
Chapter 10
Boundedness and Convergence of Fourier
Integrals

In this chapter we return to fundamental questions in Fourier analysis related to
convergence of Fourier series and Fourier integrals. Our main goal is to understand
in what sense the inversion property of the Fourier transform

f (x) =
∫

Rn
̂f (ξ )e2π ix·ξ dξ

holds when f is a function on Rn. This question is equivalent to the corresponding
question for the Fourier series

f (x) = ∑
m∈Zn

̂f (m)e2π ix·m

when f is a function on Tn. The main problem is that the function (or sequence) ̂f
may not be integrable and the convergence of the preceding integral (or series) needs
to be suitably interpreted. To address this issue, a summability method is employed.
This is achieved by the introduction of a localizing factor Φ(ξ/R), leading to the
study of the convergence of the expressions

∫

Rn
Φ(ξ/R)̂f (ξ )e2π ix·ξ dξ

as R →∞. Here Φ is a function on Rn that decays sufficiently rapidly at infinity and
satisfies Φ(0) = 1. For instance, we may take Φ = χB(0,1), where B(0,1) is the unit
ball in Rn. Analogous summability methods arise in the torus.

An interesting case arises when Φ(ξ ) = (1−|ξ |2)λ+, λ ≥ 0, in which we obtain
the Bochner–Riesz means introduced by Riesz when n = 1 and λ = 0 and Bochner
for n ≥ 2 and general λ > 0. The question is whether the Bochner–Riesz means

∑
m2

1+···+m2
n≤R2

(

1− m2
1 + · · ·+ m2

n

R2

)λ
̂f (m1, . . . ,mn)e2π i(m1x1+···+mnxn)
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340 10 Boundedness and Convergence of Fourier Integrals

converge in Lp. This question is equivalent to whether the function (1− |ξ |2)λ+ is
an Lp multiplier on Rn and is investigated in this chapter. Analogous questions con-
cerning the almost everywhere convergence of these families are also studied.

10.1 The Multiplier Problem for the Ball

In this section we show that the characteristic function of the unit disk in R2 is not
an Lp multiplier when p �= 2. This implies the same conclusion in dimensions n≥ 3,
since sections of higher-dimensional balls are disks and by Theorem 2.5.16 we have
that if χB(0,r) /∈ Mp(R2) for all r > 0, then χB(0,1) /∈ Mp(Rn) for any n ≥ 3.

10.1.1 Sprouting of Triangles

We begin with a certain geometric construction that at first sight has no apparent
relationship to the multiplier problem for the ball in Rn. Given a triangle ABC with
base b = AB and height h0 we let M be the midpoint of AB. We construct two other
triangles AMF and BME from ABC as follows. We fix a height h1 > h0 and we
extend the sides AC and BC in the direction away from its base until they reach a
certain height h1. We let E be the unique point on the line passing through the points
B and C such that the triangle EMB has height h1. Similarly, F is uniquely chosen
on the line through A and C so that the triangle AMF has height h1.

Fig. 10.1 The sprouting of
the triangle ABC.
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The triangle ABC now gives rise to two triangles AMF and BME called the
sprouts of ABC. The union of the two sprouts AMF and BME is called the sprouted
figure obtained from ABC and is denoted by Spr(ABC). Clearly Spr(ABC) contains
ABC. We call the difference

Spr(ABC)\ABC

the arms of the sprouted figure. The sprouted figure Spr(ABC) has two arms of equal
area, the triangles EGC and FCH as shown in Figure 10.1, and we can precisely
compute the area of each arm. One may easily check (see Exercise 10.1.1) that

Area (each arm of Spr(ABC)) =
b
2

(h1 −h0)2

2h1 −h0
, (10.1.1)

where b = AB.

Fig. 10.2 The second step of
the construction.

We start with an isosceles triangleΛ = ABC in R2 with base AB of length b0 = ε
and height MC = h0 = ε , where M is the midpoint of AB. We define the heights

h1 =
(

1 +
1
2

)

ε ,

h2 =
(

1 +
1
2

+
1
3

)

ε ,

. . .

h j =
(

1 +
1
2

+ · · ·+ 1
j + 1

)

ε .
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We apply the previously described sprouting procedure to Λ to obtain two sprouts
Λ1 = AMF and Λ2 = EMB, as in Figure 10.1, each with height h1 and base length
b0/2. We now apply the same procedure to the triangles Λ1 and Λ2. We then obtain
two sprouts Λ11 and Λ12 from Λ1 and two sprouts Λ21 and Λ22 from Λ2, a total of
four sprouts with height h2. See Figure 10.2. We continue this process, obtaining at
the jth step 2 j sprouts Λr1...r j , r1, . . . ,r j ∈ {1,2} each with base length b j = 2− jb0

and height h j. We stop this process when the kth step is completed.

Fig. 10.3 The third step of
the construction.

We let E(ε,k) be the union of the triangles Λr1...rk over all sequences r j of 1’s
and 2’s. We obtain an estimate for the area of E(ε,k) by adding to the area of Λ the
areas of the arms of all the sprouted figures obtained during the construction. By
(10.1.1) we have that each of the 2 j arms obtained at the jth step has area

b j−1

2
(h j −h j−1)2

2h j −h j−1
.

Summing over all these areas and adding the area of the original triangle, we obtain
the estimate
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|E(ε,k)| =
1
2
ε2 +

k

∑
j=1

2 j b j−1

2
(h j −h j−1)2

2h j −h j−1

≤ 1
2
ε2 +

k

∑
j=1

2 j 2−( j−1)b0

2
ε2

( j + 1)2ε

≤ 1
2
ε2 +

∞

∑
j=2

ε2

j2 ≤
(1

2
+
π2

6
−1
)

ε2

≤ 3
2
ε2 ,

where we used the fact that 2h j −h j−1 ≥ ε for all j ≥ 1.
Having completed the construction of the set E(ε,k), we are now in a position

to indicate some of the ideas that appear in the solution of the Kakeya problem.
We first observe that no matter what k is, the measure of the set E(ε,k) can be
made as small as we wish if we take ε small enough. Our purpose is to make a
needle of infinitesimal width and unit length move continuously from one side of
this angle to the other utilizing each sprouted triangle in succession. To achieve this,
we need to apply a similar construction to any of the 2k triangles that make up the
set E(ε,k) and repeat the sprouting procedure a large enough number of times. We
refer to [99] for details. An elaborate construction of this sort yields a set within
which the needle can be turned only through a fixed angle. But adjoining a few such
sets together allows us to rotate a needle through a half-turn within a set that still
has arbitrarily small area. This is the idea used to solve the aforementioned needle
problem.

10.1.2 The counterexample

We now return to the multiplier problem for the ball, which has an interesting con-
nection with the Kakeya needle problem.

Fig. 10.4 A rectangle R and
its adjacent rectangles R′.

In the discussion that follows we employ the following notation. Given a rectan-
gle R in R2, we let R′ be two copies of R adjacent to R along its shortest side so that
R∪R′ has the same width as R but three times its length. See Figure 10.4.

We need the following lemma.
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Lemma 10.1.1. Let δ > 0 be a given number. Then there exists a measurable subset
E of R2 and a finite collection of rectangles R j in R2 such that

(1) The R j’s are pairwise disjoint.
(2) We have 1/2 ≤ |E| ≤ 3/2.
(3) We have |E| ≤ δ ∑ j |R j|.
(4) For all j we have |R′

j ∩E| ≥ 1
12 |R j|.

Proof. We start with an isosceles triangle ABC in the plane with height 1 and base
AB, where A = (0,0) and B = (1,0). Given δ > 0, we find a positive integer k such
that k+2 > e1/δ . For this k we set E = E(1,k), the set constructed earlier with ε = 1.
We then have 1/2 ≤ |E| ≤ 3/2; thus (2) is satisfied.

R

hk

R
2R R

3

3 log (k+2)

 (1,0)(0,0)

0

1

. .

Fig. 10.5 The rectangles R j.

Recall that each dyadic interval [ j2−k,( j+1)2−k] in [0,1] is the base of ex-
actly one sprouted triangle A jB jCj, where j ∈ {0,1, . . . ,2k − 1}. Here we set
A j = ( j2−k,0), B j = (( j+1)2−k,0), and Cj the other vertex of the sprouted tri-
angle. We define a rectangle R j inside the angle ∠A jCjB j as in Figure 10.6. The
rectangle R j is defined so that one of its vertices is either A j or B j and the length of
its longest side is 3 log(k + 2).

We now make some calculations. First we observe that the longest possible length
that either A jCj or B jCj can achieve is

√
5hk/2. By symmetry we may assume that

the length of A jCj is larger than that of B jCj as in Figure 10.6. We now have that
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√
5

2
hk <

3
2

(

1 +
1
2

+ · · ·+ 1
k + 1

)

<
3
2

(

1 + log(k + 1)
)

< 3log(k + 2),

since k ≥ 1 and e < 3. Hence R′
j contains the triangle A jB jCj. We also have that

hk = 1 +
1
2

+ · · ·+ 1
k + 1

> log(k + 2).

Using these two facts, we obtain

|R′
j ∩E| ≥ Area(A jB jCj) =

1
2

2−khk > 2−k−1 log(k + 2). (10.1.2)

Fig. 10.6 A closer look at R j .

Denote by |XY | the length of the line segment through the points X and Y . The
law of sines applied to the triangle A jB jD j gives

|A jD j| = 2−k sin(∠A jB jD j)
sin(∠A jD jB j)

≤ 2−k

cos(∠A jCjB j)
. (10.1.3)

But the law of cosines applied to the triangle A jB jCj combined with the estimates
hk ≤ |A jCj|, |B jCj| ≤

√
5hk/2 give that
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cos(∠A jCjB j) ≥
h2

k + h2
k − (2−k)2

2 5
4 h2

k

≥ 4
5
− 2

5
· 1

4
≥ 1

2
. (10.1.4)

Combining (10.1.3) and (10.1.4), we obtain

|A jD j| ≤ 2−k+1 = 2|A jB j| .

Using this fact and (10.1.2), we deduce

|R′
j ∩E| ≥ 2−k−1 log(k + 2) =

1
12

2−k+13 log(k + 2)≥ 1
12

|R j| ,

which proves the required conclusion (4).
Conclusion (1) in Lemma 10.1.1 follows from the fact that the regions inside

the angles ∠A jCjB j and under the triangles A jCjB j are pairwise disjoint. This is
shown in Figure 10.5. This can be proved rigorously by a careful examination of the
construction of the sprouted triangles A jCjB j, but the details are omitted.

It remains to prove (3). To achieve this we first estimate the length of the line
segment A jD j from below. The law of sines gives

|A jD j|
sin(∠A jB jD j)

=
2−k

sin(∠A jD jB j)
,

from which we obtain that

|A jD j| ≥ 2−k sin(∠A jB jD j) ≥ 2−k−1∠A jB jD j ≥ 2−k−1∠B jA jCj .

(All angles are measured in radians.) But the smallest possible value of the angle
∠B jA jCj is attained when j = 0, in which case ∠B0A0C0 = arctan2 > 1. This gives
that

|A jD j| ≥ 2−k−1 .

It follows that each R j has area at least 2−k−13 log(k + 2). Therefore,

∣

∣

∣

∣

2k−1
⋃

j=0

R j

∣

∣

∣

∣

=
2k−1

∑
j=0

|R j| ≥ 2k2−k−13 log(k + 2)≥ |E| log(k + 2)≥ |E|
δ

,

since |E| ≤ 3/2 and k was chosen so that k + 2 > e1/δ . �

Next we have a calculation involving the Fourier transforms of characteristic
functions of rectangles.

Proposition 10.1.2. Let R be a rectangle whose center is the origin in R2 and let v
be a unit vector parallel to its longest side. Consider the half-plane

H = {x ∈ R2 : x · v ≥ 0}

and the multiplier operator
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SH ( f ) = (̂f χH )∨.

Then we have |SH (χR)| ≥ 1
10χR′ .

Remark 10.1.3. Applying a translation, we see that the same conclusion is valid for
any rectangle in R2 whose longest side is parallel to v.

Proof. Applying a rotation, we reduce the problem to the case R = [−a,a]× [−b,b],
where 0 < a ≤ b < ∞, and v = e2 = (0,1). Since the Fourier transform acts in each
variable independently, we have the identity

SH (χR)(x1,x2) = χ[−a,a](x1)
(

χ̂[−b,b]χ[0,∞)
)∨(x2)

= χ[−a,a](x1)
I + iH

2
(χ[−b,b])(x2).

It follows that

|SH (χR)(x1,x2)| ≥
1
2
χ[−a,a](x1)|H(χ[−b,b])(x2)|

=
1

2π
χ[−a,a](x1)

∣

∣

∣

∣

log

∣

∣

∣

∣

x2 + b
x2 −b

∣

∣

∣

∣

∣

∣

∣

∣

.

But for (x1,x2) ∈ R′ we have χ[−a,a](x1) = 1 and b < |x2| < 3b. So we have two
cases, b < x2 < 3b and −3b < x2 < −b. When b < x2 < 3b we see that

∣

∣

∣

∣

x2 + b
x2 −b

∣

∣

∣

∣

=
x2 + b
x2 −b

> 2 ,

and similarly, when −3b < x2 < −b we have
∣

∣

∣

∣

x2 −b
x2 + b

∣

∣

∣

∣

=
b− x2

−b− x2
> 2 .

