
Chapter 11
Time–Frequency Analysis and the
Carleson–Hunt Theorem

In this chapter we discuss in detail the proof of the almost everywhere convergence
of the partial Fourier integrals of Lp functions on the line. The proof of this theo-
rem is based on techniques involving both spatial and frequency decompositions.
These techniques are referred to as time–frequency analysis. The underlying goal is
to decompose a given function at any scale as a sum of pieces perfectly localized
in frequency and well localized in space. The action of an operator on each piece
is carefully studied and the interaction between different parts of this action are an-
alyzed. Ideas from combinatorics are employed to organize the different pieces of
the decomposition.

11.1 Almost Everywhere Convergence of Fourier Integrals

In this section we study the proof of one of the most celebrated theorems in Fourier
analysis, Carleson’s theorem on the almost everywhere convergence of Fourier se-
ries of square integrable functions on the circle. The same result is also valid for
functions f on the line if the partial sums of the Fourier series are replaced by the
(partial) Fourier integrals

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ .

The equivalence of these assertions follows from the transference methods discussed
in Chapter 3.

For square-integrable functions f on the line, define the Carleson operator

C ( f )(x) = sup
N>0

∣

∣

(

̂f χ[−N,N]
)∨ ∣
∣= sup

N>0

∣

∣

∣

∣

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ
∣

∣

∣

∣

. (11.1.1)

We note that the operators (̂f χ[a,b])∨ are well defined when −∞≤ a < b ≤ ∞ for f
in L2(R), and thus so is C ( f ). We have the following result concerning C .
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424 11 Time–Frequency Analysis and the Carleson–Hunt Theorem

Theorem 11.1.1. There is a constant C > 0 such that for all square-integrable func-
tions f on the line the following estimate is valid:

∥

∥C ( f )
∥

∥

L2,∞ ≤C
∥

∥ f
∥

∥

L2 .

It follows that for all f in L2(R) we have

lim
N→∞

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ = f (x) (11.1.2)

for almost all x ∈ R.

Proof. Because of the simple identity

∫

|ξ |≤N

̂f (ξ )e2π ixξ dξ =
∫ N

−∞
̂f (ξ )e2π ixξ dξ −

∫ −N

−∞
̂f (ξ )e2π ixξ dξ ,

it suffices to obtain L2 → L2,∞ bounds for the one-sided maximal operators

C1( f )(x) = sup
N>0

∣

∣

∣

∣

∫ N

−∞
̂f (ξ )e2π ixξ dξ

∣

∣

∣

∣

,

C2( f )(x) = sup
N>0

∣

∣

∣

∣

∫ −N

−∞
̂f (ξ )e2π ixξ dξ

∣

∣

∣

∣

.

Once these bounds are obtained, we can use the simple fact that (11.1.2) holds for
Schwartz functions and Theorem 2.1.14 to obtain (11.1.2) for all square-integrable

functions f on the line. Note that ˜C2( f ) = C1(˜f ), where ˜f (x) = f (−x) is the usual
reflection operator. Therefore, it suffices to obtain bounds only for C1. Just as is the
case with C , the operators C1 and C2 are well defined on L2(R).

For a > 0 and y∈R we define the translation operator τy, the modulation operator
Ma, and the dilation operator Da as follows:

τy( f )(x) = f (x− y) ,

Da( f )(x) = a−
1
2 f (a−1x) ,

My( f )(x) = f (x)e2π iyx .

These operators are isometries on L2(R).
We break down the proof of Theorem 11.1.1 into several steps.

11.1.1 Preliminaries

We denote rectangles of area 1 in the (x,ξ ) plane by s, t, u, etc. All rectangles
considered in the sequel have sides parallel to the axes. We think of x as the time
coordinate and of ξ as the frequency coordinate. For this reason we refer to the (x,ξ )
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coordinate plane as the time–frequency plane. The projection of a rectangle s on the
time axis is denoted by Is, while its projection on the frequency axis is denoted by
ωs. Thus a rectangle s is just s = Is ×ωs. Rectangles with sides parallel to the axes
and area equal to one are called tiles.

The center of an interval I is denoted by c(I). Also for a > 0, aI denotes an
interval with the same center as I whose length is a|I|. Given a tile s, we denote by
s(1) its bottom half and by s(2) its upper half defined by

s(1) = Is ×
(

ωs ∩ (−∞,c(ωs)
)

, s(2) = Is ×
(

ωs ∩ [c(ωs),+∞)
)

.

These sets are called semitiles. The projections of these sets on the frequency axes
are denoted by ωs(1) and ωs(2), respectively.

Fig. 11.1 The lower and the
upper parts of a tile s.

A dyadic interval is an interval of the form [m2k,(m+ 1)2k), where k and m are
integers. We denote by D the set of all rectangles I ×ω with I, ω dyadic intervals
and |I| |ω |= 1. Such rectangles are called dyadic tiles. We denote by D the set of all
dyadic tiles.

We fix a Schwartz function ϕ such that ϕ̂ is real, nonnegative, and supported in
the interval [−1/10,1/10]. For each tile s, we introduce a function ϕs as follows:

ϕs(x) = |Is|−
1
2ϕ
(

x− c(Is)
|Is|

)

e2π ic(ωs(1))x . (11.1.3)

This function is localized in frequency near c(ωs(1)). Using the previous notation,
we have

ϕs = Mc(ωs(1))τc(Is)D|Is|(ϕ) .

Observe that

ϕ̂s(ξ ) = |ωs|−
1
2 ϕ̂
(ξ − c(ωs(1))

|ωs|

)

e2π i(c(ωs(1))−ξ )c(Is) , (11.1.4)

from which it follows that ϕ̂s is supported in 1
5ωs(1). Also observe that the functions

ϕs have the same L2(R) norm.
Recall the complex inner product notation for f ,g ∈ L2(R):

〈

f |g
〉

=
∫

R
f (x)g(x)dx . (11.1.5)

Given a nonzero real number ξ , we introduce an operator
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Aξ ( f ) = ∑
s∈D
χωs(2) (ξ )

〈

f |ϕs
〉

ϕs (11.1.6)

initially defined for f in the Schwartz class. We show in the next subsection that
the series in (11.1.6) converges absolutely for f in the Schwartz class and thus Aξ
is well defined on this class. Moreover, we show in Lemma 11.1.2 that Aξ admits
an extension that is L2 bounded, and therefore it can thought of as well defined on
L2(R).

For every integer m, let us denote by Dm the set of all tiles s ∈ D such that
|Is| = 2m. We call these dyadic tiles of scale m. Then

Aξ ( f ) = ∑
m∈Z

Am
ξ ( f ) ,

where
Am
ξ ( f ) = ∑

s∈Dm

χωs(2) (ξ )
〈

f |ϕs
〉

ϕs , (11.1.7)

and observe that for each scale m, the second sum above ranges over all dyadic rect-
angles of a fixed scale whose tops contain the line perpendicular to the frequency
axis at height ξ . The operators Am

ξ are discretized versions of the multiplier operator

f �→
(

̂f χ(−∞,ξ ]
)∨

. Indeed, the Fourier transform of Am
ξ ( f ) is supported in the fre-

quency projection of the lower part s(1) of the dyadic tiles s that appear in (11.1.7).
But the sum in (11.1.7) is taken over all dyadic tiles s whose frequency projection
of the upper part s(2) contains ξ . So the Fourier transform of Am

ξ ( f ) is supported

in (−∞,ξ ]. On the other hand, summing over all s in (11.1.7) yields essentially the
identity operator; cf. Exercise 11.1.9. Therefore, Am

ξ can be viewed as the “part”
of the identity operator whose frequency multiplier consists of the function χ(−∞,ξ ]
instead of the function 1. As m becomes larger, we obtain a better and better approx-
imation to this multiplier. This heuristic explanation motivates the introduction and
study of the operators Am

ξ and Aξ .

Lemma 11.1.2. For any fixed ξ , the operators Am
ξ are bounded on L2(R) uniformly

in m and ξ ; moreover, the operator Aξ is L2 bounded uniformly in ξ .

Proof. We make a few observations about the operators Am
ξ . First recall that the

adjoint of an operator T is uniquely defined by the identity

〈

T ( f ) |g
〉

=
〈

f |T ∗(g)
〉

for all f and g. Observe that Am
ξ are self-adjoint operators, meaning that (Am

ξ )∗ = Am
ξ .

Moreover, we claim that if m �= m′, then

Am′
ξ (Am

ξ )∗ = (Am′
ξ )∗Am

ξ = 0 .

Indeed, given f and g we have
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〈

(Am′
ξ )∗Am

ξ ( f ) |g
〉

=
〈

Am
ξ ( f ) |Am′

ξ (g)
〉

(11.1.8)

= ∑
s∈Dm

∑
s′∈Dm′

〈

f |ϕs
〉〈

g |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ ) .

Suppose that
〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ ) is nonzero. Then

〈

ϕs |ϕs′
〉

is also nonzero,

which implies that ωs(1) and ωs′(1) intersect. Also, the function χωs(2) (ξ )χωs′(2)
(ξ )

is nonzero; hence ωs(2) and ωs′(2) must intersect. Thus the dyadic intervals ωs and
ωs′ are not disjoint, and one must contain the other. If ωs were properly contained
in ωs′ , then it would follow that ωs is contained in ωs′(1) or in ωs′(2). But then either
ωs(1) ∩ωs′(1) or ωs(2) ∩ωs′(2) would have to be empty, which does not happen, as
observed. It follows that if

〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ ) is nonzero, then ωs = ωs′ ,

which is impossible if m �= m′. Thus the expression in (11.1.8) has to be zero.
We first discuss the boundedness of each operator Am

ξ . We have

∥

∥Am
ξ ( f )

∥

∥

2
L2 = ∑

s∈Dm

∑
s′∈Dm

〈

f |ϕs
〉〈

f |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ )

= ∑
s∈Dm

∑
s′∈Dmωs′=ωs

〈

f |ϕs
〉〈

f |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2)
(ξ )

≤ ∑
s∈Dm

∑
s′∈Dmωs′=ωs

∣

∣

〈

f |ϕs
〉∣

∣

2χωs(2) (ξ )
∣

∣

〈

ϕs |ϕs′
〉∣

∣

≤C1 ∑
s∈Dm

∣

∣

〈

f |ϕs
〉∣

∣

2χωs(2) (ξ ) , (11.1.9)

where we used an earlier observation about s and s′, the Cauchy–Schwarz inequality,
and the fact that

∑
s′∈Dmωs′=ωs

∣

∣

〈

ϕs |ϕs′
〉∣

∣≤C ∑
s′∈Dmωs′=ωs

(

1 +
dist (Is, Is′)

2m

)−10

≤C1 ,

which follows from the result in Appendix K.1. To estimate (11.1.9), we use that

∣

∣

〈

f |ϕs
〉∣

∣≤ C2

∫

R
| f (y)| |Is|−

1
2

(

1 +
|y− c(Is)|

|Is|

)−10

dy

= C3 |Is|
1
2

∫

R
| f (y)|

(

1 +
|y− z|
|Is|

)−10 dy
|Is|

≤ C4 |Is|
1
2 M( f )(z),

for all z ∈ Is, in view of Theorem 2.1.10. Since the preceding estimate holds for all
z ∈ Is, it follows that
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∣

∣

〈

f |ϕs
〉∣

∣

2 ≤ (C3)2|Is| inf
z∈Is

M( f )(z)2 ≤ (C3)2
∫

Is
M( f )(x)2 dx. (11.1.10)

Next we observe that the rectangles s ∈ Dm with the property that ξ ∈ ωs(2) are all
disjoint. This implies that the corresponding time intervals Is are also disjoint. Thus,
summing (11.1.10) over all s ∈ Dm with ξ ∈ ωs(2), we obtain that

∑
s∈Dm

∣

∣

〈

f |ϕs
〉∣

∣

2χωs(2) (ξ ) ≤ (C3)2 ∑
s∈Dm

χωs(2) (ξ )
∫

Is
M( f )(x)2 dx

≤ (C3)2
∫

R
M( f )(x)2 dx,

which establishes the required claim using the boundedness of the Hardy–Littlewood
maximal operator M on L2(R).

Finally, we discuss the boundedness of Aξ = ∑m∈Z Am
ξ . For every fixed m ∈ Z,

the dyadic tiles that appear in the sum defining Am
ξ ( f ) have the form

s = [k2m,(k + 1)2m)× [�2−m,(�+ 1)2−m) ,

where (�+ 1
2 )2−m ≤ ξ < (�+ 1)2−m. Thus � = [2mξ ], and since ϕ̂s is supported in

the lower part of the dyadic tile s, we may replace f by fm, where

̂fm = ̂f χ[2−m[2mξ ],2−m([2mξ ]+ 1
2 ))

As already observed, we have
〈

Am
ξ ( f ) |Am′

ξ ( f )
〉

= 0 whenever m �= m′. Conse-
quently,

∥

∥ ∑
m∈Z

Am
ξ ( f )

∥

∥

2
L2 = ∑

m∈Z

∥

∥Am
ξ ( f )

∥

∥

2
L2

= ∑
m∈Z

∥

∥Am
ξ ( fm)

∥

∥

2
L2

≤ C4 ∑
m∈Z

∥

∥ fm
∥

∥

2
L2

= C4 ∑
m∈Z

∥

∥̂fm
∥

∥

2
L2

≤ C4
∥

∥ f
∥

∥

2
L2 ,

since the supports of ̂fm are disjoint for different values of m ∈ Z. �

11.1.2 Discretization of the Carleson Operator

We let h ∈ S (R), ξ ∈ R \ {0}, and for each m ∈ Z, y,η ∈ R, and λ ∈ [0,1] we
introduce the operators
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Bm
ξ ,y,η,λ (h) = ∑

s∈Dm

χωs(2) (2
−λ (ξ +η))

〈

D2λ τyMη (h) |ϕs
〉

M−ητ−yD2−λ (ϕs) .

It is not hard to see that for all x ∈ R and λ ∈ [0,1] we have

Bm
ξ ,y,η,λ (h)(x) = Bm

ξ ,y+2m−λ ,η,λ (h)(x) = Bm
ξ ,y,η+2−m+λ ,λ (h)(x) ;

in other words, the function (y,η) �→ Bm
ξ ,y,η,λ (h)(x) is periodic in R2 with period

(2m−λ ,2−m+λ ). See Exercise 11.1.1.
Using Exercise 11.1.2, we obtain that for |m| large (with respect to ξ ) we have
∣

∣

∣

∣
∑

s∈Dm

χωs(2) (2
−λ (ξ +η))

〈

D2λ τyMη (h) |ϕs
〉

M−ητ−yD2−λ (ϕs)(x)
∣

∣

∣

∣

≤ Ch min(2m,1) ∑
s∈Dm

χωs(2) (2
−λ (ξ +η))2−m/2

∣

∣

∣ϕ
(x + y− c(Is)

2m−λ

)∣

∣

∣

≤ Ch min(2m/2,2−m/2)∑
k∈Z

∣

∣

∣ϕ
(x + y− k2m

2m−λ

)∣

∣

∣

≤ Ch min(2m/2,2−m/2) ,

since the last sum is seen easily to converge to some quantity that remains bounded
in x, y, η , and λ . It follows that for h ∈ S (R) we have

sup
x∈R

sup
y∈R

sup
η∈R

sup
0≤λ≤1

∣

∣Bm
ξ ,y,η,λ (h)(x)

∣

∣≤Ch min(2m/2,2−m/2) . (11.1.11)

Using Exercise 11.1.3 and the periodicity of the functions Bm
ξ ,y,η,λ (h), we conclude

that the averages
1

4KL

∫ L

−L

∫ K

−K

∫ 1

0
Bm
ξ ,y,η,λ (h) dλ dydη

converge pointwise to some Πm
ξ (h) as K,L → ∞. Estimate (11.1.11) implies the

uniform convergence for the series ∑
m∈Z

Bm
ξ ,y,η,λ (h) and therefore

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
M−ητ−yD2−λA ξ+η

2λ
D2λτyMη(h)dλ dydη (11.1.12)

= lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑

m∈Z
Bm
ξ ,y,η,λ (h) dλ dydη

= ∑
m∈Z

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
Bm
ξ ,y,η,λ (h) dλ dydη

= ∑
m∈Z
Πm
ξ (h) .
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We now make a few observations about the operator Πξ defined on S (R) in terms
of the expression in (11.1.12), that is:

Πξ (h) = ∑
m∈Z
Πm
ξ (h) .

First we observe that in view of Lemma 11.1.2 and Fatou’s lemma, we have that
Πξ is bounded on L2 uniformly in ξ . Next we observe that Πξ commutes with all
translations τz for z ∈ R. To see this, we use the fact that τ−zM−η = e−2π iηzM−ητ−z

to obtain

∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

D2λ τyMητz(h) |ϕs
〉

τ−zM−ητ−yD2−λ (ϕs)

= ∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

h |τ−zM−ητ−yD2−λ (ϕs)
〉

τ−zM−ητ−yD2−λ (ϕs)

= ∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

h |M−ητ−y−zD2−λ (ϕs)
〉

M−ητ−y−zD2−λ (ϕs) .

Recall that τ−zΠm
ξ τ

z(h) is equal to the limit of the averages of the preceding ex-
pressions over all (y,η ,λ ) ∈ [−K,K]× [−L,L]× [0,1]. But in view of the previous
identity, this is equal to the limit of the averages of the expressions

∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

D2λ τy′Mη(h) |ϕs
〉

M−ητ−y′D2−λ (ϕs) (11.1.13)

over all (y′,η ,λ ) ∈ [−K + z,K + z]× [−L,L]× [0,1]. Since (11.1.13) is periodic
in (y′,η), it follows that its average over the set [−K + z,K + z]× [−L,L]× [0,1] is
equal to its average over the set [−K,K]× [−L,L]× [0,1]. Taking limits as K,L→∞,
we obtain the identity τ−zΠm

ξ τ
z(h) = Πm

ξ (h). Summing over all m ∈ Z, it follows

that τ−zΠξτz(h) =Πξ (h).
A similar argument using averages over shifted rectangles of the form [−K,K]×

[−L+θ ,L+θ ] yields the identity

M−θΠξ+θMθ =Πξ (11.1.14)

for all ξ ,θ ∈ R. The details are left to the reader. Next, we claim that the opera-
tor M−ξΠξMξ commutes with dilations D2a

, a ∈ R. First we observe that for all
integers k we have

Aξ (h) = D2−k
A2−kξD2k

(h) , (11.1.15)

which is simply saying that Aξ is well behaved under change of scale. This identity
is left as an exercise to the reader. Identity (11.1.15) may not hold for noninteger
k, and this is exactly why we have averaged over all dilations 2λ , 0 ≤ λ ≤ 1, in
(11.1.12).

