isotropic case are similar, and not
reported here). The KLE requires 350 eigenvectors to represent this stochastic
permeability distribution. From this distribution we sample 20 independent
realizations and use these realizations to generate the multiscale basis func-
tions. Figure 5.31 displays one randomly chosen realization and corresponding
saturation profiles at 0.6 PVI obtained by solving the pressure equation on the
fine grid, and on the 5 × 5 coarse grid with the mixed MsFEM, respectively.

Figures 5.32, 5.33, and 5.34, show: breakthrough time at producer and
cumulative oil production at 0.6 PVI for 100 randomly chosen realizations
for both the reference solution and the multiscale solution; relative overall
saturation error and water-cut error; and histograms of the breakthrough
times and cumulative oil production values depicted in Figure 5.32. Figure 5.32
demonstrates that there is generally a good match between the breakthrough
time and cumulative oil production curves for the reference and multiscale
solutions. However, we now observe that there is a slight bias in the multiscale
results, for example, there is a small time-lag in the breakthrough times for
the multiscale method. The bias can also be observed from the histograms
in Figure 5.34, but the magnitude of the bias is small, and the multiscale
solutions are generally quite close to the reference solution, as is illustrated in
Figures 5.31 and 5.33.
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Fig. 5.31. An exponential variogram field with l1 = 0.5, l2 = 0.1, and σ2 = 2,
and a comparison of the reference saturation field at 0.6 PVI and the corresponding
saturation field obtained using the stochastic multiscale method.

We now demonstrate that the bias in breakthrough time and cumulative
oil production persists, but is efficiently reduced by increasing the number of
realizations used to generate the multiscale basis functions. Figures 5.35, 5.36,
and 5.37 show, respectively, the saturation and water-cut error for each of the
100 randomly selected realizations for the stochastic multiscale method with
different sample sizes, the cumulative probability distribution of breakthrough
times and cumulative oil production, and the corresponding histograms of the
breakthrough times and the cumulative oil production values. Here, the sam-
ple size refers to the number of realizations selected in constructing multiscale
basis functions. The plots show the following: the saturation and water-cut
errors decay with increasing sample size; the time lag in the breakthrough
times (also observed in the cumulative oil production) decays rapidly with
increasing sample size, and that using 50 basis functions for each coarse-grid
interface generates statistics that are nearly unbiased, and generally match
the statistics derived from the set of reference solutions very well. Observe
that a sample size of 50 gives rise to a linear system with 2025 unknowns,
roughly 1/15 as many as in the fine-grid system.

Summary

In conclusion, we have developed and studied the stochastic mixed multiscale
finite element method. This method solves stochastic porous media flow equa-
tion on the coarse grid using a set of pre-computed basis functions. The pre-
computed basis functions are constructed based on selected realizations of the
stochastic permeability field, and thus span both spatial scales and uncertain-
ties. The proposed method can be regarded as an extension of mixed MsFEM
to stochastic porous media flow equations. The proposed approach does not
require any interpolation in stochastic space and is capable of predicting the
solution on the coarse grid. We present numerical results for two-phase im-
miscible flow in stochastic porous media which show that one can use few
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Fig. 5.32. Breakthrough time and cumulative oil production at 0.6 PVI for 100
random realizations from an exponential variogram field with l1 = 0.5, l2 = 0.1, and
σ2 = 2.
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Fig. 5.33. L2 errors of the saturation field and water-cut errors for 100 randomly
chosen exponential variogram fields with l1 = 0.5, l2 = 0.1, and σ2 = 2.
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Fig. 5.34. Histograms of the breakthrough times and cumulative oil production
values shown in Figure 5.32.
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Fig. 5.35. Saturation and water-cut errors for solutions obtained using different
number of permeability realizations to generate the multiscale basis functions.
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Fig. 5.36. Cumulative probability distribution for breakthrough time and cumula-
tive oil production at 0.6 PVI.
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Fig. 5.37. Histograms of the breakthrough times and cumulative oil production.



160 5 Applications of multiscale finite element methods

basis functions in approximating the solutions of permeability fields with
large uncertainty space. Finally, we would like to note that the proposed ap-
proaches can be easily combined with interpolation-based approaches in order
to achieve greater flexibility.

5.7.2 The applications of MsFEMs to uncertainty quantification
in inverse problems

In a number of papers [105, 89, 109, 88], applications of MsFEMs or upscal-
ing methods to uncertainty quantification in inverse problems are discussed.
The problem under consideration consists of finding stochastic realizations
of the conductivity (or permeability) field given the measurement data and
measurement errors (e.g., fractional flow (oil-cut) measurements defined by
(2.43)). From the probabilistic point of view, this problem can be regarded
as the conditioning of the permeability field to the measured data with as-
sociated measurement errors. Consequently, our goal is to sample from the
conditional distribution P (k|D), where k is the fine-scale permeability field
and D is the measured data. Using the Bayes’ theorem (e.g., [237]) we can
write π(k) = P (k|D) ∝ P (D|k)P (k).

The techniques based on Metropolis–Hastings Markov chain Monte Carlo
(MCMC) (see [237]) provide a rigorous framework for sampling the probability
distribution π(k) and obtaining the realizations of the conductivity field given
measurements, albeit at high computational cost. The main idea of MCMC is
to generate a Markov chain with π(k) as its stationary distribution. A key step
to this approach is to construct the desired transition probability distribution
for the Markov chain. In Metropolis–Hastings MCMC, permeability samples,
k1, ..., kn, ... are generated. In particular, at kn, a proposal k is generated using
instrumental probability distribution q(k|kn). Furthermore, k is accepted as
a sample with probability

p(kn, k) = min
(

1,
q(kn|k)π(k)
q(k|kn)π(kn)

)

;

that is, take kn+1 = k with probability p(kn, k), and kn+1 = kn with proba-
bility 1 − p(kn, k).

In the Metropolis–Hastings MCMC algorithm, the major computational
cost is to compute the value of the target distribution π(k), which involves
solving the coupled nonlinear PDE system (5.1) and (5.2) on the fine grid.
Generally, the Metropolis–Hastings MCMC method requires many iterations
before it converges to the steady state. To assess the uncertainty accurately,
one needs to generate a large number of different samples. Thus, the direct
(full) MCMC simulations are usually prohibitively expensive. Moreover, the
acceptance rate of the direct MCMC method can be very low, due to the
large dimensions of the permeability field. As a result, most of the CPU time
is spent on rejected samples.
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An important way to improve the direct MCMC method is to increase the
acceptance rate by modifying the proposal distribution q(k|kn). Typically,
some simplified models can be used to do so (e.g., [66, 179]). In [105, 89,
109], we discuss algorithms that use approximate and inexpensive coarse-scale
simulations based on MsFEMs to speedup MCMC calculations. In particular,
we consider an application to two-phase flow and transport simulations where
the pressure equation is upscaled using the MsFVEM or mixed MsFEM or
stochastic mixed MsFEM, and the saturation equation is upscaled using a
simple volume averaging

∂S

∂t
+ v · ∇f(S) = 0. (5.57)

Although, this type of upscaling can introduce some errors (see Figure 2.11),
it can be used in uncertainty quantification in inverse problems for the follow-
ing reasons. First, this approach, which combines MsFEMs for the pressure
equation and primitive upscaled model for the saturation equation, is very in-
expensive. Second, we have observed that there is a strong correlation between
the misfit corresponding to fine- and coarse-scale fractional flows.

Denote by D∗
k the coarse-scale data computed using MsFEMs. In the ap-

plications to two-phase flow and transport, MsFEMs are used for the pressure
equation with permeability k and (5.57) for the saturation equation. Further-
more, we denote by π∗(k) = P (k|D∗) the corresponding coarse-scale approx-
imation of the target distribution π(k). In general, one can perform offline
simulations to estimate a statistical relation between the coarse-scale output
D∗

k and the fine-scale output Dk via offline simulations for different k s sam-
pled from the prior distribution. Based on this relation, π∗ can be estimated
(see [109]). Our main emphasis is the use of physics-based coarse-scale models
for uncertainty quantification in inverse problems.

Using the coarse-scale distribution π∗(k) as a filter, the preconditioned
MCMC was proposed in [105]. In this approach, the coarse-scale simulation
is used in the second stage to screen the proposal before running a fine-scale
simulation. More precisely, after making a proposal as in Metropolis–Hastings
MCMC, the coarse-scale simulation is performed and the proposal is screened
using π∗ distribution. If the proposal is accepted at this stage, only then a
fine-scale simulation is performed for the proposed permeability field to decide
whether to accept the proposal. Because the computation of the coarse-scale
solution is very cheap, this step can be implemented very quickly to decide
whether to run fine-scale simulations. The second step of the algorithm serves
as a filter that avoids unnecessary fine-scale runs for the rejected samples. In
[105], we show that the modified Markov chain is ergodic and converges to the
correct distribution. We present numerical results for permeability fields gen-
erated using two-point correlation functions (see (5.50)) in [105]. Our results
demonstrate that preconditioned MCMC has similar convergence properties,
it has higher acceptance rates, and provides an order of magnitude of CPU
saving. We refer to [105] for details.
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An important type of proposal distribution can be derived from the
Langevin diffusion, as proposed by Grenander and Miller [138], which uses
the gradient of the posterior in the proposal. The use of the gradient informa-
tion in inverse problems for subsurface characterization is not new (e.g., see
[216]). The use of gradient information allows us to achieve high acceptance
rates (e.g., [249]). In [89], we proposed the preconditioned coarse-gradient
Langevin algorithm, where the gradient information based on π∗ was used
for generating a proposal. This step is much cheaper than the corresponding
step involving a fine-scale gradient of π because the simulations are performed
on the coarse grid. Furthermore, this proposal is screened using coarse-scale
models as in preconditioned MCMC discussed above. The details of this algo-
rithm can be found in [89], where we presented numerical results. Numerical
results show that preconditioned coarse-gradient Langevin algorithms are ef-
ficient and can give similar performance as the fine-scale Langevin algorithms
with much less computational cost. We refer to [89] for details.

The MCMC method used in these simulations employs either the mixed
MsFEM or MsFVEM in the preconditioning step. If a proposal is accepted
by the preconditioning step, the proposed algorithms compute the fine-scale
solutions corresponding to the proposed permeability field. At this stage, we
have already precomputed basis functions that can be further used to re-
construct the velocity field on the fine scale. Then the transport equation
can be solved on the fine grid coupled with the coarse-grid pressure equation.
This approach provides an accurate approximation to the production data
on the fine grid as discussed earlier and can be used to replace the fine-scale
computation in the last stage. In this procedure, the basis functions are not
updated in time, or updated only in a few coarse blocks. Thus the fine-scale
computation in the last stage of MCMC algorithms can also be implemented
quickly. Because the basis functions from the first-stage is re-used for the fine-
scale computation, this combined multiscale approach can be very efficient for
our sampling problem.

For problems involving a very high dimensional uncertainty space, such
as permeability fields described by the exponential variogram, it is often ad-
vantageous to use an approximate response surface in computing Langevin
proposals. We proposed the use of sparse interpolation techniques based on
coarse-scale models in obtaining the approximation of the response surface in
[88]. In this case, the posterior distribution is interpolated using sparse in-
terpolation techniques. We first compute the posterior distribution at sparse
locations that correspond to some selected realizations of the permeability
field. These computations are performed on the coarse grid as before with
MsFVEM and thus they are inexpensive. Furthermore, the posterior distri-
bution is approximated using polynomial interpolation. Based on the interpo-
lated posterior distribution, Langevin samples are proposed using analytical
gradients of the posterior distribution. The numerical simulations show that
one can achieve further gains in CPU if interpolation is used. We refer to [88]
for further details.
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We note that there are other efficient approaches (e.g., [275, 185, 128, 129])
which are used in uncertainty quantification in inverse problems for porous
media flows. Here, our goal was simply to discuss an application of MsFEM
to porous media flows within MCMC methods.

5.8 Discussions

In this chapter, we discussed the applications of MsFEMs to porous media
flow and transport in the context of two-phase immiscible flow and transport.
In a number of recent findings, the latter has been extended to more com-
plicated porous media equations involving compressibility, gravity, and three
phases as demonstrated in Sections 5.5 and 5.6. In general, MsFEMs offer a
great advantage when the heterogeneities do not change significantly or these
changes can be localized. This allows us to solve the flow equations on a coarse
grid. In a more complex situation, this may not be the case and one has to
be careful applying multiscale methods.

Another interesting application of multiscale finite element methods is
to inverse problems. In [246], the authors took advantage of the adaptivity
of multiscale methods to speedup inverse problems associated with finding
permeability fields given average flow rates at the well and some other prior
information. During the inversion procedure, the permeability is updated only
in local regions using time travel inversion. Because of local changes in the
permeability heterogeneities, multiscale basis functions are constructed only
in a few coarse blocks and the solution is rapidly computed. This leads to very
fast inversion and the CPU time for finding appropriate permeability samples
defined on a multi million grid block is very small (less than two minutes on
a PC).
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Analysis

In this chapter, we present analysis only for some representative cases of Ms-
FEMs from Chapters 2, 3, and 4. We consider simpler cases to convey the
main difficulties that arise in the analysis of MsFEMs. Some of the technical
details are avoided to keep the presentation simple and make it accessible to
a broader audience.

In Section 6.1, the convergence analysis of MsFEMs for linear elliptic prob-
lems is presented. In this chapter, the MsFEM using local information is
studied. First, we present a basic convergence analysis of the MsFEM which
demonstrates the resonance errors. In Section 6.1.2, the analysis of MsFEMs
with oversampling is studied. This analysis shows that an oversampling tech-
nique reduces the resonance errors. In Section 6.1.3, the analysis of mixed
MsFEMs using local information is presented. The results obtained in Section
6.1 use homogenization theory.

In Section 6.2, the convergence analysis of MsFEM for nonlinear prob-
lems is considered. We show the convergence results only for nonlinear elliptic
equations with periodic spatial heterogeneities. The proof relies on homoge-
nization theory and uses a number of auxiliary results that can be found in
[104].

In Section 6.3, the analysis of MsFEMs using limited global information
is presented. We study the convergence of mixed MsFEM (Section 6.3.1) and
a Galerkin MsFEM (Section 6.3.2). The convergence analysis is carried out
under some suitable assumptions. We show that MsFEMs using global infor-
mation converge independent of resonance errors.

Although only some representative cases of MsFEMs are analyzed here,
we have attempted to illustrate basic mathematical tools and ideas used in
the analysis of multiscale methods. We hope the analysis presented in this
chapter will help the reader to understand essential error sources that arise
in multiscale algorithms and guide them in estimating these errors. This will
further help to design more efficient numerical methods for real-life multiscale
processes.

Y. Efendiev, T.Y. Hou, Multiscale Finite Element Methods: Theory and Applications, 165
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6.1 Analysis of MsFEMs for linear problems
(from Chapter 2)

For the analysis here, we restrict ourselves to a periodic case k(x) = (kij(x/ε)).
We assume kij(y), y = x/ε are smooth periodic functions in y in a unit cube
Y . We assume that f ∈ L2(Ω). The assumptions on kij can be relaxed and
one can extend the analysis to the locally periodic case, k = k(x, x/ε), random
homogeneous case, and other cases. For simplicity, we consider the analysis in
two dimensions. Denote L introduced in (2.1) by Lε. Let p0 be the solution of
the homogenized equation (see Appendix B for the background material on
homogenization)

L0p0 := −div(k∗∇p0) = f in Ω, p0 = 0 on ∂Ω, (6.1)

where

k∗ij =
1
|Y |

∫

Y

kil(y)(δlj +
∂χj

∂yl
) dy,

and χj(y) is the periodic solution of the cell problem in the period Y

divy(k(y)∇yχ
j) = − ∂

∂yi
kij(y) in Y,

∫

Y

χj(y) dy = 0.

