
Chapter II

Algebraic Curves

In this chapter we present basic facts about algebraic curves, i.e., projective varieties
of dimension one, that will be needed for our study of elliptic curves. Actually, since
elliptic curves are curves of genus one, one of our tasks will be to define the genus
of a curve. As in Chapter I, we give references for those proofs that are not included.
There are many books in which the reader will find more material on the subject of
algebraic curves, for example [111, Chapter IV], [133], [180], [243], [99, Chapter 2],
and [302].

We recall the following notation from Chapter I that will be used in this chapter.
Here C denotes a curve and P ∈ C is a point of C.

C/K C is defined over K .

K̄(C) the function field of C over K̄.

K(C) the function field of C over K .

K̄[C]P the local ring of C at P .

MP the maximal ideal of K̄[C]P .

II.1 Curves

By a curve we will always mean a projective variety of dimension one. We generally
deal with curves that are smooth. Examples of smooth curves include P

1, (I.2.3),
and (I.2.8). We start by describing the local rings at points on a smooth curve.

Proposition 1.1. Let C be a curve and P ∈ C a smooth point. Then K̄[C]P is a
discrete valuation ring.

PROOF. From (I.1.7), the vector space MP /M
2
P is a one-dimensional vector space

over the field K̄ = K̄[C]P /MP . Now use [8, Proposition 9.2] or Exercise 2.1.
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18 II. Algebraic Curves

Definition. Let C be a curve and P ∈ C a smooth point. The (normalized) valuation
on K̄[C]P is given by

ordP : K̄[C]P −→ {0, 1, 2, . . .} ∪ {∞},
ordP (f) = sup{d ∈ Z : f ∈ Md

P }.
Using ordP (f/g) = ordP (f)− ordP (g), we extend ordP to K̄(C),

ordP : K̄(C) −→ Z ∪∞.

A uniformizer for C at P is any function t ∈ K̄(C) with ordP (t) = 1, i.e., a
generator for the ideal MP .

Remark 1.1.1. If P ∈ C(K), then it is not hard to show that K(C) contains uni-
formizers for P ; see Exercise 2.16.

Definition. Let C and P be as above, and let f ∈ K̄(C). The order of f at P is
ordP (f). If ordP (f) > 0, then f has a zero at P , and if ordP (f) < 0, then f
has a pole at P . If ordP (f) ≥ 0, then f is regular (or defined) at P and we can
evaluate f(P ). Otherwise f has a pole at P and we write f(P ) = ∞.

Proposition 1.2. Let C be a smooth curve and f ∈ K̄(C) with f �= 0. Then there
are only finitely many points of C at which f has a pole or zero. Further, if f has no
poles, then f ∈ K̄ .

PROOF. See [111, I.6.5], [111, II.6.1], or [243, III §1] for the finiteness of the number
of poles. To deal with the zeros, look instead at 1/f . The last statement is [111,
I.3.4a] or [243, I §5, Corollary 1].

Example 1.3. Consider the two curves

C1 : Y 2 = X3 +X and C2 : Y 2 = X3 +X2.

(Remember our convention (I.2.7) concerning affine equations for projective vari-
eties. Each of C1 and C2 has a single point at infinity.) Let P = (0, 0). Then C1

is smooth at P and C2 is not (I.1.6). The maximal ideal MP of K̄[C1]P has the
property that MP /M

2
P is generated by Y (I.1.8), so for example,

ordP (Y ) = 1, ordP (X) = 2, ordP (2Y
2 −X) = 2.

(For the last, note that 2Y 2 −X = 2X3 +X .) On the other hand, K̄[C2]P is not a
discrete valuation ring.

The next proposition is useful in dealing with curves over fields of characteristic
p > 0. (See also Exercise 2.15.)

Proposition 1.4. Let C/K be a curve, and let t ∈ K(C) be a uniformizer at some
nonsingular point P ∈ C(K). Then K(C) is a finite separable extension of K(t).

PROOF. The field K(C) is clearly a finite (algebraic) extension of K(t), since it is
finitely generated over K , has transcendence degree one over K (since C is a curve),
and t /∈ K . Let x ∈ K(C). We claim that x is separable over K(t).
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In any case, x is algebraic over K(t), so it satisfies some polynomial relation

∑
aijt

ixj = 0, where Φ(T,X) =
∑

aijT
iXj ∈ K[X,T ].

We may further assume that Φ is chosen so as to have minimal degree in X ,
i.e., Φ(t,X) is a minimal polynomial for x over K(t). Let p = char(K). If Φ
contains a nonzero term aijT

iXj with j �≡ 0 (mod p), then ∂Φ(t,X)/∂X is not
identically 0, so x is separable over K(t).

Suppose instead that Φ(T,X) = Ψ(T,Xp). We proceed to derive a contradic-
tion. The main point to note is that if F (T,X) ∈ K[T,X ] is any polynomial,
then F (T p, Xp) is a pth power. This is true because we have assumed that K is
perfect, which implies that every element of K is a pth power. Thus if F (T,X) =∑

αijT
iXj , then writing αij = βp

ij gives F (T p, Xp) =
(∑

βijT
iXj

)p
.

We regroup the terms in Φ(T,X) = Ψ(T,Xp) according to powers of T mod-
ulo p. Thus

Φ(T,X) = Ψ(T,Xp) =

p−1∑

k=0

⎛

⎝
∑

i,j

bijkT
ipXjp

⎞

⎠T k =

p−1∑

k=0

φk(T,X)pT k.

By assumption we have Φ(t, x) = 0. On the other hand, since t is a uniformizer
at P , we have

ordP
(
φk(t, x)

ptk
)
= p ordP

(
φk(t, x)

)
+ k ordP (t) ≡ k (mod p).

Hence each of the terms in the sum
∑

φk(t, x)
ptk has a distinct order at P , so every

term must vanish,

φ0(t, x) = φ1(t, x) = · · · = φp−1(t, x) = 0.

But at least one of the φk(T,X)’s must involve X , and for that k, the rela-
tion φk(t, x) = 0 contradicts our choice of Φ(t,X) as a minimal polynomial for x
over K(t). (Note that degX φk(T,X) ≤ 1

p degX Φ(T,X).) This contradiction com-
pletes the proof that x is separable over K(t).

II.2 Maps Between Curves

We start with the fundamental result that for smooth curves, a rational map is defined
at every point.

Proposition 2.1. Let C be a curve, let V ⊂ P
N be a variety, let P ∈ C be a smooth

point, and let φ : C → V be a rational map. Then φ is regular at P . In particular,
if C is smooth, then φ is a morphism.

PROOF. Write φ = [f0, . . . , fN ] with functions fi ∈ K̄(C), and choose a uni-
formizer t ∈ K̄(C) for C at P . Let
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n = min
0≤i≤N

ordP (fi).

Then

ordP (t
−nfi) ≥ 0 for all i and ordP (t

−nfj) = 0 for some j.

