
Chapter IX

Integral Points on Elliptic
Curves

Many elliptic curves have infinitely many rational points, although the Mordell–Weil
theorem assures us that the group of rational points is finitely generated. Another
natural Diophantine question is that of determining how many of the rational points
on a given (affine) Weierstrass equation have integral coordinates. In this chapter
we prove a theorem of Siegel that says that there are only finitely many such int-
egral points. Siegel gave two proofs of his theorem, which we present in (IX §3)
and (IX §4). Both proofs make use of techniques from the theory of Diophantine
approximation, and thus do not provide an effective procedure for actually finding
all of the integral points. However, Siegel’s second proof reduces the problem to that
of solving the so-called unit equation, which in turn can be effectively resolved using
methods from transcendence theory. We discuss effective solutions, without giving
proofs, in (IX §5).

Unless otherwise specified, the notation and conventions for this chapter are the
same as those for Chapter VIII. In addition, we set the following notation:

H,HK height functions, see (VIII §5).

nv = [Kv : Qv], the local degree for v ∈ MK , see (VIII §5).

S ⊂ MK , generally a finite set of absolute values containing M∞
K .

RS the ring of S-integers of K,

RS = {x ∈ K : v(x) ≥ 0 for all v ∈ MK with v /∈ S}.

R∗
S the unit group of RS .
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270 IX. Integral Points on Elliptic Curves

IX.1 Diophantine Approximation

The fundamental problem in the subject of Diophantine approximation is the ques-
tion of how closely an irrational number can be approximated by a rational number.

Example 1.1. For any rational number p/q, we know that the quantity
∣
∣p/q −

√
2
∣
∣

is strictly positive, and since Q is dense in R, an appropriate choice of p/q makes it
as small as desired. The problem is to make it small without taking p and q to be too
large. The next two elementary results illustrate this idea.

Proposition 1.2. (Dirichlet) Let α ∈ R with α /∈ Q. Then there are infinitely many
rational numbers p/q ∈ Q such that

∣
∣
∣
∣

p

q
− α

∣
∣
∣
∣
≤ 1

q2
.

PROOF. Let Q be a (large) integer and look at the set of real numbers

{

qα− [qα] : q = 0, 1, . . . , Q
}

,

where [ · ] denotes greatest integer. Since α is irrational, this set contains Q+ 1
distinct numbers in the interval between 0 and 1. Dividing the interval [0, 1] into Q
equal-sized pieces and applying the pigeonhole principle, we find that there are inte-
gers 0 ≤ q1 < q2 ≤ Q satisfying

∣
∣
∣

(

q1α− [q1α]
)

−
(

q2α− [q2α]
)
∣
∣
∣ ≤ 1

Q
.

Hence ∣
∣
∣
∣

[q2α]− [q1α]

q2 − q1
− α

∣
∣
∣
∣
≤ 1

(q2 − q1)Q
≤ 1

(q2 − q1)2
.

This provides one rational approximation to α having the desired property.
Finally, having obtained a list of such approximations, let p/q be the one for

which |p/q − α| is smallest. Then taking Q > |p/q − α|−1 ensures that we get a
new approximation that is not already in our list. Hence there exist infinitely many
rational numbers satisfying the conditions of the proposition.

Remark 1.2.1. A result of Hurwitz says that the 1/q2 on the right-hand side
of (IX.1.2) may be replaced by 1/(

√
5 q2), and that this result is best possible. See,

e.g., [108, Theorem 194].

Proposition 1.3. (Liouville [151]) Let α ∈ Q̄ have degree d ≥ 2 over Q, i.e.,
[

Q(α) : Q] = d. There is a constant C > 0, depending on α, such that for all ratio-
nal numbers p/q we have

∣
∣
∣
∣

p

q
− α

∣
∣
∣
∣
≥ C

qd
.
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PROOF. We may assume that α ∈ R, since otherwise C = Im(α) works. Let

f(T ) = a0T
d + a1T

d−1 + · · ·+ ad ∈ Z[T ]

be a minimal polynomial for α, and let

C1 = sup
{

f ′(t) : α− 1 ≤ t ≤ α+ 1
}

.

Then the mean value theorem tells us that
∣
∣
∣
∣
f

(
p

q

)∣
∣
∣
∣
=

∣
∣
∣
∣
f

(
p

q

)

− f(α)

∣
∣
∣
∣
≤ C1

∣
∣
∣
∣

p

q
− α

∣
∣
∣
∣
.

On the other hand, we know that qdf(p/q) ∈ Z, and further that f(p/q) �= 0, since f
has no rational roots. Hence ∣

∣
∣
∣
qdf

(
p

q

)∣
∣
∣
∣
≥ 1.

Setting C = min{C−1
1 , 1} and combining the last two inequalities yields

∣
∣
∣
∣

p

q
− α

∣
∣
∣
∣
≥ C

qd
for all p/q ∈ Q.

Remark 1.3.1. Liouville used his theorem to prove the existence of transcendental
numbers; see Exercise 9.2. Note that in Liouville’s theorem it is quite easy to find a
value for the constant C explicitly in terms of α. This is in marked contrast to the
results that we consider in the rest of this section.

Dirichlet’s theorem (IX.1.2) says that every real number can be approximated by
rational numbers to within 1/q2, while Liouville’s result (IX.1.3) says that algebraic
numbers of degree d can be approximated no closer than C/qd. For quadratic irra-
tionalities there is little more to say, but if d ≥ 3, then it is natural to ask for the
best exponent on q. There is no particular reason to restrict the approximating values
to Q, so we allow them to vary over any fixed number field K. Finally, in measuring
the closeness of the approximation, we may use any absolute value on K.

Definition. Let τ(d) be a positive real-valued function on the natural numbers.
A number field K is said to have approximation exponent τ if it has the following
property:

Let α ∈ K̄, let d =
[

K(α) : K
]

, and let v ∈ MK be an absolute value
on K that has been extended to K(α) in some fashion. Then for any
constant C there exist only finitely many x ∈ K satisfying the inequality

|x− α|v < CHK(x)−τ(d).

Liouville’s elementary estimate (IX.1.3) says that Q has approximation expo-
nent τ(d) = d + ε for any ε > 0. This result has been successively improved by
a number of mathematicians:
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Liouville 1851 τ(d) = d+ ε
Thue 1909 τ(d) = 1

2d+ 1 + ε

Siegel 1921 τ(d) = 2
√
d+ ε

Gelfond, Dyson 1947 τ(d) =
√
2d+ ε

Roth 1955 τ(d) = 2 + ε

In view of (IX.1.2), Roth’s result is essentially best possible, although it has been
conjectured that the ε can be replaced by some function ε(d) such that ε(d) → 0
as d → ∞. We should also mention that Mahler showed how to handle several abso-
lute values at once, and W. Schmidt [221, Chapter VI] dealt with the more difficult
problem of simultaneously approximating several irrationals.

The main ideas that go into the proof of Roth’s theorem are quite beautiful, and
at least in theory, relatively elementary. Unfortunately, to develop these ideas fully
would take us rather far afield. Hence rather than including a complete proof, we are
content to state here the result that we will need. In (IX §8) we briefly sketch the
proof of Roth’s theorem without giving any of the myriad details.

Theorem 1.4. (Roth’s Theorem) For every ε > 0, every number field K of degree d
has approximation exponent

τ(d) = 2 + ε.

PROOF. See (IX §8) for a brief sketch of the proof. A nice exposition for K = Q and
the usual archimedean absolute value is given in [221, Chapter V]. For the general
case, see [114, Part D] or [139, Chapter 7].

Example 1.5. How do theorems on Diophantine approximation lead to results about
Diophantine equations? Consider the simple example of trying to solve the equation

x3 − 2y3 = a

in integers x, y ∈ Z, where a ∈ Z is fixed. Suppose that (x, y) is a solution
with y �= 0. Let ζ be a primitive cube root of unity, and factor the equation as

(
x

y
− 3

√
2

)(
x

y
− ζ

3
√
2

)(
x

y
− ζ2

3
√
2

)

=
a

y3
.

The second and third factors in the product are bounded away from 0, so we obtain
an estimate of the form ∣

∣
∣
∣

x

y
− 3

√
2

∣
∣
∣
∣
≤ C

y3
,

where the constant C is independent of x and y. Now (XI.1.4), or even Thue’s origi-
nal theorem with τ(d) = 1

2d+ 1 + ε, shows that there are only finitely many possi-
bilities for x and y. Hence the equation

x3 − 2y3 = a

has only finitely many solutions in integers. This type of argument will reappear in
the proof of (IX.4.1); see also Exercise 9.6.
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Remark 1.6. The statement of (IX.1.4) says that there exist only finitely many ele-
ments of K having a certain property. This phrasing is felicitous because the proof
of (IX.1.4) is not effective. In other words, the proof does not give an effective pro-
cedure that is guaranteed to produce all of the elements in the finite set. (See (IX.8.1)
for a discussion of why this is so.) We note that as a consequence, all of the finite-
ness results that we prove in (IX §§2, 3) are ineffective, since they rely on (IX.1.4).
Similarly, the proof in (IX.1.5) yields no explicit bound for |x| and |y| in terms of a.
However, there are other methods, based on estimates for linear forms in logarithms,
that are effective. We discuss such methods, without proof, in (IX §5).

IX.2 Distance Functions

A Diophantine inequality such as

|x− α|v < CHK(x)−τ(d)

consists of two pieces. First, there is the height function HK(x), which measures the
arithmetic size of x. We have already studied height functions and their transforma-
tion properties in some detail (VIII, §§5, 6). Second, there is the quantity |x− α|v ,
which is a topological or metric measure of the distance from x to α, i.e., it measures
distance in the v-adic topology. In this section we define a notion of v-adic distance
on curves, deduce some of its basic properties, and reinterpret the main Diophantine
approximation result from (IX §1) in terms of this distance function.

Definition. Let C/K be a curve, let v ∈ MK , and fix a point Q ∈ C(Kv). Choose a
function tQ ∈ Kv(C) that has a zero of order e ≥ 1 at Q and no other zeros.1 Then
for P ∈ C(Kv), we define the (v-adic) distance from P to Q by

dv(P,Q) = min
{∣
∣tQ(P )

∣
∣
1/e

v
, 1
}

.

(If tQ has a pole at P , we formally set
∣
∣tQ(P )

∣
∣ = ∞, so dv(P,Q) = 1.)

Remark 2.1. In practice, we fix the point Q and use the distance function dv(P,Q)
to measure the distance from P to Q as P varies. It is clear that the distance func-
tion dv has the right qualitative property, i.e., dv(P,Q) is small if P is v-adically
close to Q. On the other hand, the value of dv(P,Q) certainly depends on the choice
of the function tQ, so possibly a better notation would be dv(P, tQ). However, since
we will use dv only to measure the rate at which a varying point approaches a fixed
point, the next result shows that the choice of tQ is irrelevant for the statements of
our theorems.

Proposition 2.2. Let Q ∈ C(Kv) and let F ∈ Kv(C) be a function that vanishes
at Q. Then the limit

1To see that tQ exists, we use the the Riemann–Roch theorem. Thus (II.5.5c) tells us that if C has
genus g and if e ≥ g + 1, then �

(
e(Q)

)
≥ 2, so there is a nonconstant function f ∈ L

(
e(Q)

)
. This

function f has a pole at Q and no other poles, and we can take tQ = 1/f .
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lim
P∈C(Kv)

P→
v
Q

log
∣
∣F (P )

∣
∣
v

log dv(P,Q)
= ordQ(F )

exists and is independent of the choice of the function tQ used to define dv(P,Q).
Here ordQ(F ) is the order of vanishing of F at Q as in (II §2), while the no-

tation P→
v
Q means that P ∈ C(Kv) approaches Q in the v-adic topology, i.e.,

dv(P,Q) → 0.

