
Chapter XI

Algorithmic Aspects of Elliptic
Curves

The burgeoning field of computational number theory asks for practical algorithms
to compute solutions to arithmetic problems. For example, the Mordell–Weil theo-
rem (VIII.6.7) says that the group of rational points on an elliptic curve is finitely
generated, and although we still lack an effective algorithm that is guaranteed to
find a set of generators, there are algorithms that often work well in practice. Simi-
larly, Siegel’s theorem (IX.3.2.1) says that an elliptic curve has only finitely many S-
integral points, but it took 50 years from Siegel’s proof of finiteness to Baker’s the-
orem giving an effective bound for the height of the largest solution (IX §5). And
Baker’s theorem is only the beginning of the story, since it leads to estimates that,
although effective, are not practical without the introduction of significant additional
ideas.

A full introduction to the computational theory of elliptic curves would require
(at least) a book of its own, so in this single chapter we touch on only a few of the
many algorithms in the theory. We decided to concentrate on aspects that are es-
pecially useful for applications to cryptography, not because these are intrinsically
more interesting than other computational problems, but because they form a satisfy-
ing whole and because they tie in with many of the other topics covered in this book.

The theme of this chapter is thus that of computations on elliptic curves over
(large) finite fields. We describe fast algorithms for computing multiples of points,
for determining the number of points in E(Fq), and for computing the Weil pairing.
We briefly survey some cryptographic constructions based on the difficulty of solving
the elliptic curve discrete logarithm (ECDLP), and we describe algorithms to solve
the ECDLP. We explain how elliptic curves can be used to factor large numbers.
In the final section we define and analyze the Tate–Lichtenbaum pairing, which is
frequently used in cryptography because it is easier to compute than the Weil pairing.

Lack of space precludes our covering computational problems over global fields,
although these are also extremely interesting. In particular, we do not cover

J.H. Silverman, The Arithmetic of Elliptic Curves, Second Edition, Graduate Texts 363
in Mathematics 106, DOI 10.1007/978-0-387-09494-6 XI,
c© Springer Science+Business Media, LLC 2009

364 XI. Algorithmic Aspects of Elliptic Curves

algorithms related to modular aspects of elliptic curves, including in particular the
computation of L-series, nor do we discuss more advanced algorithmic methods for
computing Mordell–Weil groups or for finding integer points on elliptic curves. We
do not discuss methods used to find curves of high rank over Q, nor how to find pre-
cise estimates for |ĥ− h|. For an introduction to these and other algorithmic topics,
see for example [50, 54, 55, 58, 67, 76, 86, 171, 188, 219, 265, 315].

There are two other topics that would fit naturally into this chapter, but were
omitted due to lack of space. The first is efficient implementation of elliptic curve
addition, which includes issues of affine versus projective coordinates and the choice
of different sorts of equations to minimize the number of field additions, multipli-
cations, and inversions. See for example [16], [22, IV.1], [51, §§13.2, 13.3], or [71].
The second topic is the use of elliptic curves to prove that a number is prime; see
[10], [22, §IX.3], [50, §9.2], [51, §25.2.2], or [97].

Finally, while on the topic of elliptic curve algorithms, we mention the free com-
puter packages Pari [202] and Sage [275], both of which contain extensive libraries
of algorithms for doing computations on elliptic curves. In particular, Sage includes
Cremona’s mwrank package, which (attempts to) compute the Mordell–Weil group
of elliptic curves over Q. There are also extensive online tables of elliptic curves of
various types, e.g., of small conductor, and of modular forms associated to elliptic
curves. See for example [53] and [274].

XI.1 Double-and-Add Algorithms

Let E/K be an elliptic curve and let P ∈ E(K) be a point on E. Suppose that we
need to compute [n]P for some large value of n. An obvious way to do this is to
compute successively

P, [2]P = P + P, [3]P = [2]P + P, . . . [n]P = [n− 1]P + P.

This naive algorithm takes n− 1 steps, where a “step” consists of adding two points.
If n is large, the naive algorithm is completely useless. All practical applications

of elliptic curves over large finite fields rely on the following exponential improve-
ment.

Double-and-Add Algorithm 1.1. Let E/K be an elliptic curve, let P ∈ E(K), and
let n ≥ 2 be an integer. The algorithm described in Figure 11.1 computes [n]P using
no more than log2(n) point doublings and no more than log2(n) point additions.

PROOF. During the ith iteration of the loop, the value of Q is [2i]P . Since R is
incremented by Q if and only if εi = 1, the final value of R is

∑

i with εi = 1

[2i]P =

t∑

i=0

[εi2
i]P =

[i∑

i=0

εi2
i

]
P = [n]P.

Each iteration of the loop requires one point duplication and at most one point addi-
tion, and since t ≤ log2 n, the running time of the algorithm is as stated.

XI.1. Double-and-Add Algorithms 365

(1) Write the binary expansion of n as

n = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · ·+ εt · 2t
with ε0, . . . , εt ∈ {0, 1} and εt = 1.

(2) Set Q = P and R =

{
O if ε0 = 0,
P if ε0 = 1.

(3) Loop i = 1, 2, . . . , t.
(4) Set Q = [2]Q.
(5) If εi = 1, set R = R +Q.
(6) End Loop
(7) Return R, which is equal to [n]P .

Figure 11.1: The double-and-add algorithm.

Remark 1.2. The double-and-add algorithm (XI.1.1) is not unique to elliptic curves;
it is applicable to any group. Thus if G is a group and g ∈ G, we use the binary
expansionn =

∑
εi2

i to compute gn as gn =
∏
(g2

i

)εi . This requires at most log2 n
group squarings and at most log2 n group multiplications. When the group law in G
is written multiplicatively, for example for G = F∗

q , the double-and-add algorithm is
instead called the square-and-multiply algorithm.

Remark 1.3. The double-and-add algorithm is most often applied to a finite group
such as E(Fq) or F∗

q , rather than to an infinite group such as E(Q). To see why,
note that if P ∈ E(Q), then the theory of canonical heights (VIII §9) says that it
takes O(n2) bits to write down the coordinates of [n]P . Thus it is not feasible to
compute [n]P for, say, n > 280. On the other hand, the double-and-add algorithm
allows us to easily compute [n]P in E(Fq) when, say, q and n are as large as 21000.
Of course, when we say that the computation is easy, we mean on a computer, not
with paper and pencil!

Remark 1.4. The average running time of the double-and-add algorithm to com-
pute [n]P is log2 n doublings and 1

2 log2 n additions, since the binary expansion of
a random integer n has an equal number of 1’s and 0’s. We can reduce the average
running time by using a ternary expansion of n,

n = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · ·+ εt · 2t
with ε1, . . . , εt ∈ {−1, 0, 1} and εt = ±1.

The only changes in (XI.1.1) are in step (2), where we set R = −P if ε0 = −1, and
in step (5), where we set R = R ± Q if εi = ±1. It is not hard to show that every
integer has a unique ternary expansion in which no two consecutive coefficients are
nonzero; see Exercise 11.2.

There are two complementary reasons why ternary expansions are advantageous
for computing [n]P in E(Fq). First, ternary expansions tend to have significantly

366 XI. Algorithmic Aspects of Elliptic Curves

fewer nonzero εi, so the number of point additions is reduced. Second, and equally
important, the negation operation in E(Fq) is computationally trivial, so subtraction
is no more difficult than addition. This is in marked contrast to F∗

q , where group
negation (inversion) is much slower than group addition (multiplication).

Remark 1.5. Koblitz has suggested using the Frobenius map to further speed the
computation of [n]P . The idea is to use an elliptic curve E/Fp with p small and
to take a point P ∈ E(Fpr). Then we replace the doubling map with the easier-
to-compute Frobenius map. As a practical matter, Koblitz’s idea works especially
well for p = 2, so for concreteness we illustrate using the curve E/F2 given by the
equation

E : y2 + xy = x3 + 1.

We have E(F2) = Z/4Z, so E/F2 is ordinary and

p+ 1−#E(Fp) = 2 + 1− 4 = −1.

We use (V.2.3.1) to deduce that the Frobenius map

τ : E(F2r) −→ E(F2r), (x, y) �−→ (x2, y2),

satisfies
τ2 + τ + 2 = 0.

Using this relation, it is easy to write any integer n in the form

n = ε0 + ε1τ + ε2τ
2 + · · ·+ εtτ

t with ε0, . . . , εt ∈ {−1, 0, 1},

where t ≈ 2 log2(n) and at most one-third of the εi are nonzero. (With somewhat
more work, the length of the expansion can be reduced to t ≈ log2(n); see Exer-
cise 11.3.) Then [n]P can be computed via

[n]P = ε0P + ε1τ(P) + ε2τ
2(P) + · · ·+ εtτ

t(P).

This is generally faster than using the binary or ternary expansion of n, because the
Frobenius map on E is far easier to compute than the duplication map.

Remark 1.6. There are many variants of the basic double-and-add method that are
used to make it more efficient in various situations. See for example [22, Chap-
ter IV], [51, §9], and Exercise 11.4.

XI.2 Lenstra’s Elliptic Curve Factorization
Algorithm

Factorization of large numbers has been studied since antiquity, but the subject ac-
quired added significance with the invention of public key cryptography, and in par-
ticular the development of the RSA cryptosystem, whose security depends on the
difficulty of the factorization problem. Public key cryptography in general, and RSA

XI.2. Lenstra’s Elliptic Curve Factorization Algorithm 367

in particular, are described in many books; see for example [116, 169, 277]. In this
section we focus on the factorization problem itself.

The modern theory of factorization, by which we mean factorization algorithms
that take less than exponential time,1 dates back only to the 1920s. The fastest fac-
torization algorithm currently known is the number field sieve, which factors an in-
teger N in approximately

exp
(
c 3
√

(logN)(log logN)2
)

steps.

Before the invention of the number field sieve, the fastest factorization method was
the quadratic sieve, whose running time is approximately

exp
(
c
√
(logN)(log logN)

)
steps.

(Notice that the cube root has been replaced by a square root. However, due to the
different values of the constants, the quadratic sieve is actually the faster of the two
algorithms for factoring numbers up to about 10100.)

In this section we describe a factorization method due to Hendrik Lenstra that
uses elliptic curves and has a running time comparable to the quadratic sieve. How-
ever, Lenstra’s algorithm has one useful characteristic that differentiates it from sieve
methods. If p is the smallest prime factor of N , then the running time of Lenstra’s
algorithm is actually

exp
(
c
√
(log p)(log log p)

)
steps.

Thus Lenstra’s algorithm is especially good at finding prime factors of N that are
significantly smaller than

√
N . However, we note that the moduli used for RSA have

the form N = pq with primes p ≈ q, so sieve algorithms are more efficient than
Lenstra’s algorithm for factoring such numbers.

The prototype for Lenstra’s work is an earlier factorization algorithm, due to Pol-
lard, which we briefly describe. Pollard’s algorithm is good at factoring numbers N
that have a prime factor p such that p− 1 is a product of small primes. Numbers that
are a product of small primes are called smooth numbers.2

Pollard’s p − 1 Algorithm 2.1. Suppose that N is a composite number that has a
prime factor p such that p− 1 factors into primes as

p− 1 = qe11 qe22 · · · qett .

1The running time of an algorithm is measured as a function of the number of bits of the input and
output. Thus an algorithm that factors an integer N in time O(Nc) for some c > 0 takes exponential
time, since the number of bits of the input is log2(N). Similarly, a polynomial-time algorithm is one that
runs in time O

(
(log2 N)c

)
, and a a subexponential-time algorithm is one that runs faster than O(Nε)

for every ε > 0.
2More precisely, a number m is said to be B-smooth if every prime p dividing m satisfies p ≤ B. An

important theorem of Canfield, Erdős, and Pomerance [34] gives an estimate for the number of B-smooth
numbers less than a given bound.

368 XI. Algorithmic Aspects of Elliptic Curves

(1) Choose a base value 2 ≤ a < N and set A = a.

(2) Loop i = 1, 2, . . . , L.

(3) Replace A with Ai mod N .

(4) Compute F = gcd(A− 1, N).

(5) If 1 < F < N , then return F , which is a nontrivial factor of N .

(6) If F = N , go to step (1) and choose a new value of a.

(7) End Loop

Figure 11.2: Pollard’s p− 1 algorithm.

Let L be the quantity
L = max

1≤j≤t
ejqj .

Then for most base values, the algorithm described in Figure 11.2 finds a nontrivial
factor of N for some value of i ≤ L in the main loop (steps (2)–(7)).

PROOF. During the ith iteration of the loop, the value of A is ai! mod N . The defi-
nition of L ensures that qejj divides L! for each 1 ≤ j ≤ t, so p− 1 | L!. (See also
Exercise 11.6.) It follows from Fermat’s little theorem that aL! ≡ 1 (mod p), so the
value of F in step (4) is divisible by p. Since it is unlikely that aL! ≡ 1 (mod N), we
obtain a nontrivial factor of N .

Example 2.2. We use Pollard’s algorithm to factor N = 71384665949740607. Us-
ing the base a = 2, we find on the 33rd iteration of the loop that

233! ≡ 58248995050016779 (mod 71384665949740607),

gcd(58248995050016778, 71384665949740607) = 228266501.

Thus
N = 71384665949740607 = 228266501 · 312725107,

and one can check that both factors are prime.
Pollard’s algorithm works well for this N because the prime p = 228266501

satisfies
p− 1 = 228266500 = 22 · 53 · 73 · 113,

so p− 1 divides 33!.

Pollard’s algorithm is a valuable factorization tool, but it applies only to special
sorts of numbers, namely those divisible by a prime p such that p− 1 is smooth. The
significance of p− 1 lies in the fact that the multiplicative group F∗

p has order p− 1,
so N and aL! − 1 share a common factor of p as soon as L! is divisible by p− 1.
Lenstra’s brilliant innovation was to observe that if one replaces the multiplicative
group F∗

p by the points E(Fp) of an elliptic curve, then the group order varies as E
varies. This allows the elliptic curve algorithm to factor a much larger set of numbers.

We first state the algorithm and then explain the various steps in more detail.

XI.2. Lenstra’s Elliptic Curve Factorization Algorithm 369

(0) Choose a loop bound L.

(1) Choose an elliptic curve E mod N and a point P ∈ E(Z/NZ).

