
Chapter III

The Geometry of Elliptic
Curves

Elliptic curves, our principal object of study in this book, are curves of genus one
having a specified base point. Our ultimate goal, as the title of the book indicates,
is to study the arithmetic properties of these curves. In other words, we will be int-
erested in analyzing their points defined over arithmetically interesting fields, such
as finite fields, local (p-adic) fields, and global (number) fields. However, before
doing so we are well advised to study the properties of these curves in the simpler
situation of an algebraically closed field, i.e., to study their geometry. This reflects the
general principle in Diophantine geometry that in attempting to study any significant
problem, it is essential to have a thorough understanding of the geometry before one
can hope to make progress on the number theory. It is the purpose of this chapter to
make an intensive study of the geometry of elliptic curves over arbitrary algebraically
closed fields. (The particular case of elliptic curves over the complex numbers is
studied in more detail in Chapter VI.)

We start in the first two sections by looking at elliptic curves given by explicit
polynomial equations called Weierstrass equations. Using these explicit equations,
we show, among other things, that the set of points of an elliptic curve forms an
abelian group, and that the group law is given by rational functions. Then, in Sec-
tion 3, we use the Riemann–Roch theorem to study arbitrary elliptic curves and to
show that every elliptic curve has a Weierstrass equation, so the results from the first
two sections in fact apply generally. The remainder of the chapter studies, in various
guises, the algebraic maps between elliptic curves. In particular, since the points of
an elliptic curve form a group, for each integer m there is a multiplication-by-mmap
from the curve to itself. It would be difficult to overestimate the importance of these
multiplication maps in any attempt to study the arithmetic of elliptic curves, which
will explain why we devote so much space to them in this chapter.
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42 III. The Geometry of Elliptic Curves

III.1 Weierstrass Equations

Our primary objects of study are elliptic curves, which are curves of genus one hav-
ing a specified base point. As we will see in (III §3), every such curve can be written
as the locus in P

2 of a cubic equation with only one point, the base point, on the line
at ∞. Then, after X and Y are scaled appropriately, an elliptic curve has an equation
of the form

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3.

Here O = [0, 1, 0] is the base point and a1, . . . , a6 ∈ K̄. (It will become clear later
why the coefficients are labeled in this way.) In this section and the next, we study
the curves given by such Weierstrass equations, using explicit formulas as much as
possible to replace the need for general theory.

To ease notation, we generally write the Weierstrass equation for our elliptic curve
using non-homogeneous coordinates x = X/Z and y = Y/Z ,

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

always remembering that there is an extra point O = [0, 1, 0] out at infinity. As usual,
if a1, . . . , a6 ∈ K , then E is said to be defined over K .

If char(K̄) �= 2, then we can simplify the equation by completing the square.
Thus the substitution

y �−→ 1

2
(y − a1x− a3)

gives an equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6,

where
b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6.

We also define quantities

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

Δ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

j = c34/Δ,

ω =
dx

2y + a1x+ a3
=

dy

3x2 + 2a2x+ a4 − a1y
.

One easily verifies that they satisfy the relations

4b8 = b2b6 − b24 and 1728Δ = c34 − c26.

If further char(K̄) �= 2, 3, then the substitution
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y2 = x3 − 3x+ 3

Δ = −2160

y2 = x3 + x

Δ = −64

y2 = x3 − x

Δ = 64

Figure 3.1: Three elliptic curves

y2 = x3

Δ = 0

Cusp: one tangent
direction

y2 = x3 + x2

Δ = 0

Node: two distinct
tangent directions

Figure 3.2: Two singular cubic curves.

(x, y) �−→
(
x− 3b2

36
,

y

108

)

eliminates the x2 term, yielding the simpler equation

E : y2 = x3 − 27c4x− 54c6.

Definition. The quantityΔ is the discriminant of the Weierstrass equation, the quan-
tity j is the j-invariant of the elliptic curve, and ω is the invariant differential asso-
ciated to the Weierstrass equation.

Example 1.1. It is easy to graph the real locus of a Weierstrass equation. Some repre-
sentative examples are shown in Figure 3.1. If Δ = 0, then we will see later (III.1.4)
that the curve is singular. Two sorts of behavior can occur, as illustrated in Figure 3.2.

With these singular examples in mind, we consider the general situation. Let P =
(x0, y0) be a point satisfying a Weierstrass equation

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0,
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and assume that P is a singular point on the curve f(x, y) = 0.Then from (I.1.5) we
have

∂f

∂x
(P ) =

∂f

∂y
(P ) = 0.

It follows that there are α, β ∈ K̄ such that the Taylor series expansion of f(x, y)
at P has the form

f(x, y)− f(x0, y0)

=
(
(y − y0)− α(x − x0)

)(
(y − y0)− β(x− x0)

)− (x− x0)
3.

Definition. With notation as above, the singular point P is a node if α �= β. In this
case, the lines

y − y0 = α(x − x0) and y − y0 = β(x − x0)

are the tangent lines at P . Conversely, if α = β, then we say that P is a cusp, in
which case the tangent line at P is given by

y − y0 = α(x − x0).

To what extent is the Weierstrass equation for an elliptic curve unique? Assuming
that the line at infinity, i.e., the line Z = 0 in P

2, is required to intersect E only
at the one point [0, 1, 0], we will see (III.3.1b) that the only change of variables
fixing [0, 1, 0] and preserving the Weierstrass form of the equation is

x = u2x′ + r and y = u3y′ + u2sx′ + t,

where u, r, s, t ∈ K̄ and u �= 0. It is now a simple (but tedious) matter to make this
substitution and compute the a′i coefficients and associated quantities for the new
equation. The results are compiled in Table 3.1.

It is now clear why the j-invariant has been so named; it is an invariant of the iso-
morphism class of the curve, and does not depend on the particular equation chosen.
For algebraically closed fields, the converse is true, a fact that we establish later in
this section (III.1.4b).

Remark 1.3. As we have seen, if the characteristic of K is different from 2 and 3,
then any elliptic curve over K has a Weierstrass equation of a particularly simple
kind. Thus any proof that involves extensive algebraic manipulation with Weierstrass
equation, for example that of (III.1.4) later in this section, tends to be much shorter
if K is so restricted. On the other hand, even if one is primarily interested in charac-
teristic 0, e.g., K = Q, an important tool is the process of reducing the coefficients
of an equation modulo p for various primes p, including p = 2 and p = 3. So even
for K = Q, it is important to understand elliptic curves in all characteristics. Con-
sequently, we adopt the following policy. All theorems will be stated for a general
Weierstrass equation, but if it makes the proof substantially shorter, we will make the
assumption that the characteristic of K is not 2 or 3 and give the proof in that case.
Then, in the interest of completeness, we return to these theorems in Appendix A
and give the proofs for general Weierstrass equations and arbitrary characteristic.



III.1. Weierstrass Equations 45

ua′1 = a1 + 2s
u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (t+ rs)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1
u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4
u6c′6 = c6

u12Δ′ = Δ
j′ = j

u−1ω′ = ω

Table 3.1: Change-of-variable formulas for Weierstrass equations.

Assuming now that the characteristic of K is not 2 or 3, our elliptic curve(s) have
Weierstrass equation(s) of the form

E : y2 = x3 +Ax +B.

Associated to this equation are the quantities

Δ = −16(4A3 + 27B2) and j = −1728
(4A)3

Δ
.

The only change of variables preserving this form of the equation is

x = u2x′ and y = u3y′ for some u ∈ K̄∗;

and then

u4A′ = A, u6B′ = B, u12Δ′ = Δ.

Proposition 1.4. (a) The curve given by a Weierstrass equation satisfies:

(i) It is nonsingular if and only if Δ �= 0.
(ii) It has a node if and only if Δ = 0 and c4 �= 0.

(iii) It has a cusp if and only if Δ = c4 = 0.

In cases (ii) and (iii), there is only the one singular point.
(b) Two elliptic curves are isomorphic over K̄ if and only if they both have the

same j-invariant.
(c) Let j0 ∈ K̄ . There exists an elliptic curve defined over K(j0) whose j-invariant

is equal to j0.

PROOF. Let E be given by the Weierstrass equation
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E : f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0.

We start by showing that the point at infinity is never singular. Thus we look at the
curve in P

2 with homogeneous equation

F (X,Y, Z) = Y 2Z + a1XY Z + a3Y Z2 −X3 − a2X
2Z − a4XZ2 − a6Z

3

= 0

and at the point O = [0, 1, 0]. Since

∂F

∂Z
(O) = 1 �= 0,

we see that O is a nonsingular point of E.
Next suppose that E is singular, say at P0 = (x0, y0). The substitution

x = x′ + x0 y = y′ + y0

leaves Δ and c4 invariant Table 3.1, so without loss of generality we may assume
that E is singular at (0, 0). Then

a6 = −f(0, 0) = 0, a4 = −∂f

∂x
(0, 0) = 0, a3 =

∂f

∂y
(0, 0) = 0,

so the equation for E takes the form

E : f(x, y) = y2 + a1xy − a2x
2 − x3 = 0.

This equation has associated quantities

c4 = (a21 + 4a2)
2 and Δ = 0.

By definition, E has a node (respectively cusp) at (0, 0) if the quadratic form y2 +
a1xy− a2x

2 has distinct (respectively equal) factors, which occurs if and only if the
discriminant of this quadratic form satisfies

a21 + 4a2 �= 0 (respectively a21 + 4a2 = 0).

This proves the “only if” part of (ii) and (iii).
To complete the proof of (i)–(iii), it remains to show that if E is nonsingular,

then Δ �= 0. To simplify the computation, we assume that char(K) �= 2 and consider
a Weierstrass equation of the form

E : y2 = 4x3 + b2x
2 + 2b4x+ b6.

(See (III.1.3) and (A.1.2a).) The curve E is singular if and only if there is a point
(x0, y0) ∈ E satisfying

2y0 = 12x2
0 + 2b2x0 + 2b4 = 0.
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In other words, the singular points are exactly the points of the form (x0, 0) such
that x0 is a double root of the cubic polynomial 4x3 + b2x

2 + 2b4x+ b6. This poly-
nomial has a double root if and only if its discriminant, which equals 16Δ, vanishes.
This completes the proof of (i)–(iii). Further, since a cubic polynomial cannot have
two double roots, E has at most one singular point.
(b) If two elliptic curves are isomorphic, then the transformation formulas Table 3.1
show that they have the same j-invariant. For the converse, we will assume that
char(K) ≥ 5 (see (III.1.3) and (A.1.2b)). Let E and E′ be elliptic curves with the
same j-invariant, say with Weierstrass equations

E : y2 = x3 +Ax+B,

E′ : y′2 = x′3 +A′x′ +B′.

Then the assumption that j(E) = j(E′) means that

(4A)3

4A3 + 27B2
=

(4A′)3

4A′3 + 27B′2 ,

which yields
A3B′2 = A′3B2.

We look for an isomorphism of the form (x, y) = (u2x′, u3y′) and consider three
cases:

Case 1. A = 0 (j = 0). Then B �= 0, since Δ �= 0, so A′ = 0, and we obtain an
isomorphism using u = (B/B′)1/6.

Case 2. B = 0 (j = 1728). Then A �= 0, so B′ = 0, and we take u = (A/A′)1/4.

Case 3. AB �= 0 (j �= 0, 1728). Then A′B′ �= 0, since if one of them were 0,
then both of them would be 0, contradicting Δ′ �= 0. Taking u = (A/A′)1/4 =
(B/B′)1/6 gives the desired isomorphism.
(c) Assume that j0 �= 0, 1728 and consider the curve

E : y2 + xy = x3 − 36

j0 − 1728
x− 1

j0 − 1728
.

A simple calculations yields

Δ =
j30

(j0 − 1728)3
and j = j0.

This gives the desired elliptic curve (in any characteristic) provided that j0 �= 0, 1728.
To complete the list, we use the two curves

E : y2 + y = x3, Δ = −27, j = 0,

E : y2 = x3 + x, Δ = −64, j = 1728.

(Notice that in characteristic 2 or 3 we have 1728 = 0, so even in these cases one of
the two curves will be nonsingular and fill in the missing value of j.)
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Proposition 1.5. Let E be an elliptic curve. Then the invariant differential ω as-
sociated to a Weierstrass equation for E is holomorphic and nonvanishing, i.e.,
div(ω) = 0.

PROOF. Let P = (x0, y0) ∈ E and

E : F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0,

so

ω =
d(x− x0)

Fy(x, y)
= −d(y − y0)

Fx(x, y)
.

Thus P cannot be a pole of ω, since otherwise Fy(P ) = Fx(P ) = 0, which would
say that P is a singular point of E. The map

E −→ P
1, [x, y, 1] �−→ [x, 1],

is of degree 2, so ordP (x − x0) ≤ 2, and we have equality ordP (x − x0) = 2
if and only if the quadratic polynomial F (x0, y) has a double root. In other words,
either ordP (x − x0) = 1, or else ordP (x − x0) = 2 and Fy(x0, y0) = 0. Thus in
both cases, we can use (II.4.3) to compute

ordP (ω) = ordP (x − x0)− ordP (Fy)− 1 = 0.

This shows that ω has no poles or zeros of the form (x0, y0), so it remains to check
what happens at O.

Let t be a uniformizer at O. Since ordO(x) = −2 and ordO(y) = −3, we see that
x = t−2f and y = t−3g for functions f and g satisfying f(O) �= 0,∞ and g(O) �=
0,∞. Now

ω =
dx

Fy(x, y)
=

−2t−3f + t−2f ′

2t−3g + a1t−2f + a3
dt =

−2f + tf ′

2g + a1tf + a3t3
dt.

Here we are writing f ′ = df/dt; cf. (II.4.3). In particular, (II.4.3b) tells us that f ′ is
regular at O. Hence assuming that char(K) �= 2, the function

−2f + tf ′

2g + a1tf + a3t3

is regular and nonvanishing at O, and thus

ordO(ω) = 0.

Finally, if char(K) = 2, then the same result follows from a similar calculation using
ω = −dy/Fx(x, y). We leave the details to the reader.

Next we look at what happens when a Weierstrass equation is singular.

Proposition 1.6. If a curve E given by a Weierstrass equation is singular, then there
exists a rational map φ : E → P

1 of degree one, i.e., the curve E is birational to P
1.

(Note that since E is singular, we cannot use (II.2.4.1) to conclude that E ∼= P
1.)
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PROOF. Making a linear change of variables, we may assume that the singular point
is (x, y) = (0, 0). Checking partial derivatives, we see that the Weierstrass equation
has the form

E : y2 + a1xy = x3 + a2x
2.

Then the rational map

E −→ P
1, (x, y) → [x, y],

has degree one, since it has an inverse given by

P
1 −→ E, [1, t] �−→ (t2 + a1t− a2, t

3 + a1t
2 − a2t).

(To derive this formula, let t = y/x and note that dividing the Weierstrass equation
of E by x2 yields t2 + a1t = x + a2. This shows that both x and y = xt are
in K̄(t).)

Legendre Form

There is another form of Weierstrass equation that is sometimes convenient.

Definition. A Weierstrass equation is in Legendre form if it can be written as

y2 = x(x− 1)(x− λ).

Proposition 1.7. Assume that char(K) �= 2.
(a) Every elliptic curve is isomorphic (over K̄) to an elliptic curve in Legendre form

Eλ : y2 = x(x − 1)(x− λ)

for some λ ∈ K̄ with λ �= 0, 1.
(b) The j-invariant of Eλ is

j(Eλ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

(c) The association

K̄ � {0, 1} −→ K̄, λ �−→ j(Eλ),

is surjective and exactly six-to-one except above j = 0 and j = 1728, where it
is two-to-one and three-to-one, respectively (unless char(K) = 3, in which case
it is one-to-one above j = 0 = 1728).

PROOF. (a) Since char(K) �= 2, we know that E has a Weierstrass equation of the
form

y2 = 4x3 + b2x
2 + 2b4x+ b6.
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Replacing (x, y) by (x, 2y) and factoring the cubic yields an equation of the form

y2 = (x− e1)(x − e2)(x− e3)

for some e1, e2, e3 ∈ K̄ . Further, since

Δ = 16(e1 − e2)
2(e1 − e3)

2(e2 − e3)
2 �= 0,

we see that the ei’s are distinct. Now the substitution

x = (e2 − e1)x
′ + e1, y = (e2 − e1)

3/2y′

gives an equation in Legendre form with

λ =
e3 − e1
e2 − e1

∈ K̄, λ �= 0, 1.

(b) Calculation.
(c) One can work directly from the formula for j(Eλ) in (b), an approach that we
leave to the reader. Instead, we use the fact that the j-invariant classifies an ellip-
tic curve up to isomorphism (III.1.4b). Thus suppose that j(Eλ) = j(Eμ). Then
Eλ

∼= Eμ, so their Weierstrass equations (in Legendre form) are related by a change
of variables

x = u2x′ + r, y = u3y′.

Equating

x(x − 1)(x− μ) =
(
x+

r

u2

)(
x+

r − 1

u2

)(
x+

r − λ

u2

)
,

there are six ways of assigning the linear terms to one another, and one easily checks
that these lead to six possible values for μ in terms of λ,

μ ∈
{
λ,

1

λ
, 1− λ,

1

1− λ
,

λ

λ− 1
,
λ− 1

λ

}
.

Hence λ �→ j(Eλ) is exactly six-to-one unless two or more of these values for μ
coincide. Equating them by pairs shows that this occurs if and only if

λ ∈
{
−1, 2,

1

2

}
=⇒ association is three-to-one

or

λ2 − λ+ 1 = 0 =⇒ association is two-to-one.

These λ values correspond, respectively, to j = 1728 and j = 0. Finally, if K has
characteristic 3, then these λ values coincide and the equation j(λ) = 0 = 1728 has
the unique solution λ = −1.
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P

Q
R

P ⊕Q

Addition of distinct points

P ⊕Q⊕R = O

P

R

P ⊕ P

T

T ⊕ T = O

Adding a point to itself

Figure 3.3: The composition law.

III.2 The Group Law

Let E be an elliptic curve given by a Weierstrass equation. Thus E ⊂ P
2 con-

sists of the points P = (x, y) satisfying the Weierstrass equation, together with the
point O = [0, 1, 0] at infinity. Let L ⊂ P

2 be a line. Then, since the equation has
degree three, the line L intersects E at exactly three points, say P,Q,R. Of course,
if L is tangent to E, then P,Q,R need not be distinct. The fact that L ∩ E, taken
with multiplicities, consists of exactly three points is a special case of Bézout’s theo-
rem [111, I.7.8]. However, since we give explicit formulas later in this section, there
is no need to use a general theorem.

We define a composition law ⊕ on E by the following rule:

Composition Law 2.1. Let P,Q ∈ E, let L be the line through P and Q (if P = Q,
let L be the tangent line to E at P ), and let R be the third point of intersection of L
with E. Let L′ be the line through R and O. Then L′ intersects E at R, O, and a
third point. We denote that third point by P ⊕Q.

Various instances of the composition law (III.2.1) are illustrated in Figure 3.3. We
now justify the use of the symbol ⊕.

Proposition 2.2. The composition law (III.2.1) has the following properties:
(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P ⊕Q)⊕R = O.

(b) P ⊕O = P for all P ∈ E.
(c) P ⊕Q = Q⊕ P for all P,Q ∈ E.
(d) Let P ∈ E. There is a point of E, denoted by �P , satisfying

P ⊕ (�P ) = O.