Hence every t−nfi is regular at P , and (t−nfj)(P ) �= 0. Therefore φ is regular
at P .

See (I.3.6) and (I.3.7) for examples where (II.2.1) is false if P is not smooth or
if C has dimension greater than 1.

Example 2.2. Let C/K be a smooth curve and let f ∈ K(C) be a function. Then f
defines a rational map, which we also denote by f ,

f : C −→ P
1, P �−→ [

f(P ), 1
]
.

From (II.2.1), this map is actually a morphism. It is given explicitly by

f(P ) =

{[
f(P ), 1

]
if f is regular at P ,

[1, 0] if f has a pole at P .

Conversely, let
φ : C −→ P

1, φ = [f, g],

be a rational map defined over K . Then either g = 0, in which case φ is the constant
map φ = [1, 0], or else φ is the map corresponding to the function f/g ∈ K(C).
Denoting the former map by ∞, we thus have a one-to-one correspondence

K(C) ∪ {∞} ←→ {maps C → P
1 defined over K}.

We will often implicitly identify these two sets.

Theorem 2.3. Let φ : C1 → C2 be a morphism of curves. Then φ is either constant
or surjective.

PROOF. See [111, II.6.8] or [243, I §5, Theorem 4].

Let C1/K and C2/K be curves and let φ : C1 → C2 be a nonconstant rational
map defined over K . Then composition with φ induces an injection of function fields
fixing K ,

φ∗ : K(C2) −→ K(C1), φ∗f = f ◦ φ.
Theorem 2.4. Let C1/K and C2/K be curves.
(a) Let φ : C1 → C2 be a nonconstant map defined over K . Then K(C1) is a finite

extension of φ∗(K(C2)).
(b) Let ι : K(C2) → K(C1) be an injection of function fields fixing K . Then

there exists a unique nonconstant map φ : C1 → C2 (defined over K) such
that φ∗ = ι.
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(c) Let K ⊂ K(C1) be a subfield of finite index containing K . Then there ex-
ist a smooth curve C′/K , unique up to K-isomorphism, and a nonconstant
map φ : C1 → C′ defined over K such that φ∗K(C′) = K.

PROOF. (a) [111, II.6.8].
(b) Let C2 ⊂ P

N , and for each i, let gi ∈ K(C2) be the function on C2 correspond-
ing to Xi/X0. (Relabeling if necessary, we may assume that C2 is not contained in
the hyperplane X0 = 0.) Then

φ =
[
1, ι(g1), . . . , ι(gN )

]

gives a map φ : C1 → C2 with φ∗ = ι. (Note that φ is not constant, since the gi’s
cannot all be constant and ι is injective.) Finally, if ψ = [f0, . . . , fN ] is another map
with ψ∗ = ι, then for each i,

fi/f0 = ψ∗gi = φ∗gi = ι(gi),

which shows that ψ = φ.
(c) See [111, I.6.12] for the case that K is algebraically closed. The general case
can be proven similarly, or it may be deduced from the algebraically closed case by
examining GK̄/K-invariants.

Definition. Let φ : C1 → C2 be a map of curves defined over K . If φ is constant,
we define the degree of φ to be 0. Otherwise we say that φ is a finite map and we
define its degree to be

degφ =
[
K(C1) : φ

∗K(C2)
]
.

We say that φ is separable, inseparable, or purely inseparable if the field exten-
sion K(C1)/φ

∗K(C2) has the corresponding property, and we denote the separable
and inseparable degrees of the extension by degs φ and degi φ, respectively.

Definition. Let φ : C1 → C2 be a nonconstant map of curves defined over K .
From (II.2.4a) we know that K(C1) is a finite extension of φ∗K(C2). We use the
norm map relative to φ∗ to define a map in the other direction,

φ∗ : K(C1) �−→ K(C2), φ∗ = (φ∗)−1 ◦NK(C1)/φ∗K(C2) .

Corollary 2.4.1. Let C1 and C2 be smooth curves, and let φ : C1 → C2 be a map
of degree one. Then φ is an isomorphism.

PROOF. By definition, deg φ = 1 means that φ∗K̄(C2) = K̄(C1), so φ∗ is an
isomorphism of function fields. Hence from (II.2.4b), corresponding to the inverse
map (φ∗)−1 : K̄(C1)

∼−→ K̄(C2), there is a rational map ψ : C2 → C1 such
that ψ∗ = (φ∗)−1. Further, since C2 is smooth, (II.2.1) tells us that ψ is actually a
morphism. Finally, since (φ ◦ ψ)∗ = ψ∗ ◦ φ∗ is the identity map on K̄(C2), and
similarly (ψ ◦φ)∗ = φ∗ ◦ψ∗ is the identity map on K̄(C1), the uniqueness assertion
of (II.2.4b) implies that φ ◦ ψ and ψ ◦ φ are, respectively, the identity maps on C2

and C1. Hence φ and ψ are isomorphisms.
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Remark 2.5. The above result (II.2.4) shows the close connection between (smooth)
curves and their function fields. This can be made precise by stating that the follow-
ing map is an equivalence of categories. (See [111, I §6] for details.)

⎡

⎢⎢⎢⎢⎢⎣

Objects: smooth curves
defined over K
Maps: nonconstant rational
maps (equivalently
surjective morphisms)
defined over K

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Objects: finitely generated
extensions K/K of
transcendence degree one with
K ∩ K̄ = K
Maps: field injections fixing K

⎤

⎥⎥⎥⎦

C/K K(C)

φ : C1 → C2 φ∗ : K(C2) → K(C1)

Example 2.5.1. Hyperelliptic Curves. We assume that char(K) �= 2. We choose a
polynomial f(x) ∈ K[x] of degree d and consider the affine curve C0/K given by
the equation

C0 : y2 = f(x) = a0x
d + a1x

d−1 + · · ·+ ad.

Suppose that the point P = (x0, y0) ∈ C0 is singular. Then

2y0 = f ′(x0) = 0,

which means that y0 = 0 and x0 is a double root of f(x). Hence, if we assume that
disc(f) �= 0, then the affine curve y2 = f(x) will be nonsingular.

If we treat C0 as a curve in P
2 by homogenizing its affine equation, then one

easily checks that the point(s) at infinity are singular whenever d ≥ 4. On the other
hand, (II.2.4c) assures us that there exists some smooth projective curve C/K whose
function field equals K(C0) = K(x, y). The problem is that this smooth curve is not
a subset of P2.

For example, consider the case d = 4. (See also Exercise 2.14.) Then C0 has an
affine equation

C0 : y2 = a0x
4 + a1x

3 + a2x
2 + a3x+ a4.

We define a map
[1, x, y, x2] : C0 −→ P

3.

Letting [X0, X1, X2, X3] = [1, x, y, x2], the ideal of the image clearly contains the
two homogeneous polynomials

F = X3X0 −X2
1 ,

G = X2
2X

2
0 − a0X

4
1 − a1X

3
1X0 − a2X

2
1X

2
0 − a3X1X

3
0 − a4X

4
0 .