(2) Set Q = P .

(3) Loop i = 2, 3, . . . , L.

(4) Replace Q with [i]Q, working in E(Z/NZ).

(5) If, during the computation of [i](Q), you need the inverse of an

element a ∈ Z/NZ and that inverse does not exist, then

gcd(a,N) is (probably) a nontrivial factor of N .

(6) End i Loop

(7) Go to step (1) and choose a new curve and point.

Figure 11.3: Lenstra’s elliptic curve factorization algorithm.

Lenstra’s Elliptic Curve Factorization Algorithm 2.3. Let N be a positive integer
to be factored, and consider the algorithm described in Figure 11.3. Suppose that N
has a prime divisor p such that the loop bound L chosen in step (0) and the elliptic
curve E chosen in step (1) satisfy

#E(Fp) = qe11 qe22 · · · qett and L ≥ max{e1q1, . . . , etqt}.
(Here q1, . . . , qt are distinct primes.) Then with high probability, the algorithm de-
scribed in Figure 11.3 factors the integer N . (See (XI.2.4.5) for advice on how to
choose the loop bound L.)

We now use a series of remarks to discuss various aspects of Lenstra’s algorithm.

Remark 2.4.1. We have not heretofore worked with elliptic curves over rings such
as Z/NZ when N is composite. The fancy way to do this is via the theory of group
schemes [266, Chapter IV], but for our purposes it suffices to take A,B ∈ Z/NZ

and use a Weierstrass equation

E : y2 = x3 +Ax +B with Δ = −16(4A3 + 27B2) ∈ (Z/NZ)∗.

The choice of an elliptic curve modulo N in step (1) is thus simply a choice
of A,B ∈ Z/NZ. (If we are unlucky and Δ /∈ (Z/NZ)∗, then with high proba-
bility, gcd(Δ, N) is a nontrivial factor of N .)

Remark 2.4.2. Having chosen an elliptic curve modulo N , it is not clear how to
efficiently choose a point on that curve, since taking square roots modulo an unfac-
tored N is a hard problem. The trick is to first choose A and the point P = (x0, y0),
and then set B = y20 − x3

0 −Ax0.

Remark 2.4.3. Steps (4) and (5) require some explanation. The double-and-add
method (XI.1.1) for computing [i]Q involves additions R1 +R2 and duplications
[2]R. We perform these operations using the standard formulas from (III.2.3), al-
ways working modulo N . For example, to add R1 = (x1, y1) and R2 = (x2, y2), we
must compute

370 XI. Algorithmic Aspects of Elliptic Curves

x(R1 +R2) ≡
(
y2 − y1
x2 − x1

)2

+ a1

(
y2 − y1
x2 − x1

)2

− a2 − x1 − x2 (mod N).

This works fine if the quantity x2 − x1 is invertible modulo N . However, if it is not
invertible and we are unable to compute R1 +R2 mod N , then (Eureka!)

gcd(x2 − x1, N) > 1,

and there is a good chance that gcd(x2 − x1, N) is a nontrivial factor of N . Thus in
computing [i]Q modulo N in step (4), either the computation works, or else we have
(probably) factored N .

Remark 2.4.4. If we successfully complete L iterations of the i loop (steps (3)–(6)),
the final value of Q is

Q = [L!]P in E(Z/NZ).

When does this computation fail?
Let p be a prime divisor of N , and let n = np(E) = #E(Fp). We can use

the reduction modulo p map E(Z/NZ) → E(Z/pZ) to send the point P to the
group E(Fp). Then, when we use the double-and-add method to compute [n]P = O
in E(Fp), at some stage we get a “zero in the denominator.” Hence if np(E) | L!,
then step (5) is executed and we (probably) find a nontrivial factor of N .

Remark 2.4.5. Notice the analogy with Pollard’s algorithm (XI.2.1), where the rel-
evant condition for success was #F∗

p | L!. The advantage of Lenstra’s algorithm is
that

np(E) = #E(Fp) = p+ 1− ap(E)

varies as we choose different elliptic curves. (Here ap(E) is the trace of Frobe-
nius (V.2.6).) Lenstra’s algorithm succeeds if we manage to choose an elliptic
curve E such that for some prime factor p of N , the order of the group E(Fp) is
a smooth number.

In order to optimally implement Lenstra’s algorithm, we need to decide how large
to choose L, since this determines when we give up on a particular elliptic curve
and choose a new one. We know from (V.1.1) that ap(E) satisfies

∣∣ap(E)
∣∣ ≤ 2

√
p,

and it is not unreasonable to assume that the ap(E) values are more or less equidis-
tributed in this range as E varies. (See (C.21.4) for a more precise statement.) So the
probability of success for a chosen E depends on the distribution of smooth numbers
in an interval around p. Using [34] as a heuristic to estimate the number of smooth
numbers in short intervals, one can show that the optimal choice for L is approx-
imately exp

(
c1
√
(log p)(log log p)

)
, and that with this choice of L, the expected

number of elliptic curves used before a factor of N is found is Lc2 . (Here c1 and c2
are small absolute constants.) Thus, as noted above, Lenstra’s algorithm has the same
qualitative running time as the quadratic sieve for numbers that are a product of two
large primes, but it is generally much faster for numbers that have a comparatively
small prime factor.

Remark 2.4.6. There are many implementation tricks that are used to make Lenstra’s
algorithm more efficient. We mention in particular the use of several elliptic curves

XI.2. Lenstra’s Elliptic Curve Factorization Algorithm 371

in parallel to save on mod N inversions, and the use of so-called Stage 2 computa-
tions, which are also used for Pollard’s algorithm. For details see for example [50,
§8.8].

Example 2.5. We use Lenstra’s algorithm to factor N = 6887. We randomly select
P = (1512, 3166) and A = 14, and we set

B ≡ 31662 − 15123 − 14 · 1512 ≡ 19 (mod 6887),

so P is a mod N point on the elliptic curve

E : Y 2 = X3 + 14X + 19.

We compute successively (always working modulo 6887)

[2]P ≡ (3466, 2996),

[3!]P = [3]
(
[2]P

) ≡ (3067, 396) ,

[4!]P = [4]
(
[3!]P

) ≡ (6507, 2654),

[5!]P = [5]
(
[4!]P

) ≡ (2783, 6278),

[6!]P = [6]
(
[5!]P

) ≡ (6141, 5581).

These values are not, themselves, of any intrinsic interest. To ease notation, we
let Q = [6!]P = (6141, 5581). We use the double-and-add algorithm (XI.1.1) to
compute [7]Q = [7!]P . Thus

Q ≡ (6141, 5881), [2]Q ≡ (5380, 174), [4]Q ≡ [2]
(
[2]Q

) ≡ (203, 2038),

and

7Q ≡ (
Q+ [2]Q

)
+ [4]Q

≡ (
(6141, 5581)+ (5380, 174)

)
+ (203, 2038)

≡ (984, 589) + (203, 2038)

≡ ???

When we attempt to perform the final addition, we need the inverse of 203− 984
modulo 6887, but

gcd(203− 984, 6887) = gcd(−781, 6887) = 71.

Thus 71 | 6887, and we find the factorization 6887 = 71 · 97.
It turns out that in E(F71), the point P satisfies [63]P ≡ O (mod 71), while

in E(F97), the point P satisfies [107]P ≡ O (mod 97). The reason that we succeed
in factoring 6887 using [7!]P , but not with a smaller multiple of P , is due to the fact
that 7! is the smallest factorial that is divisible by 63 (and because 7! is not divisible
by 107).

372 XI. Algorithmic Aspects of Elliptic Curves

XI.3 Counting the Number of Points in E(Fq)

Let E/Fq be an elliptic curve defined over a finite field. Hasse’s theorem (V.1.1) says
that

#E(Fq) = q + 1− aq with |aq| ≤ 2
√
q.

For many applications, especially in cryptography, it is important to have an efficient
way to compute the number of points in E(Fq). For simplicity, we assume that q is
odd and that E is given by a Weierstrass equation of the form

E : y2 = f(x) = 4x3 + b2x
2 + 2b4x+ b6,

but with minor modifications, everything that we do also works in characteristic 2.
A straightforward, but not very efficient, method to find #E(Fq) is to compute

the sum (cf. (V.1.3))

aq = −
∑

x∈Fq

(
f(x)

q

)
.

Each Legendre symbol
(f(x)

q

)
can be computed by quadratic reciprocity in O(log q)

steps, so this explicit formula takes O(q log q) steps, making it an exponential-
time algorithm. (See also Exercise 11.14 for an algorithm that computes #E(Fq)
in O(

√
q) steps.)

In this section we describe Schoof’s algorithm [223], which computes #E(Fq)
in polynomial time, i.e., it computes #E(Fq) in O

(
(log q)c

)
steps, where c is fixed,

independent of q. The idea is to compute the value of aq modulo � for a lot of small
primes � and then use the Chinese remainder theorem to reconstruct aq .

Let
τ : E(F̄q) −→ E(F̄q), (x, y) �−→ (xq , yq),

be the q-power Frobenius map, so (V.2.3.1b) tells us that

τ2 − aqτ + q = 0 in End(E).

In particular, if P ∈ E(F̄q)[�], then

τ2(P)− [aq]τ(P) + [q]P = O,

so if we write P = (x, y) (we assume that P �= O), then

(xq2, yq
2

)− [aq](x
q , yq) + [q](x, y) = O.

A key observation is that since the point P = (x, y) is assumed to have order �, we
have

[aq](x
q, yq) = [n�](x

q , yq), where n� ≡ aq (mod �) with 0 ≤ n� < �.

Similarly, we can compute [q](x, y) by first reducing q modulo �.

XI.3. Counting the Number of Points in E(Fq) 373

Of course, we don’t know the value of n�, so for each integer n between 0 and �
we compute [n](xq , yq) for a point (x, y) ∈ E[�]� {O} and check to see whether it
satisfies

[n](xq , yq) = (xq2, yq
2

) + [q](x, y).

However, the individual points in E[�] tend to be defined over fairly large extension
fields of Fq, so we instead work with all of the �-torsion points simultaneously. To
do this, we use the division polynomial (see Exercise 3.7)

ψ�(x) ∈ Fq[x],

whose roots are the x-coordinates of the nonzero �-torsion points of E. (For simplic-
ity, we assume that � �= 2.) This division polynomial has degree 1

2 (�
2 − 1) since � � q,

and it is easily computed using the recurrence described in Exercise 3.7. We now per-
form all computations in the quotient ring

R� =
Fq[x, y](

ψ�(x), y2 − f(x)
) .

Thus anytime we have a nonlinear power of y, we replace y2 with f(x), and anytime
we have a power xd with d ≥ 1

2 (�
2− 1), we divide by ψ�(x) and take the remainder.

In this way we never have to work with polynomials of degree greater than 1
2 (�

2−3).
Our goal is to compute the value of aq mod � for enough primes � to determine aq .

Hasse’s theorem (V.1.1) says that |aq| ≤ 2
√
q, so it suffices to use all primes � ≤

�max such that ∏

�≤�max

� ≥ 4
√
q.

The preceding discussion shows that the following algorithm computes #E(Fq).
The subsequent proof estimates how long the computation takes.

Schoof’s Algorithm 3.1. Let E/Fq be an elliptic curve. The algorithm described in
Figure 11.4 is a polynomial-time algorithm to compute #E(Fq); more precisely, it
computes #E(Fq) in O

(
(log q)8

)
steps.

PROOF. We prove that the running time of Schoof’s algorithm is O
(
(log q)8

)
. We

begin by verifying three claims.

(a) The largest prime � used by the algorithm satisfies � ≤ O(log q).

The prime number theorem is equivalent to the statement [4, Theorem 4.4(9)]

lim
X→∞

1

X

∑

�≤X
� prime

log � = 1.

Hence
∏

�≤X � ≈ eX , so in order to make the product larger than 4
√
q, it suffices to

take X ≈ 1
2 log(16q).

374 XI. Algorithmic Aspects of Elliptic Curves

(1) Set A = 1 and � = 3.

(2) Loop while A < 4
√
q.

(3) Loop n = 0, 1, 2, . . . , �− 1.

(4) Working in the ring R�, if

(xq2, yq
2

) + [q](x, y) = [n](xq, yq),
then break out of the n loop.

(5) End n Loop

(6) Set A = � ·A
(7) Set n� = n

(8) Replace � by the next largest prime.

(9) End A Loop

(10) Use the Chinese remainder theorem to find an integer a
satisfying a ≡ n� (mod �) for all of the stored values of n�.

(11) Return the value #E(Fq) = q + 1− a.

Figure 11.4: Schoof’s algorithm.

(b) Multiplication in the ring R� can be done in O(�4(log q)2) bit operations.3

Elements of the ring R� are polynomials of degree O(�2). Multiplication of two
such polynomials and reduction modulo ψ�(x) takes O(�4) elementary operations
(additions and multiplications) in the field Fq. Similarly, multiplication in Fq takes
O
(
(log q)2

)
bit operations. So basic operations in R� take O

(
�4(log q)2

)
bit opera-

tions.

(c) It takes O(log q) ring operations in R� to reduce xq, yq, xq2, yq
2

in the ring R�.

In general, the square-and-multiply algorithm (XI.1.2) allows us to compute pow-
ers xn and yn using O(log n) multiplications in R�. We note that this computation
is done only once, and then the points

(xq2, yq
2

) + [q mod �](x, y) and (xq, yq)

are computed and stored for use in step (4) of Schoof’s algorithm.

We now use (a), (b), and (c) to estimate the running time of Schoof’s al-
gorithm. From (a), we need to use only primes � that are less than O(log q).
There are O(log q/ log log q) such primes, so that is how many times the A-loop,
steps (2)–(9), is executed. Then, each time we go through the A-loop, the n loop,
steps (3)–(5), is executed � = O(log q) times.

3A bit operation is a basic computer operation on one or two bits. Examples of bit operations in-
clude addition, multiplication, and, or, xor, and complement. Fancier multiplication methods based
on fast Fourier transforms or Karatsuba multiplication can be used to reduce multiplication in R� to
O
(
(�2 log q)1+ε

)
bit operations, at the cost of a larger big-O constant.