(e) Let P,Q,R ∈ E. Then

(P ⊕Q)⊕R = P ⊕ (Q ⊕R).
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In other words, the composition law (III.2.1) makes E into an abelian group with
identity element O. Further:
(f) Suppose that E is defined over K . Then

E(K) =
{
(x, y) ∈ K2 : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6
} ∪ {O}

is a subgroup of E.

PROOF. All of this is easy except for the associativity (e).
(a) This is obvious from (III.2.1), or look at Figure 3.3 and note that the tangent line
to E at O intersects E with multiplicity 3 at O.
(b) Taking Q = O in (III.2.1), we see that the lines L and L′ coincide. The former
intersects E at P,O,R and the latter at R,O, P ⊕O, so P ⊕O = P .
(c) This is also clear, since the construction of P ⊕Q in (III.2.1) is symmetric in P
and Q.
(d) Let the line through P and O also intersect E at R. Then using (a) and (b), we
find that

O = (P ⊕O)⊕R = P ⊕R.

(e) Using the explicit formulas given later in this section (III.2.3), one can labo-
riously verify the associative law case by case. We leave this task to the reader.
A more enlightening proof using the Riemann–Roch theorem is given in the next
section (III.3.4e). For a geometric proof, see [95].
(f) If P and Q have coordinates in K , then the equation of the line connecting
them has coefficients in K . If, further, E is defined over K , then the third point of
intersection has coordinates given by a rational combination of the coordinates of
coefficients of the line and of E, so will be in K . (If this is not clear, see (III.2.3) in
this section for explicit formulas.)

Notation. From here on, we drop the special symbols ⊕ and � and simply write +
and − for the group operation on an elliptic curve E. For m ∈ Z and P ∈ E, we let

[m]P =

m terms if m > 0︷ ︸︸ ︷
P + · · ·+ P , [m]P =

|m| terms if m < 0︷ ︸︸ ︷
−P − · · · − P , [0]P = O.

As promised, we now derive explicit formulas for the group operations on E.
Let E be an elliptic curve given by a Weierstrass equation

F (x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0,

and let P0 = (x0, y0) ∈ E. Following the proof of (III.2.2d), in order to calcu-
late −P0, we take the line L through P0 and O and find its third point of intersection
with E. The line L is given by

L : x− x0 = 0.

Substituting this into the equation for E, we see that the quadratic polynomial
F (x0, y) has roots y0 and y′0, where −P = (x0, y

′
0). Writing out
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F (x0, y) = c(y − y0)(y − y′0)

and equating the coefficients of y2 gives c = 1, and similarly equating the coeffi-
cients of y gives y′0 = −y0 − a1x0 − a3. This yields

−P0 = −(x0, y0) = (x0,−y0 − a1x0 − a3).

Next we derive a formula for the addition law. Let

P1 = (x1, y1) and P2 = (x2, y2)

be points of E. If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then we have already
shown that P1 + P2 = O. Otherwise the line L through P1 and P2 (or the tangent
line to E if P1 = P2) has an equation of the form

L : y = λx + ν;

formulas for λ and ν are given below. Substituting the equation of L into the equation
of E, we see that F (x, λx + ν) has roots x1, x2, x3, where P3 = (x3, y3) is the third
point of L ∩ E. From (III.2.2a) we have

P1 + P2 + P3 = O.

We write out
F (x, λx + ν) = c(x − x1)(x − x2)(x − x3)

and equate coefficients. The coefficient of x3 gives c = −1, and then the coefficient
of x2 yields

x1 + x2 + x3 = λ2 + a1λ− a2.

This gives a formula for x3, and substituting into the equation of L gives the value
of y3 = λx3 + ν. Finally, to find P1 + P2 = −P3, we apply the negation formula
to P3. All of this is summarized in the following algorithm.

Group Law Algorithm 2.3. Let E be an elliptic curve given by a Weierstrass equa-
tion

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(a) Let P0 = (x0, y0). Then

−P0 = (x0,−y0 − a1x0 − a3).

Next let

P1 + P2 = P3 with Pi = (xi, yi) ∈ E for i = 1, 2, 3.

(b) If x1 = x2 and y1 + y2 + a1x2 + a3 = 0, then

P1 + P2 = O.
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Otherwise, define λ and ν by the following formulas:

λ ν

x1 �= x2
y2 − y1
x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2
3x2

1 + 2a2x1 + a4 − a1y1
2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1
2y1 + a1x1 + a3

Then y = λx+ ν is the line through P1 and P2, or tangent to E if P1 = P2.
(c) With notation as in (b), P3 = P1 + P2 has coordinates

x3 = λ2 + a1λ− a2 − x1 − x2,

y3 = −(λ+ a1)x3 − ν − a3.

(d) As special cases of (c), we have for P1 �= ±P2,

x(P1 + P2) =

(
y2 − y1
x2 − x1

)2

+ a1

(
y2 − y1
x2 − x1

)
− a2 − x1 − x2,

and the duplication formula for P = (x, y) ∈ E,

x
(
[2]P

)
=

x4 − b4x
2 − 2b6x− b8

4x3 + b2x2 + 2b4x+ b6
,

where b2, b4, b6, b8 are the polynomials in the ai’s given in (III §1). (See also
Exercise 3.25.)

Corollary 2.3.1. With notation as in (III.2.3), a function f ∈ K̄(E) = K̄(x, y) is
said to be even if f(P ) = f(−P ) for all P ∈ E. Then

f is even if and only if f ∈ K̄(x).

PROOF. From (III.2.3), if P = (x0, y0), then −P = (x0,−y0 − a1x0 − a3). It fol-
lows immediately that every element of K̄(x) is even. Suppose now that f ∈ K̄(x, y)
is even. Using the Weierstrass equation for E, we can write f in the form

f(x, y) = g(x) + h(x)y for some g, h ∈ K̄(x).

Then the assumed evenness of f implies that

f(x, y) = f(x,−y − a1x− a3),

g(x) + h(x)y = g(x) + h(x)(−y − a1x− a3),

(2y + a1x+ a3)h(x) = 0.

This holds for all (x, y) ∈ E, so either h is identically 0, or else 2 = a1 = a3 = 0.
The latter implies that the discriminant satisfies Δ = 0, contradicting our assump-
tion that the Weierstrass equation is nonsingular (III.1.4a). Hence h = 0, and
so f(x, y) = g(x) ∈ K̄(x).
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Example 2.4. Let E/Q be the elliptic curve

E : y2 = x3 + 17.

A brief inspection reveals some points with integer coordinates,

P1 = (−2, 3), P2 = (−1, 4), P3 = (2, 5), P4 = (4, 9), P5 = (8, 23),

and a short computer search gives some others,

P6 = (43, 282), P7 = (52, 375), P8 = (5234, 378661).

Using the addition formula, one easily verifies relations such as

P5 = [−2]P1, P4 = P1 − P3, [3]P1 − P3 = P7.

Of course, there also are lots of points with nonintegral rational coordinates, for
example

[2]P2 =

(
137

64
,−2651

512

)
, P2 + P3 =

(
−8

9
,−109

27

)
.

Now it is true, but not so easy to prove, that every rational point P ∈ E(Q) can
be written in the form

P = [m]P1 + [n]P3 for some m,n ∈ Z,

and with this identification, the group E(Q) is isomorphic to Z× Z. Further, there
are only 16 integral points P = (x, y) ∈ E, i.e., points with x, y ∈ Z, namely
{±P1, . . . ,±P8}. (See [190].) These facts illustrate two fundamental theorems in
the arithmetic of elliptic curves, namely that the group of rational points on an elliptic
curve is finitely generated (the Mordell–Weil theorem, proven in Chapter VIII) and
that the set of integral points on an elliptic curve is finite (Siegel’s theorem, proven
in Chapter IX).

Singular Weierstrass Equations

Suppose that a given Weierstrass equation has discriminant Δ = 0, so (III.1.4a) tells
us that it has a singular point. To what extent does our analysis of the composition
law fail in this case? As we will see, everything is fine provided that we discard the
singular point; and in fact, the resulting group has a particularly simple structure.

The reason that we will be interested in this situation is best illustrated by an
example. Consider again the elliptic curve from (III.2.4),

E : y2 = x3 + 17.

This is an elliptic curve defined over Q with discriminant Δ = −243317. It is often
useful to reduce the coefficients of E modulo p for various primes p and to con-
sider E as a curve defined over the finite field Fp. For almost all primes, namely
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those for which Δ �≡ 0 (mod p), the “reduced” curve is nonsingular, and hence is an
elliptic curve defined over Fp. However, for primes p that divide Δ, so in this exam-
ple for p ∈ {2, 3, 17}, the “reduced” curve has a singular point, so it is no longer an
elliptic curve. Thus even when dealing with nonsingular elliptic curves, say defined
over Q, we find singular curves naturally appearing. We will return to this reduction
process in more detail in Chapter VII.

Definition. Let E be a (possibly singular) curve given by a Weierstrass equation. The
nonsingular part of E, denoted by Ens, is the set of nonsingular points of E. Simi-
larly, if E is defined over K , then Ens(K) is the set of nonsingular points of E(K).

We recall from (III.1.4a) that if E is singular, then there are two possibilities for
the singularity, namely a node or a cusp, determined by whether c4 �= 0 or c4 = 0,
respectively.

Proposition 2.5. Let E be a curve given by a Weierstrass equation with Δ = 0, so E
has a singular point S. Then the composition law (III.2.1) makes Ens into an abelian
group.
(a) Suppose that E has a node, so c4 �= 0, and let

y = α1x+ β1 and y = α2x+ β2

be the distinct tangent lines to E at S. Then the map

Ens −→ K̄∗, (x, y) �−→ y − α1x− β1

y − α2x− β2

is an isomorphism of abelian groups.
(b) Suppose that E has a cusp, so c4 = 0, and let

y = αx+ β

be the tangent line to E at S. Then the map

Ens −→ K̄+, (x, y) �−→ x− x(S)

y − αx− β

is an isomorphism of abelian groups.

Remark 2.6. For a group-theoretic description of Ens(K) when K is not alge-
braically closed, see Exercise 3.5.

PROOF. We first observe that Ens is closed under the composition law (III.2.1), since
if a line L intersects Ens at two (not necessarily distinct) points, thenL cannot contain
the point S. This is true because S is a singular point of E, so S has multiplicity at
least two in the intersection E ∩ L; see Exercise 3.28. Thus if L also contains S,
then E ∩ L would consist of four points (counted with multiplicity), contradicting
Bézout’s theorem [111, I.7.8].
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We will verify that the maps in (a) and (b) are set bijections with the property that
if a line L not hitting S intersects Ens in three not necessarily distinct points, then the
images of these three points in K̄∗ (respectively K̄+) multiply to 1 (respectively sum
to 0). Using this property, we will prove that the composition law (III.2.1) makes Ens

into an abelian group and that the maps in (a) and (b) are group isomorphisms.
Since the composition law (III.2.1) and the maps (a) and (b) are defined in terms of

lines in P
2, it suffices to prove the theorem after making a linear change of variables.

We start by moving the singular point to (0, 0), yielding the Weierstrass equation

y2 + a1xy = x3 + a2x
2.

Let s ∈ K̄ be a root of s2 + a1s − a2 = 0. Replacing y by y + sx eliminates
the x2 term, giving the following equation for E, which we now write using homo-
geneous coordinates:

E : Y 2Z +AXY Z −X3 = 0.

Note that E has a node if A �= 0 and a cusp if A = 0.
(a) The tangent lines to E at S = [0, 0, 1] are Y = 0 and Y + AX = 0, so we are
looking at the map

Ens −→ K̄∗, [X,Y, Z] �−→ 1 +
AX

Y
.

It is convenient to make one more variable change, so we let

X = A2X ′ −A2Y ′, Y = A3Y ′, Z = Z ′.

Dropping the primes, this gives the equation

E : XY Z − (X − Y )3 = 0.

We now dehomogenize by setting Y = 1, so x = X/Y and z = Z/Y , which yields
the equation

E : xz − (x− 1)3 = 0

and the map
Ens −→ K̄∗, (x, z) �−→ x.

(Notice that in this new coordinate system, the singular point is now a point at infin-
ity.) The inverse map is

K̄∗ −→ Ens, t �−→
(
t,
(t− 1)3

t

)
,

so we have a bijection of sets K̄∗ ∼←→ Ens. It remains to show that if a line, not
going through [0, 0, 1], intersects E at the three points (x1, z1), (x2, z2), and (x3, z3),
then x1x2x3 = 1. (See Figure 3.4.) Any such line has the form z = ax + b, so the
three x-coordinates x1, x2, and x3 are the roots of the cubic polynomial

x(ax+ b)− (x− 1)3 = −x3 + (a+ 3)x2 + (b− 3)x+ 1.
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1

Figure 3.4: The curve xz − (x− 1)3 = 0.

Looking at the constant term, we see that x1x2x3 = 1, as desired.
(b) In this case A = 0 and the tangent line to E at S = [0, 0, 1] is Y = 0, so we are
looking at the map

Ens −→ K̄+, [X,Y, Z] �−→ X/Y.

Again dehomogenizing by setting Y = 1, we obtain

E : z − x3 = 0,

Ens −→ K̄+, (x, z) �−→ x.

The inverse map is t �→ (t, t3). Finally, if the line z = ax + b intersects E at the
three points (x1, z1), (x2, z2), and (x3, z3), then the absence of an x2-term in

(ax+ b)− x3

implies that x1 + x2 + x3 = 0.

III.3 Elliptic Curves

Let E be a smooth curve of genus one. For example, the nonsingular Weierstrass
equations studied in (III §1) and (III §2) define curves of this sort. As we have seen,
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such Weierstrass curves can be given the structure of an abelian group. In order to
make a set into a group, clearly an initial requirement is to choose a distinguished
(identity) element. This leads to the following definition.

Definition. An elliptic curve is a pair (E,O), where E is a nonsingular curve of
genus one and O ∈ E. (We generally denote the elliptic curve by E, the point O
being understood.) The elliptic curve E is defined over K , written E/K , if E is
defined over K as a curve and O ∈ E(K).

In order to connect this definition with the material in (III §1) and (III §2), we
begin by using the Riemann–Roch theorem to show that every elliptic curve can be
written as a plane cubic, and conversely, every smooth Weierstrass plane cubic curve
is an elliptic curve.

Proposition 3.1. Let E be an elliptic curve defined over K .
(a) There exist functions x, y ∈ K(E) such that the map

φ : E −→ P
2, φ = [x, y, 1],

gives an isomorphism of E/K onto a curve given by a Weierstrass equation

C : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

with coefficients a1, . . . , a6 ∈ K and satisfying φ(O) = [0, 1, 0]. The functions x
and y are called Weierstrass coordinates for the elliptic curve E.

(b) Any two Weierstrass equations for E as in (a) are related by a linear change of
variables of the form

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t,

with u ∈ K∗ and r, s, t ∈ K .
(c) Conversely, every smooth cubic curve C given by a Weierstrass equation as in (a)

is an elliptic curve defined over K with base point O = [0, 1, 0].

PROOF. (a) We look at the vector spaces L(n(O)
)

for n = 1, 2, . . . . By the
Riemann–Roch theorem, more specifically from (II.5.5c) with g = 1, we have

	
(
n(O)

)
= dimL(n(O)

)
= n for all n ≥ 1.

Thus we can choose functions x, y ∈ K(E) as in (II.5.8) so that {1, x} is a basis
for L(2(O)

)
and so that {1, x, y} is a basis for L(3(O)

)
. Note that x must have a

pole of exact order 2 at O, and similarly y must have a pole of exact order 3 at O.
Now we observe that L(6(O)

)
has dimension 6, but it contains the seven func-

tions
1, x, y, x2, xy, y2, x3.

It follows that there is a linear relation

A1 +A2x+A3y +A4x
2 +A5xy +A6y

2 +A7x
3 = 0,
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where by (II.5.8) we may take A1, . . . , A7 ∈ K . Note that A6A7 �= 0, since other-
wise every term would have a pole at O of a different order, and so all of the Aj’s
would vanish. Replacing x and y by −A6A7x and A6A

2
7y, respectively, and dividing

by A3
6A

4
7, we get a cubic equation in Weierstrass form. This gives a map

φ : E −→ P
2, φ = [x, y, 1],

whose image lies in the locus C described by a Weierstrass equation. Note that
φ : E → C is a morphism from (II.2.1), and that it is surjective from (II.2.3). Further,
we have φ(O) = [0, 1, 0], since y has a higher-order pole than x at the point O.

The next step is to show that the map φ : E → C ⊂ P
2 has degree-one, or equiv-

alently, to show that K(E) = K(x, y). Consider the map [x, 1] : E → P
1. Since x

has a double pole at O and no other poles, (II.2.6a) says that this map has de-
gree 2. Thus

[
K(E) : K(x)

]
= 2. Similarly, the map [y, 1] : E → P

1 has degree 3,
so
[
K(E) : K(y)

]
= 3. Therefore

[
K(E) : K(x, y)

]
divides both 2 and 3, so it must

equal 1.
Next we show that C is smooth. Suppose that C is singular. Then from (III.1.6),

there is a rational map ψ : C → P
1 of degree one. It follows that the composition

ψ ◦ φ : E → P
1 is a map of degree one between smooth curves, so from (II.2.4.1), it

is an isomorphism. This contradicts the fact that E has genus one and P
1 has genus

zero (II.5.6). Therefore C is smooth, and now another application of (II.2.4.1) shows
that the degree one map φ : E → C is an isomorphism.
(b) Let {x, y} and {x′, y′} be two sets of Weierstrass coordinate functions on E.
Then x and x′ have poles of order 2 at O, and y and y′ have poles of order 3
at O. Hence {1, x} and {1, x′} are both bases for L(2(O)

)
, and similarly {1, x, y}

and {1, x′, y′} are both bases for L(3(O)
)
. Thus there are constants

u1, u2 ∈ K∗ and r, s2, t ∈ K

such that

x = u1x
′ + r and y = u2y

′ + s2x
′ + t.

Since both (x, y) and (x′, y′) satisfy Weierstrass equations in which the Y 2 and X3

terms have coefficient 1, we have u3
1 = u2

2. Letting u = u2/u1 and s = s2/u
2 puts

the change of variables formula into the desired form.
(c) Let E be given by a nonsingular Weierstrass equation. We have seen (III.1.5)
that the differential

ω =
dx

2y + a1x+ a3
∈ ΩE

has neither zeros nor poles, so div(ω) = 0. The Riemann–Roch theorem (II.5.5b)
then tells us that

2 genus(E)− 2 = deg div(ω) = 0,

so E has genus one, and taking [0, 1, 0] as the base point makes E into an ellip-
tic curve. (For an alternative proof of (c) using the Hurwitz genus formula, see
Exercise 2.7.)
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Corollary 3.1.1. Let E/K be an elliptic curve with Weierstrass coordinate func-
tions x and y. Then

K(E) = K(x, y) and
[
K(E) : K(x)

]
= 2.

PROOF. These two facts were proven during the course of proving (III.3.1a).

Remark 3.2. Note that (III.3.1b) does not imply that if two Weierstrass equations
have coefficients in a given field K , then every change of variables mapping one to
the other has coefficients in K . A simple example is the equation

y2 = x3 − x.

It has coefficients in Q, yet it is mapped to itself by the substitution

x = −x′, y =
√−1 y′.

We next use the Riemann–Roch theorem to describe a group law on the points
of an elliptic curve E. Of course, this will turn out to be the group law described
by (III.2.1) when E is given by a Weierstrass equation. We start with a simple lemma
that serves to distinguish P

1 from curves of genus one; see Exercise 2.5 for a gener-
alization.