However, the zero set of these two polynomials cannot be the desired curve C, since
it includes the line X0 = X1 = 0. So we substitute X2

1 = X0X3 into G and cancel
an X2

0 to obtain the quadratic polynomial
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H = X2
2 − a0X

2
3 − a1X1X3 − a2X0X3 − a3X0X1 − a4X

2
0 .

We claim that the ideal generated by F and H gives a smooth curve C.
To see this, note first that if X0 �= 0, then dehomogenization with respect to X0

gives the affine curve (setting x = X1/X0, y = X2/X0, and z = X3/X0)

z = x2 and y2 = a0z
2 + a1xz + a2z + a3x+ a4.

Substituting the first equation into the second gives us back the original curve C0.
Thus C0

∼= C ∩ {X0 �= 0}.
Next, if X0 = 0, then necessarily X1 = 0, and then X2 = ±√

a0 X3. Thus C
has two points

[
0, 0,±√

a0, 1
]

on the hyperplane X0 = 0. (Note that a0 �= 0, since
we have assumed that f(x) has degree exactly four.) To check that C is nonsingular
at these two points, we dehomogenize with respect to X3, setting u = X0/X3,
v = X1/X3, and w = X2/X3. This gives the equations

u = v2 and w2 = a0 + a1v + a2u+ a3uv + a4u
2,

from which we obtain the single affine equation

w2 = a0 + a1v + a2v
2 + a3v

3 + a4v
4.

Again using the assumption that the polynomial f(x) has no double roots, we see
that the points (v, w) =

(
0,±√

a0
)

are nonsingular.
We summarize the preceding discussion in the following proposition, which will

be used in Chapter X.

Proposition 2.5.2. Let f(X) ∈ K[x] be a polynomial of degree 4 with disc(f) �= 0.
There exists a smooth projective curve C ⊂ P

3 with the following properties:
(i) The intersection of C with A

3 = {X0 �= 0} is isomorphic to the affine
curve y2 = f(x).

(ii) Let f(x) = a0x
4 + · · · + a4. Then the intersection of C with the hyper-

plane X0 = 0 consists of the two points
[
0, 0,±√

a0, 1
]
.

We next look at the behavior of a map in the neighborhood of a point.

Definition. Let φ : C1 → C2 be a nonconstant map of smooth curves, and let
P ∈ C1. The ramification index of φ at P , denoted by eφ(P ), is the quantity

eφ(P ) = ordP
(
φ∗tφ(P )

)
,

where tφ(P ) ∈ K(C2) is a uniformizer at φ(P ). Note that eφ(P ) ≥ 1. We say that φ
is unramified at P if eφ(P ) = 1, and that φ is unramified if it is unramified at every
point of C1.

Proposition 2.6. Let φ : C1 → C2 be a nonconstant map of smooth curves.
(a) For every Q ∈ C2, ∑

P∈φ−1(Q)

eφ(P ) = deg(φ).
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(b) For all but finitely many Q ∈ C2,

#φ−1(Q) = degs(φ).

(c) Let ψ : C2 → C3 be another nonconstant map of smooth curves. Then for all
P ∈ C1,

eψ◦φ(P ) = eφ(P )eψ(φP ).

PROOF. (a) Use [111, II.6.9] with Y = C2 andD = (Q), or see [142, Proposition 2],
[233, I Proposition 10], or [243, III §2, Theorem 1].
(b) See [111, II.6.8].
(c) Let tφP and tψφP be uniformizers at the indicated points. By definition, the
functions

t
eψ(φP )
φP and ψ∗tψφP

have the same order at φ(P ). Applying φ∗ and taking orders at P yields

ordP

(
φ∗teψ(φP )

φP

)
= ordP

(
(ψφ)∗tψφP

)
,

which is the desired result.

Corollary 2.7. A map φ : C1 → C2 is unramified if and only if

#φ−1(Q) = deg(φ) for all Q ∈ C2.

PROOF. From (II.2.6a), we see that #φ−1(Q) = deg(φ) if and only if
∑

P∈φ−1(Q)

eφ(P ) = #φ−1(Q).

Since eφ(P ) ≥ 1, this occurs if and only if each eφ(P ) = 1.

Remark 2.8. The content of (II.2.6) is exactly analogous to the theorems describ-
ing the ramification of primes in number fields. Thus let L/K be number fields.
Then (II.2.6a) is the analogue of the

∑
eifi = [K : Q] theorem ([142, I, Proposi-

tion 21], [233, I, Proposition 10]), while (II.2.6b) is analogous to the fact that only
finitely many primes of K ramify in L, and (II.2.6c) gives the multiplicativity of ram-
ification degrees in towers of fields. Of course, (II.2.6) and the analogous results for
number fields are both merely special cases of the basic theorems describing finite
extensions of Dedekind domains.

Example 2.9. Consider the map

φ : P1 −→ P
1, φ

(
[X,Y ]

)
= [X3(X − Y )2, Y 5].

Then φ is ramified at the points [0, 1] and [1, 1]. Further,

eφ
(
[0, 1]

)
= 3 and eφ

(
[1, 1]

)
= 2,

so ∑

P∈φ−1([0,1])

eφ(P ) = eφ
(
[0, 1]

)
+ eφ

(
[1, 1]

)
= 5 = deg φ,

which is in accordance with (II.2.6a).
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The Frobenius Map

Assume that char(K) = p > 0 and let q = pr. For any polynomial f ∈ K[X ],
let f (q) be the polynomial obtained from f by raising each coefficient of f to the qth

power. Then for any curve C/K , we can define a new curve C(q)/K as the curve
whose homogeneous ideal is given by

I(C(q)) = ideal generated by {f (q) : f ∈ I(C)}.

Further, there is a natural map from C to C(q), called the qth-power Frobenius mor-
phism, given by

φ : C −→ C(q), φ
(
[x0, . . . , xn]

)
= [xq

0, . . . , x
q
n].

To see that φ maps C to C(q), it suffices to show that for every point

P = [x0, . . . , xn] ∈ C,

the image φ(P ) is a zero of each generator f (q) of I(C(q)). We compute

f (q)
(
φ(P )

)
= f (q)(xq

0, . . . , x
q
n)

=
(
f(x0, . . . , xn)

)q
since char(K) = p,

= 0 since f(P ) = 0.

Example 2.10. Let C be the curve in P
2 given by the single equation

C : Y 2Z = X3 + aXZ2 + bZ3.

Then C(q) is the curve given by the equation

C(q) : Y 2Z = X3 + aqXZ2 + bqZ3.

The next proposition describes the basic properties of the Frobenius map.

Proposition 2.11. Let K be a field of characteristic p > 0, let q = pr, let C/K be
a curve, and let φ : C → C(q) be the qth-power Frobenius morphism.
(a) φ∗K(C(q)) = K(C)q =

{
f q : f ∈ K(C)

}
.

