
Chapter X

Computing the Mordell–Weil
Group

A better title for this chapter might be “Computing the Weak Mordell–Weil Group,”
since we will be concerned solely with the problem of computing generators for
the group E(K)/mE(K). However, given generators for E(K)/mE(K), a finite
amount of computation yields generators for E(K); see (VIII.3.2) and Exercise 8.18.
Unfortunately, there is no comparable algorithm currently known that is guaranteed
to give generators for E(K)/mE(K) in a finite amount of time!

We start in (X §1) by taking the proof of the weak Mordell–Weil theorem given
in (VIII §1) and making it quite explicit. In this way the computation of the quo-
tient E(K)/mE(K) (in a special case) is reduced to the problem of determining
whether each of a certain finite set of auxiliary curves, called homogeneous spaces,
has a single rational point. The question whether a given homogeneous space has a
rational point may often be answered either affirmatively by finding a point or nega-
tively by showing that it has no points in some completion Kv of K.

The subsequent two sections develop the general theory of homogeneous spaces
(for elliptic curves). Then, in (X §4), we apply this theory to the problem of comput-
ing E(K)/mE(K) or, more generally, E′(K)/φ

(
E(K)

)
for an isogeny

φ : E → E′.

Again this computation is reduced to the problem of the existence of a single ratio-
nal point on certain homogeneous spaces. The only impediment to solving this latter
problem occurs if some homogeneous space has a Kv-rational point for every com-
pletion Kv of K, yet fails to have a K-rational point. Unfortunately, this precise situ-
ation, the failure of the so-called Hasse principle, does occur. The extent of its failure
is quantified by the elements of a certain group, called the Shafarevich–Tate group.
The question of an effective algorithm for the computation of E(K)/mE(K) is thus
finally reduced to the problem of giving a bound for divisibility in the Shafarevich–
Tate group, or, even better, proving the conjecture that the Shafarevich–Tate group is
finite.
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310 X. Computing the Mordell–Weil Group

In the last section we illustrate the general theory by studying in some detail the
family of elliptic curves given by the equations

ED : Y 2 = X3 +DX, D ∈ Q.

In particular, we compute the torsion subgroups and give an upper bound for the
rank of ED(Q), we give a large class of examples for which ED(Q) has rank 0,
and we show that in certain cases ED(Q) has an associated homogeneous space that
violates the Hasse principle, i.e., the homogeneous space has points defined over R
and over Qp for every prime p, but it has no Q-rational points.

Unless explicitly stated to the contrary, the notation for this chapter is the same as
for Chapter VIII. In particular, K is a number field and MK is a complete set of in-
equivalent absolute values on K. However, as indicated in the text, this specification
is dropped in (X §§2,3,5), where K is allowed to be an arbitrary (perfect) field.

X.1 An Example

For this section we let E/K be an elliptic curve and m ≥ 2 an integer, and we
assume that

E[m] ⊂ E(K).

Recall from (VIII §1) that under this assumption there is a pairing

κ : E(K)×GK̄/K −→ E[m]

defined by
κ(P, σ) = Qσ −Q,

where Q ∈ E(K̄) is chosen to satisfy [m]Q = P . Further, (VIII.1.2) says that the
kernel on the left is mE(K), so we may view κ as a homomorphism

δE : E(K)/mE(K) −→ Hom
(
GK̄/K , E[m]

)
,

δE(P )(σ) = κ(P, σ).

(This is the connecting homomorphism for a group cohomology long exact sequence;
see (VIII §2).)

We also observe from (III.8.1.1) that our assumption E[m] ⊂ E(K) implies
that μm ⊂ K∗. This follows from basic properties of the Weil pairing (III.8.1.1),

em : E[m]× E[m] −→ μm.

The Weil pairing will play a prominent role in this section.
Finally, since μm ⊂ K∗, Hilbert’s Theorem 90 (B.2.5c) says that every homo-

morphism GK̄/K → μm has the form

σ �−→ βσ

β
for some β ∈ K̄∗ satisfying βm ∈ K∗.
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In other words, there is an isomorphism (cf. VIII §2)

δK : K∗/(K∗)m −→ Hom(GK̄/K ,μm)

defined by
δK(b)(σ) = βσ/β,

where β ∈ K̄∗ is chosen to satisfy βm = b. Note the close resemblance in the
definitions of δE and δK . This is no coincidence. The map δE is the connecting ho-
momorphism for the Kummer sequence associated to the group variety E/K, and δK
is the connecting homomorphism for the Kummer sequence associated to the group
variety Gm/K.

Using these maps, we can make the proof of the weak Mordell–Weil theorem
much more explicit, and by doing so, derive formulas that allow us to compute the
Mordell–Weil group in certain cases. We start with a theoretical description of the
method.

Theorem 1.1. (a) With notation as above, there is a bilinear pairing

b : E(K)/mE(K)× E[m] −→ K∗/(K∗)m

satisfying

em
(
δE(P ), T

)
= δK

(
b(P, T )

)
.

(b) The pairing in (a) is nondegenerate on the left.
(c) Let S ⊂ MK be the union of the set of infinite places, the set of finite primes

at which E has bad reduction, and the set of finite primes dividing m. Then the
image of the pairing in (a) lies in the following subgroup of K∗/(K∗)m:

K(S,m) =
{
b ∈ K∗/(K∗)m : ordv(b) ≡ 0 (mod m) for all v /∈ S

}
.

(d) The pairing in (a) may be computed as follows. For each T ∈ E[m], choose
functions fT , gT ∈ K(E) satisfying the conditions

div(fT ) = m(T )−m(O) and fT ◦ [m] = gmT

(cf. the definition of the Weil pairing (III §8)). Then for any point P 	= T ,

b(P, T ) ≡ fT (P ) (mod (K∗)m).

(If P = T , we can compute b(T, T ) using linearity. For example, if [2]T 	= O,
then b(T, T ) = fT (−T )−1. More generally, let Q ∈ E(K) be any point
with Q 	= T ; then b(T, T ) = fT (T +Q)fT (Q)−1.)

Remark 1.2. Why do we say that (X.1.1) provides formulas that help us to com-
pute the Mordell–Weil group? First, the group K(S,m) in (c) is finite (see the proof
of (VIII.1.6)), and in fact it is reasonably easy to explicitly compute K(S,m). Sec-
ond, the functions fT in (d) are also fairly easy to compute from the equation of
the curve. (This is true even for quite large values of m; see (XI.8.1).) Then the
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fact that the pairing in (a) is nondegenerate on the left means that in order to com-
pute E(K)/mE(K), it is necessary to do “only” the following:

Fix generators T1 and T2 for E[m]. For each of the finitely many pairs

(b1, b2) ∈ K(S,m)×K(S,m),

check whether the simultaneous equations

b1z
m
1 = fT1

(P ) and b2z
m
2 = fT2

(P )

have a solution (P, z1, z2) ∈ E(K) × K∗ × K∗. We can be even more explicit if
we express the function fT in terms of Weierstrass coordinates x and y. Then we are
looking for a solution (x, y, z1, z2) ∈ K ×K ×K∗ ×K∗ satisfying

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

b1z
m
1 = fT1

(x, y), b2z
m
2 = fT2

(x, y).

These equations define a new curve, called a homogeneous space for E/K. (We dis-
cuss homogeneous spaces in more detail in (X §3).) What we have done is reduce
the problem of calculating E(K)/mE(K) to the problem of the existence or non-
existence of a single rational point on each of an explicitly given finite set of curves.
Frequently, many of these curves can be immediately eliminated from consideration
because they have no points over some completion Kv of K, which is an easy thing
to check. On the other hand, a short search by hand or with a computer often un-
covers rational points on some of the others. If, in this way, we can deal with all of
the homogeneous spaces in question, then the determination of E(K)/mE(K) is
complete. The problem that arises is that occasionally there is a homogeneous space
having points defined over every completion Kv , yet having no K-rational points.
It is this situation, the failure of the Hasse principle, that makes the Mordell–Weil
theorem ineffective.

Remark 1.3. Notice that the condition div(fT ) = m(T ) − m(O) in (X.1.1d) is
enough to specify fT only up to multiplication by an arbitrary element of K∗. How-
ever, the equality fT ◦ [m] = gmT with gT ∈ K(E) means that in fact fT is well-
determined up to multiplication by an element of (K∗)m. Thus the value of fT (P )
in (X.1.1d) is a well-defined element of K∗/(K∗)m.

We now give the proof of (X.1.1), after which we study the case m = 2 in more
detail and use it to compute E(K)/2E(K) for an example.

PROOF OF (X.1.1). (a) Hilbert’s Theorem 90 (B.2.5c) shows that the pairing is well-
defined. Bilinearity follows from bilinearity of the Kummer pairing (VIII.1.2b) and
bilinearity of the Weil em-pairing (III.8.1a).
(b) In order to prove nondegeneracy on the left, we suppose that b(P, T ) = 1 for
all T ∈ E[m]. This means that for all T ∈ E[m] and all σ ∈ GK̄/K ,

em
(
κ(P, σ), T

)
= 1.
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The nondegeneracy of the Weil pairing (III.8.1c) implies that κ(P, σ) = 0 for all σ,
and then (VIII.1.2c) tells us that P ∈ mE(K).
(c) Let β = b(P, T )1/m. Tracing through the definitions, we see that the field K(β)
is contained in the field K

(
[m]−1E(K)

)
described in (VIII.1.2d). Further, apply-

ing (VIII.1.5b) tells us that the extension L/K is unramified outside S. But it is easy
to see that if v ∈ MK is a finite place with v(m) = 0, then the extension K(β)/K
is unramified at v if and only if

ordv(β
m) ≡ 0 (mod m).

(Here ordv : K∗ � Z is the normalized valuation associated to v.) This says pre-
cisely that b(P, T ) ∈ K(S,m).
(d) Choose Q ∈ E(K̄) and β ∈ K̄∗ satisfying

P = [m]Q and b(P, T ) = βm.

Then for all σ ∈ GK̄/K we have by definition

em
(
δ(P )(σ), T

)
= δK

(
b(P, T )

)
(σ),

em(Qσ −Q,T ) = βσ/β,

gT (X +Qσ −Q)/gT (X) = βσ/β,

gT (Q)σ/gT (Q) = βσ/β putting X = Q.

Since δK is an isomorphism, it follows that gT (Q)m ≡ βm (mod (K∗)m). (Note
that gT (Q)m = fT (P ) is in K∗.) Therefore

fT (P ) = fT ◦ [m](Q) = gT (Q)m ≡ βm = b(P, T ) (mod (K∗)m).

We now consider the special case m = 2, which is by far the easiest with which
to work. Under our assumption E[m] ⊂ E(K), we may take a Weierstrass equation
for E of the form

y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ K.

The three nontrivial 2-torsion points are

T1 = (e1, 0), T2 = (e2, 0), T3 = (e3, 0).

Letting T = (e, 0) represent any one of these points, we claim that the associated
function fT specified in (X.1.1d) is fT = x− e. It is clear that this function has the
correct divisor,

div(x− e) = 2(T )− 2(O).

It is then a calculation to check that

x ◦ [2] =
(
x2 − 2ex− 2e2 + 2(e1 + e2 + e3)e− (e1e2 + e1e3 + e2e3)

2y

)2

,
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so x− e has both of the properties needed to be fT .
Now suppose that we have chosen a pair (b1, b2) ∈ K(S,m)×K(S,m) and that

we want to determine whether there is a point P ∈ E(K)/2E(K) satisfying

b(P, T1) = b1 and b(P, T2) = b2.

Such a point exists if and only if there is a solution

(x, y, z1, z2) ∈ K ×K ×K∗ ×K∗

to the system of equations

y2 = (x− e1)(x− e2)(x− e3), b1z
2
1 = x− e1, b2z

2
2 = x− e2.

We substitute the latter two equations into the former and define a new variable z3
by y = b1b2z1z2z3, which is permissible since b1, b2, z1, and z2 take only nonzero
values. This yields the three equations

b1b2z
2
3 = x− e3, b1z

2
1 = x− e1, b2z

2
2 = x− e2.

Finally, eliminating x gives the pair of equations

b1z
2
1 − b2z

2
2 = e2 − e1, b1z

2
1 − b1b2z

2
3 = e3 − e1.

This gives a finite collection of equations, one for each pair (b1, b2), and we may use
whatever techniques are at our disposal (e.g., v-adic, computer search) to determine
whether they have a solution. Notice that if we do find a solution (z1, z2, z3), then we
immediately recover the corresponding point in E(K)/2E(K) using the formulas

x = b1z
2
1 + e1, y = b1b2z1z2z3.

Finally we must deal with the fact that the definition b(P, T ) = fT (P ) cannot
be used if it happens that P = T . In other words, there are two pairs (b1, b2)
that do not arise from the above procedure, namely the pairs

(
b(T1, T1), b(T1, T2)

)

and
(
b(T2, T1), b(T2, T2)

)
. These values may be computed using linearity as

b(T1, T1) = b(T1, T1 + T2)b(T1, T2)
−1

= b(T1, T3)b(T1, T2)
−1

=
e1 − e3
e1 − e2

,

and similarly

b(T2, T2) =
e2 − e3
e2 − e1

.

We summarize this entire procedure in the following proposition.
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Proposition 1.4. (Complete 2-Descent) Let E/K be an elliptic curve given by a
Weierstrass equation

y2 = (x− e1)(x− e2)(x− e3) with e1, e2, e3 ∈ K.

Let S ⊂ MK be a finite set of places of K including all archimedean places, all
places dividing 2, and all places at which E has bad reduction. Further let

K(S, 2) =
{
b ∈ K∗/(K∗)2 : ordv(b) ≡ 0 (mod 2) for all v /∈ S

}
.

Then there is an injective homomorphism

E(K)/2E(K) −→ K(S, 2)×K(S, 2)

defined by

P = (x, y) �−→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(x− e1, x− e2) if x 	= e1, e2,
(
e1 − e3
e1 − e2

, e1 − e2

)
if x = e1,

(
e2 − e1,

e2 − e3
e2 − e1

)
if x = e2,

(1, 1) if x = ∞, i.e., if P = O.

Let (b1, b2) ∈ K(S, 2) × K(S, 2) be a pair that is not the image of one of the
three points O, (e1, 0), (e2, 0). Then (b1, b2) is the image of a point

P = (x, y) ∈ E(K)/2E(K)

if and only if the equations

b1z
2
1 − b2z

2
2 = e2 − e1,

b1z
2
1 − b1b2z

2
3 = e3 − e1,

have a solution (z1, z2, z3) ∈ K∗ ×K∗ ×K. If such a solution exists, then we can
take

P = (x, y) = (b1z
2
1 + e1, b1b2z1z2z3).

PROOF. As explained above, this is a special case of (X.1.1).

Example 1.5. We use (X.1.4) to compute E(Q)/2E(Q) for the elliptic curve

E : y2 = x3 − 12x2 + 20x = x(x− 2)(x− 10).

This equation has discriminant

Δ = 409600 = 21452,

so it has good reduction except at 2 and 5. Reducing the equation modulo 3, we eas-
ily check that #Ẽ(F3) = 4. Since E[2] ⊂ Etors(Q) and Etors(Q) injects into Ẽ(F3)
from (VII.3.5), we see that
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Etors(Q) = E[2].

Let S = {2, 5,∞} ⊂ MQ. Then a complete set of representatives for

Q(S, 2) =
{
b ∈ Q∗/(Q∗)2 : ordp(b) ≡ 0 (mod 2) for all p /∈ S

}

is given by the set
{±1,±2,±5,±10}.

We identify this set with Q(S, 2). Now consider the map given in (X.1.4),

E(Q)/2E(Q) −→ Q(S, 2)×Q(S, 2),

say with
e1 = 0, e2 = 2, and e3 = 10.