Let us denote by [a] the integer part of a real number a. Using the identities
DbMη = Mη/bDb and Dbτz = τbzDb, we obtain
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D2−a
M−(ξ+η)τ−yD2−λA ξ+η

2λ
D2λ τyMξ+ηD2a

(11.1.16)

=M−2a(ξ+η)τ−2−ayD2−(a+λ)
A ξ+η

2λ
D2a+λ

τ2−ayM2a(ξ+η)

=M−2a(ξ+η)τ−y′D2−λ
′
D2−[a+λ ]

A 2a(ξ+η)

2λ ′ 2[a+λ ]
D2[a+λ ]

D2λ
′
τy′M2a(ξ+η)

=M−2aξM−η ′τ−y′D2−λ
′
A 2aξ+2aη

2λ ′
D2λ

′
τy′Mη ′M2aξ

=M−ξM−θ(M−η ′τ−y′D2−λ
′
A ξ+θ+η′

2λ ′
D2λ

′
τy′Mη ′)MθMξ , (11.1.17)

where we set y′ = 2−ay, η ′ = 2aη , λ ′ = a + λ − [a + λ ], and θ = (2a − 1)ξ . The
average of (11.1.16) over all (y,η ,λ ) in [−K,K]× [−L,L]× [0,1] converges to the
operator D2−a

M−ξΠξMξD2a
as K,L → ∞. But this limit is equal to the limit of

the averages of the expression in (11.1.17) over all (y′,η ′,λ ′) in [−2−aK,2−aK]×
[−2aL,2aL]× [0,1], which is

M−ξM−θΠξ+θMθMξ .

Using the identity (11.1.14), we obtain that

D2−a
M−ξΠξMξD2a

= M−ξΠξMξ ,

saying that the operator M−ξΠξMξ commutes with dilations.

Next we observe that if ̂h is supported in [0,∞), then M−ξΠξMξ (h) = 0. This is
a consequence of the fact that the inner products

〈

D2λ τyMηMξ (h) |ϕs
〉

=
〈

Mξ (h) |M−ητ−yD2−λ (ϕs)
〉

vanish, since the Fourier transform of τ−zM−ητ−yD2−λ ϕs is supported in the set

(−∞,2λ c(ωs(1))−η + 2λ
10 |ωs|), which is disjoint from the interval (ξ ,+∞) when-

ever 2−λ (ξ +η) ∈ ωs(2). Finally, we observe that Πξ is a positive semidefinite op-
erator, that is, it satisfies

〈

Πξ (h) |h
〉

≥ 0 . (11.1.18)

This follows easily from the fact that the inner product in (11.1.18) is equal to

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑
s∈D
χωs(2)

( ξ+η
2λ

)∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣

2
dλ dydη . (11.1.19)

This identity also implies that Πξ is not the zero operator; indeed, notice that

∑
s∈D0

χωs(2)

( ξ+η
2λ

)∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣

2 =
〈

h
∣

∣B0
ξ ,y,η,λ (h)

〉
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is periodic with period (2−λ ,2λ ) in (y,η), and consequently the limit in (11.1.19)
is at least as big as

∫ 2λ

0

∫ 2−λ

0

∫ 1

0
∑

s∈D0

χωs(2)

( ξ+η
2λ

)∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣

2
dλ dydη

(cf. Exercise 11.1.3). Since we can always find a Schwartz function h and a dyadic

tile s such that
〈

D2λ τyMη (h) |ϕs
〉

is not zero for (y,η ,λ ) near (0,0,0), it follows
that the expression in (11.1.19) is strictly positive for some function h. The same
is valid for the inner product in (11.1.18); hence the operators and M−ξΠξMξ are
nonzero for every ξ .

Let us summarize what we have already proved: The operator M−ξΠξMξ is
nonzero, is bounded on L2(R), commutes with translations and dilations, and van-
ishes when applied to functions whose Fourier transform is supported in the positive
semiaxis [0,∞). In view of Exercise 4.1.11, it follows that for some constant cξ �= 0
we have

M−ξΠξMξ (h)(x) = cξ

∫ 0

−∞
̂h(η)e2π ixη dη ,

which identifies Πξ with the convolution operator whose multiplier is the function
cξ χ(−∞,ξ ]. Using the identity (11.1.14), we obtain

cξ+θ = cξ

for all ξ and θ , saying that cξ does not depend on ξ . We have therefore proved that
for all Schwartz functions h the following identity is valid:

Πξ (h) = c
(

̂hχ(−∞,ξ ]
)∨ (11.1.20)

for some fixed nonzero constant c. This completely identifies the operator Πξ . By
density it follows that

C1( f ) =
1
|c| sup

ξ>0
|Πξ ( f )| (11.1.21)

for all f ∈⋃1≤p<∞Lp(R).

11.1.3 Linearization of a Maximal Dyadic Sum

Our goal is to show that there exists a constant C > 0 such that for all f ∈ L2(R) we
have

∥

∥ sup
ξ>0

|Aξ ( f )|
∥

∥

L2,∞(R) ≤C
∥

∥ f
∥

∥

L2(R) . (11.1.22)

Once (11.1.22) is established, averaging yields the same conclusion for the operator
f �→ supξ>0 |Πξ ( f )|, establishing the required bound for C1. Let us describe this
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averaging argument. Identity (11.1.12) gives

Πξ ( f ) = lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
Gξ ,y,η,λ ( f )dλ dydη ,

where
Gξ ,y,η,λ ( f ) = M−ητ−yD2−λA ξ+η

2λ
D2λ τyMη ( f ) .

This, in turn, implies

sup
ξ∈R

|Πξ ( f )| ≤ liminf
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
sup
ξ∈R

|Gξ ,y,η,λ ( f )|dλ dydη . (11.1.23)

We now take the L2,∞ quasinorms of both sides, and we use Fatou’s lemma for weak
L2 [Exercise 1.1.12(d)]. We thus reduce the estimate for the operator supξ>0 |Πξ ( f )|
to the corresponding estimate for supξ>0 |Aξ ( f )|. In this way we obtain the L2,∞

boundedness of supξ>0 |Πξ ( f )| and therefore that of C1 in view of identity (11.1.21).
Matters are now reduced to the study of the discretized maximal operator

supξ>0 |Aξ ( f )| and, in particular, to the proof of estimate (11.1.22). It will be conve-
nient to study the maximal operator supξ>0 |Aξ ( f )| via a linearization. Here is how
this is achieved. Given f ∈ L2(R), we select a measurable real-valued function1

Nf : R → R+ such that for all x ∈ R we have

sup
ξ>0

|Aξ ( f )(x)| ≤ 2 |ANf (x)( f )(x)| .

For a general measurable function N : R → R+, we define a linear operator DN by
setting for f ∈ L2(R),

DN( f )(x) = AN(x)( f )(x) = ∑
s∈D

(χωs(2) ◦N)(x)
〈

f |ϕs
〉

ϕs(x) , (11.1.24)

where the sum on the right converges in L2(R) [and also uniformly for f ∈ S (R)].
To prove (11.1.22), it suffices to show that there exists C > 0 such that for all

f ∈ L2(R) and all measurable functions N : R → R+ we have
∥

∥DN( f )
∥

∥

L2,∞ ≤C
∥

∥ f
∥

∥

L2 . (11.1.25)

Applying (11.1.25) to the measurable function Nf and using the estimate

sup
ξ>0

|Aξ ( f )| ≤ 2DNf ( f )

yields the required conclusion for the maximal dyadic sum operator supξ>0 |Aξ ( f )|
and thus for C1( f ).

1 The range ξ > 0 may be replaced by a finite subset of the positive rationals by density; in this
case Nf could be taken to be the point ξ at which the supremum is attained.
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To justify certain algebraic manipulations we fix a finite subset P of D and we
define

DN,P( f )(x) = ∑
s∈P

(χωs(2) ◦N)(x)
〈

f |ϕs
〉

ϕs(x) . (11.1.26)

To prove (11.1.25) it suffices to show that there exists a C > 0 such that for all
f ∈ L2(R), all finite subsets P of D, and all real-valued measurable functions N on
the line we have

∥

∥DN,P( f )
∥

∥

L2,∞ ≤C
∥

∥ f
∥

∥

L2 . (11.1.27)

The important point is that the constant C in (11.1.27) is independent of f , P, and
the measurable function N.

To prove (11.1.27) we use duality. In view of the results of Exercises 1.4.12(c)
and 1.4.7, it suffices to prove that for all measurable subsets E of the real line with
finite measure we have
∣

∣

∣

∣

∫

E
DN,P( f )dx

∣

∣

∣

∣

=
∣

∣

∣∑
s∈P

〈

(χωs(2) ◦N)ϕs,χE
〉〈

ϕs | f
〉

∣

∣

∣≤C|E| 1
2
∥

∥ f
∥

∥

L2 . (11.1.28)

We obtain estimate (11.1.28) as a consequence of

∑
s∈P

∣

∣

〈

(χωs(2) ◦N)ϕs,χE
〉〈

f |ϕs
〉∣

∣≤C|E| 1
2
∥

∥ f
∥

∥

L2 (11.1.29)

for all f in L2, all measurable functions N, all measurable sets E of finite measure,
and all finite subsets P of D. It is estimate (11.1.29) that we shall concentrate on.

11.1.4 Iterative Selection of Sets of Tiles with Large Mass and
Energy

We introduce a partial order in the set of dyadic tiles that provides a way to organize
them. In this section, dyadic tiles are simply called tiles.

Definition 11.1.3. We define a partial order < in the set of dyadic tiles D by setting

s < s′ ⇐⇒ Is ⊆ Is′ and ωs′ ⊆ ωs .

If two tiles s,s′ ∈ D intersect, then we must have either s < s′ or s′ < s. Indeed,
both the time and frequency components of the tiles must intersect; then either Is ⊆
Is′ or Is′ ⊆ Is. In the first case we must have |ωs| ≥ |ωs′ |, thus ωs′ ⊆ ωs, which gives
s < s′, while in the second case a similar argument gives s′ < s. As a consequence of
this observation, if R0 is a finite set of tiles, then all maximal elements of R0 under
< must be disjoint sets.

Definition 11.1.4. A finite set of tiles P is called a tree if there exists a tile t ∈ P such
that all s ∈ P satisfy s < t. We call t the top of P and we denote it by t = top(P).
Observe that the top of a tree is unique.
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We denote trees by T, T′, T1, T2, and so on.
We observe that every finite set of tiles P can be written as a union of trees whose

tops are maximal elements. Indeed, consider all maximal elements of P under the
partial order <. Then every nonmaximal element s of P satisfies s < t for some
maximal element t ∈ P, and thus it belongs to a tree with top t.

Tiles can be written as a union of two semitiles Is ×ωs(1) and Is ×ωs(2). Since
tiles have area 1, semitiles have area 1/2.

Definition 11.1.5. A tree T is called a 1-tree if

ωtop(T)(1) ⊆ ωs(1)

all s ∈ T. A tree T′ is called a 2-tree if for all s ∈ T′ we have

ωtop(T′)(2) ⊆ ωs(2) .

We make a few observations about 1-trees and 2-trees. First note that every tree
can be written as the union of a 1-tree and a 2-tree, and the intersection of these
is exactly the top of the tree. Also, if T is a 1-tree, then the intervals ωtop(T)(2) and
ωs(2) are disjoint for all s ∈ T, and similarly for 2-trees. See Figure 11.2.

Fig. 11.2 A tree of seven
tiles including the darkened
top. The top together with the
three tiles on the right forms a
1-tree, while the top together
with the three tiles on the left
forms a 2-tree.

Definition 11.1.6. Let N : R → R+ be a measurable function, let s ∈ D, and let E
be a set of finite measure. Then we introduce the quantity
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M (E;{s}) =
1
|E| sup

u∈D
s<u

∫

E∩N−1[ωu]

|Iu|−1 dx

(1 + |x−c(Iu)|
|Iu| )10

.

We call M (E;{s}) the mass of E with respect to {s}. Given a subset P of D, we
define the mass of E with respect to P as

M (E;P) = sup
s∈P

M (E;{s}) .

We observe that the mass of E with respect to any set of tiles is at most

1
|E|

∫ +∞

−∞

dx
(1 + |x|)10 ≤ 1

|E| .

Definition 11.1.7. Given a finite subset P of D and a function f in L2(R), we intro-
duce the quantity

E ( f ;P) =
1

∥

∥ f
∥

∥

L2

sup
T

(

1
|Itop(T)| ∑s∈T

∣

∣

〈

f |ϕs
〉∣

∣

2
) 1

2

,

where the supremum is taken over all 2-trees T contained in P. We call E ( f ;P) the
energy of the function f with respect to the set of tiles P.

We now state three important lemmas which we prove in the remaining three
subsections, respectively.

Lemma 11.1.8. There exists a constant C1 such that for any measurable function
N : R → R+, for any measurable subset E of the real line with finite measure, and
for any finite set of tiles P there is a subset P′ of P such that

M (E;P\P′) ≤ 1
4
M (E;P)

and P′ is a union of trees T j satisfying

∑
j

|Itop(T j)| ≤
C1

M (E;P)
. (11.1.30)

Lemma 11.1.9. There exists a constant C2 such that for any finite set of tiles P and
for all functions f in L2(R) there is a subset P′′ of P such that

E ( f ;P\P′′) ≤ 1
2

E ( f ;P)

and P′′ is a union of trees T j satisfying

∑
j

|Itop(T j)| ≤
C2

E ( f ;P)2 . (11.1.31)
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Lemma 11.1.10. (The basic estimate) There is a finite constant C3 such that for all
trees T, all functions f in L2(R), for any measurable function N : R → R+, and for
all measurable sets E we have

∑
s∈T

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣

≤C3 |Itop(T)|E ( f ;T)M (E;T)
∥

∥ f
∥

∥

L2 |E| .
(11.1.32)

In the rest of this subsection, we conclude the proof of Theorem 11.1.1 assuming
Lemmas 11.1.8, 11.1.9, and 11.1.10.

Given a finite set of tiles P, a measurable set E of finite measure, a measurable
function N : R → R+, and a function f in L2(R), we find a very large integer n0

such that

E ( f ;P) ≤ 2n0 ,

M (E;P) ≤ 22n0 .

We shall construct by decreasing induction a sequence of pairwise disjoint sets

Pn0 , Pn0−1, Pn0−2, Pn0−3, . . .

such that
n0
⋃

j=−∞
P j = P (11.1.33)

and such that the following properties are satisfied:

(1) E ( f ;P j) ≤ 2 j+1 for all j ≤ n0;

(2) M (E;P j) ≤ 22 j+2 for all j ≤ n0;

(3) E
(

f ;P\ (Pn0 ∪·· ·∪P j)
)

≤ 2 j for all j ≤ n0;

(4) M
(

E;P\ (Pn0 ∪·· ·∪P j)
)

≤ 22 j for all j ≤ n0;

(5) P j is a union of trees T jk such that for all j ≤ n0 we have

∑
k

|Itop(T jk)| ≤C0 2−2 j ,

where C0 = C1 +C2 and C1 and C2 are the constants that appear in Lemmas
11.1.8 and 11.1.9, respectively.

Assume momentarily that we have constructed a sequence {P j} j≤n0 with the
described properties. Then to obtain estimate (11.1.29) we use (1), (2), (5), the ob-
servation that the mass of any set of tiles is always bounded by |E|−1, and Lemma
11.1.10 to obtain
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∑
s∈P

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣

= ∑
j
∑

s∈P j

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2) ]
|ϕs
〉∣

∣

≤ ∑
j
∑
k
∑

s∈T jk

∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣

≤ C3∑
j
∑
k

|Itop(T jk)|E ( f ;T jk)M (E;T jk)
∥

∥ f
∥

∥

L2 |E|

≤ C3∑
j
∑
k

|Itop(T jk)|2
j+1 min(|E|−1,22 j+2)

∥

∥ f
∥

∥

L2 |E|

≤ C3∑
j

C02−2 j2 j+1 min(|E|−1,22 j+2)
∥

∥ f
∥

∥

L2 |E|

≤ 8C0C3∑
j

min(2− j|E|− 1
2 ,2 j|E| 1

2 )
∥

∥ f
∥

∥

L2 |E|
1
2

≤ C |E| 1
2
∥

∥ f
∥

∥

L2 .

This proves estimate (11.1.29).
It remains to construct a sequence of disjoint sets P j satisfying properties (1)–(5).

The selection of these sets is based on decreasing induction. We start the induction
at j = n0 by setting Pn0 = /0. Then (1), (2), and (5) are clearly satisfied, while

E ( f ;P\Pn0) = E ( f ;P) ≤ 2n0 ,

M (E;P\Pn0) = M (E;P) ≤ 22n0 ;

hence (3) and (4) are also satisfied for Pn0 .
Suppose we have selected pairwise disjoint sets Pn0 , Pn0−1, . . . ,Pn for some n <

n0 such that (1)–(5) are satisfied for all j ∈ {n0,n0 −1, . . . ,n}. We construct a set of
tiles Pn−1 disjoint from all P j with j ≥ n such that (1)–(5) are satisfied for j = n−1.