PROOF. Let tQ be the function vanishing only at Q that we are using to de-
fine dv( · , Q). Let e = ordQ(tQ) and f = ordQ(F ). Then the function φ = F e/tfQ
has neither a zero nor a pole at Q, so

∣
∣φ(P )

∣
∣
v

is bounded away from 0 and ∞
as P→

v
Q. Hence

lim
P∈C(Kv)

P→
v
Q

log
∣
∣F (P )

∣
∣
v

log dv(P,Q)
= lim

P∈C(Kv)
P→

v
Q

log
∣
∣F (P )

∣
∣
v

log
∣
∣tQ(P )

∣
∣
1/e

v

= f + lim
P∈C(Kv)

P→
v
Q

log
∣
∣φ(P )

∣
∣
v

log
∣
∣tQ(P )

∣
∣
v

= f.

Remark 2.2.1. The use of the function tQ in the definition of distance is somewhat
artificial and does not generalize well to higher-dimensional varieties. An alternative
definition that does generalize uses a finite list of functions t1, . . . , tr ∈ K(E) with
the property that each ti vanishes at Q and such that t1, . . . , tr have no other com-
mon zeros. Then, if we let ei denote the order of vanishing of ti at Q, a distance
function dv may be defined by

dv(P,Q) = min
{

max
{

|t1(P )|1/e1v , . . . , |tr(P )|1/erv

}

, 1
}

.

This function is an example of a local height function; see [139, Chapter 10], [114,
§B.8], or [261] for further details.

Next we examine the effect of finite maps on the distance between points. The
crucial observation is that this effect depends on the ramification of the map, not on
its degree. To see the difference, compare (IX.2.3) with (VIII.5.6).

Proposition 2.3. Let C1/K and C2/K be curves, and let φ : C1 → C2 be a finite
map defined over K. Let Q ∈ C1(Kv), and let eφ(Q) be the ramification index of φ
at Q (II §2). Then

lim
P∈C1(Kv)

P→
v
Q

log dv
(

φ(P ), φ(Q)
)

log dv(P,Q)
= eφ(Q).
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PROOF. Let tQ ∈ Kv(C1) be a function that vanishes to order e1 ≥ 1 at Q and
has no other zeros, and similarly let tφ(Q) ∈ Kv(C2) be a function that vanishes
to order e2 ≥ 1 at φ(Q) and has no other zeros. It follows from the definition of
ramification index that

ordQ tφ(Q) ◦ φ = eφ(Q) ordφ(Q) tφ(Q) = eφ(Q)e2,

so the functions (tφ(Q) ◦ φ)e1 and t
eφ(P )e2
Q vanish to the same order at Q. Hence the

function

f =
(tφ(Q) ◦ φ)e1

t
eφ(Q)e2
Q

∈ Kv(C1)

has neither a zero nor a pole at Q. It follows that
∣
∣f(P )

∣
∣
v

is bounded away from 0
and ∞ as P→

v
Q. Therefore

log dv
(

φ(P ), φ(Q)
)

log dv(P,Q)
=

log
∣
∣tφ(Q)

(

φ(P )
)∣
∣
1/e2

v

log
∣
∣tQ(P )

∣
∣
1/e1

v

=
eφ(Q) log

∣
∣tQ(P )

∣
∣
1/e1

v
+ log

∣
∣f(P )

∣
∣
v

log
∣
∣tQ(P )

∣
∣
1/e1

v

−→ eφ(Q) as P→
v
Q.

Finally, we reinterpret Roth’s theorem (IX.1.4) in terms of distance functions.

Corollary 2.4. (of (IX.1.4)) Fix an absolute value v ∈ MK . Let C/K be a curve,
let f ∈ K(C) be a nonconstant function, and let Q ∈ C(K̄). Then

lim inf
P∈C(K)
P→

v
Q

log dv(P,Q)

logHK

(

f(P )
) ≥ −2.

(If Q is not a v-adic accumulation point of C(K), then we define the lim inf to be 0.)

PROOF. Replacing f by 1/f if necessary, we may assume that f(Q) �= ∞. (Note
that HK

(

(1/f)(P )
)

= HK

(

f(P )
)

.) The function f − f(Q) vanishes at Q, say to
order e, so (IX.2.2) tells us that

lim inf
P∈C(K)
P→

v
Q

log
∣
∣f(P )− f(Q)

∣
∣
v

log dv(P,Q)
= e.

Hence

lim inf
P∈C(K)
P→

v
Q

log dv(P,Q)

logHK

(

f(P )
) = lim inf

P∈C(K)
P→

v
Q

log
∣
∣f(P )− f(Q)

∣
∣
v

e logHK

(

f(P )
)

=
1

e
lim inf
P∈C(K)
P→

v
Q

(

log
(

HK

(

f(P )
)τ ∣
∣f(P )− f(Q)

∣
∣
v

)

logHK

(

f(P )
) − τ

)

.
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We now set τ = 2 + ε. Then (IX.1.4) implies that

HK

(

f(P )
)τ ∣
∣f(P )− f(Q)

∣
∣
v
≥ 1

for all but finitely many P ∈ C(K). Therefore

lim inf
P∈C(K)
P→

v
Q

log dv(P,Q)

logHK

(

f(P )
) ≥ −τ

e
≥ −2 + ε

e
.

Since ε > 0 is arbitrary and e ≥ 1, this is the desired result.

IX.3 Siegel’s Theorem

In this section we prove a result of Siegel that represents a significant improvement
on the Diophantine approximation result (IX.2.4).

Theorem 3.1. (Siegel) Let E/K be an elliptic curve with #E(K) = ∞. Fix a
point Q ∈ E(K̄), a nonconstant even function f ∈ K(E), and an absolute value
v ∈ MK(Q). Then

lim
P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
= 0.

Remark 3.1.1. Although we prove (IX.3.1) only for even functions, it is in fact true
in general; see Exercise 9.14d.

Before proving (IX.3.1), we give some indication of its power.

Corollary 3.2.1. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y, let S ⊂ MK be a finite set of places containing M∞

K , and let RS be
the ring of S-integers of K. Then

{

P ∈ E(K) : x(P ) ∈ RS

}

is a finite set.

PROOF. We apply (IX.3.1) with the function f = x. Suppose that there is a sequence
of distinct points P1, P2, . . . ∈ E(K) with every x(Pi) ∈ RS . The definition of
height then tells us that

hx(Pi) =
1

[K : Q]

∑

v∈S

logmax
{

1,
∣
∣x(Pi)

∣
∣
nv

v

}

,

since the terms with v /∈ S have
∣
∣x(Pi)

∣
∣
v
≤ 1. Hence we can find a particular v ∈ S

and a subsequence of the Pi (which we relabel as P1, P2, . . .) such that

hx(Pi) ≤ #S · log
∣
∣x(Pi)

∣
∣
v

for all i = 1, 2, . . . .
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(Note that nv ≤ [K : Q].) In particular, we see that
∣
∣x(Pi)

∣
∣
v
→ ∞, and since O is

the only pole of x, it follows that dv(Pi, O) → 0.
The function x has a pole of order 2 at O and no other poles, so we may take as

our distance function

dv(Pi, O) = min
{∣
∣x(Pi)

∣
∣
−1/2

v
, 1
}

.

Then, for all sufficiently large i, we have

− log dv(Pi, O)

hx(Pi)
≥ 1

2#S
.

This contradicts (IX.3.1), which says that the left-hand side approaches 0 as i → ∞.

It is clear that the proof of (IX.3.2.1) works for any even function, not just x,
since (IX.3.1) is given for all even functions. However, it is possible to reduce
the case of arbitrary (not necessarily even) functions to the special case given
in (IX.3.2.1). This reduction step, which we now give, is important in its own right,
since it is used both in Siegel’s second proof of finiteness (IX.4.3.1) and with the
effective methods provided by linear forms in logarithms (IX.5.7).

Corollary 3.2.2. Let C/K be a curve of genus one, let f ∈ K(C) be a nonconstant
function, and let S and RS be as in (IX.3.2.1). Then

{

P ∈ C(K) : f(P ) ∈ RS

}

is a finite set. Further, (IX.3.2.2) follows formally from (IX.3.2.1).

PROOF. We are clearly proving something stronger if we extend the field K and
enlarge the set S. We may thus assume that C(K) contains a pole Q of f , and
taking Q to be the identity element, we view (C,Q) as an elliptic curve defined
over K. Let x and y be coordinates on a Weierstrass equation for (C,Q), which we
may take in the form

y2 = x3 +Ax+B.

We have f ∈ K(C) = K(x, y) and
[

K(x, y) : K(x)
]

= 2, so we can write

f(x, y) =
φ(x) + ψ(x)y

η(x)

with polynomials φ(x), ψ(x), η(x) ∈ K[x]. Further, since

ordQ(x) = −2, ordQ(y) = −3, and ordQ(f) < 0,

it follows that
2 deg η < max{2 deg φ, 2 degψ + 3}.

(This is the condition for f to have a pole at Q.) Next we compute
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(

fη(x)− φ(x)
)2

=
(

ψ(x)y
)2

= ψ(x)2(x3 +Ax+B).

Writing this out as a polynomial in x with coefficients in K[f ], we see that the high-
est power of x comes from one of the three terms f2η(x)2, φ(x)2, ψ(x)2x3. From
above, the first of these has lower degree in x than the latter two, while the leading
terms of φ(x)2 and ψ(x)2x3 cannot cancel, since they have different degrees. (One
has even degree, the other odd degree.) It follows that x satisfies a monic polyno-
mial with coefficients in K[f ], i.e., x is integral over K[f ]. Multiplying this monic
polynomial by an appropriate element of K to “clear denominators,” we have shown
that x satisfies a relation

a0x
N + a1(f)x

N−1 + · · ·+ aN−1(f)x+ aN (f) = 0,

where a0 ∈ RS is nonzero and ai(f) ∈ RS [f ] for 1 ≤ i ≤ N . Enlarging the set S,
we may assume that a0 ∈ R∗

S , and then dividing the polynomial by a0, we may
assume that a0 = 1.

Now suppose that P ∈ C(K) satisfies f(P ) ∈ RS . Then P is not a pole of x,
and the relation

x(P )N + a1
(

f(P )
)

x(P )N−1 + · · ·+ aN−1

(

f(P )
)

x(P ) + aN
(

f(P )
)

= 0

shows that x(P ) is integral over RS . Since also x(P ) ∈ K and RS is integrally
closed, it follows that x(P ) ∈ RS . This proves that

{

P ∈ C(K) : f(P ) ∈ RS

}

⊂
{

P ∈ C(K) : x(P ) ∈ RS

}

,

and thus the finiteness assertion in (IX.3.2.1) implies the desired finiteness result
described in (IX.3.2.2).

Example 3.3. Consider the Diophantine equation

y2 = x3 +Ax+B,

where A,B ∈ Z and 4A3 + 27B2 �= 0. The corollary (IX.3.2.1) says that this
equation has only finitely many solutions x, y ∈ Z. What does (IX.3.1) say in this
situation, say if we take Q = O, f = x, and v the archimedean absolute value on Q?

Label the nonzero rational points P1, P2, . . . ∈ E(Q) in order of nondecreasing
height, and write

x(Pi) =
ai
bi

∈ Q

as a fraction in lowest terms. Then

log dv(Pi, O) =
1

2
logmin

{∣
∣
∣
∣

bi
ai

∣
∣
∣
∣
, 1

}

,

hx(Pi) = logmax
{

|ai|, |bi|
}

.