There are 64 pairs (b1, b2) ∈ Q(S, 2)×Q(S, 2), and for each pair, we must check to
see whether it comes from an element of E(Q)/2E(Q). For example, using (X.1.4),
we can compute the image of E[2] in Q(S, 2)×Q(S, 2):

O �→ (1, 1), (0, 0) �→ (5,−2), (2, 0) �→ (2,−1), (10, 0) �→ (10, 2).

It remains to determine, for every other pair (b1, b2), whether the equations

b1z
2
1 − b2z

2
2 = 2, b1z

2
1 − b1b2z

2
3 = 10, (∗)

have a solution z1, z2, z3 ∈ Q. For example, if b1 < 0 and b2 > 0, then (∗) clearly
has no rational solutions, since the first equation does not even have a solution in R.

Proceeding systematically, we list our results in Table 10.1. The entry for each
pair (b1, b2) consists of either a point of E(Q) that maps to (b1, b2), or else a (local)
field over which the equations listed in (∗) have no solution. (Note that if (z1, z2, z3)
is a solution to (∗), then the corresponding point of E(Q) is (b1z

2
1+e1, b1b2z1z2z3).)

The circled numbers in the table refer to the notes that explain each entry. Finally, we
note that since the map E(Q)/2E(Q) → Q(S, 2)×Q(S, 2) is a homomorphism, it
is not necessary to check every pair (b1, b2). For example, if both (b1, b2) and (b′1, b

′
2)

come from E(Q), then so does (b1b
′
1, b2b

′
2). Similarly, if (b1, b2) does and (b′1, b

′
2)

does not, then (b1b
′
1, b2b

′
2) does not. This observation substantially reduces the num-

ber of cases of (∗) that must be considered.

1. If b1 < 0 and b2 > 0, then b1z
2
1 − b2z

2
2 = 2 has no solutions in R.

2. If b1 < 0 and b2 < 0, then b1z
2
1 − b1b2z

2
3 = 10 has no solutions in R.

3. The four 2-torsion points
{
O, (0, 0), (2, 0), (10, 0)

}
map respectively to the

four points (1, 1), (5,−2), (2,−1), and (10, 2).

4. (b1, b2) = (1,−1): By inspection, the equations

z21 + z22 = 2 and z21 + z23 = 10

have the solution (1, 1, 3). This gives the point (1,−3) ∈ E(Q).
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b1
b2

1 2 5 10 −1 −2 −5 −10

1 0 (18,−48) 5© Q 9©
5

2 Q 8©
5 Q 9©

5 (20, 60) 5© (10, 0) 3©

R
1©

5

10
Q5

6©
Q5

7©

−1 (1,−3) 4© (2, 0) 3© Q 9©
5

−2 Q 9©
5 (0, 0) 3© (

10
9
,− 80

27

) 5©

R
2©

−5

−10
Q5

6©
Q5

7©

Table 10.1: Computing E(Q) for E : y2 = x3 − 12x2 + 20x.

5. Adding (1,−3) ∈ E(Q) to the nontrivial two-torsion points corresponds
to multiplying their (b1, b2) values. This gives three pairs (5, 2), (2, 1), and
(10,−2) in Q(S, 2)×Q(S, 2), which correspond to the three rational points
(20, 60), (18,−48), and (10/9,−80/27) in E(Q).

6. b1 	≡ 0 (mod 5) and b2 ≡ 0 (mod 5): The first equation in (∗) implies
that z1 and z2 must be 5-adically integral. Then the second equation shows
that z1 ≡ 0 (mod 5), and so from the first equation we obtain 0 ≡ 2 (mod 5).
Therefore (∗) has no solutions in Q5.

7. The eight pairs in (6) are Q5-nontrivial, i.e., there are no Q5 solutions to (∗).
If we multiply these eight pairs by the Q-trivial pair (5, 2), we obtain eight
more Q5-nontrivial pairs.

8. (b1, b2) = (1, 2): The two equations in (∗) are

z21 − 2z22 = 2 and z21 − 2z23 = 10.

Since 2 is a quadratic nonresidue modulo 5, the second equation implies that
z1 ≡ z3 ≡ 0 (mod 5). But then the second equation says that 0 ≡ 10 (mod 25).
Therefore there are no solutions in Q5.

9. Taking the Q5-nontrivial pair (1, 2) from (8) and multiplying it by the seven Q-
trivial pairs already in the table gives seven new Q5-nontrivial pairs that fill the
remaining entries in the table.

Conclusion. E(Q) ∼= Z× Z/2Z× Z/2Z.
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X.2 Twisting—General Theory

For this section and the next we drop the requirement that K be a number field, so K
will be an arbitrary (perfect) field. As we saw in (X §1), computation of the Mordell–
Weil group of an elliptic curve E leads naturally to the problem of the existence or
nonexistence of a single rational point on various other curves. These other curves
are certain twists of E that are called homogeneous spaces. In this section we study
the general question of twisting which, since it is no more difficult, we develop for
curves of arbitrary genus. Then, in the next section, we look at the homogeneous
spaces associated to elliptic curves.

Definition. Let C/K be a smooth projective curve. The isomorphism group of C,
denoted by Isom(C), is the group of K̄-isomorphisms from C to itself. We denote
the subgroup of Isom(C) consisting of isomorphisms defined over K by IsomK(C).
To ease notation, we write composition of maps multiplicatively, thus αβ instead
of α ◦ β.

Remark 2.1. The group that we are denoting by Isom(C) is usually called the au-
tomorphism group of C and denoted by Aut(C). However, if E is an elliptic curve,
then we have defined Aut(E) to be the group of isomorphisms from E to E that
take O to O. Thus Aut(E) 	= Isom(E), since for example, the group Isom(E)
contains translation maps τP : E → E. We describe Isom(E) more fully in (X §5).

Definition. A twist of C/K is a smooth curve C ′/K that is isomorphic to C over K̄.
We treat two twists as equivalent if they are isomorphic over K. The set of twists
of C/K, modulo K-isomorphism, is denoted by Twist(C/K).

Let C ′/K be a twist of C/K. Thus there is an isomorphism φ : C ′ → C defined
over K̄. To measure the failure of φ to be defined over K, we consider the map

ξ : GK̄/K −→ Isom(C), ξσ = φσφ−1.

It turns out that ξ is a 1-cocycle and that the cohomology class of ξ is uniquely deter-
mined by the K-isomorphism class of C ′. Further, every cohomology class comes
from some twist of C/K. In this way Twist(C/K) may be identified with a certain
cohomology set. We now prove these assertions.

Theorem 2.2. Let C/K be a smooth projective curve. For each twist C ′/K of C/K,
choose a K̄-isomorphism φ : C ′ → C and define a map ξσ = φσφ−1 ∈ Isom(C) as
above.
(a) The map ξ is a 1-cocycle, i.e.,

ξστ = (ξσ)
τ ξτ for all σ, τ ∈ GK̄/K .

The associated cohomology class in H1
(
GK̄/K , Isom(C)

)
is denoted by {ξ}.

(b) The cohomology class {ξ} is determined by the K-isomorphism class of C ′ and
is independent of the choice of φ. We thus obtain a natural map

Twist(C/K) −→ H1
(
GK̄/K , Isom(C)

)
.
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(c) The map in (b) is a bijection. In other words, the twists of C/K, up to
K-isomorphism, are in one-to-one correspondence with the elements of the coh-
omology set H1

(
GK̄/K , Isom(C)

)
.

Remark 2.3. We emphasize that the group Isom(C) is often nonabelian, and indeed,
it is always nonabelian for elliptic curves. Hence H1

(
GK̄/K , Isom(C)

)
is generally

only a pointed set, not a group. See (B §3) for details. However, if Isom(C) has
a GK̄/K-invariant abelian subgroup A, then H1(GK̄/K , A) is a group, and its image
in H1

(
GK̄/K , Isom(C)

)
gives a natural group structure to some subset of Twist(C).

We apply this observation in (X §3) when C is an elliptic curve, taking for A the
group of translations, and in (X §5) we do the same with A = Aut(E).

PROOF. (a) We compute

ξστ = φστφ−1 = (φσφ−1)τ (φτφ−1) = (ξσ)
τ ξτ .

(b) Let C ′′/K be another twist of C/K that is K-isomorphic to C ′. Choose a K̄-
isomorphism ψ : C ′′ → C. We must show that the cocycles φσφ−1 and ψσψ−1 are
cohomologous. By assumption there is a K-isomorphism θ : C ′′ → C ′. Consider the
element α = φθψ−1 ∈ Isom(C). We compute

(ασ)(ψσψ−1) = (φθψ−1)σ(ψσψ−1) = φσθσψ−1

= φσθψ−1 = (φσφ−1)(φθψ−1) = (φσφ−1)α.

This proves that φσφ−1 and ψσψ−1 are cohomologous when viewed as elements
of H1

(
GK̄/K , Isom(C)

)
.

(c) Suppose that C ′/K and C ′′/K are twists of C/K that give the same cohomol-
ogy class in H1

(
GK̄/K , Isom(C)

)
. This means that if we choose K̄-isomorphisms

φ : C ′ → C and ψ : C ′′ → C, then there is a map α ∈ Isom(C) such that

ασ(ψσψ−1) = (φσφ−1)α for all σ ∈ GK̄/K .

In other words, the cocycles associated to φ and ψ are cohomologous. We now con-
sider the map θ : C ′′ → C ′ defined by θ = φ−1αψ. It is clearly a K̄-isomorphism,
and we claim that it is, in fact, defined over K. To prove this, for any σ ∈ GK̄/K we
compute

θσ = (φσ)−1(ασψσ) = (φσ)−1(φσφ−1αψ) = φ−1αψ = θ.

Therefore C ′′ and C ′ are K-isomorphic, and thus they give the same element
of Twist(C/K). This proves that the map

Twist(C/K) → H1
(
GK̄/K , Isom(C)

)

is injective.
To prove surjectivity, we start with a 1-cocycle

ξ : GK̄/K → Isom(C)
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and use it to construct a curve C ′/K and an isomorphism φ : C ′ → C satisfying
ξσ = φσφ−1. To do this, we consider a field, denoted by K̄(C)ξ , that is isomorphic,
as an abstract field extension of K̄, to K̄(C), say by an isomorphism that we denote
by Z : K̄(C) → K̄(C)ξ . The difference between K̄(C) and K̄(C)ξ lies in the action
of the Galois group GK̄/K ; the action on K̄(C)ξ is twisted by ξ. What this means is
that

Z(f)σ = Z(fσξσ) for all f ∈ K̄(C) and all σ ∈ GK̄/K .

In this equality we are viewing f as a map f : C → P1 as in (II.2.2), and fσξσ
is composition of maps. Equivalently, the map ξσ : C → C of curves induces a
map ξ∗σ : K̄(C) → K̄(C) of fields, and fσξσ is an alternative notation for ξ∗σ(f

σ).
For this action of GK̄/K on K̄(C)ξ , we consider the subfield F ⊂ K̄(C)ξ con-

sisting of the elements of K̄(C)ξ that are fixed by GK̄/K . We now show, in several
steps, that the field F is the function field of the desired twist of C.

Step (i): F ∩ K̄ = K

Suppose that Z(f) ∈ F ∩ K̄. In particular, since Z induces the identity on K̄, we
have f ∈ K̄. Now the fact that Z(f) ∈ F , combined with the fact that f is a constant
function and thus unaffected by isomorphisms of C, implies that

Z(f) = Z(f)σ = Z(fσξσ) = Z(fσ).

This holds for all σ ∈ GK̄/K , and hence f ∈ K.

Step (ii): K̄F = K̄(C)ξ

This is an immediate consequence of (II.5.8.1) applied to the K̄-vector space K̄(C)ξ .
It follows from Step (ii) that F has transcendence degree one over K, and thus

using Step (i) and (II.2.4c), we deduce that there exists a smooth curve C ′/K such
that F ∼= K(C ′). Further, Step (ii) implies that

K̄(C ′) = K̄F = K̄(C)ξ ∼= K̄(C),

so (II.2.4.1) says that C ′ and C are isomorphic over K̄. In other words, C ′ is a
twist of C, and the final step in proving surjectivity is to show that C ′ gives the
cohomology class {ξ}.

Let φ : C ′ → C be a K̄-isomorphism, as described in (II.2.4b), whose associated
map φ∗ is the isomorphism of fields

Z : K̄(C) −→ K̄(C)ξ = K̄F = K̄(C ′).

Step (iii): ξσ = φσφ−1 for all σ ∈ GK̄/K

Having identified φ∗ with Z, the relation Z(f)σ = Z(fσξσ) used to define the
map Z can be rewritten as (fφ)σ = fσξσφ. In other words,

fσφσ = (fφ)σ = fσξσφ for all f ∈ K̄(C).

This implies that φσ = ξσφ, which is exactly the desired result.
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Example 2.4. Let E/K be an elliptic curve, let K(
√
d ) be a quadratic extension

of K, and let
χ : GK̄/K → {±1}, χ(σ) =

√
d
σ/√

d,

be the quadratic character associated to K(
√
d )/K. (Note that char(K) 	= 2.) We

use χ to define a 1-cocycle

ξ : GK̄/K −→ Isom(E), ξσ =
[
χ(σ)

]
.

Let C/K be the corresponding twist of E/K. We are going to derive an equation
for C/K.

We choose a Weierstrass equation for E/K of the form y2 = f(x) and we
write K̄(E) = K̄(x, y) and K̄(C) = K̄(x, y)ξ. Since [−1](x, y) = (x,−y), the ac-
tion of σ ∈ GK̄/K on K̄(x, y)ξ is determined by the formulas

√
d
σ
= χ(σ)

√
d, xσ = x, yσ = χ(σ)y.

Notice that the functions x′ = x and y′ = y/
√
d in K̄(x, y)ξ are fixed by GK̄/K ,

and they satisfy the equation

dy′
2
= f(x′),

which is the equation of an elliptic curve defined over K. Further, the identifica-
tion (x′, y′) �→ (x′, y′

√
d ) shows that this curve is isomorphic to E over K(

√
d ).

It is now an easy matter to check that the associated cocycle is ξ, and thus to verify
that we have found an equation for C/K. The curve C is a quadratic twist of E;
more precisely, it is the twist of E by the quadratic character χ. We will return to
this example in more detail in (X §5).

X.3 Homogeneous Spaces

We recall from (VIII §2) that associated to an elliptic curve E/K is a Kummer se-
quence

0 −→ E(K)

mE(K)
−→ H1

(
GK̄/K , E[m]

)
−→ H1

(
GK̄/K , E

)
[m] −→ 0.

The proof of the weak Mordell–Weil theorem hinges on the essential fact that the
image of the first term in the second consists of elements that are unramified outside
of a certain finite set of primes. In this section we analyze the third term in the
sequence by associating to each element of H1(GK̄/K , E) a certain twist of E called
a homogeneous space. However, rather than starting with cohomology, we instead
begin by directly defining homogeneous spaces and describing their basic properties.
We follow this with the cohomological interpretation, which says that homogeneous
spaces are those twists that correspond to cocycles taking values in the group of
translations.
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Definition. Let E/K be an elliptic curve. A (principal) homogeneous space for
E/K is a smooth curve C/K together with a simply transitive algebraic group action
of E on C defined over K. In other words, a homogeneous space for E/K consists
of a pair (C, μ), where C/K is a smooth curve and

μ : C × E −→ C

is a morphism defined over K having the following three properties:

(i) μ(p,O) = p for all p ∈ C.

(ii) μ
(
μ(p, P ), Q

)
= μ(p, P +Q) for all p ∈ C and P,Q ∈ E.

(iii) For all p, q ∈ C there is a unique P ∈ E satisfying μ(p, P ) = q.

We will often replace μ(p, P ) with the more intuitive notation p+ P . Then prop-
erty (ii) is just the associative law (p+ P ) +Q = p+ (P +Q). Of course, one must
determine from context whether + means addition on E or the action of E on C.

In view of the simple transitivity of the action, we may define a subtraction map
on C by the rule

ν : C × C −→ E,

ν(q, p) = (the unique P ∈ E satisfying μ(p, P ) = q).