We note that p0 ∈ H2(Ω) because Ω is a convex polygon. Denote by p1(x, y) =
χj(y)(∂p0(x)/∂xj) and let θε be the solution of the problem

Lεθε = 0 in Ω, θε(x) = −p1(x, x/ε) on ∂Ω. (6.2)

For simplicity of presentation, we denote by ‖ · ‖α,β,· and | · |α,β,·, the
norm and semi-norm in Wα,β(·). If only one subscript is used, for example,
‖ · ‖α,·, then the norm or semi-norm in Hα is assumed. Also, for simplicity,
we consider when Th is a triangular partition. Our analysis of the multiscale
finite element method relies on the following homogenization result obtained
by Moskow and Vogelius [204].

Lemma 6.1. Let p0 ∈ H2(Ω) be the solution of (6.1), θε ∈ H1(Ω) be the
solution to (6.2) and p1(x) = χj(x/ε)∂p0(x)/∂xj. Then there exists a constant
C independent of p0, ε and Ω such that

‖ p− p0 − ε(p1 + θε) ‖1,Ω ≤ Cε(| p0 |2,Ω + ‖ f ‖0,Ω).

6.1.1 Analysis of conforming multiscale finite element methods

The analysis of conforming multiscale finite element methods uses Cea’s
lemma [55].

Lemma 6.2. Let p be the solution of (2.1) and ph be the solution of (2.3).
Then we have

‖ p− ph ‖1,Ω ≤ C inf
vh∈Ph

‖ p− vh ‖1,Ω .
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Error Estimates (h < ε)

Let Πh : C(Ω̄) →Wh ⊂ H1
0 (Ω) be the usual Lagrange interpolation operator:

Πhp(x) =
J∑

j=1

p(xj)φ0
i (x) ∀p ∈ C(Ω̄)

and Ih : C(Ω̄) → Ph be the corresponding interpolation operator defined
through the multiscale basis function φi,

Ihp(x) =
J∑

j=1

p(xj)φj(x) ∀p ∈ C(Ω̄).

From the definition of the basis function φi in (2.2) we have

Lε(Ihp) = 0 in K, Ihp = Πhp on ∂K, (6.3)

for any K ∈ Th.

Lemma 6.3. Let p ∈ H2(Ω) be the solution of (2.1). Then there exists a
constant C independent of h, ε such that

‖ p− Ihp ‖0,Ω + h‖ p− Ihp ‖1,Ω ≤ Ch2(| p |2,Ω + ‖ f ‖0,Ω). (6.4)

Proof. At first it is known from standard finite element interpolation theory
that

‖ p− Πhp ‖0,Ω + h‖ p− Πhp ‖1,Ω ≤ Ch2(| p |2,Ω + ‖ f ‖0,Ω). (6.5)

On the other hand, because Πhp − Ihp = 0 on ∂K, the standard scaling
argument yields

‖Πhp− Ihp ‖0,K ≤ Ch|Πhp− Ihp|1,K ∀K ∈ Th. (6.6)

To estimate |Πhp− Ihp|1,K we multiply the equation in (6.3) by Ihp−Πhp ∈
H1

0 (K) to get ∫

K

k(x
ε )∇Ihp · ∇(Ihp− Πhp)dx = 0.

Thus, upon using the equation in (2.1), we get
∫

K

k(
x

ε
)∇(Ihp− Πhp) · ∇(Ihp− Πhp)dx

=
∫

K

k(
x

ε
)∇(p− Πhp) · ∇(Ihp− Πhp)dx−

∫

K

k(
x

ε
)∇p · ∇(Ihp− Πhp)dx

=
∫

K

k(
x

ε
)∇(p− Πhp) · ∇(Ihp− Πhp)dx−

∫

K

f(Ihp− Πhp)dx.
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This implies that

|Ihp− Πhp|1,K ≤ Ch| p |2,K + ‖ Ihp− Πhp ‖0,K‖ f ‖0,K .

Hence

|Ihp− Πhp|1,K ≤ Ch(| p |2,K + ‖ f ‖0,K), (6.7)

where we have used (6.6). Now the lemma follows from (6.5)–(6.7). ��

In conclusion, we have the following standard estimate by using Lemmas
6.2 and 6.3.

Theorem 6.4. Let p ∈ H2(Ω) be the solution of (2.1) and ph ∈ Ph be the
solution of (2.3). Then we have

‖ p− ph ‖1,Ω ≤ Ch(| p |2,Ω + ‖ f ‖0,Ω). (6.8)

Note that the estimate (6.8) blows up as does h/ε as ε → 0 because
| p |2,Ω = O(1/ε). This is insufficient for practical applications. In the next
subsection, we derive an error estimate which is uniform as ε→ 0.

Error Estimates (h > ε)

In this section, we show that the MsFEM gives a convergence result uniform
in ε as ε tends to zero. This is the main feature of the MsFEM over the
traditional finite element method. The main result in this subsection is the
following theorem.

Theorem 6.5. Let p ∈ H2(Ω) be the solution of (2.1) and ph ∈ Ph be the
solution of (2.3). Then we have

‖ p− ph ‖1,Ω ≤ C(h+ ε)‖ f ‖0,Ω + C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω , (6.9)

where p0 ∈ H2(Ω) ∩ W 1,∞(Ω) is the solution of the homogenized equation
(6.1).

To prove the theorem, we first denote

pI(x) = Ihp0(x) =
∑

j

p0(xj)φj(x) ∈ Ph.

From (6.3) we know that LεpI = 0 in K and pI = Πhp0 on ∂K for any K ∈ Th.
The homogenization theory implies that

‖ pI − pI0 − ε(pI1 − θIε) ‖1,K ≤ Cε(‖ f ‖0,K + | pI0 |2,K), (6.10)

where pI0 is the solution of the homogenized equation on K:
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L0pI0 = 0 in K, pI0 = Πhp0 on ∂K, (6.11)

pI1 is given by the relation

pI1(x, y) = χj(y)
∂pI0
∂xj

in K, (6.12)

and θIε ∈ H1(K) is the solution of the problem:

LεθIε = 0 in K, θIε(x) = −pI1(x, x/ε) on ∂K. (6.13)

It is obvious from (6.11) that

pI0 = Πhp0 in K, (6.14)

because Πhp0 is linear on K. From (6.10) and Lemma 6.1 we obtain that

‖ p− pI ‖1,Ω ≤ ‖ p0 − pI0 ‖1,Ω + ‖ ε(p1 − pI1) ‖1,Ω

+‖ ε(θε − θIε) ‖1,Ω + Cε‖ f ‖0,Ω , (6.15)

where we have used the regularity estimate ‖ p0 ‖2,Ω ≤ C‖ f ‖0,Ω . Now it
remains to estimate the terms on the right-hand side of (6.15). We show that
the dominating resonance error is due to θIε.

Lemma 6.6. We have

‖ p0 − pI0 ‖1,Ω ≤ Ch‖ f ‖0,Ω , (6.16)
‖ ε(p1 − pI1) ‖1,Ω ≤ C(h+ ε)‖ f ‖0,Ω . (6.17)

Proof. The estimate (6.16) is a direct consequence of standard finite element
interpolation theory because pI0 = Πhp0 by (6.14). Next we note that χj(x/ε)
satisfies

‖χj ‖0,∞,Ω + ε‖∇χj ‖0,∞,Ω ≤ C (6.18)

for some constant C independent of h and ε. Thus we have, for any K ∈ Th,

‖ ε(p1 − pI1) ‖0,K ≤ Cε‖χj ∂

∂xj
(p0 − Πhp0) ‖0,K ≤ Chε| p0 |2,K ,

‖ ε∇(p1 − pI1) ‖0,K = ε‖∇(χj ∂(p0 − Πhp0)
∂xj

) ‖0,K

≤ C‖∇(p0 − Πhp0) ‖0,K + Cε| p0 |2,K

≤ C(h+ ε)| p0 |2,K .

This completes the proof. ��

Lemma 6.7. We have

‖ εθε ‖1,Ω ≤ C
√
ε‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω . (6.19)
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Proof. Let ζ ∈ C∞
0 (R2) be the cut-off function that satisfies ζ ≡ 1 in Ω\Ωδ/2,

ζ ≡ 0 in Ωδ, 0 ≤ ζ ≤ 1 in R
2, and |∇ζ| ≤ C/δ in Ω, where for any δ > 0

sufficiently small, we denote Ωδ as

Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≥ δ}.

With this definition, it is clear that θε + ζp1 = θε + ζ(χj∂p0/∂xj) ∈ H1
0 (Ω).

Multiplying the equation in (6.2) by θε + ζp1, we get
∫

Ω

k(
x

ε
)∇θε · ∇(θε + ζχj ∂p0

∂xj
)dx = 0,

which yields, by using (6.18),

‖∇θε ‖0,Ω ≤ C‖∇(ζχj∂p0/∂xj) ‖0,Ω

≤ C‖∇ζ · χj∂p0/∂xj ‖0,Ω + C‖ ζ∇χj∂p0/∂xj ‖0,Ω

+C‖ ζχj∂2p0/∂
2xj ‖0,Ω

≤ C
√

|∂Ω| · δD
δ

+ C
√

|∂Ω| · δD
ε

+ C| p0 |2,Ω , (6.20)

where D = ‖ p0 ‖1,∞,Ω and the constant C is independent of the domain Ω.
From (6.20) we have

‖ εθε ‖0,Ω ≤ C(
ε√
δ

+
√
δ)‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω

≤ C
√
ε‖ p0 ‖1,∞,Ω + Cε| p0 |2,Ω , (6.21)

where we have taken δ = ε. Moreover, by applying the maximum principle to
(6.2), we get

‖ θε ‖0,∞,Ω ≤ ‖χj∂p0/∂xj ‖0,∞,∂Ω ≤ C‖ p0 ‖1,∞,Ω . (6.22)

Combining (6.21) and (6.22), we complete the proof. ��

Lemma 6.8. We have

‖ εθIε ‖1,Ω ≤ C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω . (6.23)

Proof. First we remember that for any K ∈ Th, θIε ∈ H1(K) satisfies

LεθIε = 0 in K, θIε = −χj(
x

ε
)
∂(Πhp0)
∂xj

on ∂K. (6.24)

By applying the maximum principle and (6.18) we get

‖ θIε ‖0,∞,K ≤ ‖χj∂(Πhp0)/∂xj ‖0,∞,∂K ≤ C‖ p0 ‖1,∞,K .

Thus we have



6.1 Analysis of MsFEMs for linear problems (from Chapter 2) 171

‖ εθIε ‖0,Ω ≤ Cε‖ p0 ‖1,∞,Ω . (6.25)

On the other hand, because the constant C in (6.20) is independent of Ω, we
can apply the same argument leading to (6.20) to obtain

‖ ε∇θIε ‖0,K ≤ Cε‖Πhp0 ‖1,∞,K(
√

|∂K|/
√
δ +
√

|∂K|δ/ε) + Cε|Πhp0 |2,K

≤ C
√
h‖ p0 ‖1,∞,K(

ε√
δ

+
√
δ)

≤ C
√
hε‖ p0 ‖1,∞,K ,

which implies that

‖ ε∇θIε ‖0,Ω ≤ C
( ε

h

)1/2

‖ p0 ‖1,∞,Ω .

This completes the proof. ��

Proof. Theorem 6.5 is now a direct consequence of (6.15) and Lemmas 6.6–6.8
and the regularity estimate ‖ p0 ‖2,Ω ≤ C‖ f ‖0,Ω . ��

Remark 6.9. As we pointed out earlier, the MsFEM indeed gives a correct
homogenized result as ε tends to zero. This is in contrast to the traditional
FEM which does not give the correct homogenized result as ε → 0. The
L2 error would grow as O(h2/ε2). On the other hand, we also observe that
when h ∼ ε, the multiscale method attains a large error in both H1 and L2

norms. This is called the resonance effect between the coarse-grid scale (h)
and the small scale (ε) of the problem. This estimate reflects the intrinsic
scale interaction between the two scales in the discrete problem. Extensive
numerical experiments confirm that this estimate is indeed generic and sharp.
From the viewpoint of practical applications, it is important to reduce or
completely remove the resonance error for problems with many scales because
the chance of hitting a resonance sampling is high.

Remark 6.10. It can be shown that [147]

‖p− ph‖0,Ω ≤ C
(
h+

ε

h

)
.

6.1.2 Analysis of nonconforming multiscale finite element methods

Let φi be multiscale basis functions obtained using the oversampling technique
on K as introduced in Section 2.3.2 and φ0

i (piecewise linear function if Th is
a triangulation) be its homogenized part. We keep the same notation for the
space spanned by multiscale basis functions as in the conforming case; that is
Ph = span{φi}. The analysis follows the proof presented in [143].

The Petrov–Galerkin formulation of the original problem is to seek ph ∈ Ph

such that
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kh(ph, vh) = f(vh), ∀vh ∈Wh,

where
kh(p, v) =

∑

K∈Th

∫

K

∇p · k(x
ε
)∇vdx, f(v) =

∫

Ω

fvdx.

Define ‖ · ‖h,Ω to be the discrete H1 semi-norm as

‖v‖h,Ω =

(
∑

K∈Th

∫

K

|∇v|2dx
)1/2

.

We use the following result [107].

Lemma 6.11. Assume that K ⊂ KE is at least a distance of h away from
∂KE. Then

‖∇ηi‖L∞(K) ≤ C/h, (6.26)

where C is a constant that is independent of ε and h. Here, ηi is the solution
of Lεη

i = 0 in K, ηi = −χi on ∂K.

Theorem 6.12. Let ph be the Petrov–Galerkin MsFEM solution. Assume
Lemma 6.11 holds and ε/h is sufficiently small. If the homogenized part of
p, p0, is in H2(Ω), we have

‖ph − p‖h,Ω ≤ C1h+ C2
ε

h
+ C3

√
ε. (6.27)

Proof. To estimate ‖ph − p‖h,Ω , we first show that the following inf-sup con-
dition or coercivity condition of the bilinear form kh(·, ·) holds for sufficiently
small ε. There exists C > 0, independent of ε and h such that

sup
v∈Wh

|kh(ph, v)|
‖v‖1,Ω

≥ C‖ph‖h,Ω , ∀ph ∈ Ph. (6.28)

Define

k̃ij(y) = kil(y)
(

δlj +
∂χj(y)
∂yl

)

and
k̃(u, v) =

∑

K∈Th

∫

K

∇v · k̃(x
ε
)∇udx, v ∈Wh.

Thus, by the expansion ph = p0h + εχ(x/ε) · ∇p0h + εθh
ε , we have

kh(ph, vh) = k̃(p0h, vh) + εkh(θh
ε , vh) = f(vh), ∀vh ∈Wh. (6.29)

Taking vh = p0h ∈Wh in (6.29), we get

kh(ph, p
0
h) = k̃(p0h, p

0
h) + εkh(θh

ε , p
0
h). (6.30)
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Moreover, using ‖θh
ε ‖h,Ω ≤ (C/h)‖∇p0h‖0,Ω (which follows from Lemma 6.11),

we obtain that

|kh(θh
ε , p

0
h)| ≤ C‖θh

ε ‖h,Ω‖∇p0h‖0,Ω ≤ C

h
‖∇p0h‖2

0,Ω . (6.31)

Next, we note that ‖ph‖h,Ω ≤ C(1 + ε/h)‖∇p0h‖0,Ω (see [143]) and k̃(p0h, p
0
h)

is bounded below and bounded above uniformly when ε/h ≤ C (see (3.5)
in [143]). Consequently, (6.30) and (6.31) imply that when ε/h is sufficiently
small

|kh(ph, p
0
h)| ≥ |k̃(p0h, p0h)| − ε|kh(θh

ε , p
0
h)| ≥ C(1 − ε

h
)‖∇p0h‖2

0,Ω

≥ C‖∇p0h‖0,Ω‖ph‖h,Ω .