We define first an auxiliary set P′
n−1. If M

(

E;P\ (Pn0 ∪·· · ∪Pn)
)

≤ 22(n−1) set
P′

n−1 = /0. If M
(

E;P \ (Pn0 ∪ ·· · ∪Pn)
)

> 22(n−1) apply Lemma 11.1.8 to find a
subset P′

n−1 of P\ (Pn0 ∪·· ·∪Pn) such that

M
(

E;P\ (Pn0 ∪·· ·∪Pn ∪P′
n−1)

)

≤ 1
4

M
(

E;P\ (Pn0 ∪·· ·∪Pn)
)

≤ 22n

4
= 22(n−1)

[by the induction hypothesis (4) with j = n] and P′
n−1 is a union of trees T′

k satisfying

∑
k

|Itop(T′
k)
| ≤C1 M

(

f ;P\ (Pn0 ∪·· ·∪Pn)
)−1 ≤C1 2−2(n−1) . (11.1.34)

Likewise, if E
(

f ;P\(Pn0 ∪·· ·∪Pn)
)

≤ 2n−1 set P′′
n−1 = /0; otherwise, apply Lemma

11.1.9 to find a subset P′′
n−1 of P\ (Pn0 ∪·· ·∪Pn) such that

E
(

f ;P\ (Pn0 ∪·· ·∪Pn ∪P′′
n−1)

)

≤ 1
2

E
(

f ;P\ (Pn0 ∪·· ·∪Pn)
)

≤ 1
2

2n = 2n−1



11.1 Almost Everywhere Convergence of Fourier Integrals 439

[by the induction hypothesis (3) with j = n] and P′′
n−1 is a union of trees T′′

k satisfy-
ing

∑
k

|Itop(T′′
k )| ≤C2 E

(

f ;P\ (Pn0 ∪·· ·∪Pn)
)−2 ≤C2 2−2(n−1). (11.1.35)

Whether the sets P′
n−1 and P′′

n−1 are empty or not, we note that

M
(

E;P\ (Pn0 ∪·· ·∪Pn ∪P′
n−1)

)

≤ 22(n−1) , (11.1.36)

E
(

f ;P\ (Pn0 ∪·· ·∪Pn ∪P′′
n−1)

)

≤ 2n−1 . (11.1.37)

We set Pn−1 = P′
n−1

⋃

P′′
n−1, and we verify properties (1)–(5) for j = n−1. Since

Pn−1 is contained in P\ (Pn0 ∪·· ·∪Pn) we have

E ( f ;Pn−1) ≤ E ( f ;P\ (Pn0 ∪·· ·∪Pn) ≤ 2n = 2(n−1)+1 ,

where the last inequality is a consequence of the induction hypothesis (3) for j = n;
thus (1) holds with j = n−1. Likewise,

M (E;Pn−1) ≤ M (E;P\ (Pn0 ∪·· ·∪Pn) ≤ 22n = 22(n−1)+2

in view of the induction hypothesis (4) for j = n; thus (2) holds with j = n−1.
To prove (3) with j = n− 1 notice that P \ (Pn0 ∪ ·· · ∪Pn ∪Pn−1) is contained

in P \ (Pn0 ∪ ·· · ∪Pn ∪P′′
n−1), and the latter has energy at most 2n−1 by (11.1.37).

To prove (4) with j = n− 1 note that P \ (Pn0 ∪ ·· · ∪Pn ∪ Pn−1) is contained in
P \ (Pn0 ∪ ·· · ∪ Pn ∪ P′

n−1) and the latter has mass at most 22(n−1) by (11.1.36).
Finally, adding (11.1.34) and (11.1.35) yields (5) for j = n−1 with C0 = C1 +C2.

Pick j ∈ Z with 0 < 22 j < mins∈P M (E;{s}). Then M
(

E;P\(Pn0 ∪·· ·∪P j)
)

=
0, and since the only set of tiles with zero mass is the empty set, we conclude that
(11.1.33) holds. It also follows that there exists an n1 such that for all n≤ n1, Pn = /0.
The construction of the P j’s is now complete.

11.1.5 Proof of the Mass Lemma 11.1.8

Proof. Given a finite set of tiles P, we set μ = M (E;P) to be the mass of P. We
define

P′ = {s ∈ P : M (E;{s}) > 1
4μ}

and we observe that M (E;P \P′) ≤ 1
4μ . We now show that P′ is a union of trees

whose tops satisfy (11.1.30).
It follows from the definition of mass that for each s ∈ P′, there is a tile u(s) ∈ D

such that u(s) > s and
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1
|E|

∫

E∩N−1[ωu(s) ]

|Iu(s)|−1 dx

(1 +
|x−c(Iu(s))|

|Iu(s) |
)10

>
μ
4

. (11.1.38)

Let U = {u(s) : s ∈ P′}. Also, let Umax be the subset of U containing all maximal
elements of U under the partial order of tiles <. Likewise define P′

max as the set of
all maximal elements in P′. Tiles in P′ can be grouped in trees T j = {s ∈ P′ : s < t j}
with tops t j ∈ P′

max. Observe that if t j < u and t j′ < u for some u ∈ Umax, then ωt j

and ωt j′ intersect, and since t j and t j′ are disjoint sets, it follows that It j and It j′ are
disjoint subsets of Iu. Consequently, we have

∑
j
|It j | = ∑

u∈Umax

∑
j: t j<u

|It j | ≤ ∑
u∈Umax

|Iu| .

Therefore, estimate (11.1.30) will be a consequence of

∑
u∈Umax

|Iu| ≤Cμ−1 (11.1.39)

for some constant C. For u ∈ Umax we rewrite (11.1.38) as

1
|E|

∞

∑
k=0

∫

E∩N−1[ωu]∩
(

2kIu\2k−1Iu
)

|Iu|−1 dx
(

1 + |x−c(Iu)|
|Iu|

)10 >
μ
8

∞

∑
k=0

2−k

with the interpretation that 2−1Iu = /0. It follows that for all u in Umax there exists an
integer k ≥ 0 such that

|E| μ
8
|Iu|2−k <

∫

E∩N−1[ωu]∩
(

2kIu\2k−1Iu
)

dx

(1 + |x−c(Iu)|
|Iu| )10

≤ |E ∩N−1[ωu]∩2kIu|
( 4

5 )10(1 + 2k−2)10
.

We therefore conclude that

Umax =
∞
⋃

k=0

Uk ,

where

Uk = {u ∈ Umax : |Iu| ≤ 8 ·510 2−9k μ−1 |E|−1|E ∩N−1[ωu]∩2kIu|} .

The required estimate (11.1.39) will be a consequence of the sequence of estimates

∑
u∈Uk

|Iu| ≤C 2−8kμ−1 , k ≥ 0 . (11.1.40)

We now fix a k ≥ 0 and we concentrate on (11.1.40). Select an element v0 ∈ Uk

such that |Iv0 | is the largest possible among elements of Uk. Then select an element
v1 ∈ Uk \ {v0} such that the enlarged rectangle (2kIv1)×ωv1 is disjoint from the
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enlarged rectangle (2kIv0)×ωv0 and |Iv1 | is the largest possible. Continue this pro-
cess by induction. At the jth step select an element of Uk \ {v0, . . . ,v j−1} such that
the enlarged rectangle (2kIv j )×ωv j is disjoint from all the enlarged rectangles of
the previously selected tiles and the length |Iv j | is the largest possible. This process
will terminate after a finite number of steps. We denote by Vk the set of all selected
tiles in Uk.

We make a few observations. Recall that all elements of Uk are maximal rectan-
gles in U and therefore disjoint. For any u ∈ Uk there exists a selected v ∈ Vk with
|Iu| ≤ |Iv| such that the enlarged rectangles corresponding to u and v intersect. Let
us associate this u to the selected v. Observe that if u and u′ are associated with the
same selected v, they are disjoint, and since bothωu andωu′ containωv, the intervals
Iu and Iu′ must be disjoint. Thus, tiles u ∈ Uk associated with a fixed v ∈ Vk have
disjoint Iu’s and satisfy

Iu ⊆ 2k+2Iv .

Consequently,

∑
u∈Uk

u associated with v

|Iu| ≤ |2k+2Iv| = 2k+2|Iv| .

Putting these observations together, we obtain

∑
u∈Uk

|Iu| ≤ ∑
v∈Vk

∑
u∈Uk

u associated with v

|Iu|

≤ 2k+2 ∑
v∈Vk

|Iv|

≤ 2k+5510μ−1 |E|−1 2−9k ∑
v∈Vk

|E ∩N−1[ωv]∩2kIv|

≤ 32 ·510μ−1 2−8k ,

since the enlarged rectangles 2kIv ×ωv of the selected tiles v are disjoint and there-
fore so are the subsets E∩N−1[ωv]∩2kIv of E . This concludes the proof of estimate
(11.1.40) and therefore of Lemma 11.1.8. �

11.1.6 Proof of Energy Lemma 11.1.9

Proof. We work with a finite set of tiles P. For a 2-tree T′, let us denote by

Δ( f ;T′) =
1

∥

∥ f
∥

∥

L2

{

1
|Itop(T′)| ∑s∈T′

∣

∣

〈

f |ϕs
〉∣

∣

2
} 1

2

the quantity associated with T′ appearing in the definition of the energy. Consider
the set of all 2-trees T′ contained in P that satisfy
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Δ( f ;T′) ≥ 1
2

E ( f ;P) (11.1.41)

and among them select a 2-tree T′
1 with c(ωtop(T′

1)) as small as possible. We let T1

be the set of s ∈ P satisfying s < top(T′
1). Then T1 is the largest tree in P whose top

is top(T′
1). We now repeat this procedure with the set P\T1. Among all 2-trees con-

tained in P \T1 that satisfy (11.1.41) we pick a 2-tree T′
2 with c(ωtop(T′

2)) as small
as possible. Then we let T2 be the s ∈ P\T1 satisfying s < top(T′

2). Then T2 is the
largest tree in P\T1 whose top is top(T′

2). We continue this procedure by induction
until there is no 2-tree left in P that satisfies (11.1.41). We have therefore constructed
a finite sequence of pairwise disjoint 2-trees T′

1,T
′
2,T

′
3, . . . ,T

′
q , and a finite sequence

of pairwise disjoint trees T1,T2,T3, . . . ,Tq , such that T′
j ⊆ T j, top(T j) = top(T′

j),
and the T′

j satisfy (11.1.41). We now let

P′′ =
⋃

j

T j ,

and observe that this selection of trees ensures that

E ( f ;P\P′′) ≤ 1
2

E ( f ;P) .

It remains to prove (11.1.31). Using (11.1.41), we obtain that

1
4

E ( f ;P)2∑
j
|Itop(T j)| ≤

1
∥

∥ f
∥

∥

2
L2

∑
j
∑

s∈T′
j

|
〈

f |ϕs
〉

|2

=
1

∥

∥ f
∥

∥

2
L2

∑
j
∑

s∈T′
j

〈

f |ϕs
〉〈

f |ϕs
〉

=
1

∥

∥ f
∥

∥

2
L2

〈

f |∑
j
∑

s∈T′
j

〈

f |ϕs
〉

ϕs
〉

≤ 1
∥

∥ f
∥

∥

L2

∥

∥

∥∑
j
∑

s∈T′
j

〈

ϕs | f
〉

ϕs

∥

∥

∥

L2
,

(11.1.42)

and we use this estimate to obtain (11.1.31). We set U =
⋃

j T′
j. We shall prove that

1
∥

∥ f
∥

∥

L2

∥

∥

∥∑
s∈U

〈

ϕs | f
〉

ϕs

∥

∥

∥

L2
≤ C

(

E ( f ;P)2∑
j

|Itop(T j)|
) 1

2
. (11.1.43)

Once this estimate is established, then (11.1.42) combined with (11.1.43) yields
(11.1.31). (All involved quantities are finite, since P is a finite set of tiles.)

We estimate the square of the left-hand side in (11.1.43) by

∑
s,u∈U
ωs=ωu

∣

∣

〈

ϕs | f
〉〈

ϕu | f
〉〈

ϕs |ϕu
〉∣

∣+ 2 ∑
s,u∈U
ωs�ωu

∣

∣

〈

ϕs | f
〉〈

ϕu | f
〉〈

ϕs |ϕu
〉∣

∣ ,
(11.1.44)
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since
〈

ϕs |ϕu
〉

= 0 unless ωs contains ωu or vice versa. We now estimate the quan-
tities

∣

∣

〈

ϕs | f
〉∣

∣ and
∣

∣

〈

ϕu | f
〉∣

∣ by the larger one and we use Exercise 11.1.4 to obtain
the following bound for the first term in (11.1.44):

∑
s∈U

∣

∣

〈

f |ϕs
〉∣

∣

2 ∑
u∈U
ωu=ωs

∣

∣

〈

ϕs |ϕu
〉∣

∣

≤ ∑
s∈U

∣

∣

〈

f |ϕs
〉∣

∣

2 ∑
u∈U
ωu=ωs

C′
∫

Iu

1
|Is|

(

1 +
|x− c(Is)|

|Is|

)−100

dx

≤C′′ ∑
s∈U

∣

∣

〈

f |ϕs
〉∣

∣

2

= C′′∑
j
∑

s∈T′
j

∣

∣

〈

f |ϕs
〉∣

∣

2

≤C′′∑
j
|Itop(T j)| |Itop(T j)|

−1 ∑
s∈T′

j

∣

∣

〈

f |ϕs
〉∣

∣

2

≤C′′∑
j

|Itop(T j)|E ( f ;P)2
∥

∥ f
∥

∥

2
L2 ,

(11.1.45)

where in the derivation of the second inequality we used the fact that for fixed s ∈ U,
the intervals Iu with ωu = ωs are pairwise disjoint.

Our next goal is to obtain a similar estimate for the second term in (11.1.44).
That is, we need to prove that

∑
s,u∈U
ωs�ωu

∣

∣

〈

f |ϕs
〉〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣≤CE ( f ;P)2
∥

∥ f
∥

∥

2
L2∑

j
|Itop(T j)| . (11.1.46)

Then the required estimate (11.1.43) follows by combining (11.1.45) and (11.1.46).
To prove (11.1.46), we argue as follows:

∑
s,u∈U
ωs�ωu

∣

∣

〈

f |ϕs
〉〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

= ∑
j
∑

s∈T′
j

∣

∣

〈

f |ϕs
〉∣

∣ ∑
u∈U
ωs�ωu

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

≤ ∑
j

|Itop(T j)|
1
2Δ( f ;T′

j)
∥

∥ f
∥

∥

L2

{

∑
s∈T′

j

(

∑
u∈U
ωs�ωu

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

)2} 1
2

≤ E ( f ;P)
∥

∥ f
∥

∥

L2∑
j
|Itop(T j)|

1
2

{

∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

)2} 1
2

,
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where we used the Cauchy–Schwarz inequality and the fact that if ωs � ωu and
〈

ϕs |ϕu
〉

�= 0, then ωs ⊆ ωu(1). The proof of (11.1.46) will be complete if we
can show that the expression inside the curly brackets is at most a multiple of
E ( f ;P)2

∥

∥ f
∥

∥

2
L2 |Itop(T j)|. Since any singleton {s} ⊆ P is a 2-tree, we have

E ( f ;{u}) =
1

∥

∥ f
∥

∥

L2

(
∣

∣

〈

f |ϕu
〉∣

∣

2

|Iu|

) 1
2

=
1

∥

∥ f
∥

∥

L2

∣

∣

〈

f |ϕu
〉∣

∣

|Iu|
1
2

≤ E ( f ;P) ;

hence
∣

∣

〈

f |ϕu
〉∣

∣≤
∥

∥ f
∥

∥

L2 |Iu|
1
2 E ( f ;P)

and it follows that

∑
s∈T′

j

[

∑
u∈U

ωs⊆ωu(1)

∣

∣

〈

f |ϕu
〉〈

ϕs |ϕu
〉∣

∣

]2

≤ E ( f ;P)2
∥

∥ f
∥

∥

2
L2 ∑

s∈T′
j

[

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2
∣

∣

〈

ϕs |ϕu
〉∣

∣

]2

.

Thus (11.1.46) will be proved if we can establish that

∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2
∣

∣

〈

ϕs |ϕu
〉∣

∣

)2

≤C|Itop(T j)| . (11.1.47)

We need the following crucial lemma.

Lemma 11.1.11. Let T j , T′
j be as previously. Let s ∈ T′

j and u ∈ T′
k. Then if ωs ⊆

ωu(1), we have Iu ∩ Itop(T j) = /0. Moreover, if u ∈ T′
k and v ∈ T′

l are different tiles and
satisfy ωs ⊆ ωu(1) and ωs ⊆ ωv(1) for some fixed s ∈ T′

j , then Iu ∩ Iv = /0.

Proof. We observe that if s ∈ T′
j , u ∈ T′

k, and ωs ⊆ωu(1), then the 2-trees T′
j and T′

k
have different tops and therefore they cannot be the same tree; thus j �= k.