It is not clear, a priori, that the map ν is even a rational map, but we will soon see
that ν is a morphism and is defined over K. (This fact also follows from elementary
intersection theory on C × C.) In conjunction with our addition notation for μ, we
often write ν(q, p) as q − p.

We now verify that addition and subtraction on a homogeneous space have the
right properties.

Lemma 3.1. Let C/K be a homogeneous space for E/K. Then for all p, q ∈ C and
all P,Q ∈ E:

(a) μ(p,O) = p and ν(p, p) = O.

(b) μ
(
p, ν(q, p)

)
= q and ν

(
μ(p, P ), p) = P .

(c) ν
(
μ(q,Q), μ(p, P )

)
= ν(q, p) +Q− P .

Equivalently, using the alternative “addition” and “subtraction” notation:

(a) p+O = p and p− p = O.

(b) p+ (q − p) = q and (p+ P )− p = P .

(c) (q +Q)− (p+ P ) = (q − p) +Q− P .

In other words, using + and − signs provides the right intuition.

PROOF. (a) The equality μ(p,O) = p is part of the definition of homogeneous
space. Next, the definition of ν says that ν(p, p) is the unique point P ∈ E satisfy-
ing μ(p, P ) = p. We know that this last equation is true for P = O, so ν(p, p) = O.
(b) The relation μ

(
p, ν(q, p)

)
= q is the definition of ν. Then, from
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μ
(
p, ν(μ(p, P ), p)

)
= μ(p, P ),

we conclude that ν(μ(p, P ), p) = P .
(c) We start with

q = μ
(
p, ν(q, p)

)
.

Adding Q to both sides gives

μ(q,Q) = μ
(
p, ν(q, p) +Q

)

= μ
(
p, P + ν(q, p) +Q− P

)

= μ
(
μ(p, P ), ν(q, p) +Q− P

)
.

From the definition of ν, this is equivalent to

ν
(
μ(q,Q), μ(p, P )

)
= ν(q, p) +Q− P.

Next we show that a homogeneous space C/K for E/K is a twist of of E/K as
described in (X §2). We also describe addition and subtraction on C in terms of a
given K̄-isomorphism E → C.

Proposition 3.2. Let E/K be an elliptic curve, and let C/K be a homogeneous
space for E/K. Fix a point p0 ∈ C and define a map

θ : E −→ C, θ(P ) = p0 + P.

(a) The map θ is an isomorphism defined over K(p0). In particular, the curve C/K
is a twist of E/K.

(b) For all p ∈ C and all P ∈ E,

p+ P = θ
(
θ−1(p) + P

)
.

(N.B. The first + is the action of E on C, while the second + is addition on E.)
(c) For all p, q ∈ C,

q − p = θ−1(q)− θ−1(p).

(d) The subtraction map

ν : C × C −→ E, ν(q, p) = q − p,

is a morphism and is defined over K.

PROOF. (a) The action of E on C is defined over K. Hence for any σ ∈ GK̄/K

satisfying pσ0 = p0, we have

θ(P )σ = (p0 + P )σ = pσ0 + P σ = p0 + P σ = θ(P σ).

This shows that θ is defined over K(p0). Further, the simple transitivity of the action
tells us that θ has degree one, and then (II.2.4.1) allows us to conclude that θ is an
isomorphism.
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(b) We compute

θ
(
θ−1(p) + P

)
= p0 + θ−1(p) + P = p+ P.

Note that we are using the fact that θ−1(p) is the unique point of E that gives p when
it is added to p0.
(c) We compute

θ−1(q)− θ−1(p) =
(
p0 + θ−1(q)

)
−
(
p0 + θ−1(p)

)
= q − p.

(d) The fact that ν is a morphism follows from (c), since (III.3.6) says that subtrac-
tion on E is a morphism. To check that ν is defined over K, we let σ ∈ GK̄/K and
use (c) to compute

(q − p)σ =
(
θ−1(q)− θ−1(p)

)σ

= θ−1(q)σ − θ−1(p)σ since subtraction on E is
defined over K,

=
(
p0 + θ−1(q)

)σ −
(
p0 + θ−1(p)

)σ
since the action of E on
C is defined over K,

= qσ − pσ.

This completes the proof that ν is defined over K.

Definition. Two homogeneous spaces C/K and C ′/K for E/K are equivalent if
there is an isomorphism θ : C → C ′ defined over K that is compatible with the
action of E on C and C ′. In other words,

θ(p+ P ) = θ(p) + P for all p ∈ C and all P ∈ E.

The equivalence class containing E/K, acting on itself by translation, is called the
trivial class. The collection of equivalence classes of homogeneous spaces for E/K
is called the Weil–Châtelet group for E/K and is denoted by WC(E/K). (We will
see later why WC(E/K) is a group.)

The next result explains which homogeneous spaces are trivial.

Proposition 3.3. Let C/K be a homogeneous space for E/K. Then C/K is in the
trivial class if and only if C(K) is not the empty set.

PROOF. Suppose that C/K is in the trivial class. Then there is a K-isomorphism
θ : E → C, and thus θ(O) ∈ C(K).

Conversely, suppose that p0 ∈ C(K). Then from (X.3.2a), the map

θ : E −→ C, θ(P ) = p0 + P,

is an isomorphism defined over K(p0) = K. The required compatibility condition
on θ is

p0 + (P +Q) = (p0 + P ) +Q,

which is part of the definition of homogeneous space.
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Remark 3.4. Notice that (X.3.3) says that the problem of checking the triviality of a
homogeneous space is exactly equivalent to answering the fundamental Diophantine
question whether the given curve has any rational points. Thus our next step, namely
the identification of WC(E/K) with a certain cohomology group, may be regarded
as the development of a tool to help us study this difficult Diophantine problem.

Lemma 3.5. Let θ : C/K → C ′/K be an equivalence of homogeneous spaces
for E/K. Then

θ(q)− θ(p) = q − p for all p, q ∈ C.

PROOF. This is just a matter of grouping points so that the additions and subtractions
are well-defined. Thus

θ(q)− θ(p) =
((

θ(q) + (p− q)
)
− θ(p)

)
+ (q − p)

=
(
θ
(
q + (p− q)

)
− θ(p)

)
+ (q − p)

= q − p.

Theorem 3.6. Let E/K be an elliptic curve. There is a natural bijection

WC(E/K) −→ H1(GK̄/K , E)

defined as follows:
Let C/K be a homogeneous space for E/K and choose any point p0 ∈ C. Then

{C/K} �−→ {σ �→ pσ0 − p0}.

(The braces indicate that we are taking the equivalence class of C/K and the coho-
mology class of the 1-cocycle σ �→ pσ0 − p0.)

Remark 3.6.1. Since H1(GK̄/K , E) is a group, we can use (X.3.6) to define a
group structure on the set WC(E/K). It is also possible to describe the group law
on WC(E/K) geometrically, without using cohomology, which in fact is the way
that it was originally defined. See Exercise 10.2 and [307].

PROOF. First we check that the map is well-defined. It is easy to see that the
map σ �→ pσ0 − p0 is a cocycle:

pστ0 − p0 = (pστ0 − pτ0) + (pτ0 − p0) = (pσ0 − p0)
τ + (pτ0 − p0).

Now suppose that C ′/K is another homogeneous space that is equivalent to C/K.
Let θ : C → C ′ be a K-isomorphism giving the equivalence, and let p′0 ∈ C ′. We
use (X.3.5) to compute

pσ0 − p0 = θ(pσ0 )− θ(p0)

= (p′σ0 − p′0) +
((

θ(p0)− p′0
)σ −

(
θ(p0)− p′0

))
.
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Hence the cocycles pσ0 − p0 and p′σ0 − p′0 differ by the coboundary generated by the
point θ(p0)− p′0 ∈ E, so they give the same cohomology class in H1(GK̄/K , E).

Next we check injectivity. Suppose that the cocycles pσ0 − p0 and p′σ0 − p′0 cor-
responding to C/K and C ′/K are cohomologous. This means that there is a
point P0 ∈ E satisfying

pσ0 − p0 = p′σ0 − p′0 + (P σ
0 − P0) for all σ ∈ GK̄/K .

Consider the map

θ : C −→ C ′, θ(p) = p′0 + (p− p0) + P0.

It is clear that θ is a K̄-isomorphism and that it is compatible with the action of E
on C and C ′. We claim that θ is defined over K. In order to prove this, we compute

θ(p)σ = p′σ0 + (pσ − pσ0 ) + P σ
0

= p′0 + (pσ − p0) + P0 +
(
(p′σ0 − p′0) + P σ

0 − P0 − (pσ0 − p0)
)

= θ(pσ).

This proves that C and C ′ are equivalent.
It remains to prove surjectivity. Let ξ : GK̄/K → E be a 1-cocycle represent-

ing an element in H1(GK̄/K , E). We embed E into Isom(E) by sending P ∈ E
to the translation map τP ∈ Isom(E), and then we may view ξ as living in the
cohomology set H1

(
GK̄/K , Isom(E)

)
. From (X.2.2), there are a curve C/K and

a K̄-isomorphism φ : C → E such that for all σ ∈ GK̄/K ,

φσ ◦ φ−1 = (translation by −ξσ).

(The reason for using −ξ, rather than ξ, will soon become apparent.)
Define a map

μ : C × E −→ C, μ(p, P ) = φ−1
(
φ(p) + P

)
.

We now show that μ gives C/K the structure of a homogeneous space over E/K
and that its associated cohomology class is {ξ}.

First we check that μ is simply transitive. Let p, q ∈ C. Then by definition we
have

μ(p, P ) = q if and only if φ−1
(
φ(p) + P

)
= q,

so the only choice for P is P = φ(q)− φ(p). Second we verify that μ is defined
over K. We take σ ∈ GK̄/K and compute

μ(p, P )σ = (φ−1)σ
(
φσ(pσ) + P σ

)

= φ−1
((

φ(pσ)− ξσ + P σ
)
+ ξσ

)

= μ(pσ, P σ).
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Finally, we compute the cohomology class associated to C/K. To do this, we may
choose any point p0 ∈ C and take the class of the cocycle σ �→ pσ0 − p0. In particular,
if we take p0 = φ−1(O), then

pσ0 − p0 = (φσ)−1(O)− φ−1(O)

= φ−1(O + ξσ)− φ−1(O)

= ξσ.

This completes the proof of (X.3.6).

Remark 3.7. Let E/K be an elliptic curve and let K(
√
d )/K be a quadratic exten-

sion, so in particular char(K) 	= 2. Let T ∈ E(K) be a nontrivial point of order 2.
Then the homomorphism

ξ : GK̄/K −→ E,

σ �−→
{
O if

√
d
σ
=

√
d,

T if
√
d
σ
= −

√
d,

is a 1-cocycle. We now construct the homogeneous space corresponding to the ele-
ment {ξ} ∈ H1(GK̄/K , E).

Since T ∈ E(K), we may choose a Weierstrass equation for E/K in the form

E : y2 = x3 + ax2 + bx with T = (0, 0).

Then the translation-by-T map has the simple form

τT (P ) = (x, y) + (0, 0) =

(
b

x
,− by

x2

)
.

Thus if we let σ ∈ GK̄/K be the nontrivial automorphism of K(
√
d )/K, then the

action of σ on the twisted field K̄(E)ξ may be summarized by

√
d
σ
= −

√
d, xσ =

b

x
, yσ = − by

x2
.

We need to find the subfield of K(
√
d )(x, y)ξ that is fixed by σ.

The functions √
d x

y
and

√
d

(
x− b

x

)

are easily seen to be invariant. Anticipating the form of our final equation, we con-
sider instead the functions

z =

√
d x

y
and w =

√
d

(
x− b

x

)(
x

y

)2

.

We find a relation between z and w by computing
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d
( w

z2

)2
=

(
x− b

x

)2

=

(
x+

b

x

)2

− 4b

=

((y
x

)2
− a

)2

− 4b =

(
d

z2
− a

)2

− 4b.

Thus (z, w) are affine coordinates for the hyperelliptic curve

C : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

(See (II.2.5.1) and Exercise 2.14 for general properties of hyperelliptic curves.) We
claim that C/K is the twist of E/K corresponding to the cocycle ξ.

First, we recall from (II.2.5.1) that C is a smooth affine curve provided that the
polynomial d2 − 2adz2 + (a2 − 4b)z4 has four distinct roots in K̄. Further, (II.2.5.2)
says that if the quartic polynomial has distinct roots, then there is a smooth curve
in P3 that has an affine piece isomorphic to C. This smooth curve consists of C
together with the two points

[

0, 0,±
√

a2 − 4b

d
, 1

]

at infinity. (N.B. The projective closure of C in P2 is always singular.) It is easy to
check that the quartic has distinct roots if and only if b(a2 − 4b) 	= 0. On the other
hand, since E is nonsingular, we know that Δ(E) = 16b2(a2 − 4b) 	= 0. There-
fore C is an affine piece of a smooth curve in P3. To ease notation, we also use C to
denote this smooth curve C ⊂ P3.

There is a natural map defined over K(
√
d ),

φ : E −→ C,

(x, y) �−→ (z, w) =

(√
d x

y
,
√
d

(
x− b

x

)(
x

y

)2
)

.

Note that since
x

y
=

xy

y2
=

y

x2 + ax+ b
,

the map φ may also be written as

φ(x, y) =

( √
d y

x2 + ax+ b
,

√
d (x2 − b)

x2 + ax+ b

)

.

This allows us to evaluate

φ(0, 0) = (0,−
√
d ) and φ(O) = (0,

√
d ).

To show that φ is an isomorphism, we compute its inverse:
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√
dw

z2
= x− b

x
= 2x−

(
x+

b

x

)

= 2x−
((y

x

)2
− a

)
= 2x−

(
d

z2
− a

)
.

This gives x in terms of z and w, and then y =
√
d x/z. Thus

φ−1 : C −→ E,

(z, w) �−→
(√

dw − az2 + d

2z2
,
dw − a

√
d z2 + d

√
d

2z3

)

.

Since C and E are smooth, it follows from (II.2.4.1) that φ is an isomorphism.
Finally, in order to compute the element of H1(GK̄/K , E) corresponding to the

curve C/K, we may choose any point p ∈ C and compute the cocycle

σ �−→ pσ − p = φ−1(pσ)− φ−1(p).

For instance, we may take p = (0,
√
d ) ∈ C. It is clear that if σ fixes

√
d,

then pσ − p = O. On the other hand, if
√
d
σ
= −

√
d, then

pσ − p = φ−1(0,−
√
d )− φ−1(0,

√
d ) = (0, 0).

Therefore pσ − p = ξσ for all σ ∈ GK̄/K , so {C/K} ∈ WC(E/K) maps
to {ξ} ∈ H1(GK̄/K , E). Of course, it was just “luck” that we obtained an equal-
ity pσ − p = ξσ . In general, the difference of these two cocycles would be some
coboundary.

We conclude this section by showing that if C/K is a homogeneous space
for E/K, then Pic0(C) may be canonically identified with E. This means that E
is the Jacobian variety of C/K. Since every curve C/K of genus one is a homoge-
neous space for some elliptic curve E/K (Exercise 10.3), this shows that the abstract
group Pic0(C) can always be represented as the group of points of an elliptic curve.
The analogous result for curves of higher genus, in which Pic0(C) is represented by
an abelian variety of dimension equal to the genus of C, is considerably harder to
prove.

Theorem 3.8. Let C/K be a homogeneous space for an elliptic curve E/K. Choose
a point p0 ∈ C and consider the summation map

sum : Div0(C) −→ E,
∑

ni(pi) �−→
∑

[ni](pi − p0).

(a) There is an exact sequence

1 −−−−→ K̄∗ −−−−→ K̄(C)∗
div−−−−→ Div0(C)

sum−−−−→ E −−−−→ 0.