(b) φ is purely inseparable.
(c) deg φ = q.
(N.B. We are assuming that K is perfect. If K is not perfect, then (b) and (c) remain
true, but (a) must be modified.)

PROOF. (a) Using the description (I.2.9) of K(C) as consisting of quotients f/g of
homogeneous polynomials of the same degree, we see that φ∗K(C(q)) is the subfield
of K(C) given by quotients

φ∗
(
f

g

)
=

f(Xq
0 , . . . , X

q
n)

g(Xq
0 , . . . , X

q
n)

.
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Similarly, K(C)q is the subfield of K(C) given by quotients

f(X0, . . . , Xn)
q

g(X0, . . . , Xn)q
.

However, since K is perfect, we know that every element of K is a qth power, so
(
K[X0, . . . , Xn]

)q
= K[Xq

0 , . . . , X
q
n].

Thus the set of quotients f(Xq
i )/g(X

q
i ) and the set of quotients f(Xi)

q/g(Xi)
q give

the exact same subfield of K(C).
(b) Immediate from (a).
(c) Taking a finite extension ofK if necessary, we may assume that there is a smooth
point P ∈ C(K). Let t ∈ K(C) be a uniformizer at P (II.1.1.1). Then (II.1.4) says
that K(C) is separable over K(t). Consider the tower of fields

K(t)

K(C)q(t)

K(C)

K(C)q

separable purely
inseparable

It follows that K(C) = K(C)q(t), so from (a),

degφ =
[
K(C)q(t) : K(C)q

]
.

Now tq ∈ K(C)q , so in order to prove that degφ = q, we need merely show that
tq/p /∈ K(C)q . But if tq/p = f q for some f ∈ K(C), then

q

p
= ordP (t

q/p) = q ordP (f),

which is impossible, since ordP (f) must be an integer.

Corollary 2.12. Every map ψ : C1 → C2 of (smooth) curves over a field of charac-
teristic p > 0 factors as

C1
φ−−−−→ C

(q)
1

λ−−−−→ C2,

where q = degi(ψ), the map φ is the qth-power Frobenius map, and the map λ is
separable.

PROOF. Let K be the separable closure of ψ∗K(C2) in K(C1). Then K(C1)/K is
purely inseparable of degree q, so K(C1)

q ⊂ K. From (II.2.11a,c) we have,

K(C1)
q = φ∗(K(C

(q)
1 )

)
and

[
K(C1) : φ

∗(K(C
(q)
1 ))

]
= q.
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Comparing degrees, we conclude that K = φ∗(C(q)
1 ). We now have a tower of func-

tion fields
K(C1)

/
φ∗K(C

(q)
1 )

/
ψ∗K(C2),

and from (II.2.4b), this corresponds to maps

C1
φ−−−−→ C

(q)
1

λ−−−−→ C2

ψ

II.3 Divisors

The divisor group of a curve C, denoted by Div(C), is the free abelian group gener-
ated by the points of C. Thus a divisor D ∈ Div(C) is a formal sum

D =
∑

P∈C

nP (P ),

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. The degree of D is
defined by

degD =
∑

P∈C

nP .

The divisors of degree 0 form a subgroup of Div(C), which we denote by

Div0(C) =
{
D ∈ Div(C) : degD = 0

}
.

If C is defined over K , we let GK̄/K act on Div(C) and Div0(C) in the obvious
way,

Dσ =
∑

P∈C

nP (P
σ).

Then D is defined over K if Dσ = D for all σ ∈ GK̄/K . We note that if D =
n1(P1) + · · · + nr(Pr) with n1, . . . , nr �= 0, then to say that D is defined over K
does not mean that P1, . . . , Pr ∈ C(K). It suffices for the group GK̄/K to permute
the Pi’s in an appropriate fashion. We denote the group of divisors defined over K
by DivK(C), and similarly for Div0K(C).

Assume now that the curve C is smooth, and let f ∈ K̄(C)∗. Then we can asso-
ciate to f the divisor div(f) given by

div(f) =
∑

P∈C

ordP (f)(P ).

This is a divisor by (II.1.2). If σ ∈ GK̄/K , then it is easy to see that

div(fσ) =
(
div(f)

)σ
.
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In particular, if f ∈ K(C), then div(f) ∈ DivK(C).
Since each ordP is a valuation, the map

div : K̄(C)∗ −→ Div(C)

is a homomorphism of abelian groups. It is analogous to the map that sends an ele-
ment of a number field to the corresponding fractional ideal. This prompts the fol-
lowing definitions.

Definition. A divisor D ∈ Div(C) is principal if it has the form D = div(f)
for some f ∈ K̄(C)∗. Two divisors are linearly equivalent, written D1 ∼ D2,
if D1 −D2 is principal. The divisor class group (or Picard group) of C, denoted
by Pic(C), is the quotient of Div(C) by its subgroup of principal divisors. We let
PicK(C) be the subgroup of Pic(C) fixed by GK̄/K . N.B. In general, PicK(C) is
not the quotient of DivK(C) by its subgroup of principal divisors. But see exer-
cise 2.13 for a case in which this is true.

Proposition 3.1. Let C be a smooth curve and let f ∈ K̄(C)∗.
(a) div(f) = 0 if and only if f ∈ K̄∗.
(b) deg

(
div(f)

)
= 0.

PROOF. (a) If div(f) = 0, then f has no poles, so the associated map f : C → P
1

as defined in (II.2.2) is not surjective. Then (II.2.3) tells us that the map is constant,
so f ∈ K̄∗. The converse is clear.
(b) See [111, II.6.10], [243, III 2, corollary to Theorem 1], or (II.3.7).

Example 3.2. On P
1, every divisor of degree 0 is principal. To see this, suppose

that D =
∑

nP (P ) has degree 0. Writing P = [αP , βP ] ∈ P
1, we see that D is the

divisor of the function ∏

P∈P1

(βPX − αPY )nP .

Note that
∑

nP = 0 ensures that this function is in K(P1). It follows that the degree
map deg : Pic(P1) → Z is an isomorphism. The converse is also true, i.e., if C is a
smooth curve and Pic(C) ∼= Z, then C is isomorphic to P

1.

Example 3.3. Assume that char(K) �= 2. Let e1, e2, e3 ∈ K̄ be distinct, and con-
sider the curve

C : y2 = (x− e1)(x − e2)(x− e3).

One can check that C is smooth and that it has a single point at infinity, which we
denote by P∞. For i = 1, 2, 3, let Pi = (ei, 0) ∈ C. Then

div(x− ei) = 2(Pi)− 2(P∞),

div(y) = (P1) + (P2) + (P3)− 3(P∞).

Definition. It follows from (II.3.1b) that the principal divisors form a subgroup
of Div0(C). We define the degree-0 part of the divisor class group of C to be
the quotient of Div0(C) by the subgroup of principal divisors. We denote this
group by Pic0(C). Similarly, we write Pic0K(C) for the subgroup of Pic0(C) fixed
by GK̄/K .
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Remark 3.4. The above definitions and (II.3.1) may be summarized by saying that
there is an exact sequence

1 −→ K̄∗ −→ K̄(C)∗ div−−−−−→ Div0(C) −→ Pic0(C) −→ 0.

