
Chapter VIII

Elliptic Curves over Global
Fields

Let K be a number field and let E/K be an elliptic curve. Our primary goal in this
chapter is to prove the following result.

Mordell–Weil Theorem. The group E(K) is finitely generated.

The proof of this theorem consists of two quite distinct parts, the so-called “weak
Mordell–Weil theorem,” proven in (VIII §1), and the “infinite descent” using height
functions proven in (VIII §§3,5,6). We also give, in (VIII §4), a separate proof of the
descent step in the simplest case, where the general theory of height functions may
be replaced by explicit polynomial calculations.

The Mordell–Weil theorem tells us that the Mordell–Weil group E(K) has the
form

E(K) ∼= E(K)tors × Z
r,

where the torsion subgroup E(K)tors is finite and the rank r of E(K) is a nonneg-
ative integer. For a given elliptic curve, it is relatively easy to determine the torsion
subgroup; see (VIII §7). The rank is much more difficult to compute, and in gen-
eral there is no known procedure that is guaranteed to yield an answer. We study the
question of computing the rank of E(K) in more detail in Chapter X.

The following notation will be used for the next three chapters:

K a number field.

MK a complete set of inequivalent absolute values on K.

M∞
K the archimedean absolute values in MK .

M0
K the nonarchimedean absolute values in MK .

v(x) = − log |x|v , for an absolute value v ∈ MK .

ordv normalized valuation for v ∈ M0
K , i.e., satisfying ordv(K

∗) = Z.
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208 VIII. Elliptic Curves over Global Fields

R the ring of integers of K, equal to {x ∈ K : v(x) ≥ 0 for all v ∈ M0
K}.

R∗ the unit group of R, equal to {x ∈ K : v(x) = 0 for all v ∈ M0
K}.

Kv the completion of K at v for v ∈ MK .

Rv the ring of integers of Kv for v ∈ M0
K .

Mv the maximal ideal of Rv for v ∈ M0
K .

kv the residue field of Rv for v ∈ M0
K .

Finally, in those situations in which it is important to have the absolute values
in MK coherently normalized, such as in the theory of height functions, we always
adopt the “standard normalization” as described in (VIII §5).

VIII.1 The Weak Mordell–Weil Theorem

Our goal in this section is to prove the following result.

Theorem 1.1. (Weak Mordell–Weil Theorem) Let K be a number field, let E/K be
an elliptic curve, and let m ≥ 2 be an integer. Then

E(K)/mE(K)

is a finite group.

For the rest of this section, E/K and m are as in the statement of (VIII.1.1). We
begin with the following reduction lemma.

Lemma 1.1.1. Let L/K be a finite Galois extension. If E(L)/mE(L) is finite,
then E(K)/mE(K) is also finite.

PROOF. The inclusion E(K) ↪→ E(L) induces a natural map

E(K)/mE(K) −→ E(L)/mE(L).

Let Φ be the kernel of this map, so

Φ =
E(K) ∩mE(L)

mE(K)
.

Then for each P (mod mE(K)) in Φ, we can choose a point QP ∈ E(L) satisfy-
ing [m]QP = P . (The point QP need not be unique, of course.) Having done this,
we define a map of sets (which is not, in general, a group homomorphism)

λP : GL/K −→ E[m], λP (σ) = Qσ
P −QP .

Note that Qσ
P −QP is in E[m], since

[m](Qσ
P −QP ) =

(
[m]QP )

σ − [m]QP = P σ − P = O.
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(The map λP is an example of a 1-cocycle; see (VIII §2).)
Suppose that P, P ′ ∈ E(K) ∩mE(L) satisfy λP = λP ′ . Then

(QP −QP ′)σ = QP −QP ′ for all σ ∈ GL/K ,

so QP −QP ′ ∈ E(K). It follows that

P − P ′ = [m]QP − [m]QP ′ ∈ mE(K),

and hence that P ≡ P ′ (mod mE(K)). This proves that the association

Φ −→ Map
(
GL/K , E[m]

)
, P �−→ λP ,

is one-to-one. But GL/K and E[m] are finite sets, so there is only a finite number of
maps between them. Therefore the set Φ is finite.

Finally, the exact sequence

0 −→ Φ −→ E(K)/mE(K) −→ E(L)/mE(L)

nests E(K)/mE(K) between two finite groups, so it, too, is finite.

Using (VIII.1.1.1), we see that it suffices to prove the weak Mordell–Weil theo-
rem (VIII.1.1) under the additional assumption that

E[m] ⊂ E(K).

For this remainder of this section we assume, without further comment, that this
inclusion is true.

The next step is to translate the putative finiteness of E(K)/mE(K) into a state-
ment about a certain field extension of K. In order to do this, we use the following
tool.

Definition. The Kummer pairing

κ : E(K)×GK̄/K −→ E[m]

is defined as follows. Let P ∈ E(K) and choose any point Q ∈ E(K̄) satisfy-
ing [m]Q = P . Then

κ(P, σ) = Qσ −Q.

The next result describes basic properties of the Kummer pairing.

Proposition 1.2. (a) The Kummer pairing is well-defined.
(b) The Kummer pairing is bilinear.
(c) The kernel of the Kummer pairing on the left is mE(K).
(d) The kernel of the Kummer pairing on the right is GK̄/L, where

L = K
(
[m]−1E(K)

)

is the compositum of all fields K(Q) as Q ranges over the points in E(K̄) satis-
fying [m]Q ∈ E(K).
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Hence the Kummer pairing induces a perfect bilinear pairing

E(K)/mE(K)×GL/K −→ E[m],

where L is the field given in (d).

Remark 1.2.1. The field L described in (VIII.1.2) is the elliptic analogue of the
classical Kummer extension K ′/K obtained by adjoining all mth roots to K. More
precisely, assuming that μm ⊂ K, there is a perfect bilinear pairing

K∗/(K∗)m ×GK′/K −→ μm, (a, σ) −→ m
√
a
σ/ m

√
a,

exactly analogous to the pairing E(K)/mE(K)×GL/K → E[m] in (VIII.1.2).

PROOF OF (VIII.1.2). Most of this proposition follows immediately from basic prop-
erties of group cohomology; see (VIII §2). For the convenience of the reader, we give
a direct proof here.
(a) We must show that κ(P, σ) is in E[m] and that its value does not depend on the
choice of Q. For the first statement, we observe that

[m]κ(P, σ) = [m]Qσ − [m]Q = P σ − P = O,

since P ∈ E(K) and σ fixes K. For the second statement, we note that any other
choice has the form Q+ T for some T ∈ E[m]. Then

(Q+ T )σ − (Q+ T ) = Qσ + T σ −Q− T = Qσ −Q,

because we have assumed that E[m] ⊂ E(K), so σ fixes T .
(b) The linearity in P is obvious. For linearity in σ, we let σ, τ ∈ GK̄/K and com-
pute

κ(P, στ) = Qστ −Q = (Qσ −Q)τ + (Qτ −Q) = κ(P, σ)τ + κ(P, τ).

But κ(P, σ) ∈ E[m] ⊂ E(K), so κ(P, σ) is fixed by τ .
(c) Suppose that P ∈ mE(K), say P = [m]Q with Q ∈ E(K). Then Q is fixed by
every σ ∈ GK̄/K , so

κ(P, σ) = Qσ −Q = O.

Conversely, suppose that κ(P, σ) = 0 for all σ ∈ GK̄/K . Then choosing some
point Q ∈ E(K̄) with [m]Q = P , we have

Qσ = Q for all σ ∈ GK̄/K .

Therefore Q ∈ E(K), so P = [m]Q ∈ mE(K).
(d) If σ ∈ GK̄/L, then

κ(P, σ) = Qσ −Q = O,

since Q ∈ E(L) from the definition of L. Conversely, suppose that σ ∈ GK̄/K

satisfies κ(P, σ) = O for all P ∈ E(K). Then for every point Q ∈ E(K̄) satisfy-
ing [m]Q ∈ E(K) we have
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O = κ
(
[m]Q, σ

)
= Qσ −Q.

But L is the compositum of K(Q) over all such Q, so σ fixes L. Hence σ ∈ GK̄/L.
Finally, the last statement of (VIII.1.2) is clear from what precedes it, once we

note that L/K is Galois because elements of GK̄/K map [m]−1E(K) to itself. Alt-
ernatively, it follows from (d) that GK̄/L is the kernel of the homomorphism

GK̄/K −→ Hom
(
E(K), E[m]

)
, σ �−→ κ( · , σ),

so GK̄/L is a normal subgroup of GK̄/K .

It follows from (VIII.1.2) that the finiteness of E(K)/mE(K) is equivalent to
the finiteness of the extension L/K. The next step in the proof of the weak Mordell–
Weil theorem is to analyze this extension. Our main tool will be (VII.3.1), which we
restate after making the appropriate definitions.

Definition. Let K be a number field and let E/K be an elliptic curve. Let v ∈ M0
K

be a discrete valuation. Then E is said to have good (respectively bad) reduction at v
if E has good (respectively bad) reduction when considered over the completion Kv ,
cf. (VII §5). Taking a minimal Weierstrass equation for E over Kv , we denote the
reduced curve over the residue field by Ẽv/kv . N.B. It is not always possible to
choose a single Weierstrass equation for E over K that is simultaneously minimal
for all Kv . However, this can be done if K = Q. See (VIII §8) for further details.

Remark 1.3. Take any Weierstrass equation for E/K,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

say with discriminant Δ. Then for all but finitely v ∈ M0
K we have

v(ai) ≥ 0 for i = 1, . . . , 6 and v(Δ) = 0.

For any v satisfying these conditions, the given equation is already a minimal Weier-
strass equation and the reduced curve Ẽv/kv is nonsingular. This shows that E has
good reduction at v for all but finitely many v ∈ M0

K .

Proposition 1.4. (restatement of (VII.3.1b)) Let v ∈ M0
K be a discrete valuation

such that v(m) = 0 and such that E has good reduction at v. Then the reduction
map

E(K)[m] −→ Ẽv(kv)

is injective.

We are now ready to analyze the extension L/K appearing in (VIII.1.2).

Proposition 1.5. Let
L = K

(
[m]−1E(K)

)

be the field defined in (VIII.1.2d).
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(a) The extension L/K is abelian and has exponent m, i.e., the Galois group GL/K

is abelian and every element of GL/K has order dividing m.
(b) Let

S =
{
v ∈ M0

K : E has bad reduction at v
}
∪
{
v ∈ M0

K : v(m) �= 0
}
∪M∞

K .

The L/K is unramified outside S, i.e., if v ∈ MK and v /∈ S, then L/K is
unramified at v.

PROOF. (a) This follows immediately from (VIII.1.2), which implies that there is an
injection

GL/K −→ Hom
(
E(K), E[m]

)
, σ �−→ κ( · , σ).

(b) Let v ∈ MK with v /∈ S, let Q ∈ E(K̄) satisfy [m]Q ∈ E(K), and
let K ′ = K(Q). It suffices to show that K ′/K is unramified at v, since L is the com-
positum of all such K ′. Let v′ ∈ MK′ be a place of K ′ lying above v and let k′v′/kv
be the corresponding extension of residue fields. The assumption that v /∈ S ensures
that E has good reduction at v, so it also has good reduction at v′, since we can take
the same Weierstrass equation. Thus we have the usual reduction map

E(K ′) −→ Ẽ(k′v′),

which we denote as usual by a tilde.
Let Iv′/v ⊂ GK′/K be the inertia group for v′/v, and take any element σ ∈ Iv′/v.

By definition, an element of inertia such as σ acts trivially on Ẽ(k′v′), so

Q̃σ −Q = Q̃σ − Q̃ = Õ.

On the other hand, the fact that [m]Q ∈ E(K) tells us that

[m](Qσ −Q) =
(
[m]Q

)σ − [m]Q = O.

Thus Qσ − Q is a point of order m that is in the kernel of the reduction-modulo-v′

map. It follows from (VIII.1.4) that

Qσ −Q = O.

This proves that Q is fixed by every element of the inertia group Iv′/v, and hence
that K ′ = K(Q) is unramified over K at v′. Since this holds for every v′ lying
over v and for every v /∈ S, this completes the proof that K ′/K is unramified outside
of S.

All that remains to complete the proof of the weak Mordell–Weil theorem is to
show that any field extension L/K satisfying the conditions of (VIII.1.5) is necessar-
ily a finite extension. The proof of this fact relies on the two fundamental finiteness
theorems of algebraic number theory, namely the finiteness of the ideal class group
and the finite generation of the group of S-units.
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Proposition 1.6. Let K be a number field, let S ⊂ MK be a finite set of places
that contains M∞

K , and let m ≥ 2 be an integer. Let L/K be the maximal abelian
extension of K having exponent m that is unramified outside of S. Then L/K is a
finite extension.

PROOF. Suppose that we know that the proposition is true for some finite exten-
sion K ′ of K, where S′ is the set of places of K ′ lying over S. Then LK ′/K ′, being
abelian of exponent m unramified outside S′, would be finite, and hence L/K would
also be finite. It thus suffices to prove the proposition under the assumption that K
contains the mth roots of unity μm.

Similarly, we may increase the size of the set S, since this only has the effect of
making L larger. Using the fact that the class number of K is finite, we adjoin a finite
number of elements to S so that the ring of S-integers

RS =
{
a ∈ K : v(a) ≥ 0 for all v ∈ MK with v /∈ S

}

is a principal ideal domain. (Explicitly, choose integral ideals a1, . . . , ah representing
the ideal classes of K and adjoin to S the valuations corresponding to the primes
dividing a1 · · · ah.) We also enlarge S so as to ensure that v(m) = 0 for all v /∈ S.

We now apply the main theorem of Kummer theory, which says that if a field
of characteristic 0 contains μm, then its maximal abelian extension of exponent m
is obtained by adjoining the mth roots of all of its elements. For a proof of this
result, see any basic textbook on field theory, for example [17, §2], [68, §17.3], or [7,
Theorem 25], or do Exercise 8.4. Thus L is the largest subfield of

K
(

m
√
a : a ∈ K

)

that is unramified outside of S.
Let v ∈ MK with v /∈ S. Consider the equation

Xm − a = 0

over the local field Kv . Since v(m) = 0 and since the discriminant of the polyno-
mial Xm − a equals ±mmam−1, we see that Kv

(
m
√
a
)
/Kv is unramified if and

only if
ordv(a) ≡ 0 (mod m).

(Recall that ordv is the normalized valuation associated to v.) We note that when
we adjoin mth roots, it is necessary to take only one representative for each class
in K∗/(K∗)m, so if we let

TS =
{
a ∈ K∗/(K∗)m : ordv(a) ≡ 0 (mod m) for all v ∈ MK with v /∈ S

}
,

then
L = K

(
m
√
a : a ∈ TS

)
.

To complete the proof of (VIII.1.6), it suffices to show that the set TS is finite.
Consider the natural map
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R∗
S −→ TS .

We claim that this map is surjective. To see this, suppose that a ∈ K∗ represents
an element of TS . Then the ideal aRS is the mth power of an ideal in RS , since the
prime ideals of RS correspond to the valuations v /∈ S. Using the fact that RS is a
principal ideal domain, we can find a b ∈ K∗ such that aRS = bmRS . Hence there
is a u ∈ R∗

S satisfying
a = ubm.

Then a and u give the same element of TS , which proves that R∗
S surjects onto TS .

Further, the kernel of the map R∗
S → TS clearly contains (R∗

S)
m, which proves that

there is a surjection
R∗

S/(R
∗
S)

m � TS .

(This map is actually an isomorphism.) Finally, we apply Dirichlet’s S-unit theo-
rem [142, V §1], which says that R∗

S is a finitely generated group. It follows that TS

is finite, which completes the proof of the proposition.

The preceding three propositions may now be combined to prove the main result
of this section.

PROOF OF THE WEAK MORDELL–WEIL THEOREM (VIII.1.1). Let

L = K
(
[m]−1E(K)

)

be the field defined in (VIII.1.2d). Since E[m] is finite, the perfect pairing given
in (VIII.1.2) shows that E(K)/mE(K) is finite if and only if GL/K is finite.
Now (VIII.1.5) says that L has certain properties, and (VIII.1.6) says that any ex-
tension of K having these properties is a finite extension. This gives the desired
result. (Note that (VIII.1.3) ensures that the set S of (VIII.1.5b) is a finite set.)