Next we observe that the center of ωtop(T′
j)

is contained in ωs, which is contained

in ωu(1). Therefore, the center of ωtop(T′
j)

is contained in ωu(1), and therefore it must

be smaller than the center of ωtop(T′
k)

, since T′
k is a 2-tree. This means that the 2-

tree T′
j was selected before T′

k, that is, we must have j < k. If Iu had a nonempty
intersection with Itop(T j) = Itop(T′

j)
, then since

|Itop(T′
j)
| = 1

|ωtop(T′
j)
| ≥

1
|ωs|

≥ 1
|ωu(1)|

=
2

|ωu|
= 2|Iu| ,

Iu would have to be contained in Itop(T′
j)

. Since also ωtop(T′
j)
⊆ ωs ⊆ ωu, it follows

that u < top(T′
j); thus u would belong to the tree T j [which is the largest tree with

top top(T′
j)], since this tree was selected first. But if u belonged to T j, then it could

not belong to T′
k, which is disjoint from T j; hence we get a contradiction. We con-

clude that Iu ∩ Itop(T j) = /0.
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Next assume that u ∈ T′
k, v ∈ T′

l , u �= v, and thatωs ⊆ωu(1)∩ωv(1) for some fixed
s ∈ T′

j. Since the left halves of two dyadic intervals ωu and ωv intersect, three things
can happen: (a) ωu ⊆ ωv(1), in which case Iv is disjoint from Itop(T′

k)
and thus from

Iu; (b) ωv ⊆ ωu(1), in which case Iu is disjoint from Itop(T′
l)

and thus from Iv; and
(c) ωu = ωv, in which case |Iu| = |Iv|, and thus Iu and Iv are either disjoint or they
coincide. Since u �= v, it follows that Iu and Iv cannot coincide; thus Iu ∩ Iv = /0. This
finishes the proof of the lemma. �

We now return to (11.1.47). In view of Lemma 11.1.11, different u ∈ U that
appear in the interior sum in (11.1.47) have disjoint intervals Iu, and all of these are
contained in (Itop(T j))

c. Set t j = top(T j). Using Exercise 11.1.4, we obtain

∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2
∣

∣

〈

ϕs |ϕu
〉∣

∣

)2

≤C ∑
s∈T′

j

(

∑
u∈U

ωs⊆ωu(1)

|Iu|
1
2

(

|Is|
|Iu|

) 1
2
∫

Iu

|Is|−1 dx
(

1 + |x−c(Is)|
|Is |

)20

)2

≤C ∑
s∈T′

j

|Is|
(

∑
u∈U

ωs⊆ωu(1)

∫

Iu

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
(
∫

(It j )
c

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
∫

(It j )
c

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)20 ,

since
∫

R(1+ |x|)−20 dx≤ 1. For each scale k≥ 0 the sets Is, s∈T′
j, with |Is|= 2−k|It j |

are pairwise disjoint and contained in It ; therefore, we have

∑
s∈T′

j

|Is|
∫

(It j )
c

|Is|−1 dx
(

1 + |x−c(Is)|
|Is |

)20 ≤
∞

∑
k=0

2k

|It j |
∑

s∈T′
j

|Is |=2−k|It j |

|Is|
∫

(It j )
c

dx
(

1 + |x−c(Is)|
|Is|

)20

≤C
∞

∑
k=0

2k

|It j |
∑

s∈T′
j

|Is |=2−k|It j |

∫

Is

∫

(It j )
c

dx
(

1 + |x−y|
|Is |
)20 dy

≤C
∞

∑
k=0

2k|It j |−1
∫

It j

∫

(It j )
c

1
(

1 + |x−y|
2−k|It j |

)20 dxdy

≤C′
∞

∑
k=0

2k|It j |−1(2−k|It j |)2

= C′′|It j | ,
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in view of Exercise 11.1.5. This completes the proof of (11.1.47) and thus of Lemma
11.1.9. �

11.1.7 Proof of the Basic Estimate Lemma 11.1.10

Proof. In the proof of the required estimate we may assume that
∥

∥ f
∥

∥

L2 = 1, for
we can always replace f by f/

∥

∥ f
∥

∥

L2 . Throughout this subsection we fix a square-
integrable function with L2 norm 1, a tree T contained in P, a measurable function
N : R → R+, and a measurable set E with finite measure.

Let J ′ be the set of all dyadic intervals J such that 3J does not contain any Is

with s ∈ T. It is not hard to see that any point in R belongs to a set in J ′. Let J
be the set of all maximal (under inclusion) elements of J ′. Then J consists of
disjoint sets that cover R; thus it forms a partition of R. This partition of R is shown
in Figure 11.3 when the tree consists of two tiles.

Fig. 11.3 A tree of two tiles and the partition J of R corresponding to it. The intervals J and J′

are members of the partition J .

For each s ∈ T pick an εs ∈ C with |εs| = 1 such that
∣

∣

〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣

∣= εs
〈

f |ϕs
〉〈

ϕs |χE∩N−1[ωs(2)]
〉

.

We can now write the left-hand side of (11.1.32) as

∑
s∈T
εs
〈

f |ϕs
〉〈

ϕs |χE∩N−1[ωs(2)]
〉

≤
∥

∥

∥∑
s∈T
εs
〈

f |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥

∥

∥

L1(R)

= ∑
J∈J

∥

∥

∥∑
s∈T
εs
〈

f |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥

∥

∥

L1(J)

≤ Σ1 +Σ2 ,

where



11.1 Almost Everywhere Convergence of Fourier Integrals 447

Σ1 = ∑
J∈J

∥

∥

∥ ∑
s∈T

|Is|≤2|J|

εs
〈

f |ϕs
〉

χE∩N−1[ωs(2) ]
ϕs

∥

∥

∥

L1(J)
, (11.1.48)

Σ2 = ∑
J∈J

∥

∥

∥ ∑
s∈T

|Is|>2|J|

εs
〈

f |ϕs
〉

χE∩N−1[ωs(2) ]
ϕs

∥

∥

∥

L1(J)
. (11.1.49)

We start with Σ1. Observe that for every s∈ T, the singleton {s} is a 2-tree contained
in T and we therefore have the estimate

∣

∣

〈

f |ϕs
〉∣

∣≤ |Is|
1
2 E ( f ;T) . (11.1.50)

Using this, we obtain

Σ1 ≤ ∑
J∈J

∑
s∈T

|Is|≤2|J|

E ( f ;T)
∫

J∩E∩N−1 [ωs(2)]
|Is|

1
2 |ϕs(x)|dx

≤ C ∑
J∈J

∑
s∈T

|Is|≤2|J|

E ( f ;T)|Is|
∫

J∩E∩N−1 [ωs(2)]

|Is|−1

(

1 + |x−c(Is)|
|Is |

)20 dx

≤ C ∑
J∈J

∑
s∈T

|Is|≤2|J|

E ( f ;T) |E|M (E;T)|Is|sup
x∈J

1
(

1 + |x−c(Is)|
|Is |

)10

≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

log2 2|J|

∑
k=−∞

2k ∑
s∈T

|Is|=2k

1
(

1 + dist (J,Is)
2k

)5

1
(

1 + dist (J,Is)
2k

)5 .

But note that all Is with s ∈ T and |Is| = 2k are pairwise disjoint and contained in
Itop(T). Therefore, 2−kdist (J, Is) ≥ |Itop(T)|−1dist (J, Itop(T)), and we have the esti-
mate

(

1 +
dist (J, Is)

2k

)−5

≤
(

1 +
dist (J, Itop(T))

|Itop(T)|

)−5

.

Moreover, the sum

∑
s∈T

|Is |=2k

1
(

1 + dist (J,Is)
2k

)5 (11.1.51)

is controlled by a finite constant, since for every nonnegative integer m there exist
at most two tiles s ∈ T with |Is| = 2k such that Is are not contained in 3J and m2k ≤
dist (J, Is) < (m+ 1)2k. Therefore, we obtain
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Σ1 ≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

log2 2|J|

∑
k=−∞

2k

(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

|J|
(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

≤ CE ( f ;T) |E|M (E;T) ∑
J∈J

∫

J

1
(

1 +
|x−c(Itop(T))|

|Itop(T)|
)5

dx

≤ C |Itop(T)|E ( f ;T) |E|M (E;T) ,

(11.1.52)

since J forms a partition of R. We need to justify, however, the penultimate in-
equality in (11.1.52). Since J and Itop(T) are dyadic intervals, there are only two pos-
sibilities: (a) J ∩ Itop(T) = /0 and (b) J ⊆ Itop(T). [The third possibility Itop(T) ⊆ J is
excluded, since 3J does not contain Itop(T).] In case (a) we have |J| ≤ dist (J, Itop(T)),
since 3J does not contain Itop(T). In case (b) we have |J| ≤ |Itop(T)|. Thus in both
cases we have |J| ≤ dist (J, Itop(T))+ |Itop(T)|. Consequently, for any x ∈ J one has

|x− c(Itop(T))| ≤ |J|+ dist (J, Itop(T))+
1
2
|Itop(T)|

≤ 2dist (J, Itop(T))+
3
2
|Itop(T)| .

Therefore, it follows that

∫

J

dx
(

1 +
|x−c(Itop(T))|

|Itop(T)|
)5

≥ |J|
(

5
2 +

2dist (J,Itop(T))
|Itop(T)|

)5
≥

(

2
5

)5|J|
(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

.

In case (b) we have J ⊆ Itop(T), and therefore any point x in J lies in Itop(T); thus
|x− c(Itop(T))| ≤ 1

2 |Itop(T)|. We conclude that

∫

J

dx
(

1 +
|x−c(Itop(T))|

|Itop(T) |
)5

≥ |J|
(3/2)5 =

(2
3

)5 |J|
(

1 +
dist (J,Itop(T))

|Itop(T)|
)5

.

These observations justify the second-to-last inequality in (11.1.52) and complete
the required estimate for Σ1.

We now turn attention to Σ2. We may assume that for all J appearing in the sum
in (11.1.49), the set of s in T with 2|J| < |Is| is nonempty. Thus, if J appears in the
sum in (11.1.49), we have 2|J| < |Itop(T)|, and it is easy to see that J is contained in
3Itop(T). [The intervals J in J that are not contained in 3Itop(T) have size larger than
|Itop(T)|.]

We let T2 be the 2-tree of all s in T such that ωtop(T)(2) ⊆ ωs(2), and we also let
T1 = T\T2. Then T1 is a 1-tree minus its top. We set
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F1J = ∑
s∈T1

|Is|>2|J|

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]
,

F2J = ∑
s∈T2

|Is|>2|J|

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]
.

Clearly
Σ2 ≤ ∑

J∈J

∥

∥F1J
∥

∥

L1(J) + ∑
J∈J

∥

∥F2J
∥

∥

L1(J) = Σ21 +Σ22 ,

and we need to estimate both sums. We start by estimating F1J. If the tiles s and s′

that appear in the definition of F1J have different scales, then the sets ωs(2) and ωs′(2)

are disjoint and thus so are the sets E ∩N−1[ωs(2)] and E ∩N−1[ωs′(2)]. Let us set

GJ = J∩
⋃

s∈T
|Is|>2|J|

E ∩N−1[ωs(2)] .

Then F1J is supported in the set GJ and we have
∥

∥F1J
∥

∥

L1(J) ≤
∥

∥F1J
∥

∥

L∞(J)|GJ|

=
∥

∥

∥ ∑
k>log2 2|J|

∑
s∈T1
|Is|=2k

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]

∥

∥

∥

L∞(J)
|GJ|

≤ sup
k>log2 2|J|

∥

∥

∥ ∑
s∈T1
|Is|=2k

εs
〈

f |ϕs
〉

ϕs χE∩N−1[ωs(2)]

∥

∥

∥

L∞(J)
|GJ|

≤ sup
k>log2 2|J|

sup
x∈J
∑

s∈T1
|Is |=2k

E ( f ;T)2k/2 2−k/2

(

1 + |x−c(Is)|
2k

)10 |GJ|

≤ CE ( f ;T)|GJ | ,

using (11.1.50) and the fact that all the Is that appear in the sum are disjoint. We
now claim that for all J ∈ J we have

|GJ| ≤C |E|M (E;T)|J| . (11.1.53)

Once (11.1.53) is established, summing over all the intervals J that appear in the
definition of F1J and keeping in mind that all of these intervals are pairwise disjoint
and contained in 3Itop(T), we obtain the desired estimate for Σ21.

To prove (11.1.53), we consider the unique dyadic interval ˜J of length 2|J| that
contains J. Then by the maximality of J , 3˜J contains the time interval IsJ of a
tile sJ in T. We consider the following two cases: (a) If IsJ is either

(

˜J − | ˜J|
)

∪ ˜J
or ˜J ∪

(

˜J + | ˜J|
)

, we let uJ = sJ; in this case |IuJ | = 2|˜J|. (This is the case for the
interval J in Figure 11.3.) Otherwise, we have case (b), in which IsJ is contained in
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one of the two dyadic intervals ˜J−|˜J|, ˜J + |˜J|. (This is the case for the interval J′ in
Figure 11.3.) Whichever of these two dyadic intervals contains IsJ is also contained
in Itop(T), since it intersects it and has smaller length than it. In case (b) there exists

a tile uJ ∈ D with |IuJ | = | ˜J| such that IsJ ⊆ IuJ ⊆ Itop(T) and ωtop(T) ⊆ ωuJ ⊆ ωsJ .
In both cases we have a tile uJ satisfying sJ < uJ < top(T) with |ωuJ | being either
1
4 |J|−1 or 1

2 |J|−1.
Then for any s ∈ T with |Is| > 2|J| we have |ωs| ≤ |ωuJ |. But since both ωs and

ωuJ contain ωtop(T), they must intersect, and thus ωs ⊆ ωuJ . We conclude that any
s ∈ T with |Is| > 2|J| must satisfy N−1[ωs] ⊆ N−1[ωuJ ]. It follows that

GJ ⊆ J∩E ∩N−1[ωuJ ] (11.1.54)

and therefore we have

|E|M (E;T) = sup
s∈T

sup
u∈D
s<u

∫

E∩N−1[ωu]

|Iu|−1

(

1 + |x−c(Iu)|
|Iu|

)10 dx

≥
∫

J∩E∩N−1 [ωuJ ]

|IuJ |−1

(

1 +
|x−c(IuJ )|

|IuJ |
)10

dx

≥ c |IuJ |−1 |J∩E ∩N−1[ωuJ ]|
≥ c |IuJ |−1 |GJ| ,

using (11.1.54) and the fact that for x ∈ J we have |x− c(IuJ )| ≤ 4|J| = 2|IuJ |. It
follows that

|GJ| ≤
1
c
|E|M (E;T)|IuJ | =

2
c
|E|M (E;T)|J| ,

and this is exactly (11.1.53), which we wanted to prove.
We now turn to the estimate for Σ22 = ∑J∈J

∥

∥F2J
∥

∥

L1(J). All the intervals ωs(2)

with s∈T2 are nested, since T2 is a 2-tree. Therefore, for each x∈ J for which F2J(x)
is nonzero, there exists a largest dyadic interval ωux and a smallest dyadic interval
ωvx (for some ux,vx ∈ T2 ∩{s : |Is| ≥ 4|J|}) such that for s ∈ T2 ∩{s : |Is| ≥ 4|J|}
we have N(x) ∈ ωs(2) if and only if ωvx ⊆ ωs ⊆ ωux . Then we have

F2J(x) = ∑
s∈T2

|Is|≥4|J|

εs
〈

f |ϕs
〉

(ϕsχE∩N−1[ωs(2) ]
)(x)

= χE(x) ∑
s∈T2

|ωvx |≤|ωs|≤|ωux |

εs
〈

f |ϕs
〉

ϕs(x) .

Pick a Schwartz function ψ whose Fourier transform ψ̂(t) is supported in |t| ≤
1 + 1

100 and that is equal to 1 on |t| ≤ 1. We can easily check that for all z ∈ R, if
|ωvx | ≤ |ωs| ≤ |ωux |, then
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(

ϕs ∗
{

Mc(ωux )D|ωux |−1
(ψ)

|ωux |
− 1

2
−M

c(ωvx (2))D
|ωvx(2)|

−1
(ψ)

|ωvx(2)|
− 1

2

})

(z) = ϕs(z) (11.1.55)

by a simple examination of the Fourier transforms. Basically, the Fourier transform
(in z) of the function inside the curly brackets is equal to

ψ̂
(

ξ−c(ωux )
|ωux |

)

− ψ̂
( ξ−c(ωvx(2))

|ωvx(2)|

)

,

which is equal to 1 on the support of ϕ̂s for all s in T2 that satisfy |ωvx | ≤ |ωs| ≤ |ωux |
but vanishes on ωvx(2). Taking z = x in (11.1.55) yields

F2J(x) = ∑
s∈T2

|ωvx |≤|ωs|≤|ωux |

εs
〈

f |ϕs
〉

ϕs(x)χE(x)

=
[

∑
s∈T2

εs
〈

f |ϕs
〉

ϕs

]

∗
{

Mc(ωux )D|ωux |−1
(ψ)

|ωux |
− 1

2
−M

c(ωvx(2))D
|ωvx(2) |

−1
(ψ)

|ωvx(2)|
− 1

2

}

(x)χE(x) .

Since all s that appear in the definition of F2J satisfy |ωs| ≤ (4|J|)−1, it follows
that we have the estimate

|F2J(x)| ≤ 2χE(x) sup
δ>|ωux |−1

∫

R

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣
1
δ
∣

∣ψ
(

x−z
δ
)∣

∣dz

≤ C sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣dz . (11.1.56)

(The last inequality follows from Exercise 2.1.14.) Observe that the maximal func-
tion in (11.1.56) satisfies the property

sup
x∈J

sup
δ>4|J|

1
2δ

∫ x+δ

x−δ
|h(t)|dt ≤ 2 inf

x∈J
sup
δ>4|J|

1
2δ

∫ x+δ

x−δ
|h(t)|dt .

Using this property, we obtain

Σ22 ≤ ∑
J∈J

∥

∥F2J
∥

∥

L1(J) ≤ ∑
J∈J

∥

∥F2J
∥

∥

L∞(J)|GJ |

≤ C ∑
J∈J

J⊆3Itop(T)

|E|M (E;T)|J|sup
x∈J

sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣dz

≤ 2C |E|M (E;T) ∑
J∈J

J⊆3Itop(T)

∫

J
sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣

∣ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs(z)
∣

∣dzdx

≤ C |E|M (E;T)
∥

∥

∥M
(

∑
s∈T2

εs
〈

f |ϕs
〉

ϕs
)

∥

∥

∥

L1(3Itop(T))
,
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where M is the Hardy–Littlewood maximal operator. Using the Cauchy–Schwarz
inequality and the boundedness of M on L2(R), we obtain the following estimate:

Σ22 ≤C |E|M (E;T) |Itop(T)|
1
2

∥

∥

∥ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs

∥

∥

∥

L2
.

Appealing to the result of Exercise 11.1.6(a), we deduce

∥

∥

∥ ∑
s∈T2

εs
〈

f |ϕs
〉

ϕs

∥

∥

∥

L2
≤C

(

∑
s∈T2

∣

∣εs
〈

f |ϕs
〉∣

∣

2
)1

2 ≤C′|Itop(T)|
1
2 E ( f ;T) .

The first estimate was also shown in (11.1.43); the same argument applies here, and
the presence of the εs’s does not introduce any change. We conclude that

Σ22 ≤C |E|M (E;T)|Itop(T)|E ( f ;T) ,

which is what we needed to prove. This completes the proof of Lemma 11.1.10. �

The proof of the theorem is now complete. �

Exercises

11.1.1. Show that for every f in the Schwartz class, x,ξ ∈ R, and λ ∈ [0,1], the
function (y,η) �→ Bm

ξ ,y,η,λ ( f )(x) is periodic in y with period 2m−λ and periodic in η
with period 2−m+λ .