Thus, (6.28) holds.
Let pI ∈ Ph be the interpolation from Ph. Using inf-sup condition (6.28)

we have
‖ph − p‖h,Ω ≤ ‖pI − p‖h,Ω + ‖ph − pI‖h,Ω

≤ ‖pI − p‖h,Ω + C sup
vh∈Wh

|kh(ph − pI , vh)|
‖vh‖1,Ω

= ‖pI − p‖h,Ω + C sup
vh∈Wh

|kh(pI − p, vh)|
‖vh‖1,Ω

≤ (1 + C)‖pI − p‖h,Ω .

(6.32)

Here, we have used the fact

kh(ph − p, vh) = 0, ∀vh ∈Wh.

Following the derivation of the proof of Theorem 3.1 in [107] (where pI =∑
p0(xi)φi(x) is chosen) and using Lemma 6.11, we can easily show that

‖pI − p‖h,Ω ≤ C1h+ C2
ε

h
+ C3

√
ε.

Therefore, (6.27) follows from (6.32).

6.1.3 Analysis of mixed multiscale finite element methods

In this section, we present the analysis of mixed multiscale finite element
methods. We slightly modify the problem and consider a more general case
with varying smooth mobility λ(x). We consider the elliptic equation

−div(λ(x)kε(x)∇p) =f in Ω

−λ(x)kε(x)∇p · n = g(x) on ∂Ω,
∫

Ω

pdx = 0,

where λ(x) is a positive smooth function and kε(x) = k(x/ε) is a symmetric
positive and definite periodic tensor with periodicity ε. We note that λ(x)
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appears in two-phase flows (see (2.40)). Under the assumption that λ(x) is
sufficiently smooth, one can analyze the convergence (dominant resonance
error) of MsFEMs with basis functions constructed with λ = 1. The basis
functions are constructed with λ = 1 and satisfy (2.16).

Let ψK
i = kε(x)∇φK

i and the basis function space for the velocity field be
defined by

Vh =
⊕

K

{ψK
i } ⊂ H(div, Ω),

where H(div, Ω) is the space of functions such that ‖ · ‖0,Ω + ‖div(·)‖0,Ω is
bounded. The variational problem is to find {v, p} ∈ H(div, Ω) × L2(Ω)/R
such that v · n = g on ∂Ω and they solve the following variational problem,

∫

Ω

(λkε)−1v · wdx−
∫

Ω

div(w) pdx = 0 ∀w ∈ H0(div, Ω)
∫

Ω

div(v) qdx = f ∀q ∈ L2(Ω)/R,
(6.33)

whereH0(div, Ω) is the subspace ofH(div, Ω) which consists of functions with
homogeneous Neumann boundary conditions.

Set Qh = ⊕KP0(K)∩L2(Ω)/R, a set of piecewise constant functions. The
approximation problem is to find {vh, ph} ∈ Vh ×Qh such that vh · n = gh on
∂Ω

∫

Ω

(λkε)−1vh · whdx−
∫

Ω

div(wh) phdx = 0 ∀wh ∈ V0
h

∫

Ω

div(vh) qhdx = f ∀qh ∈ Qh.

(6.34)

We state the convergence theorem as the following.

Theorem 6.13. Let {v, p} ∈ H(div, Ω)×L2(Ω)/R solve variational problem
(6.33) and {vh, ph} ∈ Vh × Qh solve the discrete variational problem (6.34).
If the homogenized solution p0 ∈ H2(Ω) ∩W 1,∞(Ω), then

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C1(p0, λ)ε

+C2(p0, f, λ, g)h+ C3(p0, λ)
√
εh+ C4(p0, λ)

√
ε

h
,

(6.35)

where the coefficients are defined in (6.38), (6.41), (6.39), and (6.40).

First, we state a stability estimate [71].

Lemma 6.14. If {v, p} and {vh, ph}, respectively, solve the continuous vari-
ational problem (6.33) and the discrete variational problem (6.34), then

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω

≤ C( inf
uh∈Vh

uh−g0,h∈V0
h

‖v − uh‖H(div,Ω) + inf
qh∈Qh

‖p− qh‖0,Ω). (6.36)
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The well-posedness of the discrete problem is verified in [71]. To obtain the
convergence rate, we need to estimate the right-hand side of (6.36). The fol-
lowing proposition is used in the proof.

Proposition 6.15. Let p and ph be the solutions of (6.33) and (6.34), re-
spectively; then

inf
qh∈Qh

‖p− qh‖0,Ω ≤ Ch‖g‖H−1/2(∂Ω).

Proof. Define q̄h = (1/|K|)
∫

K
pdx in each coarse block K. Furthermore, we

apply the Poincaré inequality and standard regularity estimate for elliptic
equations to obtain

inf
qh∈Qh

‖p− qh‖0,Ω ≤ ‖p− q̄h‖0,Ω ≤ Ch‖∇p‖0,Ω ≤ Ch‖g‖H−1/2(∂Ω).

Next, we define the interpolation operator Πh : H(div, Ω)
⋂
H1(Ω) −→ Vh

by

Πhv|K = (
∫

eK
i

v · nds)ψK
i .

Let RT0 = span{RK
i , i = 1, 2, ..., n; K ∈ Th} be the lowest–order Raviart–

Thomas finite element space and define the interpolation operator Ph :
H(div, Ω)

⋂
H1(Ω) −→ RT0 by

Phv|K = (
∫

eK
i

v · nds)RK
i .

It is easy to check that divΠhv = divPhv and Πhv · n = Phv · n.
Next, we need to estimate the first term on the right-hand side of (6.36).

The basic idea is to choose a particular uh approximating v. Let the ho-
mogenized flux v0 = λk∗∇p0 and choose th|K = Πhv0. Then we have
th − g0,h ∈ V0

h, where g0,h =
∑

e∈∂Ω(
∫

e
gds)ψK

i . Consequently, it remains
to estimate ‖v − th‖H(div,Ω). From the definition of th, an easy calculation
gives rise to div(th|K) = 〈f〉K and div(v) = f , where 〈f〉K = (1/|K|)

∫
K
fdx.

Therefore, we have

‖div(v) − div(th)‖0,Ω ≤ C|f |1,Ω .

The next step is to estimate ‖v − th‖0,Ω . We use the homogenization
technique for this purpose. Set φK = αK

i φ
K
i , where αK

i =
∫

eK
i
v0 · nds. Then

th = kε∇φK and div(kε∇φK) = div(Phv0) = 0 in K, where φK ∈ H1(K)/R
satisfies the following equation

div(kε∇φK) = 0 in K
kε∇φK · n = Phv0 · n on eKi .

Let φK
0 be the solution of the corresponding homogenization equation,
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div(k∗∇φK
0 ) = 0 in K

k∗∇φK
0 · n = Phv0 · n on eKi .

To complete the estimation of ‖v − th‖0,Ω , we need the following lemma.

Lemma 6.16. Let p1 = p0 + εχ · ∇p0 and φK
1 = φK

0 + εχ · ∇φK
0 . Then

|φK
0 − p0|1,K ≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

|p1 − φK
1 |1,K ≤ C(h‖λ−1 − 1‖0,∞,K + ε)‖λ‖1,∞,K‖p0‖2,K

|φK
0 |1,∞,K ≤ Ch− d

2 +1‖λ‖1,∞,K‖p0‖2,K + C‖λ‖0,∞,K |p0|1,∞,K . (6.37)

Proof. It is easy to prove that k∗∇φK
0 = Phv0 ∈ L∞(K). Then we have

φK
0 ∈ H2(K) ∩ W 1,∞(K). Applying the interpolation estimate of Raviart–

Thomas finite elements, we obtain

|φK
0 − p0|1,K = ‖(k∗)−1Phv0 − (λk∗)−1v0||0,K

≤ C‖λ−1 − 1‖0,∞,K‖Phv0 − v0‖0,K

≤ Ch‖λ−1 − 1‖0,∞,K |v0|1,K

≤ Ch‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K .

Because ∇φK
0 = (k∗)−1Phv0 and Ph is a bounded operator, it is easy to show

that

|φK
0 |1,K ≤ C|λ|0,∞,K |p0|1,K

|φK
0 |2,K ≤ C‖λ‖1,∞,K |p0|2,K .

Applying the above estimates, we obtain

|p1 − φK
1 |1,K ≤ |p0 − φK

0 |1,K + ‖(∇y · χ)∇(p0 − φK
0 )‖0,K

+ ε‖χ(∇2p0 −∇2φK
0 )‖0,K ≤ Ch‖λ−1− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

+ Cε‖λ‖1,∞,K |p0|2,K .

As for the estimation of (6.37), we invoke the inverse inequality of finite ele-
ments and get

|φK
0 |1,∞,K ≤ C‖Phv0 − 〈v0〉K‖0,∞,K + C‖〈v0〉K‖0,∞,K

≤ Ch−d/2‖Phv0 − 〈v0〉K‖0,K + C‖〈v0〉K‖0,∞,K

≤ Ch−d/2+1‖λ‖1,∞,K‖p0‖2,K + C‖λ‖0,∞,K |p0|1,∞,K ,

where d = 2. The proof of the lemma is complete.

Next, we return to estimate ‖v− th‖0,Ω . Applying the definitions of v and
th and the Lemma 6.16, we obtain that
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‖v − th‖0,K ≤ C‖λ− 1‖0,∞,K‖∇p−∇φK‖0,K

≤ C‖λ− 1‖0,∞,K(‖∇p−∇p1‖0,K + ‖∇p1 −∇φK
1 ‖0,K

+ ‖∇φK
1 −∇φK‖0,K) ≤ C‖λ− 1‖0,∞,K [ε(‖λ‖0,∞,K‖p0‖2,K

+ ‖φK
0 ‖2,K) +

√
εhd−1(‖λ‖0,∞,K |p0|1,∞,K + |φK

0 |1,∞,K)]

+ C‖λ− 1‖0,∞,K [(h‖λ−1 − 1‖0,∞,K + ε)‖λ‖1,∞,K‖p0‖2,K ]

≤ CK,1(p0, λ)ε+ CK,2(p0, λ)h+ CK,3(p0, λ)
√
εh

+ CK,4(p0, λ)
√
εhd−1,

where d refers to the dimension of the space R
d (d = 2 for simplicity). Here we

have used the corrector estimates (see Appendix B for discussions on corrector
estimates for the Dirichlet problem and [71] for the corrector results that
are used in the Neumann problem). Note that the constants in the above
inequality are given by

CK,1(p0, λ) = C‖λ− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,2(p0, λ) = C‖λ− 1‖0,∞,K‖λ−1 − 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,3(p0, λ) = C‖λ− 1‖0,∞,K‖λ‖1,∞,K‖p0‖2,K

CK,4(p0, λ) = C‖λ− 1‖0,∞,K(1 + ‖λ‖0,∞,K)‖p0‖1,∞,K .

Taking the summation all over K, we have

‖v − th‖0,Ω ≤ C1(p0, λ)ε+ C̃2(p0, λ)h+ C3(p0, λ)
√
εh+ C4(p0, λ)

√
ε

h
.

Here we have used the assumption that the triangulation is quasi-uniform,
and the notations of the above coefficients are

C1(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (6.38)

C̃2(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ−1 − 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω

C3(p0, λ) = C‖λ− 1‖0,∞,Ω‖λ‖1,∞,Ω‖p0‖2,Ω (6.39)
C4(p0, λ) = C‖λ− 1‖0,∞,Ω(1 + ‖λ‖0,∞,Ω)‖p0‖1,∞,Ω . (6.40)

Finally, applying Proposition 6.15, we get

‖v − vh‖H(div,Ω) + ‖pε − ph‖0,Ω ≤ C1(p0, λ)ε+ C2(p0, λ, g)h

+ C3(p0, λ)
√
εh+ C4(p0, λ)

√
ε

h
,

where
C2(p0, f, λ, g) = C̃2(p0, λ) + C‖g‖−1/2,∂Ω + C|f |1,Ω . (6.41)

Remark 6.17. From the proof, we see that the resonance term O(
√
ε/h) comes

from the terms estimated by |p0|1,∞,K . If the p0 can be exactly solved by some
finite element method on the coarse grid, then we can use an inverse inequality
to improve the convergence to O(ε+ h+

√
εh).
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Remark 6.18. From the proof of the convergence theorem, one can see that it
is sufficient to require λ ∈W 1,∞(Ω) and λ−1 ∈ L∞(Ω).

Remark 6.19. If the oversampling technique is used to approximate the flux v
(see [71]), the resonance error can be reduced to O(ε/h).

6.2 Analysis of MsFEMs for nonlinear problems
(from Chapter 3)

For the analysis of MsFEMs, we assume the following conditions for k(x, η, ξ)
and k0(x, η, ξ), η ∈ R and ξ ∈ R

d.

|k(x, η, ξ)| + |k0(x, η, ξ)| ≤ C (1 + |η|γ−1 + |ξ|γ−1), (6.42)

(k(x, η, ξ1) − k(x, η, ξ2)) · (ξ1 − ξ2) ≥ C |ξ1 − ξ2|γ , (6.43)

k(x, η, ξ) · ξ + k0(x, η, ξ)η ≥ C|ξ|γ . (6.44)

Denote
H(η1, ξ1, η2, ξ2, r) = (1 + |η1|r + |η2|r + |ξ1|r + |ξ2|r), (6.45)

for arbitrary η1, η2 ∈ R, ξ1, ξ2 ∈ R
d, and r > 0. We further assume that

|k(x, η1, ξ1) − k(x, η2, ξ2)| + |k0(x, η1, ξ1) − k0(x, η2, ξ2)|
≤ C H(η1, ξ1, η2, ξ2, γ − 1) ν(|η1 − η2|)
+ C H(η1, ξ1, η2, ξ2, γ − 1 − s) |ξ1 − ξ2|s,

(6.46)

where s > 0, γ > 1, s ∈ (0,min(γ−1, 1)) and ν is the modulus of continuity, a
bounded, concave, and continuous function in R+ such that ν(0) = 0, ν(t) =
1 for t ≥ 1, and ν(t) > 0 for t > 0. Throughout, γ′ is defined by 1/γ +
1/γ′ = 1, y = x/ε. In further analysis K ∈ Th is referred to simply by
K. Inequalities (6.42)-(6.46) are the general conditions that guarantee the
existence of a solution and are used in homogenization of nonlinear operators
[220]. Here γ represents the rate of the polynomial growth of the fluxes with
respect to the gradient and, consequently, it controls the summability of the
solution. We do not assume any differentiability with respect to η and ξ in the
coefficients. Our objective is to present a MsFEM and study its convergence for
general nonlinear equations, where the fluxes can be discontinuous functions
in space. These kinds of equations arise in many applications such as nonlinear
heat conduction, flow in porous media, and so on. (see, e.g., [207, 244, 245]).

We present the main part of the analysis. For additional proofs of some
auxiliary lemma, we refer to [104]. The analysis is presented for problems with
scale separation. For this reason, we assume that the smallest scale is ε and
denote the coefficients by k(x, ·, ·) = kε(x, ·, ·) and k0(x, ·, ·) = k0,ε(x, ·, ·).

In [111] we have shown using G-convergence theory that
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lim
h→0

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (6.47)

(up to a subsequence) where p0 is a solution of (3.26) and ph is a MsFEM
solution given by (3.6). This result can be obtained without any assumption
on the nature of the heterogeneities and cannot be improved because there
could be infinitely many scales α(ε) present such that α(ε) → 0 as ε→ 0.