330 X. Computing the Mordell–Weil Group

(b) The summation map is independent of the choice of the point p0.
(c) The summation map commutes with the natural actions of the Galois group

GK̄/K on Div0(C) and on E. Hence it induces an isomorphism of GK̄/K-
modules (also denoted by sum)

sum : Pic0(C)
∼−−→ E.

In particular,
Pic0K(C) ∼= E(K).

PROOF. (a) Using (II.3.4), we see that we must check that the summation map is a
surjective homomorphism and that its kernel is the set of principal divisors. It is clear
that it is a homomorphism. Let P ∈ E and D = (p0 + P )− (p0) ∈ Div0(C). Then

sum(D) =
(
(p0 + P )− p0

)
− (p0 − p0) = P,

so sum is surjective.
Next suppose that D =

∑
ni(pi) ∈ Div0(C) satisfies sum(D) = O. Then the

divisor
∑

ni(pi − p0) ∈ Div0(E) sums to O, so (III.3.5) tells us that it is principal,
say ∑

ni(pi − p0) = div(f) for some f ∈ K̄(E)∗.

We have an isomorphism

φ : C −→ E, φ(p) = p− p0,

and hence applying (II.3.6b),

div(φ∗f) = φ∗ div(f) =
∑

niφ
∗((pi − p0)

)
=
∑

ni(pi) = D.

Therefore D is principal.
Finally, if D = div(g) is principal, then

∑
ni(pi − p0) = (φ−1)∗ div(g) = div

(
(φ−1)∗g

)
,

and hence sum(D) = O. This shows that the kernel of the summation map is the set
of principal divisors.
(b) Let sum′ : Div0(C) → E be the summation map defined using the base
point p′0 ∈ C. Then

sum(D)− sum′(D) =
∑

[ni]
(
(pi − p0)− (pi − p′0)

)

=
∑

[ni](p
′
0 − p0)

= O,

since
∑

ni = deg(D) = 0.
(c) Let σ ∈ GK̄/K . Then
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sum(D)σ =
∑

[ni](p
σ
i − pσ0 ) = sum(Dσ),

since we know from (b) that the sum is the same if we use pσ0 as our base point
instead of p0. Now (a) and the definition of Pic0(C) tell us that we have a group
isomorphism sum : Pic0(C) → E, and the fact that the summation map commutes
with the action of GK̄/K says precisely that it is an isomorphism of GK̄/K-modules.
Finally, the last statement in (X.3.8c) follows by taking GK̄/K-invariants.

X.4 The Selmer and Shafarevich–Tate Groups

We return now to the problem of calculating the Mordell–Weil group of an elliptic
curve E/K defined over a number field K. As we have seen in (VIII.3.2) and Exer-
cise 8.18, it is enough to find generators for the finite group E(K)/mE(K) for any
integer m ≥ 2.

Suppose that we are given another elliptic curve E′/K and a nonzero isogeny
φ : E → E′ defined over K. For example, we could take E = E′ and φ = [m].
Then there is an exact sequence of GK̄/K-modules

0 −→ E[φ] −→ E
φ−−→ E′ −→ 0,

where E[φ] denotes the kernel of φ. Taking Galois cohomology yields the long exact
sequence

0 −−−−→ E(K)[φ] −−−−→ E(K)
φ−−−−→ E′(K)

δ

H1
(
GK̄/K , E[φ]

)
−−−−→ H1

(
GK̄/K , E

) φ−−−−→ H1
(
GK̄/K , E′),

and from this we form the fundamental short exact sequence

0 → E′(K)/φ
(
E(K)

) δ−→ H1
(
GK̄/K , E[φ]

)
→ H1(GK̄/K , E)[φ] → 0. (∗)

Note that (X.3.6) says that the last term in (∗) may be identified with the φ-torsion in
the Weil–Châtelet group WC(E/K).

The next step is to replace the second and third terms of (∗) with certain finite
groups. This is accomplished by local considerations. For each v ∈ MK we fix an
extension of v to K̄, which serves to fix an embedding K̄ ⊂ K̄v and a decomposition
group Gv ⊂ GK̄/K . Now Gv acts on E(K̄v) and E′(K̄v), and repeating the above
argument yields exact sequences

0 → E′(Kv)/φ
(
E(Kv)

) δ−→ H1
(
Gv, E[φ]

)
→ H1(Gv, E)[φ] → 0. (∗v)

The natural inclusions Gv ⊂ GK̄/K and E(K̄) ⊂ E(K̄v) give restriction maps on
cohomology, and we thus end up with the following commutative diagram, in which
we have replaced each H1(G,E) with the corresponding Weil–Châtelet group:
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0 → E′(K)/φ
(
E(K)

) δ−→ H1
(
GK̄/K , E[φ]

)
→ WC(E/K)[φ] → 0

⏐
⏐
�

⏐
⏐
�

⏐
⏐
�

0 →
∏

v∈MK

E′(Kv)/φ
(
E(Kv)

) δ−→
∏

v∈MK

H1
(
Gv, E[φ]

)
→

∏

v∈MK

WC(E/Kv)[φ]→ 0

(∗∗)
Our ultimate goal is to compute the image of E′(K)/φ

(
E(K)

)
in the cohomol-

ogy group H1
(
GK̄/K , E[φ]

)
, or equivalently, to compute the kernel of the map

H1
(
GK̄/K , E[φ]

)
→ WC(E/K)[φ].

Using (X.3.3), we see that this last problem is the same as determining whether cer-
tain homogeneous spaces possess a K-rational point, which may be a very difficult
question to answer. On the other hand, by the same reasoning, the determination of
each local kernel

ker
(
H1

(
Gv, E[φ]

)
−→ WC(E/Kv)[φ]

)

is straightforward, since the question whether a curve has a point over a complete
local field Kv reduces, by Hensel’s lemma, to checking whether the curve has a
point in some finite ring Rv/Me

v for some easily computable integer e, which clearly
requires only a finite amount of computation. This prompts the following definitions.

Definition. Let φ : E/K → E′/K be an isogeny. The φ-Selmer group of E/K is
the subgroup of H1

(
GK̄/K , E[φ]

)
defined by

S(φ)(E/K) = ker

{

H1
(
GK̄/K , E[φ]

)
−→

∏

v∈MK

WC(E/Kv)

}

.

The Shafarevich–Tate group of E/K is the subgroup of WC(E/K) defined by

X(E/K) = ker

{

WC(E/K) −→
∏

v∈MK

WC(E/Kv)

}

.

(The Cyrillic letter X is pronounced “sha.”)

Remark 4.1.1. The exact sequences (∗v) require us to extend each v ∈ MK to K̄, so
the groups S(φ)(E/K) and X(E/K) might depend on this choice. However, in or-
der to determine whether an element of WC(E/K) becomes trivial in WC(E/Kv),
we must check whether the associated homogeneous space, which is a curve defined
over K, has any points defined over Kv . This last problem is clearly independent
of our choice of extension of v to K̄, since v itself determines the embedding of K
into Kv . Therefore S(φ)(E/K) and X(E/K) depend only on E and K.

Alternatively, one can check directly by working with cocycles that the cohomo-
logical definitions of S(φ) and X do not depend on the extension of the v ∈ MK

to K̄. We leave this verification for the reader. (See also Exercise B.6.)
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Remark 4.1.2. A good way to view X(E/K) is as the group of homogeneous
spaces for E/K that possess a Kv-rational point for every v ∈ MK . Equivalently,
the Shafarevich–Tate group X(E/K) is the group of homogeneous spaces, modulo
equivalence, that are everywhere locally trivial.

Theorem 4.2. Let φ : E/K → E′/K be an isogeny of elliptic curves defined
over K.
(a) There is an exact sequence

0 −→ E′(K)/φ
(
E(K)

)
−→ S(φ)(E/K) −→ X(E/K)[φ] −→ 0.

(b) The Selmer group S(φ)(E/K) is finite.

PROOF. (a) This is immediate from the diagram (∗∗) and the definitions of the
Selmer and Shafarevich–Tate groups.
(b) If we take E = E′ and φ = [m], then (a) and the finiteness of S(m)(E/K)
imply the weak Mordell–Weil theorem. On the other hand, in order to prove that
S(φ)(E/K) is finite for a general map φ, we must essentially re-prove the weak
Mordell–Weil theorem. The arguement goes as follows.

Let ξ ∈ S(φ)(E/K), and let v ∈ MK be a finite place of K not divid-
ing m = deg(φ) and such that E/K has good reduction at v. We claim that ξ is
unramified at v. (See (VIII §2) for the definition of an unramified cocycle.)

To check this, let Iv ⊂ Gv be the inertia group for v. Since ξ ∈ S(φ)(E/K), we
know that ξ is trivial in WC(E/Kv). Hence from the sequence (∗v) given earlier,
there is a point P ∈ E(K̄v) such that

ξσ = {P σ − P} for all σ ∈ Gv .

(Note that P σ − P ∈ E[φ].) In particular, this holds for all σ in the inertia group.
But if σ ∈ Iv, then looking at the “reduction modulo v” map E → Ẽv yields

P̃ σ − P = P̃ σ − P̃ = Õ,

since by definition inertia acts trivially on Ẽv . Thus P σ − P is in the kernel of
reduction modulo v. But P σ − P is also in E[φ], which is contained in E[m]; and
from (VIII.1.4) we know that E(K)[m] injects into Ẽv . Therefore P σ = P , and
hence

ξσ = {P σ − P} = 0 for all σ ∈ Iv .

This proves that every element in S(φ)(E/K) is unramified at all but a fixed, finite
set of places v ∈ MK . The following lemma allows us to conclude that S(φ)(E/K)
is finite.

Lemma 4.3. Let M be a finite (abelian) GK̄/K-module, let S ⊂ MK be a finite set
of places, and define

H1(GK̄/K ,M ;S) =
{
ξ ∈ H1(GK̄/K ,M) : ξ is unramified outside S

}
.

Then H1(GK̄/K ,M ;S) is finite.
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PROOF. Since M is finite and GK̄/K acts continuously on M , there is a subgroup of
finite index in GK̄/K that fixes every element of M . Using the inflation–restriction
sequence (B.2.4), it suffices to prove the lemma with K replaced by a finite exten-
sion, so we may assume that the action of GK̄/K on M is trivial. Then

H1(GK̄/K ,M ;S) = Hom(GK̄/K ,M ;S).

Let m be the exponent of M , i.e., the smallest positive integer such that mx = 0
for all x ∈ M , and let L/K be the maximal abelian extension of K having expo-
nent m that is unramified outside of S. Since M has exponent m, the natural map

Hom(GL/K ,M ;S) −→ Hom(GK̄/K ,M ;S)

is an isomorphism. But we know from (VIII.1.6) that L/K is a finite extension.
Therefore Hom(GK̄/K ,M ;S) is finite.

We record as a corollary an important property of the Selmer group that was
derived during the course of proving (X.4.2), where we use the fact (VII.7.2) that
isogenous elliptic curves have the same set of primes of bad reduction.

Corollary 4.4. Let φ : E/K → E′/K be as in (X.4.2), and let S ⊂ MK be a finite
set of places containing

M∞
K ∪ {v ∈ M0

K : E has bad reduction at v} ∪ {v ∈ M0
K : v(deg φ) > 0}.

Then
S(φ)(E/K) ⊂ H1(GK̄/K , E[φ];S).

Remark 4.5. Certainly in theory, and often in practice, the Selmer group is ef-
fectively computable. This is true because the finite group H1(GK̄/K , E[φ];S)
is effectively computable. Then, in order to determine whether a given element
ξ ∈ H1(GK̄/K , E[φ];S) is in S(φ)(E/K), we take the corresponding homogeneous
spaces {C/K} ∈ WC(E/K) and check, for each of the finitely many v ∈ S,
whether C(Kv) 	= ∅. This last problem may be reduced, using Hensel’s lemma, to a
finite amount of computation.

Example 4.5.1. We reformulate the example described in (X §1) in these terms,
leaving some details to the reader. Let E/K be an elliptic curve with E[m] ⊂ E(K),
let S ⊂ MK be the usual set of places (X.4.4), and let K(S,m) be as in (X.1.1c).
We choose a basis for E[m] and use it to identify E[m] with μm × μm as GK̄/K-
modules. Then

H1(GK̄/K , E[m];S) ∼= K(S,m)×K(S,m),

where this map uses the isomorphism K∗/(K∗)m
∼−→ H1(GK̄/K ,μm).

Restricting attention now to the case m = 2, the homogeneous space associated
to a pair (b1, b2) ∈ K(S,m) × K(S,m) is the curve in P3 given by the equations
(cf. (X.1.4))
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C : b1z
2
1 − b2z

2
2 = (e2 − e1)z

2
0 , b1z

2
1 − b1b2z

2
3 = (e3 − e1)z

2
0 .

For any given pair (b1, b2) and any absolute value v ∈ S, it is easy to check
whether C(Kv) 	= ∅, and thus to calculate S(2)(E/K). For example, the conclu-
sion of (X.1.5) may be summarized by stating that the curve

E : y2 = x3 − 12x2 + 20x

satisfies
S(2)(E/Q) = (Z/2Z)3 and X(E/Q)[2] = 0.

The conclusion about X follows from the exact sequence (X.4.2a), since in (X.1.5)
we proved that every element of S(2)(E/Q) is the image of a point in E(Q).

Suppose that we have computed the Selmer group S(φ)(E/K) for an isogeny φ.
Each ξ ∈ S(φ)(E/K) corresponds to a homogeneous space Cξ/K that has a point
defined over every local field Kv . Suppose further that we are lucky and can show
that X(E/K)[φ] = 0. This means that we are able to find a K-rational point on
each Cξ. It then follows from (X.4.2a) that E′(K)/φ

(
E(K)

) ∼= S(φ)(E/K), and
all that remains is to explain how to find generators for E′(K)/φ

(
E(K)

)
in terms

of the points that we found in each Cξ(K). This is done in the next proposition.

Proposition 4.6. Let φ : E/K → E′/K be a K-isogeny, let ξ be a cocycle rep-
resenting an element of H1(GK̄/K , E[φ]), and let C/K be a homogeneous space
representing the image of ξ in WC(E/K). Choose a K̄-isomorphism θ : C → E
satisfying

θσ ◦ θ−1 = (translation by ξσ) for all σ ∈ GK̄/K .

(a) The map φ ◦ θ : C → E′ is defined over K.
(b) Suppose that there is a point P ∈ C(K), so {C/K} is trivial in WC(E/K).

Then the point φ ◦ θ(P ) ∈ E′(K) maps to ξ via the connecting homomor-
phism δ : E′(K) → H1

(
GK̄/K , E[φ]

)
.

PROOF. (a) Let σ ∈ GK̄/K and let P ∈ C. Then, since φ is defined over K
and ξσ ∈ E[φ], we have

(
φ ◦ θ(P )

)σ
= (φ ◦ θσ)(P σ) = φ

(
θ(P σ) + ξσ

)
= φ ◦ θ(P σ).

Therefore φ ◦ θ is defined over K.
(b) This is just a matter of unwinding definitions. Thus

δ
(
φ ◦ θ(P )

)
σ
= θ(P )σ − θ(P ) = θ(P σ) + ξσ − θ(P ) = ξσ.

Remark 4.7. We have been working with arbitrary isogenies φ : E → E′,
but in order to compute the Mordell–Weil group of E′, we must find genera-
tors for E′(K)/mE′(K) for some integer m; simply knowing E′(K)/φ

(
E(K)

)

is not enough. The solution to this dilemma is to work with both φ and its dual
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φ̂ : E′ → E. Using the procedure described in this section, we compute both Selmer
groups S(φ)(E/K) and S(φ̂)(E′/K), and with a little bit of luck, we find generators
for the two quotient groups E′(K)/φ

(
E(K)

)
and E(K)/φ̂

(
E′(K)

)
. It is then a

simple matter to compute generators for E(K)/mE(K), where m = deg(φ), using
the elementary exact sequence (note that φ̂ ◦ φ = [m])

0 −→ E′(K)[φ̂]

φ
(
E(K)[m]

) −→ E′(K)

φ
(
E(K)

) φ̂−−→ E(K)

mE(K)
−→ E(K)

φ̂
(
E′(K)

) −→ 0.