(Note that the 1
2 appears because x−1 has a zero of order 2 at O.) We see from (IX.3.1)

that
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lim
i→∞

min
{

log |bi/ai|, 0
}

max
{

log |ai|, log |bi|
} = 0.

Next let Q1 and Q2 be the zeros of the function x, where we allow Q1 = Q2.
Then it is not hard to check that

logmin
{∣
∣x(P )

∣
∣
v
, 1
}

= log dv(P,Q1)+log dv(P,Q2)+O(1) for all P ∈ E(Kv),

where the O(1) depends on the choice of the distance functions dv( · , Qi), but is
independent of P ; see Exercise 9.16. Writing v ∈ M∞

Q for the usual archimedean
absolute value on Q, we use (IX.3.1) twice to obtain

lim
i→∞

min
{

log |ai/bi|, 0
}

max
{

log |ai|, log |bi|
} = lim

i→∞

logmin
{∣
∣x(Pi)|, 1

}

hx(Pi)

= lim
i→∞

log dv(Pi, Q1) + log dv(Pi, Q2) +O(1)

hx(Pi)

= 0.

Finally, combining the limit involving bi/ai with the limit involving ai/bi, it is
easy to deduce that

lim
i→∞

log |ai|
log |bi|

= 1.

In other words, when looking at the x-coordinates of the rational points on an ellip-
tic curve, we will see that the numerators and the denominators tend to have about
the same number of digits. This is a much stronger assertion than (IX.3.2.1), which
merely says that there are only finitely many points whose denominator is 1.

Remark 3.4. Siegel’s theorem (IX.3.2.1) is not effective, which means that the proof
does not give an explicitly computable upper bound for the height of all integral
points. However, Siegel’s proof can be made quantitative in the following sense; see
for example [81]:

Given a nonsingular Weierstrass equation with coefficients in a number field K
and given a finite set of absolute values S, there is a constant N , which can be
explicitly calculated in terms of the field K, the set S, and the coefficients of the
equation, such that the equation has no more than N integral solutions.

A subtler Diophantine problem, motivated by work of Dem’janenko and posed as
a general conjecture by Serge Lang, is to give an intrinsic relationship between the
number of integral points and the rank of the Mordell–Weil group.

Conjecture 3.5. (Lang [135, page 140]) Let E/K be an elliptic curve, and choose
a quasiminimal Weierstrass equation for E/K,

E : y2 = x3 +Ax+B.

(See Exercise 8.14c.) Let S ⊂ MK be a finite set of places containing M∞
K , and

let RS be the ring of S-integers of K. There exists a constant C, depending only
on K, such that

#
{

P ∈ E(K) : x(P ) ∈ RS

}

≤ C#S+rankE(K).
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This conjecture is known to be true if one restricts attention to elliptic curves
having integral j-invariant. More generally, the following is known.

Theorem 3.6. Let E/K, S, and RS be as in (IX.3.5).
(a) (Silverman [104, 262]) There is a constant C, depending only on [K : Q] and on

the number of places v ∈ M0
K with ordv(jE) < 0, such that

#
{

P ∈ E(K) : x(P ) ∈ RS

}

≤ C#S+rankE(K).

(b) (Hindry–Silverman [113]) Assume that the ABC conjecture (with any exponent)
(VIII.11.4), (VIII.11.6) is true for the field K. Then there is a constant C, de-
pending only on [K : Q] and on the constants appearing in the ABC conjecture,
such that

#
{

P ∈ E(K) : x(P ) ∈ RS

}

≤ C#S+rankE(K).

We turn now to the proof of (IX.3.1). In broad outline, the argument goes as
follows. Our theorem on Diophantine approximation (IX.2.4) gives us a bound,
in terms of the height of P , on how fast P can approach Q. Suppose now that
we write P = [m]P ′ +R and Q = [m]Q′ +R. Then (IX.2.3) tells us that the dis-
tance from P ′ to Q′ is about the same as the distance from P to Q, since the
map P �→ [m]P +R is unramified. On the other hand, the height of P ′ is much
smaller than the height of P . Now applying (IX.2.4) to P ′ and Q′ gives an improved
estimate, and taking m sufficiently large gives the desired result.

PROOF OF (IX.3.1). Choose a sequence of distinct points Pi ∈ E(K) satisfying

lim
i→∞

log dv(Pi, Q)

hf (Pi)
= L = lim inf

P∈E(K)
hf (P )→∞

log dv(P,Q)

hf (P )
.

Since dv(P,Q) ≤ 1 and hf (P ) ≥ 0 for all points P ∈ E(K), we have L ≤ 0. It
thus suffices to prove that L ≥ 0.

Let m be a large integer. From the weak Mordell–Weil theorem (VIII.1.1), the
quotient group E(K)/mE(K) is finite. Hence some coset contains infinitely many
of the Pi. Replacing {Pi} by a subsequence, we may assume that

Pi = [m]P ′
i +R,

where P ′
i , R ∈ E(K) and where R does not depend on i. We use standard properties

of height functions to compute

m2hf (P
′
i ) = hf

(

[m]P ′
i

)

+O(1) using (VIII.6.4b),

= hf (Pi −R) +O(1)

≤ 2hf (Pi) +O(1) using (VIII.6.4a).

Note that the O(1) is independent of i.
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We next do an analogous computation with distance functions. If Pi is bounded
away from Q in the v-adic topology, then log dv(Pi, Q) is bounded, so clearly L = 0.
Otherwise we can replace Pi with a subsequence such that Pi→v Q. It follows
that [m]P ′

i→v Q−R, so the sequence P ′
i accumulates to at least one of the m2 possi-

ble mth roots of Q−R. Again taking a subsequence, we can find a point Q′ ∈ E(K̄)
satisfying

P ′
i−→v Q′ and Q = [m]Q′ +R.

We next observe that the map E → E defined by P �→ [m]P + R is everywhere
unramified (III.4.10c), so (IX.2.3) tells us that

lim
i→∞

log dv(Pi, Q)

log dv(P ′
i , Q

′)
= 1.

Combining this with the height inequality yields

L = lim
i→∞

log dv(Pi, Q)

hf (Pi)
≥ lim

i→∞

log dv(P
′
i , Q

′)
1
2m

2hf (P ′
i ) +O(1)

.

(Note that the log dv expressions are negative, which reverses the inequality.)
We now apply the theorem on Diophantine approximation (IX.2.4) to the se-

quence {P ′
i} ⊂ E(K) as it converges v-adically to Q′ ∈ E(K̄). This yields

lim inf
i→∞

log dv(P
′
i , Q

′)

[K : Q]hf (P ′
i )

≥ −2.

(The factor of [K : Q], which in any case is not important, arises because hf is the
absolute height, while (IX.2.4) is stated using the relative height HK .) Combining
the last two inequalities yields

L ≥ −4[K : Q]

m2
.

The field K is fixed, while the value of m is arbitrary, which completes the proof
that L ≥ 0.

IX.4 The S-Unit Equation

The finiteness of S-integral points on elliptic curves (IX.3.2.1) is a special case of
Siegel’s general result that an (affine) curve C/K of genus at least one has only
finitely many S-integral points; see [114, Theorem D.9.1] or [139, Chapter 8, The-
orem 2.4]. Of course, for curves C of genus two or greater, Siegel’s result is su-
perseded by Faltings’ theorem [82, 84], which asserts that the full set of rational
points C(K) is finite.

Siegel gave a second proof of his theorem that applies to a restricted set of curves,
but that does include all elliptic curves. This second method is important because,
when combined with results from linear forms in logarithms (XI §5), it leads to
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an effective procedure for finding all S-integral points. In this section we describe
Siegel’s alternative proof.

The idea is to reduce the problem of solving for S-integral points on a curve to
the problem of solving several equations of the form

ax+ by = 1

in S-units. We start with a quick sketch of how solving this S-unit equation can be
reduced to a Diophantine approximation theorem such as (IX.1.4). This ineffective
theorem can then be replaced by an effective estimate as described in (IX §5).

Theorem 4.1. Let S ⊂ MK be a finite set of places, and let a, b ∈ K∗. Then the
equation

ax+ by = 1

has only finitely many solutions in S-units x, y ∈ R∗
S .

INEFFECTIVE PROOF (SKETCH). Let m be a large integer. Dirichlet’s S-unit the-
orem [142, V §1] implies that the quotient group R∗

S/(R
∗
S)

m is finite, so we can
choose a finite set of coset representatives c1, . . . , cr ∈ R∗

S . Then any solution (x, y)
to the original equation can be written as

x = ciX
m, y = cjY

m,

for some X,Y ∈ R∗
S and some choice of ci and cj , and thus (X,Y ) is a solution to

the equation
aciX

m + bcjY
m = 1.

Since there are only finitely many choices for ci and cj , it suffices to prove that for
any α, β ∈ K∗, the equation

αXm + βY m = 1

has only finitely many solutions X,Y ∈ RS .
Suppose that there are infinitely many such solutions. Then, since

HK(Y ) =
∏

v∈S

max
{

1, |Y |nv
v

}

,

we can choose some v ∈ S so that there are infinitely many solutions satisfying

|Y |v ≥ HK(Y )1/([K:Q]#S).

(Note that nv ≤ [K : Q].) Let γ ∈ K̄ be a solution to

γm = −β/α.

We will specify later which mth root to take. The idea is that if m is large enough,
then X/Y provides too close an approximation to γ.
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We factor the left-hand side of the equation αXm + βY m = 1 to obtain

∏

ζ∈μm

(
X

Y
− ζγ

)

=
1

αY m
.

Since there are supposed to be infinitely many solutions, we may assume that HK(Y )
is large, so also |Y |v is large. Then from the equality

∏

ζ∈μm

∣
∣
∣
∣

X

Y
− ζγ

∣
∣
∣
∣
v

=
1

|αY m|v
,

we see that X/Y must be close to one of the ζγ values. Replacing γ by the appro-
priate ζγ, we may assume that |X/Y − γ|v is quite small. But then |X/Y − ζγ|v
cannot be too small for ζ �= 1, since

∣
∣
∣
∣

X

Y
− ζγ

∣
∣
∣
∣
v

≥
∣
∣γ(1− ζ)

∣
∣
v
−
∣
∣
∣
∣

X

Y
− γ

∣
∣
∣
∣
v

.

Hence we can find a constant C1, independent of X/Y , such that

∣
∣
∣
∣

X

Y
− γ

∣
∣
∣
∣
v

≤ C1

|Y |mv
.

(See Exercise 9.5.) Finally, from the expression

α

(
X

Y

)m

=

(
1

Y

)m

− β,

one easily deduces that

HK

(
X

Y

)

≤ C2HK(Y ),

where C2 depends on only α, β, and m. Combining all of the above estimates yields

∣
∣
∣
∣

X

Y
− γ

∣
∣
∣
∣
v

≤ CHK

(
X

Y

)−m/([K:Q]#S)

.

But if we take m > 2[K : Q]#S, then Roth’s theorem (IX.1.4) says that there are
only finitely many possibilities for X/Y . Further, since

Y m =

(

α

(
X

Y

)m

+ β

)−1

and X =

(
X

Y

)

Y,

each ratio X/Y corresponds to at most m possible pairs (X,Y ). This contradicts
our original assumption that there are infinitely many solutions, which completes the
proof of (IX.4.1).



284 IX. Integral Points on Elliptic Curves

Remark 4.2.1. There is a great similarity in the methods of proof for Siegel’s theo-
rem (IX.3.1) and the S-unit equation (IX.4.1). In both cases, we start with a point in
a finitely generated group, namely P ∈ E(K) for the former and (x, y) ∈ R∗

S ×R∗
S

for the latter. Next we pull back using the multiplication-by-m map in the group to
produce a new solution whose height is much smaller than the original solution but
that closely approximates another point defined over a finite extension of K. Finally,
we invoke a theorem on Diophantine approximation, such as (IX.1.4), to complete
the proof.