Lemma 3.3. Let C be a curve of genus one and let P,Q ∈ C. Then

(P ) ∼ (Q) if and only if P = Q.

PROOF. Suppose that (P ) ∼ (Q) and choose f ∈ K̄(C)∗ such that

div(f) = (P )− (Q).

Then f ∈ L((Q)
)
. The Riemann–Roch theorem (II.5.5c) tells us that

dimL((Q)
)
= 1.

But L((Q)
)

certainly contains the constant functions; hence f ∈ K̄ and P = Q.

Proposition 3.4. Let (E,O) be an elliptic curve.
(a) For every degree-0 divisor D ∈ Div0(E) there exists a unique point P ∈ E

satisfying
D ∼ (P )− (O).

Define
σ : Div0(E) −→ E

to be the map that sends D to its associated P .
(b) The map σ is surjective.
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(c) Let D1, D2 ∈ Div0(E). Then

σ(D1) = σ(D2) if and only if D1 ∼ D2.

Thus σ induces a bijection of sets (which we also denote by σ),

σ : Pic0(E)
∼−−−−−→ E.

(d) The inverse to σ is the map

κ : E
∼−−−−−→ Pic0(E), P �−→ (

divisor class of (P )− (O)
)
.

(e) If E is given by a Weierstrass equation, then the “geometric group law” on E
described by (III.2.1) and the “algebraic group law” induced from Pic0(E) us-
ing σ are the same.

PROOF. (a) Since E has genus one, the Riemann–Roch theorem (II.5.5c) says that

dimL(D + (O)
)
= 1.

Let f ∈ K̄(E) be a nonzero element of L(D + (O)
)
, so f is a basis for this one-

dimensional vector space. Since

div(f) ≥ −D − (O) and deg(div(f)) = 0,

it follows that
div(f) = −D − (O) + (P )

for some P ∈ E. Hence
D ∼ (P )− (O),

which gives the existence of a point with the desired property.
Next suppose that P ′ ∈ E has the same property. Then

(P ) ∼ D + (O) ∼ (P ′),

so (III.3.3) tells us that P = P ′. Hence P is unique.
(b) For any P ∈ E, we have

σ
(
(P )− (O)

)
= P.

(c) Let D1, D2 ∈ Div0(E), and set Pi = σ(Di) for i = 1, 2. Then from the defini-
tion of σ we have

(P1)− (P2) ∼ D1 −D2.

Thus if P1 = P2, then D1 ∼ D2; and conversely, if D1 ∼ D2, then (P1) ∼ (P2),
so P1 = P2 from (III.3.3).
(d) Clear.
(e) Let E be given by a Weierstrass equation and let P,Q,∈ E. It suffices to show
that
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κ(P +Q) = κ(P ) + κ(Q).

(N.B. The first + is addition on E using (III.2.1), while the second + is addition of
divisor classes in Pic0(E).)

Let
f(X,Y, Z) = αX + βY + γZ = 0

give the line L in P
2 going through P and Q, let R be the third point of intersection

of L with E, and let

f ′(X,Y, Z) = α′X + β′Y + γ′Z = 0

be the line L′ through R and O. Then from the definition of addition on E (III.2.1)
and the fact that the line Z = 0 intersects E at O with multiplicity 3, we have

div(f/Z) = (P ) + (Q) + (R)− 3(O),

div(f ′/Z) = (R) + (P +Q)− 2(O).

Hence

(P +Q)− (P )− (Q) + (O) = div(f ′/f) ∼ 0,

so

κ(P +Q)− κ(P )− κ(Q) = 0.

This proves that κ is a group homomorphism.

Corollary 3.5. Let E be an elliptic curve and let D =
∑

nP (P ) ∈ Div(E). Then D
is a principal divisor if and only if

∑
P∈E

nP = 0 and
∑
P∈E

[nP ]P = O.

(Note that the first sum is of integers, while the second is addition on E.)

PROOF. From (II.3.1b), every principal divisor has degree 0. Next let D ∈ Div0(E).
We use (III.3.4a,e) to deduce that

D ∼ 0 ⇐⇒ σ(D) = O ⇐⇒
∑
P∈E

[nP ]σ
(
(P )− (O)

)
= O.

This is the desired result, since σ
(
(P )− (O)

)
= P .

Remark 3.5.1. If we combine (III.3.4) and (II.3.4), we see that every elliptic
curve E/K fits into an exact sequence

1 −→ K̄∗ −→ K̄(E)∗ div−−−→ Div0(E)
σ−−−−→ E −→ 0,

where σ is the operation “sum the points in the divisor using the group law on E.”
Further, Exercise 2.13b implies that the sequence remains exact if we take GK̄/K-
invariants,
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1 −→ K∗ −→ K(E)∗ div−−−→ Div0K(E)
σ−−−−→ E(K) −→ 0.

(See also (X.3.8).)

We now prove the fundamental fact that the addition law on an elliptic curve is a
morphism. Addition is a map E×E → E and the variety E×E has dimension 2, so
we cannot use (II.2.1) directly; but (II.2.1) will play a crucial role in the proof. One
can also give a proof using explicit equations, but the algebra is somewhat lengthy;
see (III.3.6.1).

Theorem 3.6. Let E/K be an elliptic curve. Then the equations (III.2.3) giving the
group law on E define morphisms

+ : E × E −→ E, and − : E −→ E,
(P1, P2) �−→ P1 + P2, P �−→ −P.

PROOF. First, the negation map

(x, y) �−→ (x,−y − a1x− a3)

is clearly a rational map E → E. Since E is smooth, it follows from (II.2.1) that
negation is a morphism.

Next we fix a point Q �= O on E and consider the translation-by-Q map

τ : E −→ E, τ(P ) = P +Q.

From the addition formula given in (III.2.3c), this is clearly a rational map; and
thus, again using (II.2.1), it is a morphism. In fact, since τ has an inverse, namely
P �→ P −Q, it is an isomorphism.

Finally, consider the general addition map + : E × E → E. From (III.2.3c) we
see that it is a morphism except possibly at pairs of points having one of the following
forms,

(P, P ), (P,−P ), (P,O), (O,P ),

since for pairs of points not of this form, the rational functions

λ =
y2 − y1
x2 − x1

and ν =
y1x2 − y2x1

x2 − x1

on E × E are well-defined.
To deal with the four exceptional cases, we could work directly with the defini-

tion of morphism; see (III.3.6.1). However, we prefer to let the group law assist us.
Thus let τ1 and τ2 be translation maps as above for points Q1 and Q2, respectively.
Consider the composition of maps

φ : E × E
τ1×τ2−−−−−−→ E × E

+−−−−−→ E
τ−1
1−−−−→ E

τ−1
2−−−−→ E.

Since the group law on E is associative and commutative (III.2.2), the net effect of
the above maps is as follows:
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(P1, P2)
τ1×τ2−−−−−→ (P1 +Q1, P2 +Q2)

+−−−−−→ P1 +Q1 + P2 +Q2

τ−1
1−−−−−→ P1 + P2 +Q2

τ−1
2−−−−−→ P1 + P2.

Thus the rational map φ agrees with the addition map wherever they are both defined.
Further, since the τi’s are isomorphisms, it follows from the above discussion

that φ is a morphism except possibly at pairs of points of the form

(P −Q1, P −Q2), (P −Q1,−P −Q2), (P −Q1,−Q2), (−Q1, P −Q2).

But Q1 and Q2 are arbitrary points. Hence by varying Q1 and Q2, we can find a
finite set of rational maps

φ1, φ2, . . . , φn : E × E −→ E

with the following properties:

(i) φ1 is the addition map given in (III.2.3c).

(ii) For each (P1, P2) ∈ E × E, some φi is defined at (P1, P2).

(iii) If φi and φj are both defined at (P1, P2), then φi(P1, P2) = φj(P1, P2).

It follows that addition is defined on all of E × E, so it is a morphism.

Remark 3.6.1. During the course of proving (III.3.6), we noted that the formulas
in (III.2.3c) make it clear that the addition map + : E × E → E is a morphism ex-
cept possibly at pairs of points of the form (P,±P ), (P,O), or (O,P ). Rather than
using translation maps to circumvent this difficulty, one can work directly with the
definition of morphism using explicit equations. It turns out that this involves con-
sideration of quite a few cases; we do one to illustrate the method.

Thus let (x1, y1;x2, y2) be Weierstrass coordinates on E × E. We will show
explicitly that addition is a morphism at points of the form (P, P ) with P �= O and
[2]P �= O. Note that addition is defined in general by the formulas given in (III.2.3c):

λ =
y2 − y1
x2 − x1

, ν =
y1x2 − y2x1

x2 − x1
= y1 − λx1,

x3 = λ2 + a1λ− a2 − x1 − x2, y3 = −(λ+ a1)x3 − ν − a3.

Here we view λ, ν, x3, y3 as functions on E × E, and addition is given by the map
[x3, y3, 1] : E × E → E. Thus to show that addition is a morphism at (P, P ), it suf-
fices to show that λ is a morphism at (P, P ). By assumption, both pairs of func-
tions (x1, y1) and (x2, y2) satisfy the same Weierstrass equation. Subtracting one
equation from the other and factoring yields
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(y1 − y2)(y1 + y2 + a1x1 + a3)

= (x1 − x2)(x
2
1 + x1x2 + x2

2 + a2x1 + a2x2 + a4 − a1y2).

Thus λ, considered as a function on E × E, may also be written as

λ(P1, P2) =
x2
1 + x1x2 + x2

2 + a2x1 + a2x2 + a4 − a1y2
y1 + y2 + a1x1 + a3

.

Therefore, letting P = (x, y), we have

λ(P, P ) =
3x2 + 2a2x+ a4 − a1y

2y + a1x+ a3
.

Hence λ is a morphism at (P, P ) provided that 2y(P ) + a1x(P ) + a3 �= 0, and we
have excluded this case by our assumption that [2]P �= O. We leave it as an exercise
for the reader to deal similarly with the other cases.

III.4 Isogenies

Having examined in some detail the geometry of individual elliptic curves, we turn
now to the study of the maps between curves. Since an elliptic curve has a distin-
guished zero point, it is natural to single out the maps that respect this property.

Definition. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a mor-
phism

φ : E1 −→ E2 satisfying φ(O) = O.

Two elliptic curves E1 and E2 are isogenous if there is an isogeny from E1 to E2

with φ(E1) �= {O}. We will see later (III.6.1) that this is an equivalence relation.

It follows from (II.2.3) that an isogeny satisfies either

φ(E1) = {O} or φ(E1) = E2.

Thus except for the zero isogeny defined by [0](P ) = O for all P ∈ E1, every other
isogeny is a finite map of curves. Hence we obtain the usual injection of function
fields (II §2),

φ∗ : K̄(E2) −→ K̄(E1).

The degree of φ, which is denoted by degφ, is the degree of the finite extension
K̄(E1)/φ

∗K̄(E2), and similarly for the separable and inseparable degrees, denoted
respectively by degs φ and degi φ. We also refer to the map φ as being separable,
inseparable, or purely inseparable according to the corresponding property of the
field extension. Further, by convention we set

deg[0] = 0.

This convention ensures that we have
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deg(ψ ◦ φ) = deg(ψ) deg(φ) for all chains of isogenies E1
φ−→ E2

ψ−→ E3.

Elliptic curves are abelian groups, so the maps between them form groups. We
denote the set of isogenies from E1 to E2 by

Hom(E1, E2) = {isogenies E1 → E2}.
The sum of two isogenies is defined by

(φ + ψ)(P ) = φ(P ) + ψ(P ),

and (III.3.6) implies that φ+ψ is a morphism, so it is an isogeny. HenceHom(E1, E2)
is a group.

If E1 = E2, then we can also compose isogenies. Thus if E is an elliptic curve,
we let

End(E) = Hom(E,E)

be the ring whose addition law is as given above and whose multiplication is com-
position,

(φψ)(P ) = φ
(
ψ(P )

)
.

(It is not obvious that the distributive law holds, but we will prove it later in this
section; see (III.4.8).) The ring End(E) is called the endomorphism ring of E. The
invertible elements of End(E) form the automorphism group of E, which is denoted
by Aut(E). The endomorphism ring of an elliptic curve E is an important invariant
of E that we will study in some detail throughout the rest of this chapter.

Of course, if E1, E2, and E are defined over a field K , then we can restrict
attention to those isogenies that are defined over K . The corresponding groups of
isogenies are denoted with the usual subscripts; thus

HomK(E1, E2), EndK(E), AutK(E).

We have already seen an example (III.3.2) showing that Aut(E) may be strictly
larger than AutK(E).

Example 4.1. For each m ∈ Z we define the multiplication-by-m isogeny

[m] : E −→ E

in the natural way. Thus if m > 0, then

[m](P ) = P + P + · · ·+ P︸ ︷︷ ︸
m terms

.

For m < 0, we set [m](P ) = [−m](−P ), and we have already defined [0](P ) = O.
Using (III.3.6), an easy induction shows that [m] is a morphism, hence an isogeny,
since it clearly sends O to O.

Notice that if E is defined over K , then [m] is defined over K . We start our
analysis of the group of isogenies by showing that if m �= 0, then the multiplication-
by-m map is nonconstant.
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Proposition 4.2. (a) Let E/K be an elliptic curve and let m ∈ Z with m �= 0. Then
the multiplication-by-m map

[m] : E −→ E

is nonconstant.
(b) Let E1 and E2 be elliptic curves. Then the group of isogenies

Hom(E1, E2)

is a torsion-free Z-module.
(c) Let E be an elliptic curve. Then the endomorphism ring End(E) is a (not neces-

sarily commutative) ring of characteristic 0 with no zero divisors.

PROOF. (a) We start by showing that [2] �= [0]. The duplication formula (III.2.3d)
says that if a point P = (x, y) ∈ E has order 2, then it must satisfy

4x3 + b2x
2 + 2b4x+ b6 = 0.

If char(K) �= 2, this shows immediately that there are only finitely many such
points. Further, even for char(K) = 2, the only way to have [2] = [0] is for the
cubic polynomial to be identically 0, which means that b2 = b6 = 0, which in
turn implies that Δ = 0. Hence in all cases we have [2] �= [0]. Now, using the fact
that [mn] = [m] ◦ [n], we are reduced to considering the case that m is odd.

Assume now that char(K) �= 2. Then, using long division, it is easy to verify that
the polynomial

4x3 + b2x
2 + 2b4x+ b6

does not divide the polynomial

x4 − b4x
2 − 2b6x− b8.

More precisely, if the first polynomial divides the second, then Δ = 0; see Ex-
ercise 3.1. Hence we can find an x0 ∈ K̄ such that the first polynomial vanishes to
higher order at x0 than does the second. Choosing y0 ∈ K̄ so thatP0 = (x0, y0) ∈ E,
the doubling formula implies that [2]P0 = O. In other words, we have shown that E
has a nontrivial point P0 of order 2. Then for odd integers m we have

[m]P0 = P0 �= O,

so clearly [m] �= [0].
Finally, if char(K) = 2, then one can proceed as above using the “triplication

formula” (Exercise 3.2) to produce a point of order 3. We leave this approach to the
reader, since later in this chapter we prove a result (III.5.4) that includes the case
of char(K) = 2 and m odd.
(b) This follows immediately from (a). Suppose that φ ∈ Hom(E1, E2) and m ∈ Z

satisfy
[m] ◦ φ = [0].
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Taking degrees gives (
deg[m]

)
(degφ) = 0,

so either m = 0, or else (a) implies that deg[m] ≥ 1, in which case we must have
φ = [0].
(c) From (b), the endomorphism ring End(E) has characteristic 0. Suppose that
φ, ψ ∈ End(E) satisfy φ ◦ ψ = [0]. Then

(degφ)(deg ψ) = deg(φ ◦ ψ) = 0.

It follows that either φ = [0] or ψ = [0]. ThereforeEnd(E) has no zero divisors.

Definition. Let E be an elliptic curve and let m ∈ Z with m ≥ 1. The m-torsion
subgroup of E, denoted by E[m], is the set of points of E of order m,

E[m] =
{
P ∈ E : [m]P = O

}
.

The torsion subgroup of E, denoted by Etors, is the set of points of finite order,

Etors =

∞⋃
m=1

E[m].

If E is defined over K , then Etors(K) denotes the points of finite order in E(K).

The most important fact about the multiplication-by-m map is that it has deg-
ree m2, from which one can deduce the structure of the finite group E[m]. We do
not prove this result here, because it is an immediate corollary of the material on
dual isogenies covered in (III §6). However, the reader should be aware that there
are completely elementary, but rather messy, proofs that deg[m] = m2 using explicit
formulas and induction. (See exercises 3.7, 3.8, and 3.9 for various approaches.)

Remark 4.3. Suppose that char(K) = 0. Then the map

[ ] : Z −→ End(E)

is usually the whole story, i.e., End(E) ∼= Z. If End(E) is strictly larger than Z,
then we say that E has complex multiplication, or CM for short. Elliptic curves with
complex multiplication have many special properties; see (C §11) for a brief dicus-
sion. On the other hand, if K is a finite field, then End(E) is always larger than Z;
see (V §3).

Example 4.4. Assume that char(K) �= 2 and let i ∈ K̄ be a primitive fourth root of
unity, i.e., i2 = −1. Then, as noted in (III.3.2), the elliptic curve E/K given by the
equation

E : y2 = x3 − x

has endomorphism ring End(E) strictly larger than Z, since it contains a map, which
we denote by [i], given by

[i] : (x, y) �−→ (−x, iy).
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ThusE has complex multiplication. Clearly [i] is defined overK if and only if i ∈ K .
Hence even if E is defined over K , it may happen that EndK(E) is strictly smaller
than End(E).

Continuing with this example, we observe that

[i] ◦ [i](x, y) = [i](−x, iy) = (x,−y) = −(x, y),

so [i] ◦ [i] = [−1]. There is thus a ring homomorphism

Z[i] −→ End(E), m+ ni �−→ [m] + [n] ◦ [i].
If char(K) = 0, this map is an isomorphism, Z[i] ∼= End(E), in which case

Aut(E) ∼= Z[i]∗ = {±1,±i}
is a cyclic group of order 4.

Example 4.5. Again assume that char(K) �= 2 and let a, b ∈ K satisfy b �= 0 and
r = a2 − 4b �= 0. Consider the two elliptic curves

E1 : y2 = x3 + ax2 + bx,

E2 : Y 2 = X3 − 2aX2 + rX.

There are isogenies of degree 2 connecting these curves,

φ : E1 −→ E2, φ̂ : E2 −→ E1,

(x, y) �−→
(
y2

x2
,
y(b− x2)

x2

)
, (X,Y ) �−→

(
Y 2

4X2
,
Y (r −X2)

8X2

)
.

A direct computation shows that φ̂ ◦ φ = [2] on E1 and φ ◦ φ̂ = [2] on E2. The
maps φ and φ̂ are examples of dual isogenies, which we discuss further in (III §6).

Example 4.6. Let K be a field of characteristic p > 0, let q = pr, and let E/K
be an elliptic curve given by a Weierstrass equation. We recall from (II §2) that
the curve E(q)/K is defined by raising the coefficients of the equation for E to
the qth power, and the Frobenius morphism φq is defined by

φq : E −→ E(q), (x, y) �−→ (xq, yq).

Since E(q) is the zero locus of a Weierstrass equation, it will be an elliptic curve pro-
vided that its equation is nonsingular. Writing everything out in terms of Weierstrass
coefficients and using the fact that the qth-power map K → K is a homomorphism,
it is clear that

Δ(E(q)) = Δ(E)q and j(E(q)) = j(E)q.