XI.3. Counting the Number of Points in E(Fq) 375

Further, since � = O(log q), claim (b) says that basic operations in R� take
O
(
(log q)6

)
bit operations. The value of [n](xq, yq) in step (4) can be computed

in O(1) operations in R� from the previous value [n− 1](xq, yq), or we can be inef-
ficient and compute it in O(log n) = O(log �) = O(log log q) R�-operations using
the double-and-add algorithm (XI.1.1).

Hence the total number of bit operations required by Schoof’s algorithm is

A loop
︷ ︸︸ ︷
O(log q) ·

n loop
︷ ︸︸ ︷
O(log q) ·

bit operations per
R� operation

︷ ︸︸ ︷
O
(
(log q)6

)
= O(

(
(log q)8

)
bit operations.

This completes the proof that Schoof’s algorithm computes #E(Fq) in polynomial
time.

The most time-consuming part of Schoof’s algorithm consists of computations in
the ringR�, which is an extension of Fq of degree 2�2. So even though the bound for �
is linear in log q, if q is reasonably large, then the bound for � and the Fq-dimension
of the ring R� are large.

Example 3.2. Let q ≈ 2256, which is a typical size used in cryptographic applica-
tions. We have ∏

�≤103

� ≈ 2133.14 > 4
√
q = 2130,

so the largest prime � required by Schoof’s algorithm is � = 103. An element
of Fq[x]/(ψ�(x)) is represented by an Fq-vector of dimension 1032 ≈ 213.4, and
each element of Fq is a 256-bit number, so elements of Fq[x]/(ψ�(x)) are approx-
imately 222 bits, which is more than 16 KB. Although modern computers are quite
capable of working with rings whose elements are 16 KB, extensive calculations in
such rings take nontrival amounts of time.

The SEA Algorithm 3.3. Suppose that the �-division polynomial ψ�(x) factors
in Fq[x], say f�(x) | ψ�(x) with deg f� = �. Then we can obtain significant sav-
ings in Schoof’s algorithm by working in the smaller ring

R′
� =

Fq[x, y](
f�(x), y2 − f(x)

) .

Multiplication in the ring R′
� takes O(�2(log q)2) bit operations, as compared to

O(�4(log q)2) bit operations for multiplication in R�. For the example described
in (XI.3.2), this amounts to a potential speedup on the order of 104.

The division polynomial ψ�(x) has an Fq[x]-factor of degree � if and only if
the group of �-torsion points E[�] has a cyclic subgroup C ⊂ E[�] of order � that
is defined over Fq, i.e., such that C is a G

F̄q/Fq
-invariant subgroup. Equivalently,

from (III.4.12), ψ�(x) factors in this way if and only if there is an isogeny E → E′

of degree � defined over Fq.
The idea of using factors of ψ�(x) was proposed and developed by Schoof, Elkies,

and Atkin and is known as the SEA algorithm. Efficient computation of a factor f�(x)
uses the modular polynomial [266, II.6.3]. For a description of the SEA algorithm,
see for example [22, Chapter 7], [79], or [224].

376 XI. Algorithmic Aspects of Elliptic Curves

XI.4 Elliptic Curve Cryptography

Public key cryptography was invented by Diffie and Hellman4 in 1976 [65], although
they were not able to find a practical method to implement their idea. The first prac-
tical public key cryptosystem was devised the following year by Rivest, Shamir, and
Adleman [209]. The famed RSA cryptosystem bases its security on the difficulty of
factoring large numbers. However, Diffie and Hellman did describe a key exchange
algorithm whose security relies on the discrete logarithm problem in F∗

q , and subse-
quently ElGamal created a public key cryptosystem based on the same underlying
problem. Koblitz [128] and Miller [176] suggested replacing the finite field Fq with
an elliptic curve E, with the hope that the discrete logarithm problem in the ellip-
tic curve group E(Fq) might be harder to solve than the discrete logarithm problem
in the multiplicative group F∗

q . Their intuition led to the creation of elliptic curve
cryptography.

The subject of cryptography is vast, and although cryptography is not the focus
of this book, we take the opportunity in this section and in (XI §7) to briefly indicate
some of the ways in which elliptic curves are applied. This material is meant merely
to whet the reader’s appetite, so be aware that we ignore many of the subtleties inher-
ent in the subject. Readers desiring more information on the mathematical aspects
of cryptography may consult any of the numerous volumes on the subject, includ-
ing for example [116], [169], or [277]. For books devoted to the use of elliptic (and
hyperelliptic) curves in cryptography, see for example [22] or [51].

Public key cryptosystems rely on what are known as one-way trapdoor functions.
These are easy-to-compute injective functions f : A → B with the property that f−1

is very hard to compute in general, but f−1 becomes quite easy to compute if some-
one possesses an extra piece of information k. Thus, if Alice5 knows the value of k,
then Bob can send her a message a ∈ A by sending her the quantity b = f(a). Alice
easily recovers a = f−1(b), since she knows k, while Eve, who does not know k, is
unable to compute f−1(b).

It is not clear that one-way trapdoor functions exist, and indeed, it is still an open
problem to prove their existence. However, a number of hard mathematical prob-
lems have been proposed as the bases for one-way trapdoor functions, including in
particular the discrete logarithm problem.

Definition. Let G be group, and let x, y ∈ G be elements such that y is in the
subgroup generated by x. The discrete logarithm problem (DLP) is the problem of
determining an integer m ≥ 1 such that

xm = y.

4The concept of public key cryptography was actually originally described by James Ellis in 1969, but
his discovery was classified by the British government and not declassified until after his death in 1997.
Two other British government employees, Williamson and Cocks, are the original inventors of the Diffie–
Hellman key exchange algorithm and the RSA public key cryptosystem, respectively, but their discoveries
were also classified.

5In cryptography it is customary to personalize the participants. Typically, Alice and Bob want to
communicate, while Eve, the eavesdropper, intercepts and tries to read their messages.

XI.4. Elliptic Curve Cryptography 377

Example 4.1. Each group G has its own discrete logarithm problem. In the next
section we describe a collision algorithm (XI.5.2) that takes O(

√
#G) steps to solve

the DLP in virtually any group G. However, this square root estimate is only an
upper bound for the computational complexity of the DLP. It turns out that the DLP
is significantly easier in some groups than it is in others. We mention three examples
in increasing order of difficulty.

(a) The Additive Group F+
q . The DLP for the additive group of a finite field Fq

asks for a solution m to the linear equation xm = y for given x, y ∈ Fq. To
solve this equation, we need only find the multiplicative inverse of x in Fq, which
takes O(log q) steps using the Euclidean algorithm. Thus the DLP in F+

q is a very
easy problem.

(b) The Multiplicative Group F∗
q . The DLP for the multiplicative group of a fi-

nite field Fq asks for a solution m to the exponential equation xm = y for given
x, y ∈ F∗

q . As already noted, the DLP in any group of order O(q) can be solved
in O(

√
q) steps, but there are algorithms for the DLP in F∗

q that are much faster, tak-
ing fewer than O(qε) steps for every ε > 0. These go by the general name of index
calculus methods, and they solve the DLP in F∗

q in

exp
(
c 3
√
(log q)(log log q)2

)
steps,

where c is a small absolute constant. Thus the index calculus is a subexponential
algorithm. We note that it is not a coincidence that the running time of the number
field sieve and the index calculus have the same form, since both rely on the distri-
bution of smooth numbers. For further information about the index calculus, see for
example [116, §3.8] or [277, §6.2.4].

(c) An Elliptic Curve E(Fq). The elliptic curve discrete logarithm problem, which
is abbreviated ECDLP, asks for a solution m to the equation [m]P = Q for given
points P,Q ∈ E(Fq). Despite extensive research since the mid-1980s, the fastest
known algorithms to solve the ECDLP on general curves are collision algorithms
taking O(

√
q) steps. Thus the best known algorithms to solve the ECDLP in E(Fq)

take exponential time, i.e., the running time is exponential in log q. This fact is the
primary attraction for using elliptic curves in cryptography.

There is a key exchange system based on the DLP that is due to Diffie and Hell-
man and a public key cryptosystem based on the DLP that is due to ElGamal. These
systems work, mutatis mutandis, for any group and are typically applied to (sub-
groups) of either F∗

q or E(Fq). In keeping with the primary subject of this book,
we describe these systems in terms of elliptic curves. As already noted, the primary
advantage of using elliptic curves is that at present, it is much harder to solve the
ECDLP in E(Fq) than it is to solve the DLP in F∗

q . This means that elliptic curve
cryptography has key and message sizes that are 5 to 10 times smaller than those for
other systems, including RSA and F∗

q-based DLP systems.
The first algorithm that we describe allows Alice and Bob to securely exchange a

piece of information whose value neither one of them knows in advance. We discuss
later (XI.4.3.3) why this might be useful.

378 XI. Algorithmic Aspects of Elliptic Curves

Diffie–Hellman Key Exchange 4.2. The following procedure allows Alice and Bob
to securely exchange the value of a point on an elliptic curve, although neither of
them initially knows the value of the point:

(1) Alice and Bob agree on a finite field Fq, an elliptic curve E/Fq, and a point
P ∈ E(Fq).

(2) Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
(3) Bob selects a secret integer b and computes the point B = [b]P ∈ E(Fq).
(4) Alice and Bob exchange the values of A and B over a possibly insecure commu-

nication line.
(5) Alice computes [a]B and Bob computes [b]A. They have now shared the value

of the point [ab]P .

We briefly mention a few of the many issues that must be addressed before this
rough outline of Diffie–Hellman key exchange becomes a usable system.

Remark 4.3.1. Typically, the finite field Fq , the elliptic curve E/Fq, and the
point P ∈ E(Fq) are preselected and published by a standards body. See (XI.4.7).

Remark 4.3.2. It is essential that the order of P be divisible by a large prime, be-
cause a Chinese remainder algorithm due to Pohlig and Hellman [205] shows that
the solution time of the ECDLP depends only on the largest prime dividing the order
of P . For this and other reasons, it is generally advisable to use a point P of prime
order. For details of the Pohlig–Hellman algorithm, see [116, § 2.9], [277, §5.1.1], or
Exercise 11.9.

Remark 4.3.3. Diffie–Hellman key exchange allows Alice and Bob to exchange a
piece of data that neither knows in advance. This may not seem very useful. However,
it is useful, because they can use this “random” piece of data as the secret key for a
private key cryptosystem such as the advanced encryption standard (AES).

Remark 4.3.4. Alice and Bob’s adversary Eve knows the values of P , A = [a]P ,
and B = [b]P , so if Eve can solve the ECDLP, then she can find a (or b) and recover
Alice and Bob’s secret value. However, in principle, Eve does not need to find a or b.
What Eve needs to do is to solve the following problem:

Elliptic Curve Diffie–Hellman Problem

Given three points P , [a]P , and [b]P
in E(Fq), compute the point [ab]P .

At present, the only way known to solve the elliptic curve Diffie-Hellman problem is
to solve the associated elliptic curve discrete logarithm problem, i.e., no one knows
how to compute [ab]P from P , [a]P , and [b]P without knowing one of a or b.

Remark 4.3.5. There is clearly no need for Alice and Bob to exchange both the x
and y coordinates of a point, since the x-coordinate alone determines y up to ±1.
Thus given Bob’s x value, Alice can determine ±y by computing a square root in Fq .
(See Exercise 11.8.) It thus suffices for Bob to send the value of x and one additional
bit that specifies which square root to take for y. In cryptographic circles, the idea of
sending the x-coordinate plus one extra bit is known as point compression.

XI.4. Elliptic Curve Cryptography 379

Diffie–Hellman key exchange allows Alice and Bob to exchange a random bit
string, but a true public key cryptosystem such as RSA allows Bob to send a specific
message to Alice. A public key cryptosystem based on the discrete logarithm prob-
lem in F∗

q was proposed in 1985 by ElGamal [74]. Here is an elliptic curve version.

ElGamal Public Key Cryptosystem 4.4. The following procedure allows Bob to
securely send a message to Alice without any previous communication.

(1) Alice and Bob agree on a finite field Fq, an elliptic curve E/Fq, and a point
P ∈ E(Fq).

(2) Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
(3) Alice publishes the point A. This is her public key. The secret multiplier a is her

private key.
(4) Bob chooses a plaintext (i.e., a message) M ∈ E(Fq) and a random integer k.

He computes the two points

B1 = [k]P ∈ E(Fq) and B2 = M + [k]A ∈ E(Fq).

(5) Bob sends the ciphertext (B1, B2) to Alice over a potentially insecure commu-
nication line.

(6) Alice uses her secret key a to compute B2 − [a]B1 ∈ E(Fq). This value is equal
to Bob’s plaintext M .

There is much to say about the ElGamal cryptosystem, but we content ourselves
with a few brief remarks.

Remark 4.5.1. It is easy to verify that Alice recovers Bob’s plaintext. Thus

B2 − [a]B1 =
(
M + [k]A

)− [a][k]P = M + [k][a]P − [a][k]P = M.

Notice how Bob’s random integer k disappears from the calculation.

Remark 4.5.2. Just as with Diffie–Hellman key exchange, the field Fq , curve E/Fq,
and point P ∈ E(Fq) are typically chosen from a list published by some trusted au-
thority; see (XI.4.7). We also note that Alice may choose her private key (step 2) and
publish her public key (step 3) without knowing who is planning to send messages
to her, nor when those messages will be sent.

Remark 4.5.3. An ElGamal plaintext is a point M ∈ E(Fq), while an ElGamal
ciphertext is a pair of points B1, B2 ∈ E(Fq). Thus even with point compres-
sion (XI.4.3.5), Bob has to send two bits of information to Alice for every one bit in
his message. We say that ElGamal has 2-to-1 message expansion. This is less effi-
cient than the RSA cryptosystem, whose plaintexts and ciphertexts are the same size.

Remark 4.5.4. In practice, there is no natural way to assign a message written in,
say, English, to a pointM ∈ E(Fp). A variant of the ElGamal system due to Menezes
and Vanstone uses the coordinates of a point in E as a mask for the actual message;
see Exercise 11.10. We also note that if ElGamal is used in the raw state described
in (XI.4.4), then it is subject to various sorts of attacks. All practical secure imple-
mentations of modern public key cryptosystems include some sort of internal mes-
sage structure that allows Alice to verify that Bob’s message was properly encrypted.

380 XI. Algorithmic Aspects of Elliptic Curves

An example of such a method is the Integrated Encryption Scheme (IES) due to
Abdalla, Bellare, and Rogaway [1]. We briefly describe the elliptic curve variant
of IES in Exercise 11.11.