This sequence is the function field analogue of the fundamental exact sequence in
algebraic number theory, which for a number field K reads

1 −→
(

units
of K

)
−→ K∗ −→

(
fractional
ideals of K

)
−→

(
ideal class
group of K

)
−→ 1.

Let φ : C1 → C2 be a nonconstant map of smooth curves. As we have seen, φ
induces maps on the function fields of C1 and C2,

φ∗ : K̄(C2) −→ K̄(C1) and φ∗ : K̄(C1) −→ K̄(C2).

We similarly define maps of divisor groups as follows:

φ∗ : Div(C2) −→ Div(C1), φ∗ : Div(C1) −→ Div(C2),

(Q) �−→
∑

P∈φ−1(Q)

eφ(P )(P ), (P ) �−→ (φP ),

and extend Z-linearly to arbitrary divisors.

Example 3.5. Let C be a smooth curve, let f ∈ K̄(C) be a nonconstant function,
and let f : C → P

1 be the corresponding map (II.2.2). Then directly from the
definitions,

div(f) = f∗((0)− (∞)
)
.

Proposition 3.6. Let φ : C1 → C2 be a nonconstant map of smooth curves.

(a) deg(φ∗D) = (degφ)(degD) for all D ∈ Div(C2).

(b) φ∗(div f) = div(φ∗f) for all f ∈ K̄(C2)
∗.

(c) deg(φ∗D) = degD for all D ∈ Div(C1).

(d) φ∗(div f) = div(φ∗f) for all f ∈ K̄(C1)
∗.

(e) φ∗ ◦ φ∗ acts as multiplication by deg φ on Div(C2).

(f) If ψ : C2 → C3 is another such map, then

(ψ ◦ φ)∗ = φ∗ ◦ ψ∗ and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

PROOF. (a) Follows directly from (II.2.6a).
(b) Follows from the definitions and the easy fact (Exercise 2.2) that for all P ∈ C1,

ordP (φ
∗f) = eφ(P ) ordφP (f).

(c) Clear from the definitions.
(d) See [142, Chapter 1, Proposition 22] or [233, I, Proposition 14].
(e) Follows directly from (II.2.6a).
(f) The first equality follows from (II.2.6c). The second is obvious.
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Remark 3.7. From (II.3.6) we see that φ∗ and φ∗ take divisors of degree 0 to divisors
of degree 0, and principal divisors to principal divisors. They thus induce maps

φ∗ : Pic0(C2) −→ Pic0(C1) and φ∗ : Pic0(C1) −→ Pic0(C2).

In particular, if f ∈ K̄(C) gives the map f : C → P
1, then

deg div(f) = deg f∗((0)− (∞)
)
= deg f − deg f = 0.

This provides a proof of (II.3.1b)

II.4 Differentials

In this section we discuss the vector space of differential forms on a curve. This vec-
tor space serves two distinct purposes. First, it performs the traditional calculus role
of linearization. (See (III §5), especially (III.5.2).) Second, it gives a useful criterion
for determining when an algebraic map is separable. (See (II.4.2) and its utilization
in the proof of (III.5.5).) Of course, the latter is also a familiar use of calculus, since
a field extension is separable if and only if the minimal polynomial of each element
has a nonzero derivative

Definition. Let C be a curve. The space of (meromorphic) differential forms on C,
denoted by ΩC , is the K̄(C)-vector space generated by symbols of the form dx
for x ∈ K̄(C), subject to the usual relations:

(i) d(x+ y) = dx+ dy for all x, y ∈ K̄(C).

(ii) d(xy) = x dy + y dx for all x, y ∈ K̄(C).

(iii) da = 0 for all a ∈ K̄.

Remark 4.1. There is, of course, a functorial definition of ΩC . See, for example,
[164, Chapter 10], [111, II.8], or [210, II §3].

Let φ : C1 → C2 be a nonconstant map of curves. The associated function field
map φ∗ : K̄(C2) → K̄(C1) induces a map on differentials,

φ∗ : ΩC2 −→ ΩC1 , φ∗
(∑

fi dxi

)
=

∑
(φ∗fi)d(φ∗xi).

This map provides a useful criterion for determining when φ is separable.

Proposition 4.2. Let C be a curve.
(a) ΩC is a 1-dimensional K̄(C)-vector space.
(b) Let x ∈ K̄(C). Then dx is a K̄(C)-basis for ΩC if and only if K̄(C)/K̄(x) is a

finite separable extension.
(c) Let φ : C1 → C2 be a nonconstant map of curves. Then φ is separable if and

only if the map
φ∗ : ΩC2 −→ ΩC1

is injective (equivalently, nonzero).
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PROOF. (a) See [164, 27.A,B], [210, II.3.4], or [243, III §4, Theorem 3].
(b) See [164, 27A,B] or [243, III §4, Theorem 4].
(c) Using (a) and (b), choose y ∈ K̄(C2) such that ΩC2 = K̄(C2) dy and such
that K̄(C2)/K̄(y) is a separable extension. Note that φ∗K̄(C2) is then separable
over φ∗K̄(y) = K̄(φ∗y). Now

φ∗ is injective ⇐⇒ d(φ∗y) �= 0

⇐⇒ d(φ∗y) is a basis for ΩC1 (from (a)),

⇐⇒ K̄(C1)/K̄(φ∗y) is separable (from (b)),

⇐⇒ K̄(C1)/φ
∗K̄(C2) is separable,

where the last equivalence follows because we already know that φ∗K̄(C2)/K̄(φ∗y)
is separable.

Proposition 4.3. Let C be a curve, let P ∈ C, and let t ∈ K̄(C) be a unformizer
at P .
(a) For every ω ∈ ΩC there exists a unique function g ∈ K̄(C), depending on ω

and t, satisfying
ω = g dt.

We denote g by ω/dt.
(b) Let f ∈ K̄(C) be regular at P . Then df/dt is also regular at P .
(c) Let ω ∈ ΩC with ω �= 0. The quantity

ordP (ω/dt)

depends only on ω and P , independent of the choice of uniformizer t. We call
this value the order of ω at P and denote it by ordP (ω).

(d) Let x, f ∈ K̄(C) with x(P ) = 0, and let p = charK . Then

ordP (f dx) = ordP (f) + ordP (x)− 1, if p = 0 or p � ordP (x),

ordP (f dx) ≥ ordP (f) + ordP (x), if p > 0 and p | ordP (x).

(e) Let ω ∈ ΩC with ω �= 0. Then

ordP (ω) = 0 for all but finitely many P ∈ C.

PROOF. (a) This follows from (II.1.4) and (4.2ab).
(b) See [111, comment following IV.2.1] or [210, II.3.10].
(c) Let t′ be another uniformizer at P . Then from (b) we see that dt/dt′ and dt′/dt
are both regular at P , so ordP (dt

′/dt) = 0. The desired result then follows from

ω = g dt′ = g(dt′/dt) dt.