Remark 4.2.2. The proof that we have given for (IX.4.1) is ineffective because it
makes use of Roth’s theorem (IX.1.4). However, just as for Siegel’s theorem, it is
possible to make (IX.4.1) quantitative, i.e., to give an upper bound on the number of
solutions. One might expect, a priori, that such a bound would depend on the field K
and on the set of primes S, but Evertse proved the following uniform result for the
S-unit equation that is an analogue of Lang’s conjecture (IX.3.5) for elliptic curves.
The proof, which we omit, is quite intricate.

Theorem 4.2.3. (Evertse [80]) Let S ⊂ MK be a finite set of places contain-
ing M∞

K , and let a, b ∈ K∗. Then the equation

ax+ by = 1

has at most 3× 7[K:Q]+2#S solutions in S-units x, y ∈ R∗
S .

To see the analogy with (IX.3.5), note that R∗
S is a finitely generated group of

rank #S − 1. Thus the bound in (IX.3.5) has the form CrankR∗
S+rankE(K)+1, while

the bound in (IX.4.2.3) may be written as CrankR∗
S+1.

We next describe Siegel’s reduction of S-integral points on hyperelliptic curves
to solutions of the S-unit equation. Although we do not do so, the reader should note
that every step in this reduction process can be made effective.

Theorem 4.3. (Siegel) Let f(x) ∈ K[x] be a polynomial of degree d ≥ 3 with
distinct roots in K̄. Then the equation

y2 = f(x)

has only finitely many solutions in S-integers x, y ∈ RS .

PROOF. We are clearly proving something stronger if we take a finite extension of K
and enlarge the set S. Thus we may assume that f splits over K, say

f(x) = a(x− α1)(x− α2) · · · (x− αd) with α1, . . . , αd ∈ K.

Enlarging S, we may assume that the following statements are true:

(i) a ∈ R∗
S .

(ii) αi − αj ∈ R∗
S for all i �= j.

(iii) RS is a principal ideal domain.
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Now suppose that x, y ∈ RS satisfy y2 = f(x). Let p be a prime ideal of RS .
Then p divides at most one x− αi, since if it divides both x− αi and x− αj , then it
divides αi − αj , contradicting (ii). Further, we see from (i) that p does not divide a.
It follows from the equation

y2 = a(x− α1)(x− α2) · · · (x− αd)

that ordp(x−αi) is even, and since this is true for all primes, the ideal (x−αi)RS is
the square of an ideal in RS . From (iii) we know that RS is a principal ideal domain,
so there are elements zi ∈ RS and units bi ∈ R∗

S such that

x− αi = biz
2
i for i = 1, 2, . . . , d.

Now let L/K be the extension of K obtained by adjoining to K the square root
of every element of R∗

S . Note that L/K is a finite extension, since Dirichlet’s S-unit
theorem tells us that R∗

S/(R
∗
S)

2 is finite. Let T ⊂ ML be the set of places of L
lying over elements of S, and let RT be the ring of T -integers in L. By construction,
each bi is a square in RT , say bi = β2

i , so

x− αi = (βizi)
2.

Taking the difference of any two of these equations yields

αj − αi = (βizi − βjzj)(βizi + βjzj).

Note that αj − αi ∈ R∗
T , while each of the two factors on the right is in RT . It

follows that each of these factors is a unit,

βizi ± βjzj ∈ R∗
T for i �= j.

To complete the proof we use Siegel’s identity:

β1z1 ± β2z2
β1z1 − β3z3

∓ β2z2 ± β3z3
β1z1 − β3z3

= 1.

This gives two elements of R∗
T that sum to 1, so (IX.4.1) says that there are only

finitely many choices for

β1z1 + β2z2
β1z1 − β3z3

and
β1z1 − β2z2
β1z1 − β3z3

.

Multiplying these two numbers, we find that there are only finitely many possibilities
for

α2 − α1

(β1z1 − β3z3)2
,

hence only finitely many for
β1z1 − β3z3,

and thus only finitely many for
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β1z1 =
1

2

(

(β1z1 − β3z3) +
α3 − α1

β1z1 − β3z3

)

.

Finally, since
x = α1 + (β1z1)

2,

there are only finitely many possible values for x, and each x value gives at most
two y values.

Corollary 4.3.1. Let C/K be a curve of genus one and let f ∈ K(C) be a
nonconstant function. Then there are only finitely many points P ∈ C(K) such
that f(P ) ∈ RS .

PROOF. The reduction procedure described in (IX.3.2.2) says that it suffices to con-
sider the case that f is the x-coordinate of a Weierstrass equation. The case f = x is
covered by (IX.4.3).

IX.5 Effective Methods

In 1949, Gelfond and Schneider independently solved Hilbert’s problem concerning
the transcendence of 2

√
2. They actually proved the following strong transcendence

criterion.

Theorem 5.1. (Gelfond, Schneider) Let α, β ∈ Q̄ with α �= 0, 1 and β /∈ Q.
Then αβ is transcendental.

Gelfond rephrased his result in terms of logarithms: If α1, α2 ∈ Q̄∗ and if logα1

and logα2 are linearly independent over Q, then they are linearly independent
over Q̄. He further showed that it is possible to give an explicit lower bound for

|β1 logα1 + β2 logα2|

whenever this quantity is nonzero, and he noted that many Diophantine problems
could be solved effectively if one knew an analogous result for sums of arbitrarily
many logarithms. Alan Baker proved such a theorem in 1966. The proof is quite
involved, so we are content to quote the following version.

Theorem 5.2. (Baker) Let α1, . . . , αn ∈ K∗ and let β1, . . . , βn ∈ K. For any
constant κ, define

τ(κ) = τ(κ;α1, . . . , αn, β1, . . . , βn) = h
(

[1, β1, . . . , βn]
)

h
(

[1, α1, . . . , αn]
)κ
.

N.B. These are logarithmic height functions. Fix an embedding K ⊂ C and let | · |
be the corresponding absolute value. Assume that

β1 logα1 + · · ·+ βn logαn �= 0.

Then there are effectively computable constants C > 0 and κ > 0, depending only
on n and [K : Q], such that

|β1 logα1 + · · ·+ βn logαn| > C−τ(κ).
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PROOF. See [11] or [135, VIII, Theorem 1.1].

Remark 5.2.1. We have restricted ourselves in (XI.5.2) to the case of the archi-
medean absolute value. There are analogous results in the nonarchimedean case,
although minor technical difficulties arise due to the fact that the p-adic logarithm is
defined only in a neighborhood of 1. See (IX.5.6) for a further discussion.

It is not immediately clear how Baker’s theorem (IX.5.2) can be applied to give a
bound for the solutions of the S-unit equation. We start with an elementary lemma;
see also Exercise 9.8.

Lemma 5.3. Let V be a finite-dimensional vector space over R. Given any basis e =
{e1, . . . , en} for V , let ‖ · ‖e be the sup norm with respect to e, i.e.,

‖x‖e =
∥
∥
∥

∑

xiei

∥
∥
∥
e
= max

{

|xi|
}

.

Let f = {f1, . . . , fn} be another basis for V . There are positive constants c1 and c2,
depending on e and f , such that for all x ∈ V ,

c1‖x‖e ≤ ‖x‖f ≤ c2‖x‖e.

PROOF. Let A = (aij) be the change of basis matrix from e to f , so ei =
∑

j aijfj ,
and let ‖A‖ = max

{

|aij |
}

. Then for any x =
∑

i xiei ∈ V we have x =
∑

i,j xiaijfj , so

‖x‖f = max
j

{∣
∣
∣
∣

∑

i

xiaij

∣
∣
∣
∣

}

≤ nmax
i,j

{

|aij |
}

max
i

{

|xi|
}

= n‖A‖ ‖x‖e.

This gives one inequality, and the other follows by symmetry.

We apply (IX.5.3) to the following situation. Let S ⊂ MK be a finite set of places
containing M∞

K , let s = #S, and choose a basis α1, . . . , αs−1 for the free part
of R∗

S . Then every α ∈ R∗
S can be written uniquely as

α = ζαm1
1 · · ·αms−1

s−1

with integers m1, . . . ,ms−1 and a root of unity ζ. Define the size of α (relative to
{α1, . . . , αs−1}) by

m(α) = max
{

|mi|
}

.

Lemma 5.4. With notation as above, there are positive constants c1 and c2, depend-
ing only on K and S, such that every α ∈ R∗

S satisfies

c1h(α) ≤ m(α) ≤ c2h(α).

PROOF. Let S = {v1, . . . , vs} and, to ease notation, let ni = nvi
be the local degree

corresponding to vi. We consider the S-regulator homomorphism

ρS : R∗
S −→ Rs, α �−→

(

n1v1(α), . . . , nsvs(α)
)

.
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Note that the image of ρS lies in the hyperplane H = {x1 + · · ·+ xs = 0}, and
Dirichlet’s S-unit theorem says that the image of ρS spans H . Let ‖ · ‖1 be the sup
norm on Rs relative to the standard basis, and let ‖ · ‖2 be the sup norm relative to
the basis

{

ρS(α1), . . . , ρS(αs−1), (1, 1, . . . , 1)
}

.

Here ρS(α1), . . . , ρS(αs−1) span H , and we have added one extra vector in order to
span all of Rs. From (IX.5.3) we find positive constants c1 and c2 such that

c1‖x‖1 ≤ ‖x‖2 ≤ c2‖x‖1 for all x ∈ Rs.

Now let α ∈ R∗
S and write ρS(α) =

∑
miρS(αi). Then directly from the defini-

tions we have
∥
∥ρS(α)

∥
∥
2
= max

{

|mi|
}

= m(α),
∥
∥ρS(α)

∥
∥
1
= max

{

ni|vi(α)|
}

,

hK(α) =
∑

max
{

0,−nivi(α)
}

.

(Note that the sum for hK(α) needs to include only the absolute values in S, since
by assumption v(α) = 0 for all v /∈ S.) It remains to compare

∥
∥ρS(α)

∥
∥
1

and hK(α).
In general, for any x = (x1, . . . , xs) ∈ H , we can compare ‖x‖1 to the height

h(x) =
∑

max{0,−xi}. First, since max{0,−xi} ≤ |xi|, we have the obvious
estimate

h(x) ≤ s‖x‖1.
On the other hand, if we sum the identity

xi = max{0, xi} −max{0,−xi}

for 1 ≤ i ≤ s and use the fact that x ∈ H , i.e.,
∑

xi = 0, we obtain

0 = h(−x)− h(x),

and hence h(−x) = h(x). This allows us to compute

2h(x) = h(x) + h(−x)

=
∑(

max{0,−xi}+max{0, xi}
)

=
∑

|xi|
≥ max

{

|xi|
}

= ‖x‖1.

Thus 1
2‖x‖1 ≤ h(x) ≤ s‖x‖1, and combining this with the earlier estimates gives

the desired result,
(c1/s)hK(α) ≤ m(α) ≤ 2c2hK(α).
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We now have the tools needed to show how solving the S-unit equation can be
reduced to the problem of giving bounds for linear forms in logarithms.

Theorem 5.5. Fix a, b ∈ K∗. There exists an effectively computable constant
C = C(K,S, a, b) such that any solution (α, β) ∈ R∗

S ×R∗
S to the S-unit equation

aα+ bβ = 1

satisfies H(α) < C.

PROOF. Let (α, β) be a solution and choose the absolute value v in S for which |α|v
is largest. Then, since |α|w = 1 for all w /∈ S, we have

|α|[K:Q]s
v ≥

∏

w∈S

max
{

1, |α|nw
w

}

= HK(α),

and hence
|α|v ≥ H(α)1/s.