Remark 1.7. The heart of the proof of the weak Mordell–Weil theorem lies in the
assertion that the field L = K

(
[m]−1E(K)

)
is a finite extension of K. We proved

this by first showing (VIII.1.5) that it is abelian of exponent m and that it is unram-
ified outside of a certain finite set S ⊂ MK . The desired result then followed from
basic Kummer theory of fields as given in the proof of (VIII.1.6). It is worth noting
that rather than using (VIII.1.6), we could have used the more general theorem of
Minkowski that asserts that there are only finitely many extensions of K of bounded
degree that are unramified outside of S. To apply this in the present instance, note
that for any Q ∈ [m]−1E(K), the field K(Q) has degree at most m2 over K, since
the Galois conjugates of Q all have the form Q+ T for some T ∈ E[m] and we are
assuming that E[m] ⊂ E(K). It follows from Minkowski’s theorem that as Q ranges
over [m]−1E(K), there are only finitely many possibilities for the fields K(Q).
Hence their compositum K

(
[m]−1E(K)

)
is a finite extension of K.

Remark on Effectivity 1.8. Let E/K be an elliptic curve with E[m] ⊂ E(K),
let S ⊂ MK be the usual set of bad places for E/K as described in (VIII.1.5b), and
let L/K be the maximal abelian extension of K having exponent m such that L/K
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is unramified outside of S. Then (VIII.1.2) and (VIII.1.5) tell us that the Kummer
pairing induces an injection

E(K)/mE(K) ↪−→ Hom
(
GL/K , E[m]

)
.

It is possible to make the proof of (VIII.1.6) completely explicit, and hence to ex-
actly determine the group GL/K ; see Exercise 8.1. Thus we can describe all of the
elements of the group Hom

(
GL/K , E[m]

)
, so the crucial question is that of deter-

mining which of these elements come from points of E(K)/mE(K). It is this last
question for which there is, at present, no known effective solution. In Chapter X
we examine this problem in more detail. There we will exhibit a smaller group into
which E(K)/mE(K) injects and discuss what can be said about the cokernel. We
want to stress that this is the only stage at which the Mordell–Weil theorem is in-
effective; if we know generators for E(K)/mE(K), then we can effectively find
generators for E(K); see (VIII.3.1) and Exercise 8.18.

We also remark that there is a conditional algorithm due to Manin [156], [114,
§ F.4.1] that effectively computes generators for E(K) if one accepts the validity of a
number of standard (but very deep) conjectures, including in particular the conjecture
of Birch and Swinnerton-Dyer (C.16.5).

VIII.2 The Kummer Pairing via Cohomology

In this section we reinterpret the Kummer pairing from (VIII §1) in terms of group
cohomology. The methods used here will not be used again until Chapter X and may
be omitted by the reader wishing to proceed directly to the proof of the Mordell–Weil
theorem. For a summary of the basic facts on group cohomology that are used in this
section, see Appendix B and/or the references listed there.

We start with the short exact sequence of GK̄/K-modules

0 −→ E[m] −→ E(K̄)
[m]−−−−−−→ E(K̄) −→ 0,

where m ≥ 2 is a fixed integer. Taking GK̄/K-cohomology yields a long exact
sequence that starts

0 −−−−→ E(K)[m] −−−−→ E(K)
[m]−−−−→ E(K)

δ

H1
(
GK̄/K , E[m]

)
−−−−→ H1

(
GK̄/K , E(K̄)

) [m]−−−−→ H1
(
GK̄/K , E(K̄)

)
.

From the middle of this exact sequence we extract the following short exact se-
quence, which is called the Kummer sequence for E/K:

0 −→ E(K)

mE(K)

δ−−−−→ H1
(
GK̄/K , E[m]

)
−→ H1

(
GK̄/K , E(K̄)

)
[m] −→ 0.
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(As usual, for any abelian group A, we write A[m] to denote the m-torsion subgroup
of A.)

From general principles, the connecting homomorphism δ is computed as follows.
Let P ∈ E(K) and choose some Q ∈ E(K̄) satisfying [m]Q = P . Then a 1-cocycle
representing δ(P ) is given by

c : GK̄/K −→ E[m], cσ = Qσ −Q.

But this is exactly the Kummer pairing defined in (VIII §1),

cσ = κ(P, σ).

(This assumes that we use the same Q on both sides, of course.)
Now suppose that E[m] is contained in E(K). Then

H1
(
GK̄/K , E[m]

)
= Hom

(
GK̄/K , E[m]

)
,

so under this assumption we obtain an injective homomorphism

E(K)/mE(K) ↪−→ Hom
(
GK̄/K , E[m]

)
, P �−→ κ(P, · ).

This provides an alternative proof of (VIII.1.2abc).
Similarly, we can use the inflation–restriction sequence (B.2.4) to give a quick

proof of the reduction lemma described in (VIII.1.1.1). Thus if L/K is a finite Galois
extension, say satisfying E[m] ⊂ E(L), then we have a commutative diagram

0 −→ Φ −→ E(K)/mE(K) −→ E(L)/mE(L)⏐
⏐
⏐
�

⏐
⏐
⏐
�

⏐
⏐
⏐
�

⏐
⏐
⏐
�

0 −→ H1
(
GL/K , E[m]

) inf−−→ H1
(
GK̄/K , E[m]

) res−−→ H1
(
GL̄/L, E[m]

)
,

where the vertical arrows are injections. Since GL/K and E[m] are finite groups, the
cohomology group H1

(
GL/K , E[m]

)
is finite, so Φ is also finite. We observe that

the map λP : GL/K → E[m] defined in the proof of (VIII.1.1.1) is a cocycle whose
cohomology class is precisely the image of P ∈ Φ in H1

(
GL/K , E[m]

)
.

Returning now to the general case, we reinterpret (VIII.1.5b) in terms of coho-
mology.

Definition. Let M be a GK̄/K-module, let v ∈ M0
K be a discrete valuation, and

let Iv ⊂ GK̄/K be an inertia group for v. A cohomology class ξ ∈ Hr(GK̄/K ,M)
is said to be unramified at v if it is trivial when restricted to Hr(Iv,M). (The inertia
group Iv depends on choosing an extension of v to K̄, but one can show that the
definition of unramified cohomology class is independent of this choice; cf. (X.4.1.1)
and Exercise B.6.)

Proposition 2.1. Let

S =
{
v ∈ M0

K : E has bad reduction at v
}
∪
{
v ∈ M0

K : v(m) �= 0
}
∪M∞

K .
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Then the image of E(K) in H1
(
GK̄/K , E[m]

)
under the connecting homomor-

phism δ consists of cohomology classes that are unramified at every v ∈ MK

with v /∈ S.

PROOF. Let P ∈ E(K) and, as above, let

cσ = Qσ −Q

be the cocycle representing δ(P ) for some point Q satisfying [m]Q = P . Then
(VIII.1.5b) says that the field K(Q) is unramified at v. (N.B. The proof of (VIII.1.5b)
did not use the assumption that E[m] is contained in E(K).) Hence Iv acts trivially
on Q, so cσ = 0 for all σ ∈ Iv .

The Kummer Sequence for Fields

The exact sequences that we have derived for elliptic curves are analogous to the
classical exact sequences that arise in Kummer theory for fields. To make the analogy
clear, we briefly recall the relevant material. The multiplication-by-m sequence for
an elliptic curve E corresponds to the following exact sequence of GK̄/K-modules:

1 −→ μm −→ K̄∗ z→zm

−−−−−→ K̄∗ −→ 1.

Taking GK̄/K-cohomology yields a long exact sequence from which we extract the
short exact sequence

1 −→ K∗/(K∗)m
δ−−→ H1(GK̄/K ,μm) −→ H1(GK̄/K , K̄∗)[m] −→ 0.

Hilbert’s famous “Theorem 90” (B.2.5) asserts that

H1(GK̄/K , K̄∗) = 0,

so the connecting homomorphism is an isomorphism. This is in marked contrast to
the situation for elliptic curves, where the nontriviality of H1

(
GK̄/K , E(K̄)

)
pro-

vides much added complication. (See Chapter X.) Collecting this material and using
an explicit computation of the connecting homomorphism gives the following result.

Proposition 2.2. There is an isomorphism

δ : K∗/(K∗)m
∼−−−−−→ H1(GK̄/K ,μm)

given by the formula

δ(a) = cohomology class of the map σ �→ ασ/α,

where α ∈ K̄∗ is any element satisfying αm = a.
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VIII.3 The Descent Procedure

Our primary goal in this chapter is to prove that E(K), the group of rational points
on an elliptic curve, is finitely generated. So far, we know from (VIII.1.1) that the
quotient group E(K)/mE(K) is finite. It is easy to see that this is not enough. For
example, R/mR = 0 for every integer m ≥ 1, yet R is certainly not a finitely gen-
erated group. Similarly, if E/Qp is an elliptic curve, then (VII.6.3) says that E(Qp)
has a subgroup of finite index that is isomorphic to Zp. Hence E(Qp)/mE(Qp) is
finite, while E(Qp) is not finitely generated.

An examination of these two examples shows that the problem occurs because of
the large number of elements in the group that are divisible by m. The idea used to
complete the proof of the Mordell–Weil theorem is to show that on an elliptic curve
over a number field, the multiplication-by-m map tends to increase the “size” of a
point, where there are only finitely many points whose “size” is bounded. This will
bound how high a power of m may divide a point, and thus eliminate problems such
as in the above examples. Of course, all of this is very vague until we explain what
is meant by the “size” of a point.

In this section we axiomatize the situation and describe the type of size (or height)
function needed to prove that an abelian group is finitely generated. Then, in the
next section, we define such a function on an elliptic curve in the simplest case and
use explicit formulas to prove that it has the desired properties. This will suffice to
prove a special case of the Mordell–Weil theorem. We then turn to the general case
and develop the theory of height functions in sufficient generality both to prove the
Mordell–Weil theorem and to be useful for later applications.

Theorem 3.1. (Descent Theorem) Let A be an abelian group. Suppose that there
exists a (height) function

h : A −→ R

with the following three properties:
(i) Let Q ∈ A. There is a constant C1, depending on A and Q, such that

h(P +Q) ≤ 2h(P ) + C1 for all P ∈ A.

(ii) There are an integer m ≥ 2 and a constant C2, depending on A, such that

h(mP ) ≥ m2h(P )− C2 for all P ∈ A.

(iii) For every constant C3, the set
{
P ∈ A : h(P ) ≤ C3

}

is finite.
Suppose further that for the integer m in (ii), the quotient group A/mA is finite.
Then A is finitely generated.

PROOF. Choose elements Q1, . . . , Qr ∈ A to represent the finitely many cosets
in A/mA, and let P ∈ A be an arbitrary element. The idea is to show that the
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difference between P and an appropriate linear combination of Q1, . . . , Qr is a mul-
tiple of a point whose height is smaller than a constant that is independent of P .
Then Q1, . . . , Qr and the finitely many points with height less than this constant are
generators for A.

We begin by writing

P = mP1 +Qi1 for some 1 ≤ i1 ≤ r.

Next we do the same thing with P1, then with P2, etc., which gives us a list of points

P = mP1 +Qi1 ,

P1 = mP2 +Qi2 ,
...

Pn−1 = mPn +Qin .

For any index j, we have

h(Pj) ≤
1

m2

(
h(mPj) + C2

)
from (ii),

=
1

m2

(
h(Pj−1 −Qij ) + C2

)

≤ 1

m2

(
2h(Pj−1) + C ′

1 + C2

)
from (i),

where C ′
1 is the maximum of the constants from (i) for Q ∈ {−Q1, . . . ,−Qr}. Note

that C ′
1 and C2 do not depend on P .

We use this inequality repeatedly, starting from Pn and working back to P . This
yields

h(Pn) ≤
(

2

m2

)n

h(P ) +

(
1

m2
+

2

m4
+

4

m8
+ · · ·+ 2n−1

m2n

)
(C ′

1 + C2)

<

(
2

m2

)n

h(P ) +
C ′

1 + C2

m2 − 2

≤ 1

2n
h(P ) +

1

2
(C ′

1 + C2) since m ≥ 2.

It follows that if n is sufficiently large, then

h(Pn) ≤ 1 +
1

2
(C ′

1 + C2).

Since P is a linear combination of Pn and Q1, . . . , Qr,

P = mnPn +

n∑

j=1

mj−1Qij ,

it follows that every P in A is a linear combination of points in the set
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{
Q1, . . . , Qr

}
∪
{
Q ∈ A : h(Q) ≤ 1 +

1

2
(C ′

1 + C2)

}
.

Property (iii) of the height function h tells us that this is a finite set, which completes
the proof that A is finitely generated.

Remark 3.2. What is needed to make the descent theorem effective, i.e., to al-
low us to find generators for the group A? First, we must be able to calculate
the constants C1 = C1(Qi) for each of the elements Q1, . . . , Qr ∈ A represent-
ing the cosets of A/mA. Second, we must be able to calculate the constant C2.
Third, for any constant C3, we must be able to determine the elements in the finite
set

{
P ∈ A : h(P ) ≤ C3

}
. The reader may check (Exercise 8.18) that for the height

functions used on elliptic curves (VIII §§4, 5, 6), all of these constants are effectively
computable, provided that we can find elements of E(K) that generate the finite
group E(K)/mE(K). Unfortunately, at present there is no known procedure that
is guaranteed to give generators for E(K)/mE(K). We return to this question in
Chapter X.

VIII.4 The Mordell–Weil Theorem over Q

In this section we prove the following special case of the Mordell–Weil theorem.

Theorem 4.1. Let E/Q be an elliptic curve. Then the group E(Q) is finitely gener-
ated.

We will, of course, soon be ready to prove the general case; see (VIII.6.7). How-
ever, it seems worthwhile to first prove (VIII.4.1), since in this case the necessary
height computations using explicit formulas are not too cumbersome.

Fix a Weierstrass equation for E/Q of the form

E : y2 = x3 +Ax+B with A,B ∈ Z.

We know from (VIII.1.1) that E(Q)/2E(Q) is finite, so in order to apply the descent
result (VIII.3.1), we need to define a height function on E(Q) and show that it has
the requisite properties.

Definition. Let t ∈ Q, and write t = p/q as a fraction in lowest terms. The height
of t, denoted by H(t), is defined by

H(t) = max
{
|p|, |q|

}
.

Definition. The (logarithmic) height on E(Q), relative to the given Weierstrass
equation, is the function

hx : E(Q) −→ R, hx(P ) =

{
logH

(
x(P )

)
if P �= O,

0 if P = O.

We note that hx(P ) is always nonnegative.



VIII.4. The Mordell–Weil Theorem over Q 221

The next lemma gives us the information that we need in order to apply (VIII.3.1)
with the height function hx.

Lemma 4.1. Let E/Q be an elliptic curve given by a Weierstrass equation

E : y2 = x3 +Ax+B with A,B ∈ Z.

(a) Let P0 ∈ E(Q). There is a constant C1 that depends on P0, A, and B such that

hx(P + P0) ≤ 2hx(P ) + C1 for all P ∈ E(Q).

(b) There is a constant C2 that depends on A and B such that

hx

(
[2]P

)
≥ 4hx(P )− C2 for all P ∈ E(Q).

(c) For every constant C3, the set
{
P ∈ E(Q) : hx(P ) ≤ C3

}

is finite.

PROOF. We may assume that C1 > max
{
hx(P0), hx([2]P0)

}
, which ensures

that (a) is true if P0 = O or if P ∈ {O,±P0}. In all other cases we write

P = (x, y) =

(
a

d2
,
b

d3

)
and P0 = (x0, y0) =

(
a0
d20

,
b0
d30

)
,

where all fractions are in lowest terms. The addition formula (III.2.3d) says that

x(P + P0) =

(
y − y0
x− x0

)2

− x− x0.

Expanding this expression and using the fact that P and P0 satisfy the given Weier-
strass equation yields

x(P + P0) =
(xx0 +A)(x+ x0) + 2B − 2yy0

(x− x0)2

=
(aa0 +Ad2d20)(ad

2
0 + a0d

2) + 2Bd4d40 − 2bdb0d0
(ad20 − a0d2)2

.

In computing the height of a rational number, cancellation between numerator and
denominator can only decrease the height, so we find by an easy estimation that

H
(
x(P + P0)

)
≤ C ′

1 max
{
|a|2, |d|4, |bd|

}
,

where C ′
1 has a simple expression in terms of A,B, a0, b0, d0. Since H

(
x(P )

)
=

max
{
|a|, |d|2

}
, this is almost what we want, the only possible difficulty being the

presence of |bd| in the maximum. To deal with this problem, we use the fact that the
point P lies on the curve E, so its coordinates satisfy
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b2 = a3 +Aad4 +Bd6.

Thus
|b| ≤ C ′′

1 max
{
|a|3/2, |d|3

}
,

which combined with the above estimate for H
(
x(P + P0)

)
yields

H
(
x(P + P0)

)
≤ C1 max

{
|a|2, |d|4

}
= C1H

(
x(P )

)2
.

Taking logarithms gives the desired result.
(b) Choosing C2 to satisfy

C2 ≥ 4max
{
hx(T ) : T ∈ E(Q)[2]

}
,

we may assume that [2]P �= O. Then, writing P = (x, y), the duplication for-
mula (III.2.3d) reads

x
(
[2]P

)
=

x4 − 2Ax2 − 8Bx+A2

4x3 + 4Ax+ 4B
.