In particular, the equation for E(q) is nonsingular.
Now suppose that K = Fq is a finite field with q elements. Then the qth-power

map on K is the identity, so E(q) = E and φq is an endomorphism of E, called
the Frobenius endomorphism. The set of points fixed by φq is exactly the finite
group E(Fq). This fact lies at the heart of Hasse’s proof of an estimate for #E(Fq);
see (V §1).
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Example 4.7. Let E/K be an elliptic curve and let Q ∈ E. Then we can define a
translation-by-Q map

τQ : E −→ E, P �−→ P +Q.

The map τQ is clearly an isomorphism, since τ−Q provides an inverse. Of course, it
is not an isogeny unless Q = O.

Now consider an arbitrary morphism

F : E1 −→ E2

of elliptic curves. The composition

φ = τ−F (O) ◦ F
is an isogeny, since φ(O) = O. This proves that any morphism F between elliptic
curves can be written as

F = τF (O) ◦ φ,
the composition of an isogeny and a translation.

An isogeny is a map between elliptic curves that sends O to O. Since an elliptic
curve is a group, it might seem more natural to focus on those isogenies that are
group homomorphisms. However, as we now show, it turns out that every isogeny is
automatically a homomorphism.

Theorem 4.8. Let
φ : E1 −→ E2

be an isogeny. Then

φ(P +Q) = φ(P ) + φ(Q) for all P,Q ∈ E1.

PROOF. If φ(P ) = O for all P ∈ E, there is nothing to prove. Otherwise, φ is a
finite map, so by (II.3.7), it induces a homomorphism

φ∗ : Pic0(E1) −→ Pic0(E2)

defined by

φ∗
(
class of

∑
ni(Pi)

)
= class of

∑
ni(φPi).

On the other hand, from (III.3.4) we have group isomorphisms

κi : Ei −→ Pic0(Ei), P �−→ class of (P )− (O).

Then, since φ(O) = O, we obtain the following commutative diagram:

E1

∼=−−−−→
κ1

Pic0(E1)

φ

⏐⏐� ⏐⏐�φ∗

E2

∼=−−−−→
κ2

Pic0(E2).

Since κ1, κ2, and φ∗ are all group homomorphisms and κ2 is injective, it follows
that φ is also a homomorphism.
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Corollary 4.9. Let φ : E1 → E2 be a nonzero isogeny. Then

kerφ = φ−1(O)

is a finite group.

PROOF. It is a subgroup of E1 from (III.4.8), and it is finite (of order at most degφ)
from (II.2.6a).

The next three results, (III.4.10), (III.4.11), and (III.4.12), encompass the basic
Galois theory of elliptic function fields.

Theorem 4.10. Let φ : E1 → E2 be a nonzero isogeny.
(a) For every Q ∈ E2,

#φ−1(Q) = degs φ.

Further, for every P ∈ E1,

eφ(P ) = degi φ.

(b) The map
kerφ −→ Aut

(
K̄(E1)/φ

∗K̄(E2)
)
, T �−→ τ∗T ,

is an isomorphism. (Here τT is the translation-by-T map (III.4.7) and τ∗T is the
automorphism that τT induces on K̄(E1).)

(c) Suppose that φ is separable. Then φ is unramified,

#kerφ = deg φ,

and K̄(E1) is a Galois extension of φ∗K̄(E2).

PROOF. (a) From (II.2.6b) we know that

#φ−1(Q) = degs φ for all but finitely many Q ∈ E2.

But for any Q,Q′ ∈ E2, if we choose some R ∈ E1 with φ(R) = Q′ −Q, then the
fact that φ is a homomorphism implies that there is a one-to-one correspondence

φ−1(Q) −→ φ−1(Q′), P �−→ P +R.

Hence
#φ−1(Q) = degs φ for all Q ∈ E2,

which proves the first assertion.
Now let P, P ′ ∈ E1 with φ(P ) = φ(P ′) = Q, and let R = P ′ − P . Then

φ(R) = O, so φ ◦ τR = φ. Therefore, using (II.2.6c) and the fact that τR is an iso-
morphism,

eφ(P ) = eφ◦τR(P ) = eφ
(
τR(P )

)
eτR(P ) = eφ(P

′).
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Hence every point in φ−1(Q) has the same ramification index. We compute

(degs φ)(degi φ) = deg φ =
∑

P∈φ−1(Q)

eφ(P ) from (II.2.6a),

=
(
#φ−1(Q)

)
eφ(P ) for any P ∈ φ−1(Q),

= (degs φ)eφ(P ) from above.

Canceling degs φ gives the second assertion.
(b) First, if T ∈ kerφ and f ∈ K̄(E2), then

τ∗T (φ
∗f) = (φ ◦ τT )∗f = φ∗f,

since φ◦ τT = φ. Hence as an automorphism of K̄(E1), the map τ∗T fixes φ∗K̄(E2),
so the map in (b) is well-defined. Next, since

τS ◦ τT = τS+T = τT ◦ τS ,

the map in (b) is a homomorphism. Finally, from (a) we have

#kerφ = degs φ,

while a basic result from Galois theory says that

#Aut
(
K̄(E1)/φ

∗K̄(E2)
) ≤ degs φ.

Hence to prove that the map T → τ∗T is an isomorphism, it suffices to show that
it is injective. But if τ∗T fixes K̄(E1), then in particular every function on E1 takes
the same value at T and O. This clearly implies that T = O, since for example, the
coordinate function x has a pole at O and no other poles.
(c) If φ is separable, then from (a) we see that

#φ−1(Q) = degφ for all Q ∈ E2.

Hence φ is unramified (II.2.7), and putting Q = O gives

#kerφ = degφ.

Then from (b) we find that

#Aut
(
K̄(E1)/φ

∗K̄(E2)
)
=
[
K̄(E1) : φ

∗K̄(E2)
]
,

so K̄(E1)/φ
∗K̄(E2) is a Galois extension.

Corollary 4.11. Let

φ : E1 −→ E2 and ψ : E1 −→ E3

be nonconstant isogenies, and assume that φ is separable. If
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kerφ ⊂ kerψ,

then there is a unique isogeny

λ : E2 −→ E3

satisfying ψ = λ ◦ φ.

PROOF. Since φ is separable, (III.4.10c) says that K̄(E1) is a Galois extension
of φ∗K̄(E2). Then the inclusion kerφ ⊂ kerψ and the identification (III.4.10b) im-
ply that every element of Gal

(
K̄(E1)/φ

∗K̄(E2)
)

fixes ψ∗K̄(E3). Hence by Galois
theory, there are field inclusions

ψ∗K̄(E3) ⊂ φ∗K̄(E2) ⊂ K̄(E1).

Now (II.2.4b) gives a map
λ : E2 −→ E3

satisfying
φ∗(λ∗K̄(E3)

)
= ψ∗K̄(E3),

and this in turn implies that
λ ◦ φ = ψ.

Finally, λ is an isogeny, since

λ(O) = λ
(
φ(O)

)
= ψ(O) = O.

Proposition 4.12. Let E be an elliptic curve and let Φ be a finite subgroup of E.
There are a unique elliptic curve E′ and a separable isogeny

φ : E −→ E′ satisfying kerφ = Φ.

Remark 4.13.1. The elliptic curve whose existence is asserted in this corollary is
often denoted by the quotient E/Φ. This notation clearly indicates the group struc-
ture, but there is no a priori reason why this quotient group should correspond to
the points of an elliptic curve, nor why the natural group homomorphism E → E/Φ
should be a morphism. In general, it turns out that the quotient of any variety by a
finite group of automorphisms is again a variety (see [186, §7]). The case of curves
is done in Exercise 3.13.

Remark 4.13.2. Suppose that E is defined over K and that Φ is GK̄/K-invariant.
In other words, if T ∈ Φ, then T σ ∈ Φ for all σ ∈ GK̄/K . Then the curve E′ and
isogeny φ described in (III.4.12) can be defined over K; see Exercise 3.13e.

Remark 4.13.3. For a given curve E and subgroup Φ, Velu [297] describes how to
explicitly write down equations for the curve E′ = E/Φ and isogeny φ : E → E′.
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PROOF OF (III.4.12). As in (III.4.10b), each point T ∈ Φ gives rise to an automor-
phism τ∗T of K̄(E). Let K̄(E)Φ be the subfield of K̄(E) fixed by every element
of Φ. Then Galois theory tells us that K̄(E) is a Galois extension of K̄(E)Φ with
Galois group isomorphic to Φ.

The field K̄(E)Φ has transcendence degree one over K̄, so from (II.2.4c) there
are a unique smooth curve C/K̄ and a finite morphism

φ : E −→ C satisfying φ∗K̄(C) = K̄(E)Φ.

We next show that φ is unramified. Let P ∈ E and T ∈ Φ. Then for every
function f ∈ K̄(C),

f
(
φ(P + T )

)
= (τ∗T ◦ φ∗)f

(
P ) = (φ∗f)(P ) = f

(
φ(P )

)
,

where the middle equality uses the fact that τ∗T fixes every element of φ∗K̄(C).
It follows that φ(P + T ) = φ(P ). Now let Q ∈ C and choose any point P ∈ E
with φ(P ) = Q. Then

φ−1(Q) ⊃ {P + T : T ∈ Φ}.
However, we also know from (II.2.6(a)) that

#φ−1(Q) ≤ deg φ = #Φ,

with equality if and only if φ is unramified at all points in the inverse image φ−1(Q).
Since the points P + T are distinct as T ranges over the elements of Φ, we conclude
that φ is unramified at all points in φ−1(Q); and since Q was arbitrary, the map φ is
unramified.

Finally, we apply the Hurwitz genus formula (II.5.9) to φ. Since φ is unramified,
the formula reads

2 genus(E) − 2 = (deg φ)(2 genus(C)− 2).

From this we conclude that C also has genus one, and hence C becomes an elliptic
curve and φ becomes an isogeny if we take φ(O) to be the “zero point” on C.

III.5 The Invariant Differential

Let E/K be an elliptic curve given by the usual Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We have seen (III.1.5) that the differential

ω =
dx

2y + a1x+ a3
∈ ΩE

has neither zeros nor poles. We now justify its name of invariant differential by
proving that it is invariant under translation.
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Proposition 5.1. Let E and ω be as above, let Q ∈ E, and let τQ : E → E be the
translation-by-Q map (III.4.7). Then

τ∗Qω = ω.

PROOF. One can prove this proposition by a straightforward, but messy and un-
enlightening, calculation as follows. Write x(P + Q) and y(P + Q) in terms
of x(P ), x(Q), y(P ), and y(Q) using the addition formula (III.2.3c). Then use stan-
dard differentiation rules to calculate dx(P +Q) as a rational function times dx(P ),
treating x(Q) and y(Q) as constants. In this way one can directly verify that for a
fixed value of Q,

dx(P +Q)

2y(P +Q) + a1x(P +Q) + a3
=

dx(P )

2y(P ) + a1x(P ) + a3
.

We leave the details of this calculation to the reader and instead give a more illumi-
nating proof.

Since ΩE is a one-dimensional K̄(E)-vector space (II.4.2), there is function
aQ ∈ K̄(E)∗, depending a priori on Q, such that

τ∗Qω = aQω.

(Note that aQ �= 0, because τQ is an isomorphism.) We compute

div(aQ) = div(τ∗Qω)− div(ω)

= τ∗Q div(ω)− div(ω)

= 0 since div(ω) = 0 from (III.1.5).

Hence aQ is a function on E having neither zeros nor poles, so (II.1.2) tells us that
it is constant, i.e., aQ ∈ K̄∗.

Next consider the map

f : E −→ P
1, Q �−→ [aQ, 1].

From the calculation sketched earlier, even without doing it explicitly, it is clear
that aQ can be expressed as a rational function of x(Q) and y(Q). Hence f is a ra-
tional map from E to P

1, and it is not surjective, since it misses both [0, 1] and [1, 0].
We conclude from (II.2.1) and (II.2.3) that f is constant. Thus aQ does not depend
on Q, and we find its value by noting that

aQ = aO = 1 for all Q ∈ E.

This completes the proof that τ∗Qω = ω.

Differential calculus is, in essence, a linearization tool. It will thus come as no
surprise to learn that the enormous utility of the invariant differential on an elliptic
curve lies in its ability to linearize the otherwise quite complicated addition law on
the curve.
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Theorem 5.2. Let E and E′ be elliptic curves, let ω be an invariant differential
on E, and let

φ, ψ : E′ −→ E

be isogenies. Then
(φ+ ψ)∗ω = φ∗ω + ψ∗ω.

N.B. The two plus signs in this equation represent completely different operations.
The first is addition in Hom(E′, E), which is essentially addition using the group
law on E. The second is the usual addition in the vector space of differentials ΩE′ .

PROOF. If φ = [0] or ψ = [0], the result is clear. Next, if φ+ψ = [0], then using the
fact that

ψ∗ = (−φ)∗ = φ∗ ◦ [−1]∗,

it suffices to check that
[−1]∗ω = −ω.

The negation formula

[−1](x, y) = (x,−y − a1x− a3)

allows us to calculate

[−1]∗
(

dx

2y + a1x+ a3

)
=

dx

2(−y − a1x− a3) + a1x+ a3

= − dx

2y + a1x+ a3
,

which is the desired result. We now assume that φ, ψ, and φ+ ψ are all nonzero.
Let (x1, y1) and (x2, y2) be “independent” Weierstrass coordinates on E. By this

we mean that they satisfy the given Weierstrass equation for E, but satisfy no other
algebraic relations. More formally,

(
[x1, y1, 1], [x2, y2, 1]

)
give coordinates forE×E sitting inside P2×P

2. (Alternatively, (x1, y1) and (x2, y2)
are “independent generic points of E” in the sense of Weil; see [41, page 213].)

Let
(x3, y3) = (x1, y1) + (x2, y2),

so x3 and y3 are rational combinations of x1, x2, y1, y2 given by the addition for-
mula (III.2.3c) on E. Further, for any (x, y), let ω(x, y) denote the corresponding
invariant differential,

ω(x, y) =
dx

2y + a1x+ a3
.

Then, using the addition formula (III.2.3c) and standard rules for differentiation, we
can express ω(x3, y3) in terms of ω(x1, y1) and ω(x2, y2). This yields

ω(x3, y3) = f(x1, y1, x2, y2)ω(x1, y1) + g(x1, y1, x2, y2)ω(x2, y2),
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where f and g are rational functions of the indicated variables. In doing this cal-
culation, remember that since xi and yi satisfy the given Weierstrass equation, the
differentials dxi and dyi are related by

(2yi + a1xi + a3) dyi = (3x2
i + 2a2xi + a4 − a1yi) dxi.

In this way, ω(x3, y3) can be expressed as a K̄(x1, y1, x2, y2)-linear combination
of dx1 and dx2.

We claim that both f and g are identically 1. Clearly this can be proven by an ex-
plicit calculation, a painful task that we leave for the reader. Instead, we use (III.5.1)
to obtain the desired result. Suppose that we assign fixed values to x2 and y2, say by
choosing some Q ∈ E and setting

x2 = x(Q) and y2 = y(Q).

Then
dx2 = dx(Q) = 0, so ω(x2, y2) = 0,

while (III.5.1) tells us that

ω(x3, y3) = τ∗Qω(x1, y1) = ω(x1, y1).

Substituting these into the expression for ω(x3, y3), we find that

f
(
x1, y1, x(Q), y(Q)

)
= 1

as a rational function in K̄(x1, y1). Thus f does not depend on x1 and y1, so
f ∈ K̄(x2, y2). But we also know that f(x2, y2) satisfies f

(
x(Q), y(Q)

)
= 1 for

every point Q ∈ E, so f must be identically 1. The same argument using x2 and y2
in place of x1 and y1 shows that g is also identically 1.

To recapitulate, we have shown that if

(x3, y3) = (x1, y1) + (x2, y2) (+ is addition on E),

then

ω(x3, y3) = ω(x1, y1) + ω(x2, y2) (+ is addition in ΩE ).

Now let (x′, y′) be Weierstrass coordinates on E′ and set

(x1, y1) = φ(x′, y′), (x2, y2) = ψ(x′, y′), (x3, y3) = (φ+ ψ)(x′, y′).

Substituting this into ω(x3, y3) = ω(x1, y1) + ω(x2, y2) yields

(
ω ◦ (φ+ ψ)

)
(x′, y′) = (ω ◦ φ)(x′, y′) + (ω ◦ ψ)(x′, y′),

which says exactly that
(φ+ ψ)∗ω = φ∗ω + ψ∗ω.
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Corollary 5.3. Let ω be an invariant differential on an elliptic curve E. Let m ∈ Z.
Then

[m]∗ω = mω.

PROOF. The assertion is true for m = 0, since [0] is the constant map, and it is true
for m = 1, since [1] is the identity map. We use (III.5.2) with φ = [m] and ψ = [1]
to obtain

[m+ 1]∗ω = [m]∗ω + ω.

The desired result now follows by ascending and descending induction.

As a first indication of the utility of the invariant differential, we give a new, less
computational, proof of part of (III.4.2a).

Corollary 5.4. Let E/K be an elliptic curve and let m ∈ Z. Assume that m �= 0
in K . Then the multiplication-by-m map on E is a finite separable endomorphism.

PROOF. Let ω be an invariant differential on E. Then (III.5.3) and our assumption
on m implies that

[m]∗ω = mω �= 0,

so certainly [m] �= [0]. Hence [m] is finite, and (II.4.2c) tells us that [m] is separable.

As a second application of (III.5.2) and (III.5.3), we examine when a linear com-
bination involving the Frobenius morphism is separable.

Corollary 5.5. Let E be an elliptic curve defined over a finite field Fq of char-
acteristic p, let φ : E → E be the qth-power Frobenius morphism (III.4.6), and
let m,n ∈ Z. Then the map

m+ nφ : E −→ E

is separable if and only if p � m. In particular, the map 1− φ is separable.

PROOF. Let ω be an invariant differential on E. From (II.4.2c) we know that a
map ψ : E → E is inseparable if and only if ψ∗ω = 0. We apply this criterion to
the map ψ = m+ nφ. Using (III.5.2) and (III.5.3), we compute

(m+ nφ)∗ω = mω + nφ∗ω.

Note that φ∗ω = 0, since φ is inseparable, or, by direct calculation,

φ∗
(

dx

2y + a1x+ a3

)
=

d(xq)

2yq + a1xq + a3
=

qxq−1dx

2yq + a1xq + a3
= 0.

Hence
(m+ nφ)∗ω = [m]∗ω + [n]∗ ◦ φ∗ω = mω.

Since mω = 0 if and only if p | m, this gives the desired result.
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Corollary 5.6. Let E/K be an elliptic curve and let ω be a nonzero invariant dif-
ferential on E. We define a map from End(E) to K̄ in the following way:

End(E) −→ K̄, φ �−→ aφ such that φ∗ω = aφω.

(a) The map φ �→ aφ is a ring homomorphism.
(b) The kernel of φ �→ aφ is the set of inseparable endomorphisms of E.
(c) If char(K) = 0, then End(E) is a commutative ring.

PROOF. As in the proof of (III.5.1), the fact that ΩE is a one-dimensional K̄(E)-
vector space (II.4.2) implies that φ∗ω = aφω for some function aφ ∈ K̄(E). We
claim that aφ ∈ K̄. This is clear if aφ = 0, while if aφ �= 0, we use the fact
that div(ω) = 0 to compute

div(aφ) = div(φ∗ω)− div(ω) = φ∗ div(ω)− div(ω) = 0.