Next we present the convergence results for MsFEM solutions. In the proof
of this theorem we show the form of the truncation error (in a weak sense)
in terms of the resonance errors between the mesh size and small-scale ε. The
resonance errors are derived explicitly. To obtain the convergence rate from
the truncation error, one needs some lower bounds. Under the general con-
ditions, such as (6.42)–(6.46), one can prove strong convergence of MsFEM
solutions without an explicit convergence rate (cf. [245]). To convert the ob-
tained convergence rates for the truncation errors into the convergence rate of
MsFEM solutions, additional assumptions, such as monotonicity, are needed.

Theorem 6.20. Assume kε(x, η, ξ) and k0,ε(x, η, ξ) are periodic functions
with respect to x, let p0 be a solution of (3.26), and ph is a MsFEM solu-
tion given by (3.6). Moreover, we assume that ∇ph is uniformly bounded in
Lγ+α(Ω) for some α > 01. Then

lim
ε→0

‖ph − p0‖W 1,γ
0 (Ω) = 0, (6.48)

where h = h(ε) � ε and h→ 0 as ε→ 0 (up to a subsequence).

Theorem 6.21. Let p0 and ph be the solutions of the homogenized prob-
lem (3.26) and MsFEM (3.6), respectively, with the coefficient kε(x, η, ξ) =
k(x/ε, ξ) and k0,ε = 0. Then

‖ph−p0‖γ

W 1,γ
0 (Ω)

≤ C
(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)

+ hγ/(γ−1)

)

. (6.49)

We first prove Theorem 6.20. Then, using the estimates obtained in the
proof of this theorem, we show (6.49). The main idea of the proof of The-
orem 6.20 is the following. First, the boundedness of the discrete solutions
independent of ε and h is shown. This allows us to extract a weakly con-
verging subsequence. The next task is to prove that a limit is a solution of
the homogenized equation. For this reason correctors for vr,h (see (3.2)) are
used and their convergence is demonstrated. We would like to note that the
known convergence results for the correctors assume a fixed (given) homoge-
nized solution, whereas the correctors for vr,h are defined for only a uniformly
bounded sequence vh, that is, the homogenization limits of vr,h (with respect
to ε) depend on h, and are only uniformly bounded. Because of this, more

1 Please see Remark 6.28 at the end of the proof of Theorem 6.20 for more discus-
sions and partial results regarding this assumption.
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precise corrector results need to be obtained where the homogenized limit of
the solution is tracked carefully in the analysis. Note that to prove (6.47) (see
[112]), one does not need correctors and can use the fact of the convergence of
fluxes, and, thus, the proof of the periodic case differs from the one in [112].
Some results (Lemmas 6.22, 6.23, and their proofs) do not require periodicity
assumptions. For these results we use the notations kε(x, η, ξ) and k0,ε(x, η, ξ)
to distinguish the two cases. The rest of the proofs require periodicity, and we
use k(x/ε, η, ξ) and k0(x/ε, η, ξ) notations.

Lemma 6.22. There exists a constant C > 0 such that for any vh ∈Wh

〈kr,hvh, vh〉 ≥ C‖∇vh‖γ
Lγ(Ω),

for sufficiently small h.

The proof of this lemma is provided in [104]. The following lemma is used in
the proof of Lemma 6.24.

Lemma 6.23. Let vε − v0 ∈ W 1,γ
0 (K) and wε − w0 ∈ W 1,γ

0 (K) satisfy the
following problems, respectively,

− div kε(x, η,∇vε) = 0 in K (6.50)

− div kε(x, η,∇wε) = 0 in K, (6.51)

where η is constant in K. Then the following estimate holds:

‖∇(vε − wε)‖Lγ(K) ≤ C H0 ‖∇(v0 − w0)‖γ/(γ−s)
Lγ(K) , (6.52)

where

H0 =
(
|K| + ‖η‖γ

Lγ(K) + ‖∇v0‖γ
Lγ(K) + ‖∇w0‖γ

Lγ(K)

)(γ−s−1)/(γ−s)

,

where s ∈ (0,min(1, γ − 1)), γ > 1.

For the proof of this lemma, we refer to [104].
Next, we introduce, as before, the fast variable y = x/ε. Regarding ηvh ,

where ηvh = (1/|K|)
∫

K
vhdx in each K, we note that Jensen’s inequality

implies
‖ηvh‖Lγ(Ω) ≤ C‖vh‖Lγ(Ω). (6.53)

In addition, the following estimates hold for ηvh ,

‖vh − ηvh‖Lγ(K) ≤ C h ‖∇vh‖Lγ(K). (6.54)

At this stage we define a numerical corrector associated with vr,h =
EMsFEMvh, vh ∈Wh. First, let

Pη,ξ(y) = ξ + ∇yNη,ξ(y), (6.55)
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for η ∈ R and ξ ∈ R
d, where Nη,ξ ∈ W 1,γ

per (Y ) is the periodic solution (with
average zero) of

− div(k(y, η, ξ + ∇yNη,ξ(y))) = 0 in Y, (6.56)

where Y is a unit period. The homogenized fluxes are defined as follows:

k∗(η, ξ) =
∫

Y

k(y, η, ξ + ∇yNη,ξ(y)) dy, (6.57)

k∗0(η, ξ) =
∫

Y

k0(y, η, ξ + ∇yNη,ξ(y)) dy, (6.58)

where k∗ and k∗0 satisfy the conditions similar to (6.42)–(6.46). We refer to
[220] for further details. Using (6.55), we denote our numerical corrector by
Pηvh ,∇vh

which is defined as

Pηvh ,∇vh
= ∇vh + ∇yNηvh ,∇vh

(y). (6.59)

Here ηvh is a piecewise constant function defined in each K ∈ Th by ηvh =
(1/|K|)

∫
K
vhdx. Consequently, Pηvh ,∇vh

is defined in Ω by using (6.59) in
each K ∈ Th. For the linear problem Pηvh ,∇vh

= ∇vh + N(y) · ∇vh. Our
goal is to show the convergence of these correctors for the uniformly bounded
family of vh in W 1,γ(Ω). We note that the corrector results known in the
literature are for a fixed homogenized solution.

Lemma 6.24. Let vr,h satisfy (3.2), where kε(x, η, ξ) is a periodic function
with respect to x, and assume that vh is uniformly bounded in W 1,γ

0 (Ω). Then

‖∇vr,h−Pηvh ,∇vh
‖Lγ(Ω)

≤ C
( ε

h

)1/(γ(γ−s)) (
|Ω| + ‖vh‖γ

Lγ(Ω) + ‖∇vh‖γ
Lγ(Ω)

)1/γ

.
(6.60)

We note that here s ∈ (0,min(γ − 1, 1)), γ > 1. For the proof of this lemma,
we need the following proposition.

Proposition 6.25. For every η ∈ R and ξ ∈ R
d we have

‖Pη,ξ‖γ
Lγ(Yε)

≤ c (1 + |η|γ + |ξ|γ) |Yε|, (6.61)

where Yε is a period of size ε.

An easy consequence of this proposition is the following estimate for Nη,ξ (see
(6.56)).

Corollary 6.26. For every η ∈ R and ξ ∈ R
d we have

‖∇yNη,ξ‖γ
Lγ(Yε)

≤ c (1 + |η|γ + |ξ|γ) |Yε|. (6.62)

The proof of Proposition 6.25 is presented in [104].
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Proof. (Lemma 6.24) Recall that by definition

Pηvh ,∇vh
= ∇vh + ∇yNηvh ,∇vh

(y) = ∇vh + ε∇Nηvh ,∇vh
(x/ε),

where by using (6.56) Nηvh ,∇vh
(y) is a zero-mean periodic function satisfying

the following,

− div(k(x/ε, ηvh ,∇vh + ε∇Nηvh ,∇vh
)) = 0 in K. (6.63)

We expand vr,h as

vr,h = vh(x) + εNηvh ,∇vh
(x/ε) + θ(x, x/ε). (6.64)

We note that here θ(x, x/ε) is similar to the correction terms that arise in
linear problems because of the mismatch between linear boundary conditions
and the oscillatory corrector, Nηvh ,∇vh

(x/ε) = N(x/ε) · ∇vh. Next we denote
by wr,h = vh(x) + εNηvh ,∇vh

(x/ε). Clearly wr,h satisfies (6.63). Taking all
these into account, the claim in the lemma is the same as proving

‖∇θ‖Lγ(Ω) = ‖∇(vr,h − wr,h)‖Lγ(Ω)

≤ C
( ε

h

)1/(γ(γ−s)) (
|Ω| + ‖vh‖γ

Lγ(Ω) + ‖∇vh‖γ
Lγ(Ω)

)1/γ

.
(6.65)

Here we may write wr,h as a solution of the following boundary value problem:

−div(k(x/ε, ηvh ,∇wr,h)) = 0 in K and wr,h = vh + ε Ñηvh ,∇vh
on ∂K,

with Ñηvh ,∇vh
= ζ Nηvh ,∇vh

, where ζ is a sufficiently smooth function whose
value is 1 on a strip of width ε adjacent to ∂K and 0 elsewhere. We denote
this strip by Sε. This idea has been used in [164]. By Lemma 6.23 we have
the following estimate:

‖∇θ‖γ
Lγ(K) = ‖∇(vr,h − wr,h)‖γ

Lγ(K)

≤ C H0 ‖∇(vh − vh − ε Ñηvh ,∇vh
)‖γ/(γ−s)

Lγ(K)

≤ C H0 ‖ε∇Ñηvh ,∇vh
‖γ/(γ−s)

Lγ(K) ,

(6.66)

where

H0 =
(
|K| + ‖ηvh‖γ

Lγ(K) + ‖∇vh‖γ
Lγ(K) + ‖∇(vh + ε Ñηvh ,∇vh

)‖γ
Lγ(K)

) (γ−s−1)
(γ−s)

.

(6.67)

We need to show that H0 is bounded and ‖ε∇Ñηvh ,∇vh
‖γ

Lγ(Ω) uniformly
vanishes as ε → 0. For this purpose, we use the following notations. Let
JK

ε = {i ∈ Z
d : Y i

⋂
K �= 0,K\Y i �= 0} and FK

ε = ∪i∈JK
ε
Y i. In other words,
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FK
ε is the union of all periods Y i that cover the strip Sε. Using these notations

and because ζ is zero everywhere in K, except in the strip Sε, we may write
the following

‖ε∇Ñηvh ,∇vh
‖γ

Lγ(K) =εγ
∫

K

|∇(ζ Nηvh ,∇vh
)|γ dx

= εγ
∫

Sε

|∇(ζ Nηvh ,∇vh
)|γ dx

≤ εγ
∫

F K
ε

|∇(ζ Nηvh ,∇vh
)|γ dx

= εγ
∑

i∈JK
ε

∫

Y i
ε

|∇(ζ Nηvh ,∇vh
)|γ dx

≤ εγ
∑

i∈JK
ε

∫

Y i
ε

(|∇Nηvh ,∇vh
|γ |ζ|γ + |Nηvh ,∇vh

|γ |∇ζ|γ) dx,

(6.68)

where we have used the product rule on the partial derivative in the last line
of (6.68). Our aim now is to show that the sum of integrals in the last line of
(6.68) is uniformly bounded. We note that (see Corollary 6.26)

‖∇y Nηvh ,∇vh
‖γ

Lγ(Y i
ε ) ≤ C(1 + |ηvh |γ + |∇vh|γ) |Y i

ε |, (6.69)

from which, using the Poincaré-Friedrich inequality we have

‖Nηvh ,∇vh
‖γ

Lγ(Y i
ε ) ≤ C(1 + |ηvh |γ + |∇vh|γ) |Y i

ε |. (6.70)

We note also that ηvh and ∇vh are constant in K. Because ζ is sufficiently
smooth, and whose value is one on the strip Sε and zero elsewhere, we know
that |∇ζ| ≤ C/ε (cf. [164]). Applying all these facts to (6.68) we have

‖ε∇Ñηvh ,∇vh
‖γ

Lγ(K) ≤ C ε
γ (1 + |ηvh |γ + |∇vh|γ)

∑

i∈JK
ε

(1 + ε−γ) |Y i
ε |

= C (εγ + 1) (1 + |ηvh |γ + |∇vh|γ)
∑

i∈JK
ε

|Y i
ε |

≤ C (1 + |ηvh |γ + |∇vh|γ)
∑

i∈JK
ε

|Y i
ε |.

Moreover, because all Y i
ε , i ∈ JK

ε , cover the strip Sε, we know that
∑

i∈JK
ε

|Y i
ε |

≤ C hd−1 ε. Hence, we have

‖ε∇Ñηvh ,∇vh
‖γ

Lγ(K) ≤ C
hd

hd
(1 + |ηvh |γ + |∇vh|γ) hd−1 ε

≤ C ε
h

(
|K| + ‖ηvh‖γ

Lγ(K) + ‖∇vh‖γ
Lγ(K)

)
.

(6.71)
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Furthermore, using this estimate and noting that ε/h < 1, we obtain from
(6.67) that

H0 ≤ C
(
|K| + ‖ηvh‖γ

Lγ(K) + ‖vh‖γ
Lγ(K) + ‖∇vh‖γ

Lγ(K)

)(γ−s−1)/(γ−s)

.

(6.72)
Summarizing the results from (6.66) combined with (6.72) and (6.71), we get

‖∇θ‖γ
Lγ(K) ≤ C H0 ‖ε∇Ñηvh ,∇vh

‖γ/(γ−s)
Lγ(K)

≤ C
( ε

h

)1/(γ−s) (
|K| + ‖ηvh‖γ

Lγ(K) + ‖vh‖γ
Lγ(K) + ‖∇vh‖γ

Lγ(K)

)
.

Finally summing over all K ∈ Th and applying (6.53) to
∑

K∈Th
‖ηvh‖γ

Lγ(K),
we obtain

‖∇θ‖γ
Lγ(Ω) =

∑

K

‖∇θ‖γ
Lγ(K)

≤ C
( ε

h

)1/(γ−s) ∑

K

(
|K| + ‖vh‖γ

Lγ(K) + ‖∇vh‖γ
Lγ(K)

)

= C
( ε

h

)1/(γ−s) (
|Ω| + ‖vh‖γ

Lγ(Ω) + ‖∇vh‖γ
Lγ(Ω)

)
.

(6.73)

The last inequality uniformly vanishes as ε approaches zero, thus we have
completed the proof of Lemma 6.24.

The next lemma is crucial for the proof of Theorem 6.20 and it guarantees
the convergence of MsFEM solutions to a solution of the homogenized equa-
tion. This lemma also provides us with the estimate for the truncation error
(in a weak sense).

Lemma 6.27. Suppose vh, wh ∈ Wh where ∇vh and ∇wh are uniformly
bounded in Lγ+α(Ω) and Lγ(Ω), respectively, for some α > 0. Let κ∗ be
the operator associated with the homogenized problem (3.26), such that

〈κ∗ vh, wh〉=
∑

K∈Th

∫

K

(k∗(vh,∇vh)·∇wh+k∗0(vh,∇vh)wh) dx, ∀vh, wh ∈Wh.

(6.74)
Then we have

lim
ε→0

〈κr,h vh − κ∗ vh, wh〉 = 0.

The proof of this lemma is presented in [104]. Now we are ready to prove
Theorem 6.20.

Proof. (Theorem 6.20) Because κr,h is coercive, it follows that ph is bounded,
which implies that it has a subsequence (which we also denote by ph) such
that ph ⇀ p̃ in W 1,γ(Ω) as ε → 0. Because the operator κ∗ is of type S+

(see, e.g., [245], page 3, for the definition), then by its definition, the strong
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convergence would be true if we can show that lim supε→0 〈κ∗ph, ph − p̃〉 → 0.
Moreover, by adding and subtracting the term, we have the following equality

〈κ∗ph, ph − p̃〉 = 〈κ∗ph − κr,hph, ph − p̃〉 + 〈κr,hph, ph − p̃〉

= 〈κ∗ph − κr,hph, ph〉 − 〈κ∗ph − κr,hph, p̃〉 +
∫

Ω

f(ph − p̃)dx.