It is convenient to define homogeneous polynomials

F (X,Z) = X4 − 2AX2Z2 − 8BXZ3 +A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4.

If we write x = x(P ) = a/b as a fraction in lowest terms, then x
(
[2]P

)
may be

written as a quotient of integers,

x
(
[2]P

)
=

F (a, b)

G(a, b)
.

However, in contrast to the proof of (a), we are now looking for a lower bound
for H

(
x([2]P )

)
, so it is necessary to bound how much cancellation may occur be-

tween numerator and denominator.
To do this, we use the fact that F (X, 1) and G(X, 1) are relatively prime poly-

nomials, so they generate the unit ideal in Q[X]. This implies that identities of the
following sort exist.

Sublemma 4.3. Let Δ = 4A3 + 27B2, and define polynomials

F (X,Z) = X4 − 2AX2Z2 − 8BXZ3 +A2Z4,

G(X,Z) = 4X3Z + 4AXZ3 + 4BZ4,

f1(X,Z) = 12X2Z + 16AZ3,

g1(X,Z) = 3X3 − 5AXZ2 − 27BZ3,

f2(X,Z) = 4(4A3 + 27B2)X3 − 4A2BX2Z

+ 4A(3A3 + 22B2)XZ2 + 12B(A3 + 8B2)Z3,

g2(X,Z) = −A2BX3 −A(5A3 + 32B2)X2Z

− 2B(13A3 + 96B2)XZ2 + 3A2(A3 + 8B2)Z3.
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Then the following identities hold in Z[A,B,X,Z]:

f1(X,Z)F (X,Z)− g1(X,Z)G(X,Z) = 4ΔZ7,

f2(X,Z)F (X,Z)− g2(X,Z)G(X,Z) = 4ΔX7.

PROOF. One can check that if Δ �= 0, then F (X,Z) and G(X,Z) are relatively
prime homogeneous polynomials, so identities of this sort must exist. Checking the
validity of the two identities is, at worst, a tedious calculation, which we leave for
the reader. To actually find the polynomials f1, g1, f2, g2, one can use the Euclidean
algorithm or the theory of resultants.

We return to the proof of (VIII.4.2b). Let

δ = gcd
(
F (a, b), G(a, b)

)

denote the cancellation in our fraction for x
(
[2]P

)
. From the equations

f1(a, b)F (a, b)− g1(a, b)G(a, b) = 4Δb7,

f2(a, b)F (a, b)− g2(a, b)G(a, b) = 4Δa7,

we see that δ divides 4Δ. This gives the bound

|δ| ≤ |4Δ|,

and hence

H
(
x([2]P )

)
≥

max
{∣∣F (a, b)

∣
∣,
∣
∣G(a, b)

∣
∣}

|4Δ| .

On the other hand, the same identities give the estimates

|4Δb7| ≤ 2max
{∣∣f1(a, b)

∣
∣,
∣
∣g1(a, b)

∣
∣}max

{∣∣F (a, b)
∣
∣,
∣
∣G(a, b)

∣
∣},

|4Δa7| ≤ 2max
{∣∣f2(a, b)

∣
∣,
∣
∣g2(a, b)

∣
∣}max

{∣∣F (a, b)
∣
∣,
∣
∣G(a, b)

∣
∣}.

Looking at the expressions for f1, f2, g1, g2 in (VIII.4.3), we have

max
{∣∣f1(a, b)

∣
∣,
∣
∣g1(a, b)

∣
∣,
∣
∣f2(a, b)

∣
∣,
∣
∣g2(a, b)

∣
∣} ≤ Cmax

{
|a|3, |b|3

}
,

where C is a constant depending on A and B. Combining the last three inequalities
yields

max
{
|4Δa7|, |4Δb7|

}
≤ 2Cmax

{
|a|3, |b|3

}
max

{∣∣F (a, b)
∣
∣,
∣
∣G(a, b)

∣
∣}.

Canceling max
{
|a|3, |b|3

}
from both sides, we obtain the estimate

max
{∣∣F (a, b)

∣
∣,
∣
∣G(a, b)

∣
∣}

|4Δ| ≥ (2C)−1 max
{
|a|4, |b|4

}
,

and then using the fact that max
{
|a|, |b|

}
= H

(
x(P )

)
gives the desired result,
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H
(
x([2]P )

)
≥ (2C)−1H

(
x(P )

)4
.

(c) For any constant C, the set
{
t ∈ Q : H(t) ≤ C

}

is clearly finite. Indeed, it has at most (2C + 1)2 elements, since the numerator and
denominator of t are integers restricted to lie between −C and C. Further, given
any value for x, there are at most two values of y for which (x, y) is a point of E.
Therefore {

P ∈ E(Q) : hx(P ) ≤ C3

}

is also a finite set.

The proof of (VIII.4.1) is now simply a matter of fitting together what we have
already done.

PROOF OF (VIII.4.1). We know from (VIII.1.1) that E(Q)/2E(Q) is finite. It fol-
lows from (VIII.4.2) that the height function

hx : E(Q) −→ R

satisfies the conditions needed to apply the descent procedure (VIII.3.1) with m = 2.
The conclusion of (VIII.3.1) is that E(Q) is finitely generated.

VIII.5 Heights on Projective Space

In order to use the descent theorem (VIII.3.1) to prove the Mordell–Weil theorem
in general, we need to define a height function on the K-rational points of an el-
liptic curve. It is possible to proceed in an ad hoc manner using explicit equations,
as was done in the last section, but we instead develop a general theory of height
functions. From this general theory will follow all of the necessary properties, plus
considerably more. Elliptic curves are given as subsets of projective space, so in this
section we study a height function defined on all of projective space, and then in
the next section we examine its properties when restricted to the points of an elliptic
curve.

Example 5.1. Let P ∈ P
N (Q) be a point with rational coordinates. Since Z is a

principal ideal domain, we can find homogeneous coordinates

P = [x0, . . . , xN ]

satisfying
x0, . . . , xN ∈ Z and gcd(x0, . . . , xN ) = 1.

Then a natural measure of the height of P is

H(P ) = max
{
|x0|, . . . , |xN |

}
.
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With this definition, it is clear that for any constant C, the set
{
P ∈ P

N (Q) : H(P ) ≤ C
}

is a finite set. Indeed, it has at most (2C+1)N elements. This is the sort of finiteness
property that is needed for the descent procedure described in (VIII.3.1).

If we try to generalize (VIII.5.1) to arbitrary number fields, we run into the dif-
ficulty that the ring of integers need not be a principal ideal domain. We thus take
a somewhat different approach, for which purpose we now specify more precisely
how the absolute values in MK are normalized.

Definition. The set of standard absolute values on Q, which we denote by MQ,
consists of the following:

(i) MQ contains one archimedean absolute value, defined by

|x|∞ = usual absolute value = max{x,−x}.

(ii) For each prime p ∈ Z, the set MQ contains one nonarchimedean (p-adic)
absolute value defined by

∣
∣
∣pn

a

b

∣
∣
∣
p
= p−n for a, b ∈ Z satisfying p � ab.

The set of standard absolute values on a number field K, denoted by MK , is the
set of all absolute values on K whose restriction to Q is one of the absolute values
in MQ.

Definition. Let v ∈ MK . The local degree at v, denoted by nv , is

nv = [Kv : Qv],

where Kv and Qv denote the completions of K and Q with respect to the absolute
value v.

With the preceding definitions, we state two basic facts from algebraic number
theory that will be needed later.

Extension Formula 5.2. Let L/K/Q be a tower of number fields, and let v ∈ MK .
Then ∑

w∈ML

w|v

nw = [L : K]nv.

(Here w | v means that w restricted to K is equal to v.)

Product Formula 5.3. Let x ∈ K∗. Then
∏

v∈MK

|x|nv
v = 1.
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For proofs of (VIII.5.2) and (VIII.5.3), see any standard text on algebraic number
theory, for example [142, II §1 and V §1].

We are now ready to define the height of a point in projective space.

Definition. Let P ∈ P
N (K) be a point with homogeneous coordinates

P = [x0, . . . , xN ], x0, . . . , xN ∈ K.

The height of P (relative to K) is

HK(P ) =
∏

v∈MK

max
{
|x0|v, . . . , |xN |v

}nv
.

Proposition 5.4. Let P ∈ P
N (K).

(a) The height HK(P ) does not depend on the choice of homogeneous coordinates
for P .

(b) The height satisfies
HK(P ) ≥ 1.

(c) Let L/K be a finite extension. Then

HL(P ) = HK(P )[L:K].

PROOF. (a) Any other choice of homogeneous coordinates for P has the form
[λx0, . . . , λxN ] for some λ ∈ K∗. Using the product formula (VIII.5.3), we have

∏

v∈MK

max
{
|λx0|v, . . . , |λxN |v

}nv
=

∏

v∈MK

|λ|nv max
{
|x0|v, . . . , |xN |v

}nv

=
∏

v∈MK

max
{
|x0|v, . . . , |xN |v

}nv
.

(b) Given any point P in projective space, we can always find homogeneous coor-
dinates for P such that one of the coordinates is 1. Then every factor in the product
defining HK(P ) is at least 1.
(c) We compute

HL(P ) =
∏

w∈ML

max
{
|xi|w

}nw

=
∏

v∈MK

∏

w∈ML

w|v

max
{
|xi|v

}nw since xi ∈ K,

=
∏

v∈MK

max
{
|xi|v

}[L:K]nv from (VIII.5.2),

= HK(P )[L:K].
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Remark 5.5. If K = Q, then HQ agrees with the more intuitive height function
given in (VIII.5.1). To see this, let P ∈ P

N (Q) and choose homogeneous coordi-
nates [x0, . . . , xN ] for P with xi ∈ Z and gcd(x0, . . . , xN ) = 1. Then, for any
nonarchimedean absolute value v ∈ MQ, we have |xi|v ≤ 1 for all i and |xi|v = 1
for at least one i. Hence in the product defining HQ(P ), only the factor for the archi-
medean absolute value contributes, so

HQ(P ) = max
{
|x0|∞, . . . , |xN |∞

}
.

In particular, it follows that for any constant C, the set
{
P ∈ P

N (Q) : HQ(P ) ≤ C
}

is finite. One of our goals is to extend this statement to HK . We will actually prove
something stronger; see (VIII.5.11).

Sometimes it is easier to work with a height function that is not relative to a
particular number field. We use (VIII.5.4c) to create such a function.

Definition. Let P ∈ P
N (Q̄). The (absolute) height of P , denoted by H(P ), is

defined as follows. Choose a number field K such that P ∈ P
N (K). Then

H(P ) = HK(P )1/[K:Q],

where we take the positive root. We see from (VIII.5.4c) that H(P ) is well-defined,
independent of the choice of K, and (VIII.5.4b) implies that H(P ) ≥ 1.

We next investigate how the height changes under mappings between projective
spaces. We recall the following definition; cf. (I.3.3).

Definition. A morphism of degree d between projective spaces is a map

F : PN −→ P
M , F (P ) =

[
f0(P ), . . . , fM (P )

]
,

where f0, . . . , fM ∈ Q̄[X0, . . . , XN ] are homogeneous polynomials of degree d
having no common zero in Q̄

N+1 other than X0 = · · · = XN = 0. If F can be
written using polynomials fi having coefficients in K, then F is said to be defined
over K.

Theorem 5.6. Let
F : PN −→ P

M

be a morphism of degree d. Then there are positive constants C1 and C2, depending
on F , such that

C1H(P )d ≤ H
(
F (P )

)
≤ C2H(P )d for all P ∈ P

N (Q̄).

PROOF. Write F = [f0, . . . , fM ] using homogeneous polynomials fi having no
common zeros, and let P = [x0, . . . , xN ] ∈ P

N (Q̄) be a point with algebraic coor-
dinates. Choose some number field K that contains x0, . . . , xN and also contains all
of the coefficients of all of the fi. For each absolute value v ∈ MK , we let
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|P |v = max
0≤i≤N

|xi|v and
∣
∣F (P )

∣
∣
v
= max

0≤j≤M

∣
∣fj(P )

∣
∣
v
,

and we also define

|F |v = max
{
|a|v : a is a coefficient of some fi

}
.

Then, from the definition of height, we have

HK(P ) =
∏

v∈MK

|P |nv
v and HK

(
F (P )

)
=

∏

v∈MK

∣
∣F (P )

∣
∣nv

v
,

so it makes sense to define

HK(F ) =
∏

v∈MK

|F |nv
v .

In other words, HK(F ) = H
(
[a0, a1, . . .]

)
, where the aj are the coefficients of

the fi. Finally, we let C1, C2, . . . denote constants that depend only on M , N , and d,
and we set

ε(v) =

{
1 if v ∈ M∞

K ,

0 if v ∈ M0
K .

To illustrate the utility of the function ε, we observe that the triangle inequality may
be concisely written as

|t1 + · · ·+ tn|v ≤ nε(v) max
{
|t1|v, . . . , |tn|v

}

for all v ∈ MK , both archimedean and nonarchimedean.
Having set notation, we turn to the proof of (VIII.5.6). The upper bound is rela-

tively easy. Let v ∈ MK . The triangle inequality yields

∣
∣fi(P )

∣
∣
v
≤ C

ε(v)
1 |F |v|P |dv,

since fi is homogeneous of degree d. Here C1 could equal the number of terms
in fi, which is at most

(
N+d
N

)
, i.e., the number of monomials of degree d in N + 1

variables. Since this estimate holds for every i, we find that

∣
∣F (P )

∣
∣
v
≤ C

ε(v)
1 |F |v|P |dv.

Now raise to the nv power, multiply over all v ∈ MK , and take the [K : Q]th root.
This yields the desired upper bound

H
(
F (P )

)
≤ C1H(F )H(P )d,

where we have used the formula (VIII.5.2),
∑

v∈MK

ε(v)nv =
∑

v∈M∞
K

nv = [K : Q].
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It is worth mentioning that in proving this upper bound, we did not use the fact that
the fi have no common nontrivial zeros. However, we will certainly need to use this
property to prove the lower bound, since without it there are easy counterexamples;
see Exercise 8.10.

Thus we now assume that the set
{
Q ∈ A

N+1(Q̄) : f0(Q) = · · · = fM (Q) = 0
}

consists of the single point (0, . . . , 0). It follows from the Nullstellensatz ([111,
I.1.3A], [73, Theorem 1.6]) that the ideal generated by f0, . . . , fM in Q̄[X0, . . . , XN ]
contains some power of each of X0, . . . , XN , since each Xi also vanishes at the
point (0, . . . , 0). Thus there are polynomials gij ∈ Q̄[X0, . . . , XN ] and an inte-
ger e ≥ 1 such that

Xe
i =

M∑

j=0

gijfj for each 0 ≤ i ≤ N .

Replacing K by a finite extension if necessary, we may assume that each
gij ∈ K[X0, . . . , XN ], and discarding all terms on the right-hand side except those
that are homogeneous of degree e, we may assume that each gij is homogeneous of
degree e− d. We further set the following reasonable notation:

|G|v = max
{
|b|v : b is a coefficient of some gij

}
,

HK(G) =
∏

v∈MK

|G|nv
v .

We observe that e and HK(G) may be bounded in terms of M , N , d, and HK(F ),
although finding a good bound is not an easy task. See (VIII.5.7) for a discussion. For
our purposes it is enough to know that e and HK(G) do not depend on the point P .

Recalling that P = [x0, . . . , xN ], we see that the formula for Xe
i implies that

|xi|ev =

∣
∣
∣
∣
∣

M∑

j=0

gij(P )fj(P )

∣
∣
∣
∣
∣
v

≤ C
ε(v)
2 max

0≤j≤M

∣
∣gij(P )fj(P )

∣
∣
v

≤ C
ε(v)
2 max

0≤j≤M

∣
∣gij(P )

∣
∣
∣
∣F (P )

∣
∣
v
.

We now take the maximum over i to obtain

|P |ev ≤ C
ε(v)
2 max

0≤j≤M
0≤i≤N

∣
∣gij(P )

∣
∣
v

∣
∣F (P )

∣
∣
v
.

Each gij is homogeneous of degree e − d, so the usual application of the triangle
inequality yields ∣

∣gij(P )
∣
∣
v
≤ C

ε(v)
3 |G|v|P |e−d

v .

Here C3 may depend on e, but as noted earlier, we can bound e in terms of M , N ,
and d. Substituting this estimate into the earlier one and multiplying by |P |d−e

v gives
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|P |dv ≤ C
ε(v)
4 |G|v

∣
∣F (P )

∣
∣
v
,

and now the usual raising to the nv power, multiplying over v ∈ MK , and taking
the [K : Q]th root yields the desired lower bound.