It follows that for (x1,x2) ∈ R′ the lower estimate is valid:

|SH (χR)(x1,x2)| ≥
log2
2π

≥ 1
10

.

�

Next we have a lemma regarding vector-valued inequalities of half-plane multi-
pliers.

Lemma 10.1.4. Let v1,v2, . . . ,v j, . . . be a sequence of unit vectors in R2. Define the
half-planes

H j = {x ∈ R2 : x · v j ≥ 0} (10.1.5)

and linear operators
SH j( f ) = (̂f χH j)

∨.
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Assume that the disk multiplier operator

T ( f ) = (̂f χB(0,1))
∨

maps Lp(R2) to itself with norm Bp < ∞. Then we have the inequality

∥

∥

∥

(

∑
j
|SH j( f j)|2

) 1
2
∥

∥

∥

Lp
≤ Bp

∥

∥

∥

(

∑
j
| f j|2

) 1
2

∥

∥

∥

Lp
(10.1.6)

for all bounded and compactly supported functions f j .

Proof. We prove the lemma for Schwartz functions f j and we obtain the general
case by a simple limiting argument. We define disks D j,R = {x∈ R2 : |x−Rv j| ≤ R}
and we let

Tj,R( f ) = (̂f χDj,R)∨

be the multiplier operator associated with the disk D j,R. We observe that χDj,R →
χH j pointwise as R → ∞, as shown in Figure 10.7.

Fig. 10.7 A sequence of disks
converging to a half-plane.

For f ∈ S (R2) and every x ∈ R2 we have

lim
R→∞

Tj,R( f )(x) = SH j( f )(x)

by passing the limit inside the convergent integral. Fatou’s lemma now yields

∥

∥

∥

(

∑
j
|SH j( f j)|2

) 1
2

∥

∥

∥

Lp
≤ liminf

R→∞

∥

∥

∥

(

∑
j
|Tj,R( f j)|2

) 1
2

∥

∥

∥

Lp
. (10.1.7)

Next we observe that the following identity is valid:

Tj,R( f )(x) = e2π iRv j ·xTR(e−2π iRv j ·(·) f )(x), (10.1.8)

where TR is the multiplier operator TR( f ) = (̂f χB(0,R))∨. Setting g j = e−2π iRv j ·(·) f j

and using (10.1.7) and (10.1.8), we deduce
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∥

∥

(

∑
j

|SH j( f j)|2
) 1

2
∥

∥

Lp ≤ liminf
R→∞

∥

∥

(

∑
j

|TR(g j)|2
) 1

2
∥

∥

Lp . (10.1.9)

Observe that the operator TR is Lp bounded with the same norm Bp as T in view of
identity (2.5.15). Applying Theorem 4.5.1, we obtain that the last term in (10.1.9)
is bounded by

liminf
R→∞

∥

∥TR
∥

∥

Lp→Lp

∥

∥

(

∑
j
|g j|2

) 1
2
∥

∥

Lp = Bp
∥

∥

(

∑
j
| f j|2

) 1
2
∥

∥

Lp .

Combining this inequality with (10.1.9), we obtain (10.1.6). �
We have now completed all the preliminary material we need to prove that the

characteristic function of the unit disk in R2 is not an Lp multiplier if p �= 2.

Theorem 10.1.5. The characteristic function of the unit ball in Rn is not an Lp

multiplier when 1 < p �= 2 < ∞.

Proof. As mentioned earlier, in view of Theorem 2.5.16, it suffices to prove the
result in dimension n = 2. By duality it suffices to prove the result when p > 2.
Suppose that χB(0,1) ∈ Mp(R2) for some p > 2, say with norm Bp < ∞.

Suppose that δ > 0 is given. Let E and R j be as in Lemma 10.1.1. We let f j = χR j .
Let v j be the unit vector parallel to the long side of R j and let Hj be the half-plane
defined as in (10.1.5). Using Proposition 10.1.2, we obtain

∫

E
∑

j
|SH j( f j)(x)|2 dx = ∑

j

∫

E
|SH j( f j)(x)|2 dx

≥ ∑
j

∫

E

1
102 χR′

j
(x)dx

=
1

100∑j
|E ∩R′

j|

≥ 1
1200∑j

|R j| ,

(10.1.10)

where we used condition (4) of Lemma 10.1.1 in the last inequality. Hölder’s in-
equality with exponents p/2 and (p/2)′ = p/(p−2) gives

∫

E
∑

j

|SH j( f j)(x)|2 dx ≤ |E|
p−2

p
∥

∥

(

∑
j

|SH j( f j)|2
) 1

2
∥

∥

2
Lp

≤ B2
p|E|

p−2
p
∥

∥

(

∑
j

| f j|2
) 1

2
∥

∥

2
Lp

= B2
p|E|

p−2
p

(

∑
j

|R j|
) 2

p

≤ B2
pδ

p−2
p ∑

j
|R j|,

(10.1.11)
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where we used Lemma 10.1.4, the disjointness of the R j’s, and condition (3) of
Lemma 10.1.1 successively. Combining (10.1.10) with (10.1.11), we obtain the in-
equality

∑
j

|R j| ≤ 1200Bpδ
p−2

p ∑
j

|R j| ,

which provides a contradiction when δ is very small. �

Exercises

10.1.1. Prove identity (10.1.1).
[

Hint: With the notation of Figure 10.1, first prove

h1 −h0

h1
=

NC
b/2

,
height (NGC)

h0
=

NC
NC + b/2

using similar triangles.
]

10.1.2. Given a rectangle R, let R′′ denote either of the two parts that make up R′.
Prove that for any k ∈ Z+ and any δ > 0, there exist rectangles S j in R2, 0 ≤ j < 2k,
with dimensions proportionate to 2−k × log(k + 1),

∣

∣

∣

∣

2k−1
⋃

j=0

S j

∣

∣

∣

∣

< δ ,

such that for some choice of S′′j , the S′′j ’s are disjoint.
[

Hint: Consider the 2k triangles that make up the set E(ε,k) and choose each rectan-
gle S j inside a corresponding triangle. Then the parts of the S′j’s that point downward
are disjoint. Choose ε depending on δ .

]

10.1.3. Is the characteristic function of the cylinder

{(ξ1,ξ2,ξ3) ∈ R3 : ξ 2
1 + ξ 2

2 < 1}

a Fourier multiplier on Lp(R3) for 1 < p <∞ and p �= 2?

10.1.4. Modify the ideas of the proof of Lemma 10.1.4 to show that the character-
istic function of the set

{(ξ1,ξ2) ∈ R2 : ξ2 > ξ 2
1 }

is not in Mp(R2) when p �= 2.
[

Hint: Let H j =
{

(ξ1,ξ2)∈R2 : ξ2 > s j ξ 2
1

}

for some s j > 0. The parabolic regions
{

(ξ1,ξ2) ∈ R2 : ξ2 + R
s2

j
4 > 1

R

(

ξ1 + R
s j
2

)2}
are contained in H j, are translates of

the region
{

(ξ1,ξ2) ∈ R2 : ξ2 > 1
R ξ

2
1

}

, and tend to H j as R → ∞.
]
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10.1.5. Let a1, . . . ,an > 0. Show that the characteristic function of the ellipsoid

{

(ξ , . . . ,ξn) ∈ Rn :
ξ 2

1

a2
1

+ · · ·+ ξ
2
n

a2
n

< 1
}

is not in Mp(Rn) when p �= 2.
[

Hint: Think about dilations.
]

10.2 Bochner–Riesz Means and the Carleson–Sjölin Theorem

We now address the problem of norm convergence for the Bochner–Riesz means.
In this section we provide a satisfactory answer in dimension n = 2, although a key
ingredient required in the proof is left for the next section.

Definition 10.2.1. For a function f on Rn we define its Bochner–Riesz means of
complex order λ with Reλ > 0 to be the family of operators

BλR( f )(x) =
∫

Rn
(1−|ξ/R|2)λ+ ̂f (ξ )e2π ix·ξ dξ , R > 0.

We are interested in the convergence of the family BλR( f ) as R →∞. Observe that
when R →∞ and f is a Schwartz function, the sequence BλR( f ) converges pointwise
to f . Does it also converge in norm? Using Exercise 10.2.1, this question is equiva-
lent to whether the function (1−|ξ |2)λ+ is an Lp multiplier [it lies in Mp(Rn)], that
is, whether the linear operator

Bλ ( f )(x) =
∫

Rn
(1−|ξ |2)λ+ ̂f (ξ )e2π ix·ξ dξ

maps Lp(Rn) to itself. The question that arises is given λ with Reλ > 0 find the
range of p’s for which (1−|ξ |2)λ+ is an Lp(Rn) Fourier multiplier; this question is
investigated in this section when n = 2.

The analogous question for the operators BλR on the n-torus introduced in Defi-
nition 3.4.1 is also equivalent to the fact that the function (1− |ξ |2)λ+ is a Fourier
multiplier in Mp(Rn). This was shown in Corollary 3.6.10. Therefore the Bochner–
Riesz problem for the torus Tn and the Euclidean space Rn are equivalent. Here we
focus attention on the Euclidean case, and we start our investigation by studying the
kernel of the operator Bλ .

10.2.1 The Bochner–Riesz Kernel and Simple Estimates

In view of the last identity in Appendix B.5, Bλ is a convolution operator with kernel
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Kλ (x) =
Γ (λ + 1)
πλ

Jn
2 +λ (2π |x|)
|x| n

2 +λ . (10.2.1)

Following Appendix B.6, we have for |x| ≤ 1,

|Kλ (x)| =
|Γ (λ + 1)|

|πλ |
|Jn

2 +λ (2π |x|)|
|x| n

2 +Reλ ≤ Γ (Reλ + 1)
πReλ C0 eπ

2|Imλ |2 ,

where C0 is a constant that depends only on n/2 + Reλ . Consequently, Kλ (x) is
bounded by a constant (that grows at most exponentially in |Imλ |2) in the unit ball
of Rn.

For |x| ≥ 1, following Appendix B.7, we have

|Kλ (x)| =
|Γ (λ + 1)|

|πλ |
|Jn

2 +λ (2π |x|)|
|x| n

2 +Reλ ≤C0
eπ |Imλ |+π

2|Imλ |2

πReλ (2π |x|) 1
2

Γ (Reλ + 1)
|x| n

2 +Reλ ,

where C0 depends only on n/2 + Reλ . Thus Kλ (x) is pointwise bounded by a con-

stant (that grows at most exponentially in |Imλ |) times |x|− n+1
2 −Reλ for |x| ≥ 1.

Combining these two observations, we obtain that for Reλ > n−1
2 , Kλ is a smooth

integrable function on Rn. Hence Bλ is a bounded operator on Lp for 1 ≤ p ≤ ∞.

Proposition 10.2.2. For all 1 ≤ p ≤ ∞ and λ > n−1
2 , Bλ is a bounded operator on

Lp(Rn) with norm at most C1 ec1|Imλ |2 , where C1,c1 depend only on n,Reλ .

Proof. The ingredients of the proof have already been discussed. �

We refer to Exercise 10.2.8 for an analogous result for the maximal Bochner–
Riesz operator.

According to the asymptotics for Bessel functions in Appendix B.8, Kλ is a
smooth function equal to

Γ (λ + 1)
πλ+1

cos(2π |x|− π(n+1)
4 − πλ

2 )

|x| n+1
2 +λ

+ O(|x|− n+3
2 −λ ) (10.2.2)

for |x| ≥ 1. It is natural to examine whether the operators Bλ are bounded on certain
Lp spaces by testing them on specific functions. This may provide some indication
as to the range of p’s for which these operators may be bounded on Lp.

Proposition 10.2.3. When λ > 0 and p ≤ 2n
n+1+2λ or p ≥ 2n

n−1−2λ , the operators Bλ

are not bounded on Lp(Rn).

Proof. Let h be a Schwartz function whose Fourier transform is equal to 1 on the
ball B(0,2) and vanishes off the ball B(0,3). Then

Bλ (h)(x) =
∫

|ξ |≤1
(1−|ξ |2)λ e2π iξ ·x dx = Kλ (x) ,



10.2 Bochner–Riesz Means and the Carleson–Sjölin Theorem 353

and it suffices to show that Kλ is not in Lp(Rn) for the claimed range of p’s. Notice
that √

2/2 ≤ cos(2π |x|− π(n+1)
4 − πλ

2 ) ≤ 1 (10.2.3)

for all x lying in the annuli

Ak =
{

x ∈ Rn : k +
n + 2λ

8
≤ |x| ≤ k +

n + 2λ
8

+
1
4

}

, k ∈ Z+.

Since in this range, the argument of the cosine in (10.2.2) lies in [2πk,2πk + π
4 ].

Consider the range of p’s that satisfy

2n
n + 1 + 2λ

≥ p >
2n

n + 3 + 2λ
. (10.2.4)

If we can show that Bλ is unbounded in this range, it will also have to be unbounded
in the bigger range 2n

n+1+2λ ≥ p. This follows by interpolation between the values

p = 2n
n+3+2λ − δ and p = 2n

n+1+2λ + δ , δ > 0, for λ fixed.
In view of (10.2.2) and (10.2.3), we have that

∥

∥Kλ
∥

∥

p
Lp ≥C′

∞

∑
k=n+2λ

∫

Ak

|x|−p n+1
2 −pλdx−C′′ −C′′′

∫

|x|≥1
|x|−p n+3

2 −pλdx , (10.2.5)

where C′′ is the integral of Kλ in the unit ball. It is easy to see that for p in the
range (10.2.4), the integral outside the unit ball converges, while the series diverges
in (10.2.5).