Hence aφ has no zeros or poles, so (II.1.2) says that aφ ∈ K̄.
(a) We use (III.5.2) to compute

aφ+ψω = (φ+ ψ)∗ω = φ∗ω + ψ∗ω = aφω + aψω = (aφ + aψ)ω.

This gives aφ+ψ = aφ + aψ. Similarly,

aφ◦ψω = (φ ◦ ψ)∗ω = ψ∗(φ∗ω) = ψ∗(aφω) = aφψ
∗(ω) = aφaψω,

which proves that aφ◦ψ = aφaψ.
(b) We have

aφ = 0 ⇐⇒ φ∗ω = 0 ⇐⇒ φ is inseparable (II.4.2c).

(c) If char(K) = 0, then every endomorphism is separable, so (b) says that End(E)
injects into K̄∗. Hence End(E) is commutative.

III.6 The Dual Isogeny

Let φ : E1 → E2 be a nonconstant isogeny. We have seen (II.3.7) that φ induces a
map

φ∗ : Pic0(E2) −→ Pic0(E1).

On the other hand, for i = 1 and 2 we have group isomorphisms (III.3.4)

κi : Ei −→ Pic0(Ei), P �−→ class of (P )− (O).

This gives a homomorphism going in the opposite direction to φ, namely the com-
position

E2
κ2−−−−−→ Pic0(E2)

φ∗
−−−−−→ Pic0(E1)

κ−1
1−−−−−−→ E1.
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Later in this section we will verify that this map may be computed as follows.
Let Q ∈ E2, and choose any P ∈ E1 satisfying φ(P ) = Q. Then

κ−1
1 ◦ φ∗ ◦ κ2(Q) = [deg φ](P ).

It is by no means clear that the homomorphism κ−1
1 ◦ φ∗ ◦ κ2 is an isogeny,

i.e., that it is given by a rational map. The process of finding a point P satisfy-
ing φ(P ) = Q involves taking roots of various polynomial equations. If φ is sep-
arable, one needs to check that applying [degφ] to P causes the conjugate roots to
appear symmetrically. (It is actually reasonably clear that this is true if one explicitly
writes out κ−1

1 ◦ φ∗ ◦ κ2.) If φ is inseparable, this approach is more complicated. We
now show that in all cases there is an actual isogeny that may be computed in the
manner described above.

Theorem 6.1. Let φ : E1 → E2 be a nonconstant isogeny of degree m.
(a) There exists a unique isogeny

φ̂ : E2 −→ E1 satisfying φ̂ ◦ φ = [m].

(b) As a group homomorphism, φ̂ equals the composition

E2 −→ Div0(E2)
φ∗

−−−−−→ Div0(E1)
sum−−−−→ E1,

Q �−→ (Q)− (O)
∑

nP (P ) �−→ ∑
[nP ]P.

PROOF. (a) First we show uniqueness. Suppose that φ̂ and φ̂′ are two such isogenies.
Then

(φ̂− φ̂′) ◦ φ = [m]− [m] = [0].

Since φ is nonconstant, it follows from (II.2.3) that φ̂− φ̂′ must be constant,
so φ̂ = φ̂′.

Next suppose that ψ : E2 → E3 is another nonconstant isogeny, say of degree n,
and suppose that we know that φ̂ and ψ̂ exist. Then

(φ̂ ◦ ψ̂) ◦ (ψ ◦ φ) = φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [nm].

Thus φ̂ ◦ ψ̂ has the requisite property to be ψ̂ ◦ φ. If K has characteristic 0, then φ is
separable, while if K has positive characteristic, then (II.2.12) allows us to write φ
as the composition of a separable isogeny and a Frobenius morphism. It thus suffices
to prove the existence of φ̂ when φ is either separable or equal to the Frobenius
morphism.

Case 1. φ is separable Since φ has degree m, we have (III.4.10c)

#kerφ = m,

so every element of kerφ has order dividing m, i.e.,

kerφ ⊂ ker[m].

It follows immediately from (III.4.11) that there is an isogeny
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φ̂ : E2 −→ E1 satisfying φ̂ ◦ φ = [m].

Case 2. φ is a Frobenius morphism If φ is the qth-power Frobenius morphism with

q = pe, then φ is clearly the composition of the pth-power Frobenius morphism with
itself e times. Hence it suffices to prove that φ̂ exists if φ is the pth-power Frobenius
morphism, so in particular, deg φ = p from (II.2.11).

We look at the multiplication-by-p map on E. Let ω be an invariant differential.
Then from (III.5.3) and the fact that char(K) = p, we see that

[p]∗ω = pω = 0.

We conclude from (II.4.2c) that [p] is not separable, and thus when we decompose [p]
as a Frobenius morphism followed by a separable map (II.2.12), the Frobenius mor-
phism does appear. In other words,

[p] = ψ ◦ φe

for some integer e ≥ 1 and some separable isogeny ψ. Then we can take

φ̂ = ψ ◦ φe−1.

(b) Let Q ∈ E2. Then the image of Q under the indicated composition is

sum
(
φ∗((Q)− (O)

))
=

∑
P∈φ−1(Q)

[eφ(P )]P −
∑

T∈φ−1(O)

[eφ(T )]T by definition of φ∗,

= [degi φ]

⎛
⎝ ∑

P∈φ−1(Q)

P −
∑

T∈φ−1(O)

T

⎞
⎠ from (III.4.10a),

= [degi φ] ◦ [#φ−1(Q)]P for any P ∈ φ−1(Q),

= [deg φ]P from (III.4.10a).

But by construction,
φ̂(Q) = φ̂ ◦ φ(P ) = [degφ]P,

so the two maps are the same.

Definition. Let φ : E1 → E2 be an isogeny. The dual isogeny to φ is the isogeny

φ̂ : E2 −→ E1

given by (III.6.1a). (This assumes that φ �= [0]. If φ = [0], then we set φ̂ = [0].)

The next theorem gives the basic properties of the dual isogeny. From these basic
facts we will be able to deduce a number of very important corollaries, including a
good description of the kernel of the multiplication-by-m map.
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Theorem 6.2. Let
φ : E1 −→ E2

be an isogeny.
(a) Let m = degφ. Then

φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.

(b) Let λ : E2 → E3 be another isogeny. Then

λ̂ ◦ φ = φ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then

φ̂+ ψ = φ̂+ ψ̂.

(d) For all m ∈ Z,
[̂m] = [m] and deg[m] = m2.

(e) deg φ̂ = deg φ.

(f) ˆ̂
φ = φ.

PROOF. If φ is constant, then the entire theorem is trivial, and similarly (b) and (c)
are trivial if λ or ψ is constant. We may thus assume that all isogenies are noncon-
stant.
(a) The first statement is the defining property of φ̂. For the second, consider

(φ ◦ φ̂) ◦ φ = φ ◦ [m] = [m] ◦ φ.

Hence φ ◦ φ̂ = [m], since φ is not constant.
(b) Letting n = deg λ, we have

(φ̂ ◦ λ̂) ◦ (λ ◦ φ) = φ̂ ◦ [n] ◦ φ = [n] ◦ φ̂ ◦ φ = [nm].

The uniqueness statement in (III.6.1a) implies that

φ̂ ◦ λ̂ = λ̂ ◦ φ.

(c) We give a proof in characteristic 0. See Exercise 3.31 for a proof in arbitrary
characteristic.

Let x1, y1 ∈ K(E1) and x2, y2 ∈ K(E2) be Weierstrass coordinates. We start
by looking at E2 considered as an elliptic curve defined over the field K(E1) =
K(x1, y1).1 Then another way of saying that φ : E1 → E2 is an isogeny is to note
that φ(x1, y1) ∈ E2

(
K(x1, y1)

)
, and similarly for ψ(x1, y1) and (φ+ ψ)(x1, y1).

Now consider the divisor

1This is where we use the characteristic 0 assumption, since all of our results on elliptic curves have
assumed that the base field is perfect.



84 III. The Geometry of Elliptic Curves

D =
(
(φ+ ψ)(x1, y1)

)− (
φ(x1, y1)

)− (
ψ(x1, y1)

)
+ (O)

∈ DivK(x1,y1)(E2).

The definition of φ + ψ implies that D sums to O, so (III.3.5) tells us that D is
linearly equivalent to 0. Thus there is a function

f ∈ K(x1, y1)(E2) = K(x1, y1, x2, y2)

that, when considered as a function of x2 and y2, has divisor D.
We now switch perspective and look at f as a function of x1 and y1. In other

words, we treat f as a function on E1 considered as an elliptic curve defined
over K(x2, y2). Suppose that P1 ∈ E1

(
K(x2, y2)

)
is a point satisfying φ(P1) =

(x2, y2). Then examining D, specifically the term − div
(
φ(x1, y1)

)
, we see that f

has a pole at P1, i.e., the function f(x1, y1;x2, y2) has a pole if x1, y1, x2, y2 sat-
isfy (x2, y2) = φ(x1, y1). Further,

ordP1(f) = eφ(P1).

Similarly, f has a pole at P1 if (x2, y2) = ψ(P1), and it has a zero at P1

if (x2, y2) = (φ+ ψ)(P1). It follows that as a function of x1 and y1, the divisor
of f has the form

(φ+ψ)∗
(
(x2, y2)

)−φ∗((x2, y2)
)−ψ∗((x2, y2)

)
+
∑

ni(Pi) ∈ DivK(x2,y2)
(E1),

where the Pi’s are in E1(K̄), i.e.,
∑

ni(Pi) ∈ DivK̄(E1). Since this is the divisor
of a function, it sums to O, so using (III.6.1b), we conclude that the point

(φ̂ + ψ)(x2, y2)− φ̂(x2, y2)− ψ̂(x2, y2)

does not depend on (x2, y2), i.e., it is in E1(K̄). Putting (x2, y2) = O shows that it
is equal to O, which completes the proof that

φ̂+ ψ = φ̂+ ψ̂.

(d) This is true for m = 0 by definition, and it is clearly true for m = 1. Using (c)
with φ = [m] and ψ = [1] yields

̂[m+ 1] = [̂m] + [̂1],

and ascending and descending induction shows that [̂m] = [m] holds for all m.
Now let d = deg[m] and consider the multiplication-by-d map. Thus

[d] = [̂m] ◦ [m] definition of dual isogeny,

= [m2] since [̂m] = [m].

Using the fact (III.4.2b) that the endomorphism ring of an elliptic curve is a torsion-
free Z-module, it follows that d = m2.
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(e) Let m = degφ. Then using (d) and (a), we find that

m2 = deg[m] = deg(φ ◦ φ̂) = (deg φ)(deg φ̂) = m(deg φ̂).

Hence m = deg φ̂.
(f) Again let m = degφ. Then using (a), (b), and (d) yields

φ̂ ◦ φ = [m] = [̂m] = ̂̂φ ◦ φ = φ̂ ◦ ˆ̂
φ.

Therefore
φ =

ˆ̂
φ.

Definition. Let A be an abelian group. A function

d : A −→ R

is a quadratic form if it satisfies the following conditions:

(i) d(α) = d(−α) for all α ∈ A.

(ii) The pairing

A×A −→ R, (α, β) �−→ d(α+ β)− d(α) − d(β),

is bilinear.

A quadratic form d is positive definite if it further satisfies:

(iii) d(α) ≥ 0 for all α ∈ A.

(iv) d(α) = 0 if and only if α = 0.

Corollary 6.3. Let E1 and E2 be elliptic curves. The degree map

deg : Hom(E1, E2) −→ Z

is a positive definite quadratic form.

PROOF. Everything is clear except for the fact that the pairing

〈φ, ψ〉 = deg(φ+ ψ)− deg(φ) − deg(ψ)

is bilinear. To verify this, we use the injection

[ ] : Z −→ End(E1)

and compute [〈φ, ψ〉] = [
deg(φ+ ψ)

] − [
deg(φ)

] − [
deg(ψ)

]
= ̂(φ+ ψ) ◦ (φ+ ψ)− φ̂ ◦ φ− ψ̂ ◦ ψ
= φ̂ ◦ ψ + ψ̂ ◦ φ from (III.6.2c).

Using (III.6.2c) a second time, we see that this last expression is linear in both φ
and ψ.
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Corollary 6.4. Let E be an elliptic curve and let m ∈ Z with m �= 0.
(a) deg[m] = m2.
(b) If m �= 0 in K , i.e., if either char(K) = 0 or p = char(K) > 0 and p � m, then

E[m] =
Z

mZ
× Z

mZ
.

(c) If char(K) = p > 0, then one of the following is true:

(i) E[pe] = {O} for all e = 1, 2, 3, . . . .

(ii) E[pe] =
Z

peZ
for all e = 1, 2, 3, . . . .

(Recall that E[m] is another notation for ker[m], the set of points of order m on E.)

PROOF. (a) This was proven in (III.6.2d). We record it again here in order to point
out that there are other ways of proving that [m] has degree m2; see for example
exercises 3.7, 3.8, and 3.11. Then the fundamental description of E[m] in (b) follows
formally from (a).
(b) The assumption on m and the fact that deg[m] = m2 tells us that [m] is a finite
separable map. Hence from (III.4.10c),

#E[m] = deg[m] = m2.

Further, for every integer d dividing m, we similarly have

#E[d] = d2.

Writing the finite group E[m] as a product of cyclic groups, it is easy to see that the
only possibility is

E[m] =
Z

mZ
× Z

mZ
.

(See Exercise 3.30.)
(c) Let φ be the pth-power Frobenius morphism. Then

#E[pe] = degs[p
e] from (III.4.10a),

=
(
degs(φ̂ ◦ φ))e from (III.6.2a),

= (degs φ̂)
e from (II.2.11b).

From (III.6.2e) and (II.2.11c) we have

deg φ̂ = deg φ = p,

so there are two cases. If φ̂ is inseparable, then degs φ̂ = 1, so

#E[pe] = 1 for all e.

Otherwise φ̂ is separable, so degs φ̂ = p and
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#E[pe] = pe for all e.

Again writing E[pe] as a product of cyclic groups, it is easy to see that this implies
that

E[pe] =
Z

peZ
.

(For a more detailed analysis of E[pe] in characteristic p and its relationship to the
endomorphism ring End(E), see (V §3).)

III.7 The Tate Module

Let E/K be an elliptic curve and let m ≥ 2 be an integer, prime to char(K)
if char(K) > 0. As we have seen,

E[m] ∼= Z

mZ
× Z

mZ
,

the isomorphism being one between abstract groups. However, the group E[m]
comes equipped with considerably more structure than an abstract group. For ex-
ample, each element σ of the Galois group GK̄/K acts on E[m], since if [m]P = O,
then

[m](P σ) =
(
[m]P

)σ
= Oσ = O.

We thus obtain a representation

GK̄/K −→ Aut
(
E[m]

) ∼= GL2(Z/mZ),

where the latter isomorphism involves choosing a basis for E[m]. Individually, for
each m, these representations are not completely satisfactory, since it is generally
easier to deal with representations whose matrices have coefficients in a ring of char-
acteristic 0. We are going to fit together these mod m representations for varying m
in order to create a characteristic 0 representation. To do this, we mimic the inverse
limit construction of the 	-adic integers Z� from the finite groups Z/	nZ.

Definition. Let E be an elliptic curve and let 	 ∈ Z be a prime. The (	-adic) Tate
module of E is the group

T�(E) = lim←−
n

E[	n],

the inverse limit being taken with respect to the natural maps

E[	n+1]
[�]−−−−−→ E[	n].

Since each E[	n] is a Z/	nZ-module, we see that the Tate module has a natural
structure as a Z�-module. Further, since the multiplication-by-	 maps are surjective,
the inverse limit topology on T�(E) is equivalent to the 	-adic topology that it gains
by being a Z�-module.
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Proposition 7.1. The Tate module has the following structure:

(a) T�(E) ∼= Z� × Z� as a Z�-module, if 	 �= char(K).

(b) Tp(E) ∼= {0} or Zp as a Zp-module, if p = char(K) > 0.

PROOF. This follows immediately from (III.6.4b,c).

The action of GK̄/K on each E[	n] commutes with the multiplication-by-	 map
used to form the inverse limit, so GK̄/K also acts on T�(E). Further, since the profi-
nite group GK̄/K acts continuously on each finite (discrete) group E[	n], the result-
ing action on T�(E) is also continuous.

Definition. The 	-adic representation (of GK̄/K associated to E) is the homomor-
phism

ρ� : GK̄/K −→ Aut
(
T�(E)

)
induced by the action of GK̄/K on the 	n-torsion points of E.

Convention. From here on, the number 	 always refers to a prime number that is
different from the characteristic of K .

Remark 7.2. If we choose a Z�-basis for T�(E), we obtain a representation

GK̄/K −→ GL2(Z�),

and then the natural inclusion Z� ⊂ Q� gives a representation

GK̄/K −→ GL2(Q�).

In this way we obtain a two-dimensional representation of GK̄/K over a field of char-
acteristic 0. More intrinsically, we can avoid choosing a basis by using the natural
map

ρ� : GK̄/K −→ Aut
(
T�(E)

)
↪−→ Aut

(
T�(E)

) ⊗Z�
Q�.

Remark 7.3. The above construction is analogous to the following, which may be
more familiar to the reader. Let

µ�n ⊂ K̄∗

be the group of (	n)th roots of unity. Raising to the 	th power gives maps

µ�n+1

ζ 	→ζ�

−−−→ µ�n ,

and then taking the inverse limit yields the Tate module of K ,

T�(µ) = lim←−
n

µ�n .

(More formally, T�(µ) is the Tate module of the multiplicative group K̄∗.) As ab-
stract groups, we have

µ�n
∼= Z/	nZ and T�(µ) ∼= Z�.
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Further, the natural action of GK̄/K on each µ�n induces an action on T�(µ), so we
obtain a 1-dimensional representation

GK̄/K −→ Aut
(
T�(µ)

) ∼= Z
∗
� .

For K = Q, this cyclotomic representation is surjective, because the 	-power cyclo-
tomic polynomials are irreducible over Q.

Remark 7.3.1. In Chapter VI, when we study elliptic curves over the complex
numbers, we will see (VI.5.6) that there is a natural way in which the m-torsion
subgroupE[m] may be identified with the homology groupH1(E,Z/mZ), and sim-
ilarly T�(E) with H1(E,Z�). The utility of this identification is that while homology
groups do not generally admit a Galois action, the torsion subgroup E[m] and Tate
module T�(E) do admit such an action. This idea has been vastly generalized by
Grothendieck and others in the theory of étale cohomology.

The Tate module is a useful tool for studying isogenies. Let

φ : E1 −→ E2

be an isogeny of elliptic curves. Then φ induces maps

φ : E1[	
n] −→ E2[	

n],

and hence it induces a Z�-linear map

φ� : T�(E1) −→ T�(E2).

We thus obtain a natural homomorphism

Hom(E1, E2) −→ Hom
(
T�(E1), T�(E2)

)
.

Further, if E1 = E2 = E, then the map

End(E) −→ End
(
T�(E)

)
is even a homomorphism of rings. It is not hard to show that these maps are injective
(see Exercise 3.14), but the following result gives much stronger information about
the structure of Hom(E1, E2).