Remark 5.7. As indicated during the proof of (VIII.5.6), the dependence of C1 on F
in the inequality

C1H(P )d ≤ H
(
F (P )

)

is not at all straightforward. It is possible to express C1 in terms of the coefficients
of certain polynomials whose existence is guaranteed by the Nullstellensatz, and the
Nullstellensatz can be made completely explicit by the use of elimination theory, but
this method leads to a very poor estimate. For an explicit version of the Nullstellen-
satz in which an effort has been made to give good estimates for the coefficients,
see [162].

We also record the special case of (VIII.5.6) for an automorphism of PN .

Corollary 5.8. Let A ∈ GLN+1(Q̄), so multiplication by the matrix A induces an
automorphism A : PN → P

N . There are positive constants C1 and C2, depending
on the entries of the matrix A, such that

C1H(P ) ≤ H(AP ) ≤ C2H(P ) for all P ∈ P
N (Q̄).

PROOF. This is (VIII.5.6) for morphisms of degree one.

We next investigate the relationship between the coefficients of a polynomial and
the height of its roots.

Notation. For x ∈ Q̄, let
H(x) = H

(
[x, 1]

)
,

and similarly for x ∈ K, let

HK(x) = HK

(
[x, 1]

)
.

Theorem 5.9. Let

f(T ) = a0T
d + a1T

d−1 + · · ·+ ad = a0(T − α1) · · · (T − αd) ∈ Q̄[T ]

be a polynomial of degree d. Then

2−d
d∏

j=1

H(αj) ≤ H
(
[a0, . . . , ad]

)
≤ 2d−1

d∏

j=1

H(αj).

PROOF. First note that the inequality to be proven remains unchanged if f(T ) is
multiplied by a nonzero constant. It thus suffices to prove the result for monic poly-
nomials, so we may assume that a0 = 1.

Let K = Q(α1, . . . , αd), and for v ∈ MK , set
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ε(v) =

{
2 if v ∈ M∞

K ,

1 if v ∈ M0
K .

Note that this notation differs from the notation used in the proof of (VIII.5.6). In
the present instance, the triangle inequality reads

|x+ y|v ≤ ε(v)max
{
|x|v, |y|v

}
for v ∈ MK and x, y ∈ K.

Of course, if v ∈ M0
K and |x|v �= |y|v , then the triangle inequality becomes an

equality.
We are going to prove that

ε(v)−d
d∏

j=1

max
{
|αj |v, 1

}
≤ max

0≤i≤d

{
|ai|v

}
≤ ε(v)d−1

d∏

j=1

max
{
|αj |v, 1

}
.

Once we have done this, raising to the nv power, multiplying over all v ∈ MK , and
taking the [K : Q]th root gives the desired result.

The proof is by induction on d = deg(f). For d = 1 we have f(T ) = T − α1, so
the inequalities are clear. Assume now that we know the result for all polynomials
(with roots in K) of degree d− 1. Choose an index k such that

|αk|v ≥ |αj |v for all 0 ≤ j ≤ d,

and define a polynomial

g(T ) = (T − α1) · · · (T − αk−1)(T − αk+1) · · · (T − αd)

= b0T
d−1 + b1T

d−2 + · · ·+ bd−1.

Thus f(T ) = (T − αk)g(T ), so comparing coefficients yields

ai = bi − αkbi−1.

(This holds for all 0 ≤ i ≤ d if we set b−1 = bd = 0.)
We begin with the upper bound:

max
0≤i≤d

{
|ai|v

}
= max

0≤i≤d

{
|bi − αkbi−1|v

}

≤ ε(v) max
0≤i≤d

{
|bi|v, |αkbi−1|v

}
triangle inequality,

≤ ε(v) max
0≤i≤d

{
|bi|v

}
max

{
|αk|v, 1

}

≤ ε(v)d−1
d∏

j=1

max
{
|αj |v, 1

}
induction hypothesis
applied to g.

Next, to prove the lower bound, we consider two cases. First, if |αk|v ≤ ε(v), then
by the choice of the index k we have
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d∏

j=1

max
{
|αj |v, 1

}
≤ max

{
|αk|v, 1

}d ≤ ε(v)d,

so the result is clear. (Remember that a0 = 1.) Next, suppose that |αk|v > ε(v). Then

max
0≤i≤d

{
|ai|v

}
= max

0≤i≤d

{
|bi − αkbi−1|v

}
≥ ε(v)−1 max

0≤i≤d−1

{
|bi|v

}{
|αk|v, 1

}
.

Here the last line is an equality for v ∈ M0
K , while for v ∈ M∞

K we are using the
calculation

max
0≤i≤d

{
|bi − αkbi−1|v

}
≥

(
|αk|v − 1

)
max

0≤i≤d−1

{
|bi|v

}

> ε(v)−1|αk|v max
0≤i≤d−1

{
|bi|v

}
since |αk|v > ε(v) = 2.

Applying the induction hypothesis to g gives the desired lower bound, which com-
pletes the proof of (VIII.5.9).

Our first application of (VIII.5.9) is to show that there are only finitely many
points of bounded height in projective space. To do this, we first need to show that
the action of the Galois group does not affect the height of a point.

Theorem 5.10. Let P ∈ P
N (Q̄) and let σ ∈ GQ̄/Q. Then

H(P σ) = H(P ).

PROOF. Let K/Q be a field such that P ∈ P
N (K). The field K may not be Galois

over Q, but in any case σ gives an isomorphism σ : K
∼−−→ Kσ , and σ likewise

identifies the sets of absolute values of K and Kσ ,

σ : MK
∼−−−−−→ MKσ , v �−→ vσ.

Here, if x ∈ K and v ∈ MK , then the associated absolute value vσ satis-
fies |xσ|vσ = |x|v . It is clear that σ also induces an isomorphism Kv

∼−−→ Kσ
vσ , so

the local degrees satisfy nv = nvσ . We now compute

HKσ (P σ) =
∏

w∈MKσ

max
{
|xσ

i |w
}nw

=
∏

v∈MK

max
{
|xσ

i |vσ

}nvσ

=
∏

v∈MK

max
{
|xi|v

}nv

= HK(P ).

Since [K : Q] = [Kσ : Q], this is the desired result.
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Theorem 5.11. Let C and d be constants. Then the set
{
P ∈ P

N (Q̄) : H(P ) ≤ C and
[
Q(P ) : Q

]
≤ d

}

is a finite set of points, where we recall from (I §2) that Q(P ) is the minimal field of
definition of P . In particular, for any number field K,

{
P ∈ P

N (K) : HK(P ) ≤ C
}

is a finite set.

PROOF. Let P ∈ P
N (Q̄). We choose homogeneous coordinates for P , say

P = [x0, . . . , xN ],

with some xj = 1. Then Q(P ) = Q(x0, . . . , xN ), and we have the easy estimate

HQ(P )(P ) =
∏

v∈MQ(P )

max
0≤i≤N

{
|xi|v

}nv

≥ max
0≤i≤N

(
∏

v∈MQ(P )

max
{
|xi|v, 1

}nv

)

= max
0≤i≤N

HQ(P )(xi).

Thus if H(P ) ≤ C and
[
Q(P ) : Q

]
≤ d, then

max
0≤i≤N

HQ(P )(xi) ≤ Cd and max
0≤i≤N

[
Q(xi) : Q

]
≤ d.

Replacing Cd by C, it thus suffices to prove that the set
{
x ∈ Q̄ : H(x) ≤ C and

[
Q(x) : Q

]
≤ d

}

is finite. In other words, we have reduced to the case that N = 1.
Suppose that x ∈ Q̄ is in this set, and let e =

[
Q(x) : Q

]
, so e ≤ d. Further,

let x1, . . . , xe ∈ Q̄ be the conjugates of x, where we take x1 = x. The minimal
polynomial of x over Q is

fx(T ) = (T − x1) · · · (T − xe) = T e + a1T
e−1 + · · ·+ ae ∈ Q[T ].

We estimate

H
(
[1, a1, . . . , ae]

)
≤ 2e−1

e∏

j=1

H(xj) from (VIII.5.9),

= 2e−1H(x)e from (VIII.5.10),

≤ (2C)d since H(x) ≤ C and e ≤ d.

Since the ai are in Q, it follows that for a given C and d, there are only finitely
many possibilities for the polynomial fx(T ). (We are using the easy-to-prove case
of (VIII.5.11) with K = Q; see (VIII.5.1) and (VIII.5.3).) Since each polyno-
mial fx(T ) has at most d roots in K, and thus contributes at most d elements to
our set, this completes the proof that the set is finite.
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Remark 5.12. Tracing through the proof of (VIII.5.11), it is easy to give an upper
bound, in terms of C and d, for the number of points in the set

{
P ∈ P

N (Q̄) : H(P ) ≤ C and
[
Q(P ) : Q

]
≤ d

}
.

(See Exercise 8.7a.) A formula due to Schanuel gives a precise asymptotic formula
for

#
{
P ∈ P

N (K) : HK(P ) ≤ C
}

as a function of C as C → ∞. See [139, Chapter 3, Section 5] or [220] for details.

VIII.6 Heights on Elliptic Curves

In this section we use the general theory of heights as developed in the previous
section to define height functions on elliptic curves. The main theorems that we
prove, (VIII.6.2) and (VIII.6.4), highlight the interplay between the height function
and the addition law on the elliptic curve. As an immediate corollary, we deduce the
remaining results needed to prove the Mordell–Weil theorem for arbitrary number
fields (VIII.6.7).

It is convenient to use “big-O” notation.

Notation. Let f and g be real-valued functions on a set S . We write

f = g +O(1)

if there are constants C1 and C2 such that

C1 ≤ f(P )− g(P ) ≤ C2 for all P ∈ S .

If only the lower inequality is satisfied, then we write f ≥ g +O(1), and similarly
if only the upper inequality is true, then we write f ≤ g +O(1).

Let E/K be an elliptic curve. Recall from (II.2.2) that any nonconstant func-
tion f ∈ K̄(E) determines a surjective morphism, which we also denote by f ,

f : E −→ P
1, P �−→

{
[1, 0] if P is a pole of f ,

[f(P ), 1] otherwise.

It would be reasonable to use f to define a height function on E(K̄) by set-
ting Hf (P ) = H

(
f(P )

)
. However, the height function H tends to behave multi-

plicatively, as for example in (VIII.5.6), while for our purposes it is more convenient
to have a height function that behaves additively. This prompts the following defini-
tions.

Definition. The (absolute logarithmic) height on projective space is the function

h : PN (Q̄) −→ R, h(P ) = logH(P ).

Note that (VIII.5.4b) tells us that h(P ) ≥ 0 for all P .
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Definition. Let E/K be an elliptic curve, and let f ∈ K̄(E) be a function. The
height on E (relative to f ) is the function

hf : E(K̄) −→ R, hf (P ) = h
(
f(P )

)
.

We start by transcribing the finiteness result from (VIII §5) into the current setting.

Proposition 6.1. Let E/K be an elliptic curve, and let f ∈ K(E) be a nonconstant
function. Then for any constant C, the set

{
P ∈ E(K) : hf (P ) ≤ C

}

is a finite set of points.

PROOF. The function f ∈ K(E) is defined over K, so it maps points P ∈ E(K) to
points f(P ) ∈ P

1(K). Hence f gives a finite-to-one map from the set in question to
the set

{
Q ∈ P

1(K) : H(Q) ≤ eC
}
.

Finally, we know from (VIII.5.11) that this last set is finite.

The next theorem gives a fundamental relationship between height functions and
the addition law on an elliptic curve.

Theorem 6.2. Let E/K be an elliptic curve, and let f ∈ K(E) be an even function,
i.e., a function satisfying f ◦ [−1] = f . Then for all P,Q ∈ E(K̄) we have

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1).

The constants inherent in the O(1) depend on the elliptic curve E and the function f ,
but are independent of the points P and Q.

PROOF. Choose a Weierstrass equation for E/K of the form

E : y2 = x3 +Ax+B.

We start by proving the theorem for the particular function f = x. The general case
is then an easy corollary.

Since hx(O) = 0 and hx(−P ) = hx(P ), the desired result is clear if P = O or
if Q = O. We now assume that P �= O and Q �= O, and we write

x(P ) = [x1, 1], x(Q) = [x2, 1],

x(P +Q) = [x3, 1], x(P −Q) = [x4, 1].

Here x3 or x4 may equal ∞ if P = ±Q. The addition formula (III.2.3d) and a little
bit of algebra yield the relations
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x3 + x4 =
2(x1 + x2)(A+ x1x2) + 4B

(x1 + x2)2 − 4x1x2
,

x3x4 =
(x1x2 −A)2 − 4B(x1 + x2)

(x1 + x2)2 − 4x1x2
.

Define a map g : P2 → P
2 by

g
(
[t, u, v]

)
= [u2 − 4tv, 2u(At+ v) + 4Bt2, (v −At)2 − 4Btu

]
.

Then the formulas for x3 and x4 show that there is a commutative diagram

E × E
G−−−−−→ E × E⏐

⏐
�

⏐
⏐
�

P
1 × P

1
P
1 × P

1
⏐
⏐
�

⏐
⏐
�

P
2 g−−−−→ P

2

σ σ

where
G(P,Q) = (P +Q,P −Q),

and where the vertical map σ is the composition of the two maps

E × E −→ P
1 × P

1, (P,Q) �−→
(
x(P ), x(Q)

)
,

and

P
1 × P

1 −→ P
2,

(
[α1, β1], [α2, β2]

)
�−→ [β1β2, α1β2 + α2β1, α1α2].

The idea here is that we are viewing t, u, and v as representing 1, x1 + x2, andx1x2,
so g

(
[t, u, v]

)
becomes [1, x3 + x4, x3x4].

The next step is to show that g is a morphism, which will allow us to ap-
ply (VIII.5.6). By definition (cf. (I.3.3)), we must show that the three homogeneous
polynomials defining g have no common zeros other than t = u = v = 0. Suppose
that g

(
[t, u, v]

)
= 0. If t = 0, then from

u2 − 4tv = 0 and (v −At)2 − 4Btu = 0

we see that u = v = 0. Thus we may assume that t �= 0, so we may define a new
quantity x = u/2t. [Intuition: If we identify

t = 1, u = x1 + x2, v = x1x2,

then the equation u2 − 4tv = 0 becomes (x1 − x2)
2 = 0, so x1 = x2 = u/2t. In

other words, we are now dealing with the case that P = ±Q.]
Using the new quantity x, the equation u2 − 4tv = 0 can be written as x2 = v/t.

Now dividing the equalities

2u(At+ v) + 4Bt2 = 0 and (v −At)2 − 4Btu = 0
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by t2 and rewriting them in terms of x yields the two equations

ψ(x) = 4x(A+ x2) + 4B = 4x3 + 4Ax+ 4B = 0,

φ(x) = (x2 −A)2 − 8Bx = x4 − 2Ax2 − 8Bx+A2 = 0.

These polynomials should be familiar, since their ratio is the rational function that
appears in the duplication formula (III.2.3d). In order to show that ψ(X) and φ(X)
have no common root, it suffices to verify the following formal identity that we
already used in the proof of (VIII.4.3),

(12X2 + 16A)φ(X)− (3X3 − 5AX − 27B)ψ(X) = 4(4A3 + 27B2) �= 0.

Note how the nonsingularity of the Weierstrass equation plays a crucial role here.
This completes the proof that g is a morphism.

We return to our commutative diagram and compute

h
(
σ(P +Q,P −Q)

)
= h

(
σ ◦G(P,Q)

)

= h
(
g ◦ σ(P,Q)

)

= 2h
(
σ(P,Q)

)
+O(1) from (VIII.5.6),

since g is a morphism of degree 2. To complete the proof of (VIII.6.2) for f = x, we
will show that

h
(
σ(R1, R2)

)
= hx(R1) + hx(R2) +O(1) for all R1, R2,∈ E(K̄).

Then, applying this relation to each side of the equation

h
(
σ(P +Q,P −Q)

)
= 2h

(
σ(P,Q)

)
+O(1)

gives the desired result.
It is clear that if either R1 = O or R2 = O, then h

(
σ(R1, R2)

)
is equal

to hx(R1) + hx(R2). Otherwise we write

x(R1) = [α1, 1] and x(R2) = [α2, 1],

and then

h
(
σ(R1, R2)

)
= h

(
[1, α1+α2, α1α2]

)
and hx(R1)+hx(R2) = h(α1)+h(α2).

We apply (VIII.5.9) to the polynomial (T+α1)(T+α2) to obtain the desired estimate

h(α1) + h(α2)− log 4 ≤ h
(
[1, α1 + α2, α1α2]

)
≤ h(α1) + h(α2) + log 2.

Finally, in order to deal with an arbitrary even function f ∈ K(E), we prove in
the next lemma (VIII.6.3) that

hf =
1

2
(deg f)hx +O(1).