The unboundedness of Bλ on Lp(Rn) in the range of p ≥ 2n
n−1−2λ follows by

duality. �

Fig. 10.8 The operator Bλ is
unbounded on Lp(Rn) when
(1/p,λ ) lies in the shaded
region.

1
2 2n

n+1

2

10

p
1

2n

λ

n-1

n-1
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In Figure 10.8 the shaded region is the set of all pairs ( 1
p ,λ ) for which the oper-

ators Bλ are known to be unbounded on Lp(Rn).

10.2.2 The Carleson–Sjölin Theorem

We now pass to the main result in this section. We prove the boundedness of the
operators Bλ , λ > 0, in the range of p’s not excluded by the previous proposition in
dimension n = 2.

Theorem 10.2.4. Suppose that 0 < Reλ ≤ 1/2. Then the Bochner–Riesz operator
Bλ maps Lp(R2) to itself when 4

3+2Reλ < p < 4
1−2Reλ . Moreover, for this range of

p’s and for all f ∈ Lp(R2) we have that

BλR( f ) → f

in Lp(R2) as R → ∞.

Proof. Once the first assertion of the theorem is established, the second assertion
will be a direct consequence of it and of the fact that the means BλR(h) converge
to h in Lp for h in a dense subclass of Lp. Such a dense class is, for instance, the
class of all Schwartz functions h whose Fourier transforms are compactly supported
(Exercise 5.2.9). For a function h in this class, we see easily that BλR(h) → h point-
wise. But if ̂h is supported in |ξ | ≤ c, then for R ≥ 2c, integration by parts gives that
the functions BλR(h)(x) are pointwise controlled by the function (1 + |x|)−N with
N large; then the Lebesgue dominated convergence theorem gives that the BλR(h)
converge to h in Lp. Finally, a standard ε/3 argument, using that

sup
R>0

∥

∥BλR
∥

∥

Lp→Lp =
∥

∥(1−|ξ |2)λ+
∥

∥

Mp
< ∞ ,

yields BλR( f ) → f in Lp for general Lp functions f .
It suffices to focus our attention on the first part of the theorem. We therefore fix

a complex number λ with positive real part and we keep track of the growth of all
involved constants in Imλ .

We start by picking a smooth function ϕ supported in [− 1
2 , 1

2 ] and a smooth
function ψ supported in [ 1

8 , 5
8 ] that satisfy

ϕ(t)+
∞

∑
k=0

ψ
(1− t

2−k

)

= 1

for all t ∈ [0,1). We now decompose the multiplier (1−|ξ |2)λ+ as

(1−|ξ |2)λ+ = m00(ξ )+
∞

∑
k=0

2−kλmk(ξ ) , (10.2.6)
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where m00(ξ ) = ϕ(|ξ |)(1−|ξ |2)λ and for k ≥ 0, mk is defined by

mk(ξ ) =
(1−|ξ |

2−k

)λ
ψ
(1−|ξ |

2−k

)

(1 + |ξ |)λ .

Note that m00 is a smooth function with compact support; hence the multiplier m00

lies in Mp(R2) for all 1 ≤ p ≤ ∞. Each function mk is also smooth, radial, and
supported in the small annulus

1− 5
8 2−k ≤ |ξ | ≤ 1− 1

8 2−k

and therefore also lies in Mp; nevertheless the Mp norms of the mk’s grow as k
increases, and it is crucial to determine how this growth depends on k so that we can
sum the series in (10.2.6).

Next we show that the Fourier multiplier norm of each mk on L4(R2) is at most
C (1 + |k|)1/2(1 + |Imλ |)3. Summing on k implies that Bλ maps L4(R2) to itself
with norm at most a multiple of (1+ |Imλ |)3 when Reλ > 0. Given this bound, we
conclude the first (and main) statement of the theorem via Theorem 1.3.7 (precisely
Exercise 1.3.4), which permits interpolation for the analytic family of operatorsλ �→
Bλ between the estimates

∥

∥Bλ
∥

∥

L4(R2)→L4(R2) ≤C (1 + |Imλ |)3 when Reλ > 0,
∥

∥Bλ
∥

∥

L1(R2)→L1(R2) ≤C1 ec1|Imλ |2 when Reλ > 1
2 ,

where C,C1,c1 depend only on Reλ . The second estimate above is proved in Propo-
sition 10.2.2 while the set of points (1/p,λ ) obtained by interpolation can be seen
in Figure 10.8.

To estimate the norm of each mk in M4(R2), we need an additional decomposi-
tion of the operator mk that takes into account the radial nature of mk. For each k ≥ 0
we define the sectorial arcs (parts of a sector between two arcs)

Γk,� =
{

re2π iθ ∈ R2 : |θ − �2−
k
2 | < 2−

k
2 , 1− 5

8 2−k ≤ r ≤ 1− 1
8 2−k}

for all �∈ {0,1,2, . . . , [2k/2]−1}. We now introduce a smooth functionω supported
in [−1,1] and equal to 1 on [−1/4,1/4] such that for all x ∈ R we have

∑
�∈Z
ω(x− �) = 1 .

Then we define mk,�(re2π iθ ) = mk(re2π iθ )ω(2k/2θ − �) for integers � in the set
{0,1,2, . . . , [2k/2]−1}. If k is an even integer, it follows from the construction that

mk(ξ ) =
[2k/2]−1

∑
�=0

mk,�(ξ ) (10.2.7)
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for all ξ in R2. If k is odd we replace the function θ �→ ω(2k/2θ − ([2k/2]−1)) by
a function ωk(θ ) supported in the bigger interval

[

([2k/2]−2)2−k/2,1
]

that satisfies
ωk(θ )+ω(2k/2(θ − 1)) = 1 on the interval

[

([2k/2]− 1)2−k/2,1
]

. This leads to a
new definition of the function mk,[2k/2]−1 so that (10.2.7) is satisfied.

This provides the circular (angular) decomposition of mk. Observe that for all
positive integers α and β there exist constants Cα ,β such that

|∂αr ∂
β
θ mk,�(re2π iθ )| ≤Cα ,β (1 + |λ |)α+β2kα2

k
2β

and such that each mk,� is a smooth function supported in the sectorial arcs Γk,�.
We fix k ≥ 0 and we group the set of all {mk,�}� into five subsets: (a) those whose

supports are contained in Q = {(x,y) ∈ R2 : x > 0, |y|< |x|} ; (b) those mk,� whose
supports are contained in the sector Q′ = {(x,y) ∈ R2 : x < 0, |y| < |x|} ; (c) those
whose supports are contained in Q′′ = {(x,y) ∈ R2 : y > 0, |y| > |x|} ; (d) the mk,�

with supports contained in Q′′′ = {(x,y) ∈ R2 : y < 0, |y| > |x|} ; and finally (e)
those mk,� whose supports intersect the lines |y| = |x|.

There are only at most eight mk,� in case (e), and their sum is easily shown to be
an L4 Fourier multilpier with a constant that grows like (1 + |λ |)3, as shown below.
The remaining cases are symmetric, and we focus attention on case (a).

Let I be the set of all indices � in the set {0,1,2, . . . , [2k/2]−1} corresponding to
case (a), i.e., the sectorial arcs Γk,� are contained in the quarter-plane Q. Let Tk,� be
the operator given on the Fourier transform by multiplication by the function mk,�.
We have

∥

∥

∥∑
�∈I

Tk,�( f )
∥

∥

∥

4

L4
=
∫

R2

∣

∣

∣∑
�∈I

Tk,�( f )
∣

∣

∣

4
dx

=
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

Tk,�( f )Tk,�′( f )
∣

∣

∣

2
dx

=
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

̂Tk,�( f ) ∗ ̂Tk,�′( f )
∣

∣

∣

2
dξ ,

(10.2.8)

where we used Plancherel’s identity in the last equality. Each function ̂Tk,�( f ) is sup-

ported in the sectorial arc Γk,�. Therefore, the function ̂Tk,�( f )∗ ̂Tk,�′( f ) is supported
in Γk,� +Γk,�′ and we write the last integral as

∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(

̂Tk,�( f )∗ ̂Tk,�′( f )
)

χΓk,�+Γk,�′

∣

∣

∣

2
dξ .

In view of the Cauchy–Schwarz inequality, the last expression is controlled by
∫

R2

(

∑
�∈I
∑
�′∈I

∣

∣̂Tk,�( f ) ∗ ̂Tk,�′( f )
∣

∣

2
)(

∑
�∈I
∑
�′∈I

∣

∣χΓk,�+Γk,�′
∣

∣

2
)

dξ . (10.2.9)
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At this point we make use of the following lemma, in which the curvature of the
circle is manifested.

Lemma 10.2.5. There exists a constant C0 such that for all k ≥ 0 the following
estimate holds:

∑
�∈I
∑
�′∈I

χΓk,�+Γk,�′ ≤C0 .

We postpone the proof of this lemma until the end of this section. Using Lemma
10.2.5, we control the expression in (10.2.9) by

C0

∫

R2
∑
�∈I
∑
�′∈I

∣

∣̂Tk,�( f )∗ ̂Tk,�′( f )
∣

∣

2
dξ = C0

∥

∥

∥

(

∑
�∈I

|Tk,�( f )|2
) 1

2
∥

∥

∥

4

L4
. (10.2.10)

We examiine each Tk,� a bit more carefully. We have that mk,0 is supported in a
rectangle with sides parallel to the axes and dimensions 2−k (along the ξ1-axis) and

2−
k
2 +1 (along the ξ2-axis). Moreover, in that rectangle, ∂ξ1

≈ ∂r and ∂ξ2
≈ ∂θ , and

it follows that the smooth function mk,0 satisfies

|∂αξ1
∂βξ2

mk,0(ξ1,ξ2)| ≤Cα ,β (1 + |λ |)α+β2kα2
k
2β

for all positive integers α and β . This estimate can also be written as

∣

∣∂αξ1
∂βξ2

[

mk,0(2−kξ1,2
− k

2 ξ2)
] ∣

∣≤Cα ,β (1 + |λ |)α+β ,

which easily implies that

2
3
2 k|m∨

k,0(2
kx1,2

k
2 x2)| ≤Cα ,β (1 + |λ |)3(1 + |x1|+ |x2|)−3 .

Let V� be the unit vector representing the point e2π i�2−k/2
and V⊥

� the unit vector

representing the point ie2π i�2−k/2
. Applying a rotation, we obtain that the functions

m∨
k,� satisfy

∣

∣m∨
k,�(x1,x2)

∣

∣≤C (1 + |λ |)33−
3k
2 (1 + 2−k|x ·V�|+ 2−

k
2 |x ·V⊥

� |)−3 (10.2.11)

and hence
sup
k≥0

sup
�∈I

∥

∥m∨
k,�

∥

∥

L1 ≤C (1 + |λ |)3 . (10.2.12)

The crucial fact is that the constant C in (10.2.12) is independent of � and k.
At this point, for each fixed k ≥ 0 and � ∈ I we let Jk,� be the ξ2-projection of

the support of mk,�. Based on the earlier definition of mk,�, we easily see that when
� > 0,

Jk,� =
[

(1− 5
8 2−k)sin(2π 2−

k
2 (�−1)),(1− 1

8 2−k)sin(2π 2−
k
2 (�+ 1))

]

.
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A similar formula holds for � < 0 in I. The crucial observation is that for any fixed
k ≥ 0 the sets Jk,� are “almost disjoint” for different � ∈ I. Indeed, the sets Jk,� are
contained in the intervals

˜Jk,� =
[

(1− 3
8 2−k)sin(2π 2−

k
2 �)−10 ·2− k

2 ,(1− 3
8 2−k)sin(2π 2−

k
2 �)+ 10 ·2−k

2
]

,

which have length 20 ·2− k
2 and are centered at the points (1− 3

8 2−k)sin(2π 2−
k
2 �) .

For σ ∈ Z and τ ∈ {0,1, . . . ,39} we define the strips

Sk,σ ,τ =
{

(ξ1,ξ2) : ξ2 ∈ [40σ 2−
k
2 + τ 2−

k
2 ,40(σ + 1)2−

k
2 + τ 2−

k
2 )
}

.

These strips have length 40 ·2− k
2 and have the property that each ˜Jk,� is contained in

one of them; say ˜Jk,� is contained in some Sk,σ�,τ� , which we call Bk,�. Then we have

Tk,�( f ) = Tk,�( fk,�) ,

where we set
fk,� =

(

χBk,�
̂f
)∨ = χ∨Bk,�

∗ f .