(6.75)

Lemma 6.27 implies that the first and second term vanish as ε→ 0 provided
∇ph is uniformly bounded in Lγ+α for α > 0, and the last term vanishes
as ε → 0 (up to a subsequence) by the weak convergence of ph. One can
assume additional mild regularity assumptions [201] for input data and obtain
Meyers type estimates, ‖∇p0‖Lγ+α(Ω) ≤ C, for the homogenized solutions. In
this case it is reasonable to assume that the discrete solutions are uniformly
bounded in Lγ+α(Ω). We have obtained results on Meyers type estimates for
our approximate solutions in the case γ = 2 [114]. Finally, because κ∗ is also
of type M (see, e.g., [244], page 38, for the definition), all these conditions
imply that κ∗p̃ = f , which means that p̃ = p0.

Remark 6.28. We would like to point out that for the proof of Theorem 6.20
it is assumed that ∇ph is uniformly bounded in Lγ+α(Ω) for some α > 0 (see
discussions after (6.75)). This has been shown for γ = 2 in [114]. To avoid
this assumption, one can impose additional restrictions on k∗(η, ξ) (see, [112],
pages 254, 255). We note that the assumption, ∇ph is uniformly bounded in
Lγ+α(Ω), is not used for the estimation of the resonance errors.

Next we present some explicit estimates for the convergence rates of Ms-
FEM. First, we note that from the proof of the Lemma 6.27 it follows that
the truncation error of MsFEM (in a weak sense) is given by

〈kr,hph − κ∗ph, wh〉 = 〈f −A∗ph, wh〉

≤ C
( ε

h

)s/(γ(γ−s)) (
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)(1/γ′)
‖∇wh‖Lγ(Ω)

+ C
ε

h

(
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)1/γ′

‖∇wh‖Lγ(Ω) + e(h)‖∇wh‖Lγ(Ω)

= C
(( ε

h

)s/(γ(γ−s))

+
ε

h

)(
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)1/γ′

‖∇wh‖Lγ(Ω)

+ e(h)‖∇wh‖Lγ(Ω),

(6.76)

where e(h) is a generic sequence independent of small-scale ε, such that e(h) →
0 as h→ 0. We note that the first term on the right side of (6.76) is the leading
order resonance error caused by the linear boundary conditions imposed on
∂K, and the second term is due to the mismatch between the mesh size and
the small scale of the problem. These resonance errors are also present in the
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linear case as we discussed in Section 6.1. If one uses the periodic solution of
the auxiliary problem for constructing the solutions of the local problems, then
the resonance error can be removed. To obtain explicit convergence rates, we
first derive upper bounds for 〈κ∗ph − κ∗Php0, ph − Php0〉, where Phu denotes
a finite element projection of u onto Wh; that is,

〈κ∗Php0, vh〉 =
∫

Ω

fvhdx, ∀vh ∈Wh,

and 〈κ∗ph, vh〉 is defined by (6.74). Then using estimate (6.76), we have

〈κ∗ph − κ∗Php0, ph − Phu〉 = 〈κ∗ph − kr,hph, ph − Php0〉
+ 〈kr,hph − κ∗Php0, ph − Php0〉 = 〈κ∗ph − kr,hph, ph − Php0〉
+ 〈f − κ∗Php0, ph − Php0〉 = 〈κ∗ph − kr,hph, ph − Php0〉

≤ C
(( ε

h

)s/(γ(γ−s))

+
ε

h

)(
|Ω| + ‖ph‖γ

Lγ(Ω) + ‖∇ph‖γ
Lγ(Ω)

)1/γ′

×

‖∇(ph − Php0)‖Lγ(Ω) + e(h)‖∇(ph − Php0)‖Lγ(Ω).

(6.77)

The estimate (6.77) does not allow us to obtain an explicit convergence
rate without some lower bound for the left side of the expression. In the proof
of Theorem 6.20, we only use the fact that κ∗ is the operator of type S+,
which guarantees that the convergence of the left side of (6.77) to zero implies
the convergence of the discrete solutions to a solution of the homogenized
equation. Explicit convergence rates can be obtained by assuming some kind
of an inverse stability condition, ‖κ∗u − κ∗v‖ ≥ C‖u − v‖. In particular, we
may assume that κ∗ is a monotone operator; that is,

〈κ∗u− κ∗v, u− v〉 ≥ C‖∇(u− v)‖γ
Lγ(Ω). (6.78)

A simple way to achieve monotonicity is to assume kε(x, η, ξ) = kε(x, ξ) and
k0,ε(x, η, ξ) = 0, although one can impose additional conditions on kε(x, η, ξ)
and k0,ε(x, η, ξ), such that monotonicity condition (6.78) is satisfied. For our
further calculations, we only assume (6.78). Then from (6.77) and (6.78), and
using the Young inequality, we have

‖∇(ph − Php0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)
)

+ e(h).

Next taking into account the convergence of standard finite element solutions
of the homogenized equation we write

‖∇Php−∇p0‖Lγ(Ω) ≤ e1(h),

where e1(h) → 0 (as h → 0) is independent of ε. Consequently, using the
triangle inequality we have

‖∇(ph − p0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)
)

+ e(h) + e1(h).
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Proof. (Theorem 6.21).
For monotone operators, kε(x, η, ξ) = kε(x, ξ) and k0,ε(x, η, ξ) = 0, η ∈

R and ξ ∈ R
d, the estimates for e(h) and e1(h) can be easily derived. In

particular, because of the absence of η in kε, e(h) = 0, and e1(h) ≤ Ch1/(γ−1)

(see, e.g., [75]). Combining these estimates we have

‖∇(ph − p0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)

+ hγ/(γ−1)

)

.

From here one obtains (6.49).

Remark 6.29. One can impose various conditions on the operators to obtain
different kinds of convergence rates. For example, under the additional as-
sumptions (cf. [207])

|∂k
∗(η, ξ)
∂η

| + |∂k
∗(η, ξ)
∂ξ

| ≤ C, ∂k∗i (η, ξ)
∂ξj

βiβj ≥ C|β|2,

where β ∈ R
d is an arbitrary vector, and γ = 2, following the analysis pre-

sented in [207] (pages 51, 52), the convergence rate in terms of the Lγ-norm
of ph − Php can be obtained,

‖∇(ph − Php0)‖γ
Lγ(Ω) ≤ C

(( ε

h

)s/((γ−1)(γ−s))

+
( ε

h

)γ/(γ−1)
)

+e(h) + C‖ph − Php0‖γ
Lγ(Ω),

(6.79)

where s ∈ (0, 1), γ = 2.

Remark 6.30. For the linear operators (γ = 2, s = 1), we recover the conver-
gence rate Ch+ C1

√
ε/h.

Remark 6.31. We have shown that the MsFEM for nonlinear problems has the
same error structure as for linear problems. In particular, our studies revealed
two kinds of resonance errors for nonlinear problems with the same nature as
those that arise in linear problems.

6.3 Analysis for MsFEMs with limited global
information (from Chapter 4)

6.3.1 Mixed finite element methods with limited global
information

Elliptic case

We begin by restating the main assumption in a rigorous way.
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Assumption A1. There exist functions v1, ..., vN and sufficiently smooth
A1(x), ..., AN (x) such that

v(x) =
N∑

i=1

Ai(x)vi, (6.80)

where vi = k∇pi and pi solves div(k(x)∇pi) = 0 in Ω with appropriate bound-
ary conditions.

For our analysis, we assume Ai(x) ∈W 1,ξ(Ω), and vi = k(x)∇pi ∈ Lη(Ω)
for some ξ and η, i = 1, ..., N . Throughout this section, we do not use the
Einstein summation convention.

Remark 6.32. As an example of two global fields in R
2 (similar results hold in

R
d; see [218] for details), we use the results of Owhadi and Zhang [218]. Let
vi = k(x)∇pi (i = 1, 2) be defined by the elliptic equation

div(k(x)∇pi) = 0 in Ω

pi = xi on ∂Ω,
(6.81)

where x = (x1, x2). In the harmonic coordinate (p1, p2), p = p(p1, p2) ∈ W 2,s

(s ≥ 2). Consequently, v = λ(x)k(x)∇p =
∑

i λ(∂p/∂pi)k∇pi :=
∑

iAi(x)vi,
where Ai(x) = λ(∂p/∂pi) ∈W 1,s.

To avoid the possibility that
∫

el
vi ·nds is zero or unbounded, we make the

following assumption for our analysis.
Assumption A2. There exist positive constants C such that
∫

el

|vi · n|ds ≤ Chβ1 and ‖ vi · n∫
el
vi · nds

‖Lr(el) ≤ Ch−β2+1/r−1 (6.82)

uniformly for all edges el, where β1 ≤ 1, β2 ≥ 0,and r ≥ 1.

Remark 6.33. The second part of Assumption A2 is to assure |
∫

el
vi · nds|

remains positive. It can be also written as

‖ vi · n∫
el
vi · nds

− 〈 vi · n∫
el
vi · nds

〉el
‖Lr(el) ≤ Ch−β2+1/r−1,

where 〈·〉 = (1/|el|)
∫

el
(·)ds, which is used to estimate the velocity basis func-

tion. If vi are bounded, then β2 = 0. Note that

‖ vi · n∫
el
vi · nds

− 〈 vi · n∫
el
vi · nds

〉el
‖Lr(el) = 0

if vi|K is an RT0 basis function or standard mixed MsFEM basis functions
introduced in [71]. Finally, we note that if r = 1 and |

∫
el
vi · nds| ≥ Chβ1 ,

then β2 = 0.
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We recall the definition of basis functions ψK
ij = k(x)∇φK

ij and

Vh =
⊕

K

{ψK
ij }
⋂
H(div, Ω), V0

h =
⊕

K

{ψK
ij }
⋂
H0(div, Ω).

Let Qh = ⊕KP0(K) ⊂ L2(Ω)/R (i.e., piecewise constants), be the basis func-
tion for the pressure. We define

g0,h =
∑

e∈{∂K
⋂

∂Ω,K∈τh}
(
∫

e

gds)ψi,e

for some fixed i ∈ {1, 2, ..., N}, where ψi,e is the corresponding multiscale
basis function to the edge e. Let gh = g0,h · n on ∂Ω. The numerical mixed
formulation is to find {vh, ph} ∈ Vh ×Qh which satisfies (4.7) and vh · n = gh
on ∂Ω.

First, we note the following result.

Lemma 6.34.

vi|K ∈ span{ψK
ij }, i = 1, .., N ; j = 1, 2, 3.

Proof. First, we prove the lemma for v1. For this proof, we would like to find
constants βK

ij s such that
∑

i,j β
K
ij ψ

K
ij = v1. That is,

∑

i,j

βK
ij div(k(x)∇φK

ij ) =
1
|K|
∑

i,j

βK
ij = 0

∑

i,j

βK
ij k(x)∇φK

ij · nel
=
∑

i,j

βK
ij δjl

vi · nel∫
el
vi · nds

= v1 · nel
.

(6.83)

Noticing that vi = k(x)∇pi and div(k(x)∇pi) = 0, we have pi =
∑

i,j β
K
ij φ

K
ij +

C for some constant C because pi and
∑

i,j β
K
ij φ

K
ij satisfy the same elliptic

equation with Neumann boundary condition as pi, and then we have vi =∑
i,j β

K
ij ψ

K
ij . The second equation in (6.83) implies that we can take βK

1j =
∫

ej
v1 · nds and βK

ij = 0 for i �= 1. Consequently,

∑

i,j

βK
ij =

∑

j

∫

ej

v1 · nds =
∫

K

div(v1)dx = 0,

which is the first equation in (6.83). One can obtain similar results for other
vi (i = 2, ..., N).

Following our assumption, let

X = {u|u =
N∑

i=1

ai(x)vi}



190 6 Analysis

be a subspace of H(div, Ω). For our analysis, we require that the integrals∫

ej

ai(x)vi · nds are well defined. This is also needed in our computations be-

cause
∫

ej

ai(x)vi · nds determines the fluxes along the edges in two-phase flow

simulations. One way to achieve this is to assume, as we did earlier, that
ai(x) ∈ W 1,ξ(Ω), vi ∈ Lη(Ω), 1

2 = 1/ξ + 1/η. Because ai(x) ∈ W 1,ξ(Ω) and
vi ∈ Lη(Ω) (1

2 = 1
ξ + 1

η ), Hölder inequality implies that (∇ai)vi ∈ L2(Ω).
Noticing that div(vi) = 0, we have div(ai(x)vi) ∈ L2(Ω) immediately. Invok-
ing the Sobolev embedding theorem (see [18]), we get aivi ∈ Lη(Ω) because

W 1,ξ(Ω) ↪→ L∞(Ω). The integrals
∫

ej

ai(x)vi · nds are well defined by the

fact that aivi ∈ Lρ(Ω) (ρ > 2) and div(ai(x)vi) ∈ L2(Ω) (see page 125 of
[57]). We define an interpolation operator Πh : X −→ Vh such that in each
element K, for any v =

∑
i ai(x)vi ∈ X

Πh|K(
∑

i

ai(x)vi) =
∑

i,j

aK
ijψ

K
ij ,

where aK
ij =

∫

ej

ai(x)vi · nds.

The proof of the following lemma can be found in [8].

Lemma 6.35. Let Πh be defined as above. Then ∀v =
∑N

i=1 aivi ∈ X, qh ∈
Qh,
(1)
∫

Ω
div(v − Πhv)qhdx = 0;

(2) ‖Πhv‖H(div,Ω) ≤ C‖v‖X,Ω, if β1 ≥ 2β2,
where ‖v‖X,Ω := ‖div(v)‖0,Ω +

∑N
i=1 ‖ai‖1,Ω and C only depends on N , the

constants in Assumption A2 (see (6.82)) and the pre-computed global fields
vi.

Remark 6.36. If vi ∈ L∞(Ω), then β1 = 1, β2 = 0, and the proof of Lemma
6.35 implies that ‖Πhv‖H(div,Ω) ≤ C(maxi ‖vi‖L∞(Ω))

∑
i ‖ai‖1,Ω .

Remark 6.37. For v =
∑N

i=1 aivi, where ai ∈W 1,ξ(Ω) and vi ∈ Lη(Ω) (1/2 =
1/ξ + 1/η), one can also show that

‖Πhv‖H(div,Ω) ≤ C
∑

i

‖ai‖1,ξ,Ω ,

if α+β1−β2−1 ≥ 0, where C only depends onN , the constants in Assumption
A2 (see (6.82)), and the pre-computed global fields vi.

Remark 6.38. We note that ‖v‖X,Ω may not be a norm in general because v =∑
i aivi = 0 may not imply that ai are zero (this does not affect the derivation

of the discrete inf-sup condition). In the problem setting considered here,
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one can assume that ‖v‖X,Ω is a norm. Indeed, ai are coarse-scale functions,
and vi are fine-scale functions. Thus, in each coarse-grid block, the linear
combination

∑
i aivi zero will imply that ai are zero unless vi are also coarse-

scale functions. In the latter case, one can use standard mixed finite element
basis functions. If N = d (d being the dimension of the space), ‖v‖X,Ω is a
norm when vi are linearly independent. In the discrete setting, ai are vectors
defined on the coarse grid, whereas vi are defined on the fine grid. If

∑
i aivi

is zero, this implies that the vectors vi are linearly dependent, and thus, the
basis functions are linearly dependent.

Lemma 6.35 and the continuous inf-sup condition imply the discrete inf-
sup condition (see page 58 of [57]). We assume that the continuous inf-sup
condition holds (see [8] for more details). Assuming a continuous inf-sup con-
dition, we have that for any qh ∈ Qh, there exists a constant C such that

sup
vh∈Vh

∫
Ω

div(vh)qhdx
‖vh‖H(div,Ω)

≥ C‖qh‖0,Ω . (6.84)

Because of the inf-sup condition (6.84), we have the following optimal
approximation (see [57, 71]).