Remark 4.5.5. As with Diffie–Hellman key exchange, the ElGamal cryptosys-
tem can be broken by solving the Diffie–Hellman problem (XI.4.3.4). Thus Eve
knows A = [a]P and B1 = [k]P , so if she can solve the Diffie–Hellman prob-
lem, then she can compute [ak]P = [k]A. Since she also knows B2, she is then able
to compute B2 − [k]A = M .

A public key cryptosystem allows Bob and Alice to exchange information.
A digital signature scheme has a different purpose. It allows Alice to use a private
key to sign a digital document, e.g., a computer file, in such a way that Bob can use
Alice’s public key to verify the validity of the signature. There are a number of prac-
tical digital signature algorithms; see for example [116, 169, 277]. We describe one
such algorithm that uses elliptic curves.

Elliptic Curve Digital Signature Algorithm (ECDSA) 4.6. The following proce-
dure allows Alice to sign a digital document and Bob to verify that the signature is
valid:

(1) Alice and Bob agree on a finite field Fp, an elliptic curve E/Fp, and a point
P ∈ E(Fp) of (prime) order N .

(2) Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fp).
(3) Alice publishes the point A. This is her public verification key. The secret multi-

plier a is her private signing key.
(4) Alice chooses a digital document d mod N to sign.6 She also chooses a random

integer k mod N . Alice computes [k]P and sets

s1 ≡ x
(
[k]P

)
(mod N) and s2 ≡ (d+ as1)k

−1 (mod N).

(Here x
(
[k]P

)
is only in Fp, but we choose an integer representative between 0

and p− 1.) Alice publishes the signature (s1, s2) for the document d.
(5) Bob computes

v1 ≡ ds−1
2 (mod N) and v2 ≡ s1s

−1
2 (mod N).

He then computes [v1]P + [v2]A ∈ E(Fp) and verifies that

x
(
[v1]P + [v2]A

) ≡ s1 (mod N).

PROOF. We need to check that if Alice follows the procedure described in step (4),
then Bob’s verification in step (5) works. The point that Bob computes in step (5) is

6In practice, Alice applies a hash function to her actual document in order to obtain an inte-
ger d mod N . This allows her to sign long documents and prevents various types of attacks. For in-
formation about hash functions and their use in cryptography, see for example [51, §§1.6.3, 24.2.5], [116,
§8.1], or [169, Chapter 9].

XI.5. Solving the ECDLP: The General Case 381

[v1]P + [v2]A = [ds−1
2]P + [s1s

−1
2][a]P using the values of s1, s2, and A,

=
[
s−1
2 (d+ as1)

]
P

= [k]P using the value of s2.

Hence
x
(
[v1]P + [v2]A

)
= x

(
[k]P

) ≡ s1 (mod N)

by definition of s1.

Remark 4.7. Before using elliptic curves to exchange keys or messages or to sign
documents, Alice and Bob need to choose a finite field Fq, an elliptic curve E/Fq,
and a point P ∈ E(Fq) having large prime order. This selection process can be time
consuming, but there is no need for every Alice and every Bob to choose their own
individual fields, curves, and points. The only secret personal information utilized by
Alice and Bob consists of the multipliers they use to form multiples of P . In order
to make Alice and Bob’s life easier, the United States National Institute of Standards
and Technology (NIST) published a list [191] of fifteen fields, curves, and points
for Alice and Bob to use. For each of five different security levels, NIST gives one
curve E/Fp with p a large prime, one curve E/F2k , and one Koblitz curve E/F2 as
in (XI.1.5) with a point P ∈ E(F2k).

XI.5 Solving the Elliptic Curve Discrete Logarithm
Problem: The General Case

Recall that the discrete logarithm problem (DLP) for elements x and y in a group G
asks for an integer m such that xm = y. In this section we discuss the best known
algorithms for solving the DLP in arbitrary groups. The following rough criteria will
be used to describe the complexity of an algorithm.

Definition. We will say that a discrete logarithm algorithm takes T steps and re-
quires S storage if, on average, the algorithm needs to compute T group operations
and needs to store the values of S group elements. (We will ignore the time it takes
to sort or compare lists of elements, since the time for such operations is generally
logarithmically small compared to the number of group operations.)

Example 5.1. Let x ∈ G be an element of order n. The naive algorithm for solving
the DLP is to compute x, x2, x3, . . . until y is found. This method takes O(n) steps
and requires O(1) storage.

We now describe a general algorithm that “square-roots” the number of steps re-
quired to solve the DLP compared to the naive algorithm, albeit at the cost of using a
significant amount of storage. Algorithms of this type are called collision algorithms,
because they depend on the fact that it is easier to find collisions (elements that are
common to two subsets) than it is to find specific elements in a set. This phenomenon
is also known as the birthday paradox; see Exercise 11.5.

382 XI. Algorithmic Aspects of Elliptic Curves

Proposition 5.2. (Shanks’s Babystep–Giantstep Algorithm) Let G be a group, let
x, y ∈ G, and let n be the order of x. Then the following algorithm solves the DLP
in O(

√
n) steps with O(

√
n) storage:

(1) Let N = !√n " be the “ceiling” of n, i.e., N is the smallest integer that is greater
than or equal to

√
n.

(2) Make a list of the elements (these are the babysteps)

x, x2, x3, . . . , xN .

(3) Let z = (xN)−1 and make a list of the elements (these are the giantsteps)

yz, yz2, yz3, . . . , yzN .

(4) Look for a match between the lists in steps (2) and (3). If there is a match,
say xi = yzj, then y = xi+jN ; otherwise y is not a power of x.

PROOF. Suppose that y is equal to a power of x, say y = xm with 0 ≤ m < n. We
write m = jN + i with 0 ≤ i < N , so

0 ≤ j = (m− i)/N ≤ N, since m ≤ n and N ≥ √
n.

It follows that xi is in the first list and yzj = yx−jN is in the second list, so there is
a match xi = yzj . Hence y = xiz−j = xi(x−N)−j = xi+jN .

We note that there are many ways to check for matches in step (4). For example,
we can sort the elements x, x2, . . . , xN in step (2) in O(N logN) steps, and then it
takes O(logN) steps to check whether any particular element yzi from step (3) is in
the list. So Shanks’s algorithm really takes O

(√
n(log n)2

)
steps (or a bit less, using

fancier sorting algorithms), but as noted earlier, we will ignore the log factors.

The babystep–giantstep algorithm (XI.5) requires a considerable amount of stor-
age. An alternative collision algorithm, due to Pollard, takes approximately the same
number of steps and reduces the storage to essentially nothing. Pollard’s algorithm
and its variants, which are the most practical methods currently known for solving
the ECDLP, rely on the following collision theorem that describes the likelihood of
finding terms satisfying x2i = xi in an iterative sequence x0, x1, x2,

Theorem 5.3. Let S be a finite set containing N elements, and let f : S → S
be a function. Starting with an initial value x0 ∈ S, define a sequence of points
x0, x1, x2, . . . by

xi = f(xi−1) = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸
i iterations of f

(x0).

Let T be the tail length and let L be the loop length of the orbit

x0, x1, x2, x3, . . .

of x, as illustrated in Figure 11.5. Formally,

T = largest integer such that xT−1 appears only once in the sequence (xi)i≥0,

L = smallest integer such that xT+L = xT .

XI.5. Solving the ECDLP: The General Case 383

Tail Length = T

Loop Length = L

x0

x1

x2

x3

xT−1

xT

xT+1

xT+2

xT+3

xT+4

xL+T−4

xL+T−3

xL+T−2

xL+T−1

xL+T

Figure 11.5: The orbit of x0 in Pollard’s ρ algorithm.

(a) There exists an index 1 ≤ i < T + L such that x2i = xi.
(b) If f : S → S and its iterates are “sufficiently random” at mixing the elements

of S, then the expected value of T + L is
√
πN/2 .

Remark 5.3.1. The shape of the path in Figure 11.5 explains why (XI.5.3) is called
the “ρ algorithm.”

PROOF. (a) It is clear from Figure 11.5 that for j > i we have

xj = xi if and only if i ≥ T and j ≡ i (mod L).

Hence x2i = xi if and only if i ≥ T and L | i. The first such i lies between T
and T + L− 1.
(b) We sketch the proof, which is an exercise in discrete probability theory, and leave
the reader to fill in error-estimate details.

If k points x0, . . . , xk−1 are chosen randomly from S, then the probability that
they are distinct is

Prob

(
x0, x1, . . . , xk−1

are distinct

)
=

k−1∏

i=1

Prob

(
xi �= xj for

all 0 ≤ j < i

∣
∣
∣∣
x0, x1, . . . , xi−1

are distinct

)

=

k−1∏

i=1

(
N − i

N

)

=

k−1∏

i=1

(
1− i

N

)
.

We approximate this last product using the estimate

384 XI. Algorithmic Aspects of Elliptic Curves

1− t ≈ e−t,

which is valid for small values of t. (We will apply this estimate with k = O(
√
N),

so if N is large, then the quantity i
N with 1 ≤ i < k is small.) This yields

Prob

(
x0, x1, . . . , xk−1

are distinct

)
≈

k−1∏

i=1

e−i/N ≈ e−k2/2N .

Suppose now that x0, . . . , xk−1 are distinct. Then the probability that xk matches
one of the earlier values is

Prob
(
xk is a match

∣
∣ x0, . . . , xk−1 are distinct

)
=

k

N
.

Combining these two probability estimates, we find that

Prob
(
xk is the first match

)

= Prob
(
xk is a match AND x0, . . . , xk−1 are distinct

)

= Prob
(
xk is a match

∣
∣ x0, . . . , xk−1 are distinct

)

·Prob(x0, . . . , xk−1 are distinct
)

≈ k

N
· e−k2/2N .

Hence the expected number of steps before finding the first match is
∑

k≥1

k · Prob(xk is the first match
)

≈
∑

k≥1

k2

N
· e−k2/2N

=
∑

k≥1

φ
(
k/

√
N

)
letting φ(t) = t2e−t2/2,

≈
√
N ·

∫ ∞

0

t2e−t2/2 dt using
∞∑

k=1

φ(k/n) ≈ n

∫ ∞

0

φ(t) dt,

=
√
πN/2.

(The square of the integral in the last step may be evaluated via the usual polar
coordinates trick.)

Pollard’s algorithm to solve the discrete logarithm problem in a group G uses a
self-map f : G → G that is easy to compute, yet whose iterates mix up the elements
of G in a random fashion.

Algorithm 5.4. (Pollard’s ρ algorithm)
Let G be a group and let x, y ∈ G. Our goal is to compute an integer m satisfy-
ing xm = y. We will use (XI.5.3) to find integers i, j, k, � such that

XI.5. Solving the ECDLP: The General Case 385

xiyj = xky�.

Then xi−k = yj−�, and assuming that j − � is relatively prime to the order n of x,7

we can solve for y as a power of x.
It is not clear how to define a function f : G → G that is complicated enough

to provide good mixing, yet simple enough to keep track of its orbits. Pollard [206]
suggests splitting G into a disjoint union of three sets of approximately equal size,

G = A ∪B ∪ C,

and using the function

f(z) =

⎧
⎪⎨

⎪⎩

xz if z ∈ A,

z2 if z ∈ B,

yz if z ∈ C.

(See Exercise 11.13 for an elliptic curve example.) Such functions work reasonably
well in practice, although more complicated functions with better mixing properties
are known [293, 294].

Consider the outcome when we repeatedly apply f to the initial point z0 = 1.
After i iterations we arrive at a point

zi = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸
i iterations of f

(1) = xαiyβi

for certain integers αi and βi. It is difficult to predict, a priori, the values of αi

and βi, but we can compute them at the same time that we compute z1, z2, . . . by
starting with α0 = β0 = 0 and using the iterative formulas

αi+1 =

⎧
⎪⎨

⎪⎩

αi + 1 if zi ∈ A,

2αi if zi ∈ B,

αi if zi ∈ C,

βi+1 =

⎧
⎪⎨

⎪⎩

βi if zi ∈ A,

2βi if zi ∈ B,

βi + 1 if zi ∈ C.

Note that we need only keep track of αi and βi modulo n, since xn = 1. This keeps
the values of αi and βi at a manageable size.

In a similar fashion we compute the sequence of points

w0 = 1 and wi+1 = f
(
f(wi)

)
.

Then
wi = z2i = xγiyδi ,

where γi and δi can be computed from γi−1 and δi−1 using two repetitions of the
recurrences for αi and βi. Of course, the first time we use wi = z2i to determine
which case to apply, and the second time we use f(wi) = z2i+1 to decide. See
Exercise 11.12.

7In practical applications, the element x usually has prime order (XI.4.3.2), in which case j − � is
almost certainly prime to n. The general case is discussed later in this section.

386 XI. Algorithmic Aspects of Elliptic Curves

We now compute (z1, w1), (z2, w2), (z3, w3),. . . until we find a pair whose co-
ordinates are the same. Note that each successive (zi, wi) may be computed solely
in terms of the previous (zi−1, wi−1), so we never need to store more than a few
numbers. Assuming that A, B, and C are sufficiently good at mixing the elements
of G, our analysis in (XI.5.3) says that we will find a match

zi = wi = z2i

in O(
√
n) steps. The equality zi = wi implies that

xαi−γi = yδi−βi .

If gcd(δi − βi, n) = 1, as is typically the case in applications where n is prime, then

m ≡ (αi − γi)(δi − βi)
−1 (mod n)

solves xm = y.
In general, if d = gcd(δi − βi, n) > 1, then we can express yd as a power of x,

say yd = xe. Then y is equal to one of the elements x(e+nu)/d with 0 ≤ u < d.
So if d is not too large, this solves the DLP, and if d is large, we can rerun Pollard’s
algorithm to find another relation between x and y.

Remark 5.4.1. The proof of (XI.5.3) and its subsequent application to Pollard’s ρ al-
gorithm (XI.5.4) rely on two heuristic assumptions. First, they assume that iterations
of certain self-maps behave as if they were random mixing maps. Second, they as-
sume that the resulting collision is nondegenerate, e.g., in the notation of (XI.5.4),
if n | δi − βi, then the algorithm yields no information. For a proof that the running
time of Pollard’s algorithm is O(

√
n), see [126, 174], and for a rigorous analysis of

the nondegeneracy assumption, see [175].