As a consequence of the Cauchy–Schwarz inequality (with respect to the measure
|m∨

k,�|dx), we obtain

|Tk,�( fk,�)|2 ≤
∥

∥m∨
k,�

∥

∥

L1

(

|m∨
k,�| ∗ | fk,�|2

)

≤ C (1 + |λ |)3(|m∨
k,�| ∗ | fk,�|2

)

in view of (10.2.12). We now return to (10.2.10), which controls (10.2.9) and hence
(10.2.8). Using this estimate, we bound the term in (10.2.10) by

∥

∥

∥

(

∑
�∈I

|Tk,�( f )|2
) 1

2
∥

∥

∥

4

L4
=
∥

∥

∥∑
�∈I

|Tk,�( fk,�)|2
∥

∥

∥

2

L2

≤ C2 (1 + |λ |)6
∥

∥

∥∑
�∈I

|m∨
k,�| ∗ | fk,�|2

∥

∥

∥

2

L2

= C2 (1 + |λ |)6
(
∫

R2
∑
�∈I

(|m∨
k,�| ∗ | fk,�|2)gdx

)2

= C2 (1 + |λ |)6
(

∑
�∈I

∫

R2
(|m̂k,�| ∗ g) | fk,�|2 dx

)2

≤ C2 (1 + |λ |)6
(
∫

R2
sup
�∈I

(

|m̂k,�| ∗ g|
)

∑
�∈I

| fk,�|2 dx

)2

≤ C2 (1 + |λ |)6
∥

∥

∥sup
�∈I

(

|m̂k,�| ∗ g
)

∥

∥

∥

2

L2

∥

∥

∥

(

∑
�∈I

| fk,�|2
) 1

2
∥

∥

∥

4

L4
,

where g is an appropriate nonnegative function in L2(R2) of norm 1.
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If we knew the validity of the estimates
∥

∥

∥ sup
�∈I

(

|m̂k,�| ∗ g
)

∥

∥

∥

L2
≤C (1 + |λ |)3(1 + k)

∥

∥g
∥

∥

L2 (10.2.13)

and
∥

∥

∥

(

∑
�∈I

| fk,�|2
) 1

2
∥

∥

∥

L4
≤C

∥

∥ f
∥

∥

L4 , (10.2.14)

then we would be able to conclude that
∥

∥mk

∥

∥

Mp
≤C (1 + |λ |)3(1 + k)

1
2 (10.2.15)

and hence we could sum the series in (10.2.6).
Estimates (10.2.13) and (10.2.14) are discussed in the next two subsections. �

10.2.3 The Kakeya Maximal Function

We showed in the previous subsection that m∨
k,0 is integrable over R2 and satisfies

the estimate

2
3
2 k|m∨

k,0(2
kx1,2

k
2 x2)| ≤

C (1 + |λ |)3

(1 + |x|)3 .

Since
1

(1 + |x|)3 ≤C
∞

∑
s=0

2−s

22s χ[−2s,2s]×[−2s,2s](x) ,

it follows that

|m̂k,0(x)| ≤C′(1 + |λ |)3
∞

∑
s=0

2−s 1
|Rs|

χRs(x) ,

where Rs = [−2s2k,2s2k]× [−2s2
k
2 ,2s2

k
2 ]. Since a general m̂k,� is obtained from m̂k,0

via a rotation, a similar estimate holds for it. Precisely, we have

|m̂k,�(x)| ≤C′ (1 + |λ |)3
∞

∑
s=0

2−s 1
|Rs,�|

χRs,�(x) , (10.2.16)

where Rs,� is a rectangle with principal axes along the directions V� and V⊥
� and

side lengths 2s2k and 2s2
k
2 , respectively. Using (10.2.16), we obtain the following

pointwise estimate for the maximal function in (10.2.13):

sup
�∈I

(

|m̂k,�| ∗ g
)

≤ C′
∞

∑
s=0

2−s sup
�∈I

1
|Rs,�|

∫

Rs,�

g(x− y)dy , (10.2.17)

where Rs,� are rectangles with dimensions 2s2k and 2s2
k
2 .
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Motivated by (10.2.17), for fixed N ≥ 10 and a > 0, we introduce the Kakeya
maximal operator without dilations

K a
N (g)(x) = sup

R�x

1
|R|

∫

R
|g(y)|dy , (10.2.18)

acting on functions g∈ L1
loc, where the supremum is taken over all rectangles R in R2

of dimensions a and aN and arbitrary orientation. What makes this maximal opera-
tor interesting is that the rectangles R that appear in the supremum in (10.2.19) are
allowed to have arbitrary orientation. We also define the Kakeya maximal operator
KN by

KN(w)(x) = sup
a>0

K a
N (w) , (10.2.19)

for w locally integrable. The maximal function KN(w)(x) is therefore obtained as
the supremum of the averages of a function w over all rectangles in R2 that contain
the point x and have arbitrary orientation but fixed eccentricity equal to N. (The
eccentricity of a rectangle is the ratio of its longer side to its shorter side.)

We see that KN( f ) is pointwise controlled by a cN M( f ), where M is the Hardy–
Littlewood maximal operator M. This implies that KN is of weak type (1,1) with
bound at most a multiple of N. Since KN is bounded on L∞ with norm 1, it follows
that KN maps Lp(R2) to itself with norm at most a multiple of N1/p. However, we
show in the next section that this estimate is very rough and can be improved sig-
nificantly. In fact, we obtain an Lp estimate for KN with norm that grows logarith-
mically in N (when p ≥ 2), and this is very crucial, since N = 2k/2 in the following
application.

Using this new terminology, we write the estimate in (10.2.17) as

sup
�∈I

(

|m̂k,�| ∗ g
)

≤ C′(1 + |λ |)3
∞

∑
s=0

2−sK 2s+k/2

2k/2 (g) . (10.2.20)

The required estimate (10.2.13) is a consequence of (10.2.20) and of the follow-
ing theorem, whose proof is discussed in the next section.

Theorem 10.2.6. There exists a constant C such that for all N ≥ 10 and all f in
L2(R2) the following norm inequality is valid:

sup
a>0

∥

∥K a
N ( f )

∥

∥

L2(R2) ≤C (logN)
∥

∥ f
∥

∥

L2(R2) .

Theorem 10.2.6 is a consequence of Theorem 10.3.5, in which the preceding
estimate is proved for a more general maximal operator MΣN , which in particular
controls KN and hence K a

N for all a > 0. This maximal operator is introduced in
the next section.
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10.2.4 Boundedness of a Square Function

We now turn to the proof of estimate (10.2.14). This is a consequence of the follow-
ing result, which is a version of the Littlewood–Paley theorem for intervals of equal
length.

Theorem 10.2.7. For j ∈ Z, let I j be intervals of equal length with disjoint interior
whose union is R. We define operators Pj with multipliers χIj . Then for 2 ≤ p < ∞,
there is a constant Cp such that for all f ∈ Lp(R) we have

∥

∥

∥

(

∑
j
|Pj( f )|2

)1
2
∥

∥

∥

Lp(R)
≤Cp

∥

∥ f
∥

∥

Lp(R) . (10.2.21)

In particular, the same estimate holds if the intervals I j have disjoint interiors and
equal length but do not necessarily cover R.

Proof. Multiplying the function f by a suitable exponential, we may assume that the
intervals I j have the form

(

( j− 1
2)a,( j+ 1

2 )a
)

for some a > 0. Applying a dilation to
f reduces matters to the case a = 1. We conclude that the constant Cp is independent
of the common size of the intervals I j and it suffices to obtain estimate (10.2.21) in
the case a = 1.

We assume therefore that I j = ( j − 1
2 , j + 1

2) for all j ∈ Z. Next, our goal is to
replace the operators Pj by smoother analogues of them. To achieve this we intro-
duce a smooth function ψ with compact support that is identically equal to 1 on the
interval [− 1

2 , 1
2 ] and vanishes off the interval [− 3

4 , 3
4 ]. We introduce operators S j by

setting
̂S j( f )(ξ ) = ̂f (ξ )ψ(ξ − j)

and we note that the identity
Pj = PjS j (10.2.22)

is valid for all j ∈ Z. For t ∈ R we define multipliers mt as

mt(ξ ) = ∑
j∈Z

e−2π i jtψ(ξ − j) ,

and we set kt = m∨
t . With I0 = (−1/2,1/2), we have

∫

I0
|(kt ∗ f )(x)|2 dt =

∫

I0

∣

∣

∣∑
j∈Z

e−2π i jtS j( f )(x)
∣

∣

∣

2
dt

= ∑
j∈Z

|S j( f )(x)|2 ,
(10.2.23)

where the last equality is just Plancherel’s identity on I0 = [− 1
2 , 1

2 ]. In view of the
last identity, it suffices to analyze the operator given by convolution with the family
of kernels kt . By the Poisson summation formula (Theorem 3.1.17) applied to the
function x �→ ψ(x)e2π ixt , we obtain
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mt(ξ ) = e−2π iξ t ∑
j∈Z
ψ(ξ − j)e2π i(ξ− j)t

= ∑
j∈Z

(

ψ(·)e2π i(·)t)
̂( j)e2π i jξ e−2π iξ t

= ∑
j∈Z

e2π i( j−t)ξ ψ̂( j− t) .

Taking inverse Fourier transforms, we obtain

kt = ∑
j∈Z
ψ̂( j− t)δ− j+t ,

where δb denotes Dirac mass at the point b. Therefore, kt is a sum of Dirac masses
with rapidly decaying coefficients. Since each Dirac mass has Borel norm at most
1, we conclude that

∥

∥kt
∥

∥

M
≤ ∑

j∈Z
|ψ̂( j− t)| ≤ ∑

j∈Z
(1 + | j− t|)−10 ≤ 10 , (10.2.24)

which is independent of t. This says that the measures kt have uniformly bounded
norms. Take now f ∈ Lp(R) and p ≥ 2. Using identity (10.2.22), we obtain

∫

R

(

∑
j∈Z

|Pj( f )(x)|2
)

p
2
dx =

∫

R

(

∑
j∈Z

|PjS j( f )(x)|2
)

p
2
dx

≤ cp

∫

R

(

∑
j∈Z

|S j( f )(x)|2
)

p
2
dx ,

and the last inequality follows from Exercise 4.6.1(a). The constant cp depends only
on p. Recalling identity (10.2.23), we write

cp

∫

R

(

∑
j∈Z

|S j( f )(x)|2
)

p
2
dx ≤ cp

∫

R

(
∫

I0
|(kt ∗ f )(x)|2 dt

)
p
2

dx

≤ cp

∫

R

(
∫

I0
|(kt ∗ f )(x)|pdt

)
p
p

dx

= cp

∫

I0

∫

R
|(kt ∗ f )(x)|p dxdt

≤ 10cp

∫

I0

∫

R
| f (x)|p dxdt

= 10cp
∥

∥ f‖p
Lp ,

where we used Hölder’s inequality on the interval I0 (together with the fact that
p ≥ 2) and (10.2.24). The proof of the theorem is complete with constant Cp =
(10cp)1/p. �

We now return to estimate (10.2.14). First recall the strips
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Sk,σ ,τ =
{

(ξ1,ξ2) : ξ2 ∈ [40σ2−
k
2 + τ,40(σ + 1)2−

k
2 + τ)

}

defined for σ ∈ Z and τ ∈ {0,1, . . . ,39}. These strips have length 40 ·2− k
2 , and each

˜Jk,� is contained in one of them, which we called Sk,σ�,τ� = Bk,�.
The family {Bk,�}�∈I does not consist of disjoint sets, but we split it into 40 sub-

families by placing Bk,� in different subfamilies if the indices τ� and τ�′ are different.
We now write the set I as

I = I1 ∪ I2 ∪·· ·∪ I40 ,

where for each �,�′ ∈ I j the sets Bk,� and Bk,�′ are disjoint.
We now use Theorem 10.2.7 to obtain the required quadratic estimate (10.2.14).

Things now are relatively simple. We observe that the multiplier operators f �→
(χBk,�

̂f )∨ on R2 obey the estimates (10.2.21), in which Lp(R) is replaced by Lp(R2),
since they are the identity operators in the ξ1-variable.

We conclude that

∥

∥

∥

(

∑
�∈I j

|Tk,�( f )|2
)1

2
∥

∥

∥

Lp(R2)
≤Cp

∥

∥ f
∥

∥

Lp(R2) (10.2.25)

holds for all p ≥ 2 and, in particular, for p = 4. This proves (10.2.14) for a single
I j, and the same conclusion follows for I with a constant 40 times as big.

10.2.5 The Proof of Lemma 10.2.5

We finally discuss the proof of Lemma 10.2.5.