Then (VIII.6.2) follows immediately on multiplying the proven relation for hx

by 1
2 deg f .



238 VIII. Elliptic Curves over Global Fields

Lemma 6.3. Let f, g ∈ K(E) be even functions. Then

(deg g)hf = (deg f)hg +O(1).

PROOF. Let x, y ∈ K(E) be Weierstrass coordinates for E/K. We know from
(III.2.3.1) that the subfield of K(E) consisting of even functions is exactly K(x),
so we can find a rational function r(X) ∈ K(X) such that there is a commutative
diagram

P
1

P
1.

E

x

r

f

Hence, using (VIII.5.6) and the fact (II.2.1) that r is a morphism, we deduce that

hf = hx ◦ r = (deg r)hx +O(1).

The diagram tells us that

deg f = (deg x)(deg r) = 2 deg r,

so we find that
2hf = (deg f)hx +O(1).

The same reasoning applied to g yields

2hg = (deg g)hx +O(1),

and combining these last two equalities gives the desired result.

Corollary 6.4. Let E/K be an elliptic curve, and let f ∈ K(E) be an even func-
tion.
(a) Let Q ∈ E(K̄). Then

hf (P +Q) ≤ 2hf (P ) +O(1) for all P ∈ E(K̄),

where the O(1) depends on E, f , and Q.
(b) Let m ∈ Z. Then

hf

(
[m]P

)
= m2hf (P ) +O(1) for all P ∈ E(K̄),

where the O(1) depends on E, f , and m.

PROOF. (a) This follows immediately from (VIII.6.2), since hf (P −Q) ≥ 0.
(b) Since f is even, it suffices to consider m ≥ 0. Further, the result is trivial for m =
0 and m = 1. We use induction to complete the proof. Suppose that the desired result
is known for m− 1 and for m. Replacing P and Q in (VIII.6.2) by [m]P and P ,
respectively, we find that
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hf

(
[m+ 1]P

)
= −hf

(
[m− 1]P

)
+ 2hf

(
[m]P

)
+ 2hf (P ) +O(1)

=
(
−(m− 1)2 + 2m2 + 2)hf (P ) +O(1) by the induction

hypothesis,
= (m+ 1)2hf (P ) +O(1).

This completes the induction proof.

Remark 6.5. It is clear that (VIII.6.2), (VIII.6.3), and (VIII.6.4) are also true for odd
functions f , since then f2 is even, and it is easy to check that hf2 = 2hf . More gen-
erally, although we do not give the proof, our results are true for arbitrary f ∈ K(E)
to “within ε.” Precisely, say for (VIII.6.4b), for every ε > 0 it is true that

(1− ε)m2hf +O(1) ≤ hf ◦ [m] ≤ (1 + ε)m2hf +O(1),

where now the O(1) depends on E, f , m, and ε. See Exercise 9.14c or, for a general
result, see [139, Chapter 4, Corollary 3.5].

Remark 6.6. We can interpret (VIII.6.2) as saying that the height function hf is
more or less a quadratic form. We will see later (VIII §9) that there is an actual
quadratic form, called the canonical height, that differs from hf by a bounded
amount.

We now have all of the tools needed to complete the proof of the Mordell–Weil
theorem.

Theorem 6.7. (Mordell–Weil theorem) Let K be a number field, and let E/K be
an elliptic curve. Then the group E(K) is finitely generated.

PROOF. Choose any even nonconstant function f ∈ K(E), for example, f could
be the x-coordinate on a Weierstrass equation. The Mordell–Weil theorem follows
immediately from the weak Mordell–Weil theorem (VIII.1.1) with m = 2 and the
descent theorem (VIII.3.1) as soon as we show that the height function

hf : E(K) −→ R

has the following three properties:

(i) Let Q ∈ E(K). There is a constant C1, depending on E, f ,and Q, such that

hf (P +Q) ≤ 2hf (P ) + C1 for all P ∈ E(K).

(ii) There is a constant C2, depending on E and f , such that

hf

(
[2]P

)
≥ 4hf (P )− C2 for all P ∈ E(K).

(iii) For every constant C3, the set
{
P ∈ E(K) : hf (P ) ≤ C3

}

is a finite set of points.

Here (i) is a restatement of (VIII.6.4a), while (ii) is immediate from the m = 2 case
of (VIII.6.4b), and (iii) is (VIII.6.1). This completes the proof of the Mordell–Weil
theorem.
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VIII.7 Torsion Points

The Mordell–Weil theorem implies that the group of rational torsion points on an
elliptic curve is finite. Of course, this also follows from the corresponding result
for local fields. Since we may view an elliptic curve defined over a number field K
as being defined over the completion Kv for each v ∈ MK , the local integrality
conditions for torsion points (VII.3.4) can be pieced together to give the following
global statement.

Theorem 7.1. Let E/K be an elliptic curve with Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and assume that a1, . . . , a6 are all in the ring of integers R of K. Let P ∈ E(K) be
a torsion point of exact order m ≥ 2.
(a) If m is not a prime power, then

x(P ), y(P ) ∈ R.

(b) If m = pn is a prime power, then for each v ∈ M0
K we let

rv =

[
ordv(p)

pn − pn−1

]
,

where [ · ] denotes the greatest integer. Then

ordv
(
x(P )

)
≥ −2rv and ordv

(
y(P )

)
≥ −3rv.

In particular, if ordv(p) = 0, then x(P ) and y(P ) are v-integral.

The next corollary was proven independently by Lutz and Nagell, who had dis-
covered divisibility conditions somewhat weaker than those given in (VIII.7.1).

Corollary 7.2. ([152], [190]) Let E/Q be an elliptic curve with Weierstrass equa-
tion

y2 = x3 +Ax+B, A,B ∈ Z.

Suppose that P ∈ E(Q) is a nonzero torsion point.
(a) x(P ), y(P ) ∈ Z.
(b) Either [2]P = O or else y(P )2 divides 4A3 + 27B2.

PROOF. (a) Let P have exact order m. If m = 2, then y(P ) = 0, so x(P ) ∈ Z, since
it is the root of a monic polynomial with integer coefficients. If m > 2, the desired
result follows immediately from (VIII.7.1), since the quantity rv in (VIII.7.1b) is
necessarily 0.
(b) We assume that [2]P �= O, so y(P ) �= 0. Then applying (a) to both P and [2]P ,
we deduce that x(P ), y(P ), x

(
[2]P

)
∈ Z. Let

φ(X) = X4 − 2AX2 − 8BX +A2 and ψ(X) = X3 +AX +B.
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Then the duplication formula (III.2.3d) reads

x
(
[2]P

)
=

φ
(
x(P )

)

4ψ
(
x(P )

) .

On the other hand, we have the usual polynomial identity (VIII.4.3)

f(X)φ(X)− g(X)ψ(X) = 4A3 + 27B2,

where f(X) = 3X2 +4A and g(X) = 3X3 − 5AX − 27B. Setting X = x(P ) and
using the duplication formula and the fact that y(P )2 = ψ

(
x(P )

)
yields

y(P )2
(
4f

(
x(P )

)
x
(
[2]P

)
− g

(
x(P )

))
= 4A3 + 27B2.

Since all of the quantities in this equation are integers, the desired result follows.

Remark 7.3.1. A glance at the proof of (VIII.7.2b) shows that we have proved that
any point P ∈ E(Q) such that x(P ) and x

(
[2]P

)
are both integers has the property

that y(P )2 divides 4A3 + 27B2. The same argument works for number fields. Fur-
ther, even if x(P ) or x

(
[2]P

)
is not integral, any bound on their denominators, for

example as in (VIII.7.1b), gives a corresponding bound for y(P ); see Exercise 8.11.

Remark 7.3.2. Recall from (VII.3.2) that in practice, one of the fastest methods to
bound the torsion in E(K) is to choose various finite places v for which E has good
reduction and use the injection (VII.3.1)

E(Kv)[m] ↪−→ Ẽ(kv),

which is valid for integers m that are prime to char(kv).

Example 7.4. The Weierstrass equation

E : y2 = x3 − 43x+ 166

has
4A3 + 27B2 = 425984 = 215 · 13.

Hence any torsion point in E(Q) has its y-coordinate in the set

{0,±1,±2,±4,±8,±16,±32,±64,±128}.

A little bit of work with a calculator reveals the points

{
(3,±8), (−5,±16), (11,±32)

}
.

On the other hand, since E has good reduction modulo 3, we know that Etors(Q)
injects into Ẽ(F3) (cf. VII.3.5), and it is easy to check that #Ẽ(F3) = 7. This
still does not prove anything, since the divisibility condition in (VIII.7.2b) is only
necessary, not sufficient. However, using the doubling formula for P = (3, 8) yields
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x(P ) = 3, x
(
[2]P

)
= −5, x

(
[4]P

)
= 11, x

(
[8]P

)
= 3.

Hence [8]P = ±P , so P is a torsion point of exact order 7 or 9. (Note that it doesn’t
have order 3, since x(P ) �= x

(
[2]P

)
.) From above, the only possibility is order 7,

so we conclude that Etors(Q) is a cyclic group of order 7 consisting of the six listed
points, together with O.

Our discussion thus far has focused on characterizing the torsion subgroup of a
given elliptic curve. Another type of question that one might ask is the following:
given a prime p, does there exist an elliptic curve E/Q such that E(Q) contains a
point of order p? The answer for most primes is no. For example, E(Q) can never
contain a point of order 11, a fact that is by no means obvious. Such a statement,
which deals uniformly with the set of all elliptic curves, naturally tends to be more
difficult to prove than does a result such as (VIII.7.2) in which the bound changes
as the elliptic curve is varied. The definitive characterization of torsion subgroups
over Q is given by the following theorem due to Mazur; the proof is unfortunately
far beyond the scope of this book.

Theorem 7.5. (Mazur [165], [166]) Let E/Q be an elliptic curve. Then the torsion
subgroup Etors(Q) of E(Q) is isomorphic to one of the following fifteen groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as Etors(Q) for some elliptic curve E/Q. (See
Exercise 8.12 for an example of each possible group.)

Mazur’s theorem was generalized to number fields of degree up to 14 by Kami-
enny and others [2, 121, 122], and then the general case was settled by Merel.

Theorem 7.5.1. (Merel [170]) For every integer d ≥ 1 there is a constant N(d)
such that for all number fields K/Q of degree at most d and all elliptic curves E/K,

∣
∣Etors(K)

∣
∣ ≤ N(d).

Remark 7.6. Prior to the proof of Merel’s theorem (VIII.7.5.1), Manin [155] used
a completely different method to show that for any fixed prime p, the p-primary
component of Etors(K) may be bounded in terms of K and p.

Remark 7.8. For those torsion subgroups that are allowed by Mazur’s theorem
(VIII.7.5), it is a classical result that the elliptic curves having the specified tor-
sion subgroup lie in a one-parameter family. For example, the curves E/K with a
point P ∈ E(K) of order 7 all have Weierstrass equations of the form

y2 + (1 + d− d2)xy + (d2 − d3)y = x3 + (d2 − d3)x2, P = (0, 0),

with
d ∈ K and Δ = d7(d− 1)7(d3 − 8d2 + 5d+ 1) �= 0.

See Exercise 8.13a,b for a derivation and [132] for a complete list of such formulas.
In general, the elliptic curves E/K with a point P ∈ E(K) of order m ≥ 4 are
parametrized by the K-rational points of another curve, called a modular curve; see
Exercise 8.13c and (C §13).
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VIII.8 The Minimal Discriminant

Let E/K be an elliptic curve. For each nonarchimedean absolute value v ∈ M0
K we

choose a Weierstrass equation for E,

y2v + a1,vxvyv + a3,vyv = x3
v + a2,vx

2
v + a4,vxv + a6,v,

that is a minimal equation for E at v. In other words, all of the ai,v satisfy

ordv(ai,v) ≥ 0,

and subject to this condition, the discriminant Δv of the equation has valuation
ordv(Δv) that is as small as possible.

Definition. The minimal discriminant of E/K, denoted by DE/K , is the (integral)
ideal of K given by

DE/K =
∏

v∈M0
K

pordv(Δv)
v .

Here pv is the prime ideal of R associated to v. Thus DE/K catalogs the valuation of
the minimal discriminant of E at every place v ∈ M0

K . It measures, in some sense,
the arithmetic complexity of the elliptic curve E.

We now ask whether it is possible to find a single Weierstrass equation that is
simultaneously minimal for every v ∈ M0

K . Let

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

be any Weierstrass equation for E/K, say with discriminant Δ. For each v ∈ M0
K

we can find a change of coordinates

x = u2
vxv + rv, y = u3

vyv + svu
2
vxv + tv,

that transforms the initial equation into an equation that is minimal at v. As usual,
the discriminants of the two equations are related by

Δ = u12
v Δv.

Hence if we define an ideal

aΔ =
∏

v∈M0
K

p− ordv(uv)
v ,

then the minimal discriminant is related to Δ via the formula

DE/K = (Δ)a12Δ .

Lemma 8.1. With notation as above, the ideal class in K of the ideal aΔ is indepen-
dent of Δ.
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PROOF. Suppose that we take a different Weierstrass equation for E over K, say
with discriminant Δ′. Then Δ = u12Δ′ for some u ∈ K∗, so directly from the
definitions we see that

(Δ′)a12Δ′ = DE/K = (Δ)a12Δ = (Δ′)
(
(u)aΔ

)12
.

Hence aΔ′ = (u)aΔ, so aΔ′ and aΔ are in the same ideal class.

Definition. The Weierstrass class of E/K, denoted by āE/K , is the ideal class in K
corresponding to any ideal aΔ as above.

Definition. A global minimal Weierstrass equation for E/K is a Weierstrass equa-
tion

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for E/K such that a1, a2, a3, a4, a6 ∈ R and such that the discriminant Δ of the
equation satisfies DE/K = (Δ).

Proposition 8.2. There exists a global minimal Weierstrass equation for E/K if and
only if āE/K = (1).

PROOF. Suppose that E/K has a global minimal Weierstrass equation, say with
discriminant Δ. Then DE/K = (Δ), so with notation as above, for any v ∈ M0

K we
have

12 ordv(aΔ) = ordv(DE/K)− ordv(Δ) = 0.

Hence aΔ = (1), so āE/K = (class of aΔ) = (1).
Conversely, suppose that āE/K = (1). Choose any Weierstrass equation for E/K

having a1, . . . , a6 ∈ R, and let Δ be the discriminant of this chosen equation. For
each v ∈ M0

K , let

x = u2
vxv + rv, y = u3

vyv + svu
2
vxv + tv,

be a change of variables that produces a minimal equation at v, say with coeffi-
cients a1,v, . . . , a6,v and discriminant Δv . Letting

S =
{
v ∈ M0

K : ordv(Δ) �= 0
}
,

the chosen equation is already minimal for all v /∈ S, so we may take uv = 1
and rv = sv = tv = 0 for v /∈ S. Note that S is a finite set. Further, from (VII.1.3d),
we see that uv, rv, sv, tv are v-integral for all v ∈ M0

K .
The assumption that āE/K = (1) means that the ideal

∏

v∈M0
K

pordv(uv)
v

is principal, say generated by u ∈ K∗. This means that

ordv(u) = ordv(uv) for all v ∈ M0
K .
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We use the Chinese remainder theorem [142, Chapter I, Section 4] to find elements
r, s, t ∈ R such that for all v ∈ S we have

ordv(r − rv), ordv(s− sv), ordv(t− tv) > max
i=1,2,3,4,6

ordv(u
i
vai,v).

Now consider the new Weierstrass equation for E/K given by the change of
coordinates

x = u2x′ + r, y = u3y′ + su2x′ + t,

having coefficients a′1, . . . , a
′
6 and discriminant Δ′. Then Δ = u12Δ′, so

ordv(Δ
′) = ordv(u

−12Δ) = ordv
(
(uv/u)

12Δv

)
= ordv(Δv).

Thus the discriminant of the new equation is minimal at all v ∈ M0
K , so in order

to verify that it is a global minimal equation, we must show that all of its coeffi-
cients are integral. This is easily checked using the coefficient transformation for-
mulas Table 3.1. If v /∈ S, then ordv(u) = 0, so each a′i is v-integral since it is a
polynomial in r, s, t, a1, . . . , a6. For v ∈ S we illustrate the argument for a′2, the
other coefficients being done similarly. Thus

ordv(u
2a′2) = ordv(a2 − sa1 + 3r − s2)

= ordv
(
u2
va2,v − (s− sv)(a1 + s+ sv) + 3(r − rv)

)

= ordv(u
2
va2,v),

where the last line follows from the previous one by our choice of r and s and the
nonarchimedean nature of v. Since

ordv(u) = ordv(uv) and ordv(a2,v) ≥ 0,

this gives the desired result.