Remark 5.4.2. Shanks’s and Pollard’s algorithms (XI.5.2), (XI.5.4) apply to (vir-
tually) any group and show that the DLP in a cyclic group G of order n can be
solved in O(

√
n) steps. Now imagine that you are given a black box that performs

the group operations in G. This means that you may feed any two group elements x1

and x2 into the box and it will compute for you the value of their product x1x2,
but you have no knowledge of how the computation is performed. In this situation
Shoup [253] has shown that any algorithm that solves the DLP in G takes on average
at least O(

√
n) steps. Thus despite the fact that the group law on an elliptic curve

is far from being a black box, the best known algorithms to solve the ECDLP are
qualitatively no better than a black box algorithm.

XI.6 Solving the Elliptic Curve Discrete Logarithm
Problem: Special Cases

The fastest known algorithms that solve the ECDLP on all elliptic curves are collision
algorithms such as (XI.5.2) and (XI.5.4). However, not all elliptic curves are created

XI.6. Solving the ECDLP: Special Cases 387

equal. Menezes, Okamoto, and Vanstone [168] suggested using the Weil pairing to
reduce the ECDLP to an easier DLP in the multiplicative group of a finite field. (An
alternative reduction using the Tate–Lichtenbaum pairing was suggested by Frey and
Rück [91].)

Definition. Let Fq be a finite field, and let N ≥ 1 be an integer. The embedding
degree of N in Fq is the smallest integer d ≥ 1 such that

μN ⊂ F∗
qd .

Since F∗
qd is a cyclic group of order qd − 1, this is equivalent to d being the smallest

integer satisfying

qd ≡ 1 (mod N).

Proposition 6.1. (MOV Algorithm [168]) Let E/Fq be an elliptic curve, let P,Q ∈
E(Fq) be points of prime order N , and let d be the embedding degree of N in Fq .
Assume that gcd(q − 1, N) = 1. Then there is a polynomial-time algorithm that re-
duces the ECDLP for P and Q to the DLP in F∗

qd .

PROOF. We are looking for an integer m such that Q = [m]P . We choose a
point T ∈ E[N](F̄q) such that P and T generate E[N]. Then the value of the
Weil pairing eN (P, T) is a primitive N th root of unity (III.8.1.1), so by definition
of embedding degree we have eN (P, T) ∈ F∗

qd . Linearity of the Weil pairing (III.8.1)
gives

eN (Q, T) = eN
(
[m]P, T

)
= eN (P, T)m.

We know the values of points P , Q, and T , so if we can solve the discrete logarithm
problem

eN (Q, T) = eN (P, T)m

in F∗
qd , then we recover the value of m, which also solves the ECDLP for P and Q.

The running time of the MOV algorithm is determined by how long it takes to
find the point T and how long it takes to compute the Weil pairing values eN(Q, T)
and eN(P, T). The Weil pairing computations are not a problem, since they may be
computed using Miller’s (linear-time) algorithm as described in (XI §8). A key fact,
which we prove below (XI.6.2), is that E[N] ⊂ E(Fqd), where d is the embedding
degree. Thus all computations may be done in the field Fqd . To construct an appro-
priate point T ∈ E(Fqd), we randomly choose points T in E(Fqd) of order N until
we find one such that eN (P, T) is a primitive N th root of unity.8

Lemma 6.2. Let E/Fq be an elliptic curve, let N ≥ 1 be an integer satisfying
gcd(q−1, N) = 1, let d be the embedding degree ofN in Fq, and suppose thatE(Fq)
contains a point of exact order N . Then E[N] ⊂ E(Fqd).

8We first compute n = #E(Fqd), which takes polynomial time (XI.3.1). Then, since N is typically a

large prime, most points S ∈ E(Fqd) have the property that T = [n/N2]S has order N .

388 XI. Algorithmic Aspects of Elliptic Curves

PROOF. Let P ∈ E(Fq) be the given point of exact order N defined over Fq, and
choose a point T ∈ E[N] such that {P, T } is a basis for E[N]. Let φ ∈ G

F̄q/Fq
be

the q-power Frobenius map. Since P ∈ E(Fq), we have

Pφ = P and T φ = [a]P + [b]T for some a, b ∈ Z/NZ.

Using basic properties of the Weil pairing (III.8.1), we find that

eN (P, T)q = eN (P, T)φ = eN(Pφ, T φ)

= eN (P, [a]P + [b]T) = eN(P, P)aeN (P, T)b = eN (P, T)b.

Since eN (P, T) is a primitive N th root of unity, cf. (III.8.1.1), this implies that

b = q mod N.

Thus T φ = [a]P + [q]T . Applying φ repeatedly to T and using the fact that φ
fixes P gives

T φd

=
[
a(1 + q + q2 + · · ·+ qd−1)

]
P + [qd]T.

By definition of embedding degree, we have qd ≡ 1 (mod N), so [qd]T = T . Fur-
ther, the assumption that gcd(q − 1, N) = 1 implies that

1 + q + q2 + · · ·+ qd−1 ≡ 0 (mod N),

so [1+q+q2+· · ·+qd−1]P = O. ThereforeT φd

= T , which proves that T ∈ E(Fqd).

Remark 6.3. Under plausible assumptions, Balasubramanian and Koblitz [13] show
that for most elliptic curves E/Fq, if N is a large prime divisor of #E(Fq), then
the embedding degree of N in Fq is proportional to N . Hence for a randomly cho-
sen E/Fq, the MOV algorithm reduces the ECDLP in E(Fq) to a much harder DLP
in Fqd . However, there are special cases for which the embedding degree is small, as
in the following example. (See also (XI.9.8).)

Example 6.4. Let p ≥ 5 be prime, and let E/Fp be a supersingular elliptic curve.
We can compute embedding degrees for E using Exercise 5.15, which implies that

#E(Fp) = p+ 1.

Suppose that P ∈ E(Fp) is a point of exact order N . Then N divides #E(Fp),
so p ≡ −1 (mod N). Hence p2 ≡ 1 (mod N), so N has embedding degree 2
in Fp. Thus the ECDLP on a supersingular curve over Fp can be reduced to solv-
ing the DLP in F∗

p2 , for which there are subexponential algorithms. This militates
against using supersingular curves in most cryptographic settings. However, we will
see later (XI §7) that there are cryptographic applications that make use of the Weil
pairing and low embedding degrees. For these applications, supersingular curves
may be used; we simply must ensure that it is computationally infeasible to solve
the associated DLP in F∗

p2 .

XI.6. Solving the ECDLP: Special Cases 389

The MOV algorithm (XI.6.1) shows that the ECDLP on an elliptic curve with low
embedding degree may be reduced to a potentially easier DLP in the multiplicative
group of a finite field. We next describe a special situation in which the ECDLP is
reduced to an essentially trivial additive DLP

Proposition 6.5. (Semaev [228], Satoh–Araki [218], Smart [269]) Let p ≥ 3 and
let E/Fp be an elliptic curve satisfying

#E(Fp) = p.

(Such curves are called anomalous.) The following algorithm solves the ECDLP
in E(Fp).
(1) Let P,Q ∈ E(Fp) be nonzero points satisfying Q = [m]P , where the integer m

is not known.
(2) Choose an elliptic curve E′/Qp whose reduction modulo p is E/Fp.
(3) Use Hensel’s lemma to lift the points P,Q to points P ′, Q′ ∈ E′(Qp).
(4) The points [p]P ′ and [p]Q′ are in the formal group E′

1(Qp). Let

logE : E′
1(Qp) −→ Ĝa(pZp) ∼= pZ+

p

be the formal logarithm map (IV §5, IV.6.4), and compute

pa = logE
(
[p]P ′) ∈ pZp and pb = logE

(
[p]Q′) ∈ pZp.

(5) Then m ≡ a−1b (mod p).

PROOF. Using the fact that #E(Fp) = p, we have

[̃p]P ′ = [p]P = O and [̃p]Q′ = [p]Q = O in E(Fp),

so [p]P ′ and [p]Q′ are in the kernel of reduction modulo p. Hence they are in the
formal group E′

1(Qp). Similarly, if we let R′ = Q′− [m]P ′, then the reduction of R′

modulo p is

R̃′ = Q̃′ − [m]P̃ ′ = Q− [m]P = O in E(Fp),

so R′ ∈ E′
1(Qp). We now compute

logE
(
[p]Q′) = logE

(
[p]([m]P ′ +R′)

)
since R′ = Q′ − [m]P ′,

= m logE
(
[p]P ′)+ p logE(R

′) valid since [p]P ′, R′ ∈ E1(Qp),

≡ m logE
(
[p]P ′) (mod p2) since logE(R

′) ∈ pZp.

Substituting logE
(
[p]P ′) = pa and logE

(
[p]Q′) = pb as in step (4) of the algorithm

gives pb ≡ mpa (mod p2), so m ≡ a−1b (mod p).

Remark 6.6. The algorithm described in (XI.6.5) may seem impractical, since it
requires lifting points in E(Fp) to points in E′(Qp). However, an examination of the
proof shows that we need only lift points modulo p2 and compute formal logarithms
in Ĝa(pZp)/Ĝa(p

2Zp) ∼= pZp/p
2Zp. Thus we work on an elliptic curve over the

ring Z/p2Z, or in fancier language, on an elliptic scheme; see (XI.2.4.1).

390 XI. Algorithmic Aspects of Elliptic Curves

Example 6.7. We work over the field F127 and consider the anomalous curve and
points

E : y2 = x3+19x+112, P = (106, 72) ∈ E(F127), Q = (12, 121) ∈ E(F127).

We take the same equation to be our lift of E to Z/1272Z, and we lift the points P
and Q to

P ′ = (106, 13026) ∈ E(Z/1272Z) and Q′ = (12, 5201) ∈ E(Z/1272Z).

We now want to compute multiples of P ′ and Q′ working modulo 1272. In order
to avoid noninvertible denominators, it is convenient to make the change of vari-
ables z = −x/y and w = −1/y. This has the effect of moving O to (z, w) = (0, 0);
cf. (IV §1). The equation for E now reads

E : w = z3 + 19zw2 + 112w3.

We use the double-and-add algorithm, working modulo 1272 with (z, w)-coordinates,
to compute

[127]P ′ = (12319, 0) ∈ E(Z/1272Z) and [127]Q′ = (2159, 0) ∈ E(Z/1272Z).

The elliptic logarithm for y2 = x3 +Ax +B starts logE(z) = z + 2
5Az

5 + · · · , so
since we are working modulo 1272, it suffices to use logE(z) ≈ z. Thus

logE
(
[127]P ′) ≡ 12319 ≡ 97 · 127 (mod 1272),

logE
(
[127]Q′) ≡ 2159 ≡ 17 · 127 (mod 1272).

Finally, we compute m ≡ 97−1 · 17 ≡ 46 (mod 127), which is the desired discrete
logarithm. We can check our answer by verifying that [46]P = Q in E(F127).

XI.7 Pairing-Based Cryptography

The Diffie–Hellman key exchange algorithm allows two people to exchange an un-
specified piece of data. It was a long-standing problem to find a method that allows
three people to perform a similar exchange. Joux found a solution using the Weil
pairing

eN : E[N]× E[N] −→ μN ,

which we recall (III §8) is nondegenerate, bilinear, and alternating. For cryptographic
applications we need a pairing that is nondegenerate on a cyclic subgroup of E[N],
but unfortunately the Weil pairing is trivial on such subgroups. One way around this
difficulty is to use a curve that admits an isogeny

φ : E −→ E

such that E[N] has a basis of the form
{
T, φ(T)

}
. In the cryptographic literature,

the map φ is called a distortion map; see [51, §24.2.1b] or [116, §5.9.2]. Using a
distortion map, the modified Weil pairing

XI.7. Pairing-Based Cryptography 391

〈 · , · 〉 : E[N]× E[N] −→ μN , 〈P,Q〉 = eN
(
P, φ(Q)

)

has the property that 〈T, T 〉 is a primitive N th root of unity.

Example 7.1. Let E be the elliptic curve y2 = x3+x having complex multiplication
by Z[i], and let φ be the isogeny

φ : E −→ E, φ(x, y) = [i](x, y) = (−x, iy).

Then φ is a distortion map on E[N] for all primes N satisfying N ≡ 3 (mod 4). To
see this, let T ∈ E[N] be a point of exact order N , and suppose that some linear
combination of T and φ(T) is zero. Then

[a]T + [b]φ(T) = O ⇐⇒ [a+ bi](T) = O

=⇒ [a2 + b2](T) = O

=⇒ a2 + b2 ≡ 0 (mod N)

=⇒ a ≡ b ≡ 0 (mod N),

where the last line follows from the assumption that N ≡ 3 (mod 4). (See Exer-
cise 3.26 for another example of a distortion map.)

An alternative to the modified Weil pairing is the Tate–Lichtenbaum pairing

τ : E(K)/NE(K)× E(K)[N] −→ K∗/(K∗)N ,

which we discuss in (XI §9). If K is a finite (or local) field, then under appropriate
conditions the Tate–Lichtenbaum pairing is nondegenerate, in which case we can
define a nondegenerate pairing by

〈 · , · 〉 : E(Fq)[N]× E(Fq)[N] −→ μN , 〈P,Q〉 = τ(P,Q)(q−1)/N .

From a practical perspective, the primary advantage of the Tate–Lichtenbaum pairing
over the Weil pairing is that the former can be computed in roughly half the time
that it takes to compute the latter (XI.9.3.2). In any case, there is a double-and-add
algorithm for both pairings, so they are both easy to compute; see (XI §8) for details.

Tripartite Diffie–Hellman Key Exchange 7.2. (Joux [120]) The following proce-
dure allows Alice, Bob, and Carl to securely exchange a a piece of information whose
value none of them knows in advance:

(1) Alice, Bob, and Carl agree on a finite field Fq , an elliptic curve E/Fq, a prime N ,
and a point T ∈ E(Fq)[N] such that there is a bilinear pairing

〈 · , · 〉 : E(Fq)[N]× E(Fq)[N] −→ μN

with the property that 〈T, T 〉 is a primitive N th root of unity.
(2) Alice, Bob, and Carl choose secret integers a, b, and c, respectively, and they

compute
Alice computes this
︷ ︸︸ ︷
A = [a]T,

Bob computes this
︷ ︸︸ ︷
B = [b]T,

Carl computes this
︷ ︸︸ ︷
C = [c]T.