Proof. If k = 0,1, . . . ,k0 up to a fixed integer k0, then there exist only finitely many
pairs of sets Γ� +Γ�′ depending on k0, and the lemma is trivially true. We may there-
fore assume that k is a large integer; in particular we may take δ = 2−k ≤ 2400−2.
In the sequel, for simplicity we replace 2−k by δ and we denote the set Γk,� by Γ�. In
the proof that follows we are working with a fixed δ ∈ [0,2400−2]. Elements of the
set Γ� +Γ�′ have the form

re2π i(�+α)δ 1/2
+ r′e2π i(�′+α ′)δ 1/2

, (10.2.26)

where α,α ′ range in the interval [−1,1] and r,r′ range in [1− 5
8δ ,1−

1
8δ ]. We set

w(�,�′) = e2π i�δ 1/2
+ e2π i�′δ 1/2

= 2cos(π |�− �′|δ 1
2 )eπ i(�+�′)δ 1/2

, (10.2.27)

where the last equality is a consequence of a trigonometric identity that can be found
in Appendix E. Using similar identities (see Appendix E) and performing algebraic
manipulations, one may verify that the general element (10.2.26) of the set Γ� +Γ�′
can be written as
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w(�,�′) +
{

r
cos(2παδ

1
2 )+ cos(2πα ′δ

1
2 )−2

2

}

w(�,�′)

+
{

r
sin(2παδ

1
2 )+ sin(2πα ′δ

1
2 )

2

}

iw(�,�′)

+ E(r, �,�′,α,α ′,δ ) ,

where

E(r, �,�′,α,α ′,δ ) = (r−1)
(

e2π i�δ 1/2
+ e2π i�′δ 1/2

)

+(r′ − r)e2π i(�′+α ′)δ 1/2

+ r
(

e2π i�δ 1/2 − e2π i�′δ 1/2
)(cos(2παδ

1
2 )− cos(2πα ′δ

1
2 )

2

)

+ r
(

e2π i�δ 1/2 − e2π i�′δ 1/2
)(sin(2παδ 1

2 )− sin(2πα ′δ 1
2 )

2

)

.

The coefficients in the curly brackets are real, and E(r, �,�′,α,α ′,δ ) is an error of
magnitude at most 2δ + 8π2|�− �′|δ . These observations and the facts |sinx| ≤ |x|
and |1− cosx| ≤ |x|2/2 (see Appendix E) imply that the set Γ� +Γ�′ is contained in
the rectangle R(�,�′) centered at the point w(�,�′) with half-width

2π2δ +(2δ + 8π2|�− �′|δ ) ≤ 80(1 + |�− �′|)δ

in the direction along w(�,�′) and half-length

2πδ
1
2 +(2δ + 8π2|�− �′|δ ) ≤ 30δ

1
2

in the direction along iw(�,�′) [which is perpendicular to that along w(�,�′)]. Since

2π |�− �′|δ 1
2 < π

2 , this rectangle is contained in a disk of radius 105δ
1
2 centered at

the point w(�,�′) .

We immediately deduce that if |w(�,�′)−w(m,m′)| is bigger than 210δ 1
2 , then

the sets Γ� +Γ�′ and Γm +Γm′ do not intersect. Therefore, if these sets intersect, we
should have

|w(�,�′)−w(m,m′)| ≤ 210δ
1
2 .

In view of Exercise 10.2.2, the left-hand side of the last expression is at least

2 2
π cos(π4 )|π(�+ �′)−π(m+ m′)|δ 1

2

(here we use the hypothesis that |2π�δ
1
2 | < π

4 twice). We conclude that if the sets
Γ� +Γ�′ and Γm +Γm′ intersect, then

|(�+ �′)− (m+ m′)| ≤ 210/2
√

2 ≤ 150 . (10.2.28)

In this case the angle between the vectors w(�,�′) and w(m,m′) is
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ϕ�,�′,m,m′ = π |(�+ �′)− (m+ m′)|δ 1
2 ,

which is smaller than π/16, provided (10.2.28) holds and δ < 2400−2. This says
that in this case, the rectangles R(�,�′) and R(m,m′) are essentially parallel to each
other (the angle between them is smaller than π/16).

Let us fix a rectangle R(�,�′), and for another rectangle R(m,m′) we denote by
˜R(m,m′) the smallest rectangle containing R(m,m′) with sides parallel to the corre-
sponding sides of R(�,�′). An easy trigonometric argument shows that ˜R(m,m′) has
the same center as R(m,m′) and has half-sides at most

30δ
1
2 cos(ϕ�,�′,m,m′)+ 80(1 + |�− �′|)δ sin(ϕ�,�′,m,m′) ,

80(1 + |�− �′|)δ cos(ϕ�,�′,m,m′)+ 30δ
1
2 sin(ϕ�,�′,m,m′) ,

in view of Exercise 10.2.3. Then ˜R(m,m′) has half-sides at most 60000δ 1
2 and

18000(1 + |�− �′|)δ and is therefore contained in a fixed multiple of R(m,m′). If
Γ� +Γ�′ and Γm +Γm′ intersect, then so do ˜R(m,m′) and R(�,�′), and both of these
rectangles have sides parallel to the vectors w(�,�′) and iw(�,�′). But in the direc-
tion of w(�,�′), these rectangles have sides with half-lengths at most 80(1+ |�−�′|)δ
and 16000(1+ |m−m′|)δ . Note that the distance of the lines parallel to the direction
iw(�,�′) and passing through the centers of the rectangles ˜R(m,m′) and R(�,�′) is

2
∣

∣cos(π |�− �′|δ 1
2 )− cos(π |m−m′|δ 1

2 )
∣

∣ ,

as we easily see using (10.2.27). If these rectangles intersect, we must have

2
∣

∣cos(π |�− �′|δ 1
2 )− cos(π |m−m′|δ 1

2 )
∣

∣≤ 16080(2 + |�− �′|+ |m−m′|)δ .

We conclude that if the sets R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′), then

∣

∣cos(π |�− �′|δ 1
2 )− cos(π |m−m′|δ 1

2 )
∣

∣≤ 50000(|�− �′|+ |m−m′|)δ .

But the expression on the left is equal to

2
∣

∣sin(π |�−�′|−|m−m′ |
2 δ

1
2 )sin(π |�−�′|+|m−m′|

2 δ
1
2 )
∣

∣ ,

which is at least

2
∣

∣|�− �′|− |m−m′|
∣

∣

(

|�− �′|+ |m−m′|
)

δ

in view of the simple estimate |sin t| ≥ 2
π |t| for |t| < π

2 . We conclude that if the sets
R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′), then

∣

∣|�− �′|− |m−m′|
∣

∣≤ 25000 . (10.2.29)
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Combining (10.2.28) with (10.2.29), it follows that if Γm +Γm′ and Γ� +Γ�′ intersect,
then

max
(

∣

∣min(m,m′)−min(�,�′)
∣

∣,
∣

∣max(m,m′)−max(�,�′)
∣

∣

)

≤ 25150
2

.

We conclude that the set Γm +Γm′ intersects the fixed set Γ�+Γ�′ for at most (25151)2

pairs (m,m′). This finishes the proof of the lemma. �

Exercises

10.2.1. For λ ≥ 0 show that for all f ∈ Lp(Rn) the Bochner–Riesz operators

BλR( f )(x) =
∫

Rn
(1−|ξ/R|2)λ+ ̂f (ξ )e2π ix·ξ dξ

converge to f in Lp(Rn) if and only if the function (1−|ξ |2)λ+ lies in Mp(Rn).
[

Hint: In the beginning of the proof of Theorem 10.2.4 it was shown that if
(1− |ξ |2)λ+ lies in Mp(Rn), then the BλR( f ) converge to f in Lp(Rn). Conversely,
if for all f ∈ Lp(Rn) the BλR( f ) converge to f in Lp as R → ∞, then for every f
in Lp(Rn) there is a constant Cf such that supR>0

∥

∥BλR( f )
∥

∥

Lp ≤ Cf < ∞. It fol-

lows that supR>0

∥

∥BλR
∥

∥

Lp→Lp < ∞ by the uniform boundedness principle; hence
∥

∥Bλ
∥

∥

Lp→Lp < ∞.
]

10.2.2. Let |θ1|, |θ2| < π
4 be two angles. Show geometrically that

|r1eiθ1 − r2eiθ2 | ≥ min(r1,r2)sin |θ1 −θ2|

and use the estimate |sin t| ≥ 2|t|
π for |t| < π

2 to obtain a lower bound for the second
expression in terms of |θ1 −θ2|.

10.2.3. Let R be a rectangle in R2 having length b > 0 along a direction�v = (ξ1,ξ2)
and length a > 0 along the perpendicular direction�v⊥ = (−ξ2,ξ1). Let �w be another
vector that forms an angle ϕ < π

2 with �v. Show that the smallest rectangle R′ that
contains R and has sides parallel to �w and �w⊥ has side lengths asin(ϕ)+ bcos(ϕ)
along the direction �w and acos(ϕ)+ bsin(ϕ) along the direction �w⊥.

10.2.4. Prove that Theorem 10.2.7 does not hold when p < 2.
[

Hint: Try the intervals I j = [ j, j + 1] and ̂f = χ[0,N] as N → ∞.
]

10.2.5. Let {Ik}k be a family of intervals in the real line with |Ik|= |Ik′ | and Ik∩Ik′ =
/0 for all k �= k′. Define the sets

Sk =
{

(ξ1, . . . ,ξn) ∈ Rn : ξ1 ∈ Ik
}

.

Prove that for all p ≥ 2 and all f ∈ Lp(Rn) we have
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∥

∥

∥

(

∑
k

|(̂f χSk)
∨|2
)1

2
∥

∥

∥

Lp(Rn)
≤Cp

∥

∥ f
∥

∥

Lp(Rn) ,

where Cp is the constant of Theorem 10.2.7.

10.2.6. (a) Let {Ik}k, {J�}� be two families of intervals in the real line with |Ik| =
|Ik′ |, Ik ∩ Ik′ = /0 for all k �= k′, and |J�| = |J�′ |, J�∩ J�′ = /0 for all �,�′. Prove that for
all p ≥ 2 there is a constant Cp such that

∥

∥

∥

(

∑
k
∑
�

|(̂f χIk×J�
)∨|2

)1
2
∥

∥

∥

Lp(R2)
≤C2

p

∥

∥ f
∥

∥

Lp(R2) ,

for all f ∈ Lp(R2).
(b) State and prove an analogous result on Rn.
[

Hint: Use the Rademacher functions and apply Theorem 10.2.7 twice.
]

10.2.7. (Rubio de Francia [273] ) On Rn consider the points x� = �
√
δ , � ∈ Zn. Fix

a Schwartz function h whose Fourier transform is supported in the unit ball in Rn.
Given a function f on Rn, define ̂f�(ξ ) = ̂f (ξ )̂h(δ− 1

2 (ξ − x�)). Prove that for some
constant C (which depends only on h and n) the estimate

(

∑
�∈Zn

| f�|2
)1

2 ≤C M(| f |2) 1
2

holds for all functions f . Deduce the Lp(Rn) boundedness of the preceding square
function for all p > 2.
[

Hint: For a sequence λ� with ∑� |λ�|2 = 1, set

G( f )(x) = ∑
�∈Zn

λ� f�(x) =
∫

Rn

[

∑
�∈Zn

λ� e
2π i

x�·y√
δ

]

f
(

x− y√
δ

)

h(y)dy .

Split Rn as the union of Q0 = [− 1
2 , 1

2 ]n and 2 j+1Q0 \ 2 jQ0 for j ≥ 0 and control the
integral on each such set using the decay of h and the L2(2 j+1Q0) norms of the other
two terms. Finally, exploit the orthogonality of the functions e2π i�·y to estimate the
L2(2 j+1Q0) norm of the expression inside the square brackets by C2n j/2. Sum over
j ≥ 0 to obtain the required conclusion.

]

10.2.8. For λ > 0 define the maximal Bochner–Riesz operator

Bλ∗ ( f )(x) = sup
R>0

∣

∣

∣

∣

∫

Rn
(1−|ξ/R|2)λ+ ̂f (ξ )e2π ix·ξ dξ

∣

∣

∣

∣

.

Prove that Bλ∗ maps Lp(Rn) to itself when λ > n−1
2 for 1 ≤ p ≤ ∞.

[

Hint: Use Corollary 2.1.12.
]
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10.3 Kakeya Maximal Operators

We recall the Hardy–Littlewood maximal operator with respect to cubes on Rn de-
fined as

Mc( f )(x) = sup
Q∈F
Q�x

1
|Q|

∫

Q
| f (y)|dy , (10.3.1)

where F is the set of all closed cubes in Rn (with sides not necessarily parallel to
the axes). The operator Mc is equivalent (bounded above and below by constants) to
the corresponding maximal operator M′

c in which the family F is replaced by the
more restrictive family F ′ of cubes in Rn with sides parallel to the coordinate axes.

It is interesting to observe that if the family of all cubes F in (10.3.1) is replaced
by the family of all rectangles (or parallelepipeds) R in Rn, then we obtain an op-
erator M0 that is unbounded on Lp(Rn); see also Exercise 2.1.9. If we substitute
the family of all parallelepipeds R, however, with the more restrictive family R ′

of all parallelepipeds with sides parallel to the coordinate axes, then we obtain the
so-called strong maximal function

Ms( f )(x) = sup
R∈R′
R�x

1
|R|

∫

R
| f (y)|dy , (10.3.2)

which was introduced in Exercise 2.1.6. The operator Ms is bounded on Lp(Rn) for
1 < p < ∞ but it is not of weak type (1,1). See Exercise 10.3.1.

These examples indicate that averaging over long and skinny rectangles is quite
different than averaging over squares. In general, the direction and the dimensions
of the averaging rectangles play a significant role in the boundedness properties of
the maximal functions. In this section we investigate aspects of this topic.