Corollary 8.3. If K has class number one, then every elliptic curve E/K has a
global minimal Weierstrass equation. In particular, this is true for K = Q.

The converse to (VIII.8.3) is also true; see Exercise 8.14.

Example 8.4. The Weierstrass equation

E : y2 = x3 + 16

has discriminant Δ = −21233 and it is not minimal at 2. The substitution

x = 4x′, y = 8y′ + 4,

gives the global minimal equation

(y′)2 + y′ = (x′)3.
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Example 8.5. Let K = Q(
√
−10 ), so K has class number 2, the class group being

generated by the prime ideal p = (5,
√
−10 ). Let E/K be the elliptic curve given

by the equation
E : y2 = x3 + 125.

This equation has discriminant Δ = −243356, so (VII.1.1) tells us that it is already
minimal at every prime of K except possibly at the prime p lying over (5). For p, the
change of coordinates

x = (
√
−10 )2x′, y = (

√
−10 )3y′

gives an equation

(y′)2 = (x′)3 − 1

8

that has good reduction at p. Hence

DE/K = (2433) and āE/K = (ideal class of p).

Since āE/K is not principal, (VIII.8.2) tells us that E/K does not have a global
minimal Weierstrass equation.

Remark 8.6. If K has class number one and E/K is an elliptic curve, then we can
construct a global minimal Weierstrass equation for E/K by finding local minimal
equations, e.g., by using Tate’s algorithm [266, IV §9], [283], and then following the
proof of (VIII.8.2). There is also an algorithm, due to Laska [146], that is fast and
easy to implement on a computer.

Even if R has class number greater than one, it is often useful to know that an
elliptic curve E/K has a global Weierstrass equation that is, in some sense, “almost
minimal.” The following proposition gives one possibility; see Exercise 8.14c for
another.

Proposition 8.7. Let S ⊂ MK be a finite set of absolute values containing M∞
K and

all finite places dividing 2 and 3. Assume further that the ring of S-integers RS is a
principal ideal domain. Then every elliptic curve E/K has a Weierstrass equation
of the form

E : y2 = x3 +Ax+B

with A,B ∈ RS and discriminant Δ = −16(4A3 + 27B2) satisfying

DE/KRS = ΔRS .

(Such a Weierstrass equation might be called S-minimal.)

PROOF. Choose any Weierstrass equation for E/K of the form

E : y2 = x3 +Ax+B,

and let Δ = −16(4A3 + 27B2). For each v ∈ MK with v /∈ S, choose uv ∈ K∗

such that the substitution
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x = u2
vx

′, y = u3
vy

′,

gives a minimal equation at v. Then

v(DE/K) = v(Δ)− 12v(uv) for all v ∈ MK with v /∈ S.

Since RS is a principal ideal domain, we can find an element u ∈ K∗ satisfying

v(u) = v(uv) for all v ∈ MK with v /∈ S.

Then the equation

E : y2 = x3 + u−4Ax+ u−6B

has the desired property.

VIII.9 The Canonical Height

Let E/K be an elliptic curve, and let f ∈ K(E) be an even function. We saw
in (VIII.6.1) and (VIII.6.4) that the height function hf is more or less a quadratic
form, at least “up to O(1).” André Néron asked whether one could find an actual
quadratic form that differs from hf by a bounded amount. He constructed such a
function by writing it as a sum of “quasi-quadratic” local functions [194]. At the
same time, John Tate gave a simpler global definition. In this section we describe
Tate’s construction. (For a discussion of local height functions, see (C §18) or [266,
Chapter VI].)

Proposition 9.1. (Tate) Let E/K be an elliptic curve, let f ∈ K(E) be a noncon-
stant even function, and let P ∈ E(K̄). Then the limit

1

deg(f)
lim

N→∞
4−Nhf

(
[2N ]P

)

exists and is independent of f .

PROOF. We prove that the limit exists by showing that the sequence is Cauchy. Ap-
plying (VIII.6.4b) with m = 2, there is a constant C such that for all Q ∈ E(K̄),

∣
∣hf

(
[2]Q

)
− 4hf (Q)

∣
∣ ≤ C.

For integers N ≥ M ≥ 0 we use a telescoping sum argument to estimate
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∣
∣
∣4−Nhf

(
[2N ]P

)
− 4−Mhf

(
[2M ]P

)∣∣
∣

=

∣
∣
∣
∣
∣

N−1∑

n=M

4−n−1hf

(
[2n+1]P

)
− 4−nhf

(
[2n]P

)
∣
∣
∣
∣
∣

≤
N−1∑

n=M

4−n−1
∣
∣
∣hf

(
[2n+1]P

)
− 4hf

(
[2n]P

)∣∣
∣

≤
N−1∑

n=M

4−n−1C taking Q = [2n]P above,

≤ 4−MC.

This shows that the sequence 4−Nhf

(
[2N ]P

)
is Cauchy, hence it converges.

Next let g ∈ K(E) be another nonconstant even function. Then from (VIII.6.3)
we have

(deg g)hf = (deg f)hg +O(1),

so
4−Nhf

(
[2N ]P

)

deg(f)
−

4−Nhg

(
[2N ]P

)

deg(g)
= O(4−N ) −−−−→

N→∞
0.

Hence the limit does not depend on the choice of the function f .

Definition. The canonical (or Néron–Tate) height on E/K, denoted by ĥ or ĥE , is
the function

ĥ : E(K̄) −→ R

defined by

ĥ(P ) =
1

deg(f)
lim

N→∞
4−Nhf

(
[2N ]P

)
,

where f ∈ K(E) is any nonconstant even function.

Remark 9.2. From (VIII.9.1), the canonical height is well-defined and independent
of the choice of f . We remark that some authors use a canonical height that is equal
to 2ĥ. This is more natural in some contexts, for example it eliminates a power of 2
in the statement of the conjecture of Birch and Swinnerton-Dyer (C.16.5).

Theorem 9.3. (Néron, Tate) Let E/K be an elliptic curve, and let ĥ be the canoni-
cal height on E.
(a) For all P,Q ∈ E(K̄) we have

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q) (parallelogram law).

(b) For all P ∈ E(K̄) and all m ∈ Z,

ĥ
(
[m]P

)
= m2ĥ(P ).
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(c) The canonical height ĥ is a quadratic form on E, i.e., ĥ is an even function, and
the pairing

〈 · , · 〉 : E(K̄)× E(K̄) −→ R,

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q),

is bilinear.
(d) Let P ∈ E(K̄). Then ĥ(P ) ≥ 0, and

ĥ(P ) = 0 if and only if P is a torsion point.

(See also Exercise 8.6.)
(e) Let f ∈ K(E) be an even function. Then

(deg f)ĥ = hf +O(1),

where the O(1) depends on E and f .

Further, if ĥ′ : E(K̄) → R is any other function satisfying (e) for some nonconstant
even function f and satisfying (b) for some integer m ≥ 2, then ĥ′ = ĥ.

PROOF. We start with (e) and then return to (a)–(d).
(e) In the course of proving (VIII.9.1) we found a constant C, depending on f , such
that for all integers N ≥ M ≥ 0 and all points P ∈ E(K̄),

∣
∣
∣4−Nhf

(
[2N ]P

)
− 4−Mhf

(
[2M ]P

)∣∣
∣ ≤ 4−MC.

Taking M = 0 and letting N → ∞ gives the desired estimate
∣
∣(deg f)ĥ(P )− hf (P )

∣
∣ ≤ C.

(a) From (VIII.6.2) we have

hf (P +Q) + hf (P −Q) = 2hf (P ) + 2hf (Q) +O(1).

We replace P and Q by [2N ]P and [2NQ], respectively, divide by (deg f)4N , and
let N → ∞. The O(1) term disappears and we obtain

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q).

(b) From (VIII.6.4b) we have

hf

(
[m]P

)
= m2hf (P ) +O(1).

As usual, we replace P by [2N ]P , divide by 4N , and let N → ∞. (Alternative proof:
Use (a) and induction on m.)
(c) It is a standard fact from linear algebra that a function satisfying the parallelo-
gram law is quadratic. For completeness, we include a proof.
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Putting P = O in the parallelogram law (a) shows that ĥ(−Q) = ĥ(Q), so ĥ is
even. By symmetry, it suffices to prove that

〈P +R,Q〉 = 〈P,Q〉+ 〈R,Q〉,

which in terms of ĥ is

ĥ(P +Q+R)− ĥ(P +R)− ĥ(P +Q)− ĥ(R+Q) + ĥ(P ) + ĥ(Q) + ĥ(R) = 0.

Four applications of the parallelogram law and the evenness of ĥ yield

ĥ(P +R+Q) + ĥ(P +R−Q)− 2ĥ(P +R)− 2ĥ(Q) = 0,

ĥ(P −R+Q) + ĥ(P +R−Q)− 2ĥ(P )− 2ĥ(R−Q) = 0,

ĥ(P −R+Q) + ĥ(P +R+Q)− 2ĥ(P +Q)− 2ĥ(R) = 0,

2ĥ(R+Q) + 2ĥ(R−Q)− 4ĥ(R)− 4ĥ(Q) = 0.

The alternating sum of these four equations is the desired result.
(d) The first conclusion is clear, since hf (P ) ≥ 0 for all functions f and all points P ,
so ĥ(P ) is a limit of nonnegative values. For the second, we observe that one impli-
cation is immediate, since if P is a torsion point, then [2N ]P takes on only finitely
many values as N varies, so 4−Nhf

(
[2N ]P

)
→ 0 as N → ∞.

Conversely, let P ∈ E(K ′) for some finite extension K ′/K, and suppose
that ĥ(P ) = 0. Then

ĥ
(
[m]P

)
= m2ĥ(P ) = 0 for every integer m,

so from (e) there is a constant C such that for all m ∈ Z,

hf

(
[m]P

)
=

∣
∣
∣(deg f)ĥ

(
[m]P

)
− hf

(
[m]P

)∣∣
∣ ≤ C.

Thus the set
{
P, [2]P, [3]P, . . .

}
is contained in

{
Q ∈ E(K ′) : hf (Q) ≤ C

}
.

Now (VIII.6.1) tells us that this set of bounded height is a finite set, so P must have
finite order.

This completes the proof of (a)–(e). Finally, to prove uniqueness, suppose that
there are an integer m ≥ 2 and a nonconstant even function f such that ĥ′ satisfies

ĥ′ ◦ [m] = m2ĥ′ and (deg f)ĥ′ = hf +O(1).

Repeated application of the first equality yields

ĥ′ ◦ [mN ] = m2N ĥ′ for N = 1, 2, 3, . . . .

Further, since ĥ satisfies (e), we have
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ĥ′ − ĥ = O(1).

Hence for any point P ∈ E(K̄) we have

ĥ′(P ) = m−2N ĥ′([mN ]P
)

= m−2N
(
ĥ
(
[mN ]P

)
+O(1)

)

= ĥ(P ) +O(m−2N ) since ĥ satisfies (b).

Letting N → ∞ yields ĥ′(P ) = ĥ(P ).

Remark 9.4. The Mordell–Weil theorem implies that E(K) ⊗ R is a finite-dimen-
sional real vector space, and (VIII.9.3cd) implies that ĥ is a positive definite quadratic
form on the quotient space E(K)/Etors(K), where Etors(K) denotes the torsion
subgroup of E(K). The quotient E(K)/Etors(K) sits as a lattice in the vector
space E(K)⊗R, so it would appear to be clear that the extension of ĥ to E(K)⊗R

is also positive definite. This is true, but as was pointed out by Cassels, one must use
more than just (VIII.9.3cd).

Lemma 9.5. Let V be a finite-dimensional real vector space and let L ⊂ V be a
lattice, i.e., L is a discrete subgroup of V containing a basis for V . Let q : V → R

be a quadratic form, and suppose that q has the following properties:
(i) For P ∈ L, we have q(P ) = 0 if and only if P = 0.

(ii) For every constant C, the set

{P ∈ L : q(P ) ≤ C}

is finite.
Then q is positive definite on V .

PROOF. Choose a basis for V such that for a vector x = (x1, . . . , xr) ∈ V , the
quadratic form q has the form

q(x) =

s∑

i=1

x2
i −

t∑

i=1

x2
s+i,

where s+ t ≤ r = dim(V ). For the existence of such a basis, see for example [143,
Chapter XV, §§3,7] or [296, §12.7]. Using this basis to identify V ∼= R

n as R-vector
spaces, we let μ be the measure on V corresponding to the usual measure on R

n. We
apply the following basic result due to Minkowski:

Let B ⊂ V be a convex set that is symmetric about the origin. If μ(B)
is sufficiently large, then B contains a nonzero lattice point.

For a proof of Minkowski’s result, see for example [108, Theorem 447] or [142,
Chapter 5, Section 3]. Now consider the set



252 VIII. Elliptic Curves over Global Fields

B(ε, δ) =

{

x = (x1, . . . , xr) ∈ V :

s∑

i=1

x2
i ≤ ε and

t∑

i=1

x2
s+i ≤ δ

}

.

The set B(ε, δ) is convex and symmetric about the origin. Further, let

λ = inf
{
q(P ) : P ∈ L, P �= 0

}
.

From (i) and (ii) we have λ > 0.
Now suppose that q is not positive definite on V , so s < r. Then Minkowski’s

theorem tells us that if δ is sufficiently large, then B
(
1
2λ, δ

)
contains a nonzero

lattice point P . (The volume of B
(
1
2λ, δ

)
is infinite if s + t < r, and it grows

like δt/2 as δ → ∞ if s+ t = r.) But the point P satisfies

q(P ) =

s∑

i=1

x2
i −

t∑

i=1

x2
i+s ≤

1

2
λ,

contradicting the definition of λ. Therefore q is positive definite on V .

Proposition 9.6. The canonical height extends to a positive definite quadratic form
on the real vector space E(K)⊗ R.

PROOF. We consider the lattice E(K)/Etors(K) inside the vector space E(K)⊗ R

and apply (VIII.9.5) to get the desired result. Condition (i) of (VIII.9.5) is ex-
actly (VIII.9.3cd). Condition (ii) of (VIII.9.5) follows from (VIII.9.3e), which says
that bounding ĥ is the same as bounding hf , and then applying (VIII.6.1).

We now have the following quantities associated to E/K:

E(K)⊗ R a finite-dimensional vector space.

ĥ a positive definite quadratic form on E(K)⊗ R.

E(K)/Etors(K) a lattice in E(K)⊗ R.

In such a situation, an extremely important invariant is the volume of a fundamental
domain for the lattice, computed with respect to the metric induced by the quadratic
form. For example, the discriminant of a number field K is the volume of its ring
of integers with respect to the quadratic form x �→ TraceK/Q(x

2). Similarly, the
regulator of K is the volume of its unit group via the logarithm mapping and the
usual metric on Euclidean space.

Definition. The canonical height (or Néron–Tate) pairing on E/K is the bilinear
form

〈 · , · 〉 : E(K̄)× E(K̄) −→ R,

defined by

〈P,Q〉 = ĥ(P +Q)− ĥ(P )− ĥ(Q).
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Definition. The elliptic regulator of E/K, denoted by RE/K , is the volume of a

fundamental domain for E(K)/Etors(K) computed using the quadratic form ĥ. In
other words, choose points P1, . . . , Pr ∈ E(K) that generate E(K)/Etors(K), and
then

RE/K = det
(
〈Pi, Pj〉

)
1≤i≤r
1≤j≤r

.

(If r = 0, we set RE/K = 1 by convention.)

An immediate corollary of (VIII.9.6) is the following result.

Corollary 9.7. The elliptic regulator satisfies RE/K > 0.

Remark 9.8. We have defined the elliptic regulator using the absolute height, but
there are situations in which it is more convenient to define the height relative to a
given number field K. The regulator relative to K differs from RE/K by a factor
of [K : Q]r.

Since ĥ(P ) > 0 for all nontorsion points P ∈ E(K), it is natural to ask how
small ĥ(P ) can be if it is not zero. One might guess that ĥ(P ) must be large if the
elliptic curve is “complicated” in some sense. The following precise conjecture is a
strengthened version of a conjecture of Lang [135, page 92].

Conjecture 9.9. Let E/K be an elliptic curve with j-invariant jE and minimal
discriminant DE/K . There is a constant C > 0, depending only on [K : Q], such
that for all nontorsion points P ∈ E(K) we have

ĥ(P ) > Cmax
{
h(jE), log NK/Q DE/K , 1

}
.

Note that the strength of the conjecture lies in the fact that the constant c is inde-
pendent of both the elliptic curve E and the point P . Such estimates have applica-
tions to counting integral points on elliptic curves; see (IX.3.6). We briefly summa-
rize what is currently known about (VIII.9.9).