11.1.2. Fix a function h in the Schwartz class, ξ ,y,η ∈ R, s ∈ Dm, and λ ∈ [0,1].
Suppose that 2−λ (ξ +η) ∈ ωs(2).
(a) Assume that m ≤ 0 and that 2−m ≥ 40|ξ |. Show that for some C that does not
depend on y, η , and λ we have

∣

∣

〈

D2λ τyMη(h) |ϕs
〉∣

∣ =
∣

∣

〈

h |M−ητ−yD2−λ (ϕs)
〉∣

∣

≤C2
m
2
∥

∥̂h
∥

∥

L1((−∞,− 1
40·2m )∪( 1

40·2m ,∞)) .

[

Hint: Use Plancherel’s theorem, noting that η ≥ 2λ c(ωs(1))+ 9
40 2−m.

]

(b) Using the trivial fact that
∣

∣

〈

D2λ τyMη (h) |ϕs
〉∣

∣ ≤ C
∥

∥h
∥

∥

L2 , conclude that when-
ever |m| is large with respect to ξ , we have

χωs(2) (2
−λ (ξ +η))|

〈

D2λ τyMη (h) |ϕs
〉

| ≤Ch min(1,2m) ,

where Ch may depend on h but is independent of y, η , and λ .

11.1.3. (a) Let g be a bounded periodic function on R with period κ . Show that
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lim
K→∞

1
2K

∫ K

−K
g(t)dt → 1

κ

∫ κ

0
g(t)dt .

(b) Let g be a bounded periodic function on Rn that is periodic with period
(κ1, . . . ,κn). Show that

lim
K1,...,Kn→∞

2−n

K1 · · ·Kn

∫ K1

−K1

· · ·
∫ Kn

−Kn

g(t)dt =
1

κ1 · · ·κn

∫ κ1

0
· · ·
∫ κn

0
g(t)dt

11.1.4. Use the result in Appendix K.1 to obtain the size estimate

∣

∣

〈

ϕs |ϕu
〉∣

∣≤CM

min

(

|Is|
|Iu|

,
|Iu|
|Is|

) 1
2

(

1 +
|c(Is)− c(Iu)|
max(|Is|, |Iu|)

)M

for every M > 0. Conclude that if |Iu| ≤ |Is|, then

∣

∣

〈

ϕs |ϕu
〉∣

∣≤C′
M

(

|Is|
|Iu|

) 1
2
∫

Iu

|Is|−1 dx
(

1 + |x−c(Is)|
|Is|

)M .

[

Hint: Use that
∣

∣

∣

∣

|x− c(Is)|
|Is|

− |c(Iu)− c(Is)|
|Is|

∣

∣

∣

∣

≤ 1
2

for all x ∈ Iu.
]

11.1.5. Prove that there is a constant C > 0 such that for any interval J and any
b > 0,

∫

J

∫

Jc

1
(

1 + |x−y|
b|J|

)20 dxdy ≤Cb2|J|2 .

[

Hint: Translate J to the interval [− 1
2 |J|,

1
2 |J|] and change variables. The resulting

integral can be computed explicitly.
]

11.1.6. Let ϕs be as in (11.1.3). Let T2 be a 2-tree and f ∈ L2(R).
(a) Show that there is a constant C such that for all sequences of complex scalars
{λs}s∈T2 we have

∥

∥

∥ ∑
s∈T2

λsϕs

∥

∥

∥

L2(R)
≤C

(

∑
s∈T2

|λs|2
)1

2

.

(b) Use duality to conclude that

∑
s∈T2

∣

∣

〈

f |ϕs
〉∣

∣

2 ≤C2
∥

∥ f
∥

∥

2
L2 .
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[

Hint: To prove part (a) define Gm = {s ∈ T2 : |Is| = 2m}. Then for s ∈ Gm and
s′ ∈ Gm′ , the functions ϕs and ϕs′ are orthogonal to each other, and it suffices to
obtain the corresponding estimate when the summation is restricted to a given Gm.
But for s in Gm, the intervals Is are disjoint, and we may use the idea of the proof of
Lemma 11.1.2. Use that ∑u: ωu=ωs

∣

∣

〈

ϕs |ϕu
〉∣

∣≤C for every fixed s.
]

11.1.7. Fix A ≥ 1. Let S be a finite collection of dyadic tiles such that for all s1, s2

in S we have either ωs1 ∩ωs2 = /0 or AIs1 ∩AIs2 = /0. Let NS be the counting function
of S, defined by

NS = sup
x∈R

#{Is : s ∈ S and x ∈ Is}.

(a) Show that for any M > 0 there exists a CM > 0 such that for all f ∈ L2(R) we
have

∑
s∈S

∣

∣

∣

∣

〈

f , |Is|−
1
2

(

1 +
dist(·, Is)

|Is|

)−M
2
〉

∣

∣

∣

∣

2

≤CMNS
∥

∥ f
∥

∥

2
L2 .

(b) Let ϕs be as in (11.1.3). Show that for any M > 0 there exists a CM > 0 such that
for all finite sequences of scalars {as}s∈S we have

∥

∥

∥∑
s∈S

asϕs

∥

∥

∥

2

L2
≤CM(1 + A−MNS)∑

s∈S
|as|2 .

(c) Conclude that for any M > 0 there exists a CM > 0 such that for all f ∈ L2(R)
we have

∑
s∈S

∣

∣

〈

f ,ϕs
〉∣

∣

2 ≤CM(1 + A−MNS)
∥

∥ f
∥

∥

2
L2 .

[

Hint: Use the idea of Lemma 11.1.2 to prove part (a) when NS = 1. Suppose now
that NS > 1. Call an element s ∈ S h-maximal if the region in R2 that is directly
horizontally above the tile s does not intersect any other tile s′ ∈ S. Let S1 be the set
of all h-maximal tiles in S. Then NS1 = 1; otherwise, some x ∈ R would belong to
both Is and Is′ for s �= s′ ∈ S1, and thus the horizontal regions directly above s and
s′ would have to intersect, contradicting the h-maximality of S1. Now define S2 to
be the set of all h-maximal tiles in S\S1. As before, we have NS2 = 1. Continue in
this way and write S as a union of at most NS families of tiles S j, each of which
has the property NS j = 1. Apply the result to each S j and then sum over j. Part (b):
observe that whenever s1,s2 ∈ S and s1 �= s2 we must have either

〈

ϕs1 ,ϕs2

〉

= 0 or
dist(Is1 , Is2) ≥ (A−1)max(|Is1 |, |Is2 |), which implies

(

1 +
dist(Is1 , Is2)

max(|Is1 |, |Is2 |)

)−M
≤ A−M

2

(

1 +
dist(Is1 , Is2)

max(|Is1 |, |Is2 |)

)−M
2

.

Use this estimate to obtain

∥

∥∑
s∈S

asϕs
∥

∥

2
L2 ≤∑

s∈S
|as|2 +

CM

A
M
2

∥

∥

∥

∥
∑
s∈S

|as|
|Is|

1
2

(

1 +
dist(x, Is)

|Is|

)−M
2

∥

∥

∥

∥

2

L2
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by expanding the square on the left. The required estimate follows from the dual
statement to part (a). Part (c) follows from part (b) by duality.

]

11.1.8. Let ϕs be as in (11.1.3) and let Dm be the set of all dyadic tiles s with
|Is| = 2m. Show that there is a constant C (independent of m) such that for square-
integrable sequences of scalars {as}s∈Dm we have

∥

∥

∥ ∑
s∈Dm

asϕs

∥

∥

∥

2

L2
≤C ∑

s∈Dm

|as|2 .

Conclude from this that

∑
s∈Dm

∣

∣

〈

f ,ϕs
〉∣

∣

2 ≤C
∥

∥ f
∥

∥

2
L2 .

11.1.9. Fix a Schwartz function ϕ whose Fourier transform is supported in the in-
terval [− 3

8 , 3
8 ] and that satisfies

∑
l∈Z

|ϕ̂(t + l
2)|2 = c0

for all real numbers t. Define functions ϕs as follows. Fix an integer m and set

ϕs(x) = 2−
m
2 ϕ(2−mx− k)e2π i2−mx l

2

whenever s = [k2m,(k + 1)2m)× [l2−m,(l + 1)2−m) is a tile in D. Prove that for all
Schwartz functions f we have

∑
s∈Dm

〈

f |ϕs
〉

ϕs = c0 f .

Observe that m does not appear on the right of this identity.
[

Hint: First prove that

∑
s∈Dm

ϕs(x)ϕ̂s(y) = c0 e2π ixy

using the Poisson summation formula.
]

11.1.10. This is a continuous version of Exercise 11.1.9. Fix a Schwartz function ϕ
on Rn and define a continuous wave packet

ϕy,ξ (x) = ϕ(x− y)e2π iξ ·x .

Prove that for all f Schwartz functions on Rn, the following identity is valid:

∥

∥ϕ
∥

∥

2
L2 f (x) =

∫

Rn

∫

Rn
ϕy,ξ (x)

〈

f |ϕy,ξ
〉

dydξ .

[

Hint: Prove first that
∫

Rn

∫

Rn
ϕy,ξ (x)ϕ̂y,ξ (z)dydξ =

∥

∥ϕ
∥

∥

2
L2 e2π ix·z.

]
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11.2 Distributional Estimates for the Carleson Operator

In this section we derive estimates for the distribution function of the Carleson op-
erator acting on characteristic functions of measurable sets. These estimates imply,
in particular, that the Carleson operator is bounded on Lp(R) for 1 < p < ∞. To
achieve this we build on the time–frequency analysis approach developed in the
previous section. Working with characteristic functions of measurable sets of finite
measure is crucial in obtaining an improved energy estimate, which is the key to the
proof. Later in this section we obtain weighted estimates for the Carleson operator
C . These estimates are reminiscent of the corresponding estimates for the maximal
singular integrals we encountered in the previous chapter.

11.2.1 The Main Theorem and Preliminary Reductions

In the sequel we use the notation introduced in Section 11.1. The following is the
main result of this section.

Theorem 11.2.1. (a) There exist finite constants C,κ > 0 such that for any measur-
able subset F of the reals with finite measure we have

∣

∣{x∈R : C (χF)(x) >α
}∣

∣≤C |F |

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
α

(

1 + log
(

1
α
)

)

when 0 < α < 1,

e−κα when α ≥ 1.

(11.2.1)

(b) For any 1 < p < ∞ there is a constant Cp > 0 such that for all f in Lp(R) we
have the estimate

∥

∥C ( f )
∥

∥

Lp(R) ≤Cp
∥

∥ f
∥

∥

Lp(R) . (11.2.2)

Proof. Assuming statement (a), we obtain

∥

∥C (χF)
∥

∥

p
Lp = p

∫ ∞

0

∣

∣{C (χF) > α
}∣

∣λ p−1 dα ≤ pCp|F |
∫ ∞

0
ϕ(α)α p−1 dα ,

where ϕ(α) = α−1(1 + log(α)−1) for α < 1 and ϕ(α) = e−κα for α ≥ 1. The last
integral is convergent, and consequently one obtains a restricted strong type (p, p)
estimate

∥

∥C (χF)
∥

∥

Lp(R) ≤C′
p|F |

1
p

for the Carleson operator. The required strong type (p, p) estimate follows by ap-
plying Theorem 1.4.19. Thus (a) implies (b).

It remains to prove (a). This follows from the corresponding estimate for C1 and
requires a considerable amount of work. The proof of (a) is based on a modification
of the proof of Theorem 11.1.1. Recall that in (11.1.21) we identified the one-sided
Carleson operator C1( f ) with



11.2 Distributional Estimates for the Carleson Operator 457

C1( f )(x) = sup
N>0

∣

∣

∣

∣

∫ N

−∞
̂f (η)e2π ix·η dη

∣

∣

∣

∣

=
1
|c| sup

ξ>0
|Πξ ( f )| , (11.2.3)

where c �= 0 and Πξ , ξ ∈ R is given by

Πξ ( f ) = lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
Gξ ,y,η,λ ( f )dλ dydη . (11.2.4)

Also recall that Gξ ,y,η,λ ( f ) is

Gξ ,y,η,λ ( f ) = M−ητ−yD2−λA ξ+η
2λ

D2λ τyMη ( f ) , (11.2.5)

where Aξ is defined in (11.1.6). Note that

Gξ ,y,η,λ ( f )(x) = ∑
s∈D

ξ∈ωu(2)

〈

f |M−ητ−yD2−λ ϕu
〉

M−ητ−yD2−λ ϕu(x)

= ∑
s∈Dy,η,λ
ξ∈ωs(2)

〈

f |ϕs
〉

ϕs(x) ,

where Dy,η,λ is the set of all rectangles of the form (2λ ⊗ Iu − y)× (2−λ ⊗ωu −η),
where u ranges over D. Here a⊗ I denotes the set {ax : x ∈ I}. For such s, ϕs is
defined in (11.1.3). The rectangles in Dy,η,λ are formed by dilating the dyadic tiles
in D by the amount 2λ in the time coordinate axis and by 2−λ in the frequency
coordinate axis and then translating them by the amounts y and η , respectively.

In view of identity (11.1.12), for a Schwartz function f we have

|Πξ ( f )(x)| =
∣

∣

∣

∣

lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑

s∈Dy,η,λ
ξ∈ωs(2)

〈

f |ϕs
〉

ϕs(x)dλ dydη
∣

∣

∣

∣

.

Since both terms of this identity are well defined L2-bounded operators, (11.2.1)
is also valid for L2 functions f . For such functions f , for a measurable function
N : R → R+, y,η ∈ R, and λ ∈ [0,1] we define operators

DN,y,η,λ ( f ) = ∑
s∈Dy,η,λ

〈

f |ϕs
〉

(χωs(2) ◦N)ϕs

and

DN( f ) = lim
K→∞
L→∞

1
4KL

∫ L

−L

∫ K

−K

∫ 1

0
∑

s∈Dy,η,λ

〈

f |ϕs
〉

(χωs(2) ◦N)ϕs dλ dydη .
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For every square-integrable function f and x ∈ R we pick, in a measurable way, a
positive real number ξ = Nf (x) such that

sup
ξ>0

|Πξ ( f )(x)| ≤ 2 |ΠNf (x)( f )(x)| ≤ 2DNf ( f )(x) .

Then

C1( f ) ≤ 2
|c| |DNf ( f )| . (11.2.6)

We work with functions f = χF , where F is a measurable set of finite measure; cer-
tainly such functions are square-integrable. We show the validity of statement (a) of
Theorem 11.2.1 for DN , where N : R→ R+ is measurable with bounds independent
of N. Then (11.2.6) implies the same statement for C1.

We claim that the following estimate is valid for DN . There is a constant C′ such
that for any pair of measurable subsets (E,F) of the real line with nonzero finite
measure there is a subset E ′ of E with |E ′| ≥ 1

2 |E| such that for any measurable
function N : R → R+ we have

∣

∣

∣

∣

∫

E ′
DN(χF)(x)dx

∣

∣

∣

∣

≤ 2C′ min(|E|, |F |)
(

1 +
∣

∣

∣ log
|E|
|F |

∣

∣

∣

)

. (11.2.7)

This is a fundamental estimate that implies (11.2.1). We derive this estimate from an
analogous estimate for the operators DN,y,η,λ by picking a set E ′ that is independent
of y,η , and λ .

We introduce a set

ΩE,F =
{

M(χF) > 8 min
(

1, |F |
|E|
)}

.

It follows that |ΩE,F | ≤ 1
2 |E|, since the Hardy–Littlewood maximal operator is of

weak type (1,1) with norm 2. We conclude that the set

E ′ = E \ΩE,F

satisfies |E ′| ≥ 1
2 |E|. (Notice that in the case |F | ≥ |E| the set ΩE,F is empty.)

Let P be a finite subset of Dy,η,λ . The required inequality (11.2.7) will be a con-
sequence of the following two estimates:

∣

∣

∣

∣

∫

E ′ ∑
s∈P

Is⊆ΩE,F

〈

χF |ϕs
〉

(χωs(2) ◦N)ϕs dx

∣

∣

∣

∣

≤C′ min(|E|, |F |) (11.2.8)

and
∣

∣

∣

∣

∫

E ′ ∑
s∈P

Is�ΩE,F

〈

χF |ϕs
〉

(χωs(2) ◦N)ϕs dx

∣

∣

∣

∣

≤C′ min(|E|, |F |)
(

1+
∣

∣

∣ log
|E|
|F |

∣

∣

∣

)

, (11.2.9)
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where the constant C′ is independent of the sets E,F , of the measurable function N,
and of the finite subset P of Dy,η,λ . Estimates (11.2.8) and (11.2.9) are proved in the
next three subsections.

In the rest of this subsection we show that (11.2.7) implies statement (a) of The-
orem 11.2.1. Given α > 0 we define sets

E1
α =

{

ReDN(χF) > α
}

, E2
α =

{

ReDN(χF) < −α
}

,

E3
α =

{

ImDN(χF) > α
}

, E4
α =

{

ImDN(χF) < −α
}

.

We apply (11.2.7) to the pair (E j
α ,F) for any j = 1,2,3,4. We find a subset (E j

α)′ of
E j
α of at least half its measure so that (11.2.7) holds for this pair. Then we have

α
2
|E j
α | ≤ α|(E j

α )′| ≤
∣

∣

∣

∣

∫

(E j
α )′

DN(χF)(x)dx

∣

∣

∣

∣

≤ 2C′ min(|E j
α |, |F |)

(

1 +
∣

∣

∣ log
|E j
α |

|F |

∣

∣

∣

)

. (11.2.10)

If |E j
α | ≤ |F|, this estimate implies that

|E j
α | ≤ |F|ee−

1
4C′ α , (11.2.11)

while if |E j
α | > |F |, it implies that

α ≤ 4C′ |F |
|E j
α |

(

1 + log
|E j
α |

|F|

)

. (11.2.12)

Case 1: α > 4C′. If |E j
α | > |F |, setting t = |E j

α |/|F | > 1 and using the fact that
sup1<t<∞

1
t (1+ logt) = 1, we obtain that (11.2.12) fails. In this case we must there-

fore have that |E j
α | ≤ |F |. Applying (11.2.11) four times, we deduce

|{DN(χF) > 4α}| ≤ 4e |F |e−
1

4C′ α . (11.2.13)

Case 2: α ≤ 4C′. If |E j
α | > |F |, we use the elementary fact that if t > 1 satisfies

t(1 + logt)−1 < B
α , then t < 2B

α (1 + log 2B
α ); to prove this fact one may use the in-

equalities t < 2B
α (1+ log

√
t) and log

√
t ≤ log t− log(1+ log

√
t)≤ log 2B

α for t > 1.