392 XI. Algorithmic Aspects of Elliptic Curves

(3) Alice, Bob, and Carl publish the values of A, B, and C.
(4) Alice, Bob, and Carl compute, respectively,

Alice computes this
︷ ︸︸ ︷
〈B,C〉a,

Bob computes this
︷ ︸︸ ︷
〈A,C〉b,

Carl computes this
︷ ︸︸ ︷
〈A,B〉c.

(5) Alice, Bob, and Carl have now shared the value 〈T, T 〉abc.
Remark 7.3. If Eve can solve the ECDLP, then she can certainly break tripartite
Diffie–Hellman key exchange, since for example she can recover Alice’s secret mul-
tiplier a from the publicly available points T and A = [a]T . However, Eve can also
break the system if she can solve the discrete logarithm problem in the multiplicative
group F∗

q . Thus Eve knows the values of T , A, and B, so if she can solve the DLP

〈T, T 〉m = 〈A,B〉
in F∗

q , she recovers the value m = ab. From this she obtains Alice, Bob, and Carl’s
shared value by computing 〈T,C〉ab.

The DLP in F∗
q can be solved in subexponential time (XI.4.1b), so it is currently

significantly easier to solve the DLP in F∗
q than it is to solve the ECDLP in E(Fq).

Thus tripartite Diffie–Hellman key exchange and other pairing-based cryptographic
algorithms require that q be sufficiently large to preclude the solution of the DLP
in F∗

q .

Another cryptographic application of pairings on elliptic curves is a digital signa-
ture scheme that has extremely short signatures, as described in the following result
of Boneh, Lynn, and Shacham [24]; see also [51, §24.1.3].

Theorem 7.4. The following procedure allows Alice to sign a digital document and
Bob to verify that the signature is valid.

(1) Alice and Bob agree on a finite field Fq, an elliptic curve E/Fq, a prime N , and
a point T ∈ E(Fq)[N] such that there is a bilinear pairing

〈 · , · 〉 : E(Fq)[N]× E(Fq)[N] −→ μN

with the property that 〈T, T 〉 is a primitive N th root of unity.
(2) Alice selects a secret integer a and computes the point A = [a]T ∈ E(Fq).
(3) Alice publishes the point A. This is her public verification key. The secret multi-

plier a is her private signing key.
(4) Alice chooses a digital document D ∈ E(Fq) to sign.9 She computes and pub-

lishes the signature
S = [a]D.

(5) Bob accepts the signature as valid if the two quantities

〈A,D〉 and 〈T, S〉
are equal.

9As with ECDSA (XI.4.6), the point D is really a hash of the actual document. See [51, §24.2.5].

XI.8. Computing the Weil Pairing 393

PROOF. Assuming that Alice has constructed A and S as in steps (2) and (4), bilin-
earity of the pairing yields

〈A,D〉 = 〈[a]T,D〉 = 〈T,D〉a and 〈T, S〉 = 〈T, [a]D〉 = 〈T,D〉a,
so Bob accepts the signature.

Remark 7.5.1. The reason that (XI.7.4) is called a short signature scheme is be-
cause the signature consists of only a single point in E(Fq), so with point compres-
sion (XI.4.3.5), a single number in Fq . Thus (XI.7.4) gives signatures that are half the
size of those produced by ECDSA (XI.4.6). (The use of hyperelliptic curves allows
the size of q to be further reduced; see [51].)

Remark 7.5.2. Recall (XI.4.3.4) that the elliptic curve Diffie–Hellman problem asks
for the value of [ab]P , given the three points P , [a]P , and [b]P . Potentially easier is
the following decision version of this problem:

Decision Diffie–Hellman Problem

Given four points P , [a]P , [b]P , and Q in E(Fq),
determine whether Q is equal to [ab]P .

The short signature scheme (XI.7.4) uses the fact that if E is an elliptic curve with a
nondegenerate bilinear pairing, then the decision Diffie–Hellman problem is easy to
solve, since Q = [ab]P if and only if 〈[a]P, [b]P 〉 = 〈Q,P 〉.
Remark 7.6. There are a number of other cryptographic constructions that use bi-
linear pairings on elliptic curves and that depend for their security on the difficulty
of solving both the ECDLP in E(Fq) and the DLP in F∗

q . We mention in particular
ID-based cryptography, in which Alice may use an arbitrary character string as her
public key. For example, her public key could be her email address. To send a mes-
sage, Bob combines Alice’s public key with a universal public key available from
some trusted authority. The trusted authority also provides Alice with a personal pri-
vate key that goes with her ID-based public key. The idea of ID-based cryptosystems
was proposed by Shamir [245] in 1985, and a practical system using elliptic curves
and pairings was devised by Boneh and Franklin [23] in 2001. For further details,
see for example [51, §24.1.2] or [116, §5.10.2].

XI.8 Computing the Weil Pairing

The abstract definition of the Weil pairing requires functions having specified divi-
sors. In this section we describe a double-and-add algorithm due to Victor Miller that
computes such functions in linear time. Miller’s algorithm makes pairings practical
for use in applications such as cryptography.

Theorem 8.1. Let E be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and let P = (xP , yP) and Q = (xQ, yQ) be nonzero points on E.

394 XI. Algorithmic Aspects of Elliptic Curves

(1) Set T = P and f = 1

(2) Loop i = t− 1 down to 0

(3) Set f = f2 · hT,T

(4) Set T = 2T

(5) If εi = 1

(6) Set f = f · hT,P

(7) Set T = T + P

(8) End If

(9) End i Loop

(10) Return the value f

Figure 11.6: Miller’s algorithm.

(a) Let λ be the slope of the line connecting P and Q, or the slope of the tangent line
to E at P if P = Q. (If the line is vertical, set λ = ∞.) Define a function hP,Q

on E as follows:

hP,Q =

⎧
⎪⎪⎨

⎪⎪⎩

y − yP − λ(x − xP)

x+ xP + xQ − λ2 − a1λ+ a2
if λ �= ∞,

x− xP if λ = ∞,

1 if P = O or Q = O.

Then
div(hP,Q) = (P) + (Q)− (P +Q)− (O).

(b) Miller’s algorithm. Let N ≥ 1 and write the binary expansion of N as

N = ε0 + ε1 · 2 + ε2 · 22 + · · ·+ εt · 2t with εi ∈ {0, 1} and εt �= 0.

The algorithm described in Figure 11.6 returns a function fP whose divisor sat-
isfies

div(fP) = N(P)− ([N]P)− (N − 1)(O),

where the functions hT,T and hT,P used by the algorithm are as defined in (a).
In particular, if P ∈ E[N], then div(fP) = N(P)−N(O).

PROOF. (a) Suppose first that λ �= ∞, and let y = λx + ν be the line through P
and Q, or the tangent line at P if P = Q. This line intersects E at the three
points P , Q, and −P −Q, so

div(y − λx− ν) = (P) + (Q) + (−P −Q)− 3(O).

Vertical lines intersect E at points and their negatives, so

div(x− xP+Q) = (P +Q) + (−P −Q)− 2(O).

XI.8. Computing the Weil Pairing 395

It follows that

hP,Q =
y − λx− ν

x− xP+Q

has the divisor stated in (a). Finally, the addition formula (III.2.3d) tells us that
xP+Q = λ2 + a1λ − a2 − xP − xQ, and we can eliminate ν from the numera-
tor of hP,Q using yP = λxP + ν.

If λ = ∞, then P +Q = O, so we need hP,Q to have divisor (P)+(−P)−2(O).
The function x− xP has this divisor.
(b) This is a standard double-and-add algorithm, similar to (XI.1.1). The key to ana-
lyzing the algorithm comes from (a), which tells us that the functions hT,T and hT,P

used in steps (3) and (6) have divisors

div(hT,T) = 2(T)− (2T)− (O),

div(hT,P) = (T) + (P)− (T + P)− (O).

We consider the effect of executing the i loop, steps (2)–(9), for a given value of i.
At the start of the loop the variables T and f have initial values T start

i and f start
i , and

at the end of (one execution of) the loop they have final values T end
i and f end

i . We
start with T . During the loop, the value of T is doubled and then, if εi = 1, the value
is incremented by P . This gives the relation

T end
i = 2T start

i + εiP.

Similarly, the value of f is squared, multiplied by hT,T , and then, if εi = 1, it is
multiplied by h2T,P . (Note that the value of T has been doubled in step (4) before it
is used in step (6).) This yields

f end
i = (f start

i)2 · hT start
i ,T start

i
· hεi

2T start
i ,P

.

Hence the divisors of f start
i and f end

i are related by

div(f end
i) = 2 div(f start

i) + div(hT start
i ,T start

i
) + εi div(h2T start

i ,P)

= 2 div(f start
i) +

(
2(T start

i)− (2T start
i)− (O)

)

+ εi
(
(2T start

i) + (P)− (2T start
i + P)− (O)

)

= 2div(f start
i) + 2(T start

i)− (2T start
i + εiP) + εi(P)− (1 + εi)(O)

since εi ∈ {0, 1},

= 2div(f start
i) + 2(T start

i)− (T end
i) + εi(P)− (1 + εi)(O).

Of course, the final values of T and f after a given iteration of the i loop are the
initial values for the next iteration, i.e., T end

i = T start
i−1 and f end

i = f start
i−1. (Note that

the i loop decrements from t − 1 to 0.) This allows us to rewrite the recurrences
for T and f as

T start
i−1 − 2T start

i = εiP,

div(f start
i−1)− 2 div(f start

i) = 2(T start
i)− (T start

i−1) + εi(P)− (1 + εi)(O).

396 XI. Algorithmic Aspects of Elliptic Curves

These formulas are designed to telescope when they are summed. For example, when
the algorithm terminates, the final value of T is

T end
0 = ε0P + 2T start

0

= ε0P +

[
t−1∑

i=1

2i(T start
i−1 − 2T start

i)

]

+ 2tT start
t−1

= ε0P +
t−1∑

i=1

2iεiP + 2tT start
t−1 using the recurrence for T start

i ,

=

t∑

i=0

2iεiP since T start
t−1 = P and εt = 1,

= NP. since N =
∑

εi2
i.

Finally, we compute the divisor of the function f returned by Miller’s algorithm:

div(f end
0)

= 2 div(f start
0) + 2(T start

0)− (T end
0) + ε0(P)− (1 + ε0)(O)

=

[
t−1∑

i=1

2i
(
div(f start

i−1)− 2 div(f start
i)

)
]

+ 2(T start
0)− (NP) + ε0(P)− (1 + ε0)(O)

since f start
t−1 = 1 and T end

0 = NP ,

=

[
t−1∑

i=1

2i
(
2(T start

i)− (T start
i−1) + εi(P)− (1 + εi)(O)

)
]

+ 2(T start
0)

− (NP) + ε0(P)− (1 + ε0)(O)

= 2t(T start
t−1) +

t−1∑

i=0

2iεi(P)−
t−1∑

i=0

2i(1 + εi)(O) − (NP)

= N(P)− (N − 1)(O)− (NP) since T start
t−1 = P , εt = 1, and N =

∑
εi2

i.

This completes the proof that the function returned by Miller’s algorithm has the
stated divisor.

Remark 8.2. Let P ∈ E[N](K). Miller’s algorithm (XI.8.1b) tells us how to com-
pute a function fP ∈ K(E) with divisor N(P)−N(O). Further, if R ∈ E is any
point, we can use Miller’s algorithm to directly evaluate fP (R) by evaluating the
functions hT,T (R) and hT,P (R) in steps (3) and (6). This allows us to compute the
Weil pairing eN (P,Q) via the alternative definition of eN (P,Q) from Exercise 3.16.
We choose any point S ∈ E not in the subgroup generated by P and Q, and then

eN (P,Q) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(−S)
.

XI.9. The Tate–Lichtenbaum Pairing 397

The right-hand side of this formula can be computed using four applications of
Miller’s algorithm (XI.8.1b). For added efficiency, the two values fP (Q + S)
and fP (S) of fP may be computed simultaneously, and similarly for fQ(P − S)
and fQ(−S).

Example 8.3. Let E/F631 be the elliptic curve

y2 = x3 + 30x+ 34.

We have E(F631) ∼= Z/5Z × Z/130Z, and it is easy to check that the points
P = (36, 60) and Q = (121, 387) generate E(F631)[5]. In order to compute the Weil
pairing with Miller’s algorithm, we use the auxiliary point S = (0, 36) ∈ E(F631).
The point S has order 10, so it is not in the subgroup spanned by P and Q. Miller’s
algorithm gives

fP (Q+ S) = 103, fP (S) = 219, fQ(P − S) = 284, fQ(−S) = 204.

Hence

e5(P,Q) =
103

219

/
284

204
= 242 ∈ F631.

We check that (242)5 = 1, so e5(P,Q) is indeed a fifth root of unity in F631.

Remark 8.4. As an alternative to the Weil pairing, cryptographers often use the
Tate–Lichtenbaum pairing described in (XI §9). Miller’s algorithm (XI.8.1b) can also
be used to compute the Tate–Lichtenbaum pairing (XI.9.3.2).

Remark 8.5. Another linear-time algorithm to compute the Weil and Tate–Lichten-
baum pairings, due to Shipsey and Stange, makes use of elliptic divisibility se-
quences (Exercises 3.34–3.36) and elliptic nets. See [252, 270, 271] for details.

XI.9 The Tate–Lichtenbaum Pairing

The Weil pairing is often used to define other pairings on elliptic curves. In this
section we describe the Tate–Lichtenbaum pairing, which has both theoretical and
cryptographic applications. See (C §17) and Exercise 10.24 for other instances of
pairings on elliptic curves.