Theorem 7.4. Let E1 and E2 be elliptic curves and let 	 �= char(K) be a prime.
Then the natural map

Hom(E1, E2)⊗ Z� −→ Hom
(
T�(E1), T�(E2)

)
, φ �−→ φ�,

is injective

PROOF. We start by proving the following statement:
⎡
⎢⎣

Let M ⊂ Hom(E1, E2) be a finitely generated subgroup, and let

M div =
{
φ ∈ Hom(E1, E2) : [m] ◦ φ ∈ M for some integer m ≥ 1

}
.

Then M div is finitely generated.

⎤
⎥⎦ (∗)
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To prove (∗), we extend the degree mapping to the finite-dimensional real vector
space M ⊗R, which we equip with the natural topology inherited from R. Then the
degree mapping is clearly continuous, so the set

U = {φ ∈ M ⊗ R : degφ < 1}

is an open neighborhood of 0. Further, since Hom(E1, E2) is a torsion-free Z-
module (III.4.2b), there is a natural inclusion

M div ⊂ M ⊗ R.

Further, it is clear that
M div ∩ U = {0},

since every nonzero isogeny has degree at least one. Hence M div is a discrete sub-
group of the finite-dimensional vector space M ⊗ R, so it is finitely generated. This
completes the proof of (∗).

We now turn to the proof of (III.7.4). Let φ ∈ Hom(E1, E2) ⊗ Z�, and suppose
that φ� = 0. Let

M ⊂ Hom(E1, E2)

be some finitely generated subgroup with the property that φ ∈ M ⊗ Z�. Then,
with notation as above, the group M div is finitely generated, so it is also free,
since (III.4.2b) tells us that it is torsion-free. Let

ψ1, . . . , ψt ∈ Hom(E1, E2)

be a basis for M div, and write

φ = α1ψ1 + · · ·+ αtψt with α1, . . . , αt ∈ Z�.

Now fix some n ≥ 1 and choose a1, . . . , at ∈ Z with

ai ≡ αi (mod 	n).

Then the assumption that φ� = 0 implies that the isogeny

ψ = [a1] ◦ ψ1 + · · ·+ [at] ◦ ψt ∈ Hom(E1, E2)

annihilates E1[	
n]. It follows from (III.4.11) that ψ factors through [	n], so there is

an isogeny
λ ∈ Hom(E1, E2) satisfying ψ = [	n] ◦ λ.

Further, λ is in M div, so there are integers bi ∈ Z such that

λ = [b1] ◦ ψ1 + · · ·+ [bt] ◦ ψt.

Then, since the ψi’s form a Z-basis for M div, the fact that ψ = [	n] ◦ λ implies that
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ai = 	nbi,

and hence

αi ≡ 0 (mod 	n).

This holds for all n, so we conclude that αi = 0, and hence that φ = 0. (N.B. The
reason that we need to use M div, rather than working in M , is because it is essential
that φ, ψ, and λ be written in terms of a Z-basis that does not depend on the choice
of 	n.)

Corollary 7.5. Let E1 and E2 be elliptic curves. Then

Hom(E1, E2)

is a free Z-module of rank at most 4.

PROOF. We know from (III.4.2b) that Hom(E1, E2) is torsion-free. This implies
that

rankZHom(E1, E2) = rankZ�
Hom(E1, E2)⊗ Z�,

in the sense that if one is finite, then the other is finite and they are equal. Next,
from (III.7.4) we have the estimate

rankZ�
Hom(E1, E2)⊗ Z� ≤ rankZ�

Hom
(
T�(E1), T�(E2)

)
.

Finally, choosing a Z�-basis for T�(E1) and T�(E2), we see from (III.7.1a) that

Hom
(
T�(E1), T�(E2)

)
= M2(Z�)

is the additive group of 2× 2 matrices with Z�-coefficients. The Z�-rank of M2(Z�)
is 4, which proves that rankZ Hom(E1, E2) is at most 4.

Remark 7.6. By definition, an isogeny is defined over K if it commutes with the
action of GK̄/K . Similarly, we can define

HomK

(
T�(E1), T�(E2)

)
to be the group of Z�-linear maps from T�(E1) to T�(E2) that commute with the ac-
tion of GK̄/K as given by the 	-adic representation. Then we have a homomorphism

HomK(E1, E2)⊗ Z� −→ HomK

(
T�(E1), T�(E2)

)
,

and (III.7.4) tells us that this homomorphism is injective. It turns out that in many
cases, it is an isomorphism.

Isogeny Theorem 7.7. Let 	 �= char(K) be a prime. The natural map

HomK(E1, E2)⊗ Z� −→ HomK

(
T�(E1), T�(E2)

)
is an isomorphism in the following two situations:
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(a) K is a finite field. (Tate [282])
(b) K is a number field. (Faltings [82, 84])

The original proofs of both parts of (III.7.7) make heavy use of abelian varieties
(higher-dimensional analogues of elliptic curves) and are thus unfortunately beyond
the scope of this book. Indeed, the methods used to prove (III.7.7b) include virtually
all of the tools needed for Faltings’ proof of the Mordell conjecture. See also [237]
for a proof of (III.7.7b) in the case that j(E) is nonintegral, and [45, 160, 163] for
alternative proofs of (III.7.7b).

One way to interpret (III.7.7) is to view the Tate modules as homology groups,
specifically as the first homology with Z�-coefficients (III.7.3.1). Then (III.7.7) char-
acterizes when a map between homology groups comes from an actual geometric
map between the curves.

Remark 7.8. It is also natural to ask about the size of the image of ρ�(GK̄/K)

in Aut
(
T�(E)

)
. The following theorem of Serre provides an answer for number

fields. We do not include the proof. (But see (IX.6.3) and Exercise 9.7.)

Theorem 7.9. (Serre) Let K be a number field and let E/K be an elliptic curve
without complex multiplication.
(a) ρ�(GK̄/K) is of finite index in Aut

(
T�(E)

)
for all primes 	.

(b) ρ�(GK̄/K) = Aut
(
T�(E)

)
for all but finitely many primes 	.

PROOF. See [237] and [231].

Remark 7.10. Let E/K be an elliptic curve. Then the elements of EndK(E) com-
mute with the elements of GK̄/K in their action on T�(E). If

EndK(E) = Z,

this gives no additional information. However, if E has complex multiplication
over K , i.e., if EndK(E) �= Z, then one can show (Exercise 3.24) that this forces
the action of GK̄/K on T�(E) to be abelian, i.e., the image ρ�(GK̄/K) is an abelian
subgroup of Aut

(
T�(E)

) ∼= GL2(Z�). In particular, adjoining the coordinates of 	n-
torsion points to K leads to explicitly constructed abelian extensions of K , in much
the same way that abelian extensions of Q are obtained by adjoining roots of unity.
See (C §11) for a brief discussion, and [140, Part II], [249, Chapter 5], or [266,
Chapter II] for further details.

III.8 The Weil Pairing

Let E/K be an elliptic curve. For this section we fix an integer m ≥ 2, which we
assume to be prime to p = char(K) if p > 0.

As an abstract group, the group of m-torsion points E[m] has the form (III.6.4b)

E[m] ∼= Z/mZ× Z/mZ.
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Thus E[m] is a free Z/mZ-module of rank two. We can define a nondegenerate
alternating multilinear map on E[m] by fixing a basis {T1, T2} and setting

det : E[m]× E[m] −→ Z/mZ, det(aT1 + bT2, cT1 + dT2) = ad− bc.

However, there are two drawbacks to this approach. First, the value of the determi-
nant depends on the choice of basis. But this is not so bad, since selecting a new
basis simply multplies all of the values by an element of (Z/mZ)∗. Second, and
more serious, is that this determinant pairing on E[m] is not Galois invariant, i.e.,
if P,Q ∈ E[m] and σ ∈ GK̄/K , then the values of det(P σ, Qσ) and det(P,Q)σ

need not be the same.
We can simultaneously achieve basis independent and Galois invariance by us-

ing instead a modified pairing taking values in the group of mth roots of unity. In
order to define this pairing, we will make frequent use of (III.3.5), which says that
a divisor

∑
ni(Pi) is the divisor of a function if and only if both

∑
ni = 0 and∑

[ni]Pi = O.
Let T ∈ E[m]. Then there is a function f ∈ K̄(E) satisfying

div(f) = m(T )−m(O).

Next take T ′ ∈ E to be a point with [m]T ′ = T . Then there is similarly a func-
tion g ∈ K̄(E) satisfying

div(g) = [m]∗(T )− [m]∗(O) =
∑

R∈E[m]

(
(T ′ +R)− (R)

)
.

(To see that this divisor sums to O, we observe that #E[m] = m2 from (III.6.4b)
and that [m2]T ′ = O.) It is easy to verify that the functions f ◦ [m] and gm have the
same divisor, so multiplying f by an appropriate constant from K̄∗, we may assume
that

f ◦ [m] = gm.

Now let S ∈ E[m] also be an m-torsion point, where we allow S = T . Then for
any point X ∈ E, we have

g(X + S)m = f
(
[m]X + [m]S

)
= f

(
[m]X

)
= g(X)m.

Thus considered as a function of X , the function g(X + S)/g(X) takes on only
finitely many values, i.e., for every X , it is an mth root of unity. In particular, the
morphism

E −→ P
1, X �−→ g(X + S)/g(X)

is not surjective, so (II.2.3) says that it is constant. This allows us to define a pairing

em : E[m]× E[m] −→ µm

by setting

em(S, T ) =
g(X + S)

g(X)
,
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where X ∈ E is any point such that g(X + S) and g(X) are both defined and
nonzero. (As usual, µm denotes the group of mth roots of unity.) Note that although
the function g is well-defined only up to multiplication by an element of K̄∗, the
value of em(S, T ) does not depend on this choice. The pairing that we have just de-
fined is called the Weil em-pairing. We begin by proving some of its basic properties.

Proposition 8.1. The Weil em-pairing has the following properties:
(a) It is bilinear:

em(S1 + S2, T ) = em(S1, T )em(S2, T ),

em(S, T1 + T2) = em(S, T1)em(S, T2).

(b) It is alternating:
em(T, T ) = 1.

So in particular, em(S, T ) = em(T, S)−1.
(c) It is nondegenerate:

If em(S, T ) = 1 for all S ∈ E[m], then T = O.

(d) It is Galois invariant:

em(S, T )σ = em(Sσ, T σ) for all σ ∈ GK̄/K .

(e) It is compatible:

emm′(S, T ) = em
(
[m′]S, T

)
for all S ∈ E[mm′] and T ∈ E[m].

PROOF. (a) Linearity in the first factor is easy:

em(S1 + S2, T ) =
g(X + S1 + S2)

g(X)
=

g(X + S1 + S2)

g(X + S1)

g(X + S1)

g(X)

= em(S2, T )em(S1, T ).

Note how useful it is that in computing em(S2, T ) = g(Y + S2)/g(Y ), we may
choose any value for Y , for example we may take Y = X + S1.

In order to prove linearity in the second factor, let f1, f2, f3, g1, g2, g3 be the
appropriate functions for the points T1, T2, and T3 = T1 + T2. Choose a func-
tion h ∈ K̄(E) with divisor

div(h) = (T1 + T2)− (T1)− (T2) + (O).

Then

div

(
f3
f1f2

)
= m div(h),

so

f3 = cf1f2h
m for some c ∈ K̄∗.
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We compose with the multiplication-by-m map, use the fact that fi ◦ [m] = gmi , and
take mth roots to obtain

g3 = c′ · g1 · g2 ·
(
h ◦ [m]

)
for some c′ ∈ K̄∗.

This allows us to compute

em(S, T1 + T2) =
g3(X + S)

g3(X)
=

g1(X + S)g2(X + S)h
(
[m]X + [m]S

)
g1(X)g2(X)h

(
[m]X

)
= em(S, T1)em(S, T2), since [m]S = O.

(b) From (a) we have

em(S + T, S + T ) = em(S, S)em(S, T )em(T, S)em(T, T ),

so it suffices to show that em(T, T ) = 1 for all T ∈ E[m]. For any P ∈ E, recall
that τP : E → E denotes the translation-by-P map (III.4.7). We compute

div

(
m−1∏
i=0

f ◦ τ[i]T
)

= m

m−1∑
i=0

((
[1− i]T

)− (
[−i]T

))
= 0.

It follows that
m−1∏
i=0

f ◦ τ[i]T

is constant, and if we choose some T ′ ∈ E satisfying [m]T ′ = T , then

m−1∏
i=0

g ◦ τ[i]T ′

is also constant, because its mth power is the above product of f ’s. Therefore the
product of the g’s takes on the same value at X and at X + T ′,

m−1∏
i=0

g
(
X + [i]T ′) =

m−1∏
i=0

g
(
X + [i+ 1]T ′).

Canceling like terms from each side gives

g(X) = g
(
X + [m]T ′) = g(X + T ),

and hence

em(T, T ) =
g(X + T )

g(X)
= 1.

(c) If em(S, T ) = 1 for all S ∈ E[m], then g(X + S) = g(X) for all S ∈ E[m],
so (III.4.10b) tells us that g = h ◦ [m] for some function h ∈ K̄(E). But then
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(
h ◦ [m]

)m
= gm = f ◦ [m],

which implies that f = hm. Hence

m div(h) = div(f) = m(T )−m(O),

so

div(h) = (T )− (O).

It follows from (III.3.3) that T = O.
(d) Let σ ∈ GK̄/K . If f and g are the functions for T as above, then clearly fσ

and gσ are the corresponding functions for T σ. Then

em(Sσ, T σ) =
gσ(Xσ + Sσ)

gσ(Xσ)
=

(
g(X + S)

g(X)

)σ

= em(S, T )σ.

(e) Taking f and g as usual, we have

div(fm′
) = mm′(T )−mm′(O)

and (
g ◦ [m′]

)mm′
=
(
f ◦ [mm′]

)m′
.

Then directly from the definition of emm′ and em, we compute

emm′(S, T ) =
g ◦ [m′](X + S)

g ◦ [m′](X)
=

g
(
Y + [m′]S

)
g(Y )

= em
(
[m′]S, T

)
.

The basic properties of the Weil pairing imply its surjectivity, as in the next result.

Corollary 8.1.1. There exist points S, T ∈ E[m] such that em(S, T ) is a primi-
tive mth root of unity. In particular, if E[m] ⊂ E(K), then µm ⊂ K∗.

PROOF. The image of em(S, T ) as S and T range over E[m] is a subgroup of µm,
say equal to µd. It follows that

1 = em(S, T )d = em
(
[d]S, T

)
for all S, T ∈ E[m].

The nondegeneracy of the em-pairing implies that [d]S = O, and since S is arbi-
trary, it follows from (III.6.4) that d = m. Finally, if E[m] ⊂ E(K), then the Galois
invariance of the em-pairing implies that em(S, T ) ∈ K∗ for all S, T ∈ E[m].
Hence µm ⊂ K∗.

Recall from (III §6) that associated to any isogeny φ : E1 → E2 is a dual
isogeny φ̂ : E2 → E1 going in the opposite direction. The next proposition says
that φ and φ̂ are dual (or adjoint) with respect to the Weil pairing.
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Proposition 8.2. Let φ : E1 → E2 be an isogeny of elliptic curves. Then for all m-
torsion points S ∈ E1[m] and T ∈ E2[m],

em
(
S, φ̂(T )

)
= em

(
φ(S), T

)
.

PROOF. Let

div(f) = m(T )−m(O) and f ◦ [m] = gm

be as usual. Then

em(φS, T ) =
g(X + φS)

g(X)
.

Choose a function h ∈ K̄(E1) satisfying

φ∗((T ))− φ∗((O)
)
= (φ̂T )− (O) + div(h).

Such an h exists because ((III.6.1ab) tells us that φ̂T is precisely the sum of the
points of the divisor on the left-hand side of this equality. Now we observe that

div

(
f ◦ φ
hm

)
= φ∗ div(f)−m div(h) = m(φ̂T )−m(O)

and (
g ◦ φ
h ◦ [m]

)m

=
f ◦ [m] ◦ φ(
h ◦ [m]

)m =

(
f ◦ φ
hm

)
◦ [m].

Then directly from the definition of the em-pairing we obtain

em(S, φ̂T ) =

(
g ◦ φ/h ◦ [m]

)
(X + S)(

g ◦ φ/h ◦ [m]
)
(X)

=
g(φX + φS)

g(φX)
· h

(
[m]X

)
h
(
[m]X + [m]S

)
= em(φS, T ).

Let 	 be a prime number different from char(K). We are going to combine the
pairings

e�n : E[	n]× E[	n] −→ µ�n

for n = 1, 2, . . . in order to create an 	-adic Weil pairing on the Tate module,

e : T�(E)× T�(E) −→ T�(µ).

Recall that the inverse limits for T�(E) and T�(µ) are formed using the maps

E[	n+1]
[�]−−−−−→ E[	n] and µ�n+1

ζ 	→ζ�

−−−→ µ�n .
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Thus in order to show that the e�n-pairings are compatible with taking the inverse
limits, we must show that

e�n+1(S, T )� = e�n
(
[	]S, [	]T

)
for all S, T ∈ E[	n+1].

We use linearity (III.8.1a) to observe that

e�n+1(S, T )� = e�n+1(S, [	]T ),

and then the desired compatibility relation follows by applying (III.8.1e) to the
points S and [	]T with m = 	n and m′ = 	. This proves that the pairing
e : T�(E)× T�(E) → T�(µ) is well-defined. Further, it inherits all of the proper-
ties described in (III.8.1) and (III.8.2), which completes the proof of the following
result.

Proposition 8.3. There exists a bilinear, alternating, nondegenerate, Galois invari-
ant pairing

e : T�(E)× T�(E) −→ T�(µ).

Further, if φ : E1 → E2 is an isogeny, then φ and its dual φ̂ are adjoints for the
pairing, i.e., e(φS, T ) = e(S, φ̂T ).

Remark 8.4. More generally, if φ : E1 → E2 is any nonconstant isogeny, then there
is a Weil pairing

eφ : kerφ× ker φ̂ −→ µm.

See Exercise 3.15.

Remark 8.5. There is an alternative definition of the Weil pairing em(S, T ) that
works as follows. Choose arbitrary points X,Y ∈ E and functions fS , fT ∈ K̄(E)
satisfying

div(fS) = m(X + S)−m(X) and div(fT ) = m(Y + T )−m(Y ).

Then

em(S, T ) =
fS(Y + T )

fS(Y )

/
fT (X + S)

fT (X)
.

We leave to the reader to prove that this quantity is well-defined and equal to the
Weil pairing; see Exercise 3.16.

Recall that we have a representation (III §7)

End(E) −→ End
(
T�(E)

)
, φ �−→ φ�.

Choosing a Z�-basis for T�(E), we can write φ� as a 2× 2 matrix, and in particular
we can compute

det(φ�) ∈ Z� and tr(φ�) ∈ Z�.

Of course, the value of the determinant and trace do not depend on the choice of
basis.
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The next result, whose proof uses the Weil pairing, shows how the determinant
and trace values may be employed to compute the degree of an isogeny. These for-
mulas are applied in Chapter V to count the number of points on an elliptic curve
defined over a finite field (V.2.3.1). If we view the Tate module as a homology
group (III.7.3.1), then (III.8.6) says that the degree of an isogeny can be computed
topologically via its action on H1(E,Z�).

Proposition 8.6. Let φ ∈ End(E), and let φ� : T�(E) → T�(E) be the map that φ
induces on the Tate module of E. Then

det(φ�) = deg(φ) and tr(φ�) = 1 + deg(φ) − deg(1 − φ).

In particular, det(φ�) and tr(φ�) are in Z and are independent of 	.