Example 4.8. Two-isogenies. We illustrate the general theory by completely ana-
lyzing the case of isogenies of degree 2. Let φ : E → E′ be an isogeny of degree 2
defined over K. Then the kernel E[φ] = {O, T} is defined over K, so T ∈ E(K).
Moving this K-rational 2-torsion point to (0, 0), we can find a Weierstrass equation
for E/K of the form

E : y2 = x3 + ax2 + bx.

Let S ⊂ MK be the usual set of places (X.4.4). Identifying E[φ] with μ2

(as GK̄/K-modules), we see that K∗/(K∗)2 ∼= H1(GK̄/K , E[φ]). Thus, using no-
tation from (X.1.1c) and (X.4.3), we have

H1(GK̄/K , E[φ];S) ∼= K(S, 2).

More precisely, if d ∈ K(S, 2), then tracing through the above identification shows
that the corresponding cocycle is

σ �−→
{
O if

√
d
σ
=

√
d,

T if
√
d
σ
= −

√
d.

The homogeneous space Cd/K associated to this cocycle was computed in (X.3.7);
it is given by the equation

Cd : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

We can now compute the Selmer group S(φ) by checking whether Cd(Kv) = ∅ for
each of the finitely many d ∈ K(S, 2) and v ∈ S.

The isogenous curve E′/K has Weierstrass equation

E′ : Y 2 = X3 − 2aX2 + (a2 − 4b)X,

and the isogeny φ : E → E′ is given by the formula (III.4.5)

φ(x, y) =

(
y2

x2
,
y(b− x2)

x2

)
.

In (X.3.7) we gave an isomorphism θ : Cd → E defined over K(
√
d ). Computing

the composition φ ◦ θ yields the map
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θ ◦ φ : Cd −→ E′, θ ◦ φ(z, w) =
(

d

z2
,−dw

z3

)
,

described in (X.4.6). Finally, just as we did in (X.1.4) (see also Exercise 10.1), we
can compute the connecting homomorphism

δ : E′(K) −→ H1(GK̄/K , E[φ]) ∼= K∗/(K∗)2.

It is given by

δ(O) = 1, δ(0, 0) = a2 − 4b, δ(X,Y ) = X if X 	= 0,∞.

We summarize (X.4.8) in the next proposition.

Proposition 4.9. (Descent via Two-Isogeny) Let E/K and E′/K be elliptic curves
given by the equations

E : y2 = x3 + ax2 + bx and E′ : Y 2 = X3 − 2aX2 + (a2 − 4b)X,

and let

φ : E −→ E′, φ(x, y) =

(
y2

x2
,
y(b− x2)

x2

)
,

be the isogeny of degree 2 with kernel E[φ] =
{
O, (0, 0)

}
. Let

S = M∞
K ∪

{
v ∈ M0

K : v(2) 	= 0 or v(b) 	= 0 or v(a2 − 4b) 	= 0
}
.

Further, for each d ∈ K∗, let Cd/K be the homogeneous space for E/K given by
the equation

Cd : dw2 = d2 − 2adz2 + (a2 − 4b)z4.

Then there is an exact sequence

0 −→ E′(K)/φ
(
E(K)

) δ−→ K(S, 2) −→ WC(E/K)[φ],
(X,Y ) �−→ X, d �−→ {Cd/K},

O �−→ 1,
(0, 0) �−→ a2 − 4b.

The φ-Selmer group is

S(φ)(E/K) ∼=
{
d ∈ K(S, 2) : Cd(Kv) 	= ∅ for all v ∈ S

}
.

Finally, the map

ψ : Cd −→ E′, ψ(z, w) =

(
d

z2
,−dw

z3

)
,

has the property that if P ∈ Cd(K), then

δ
(
ψ(P )

)
≡ d (mod (K∗)2).
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Remark 4.9.1. Note that since the isogenous curve E′ in (X.4.9) has the same form
as E, everything in (X.4.9) applies equally well to the dual isogeny φ̂ : E′ → E.
Then, using the exact sequence (X.4.7), we can try to compute E(K)/2E(K).

Remark 4.9.2. If E/K is an elliptic curve that has a K-rational 2-torsion point,
then (III.4.5) says that E automatically has an isogeny of degree 2 defined over K.
Thus the procedure described in (X.4.8) may be applied to any elliptic curve sat-
isfying E(K)[2] 	= 0. In particular, (X.4.9) in some sense subsumes (X.1.4), which
described how to try to compute E(K)/2E(K) when E[2] ⊂ E(K).

Example 4.10. We use (X.4.9) to compute E(Q)/2E(Q) for the elliptic curve

E : y2 = x3 − 6x2 + 17x.

This equation has discriminant Δ = −147968 = −29172, so our set S is {∞, 2, 17}
and we may identify Q(S, 2) with {±1,±2,±17,±34}. The curve that is 2-isoge-
nous to E has equation

E : Y 2 = X3 + 12X2 − 32X,

and for d ∈ Q(S, 2), the corresponding homogeneous space is

Cd : dw2 = d2 + 12dz2 − 32z4.

From (X.4.9) we know that the point (0, 0) ∈ E′(Q) maps to

δ(0, 0) = −32 ≡ −2 (mod (Q∗)2),

so −2 ∈ S(φ)(E/Q). It remains to check the other values of d ∈ Q(S, 2).

d = 2 C2 : 2w2 = 4 + 24z2 − 32z4.

Dividing by 2 and letting z = Z/2 gives the equation

w2 = 2 + 3Z2 − Z4,

which by inspection has the rational point (Z,w) = (1, 2). Then (X.4.9) tells us
that the point (z, w) = ( 12 , 2) ∈ C2(Q) maps to to ψ( 12 , 2) = (8,−32) ∈ E′(Q).
Further, as the theory predicts, we have δ(8,−32) = 8 ≡ 2 (mod (Q∗)2).

d = 17 C17 : 17w2 = 172 + 12 · 17z2 − 32z4.

Suppose that C17(Q17) 	= ∅. Since ord17(17w
2) is odd and ord17(32z

4) is even,
we see that necessarily z, w ∈ Z17. But then the equation for C17 implies first
that z ≡ 0 (mod 17), then that w ≡ 0 (mod 17), and finally that 172 ≡ 0 (mod 173).
This contradiction shows that C17(Q17) = ∅, and hence that 17 /∈ S(φ)(E/Q).

We now know that

1,−2, 2 ∈ S(φ)(E/Q) and 17 /∈ S(φ)(E/Q).
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Since S(φ)(E/Q) is a subgroup of Q(S, 2), we have S(φ)(E/Q) = {±1,±2}. Fur-
ther, we have shown that E′(Q) surjects onto S(φ)(E/Q), and hence from (X.4.2a)
we see that X(E/Q)[φ] = 0.

We now repeat the above computation with the roles of E and E′ reversed. Thus
for d ∈ Q(S, 2) we look at the homogeneous space

C ′
d : dw2 = d2 − 24dz2 + 272z4.

As above, the point (0, 0) ∈ E(Q) maps to δ(0, 0) = 272 ≡ 17 (mod (Q∗)2). Next,
if d < 0, then clearly C ′

d(R) = ∅, so d /∈ S(φ̂)(E′/Q). Finally, for d = 2, if we
let z = Z/2, then C ′

2 has the equation

2w2 = 4− 12Z2 + 17Z4.

If C ′
2(Q2) 	= ∅, then necessarily Z,w ∈ Z2, and then the equation allows us to

deduce successively

Z ≡ 0 (mod 2), w ≡ 0 (mod 2), 4 ≡ 0 (mod 23).

Therefore C2(Q2) = ∅, and hence 2 /∈ S(φ̂)(E′/Q). Thus S(φ̂)(E′/Q) = {1, 17}
and X(E′/Q)[φ̂] = 0.

To recapitulate, we now know that

E′(Q)/φ
(
E(Q)

) ∼= (Z/2Z)2 and E(Q)/φ̂
(
E′(Q)

) ∼= Z/2Z,

the former being generated by
{
(0, 0), (8,−32)

}
and the latter by

{
(0, 0)

}
. The

exact sequence (X.4.7) then yields

E(Q)/2E(Q) ∼= (Z/2Z)2 and E′(Q)/2E′(Q) ∼= (Z/2Z)2,

and hence
E(Q) ∼= E′(Q) ∼= Z× Z/2Z.

Remark 4.11. In all of the examples up to this point, we have been lucky in the
sense that for every locally trivial homogeneous space that has appeared, we were
able to find (by inspection) a global rational point. Another way to say this is that
we have yet to see a nontrivial element of the Shafarevich–Tate group. The first
examples of such spaces are due to Lind [150] and independently, but a bit later, to
Reichardt [207]. For example, they proved that the curve

2w2 = 1− 17z4

has no Q-rational points, while it is easy to check that it has a point defined over
every Qp. Shortly thereafter, Selmer [225, 227] made an extensive study of the
curves ax3 + by3 + cz3 = 0, which are homogeneous spaces for the elliptic curves
x3 + y3 + dz3 = 0. He gave many examples of locally trivial, globally nontrivial
homogeneous spaces, of which the simplest is
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3x3 + 4y3 + 5z3 = 0.

It is a difficult problem, in general, to divide the Selmer group into the piece
coming from rational points on the elliptic curve and the piece giving nontrivial
elements of the Shafarevich–Tate group. At present there is no algorithm known that
is guaranteed to solve this problem. The procedure that we now describe often works
in practice, although it tends to lead to fairly elaborate computations in algebraic
number fields.

Recall that for each integer m ≥ 2 there is an exact sequence (X.4.2a)

E(K)
δ−→ S(m)(E/K) −→ X(E/K)[m] −→ 0,

where at least in theory, the finite group S(m)(E/K) is effectively computable;
see (X.4.5). If we knew some way of computing X(E/K)[m], then we could find
generators for E(K)/mE(K), and thence for E(K). Unfortunately, a general pro-
cedure for computing X(E/K)[m] is still being sought. However, for each inte-
ger n ≥ 1 we can combine different versions of the above exact sequence to form a
commutative diagram

E(K) −−−−→ S(mn)(E/K) −−−−→ X(E/K)[mn] −−−−→ 0
⏐
⏐
� identity

map

⏐
⏐
�

⏐
⏐
� multiplication

by mn−1

E(K) −−−−→ S(m)(E/K) −−−−→ X(E/K)[m] −−−−→ 0

Now at least in principle, the middle column of this diagram is effectively com-
putable. This allows us to make the following refinement to the exact sequence
in (X.4.2a).

Proposition 4.12. Let E/K be an elliptic curve. For any integers m ≥ 2 and n ≥ 1,
let S(m,n)(E/K) be the image of S(mn)(E/K) in S(m)(E/K). Then there exists
an exact sequence

0 −→ E(K)/mE(K) −→ S(m,n)(E/K) −→ mn−1X(E/K)[mn] −→ 0.

PROOF. This is immediate from the commutative diagram given above.

Now to find generators for E(K), we can try the following procedure. Compute
successively the relative Selmer groups

S(m)(E/K) = S(m,1)(E/K) ⊃ S(m,2)(E/K) ⊃ S(m,3)(E/K) ⊃ · · ·

and the rational-point groups

T(m,1)(E/K) ⊂ T(m,2)(E/K) ⊂ T(m,3)(E/K) ⊂ · · · ,

where T(m,r)(E/K) is the subgroup of S(m)(E/K) generated by all of the points
P ∈ E(K) with height hx(P ) ≤ r. Eventually, with sufficient perseverance, we
hope to arrive at an equality
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S(m,n)(E/K) = T(m,r)(E/K).

Once this happens, we know that mn−1X(E/K)[mn] = 0 and that the points with
height hx(P ) ≤ r generate E(K)/mE(K). The difficulty lies in the fact that as
far as is currently known, there is nothing to prevent X(E/K) from containing an
element that is infinitely m-divisible, i.e., a nonzero element ξ ∈ X(E/K) such that
for every n ≥ 1 there is an element ξn ∈ X(E/K) satisfying ξ = mnξn. If such
an element exists, then the above procedure never terminates. However, opposed to
such a gloomy scenario is the following optimistic conjecture.

Conjecture 4.13. Let E/K be an elliptic curve. Then X(E/K) is finite.

The finiteness of X has been proven for certain elliptic curves by Kolyva-
gin [130] and Rubin [215]. Note that the successful carrying out of the procedure
described above shows only that the m-primary component of X(E/K) is finite.
This has, of course, been done in many cases. For example, in (X.4.10) we showed
that X(E/Q)[2] = 0 for a particular elliptic curve.

We conclude this section with a beautiful result of Cassels, which says something
interesting about the order of a group that is not known in general to be finite.

Theorem 4.14. ([38], [281]) Let E/K be an elliptic curve. There exists an alter-
nating bilinear pairing

Γ : X(E/K)×X(E/K) −→ Q/Z

whose kernel on each side is exactly the subgroup of divisible elements of X(E/K).
In other words, if Γ(α, β) = 0 for all β ∈ X(E/K), then for every integer N ≥ 1
there exists an element αN ∈ X(E/K) satisfying NαN = α.

In particular, if X(E/K) is finite, then its order is a perfect square, and the same
is true of any p-primary component of X(E/K). (See Exercise 10.20.)

X.5 Twisting—Elliptic Curves

As in (X §§2,3), we let K be an arbitrary (perfect) field and we let E/K be an elliptic
curve. We saw in (X.2.2) that if we consider E merely to be a curve and ignore the
base point O, then the twists of E/K correspond to the elements of the (pointed)
cohomology set H1

(
GK̄/K , Isom(E)

)
. The group Isom(E) has two natural sub-

groups, namely Aut(E) and E, where we identify E with the set of translations {τP }
in Isom(E). We also observe that Aut(E) acts naturally on E. The next proposition
describes Isom(E).

Proposition 5.1. The map

E ×Aut(E) −→ Isom(E), (P, α) �−→ τP ◦ α,

is a bijection of sets. It identifies Isom(E) with the product of E and Aut(E) twisted
by the natural action of Aut(E) on E. In other words, the group Isom(E) is the set
of ordered pairs E ×Aut(E) with the group law
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(P, α) · (Q, β) = (P + αQ,α ◦ β).

PROOF. Let φ ∈ Isom(E). Then τ−φ(O) ◦ φ ∈ Aut(E), so writing

φ = τφ(O) ◦
(
τ−φ(O) ◦ φ

)

shows that the map is surjective. On the other hand, if τP ◦α = τQ◦β, then evaluating
at O gives P = Q, and then also α = β. This proves injectivity. Finally, the twisted
nature of the group law follows from the calculation

τP ◦ α ◦ τQ ◦ β = τP ◦ ταQ ◦ α ◦ β.

We have already extensively studied those twists of E/K that arise from transla-
tions; these are the twists corresponding to elements of the group

H1(GK̄/K , E) ∼= WC(E/K)

that we studied in (X §§3,4). We now look at the twists of E/K coming from
isomorphisms of E as an elliptic curve, i.e., isomorphisms of the pair (E,O). In
other words, we consider the twists of E corresponding to elements of the cohomol-
ogy group H1

(
GK̄/K ,Aut(E)

)
. We start with a general proposition and then, for

char(K) 	= 2, 3, we derive explicit equations for the associated twists.

Remark 5.2. In the literature, the phrase “let C be a twist of E” generally means
that C corresponds to an element of H1

(
GK̄/K ,Aut(E)

)
. More properly, such

a C should be called a twist of the pair (E,O), since the group of isomorphisms
of (E,O) with itself is the group we denote by Aut(E). However, one can generally
resolve any ambiguity from context.

Proposition 5.3. Let E/K be an elliptic curve.
(a) The natural inclusion Aut(E) ⊂ Isom(E) induces an inclusion

H1
(
GK̄/K ,Aut(E)

)
⊂ H1

(
GK̄/K , Isom(E)

)
.