10.3.1 Maximal Functions Associated with a Set of Directions

Definition 10.3.1. Let Σ be a set of unit vectors in R2, i.e., a subset of the unit
circle S1. Associated with Σ , we define RΣ to be the set of all closed rectangles in
R2 whose longest side is parallel to some vector in Σ . We also define a maximal
operator MΣ associated with Σ as follows:

MΣ ( f )(x) = sup
R∈RΣ

R�x

1
|R|

∫

R
| f (y)|dy ,

where f is a locally integrable function on R2.
We also recall the definition given in (10.2.19) of the Kakeya maximal operator

KN(w)(x) = sup
R�x

1
|R|

∫

R
|w(y)|dy , (10.3.3)
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where the supremum is taken over all rectangles R in R2 of dimensions a and aN
where a > 0 is arbitrary. Here N is a fixed real number that is at least 10.

Example 10.3.2. Let Σ = {v} consist of only one vector v = (a,b). Then

MΣ ( f )(x) = sup
0<r≤1

sup
N>0

1
rN2

∫ N

−N

∫ rN

−rN
| f (x− t(a,b)− s(−b,a))|dsdt .

If Σ = {(1,0),(0,1)} consists of the two unit vectors along the axes, then

MΣ = Ms ,

where Ms is the strong maximal function defined in (10.3.2).

It is obvious that for each Σ ⊆ S1, the maximal function MΣ maps L∞(R2) to
itself with constant 1. But MΣ may not always be of weak type (1,1), as the example
Ms indicates; see Exercise 10.3.1. The boundedness of MΣ on Lp(R2) in general
depends on the set Σ .

An interesting case arises in the following example as well.

Example 10.3.3. For N ∈ Z+, let

Σ = ΣN =
{(

cos( 2π j
N ),sin( 2π j

N )
)

: j = 0,1,2, . . . ,N −1
}

be the set of N uniformly spread directions on the circle. Then we expect MΣN to
be Lp bounded with constant depending on N. There is a connection between the
operator MΣN previously defined and the Kakeya maximal operator KN defined in
(10.2.19). In fact, Exercise 10.3.3 says that

KN( f ) ≤ 20MΣN ( f ) (10.3.4)

for all locally integrable functions f on R2.

We now indicate why the norms of KN and MΣN on L2(R2) grow as N →∞. We
refer to Exercises 10.3.4 and 10.3.7 for the corresponding result for p �= 2.

Proposition 10.3.4. There is a constant c such that for any N ≥ 10 we have
∥

∥KN
∥

∥

L2(R2)→L2(R2) ≥ c(logN) (10.3.5)

and
∥

∥KN
∥

∥

L2(R2)→L2,∞(R2) ≥ c(logN)
1
2 . (10.3.6)

Therefore, a similar conclusion follows for MΣN .

Proof. We consider the family of functions fN(x) = 1
|x|χ3≤|x|≤N defined on R2 for

N ≥ 10. Then we have
∥

∥ fN
∥

∥

L2(R2) ≤ c1(logN)
1
2 . (10.3.7)
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On the other hand, for every x in the annulus 6 < |x| < N, we consider the rectangle

Rx of dimensions |x| − 3 and |x|−3
N , one of whose shorter sides touches the circle

|y| = 3 and the other has midpoint x. Then

KN( fN)(x) ≥ 1
|Rx|

∫

Rx

| fN(y)|dy ≥ c2N
(|x|−3)2

∫∫

6≤y1≤|x|
|y2|≤ |x|−3

2N

dy1dy2

y1
≥ c3

log |x|
|x| .

It follows that

∥

∥KN( fN)
∥

∥

L2(R2) ≥ c3

(
∫

6≤|x|≤N

( log |x|
|x|

)2
dx

) 1
2

≥ c4 (logN)
3
2 . (10.3.8)

Combining (10.3.7) with (10.3.8) we obtain (10.3.5) with c = c4/c1.
We now turn to estimate (10.3.6). Since for all 6 < |x| < N we have

KN( fN)(x) ≥ c3
log |x|
|x| > c3

logN
N

,

it follows that
∣

∣

{

KN( fN) > c3
logN

N

}∣

∣≥ π(N2 −62) ≥ c5N2 and hence

∥

∥KN( fN)
∥

∥

L2,∞
∥

∥ fN
∥

∥

L2

≥
sup
λ>0
λ
∣

∣

{

KN( fN) > λ
}∣

∣

1
2

c1(logN)
1
2

≥ c3
logN

N

∣

∣

{

KN( fN) > c3
logN

N

}∣

∣

1
2

c1(logN)
1
2

≥ c3
√

c5

c1
(logN)

1
2 .

This completes the proof. �

10.3.2 The Boundedness of MΣN on Lp(R2)

It is rather remarkable that both estimates of Proposition 10.3.4 are sharp in terms
of their behavior as N → ∞, as the following result indicates.

Theorem 10.3.5. There exist constants 0 < B,C <∞ such that for every N ≥ 10 and
all f ∈ L2(R2) we have

∥

∥MΣN ( f )
∥

∥

L2,∞(R2) ≤ B(logN)
1
2
∥

∥ f
∥

∥

L2(R2) (10.3.9)

and
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∥

∥MΣN ( f )
∥

∥

L2(R2) ≤C (logN)
∥

∥ f
∥

∥

L2(R2) . (10.3.10)

In view of (10.3.4), similar estimates also hold for KN.

Proof. We deduce (10.3.10) from the weak type estimate (10.3.9), which we rewrite
as

∣

∣

{

x ∈ R2 : MΣN ( f )(x) > λ
}∣

∣≤ B2 (logN)

∥

∥ f
∥

∥

2
L2

λ 2 . (10.3.11)

We prove this estimate for some constant B > 0 independent of N. But prior to doing
this we indicate why (10.3.11) implies (10.3.10).

Using Exercise 10.3.2, we have that MΣN maps Lp(R2) to Lp(R2) (and hence
into Lp,∞) with constant at most a multiple of N1/p for all 1 < p < ∞. Using this
with p = 3/2, we have

∥

∥MΣN

∥

∥

L
3
2 →L

3
2 ,∞ ≤

∥

∥MΣN

∥

∥

L
3
2 →L

3
2
≤ AN

2
3 (10.3.12)

for some constant A > 0. Now split f as the sum f = f1 + f2 + f3, where

f1 = f χ| f |≤ 1
4λ

,

f2 = f χ 1
4λ<| f |≤N2λ ,

f3 = f χN2λ<| f | .

It follows that
∣

∣

{

MΣN ( f ) > λ
}∣

∣≤
∣

∣

{

MΣN ( f2) > λ
3

}∣

∣+
∣

∣

{

MΣN ( f3) > λ
3

}∣

∣ , (10.3.13)

since the set
{

MΣN ( f1) > λ
3

}

is empty. To obtain the required result we use the L2,∞

estimate (10.3.11) for f2 and the L
3
2 ,∞ estimate (10.3.12) for f3. We have

∥

∥MΣN ( f )
∥

∥

2
L2

= 2
∫ ∞

0
λ
∣

∣

{

MΣN ( f ) > λ
}∣

∣dλ

≤
∫ ∞

0
2λ
∣

∣

{

MΣN ( f2) > λ
3

}∣

∣dλ +
∫ ∞

0
2λ
∣

∣

{

MΣN ( f3) > λ
3

}∣

∣dλ

≤
∫ ∞

0

2λB2 (logN)
λ 2

∫

1
4λ<| f |≤N2λ

| f |2dxdλ +
∫ ∞

0

2λA
3
2 N

λ
3
2

∫

| f |>N2λ

| f | 3
2 dxdλ

≤ 2B2(logN)
∫

R2
| f (x)|2

∫ 4| f (x)|

| f (x)|
N2

dλ
λ

dx + 2A
3
2 N

∫

R2
| f (x)| 3

2

∫
| f (x)|

N2

0

dλ
λ

1
2

dx

=
(

4B2(log2N)(logN)+ 4A
3
2
)∥

∥ f
∥

∥

2
L2

≤ C(logN)2
∥

∥ f
∥

∥

2
L2
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using Fubini’s theorem for integrals. This proves (10.3.10).
To avoid problems with antipodal points, it is convenient to split ΣN as the union

of eight sets, in each of which the angle between any two vectors does not exceed
2π/8. It suffices therefore to obtain (10.3.11) for each such subset of ΣN . Let us fix
one such subset of ΣN , which we call Σ1

N . To prove (10.3.11), we fix a λ > 0 and
we start with a compact subset K of the set {x ∈ R2 : MΣ1

N
( f )(x) > λ

}

. Then for
every x ∈ K, there exists an open rectangle Rx that contains x and whose longest side
is parallel to a vector in Σ1

N . By compactness of K, there exists a finite subfamily
{Rα}α∈A of the family {Rx}x∈K such that

∫

Rα
| f (y)|dy > λ |Rα |

for all α ∈ A and such that the union of the Rα’s covers K.
We claim that there is a constant C such that for any finite family {Rα}α∈A of

rectangles whose longest side is parallel to a vector in Σ1
N there is a subset B of A

such that
∫

R2

(

∑
β∈B

χRβ (x)
)2

dx ≤C
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ (10.3.14)

and that ∣

∣

∣

⋃

α∈A

Rα
∣

∣

∣≤C(logN)
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ . (10.3.15)

Assuming (10.3.14) and (10.3.15), we easily deduce (10.3.11). Indeed,
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ ≤ ∑
β∈B

|Rβ |

<
1
λ ∑β∈B

∫

Rβ
| f (y)|dy

=
1
λ

∫

R2

(

∑
β∈B

χRβ

)

| f (y)|dy

≤ 1
λ

(
∫

R2

(

∑
β∈B

χRβ

)2
dx

)1
2 ∥
∥ f
∥

∥

L2

≤ C
1
2

λ

∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣

1
2 ∥
∥ f
∥

∥

L2 ,

from which it follows that
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣≤
C
λ 2

∥

∥ f
∥

∥

2
L2 .

Then, using (10.3.15), we obtain
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|K| ≤
∣

∣

∣

⋃

α∈A

Rα
∣

∣

∣≤C (logN)
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣≤
C2

λ 2 (logN)
∥

∥ f
∥

∥

2
L2 ,

and since K was an arbitrary compact subset of {x : MΣ1
N
( f )(x) > λ

}

, the same
estimate is valid for the latter set.

We now turn to the selection of the subfamily {Rβ}β∈B and the proof of
(10.3.14) and (10.3.15).

Let Rβ1
be the rectangle in {Rα}α∈A with the longest side. Suppose we have

chosen Rβ1
,Rβ2

, . . . ,Rβ j−1
for some j ≥ 2. Then among all rectangles Rα that satisfy

j−1

∑
k=1

|Rβk
∩Rα | ≤

1
2
|Rα | , (10.3.16)

we choose a rectangle Rβ j
such that its longer side is as large as possible. Since the

collection {Rα}α∈A is finite, this selection stops after m steps. Define

B = {β1,β2, . . . ,βm} .

Using (10.3.16), we obtain

∫

R2

(

∑
β∈B

χRβ

)2
dx ≤ 2

m

∑
j=1

j

∑
k=1

|Rβk
∩Rβ j

|

= 2
m

∑
j=1

[( j−1

∑
k=1

|Rβk
∩Rβ j

|
)

+ |Rβ j
|
]

≤ 2
m

∑
j=1

[ 1
2
|Rβ j

|+ |Rβ j
|
]

= 3
m

∑
j=1

|Rβ j
| .

(10.3.17)

A consequence of this fact is that

m

∑
j=1

|Rβ j
| =

∫

⋃m
j=1 Rβ j

( m

∑
j=1

χRβ j

)

dx

≤
∣

∣

∣

m
⋃

j=1

Rβ j

∣

∣

∣

1
2
(
∫

Rn

(

∑
β∈B

χRβ

)2
dx

)1
2

≤
∣

∣

∣

m
⋃

j=1

Rβ j

∣

∣

∣

1
2 √

3
( m

∑
j=1

|Rβ j
|
) 1

2
,

which implies that
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m

∑
j=1

|Rβ j
| ≤ 3

∣

∣

∣

m
⋃

j=1

Rβ j

∣

∣

∣. (10.3.18)

Using (10.3.18) in conjunction with the last estimate in (10.3.17), we deduce the
desired inequality (10.3.14) with C = 9.

We now turn to the proof of (10.3.15). Let Mc be the usual Hardy–Littlewood
maximal operator with respect to cubes in Rn (or squares in R2; recall n = 2). Since
Mc is of weak type (1,1), (10.3.15) is a consequence of the estimate

⋃

α∈A \B
Rα ⊆

{

x ∈ R2 : Mc
(

∑
β∈B

χ(Rβ )∗
)

(x) > c(logN)−1} (10.3.19)

for some absolute constant c, where (Rβ )∗ is the rectangle Rβ expanded 5 times in
both directions. Indeed, if (10.3.19) holds, then

∣

∣

∣

⋃

α∈A

Rα
∣

∣

∣ ≤
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣+
∣

∣

∣

⋃

α∈A \B
Rα
∣

∣

∣

≤
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣+
10
c

(logN) ∑
β∈B

|(Rβ )∗|

≤
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣+
250

c
(logN) ∑

β∈B

|Rβ |

≤ C (logN)
∣

∣

∣

⋃

β∈B

Rβ
∣

∣

∣ ,

where we just used (10.3.18) and the fact that N is large.
It remains to prove (10.3.19). At this point we need the following lemma. In the

sequel we denote by θα the angle between the x axis and the vector pointing in the
longer direction of Rα for any α ∈ A . We also denote by lα the shorter side of Rα
and by Lα the longer side of Rα for any α ∈ A . Finally, we set

ωk =
2π2k

N

for k ∈ Z+ and ω0 = 0.