(Here, as usual, s = #S.)
To simplify our discussion, we will assume that v is archimedean, which is cer-

tainly true if, for example, S = M∞
K . (For arbitrary S, see the discussion in (IX.5.6).)

The mean value theorem applied to the function log(x) yields
∣
∣
∣
∣

log x− log y

x− y

∣
∣
∣
∣
≤ 1

min
{

|x|, |y|
} .

We apply this inequality with x = aα and y = −bβ, so x− y = 1, and we obtain

| log aα− log bβ| ≤ min
{

|aα|, |aα− 1|
}−1

≤ 2
(

|a|H(α)1/s
)−1

.

(For the last line, we have assumed that |α| > 2/|a|, since otherwise we have the
excellent bound H(α) ≤ |α|s ≤ (2/|a|)s.)

Let α1, . . . , αs−1 be a basis for R∗
S , and write

α = ζαm1
1 · · ·αms−1

s−1 and β = ζ ′α
m′

1
1 · · ·αm′

s−1

s−1 .

Substituting this into the previous inequality yields
∣
∣
∣
∣
∣

s−1∑

i=1

(mi −m′
i) logαi + log

(
aζ

bζ ′

)
∣
∣
∣
∣
∣
≤ c1

H(α)1/s
,

where here and in what follows, the constants c1, c2, . . . are effectively computable
and depend only on K, S, a, and b.

From the equality aα+ bβ = 1, it is easy to obtain an estimate
∣
∣h(α)− h(β)

∣
∣ ≤ c2,
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and applying (IX.5.4) yields

c3m(α) ≤ m(β) ≤ c4m(α).

(Clearly we may assume that m(α) ≥ 1 and m(β) ≥ 1.) In particular,

|mi −m′
i| ≤ m(α) +m(β) ≤ c5h(α).

Letting qi = mi −m′
i and γ = aζ/bζ ′ to ease notation, we have the inequality

|q1 logα1 + · · ·+ qs−1 logαs−1 + log γ| ≤ c1H(α)−1/s.

We now apply Baker’s theorem (IX.5.2). This gives a lower bound of the form

|q1 logα1 + · · ·+ qs−1 logαs−1 + log γ| ≥ c−τ
6 ,

where
τ = h

(

[1, q1, . . . , qs−1]
)

h
(

[1, α1, . . . , αs−1, γ]
)κ

and κ is a constant depending only on K and s. But from above,

h
(

[1, q1, . . . , qs−1]
)

= logmax
{

1, |q1|, . . . , |qs−1|
}

≤ log
(

c5h(α)
)

.

Combining the upper and lower bounds for the linear form in logarithms and using
this estimate yields

c
log(c5h(α))
7 ≤ c1H(α)1/s.

(Note that the basis α1, . . . , αs−1 depends only on the field K and the set S, so we
have absorbed the h

(

[1, α1, . . . , αs−1, γ]
)κ

into c7.) Now a little bit of algebra gives

H(α) ≤ c8h(α)
c9 ,

and since h(α) = logH(α), this implies the desired bound for H(α).

Remark 5.6. In order to apply the argument given in (IX.5.5) to a nonarchimedean
absolute value, it is necessary to make some minor technical alterations. The main
difficulty is that the logarithm function in the p-adic setting converges only in a
neighborhood of 1. What one does is to take a subgroup of finite index in R∗

S that is
generated by S-units that are p-adically close to 1, together with a uniformizer at p.
Then, assuming that |α|p is sufficiently large, one shows that aα/bβ is p-adically
close to 1. Now applying the above argument to some power of aα/bβ gives a well-
defined linear form in p-adic logarithms, and from then on the argument goes just
the same. For the final step, of course, one must use a p-adic analogue of Baker’s
theorem. For further details on the reduction step, see for example [135, VI §1].

Remark 5.7. In order to obtain an effective bound for the points on an elliptic curve
satisfying f(P ) ∈ RS , where f is an arbitrary nonconstant function, it is necessary
to make the reduction step given in (IX.3.2.2) effective. This essentially involves
giving an effective version of the Riemann–Roch theorem, which has been done by
Coates [48]. As the reader might guess from the number of reduction steps involved,
the effective bounds that come out of the proofs are quite large. To indicate the mag-
nitudes involved, we quote two results; see also (IX.7.2), and (IX.7.4).
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Theorem 5.8. (a) (Baker [11, page 45]) Let A,B,C,D ∈ Z satisfy

max
{

|A|, |B|, |C|, |D|
}

≤ H,

and assume that
E : Y 2 = AX3 +BX2 + CX +D

is an elliptic curve. Then any point P = (x, y) ∈ E(Q) with x, y ∈ Z satisfies

max
{

|x|, |y|
}

< exp
(

(106H)10
6
)

.

(b) (Baker–Coates [12]) Let F (X,Y ) ∈ Z[X,Y ] be an absolutely irreducible poly-
nomial such that the curve F (X,Y ) = 0 has genus one. Let n be the degree
of F , and assume that the coefficients of F all have absolute value at most H .
Then any solution to F (x, y) = 0 with x, y ∈ Z satisfies

max
{

|x|, |y|
}

< exp exp exp

(

(2H)10
n10

)

.

Remark 5.8.1. There is an extensive literature on effective bounds for S-integral
solutions to equations of the form ym = f(x); see for example [32, 96, 131, 268,
279, 301]. To quote one instance, we mention that [301] improves (IX.5.8a) to

max
{

|x|, |y|
}

≤ exp
(

cH270(logH)54
)

for an absolute constant c.

Linear Forms in Elliptic Logarithms

Rather than reducing the problem of integral points on an elliptic curve to the ques-
tion of solutions to the S-unit equation, and thence as above to bounds for linear
forms in logarithms, one can instead work directly with the analytic parametrization
of the elliptic curve. We briefly indicate how this is done in the simplest case.

Let E/Q be an elliptic curve given by a Weierstrass equation

E : y2 = 4x3 − g2x− g3 with g2, g3 ∈ Z.

We are interested in bounding the height of points P ∈ E(Q) that satisfy x(P ) ∈ Z.
Let

φ : C/Λ −→ E(C)

be the analytic parametrization of E(C) given by the Weierstrass ℘-function and its
derivative (VI.5.1.1). We fix a basis {ω1, ω2} for the lattice Λ. Let

ψ : E(C) −→ C
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be the map that is inverse to φ and takes values in the fundamental parallelo-
gram spanned by ω1 and ω2, shifted to be centered at 0. The map φ is the ellip-
tic exponential map, and choosing a fundamental domain for the elliptic logarithm
map ψ is analogous to choosing a principal value for the ordinary logarithm func-
tion log : C∗ → C. (The analogy becomes even clearer if we identify C∗ with C/Z.)

Fix a basis P1, . . . , Pr for the free part of E(Q). Given any point P ∈ E(Q), we
can write

P = q1P1 + · · ·+ qrPr + T

with integers q1, . . . , qr and a torsion point T ∈ Etors(Q). It follows that

ψ(P ) = q1ψ(P1) + · · ·+ qrψ(Pr) + ψ(T ) (mod Λ),

so there are integers m1 and m2 such that

ψ(P ) = q1ψ(P1) + · · ·+ qrψ(Pr) + ψ(T ) +m1ω1 +m2ω2.

Suppose now that P is a large integral point, i.e., x(P ) ∈ Z and
∣
∣x(P )

∣
∣ is large.

Then P is close to O in the complex topology on E(C), so ψ(P ) is close to 0. More
precisely, since ℘(z) = x

(

φ(z)
)

behaves like z−2 for z close to 0, we see that

∣
∣ψ(P )

∣
∣
2 ≤ c1

∣
∣x(P )

∣
∣
−1

= c1H
(

x(P )
)−1

.

We are using the fact that if x ∈ Z with x �= 0, then H(x) = |x|. The constant c1
depends on g2 and g3, but not on P .

On the other hand, since the canonical height is quadratic and positive definite
from (VIII.9.3) and (VIII.9.6), we can estimate

logH
(

x(P )
)

= hx(P ) = 2ĥ(P ) +O(1)

= 2ĥ
(∑

qiPi + T
)

+O(1)

≥ c2 max
{

|qi|
}2

,

where c2 depends on E and the choice of the basis P1, . . . , Pr. (See Exercise 9.8.)
Substituting this above, we obtain an upper bound for our linear form in elliptic
logarithms,

∣
∣q1ψ(P1) + · · ·+ qrψ(Pr) + ψ(T ) +m1ω1 +m2ω2

∣
∣ ≤ c

−max{|qi|}2

3 .

Further, since ω1 and ω2 are R-linearly independent, it is easy to see that

max
{

|m1|, |m2|
}

≤ c4 max
{

|qi|
}

,

where c4 depends on E, {Pi}, ω1, and ω2. Thus, if we let

q = max
{

|q1|, . . . , |qr|, |m1|, |m2|
}

,

then we obtain the estimate



IX.6. Shafarevich’s Theorem 293

∣
∣q1ψ(P1) + · · ·+ qrψ(Pr) + ψ(T ) +m1ω1 +m2ω2

∣
∣ ≤ c−q2

5 .

Now the desired finiteness result follows if we can find a lower bound for the left-
hand side having the form C−τ(q) with τ(q)/q2 → 0 as q → ∞. The first effective
estimate of this sort was proven by Masser [159] in the case that E has complex
multiplication. The general case was proven by Wüstholz [313, 314], who had to
overcome significant technical difficulties associated with the necessary zero and
multiplicity estimates.

It remains to discuss the question of effectivity. The reduction to linear forms in
ordinary logarithms via the S-unit equation is fully effective. It is possible to give an
explicit upper bound for the height of any S-integral point of E(K) in easily com-
puted quantities associated to K, S, and E. One of these quantities, for example,
is a bound for the heights of generators of the unit group R∗

S . In the analogous re-
duction to linear forms in elliptic logarithms, we similarly use a set of generators of
the Mordell–Weil group E(K), and the bound for the integral points depends on the
heights of these generators. Unfortunately, as we have noted in (VIII.3.2) (see also
Chapter X), the proof of the Mordell–Weil theorem is not effective. Thus although
the approach to integral points on elliptic curves via elliptic logarithms is more nat-
ural than the roundabout route through the S-unit equation, it is likely to remain
ineffective until an effective proof of the Mordell–Weil theorem is found. On the
other hand, we should mention that if one is able to find a basis for the Mordell–Weil
group, for example using the techniques in Chapter X, then the method of elliptic
logarithms often provides the best known algorithm for finding the integral points on
a given elliptic curve. See for example [58, 59, 96, 268, 279, 315].

IX.6 Shafarevich’s Theorem

Recall that an elliptic curve E/K has good reduction at a finite place v ∈ MK if it
has a Weierstrass equation whose coefficients are v-integral and whose discriminant
is a v-adic unit (VII §5).

Theorem 6.1. (Shafarevich [242]) Let S ⊂ MK be a finite set of places con-
taining M∞

K . Then up to isomorphism over K, there are only finitely many elliptic
curves E/K having good reduction at all primes not in S.

PROOF. Clearly we are proving something stronger if we enlarge S, so we may
assume that S contains all primes of K lying over 2 and 3. Enlarging S further, we
may also assume that the ring of S-integers RS has class number one.