PROOF. Let {v1, v2} be a Z�-basis for T�(E) and write

φ�(v1) = av1 + bv2, φ�(v2) = cv1 + dv2,

so the matrix of φ� relative to this basis is

φ� =

(
a b
c d

)
.

Using properties of the Weil pairing (III.8.3), we compute

e(v1, v2)
degφ = e

(
[deg φ]v1, v2

)
bilinearity of e,

= e(φ̂�φ�v1, v2) (III.6.1a),

= e(φ�v1, φ�v2) (III.8.3) and (III.6.2f),

= e(av1 + bv2, cv1 + dv2)

= e(v1, v2)
ad−bc since e is bilinear and alternating,

= e(v1, v2)
detφ� .

Since e is nondegenerate, we conclude that degφ = detφ�. Finally, for any 2× 2
matrix A, a trivial calculation yields

tr(A) = 1 + det(A)− det(1 −A).

III.9 The Endomorphism Ring

Let E be an elliptic curve. In this section we characterize which rings may occur as
the endomorphism ring of E. So far we have accumulated the following information:

(i) End(E) has characteristic 0, no zero divisors, and rank at most four as a Z-
module (III.4.2c), (III.7.5).
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(ii) End(E) possesses an anti-involution φ �→ φ̂ (III.6.2bcf).

(iii) For φ ∈ End(E), the productφφ̂ is a non-negative integer, and further,φφ̂ = 0
if and only if φ = 0 (III.6.2a), (III.6.3).

It turns out that any ring satisfying (i)–(iii) is of a very special sort. After giving the
relevant definitions, we describe the general classification of rings satisfying (i)–(iii).
This may then be applied to the particular case of End(E).

Definition. Let K be a (not necessarily commutative) Q-algebra that is finitely gen-
erated over Q. An order R of K is a subring of K that is finitely generated as a
Z-module and satisfies R⊗Q = K.

Example 9.1. Let K be an imaginary quadratic field and let O be its ring of integers.
Then for each integer f ≥ 1, the ring Z + fO is an order of K. In fact, these are all
of the orders of K; see Exercise 3.20.

Definition. A quaternion algebra is an algebra of the form

K = Q+Qα+Qβ +Qαβ

whose multiplication satisfies

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ.

Remark 9.2. These quaternion algebras are more properly called definite quaternion
algebras over Q, but since these are the only quaternion algebras that we use in this
book, we generally drop the “definite” appellation.

Theorem 9.3. Let R be a ring of characteristic 0 having no zero divisors, and as-
sume that R has the following properties:
(i) R has rank at most four as a Z-module.

(ii) R has an anti-involution α �→ α̂ satisfying

α̂+ β = α̂+ β̂, α̂β = β̂α̂, ˆ̂α = α, â = a for a ∈ Z ⊂ R.

(iii) For α ∈ R, the product αα̂ is a nonnegative integer, and αα̂ = 0 if and only
if α = 0.

Then R is one of the following types of rings:
(a) R ∼= Z.
(b) R is an order in an imaginary quadratic extension of Q.
(c) R is an order in a quaternion algebra over Q.

PROOF. Let K = R ⊗ Q. Since R is finitely generated as a Z-module, it suffices
to prove that K is either Q, an imaginary quadratic field, or a quaternion algebra.
We extend the anti-involution to K and define a (reduced) norm and trace from K
to Q by

Nα = αα̂ and Tα = α+ α̂.



III.9. The Endomorphism Ring 101

We make several observations about the trace. First, since

Tα = 1 + Nα−N(α− 1),

we see that Tα ∈ Q. Second, the trace is Q-linear, since the involution fixes Q.
Third, if α ∈ Q, then Tα = 2α. Finally, if α ∈ K satisfies Tα = 0, then

0 = (α − α)(α− α̂) = α2 − (Tα)α +Nα = α2 +Nα,

so α2 = −Nα. Thus

α �= 0 and Tα = 0 =⇒ α2 ∈ Q and α2 < 0.

If K = Q, there is nothing to prove. Otherwise we can find some α ∈ K
with α /∈ Q. Replacing α by α− 1

2 Tα, we may assume that Tα = 0. Then α2 ∈ Q

and α2 < 0, so Q(α) is a quadratic imaginary field. If K = Q(α), we are again done.
Suppose now that K �= Q(α) and choose some β ∈ K with β /∈ Q(α). We may

replace β with

β − 1

2
Tβ − T(αβ)

2α2
α.

We know that Tα = 0 and α2 ∈ Q
∗, so an easy calculation shows that

Tβ = T(αβ) = 0.

In particular, β2 ∈ Q and β2 < 0. We next write

Tα = 0, Tβ = 0, T(αβ) = 0

as

α = −α̂, β = −β̂, αβ = −β̂α̂

and substitute the first two equalities into the third to obtain

αβ = −βα.

Hence
Q[α, β] = Q+Qα+ Qβ +Qαβ

is a quaternion algebra. It remains to prove that Q[α, β] = K, and to do this, it
suffices to show that 1, α, β, αβ areQ-linearly independent, since then Q[α, β] andK
both have dimension 4 over Q.

Suppose that

w + xα+ yβ + zαβ = 0 with w, x, y, z ∈ Q.

Taking the trace yields
2w = 0, so w = 0.

Next we multiply by α on the left and by β on the right to obtain
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(xα2)β + (yβ2)α+ zα2β2 = 0.

We know that 1, α, and β are Q-linearly independent, since α /∈ Q and β /∈ Q(α).
Hence this equation implies that

xα2 = yβ2 = zα2β2 = 0,

and so x = y = z = 0, which completes the proof that 1, α, β, and αβ are Q-linearly
independent. (We have used several times the fact that α2 and β2 are in Q

∗.)

Corollary 9.4. The endomorphism ring of an elliptic curve E/K is either Z,
an order in an imaginary quadratic field, or an order in a quaternion algebra.
If char(K) = 0, then only the first two are possible.

PROOF. We have proven in (III.4.2b), (III.6.2), and (III.6.3) all of the facts needed
to apply (III.9.3) to the ring End(E). This proves the first part of the corollary.
If char(K) = 0, then (III.5.6c) says that End(E) is commutative, so in this
case End(E) cannot be an order in a quaternion algebra. (See also Exercise 3.33
for a proof of this corollary that does not require knowing a priori that End(E) has
rank at most four.)

Remark 9.4.1. If char(K) = 0, then (III.5.6c) tells us that End(E)⊗Q is commu-
tative, so it cannot be a quaternion algebra. (For alternative proofs of this important
fact, see (VI.6.1b) and Exercise 3.18b.) On the other hand, if K is a finite field Fq ,
then we will later see that End(E) is always larger than Z (V.3.1) and that there
are always elliptic curves defined over Fp2 with End(E) ⊗ Q a quaternion alge-
bra (V.4.1c). The complete description of End(E) is given in Deuring’s comprehen-
sive article [60].

The next definition and theorem are used in the exercises.

Definition. Let p be a prime or ∞, let Qp be the p-adic rationals if p is finite, and
let Q∞ = R. A quaternion algebra K is said to split at p if

K ⊗Q Qp
∼= M2(Qp),

where M2(K) is the algebra of 2 × 2 matrices with coefficients in K . Otherwise K
is said to be ramified at p. The invariant of K at p is defined by

invp K =

{
0 if K splits at p,
1
2 if K ramifies at p.

Theorem 9.5. Let K be a quaternion algebra.
(a) We have invp(K) = 0 for all but finitely many p, and

∑
p

invp(K) ∈ Z.

(Note that the sum includes p = ∞.)
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(b) Two quaternion algebras K and K′ are isomorphic as Q-algebras if and only
if invp(K) = invp(K′) for all p.

PROOF. This is a very special case of the fact that the central simple algebras over
a field K are classified by the Brauer group Br(K) = H2(GK̄/K , K̄∗) [233, X §5],
and the fundamental exact sequence from class field theory [288, §9.6]

0 −→ Br(Q) −→
⊕
p

Br(Qp)

∑
p invp−−−−−−−−−→ Q

Z
−→ 0,

where

Br(Qp)
∼−−−−−−→

invp

{
Q/Z if p �= ∞,{
0, 12

}
if p = ∞.

Quaternion algebras (definite and indefinite) correspond to elements of order 2 in
Br(Q).

III.10 The Automorphism Group

If an elliptic curve is given by a Weierstrass equation, it is generally a nontrivial
matter to determine the exact structure of its endomorphism ring. The situation is
much simpler for the automorphism group.

Theorem 10.1. Let E/K be an elliptic curve. Then its automorphism group Aut(E)
is a finite group of order dividing 24. More precisely, the order of Aut(E) is given
by the following table:

#Aut(E) j(E) char(K)

2 j(E) �= 0, 1728 —
4 j(E) = 1728 char(K) �= 2, 3
6 j(E) = 0 char(K) �= 2, 3
12 j(E) = 0 = 1728 char(K) = 3
24 j(E) = 0 = 1728 char(K) = 2

PROOF. We restrict attention to char(K) �= 2, 3; see (III.1.3) and (A.1.2c). Then E
is given by an equation

E : y2 = x3 +Ax +B,

and every automorphism of E has the form

x = u2x′, y = u3y′,

for some u ∈ K̄∗. Such a substitution gives an automorphism of E if and only if

u−4A = A and u−6B = B.

If AB �= 0, i.e., if j(E) �= 0, 1728, then the only possibilities are u = ±1.
Similarly, if B = 0, then j(E) = 1728 and u4 = 1, and if A = 0, then j(E) = 0
and u6 = 1. Hence Aut(E) is cyclic of order 2, 4, or 6, depending on whether
AB �= 0, B = 0, or A = 0.
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It is worth remarking that the proof of (III.10.1) gives the structure of Aut(E) as
a GK̄/K-module, at least for char(K) �= 2, 3. We record this as a corollary.

Corollary 10.2. Let E/K be a curve over a field of characteristic not equal to 2
or 3, and let

n =

⎧⎪⎨
⎪⎩
2 if j(E) �= 0, 1728,

4 if j(E) = 1728,

6 if j(E) = 0.

Then there is a natural isomorphism of GK̄/K-modules

Aut(E) ∼= µn.

PROOF. While proving (III.10.1), we showed that the map

[ ] : µn −→ E, [ζ](x, y) = (ζ2x, ζ3y),

is an isomorphism of abstract groups. It is clear that this map commutes with the
action of GK̄/K , and hence it is an isomorphism of GK̄/K-modules.

Exercises

3.1. Show that the polynomials

x4 − b4x
2 − 2b6x− b8 and 4x3 + b2x

2 + 2b4x+ b6

appearing in the duplication formula (III.2.3d) are relatively prime if and only if the discrimi-
nant of the associated Weierstrass equation is nonzero.

3.2. (a) Derive a triplication formula, analogous to to the duplication formula (III.2.3), i.e.,
express x

(
[3]P

)
as a rational function of x(P ) and a1, . . . , a6.

(b) Use the result from (a) to show that if char(K) �= 3, then E has a nontrivial point of
order 3. Conclude that if gcd(m, 3) = 1, then [m] �= [0]. (Warning. You’ll probably
want to use a computer algebra package for this problem.)

3.3. Assume that char(K) �= 3 and let A ∈ K∗. Then Exercise 2.7 tells us that the curve

E : X3 + Y 3 = AZ3

is a curve of genus one, so together with the point O = [1,−1, 0], it is an elliptic curve.
(a) Prove that three points on E add to O if and only if they are collinear.
(b) Let P = [X,Y, Z] ∈ E. Prove the formulas

−P = [Y,X,Z],

[2]P =
[−Y (X3 + AZ3), X(Y 3 + AZ3), X3Z − Y 3Z

]
.

(c) Develop an analogous formula for the sum of two distinct points.
(d) Prove that E has j-invariant 0.
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3.4. Referring to (III.2.4), express each of the points P2, P4, P5, P6, P7, P8 in the form
[m]P1 + [n]P3 with m,n ∈ Z.

3.5. Let E/K be given by a singular Weierstrass equation.
(a) Suppose that E has a node, and let the tangent lines at the node be

y = α1x+ β1 and y = α2x+ β2.

(i) If α1 ∈ K, prove that α2 ∈ K and

Ens(K) ∼= K∗.

(ii) If α1 /∈ K, prove that L = K(α1, α2) is a quadratic extension of K. Note that (i) tells
us that Ens(K) ⊂ Ens(L) ∼= L∗. Prove that

Ens(K) ∼= {
t ∈ L∗ : NL/K(t) = 1

}
.

(b) Suppose that E has a cusp. Prove that

Ens(K) ∼= K+.

3.6. Let C be a smooth curve of genus g, let P0 ∈ C, and let n ≥ 2g + 1 be an integer.
Choose a basis {f0, . . . , fm} for L(n(P0)

)
and define a map

φ : [f0, . . . , fm] : C −→ P
m.

(a) Prove that the image C′ = φ(C) is a curve in P
m.

(b) Prove that the map φ : C −→ C′ has degree one.
(c) * Prove that C′ is smooth and that φ : C −→ C′ is an isomorphism.

3.7. This exercise gives an elementary, highly computational, proof that the multiplication-
by-m map has degree m2. Let E be given be the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and let b2, b4, b6, b8 be the usual quantities. (If you’re content to work with char(K) �= 2, 3,
you may find it easier to use the short Weierstrass form E : y2 = x3 + Ax+B.)

We define division polynomials ψm ∈ Z[a1, . . . , a6, x, y] using initial values

ψ1 = 1,

ψ2 = 2y + a1x+ a3,

ψ3 = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8,

ψ4 = ψ2 ·
(
2x6 + b2x

5 + 5b4x
4 + 10b6x

3 + 10b8x
2 + (b2b8 − b4b6)x+ (b4b8 − b26)

)
,

and then inductively by the formulas

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 for m ≥ 2,

ψ2ψ2m = ψ2
m−1ψmψm+2 − ψm−2ψmψ2

m+1 for m ≥ 3.

Verify that ψm is a polynomial for all m ≥ 1, and then define further polynomials φm

and ωm by

φm = xψ2
m − ψm+1ψm−1,

2(2y + a1x+ a3)ωm = ψ2
m−1ψm+2 + ψm−2ψ

2
m+1.
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(a) Prove that if m is odd, then ψm, φm, and (2y + a1x+ a3)
−1ωm are polynomials in

Z
[
a1, . . . , a6, x, (2y + a1x+ a3)

2
]
,

and similarly for (2(2y + a1x + a3))
−1ψm, φm, and ωm if m is even. So replac-

ing (2y + a1x+ a3)
2 by 4x3 + b2x

2 + 2b4x+ b6, we may treat each of these quantities
as a polynomial in Z[a1, . . . , a6, x].

(b) As polynomials in x, show that

φm(x) = xm2

+ (lower order terms),

ψm(x)2 = m2xm2−1 + (lower order terms).

(c) If Δ �= 0, prove that φm(x) and ψm(x)2 are relatively prime polynomials in K[x].
(d) Continuing with the assumption that Δ �= 0, so E is an elliptic curve, prove that for any

point P = (x0, y0) ∈ E we have

[m]P =

(
φm(P )

ψm(P )2
,
ωm(P )

ψm(P )3

)
.

(e) Prove that the map [m] : E → E has degree m2.
(f) Prove that the function ψn ∈ K(E) has divisor

div(ψn) =
∑

T∈E[n]

(T )− n2(O).

Thus ψn vanishes at precisely the nontrivial n-torsion points and has a corresponding pole
at O.

(g) Prove that

ψn+mψn−mψ2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n for all n > m > r.

3.8. (a) Let E/C be an elliptic curve. We will prove later (VI.5.1.1) that there are a lat-
tice L ⊂ C and a complex analytic isomorphism of groups C/L ∼= E(C). (N.B. This
isomorphism is given by convergent power series, not by rational functions.) Assuming
this fact, prove that

deg[m] = m2 and E[m] =
Z

mZ
× Z

mZ
.

(b) Let K be a field with char(K) = 0 and let E/K be an elliptic curve. Use (a) to prove
that deg[m] = m2. (Hint. If K can be embedded into C, then the result follows immedi-
ately from (a). Reduce to this case.)

3.9. Let E/K be an elliptic curve over a field K with char(K) �= 2, 3, and fix a a homoge-
neous Weierstrass equation for E,

F (X0, X1, X2) = X2
1X2 −X3

0 − AX0X
2
2 −BX3

2 = 0,

i.e., x = X0/X2 and y = X1/X2 are affine Weierstrass coordinates. Let P ∈ E.
(a) Prove that [3]P = O if and only if the tangent line to E at P intersects E only at P .
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(b) Prove that [3]P = O if and only if the Hessian matrix
(

∂2F

∂XiXj
(P )

)

0≤i,j≤2

has determinant 0.
(c) Prove that E[3] consists of nine points.

3.10. Let E/K be an elliptic curve with Weierstrass coordinate functions x and y.
(a) Show that the map

φ : E −→ P
3, φ = [1, x, y, x2],

maps E isomorphically onto the intersection of two quadric surfaces in P
3. (A quadric

surface in P
3 is the zero set of a homogeneous polynomial of degree two.) In particular,

if H ⊂ P
3 is a hyperplane, then H ∩ φ(E) consists of exactly four points, counted with

appropriate multiplicities.
(b) Show that φ(O) = [0, 0, 0, 1], and that the hyperplane {T0 = 0} intersects φ(E) at the

single point φ(O) with multiplicity 4.
(c) Let P,Q,R, S ∈ E. Prove that P + Q + R + S = O if and only if the four

points φ(P ), φ(Q), φ(R), φ(S) are coplanar, i.e., if and only if there is a plane H ⊂ P
3

such that the intersection E ∩H , counted with appropriate multiplicities, consists of the
points φ(P ), φ(Q), φ(R), φ(S).

(d) Let P ∈ E. Prove that [4]P = O if and only if there exists a hyperplane H ⊂ P
3

satisfying H ∩ φ(E) = {P}. If char(K) �= 2, prove that there are exactly 16 such
hyperplanes, and hence that #E[4] = 16.

(e) Continuing with the assumption that char(K) �= 2, prove that there is a K̄-linear change
of coordinates such that φ(E) is given by equations of the form

T 2
0 + T 2

2 = T0T3 and T 2
1 + αT 2

2 = T2T3.

For what value(s) of α do these equations define a nonsingular curve?
(f) Using the model in (e) and the addition law described in (c), find formulas for −P ,

for P1 + P2, and for [2]P , analogous to the formulas given in (III.2.3).
(g) What is the j-invariant of the elliptic curve described in (e)?

3.11. Generalize Exercise 3.10 as follows. Let E/K be an elliptic curve and choose a basis
f1, . . . , fm for L(m(O)

)
. For m ≥ 3, it follows from Exercise 3.6 that the map

φ : E −→ P
m−1, φ = [f1, . . . , fm],

is an isomorphism of E onto its image.
(a) Show that φ(E) is a curve of degree m, i.e., prove that the intersection of φ(E) and a

hyperplane consists of m points, counted with appropriate multiplicities. (Hint. Find a
hyperplane that intersects φ(E) at the single point φ(O) and show that it intersects with
multiplicity m.)

(b) Let P1, . . . , Pm ∈ E. Prove that P1 + · · · + Pm = O if and only if the points
φ(P1), φ(P2), . . . , φ(Pm) lie on a hyperplane. (Note that if some of the Pi’s coincide,
then the hyperplane is required to intersect φ(E) with correspondingly higher multiplici-
ties at such points.)