Lemma 10.3.6. Let Rα be a rectangle in the family {Rα}α∈A and let 0 ≤ k <
[ log(N/8)

log2

]

. Suppose that β ∈ B is such that

ωk ≤ |θα −θβ | < ωk+1

and such that Lβ ≥ Lα . Let sα = 8max(lα ,ωkLα ). For an arbitrary x ∈ Rα , let Q be
a square centered at x with sides of length sα parallel to the sides of Rα . Then we
have

|Rβ ∩Rα |
|Rα |

≤ 32
|(Rβ )∗ ∩Q|

|Q| . (10.3.20)
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Assuming Lemma 10.3.6, we conclude the proof of (10.3.19). Fix α ∈ A \B.
Then the rectangle Rα was not selected in the selection procedure. This means that
for all l ∈ {2, . . . ,m+ 1} we have exactly one of the following: either

l−1

∑
j=1

|Rβ j
∩Rα | >

1
2
|Rα | (10.3.21)

or
l−1

∑
j=1

|Rβ j
∩Rα | ≤

1
2
|Rα | and Lα ≤ Lβl

. (10.3.22)

If (10.3.22) holds for l = 2, we let μ ≤ m be the largest integer such that (10.3.22)
holds for all l ≤ μ . Then (10.3.22) fails for l = μ + 1; hence (10.3.21) holds for
l = μ+ 1; thus

1
2
|Rα | <

μ

∑
j=1

|Rβ j
∩Rα | ≤ ∑

β∈B
Lβ≥Lα

|Rβ ∩Rα | . (10.3.23)

If (10.3.22) fails for l = 2, then (10.3.21) holds for l = 2, and this implies that

1
2
|Rα | < |Rβ1

∩Rα | ≤ ∑
β∈B

Lβ≥Lα

|Rβ ∩Rα | .

In either case we have

1
2
|Rα | < ∑

β∈B
Lβ≥Lα

|Rβ ∩Rα | ,

and from this it follows that there exists a k with 0 ≤ k <
[ log(N/8)

log2

]

such that

log2
2log(N/8)

|Rα | < ∑
β∈B

Lβ≥Lα
ωk≤|θβ−θα |<ωk+1

|Rβ ∩Rα | . (10.3.24)

By Lemma 10.3.6, for any x ∈ Rα there is a square Q such that (10.3.20) holds for
any Rβ with β ∈ B satisfying Lβ ≥ Lα and ωk ≤ |θβ −θα | < ωk+1. It follows that

log2
2log(N/8)

< 2 ∑
β∈B

Lβ≥Lα
ωk≤|θβ−θα |<ωk+1

|(Rβ )∗ ∩Q|
|Q| ,

which implies
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c
logN

<
log2

4log(N/8)
<

1
|Q|

∫

Q
∑
β∈B

χ(Rβ )∗ dx .

This proves (10.3.19), since for α ∈ A \B, any x ∈ Rα must be an element of the
set
{

x ∈ R2 : Mc
(

∑β∈B χ(Rβ )∗
)

(x) > c(logN)−1
}

. �

It remains to prove Lemma 10.3.6.

Fig. 10.9 For angles τ less
than that displayed, the strip
R∞β meets the upper side of Q.
The length of the intersection
of R∞β with the lower side of
Q is denoted by b.

x

R

R

Q

α

.

β

h

∞

b

τ

Proof. We fix Rα and Rβ so that Lβ ≥ Lα and we assume that Rβ intersects Rα ;
otherwise, (10.3.20) is obvious. Let τ be the angle between the directions of the
rectangles Rα and Rβ , that is,

τ = |θα −θβ | .

By assumption we have τ < ωk+1 ≤ π
4 , since k + 1 ≤ [ log(N/8)

log2 ] ≤ log(N/8)
log2 .

Let R∞β denote the smallest closed infinite strip in the direction of the longer side
of Rβ that contains it. We make the following observation: if

tanτ ≤
1
2 sα − lα
1
2 sα + Lα

, (10.3.25)

then the strip R∞β intersects the upper side (according to Figure 10.9) of the square
Q. Indeed, the worst possible case is drawn in Figure 10.9, in which equality holds
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in (10.3.25). For τ ≤ π/4 we have tanτ < 3τ/2, and since τ < 2ωk, it follows that
tanτ < 3ωk. Our choice of sα implies

sα ≥ 6ωk Lα + 2 lα =⇒ 3ωk ≤
1
2 sα − lα
1
2 sα + Lα

;

hence (10.3.25) holds.
We have now proved that R∞β meets the upper side of Q. We examine the size

of the intersection R∞β ∩Q. According to the picture in Figure 10.9, this intersection
contains a parallelogram of base b = lβ/cosτ and height sα −h and a right triangle
with base b and height h (with 0 ≤ h ≤ sα ). Then we have

|R∞β ∩Q|
|Q| ≥ 1

s2
α

lβ
cosτ

(

sα −h +
1
2

h
)

≥ 1
s2
α

lβ
cosτ

(1
2

sα
)

≥ 1
2

lβ
sα

.

Since (Rβ )∗ has length 5Lβ and Rβ meets Rα , we have that R∞β ∩Q � (Rβ )∗ ∩Q and
therefore

|(Rβ )∗ ∩Q|
|Q| ≥ 1

2

lβ
sα

. (10.3.26)

On the other hand, let Rα ,β be the smallest parallelogram two of whose opposite
sides are parallel to the shorter sides of Rα and whose remaining two sides are
contained in the boundary lines of R∞β . Then

|Rα ∩Rβ | ≤ |Rα ,β | ≤
lβ

cosτ
Lα ≤ 2 lβLα .

Another geometric argument shows that

|Rα ∩Rβ | ≤ lβ
lα

sin(τ)
≤ lα lβ

π
2τ

≤ lα lβ
π

2ωk
≤ 2

lα lβ
ωk

.

Combining these estimates, we deduce

|Rα ∩Rβ |
|Rα |

≤ 2min
( lβ

lα
,

lβ
ωk Lα

)

≤ 16
lβ
sα

. (10.3.27)

Finally, (10.3.26) and (10.3.27) yield (10.3.20). �
We end this subsection with an immediate corollary of the theorem just proved.

Corollary 10.3.7. For every 1 < p < ∞ there exists a constant cp such that

∥

∥KN
∥

∥

Lp(R2)→Lp(R2) ≤ cp

{

N
2
p−1(logN)

1
p′ when 1 < p < 2,

(logN)
1
p when 2 < p < ∞.

(10.3.28)

Proof. We see that
∥

∥KN
∥

∥

L1(R2)→L1,∞(R2) ≤C N (10.3.29)
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by replacing a rectangle of dimensions a×aN by the smallest square of side length
aN that contains it. Interpolating between (10.3.9) and (10.3.29), we obtain the first
statement in (10.3.28). The second statement in (10.3.28) follows by interpolation
between (10.3.9) and the trivial L∞ → L∞ estimate. (In both cases we use Theorem
1.3.2.) �

10.3.3 The Higher-Dimensional Kakeya Maximal Operator

The Kakeya maximal operator without dilations K a
N on L2(R2) was crucial in the

study of the boundedness of the Bochner–Riesz operator Bλ on L4(R2). An analo-
gous maximal operator could be introduced on Rn.

Definition 10.3.8. Given fixed a > 0 and N ≥ 10, we introduce the Kakeya maximal
operator without dilations on Rn as

K a
N ( f )(x) = sup

R

1
|R|

∫

R
| f (y)|dy ,

where the supremum is taken over all rectangular parallelepipeds (boxes) of arbi-
trary orientation in Rn that contain the point x and have dimensions

a×a×·· ·×a
︸ ︷︷ ︸

n−1 times

×aN .

We also define the centered version Ka
N of K a

N as follows:

K
a
N( f )(x) = sup

R

1
|R|

∫

R
| f (y)|dy ,

where the supremum is restricted to those rectangles among the previous ones that
are centered at x. These two maximal operators are comparable, and we have

K
a
N ≤ K a

N ≤ 2n
K

a
N

by a simple geometric argument.

We also define the higher-dimensional analogue of the Kakeya maximal operator
KN introduced in (10.3.3).

Definition 10.3.9. Let N ≥ 10. We denote by R(N) the set of all rectangular paral-
lelepipeds (boxes) in Rn with arbitrary orientation and dimensions

a×a×·· ·×a
︸ ︷︷ ︸

n−1 times

×aN

with arbitrary a > 0. Given a locally integrable function f on Rn, we define
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KN( f )(x) = sup
R∈R(N)

R�x

1
|R|

∫

R
| f (y)|dy

and

KN( f )(x) = sup
R∈R(N)

R has center x

1
|R|

∫

R
| f (y)|dy ;

KN and KN are called the centered and uncentered nth-dimensional Kakeya maximal
operators, respectively.

For convenience we call rectangular parallelepipeds, i.e., elements of R(N),
higher-dimensional rectangles, or simply rectangles. We clearly have

sup
a>0

K a
N = KN and sup

a>0
K

a
N = KN ;

hence the boundedness of K a
N can be deduced from that of KN ; however, this de-

duction can essentially be reversed with only logarithmic loss in N (see the refer-
ences at the end of this chapter). In the sequel we restrict attention to the operator
K a

N , whose study already presents all the essential difficulties and requires a novel
set of ideas in its analysis. We consider a specific value of a, since a simple dilation
argument yields that the norms of K a

N and K b
N on a fixed Lp(Rn) are equal for all

a,b > 0.
Concerning K 1

N , we know that
∥

∥K 1
N

∥

∥

L1(Rn)→L1,∞(Rn) ≤ cn Nn−1 . (10.3.30)

This estimate follows by replacing a rectangle of dimensions

n−1 times
︷ ︸︸ ︷

1×1×·· ·×1×N by
the smallest cube of side length N that contains it. This estimate is sharp; see Exer-
cise 10.3.7.

It would be desirable to know the following estimate for K 1
N :

∥

∥K 1
N

∥

∥

Ln(Rn)→Ln,∞(Rn) ≤ c′n(logN)
n−1

n (10.3.31)

for some dimensional constant c′n. It would then follow that
∥

∥K 1
N

∥

∥

Ln(Rn)→Ln(Rn) ≤ c′′n logN (10.3.32)

for some other dimensional constant c′′n ; see Exercise 10.3.8(b). Moreover, if esti-
mate (10.3.31) were true, then interpolating between (10.3.30) and (10.3.31) would
yield the bound

∥

∥K 1
N

∥

∥

Lp(Rn)→Lp(Rn) ≤ cn,pN
n
p−1(logN)

1
p′ , 1 < p < n . (10.3.33)
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It is estimate (10.3.33) that we would like to concentrate on. We have the follow-
ing result for a certain range of p’s in the interval (1,n).

Theorem 10.3.10. Let pn = n+1
2 and N ≥ 10. Then there exists a constant Cn such

that
∥

∥K 1
N

∥

∥

Lpn,1(Rn)→Lpn,∞(Rn) ≤ CnN
n

pn
−1 , (10.3.34)

∥

∥K 1
N

∥

∥

Lpn (Rn)→Lpn,∞(Rn) ≤ CnN
n

pn
−1(logN)

1
p′n , (10.3.35)

∥

∥K 1
N

∥

∥

Lpn (Rn)→Lpn (Rn) ≤ CnN
n

pn
−1(logN) . (10.3.36)

Moreover, for every 1 < p < pn there exists a constant Cn,p such that

∥

∥K 1
N

∥

∥

Lp(Rn)→Lp(Rn) ≤Cn,p N
n
p−1(logN)

1
p′ . (10.3.37)

Proof. We begin by observing that (10.3.37) is a consequence of (10.3.30) and
(10.3.35) using Theorem 1.3.2. We also observe that (10.3.36) is a consequence
of (10.3.35), while (10.3.35) is a consequence of (10.3.34) (see Exercise 10.3.8).
We therefore concentrate on estimate (10.3.34).

We choose to work with the centered version K1
N of K 1

N , which is comparable to
it. To make the geometric idea of the proof a bit more transparent, we pick δ < 1/10,
we set N = 1/δ , and we work with the equivalent operator Kδ1/δ , whose norm is the

same as that of K 1
N . Since the operators in question are positive, we work with

nonnegative functions.
The proof is based on a linearization of the operator K δ

1/δ . Let us call a rectangle
of dimensions δ × δ × ·· · × δ × 1 a δ -tube. We call the line segment parallel to
the longest edges that joins the centers of its two smallest faces, a δ -tube’s axis of
symmetry.

For every x in Rn we select (in some measurable way) a δ -tube τ(x) that contains
x such that

1
2

K δ
1/δ ( f )(x) ≤ 1

|τ(x)|

∫

τ(x)
f (y)dy .

Suppose we have a grid of cubes in Rn each of side length δ ′ = δ/(2
√

n), and let
Q j be a cube in that grid with center cQj . Then any δ -tube centered at a point z ∈ Q j

must contain the entire Q j, and it follows that

K
δ
1/δ ( f )(z) ≤ K δ

1/δ ( f )(cQj ) ≤
2

|τ(cQj )|

∫

τ(cQ j )
f (y)dy . (10.3.38)

This observation motivates the introduction of a grid of width δ ′ = δ/(2
√

n) in
Rn so that for every cube Q j in the grid there is an associated δ -tube τ j satisfying

τ j ∩Q j �= /0.