Identifying the latter set with Twist(E/K) via (X.2.2), we denote the former
by Twist

(
(E,O)/K

)
.

(b) Let C/K ∈ Twist
(
(E,O)/K

)
. Then C(K) 	= ∅, so C/K can be given the

structure of an elliptic curve over K. N.B. The curve C/K is generally not K-
isomorphic to E/K; cf. (X.3.3).

(c) Conversely, if E′/K is an elliptic curve that is isomorphic to E over K̄,
then E′/K represents an element of Twist

(
(E,O)/K

)
.

PROOF. (a) Let i : Aut(E) → Isom(E) be the natural inclusion. From (X.5.1),
there is a homomorphism j : Isom(E) → Aut(E) satisfying j ◦ i = 1. It follows
that the induced map

H1
(
GK̄/K ,Aut(E)

) i−→ H1
(
GK̄/K , Isom(E)

)
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is one-to-one.
(b) Let φ : C → E be an isomorphism defined over K̄ such that the cocycle

σ �−→ φσ ◦ φ−1

represents the element of H1
(
GK̄/K ,Aut(E)

)
corresponding to C/K. Then we

have φσ ◦ φ−1(O) = O, so

φ−1(O) = φ−1(O)σ for all σ ∈ GK̄/K .

Hence φ−1(O) ∈ C(K), so
(
C, φ−1(O)

)
is an elliptic curve defined over K.

(c) Let φ : E′ → E be a K̄-isomorphism of elliptic curves, so in particular,
φ(O′) = O, where O ∈ E(K) and O′ ∈ E′(K) are the respective zero points of E
and E′. Then for any σ ∈ GK̄/K we have

φσ ◦ φ−1(O) = φσ(O′) = φ(O′)σ = Oσ = O.

Thus φσ ◦ φ−1 ∈ Aut(E), so the cocycle corresponding to E′/K lies in the group
H1

(
GK̄/K ,Aut(E)

)
as desired.

If the characteristic of K is not equal to 2 or 3, then the elements of the
group Twist

(
(E,O)/K

)
can be described quite explicitly.

Proposition 5.4. Assume that char(K) 	= 2, 3, and let

n =

⎧
⎪⎨

⎪⎩

2 if j(E) 	= 0, 1728,

4 if j(E) = 1728,

6 if j(E) = 0.

Then Twist
(
(E,O)/K

)
is canonically isomorphic to K∗/(K∗)n.

More precisely, choose a Weierstrass equation

E : y2 = x3 +Ax+B

for E/K, and let D ∈ K∗. Then the elliptic curve ED ∈ Twist
(
(E,O)/K

)
corre-

sponding to D (mod (K∗)n) has Weierstrass equation

(i) ED : y2 = x3 +D2Ax+D3B if j(E) 	= 0, 1728,

(ii) ED : y2 = x3 +DAx if j(E) = 1728 (so B = 0),

(iii) ED : y2 = x3 +DB if j(E) = 0 (so A = 0).

Corollary 5.4.1. Define an equivalence relation on the set K ×K∗ by

(j,D) ∼ (j′, D′) if j = j′ and D/D′ ∈ (K∗)n(j),

where n(j) = 2 (respectively 4, respectively 6) if j 	= 0, 1728 (respectively j =
1728, respectively j = 0). Then the K-isomorphism classes of elliptic curves E/K
are in one-to-one correspondence with the elements of the quotient

K ×K∗

∼ .
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PROOF. From (III.10.2.) we have an isomorphism

Aut(E) ∼= μn

of GK̄/K-modules. It follows from (B.2.5c) that

Twist
(
(E,O)/K

)
= H1

(
GK̄/K ,Aut(E)

) ∼= H1(GK̄/K ,μn)
∼= K∗/(K∗)n.

The calculation of an equation for the twist of E is straightforward. The case
j(E) 	= 0, 1728 was done in (X.2.4). We do j(E) = 1728 here and leave j(E) = 0
for the reader.

Thus let D ∈ K∗, let δ ∈ K̄ be a fourth root of D, and define a cocycle

ξ : GK̄/K −→ μ4, ξσ = δσ/δ.

We also fix an isomorphism

[ ] : μ4 −→ Aut(E), [ζ](x, y) = (ζ2x, ζy).

Then ED corresponds to the cocycle σ �→ [ξσ] in H1
(
GK̄/K ,Aut(E)

)
.

The action of GK̄/K on the twisted field K̄(E)ξ is given by

δσ = ξσδ, xσ = ξ2σx, yσ = ξσy.

The subfield fixed by GK̄/K thus contains the functions

X = δ−2x and Y = δ−1y,

and these functions satisfy the equation

Y 2 = DX3 +AX.

This gives an equation for the twist ED/K, and the substitution

(X,Y ) = (D−1X ′, D−1Y ′)

puts it into the desired form.
The corollary follows by combining the proposition and (X.5.3c) with (III.1.4bc),

which says that up to K̄-isomorphism, the elliptic curves E/K are in one-to-one
correspondence with their j-invariants j(E) ∈ K.

X.6 The Curve Y 2 = X3 + DX

Many of the deepest theorems and conjectures in the arithmetic theory of elliptic
curves have had as their testing ground one of the families of curves given in (X.5.4).
To illustrate the theory that we have developed, let’s see what we can say about the
family of elliptic curves E/Q with j-invariant j(E) = 1728.
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One such curve is given by the equation

y2 = x3 + x,

and then (X.5.3) and (X.5.4) tell us that every such curve has an equation of the form

E : y2 = x3 +Dx,

where D ranges over representatives for the cosets in Q∗/(Q∗)4. Thus if we spec-
ify that D is a fourth-power-free integer, then D is uniquely determined by E. We
observe that the equation for E has discriminant Δ(E) = −64D3, so E has good re-
duction at all primes not dividing 2D, and the given Weierstrass equation is minimal
at all odd primes.

Let p be a prime not dividing 2D and consider the reduced curve Ẽ over the finite
field Fp. From (V.4.1) we find that Ẽ is supersingular if and only if the coefficient
of xp−1 in (x3 + Dx)(p−1)/2 is zero. In particular, if p ≡ 3 (mod 4), then Ẽ/Fp is
supersingular, and hence we conclude (see Exercise 5.10) that

#Ẽ(Fp) = p+ 1 for all p ≡ 3 (mod 4).

(See Exercise 10.17 for an elementary derivation of this result.)
Next we recall from (VII.3.5) that if p 	= 2 and if E has good reduction at p,

then Etors(Q) injects into the reduction Ẽ(Fp). It follows from this discussion
that #Etors(Q) divides p+ 1 for all but finitely many primes p ≡ 3 (mod 4), and
hence that #Etors(Q) divides 4. Since (0, 0) ∈ E(Q)[2], the possibilities for Etors(Q)
are Z/2Z, (Z/2Z)2, and Z/4Z.

We have E[2] ⊂ E(Q) if and only if the polynomial x3 +Dx factors completely
over Q, so if and only if −D is a perfect square. Similarly, E(Q) has a point of
order 4 if and only if (0, 0) ∈ 2E(Q). The duplication formula for E reads

x(2P ) =
(x2 −D)2

4x3 + 4Dx
,

so we see that
(0, 0) = [2]

(
D1/2, (4D3)1/4

)
.

Hence assuming that D is a fourth-power-free integer, we conclude that

(0, 0) ∈ 2E(Q) if and only if D = 4,

in which case (0, 0) = [2](2,±4).
Next, since E(Q) contains a 2-torsion point, we can use (X.4.9) to try to calcu-

late E(Q)/2E(Q). The curve E is isogenous to the curve

E′ : Y 2 = X3 − 4DX

via the isogeny
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φ : E −→ E′, φ(x, y) =

(
y2

x2
,
y(D − x2)

x2

)
.

The set S ⊂ MQ consists of ∞ and the primes dividing 2D, and for each d ∈ Q(S, 2),
the corresponding homogeneous space Cd/Q ∈ WC(E/Q) is given by the equation

Cd : dw2 = d2 − 4Dz4.

Similarly, working with the dual isogeny φ̂ : E′ → E leads to the homogeneous
spaces C ′

d/Q ∈ WC(E′/Q) with equations

C ′
d : dW 2 = d2 +DZ4.

(More precisely, using (X.4.9) leads to the equation dW 2 = d2 + 16DZ4, but we
are free to replace Z with Z/2.)

Let ν(2D) denote the number of distinct primes dividing 2D. The group Q(S, 2)
is generated by −1 and the primes dividing 2D, so we have the estimate

dim2 E(Q)/2E(Q) ≤ 2 + 2ν(2D)− dim2 E
′(Q)[φ̂] + dim2 φ

(
E(Q)[2]

)
.

Here dim2 denotes the dimension of an F2-vector space. We clearly have

E′(Q)[φ̂] ∼= Z/2Z.

In order to deal with the other two terms, we consider two cases.

(1) E(Q)[2] ∼= Z/2Z.
Then φ

(
E(Q)[2]

) ∼= 0 and dim2 E(Q)/2E(Q) = rankE(Q) + 1.

(2) E(Q)[2] ∼= Z/2Z× Z/2Z.
Then φ

(
E(Q)[2]

) ∼= Z/2Z and dim2 E(Q)/2E(Q) = rankE(Q) + 2.

Substituting these values into the above inequality yields in both cases the estimate

rankE(Q) ≤ 2ν(2D).

Notice that we have obtained this upper bound without having checked for local
triviality of any of the homogeneous spaces Cd and C ′

d. By inspection, if d < 0, then
either Cd(R) = ∅ or C ′

d(R) = ∅. Thus the upper bound my be decreased by 1, giving
the small improvement

rankE(Q) ≤ 2ν(2D)− 1.

The preceding discussion is summarized in the following proposition.

Proposition 6.1. Let D ∈ Z be a fourth-power-free integer, and let ED be the elliptic
curve

ED : y2 = x3 +Dx.
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(a)

ED,tors(Q) ∼=

⎧
⎪⎨

⎪⎩

Z/4Z if D = 4,

Z/2Z× Z/2Z if −D is a perfect square,

Z/2Z otherwise.

(b)
rankE(Q) ≤ 2ν(2D)− 1.

Remark 6.1.1. The estimate in (X.6.1b) cannot be improved in general. For exam-
ple, the curve E : y2 = x3 − 82x has

rankE(Q) = 3,

while ν(−164) = ν(24 · 41) = 2. See Exercise 10.18.

We now restrict attention to the special case that D = p is an odd prime. The next
proposition gives a complete description of the relevant Selmer groups and deduces
corresponding upper bounds for the rank of E(Q) and the dimension of X(E/Q)[2].

Proposition 6.2. Let p be an odd prime, let Ep be the elliptic curve

Ep : y2 = x3 + px,

and let φ : Ep → E′
p be the isogeny of degree 2 with kernel Ep[φ] =

{
O, (0, 0)

}
.

(a)
Ep,tors(Q) ∼= Z/2Z.

(b)

S(φ̂)(E′
p/Q) ∼= Z/2Z.

S(φ)(Ep/Q) ∼=

⎧
⎪⎨

⎪⎩

Z/2Z if p ≡ 7, 11 (mod 16),

(Z/2Z)2 if p ≡ 3, 5, 13, 15 (mod 16),

(Z/2Z)3 if p ≡ 1, 9 (mod 16).

(c)

rankEp(Q) + dim2 X(Ep/Q)[2] =

⎧
⎪⎨

⎪⎩

0 if p ≡ 7, 11 (mod 16),

1 if p ≡ 3, 5, 13, 15 (mod 16),

2 if p ≡ 1, 9 (mod 16).

PROOF. To ease notation, we let E = Ep and E′ = E′
p.

(a) This is a special case of (X.6.1a).
(b) As usual, we take representatives {±1,±2,±p,±2p} for the cosets in the finite
group Q(S, 2). From (X.4.9) we know that the images of the 2-torsion points in the
Selmer groups are given by

−p ∈ S(φ)(E/Q) and p ∈ S(φ̂)(E′/Q).
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Further, if d < 0, then Cd(R) = ∅, so d /∈ S(φ̂)(E′/Q).
Next we consider the homogeneous space

C ′
2 : 2W 2 = 4 + pZ4.

If (Z,W ) ∈ C ′
2(Q2), then necessarily Z,W ∈ Z2, which allows us to con-

clude that Z ≡ 0 (mod 2), so W ≡ 0 (mod 2), and thus 0 ≡ 4 (mod 8). There-
fore C ′

2(Q2) = ∅, and hence 2 /∈ S(φ̂)(E′/Q). We now know that

p ∈ S(φ̂)(E′/Q) and − 1,±2,−p,−2p /∈ S(φ̂)(E′/Q).

It follows that S(φ̂)(E′/Q) = {1, p} ≡ Z/2Z.
It remains to calculate S(φ)(E/Q), and from the form of the answer, it is clear

that there will be many cases to be considered. The best approach is to look at the
various d ∈ Q(S, 2) and check for which primes the homogeneous space is locally
trivial. Note that (X.4.9) says that

d ∈ S(φ)(E/Q) if and only if Cd(Qp) 	= ∅ and Cd(Q2) 	= ∅,

i.e., it suffices to check whether Cd is locally trivial at the primes p and 2. We make
frequent use of Hensel’s lemma (Exercise 10.12), which gives a criterion for when a
solution of an equation modulo qn lifts to a solution in Qq .

d = −1 C−1 : w2 + 1 = 4pz4.

(i) If (z, w) ∈ C−1(Qp), then necessarily z, w ∈ Zp, so w2 ≡ −1 (mod p).
Conversely, from Exercise 10.12 we see that any solution to the congru-
ence w2 ≡ −1 (mod p) lifts to a point in C−1(Qp). Therefore

C−1(Qp) 	= ∅ ⇐⇒ p ≡ 1 (mod 4).

(ii) From (i) we may assume that p ≡ 1 (mod 4). If p ≡ 1 (mod 8), then we let

(z, w) = (Z/4,W/8).

Our equation becomes W 2 + 64 = pZ4, and the solution (1, 1) to the congru-
ence

W 2 + 64 ≡ pZ4 (mod 8)

lifts to a point in C−1(Q2). Similarly, if p ≡ 5 (mod 8), then we let

(z, w) = (Z/2,W/2)

and consider the solution (Z,W ) = (1, 1) to the congruence

W 2 + 4 = pZ4 (mod 8).

This solution lifts to a point in C−1(Q2). This shows that if p ≡ 1 (mod 4),
then C−1(Q2) 	= ∅.
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Combining (i) and (ii) yields

−1 ∈ S(φ)(E/Q) ⇐⇒ p ≡ 1 (mod 4).

d = −2 C−2 : w2 + 2 = 2pz4.

(i) If (z, w) ∈ C−2(Qp), then z, w ∈ Zp and w2 ≡ −2 (mod p). Conversely, a
solution to w2 ≡ −2 (mod p) lifts to a point of C−1(Qp). Therefore

C−2(Qp) 	= ∅ ⇐⇒ p ≡ 1, 3 (mod 8).

(ii) If (z, w) ∈ C−2(Q2), then z, w ∈ Z2 and w ≡ 0 (mod 2). So after setting
(z, w) = (Z, 2W ), we must check whether the equation

2W 2 + 1 = pZ4

has any solutions Z,W ∈ Z2. From (i) we see that it suffices to consider
primes p ≡ 1, 3 (mod 8). The congruence 2W 2 + 1 ≡ pZ4 (mod 16) has no
solutions if p ≡ 11 (mod 16), so

p ≡ 11 (mod 16) =⇒ C−2(Q2) = ∅.