(c) * Let P ∈ E. Prove that [m]P = O if and only if there is a hyperplane H ⊂ P
m−1

satisfying H ∩ φ(E) = {P}. If char(K) = 0 or char(K) > m, prove that there are
exactly m2 such points. Use this to deduce that deg[m] = m2.
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3.12. Let m ≥ 2 be an integer, prime to char(K) if char(K) > 0. Prove that the natural map

Aut(E) −→ Aut
(
E[m]

)

is injective except for m = 2, where the kernel is [±1]. (You should be able to prove this
directly, without using (III.10.1).)

3.13. Generalize (III.4.12) as follows. Let C/K̄ be a smooth curve, and let Φ be a finite
group of isomorphisms from C to itself. (For example, if E is an elliptic curve, then Φ might
contain some translations by torsion points and [±1].) We observe that an element α ∈ Φ acts
on K̄(C) via the map

α∗ : K̄(C) −→ K̄(C), α∗(f) = f ◦ α.

(a) Prove that there exist a unique smooth curve C′/K̄ and a finite separable morphism
φ : C → C′ such that φ∗K̄(C′) = K̄(C)Φ, where K̄(C)Φ denotes the subfield of K̄(C)
fixed by every element of Φ.

(b) Let P ∈ C. Prove that
eφ(P ) = #{α ∈ Φ : αP = P}.

(c) Prove that φ is unramified if and only if every nontrivial element of Φ has no fixed points.
(d) Express the genus of C′ in terms of the genus of C, the number of elements in Φ, and the

number of fixed points of elements of Φ.
(e) * Suppose that C is defined over K and that Φ is GK̄/K-invariant. The latter condition

means that for all α ∈ Φ and all σ ∈ GK̄/K we have ασ ∈ Φ. Prove that it is possible
to find C′ and φ as in (a) such that C′ and φ are defined over K. Prove further that C is
unique up to isomorphism over K.

3.14. Prove directly that the natural map

Hom(E1, E2) −→ Hom
(
T�(E1), T�(E2)

)

is injective. (Hint. If φ : E1 → E2 satisfies φ� = 0, then E1[	
n] ⊂ kerφ for all n ≥ 1.)

Note that this result is not as strong as (III.7.4).

3.15. Let E1/K and E2/K be elliptic curves, and let φ : E1 → E2 be an isogeny of
degree m defined over K, where m is prime to char(K) if char(K) > 0.
(a) Mimic the construction in (III §8) to construct a pairing

eφ : kerφ× ker φ̂ −→ µm.

(b) Prove that eφ is bilinear, nondegenerate, and Galois invariant.
(c) Prove that eφ is compatible in the sense that if ψ : E2 → E3 is another isogeny, then

eψ◦φ(P,Q) = eψ(φP,Q) for all P ∈ ker(ψ ◦ φ) and Q ∈ ker(ψ̂).
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3.16. Alternative Definition of the Weil Pairing. Let E be an elliptic curve. We define a pairing

ẽm : E[m]× E[m] −→ µm

as follows: Let P,Q ∈ E[m] and choose divisors DP and DQ in Div0(E) that add to P
and Q, respectively, i.e., such that σ(DP ) = P and σ(DQ) = Q, where σ is as in (III.3.4a).
Assume further that DP and DQ are chosen with disjoint supports. Since P and Q have
order m, there are functions fP , fQ ∈ K̄(E) satisfying

div(fP ) = mDP and div(fQ) = mDQ.

We define

ẽm =
fP (DQ)

fQ(DP )
.

(See Exercise 2.10 for the definition of the value of a function at a divisor.)
(a) Prove that ẽm(P,Q) is well-defined, i.e., its value depends only on P and Q, indepen-

dent of the various choices of DP , DQ, fP , and fQ. (Hint. Use Weil reciprocity, Exer-
cise 2.11.)

(b) Prove that ẽm(P,Q) ∈ µm.
(c) * Prove that ẽm(P,Q) = em(Q,P ), and hence that ẽm = e−1

m , where em is the Weil
pairing defined in (III §8).

3.17. Let K be a definite quaternion algebra. Prove that K is ramified at ∞. (Hint. The
ring M2(R) contains zero divisors.)

3.18. Let E/K be an elliptic curve and suppose that K = End(E) ⊗ Q is a quaternion
algebra.
(a) Prove that if p �= ∞ and p �= char(K), then K splits at p. (Hint. Use (III.7.4).)
(b) Deduce that char(K) > 0. (This gives an alternative proof of (III.5.6c).)
(c) Prove that K is the unique quaternion algebra that is ramified at ∞ and char(K) and

nowhere else.
(d) * Prove that End(E) is a maximal order in K. (Note that unlike number fields, a quater-

nion algebra may have more than one maximal order.)

3.19. Let K be a quaternion algebra.
(a) Prove that K⊗ Q̄ ∼= M2(Q̄).
(b) Prove that K ⊗ K ∼= M4(Q). This shows that K corresponds to an element of order 2 in

the Brauer group Br(Q). (Hint. First show that K ⊗ K is simple, i.e., has no two-sided
ideals. Then prove that the map

K ⊗K −→ End(K), a⊗ b −→ (x → axb),

is an isomorphism.)

3.20. Let K be an imaginary quadratic field with ring of integers O. Prove that the orders of K
are precisely the rings Z + fO for integers f > 0. The integer f is called the conductor of
the order.

3.21. Let C/K̄ be a curve of genus one. For any point O ∈ C, we can associate to the
elliptic curve (C,O) its j-invariant j(C,O). This exercise asks you to prove that the value
of j(C,O) is independent of the choice of the base point O. Thus we can assign a j-invariant
to any curve C of genus one.
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(a) Let (C,O) and (C′, O′) be curves of genus one with associated base points, and sup-
pose that there is an isomorphism of curves φ : C → C′ satisfying φ(O) = O′. Prove
that j(C,O) = j(C′, O′). (Hint. The j-invariant, which is defined in terms of the coef-
ficients of a Weierstrass equation, is independent of the choice of the equation.)

(b) Prove that given any two points O,O′ ∈ C, there is an automorphism of C taking O
to O′.

(c) Use (a) and (b) to conclude that j(C,O) = j(C,O′).

3.22. Let C be a curve of genus one defined over K.
(a) Prove that j(C) ∈ K.
(b) Prove that C is an elliptic curve over K if and only if C(K) �= ∅.
(c) Prove that C is always isomorphic, over K̄, to an elliptic curve defined over K.

3.23. Deuring Normal Form. The following normal form for a Weierstrass equation is some-
times useful when dealing with elliptic curves over (algebraically closed) fields of arbitrary
characteristic.
(a) Let E/K be an elliptic curve, and assume that either char(K) �= 3 or j(E) �= 0. Prove

that E has a Weierstrass equation over K̄ of the form

E : y2 + αxy + y = x3 with α ∈ K̄.

(b) For the Weierstrass equation in (a), prove that (0, 0) ∈ E[3].
(c) For what value(s) of α is the Weierstrass equation in (a) singular?
(d) Verify that

j(E) =
α3(α3 − 24)3

α3 − 27
.

3.24. Let E/K be an elliptic curve with complex multiplication over K, i.e., such that
EndK(E) is strictly larger than Z. Prove that for all primes 	 �= char(K), the action of GK̄/K

on the Tate module T�(E) is abelian. (Hint. use the fact that the endomorphisms in EndK(E)
commute with the action of GK̄/K on T�(E).)

3.25. Let E be an elliptic curve and let P = (x, y) ∈ E. As a supplement to the duplication
formula (III.2.3d) for x, prove that the quantity Y

(
[2]P

)
= 2y

(
[2]P

)
+ a1x

(
[2]P

)
+ a3 is

given by the formula

Y
(
[2]P

)
=

2x6 + b2x
5 + 5b4x

4 + 10b6x
3 + 10b8x

2 + (b2b8 − b4b6)x+ (b4b8 − b26)

(2y + a1x+ a3)3
.

3.26. Let E be the elliptic curve y2 = x3 + x having complex multiplication by Z[i],
let m ≥ 2 be an integer, and let T ∈ E[m] be a point of exact order m. In each of the
following situations, prove that

{
T, [i]T

}
is a basis for E[m], and thus that em

(
T, [i]T

)
is a

primitive mth root of unity.
(a) m is prime and m ≡ 3 (mod 4).
(b) m ≥ 3 is prime, K is a field with i /∈ K, and T ∈ E(K).
The map [i] is an example of a distortion map.

3.27. Let E/K be an elliptic curve and let m �= 0 be an integer.
(a) Prove that x◦[m] ∈ K(x). In other words, prove that there is a rational function Fm(x) ∈

K(x) satisfying x
(
[m]P

)
= Fm

(
x(P )

)
for all P ∈ E.

(b) Prove that Fm

(
Fn(x)

)
= Fmn(x).
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(c) Compute F2(x) and F3(x) in terms of a given Weierstrass equation for E.
(d) A more intrinsic description of Fm is that it is the unique rational map Fm : P1 → P

1

fitting into the commutative diagram

E −−−−−→ E/{±1} x−−−−−→ P
1

[m]

⏐
⏐
� Fm

⏐
⏐
�

E −−−−−→ E/{±1} x−−−−−→ P
1.

Where is Fm ramified and what are the ramification indices at the ramification points?
(e) Find the fixed points of Fm(x), i.e., the points x ∈ P

1(K̄) satisfying Fm(x) = x.
(f) For each fixed point x ∈ P

1(K̄) of Fm(x), compute the value of the multiplier F ′
m(x).

(Hint. The value should depend only on m, independent of the curve E.)
(g) A point x ∈ P

1(K̄) is called preperiodic for Fm if its forward orbit

{
x,Fm(x), Fm(Fm(x)), Fm(Fm(Fm(x))), . . .

}

is finite. Prove that the preperiodic points for Fm are exactly the points in x
(
E(K̄)tors

)
.

The rational map Fm : P1 → P
1 is an example of a Lattès map. Lattès maps are important

in the theory of dynamical systems. In particular, Lattès proved that over C, the map Fm is
everywhere chaotic on P

1(C). For further information about elliptic curves and dynamical
systems, see for example [14, §4.3], [179], or [267, §§1.6.3, 6.4–6.7].

3.28. Let E ⊂ P
2 be a possibly singular curve given by a Weierstrass equation, and let L ⊂

P
2 be a line.

(a) Prove directly from the equations that, counted with appropriate multiplicities, the inter-
section E∩L consists of exactly three points. (This is a special case of Bézout’s theorem.)

(b) Let S be a singular point of E and suppose that S ∈ L. Prove that L intersects E at S
with multiplicity at least two. Deduce that E ∩ L consists of S and at most one other
point.

(c) More generally, let C ⊂ P
2 be a curve, let S ∈ C be a singular point of C, and let L be a

line containing S. Prove that L intersects C at S with multiplicity at least two.

3.29. Let E be an elliptic curve.
(a) Fix a Weierstrass equation for E, fix a nonzero point T ∈ E, and write x(P + T ) =

f
(
x(P ), y(P )

)
for some function f ∈ K(E) = K(x, y). Prove that f is a linear frac-

tional transformation if and only if T ∈ E[3], where a linear fractional transformation is
a function of the form

αx+ βy + γ

α′x+ β′y + γ′ .

(b) More generally, let m ≥ 3, use a basis for L
(
m(O)

)
to embed E ↪→ P

m−1, and
let T ∈ E. Prove that the translation-by-T map τT : E → E extends to an automor-
phism of Pm−1 if and only if T ∈ E[m].

3.30. Let A be a finite abelian group of order Nr . Suppose that for every D | N we
have #A[D] = Dr , where A[D] denotes the subgroup consisting of all elements of order D.
Prove that

A ∼=
(

Z

NZ

)r

.
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3.31. This exercise sketches an elementary proof of (III.6.2c) in arbitrary characteristic. We
start with the case char(K) �= 2. Let E/K be an elliptic curve.
(a) Use explicit formulas to prove that the doubling map [2] : E → E has degree 4.
(b) Use (a) to prove that deg[2n] = 4n for all n ≥ 1.
(c) Use (b) and (III.4.10c) to deduce that #E[2n] = 4n for all n ≥ 1. (This is where we use

the assumption that char(K) �= 2.)
(d) Use (c) and Exercise 3.30 to conclude that E[2n] ∼= Z/2nZ× Z/2nZ for all n ≥ 1.
(e) Verify that the proof of the existence of dual isogenies (III.6.1) is valid in all characteris-

tics.
(f) Suppose that m ≥ 1 is an integer for which we know, a priori, that #E[m] = m2.

Show that this suffices to prove the existence and basic properties of the Weil pair-
ing em : E[m]× E[m] → µm as described in (III.8.1) and (III.8.2).

(g) Let φ : E1 → E2 and ψ : E1 → E2 be isogenies of elliptic curves. Let m = 2n,
so (c) and (f) give the existence of the Weil pairing em on E1 and E2. Let T1 ∈ E1[m]
and T2 ∈ E2[m] be m-torsion points. Use properties of the Weil pairing to prove that

em
(
T1, ̂(φ+ ψ)(T2)

)
= em

(
T1, φ̂(T2) + ψ̂(T2)

)
.

Since this holds for all m = 2n, use the nondegeneracy of the Weil pairing to deduce
that φ̂+ ψ = φ̂+ ψ̂.

(h) Use (g) to deduce that

ˆ[m] = [m] and deg[m] = m2 for all integers m.

(Cf. (III.6.2d).)
(i) Let m be any integer such that m �= 0 in K. Use (h) to prove that #E[m] = m2, and

then observe that (f) gives the existence and standard properties of the Weil em-pairing.
(j) Finally, if char(K) = 2, replace (a) with a proof via explicit equations that deg[3] = 9.

Redo the rest of the exercise with 2n replaced by 3n.

3.32. Let φ ∈ End(E) be an endomorphism, and let

d = degφ and a = 1 + degφ− deg(1− φ).

(a) Prove that φ2 − [a] ◦ φ+ [d] = [0] in End(E).
(b) Let α, β ∈ C be the complex roots of the polynomial t2 − at+ d. Prove that

|α| = |β| =
√
d.

(c) Prove that deg(1− φn) = 1 + dn − αn − βn for all n ≥ 1, and deduce that

∣
∣deg(1− φn)− 1− dn

∣
∣ ≤ 2dn/2.

(d) Prove that

exp

( ∞∑

n=1

deg(1− φn)

n
Xn

)

=
1− aX + dX2

(1−X)(1− dX)
,

where the power series converges for |X| < d−1.
(Hint. Use (III.8.6). For (b), use the fact that deg([m] + [n] ◦ φ) ≥ 0 for all m,n ∈ Z.)
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3.33. Let K be a Q-division algebra, i.e., K is a (not necessarily commutative) Q-algebra in
which every nonzero element has a multiplicative inverse. This exercise sketches a proof of
the following theorem, which can be used instead of (III.9.3) to prove (III.9.4). In particular,
it is not necessary to know, a priori, that End(E) has rank at most four (III.7.4), (III.7.5).

Theorem. Suppose that every element of K satisfies a quadratic equation with coefficients
in Q. Then either K = Q, K is a quadratic field, or K is a quaternion algebra.

(a) Let α, β ∈ K. Prove that if β /∈ Q(α), then Q(α) ∩Q(β) = Q.
(b) Let α, β ∈ K. Prove that if α /∈ Q and αβ = βα, then β ∈ Q(α).
(c) Let α, β ∈ K. Prove that if α2, β2 ∈ Q, α /∈ Q, and β /∈ Q(α), then αβ + βα ∈ Q.
(d) Let α ∈ K. Prove that there exists an α′ ∈ K such that Q(α) = Q(α′) and α′2 ∈ Q.
(e) Let α, β ∈ K∗ satisfy α2, β2 ∈ Q. Prove that there exists a β′ ∈ K such that

Q(α, β) = Q(α, β′) and β′2, (αβ′)2 ∈ Q.
(f) Let α, β ∈ K satisfy α /∈ Q, β /∈ Q(α), and α2, β2, (αβ)2 ∈ Q. Prove that αβ = −βα.
(g) Prove the theorem.
(h) Use the theorem to prove (III.9.4).

3.34. Let K be a field. An elliptic divisibility sequence (EDS) over K is a sequence (Wn)n≥1

defined by four initial conditions W1,W2,W3,W4 ∈ K and satisfying the recurrence

Wm+nWm−nW
2
1 = Wm+1Wm−1W

2
n −Wn+1Wn−1W

2
m for all m > n > 0.

An EDS in nondegenerate if W1W2W3 �= 0.
(a) Prove that a sequence (Wn)n≥1 of elements of K with W1W2W3 �= 0 is an EDS if and

only if it satisfies the two conditions

W2n+1W
3
1 = Wn+2W

3
n −Wn−1W

3
n+1 for all n ≥ 2,

W2nW2W
2
1 = Wn(Wn+2W

2
n−1 −Wn−2W

2
n+1) for all n ≥ 3.

(b) Prove that an EDS satisfies the more general recurrence

Wm+nWm−nW
2
r = Wm+rWm−rW

2
n −Wn+rWn−rW

2
m for all m > n > r > 0.

(c) Let (Wn) be an EDS and let c ∈ K∗. Prove that (cn
2−1Wn) is also an EDS.

(d) Let (Wn) be a nondegenerate EDS. Prove that (Wn/W1) is an EDS. More generally,
if Wm �= 0, prove that (Wmn/Wm)n≥1 is an EDS.

3.35. This exercise gives some examples of elliptic divisibility sequences (EDS).
(a) Prove that the sequence 1, 2, 3, . . . is an EDS.
(b) Prove that the sequence 1, 3, 8, 21, 55, 144, 377, 987, . . . consisting of every other term

of the Fibonacci sequence is an EDS.
(c) More generally, let (Ln)n≥1 be defined by a linear recurrence of the form

L1 = 1, L2 = A, Ln+2 = ALn+1 − Ln for n ≥ 1.

Generalize (b) by finding a subsequence of (Ln) that is an EDS.
(d) The most interesting EDS are associated to points on elliptic curves. Let E/K be an

elliptic curve and let P ∈ E(K) be a nonzero point. Define a sequence

Wn = ψn(P ) for n ≥ 1,

where ψn is the nth division polynomial for E as defined in Exercise 3.7. Prove that (Wn)
is an EDS.
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(e) Let (Wn) be an EDS associated to an elliptic curve E/K and nonzero point P ∈ E(K)
as in (d). Prove that P is a point of finite order at least 4 if and only if Wn = 0 for some
n ≥ 4.

(f) * Let (Wn) be an EDS associated to an elliptic curve E/K and a nonzero point
P ∈ E(K) of finite order. Let r ≥ 2 be the smallest index such that Wr = 0. (The
number r is called the rank of apparition of the sequence.) Assuming that r ≥ 4, prove
that there exist A,B ∈ K∗ such that

Wri+j = WjA
ijBi2 for all i ≥ 0 and all j ≥ 1.

(g) Suppose that K is a finite field and that the rank of apparition r of (Wn) is at least 4.
Prove that the sequence (Wn) is periodic with period that is a multiple of r.

3.36. Let R be an integral domain, and let (Wn)n≥1 be a nondegenerate elliptic divisibility
sequence with Wi ∈ R such that W1 divides each of W2, W3, and W4, and such that W2

divides W4.
(a) Prove that (Wn) is a divisibility sequence, in the sense that

m | n =⇒ Wm | Wn.

(b) Suppose further that R is a principal ideal domain and that gcd(W3,W4) = 1. Prove
that (Wn) satisfies the stronger divisibility relation

Wgcd(m,n) = gcd(Wm,Wn) for all m,n ≥ 1.
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