Definition. Let E/K be an elliptic curve, and let N ≥ 1 be an integer that is prime
to p = char(K) if p > 0. The Tate–Lichtenbaum pairing

τ :
E(K)

NE(K)
× E(K)[N] −→ K∗

(K∗)N

is defined as follows. Let P ∈ E(K) and T ∈ E(K)[N]. Choose a point Q ∈ E(K̄)
satisfying [N]Q = P . The map

GK̄/K −→ μN , σ −→ eN(Qσ −Q, T),

398 XI. Algorithmic Aspects of Elliptic Curves

is a 1-cocycle (see below), so it represents an element of H1(GK̄/K ,μN). Hilbert’s
Theorem 90 (B.2.5c) says that the connecting homomorphism

K∗/(K∗)N −→ H1(GK̄/K ,μN)

is an isomorphism; hence there exists an element α ∈ K∗, unique up to N th powers,
with the property that

eN(Qσ −Q, T) = N
√
α

σ
/ N
√
α for all σ ∈ GK̄/K .

The value of the Tate–Lichtenbaum pairing is then

τ(P, T) = α mod (K∗)N .

Proposition 9.1. The Tate–Lichtenbaum pairing is a well-defined bilinear pairing.

PROOF. Let ξ(σ) = eN(Qσ−Q, T) be the given map ξ : GK̄/K → μN . We use ba-
sic properties of the Weil pairing (III.8.1ad) and the assumption that T ∈ E(K)[N]
to verify that ξ is a 1-cocycle:

ξ(στ) = eN(Qστ −Q, T)

= eN(Qστ −Qτ +Qτ −Q, T)

= eN(Qσ −Q, T)τeN(Qτ −Q, T)

= ξ(σ)τ ξ(τ).

Next we show that ξ(σ) depends only on P modulo NE(K). If we replace P
by P +NR for some R ∈ E(K), then Q is replaced by Q + R. Since R is defined
over K , we have

(Q +R)σ − (Q+R) = Qσ −Q for all σ ∈ GK̄/K ,

so the value ξ(σ) does not change.
Suppose that we replace Q by some other point Q′ satisfying [N]Q′ = P . Then

the difference S = Q′ −Q is in E[N], so

eN (Q′σ −Q′, T) = eN
(
(Q+ S)σ − (Q + S), T)

= eN (Qσ −Q, T)eN(Sσ − S, T)

= eN (Qσ −Q, T)
eN(S, T)σ

eN (S, T)
.

(Note that eN(S, T) is well-defined, since S ∈ E[N], while eN (Q, T) is not defined,
since in general Q /∈ E[N].) Thus the GK̄/K-to-μN cocycle coming from Q′ dif-
fers from the GK̄/K-to-μN cocycle coming from Q by the GK̄/K-to-μN cobound-
ary σ �→ eN (S, T)σ/eN(S, T), so they represent the same cohomology class.

This completes the proof that the Tate–Lichtenbaum pairing is well-defined. The
bilinearity is immediate from the bilinearity of the Weil pairing.

XI.9. The Tate–Lichtenbaum Pairing 399

The Weil pairing is defined by evaluating certain functions at certain points. We
can do the same for the Tate–Lichtenbaum pairing.

Proposition 9.2. Let T ∈ E(K)[N] and choose a function f ∈ K(E) satisfying

div(f) = N(T)−N(O) and f ◦ [N] ∈ (K(E)∗)N .

Then for all P ∈ E(K)� {O, T } we have

τ(P, T) = f(P) mod (K∗)N .

Remark 9.3.1. Although (XI.9.2) excludes the case of τ(T, T), we can use bilinear-
ity to compute τ(T, T) as

τ(T, T) =
τ(T +Q, T)

τ(Q, T)
=

f(T +Q)

f(Q)
.

More generally,

τ(P, T) =
τ(P +Q, T)

τ(Q, T)
=

f(P +Q)

f(Q)

for any Q ∈ E such that f is defined and nonzero at both P + Q and Q, i.e.,
any point Q /∈ {O, T,−P, T − P}. Notice that with this formulation, there is
no need to choose f to satisfy f ◦ [N] ∈ (K(E)∗)N , since the divisor rela-
tion div(f) = N(T)−N(O) determines f up to multiplication by a constant, and
taking the ratio eliminates the dependence on the constant.

Remark 9.3.2. Miller’s algorithm (XI.8.1b) can be used to efficiently compute the
Tate–Lichtenbaum pairing, since it gives a linear-time algorithm to compute the
value of f . Comparing the formula for the Tate–Lichtenbaum pairing (XI.9.3.1) to
the formula for the Weil pairing (XI.8.2), we see that τ requires two values of f ,
while eN requires four values of f . Thus the former is twice as efficient as the latter,
which is why the Tate–Lichtenbaum pairing is often preferred for real-world crypto-
graphic applications.

PROOF OF (XI.9.2). As explained in the construction of the Weil eN -pairing (III §8),
there are functions f, g ∈ K̄(E) satisfying

div(f) = N(T)−N(O) and f ◦ [N] = gN ,

and (II.5.8) implies that we may choose f and g in K(E), since their divisors
are GK̄/K-invariant. From the definition of eN we have

eN(Qσ −Q, T) =
g(X +Qσ −Q)

g(X)
for X ∈ E.

In particular, setting X = Q gives

eN(Qσ −Q, T) =
g(Qσ)

g(Q)
=

g(Q)σ

g(Q)
.

400 XI. Algorithmic Aspects of Elliptic Curves

Comparing this formula with the definition of the Tate–Lichtenbaum pairing yields

τ(P, T) = g(Q)N = f ◦ [N](Q) = f(P) (mod (K∗)N).

The Tate–Lichtenbaum pairing has many applications, both theoretical and prac-
tical. In cryptography, it is used on elliptic curves over finite fields; see (XI §7). The
following result provides an important nondegeneracy criterion in this situation. For
applications of the Tate–Lichtenbaum pairing over local and global fields, see for
example [149, 177, 281, 286].

Theorem 9.4. Let E/Fq be an elliptic curve defined over a finite field, let N ≥ 1,
let T ∈ E(Fq)[N] be a point of exact order N , and make the following assump-
tions:
(i) μN ⊂ Fq, or equivalently, q ≡ 1 (mod N).

(ii) E(Fq)[N
2] = ZT , i.e., the only rational N2-torsion points are the multiples

of T .
Then the Tate–Lichtenbaum pairing is a perfect pairing, and τ(T, T)(q−1)/N is a
primitive N th root of unity in F∗

q .

PROOF. We begin by proving that the Tate–Lichtenbaum pairing is nondegenerate
on the left. Let φ ∈ GF̄q/Fq

be the q-power Frobenius map. Choose anotherN -torsion
point T ′ so that T and T ′ generate E[N]. We know that T φ = T , since T ∈ E(Fq),
and we write

T ′φ = [a]T + [b]T ′ for some a, b ∈ Z/NZ.

We use basic properties of the Weil pairing (II.8.1) to compute

eN (T, T ′)q = eN (T, T ′)φ

= eN (T φ, T ′φ)
= eN (T, [a]T + [b]T ′)

= eN (T, T)aeN (T, T ′)b

= eN (T, T ′)b.

Since eN (T, T ′) is a primitive N th root of unity (cf. (III.8.1.1)), this implies that

b ≡ q (mod N).

But our assumption that μN ⊂ Fq tells us that q ≡ 1 (mod N), so the action of
Frobenius on T ′ is given by

T ′φ = [a]T + T ′ for some a ∈ Z/NZ.

We claim that a ∈ (Z/NZ)∗. To see this, let d = N/ gcd(a,N). Then

([d]T ′)φ = [da]T + [d]T ′ = [d]T ′,

XI.9. The Tate–Lichtenbaum Pairing 401

so [d]T ′ ∈ E(Fq)[N]. But by assumption, the point T generates E(Fq)[N], while T
and T ′ generate all of E[N]. Hence [d]T ′ = O, which implies that d = N
and gcd(a,N) = 1.

Suppose now that P ∈ E(Fq) satisfies τ(P, T) = 1. What this really means is that
in the definition of the Tate–Lichtenbaum pairing, we have α ∈ (F∗

q)
N . Thus N

√
α ∈

F∗
q , which implies that eN (Qφ −Q, T) = 1. So if we write

Qφ −Q = [A]T + [B]T ′,

then again using properties of the Weil pairing we find that

1 = eN(Qφ −Q, T) = eN ([A]T + [B]T ′, T) = eN(T ′, T)B.

This implies that B ≡ 0 (mod N), so Qφ −Q = [A]T . Now consider the point

Q′ = Q− [a−1A]T ′,

where a−1 is the inverse of a modulo N . Then

Q′φ =
(
Q+ [A]T

)
− [a−1A]

(
[a]T + T ′

)
= Q− [a−1A]T ′ = Q′.

Thus Q′ ∈ E(Fq), so

P = [N]Q = [N]Q′ ∈ NE(Fq).

This proves nondegeneracy of the Tate–Lichtenbaum pairing on the left.
We now consider the value of τ(T, T). Let k denote the order of τ(T, T)

in F∗
q/(F

∗
q)

N . Bilinearity of the Tate–Lichtenbaum pairing implies that

τ([k]T, T) = τ(T, T)k = 1,

so the nondegeneracy that we already proved implies that [k]T ∈ NE(Fq). So we
can write [k]T = [N]S for some S ∈ E(Fq). The point T has order N , so [N2]S =
[kN]T = O, which shows that S ∈ E(Fq)[N

2]. But by assumption, the only Fq-
rational points in E[N2] are the multiples of T , all of which have order dividing N .
Hence [N]S = O, which shows that [k]T = O. The point T has exact order N ,
so N | k. But k is the order of an element of F∗

q/(F
∗
q)

N , so k | N . This proves
that k = N , and hence τ(T, T) is an element of exact order N in F∗

q/(F
∗
q)

N . It
follows immediately that τ(T, T)(q−1)/N is a primitive N th root of unity.

It also proves nondegeneracy on the right. To see this, let Q ∈ E(Fq)[N] sat-
isfy τ(P,Q) = 1 for all P ∈ E(Fq). Then Q = [n]T for some integer n, so tak-
ing P = T yields

1 = τ(P,Q) = τ(T, [n]T) = τ(T, T)n.

We know that τ(T, T) has exact orderN , so N | n, which shows that Q = [n]T = O.

402 XI. Algorithmic Aspects of Elliptic Curves

Remark 9.5. In the situation of (XI.9.4), the natural map

E(Fq)[N] → E(Fq)/NE(Fq)

is an isomorphism of cyclic groups of order N , so we can use the Tate–Lichtenbaum
pairing to define a nondegenerate symmetric bilinear pairing

E(Fq)[N]× E(Fq)[N] −→ μN , (P,Q) �−→ τ(P,Q)(q−1)/N .

This is the pairing that is typically used for cryptographic applications.

Remark 9.6. Suppose that we randomly choose an elliptic curveE/Fq, compute the
order of the group E(Fq) (e.g., using (XI §3)), and find that there is a large prime N
dividing #E(Fq). This almost puts us into the situation to apply (XI.9.4), but we
may need to extend the field Fq in order to ensure that it contains μN . Let d ≥ 1
be the embedding degree (XI §6) of N in Fq, i.e., d is the smallest integer such
that μN ⊂ F∗

qd , or equivalently, such that qd ≡ 1 (mod N). How large should we
expect d to be?

If we write
#E(Fq) = q + 1− a

as usual, then the assumption that #E(Fq) is divisible by N implies that

q + 1− a = #E(Fq) ≡ 0 (mod N).

Similarly, since we have chosen d to satisfy μN ⊂ F∗
qd , we have

qd − 1 = #F∗
qd ≡ 0 (mod N).

Hence
(a− 1)d ≡ 1 (mod N).

We know from (V.1.1) that |a| ≤ 2
√
q, but within this allowed range, the value of a is

more-or-less randomly distributed; see (C.21.4) for a precise statement. The expected
order of a randomly chosen element of a randomly chosen cyclic group is a constant
multiple of the order of the group (see Exercise 11.17), so if we choose E/Fq ran-
domly, the embedding degree d is almost certain to be too large for practical appli-
cations. (See [13] for a more detailed analysis.)

Remark 9.7. Supersingular Elliptic Curves. Let E/Fp be supersingular elliptic
curve with p ≥ 5 prime, and suppose that E(Fp) contains a point of prime order N .
We have seen (XI.6.4) that the embedding degree of N in Fp is 2, i.e., μN ⊂ Fp2 ,
but unfortunately condition (ii) of (XI.9.4) is never true in this situation; see Exer-
cise 11.18. In general, we know from (V.3.1) that every supersingular elliptic curve
is isomorphic to a curve defined over Fp2 , and supersingular curves always have
small embedding degree, so it may be possible to apply (XI.9.4) to a supersingular
curve defined over Fp2 . As an alternative, one can use a distortion map as in (XI §7);
see [51, §24.2.1b] or [116, §5.9.2].

Exercises 403

Remark 9.8. Pairing-Friendly Elliptic Curves. In general we would like to construct
an elliptic curve E/Fq such that E(Fq) contains a point of large prime order N
and such that the embedding degree d of N in Fq is not too large. These are called
pairing-friendly elliptic curves. The exact constraints on the parameters q, N , and d
depend on the desired security level, but in any case it is important to balance the
difficulty of solving the ECDLP in a subgroup of E(Fq) of order N against the diffi-
culty of solving the DLP in F∗

qd . For the former, only exponential-time algorithms are
known, while there are subexponential algorithms for the latter. See the discussion
in (XI.4.1). Further, for computational efficiency we should choose q to be as small
as possible.

For example, current algorithms to solve the ECDLP when N ≈ 2160 take about
the same amount of time as current algorithms to solve the DLP when qd ≈ 21024.
So for this security level, the embedding degree should be d ≈ 6.4 log q/ logN .
Typically

√
q < N < q, so d should be roughly between 6 and 12.

Atkin and Morain [10, 183] devised a method using the theory of complex mul-
tiplication to find elliptic curves with points of large order and small embedding
degree. Their idea is to fix positive integers D and d and to search for integers a, N ,
and p satisfying the following four conditions:

(1) N and p are primes.

(2) N | p+ 1− a.

(3) N | pd − 1.

(4) The equation Dy2 = 4p− a2 has a solution y ∈ Z.

If we can find values for a, N , and p satisfying (1)–(4) and if the class number
of the quadratic field Q(

√−D) is not too large, say less than 105, then Atkin and
Morain’s CM method yields an elliptic curve E/Fp with N | E(Fp) and μN ⊂ Fpd .
For a description of the CM method, see for example [22, Chapter VIII] or [51,
§18.1], and for various algorithms that have been devised to find (a,N, p) satisfy-
ing (1)–(4), see for example [29, 69, 87, 181].