Theorem 9.10. Let E/K, jE , and DE/K be as in (VIII.9.9). Then the height in-
equality

ĥ(P ) > Cmax
{
h(jE), log NK/Q DE/K , 1

}

is valid for the following choices of C:
(a) (Silverman [254], [260]) Let ν(E) be the number of places v ∈ M0

K such
that ordv(jE) < 0, i.e., the number of primes dividing the denominator of jE .
Then C > 0 may be chosen to depend only on [K : Q] and ν(E).

(b) (Hindry–Silverman [113]) Assume that the ABC conjecture1 is true for the
field K. Then C > 0 may be chosen to depend only on [K : Q] and on the
exponent and constant appearing in the ABC conjecture.

The proof of (VIII.9.10) is beyond the scope of this book, but see Exercise 8.17 for
a special case.

1The ABC conjecture is described in (VIII.11.4), (VIII.11.6). It suffices to assume that the ABC
conjecture is true for some fixed exponent, or equivalently, that Szpiro’s conjecture (VIII.11.1) is true for
some fixed exponent.
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VIII.10 The Rank of an Elliptic Curve

The Mordell–Weil theorem (VIII.6.7) says that the Mordell–Weil group E(K) of an
elliptic curve can be written in the form

E(K) ∼= Etors(K)× Z
r.

As we have seen in (VIII §7), the torsion subgroup Etors(K) is relatively easy to
compute, both in theory and in practice. The rank r is much more mysterious, and an
effective procedure for determining it in all cases is still being sought. There are very
few general facts known concerning the rank of elliptic curves, but there are a large
number of fascinating conjectures. In Chapter X we describe some of the methods
that have been developed for actually computing the group E(K).

The rank of a “randomly chosen” elliptic curve over Q tends to be quite small, and
it is difficult to produce curves E/Q having even moderately high rank. Nonetheless,
there is the following folklore conjecture:

Conjecture 10.1. There exist elliptic curves E/Q of arbitrarily large rank.

A key piece of evidence for this conjecture comes from work of Shafarevich and
Tate [244], who show that the analogous result is true for function fields, i.e., with Q

replaced by the field of rational functions Fp(T ). The Shafarevich–Tate construc-
tion leads to curves with constant j-invariant jE ∈ Fp, but subsequent constructions
by Shioda [251] for F̄p(T ) and Ulmer [295] for Fp(T ) give examples with noncon-
stant j-invariant.

Néron constructed an infinite family of elliptic curves over Q having rank at
least 10 [192], and later authors have constructed families of rank up to 19; see
for example [76, 85, 188]. Within these families, clever search techniques due to
Mestre [171] and others have yielded individual curves of higher rank. For example,
Elkies [76] has produced the elliptic curve

y2 + xy + y = x3 − x2

− 20067762415575526585033208209338542750930230312178956502x

+ 3448161179503055646703298569039072037485594435931918

0361266008296291939448732243429

with rankE(Q) ≥ 28.
Attached to an elliptic curve E/K is a certain Dirichlet series LE/K(s) called

the L-series of E/K; see Exercise 8.19. or (C §16). For the moment, it is enough to
know that the definition of LE/K(s) involves only the number of points on the reduc-
tions Ẽ(kv) for the finite places v ∈ M0

K . There is a famous conjecture of Birch and
Swinnerton-Dyer that says that the order of vanishing of LE/K(s) at s = 1 is exactly
equal to the rank of E(K). The conjecture further asserts that the leading coefficient
in the Taylor series expansion of LE/K(s) around s = 1 should be expressible in
terms of various global arithmetic quantities associated to E(K), including the el-
liptic regulator RE/K . Thus in some sense, the conjecture of Birch and Swinnerton-
Dyer is a local–global principle for elliptic curves, since it hypothetically shows how
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information about the v-adic behavior of E for all places v ∈ MK determines global
information such as the rank of E(K) and the elliptic regulator RE/K . For further
discussion of L-series and the conjecture of Birch and Swinnerton-Dyer, including
some progress toward proving it, see (C §16).

In addition to wanting an effective method for computing the rank of an elliptic
curve, it would be good to have a theoretical bound for the size of a generating
set. Based partly on an analogy with the problem of computing generators for the
unit group in a number field and partly on a number of deep conjectures in analytic
number theory, Serge Lang suggested the following estimate.

Conjecture 10.2. (Lang [138], [141, Conjecture III.6.4]) Let ε > 0 and let E/Q be
an elliptic curve of rank r. Then there is a basis P1, . . . , Pr for the free part of E(Q)
satisfying

max
1≤i≤r

ĥ(Pi) ≤ Cr2

ε |DE/Q|
1
12+ε.

Here ĥ is the canonical height on E (VIII §9), DE/Q is the minimal discriminant
of E/Q (VIII §8), and Cε is a constant depending only on ε.

Lang’s conjecture is actually more precise than (VIII.10.2); see [138] or [141, Con-
jecture III.6.4].

Since ĥ is a logarithmic height, the conjecture says that the x-coordinates of
the generators may grow exponentially with the discriminant of the curve. This is
similar to the way in which the height H(u) of a generator for the unit group in a
real quadratic field often grows exponentially with the discriminant of the field. Of
course, it is easy to chose a sequence of fields such that H(u) grows polynomially,
but on average, one expects the growth to be exponential. The following example of
Bremner and Cassels illustrates this exponential behavior. They show that the curve

y2 = x3 + 877x

has rank 1 and that the x-coordinate of the smallest generator P is

x(P ) =

(
612776083187947368101

78841535860683900210

)2

.

We compute
log ĥ(P )

log |DE/Q|
≈ 0.158,

so this example is roughly in the range suggested by Lang’s conjecture.

VIII.11 Szpiro’s Conjecture and ABC

For ease of exposition, we restrict attention in this section to elliptic curves defined
over Q. Let E/Q be such a curve, and let

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6
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be a global minimal Weierstrass equation (VIII.8.3) for E/Q. The discriminant ΔE

of this equation is then the minimal discriminant of E/Q, or, more properly, the
minimal discriminant of E/Q is the ideal generated by ΔE .

The primes dividing ΔE are the primes for which E has bad reduction. There is
another quantity associated to E that also encodes the primes of bad reduction. It is
called the conductor of E and is denoted by NE . The following definition of NE is
not quite correct, but suffices for our purposes. We write NE as a product

NE =
∏

p prime

pfp(E),

where

fp(E) =

⎧
⎪⎨

⎪⎩

0 if E has good reduction at p,

1 if E has multiplicative reduction at p,

2 if E has additive reduction at p.

(For p = 2 or 3, if E has additive reduction, then fp(E) may be greater than 2, but in
any case it always satisfies f3(E) ≤ 5 and f2(E) ≤ 8. See [266, IV §10] for further
information about the conductor of an elliptic curve.)

Roughly speaking, the conductor NE is the product of the primes at which E has
bad reduction raised to small powers, while the discriminant ΔE is a product of the
same primes, but they may sometimes appear to large powers. A deep conjecture
made by Szpiro in 1983 says that although an occasional prime may appear in ΔE

to a high power, most primes do not.

Conjecture 11.1. (Szpiro’s conjecture) For every ε > 0 there exists a κε such that
for all elliptic curves E/Q,

|ΔE | ≤ κεN
6+ε
E .

Although the statement of (VIII.11.1) seems relatively innocuous, the next result
gives some indication of its strength.

Proposition 11.2. Szpiro’s conjecture (easily) implies Fermat’s last theorem for all
sufficiently large exponents, i.e., if n is sufficiently large, then the Fermat equa-
tion an + bn = cn has no solutions with a, b, c ∈ Z and abc �= 0.

PROOF. Suppose that an + bn = cn with a, b, c ∈ Z and abc �= 0. We consider the
elliptic curve (sometimes called a Frey curve)

E : y2 = x(x+ an)(x− bn).

This Weierstrass equation for E has discriminant

Δa,b,c = 16a2nb2n(an + bn)2 = 16(abc)2n.

The minimal discriminant of E/Q, which for notational clarity we denote by Δmin
E ,

may be somewhat smaller than Δa,b,c, but it cannot be too much smaller. More pre-
cisely, we prove below (VIII.11.3a) that the minimal discriminant of E/Q satisfies
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|Δmin
E | ≥ |abc|2n

28
.

Szpiro’s conjecture (VIII.11.1) relates the minimal discriminant Δmin
E to the con-

ductor NE , where we observe that the conductor has the trivial upper bound

NE =
∏

p|2abc
pfp(E) ≤

∏

p|2abc
p2 ≤ |2abc|2.

Szpiro’s conjecture with ε = 1 gives

|abc|2n
28

≤ |Δmin
E | ≤ κN7

E ≤ κ|2abc|14

for an absolute constant κ. Thus

|abc|2n−14 ≤ 222κ,

and since we certainly have |abc| ≥ 2, this inequality yields an absolute upper bound
for n. Hence if n is sufficiently large, then the equation an+bn = cn has no solutions
in nonzero integers.

Lemma 11.3. Let A,B,C ∈ Z be nonzero integers satisfying

A+B = C and gcd(A,B,C) = 1,

and let E/Q be the elliptic curve

E : y2 = x(x+A)(x−B).

(a) The minimal discriminant ΔE of E is given by either

|ΔE | = 24|ABC|2 or |ΔE | = 2−8|ABC|2.

In particular,
|ΔE | ≥ 2−8|ABC|2.

(b) The curve E has multiplicative reduction modulo p for all odd primes divid-
ing ABC.

PROOF. (a) The given Weierstrass equation for E has discriminant

Δ = 16A2B2(A+B)2 = 16A2B2C2

and associated quantities

c4 = 16(A2 +AB +B2) and c6 = −32(2A3 + 3A2B + 3AB2 + 2B3).

Let x = u2x′ + r and y = u3y′ + u2sx′ + t be a change of variables that creates
a global minimal Weierstrass equation for E; see (VIII.8.3). Applying (VII.1.3d)
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one prime at a time, we deduce that u, r, s, t ∈ Z. The change of variable formulas
in (III §1) then imply that

u4 | c4 and u6 | c6.

A simple resultant or Euclidean algorithm calculation gives the identities

(22A2 − 8AB − 8B2)c4 + (A+ 2B)c6 = 288A2,

−(8A2 + 8AB − 22B2)c4 − (2A+B)c6 = 288B2.

Hence, using the assumption that gcd(A,B) = 1, we find that

u4 | gcd(288A4, 288B4) = 288 = 25 · 32,

from which it follows that u = 1 or 2. Therefore the absolute value of the minimal
discriminant ΔE of E/Q,

|ΔE | = |u−12Δ| = |u−12(4ABC)2|,

is equal to either 16|ABC|2 or 2−8|ABC|2.
(b) We recall from (a) that the c4 value and the discriminant Δ of the Weierstrass
equation y2 = x(x+A)(x−B) are

c4 = 16(A2 +AB +B2) and Δ = 16A2B2C2.

For any prime p, we have from (VII.5.1) that

E has good reduction if p � Δ,

E has multiplicative reduction if p | Δ and p � c4,

E has additive reduction if p | Δ and p | c4.

Let p be an odd prime dividing Δ. If p | A or p | B, then the assumption that
gcd(A,B) = 1 implies that p � c4, so E has multiplicative reduction at p. Similarly,
if p | C, so A+B ≡ 0 (mod p), then c4 ≡ 16A2 (mod p), and hence again p � c4
and E has multiplicative reduction at p.

Szpiro’s conjecture is closely related to the ABC conjecture that was proposed
by Masser and Oesterlé in 1985; see [196, Part I].

The ABC Conjecture 11.4. (Masser–Oesterlé) For every ε > 0 there exists a
constant κε such that for all nonzero integers A,B,C ∈ Z satisfying

A+B = C and gcd(A,B,C) = 1,

we have

max
{
|A|, |B|, |C|

}
≤ κε

(
∏

p|ABC

p

)1+ε

.

(The product is over all primes dividing ABC.)
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The intuition behind the ABC conjecture is that in any sum of three relatively
prime integers, it is not possible for all three terms to be divisible by many high prime
powers. It is not hard to show that the ABC conjecture implies Szpiro’s conjecture,
and the converse is also true if one allows a slightly larger exponent.

Proposition 11.5. (a) If Szpiro’s conjecture (VIII.11.1) is true, then the ABC con-
jecture (VIII.11.4) is true with exponent 3

2 . (See also Exercise 8.20.)
(b) The ABC conjecture implies Szpiro’s conjecture.

PROOF. (a) Let A,B,C be as in the statement of the ABC conjecture. Relabeling
if necessary, we may assume that C > B > A > 0, so in particular

2B > A+B = C.

We consider the elliptic curve

E : y2 = x(x+A)(x−B).

From (VIII.11.3a) we know that the minimal discriminant of E satisfies

|ΔE | ≥ 2−8(ABC)2.

On the other hand, we know from (VIII.11.3b) that E has multiplicative reduction at
all odd primes of bad reduction, so directly from the definition of the conductor,

NE = 2e
∏

p≥3
p|ABC

p for some e ≤ 2.

Applying Szpiro’s conjecture to E, we deduce that for every ε > 0 there is a κε >
0 such that

2−8(ABC)2 ≤ |ΔE | ≤ κεN
6+ε
E ≤ κε2

12+2ε
∏

p|ABC

p6+ε.

Using the fact that A ≥ 1 and B > 1
2C yields

2−10C4 ≤ κε2
12+2ε

∏

p|ABC

p6+ε,

and taking fourth roots gives the ABC conjecture with exponent 3
2 .

(b) Let E/Q be an elliptic curve given by a minimal Weierstrass equation. Then as
described in (III §2), the discriminant and associated quantities c4 and c6 are related
by the formula

1728Δ = c34 − c26.

We will prove (b) under the assumption that gcd(c34, c
2
6) = 1 and leave the general

case as an exercise for the reader; see Exercise 8.21. This assumption allows us to
apply the ABC conjecture with
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A = c34, B = −c26, and C = 1728Δ,

which yields

max
{
|c34|, |c26|, |1728Δ|

}
≤ κε

∏

p|6c4c6Δ
p1+ε.

The product on the right is clearly smaller than |6c4c6NE |1+ε, so we obtain the
following three inequalities:

|c4|2−ε ≤ κε|6c6NE |1+ε,

|c6|1−ε ≤ κε|6c4NE |1+ε,

|1728Δ| ≤ κε|6c4c6NE |1+ε.

We are going to take an appropriate (multiplicative) linear combination of these
inequalities to eliminate c4 and c6. To do this, we raise the first inequality to
the 2 + 2ε power, raise the second inequality to the 3 + 3ε power, raise the third
inequality to the 1− 5ε power, and multiply the resulting three inequalities. Cancel-
ing |c4|4+2ε−2ε2 |c6|3−3ε2 from both sides yields

|1728Δ|1−5ε ≤ κ6
ε(6NE)

6+6ε.

This is Szpiro’s conjecture, up to adjusting the ε.

Remark 11.6. It is not difficult to formulate versions of Szpiro’s conjecture and
the ABC conjecture over a number fields. For example, if E/K is an elliptic curve
defined over a number field K, we define the (naive) conductor of E/K to be the
ideal

NE/K =
∏

p

pfp(E),

where fp(E) is 0, 1, or 2 according to whether E has good, multiplicative, or ad-
ditive reduction at p. Then Szpiro’s conjecture says that for every ε > 0 there is a
constant κ = κ(ε,K), depending only on ε and K, such that

NK/Q DE/K ≤ κ(NK/Q NE/K)6+ε.

Next suppose that A,B,C ∈ RK satisfy A+B = C. Then the ABC conjecture
says that for every ε > 0 there is a constant κ = κ(ε,K), depending only on ε and K,
such that

HK

(
[A,B,C]

)
≤ κ

∏

p|ABC

(NK/Q p)1+ε.

(There is no relative primality condition on A, B, and C, since any common “factors”
leave the left-hand side unchanged while increasing the right-hand side.)

It is very interesting to ask how the constants κ appearing in these conjectures
depend on the field K.
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Remark 11.7. Let k be a field of characteristic 0. There are analogues of Szpiro’s
conjecture and the ABC conjecture in which Q is replaced by a rational func-
tion field k(T ), or more generally, the number field K is replaced by the function
field k(C) of an algebraic curve C. Somewhat surprisingly, both conjectures are quite
easy to prove in the function field setting, and indeed considerably stronger results
are known. For example, the three-term sum in the ABC conjecture may be replaced
by a sum having more terms. See [157, 258, 278] for A+B = C and [31, 158, 300]
for A1 + · · ·+An = 0.

Remark 11.8. Frey has noted that Szpiro’s conjecture (VIII.11.1) implies the uni-
form boundedness of torsion on elliptic curves (VIII.7.5), (VIII.7.5.1). The idea is as
follows. Suppose that P ∈ E(K) is a point of exact order N , and let φ : E → E′

be the isogeny whose kernel is the subgroup generated by P . Assuming that N is
sufficiently large (depending only on the field K), an elementary calculation using
Tate curves (see (C §14) or [266, Chapter V]) shows that there are ideals a and b such
that the minimal discriminants of E and E′ have the form

DE = abN and DE′ = aNb.