(d) Write x = utn with n = ordP (x) ≥ 1, so ordP (u) = 0. Then

dx =
[
nutn−1 + (du/dt)tn

]
dt.
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From (b) we know that du/dt is regular at P . Hence if n �= 0, then the first term
dominates, which gives the desired equality

ordP (f dx) = ordP (fnut
n−1 dt) = ordP (f) + n− 1.

On the other hand, if p > 0 and p | n, then the first term vanishes and we find that

ordP (f dx) = ordP (f(du/dt)t
n dt) ≥ ordP (f) + n.

(e) Choose some x ∈ K̄(C) such that K̄(C)/K̄(x) is separable and write ω =
f dx. From [111, IV.2.2a], the map x : C → P

1 ramifies at only finitely many points
of C. Hence discarding finitely many points, we may restrict attention to points P ∈
C such that

f(P ) �= 0, f(P ) �= ∞, x(P ) �= ∞,

and the map x : C → P
1 is unramified at P . The two conditions on x imply

that x− x(P ) is a uniformizer at P , so

ordP (ω) = ordP
(
f d(x − x(P ))

)
= 0.

Hence ordP (ω) = 0 for all but finitely many P .

Definition. Let ω ∈ ΩC with ω �= 0. The divisor associated to ω is

div(ω) =
∑

P∈C

ordP (ω)(P ) ∈ Div(C).

The differential ω ∈ ΩC is regular (or holomorphic) if

ordP (ω) ≥ 0 for all P ∈ C.

It is nonvanishing if
ordP (ω) ≤ 0 for all P ∈ C.

Remark 4.4. If ω1, ω2 ∈ ΩC are nonzero differentials, then (II.4.2a) implies that
there is a function f ∈ K̄(C)∗ such that ω1 = fω2. Thus

div(ω1) = div(f) + div(ω2),

which shows that the following definition makes sense.

Definition. The canonical divisor class on C is the image in Pic(C) of div(ω)
for any nonzero differential ω ∈ ΩC . Any divisor in this divisor class is called a
canonical divisor.

Example 4.5. We are going to show that there are no holomorphic differentials
on P

1. First, if t is a coordinate function on P
1, then

div(dt) = −2(∞).
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To see this, note that for all α ∈ K̄, the function t− α is a uniformizer at α, so

ordα(dt) = ordα
(
d(t− α)

)
= 0.

However, at ∞ ∈ P
1 we need to use a function such as 1/t as our uniformizer, so

ord∞(dt) = ord∞

(
−t2 d

(
1

t

))
= −2.

Thus dt is not holomorphic. But now for any nonzero ω ∈ ΩP1 , we can use (II.4.3a)
to compute

deg div(ω) = deg div(dt) = −2,

so ω cannot be holomorphic either.

Example 4.6. Let C be the curve

C : y2 = (x− e1)(x − e2)(x− e3),

where we continue with the notation from (II.3.3). Then

div(dx) = (P1) + (P2) + (P3)− 3(P∞).

(Note that dx = d(x − ei) = −x2 d(1/x).) We thus see that

div(dx/y) = 0.

Hence the differential dx/y is both holomorphic and nonvanishing.

II.5 The Riemann–Roch Theorem

Let C be a curve. We put a partial order on Div(C) in the following way.

Definition. A divisor D =
∑

nP (P ) is positive (or effective), denoted by

D ≥ 0,

if nP ≥ 0 for every P ∈ C. Similarly, for any two divisors D1, D2 ∈ Div(C), we
write

D1 ≥ D2

to indicate that D1 −D2 is positive.

Example 5.1. Let f ∈ K̄(C)∗ be a function that is regular everywhere except at
one point P ∈ C, and suppose that it has a pole of order at most n at P . These
requirements on f may be succinctly summarized by the inequality

div(f) ≥ −n(P ).

Similarly,
div(f) ≥ (Q)− n(P )

says that in addition, f has a zero at Q. Thus divisorial inequalities are a useful tool
for describing poles and/or zeros of functions.
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Definition. Let D ∈ Div(C). We associate to D the set of functions

L(D) =
{
f ∈ K̄(C)∗ : div(f) ≥ −D

} ∪ {0}.

The set L(D) is a finite-dimensional K̄-vector space (see (II.5.2b) below), and we
denote its dimension by

�(D) = dimK̄ L(D).

Proposition 5.2. Let D ∈ Div(C).
(a) If degD < 0, then

L(D) = {0} and �(D) = 0.

(b) L(D) is a finite-dimensional K̄-vector space.
(c) If D′ ∈ Div(C) is linearly equivalent to D, then

L(D) ∼= L(D′), and so �(D) = �(D′).

PROOF. (a) Let f ∈ L(D) with f �= 0. Then (II.3.1b) tells us that

0 = deg div(f) ≥ deg(−D) = − degD,

so degD ≥ 0.
(b) See [111, II.5.19] or Exercise 2.4.
(c) If D = D′ + div(g), then the map

L(D) −→ L(D′), f �−→ fg

is an isomorphism.

Example 5.3. Let KC ∈ Div(C) be a canonical divisor on C, say

KC = div(ω).

Then each function f ∈ L(KC) has the property that

div(f) ≥ − div(ω), so div(fω) ≥ 0.

In other words, fω is holomorphic. Conversely, if the differential fω is holomorphic,
then f ∈ L(KC). Since every differential on C has the form fω for some f , we have
established an isomorphism of K̄-vector spaces,

L(KC) ∼= {ω ∈ ΩC : ω is holomorphic}.

The dimension �(KC) of these spaces is an important invariant of the curve C.

We are now ready to state a fundamental result in the algebraic geometry of
curves. Its importance, as we will see amply demonstrated in (III §3), lies in its
ability to tell us that there are functions on C having prescribed zeros and poles.
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Theorem 5.4. (Riemann–Roch) Let C be a smooth curve and let KC be a canonical
divisor on C. There is an integer g ≥ 0, called the genus of C, such that for every
divisor D ∈ Div(C),

�(D)− �(KC −D) = degD − g + 1.

PROOF. For a fancy proof using Serre duality, see [111, IV §1]. A more elementary
proof, due to Weil, is given in [136, Chapter 1].

Corollary 5.5. (a) �(KC) = g.
(b) degKC = 2g − 2.
(c) If degD > 2g − 2, then

�(D) = degD − g + 1.

PROOF. (a) Use (II.5.4) with D = 0. Note that L(0) = K̄ from (II.1.2), so �(0) = 1.
(b) Use (a) and (II.5.4) with D = KC .
(c) From (b) we have deg(KC −D) < 0. Now use (II.5.4) and (II.5.2a).