Under these assumptions, we see from (VIII.8.7) that any elliptic curve E/K has
a Weierstrass equation of the form

E : y2 = x3 +Ax+B, A,B ∈ RS ,

with discriminant Δ = −16(4A3 + 27B2) satisfying

ΔRS = DE/KRS .
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Here DE/K is the minimal discriminant of E/K; see (VIII §8). If we further assume
that E has good reduction outside S, then ordv(DE/K) = 0 for all places v /∈ S,
so Δ is in R∗

S .
Assume now that we are given a list of elliptic curves E1/K,E2/K, . . . , each of

which has good reduction outside of S. We associate to each Ei a Weierstrass equa-
tion as above, say with coefficients Ai, Bi ∈ RS and discriminant Δi ∈ R∗

S . Break-
ing the sequence of Ei into finitely many subsequences according to the residue class
of Δi in the finite group R∗

S/(R
∗
S)

12, we may replace the original sequence with an
infinite subsequence satisfying Δi = CD12

i for a fixed C and with Di ∈ R∗
S .

The relation Δ = −16(4A3 + 27B2) implies that for each i, the point
(

−12Ai

D4
i

,
108Bi

D6
i

)

is an S-integral point on the elliptic curve

Y 2 = X3 − 27C.

Siegel’s theorem (IX.3.2.1) says that there are only finitely many such points, and
thus only finitely many possibilities for Ai/D

4
i and Bi/D

6
i . However, if

Ai

D4
i

=
Aj

D4
j

and
Bi

D6
i

=
Bj

D6
j

,

then the change of variables

x = (Di/Dj)
2x′, y = (Di/Dj)

3y′,

gives a K-isomorphism from Ei to Ej . Hence the sequence E1, E2, . . . contains only
finitely many K-isomorphism classes of elliptic curves.

Example 6.1.1. There are no elliptic curves E/Q having everywhere good reduc-
tion; see Exercise 8.15. There are 24 curves E/Q having good reduction outside
of {2} and 784 curves E/Q having good reduction outside of {2, 3}; for the com-
plete list, see [19, Table 4]. Similar lists have been compiled for various quadratic
fields; see for example [147] or [204].

Shafarevich’s theorem (IX.6.1) has a number of important applications. We con-
tent ourselves with the following two corollaries.

Corollary 6.2. Fix an elliptic curve E/K. Then there are only finitely many elliptic
curves E′/K that are K-isogenous to E.

PROOF. If E and E′ are isogenous over K, then (VII.7.2) says that E and E′ have
the same set of primes of bad reduction. Now apply (IX.6.1).

Corollary 6.3. (Serre) Let E/K be an elliptic curve with no complex multiplication.
Then for all but finitely many primes �, the group of �-torsion points E[�] has no
nontrivial GK̄/K-invariant subgroups. (In other words, the representation of GK̄/K

on E[�] is irreducible.)
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PROOF. Suppose that Φ� ⊂ E[�] is a nontrivial GK̄/K-invariant subgroup of E[�].
We know that E[�] ∼= (Z/�Z)2, so Φ� is necessarily cyclic of order �. We ap-
ply (III.4.12) to produce an elliptic curve E�/K and an isogeny φ� : E → E�

with ker(φ�) = Φ. The Galois invariance of Φ ensures that the curve E� and the
isogeny φ� are defined over K.

Each E� is K-isogenous to E, so (IX.6.2) says that the E� fall into finitely
many K-isomorphism classes. Suppose that E�

∼= E�′ for two primes � and �′. Then
the composition

E
φ�−−−−−→ E�

∼= E�′
φ̂�′−−−−−→ E

defines an endomorphism of E of degree

(deg φ�)(deg φ̂�′) = ��′.

By assumption, End(E) = Z, so every endomorphism of E has degree n2 for
some n ∈ Z. This shows that � = �′, and thus that E� �∼= E�′ for � �= �′. Therefore
there are only finitely many primes � for which such a subgroup Φ� and curve E� can
exist.

Example 6.4. For K = Q, results of Mazur [166] and Kenku [125] give a statement
that is far more precise than (IX.6.2). They show that for a given elliptic curve E/Q,
there are at most eight Q-isomorphism classes of elliptic curves E′/Q that are Q-
isogenous to E. Further, if φ : E → E′ is a Q-isogeny whose kernel is a cyclic
group, then either

1 ≤ deg φ ≤ 19 or deg φ ∈ {21, 25, 27, 37, 43, 67, 163}.

It is no coincidence that the possibilities for deg φ are values of d for which Q(
√
−d )

has class number one. The class number one condition means that the elliptic curve
corresponding to the lattice

Z+ Z

(
1
2 + 1

2

√
−d

)

via (VI.5.1.1) is isomorphic to an elliptic curve defined over Q. (See (C.11.3.1) for
details.) Now we need merely observe that multiplication by

√
−d gives an isogeny

from E to itself that is defined over Q and whose kernel Φ is invariant under the
action of GQ̄/Q. Then E → E/Φ is a cyclic isogeny of degree d between elliptic
curves defined over Q.

Remark 6.5. An examination of the proof of (IX.6.1) reveals an interesting possi-
bility. If we had some other proof of (IX.6.1) that did not use either Siegel’s theorem
or Diophantine approximation techniques, then we could deduce that the equation

Y 2 = X3 +D

has only finitely many solutions X,Y ∈ RS . For given such a solution, the equation

y2 = x3 −Xx− Y
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defines an elliptic curve with good reduction outside of the set

S ∪ {primes dividing 2 and 3}.

Hence, assuming (IX.6.1), there can be only finitely many such curves, and we could
argue back to the finiteness of the number of pairs (X,Y ). Building on this idea,
Parshin [203] showed how a generalization of (IX.6.1) to curves of higher genus
(which had already been conjectured by Shafarevich [242]) could be used to prove
Mordell’s conjecture that curves of genus at least 2 have only finitely many rational
points. The subsequent proof of Shafarevich’s conjecture by Faltings [82, 84] com-
pleted this chain of reasoning. Faltings’ proof, together with Parshin’s idea, also gives
a proof of Siegel’s theorem (IX.3.2) that does not involve the use of Diophantine ap-
proximation. Subsequent to Faltings’ proof of the Mordell conjecture, Vojta [299]
gave a somewhat more natural proof based on Diophantine approximation methods.
For an exposition of this latter proof, see for example [114, Part E].

IX.7 The Curve Y 2 = X3 + D

Many of the general results known and conjectured about the arithmetic of elliptic
curves were originally noticed and tested on various special sorts of equations, such
as the one given in the title of this section. For example, long before the work of
Mordell and Siegel led to general finiteness results such as (IX.3.2.1), many special
cases had been proven by a variety of methods. (See, e.g., [185, Chapter 26].) The
next result gives two examples in which the complete set of integral solutions can be
obtained by relatively elementary means.

Proposition 7.1. (a) (V.A. Lebesgue) The equation

y2 = x3 + 7

has no solutions in integers x, y ∈ Z.
(b) (Fermat) The only integral solutions to the equation

y2 = x3 − 2

are (x, y) = (3,±5).

PROOF. (a) Suppose that x, y ∈ Z satisfy y2 = x3 + 7. We first observe that x must
be odd, since no integer of the form 8k + 7 is a square. Next we rewrite the equation
as

y2 + 1 = x3 + 8 = (x+ 2)(x2 − 2x+ 4).

Since x is odd,

x2 − 2x+ 4 = (x− 1)2 + 3 ≡ 3 (mod 4),

so there exists at least one prime p ≡ 3 (mod 4) that divides x2 − 2x+ 4. But
then y2 + 1 ≡ 0 (mod p), which is not possible.
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(b) Suppose that we have a solution x, y ∈ Z to y2 = x3−2. We factor the equation
as

(y +
√
−2 )(y −

√
−2 ) = x3.

The ring R = Z[
√
−2 ] is a principal ideal domain, and the greatest common divisor

of y +
√
−2 and y −

√
−2 in R divides 2

√
−2, so we see that y +

√
−2 has one of

the following forms:

y +
√
−2 = ζ3 or

√
−2ζ3 or 2ζ3 for some ζ ∈ R.

Applying complex conjugation gives

y −
√
−2 = ζ̄3 or −

√
−2ζ̄3 or 2ζ̄3,

and taking the product yields

x3 = y2 + 2 = (ζζ̄)3 or 2(ζζ̄)3 or 4(ζζ̄3).

Since x ∈ Z and ζζ̄ ∈ Z, only the first case is possible, so

y +
√
−2 = ζ3 and y −

√
−2 = ζ̄3.

Subtracting these two equations gives

2
√
−2 = ζ3 − ζ̄3 = (ζ − ζ̄)(ζ2 + ζζ̄ + ζ̄2).

We write ζ = a+ b
√
−2 with a, b ∈ Z and substitute to obtain

2
√
−2 = 2

√
−2 b(3a2 − 2b2).

Since a and b are in Z, we must have

b = ±1 and 3a2 − 2b2 = ±1,

where the signs are the same. It follows that (a, b) = (±1, 1), and working back
through the various substitutions yields the values (x, y) = (3,±5).

Remark 7.1.1. It is worth remarking that the result in (IX.7.1b) is far more interest-
ing than that in (IX.7.1a). The reason is that the Mordell–Weil group over Q of the
elliptic curve y2 = x3 + 7 is trivial, so (IX.7.1a) reflects the fact that the equation has
no rational solutions. On the other hand, the Mordell–Weil group of y2 = x3 − 2 is
infinite cyclic (see Exercise 10.19), so (IX.7.1b) says that among the infinitely many
rational points, only two have integer coordinates.

Baker applied his effective estimate for linear forms in logarithms to give an ex-
plicit upper bound, in terms of D, for the integral solutions to y2 = x3 + D. This
bound was refined by Stark, who proved the following result.
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Theorem 7.2. (Stark [273]) For every ε > 0 there is an effectively computable
constant Cε, depending only on ε, such that if D ∈ Z with D �= 0 and if x, y ∈ Z are
solutions to the equation

y2 = x3 +D,

then
logmax

{

|x|, |y|
}

≤ Cε|D|1+ε.

Example 7.3. Stark’s estimate (IX.7.2) gives a bound for x and y that is slightly
worse than exponential in D. It is natural to ask whether this bound is of the correct
order of magnitude. Various people have conducted computer searches for large so-
lutions, see for example [75, 106, 134]. Among the interesting examples found, we
mention:

378,6612 = 52343 + 17,

911,054,0642 = 939,7873 − 307,

149,651,610,6212 = 28,187,3513 + 1090,

447,884,928,428,402,042,307,9182 = 5,853,886,516,781,2233 − 1641843.

Although these examples show that x and y may be quite large in comparison to D,
a close examination of the data led M. Hall to make the following conjecture, which
was partly generalized by Lang.

Conjecture 7.4. (a) (Hall [106]) For every ε > 0 there is a constant Cε, depending
only on ε, such that for all D ∈ Z with D �= 0 and for all x, y ∈ Z satisfying

y2 = x3 +D,

we have
|x| ≤ CεD

2+ε.

(b) (Hall–Lang [138]) There are absolute constants C and κ such that for every
elliptic curve E/Q given by a Weierstrass equation

y2 = x3 +Ax+B with A,B ∈ Z

and for every integral point P ∈ E(Q), i.e., satisfying x(P ) ∈ Z, we have
∣
∣x(P )

∣
∣ ≤ Cmax

{

|A|, |B|
}κ

.

The evidence for these conjectures is fragmentary. They are true for function
fields, for which Davenport [57] proved (IX.7.4a) and Schmidt proved (IX.7.4b).
Vojta [298, 4 §4] has shown that (IX.7.4a) over number fields is a consequence of
his very general Nevanlinna-type conjectures for algebraic varieties. It is also easy
to deduce (IX.7.4a) from the ABC conjecture; see Exercise 9.17. However, both
Vojta’s conjectures and the ABC conjecture are well beyond the reach of current
techniques. (See also Exercise 9.10 for a proof that the exponent in (IX.7.4a) cannot
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be improved.) Aside from these few facts, very little is known. It is worth pointing
out that the effective techniques from (IX §5) seem intrinsically incapable of leading
to estimates as strong as those described in (IX.7.4). We briefly explain the problem
for the equation y2 = x3 +D.