Taking t = |E j
α |/|F| and B = 4C′ in (11.2.12) yields

|E j
α |

|F | ≤ 8C′

α

(

1 + log
8C′

α

)

. (11.2.14)

If |E j
α | ≤ |F |, then we use (11.2.11), but we note that for some constant c′ > 1 we

have

ee−
1

4C′ α ≤ c′
8C′

α

(

1 + log
8C′

α

)
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whenever α ≤ 4C′. Thus, when α ≤ 4C′ we always have

|{DN(χF) > 4α}| ≤ c′
32C′

α
|F|
(

1 + log
8C′

α

)

. (11.2.15)

Combining (11.2.13) and (11.2.15), we obtain estimate (11.2.7) for DN . The

same estimate holds for C1 in view of (11.2.6). Since ˜C2( f ) = C1(˜f ), where
˜f (x) = f (−x), the same estimate holds for C2 and hence estimate (11.2.7) is valid
for C . �

11.2.2 The Proof of Estimate (11.2.8)

In proving (11.2.8), we may assume that |F | ≤ |E|; otherwise, the setΩE,F is empty
and there is nothing to prove.

Let P be a finite subset of Dy,η,λ . We denote by I (P) the grid that consists of all
the time projections Is of tiles s in P. For a fixed interval J in I (P) we define

P(J) = {s ∈ P : Is = J}

and a function

ψJ(x) = |J|− 1
2

(

1 +
|x− c(J)|

|J|

)−M

,

where M is a large integer to be chosen momentarily. We note that for each s ∈ P(J)
we have |ϕs(x)| ≤CMψJ(x).

For each k = 0,1,2, . . . we introduce families

Fk =
{

J ∈ I (P) : 2kJ ⊆ΩE,F , 2k+1J �ΩE,F
}

.

We begin by writing the left-hand side of (11.2.8) as

∑
J∈I (P)
J⊆ΩE,F

∣

∣

∣

∣
∑

s∈P(J)

∫

E ′

〈

χF |ϕs
〉

χωs(2) (N(x))ϕs(x)dx

∣

∣

∣

∣

=
∞

∑
k=0
∑

J∈I (P)
J∈Fk

∣

∣

∣

∣

∫

E ′ ∑
s∈P(J)

〈

χF |ϕs
〉

χωs(2) (N(x))ϕs(x)dx

∣

∣

∣

∣

.

(11.2.16)

Using Exercise 9.2.8(b) we obtain the existence of a constant C0 < ∞ such that
for each k = 0,1, . . . and J ∈ Fk we have
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〈

χF ,ψJ
〉

≤ |J| 1
2 inf

J
M(χF)

≤ |J| 1
2 Ck

0 inf
2k+1J

M(χF )

≤ 4Ck
0|J|

1
2
|F|
|E| ,

(11.2.17)

since 2k+1J meets the complement of ΩE,F .
For J ∈ Fk we also have that E ′ ∩2kJ = /0 and hence

∫

E ′
ψJ(y)dy ≤

∫

(2kJ)c
ψJ(y)dy ≤ |J| 1

2 CM2−kM . (11.2.18)

Next we note that for each J ∈I (P) and x ∈ R there is at most one s = sx ∈ P(J)
such that N(x) ∈ ωsx(2). Using this observation along with (11.2.17) and (11.2.18),
we can therefore estimate the expression on the right in (11.2.16) as follows:

∞

∑
k=0
∑

J∈I (P)
J∈Fk

∣

∣

∣

∣

∫

E ′

〈

χF |ϕsx

〉

χωsx(2) (N(x))ϕsx (x)dx

∣

∣

∣

∣

≤C2
M

∞

∑
k=0
∑

J∈I (P)
J∈Fk

∫

E ′

〈

χF ,ψJ
〉

ψJ(x)dx

≤C2
M 4

|F |
|E|

∞

∑
k=0

Ck
0 ∑

J∈Fk

|J| 1
2

∫

E ′
ψJ(x)dx

≤ 4C3
M
|F |
|E|

∞

∑
k=0

(C02−M)k ∑
J∈Fk

|J| , (11.2.19)

and we pick M > logC0/ log2. It remains to control

∑
J∈Fk

|J|

for each nonnegative integer k. In doing this we let F ∗
k be all elements of Fk that

are maximal under inclusion. Then we observe that if J ∈ F ∗
k and J′ ∈ Fk satisfy

J′ ⊆ J then
dist (J′,Jc) = 0 ,

otherwise 2J′ would be contained in J and thus

2k+1J′ ⊆ 2kJ ⊆ΩE,F .

Therefore, for any J in F ∗
k and any scale m there are at most two intervals J′ from

Fk contained in J with |J′| = 2m. Summing over all possible scales, we obtain a
bound of at most four times the length of J. We conclude that
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∑
J∈Fk

|J| = ∑
J∈F ∗

k

∑
J′∈Fk
J′⊆J

|J′| ≤ ∑
J∈F ∗

k

4 |J| ≤ 4 |ΩE,F | ,

since elements of F ∗
k are disjoint and contained in ΩE,F . Inserting this estimate in

(11.2.19), we obtain the required bound

C′
M
|F |
|E| |ΩE,F | ≤C′′

M |F | = C′′
M min(|E|, |F |)

for the expression on the right in (11.2.16). This concludes the proof of (11.2.8).

11.2.3 The Proof of Estimate (11.2.9)

For fixed y,η ,λ we define a partial order in the set of tiles in Dy,η,λ just as in
Definition 11.1.3. All properties of dyadic tiles obtained in the previous section also
hold for the tiles in Dy,η,λ . Throughout this section, P is a finite subset of Dy,η,λ .

To simplify notation, in the sequel we set

PE,F =
{

s ∈ P : Is �ΩE,F
}

.

Setting N−1[A] = {x : N(x) ∈ A} for a set A � R, we note that (11.2.9) is a
consequence of

∑
s∈PE,F

∣

∣

〈

χF ,ϕs
〉〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣

∣≤C min(|E|, |F |)
(

1 +
∣

∣

∣ log
|E|
|F|

∣

∣

∣

)

. (11.2.20)

The following lemma is the main ingredient of the proof and is proved in the next
section.

Lemma 11.2.2. There is a constant C such that for all measurable sets E and F of
finite measure we have

E
(

χF ;PE,F
)

≤C |F |− 1
2 min

(

|F |
|E| ,1

)

. (11.2.21)

Assuming Lemma 11.2.2, we argue as follows to prove (11.2.9). Given the finite
set of tiles PE,F , we write it as the union

PE,F =
n0
⋃

j=−∞
P j ,

where the sets P j satisfy properties (1)–(5) of page 437.
Given the sequence of sets P j, we use properties (1), (2), (5) on page 437, the

observation that the mass is always bounded by |E|−1, and Lemmas 11.2.2 and
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11.1.10 to obtain the following bound for the expression on the left in (11.2.9):

∑
s∈PE,F

∣

∣

〈

χF |ϕs
〉∣

∣

∣

∣

〈

χE ′∩N−1[ωs(2) ]
,ϕs
〉∣

∣

= ∑
j∈Z
∑

s∈P j

∣

∣

〈

χF |ϕs
〉∣

∣

∣

∣

〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣

∣

≤ ∑
j∈Z
∑
k
∑

s∈T jk

∣

∣

〈

χF |ϕs
〉∣

∣

∣

∣

〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣

∣

≤C3∑
j
∑
k

|Itop(T jk)|E ( f ;T jk)M (E ′,T jk) |E ′| |F | 1
2

≤ C3 ∑
j∈Z
∑
k

|Itop(T jk)| min
(

2 j+1,C
|F | 1

2

|E| ,C |F |− 1
2
)

min(|E ′|−1,22 j+2) |E| |F | 1
2

≤C4∑
j∈Z

2−2 j min
(

2 j, |F | 1
2 |E|−1, |F |− 1

2
)

min(|E|−1,22 j) |E| |F | 1
2

≤C5 ∑
j∈Z

min

(

2 j|E| 1
2 ,min

( |F |
|E| ,

|E|
|F |

) 1
2
)

min
(

(2 j|E| 1
2 )−2,1

)

|E| 1
2 |F | 1

2

≤C6 ∑
j∈Z

min

(

2 j,min
( |F|
|E| ,

|E|
|F |

) 1
2
)

min(2−2 j,1) |E| 1
2 |F | 1

2

≤C7 min(|E|, |F |)
(

1 +
∣

∣

∣ log
|E|
|F |

∣

∣

∣

)

.

The last estimate follows by a simple calculation considering the three cases 1 < 2 j,

min
(

|F |
|E| ,

|E|
|F |

) 1
2 ≤ 2 j ≤ 1, and 2 j < min

(

|F |
|E| ,

|E|
|F |

) 1
2
.

11.2.4 The Proof of Lemma 11.2.2

It remains to prove Lemma 11.2.2.
Fix a 2-tree T contained in PE,F and let t = top(T) denote its top. We show that

1
|It | ∑s∈T

∣

∣

〈

χF |ϕs
〉∣

∣

2 ≤C min

(

|F |
|E| ,1

)2

(11.2.22)

for some constant C independent of F,E , and T. Then (11.2.21) follows from
(11.2.22) by taking the supremum over all 2-trees T contained in PE,F .

We decompose the function χF as follows:

χF = χF∩3It + χF∩(3It )c .

We begin by observing that for s in PE,F we have
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∣

∣

〈

χF∩(3It )c |ϕs
〉∣

∣ ≤
CM|Is|

1
2 inf

Is
M(χF)

(

1 +
dist((3It)c,c(Is))

|Is|

)M

≤ 8CM|Is|
1
2 min

(

|F |
|E| ,1

)(

|Is|
|It |

)M

,

since Is meets the complement of ΩE,F for every s ∈ PF . Square this inequality and
sum over all s in T to obtain

∑
s∈T

|〈χF∩(3It )c |ϕs〉|2 ≤C |It | min

(

|F|
|E| ,1

)2

,

using Exercise 11.2.1.
We now turn to the corresponding estimate for the function χF∩3It . At this point

it is convenient to distinguish the simple case |F| > |E| from the difficult case |F | ≤
|E|. In the first case the set ΩE,F is empty and Exercise 11.1.6(b) yields

∑
s∈T

∣

∣

〈

χF∩3It |ϕs
〉∣

∣

2 ≤C
∥

∥χF∩3It

∥

∥

2
L2

≤C |It |

= C |It | min

(

|F |
|E| ,1

)2

,

since |F| > |E|.
We may therefore concentrate on the case |F| ≤ |E|. In proving (11.2.21) we may

assume that there exists a point x0 ∈ It such that

M(χF )(x0) ≤ 8
|F |
|E| ;

otherwise there is nothing to prove.
We write the set ΩE,F =

{

M(χF) > 8 |F |
|E|
}

as a disjoint union of dyadic intervals

J′� such that the dyadic parent ˜J′� of J′� is not contained in ΩE,F and therefore

|F ∩ J′�| ≤ |F ∩ ˜J′�| ≤ 16
|F|
|E| |J

′
�| .

Now some of these dyadic intervals may have size larger than or equal to |It |. Let J′�
be such an interval. Then we split J′� into

|J′�|
|It | intervals J′�,m each of size exactly |It |.

Since there is an x0 ∈ It with

M(χF)(x0) ≤ 8
|F |
|E| ,
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if K is the smallest interval that contains x0 and J′�,m, then

1
|K|

∫

K
χF dx ≤ 8

|F |
|E| =⇒ |F ∩ J′�,m| ≤ 8

|F|
|E| |It |

|K|
|It |

.

We conclude that

|F ∩ J′�,m| ≤ c
|F |
|E| |It |

(

1 +
dist(It ,J′�,m)

|It |

)

. (11.2.23)

We now have a new collection of dyadic intervals {Jk}k contained inΩE,F consisting
of all the previous J′� when |J′�| < |It | and the J′�,m’s when |J′�| ≥ |It |. In view of the
construction we have

|F ∩ Jk| ≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2c
|F|
|E| |Jk| when |Jk| < |It |,

2c
|F|
|E| |Jk|

(

1 +
dist(It ,Jk)

|It |

)

when |Jk| = |It |,

(11.2.24)

for all k. We now define the “bad functions”

bk(x) =
(

e−2π ic(ωt)xχF∩3It (x)−
1
|Jk|

∫

Jk

e−2π ic(ωt)yχF∩3It (y)dy

)

χJk (x) ,

which are supported in Jk, have mean value zero, and satisfy

∥

∥bk

∥

∥

L1 ≤ 2c |F | |Jk|
(

1 +
dist(It ,Jk)

|It |

)

.

We also set
g(x) = e−2π ic(ωt)xχF∩3It (x)−∑

k

bk(x) ,

the “good function” of this Calderón–Zygmund-type decomposition. We have there-
fore decomposed the function χF∩3It as follows:

χF∩3It (x) = g(x)e2π ic(ωt)x +∑
k

bk(x)e2π ic(ωt)x . (11.2.25)

We show that
∥

∥g
∥

∥

L∞ ≤C |F |
|E| . Indeed, for x in Jk we have

g(x) =
1
|Jk|

∫

Jk

e−2π ic(ωt)yχF∩3It (y)dy ,

which implies
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|g(x)| ≤ |F ∩3It ∩ Jk|
|Jk|

≤

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

|F ∩ Jk|
|Jk|

when |Jk| < |It |,

|F ∩3It |
|It |

when |Jk| = |It |,

and both of the preceding are at most a multiple of |F |
|E| ; the latter is because there is

an x0 ∈ It with M(χF)(x0) ≤ 8 |F|
|E| . Also, for x ∈ (

⋃

k Jk)c = (ΩE,F)c we have

|g(x)| = χF∩3It (x) ≤ M(χF)(x) ≤ 8
|F |
|E| .

We conclude that
∥

∥g
∥

∥

L∞ ≤C |F |
|E| . Moreover,

∥

∥g
∥

∥

L1 ≤∑
k

∫

Jk

|F ∩3It ∩ Jk|
|Jk|

dx +
∥

∥χF∩3It

∥

∥

L1 ≤C |F ∩3It| ≤C
|F |
|E| |It | ,

since the Jk are disjoint. It follows that

∥

∥g
∥

∥

L2 ≤C
( |F|
|E|

) 1
2
( |F |
|E|

) 1
2 |It |

1
2 = C

|F|
|E| |It |

1
2 .

Using Exercise 11.1.6, we have

∑
s∈T

∣

∣

〈

ge2π ic(ωt)(·) |ϕs
〉∣

∣

2 ≤C
∥

∥g
∥

∥

2
L2 ,

from which we obtain the required conclusion for the first function in the decompo-
sition (11.2.25).

Next we turn to the corresponding estimate for the second function,

∑
k

bke2π ic(ωt)(·) ,

in the decomposition (11.2.25), which requires some further analysis. We have the
following two estimates for all s and k:

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣ ≤ CM |F | |E|−1 |Jk|2 |Is|−
3
2

(1 + dist (Jk,Is)
|Is| )M

, (11.2.26)

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣ ≤ CM |F | |E|−1 |Is|
1
2

(1 + dist (Jk ,Is)
|Is| )M

, (11.2.27)

for all M > 0, where CM depends only on M.
To prove (11.2.26) we use the mean value theorem together with the fact that bk

has vanishing integral to write for some ξy,
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∣

∣

〈

bk e2π ic(ωt)(·) |ϕs
〉∣

∣

=
∣

∣

∣

∫

Jk

bk(y)e2π ic(ωt)yϕs(y)dy
∣

∣

∣

=
∣

∣

∣

∫

Jk

bk(y)
(

e2π ic(ωt)yϕs(y)− e2π ic(ωt)c(Jk)ϕs(c(Jk))dy
∣

∣

∣

≤ |Jk|
∫

Jk

|bk(y)|
[

2π |c(ωs)−c(ωt)|
|Is |

1
2

∣

∣ϕ
( ξy−c(Is)

|Is|
)∣

∣+ |Is|−
3
2
∣

∣ϕ ′( ξy−c(Is)
|Is|

)∣

∣

]

dy

≤
∥

∥bk

∥

∥

L1 |Jk| sup
ξ∈Jk

CM|Is|−
3
2

(1 + |ξ−c(Is)|
|Is| )M+1

≤CM
|F |
|E| |Jk|

(

1 +
dist (Jk, It)

|It |

) |Jk| |Is|−
3
2

(1 + dist (Jk,Is)
|Is| )M+1

≤ CM |F | |E|−1 |Jk|2 |Is|−
3
2

(1 + dist (Jk,Is)
|Is| )M

,

where we used the fact that 1+ dist (Jk,It )
|It | ≤ 1+ dist (Jk ,Is)

|Is| . To prove estimate (11.2.27)
we note that

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣≤
CM |Is|

1
2 inf

Is
M(bk)

(1 + dist (Jk,Is)
|Is| )M

and that

M(bk) ≤ M(χF)+
|F ∩3It ∩ Jk|

|Jk|
M(χJk ) ,

and since Is �ΩE,F , we have infIs M(χF) ≤ 8 |F |
|E| , while the second term in the sum

was observed earlier to be at most C |F |
|E| .

Finally, we have the estimate

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣≤ CM |F | |E|−1 |Jk| |Is|−
1
2

(1 + dist (Jk ,Is)
|Is | )M

, (11.2.28)

which follows by taking the geometric mean of (11.2.26) and (11.2.27).
Now for a fixed s ∈ PE,F we may have either Jk ⊆ Is or Jk ∩ Is = /0 (since Is is not

contained in ΩE,F ). Therefore, for fixed s ∈ PE,F there are only three possibilities
for Jk:

(a) Jk ⊆ 3Is;

(b) Jk ∩3Is = /0;

(c) Jk ∩ Is = /0, Jk ∩3Is �= /0, and Jk � 3Is.