On the other hand, if we can find solutions modulo 25 = 32, then Exer-
cise 10.12 says that they lift to points in C−2(Q2). The following table gives
solutions (Z,W ) to the congruence

2W 2 + 1 ≡ pZ4 (mod 32)

for each of the remaining values of p mod 32:

p mod 32 1 3 9 17 19 25

(Z,W ) (1, 0) (3, 11) (1, 2) (3, 0) (1, 3) (3, 2)

Combining (i) and (ii), we have proven that

−2 ∈ S(φ)(E/Q) ⇐⇒ p ≡ 1, 3, 9 (mod 16).

d = 2 C2 : w2 = 2− 2pz4.

This case is entirely similar to the case d = −2 that we just completed. A point (z, w) ∈
C2(Qp) has z, w ∈ Zp and w2 ≡ 2 (mod p), and any such solutions lifts, so

C2(Qp) 	= ∅ ⇐⇒ p ≡ 1, 7 (mod 8).

Next, if p ≡ 1 (mod 8), then from above we have −1,−2 ∈ S(φ)(E/Q), so cer-
tainly 2 ∈ S(φ)(E/Q). It remains to consider the case p ≡ 7 (mod 8).
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A point (z, w) ∈ C2(Q2) satisfies (z, w) = (Z, 2W ) with Z,W ∈ Z2 and

2W 2 = 1− pZ4.

If p ≡ 7 (mod 16), then this equation has no solutions modulo 16. On the other hand,
if p ≡ 15 (mod 16), then we have solutions

2 · 32 ≡ 1− p · 14 (mod 32) if p ≡ 15 (mod 32),

2 · 12 ≡ 1− p · 14 (mod 32) if p ≡ 31 (mod 32),

and these solutions lift to points in C2(Q2). Putting all of this together, we have
shown that

2 ∈ S(φ)(E/Q) ⇐⇒ p ≡ 1, 9, 15 (mod 16).

We have now determined exactly which of the values −1, 2, and −2 are in
S(φ)(E/Q) in terms of the residue of p modulo 16. Since we also know that
−p ∈ S(φ)(E/Q), it is now a simple matter to reconstruct the table for S(φ)(E/Q)
given in (b). In fact, we obtain more information, namely a precise list of which
elements of Q(S, 2) are in S(φ)(E/Q).
(c) We use (X.4.7) and (X.4.2a) to compute

dim2 E
′(Q)[φ̂]/φ

(
E(Q)[2]

)
+ dim2 E(Q)/2E(Q)

= dim2 E
′(Q)/φ

(
E(Q)

)
+ dim2 E(Q)/φ̂

(
E(Q)

)

= dim2 S
(φ)(E/Q)− dim2 X(E/Q)[φ]

+ dim2 S
(φ̂)(E′/Q)− dim2 X(E′/Q)[φ̂].

From (a) we see that

E′(Q)/φ
(
E(Q)[2]

) ∼= Z/2Z and E(Q)/2E(Q) ∼= (Z/2Z)1+rankE(Q).

Further, since E(Q)/φ̂
(
E′(Q)) ∼= S(φ̂)(E′/Q) ∼= Z/2Z from (b), the exact se-

quence given in (X.4.2a) implies that X(E′/Q)[φ̂] = 0. Hence the exact sequence

0 −→ X(E/Q)[φ] −→ X(E/Q)[2]
φ−−→ X(E′/Q)[φ̂] = 0

gives
dimX(E/Q)[2] = dim2 X(E/Q)[φ],

and combining this with the above results yields

1+
(
1+rankE(Q)

)
= dim2 S

(φ)(E/Q)+dim2 S
(φ̂)(E′/Q)−dim2 X(E/Q)[2].

Now (c) is immediate from the calculation of S(φ)(E/Q) and S(φ̂)(E′/Q) given
in (b).
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Corollary 6.2.1. There are infinitely many elliptic curves E/Q satisfying

rankE(Q) = 0 and X(E/Q)[2] = 0.

PROOF. From (X.6.2), the elliptic curves y2 = x3 + px with p ≡ 7, 11 (mod 16)
have this property.

Remark 6.3. One of the consequences of (X.6.2) is that if p is a prime satisfying
p ≡ 5 (mod 8), then the elliptic curve

Ep : y2 = x3 + px

has rank at most one. Further, examining the proof of (X.6.2) shows that the
group Ep(Q) has rank 1 if and only if the homogeneous space

C−1 : w2 + 1 = 4pz4

has a Q-rational point, and if there is such a point, then we can find a point of infinite
order in E(Q) by using the map

φ̂ ◦ ψ : C1 −→ E, φ̂ ◦ ψ(z, w) =
(
w2

4z2
,
w(w2 + 2)

8z3

)
;

cf. (X.4.9). Taking the first few primes p ≡ 5 (mod 8), in each case we find points
in C−1(Q), and these give points of infinite order in Ep(Q) as listed in the following
table:

p 5 13 29 37

(x, y)
(
1
4 ,

9
8

) (
9
4 ,

51
8

) (
25
4 , 165

8

) (
22801
900 , 3540799

27000

)

Suppose that we knew, a priori, that the Shafarevich–Tate group X(Ep/Q)
was finite, or even that its 2-primary component was finite. Then the existence
of the Cassels pairing (X.4.14) implies that dim2 X(Ep/Q)[2] is even, and hence
that Ep(Q) has rank 1 for all primes p ≡ 5 (mod 8). This also follows from a con-
jecture of Selmer [226] concerning the difference between the number of “first
and second descents,” and it is also a consequence of the conjecture of Birch and
Swinnerton-Dyer (C.16.5). Bremner and Cassels [26, 27] have verified numerically
that rankEp(Q) = 1 for all such primes less than 20000, and Monsky [182] has
shown that rankEp(Q) = 1 for all primes p ≡ 5 (mod 16).

In order to give the reader an idea of the magnitude of the solutions that may
occur, we mention that for p = 877, the Mordell–Weil group of the elliptic curve

y2 = x3 + 877x

is generated by the 2-torsion point (0, 0) and the point
(

6127760831879473681012

788415358606839002102
, 256256267988926809388776834045513089648669153204356603464786949

788415358606839002103

)
.

Similarly, if p ≡ 3, 15 (mod 16) and if the 2-primary component of X(Ep/Q) is
finite, then (X.6.2) and (X.4.14) imply that Ep(Q) has rank exactly one. Thefact that
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the rank is one for any particular prime p may be verified numerically by searching
for a point in C−2(Q) and C2(Q) respectively. See, for example, the tables in [20]
and [54] and online at [53] and [274].

Remark 6.4. If p ≡ 7, 11 (mod 16), then (X.6.2c) says that Ep(Q) consists of only
two points, while if p ≡ 3, 5, 13, 15 (mod 16), then (X.6.2c) combined with the rea-
sonable conjecture that X(Ep/Q)[2∞] is finite tells us that Ep(Q) ∼= Z/2Z× Z. In
the remaining case, namely p ≡ 1 (mod 8), there are two possibilities. First, Ep(Q)
might have rank 2. This can certainly occur. For example, the curves

y2 = x3 + 73x and y2 = x3 + 89x

both have rank 2, independent points being given by

(
9

16
,
411

64

)
, (36, 222) ∈ E73(Q) and

(
25

16
,
765

64

)
,

(
4

9
,
170

27

)
∈ E89(Q).

Second, Ep(Q) might have rank 0, in which case X(Ep/Q)[2] ∼= (Z/2Z)2. (Note
that rankEp(Q) = 1 is precluded if we assume that X(E/Q) is finite.) The next
proposition gives a fairly general condition under which the second possibility holds.
It also provides our first examples of homogeneous spaces that are everywhere lo-
cally trivial, but have no global rational points.

Proposition 6.5. Let p ≡ 1 (mod 8) be a prime for which 2 is not a quartic residue.
(a) The curves

w2 + 1 = 4pz4, w2 + 2 = 2pz4, w2 + 2pz4 = 2,

have points defined over every completion of Q, but they have no Q-rational
points.

(b) The elliptic curve
Ep : y2 = x3 + px

satisfies

rankEp(Q) = 0 and X(Ep/Q)[2] ∼= (Z/2Z)2.

Remark 6.5.1. Any prime p ≡ 1 (mod 8) can be written as p = A2 + B2

with A,B ∈ Z satisfying AB ≡ 0 (mod 4). A theorem of Gauss, which we prove
later in this section (X.6.6), says that 2 is a quartic residue modulo p if and only
if AB ≡ 0 (mod 8). Thus, for example, 2 is a quartic nonresidue for the primes

17 = 12 + 42, 41 = 52 + 42, 97 = 92 + 42, and 193 = 72 + 122,

so these primes satisfy the conclusion of (X.6.5).

PROOF OF (X.6.5). During the course of proving (X.6.2b), we showed that the
Selmer group S(p)(Ep/Q) ⊂ Q∗/(Q∗)2 is given by {±1,±2,±p,±2p}. Further,
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we showed that −p is the image of the 2-torsion point (0, 0) ∈ Ep(Q). Thus in or-
der to show that X(Ep/Q)[φ] has order 4, it suffices to prove that the homogeneous
spaces C−1, C2, and C−2 have no Q-rational points. These are the three curves listed
in (a), and so, once we prove that they have no Q-rational points, all of (X.6.5) will
follow from (X.6.2). Our proof is based on ideas of Lind and Mordell [150, 41]; see
also [207, 184, 20].

Case I. C±2 : w2 = 2− 2pz4.

Suppose that (z, w) ∈ C±2(Q). Writing z and w in lowest terms, we see that they
necessarily have the form (z, w) = (r/t, 2s/t2), where r, s, t ∈ Z satisfy

±2s2 = t4 − pr4 and gcd(r, s, t) = 1.

We write (a|b) for the Legendre symbol. Let q be an odd prime dividing s. Then
(p|q) = 1, so (q|p) = 1 by quadratic reciprocity. Since also (2|p) = 1, we
see that (s|p) = 1, so (s2|p)4 = 1, i.e., s2 is a quartic residue modulo p. Now
the equation implies that (±2|p)4 = 1. But −1 is always a quartic residue for
primes p ≡ 1 (mod 8), while by assumption 2 is a quartic nonresidue modulo p. This
contradiction proves that C±2(Q) = ∅.

Case II. C−1 : −w2 = 1− 4pz4.

Writing (z, w) ∈ C−1(Q) in (almost) lowest terms as (z, w) = (r/2t, s/2t2), we
have

s2 + 4t4 = pr4 with gcd(r, t) = 1.

(We do not preclude the possibility that r is even.) Since p ≡ 1 (mod 4), there are
integers A ≡ 1 (mod 2) and B ≡ 0 (mod 2) such that

p = A2 +B2.

It is a simple matter to verify the identity

(pr2 + 2Bt2)2 = p(Br2 + 2t2)2 +A2s2,

from which we obtain the factorization

(pr2 + 2Bt2 +As)(pr2 + 2Bt2 −As) = p(Br2 + 2t2)2.

It is not difficult to check that gcd(pr2 + 2Bt2 + As, pr2 + 2Bt2 − As) is ei-
ther a square or twice a square; up to multiplication by 2, it is a square divisor
of gcd(A, s)2. Hence the above factorization implies that there are integers u and v
satisfying

⎡

⎢
⎣

pr2 + 2Bt2 ±As = pu2

pr2 + 2Bt2 ∓As = v2

Br2 + 2t2 = uv

⎤

⎥
⎦ or

⎡

⎢
⎣

pr2 + 2Bt2 ±As = 2pu2

pr2 + 2Bt2 ∓As = 2v2

Br2 + 2t2 = 2uv

⎤

⎥
⎦ .
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Eliminating s from these equations, we obtain two systems of equations:

2pr2 + 4Bt2 = pu2 + v2

Br2 + 2t2 = uv

pr2 + 2Bt2 = pu2 + v2

Br2 + 2t2 = 2uv

We prove later (X.6.6) that the assumptions that 2 is a quartic nonresidue mod-
ulo p and that p ≡ 1 (mod 8) imply that B ≡ 4 (mod 8). Reducing each system
of equations modulo 8, it is now a simple matter to verify that in both cases, any
solution must satisfy r ≡ t ≡ 0 (mod 2). This contradicts our initial assumption
that gcd(r, t) = 1, which completes the proof that C−1(Q) = ∅.

We close this section with the theorem of Gauss describing the quartic character
of 2 that was used in the proof of (X.6.5). The proof that we give is due to Dirich-
let [66]; see also [184].

Proposition 6.6. Let p be a prime satisfying p ≡ 1 (mod 8), and write p as a sum of
two squares, p = A2 +B2. Then

(
2

p

)

4

= (−1)AB/4.

In other words, 2 is a quartic residue modulo p if and only if AB ≡ 0 (mod 8).

PROOF. Using the fact that A2 +B2 ≡ 0 (mod p), we compute

(A+B)(p−1)/2 ≡ (2AB)(p−1)/4 (mod p)

≡ 2(p−1)/4(−1)(p−1)/8A(p−1)/2 (mod p).

Switching A and B if necessary, we may assume that A is odd, and then the fact
that p ≡ 1 (mod 4) implies that

(
A

p

)
=

(
p

A

)
=

(
B2

A

)
= 1.

Hence (
A+B

p

)
= (−1)(p−1)/8

(
2

p

)

4

.

Finally, we observe that
(
A+B

p

)
=

(
p

A+B

)
=

(
2

A+B

)(
2p

A+B

)
=

(
2

A+B

)
= (−1)

(A+B)2−1
8 ,

since the identity

2p = (A+B)2 + (A−B)2 implies that

(
2p

A+B

)
= 1.

Substituting this above yields
(
2

p

)

4

= (−1)
(A+B)2−1

8 − p−1
8 = (−1)

AB
4 .



Exercises 355

Exercises

10.1. Let φ : E/K → E′/K be an isogeny of degree m of elliptic curves defined over an
arbitrary (perfect) field K. Assume that E[φ̂] ⊂ E(K). Generalize (X.1.1) as follows:
(a) Prove that there is a bilinear pairing

b : E′(K)/φ
(
E(K)

)
× E′[φ̂] −→ K(S,m)

defined by
eφ

(
δφ(P ), T

)
= δK

(
b(P, T )

)
.

Here eφ is the generalized Weil pairing (Exercise 3.15) and

δφ : E′(K) → H1(GK̄/K , E[φ]
)

and δK : K∗ → H1(GK̄/K ,μm)

are the usual connecting homomorphisms.
(b) Prove that the pairing in (a) is nondegenerate on the left.
(c) For T ∈ E[φ̂], let fT ∈ K(E′) and gT ∈ K(E) be functions satisfying

div(fT ) = m(T )−m(O) and fT ◦ φ = gmT .

Prove that
b(P, T ) = fT (P ) mod (K∗)m for all P �= O, T .

(d) In particular, if deg(φ) = 2, so E′[φ̂] = {O, T}, then

b(P, T ) = x(P )− x(T ) mod (K∗)2.

We thus recover part of (X.4.9).

10.2. Let K be an arbitrary (perfect) field, let E/K be an elliptic curve, and let C1/K
and C2/K be homogeneous spaces for E/K.
(a) Prove that there exist a homogeneous space C3/K for E/K and a morphism

φ : C1 × C2 → C3

defined over K such that for all p1 ∈ C1, p2 ∈ C2, and P1, P2 ∈ E,

φ(p1 + P1, p2 + P2) = φ(p1, p2) + P1 + P2.

(b) Prove that C3 is uniquely determined, up to equivalence of homogeneous spaces, by C1

and C2.
(c) Prove that

{C1}+ {C2} = {C3},
the sum taking place in WC(E/K).

10.3. Let C/K be a curve of genus one defined over an arbitrary (perfect) field.
(a) Prove that there exists an elliptic curve E/K such that C/K is a homogeneous space

for E/K. (Hint. Use Exercise 3.22 to show that C/K ∈ Twist(E/K). Then find an
element {ξ} ∈ H1

(
GK̄/K ,Aut(E)

)
such that C/K is the homogeneous space for the

twist of E by ξ.)
(b) Prove that E is unique up to K-isomorphism.