When performing the reduction to the S-unit equation, we use a number field K
whose discriminant looks like a power of D. The Brauer–Siegel theorem says
that log(hKRK) ∼ 1

2 log dK as [K : Q]/ log dK → 0, where hK is the class num-
ber, RK the regulator, and dK the absolute discriminant of K. (See, e.g., [142, Chap-
ter XVI].) In general there is no reason to expect the class number of K to be large,
so the best that we can hope for is to find a bound for the regulator that is a power
of |D|. Since the regulator is the determinant of the logarithms of a basis for the unit
group R∗, the resulting bounds for the heights H(αi) of generators αi ∈ R∗ will
be exponential in |D|. This eventually leads to an exponential bound for x and y as
in (IX.7.2).

There is a similar problem if we try to prove (IX.7.4) using linear forms in elliptic
logarithms or by following Siegel’s method of proof as in (IX.3.1), even assuming
that we could prove strong effective versions of Roth’s theorem and the Mordell–
Weil theorem. The difficulty is that it is likely that the best possible upper bound for
generators of the Mordell–Weil group of y2 = x3 +D has the form ĥ(P ) ≤ C|D|κ,
cf. (VIII.10.2). Here ĥ is a logarithmic height, so this again leads to a bound for the
x-coordinate of integral points that is exponential in D.

The problem in both cases can be explained most clearly by the analogy given
in (IX.4.2.1). When solving the S-unit equation or when finding integral points on
elliptic curves, one is initially given a finitely generated group (R∗

S × R∗
S , respec-

tively E(K)) and a certain exceptional subset (solutions to ax+ by = 1, respec-
tively points with x(P ) ∈ RS). The first step is to choose a basis for the finitely
generated group and express the exceptional points in terms of the basis. The diffi-
culty that arises in trying to prove (IX.7.4) or the analogous estimate for the S-unit
equation is that in general, the best (conjectural) upper bound for the heights of the
basis elements is exponentially larger than the desired upper bound for the excep-
tional points! The moral of this story, assuming the validity of various conjectures,
is that a randomly chosen elliptic curve E/Q is unlikely to have any integral points
at all.

IX.8 Roth’s Theorem—An Overview

In this section we give a brief sketch of the principal steps that go into the proof of
Roth’s theorem (IX.1.4). None of the steps are tremendously deep, but the details
required to make them rigorous are quite lengthy. For the full proof, see for exam-
ple [114, Part D], [139, Chapter 7], or [221].

We assume that we are given an α ∈ K̄, an absolute value v ∈ MK , and positive
real numbers ε and C. We then want to prove that there are only finitely many x ∈ K
satisfying
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|x− α|v ≤ CHK(x)−2−ε.

Step I: An Auxiliary Polynomial

For any given integers m, d1, . . . , dm, one uses elementary estimates and the pigeon-
hole principle to construct a polynomial

P (X1, . . . , Xm) ∈ R[X1, . . . , Xm]

of degree di in Xi such that P vanishes to fairly high order (in terms of m and the di)
at the point (α, . . . , α). Further, one shows that P may be chosen with coefficients
having fairly small heights, the bound for the heights being given explicitly in terms
of α, m, and the di.

Step II: An Upper Bound for P

Suppose now that we are given elements x1, . . . , xm ∈ K satisfying

|xi − α|v ≤ CHK(xi)
−2−ε for 1 ≤ i ≤ m.

Using the Taylor series expansion for P (X1, . . . , Xm) around (α, . . . , α) and the
fact that P vanishes to high order at (α, . . . , α), one shows that

∣
∣P (x1, . . . , xm)

∣
∣
v

is
fairly small.

Step III: A Nonvanishing Result (Roth’s Lemma)

Suppose that the degrees d1, . . . , dm are fairly rapidly decreasing, where the rate
of decrease depends on m, and suppose that x1, . . . , xm ∈ K have the property
that their heights are fairly rapidly increasing, the rate of increase depending on m
and d1, . . . , dm. Suppose further that P (X1, . . . , Xm) ∈ R[X1, . . . , Xm] has de-
gree di in Xi and coefficients whose heights are bounded in terms of d1 and h(x1).
Then one shows that P does not vanish to too high an order at (x1, . . . , xm).

This is the hardest step in Roth’s theorem. In Thue’s original theorem, he used
a polynomial of the form P (X,Y ) = f(X) + g(X)Y and obtained an approxima-
tion exponent τ(d) = 1

2d + ε. The improvements of Siegel, Gelfond, and Dyson
used a general polynomial in two variables. It was clear at that time that the way
to obtain τ(d) = 2 + ε was to use polynomials in more variables; the only stum-
bling block was the lack of a nonvanishing result such as the one that we have just
described.

The proof of Roth’s lemma is by induction on m, the number of variables in the
polynomial P . If P factors as

P (X1, . . . , Xm) = F (X1)G(X2, . . . , Xm),

then the induction proceeds fairly smoothly. Of course, such a factorization is un-
likely to happen. What one does is to construct differential operators Dij such that
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the generalized Wronskian determinant det(DijP ) is a nonzero polynomial that does
factor in the above fashion. It is then a delicate matter to estimate the degrees and
heights of the coefficients of the resulting polynomial and to show that they have not
grown too large to allow the inductive hypothesis to be applied.

Step IV: The Final Estimate

Suppose that the inequality

|x− α|v ≤ CHK(x)−2−ε

has infinitely many solutions x ∈ K. We derive a contradiction as follows.
First choose a value for m, depending on ε, C, and

[

K(α) : K
]

. Second, choose
x1, . . . , xm ∈ K in succession satisfying

|xi − α|v ≤ CHK(xi)
−2−ε,

such that HK(x1) is large, depending on m, and such that HK(xi+1) > HK(xi)
κ

for some constant κ depending on m. Third, choose a large integer d1, depending
on m and the HK(xi), and then choose d2, . . . , dm in terms of d1 and the HK(xi).
We are now ready to apply the initial three steps.

Using Step I, choose a polynomial P (X1, . . . , Xm) of degree di in Xi such
that P vanishes to high order at (α, . . . , α). The order of vanishing depends on m
and d1, . . . , dm. From Step III, we know that P does not vanish to too high an order
at (x1, . . . , xm), so we can choose a low-order partial derivative that does not vanish,

z =
∂i1+···+im

∂Xi1
1 · · · ∂Xim

m

P (x1, . . . , xm) �= 0.

From Step II, we know that |z|v is fairly small. On the other hand, since z �= 0, we
can use the product formula to show that |z|v cannot be too small. Specifically, we
have |z|v ≥ HK(z)−1; see Exercise 9.9. Next, using elementary triangle inequality
estimates, we find a lower bound for HK(z)−1. Combining this lower bound with the
earlier upper bound, some algebra gives a contradiction. It follows that the inequality

|x− α|v ≤ CHK(x)−2−ε

has only finitely many solutions.

Remark 8.1. In examining the proof sketch of Roth’s theorem, especially the se-
quence of choices in Step IV, it is clear why we do not obtain an effective procedure
for finding all x ∈ K satisfying |x− α|v ≤ CHK(x)−2−ε. What the proof shows is
that we cannot find a long sequence of xi whose heights grow sufficiently rapidly,
where the terms “long sequence” and “sufficiently rapidly” can be made completely
explicit in terms of K, α, ε, and C. The difficulty is that the required growth of the
height of each xi is given in terms of its predecessor. What this boils down to is
that if we can find a large number of good approximations to α whose heights are
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sufficiently large, then we can obtain a bound for all other good approximations to α
in terms of the approximations that we already know. Unfortunately, the bounds that
come out of Roth’s theorem are so large that it is highly unlikely that there exists
even a single good approximation to α having the requisite height.

Using an elaboration of the above argument, one can prove quantitative versions
of Roth’s theorem such as in the following result.

Theorem 8.2. ([103, 173]) Let K/Q be a number field, let α ∈ K̄ � K, and
let S ⊂ MK be a finite set of absolute values, each of which is extended in some
way to K(α). Let ε > 0. There are constants C1 and C2, depending only on ε
and

[

K(α) : K
]

, such that the inequality
∏

v∈S

min
{

|x− α|nv
v , 1

}

≤ CHK(x)−2−ε

has at most 4#SC1 solutions x ∈ K satisfying HK(x) >
(

2HK(α)
)C2 .

Of course, the constant C2 in (IX.8.2) turns out to be sufficiently large that it is
highly unlikely that there are any x ∈ K satisfying the two conditions of the theorem.
But the proof of Roth’s theorem does not preclude the existence of large solutions,
and it provides no tools with which to find them if they do exist!

Exercises

9.1. Let
(
φ(n)

)
n=1,2,...

be a sequence of positive numbers. We say that a number α ∈ R

is φ-approximable (over Q) if there are infinitely many p/q ∈ Q satisfying
∣∣
∣
∣α− p

q

∣∣
∣
∣ <

1

qφ(q)
.

For example, Roth’s theorem says that no element of Q̄ is n1+ε-approximable.
(a) Prove that for any ε > 0, the set

{α ∈ R : α is n1+ε-approximable}

is a set of measure 0.
(b) More generally, prove that if the series

∑
n≥1 1/φ(n) converges, then the set

{α ∈ R : α is φ-approximable}

is a set of measure 0.

9.2. (a) Use Liouville’s theorem (IX.1.3) to prove that the number
∑

n≥1 2
−n! is transcen-

dental.
(b) More generally, let

(
e(n)

)
n=1,2,...

be a sequence of real numbers with the property that
for every d > 0 there is a constant Cd > 0 such that

e(n) ≥ Cdn
d for all n = 1, 2, . . . .

(In complexity theory terminology, one says that the growth rate of the function e(n) is
faster than polynomial.) Let b ≥ 2 be an integer. Prove that the number

∑
n≥1 b

−e(n) is
transcendental.
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(c) Use (b) to prove that there are uncountably many transcendental numbers.

9.3. For each integer m �= 0, let

N(m) = #
{
(x, y) ∈ Z : y2 = x3 +m

}
.

Note that (IX.3.2) tells us that N(m) is finite.
(a) Prove that N(m) can be arbitrarily large. (Hint. Choose an m0 such that y2 = x3 +m0

has infinitely many rational solutions. Then clear the denominators of a lot of them.)
(b) More precisely, prove that there is an absolute constant c > 0 such that

N(m) > c
(
log |m|

)1/3

for infinitely many m ∈ Z. (Hint. Use height functions to estimate the size of the denom-
inators cleared in (a).)

(c) ** Prove or disprove that N(m) is unbounded as m ranges over sixth-power-free integers,
i.e., integers divisible by no nontrivial sixth power.

(d) Suppose that there is a value of m0 such that the Mordell–Weil group E0(Q) of the elliptic
curve E0 : y2 = x3 +m0 has rank r. Using an elaboration of the argument in (b), prove
that there is an absolute constant c > 0 such that

N(m) > c
(
log |m|

)r/(r+2)

for infinitely many m ∈ Z.
(e) ** Let ε > 0. Prove or disprove that

lim
|m|→∞

N(m)
(
log |m|

)1+ε = 0.

9.4. Let E/Q be an elliptic curve and let P ∈ E(Q) be a point of infinite order.
(a) For each prime p ∈ Z at which E has good reduction, let np be the order of the reduced

point P̃ in the finite group Ẽ(Fp). Prove that the set

{np : p prime}

contains all but finitely many positive integers. (Hint. You will need the strong form of
Siegel’s theorem; see (IX.3.3).)