Exercises

11.1. Use the double-and-add algorithm (XI.1.1) to compute [n]P in E(Fp) for each of the
following curves and points.

(a) E : Y 2 = X3 + 143X + 367, p = 613, P = (195, 9), n = 23.

(b) E : Y 2 = X3 + 1541X + 1335, p = 3221, P = (2898, 439), n = 3211.

11.2. Let n be a positive integer.
(a) Prove that n has a unique ternary expansion

n = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · ·+ εt · 2t, ε0, . . . , εt ∈ {−1, 0, 1},

with the property that no two consecutive εi are nonzero. Such an expansion is called
nonadjacent form (NAF). (Hint. For existence, start with the binary expansion of n and
replace consecutive nonzero terms 2i +2i+1+ · · ·+2i+j−1 +0 ·2i+j with −2i+2i+j .)

404 XI. Algorithmic Aspects of Elliptic Curves

(b) If we assume that the expansion in (a) has εt �= 0, prove that t ≤ log2(2n).
(c) Prove that most positive integers have a ternary expansion as in (a) with approximately

one-third of the εi being nonzero.

(d) Convert your proof in (a) into an algorithm and find a ternary expansion for each of the
following numbers. Compare the number of nonzero terms in the ternary expansion with
the number of nonzero terms in the binary expansion.
(i) 349. (ii) 9337. (iii) 38728. (iv) 8379483273489.

11.3. Let τ represent a quantity satisfying τ 2 + τ + 2 = 0.
(a) Prove that every positive integer n can be written in the form

n = ε0 + ε1τ + ε2τ
2 + · · ·+ εtτ

t, ε0, . . . , εt ∈ {−1, 0, 1},

with t ≤ 2�log2 n�+ 1 and at most one-third of the εi nonzero. (Hint. Repeatedly write
integers as 2a + b and replace the 2 with −τ − τ 2.)

(b) More generally, prove that (a) is true for any n ∈ Z[τ], where the upper bound for t is
approximately log2 NZ[τ]/Z(n).

(c) Let E/F2 be the curve in (XI.1.5), let τ (x, y) = (x2, y2) be the Frobenius map, let
P ∈ E(F2r), and let n be a positive integer. Prove that there is an element

ν = ε0 + ε1τ + ε2τ
2 + · · ·+ εtτ

t, ε0, . . . , εt ∈ {−1, 0, 1},

with [ν]P = [n]P and such that t is (approximately) bounded above by log2 n.
(Hint. “Divide” n by τ r − 1 in Z[τ] to find a remainder ν whose norm is approximately
bounded by 2r . Then use (b) and the fact that τ r(P) = P .)

(d) Devise an algorithm implementing your results in this exercise, and use your algorithm to
compute a τ -adic expansion for each of the following values of n.
(i) n = 931 (ii) n = 32755 (iii) n = 82793729188

11.4. The double-and-add algorithm described in (XI.1.1) reads the bits of n from right to left,
where we view n as a binary number such as 1001101. Prove that the following left-to-right
version also computes nP .

(1) Write the binary expansion of n as
t∑

i=0

εi · 2i.
(2) Set Q = O.
(3) Loop i = t, t− 1, . . . , 2, 1, 0.
(4) Set Q = [2]Q.
(5) If εi = 1, set Q = Q+ P .
(6) End Loop
(7) Return Q.

11.5. Let S be a set containing n elements.
(a) Suppose that we select an element of S at random, note its value, return the element to the

set, and repeat the process m times. Find a formula for the probability that some element
has been selected at least twice. (If this happens, we say that there has been a collision.)

(b) If n = 365 and m = 50, what is the probability of a collision? (This is the probability that
among 50 people in a room, at least two have the same birthday. The surprising answer is
the origin of the name “birthday paradox.”) How many people are required to have a 50%
chance that two share a common birthday?

Exercises 405

(c) Suppose that n is large. Give a good approximation for the probability of a collision
if m = c

√
n, where c is a small constant, say 1 ≤ c ≤ 10. What value of c gives a 50%

chance of a collision? What value of c gives a 1− 10−6 probability of a collision?

11.6. Pollard’s algorithm (XI.2.1) says that if N has a prime factor p with p − 1 =
∏

q
ej
j ,

then it suffices to take L = max ejqj in order to (probably) factor N . Show that it is enough
that L satisfy L ≥ ∑

t≥1�L/qt�. Give a similar statement for the elliptic curve factorization
algorithm (XI.2.3).

11.7. Implement Lenstra’s elliptic curve factorization algorithm (XI.2.3) and use it to factor N
using the given elliptic curve E and point P .

(a) N = 589, E : Y 2 = X3 + 4X + 9, P = (2, 5).

(b) N = 26167, E : Y 2 = X3 + 4X + 128, P = (2, 12).

(c) N = 1386493, E : Y 2 = X3 + 3X − 3, P = (1, 1).

(d) N = 28102844557, E : Y 2 = X3 + 18X − 453, P = (7, 4).

11.8. We noted (XI.4.3.5) that it suffices for Bob to send Alice the x-coordinate of his
point P ∈ E(Fq), together with one extra bit that specifies which of the two possible y-
coordinates to use. However, this means that Alice needs to compute a square root in Fq .
(a) Suppose that q ≡ 3 (mod 4), and let a ∈ Fq be an element that is a square. Prove

that b = a(q+1)/4 is a square root of a.
(b) Suppose that q is prime and satisfies q ≡ 5 (mod 8). Let a ∈ Fq be an element that is a

square, and let

b =

{
a(q+3)/8 if a(q−1)/4 = 1,

2a(4a)(q−5)/8 if a(q−1)/4 = −1.

Prove that b2 = a.

11.9. Let G be a group, and suppose that you know an algorithm that takes T (n) steps to
solve any discrete logarithm problem h = gm in G if the element g has order n.
(a) Let g ∈ G have order n and suppose that n factors as n = n1n2 · · ·nt with

gcd(ni, nj) = 1 for all i �= j. Find an algorithm that solves h = gm in (approxi-
mately)

∑
T (ni) steps. (Hint. Solve (gn/ni)m = hn/ni for each i and combine the

solutions using the Chinese remainder theorem.)
(b) Let g ∈ G have order n with n = �k a prime power. Find an algorithm that solves h = gm

in (approximately) kT (�) steps.

11.10. This exercise describes the Menezes–Vanstone variant of the ElGamal cryptosystem.
1. Alice and Bob agree on a finite field Fq , an elliptic curve E/Fq , and a point P ∈ E(Fq).
2. Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
3. Alice publishes the point A. This is her public key. The secret multiplier a is her private

key.
4. Bob chooses a plaintext (m1,m2) ∈ F2

q and a random integer k. He computes the two
points B1 = [k]P and B2 = [k]A.

5. Bob writes B2 as (x, y) ∈ E(Fq), sets c1 = xm1 and c2 = ym2, and sends Alice the
ciphertext (B1, c1, c2).

(a) Explain how Alice can use the ciphertext (B1, c1, c2) and her secret multiplier a to re-
cover Bob’s plaintext (m1,m2).

406 XI. Algorithmic Aspects of Elliptic Curves

(b) What is the message expansion (XI.4.5.3) of MV-ElGamal?
(c) Explain how Eve can break MV-ElGamal if she can solve the Diffie–Hellman prob-

lem (XI.4.3.4).

11.11. This exercise describes the Elliptic Curve Integrated Encryption Scheme (ECIES).
It combines the discrete logarithm problem with several other cryptographic constructions,
including a hash function that we denote by H, a message authentication code that we denote
by M, and a private key cryptosystem that we denote by P .10

1. Alice and Bob agree on a finite field Fq , an elliptic curve E/Fq , and a point P ∈ E(Fq).
2. Alice selects a secret integer a and computes the point A = [a]P ∈ E(Fq).
3. Alice publishes the point A. This is her public key. The multiplier a is her private key.
4. Bob chooses a plaintext m and a random number k.
5. Bob computes [k]A and uses the hash function to compute H(

x
(
[k]A

))
. He breaks this

value into two pieces, say b1 and b2, which he uses as keys.
6. Bob uses the private key cryptosystem and the MAC to compute the two values

c = P(b1;m) and d = M(b2; c).

7. Bob computes B = [k]P .
8. Bob sends Alice the triple (B, c, d).

(a) Explain how Alice can recover the value of x
(
[k]A

)
that Bob used in step (5). This allows

Alice to use the hash function to compute b1 and b2.
(b) Explain how Alice can then recover the message m.
(c) Explain how Alice can check the validity of the ciphertext c by recomputing M(b2; c)

and verifying that it agrees with the value of d sent by Bob.
(d) Explain why it is difficult for Eve to find a triple (B, c, d) that Alice accepts as valid

unless she knows the plaintext m that corresponds to c via Alice’s decryption process.

11.12. In the description of Pollard’s ρ method in (XI §5), we gave an algorithm for computing
the coefficients αi and βi in the expression Ri = [αi]P + [βi]Q. Give a similar algorithm, in
the form of two tables, for the coefficients γi and δi of the point

Si = R2i = [γi]P + [δi]Q.

In other words, give the values of γi+1 and δi+1 in terms of γi and δi depending on whether
the values of xSi and xf(Si) are in A, B, or C.

11.13. Let E/Fp be an elliptic curve defined over a field of prime order. As described
in (XI.5.4), one way to define a mixing function f : E(Fp) → E(Fp) for use in Pollard’s ρ al-
gorithm (XI.5.3) is to write E(Fp) as a disjoint union of three sets A, B, C. For example, we
might take

A =
{
P ∈ E(Fp) : 0 ≤ x(P) < 1

3
p
}
,

B =
{
P ∈ E(Fp) :

1
3
p ≤ x(P) < 2

3
p
}
,

C =
{
P ∈ E(Fp) :

2
3
p ≤ x(P) < p

}
.

10Informally, a hash function is an easy-to-compute, hard-to-invert function; a message authentication
code (MAC) is a hash function that requires a secret key; and a private key cryptosystem is a one-to-
one function that is easy to compute in both directions if one knows the secret key, but hard to compute
otherwise. For precise definitions and examples, see [169].

Exercises 407

Using this choice of A, B, and C, write a computer program implementing Pollard’s ρ al-
gorithm and use it to solve the following discrete logarithm problems, i.e., find a value of m
satisfying Q = [m]P .

(a) p = 541, E : y2 = x3 + 442x + 211, P = (238, 345),

Q = (180, 148).

(b) p = 7919, E : y2 = x3 + 1356x + 1654, P = (6007, 296),

Q = (2821, 6396).

(c) p = 104729, E : y2 = x3 + 25780x + 74070, P = (6588, 76182),

Q = (14624, 59879).

11.14. Let G be an abelian group whose order is bounded by a known quantity, say #G ≤ n,
and let x ∈ G.
(a) Adapt Shanks’s babystep–giantstep algorithm (XI.5.2) to find the order of x in time

O(
√
n) and space O(

√
n).

(b) Adapt Pollard’s ρ algorithm (XI.5.4) to find the order of x in time O(
√
n) while using

only space O(1). (Hint. A direct adaptation of (XI.5.4) does not work, since the expo-
nents αi, . . . , δi cannot be reduced by the unknown order of the group. Instead write G
as a disjoint union G = A1 ∪ · · · ∪ At, choose several random exponents e1, . . . , et
between 2 and n, and define f : G → G by f(z) = gejz if z ∈ Aj . Show that a
match z2i = zi is likely to be found with exponents αi, · · · , δi that are O(n

√
n).)

(c) Explain how to use an algorithm that finds the order of elements in G to determine the
order of the group G.

11.15. Working over the field F137, consider the curve and points

E : y2 = x3 + 86x + 98, P = (56, 85) ∈ E(F137), Q = (54, 86) ∈ E(F137).

(a) Verify that E is anomalous, i.e., #E(F137) = 137.
(b) Lift P and Q to points P ′ = (56,—) and Q′ = (54,—) in E(Z/1372Z).
(c) Compute the elliptic logarithms of [137]P ′ and [137]Q′ modulo 1372.
(d) As in (XI.6.5) and (XI.6.7), use the results from (c) to solve the discrete logarithm prob-

lem, i.e., find an integer m such that Q = [m]P in E(F137).

11.16. Let E/F631 be the elliptic curve y2 = x3 + 30x+ 34 from (XI.8.3).
(a) The points P ′ = (617, 5) and Q′ = (121, 244) are in E(F631)[5]. Use Miller’s algorithm

to compute e5(P
′, Q′).

(b) Let P = (36, 60) and Q = (121, 387) be the points from (XI.8.3). Express P ′ and Q′ as
linear combinations of P and Q, and use linearity of eN to express e5(P ′, Q′) as a power
of e5(P,Q).

(c) Verify that the value of e5(P ′, Q′) from (a) and the value of e5(P,Q) from (XI.8.3) are
consistent with the relation that you found in (b).

11.17. (a) Let Cm be a cyclic group of order m. Prove that the average order of an element
of Cm is

A(Cm) =
1

m

∑
d|m

dφ(d).

408 XI. Algorithmic Aspects of Elliptic Curves

(b) Prove that
1

X

∑
m≤X

A(Cm) =
ζ(3)

2ζ(2)
X +O(logX),

where ζ(s) is the Riemann zeta function.
(c) Deduce that the expected order of a randomly chosen element in a randomly chosen cyclic

group is proportional to the order of the group.

11.18. Let p ≥ 5, let E/Fp be a supersingular elliptic curve, and let N be a prime such
that E(Fp) contains a point of order N .
(a) Prove that N2 | #E(Fp2). (Hint. Use Exercise 5.15.)
(b) Deduce that one of the following statements is true:

(i) E[N] ⊂ E(Fp2).

(ii) E(Fp2) contains a point of order N2.

	XI Algorithmic Aspects of Elliptic Curves
	XI.1 Double-and-Add Algorithms
	XI.2 Lenstra's Elliptic Curve Factorization Algorithm
	XI.3 Counting the Number of Points in E(Fq)
	XI.4 Elliptic Curve Cryptography
	XI.5 Solving the ECDLP: The General Case
	XI.6 Solving the ECDLP: Special Cases
	XI.7 Pairing-Based Cryptography
	XI.8 Computing the Weil Pairing
	XI.9 The Tate–Lichtenbaum Pairing
	 Exercises