Observe that case (c) is equivalent to the following statement:
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(c) Jk ∩ Is = /0, dist (Jk, Is) = 0, and |Jk| ≥ 2|Is|.

Note that in case (c), for each Is there exists exactly one Jk = Jk(s) with the previous
properties; but for a given Jk there may be a sequence of Is’s that lie on the left
of Jk such that |Jk| ≥ 2|Is| and dist (Jk, Is) = 0 and another sequence with similar
properties on the right of Jk. The Is’s that lie on either side of Jk must be nested, and
their lengths must add up to |IL

sk
|+ |IR

sk
|, where IL

sk
is the largest one among them on

the left of Jk and IR
sk

is the largest one among them on the right of Jk. Using (11.2.27),
we obtain

∑
s∈T

∣

∣

∣ ∑
k: Jk∩Is= /0

dist (Jk,Is)=0
|Jk |≥2|Is|

〈

bke2π ic(ωt)(·) |ϕs
〉

∣

∣

∣

2
= ∑

s∈T

∣

∣

∣

〈

bk(s)e
2π ic(ωt)(·) |ϕs

〉

∣

∣

∣

2

≤C
( |F|
|E|

)2

∑
s∈T: Jk∩Is= /0
dist (Jk ,Is)=0
|Jk |≥2|Is|

|Is|

≤C
( |F|
|E|

)2

∑
k

(

|IL
sk
|+ |IR

sk
|
)

.

But note that IL
sk
⊆ 2Jk, and since IL

sk
∩ Jk = /0, we must have IL

sk
⊆ 2Jk \ Jk (and

likewise for IR
sk

). We define sets

IL+
sk

= IL
sk

+
1
2
|Jk| ,

IR−
sk

= IR
sk
− 1

2
|Jk| .

We have IL+
sk

∪ IR−
sk

⊆ Jk, and hence the sets IL+
sk

are pairwise disjoint for different

k, and the same is true for the IR−
sk

. Moreover, since 1
2 |Jk| ≤ 1

2 |It | for all k, all the
shifted sets IL+

sk
, IR−

sk
are contained in 3It . We conclude that

∑
k

|IL
sk
|+∑

k

|IR
sk
| = ∑

k

(

|IL+
sk

|+ |IR−
sk

|
)

≤
∣

∣

⋃

k

IL+
sk

∣

∣+
∣

∣

⋃

k

IR−
sk

∣

∣

≤ 2 |3It | ,

which combined with the previously obtained estimate yields the required result in
case (c).

We now consider case (a). Using (11.2.26), we can write

(

∑
s∈T

∣

∣

∣ ∑
k:Jk⊆3Is

〈

bke2π ic(ωt)(·) |ϕs
〉

∣

∣

∣

2
)1

2

≤CM

( |F |
|E|

)2
(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3Is

|Jk|
1
2
|Jk|

3
2

|Is|
3
2

∣

∣

∣

2
)1

2

,
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and we control the second expression by

CM
|F|
|E|

{

∑
s∈T

(

∑
k: Jk⊆3Is

|Jk|
)(

∑
k: Jk⊆3Is

|Jk|3
|Is|3

)}1
2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

|Jk|3 ∑
s∈T

Jk⊆3Is

1
|Is|2

}1
2

,

where we used that the dyadic intervals Jk are disjoint and the Cauchy–Schwarz
inequality. We note that the last sum is equal to at most C|Jk|−2, since for every
dyadic interval Jk there exist at most three dyadic intervals of a given length whose
triples contain it. The required estimate C |F | |E|−1 |It |

1
2 now follows in case (a).

Finally, we deal with case (b), which is the most difficult case. We split the set of
k into two subsets, those for which Jk ⊆ 3It and those for which Jk � 3It (recall that
|Jk| ≤ |It |). Whenever Jk � 3It , we have

dist (Jk, Is) ≈ dist (Jk, It) .

In this case we use Minkowski’s inequality and estimate (11.2.28) to deduce

(

∑
s∈T

∣

∣

∣ ∑
k: Jk�3It

〈

bke2π ic(ωt)(·) |ϕs
〉

∣

∣

∣

2
)1

2

≤ ∑
k: Jk�3It

(

∑
s∈T

∣

∣

〈

bke2π ic(ωt)(·) |ϕs
〉∣

∣

2
)1

2

≤CM
|F|
|E| ∑

k: Jk�3It

|Jk|
(

∑
s∈T

|Is|2M−1

dist (Jk, Is)2M

)1
2

≤CM
|F|
|E| ∑

k: Jk�3It

|Jk|
dist (Jk, It)M

(

∑
s∈T

|Is|2M−1
)1

2

≤CM
|F|
|E| |It |

M− 1
2 ∑

k: Jk�3It

|Jk|
dist (Jk, It)M

≤CM
|F|
|E| |It |

M− 1
2

∞

∑
l=1

∑
k:

dist (Jk,It )≈2l |It |

|Jk|
(2l|It |)M

,

where dist (Jk, It) ≈ 2l|It | means that dist (Jk, It) ∈ [2l|It |,2l+1|It |]. But note that all
the Jk with dist (Jk, It)≈ 2l|It | are contained in 2l+2It , and since they are disjoint, we

estimate the last sum by C2l|It |(2l|It |)−M . The required estimate CM|F | |E|−1|It |
1
2

follows.
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Next we consider the case Jk ⊆ 3It , Jk ∩3Is = /0, and |Jk| ≤ |Is|, in which we use
estimate (11.2.26). We have

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk|≤|Is |

〈bke2π ic(ωt)(·) |ϕs〉
∣

∣

∣

2
)1

2

≤CM
|F|
|E|

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|2|Is|−
3
2

|Is|M
dist (Jk, Is)M

∣

∣

∣

2
)1

2

≤CM
|F|
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|
|Is|

(dist (Jk, Is)
|Is|

)−M
]}1

2

≤CM
|F|
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

∫

Jk

( |x− c(Is)|
|Is|

)−M dx
|Is|

]}1
2

≤CM
|F|
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[
∫

(3Is)c

( |x− c(Is)|
|Is|

)−M dx
|Is|

]}1
2

≤CM
|F|
|E|

{

∑
s∈T
∑

k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3|Is|−2
( |Is|

dist (Jk, Is)

)M
}1

2

.

But since the last integral contributes at most a constant factor, we can estimate the
last displayed expression by
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CM
|F |
|E|

{

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3 ∑
m≥log |Jk |

2−2m ∑
s∈T

|Is|=2m

(dist (Jk, Is)
2m

)−M
}1

2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3 ∑
m≥log |Jk|

2−2m
}1

2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |≤|Is|

|Jk|3|Jk|−2
}1

2

≤CM
|F |
|E| |It |

1
2 .

There is also the subcase of case (b) in which |Jk| > |Is|. Here we have the two
special subcases Is ∩ 3Jk = /0 and Is ⊆ 3Jk. We begin with the first of these special
subcases, in which we use estimate (11.2.27). We have

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk|>|Is |

Is∩3Jk= /0

〈bke2π ic(ωt)(·) |ϕs〉
∣

∣

∣

2
)1

2

≤CM
|F |
|E|

(

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|
1
2

|Is|M
dist (Jk, Is)M

∣

∣

∣

2
)1

2

≤CM
|F |
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

][

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

]}1
2

.

Since Is ∩3Jk = /0, we have that dist (Jk, Is) ≈ |x− c(Is)| for every x ∈ Jk, and there-
fore the second term inside square brackets satisfies

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M ≤∑

k

∫

Jk

( |x− c(Is)|
|Is|

)−M dx
|Is|

≤CM .

Using this estimate, we obtain



472 11 Time–Frequency Analysis and the Carleson–Hunt Theorem

CM
|F |
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is |

Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

][

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

]}1
2

≤CM
|F |
|E|

{

∑
s∈T

[

∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

]} 1
2

= CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk| ∑s∈T

Jk∩3Is= /0
|Jk |>|Is|

Is∩3Jk= /0

|Is|2
|Is|M

dist (Jk, Is)M

} 1
2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk|

log2 |Jk |

∑
m=−∞

22m ∑
s∈T: |Is|=2m

Jk∩3Is= /0
|Jk|>|Is |

Is∩3Jk= /0

|Is|M
dist (Jk, Is)M

} 1
2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk|

log2 |Jk |

∑
m=−∞

22m
} 1

2

≤CM
|F |
|E|

{

∑
k: Jk⊆3It

1
|Jk|

|Jk|2
} 1

2

≤CM
|F |
|E| |It |

1
2 .

Finally, there is the subcase of case (b) in which |Jk| ≥ |Is| and Is ⊆ 3Jk. Here
again we use estimate (11.2.27). We have

{

∑
s∈T

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

〈bke2π ic(ωt)(·) |ϕs〉
∣

∣

∣

2
}1

2

≤ CM
|F |
|E|

{

∑
s∈T

|Is|
∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is |
Is⊆3Jk

|Is|M
dist (Jk, Is)M

∣

∣

∣

2
}1

2

.

(11.2.29)

Let us make some observations. For a fixed s there exist at most finitely many
Jk’s contained in 3It with size at least |Is|. Let J1

L(s) be the interval that lies to the
left of Is and is closest to Is among all Jk that satisfy the conditions in the preceding
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sum. Then |J1
L(s)| > |Is| and

dist(J1
L(s), Is) ≥ |Is| .

Let J2
L(s) be the interval to the left of J1

L(s) that is closest to J1
L(s) and that satisfies

the conditions of the sum. Since 3J2
L(s) contains Is, it follows that |J2

L(s)|> 2|Is| and

dist(J2
L(s), Is) ≥ 2|Is| .

Continuing in this way, we can find a finite number of intervals Jr
L(s) that lie to the

left of Is and inside 3It , satisfy |Jr
L(s)| > 2r|Is| and dist(Jr

L(s), Is)≥ 2r|Is|, and whose
triples contain Is. Likewise we find a finite collection of intervals J1

R(s),J2
R(s), . . .

that lie to the right of Is and satisfy similar conditions. Then, using the Cauchy–
Schwarz inequality, we obtain

∣

∣

∣ ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

|Is|M
dist (Jk, Is)M

∣

∣

∣

2

≤ 2

∣

∣

∣

∣

∞

∑
r=1

|Is|
M
2

dist(Jr
L(s), Is)

M
2

1

2
rM
2

∣

∣

∣

∣

2

+ 2

∣

∣

∣

∣

∞

∑
r=1

|Is|
M
2

dist(Jr
R(s), Is)

M
2

1

2
rM
2

∣

∣

∣

∣

2

≤CM

∞

∑
r=1

|Is|M
dist(Jr

L(s), Is)M +CM

∞

∑
r=1

|Is|M
dist(Jr

R(s), Is)M

≤CM ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

|Is|M
dist (Jk, Is)M .

We use this estimate to control the expression on the left in (11.2.29) by

CM
|F |
|E|

{

∑
s∈T

|Is| ∑
k: Jk⊆3It
Jk∩3Is= /0
|Jk |>|Is|
Is⊆3Jk

|Is|M
dist (Jk, Is)M

}1
2

≤ CM
|F|
|E|

{

∑
k:Jk⊆3It

|Jk|
∞

∑
m=0

2−m ∑
s: Is⊆3Jk
Jk∩3Is= /0

|Is|=2−m|Jk|

|Is|M
dist (Jk, Is)M

}1
2

.

Since the last sum is at most a constant, it follows that the term on the left in
(11.2.29) also satisfies the estimate CM

|F |
|E| |It |

1
2 . This concludes the proof of Lemma

11.2.2.
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Exercises

11.2.1. Let T be a 2-tree with top It and let M > 1 and L be such that 2L < |It |. Show
that there exists a constant CM > 0 such that

∑
s∈T

|Is|M ≤ CM|It |M ,

∑
s∈T

|Is|≥2L

|Is|−M ≤ CM
|It |

(2L)M+1 ,

∑
s∈T

|Is|≤2L

|Is|M ≤ CM|It |(2L)M−1 .

[

Hint: Group the s that appear in each sum in families Gm such that |Is| = 2−m|It |
for each s ∈ Gm.

]

11.2.2. Show that the operator

g �→ sup
−∞<a<b<∞

∣

∣(ĝχ[a,b])
∨∣
∣

defined on the line is Lp bounded for all 1 < p < ∞.

11.2.3. On Rn fix a unit vector b and consider the maximal operator

T (g)(x) = sup
N>0

∣

∣

∣

∣

∫

|b·ξ |≤N

ĝ(ξ )e2π ix·ξ dξ
∣

∣

∣

∣

.

Show that T maps Lp(Rn) to Lp(Rn) for all 1 < p < ∞.
[

Hint: Apply a rotation.
]

11.2.4. Define the directional Carleson operators by

C θ ( f )(x) = sup
a∈R

∣

∣

∣

∣

lim
ε→0

∫

ε<|t|<ε−1
e2π iat f (x− tθ )

dt
t

∣

∣

∣

∣

,

for functions f on Rn. Here θ is a vector in Sn−1.
(a) Show that C θ is bounded on Lp(Rn) for all 1 < p <∞.
(b) Let Ω be an odd integrable function on Sn−1. Define an operator

CΩ ( f )(x) = sup
ξ∈Rn

∣

∣

∣

∣

lim
ε→0

∫

ε<|y|<ε−1
e2π iξ ·y f (x− y)

Ω
( y
|y|
)

|y|n dy

∣

∣

∣

∣

.

Show that C Ω is bounded on Lp(Rn) for 1 < p < ∞.
[

Hint: Part (a): Reduce to the case θ = e1 = (1,0, . . . ,0) via a rotation and use
Theorem 11.2.1(b). Part (b): Use the method of rotations and part (a).

]
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11.3 The Maximal Carleson Operator and Weighted Estimates

Recall the one-sided Carleson operator C1 defined in the previous section:

C1( f )(x) = sup
N>0

∣

∣

∣

∣

∫ N

−∞
̂f (ξ )e2π ixξ dξ

∣

∣

∣

∣

.

Recall also the modulation operator Ma(g)(x) = g(x)e2π iax. We begin by observing
that the following identity is valid:

(

̂f χ(−∞,b]
)∨ = Mb I− iH

2
M−b( f ) =

1
2

f − i
2

MbHM−b( f ) , (11.3.1)

where H is the Hilbert transform. It follows from (11.3.1) that

C1( f ) ≤ 1
2
| f |+ 1

2
sup
ξ∈R

|H(Mξ ( f ))|

and that
sup
ξ∈R

|H(Mξ ( f ))| ≤ | f |+ 2C1( f ) .

We conclude that the Lp boundedness of the sublinear operator f �→ C1( f ) is equiv-
alent to that of the sublinear operator

f �→ sup
ξ∈R

|H(Mξ ( f ))| .

Definition 11.3.1. The maximal Carleson operator is defined by

C∗( f )(x) = sup
ε>0

sup
ξ∈R

∣

∣

∣

∣

∫

|x−y|>ε
f (y)e2π iξy dy

x− y

∣

∣

∣

∣

= sup
ξ∈R

∣

∣H(∗)(Mξ ( f ))(x)
∣

∣ ,
(11.3.2)

where H(∗) is the maximal Hilbert transform. Observe that C∗( f ) is well defined for
all f in

⋃

1≤p<∞Lp(R) and that C∗( f ) controls the Carleson operator C ( f ) point-
wise.

We begin with the following pointwise estimate, which reduces the boundedness
of C∗ to that of C :

Lemma 11.3.2. There is a positive constant c > 0 such that for all functions f in
⋃

1≤p<∞Lp(R) we have

C∗( f ) ≤ cM( f )+ M(C ( f )) , (11.3.3)

where M is the Hardy–Littlewood maximal function.
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Proof. The proof of (11.3.3) is based on the classical inequality

H(∗)(g) ≤ cM(g)+ M(H(g))

obtained in (4.1.32). Applying this to the functions Mξ ( f ) and taking the supremum
over ξ ∈ R, we obtain

C∗( f ) ≤ cM( f )+ sup
ξ∈R

M
(

H(Mξ ( f ))
)

,

from which (11.3.3) easily follows by passing the supremum inside the maximal
function. �

It is convenient to work with a variant of the Hardy–Littlewood maximal opera-
tor. For 0 < r < ∞ define

Mr( f ) = M(| f |r) 1
r

for f such that | f |r is locally integrable over the real line. Note that M( f ) ≤ Mr( f )
for any r ∈ (1,∞). Our next goal is to obtain the boundedness of the Carleson oper-
ator on weighted Lp spaces.

Theorem 11.3.3. For every p ∈ (1,∞) and w ∈ Ap there is a constant C(p, [w]Ap)
such that for all f ∈ Lp(R) we have

∥

∥C ( f )
∥

∥

Lp(w) ≤C(p, [w]Ap)
∥

∥ f
∥

∥

Lp(w) , (11.3.4)
∥

∥C∗( f )
∥

∥

Lp(w) ≤C(p, [w]Ap)
∥

∥ f
∥

∥

Lp(w) . (11.3.5)

Proof. Fix a 1 < p < ∞ and pick an r ∈ (1, p) such that w ∈ Ar. We show that for
all f ∈ Lp(w) we have the estimate

∫

R
C ( f )(x)p w(x)dx ≤Cp([w]Ap)

∫

R
Mr( f )(x)pw(x)dx . (11.3.6)

Then the boundedness of C on Lp(w) is a consequence of the boundedness of the
Hardy–Littlewood maximal operator on L

p
r (w).