Lemma 6.39. Let {v, p} and {vh, ph} be the solution of (4.4) and (4.7) re-
spectively. Then

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C inf
wh∈Vh,wh−g0,h∈V0

h

‖v − wh‖H(div,Ω)

+C inf
qh∈Qh

‖p− qh‖0,Ω .

(6.85)

Next, we formulate our main result.

Theorem 6.40. Let {v, p} and {vh, ph} be the solution of (4.4) and (4.7),
respectively. If α+ β1 − β2 − 1 > 0, we have

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Chα+β1−β2−1,

where α = 1− 2/ξ, ξ and Ai are defined in Assumption A1, and βi (i = 1, 2)
are defined in Assumption A2. Here C is independent of h and depends on
N , the constants in Assumption A2, ‖Ai‖1,ξ,Ω (i = 1, .., N) and ‖f‖1,Ω.

Proof. For the proof, we need to choose a proper uh and a proper qh such
that the right-hand side of (6.85) is small.

The second term on the right hand in (6.85) can be easily estimated. In
fact, with the choice qh|K = 〈p〉K (i.e., the average of p in K), we have

inf
qh∈Qh

‖p− ph‖0,Ω ≤ Ch|p|1,Ω .
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Next, we try to find a uh ∈ Vh, say uh|K =
∑

i,j c
K
ijψ

K
ij , and estimate the

first term on the right-hand side in (6.85). Invoking Lemma 6.34 and its proof,
it follows that in each K,

v − uh =
∑

i

Ai(x)vi −
∑

i,j

cKijψij

=
∑

i

(Ai(x)
∑

j

βK
ij ψ

K
ij ) −

∑

i,j

cKijψ
K
ij

=
∑

i,j

(Ai(x)βK
ij − cKij )ψK

ij ,

(6.86)

where βK
ij =

∫
ej
vi · nds . Set cKij = AK

ij =
∫

ej
Ai(x)vi · nds.

Because
∫

K

∑
i div(Ai(x)vi)dx = f , we get by the divergence theorem

∫

∂K

∑

i

Ai(x)vi · nds = f.

This gives rise to

‖div(v −
∑

i,j

cKijψ
K
ij )‖0,K = ‖f −

∑

i,j

cKij
1
|K| ‖0,K

= ‖f −
∑

i,j

∫

ej

Ai(x)vi · nds
1
|K| ‖0,K = ‖f − 〈f〉K‖0,K ≤ Ch|f |1,K .

(6.87)

After summation over all K for (6.87), we have

‖div(v − uh)‖0,Ω ≤ Ch|f |1,Ω . (6.88)

Next we estimate ‖v−
∑

i,j c
K
ijψ

K
ij ‖0,K . Because Ai(x) ∈W 1,ξ(Ω), by using

the Sobolev embedding theorem and Taylor expansion (or definition of Cα)
we have

|Ai(x)|ej
− Āj

i | ≤ Chα‖Ai‖Cα(Ω),

where Āj
i is the average Ai(x) along ej and α = 1 − 2/ξ. So

|AK
ij − Āj

iβ
K
ij | = |

∫

ej

Aivi · nds− Āj
i

∫

ej

vi · nds|

= |
∫

ej

(Ai − Āj
i )(vi · n)ds| ≤ Chα+β1‖Ai‖Cα(Ω),

(6.89)

where we have used the Assumption A2 (see (6.82)).
Next, we present an estimate for ‖ψK

ij ‖0,K . For this reason, we introduce
the lowest Raviart–Thomas basis functions RK

j for velocity. We know that
div(RK

j ) = 1/|K| and RK
j · n = δjl/|ej | (e.g., [57]). We multiply (4.6) by a

test function w; we have
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∫

K

k∇φK
ij∇wdx=−

∫

K

w div(k∇φK
ij )dx+

∫

∂K

(k∇φK
ij · n)wds

=−
∫

K

w divRK
j dx+

∫

∂K

(k∇φK
ij · n)wds

=
∫

K

(∇w)RK
j dx+

∫

∂K

(k∇φK
ij · n−RK

j · n)wds

=
∫

K

(∇w)RK
j dx+

∫

∂K

δjl(
vi · n∫

el
vi · nds

− 〈 vi · n∫
el
vi · nds

〉el
)wds,

(6.90)

where we have used that 〈 vi·n∫
ej

vi·nds
〉ej

= RK
j · nej

= 1
|ej | .

If we set w = φK
ij , then it follows that

C‖∇φK
ij ‖2

0,K ≤ ‖∇φK
ij ‖0,K‖RK

j ‖0,K

+ ‖ vi · n∫
ej
vi · nds

− 〈 vi · n∫
ej
vi · nds

〉ej
‖Lr(ej)‖φK

ij ‖Lr′ (∂K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+1/r−1‖φK

ij ‖Lr′ (∂K)

≤ C‖∇φK
ij ‖0,K +Ch−β2+1/r−1(h−1+1/r′‖φK

ij ‖0,K +h
1
r′ ‖∇φK

ij ‖0,K)

≤ C‖∇φK
ij ‖0,K + Ch−β2+1/r−1h1/r′‖∇φK

ij ‖0,K

≤ C‖∇φK
ij ‖0,K + Ch−β2‖∇φK

ij ‖0,K ,

where r′ satisfies 1/r+1/r′ = 1 (r is defined in Assumption A2), and we have
used Assumption A2 (see (6.82)) and ‖RK

j ‖0,K ≤ C (e.g., [57]) in the second
step, the trace inequality (by rescaling) in the third step, and 〈φK

ij 〉K = 0
along with the Poincaré–Friedrichs inequality (by rescaling) in the fourth step.
Consequently, we have

‖ψK
ij ‖0,K ≤ C(1 + h−β2), (6.91)

where C only depends on AssumptionA2 and the constants in trace inequality
and Poincaré inequality in a fixed reference domain. Combining (6.89) and
(6.91), it follows immediately

‖v − uh‖0,K = ‖
∑

i,j

(Ai(x)βK
ij −AK

ij )ψK
ij ‖0,K

≤ ‖
∑

i,j

(Ai(x) − Āj
i )β

K
ij ψ

K
ij ‖0,K + ‖

∑

i,j

(Āj
iβ

K
ij −AK

ij )ψK
ij ‖0,K

≤ ‖
∑

i,j

|Ai(x) − Āj
i |βK

ij ψ
K
ij ‖0,K + ‖

∑

i,j

|Āj
iβ

K
ij −AK

ij |ψK
ij ‖0,K

≤ Chα+β1(
∑

i

‖Ai‖Cα(Ω))
∑

i,j

‖ψK
ij ‖0,K

≤ Chα+β1−β2(
∑

i

‖Ai‖Cα(Ω)),

(6.92)
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where we have used Assumption A2 (see (6.82)) and C depends on N and the
constants in Assumption A2. After summation over all K for (6.92) we have

‖v − uh‖2
0,Ω =

∑

K

‖u− uh‖2
0,K

≤ C(
∑

i

‖Ai‖Cα(Ω))2
∑

K

h2(α+β1−β2)

≤ C(
∑

i

‖Ai‖Cα(Ω))2
1
h2
h2(α+β1−β2)

= C(
∑

i

‖Ai‖Cα(Ω))2h2(α+β1−β2−1).

Consequently,

‖v − vh‖0,Ω ≤ C(
∑

i

‖Ai‖Cα(Ω))hα+β1−β2−1. (6.93)

According to (6.85), for those K, ∂K ∩ ∂Ω, we adjust proper cKij such
that

∑
i,j c

K
ijψ

K
i,j − g0,h ∈ V0

h, but this does not affect our convergence rate.
Therefore, invoking Lemma 6.39, (6.88), (6.93), and the Sobolev embedding
theorem from W 1,ξ into Cα, Theorem 6.40 follows.

From the proof of Theorem 6.40, one can easily get the following result.
Let v and vh be the velocity in (4.4) and (4.7), respectively; then we have

‖v − vh‖0,Ω ≤ C(
∑

i

‖Ai‖Cα(Ω))hα+β1−β2−1.

Remark 6.41. If Ai(x) ∈ C1(Ω) in Assumption A1 and vi are defined such
that β1 = 1 and β2 = 0 (e.g., vi are bounded), then Theorem 6.40 implies
that

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ Ch.
Remark 6.42. We note that the local mixed MsFEMs suffer from a resonance
error and a typical convergence rate for periodic coefficients is

‖vε − vh‖H(div,Ω) + ‖pε − ph‖0,Ω ≤ C(h+
( ε

h

)γ

),

where γ = 1/2 for the mixed multiscale method introduced in [71]. In our
global mixed MsFEM, the boundary condition for the velocity basis is hetero-
geneous and Theorem 6.40 implies that stability is independent of the small
scale and the resonance error is removed.

Remark 6.43. One can relax the main assumption used here and assume that

‖v(x) −
∑

i

Ai(x)vi(x)‖H(div,Ω) ≤ Cδ.

In this case, we can expect the convergence as

‖v − vh‖H(div,Ω) + ‖p− ph‖0,Ω ≤ C(hα+β1−β2−1 + δ).
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Parabolic equations

Next, we extend the analysis to parabolic equations. We use the following
assumption for the parabolic equation.

Assumption A1p. There exist functions v1, ..., vN and sufficiently smooth
A1(t, x), ..., AN (t, x) such that

v(t, x) =
N∑

i=1

Ai(t, x)vi,

where vi = k∇pi and pi solves div(k(x)∇pi) = 0 in Ω with appropriate bound-
ary conditions.

For our analysis, we assume, as before, Ai(t, x) ∈ L2(0, T ;W 1,ξ(Ω))(ξ > 2)
and vi = k(x)∇pi ∈ Lη(Ω) (1/2 = 1/ξ + 1/η), i = 1, ..., N .

Remark 6.44. Let vi = k(x)∇pi (i = 1, 2) be defined in (6.81), then Owhadi
and Zhang in [217] show that p(t, x) = p(t, p1, p2) ∈ L2(0, T ;W 2,s) (s > 2).
Consequently, v(t, x) = k(x)∇p =

∑
i(∂p/∂pi)k∇pi :=

∑
iAi(t, x)vi, where

Ai(t, x) = ∂p/∂pi ∈ L2(0, T ;W 1,s).

We define
‖u‖2

L2
k(Ω) =

∫

Ω

u · k−1(x)udx

and

‖u‖2
L2(0,T ;L2

k(Ω)) =
∫ T

0

∫

Ω

u · k−1(x)udxds.

Let Πh : H(div) −→ Vh be the interpolation operator defined as in Section
6.3.1 and PQh

: L2(Ω) −→ Qh be the L2 projection onto Qh.
From (4.9) and (4.10), we have

∫

Ω

∂

∂t
(p− ph)qhdx+

∫

Ω

div(v − vh)qhdx = 0, ∀qh ∈ Qh

∫

Ω

k−1(v − vh) · whdx−
∫

Ω

div(wh)(p− ph)dx = 0, ∀wh ∈ Vh.

(6.94)

Taking wh = Πhv − vh and qh = PQh
p− ph, we have

∫

Ω

∂

∂t
(p− ph)(PQh

p− ph)dx+
∫

Ω

div(v − vh)(PQh
p− ph)dx = 0

∫

Ω

k−1(v − vh) · (Πhv − vh)dx−
∫

Ω

div(Πhv − vh)(p− phdx) = 0.
(6.95)

Rewriting p− ph = p− PQh
p+ PQh

p− ph and v − vh = v − Πhv + Πhv − vh
in (6.95) and summation of the two equalities, we obtain
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∫

Ω

∂

∂t
(PQh

p− ph)(PQh
p− ph)dx+

∫

Ω

k−1(Πhv − vh) · (Πhv − vh)dx

= −
∫

Ω

∂

∂t
(p− PQh

p)(PQh
p− ph)dx−

∫

Ω

k−1(v − Πhv) · (Πhv − vh)dx

+
∫

Ω

[div(Πhv − vh)(p− PQh
p) − div(v − Πhv)(PQh

p− ph)]dx.

(6.96)

Because PQh
is the L2(Ω) projection onto Qh, PQh

commutes with the time
derivative operator ∂/∂t. Consequently, the first and third terms of the right-
hand side in (6.96) vanish. By Lemma 6.35, the fourth term of the right-hand
side in (6.96) also vanishes. Consequently, (6.96) becomes
∫

Ω

∂

∂t
(PQh

p− ph)(PQh
p− ph)dx+

∫

Ω

k−1(Πhv − vh) · (Πhv − vh)dx

= −
∫

Ω

k−1(v − Πhv) · (Πhv − vh)dx.

The Schwarz inequality and Young’s inequality give rise to

1
2
∂

∂t
‖PQh

p− ph‖2
0,Ω + 2‖Πhv − vh‖2

L2
k(Ω)

≤ λ‖Πhv − vh‖2
L2

k(Ω) +
1
4λ

‖v − Πhv‖2
L2

k(Ω).

Integrating with respect to time and applying Gronwall’s inequality and after
choosing the proper value for λ, we have

‖PQh
p− ph‖2

C0(0,T ;L2(Ω)) + ‖Πhv − vh‖2
L2(0,T ;L2

k(Ω))

≤ C(‖PQh
p(0) − p0,h‖2

0,Ω + ‖v − Πhv‖2
L2(0,T ;L2

k(Ω))).

Invoking the triangle inequality, we have

‖p− ph‖2
C0(0,T ;L2(Ω)) + ‖v − vh‖2

L2(0,T ;L2
k(Ω))

≤ C(‖PQh
p(0) − p0,h‖2

0,Ω + ‖v − Πhv‖2
L2(0,T ;L2

k(Ω)))

+‖p− PQh
p‖2

C0(0,T ;L2(Ω)).

(6.97)

Hence, we obtain the following lemma.

Lemma 6.45. Let {v, p} and {vh, ph} be the solution of (4.9) and (4.10),
respectively. Under Assumption A1p and the definition of Vh in Section 6.3.1,
the estimate (6.97) holds.

Utilizing Lemma 6.45 and the proof of Theorem 6.40, we can derive the
convergence result.



6.3 Analysis for MsFEMs with limited global information (from Chapter 4) 197

Theorem 6.46. Let {v, p} and {vh, ph} be the solution of (4.9) and (4.10),
respectively. If α+ β1 − β2 − 1 > 0 then

‖p− ph‖C0(0,T ;L2(Ω)) + ‖v − vh‖L2(0,T ;L2
k(Ω)) ≤ Chα+β1−β2−1,

where α = 1−2/ξ and ξ is from Assumption A1p, and βi (i = 1, 2) are defined
in Assumption A2.

Proof. Owing to the fact that PQh
is the L2(Ω) projection onto Qh,

‖p− PQh
p‖C0(0,T ;L2(Ω)) ≤ Ch|p|C0(0,T ;H1(Ω)), (6.98)

we estimate the first and the third term of right-hand side in (6.97). Next we
estimate the term ‖v − Πhv‖2

L2(0,T ;L2
k(Ω))

. Define

AK
ij (t) =

∫

ej

Ai(t, s)(vi · n)ds

in each element K. Because k−1(x) is bounded, we have in each element K,

‖v − Πhv‖2
L2(0,T ;L2

k(K))

=
∫ T

0

∫

K

∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij · k−1

∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij dxdt

≤ C
∫ T

0

∫

K

(
∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij )2dxdt

= C‖
∑

i,j

(Ai(t, x)βK
ij −AK

ij (t))ψK
ij ‖2

L2(0,T ;L2(K))

≤ C‖
∑

i,j

(Ai(t, x) − Āj
i (t))β

K
ij ψ

K
ij ‖2

L2(0,T ;L2(K))

+ C‖
∑

i,j

(Āj
i (t)β

K
ij −AK

ij (t))ψK
ij ‖2

L2(0,T ;L2(K))

≤ Ch2(α+β1)
∑

‖ψK
ij ‖2

0,K .