(b) An alternative formulation for (a) is to write x(nP ) = an/d
2
n as a fraction in lowest

terms. The sequence (dn)n≥1 is an elliptic divisibility sequence.2 A prime p is called a
primitive divisor of dn if p | dn and p � dm for all m < n. Prove that all but finitely many
terms in the sequence dn have a primitive divisor. (This is an analogue for elliptic curves
of a classical result for the multiplicative group that is due to Bang and Zsigmondy [317].)

9.5. (a) Let f(T ) = a0T
n + · · ·+ an ∈ Z[T ] be a polynomial with a0an �= 0 and with dis-

tinct roots ξ1, . . . , ξn ∈ C. Let A = max
{
|a0|, . . . , |an|

}
. Prove that for every rational

number t ∈ Q,
∣
∣f(t)

∣
∣ ≥ (2n2A)−n min

{
|t− ξ1|, . . . , |t− ξn|

}
.

2This definition differs from that given in exercises 3.34–3.36. In general, it may be necessary to take a
subsequence (dnk)n≥1 in order to obtain a sequence satisfying the recurrence described in Exercise 3.34.
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(b) Let f(T ) = a0T
n + · · ·+ an ∈ K[T ] be a polynomial with a0an �= 0 and with distinct

roots ξ1, . . . , ξn ∈ K̄. Let S ⊂ MK be a finite set of places of K, each extended in some
fashion to K̄. Prove that there is a constant Cf > 0, depending only on f , such that for
every t ∈ K,

∏

v∈S

min
{
1,
∣
∣f(t)

∣
∣nv

v

}
≥ Cf

∏

v∈S

min
1≤i≤n

{
1, |t− ξi|nv

v

}
.

(c) Find an explicit expression for the constant Cf appearing in (b), where your value for Cf

should depend only on n and HK

(
[a0, . . . , an]

)
.

9.6. (a) Let F (X,Y ) ∈ Z[X,Y ] be a homogeneous polynomial of degree d ≥ 3 with
nonzero discriminant. Prove that for every nonzero integer b, Thue’s equation

F (X,Y ) = b

has only finitely many solutions (x, y) ∈ Z2. (Hint. Let f(T ) = F (T, 1), and write
b = F (x, y) = ydf(x/y). Now use Exercise 9.5a and (IX.1.4).)

(b) More generally, let F (X,Y ) ∈ K[X,Y ] be a homogeneous polynomial of degree d ≥ 3
with nonzero discriminant, and let S ⊂ MK be a finite set of places containing M∞

K .
Prove that for every b ∈ K∗, the equation

F (X,Y ) = b

has only finitely many solutions (x, y) ∈ RS ×RS .
(c) Let f(X) ∈ K[X] be a polynomial with at least two distinct roots in K̄, let S ⊂ MK be

as in (b), and let n ≥ 3 be an integer. Prove that the equation

Y n = f(X)

has only finitely many solutions (x, y) ∈ RS × RS . (Hint. Mimic the proof of (IX.4.3)
until you end up with a number of equations of the form aWn + bZn = c, and then
use (b).)

9.7. Let E/K be an elliptic curve without complex multiplication. Prove that for every
prime �, the representation of GK̄/K on the Q�-vector space T�(E)⊗Q� is irreducible.

9.8. (a) Let ‖ · ‖ be the usual Euclidean norm on Rn, and let {v1, . . . , vn} be a basis for Rn.
Prove that there is a constant c > 0, depending only on n and {v1, . . . , vn}, such that

∥
∥
∥∥
∥

n∑

i=1

aivi

∥
∥
∥∥
∥
≥ cmax

{
|ai|

}
for all a1, . . . , an ∈ R.

(b) Let Λ ⊂ Rn be a lattice. Prove that there exist a basis {v1, . . . , vn} for Λ and a con-
stant cn > 0 depending only on n such that

∥
∥
∥∥
∥

n∑

i=1

aivi

∥
∥
∥∥
∥
≥ cn

n∑

i=1

‖aivi‖ for all a1, . . . , an ∈ R.

(Hint. Ideally, one would like to choose an orthogonal basis for Λ. This is not generally
possible, but mimic the Gram–Schmidt process to find a basis that is reasonably orthogo-
nal.)
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(c) Let ‖ · ‖1 and ‖ · ‖2 be norms on Rn, i.e., they satisfy ‖v‖ ≥ 0, ‖v‖ = 0 if and
only if v = 0, ‖av‖ ≤ |a| ‖v‖, and ‖v + w‖ ≤ ‖v‖ + ‖w‖. Prove that there are
constants c1, c2 > 0 such that

c1‖v‖1 ≤ ‖v‖2 ≤ c2‖v‖1 for all v ∈ R
n.

(d) Let Q be a positive definite quadratic form on Rn. Prove that there is a constant c > 0,
depending on n and Q, such that for any integral lattice point (a1, . . . , an) ∈ Zn ⊂ Rn,

Q(a1, . . . , an) ≥ cmax
{
|a1|, . . . , |an|

}2
.

(e) Let E/K be an elliptic curve and let P1, . . . , Pr be a basis for the free part of E(K).
Prove that there is a constant c > 0, depending on E and P1, . . . , Pr , such that for all
integers m1, . . . ,mr ,

ĥ(m1P1 + · · ·+mrPr) ≥ cmax
{
|m1|, . . . , |mr|

}2
.

9.9. Let z ∈ K with z �= 0.
(a) Prove that for any v ∈ MK ,

|z|v ≥ HK(z)−1.

(b) More generally, prove that for any (not necessarily finite) set of absolute values S ⊂ MK ,

∏

v∈S

min
{
1, |z|nv

v

}
≥ HK(z)−1.

(This lemma, as trivial as it appears, lies at the heart of all known proofs in Diophantine
approximation and transcendence theory. In its simplest guise, namely for K = Q, it
asserts nothing more than the fact that there are no positive integers smaller than one!)

9.10. Prove that there is an (absolute) constant C > 0 such that the inequality

0 < |y2 − x3| < C
√

|x|

has infinitely many solutions (x, y) ∈ Z. (Hint. Verify the identity

(t2 − 5)2
(
(t+ 9)2 + 4

)
− (t2 + 6t− 11)3 = −1728(t− 2).

Take solutions to y2 − 2v2 = −1 and set t = 2u − 9. Show that this leads to a value
C = 432

√
2 + ε for any ε > 0.)

9.11. (a) Let d ≡ 2 (mod 4) and let D = d3 − 1. Prove that the equation

y2 = x3 +D

has no solution in integers x, y ∈ Z.
(b) For each of the primes p in the set {11, 19, 43, 67, 163}, find all solutions x, y ∈ Z to the

equation
y2 = x3 − p.

(Hint. Work in the ring R = Z
[
1
2
(1 +

√−p )
]
. Note that R is a principal ideal domain

and that 2 does not split in R.)
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9.12. Let E/Q be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, . . . , a6 ∈ Z, and let P ∈ E(Q) be a point of infinite order.
(a) Suppose that x

(
[m]P

)
∈ Z for some integer m ≥ 1. Prove that x(P ) ∈ Z. (This result

is often useful when one is searching for integral points on elliptic curves of rank 1. See
Exercise 9.13 for an example.)

(b) More generally, for any m ≥ 1, write x(mP ) = am/d2m ∈ Q as a fraction in lowest
terms. Prove that

m | n =⇒ dm | dn.
Thus the sequence (dm)m≥1 is a divisibility sequence; see Exercise 3.36.

9.13. Let E/Q be the elliptic curve

E : y2 + y = x3 − x.

For this exercise you may assume that E(Q) has rank 1. (For a proof that rankE(Q) = 1,
see Exercise 10.9.)
(a) Prove that Etors(Q) = {O}, and hence that E(Q) ∼= Z.
(b) Prove that (0, 0) is a generator for E(Q). (Hint. Make a sketch of E(R) and show

that (0, 0) is not on the identity component. Use Exercise 9.12 to conclude that a gen-
erator for E(Q) must be a point with integer coordinates on the nonidentity component,
and find all such points.)

(c) Find all of the integer points in E(Q). (Hint. Let P = (0, 0). Suppose that [m]P is
integral. Write m = 2an with n odd and use Exercise 9.12 to show that[n]P is integral.
Use an argument as in (b) to find all possible values of n, and then do some computations
to find the possible a values.)

(d) Solve the following classical number theory problem: Find all positive integers that are si-
multaneously the product of two consecutive integers and the product of three consecutive
integers.

9.14. Let C/K be a curve and let f, g ∈ K(C) be nonconstant functions.
(a) * Prove that

lim
P∈C(K̄)

hf (P )→∞

hf (P )

hg(P )
=

deg f

deg g
.

(b) Prove that for every ε > 0 there exists a constant c = c(f, g, ε) such that
∣
∣
∣
∣

1

deg f
hf (P )− 1

deg g
hg(P )

∣
∣
∣
∣ < εhf (P ) + c for all P ∈ C(K̄).

(c) Let C be an elliptic curve. Prove that there is a constant c = c(f,m, ε) such that
∣
∣hf

(
[m]P

)
−m2hf (P )

∣
∣ < εhf (P ) + c for all P ∈ C(K̄).

(d) Prove that (IX.3.1) is true for all nonconstant functions f ∈ K(E). Use this to prove the
finiteness result (IX.3.2.2) directly, without first reducing to (IX.3.2.1).

9.15. For a given Q ∈ C(Kv), let dv be the distance function defined in (IX §2), and let dalt
v

denote the distance function given by the alternative definition in (IX.2.2.1). Prove that the
ratio dalt

v (P,Q)/dv(P,Q) is bounded for P ∈ C(Kv).
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9.16. Let C/K be a curve, let f ∈ K(C) be a nonconstant function, and write the divisor of
zeros of f as

div0(f) =
∑

Q∈C(K̄)
ordQ(f)>0

ordQ(f)(Q) = n1(Q1) + n2(Q2) + · · ·+ nr(Qr).

Replacing K by an extension field, we assume that Q1, . . . , Qr ∈ C(K). Let v ∈ MK . Prove
that

logmin
{∣∣f(P )

∣∣
v
, 1
}
= n1 log dv(P,Q1) + · · ·+ nr log dv(P,Qr) +O(1)

for all P ∈ C(Kv),

where the O(1) depends on f and the choice of distance functions, but is independent of P .

9.17. Let ε > 0, and let m and n be positive integers satisfying nm > n+m. Assuming
that the ABC conjecture (VIII.11.4) is true, prove the following assertions (see also Exer-
cise 8.22):
(a) There is a constant C = C(ε,m, n) such that if

ym = xn +D with x, y,D ∈ Z and D �= 0,

then
|x|nm−n−m ≤ C|D|m+ε and |y|nm−n−m ≤ C|D|n+ε.

(This is a generalized version of Hall’s conjecture (IX.7.4).)
(b) Suppose now that D �= 0 is fixed. If max{m,n} is sufficiently large, then the equa-

tion ym = xn +D has no solutions x, y ∈ Z with x, y /∈ {0,±1}. (Hint. You’ll need to
keep track of how the constant in (a) depends on m and n.)

9.18. Let E be the elliptic curve y2 = x3 + 2089.
(a) Prove that the points

P1 = (−12, 19), P2 = (−10, 33), P3 = (−4, 45), P4 = (3, 46),

are independent points in E(Q).
(b) * Prove that E(Q) ∼= Z4 and that P1, P2, P3, P4 are a basis for E(Q).
(c) Find 10 more points (x, y) in E(Q) with x, y ∈ Z and y > 0. Express these integral

points in terms of the basis listed in (a).
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