If we show that for any w ∈ Ap there is a constant Cp([w]Ap) such that

∫

R
M(C ( f ))p wdx ≤Cp([w]Ap)

∫

R
Mr( f )p wdx , (11.3.7)

then the trivial fact C ( f ) ≤ M(C ( f )), inserted in (11.3.7), yields (11.3.6).
Estimate (11.3.7) will be a consequence of the following two important observa-

tions:
M#(C ( f )) ≤Cr Mr( f ) a.e. (11.3.8)

and
∥

∥M(C ( f ))
∥

∥

Lp(w) ≤ cp([w]Ap)
∥

∥M#(C ( f ))
∥

∥

Lp(w) , (11.3.9)

where cp([w]Ap) depends on [w]Ap and Cr depends only on r.
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We begin with estimate (11.3.8), which was obtained in Theorem 7.4.9 for sin-
gular integral operators. Here this estimate is extended to maximally modulated
singular integrals. To prove (11.3.8) we use the result in Proposition 7.4.2 (2). We
fix x ∈ R and we pick an interval I that contains x. We write f = f0 + f∞, where
f0 = f χ3I and f∞ = f χ(3I)c . We set aI = C ( f∞)(cI), where cI is the center of I.
Then we have

1
|I|

∫

I
|C ( f )(y)−aI|dx ≤ 1

|I|

∫

I
sup
ξ∈R

∣

∣H(Mξ ( f ))(y)−H(Mξ ( f∞))(cI)
∣

∣dy

≤ B1 + B2 ,

where

B1 =
1
|I|

∫

I
sup
ξ∈R

∣

∣H(Mξ ( f0))(y)
∣

∣dy ,

B2 =
1
|I|

∫

I
sup
ξ∈R

∣

∣H(Mξ ( f∞))(y)−H(Mξ ( f∞))(cI)
∣

∣dy .

But

B1 ≤ 1
|I|

∫

I
C ( f0)(y)dy

≤ 1
|I|
∥

∥C ( f0)
∥

∥

Lr

∥

∥χI
∥

∥

Lr′

≤
∥

∥C
∥

∥

Lr→Lr

|I|
∥

∥ f0
∥

∥

Lr |I|
1
r′

≤CrMr( f )(x) ,

where we used the boundedness of the Carleson operator C from Lr to Lr and The-
orem 1.4.17 (v).

We turn to the corresponding estimate for B2. We have

B2 ≤ 1
|I|

∫

I

∫

Rn
| f∞(z)|

∣

∣

∣

1
y− z

− 1
cI − z

∣

∣

∣dzdy

=
1
|I|

∫

I

∫

(3I)c
| f (z)|

∣

∣

∣

y− cI

(y− z)(cI − z)

∣

∣

∣dzdy

≤
∫

I

(
∫

(3I)c
| f (z)| C

(|cI − z|+ |I|)2 dz

)

dy

≤
∫

I

C
|I|M( f )(x)dy

≤CM( f )(x)
≤CMr( f )(x) .
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This completes the proof of estimate (11.3.8), and we now turn to the proof of
estimate (11.3.9). We derive (11.3.9) as a consequence of Exercise 9.4.9, provided
we have that

∥

∥M(C ( f ))
∥

∥

Lr(w) < ∞ . (11.3.10)

Unfortunately, the finiteness estimate (11.3.10) for general functions f in Lp(w)
cannot be deduced easily without knowledge of the sought estimate (11.3.4) for
p = r. However, we can show the validity of (11.3.10) for functions f with compact
support and weights w ∈ Ap that are bounded. This argument requires a few tech-
nicalities, which we now present. For a fixed constant B we introduce a truncated
Carleson operator

C B( f ) = sup
|ξ |≤B

|H(Mξ ( f ))| .

Next we work with a weight w in Ap that is bounded. In fact, we work with wk =
min(w,k), which satisfies

[wk]Ap ≤ (1 + 2p−2)
(

1 +[w]Ap

)

for all k ≥ 1 (see Exercise 9.1.9). Finally, we take f = h to be a smooth function
with support contained in an interval [−R,R]. Then for |ξ | ≤ B we have

|H(Mξ (h))(x)| ≤ 2R
∥

∥(Mξ (h))′
∥

∥

L∞χ|x|≤2R +

∥

∥h
∥

∥

L1

|x|+ R
χ|x|>2R ≤ BCh R

|x|+ R
,

where Ch is a constant that depends on h. This implies that the last estimate also
holds for C B(h). Using Example 2.1.8, we now obtain

M(C B(h))(x) ≤ BCh
log
(

1 + |x|
R

)

1 + |x|
R

.

It follows that M(C B(h)) lies in Lr(wk), since r > 1 and wk ≤ k. Therefore,
∥

∥M(C B( f ))
∥

∥

Lr(wk)
< ∞ ,

and thus (11.3.10) holds in this setting. Applying the previous argument to C B(h)
and the weight wk [in lieu of C ( f ) and w], we obtain (11.3.7) and thus (11.3.4) for
M(C B(h)) and the weight wk. This establishes the estimate

∥

∥C B(h)
∥

∥

Lp(wk)
≤ C(p, [w]Ap)

∥

∥h
∥

∥

Lp(wk)
(11.3.11)

for some constant C(p, [w]Ap) that is independent of B and k, for functions h that are
smooth and compactly supported. Letting k → ∞ in (11.3.11) and applying Fatou’s
lemma, we obtain (11.3.4) for smooth functions h with compact support. From this
we deduce the validity of (11.3.4) for general functions f in Lp(w) by density (cf.
Exercise 4.3.11).
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Finally, to obtain (11.3.5) for general f ∈ Lp(w), we raise (11.3.3) to the power
p, use the inequality (a + b)p ≤ 2p(ap + bp), and integrate over R with respect to
the measure wdx to obtain

∫

R
C∗( f )pwdx ≤ 2pc

∫

R
M( f )pwdx + 2p

∫

R
M(C ( f ))pwdx . (11.3.12)

Then we use estimate (11.3.4) and the boundedness of the Hardy–Littlewood maxi-
mal operator on Lp(w) to obtain the required conclusion. �

Exercises

11.3.1. (a) Let θ ∈ Sn−1. Define the maximal directional Carleson operator

C θ∗ ( f )(x) = sup
a∈R

sup
ε>0

∣

∣

∣

∣

∫

ε<|t|<ε−1
e2π iat f (x− tθ )

dt
t

∣

∣

∣

∣

for functions f on Rn. Prove that C θ∗ is bounded on Lp(Rn,w) for any weight w ∈Ap

and 1 < p < ∞.
(b) LetΩ be an odd integrable function on Sn−1. Obtain the same conclusion for the
maximal operator

CΩ∗ ( f )(x) = sup
ξ∈Rn

sup
ε>0

∣

∣

∣

∣

∫

ε<|y|<ε−1
e2π iξ ·y f (x− y)

Ω
( y
|y|
)

|y|n dy

∣

∣

∣

∣

.

[

Hint: Part (a): Reduce to the case θ = e1 = (1,0, . . . ,0) via a rotation and use
Theorem 11.3.3 with w = 1. Part (b): Use the method of rotations and part (a).

]

11.3.2. For a fixed λ > 0 write
{

x ∈ R : C∗( f )(x) > λ
}

=
⋃

j

I j ,

where I j = (α j,α j + δ j) are open disjoint intervals. Let 1 < r < ∞. Show that there
exists a γ0 > 0 such that for every 0 < γ < γ0 there exists a constant Cγ > 0 such that
limγ→0 Cγ = 0 and

∣

∣{x ∈ I j : C∗( f )(x) > 3λ , Mr( f )(x) ≤ γ λ}
∣

∣≤Cγ
∣

∣I j
∣

∣

for all f for which C∗( f ) is defined.
[

Hint: Note that we must have C∗( f )(α j) ≤ λ and C∗( f )(α j + δ j) ≤ λ for all j.
Set I∗j = (α j − 5δ j,α j + 6δ j), f1(x) = f (x) for x ∈ I∗j , f1(x) = 0 for x /∈ I∗j , and
f2(x) = f (x)− f1(x). We may assume that for all j there exists a z j in I j such that
Mr( f )(z j)≤ γλ . For fixed x ∈ I j estimate |H(ε)( f2)(x)−H(ε)( f2)(α j)| by the three-
fold sum
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∣

∣

∣

∣

∫

|α j−t|>ε
f2(t)e2π iξ t

(

2
α j − t

− 2
x− t

)

dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

|x−t|>ε≥|α j−t|
f2(t)e2π iξ t 1

x− t
dt

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

|α j−t|>ε≥|x−t|
f2(t)e2π iξ t 1

α j − t
dt

∣

∣

∣

∣

,

which is easily shown to be controlled by c0 M( f )(z j) for some constant c0. Thus
C∗( f2)(x) ≤ C∗( f2)(α j)+ c0 M( f )(z j) ≤ λ + c0 γ λ . Select γ0 such that c0 γ0 < 1

2 .
Then λ + c0 γ λ < 3

2 λ for γ < γ0; hence we have C∗( f )(x) ≤ C∗( f1)(x)+ 3
2λ for

x ∈ I j and thus I j ∩{C∗( f ) > 3λ} ⊆ {C∗( f1) > λ}. Using the boundedness of C∗
on Lr and the fact that Mr( f )(z j) ≤ γ λ , we obtain that the last set has measure at
most a constant multiple of γr|I j|.

]

11.3.3. (Hunt and Young [173] ) Show that for every w in A∞ there is a finite con-
stant γ0 > 0 such that for all 0 < γ < γ0 and all 1 < r <∞ there is a constant Bγ such
that

w
(

{C∗( f ) > 3λ}∩{Mr( f ) ≤ γλ}
)

≤ Bγw
(

{C∗( f ) > λ}
)

for all f for which C∗( f ) is finite. Moreover, the constants Bγ satisfy Bγ → 0 as
γ → 0.
[

Hint: Start with positive constants C0 and δ such that for all intervals I and any
measurable set E we have |E∩I|≤ ε|I| =⇒ w(E∩I)≤C0 εδw(I) . Use the estimate
of Exercise 11.3.3 with I = I j and sum over j to obtain the required estimate with
Bγ = C0 (Cγ )δ .

]

11.3.4. Prove the following vector-valued version of Theorem 11.2.1:

∥

∥

∥

(

∑
j

|C ( f j)|r
) 1

r
∥

∥

∥

Lp(w)
≤Cp,r(w)

∥

∥

∥

(

∑
j

| f j|r
) 1

r
∥

∥

∥

Lp(w)

for all 1 < p,r <∞, all weights w ∈ Ap, and all sequences of functions f j in Lp(w).
[

Hint: You may want to use Corollary 9.5.7.
]

HISTORICAL NOTES

A version of Theorem 11.1.1 concerning the maximal partial sum operator of Fourier series of
square-integrable functions on the circle was first proved by Carleson [55]. An alternative proof
of Carleson’s theorem was provided by Fefferman [126], pioneering a set of ideas called time–
frequency analysis. Lacey and Thiele [205] provided the first independent proof on the line of the
boundedness of the maximal Fourier integral operator (11.1.1). The proof of Theorem 11.1.1 given
in this text follows closely the one given in Lacey and Thiele [205], which improves in some ways
that of Fefferman’s [126], by which it was inspired. One may also consult the expository article
of Thiele [312]. The proof of Lacey and Thiele was a byproduct of their work [203], [204] on
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the boundedness of the bilinear Hilbert transforms Hα( f1, f2)(x) = 1
π p.v.

∫

R f1(x− t) f2(x−αt) dt
t .

This family of operators arose in early attempts of A. Calderón to show that the first commutator
(Example 8.3.8, m = 1) is bounded on L2 when A′ is in L∞, an approach completed only using the
uniform boundedness of Hα obtained by Thiele [311], Grafakos and Li [150], and Li [212].

A version of Theorem 11.2.1 concerning the Lp boundedness, 1 < p < ∞, of the maximal par-
tial sum operator on the circle was obtained by Hunt [170]. Sjölin [283] extended this result to
L(log+ L)(log+ log+ L) and Antonov [5] to L(log+ L)(log+ log+ log+ L). Counterexamples of Kol-
mogorov [191], [192], Körner [197], and Konyagin [193] indicate that the everywhere convergence
of partial Fourier sums (or integrals) may fail for functions in L1 and in spaces near L1. The ex-
ponential decay estimate for α ≥ 1 in (11.2.1) and the restricted weak type (p, p) estimate with
constant C p2(p−1)−1 for the maximal partial sum operator on the circle are contained in Hunt’s
article [170]. The estimate for α < 1 in (11.2.1) appears in the article of Grafakos, Tao, and Ter-
willeger [153]; the proof of Theorem 11.2.1 is based on this article. This article also investigates
higher-dimensional analogues of the theory that were initiated in Pramanik and Terwilleger [266].
Theorem 11.3.3 was first obtained by Hunt and Young [173] using a good lambda inequality for
the Carleson operator. An improved good lambda inequality for the Carleson operator is contained
in of Grafakos, Martell, and Soria [152]. The particular proof of Theorem 11.3.3 given in the
text is based on the approach of Rubio de Francia, Ruiz, and Torrea [276]. The books of Jørsboe
and Melbro [179], Mozzochi [236], and Arias de Reyna [6] contain detailed presentations of the
Carleson–Hunt theorem on the circle.

The subject of Fourier analysis is currently enjoying a surge of activity. Emerging connec-
tions with analytic number theory, combinatorics, geometric measure theory, partial differential
equations, and multilinear analysis introduce new dynamics and present promising developments.
These connections are also creating new research directions that extend beyond the scope of this
book.



Glossary

A ⊆ B A is a subset of B (not necessarily a proper subset)

A � B A is a proper subset of B

Ac the complement of a set A

χE the characteristic function of the set E

d f the distribution function of a function f

f ∗ the decreasing rearrangement of a function f

fn ↑ f fn increases monotonically to a function f

Z the set of all integers

Z+ the set of all positive integers {1,2,3, . . .}
Zn the n-fold product of the integers

R the set of real numbers

R+ the set of positive real numbers

Rn the Euclidean n-space

Q the set of rationals

Qn the set of n-tuples with rational coordinates

C the set of complex numbers

Cn the n-fold product of complex numbers

T the unit circle identified with the interval [0,1]

Tn the n-dimensional torus [0,1]n,

|x|
√

|x1|2 + · · ·+ |xn|2 when x = (x1, . . . ,xn) ∈ Rn

Sn−1 the unit sphere {x ∈ Rn : |x| = 1}
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484 Glossary

e j the vector (0, . . . ,0,1,0, . . . ,0) with 1 in the jth entry and 0 elsewhere

log t the logarithm to base e of t > 0

loga t the logarithm to base a of t > 0 (1 �= a > 0)

log+ t max(0, logt) for t > 0

[t] the integer part of the real number t

x · y the quantity ∑n
j=1 x jy j when x = (x1, . . . ,xn) and y = (y1, . . . ,yn)

B(x,R) the ball of radius R centered at x in Rn

ωn−1 the surface area of the unit sphere Sn−1

vn the volume of the unit ball {x ∈ Rn : |x| < 1}
|A| the Lebesgue measure of the set A ⊆ Rn

dx Lebesgue measure

AvgB f the average 1
|B|
∫

B f (x)dx of f over the set B
〈

f ,g
〉

the real inner product
∫

Rn f (x)g(x)dx
〈

f |g
〉

the complex inner product
∫

Rn f (x)g(x)dx
〈

u, f
〉

the action of a distribution u on a function f

p′ the number p/(p−1), whenever 0 < p �= 1 < ∞

1′ the number ∞

∞′ the number 1

f = O(g) means | f (x)| ≤ M|g(x)| for some M for x near x0

f = o(g) means | f (x)| |g(x)|−1 → 0 as x → x0

At the transpose of the matrix A

A∗ the conjugate transpose of a complex matrix A

A−1 the inverse of the matrix A

O(n) the space of real matrices satisfying A−1 = At

‖T‖X→Y the norm of the (bounded) operator T : X → Y

A ≈ B means that there exists a c > 0 such that c−1 ≤ B
A ≤ c

|α| indicates the size |α1|+ · · ·+ |αn| of a multi-index α = (α1, . . . ,αn)

∂m
j f the mth partial derivative of f (x1, . . . ,xn) with respect to x j

∂α f ∂α1
1 · · ·∂αn

n f

C k the space of functions f with ∂α f continuous for all |α| ≤ k
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C0 space of continuous functions with compact support

C00 the space of continuous functions that vanish at infinity

C ∞0 the space of smooth functions with compact support

D the space of smooth functions with compact support

S the space of Schwartz functions

C ∞ the space of smooth functions
⋂∞

k=1 C k

D ′(Rn) the space of distributions on Rn

S ′(Rn) the space of tempered distributions on Rn

E ′(Rn) the space of distributions with compact support on Rn

P the set of all complex-valued polynomials of n real variables

S ′(Rn)/P the space of tempered distributions on Rn modulo polynomials

�(Q) the side length of a cube Q in Rn

∂Q the boundary of a cube Q in Rn

Lp(X ,μ) the Lebesgue space over the measure space (X ,μ)

Lp(Rn) the space Lp(Rn, | · |)
Lp,q(X ,μ) the Lorentz space over the measure space (X ,μ)

Lp
loc(R

n) the space of functions that lie in Lp(K) for any compact set K in Rn

|dμ | the total variation of a finite Borel measure μ on Rn

M (Rn) the space of all finite Borel measures on Rn

Mp(Rn) the space of Lp Fourier multipliers, 1 ≤ p ≤ ∞
M p,q(Rn) the space of translation-invariant operators that map Lp(Rn) to Lq(Rn)
∥

∥μ
∥

∥

M

∫

Rn |dμ | the norm of a finite Borel measure μ on Rn

M the centered Hardy–Littlewood maximal operator with respect to balls

M the uncentered Hardy–Littlewood maximal operator with respect to balls

Mc the centered Hardy–Littlewood maximal operator with respect to cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to cubes

Mμ the centered maximal operator with respect to a measure μ

Mμ the uncentered maximal operator with respect to a measure μ

Ms the strong maximal operator

Md the dyadic maximal operator

M# the sharp maximal operator



486 Glossary

M the grand maximal operator

Lp
s (Rn) the inhomogeneous Lp Sobolev space

L̇p
s (Rn) the homogeneous Lp Sobolev space

Λα(Rn) the inhomogeneous Lipschitz space

Λ̇α(Rn) the homogeneous Lipschitz space

H p(Rn) the real Hardy space on Rn

Bp
s,q(Rn) the inhomogeneous Besov space on Rn

Ḃp
s,q(Rn) the homogeneous Besov space on Rn

Ḃp
s,q(Rn) the homogeneous Besov space on Rn

F p
s,q(Rn) the inhomogeneous Triebel–Lizorkin space on Rn

Ḟ p
s,q(Rn) the homogeneous Triebel–Lizorkin space on Rn

BMO(Rn) the space of functions of bounded mean oscillation on Rn