10.4. Let K be an arbitrary (perfect) field and let E/K be an elliptic curve.
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(a) Prove that there is a natural action of AutK(E) on WC(E/K) defined by letting an
automorphism α ∈ AutK(E) act on {C/K, μ} ∈ WC(E/K) via

{C/K, μ}α =
{
C/K, μ ◦ (1× α)

}
.

In other words, take the same curve, but define a new action of E on C by the rule

μα(p, P ) = μ(p, αP ).

(b) Conversely, if {C/K, μ} and {C/K, μ′} are elements of WC(E/K), prove that there
exists an α ∈ AutK(E) such that μ′ = μ ◦ (1× α).

(c) Conclude that for a given curve C/K of genus one, there are only finitely many in-
equivalent ways to make C/K into a homogeneous space. In particular, if C satisfies
j(C) �= 0, 1728, then there are at most two. (See also Exercise B.5.)

10.5. Let φ : E/K → E′/K be a separable isogeny of elliptic curves defined over an arbi-
trary (perfect) field K, and let C/K be a homogeneous space for E/K. The finite group E[φ]
acts on C, and we let C′ = C/E[φ] be the quotient curve (cf. Exercise 3.13).
(a) Prove that C′ is a curve of genus one defined over K.
(b) Prove that C′/K is a homogeneous space for E′/K and that the natural map

φ : WC(E/K) → WC(E′/K)

sends {C/K} to {C′/K}.
(c) In particular, if {C/K} ∈ WC(E/K)[φ], then C′ is isomorphic to E′ over K. Prove

that this isomorphism can be chosen so that the natural projection C → C/E[φ] ∼= E′ is
the map φ ◦ θ defined in (X.4.6a).

10.6. WC Over Finite Fields. Let Fq be a finite field with q elements, let C/Fq be a curve
of genus one, and pick any point of C(F̄q) as origin to make C into an elliptic curve.
Let φ : C → C be the qth-power Frobenius map on C.
(a) Prove that there are an endomorphism f ∈ End(C) and a point P0 ∈ C(F̄q) satisfy-

ing φ(P ) = f(P ) + P0.
(b) Prove that f is inseparable, and conclude that there exists a point P1 ∈ C(F̄q) satisfy-

ing (1− f)(P1) = P0.
(c) Prove that φ(P1) = P1, and hence that P1 ∈ C(Fq).
(d) Let E/Fq be an elliptic curve. Prove that WC(E/Fq) = 0.

10.7. WC Over R. Let E/R be an elliptic curve.
(a) Prove that

WC(E/R) =

{
Z/2Z if Δ(E/R) > 0,

0 if Δ(E/R) < 0.

(b) Assuming that Δ(E/R) > 0, find an equation for a homogeneous space representing the
nontrivial element of WC(E/R) in terms of a given Weierstrass equation for E/R.

10.8. Let E/K be an elliptic curve, let m ≥ 2 be an integer, and assume that E[m] ⊂ E(K).
Let v ∈ M0

K be a prime not dividing m. Prove that the restriction map

WC(E/K)[m] −→ WC(E/Kv)[m]

is surjective. (Hint. Show that the map on the H1
(
· , E[m]

)
groups is surjective.)
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10.9. Let E/K be an elliptic curve, let T ∈ E[m], and suppose that the field L = K(T )
has maximal degree, namely [L : K] = m2 − 1. (Note that L/K is generally not a Galois
extension.) Let em denote the Weil pairing and consider the chain of maps

α : E(K)
δ−→H1

(
GK̄/K , E[m]

) res−−→H1
(
GK̄/L, E[m]

)
→ H1(GK̄/L,μm) ∼= L∗/(L∗)m,

ξσ 	→ em(ξσ, T ).

(a) Let fT ∈ L(E) be as in (X.1.1d), i.e.,

div(fT ) = m(T )−m(O) and fT ◦ [m] ∈
(
L(E)∗

)m
.

Prove that
α(P ) = fT (P ) mod (L∗)m.

(b) Prove that for all P ∈ E(K),

NL/K

(
α(P )

)
∈ (K∗)m.

(c) Let S ⊂ ML be the set of places of L containing all archimedean places, all places
dividing m, and all places at which E/L has bad reduction. Show that if P ∈ E(K)
and v ∈ ML with v /∈ S, then

ordv

(
α(P )

)
≡ 0 (mod m).

(d) For m = 2, prove that the kernel of α is exactly 2E(K). Hence in this case there is an
injective homomorphism from E(K)/2E(K) into the group

{
a ∈ L∗/(L∗)2 : NL/K(a) ∈ (K∗)2 and ordv(a) ≡ 0 (mod 2) for all v /∈ S

}

given by the map
P 	−→ x(P )− x(T ).

This map may often be used to compute E(K)/2E(K). (Hint. Expand the quantity
x(P )− x(T ) = r + sx(T ) + tx(T )2 and use the resulting relations on r, s, t ∈ K to
show that P is in 2E(K).)

(e) Use (d) to compute E(Q)/2E(Q) for the curve

E : y2 + y = x3 − x.

(Hint. Let K/Q be the totally real cubic field generated by a root of the polyno-
mial 4x3 − 4x+ 1. Start by showing that K has class number one and that every totally
positive unit in K is a square.)

10.10. Let C/K be a curve of genus one, and suppose that C(Kv) �= ∅ for all v ∈ MK .
Prove that the map

DivK(C) −→ PicK(C)

is surjective. (Hint. Take Galois cohomology of the exact sequence

1 −→ K̄∗ −→ K̄(C)∗ −→ Div(C) −→ Pic(C) −→ 0.

Use Noether’s generalization of Hilbert’s Theorem 90,

H1(GK̄/K , K̄(C)∗
)
= 0,

and the (cohomological version) of the Brauer–Hasse–Noether theorem [288, §9.6], which
says that an element of H2(GK̄/K , K̄∗) is trivial if and only if it is trivial in H2(GK̄v/Kv

, K̄∗
v )

for every v ∈ MK .)
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10.11. Index and Period in WC. Let K be an arbitrary (perfect) field, let E/K be an elliptic
curve, and let C/K be a homogeneous space for E/K. The period of C/K is defined to be
the exact order of {C/K} in WC(E/K), and the index of C/K is the smallest degree of an
extension L/K such that C(L) �= ∅. So for example, (X.3.3) says that the period is equal to 1
if and only if the index is equal to 1.
(a) Prove that the period may also be characterized as the smallest integer m ≥ 1 such that

there exists a point p ∈ C satisfying

pσ − p ∈ E[m] for every σ ∈ GK̄/K .

(b) Prove that the index may also be characterized as the smallest degree among the positive
divisors in DivK(C).

(c) Prove that the period divides the index.
(d) Prove that the period and the index are divisible by the same set of primes.
(e) * Give an example with K = Q showing that the period may be strictly smaller than the

index.
(f) Prove that if K is a number field and if C/K represents an element of X(E/K), then

the period and the index are equal. (Hint. Use (a), (b), (c), and Exercise 10.10.)
(g) * Let K/Qp be a finite extension. Prove that the period and the index are equal.

10.12. Hensel’s Lemma. The following version of Hensel’s lemma is often useful for proving
that a homogeneous space is locally trivial. Let R be a ring that is complete with respect to a
discrete valuation v.
(a) Let f(T ) ∈ R[T ] be a polynomial and a0 ∈ R a value satisfying

v
(
f(a0)

)
> 2v

(
f ′(a0)

)
.

Define a sequence of elements an ∈ R recursively by

an+1 = an − f(an)

f ′(an)
for n = 1, 2, . . . .

Prove that an converges to an element a ∈ R satisfying

f(a) = 0 and v(a− a0) ≥ v

(
f(a0)

f ′(a0)2

)
> 0.

(b) More generally, let F (X1, . . . , XN ) ∈ R[X1, . . . , XN ], and suppose that there are an
index 1 ≤ i ≤ N and a point (a1, . . . , aN ) ∈ RN satisfying

v
(
F (a1, . . . , aN )

)
> 2v

(
∂F

∂Xi
(a1, . . . , aN )

)
.

Prove that F has a root in RN .
(c) Show that the curve

3X3 + 4Y 3 + 5Z3 = 0

in P2 has a point defined over Qp for every prime p.

10.13. Use (X.1.4) to compute E(Q)/2E(Q) for each of the following elliptic curves.
(a) E : y2 = x(x− 1)(x+ 3).
(b) E : y2 = x(x− 12)(x− 36).
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10.14. Use (X.4.9) to compute E(Q)/2E(Q) for each of the following elliptic curves.
(a) E : y2 = x3 + 6x2 + x.
(b) E : y2 = x3 + 14x2 + x.
(c) E : y2 = x3 + 9x2 − x.

10.15. Let E/K be an elliptic curve, let ξ ∈ H1
(
GK̄/K ,Aut(E)

)
, and let Eξ be the twist

of E corresponding to ξ. Let v ∈ MK be a finite place at which E has good reduction.
Prove that Eξ has good reduction at v if and only if ξ is unramified at v. (See (VIII §2)
for the definition of an unramified cocycle. Hint. If the residue characteristic is not 2 or 3,
you can use explicit Weierstrass equations. In general, use the criterion of Néron–Ogg–
Shafarevich (VII.7.1).)

10.16. Let E/K be an elliptic curve, let D ∈ K∗ be such that L = K(
√
D ) is a quadratic

extension, and let ED/K be the twist of E/K given by (X.5.4). Prove that

rankE(L) = rankE(K) + rankED(K).

10.17. Let p ≡ 3 (mod 4) be a prime and let D ∈ F∗
p.

(a) Show directly that the equation

C : v2 = u4 − 4D

has p− 1 solutions (u, v) ∈ Fp × Fp. (Hint. Since p ≡ 3 (mod 4), the map u2 	→ u4 is
an automorphism of (F∗

p)
2.)

(b) Let E/Fp be the elliptic curve

E : y2 = x3 +Dx.

Use the map

φ : C −→ E, φ(u, v) =

(
u2 + v

2
,
u(u2 + v)

2

)
,

to prove that
#E(Fp) = p+ 1.

10.18. Let p be an odd prime. Do a computation analogous to (X.6.2) to determine the Selmer
groups and a bound for the ranks of the following families of elliptic curves E/Q.
(a) E : y2 = x3 − 2px. (The curve with p = 41 has rank 3.)
(b) E : y2 = x3 + p2x.

10.19. Let E/Q be an elliptic curve with j(E) = 0.
(a) Prove that there is a unique sixth-power-free integer D such that E is given by the Weier-

strass equation
E : y2 = x3 +D.

(b) Let p ≡ 2 (mod 3) be a prime not dividing 6D. Prove that

#E(Fp) = p+ 1.

(c) Prove that #E(Q)tors divides 6.
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(d) More precisely, prove that the following list gives a complete description of Etors(Q):

Etors(Q) ∼=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z/6Z if D = 1,

Z/3Z if D �= 1 is a square, or if D = −432,

Z/2Z if D �= 1 is a cube,

1 otherwise.

10.20. Let A be a finite abelian group, and suppose that there exists a bilinear, alternating,
nondegenerate pairing

Γ : A×A −→ Q/Z.

Prove that #A is a perfect square.

10.21. Let E/K be an elliptic curve defined over a field of characteristic not equal to 2 or 3,
fix a Weierstrass equation for E/K, and let c4 and c6 be the usual quantities (III §1) associated
to the equation. Assuming that j(E) �= 0, 1728, we define

γ(E/K) = −c4/c6 ∈ K∗/(K∗)2.

(a) Prove that γ(E/K) is well-defined as an element of K∗/(K∗)2, independent of the
choice of Weierstrass equation for E/K.

(b) Let E′/K be another elliptic curve with j(E′) �= 0, 1728. Prove that E and E′ are
isomorphic over K if and only if j(E) = j(E′) and γ(E/K) = γ(E′/K).

(c) If j(E) = j(E′) �= 0, 1728, prove that E and E′ are isomorphic over the field

K

(√
γ(E/K)

γ(E′/K)

)

.

10.22. Let E/K be an elliptic curve over an arbitrary (perfect) field, let L/K be a finite
Galois extension, and define a trace map

TL/K : E(L) −→ E(K), P 	−→
∑

σ∈GL/K

Pσ.

(a) Prove that TL/K is a homomorphism.
(b) If K is a finite field, prove that TL/K : E(L) → E(K) is surjective.

(c) Assume that [L : K] = 2 and that char(K) �= 2, and write L = K(
√
D ). Fix a Weier-

strass equation for E/K of the form

E : y2 = x3 + ax2 + bx+ c,

and let ED be the quadratic twist of E given by the equation (cf. (X.5.4))

ED : y2 = x3 +Dax2 +D2bx+D3c.

(i) Prove that the kernel of TL/K : E(L) → E(K) is isomorphic to ED(K).
(ii) Prove that the image of TL/K : E(L) → E(K) contains 2E(K).

(iii) Deduce that there are an exact sequence

0 −−−−−→ ED(K) −−−−−→ E(L)
TL/K−−−−−→ E(K) −−−−−→ V −−−−−→ 0

and a surjective homomorphism E(K)/2E(K) � V .
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(iv) Suppose further that K is a number field. Re-prove Exercise 10.16, i.e.,

rankE(L) = rankE(K) + rankED(K).

10.23. Let a ≡ 1 (mod 4) be an integer with the property that p = a2 + 64 is prime. (It is
conjectured, but not known, that there exist infinitely many such primes.) Let Ea/Q be the
elliptic curve

Ea : y2 = x3 + ax2 − 16x.

These are known as Neumann–Setzer curves.
(a) Prove that DEa/Q = (p). More precisely, prove that Ea has split multiplicative reduction

at p and good reduction at all other primes. (N.B. The given Weierstrass equation is not
minimal.)

(b) Perform a two-descent (X.4.9) and prove that

E(Q) ∼= Z/2Z and X(E/Q)[2] = 0.

(c) * Let E/Q be an elliptic curve with the following two properties: (i) E(Q) contains
a 2-torsion point. (ii) E has multiplicative reduction at a single prime p > 17 and good
reduction at all other primes. Prove that p has the form p = a2 + 64 and that E is either
isomorphic or 2-isogenous to the curve Ea.

10.24. Let E/K be an elliptic curve and let m ≥ 1. This exercise describes the Tate pairing

〈 · , · 〉Tate : E(K)/mE(K)×WC(E/K)[m] −→ Br(K),

where Br(K) = H2(GK̄/K , K̄∗) is the Brauer group of K. (This exercise assumes that the
reader is familiar with higher cohomology groups; see for example [9, 233].)

Let P ∈ E(K)/mE(K) and let C ∈ WC(E/K)[m]. We use the Kummer se-
quence (VIII §2)

0 −→ E(K)/mE(K)
δ−−→ H1(GK̄/K , E[m]

) ε−−→ WC(E/K)[m] −→ 0

to push forward the point P by δ and to pull back the homogeneous space C by ε to ob-
tain 1-cocycles

δP : GK̄/K −→ E[m] and ξC : GK̄/K −→ E[m].

We use δP and ξC to define a map

λP,C : GK̄/K ×GK̄/K −→ μm, λP,C(σ, τ) = em
(
δP (σ), ξC(τ)

)
,

where em is the Weil pairing.
(a) Prove that the map λP,C is a 2-cocycle.
(b) Prove that changing either δP or ξC by a 1-coboundary has the effect of changing λP,C

by a 2-coboundary.
(c) Prove that pulling back C to some other element ξ′C changes λP,C by a 2-coboundary.
(d) Conclude that

〈P, ξ〉Tate = cohomology class of λP,C

gives a well-defined pairing

〈 · , · 〉Tate : E(K)/mE(K)×WC(E/K)[m] −→ Br(K).

(e) Prove that the pairing in (d) is bilinear.
(f) * Let K/Qp be a finite extension. A basic result in local class field theory says that

Br(K) ∼= Q/Z; see [233, XII §3, Theorem 2]. Prove in this case that the Tate pairing is
nondegenerate.
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