Since the primes of bad reduction divide the discriminant, we see that the conduc-
tors NE and NE′ divide a2b2. We apply Szpiro’s conjecture to E and E′ to obtain

NK/Q(DEDE′) ≤ κε NK/Q(NENE′)6+ε,

and then substituting the discriminants’ and conductors’ values gives

NK/Q(ab)
N+1 ≤ κε NK/Q(ab)

12+2ε.

Discarding the finitely many elliptic curves defined over K with everywhere good
reduction (IX.6.1), we may assume that NK/Q(ab) ≥ 2, and then the last inequality
gives a bound for N that is independent of the curve E. See [89, 90, 113] for further
details.

Exercises

8.1. Let E/K be an elliptic curve, let m ≥ 2 be an integer, let HK be the ideal class group
of K, and let

S = {v ∈ M0
K : E has bad reduction at v} ∪ {v ∈ M0

K : v(m) �= 0} ∪M∞
K .

Assume that E[m] ⊂ E(K). Prove the following quantitative version of the weak Mordell–
Weil theorem:

rankZ/mZ E(K)/mE(K) ≤ 2#S + 2 rankZ/mZ HK [m].

8.2. For each integer d ≥ 1, let Ed be the elliptic curve

E : y2 = x3 − d2x.
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Prove that
Ed(Q) ∼= (finite group) × Z

r

for an integer r satisfying
r ≤ 2ν(2d),

where ν(N) denotes the number of distinct primes dividing N . (Hint. Use Exercise 8.1.)

8.3. Let E/K be an elliptic curve and let L/K be an (infinite) algebraic extension. Suppose
that the rank of E(M) is bounded as M ranges over all finite extensions M/K such that M
is contained in L, i.e., assume that

sup
K⊂M⊂L
[M :K] finite

rankE(M)

is finite.
(a) Prove that E(L)⊗Q is a finite-dimensional Q-vector space.

(b) Assume further that L/K is Galois and that Etors(L) is finite. Prove that E(L) is finitely
generated.

8.4. Assume that μm ⊂ K. Prove that the maximal abelian extension of K of exponent m is
the field

K(a1/m : a ∈ K).

(Hint. Use (VIII.2.2), which in this case says that every homomorphism χ : GK̄/K → μm

has the form χ(σ) = ασ/α for some α ∈ K̄∗ satisfying αm ∈ K.)

8.5. Let ξ ∈ H1(GK̄/K ,M) be unramified at v. Prove that the cohomology class of ξ con-
tains a 1-cocycle c : GK̄/K → M satisfying cσ = 0 for all σ ∈ Iv . (Hint. Use the inflation–
restriction sequence (B.2.4) for Iv ⊂ GK̄/K .)

8.6. Prove Kronecker’s theorem: Let x ∈ Q̄
∗. Then H(x) = 1 if and only if x is a root of

unity. (This is the multiplicative group version of (VIII.9.3d).)

8.7. (a) Give an explicit upper bound, in terms of N , C, and d, for the number of points in
the set {

P ∈ P
N (Q̄) : H(P ) ≤ C and

[
Q(P ) : Q

]
≤ d

}
.

(b) Let
νK(N,C) = #

{
P ∈ P

N (K) : HK(P ) ≤ C
}
.

Prove that

lim
C→∞

νQ(N,C)

CN+1
=

2N

ζ(N + 1)
,

where ζ(s) is the Riemann zeta function. (For further information about νK(N,C),
see (VIII.5.12).)

8.8. Prove the following basic properties of height functions.
(a) H(x1x2 · · ·xN ) ≤ H(x1)H(x1) · · ·H(xN ).

(b) H(x1 + x2 + · · ·+ xN ) ≤ NH(x1)H(x2) · · ·H(xN ).
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(c) For P = [x0, . . . , xN ] ∈ P
N (Q̄) and Q = [y0, . . . , yM ] ∈ P

M (Q̄), define

P � Q = [x0y0, x0y1, . . . , xiyj , . . . , xNyM ] ∈ P
MN+M+N (Q̄).

Prove that
H(P � Q) = H(P )H(Q).

(The map (P,Q) �→ P � Q is the Segre embedding of P
N × P

M into P
MN+M+N .

See [111, exercise I.2.14].)
(d) Let M =

(
N+d
N

)
−1 and let f0(X), . . . , fM (X) be the M distinct monomials of degree d

in the N + 1 variables X0, . . . , XN . For any point P = [x0, . . . , xN ] ∈ P
N (Q̄), let

P (d) =
[
f0(P ), . . . , fM (P )

]
∈ P

M (Q̄).

Prove that
H(P (d)) = H(P )d = H

(
[xd

0, . . . , x
d
N ]

)
.

(The map P �→ P (d) is the d-uple embedding of Pn into P
M . See [111, exercise I.2.12].)

8.9. Let x0, . . . , xN ∈ K and let b be the fractional ideal of K generated by x0, . . . , xN .
Prove that

HK

(
[x0, . . . , xN ]

)
= (NK/Q b)−1

∏

v∈M∞
K

max
0≤i≤N

{
|xi|v

}nv .

8.10. Let F be the rational map

F : P2 −→ P
2, [x, y, z] �−→ [x2, xy, z2],

from (I.3.6). Note that F is a morphism at every point except at [0, 1, 0], where it is not defined.
Prove that there are infinitely many points P ∈ P

2(Q) such that

H
(
F (P )

)
= H(P ).

In particular, (VIII.5.6) is false if the map F is merely required to be a rational map.

8.11. Prove the following generalization of (VIII.7.2) to arbitrary number fields. Let E/K be
an elliptic curve given by an equation

y2 = x3 +Ax+B

with A,B ∈ R, and let Δ = 4A3 + 27B2. Let P ∈ E(K) be a point of exact order m ≥ 3,
and let v ∈ M0

K .
(a) If m = pn is a prime power, prove that

−6rv ≤ ordv

(
y(P )2

)
≤ 6rv + ordv(Δ),

where

rv =

[
ordv(p)

pn − pn−1

]
.

(b) If m = 2pn is twice a prime power, prove that

0 ≤ ordv

(
y(P )2

)
≤ 2rv + ordv(Δ),

where rv is as in (a).
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(c) If m is not of the form pn or 2pn, prove that

0 ≤ ordv

(
y(P )2

)
≤ ordv(Δ).

8.12. Calculate E(Q)tors for each of the following elliptic curves.

(a) y2 = x3 − 2 (i) y2 + xy + y = x3 − x2 − 14x+ 29

(b) y2 = x3 + 8 (j) y2 + xy = x3 − 45x+ 81

(c) y2 = x3 + 4 (k) y2 + 43xy − 210y = x3 − 210x2

(d) y2 = x3 + 4x (l) y2 = x3 − 4x

(e) y2 − y = x3 − x2 (m) y2 = x3 + 2x2 − 3x

(f) y2 = x3 + 1 (n) y2 + 5xy − 6y = x3 − 3x2

(g) y2 = x3 − 43x+ 166 (o) y2 + 17xy − 120y = x3 − 60x2

(h) y2 + 7xy = x3 + 16x

8.13. (a) Let E/K be an elliptic curve and let P ∈ E(K) be a point of order at least 4. Prove
that there is a change of coordinates such that E has a Weierstrass equation of the form

E : y2 + uxy + vy = x3 + vx2

with u, v ∈ K and P = (0, 0).
(b) Prove that there is a one-parameter family of elliptic curves E/K having a K-rational

point of order 6. (Hint. Set [3]P = [−3]P in (a) and find a relation between u and v.)
Same question for points of order 7, order 9, and order 12.

(c) Prove that the elliptic curves E/K having a K-rational point of order 11 are parametrized
by the K-rational points of a certain curve of genus one.

8.14. (a) Generalize (VIII.8.2) as follows. Let E/K be an elliptic curve, and let a be an
integral ideal in ā

−1
E/K , i.e., in the inverse of the ideal class āE/K . Prove that there is a

Weierstrass equation of E/K having coefficients ai ∈ R and discriminant Δ satisfying

(Δ) = DE/Ka
12.

(b) Suppose that E/K has everywhere good reduction and that the class number of K is
relatively prime to 6. Prove that E/K has a global minimal Weierstrass equation.

(c) Prove that every elliptic curve E/K has a Weierstrass equation with coefficients ai ∈ R
and discriminant Δ satisfying

|NK/Q Δ| ≤ |DiscK/Q|6|NK/Q DE/K |.

Qualitatively, this says that there is a Weierstrass equation for E whose nonminimality is
bounded solely in terms of K. Such an equation might be called quasiminimal.

(d) Let b̄ be an ideal class of K. Prove that there is an elliptic curve E/K such that āE/K = b̄.
In particular, if K does not have class number one, then there exist elliptic curves over K
that do not have global minimal Weierstrass equations. This gives a converse to (VIII.8.3).
(See also [15] for an estimate of how many E/K have āE/K equal to b̄.)

8.15. Prove that there are no elliptic curves E/Q having everywhere good reduction.
(Hint. Suppose that there is a Weierstrass equation with integer coefficients and discrimi-
nant Δ = ±1. Use congruences modulo 8 to show that a1 is odd, and hence c4 ≡ 1 (mod 8).
Substitute c4 = u± 12 into the formula c34 − c26 = ±1728. Show that u is either a square or
three times a square. Rule out both cases by reducing modulo 8.)
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8.16. Show that the conclusion of (VIII.9.5) is false if the quadratic form q is not required to
satisfy the finiteness condition (ii).

8.17. Fix nonzero integers A and B with 4A3+27B2 �= 0. For each integer d �= 0, let Ed/Q
be the elliptic curve

Ed : y2 = x3 + d2Ax+ d3B.

Assuming that d is squarefree, prove the following properties of Ed:
(a) jE is independent of d.
(b) log |DE/Q| = 6 log |d|+O(1).

(c) Every P ∈ Ed(Q) satisfies either [2]P = 0 or ĥ(P ) > 1
8
log |d|+O(1).

(d) For all but finitely many squarefree integers d, the torsion subgroup of Ed(Q) is one
of {0}, Z/2Z, and (Z/2Z)2.

Note that the O(1) bounds in (b) and (c) may depend on A and B, but they should be inde-
pendent of d. In particular, (c) provides a proof of (VIII.9.9) for the family of curves Ed.
(Hint for (c). If P = (r, s) ∈ Ed(Q), then P ′ = (r/d, s/d3/2) ∈ E1(Q̄). Prove the fol-
lowing facts: (i) ĥ(P ) = ĥ(P ′); (ii) either s = 0 or hy(P

′) is greater than 3
8
log |d|;

and (iii) |ĥ− 1
3
hy| is bounded.)

8.18. Let E/K be an elliptic curve given by a Weierstrass equation

y2 = x3 +Ax+B.

(a) Prove that there are absolute constants c1 and c2 such that for all points P ∈ E(K̄) we
have ∣∣hx

(
[2]P

)
− 4hx(P )

∣∣ ≤ c1h
(
[A,B, 1]

)
+ c2.

Find explicit values for c1 and c2. (Hint. Combine the proofs of (VIII.4.2) and (VIII.5.6),
keeping track of the dependence on the constants. In particular, note that the use of the
Nullstellensatz in (VIII.5.6) can be replaced by the explicit identities given in (VIII.4.3).)

(b) Find absolute constants c3 and c4 such that for all points P ∈ E(K̄) we have

∣∣
∣
∣
1

2
hx(P )− ĥ(P )

∣∣
∣
∣ ≤ c3h

(
[A,B, 1]

)
+ c4.

(Hint. Use (a) and the proof of (VIII.9.1).)
(c) Prove that for all integers m ≥ 1 and all points P,Q ∈ E(K̄) we have

∣∣hx

(
[m]P

)
−m2hx(P )

∣∣ ≤ 2(m2 + 1)
(
c3h

(
[A,B, 1]

)
+ c4

)

and

hx(P +Q) ≤ 2hx(P ) + 2hx(Q) + 5
(
c3h

(
[A,B, 1]

)
+ c4

)
.

(Hint. Use (b) and (VIII.9.3).)
(d) Let Q1, . . . , Qr ∈ E(K) be a set of generators for E(K)/2E(K). Find absolute con-

stants c5, c6, and c7 such that the set of points P ∈ E(K) satisfying

hx(P ) ≤ c5 max
1≤i≤r

hx(Qi) + c6h
(
[A,B, 1]

)
+ c7

contains a complete set of generators for E(K). (Hint. Follow the proof of (VIII.3.1),
using (c) to evaluate the constants that appear.)
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8.19. The L-Series Attached to an Elliptic Curve. Let E/Q be an elliptic curve and choose a
global minimal Weierstrass equation for E/Q,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(See (VIII.8.3).) For each prime p, let Ẽ denote the reduction of the Weierstrass equation
modulo p, and let

tp = p+ 1−#Ẽ(Fp).

The L-series associated to E/Q is defined by the Euler product

LE(s) =
∏

p|Δ(E)

(1− tpp
−s)−1

∏

p�Δ(E)

(1− tpp
−s + p1−2s)−1.

(a) If LE(s) is expanded as a Dirichlet series
∑

cnn
−s, show that for all primes p, its pth co-

efficient satisfies cp = tp.
(b) If E has bad reduction at p, so p | Δ(E), prove that tp equals 1, −1, or 0 according

to whether the reduced curve Ẽ (mod p) has a node with tangents whose slopes are
rational over Fp (split multiplicative reduction), a node with tangents whose slopes are
quadratic over Fp (nonsplit multiplicative reduction), or a cusp (additive reduction). (Cf.
Exercise 3.5).

(c) Prove that the Euler product for LE(s) converges for all s ∈ C with Re(s) > 3
2

. (Hint.
Use (V.1.1).)

There are many important theorems and conjectures concerning the L-series of elliptic curves;
see (C §16).

8.20. We proved in (VIII.11.5a) that Szpiro’s conjecture implies a weaker form of the ABC
conjecture with exponent 3

2
. This exercise explains how to reduce the exponent to 6

5
.

Relabeling A,B,C if necessary, we may assume that C > B > A > 0. Let E be the
curve y2 = x(x+A)(x−B) used in the proof of (VIII.11.5a).
(a) Prove that there is an isogeny of degree 2 from E to the elliptic curve

E′ : y2 = x3 − 2(A−B)x2 + C2x.

Show that the discriminant of the equation for E′ is Δ′ = −28ABC4.
(b) Prove a version of (VIII.11.3) for E′. In particular, prove that E′ has multiplicative re-

duction modulo p for all odd primes dividing ABC and that its minimal discriminant
satisfies

|ΔE′ | ≥ 2−28|ABC4|.
(c) Apply Szpiro’s conjecture to E′ and deduce that

C ≤ κε

∏

p|ABC

p
6
5
+ε,

where the constant κε depends only on ε.

8.21. We proved (VIII.11.5b) that the ABC conjecture (VIII.11.4) implies Szpiro’s conjec-
ture (VIII.11.1) under the assumption that gcd(c4, c6) = 1. Prove that this implication is
still true when gcd(c4, c6) > 1. (Hint. Let G = gcd(c34, c

2
6) and apply the ABC conjecture

with A = c34/G, B = −c26/G, and C = Δ/G. Use the minimality of the equation to bound
the powers of the primes p dividing G. Also show that if p ≥ 5 divides G, then E has additive
reduction at p, so p2 | NE .)
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8.22. Let m,n, � be positive integers and consider the equation

xm + yn = z�. (∗)

Assuming the ABC conjecture (VIII.11.4), prove the following two statements (see also Ex-
ercise 9.17):
(a) If m−1 + n−1 + �−1 < 1, then (∗) has only finitely many solutions x, y, z ∈ Z with

gcd(x, y, z) = 1.
(b) There is a constant κ′, depending only on the constant appearing in the ABC conjecture,

such that if (∗) has a solution in relatively prime integers satisfying |x|, |y|, |z| ≥ 2, then

max{m,n, �} ≤ κ′.

8.23. Let A,B,C ∈ Z be as in the statement of the ABC conjecture (VIII.11.4), and let

E : y2 = x(x+A)(x−B)

be the elliptic curve used in the proof of (VIII.11.5a). Assume further that

A ≡ 0 (mod 16) and B ≡ 3 (mod 4).

(a) Prove that the substitutions x �→ 4x and y �→ 8y + 4x give a global minimal Weierstrass
equation for E,

y2 + xy = x3 +
A−B − 1

4
x2 − AB

16
x.

(b) Verify that the Weierstrass equation in (a) satisfies

c4 = A2 +AB +B2, c6 =
(B −A)(A+ C)(B + C)

2
, and Δ =

(
ABC

16

)2

.

(c) Prove that E has multiplicative reduction for every prime p dividing Δ.
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