(6.99)

In the last step, we used that facts that Ai ∈ L2(0, T ;W 1,ξ), Assumption A2
(see (6.82)) and proof of Theorem 6.40 (see (6.92)). After summation over all
K for (6.99), we have

‖v − Πhv‖L2(0,T ;L2
k(Ω)) ≤ Ch(α+β1−β2−1). (6.100)

Now, the proof can be completed taking into account (6.98) and (6.100).
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6.3.2 Galerkin finite element methods with limited global
information

We have proposed some analysis for modified MsFEMs in [103] and [3]. The
main idea is to show that the pressure evolution in two-phase flow simulations
is strongly influenced by the initial pressure. To demonstrate this, we consider
a channelized permeability field, where the value of the permeability in the
channel is large. We assume the permeability has the form kI, where I is an
identity matrix. In a channelized medium, the dominant flow is within the
channels. Our analysis assumes a single channel and is restricted to 2D. Here,
we briefly mention the main findings. Denote the initial stream function and
pressure by η = ψ(x, t = 0) and ζ = p(x, t = 0) (ζ is also denoted by psp

previously). The stream function is defined as

∂ψ/∂x1 = −v2, ∂ψ/∂x2 = v1. (6.101)

Then the equation for the pressure can be written as

∂

∂η

(

|k|2λ(S)
∂p

∂η

)

+
∂

∂ζ

(

λ(S)
∂p

∂ζ

)

= 0. (6.102)

For simplicity, S = 0 at time zero is assumed. We consider a typical boundary
condition that gives high flow within the channel, such that the high flow
channel will be mapped into a large slab in (η, ζ) coordinate system. If the
heterogeneities within the channel in the η direction are not strong (e.g., a
narrow channel in Cartesian coordinates), the saturation within the channel
will depend on ζ. In this case, the leading-order pressure will depend only on
ζ, and it can be shown that

p(η, ζ, t) = p0(ζ, t) + high-order terms, (6.103)

where p0(ζ, t) is the dominant pressure. Note that this result is shown when
λ is smooth. This asymptotic expansion shows that the time-varying pressure
strongly depends on the initial pressure (i.e., the leading-order term in the
asymptotic expansion is a function of initial pressure and time only). We note
that (6.103) does not hold when λ has discontinuities. In this case, our results
hold away from the sharp interfaces and one can localize the interface by
updating some basis functions. Our numerical results show that this update
does not improve the results substantially. We believe this is because the
discontinuities in λ are small compared to heterogeneities in porous media, the
effects of which we capture using limited global information. In our analysis,
we assume that |p(x, t) − p̂(psp, t)|H1 is small.

Because the analysis of the multiscale finite element methods is carried
out only for the pressure equation, we assume t (time) is fixed. We recall the
assumption.

Assumption G. There exists a sufficiently smooth scalar-valued function
G(η) (G ∈W 3,2s/(s−4), s > 4), such that
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|p−G(psp)|1,Ω ≤ Cδ, (6.104)

where psp is single-phase flow pressure and δ is sufficiently small.
We note G is p0(ζ, t) at fixed t in (6.103). Moreover, one does not need to

know the function G for computing the multiscale approximation of the solu-
tion. It is only necessary that G have certain smoothness properties, however,
it is important that the basis functions span psp in each coarse block.

Theorem 6.47. Under Assumption G and psp ∈ W 1,s(Ω) (s > 4), the Ms-
FEM converges with the rate given by

|p− ph|1,Ω ≤ Cδ + Ch1−2/s. (6.105)

The proof of this theorem is given in [3]. Note that Theorem 6.47 shows
that MsFEM converges for problems without any scale separation and the
proof of this theorem does not use homogenization techniques. Next, we
present the proof.

Proof. Following standard practice of finite element estimation, we seek
pI = ciφi, where φi are single-phase flow-based multiscale finite element basis
functions. In the proof, we assume that |φK

i |1,K ≤ C. Then from Cea’s lemma,
we have

|p− ph|1,Ω ≤ |p−G(psp)|1,Ω + |G(psp) − ciφi|1,Ω . (6.106)

Next, we present an estimate for the second term. We choose ci = G(psp(xi)),
where xi are vertices ofK. Furthermore, using a Taylor expansion of G around
pK , which is the average of psp over K,

G(psp(xi)) =G(pK) +G′(pK)(psp(xi) − pK)

+ (psp(xi) − pK)2
∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds.
(6.107)

We have in each K

ciφi =G(pK)
∑

i

φi +G′(pK)(psp(xi) − pK)φi

+ (psp(xi) − pK)2φi

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds

= G(pK) +G′(pK)(psp(xi)φi − pK)

+ (psp(xi) − pK)2φi

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds.

(6.108)

In the last step, we have used
∑

i φi = 1. Similarly, in each K,

G(psp(x)) =G(pK) +G′(pK)(psp(x) − pK)

+ (psp(x) − pK)2
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds.
(6.109)
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Using (6.108) and (6.109), we get

|G(psp) − ciφi|1,K ≤ |G′(pK)(psp(x) − psp(xi)φi)|1,K

+ |(psp(xi) − pK)2φi

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds|1,K

+ |(psp(x) − pK)2
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds|1,K .

(6.110)

Because |psp(x)−psp(xi)φi|1,K ≤ Ch‖f‖0,K , the estimate of the first term
is the following,

|G′(pK)(psp(x) − psp(xi)φi)|1,K ≤ Ch‖f‖0,K .

For the second term on the right-hand side of (6.110), assuming psp(x) ∈
W 1,s(Ω) and s > 4, we have

|(psp(xi) − pK)2φK
i

∫ 1

0

sG′′(psp(xi) + s(pK − psp(xi)))ds|1,K

≤ Ch|psp|21,4,K |φK
i |1,K

≤ Ch|psp|21,4,K ,

where we have used the assumption |φK
i |1,K ≤ C and W 1,s ⊂ W 1,4 (s ≥ 4).

Here, we have used the inequality (e.g., [18])

|u(x) − u(y)| ≤ C|x− y|1−2/s|u|1,s,K .

For the third term, a straightforward calculation gives

|(psp(x) − pK)2
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds|1,K

≤‖(psp(x) − pK)2∇psp(x)
∫ 1

0

(1 − s)sG′′′(psp(x) + s(pK − psp(x)))ds‖0,K

+ ‖2(psp(x) − pK)∇psp(x)
∫ 1

0

sG′′(psp(x) + s(pK − psp(x)))ds‖0,K

≤ Ch2−2/s‖∇psp‖3
Ls(K)‖G′′′‖L2s/(s−4)(K) + Ch1−2/s|psp|1,s,K |psp|1,K

≤ Ch2−2/s‖∇psp‖3
Ls(K) + Ch1−2/s|psp|1,K

where we used the Hölder inequality in the second step.
Combining the above estimates, we have for s > 4

|G(psp) − ciφK
i |1,K ≤Ch|psp|21,4,K

+ Ch2−2/s + Ch1−2/s|psp|1,K + Ch‖f‖0,K .
(6.111)

Summing (6.111) over all K and taking into account Assumption G, we have
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|p− ph|1,Ω ≤ C(δ + h1−2/s) + Ch|psp|21,4,Ω + Ch1−2/s|psp|1,Ω + Ch‖f‖0,Ω

≤ C(δ + h1−2/s) + Ch|psp|21,s,Ω + Ch1−2/s|psp|1,s,Ω + Ch‖f‖0,Ω .

Consequently, if s > 4 (see e.g., [28]), the single-phase flow-based MsFEM
converges.

Remark 6.48. We can relax the assumption on G. In particular, it is sufficient
to assume G ∈ W 2,m (m ≥ 1). In this case, the proof can be carried out
using Taylor polynomials in Sobolev spaces. Also, if ∇psp ∈ L∞(Ω), then the
convergence rate in (6.105) is Cδ + Ch.

Remark 6.49. One can similarly analyze Galerkin MsFEMs using multiple
global fields (see [3]). This analysis can be extended to parabolic equations
(see [163]).
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Basic notations

k(x) - coefficients (heterogeneous)
p - solution
v - flux (velocity)
x - space variable
t - time variable
R

d - d-dimensional vector space
Th - coarse-scale partition
Wh - standard finite element spaces (e.g., piecewise linear functions)
Ph - multiscale finite element “space” for the solution1

Vh - multiscale finite element space for the flux
ph - approximate solution obtained using MsFEM2

pr,h - fine-scale approximation of the solution (for nonlinear MsFEM only)
Ω - global domain
K - coarse grid block
h - coarse mesh size
ε - small physical (characteristic) scale
φj - multiscale basis functions from Ph

φ0
j - standard (e.g., linear) basis functions from Wh

χ - solution of auxiliary periodic problem (linear case)
N - solution of auxiliary periodic problem (nonlinear case)
qt, qw - source terms
f - source term; also the flux function
n - outward normal
fractional flow - fraction of the displaced fluid (see (2.43))
water-cut - fraction of water in the produced fluid
PVI - pore volume injected (see (2.44))

1 for nonlinear problems, it is not a linear space
2 fine-scale approximation for linear problems and coarse-scale approximation for

nonlinear problems
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Review of homogenization

B.1 Linear problems

In this appendix, we use the notations commonly used in the homogenization
literature and these notations can be different from those used in the main
text of the book. Consider the second-order elliptic equation

− ∂

∂xi

(

aij (x/ε)
∂

∂xj

)

uε + a0(x/ε)uε = f, uε|∂Ω = 0, (B.1)

where aij(y) and a0(y) are 1-periodic in both variables of y, and satisfy
aij(y)ξiξj ≥ αξiξi, with α > 0, a0 > α0 > 0, and bounded. Here we have
used the Einstein summation notation; that is a repeated index means sum-
mation with respect to that index.

This model equation represents a common difficulty shared by several
physical problems. For porous media, it is the pressure equation described by
Darcy’s law with the coefficient aε = (aij(x/ε)) representing the permeability
tensor. For composite materials, it is the steady heat conduction equation
and the coefficient aε represents the thermal conductivity. For steady trans-
port problems, it is a symmetrized form of the governing equation. In this
case, the coefficient aε is a combination of transport velocity and viscosity
tensor.

Homogenization theory studies the limiting behavior uε → u0 as ε → 0.
The main task is to find the homogenized coefficients, a∗ij and a∗0, and the
homogenized equation for the limiting solution u

− ∂

∂xi

(

a∗ij
∂

∂xj

)

u0 + a∗0u0 = f, u0|∂Ω = 0.

We define the bilinear form

aε(u, v) =
∫

Ω

aε
ij(x)

∂u

∂xj

∂v

∂xi
dx+

∫

Ω

aε
0uv dx.
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The elliptic problem can also be formulated as a variational problem: find
uε ∈ H1

0 ,
aε(uε, v) = (f, v), for all v ∈ H1

0 (Ω),

where (f, v) is the usual L2 inner product,
∫

Ω
fv dx.

B.1.1 Special case: One-dimensional problem

Let Ω = (x0, x1) and take a0 = 0. We have

− d

dx

(

a(x/ε)
duε

dx

)

= f, in Ω ,

where uε(x0) = uε(x1) = 0, and a(y) > α0 > 0 is y-periodic with period y0.
By taking v = uε in the variational problem, we have

‖uε‖1,Ω ≤ C.

Therefore one can extract a subsequence, still denoted by uε, such that

uε ⇀ u in H1
0 (Ω) weakly.

Next, we introduce

ξε = aε du
ε

dx
.

Because aε is bounded, and duε/dx is bounded in L2(Ω), so ξε is bounded in
L2(Ω). Moreover, because −dξε/dx = f , we have ξε ∈ H1(Ω). Thus we get

ξε → ξ in L2(Ω) strongly,

so that
1
aε
ξε → m(1/a)ξ in L2(Ω) weakly.

Furthermore, we note that ξε/aε = duε/dx. Therefore, we arrive at

du0

dx
= m(1/a)ξ.

On the other hand, −dξε/dx = f implies −dξ/dx = f . This gives

− d

dx

(
1

m(1/a)
du0

dx

)

= f.

This is the correct homogenized equation for u. Note that a∗ = 1/m(1/a) is
the harmonic average of aε. It is in general not equal to the arithmetic average
aε = m(a).
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B.1.2 Multiscale asymptotic expansions.

The above analysis does not generalize to multidimensions. In this subsec-
tion, we introduce the multiscale expansion technique in deriving homogenized
equations.

We look for uε(x) in the form of asymptotic expansion

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · ,

where the functions uj(x, y) are periodic in y with period 1.
Denote by Aε the second-order elliptic operator

Aε = − ∂

∂xi

(

aij (x/ε)
∂

∂xj

)

.

When differentiating a function φ(x, x/ε) with respect to x, we have

∂

∂xj
=

∂

∂xj
+

1
ε

∂

∂yj
,

where y is evaluated at y = x/ε. With this notation, we can expand Aε as
follows,

Aε = ε−2A1 + ε−1A2 + ε0A3, (B.2)

where

A1 = − ∂

∂yi

(

aij(y)
∂

∂yj

)

,

A2 = − ∂

∂yi

(

aij(y)
∂

∂xj

)

− ∂

∂xi

(

aij(y)
∂

∂yj

)

,

A3 = − ∂

∂xi

(

aij(y)
∂

∂xj

)

+ a0 . (B.3)

Substituting the expansions for uε and Aε into Aεuε = f , and equating the
terms of the same power, we get

A1u0 = 0, (B.4)
A1u1 + A2u0 = 0, (B.5)
A1u2 + A2u1 +A3u0 = f. (B.6)

Equation (B.4) can be written as

− ∂

∂yi

(

aij(y)
∂

∂yj

)

u0(x, y) = 0,

where u0 is periodic in y. The theory of second-order elliptic PDEs [132] im-
plies that u0(x, y) is independent of y; that is u0(x, y) = u0(x). This simplifies
(B.5) for u1,
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− ∂

∂yi

(

aij(y)
∂

∂yj

)

u1 =
(
∂

∂yi
aij(y)

)
∂u

∂xj
(x).

Define χj = χj(y) as the solution to the following cell problem

∂

∂yi

(

aij(y)
∂

∂yj

)

χj = − ∂

∂yi
aij(y) ,

where χj is periodic in y. The general solution of (B.5) for u1 is then given by

u1(x, y) = χj(y)
∂u

∂xj
(x) + ũ1(x) .

Finally, we note that the equation for u2 is given by

∂

∂yi

(

aij(y)
∂

∂yj

)

u2 = A2u1 +A3u0 − f . (B.7)

The solvability condition implies that the right-hand side of (B.7) must have
mean zero in y over one periodic cell Y = [0, 1] × [0, 1]; that is

∫

Y

(A2u1 +A3u0 − f) dy = 0.

This solvability condition for second-order elliptic PDEs with periodic bound-
ary condition [132] requires that the right-hand side of (B.7) have mean zero
with respect to the fast variable y. This solvability condition gives rise to the
homogenized equation for u:

− ∂

∂xi

(

a∗ij
∂

∂xj

)

u+m(a0)u = f , (B.8)

where m(a0) = (1/|Y |)
∫

Y
a0(y) dy and

a∗ij =
1
|Y |

(∫

Y

(aij − aik
∂χj

∂yk
) dy
)

. (B.9)

It is often difficult to compute the homogenized coefficients when the pe-
riodic cell problem requires very fine discretization. In this case, the bounds
for the homogenized coefficients can be very useful. Finding accurate bounds
depending on heterogeneities is a difficult task. There have been many works
in the literature where bounds are computed and the corresponding optimal
microstructures are determined. In the presence of tight bounds, one can avoid
solving the cell problems for the computation of the homogenized solutions.
We refer to [202, 74] for descriptions of various bounds and the literature
reviews.
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B.1.3 Justification of formal expansions

The above multiscale expansion is based on a formal asymptotic analysis.
However, we can justify its convergence rigorously.