Example 5.6. Let C = P
1. Then (II.4.5) says that there are no holomorphic dif-

ferentials on C, so using the identification from (II.5.3), we see that �(KC) = 0.
Then (II.5.5a) says that P1 has genus 0, and the Riemann–Roch theorem reads

�(D)− �(−2(∞)−D) = degD + 1.

In particular, if degD ≥ −1, then

�(D) = degD + 1.

(See Exercise 2.3b.)

Example 5.7. Let C be the curve

C : y2 = (x− e1)(x − e2)(x− e3),

where we continue with the notation of (II.3.3) and (II.4.6). We have seen in (II.4.6)
that

div(dx/y) = 0,

so the canonical class on C is trivial, i.e., we may take KC = 0. Hence using (II.5.5a)
we find that

g = �(KC) = �(0) = 1,

so C has genus one. The Riemann–Roch theorem (II.5.5c) then tells us that

�(D) = degD provided degD ≥ 1.

We consider several special cases.
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(i) Let P ∈ C. Then �
(
(P )

)
= 1. But L((P )

)
certainly contains the constant

functions, which have no poles, so this shows that there are no functions on C
having a single simple pole.

(ii) Recall that P∞ is the point at infinity on C. Then �
(
2(P∞)

)
= 2, and {1, x}

provides a basis for L(2(P∞)
)
.

(iii) Similarly, the set {1, x, y} is a basis for L(3(P∞)
)
, and {1, x, y, x2} is a basis

for L(4(P∞)
)
.

(iv) Now we observe that the seven functions 1, x, y, x2, xy, x3, y2 are all in
L(6(P∞)

)
, but �

(
6(P∞)

)
= 6, so these seven functions must be K̄-linearly

dependent. Of course, the equation y2 = (x − e1)(x− e2)(x− e3) used to
define C gives an equation of linear dependence among them.

The next result says that if C and D are defined over K , then so is L(D).

Proposition 5.8. Let C/K be a smooth curve and let D ∈ DivK(C). Then L(D)
has a basis consisting of functions in K(C).

PROOF. Since D is defined over K , we have

fσ ∈ L(Dσ) = L(D) for all f ∈ L(D) and all σ ∈ GK̄/K .

Thus GK̄/K acts on L(D), and the desired conclusion follows from the following
general lemma.

Lemma 5.8.1. Let V be a K̄-vector space, and assume that GK̄/K acts continuously
on V in a manner compatible with its action on K̄. Let

VK = V GK̄/K = {v ∈ V : vσ = v for all σ ∈ GK̄/K}.
Then

V ∼= K̄ ⊗K VK ,

i.e., the vector space V has a basis of GK̄/K-invariant vectors.

PROOF. It is clear that VK is a K-vector space, so it suffices to show that ev-
ery v ∈ V is a K̄-linear combination of vectors in VK . Let v ∈ V and let L/K be
a finite Galois extension such that v is fixed by GK̄/L. (The assumption that GK̄/K

acts continuously on V means precisely that the subgroup {σ ∈ GK̄/K : vσ = v}
has finite index in K , so we can take L to be the Galois closure of its fixed field.)
Let {α1, . . . , αn} be a basis for L/K , and let {σ1, . . . , σn} = GL/K . For each
1 ≤ i ≤ n, consider the vector

wi =

n∑

j=1

(αiv)
σj = TraceL/K(αiv).

It is clear that wi is GK̄/K invariant, so wi ∈ VK . A basic result from field the-
ory [142, III, Proposition 9] says that the matrix

(
α
σj

i

)
1≤i,j≤n

is nonsingular, so
each vσj , and in particular v, is an L-linear combination of the wi’s. (For a fancier
proof, see Exercise 2.12.)
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We conclude this section with a classic relationship connecting the genera of
curves linked by a nonconstant map.

Theorem 5.9. (Hurwitz) Let φ : C1 → C2 be a nonconstant separable map of
smooth curves of genera g1 and g2, respectively. Then

2g1 − 2 ≥ (deg φ)(2g2 − 2) +
∑

P∈C1

(
eφ(P )− 1

)
.

Further, equality holds if and only if one of the following two conditions is true:
(i) char(K) = 0.

(ii) char(K) = p > 0 and p does not divide eφ(P ) for all P ∈ C1.

PROOF. Let ω ∈ ΩC2 be a nonzero differential, let P ∈ C1, and let Q = φ(P ).
Since φ is separable, (II.4.2c) tells us that φ∗ω �= 0. We need to relate the val-
ues of ordP (φ∗ω) and ordQ(ω). Write ω = f dt with t ∈ K̄(C2) a uniformizer
at Q. Letting e = eφ(P ), we have φ∗t = use, where s is a uniformizer at P and
u(P ) �= 0,∞. Hence

φ∗ω = (φ∗f)d(φ∗t) = (φ∗f)d(use) = (φ∗f)
[
euse−1 + (du/ds)se

]
ds.

Now ordP (du/ds) ≥ 0 from (II.4.3b), so we see that

ordP (φ
∗ω) ≥ ordP (φ

∗f) + e− 1,

with equality if and only if e �= 0 in K . Further,

ordP (φ
∗f) = eφ(P ) ordQ(f) = eφ(P ) ordQ(ω).

Hence adding over all P ∈ C1 yields

deg div(φ∗ω) ≥
∑

P∈C1

[
eφ(P ) ordφ(P )(ω) + eφ(P )− 1

]

=
∑

Q∈C2

∑

P∈φ−1(Q)

eφ(P ) ordQ(ω) +
∑

P∈C1

(
eφ(P )− 1

)

= (deg φ)(deg div(ω)) +
∑

P∈C1

(
eφ(P )− 1

)
,

where the last equality follows from (II.2.6a). Now Hurwitz’s formula is a conse-
quence of (II.5.5b), which says that on a curve of genus g, the divisor of any nonzero
differential has degree 2g − 2.

Exercises

2.1. Let R be a Noetherian local domain that is not a field, let M be its maximal ideal, and
let k = R/M be its residue field. Prove that the following are equivalent:
(i) R is a discrete valuation ring.
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(ii) M is principal.
(iii) dimk M/M2 = 1.
(Note that this lemma was used in (II.1.1) to show that on a smooth curve, the local
rings K̄[C]P are discrete valuation rings.)

2.2. Let φ : C1 → C2 be a nonconstant map of smooth curves, let f ∈ K̄(C2)
∗, and

let P ∈ C1. Prove that
ordP (φ

∗f) = eφ(P ) ordφ(P )(f).

2.3. Verify directly that each of the following results from the text is true for the particular
case of the curve C = P

1.
(a) Prove the two parts of (II.2.6):

(i)
∑

P∈φ−1(Q)

eφ(P ) = degφ for all Q ∈ P
1.

(ii) #φ−1(Q) = degs(φ) for all but finitely many Q ∈ P
1.

(b) Prove the Riemann–Roch theorem (II.5.4) for P1.
(c) Prove Hurwitz’s theorem (II.5.9) for a nonconstant separable map φ : P1 → P

1.