Let zε = uε − (u0 + εu1 + ε2u2). Applying Aε to zε, we get

Aεzε = −εrε ,

where rε = A2u2 +A3u1 + εA3u2. Thus we have ‖rε‖∞,Ω ≤ C.
On the other hand, we have

zε|∂Ω = −(εu1 + ε2u2)|∂Ω .

Thus, we obtain
‖zε‖∞,∂Ω ≤ cε.

It follows from the maximum principle [132] that

‖zε‖∞,Ω ≤ Cε

and therefore we conclude that

‖uε − u0‖∞,Ω ≤ Cε.

B.1.4 Boundary corrections

The above asymptotic expansion does not take into account the boundary
condition of the original elliptic PDEs. If we add a boundary correction, we
can obtain higher-order approximations.

Let θε ∈ H1(Ω) denote the solution to

divx(aε∇xθε) = 0 in Ω, θε = u1(x, x/ε) on ∂Ω.

Then we have

(uε − (u0 + εu1(x, x/ε) − εθε)) |∂Ω = 0.

Moskow and Vogelius [204] have shown that

‖uε − u0 − εu1(x, x/ε) + εθε‖0,Ω ≤Cωε
1+ω‖u0‖2+ω,Ω,

‖uε − u0 − εu1(x, x/ε) + εθε‖1,Ω ≤Cε‖u0‖2,Ω ,
(B.10)

where we assume u ∈ H2+ω(Ω) with 0 ≤ ω ≤ 1, and Ω is assumed to be a
bounded, convex curvilinear polygon of class C∞.
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B.1.5 Nonlocal memory effect of homogenization

It is interesting to note that for certain degenerate problems, the homogenized
equation may have a nonlocal memory effect.

Consider the simple 2D linear convection equation:

∂uε(x, y, t)
∂t

+ aε(y)
∂uε(x, y, t)

∂x
= 0,

with initial condition uε(x, y, 0) = u0(x, y). Note that y = x2 is not a fast
variable here.

We assume that aε is bounded and u0 has compact support. It is easy to
write down the solution explicitly,

uε(x, y, t) = u0(x− aε(y)t, y),

however, it is not an easy task to derive the homogenized equation for the
weak limit of uε.

Using the Laplace transform and measure theory, Luc Tartar [255] showed
that the weak limit u of uε satisfies

∂

∂t
u(x, y, t) +A1(y)

∂

∂x
u(x, y, t) =

∫ t

0

∫
∂2

∂x2
u(x− λ(t− s), y, s)dμy(λ) ds,

with u(x, y, 0) = u0(x, y), where A1(y) is the weak limit of aε(y), and μy is a
probability measure of y and has support in [min(aε),max(aε)].

As we can see, the convection induces a nonlocal history-dependent dif-
fusion term in the propagating direction (x). The homogenized equation is
not amenable to coarse-scale computation in general because the measure μy

cannot be expressed explicitly in terms of aε.

B.1.6 Convection of microstructure

It is most interesting to see if one can apply the homogenization technique
to obtain an averaged equation for the large-scale quantity for incompress-
ible Euler or Navier–Stokes equations. In 1985, McLaughlin, Papanicolaou,
and Pironneau [200] attempted to obtain a homogenized equation for the 3D
incompressible Euler equations with a highly oscillatory velocity field. More
specifically, they considered the following initial value problem,

∂u

∂t
+ (u · ∇)u = −∇p,

with ∇ · u = 0 and highly oscillatory initial data

u(x, 0) = U(x) +W (x, x/ε).
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They then constructed multiscale expansions for both the velocity field and
the pressure. In doing so, they made an important assumption that the mi-
crostructure is convected by the mean flow. Under this assumption, they con-
structed a multiscale expansion for the velocity field as follows:

uε(x, t) = u0(x, t) + w( θ(x,t)
ε , t

ε , x, t) + εu1(
θ(x,t)

ε , t
ε , x, t) +O(ε2).

The pressure field pε is expanded similarly. From this ansatz, one can show
that θ is convected by the mean velocity:

∂θ

∂t
+ u0 · ∇θ = 0, θ(x, 0) = x .

It is a very challenging problem to develop a systematic approach to study
the large-scale solution in three-dimensional Euler and Navier–Stokes equa-
tions. The work of McLaughlin, Papanicolaou, and Pironneau provided some
insightful understanding into how small scales interact with large scales and
how to deal with the closure problem. However, the problem is still not com-
pletely resolved because the cell problem obtained this way does not have a
unique solution. Additional constraints need to be enforced in order to derive
a large-scale averaged equation. With additional assumptions, they managed
to derive a variant of the k − ε model in turbulence modeling.

Remark B.1. One possible way to improve the work of [200] is to take into
account the oscillation in the Lagrangian characteristics θε. The oscillatory
part of θε in general could have an order-one contribution to the mean veloc-
ity of the incompressible Euler equation. In [148, 149, 150], Hou, Yang and
co-workers have studied convection of the microstructure of the 2D and 3D
incompressible Euler equations using a new approach. They do not assume
that the oscillation is propagated by the mean flow. In fact, they found that it
is crucial to include the effect of oscillations in the characteristics on the mean
flow. Using this new approach, they can derive a well-posed cell problem that
can be used to obtain an effective large-scale average equation.

More can be said for a passive scalar convection equation.

∂v

∂t
+

1
ε
div (u(x/ε)v) = αΔv,

with v(x, 0) = v0(x). Here u(y) is a known incompressible periodic (or station-
ary random) velocity field with zero mean. Assume that the initial condition
is smooth.

Expand the solution vε in powers of ε

vε = v(t, x) + εv1(t, x, x/ε) + ε2v2(t, x, x/ε) + · · · .

The coefficients of ε−1 lead to

αΔyv1 − u · ∇yv1 − u · ∇xv = 0.
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Let ek, k = 1, 2, 3 be the unit vectors in the coordinate directions and let
χk(y) satisfy the cell problem:

αΔyχ
k − u · ∇yχ

k − u · ek = 0.

Then we have

v1(t, x, y) =
3∑

k=1

χk(y)
v(t, x)
∂xk

.

The coefficients of ε0 give

αΔyv2 − u · ∇yv2 = u · ∇xv1 − 2α∇x · ∇yv1 − αΔxv +
∂v

∂t
.

The solvability condition for v2 requires that the right-hand side have zero
mean with respect to y. This gives rise to the equation for homogenized solu-
tion v,

∂v

∂t
= αΔxv − u · ∇xv1.

Using the cell problem, McLaughlin, Papanicolaou, and Pironneau obtained
[200]

∂v

∂t
=

3∑

i,j=1

(αδij + αTij
)
∂2v

∂xi∂xj
,

where αTij
= −uiχj .

B.2 Nonlinear problems

We briefly discuss homogenization for general nonlinear elliptic equations,
uε ∈W 1,p

0 (Ω),

− div aε(x, uε,∇uε) + a0,ε(x, uε,∇uε) = f, (B.11)

where aε(x, η, ξ) and a0,ε(x, η, ξ), η ∈ R, ξ ∈ R
d satisfy assumptions given

by (6.42)–(6.46), which guarantee the well-posedness of the nonlinear ellip-
tic problem (B.11). Here Ω ⊂ R

d is a Lipschitz domain and ε denotes the
small scale of the problem. The homogenization of nonlinear partial differen-
tial equations has been studied previously (see, e.g., [220]). It can be shown
that a solution uε converges (up to a subsequence) to u0 in an appropriate
norm, where u0 ∈W 1,p

0 (Ω) is a solution of a homogenized equation

− div a∗(x, u0,∇u0) + a∗0(x, u,∇u0) = f. (B.12)

The homogenized coefficients can be computed if we make an additional
assumption on the heterogeneities, such as periodicity, almost periodicity, or
when the fluxes are strictly stationary fields with respect to spatial variables.
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In these cases, an auxiliary problem is formulated and used in the calculations
of the homogenized fluxes a∗ and a∗0. Next, we discuss this.

We assume that a and a0 are periodic functions with respect to the spatial
variable. Then, the homogenized fluxes are defined as follows,

a∗(η, ξ) =
∫

Y

a(y, η, ξ + ∇yNη,ξ(y)) dy, (B.13)

a∗0(η, ξ) =
∫

Y

a0(y, η, ξ + ∇yNη,ξ(y)) dy, (B.14)

where a∗ and a∗0 satisfy the conditions similar to (6.42)–(6.46). Here Nη,ξ ∈
W 1,p

per(Y ) is the periodic solution (with average zero) of

− div(a(y, η, ξ + ∇yNη,ξ(y))) = 0 in Y, (B.15)

where Y is a unit period. We do not present the proof of the homogenization
here and refer to [220], for example.

Next, we also present the homogenization results for the random homoge-
neous case. Homogenization in random homogeneous media for linear prob-
lems ([43, 164]) has been a pioneering work in this direction. We start with a
description of random homogeneous fields on R

d which is shown to be useful
in homogenization problems (e.g., [164]). Let (U,Σ, μ) be a probability space.
A random homogeneous field is a measurable function on U and f(T (x)ω) are
realizations of the random field. The realizations are well-defined measurable
functions on R

d for almost all ω ∈ U . Consider a d-dimensional dynamical
system on U , T (x) : U → U , x ∈ R

d, that satisfies the following conditions:
(1) T (0) = I, and T (x + y) = T (x)T (y); (2) T (x) : U → U preserve the
measure μ on U ; and (3) for any measurable function f(ω) on U , the function
f(T (x)ω) defined on R

d × U is also measurable (see [164]). Let Lp(U) de-
note the space of all p-integrable functions on U . Then U(x)f(ω) = f(T (x)ω)
defines a d-parameter group of isometries in the space Lp(U), and U(x) is
strongly continuous [164, 220]. We further assume that the dynamical system
T is ergodic; that is, any measurable T -invariant function on U is constant.
Denote by 〈·〉μ the mean value over U ,

〈f〉μ =
∫

U

f(ω)dμ(ω) = E(f).

Denote by Di
ω the generator of U(x) along the ith coordinate direction;

that is,

Di
ω = lim

δ→0

f(T (xi)ω) − f(ω)
δ

.

The domains ∂i of Di
ω are dense in L2(U), and the intersection of all Di

ω is
also dense.

Next following [220] we define potential and solenoidal fields. A vector field
f ∈ Lp(U) is said to be potential (or solenoidal, respectively) if its generic
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realization f(Txω) is a potential (or solenoidal respectively) vector field in
R

d. Denote by Lp
pot(U) (respectively, Lp

sol(U)) the subspace of Lp(U) that
consists of all potential (respectively, solenoidal) vector fields. Introduce the
following notations,

V p
pot = {f ∈ Lp

pot(U), 〈f〉μ = 0}, V p
sol = {f ∈ Lp

sol(U), 〈f〉μ = 0}.

The following properties are known (see [220], page 138)

Lp
pot(U) = V p

pot ⊕ R
d, Lp

sol(U) = V p
sol ⊕ R

d,

Lq
sol(U) = (V p

pot)
⊥, Lq

pot(U) = (V p
sol)

⊥.

Next, we consider (B.11) with the assumptions given by (6.42)–(6.46),
which guarantee the well-posedness of the nonlinear elliptic problem.

It is known (e.g., [220]) that as ε → 0 ∇uε converges to ∇u0 weakly in
Lp(Ω) for a.e. ω, and u0 is the solution of

− div(a∗(u0,∇u0)) + a∗0(u0,∇u0) = f, u0 ∈W 1,p
0 (Ω). (B.16)

Furthermore, a∗ and a∗0 can be constructed using the solution of the following
auxiliary problem. Given η ∈ R and ξ ∈ R

d define wη,ξ ∈ V p
pot such that

a(ω, η, ξ + wη,ξ(ω)) ∈ Lq
sol(U)d. (B.17)

Then a∗(η, ξ) and a0(η, ξ) are defined as

a∗(η, ξ) = 〈a(ω, η, ξ + wη,ξ(ω))〉μ,
a∗0(η, ξ) = 〈a0(ω, η, ξ + wη,ξ(ω))〉μ.

(B.18)

Moreover, a∗(η, ξ) and a∗0(η, ξ) satisfy similar estimates as a and a0 with
different constants [220].

For parabolic problems, the homogenization also yields the macroscopic
equations of the same class. If we consider

∂uε

∂t
− div(aε(x, t, uε,∇uε)) + a0,ε(x, t, uε,∇uε) = f, (B.19)

where aε(x, t, η, ξ) = a(x/εβ , t/εα, η, ξ) a0,ε(x, t, η, ξ) = a0(x/εβ , t/εα, η, ξ).
The homogenization of nonlinear parabolic equations depends on the ratio

between α and β and is presented in [111]. The following cases are distin-
guished: (1) self-similar case (α = 2β); (2) nonself-similar case (α < 2β); (3)
nonself-similar case (α > 2β); (4) spatial case (α = 0); and (5) temporal case
(β = 0). To introduce the homogenized operator, we introduce fast variables
y = x/εβ and τ = t/εα. Moreover, denote by 〈·〉y,τ the average over y and
τ . If a single variable y or τ is used as a subscript, then the average is taken
with respect to that variables. Similarly, we denote by Πy,τ the periodic box



B.2 Nonlinear problems 215

in space and time, and correspondingly Πy and Πτ are periods in space and
temporal variable. The homogenized operator is given by

∂u0

∂t
− div(a∗(x, t, u,∇u0)) + a∗0(x, t, u,∇u0) = f,

where the homogenized coefficients are defined below.

• For self-similar case (α = 2β),

a∗(η, ξ) = 〈a(y, τ, η, ξ + ∇Nη,ξ)〉y,τ ,

a0
∗(η, ξ) = 〈a0(y, τ, η, ξ + ∇Nη,ξ)〉y,τ ,

where Nη,ξ is the unique solution of

∂Nη,ξ

∂τ
− divy a(ω, η, ξ + ∇yNη,ξ) = 0 (B.20)

in Πy,τ .
• For nonself-similar case (α < 2β),

a∗(η, ξ) = 〈a(y, τ, η, ξ + ∇Nη,ξ)〉y,τ ,

a0
∗(η, ξ) = 〈a0(y, τ, η, ξ + ∇Nη,ξ)〉y,τ ,

where Nη,ξ is the unique solution of

− divy a(y, τ, η, ξ + ∇yNη,ξ) = 0 (B.21)

in Πy,τ .
• For nonself-similar case (α > 2β),

a∗(η, ξ) = 〈a(y, τ, η, ξ + ∇Nη,ξ)〉y,τ ,

a0
∗(η, ξ) = 〈a0(y, τ, η, ξ + ∇Nη,ξ)〉y,τ ,

where Nη,ξ is the unique solution of

− divy a(y, η, ξ + ∇yNη,ξ) = 0. (B.22)

a(y, η, ξ) = 〈a(y, τ, η, ξ)〉τ .
• For spatial case (α = 0),

a∗(t, η, ξ) = 〈a(y, t, η, ξ + ∇Nη,ξ)〉y
a∗0(t, η, ξ) = 〈a0(y, t, η, ξ + ∇Nη,ξ)〉y,

where Nη,ξ satisfies

− divy a(y, t, η, ξ + ∇yNη,ξ) = 0 (B.23)

in Πy for each t (assuming the coefficients smoothly depend on t).
• For temporal case (β = 0), the homogenized fluxes are defined by

a∗(x, η, ξ) = 〈a(x, τ, η, ξ)〉τ ,
a∗0(x, η, ξ) = 〈a0(ω, η, ξ)〉τ .

(B.24)

For the results concerning the random homogenization of nonlinear
parabolic equations we refer to [111].
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