2.4. Let C be a smooth curve and let D ∈ Div(C). Without using the Riemann–Roch theo-
rem, prove the following statements.
(a) L(D) is a K̄-vector space.
(b) If degD ≥ 0, then

�(D) ≤ degD + 1.

2.5. Let C be a smooth curve. Prove that the following are equivalent (over K̄):
(i) C is isomorphic to P

1.
(ii) C has genus 0.
(iii) There exist distinct points P,Q ∈ C satisfying (P ) ∼ (Q).

2.6. Let C be a smooth curve of genus one, and fix a base point P0 ∈ C.
(a) Prove that for all P,Q ∈ C there exists a unique R ∈ C such that

(P ) + (Q) ∼ (R) + (P0).

Denote this point R by σ(P,Q).
(b) Prove that the map σ : C×C → C from (a) makes C into an abelian group with identity

element P0.
(c) Define a map

κ : C −→ Pic0(C), P �−→ divisor class of (P )− (P0).

Prove that κ is a bijection of sets, and hence that κ can be used to make C into a group
via the rule

P +Q = κ−1(κ(P ) + κ(Q)
)
.

(d) Prove that the group operations on C defined in (b) and (c) are the same.
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2.7. Let F (X,Y, Z) ∈ K[X, Y, Z] be a homogeneous polynomial of degree d ≥ 1, and
assume that the curve C in P

2 given by the equation F = 0 is nonsingular. Prove that

genus(C) =
(d− 1)(d− 2)

2
.

(Hint. Define a map C → P
1 and use (II.5.9).)

2.8. Let φ : C1 → C2 be a nonconstant separable map of smooth curves.
(a) Prove that genus(C1) ≥ genus(C2).
(b) Prove that if C1 and C2 have the same genus g, then one of the following is true:

(i) g = 0.
(ii) g = 1 and φ is unramified.

(iii) g ≥ 2 and φ is an isomorphism.

2.9. Let a, b, c, d be squarefree integers with a > b > c > 0 and a, b, c pairwise relatively
prime, and let C be the curve in P

2 given by the equation

C : aX3 + bY 3 + cZ3 + dXY Z = 0.

Let P = [x, y, z] ∈ C and let L be the tangent line to C at P .
(a) Show that C ∩ L = {P, P ′} and calculate P ′ = [x′, y′, z′] in terms of a, b, c, d, x, y, z.
(b) Show that if P ∈ C(Q), then P ′ ∈ C(Q).
(c) Let P ∈ C(Q). Choose homogeneous coordinates for P and P ′ that are integers satisfy-

ing gcd(x, y, z) = 1 and gcd(x′, y′, z′) = 1. Prove that

|x′y′z′| > |xyz|.

(Note the strict inequality.)
(d) Conclude that either C(Q) = ∅ or else C(Q) is an infinite set.
(e) ** Characterize, in terms of a, b, c, d, whether C(Q) contains any points.

2.10. Let C be a smooth curve. The support of a divisor D =
∑

nP (P ) ∈ Div(C) is the set
of points P ∈ C for which nP 
= 0. Let f ∈ K̄(C)∗ be a function such that div(f) and D
have disjoint supports. Then it makes sense to define

f(D) =
∏

P∈C

f(P )nP .

Let φ : C1 → C2 be a nonconstant map of smooth curves. Prove that the following two
equalities are valid in the sense that if both sides are well-defined, then they are equal.
(a) f(φ∗D) = (φ∗f)(D) for all f ∈ K̄(C1)

∗ and all D ∈ Div(C2).
(b) f(φ∗D) = (φ∗f)(D) for all f ∈ K̄(C2)

∗ and all D ∈ Div(C1).

2.11. Let C be a smooth curve and let f, g ∈ K̄(C)∗ be functions such that div(f) and div(g)
have disjoint support. (See Exercise 2.10.) Prove Weil’s reciprocity law

f
(
div(g)

)
= g

(
div(f)

)

using the following two steps:
(a) Verify Weil’s reciprocity law directly for C = P

1.
(b) Now prove it for arbitrary C by using the map g : C → P

1 to reduce to (a).
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2.12. Use the extension of Hilbert’s Theorem 90 (B.3.2), which says that

H1
(
GK̄/K ,GLn(K̄)

)
= 0,

to give another proof of (II.5.8.1).

2.13. Let C/K be a curve.
(a) Prove that the following sequence is exact:

1 −→ K∗ −→ K(C)∗ −→ Div0
K(C) −→ Pic0K(C).

(b) Suppose that C has genus one and that C(K) 
= ∅. Prove that the map

Div0
K(C) −→ Pic0K(C)

is surjective.

2.14. For this exercise we assume that charK 
= 2. Let f(x) ∈ K[x] be a polynomial of
degree d ≥ 1 with nonzero discriminant, let C0/K be the affine curve given by the equation

C0 : y2 = f(x) = a0x
d + a1x

d−1 + · · ·+ ad−1x+ ad,

and let g be the unique integer satisfying d− 3 < 2g ≤ d− 1.
(a) Let C be the closure of the image of C0 via the map

[1, x, x2, . . . , xg+1, y] : C0 −→ P
g+2.

Prove that C is smooth and that C∩{X0 
= 0} is isomorphic to C0. The curve C is called
a hyperelliptic curve.

(b) Let

f∗(v) = v2g+2f(1/v) =

{
a0 + a1v + · · ·+ ad−1v

d−1 + adv
d if d is even,

a0v + a1v
2 + · · ·+ ad−1v

d + adv
d+1 if d is odd.

Show that C consists of two affine pieces

C0 : y2 = f(x) and C1 : w2 = f∗(v),

“glued together” via the maps

C0 −→ C1, C1 −→ C0,
(x, y) �−→ (1/x, y/xg+1), (v, w) �−→ (1/v, w/vg+1).

(c) Calculate the divisor of the differential dx/y on C and use the result to show that C
has genus g. Check your answer by applying Hurwitz’s formula (II.5.9) to the map
[1, x] : C → P

1. (Note that Exercise 2.7 does not apply, since C 
⊂ P
2.)

(d) Find a basis for the holomorphic differentials on C. (Hint. Consider the set of differential
forms {xi dx/y : i = 0, 1, 2, . . .}. How many elements in this set are holomorphic?)

2.15. Let C/K be a smooth curve defined over a field of characteristic p > 0, and
let t ∈ K(C). Prove that the following are equivalent:
(i) K(C) is a finite separable extension of K(t).

(ii) For all but finitely many points P ∈ C, the function t− t(P ) is a uniformizer at P .
(iii) t /∈ K(C)p.

2.16. Let C/K be a curve that is defined over K and let P ∈ C(K). Prove that K(C) con-
tains uniformizers for C at P , i.e., prove that there are uniformizers that are defined over K.


	II Algebraic Curves
	II.1 Curves
	II.2 Maps Between Curves
	II.3 Divisors
	II.4 Differentials
	II.5 The Riemann–Roch Theorem
	 Exercises