Then we define a linear operator
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Lδ ( f ) =∑
j

(

1
|τ j|

∫

τ j

f (y)dy

)

χQj ,

which certainly satisfies

Lδ ( f ) ≤ 2nK 2δ
1/δ ( f ) ≤ 4n

K
2δ
1/δ ( f ) ,

and in view of (10.3.38), it also satisfies

K
δ
1/δ ( f ) ≤ 2Lδ ( f ) .

It suffices to show that Lδ is bounded from Lpn,1 to Lpn,∞ with constantCn(δ−1)
n
pn

−1,
which is independent of the choice of δ -tubes τ j .

Our next reduction is to take f to be the characteristic function of a set. The space
Lpn,∞ is normable [i.e., it has an equivalent norm under which it is a Banach space
(Exercise 1.1.12)]; hence by Exercise 1.4.7, the boundedness of Lδ from Lpn,1 to
Lpn,∞ is a consequence of the restricted weak type estimate

sup
λ>0
λ
∣

∣

{

Lδ (χA) > λ
}∣

∣

1
pn ≤C′

n(δ
−1)

n
pn

−1|A|
1

pn , (10.3.39)

for some dimensional constant Cn and all sets A of finite measure. This estimate can
be written as

λ
n+1

2 δ
n−1

2 |Eλ | ≤Cn|A| , (10.3.40)

where
Eλ =

{

x ∈ Rn : Lδ (χA)(x) > λ
}

=
{

Lδ (χA) > λ
}

.

Our final reduction stems from the observation that the operator Lδ is “local.”
This means that if f is supported in a cube Q, say of side length one, then Lδ ( f ) is
supported in a fixed multiple of Q. Indeed, it is simple to verify that if x /∈ 10Q and
f is supported in Q, then Lδ ( f )(x) = 0, since no δ -tube containing x can reach Q.
For “local” operators, it suffices to prove their boundedness for functions supported
in cubes of side length one; see Exercise 10.3.9. We may therefore work with a
measurable set A contained in a cube in Rn of side length one. This assumption has
as a consequence that Eλ is contained in a fixed multiple of Q, such as 10Q.

Having completed all the required reductions, we proceed by proving the re-
stricted weak type estimate (10.3.40) for sets A supported in a cube of side length
one. In proving (10.3.40) we may take λ ≤ 1; otherwise, the set Eλ is empty. We
consider the cases c0(n)δ ≤ λ and c0(n)δ > λ , for some large constant c0(n) to be
determined later. If c0(n)δ > λ , then

|Eλ | ≤C1
n (1/δ )n−1 |A|

λ
(10.3.41)

by the weak type (1,1) boundedness of Lδ with constant C1
nδ 1−n. It follows from

(10.3.41) that
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C1
n |A| ≥ |Eλ |δ n−1λ > c0(n)−

n−1
2 |Eλ |λ

n+1
2 δ

n−1
2 ,

which proves (10.3.40) in this case.
We now assume c0(n)δ ≤ λ ≤ 1. Since Lδ (χA) is constant on each Q j, we have

that each Q j is either entirely contained in the set Eλ or disjoint from it. Conse-
quently, setting

E =
{

j : Q j ⊆ Eλ
}

,

we have
Eλ =

⋃

j∈E

Q j .

Hence
|E | = #

{

j : j ∈ E
}

= |Eλ |(δ ′)−n,

and for all j ∈ E we have

|τ j ∩A| > λ |τ j| = λ δ n−1 .

It follows that

|A| sup
x

[

∑
j∈E

χτ j(x)
]

≥
∫

A
∑
j∈E

χτ j dx

= ∑
j∈E

|τ j ∩A|

> λ δ n−1|E |

= λ δ n−1 |Eλ |
(δ ′)n

= (2
√

n)n λ |Eλ |
δ

.

Therefore, there exists an x0 in A such that

#
{

j ∈ E : x0 ∈ τ j
}

> (2
√

n)n λ |Eλ |
δ |A| .

Let S(x0,
1
2 ) be a sphere of radius 1

2 centered at the point x0. We find on this sphere
a finite set of pointsΘ = {θk}k that is maximal with respect to the property that the
balls B(θk,δ ) are at distance at least 10

√
nδ from each other. Define spherical caps

Sk = Sn−1 ∩B(θk,δ ) .

Since the Sk’s are disjoint and have surface measure a constant multiple of δ n−1, it
follows that there are about δ 1−n such points θk.

We count the number of δ -tubes that contain x0 and intersect a fixed cap Sk. All
these δ -tubes are contained in a cylinder of length 3 and diameter c1(n)δ whose
axis of symmetry contains x0 and the center of the cap Sk. This cylinder has volume
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3ωn−1c1(n)n−1δ n−1, and thus it intersects at most c2(n)δ−1 cubes of the family Q j,
since the Q j’s are disjoint and all have volume equal to (δ ′)n. We deduce then that
given such a cap Sk, there exist at most c3(n)δ−1 δ -tubes (from the initial family)
that contain the point x0 and intersect Sk.

Let us call a set of δ -tubes ε-separated if for every τ and τ ′ in the set with τ �= τ ′
we have that the angle between the axis of symmetry of τ and τ ′ is at least ε > 0.

Since we have at least (2
√

n)nλ |Eλ |
δ |A| δ -tubes that contain the given point x0, and each

cap Sk is intersected by at most c3(n)δ−1 δ -tubes that contain x0, it follows that at

least c4(n)λ |Eλ ||A| of these δ -tubes have to intersect different caps Sk. But δ -tubes that
intersect different caps Sk and contain x0 are δ -separated. We have therefore shown
that there exist at least c4(n)λ |Eλ ||A| δ -separated tubes from the original family that
contain the point x0. Call T the family of these δ -tubes.

We find a maximal subset Θ ′ of the θk’s such that the balls B(θk,δ ), θk ∈ Θ ′,

have distance at least 30
√

nδ
λ from each other. This is possible if λ/δ ≥ c0(n) for

some large constant c0(n) [such as c0(n) = 1000
√

n ]. We “thin out” the family T
by removing all the δ -tubes that intersect the caps Sk with θk ∈ Θ \Θ ′. In other
words, we essentially keep in T one out of every 1/λ n−1 δ -tubes. In this way we

extract at least c5(n)λ
n |Eλ |
|A| δ -tubes from T that are 60

√
nδ
λ -separated and contain

the point x0. We denote these tubes by {τ j : j ∈ F}.
We have therefore found a subset F of E such that

x0 ∈ τ j for all j ∈ F , (10.3.42)

τk ,τ j are 60
√

n
δ
λ

- separated when j,k ∈ F , j �= k, (10.3.43)

|F | ≥ c5(n)
|Eλ |λ n

|A| . (10.3.44)

Notice that
∣

∣A∩ τ j ∩B(x0,
λ
3 )
∣

∣≤
∣

∣τ j ∩B(x0,
λ
3 )
∣

∣≤ 2
3
λδ n−1 ,

and since for any j ∈ E (and thus for j ∈ F ) we have |A∩ τ j| > λδ n−1, it must be
the case that

∣

∣A∩ τ j ∩B(x0,
λ
3 )c
∣

∣>
1
3
λδ n−1 . (10.3.45)

Moreover, it is crucial to note that the sets

A∩ τ j ∩B(x0,
λ
3 )c , j ∈ F , (10.3.46)

are pairwise disjoint. In fact, if x j and xk are points on the axes of symmetry of two
60

√
n δλ -separated δ -tubes τ j and τk in F such that |x j − x0| = |xk − x0| = λ

3 , then
the distance from xk to x j must be at least 10

√
nδ . This implies that the distance

between τ j ∩B(x0,
λ
3 )c and τk ∩B(x0,

λ
3 )c is at least 6

√
nδ > 0. We now conclude

the proof of the theorem as follows:
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|A| ≥
∣

∣A∩
⋃

j∈F

(

τ j ∩B(x0,
λ
3 )c)

∣

∣

= ∑
j∈F

∣

∣A∩ τ j ∩B(x0,
λ
3 )c
∣

∣

≥ ∑
j∈F

λδ n−1

3

= |F | λδ
n−1

3

≥ c5(n)
|Eλ |λ n

|A|
λδ n−1

3
,

using that the sets in (10.3.46) are disjoint, (10.3.45), and (10.3.44). We conclude
that

|A|2 ≥ 1
3

c5(n)λ n+1δ n−1|Eλ | ≥ c6(n)λ n+1δ n−1|Eλ |2 ,

since, as observed earlier, the set Eλ is contained in a cube of side length 10. Taking
square roots, we obtain (10.3.40). This proves (10.3.39) and hence (10.3.36). �

Exercises

10.3.1. Let h be the characteristic function of the square [0,1]2 in R2. Prove that for
any 0 < λ < 1 we have

∣

∣{x ∈ R2 : Ms(h)(x) > λ}
∣

∣≥ 1
λ

log
1
λ

.

Use this to show that Ms is not of weak type (1,1). Compare this result with that of
Exercise 2.1.6.

10.3.2. (a) Given a unit vector v in R2 define the directional maximal function along
�v by

M�v( f )(x) = sup
ε>0

1
2ε

∫ +ε

−ε
| f (x− t�v)|dt

wherever f is locally integrable over R2. Prove that for such f , M�v( f )(x) is well
defined for almost all x contained in any line not parallel to�v.
(b) For 1 < p <∞, use the method of rotations to show that M�v maps Lp(R2) to itself
with norm the same as that of the centered Hardy–Littlewood maximal operator M
on Lp(R).
(c) Let Σ be a finite set of directions. Prove that for all 1 ≤ p ≤∞, there is a constant
Cp > 0 such that

∥

∥MΣ ( f )
∥

∥

Lp(R2) ≤Cp |Σ |
1
p
∥

∥ f
∥

∥

Lp(R2)



10.3 Kakeya Maximal Operators 385

for all f in Lp(R2).
[

Hint: Use the inequality MΣ ( f )p ≤ ∑
�v∈Σ

[M�vM�v⊥( f )]p.
]

10.3.3. Show that
KN ≤ 20MΣN ,

where ΣN is a set of N uniformly distributed vectors in S1.
[

Hint: Use Exercise 10.2.3.
]

10.3.4. This exercise indicates a connection between the Besicovitch construction
in Section 10.1 and the Kakeya maximal function. Recall the set E of Lemma 10.1.1,
which satisfies 1

2 ≤ |E| ≤ 3
2 .

(a) Show that there is a positive constant c such that for all N ≥ 10 we have
∣

∣

{

x ∈ R2 : KN(χE)(x) > 1
144

}∣

∣≥ c loglogN .

(b) Conclude that for all 2 < p < ∞ there is a constant cp such that

∥

∥KN
∥

∥

Lp(R2)→Lp(R2) ≥ cp(log logN)
1
p .

[

Hint: Using the notation of Lemma 10.1.1, first show that

∣

∣

{

x ∈ R2 : K3·2k log(k+2)(χE)(x) > 1
36

}∣

∣≥ log(k + 2) ,

by showing that the previous set contains all the disjoint rectangles R j for j =
1,2, . . . ,2k; here k is a large positive integer. To show this, for x in

⋃2k

j=1 R j con-
sider the unique rectangle R jx that contains x union (R jx)

′ and set Rx = R jx ∪ (R jx)
′.

Then |Rx| = 3|R jx | = 3 ·2−k log(k + 2), and we have

1
|Rx|

∫

Rx

|χE(y)|dy =
|E ∩Rx|
|Rx|

≥ |E ∩ (R jx)
′|

3|R jx |
≥ 1

36

in view of conclusion (4) in Lemma 10.1.1. Part (b): Express the Lp norm of KN(χE)
in terms of its distribution function.

]

10.3.5. Show that MS1 is unbounded on Lp(R2) for any p < ∞.
[

Hint: You may use Proposition 10.3.4 when p ≤ 2. When p > 2 one may need
Exercise 10.3.4.

]

10.3.6. Consider the n-dimensional Kakeya maximal operator KN . Show that there
exist dimensional constants cn and c′n such that for N sufficiently large we have

∥

∥KN
∥

∥

Ln(Rn)→Ln(Rn) ≥ cn (logN) ,
∥

∥KN
∥

∥

Ln(Rn)→Ln,∞(Rn) ≥ c′n (logN)
n−1

n .

[

Hint: Consider the functions fN(x) = 1
|x|χ3≤|x|≤N and adapt the argument in Propo-

sition 10.3.4 to an n-dimensional setting.
]
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10.3.7. For all 1 ≤ p < n show that there exist constants cn,p such that the n-
dimensional Kakeya maximal operator KN satisfies

∥

∥KN
∥

∥

Lp(Rn)→Lp(Rn) ≥
∥

∥KN
∥

∥

Lp(Rn)→Lp,∞(Rn) ≥ cn,p N
n
p−1 .

[

Hint: Consider the functions hN(x) = |x|−
n+1

p χ3≤|x|≤N and show that KN(hN)(x) >

c/|x| for all x in the annulus 6 < |x| < N.
]

10.3.8. (Carbery, Hernández, and Soria [51] ) Let T be a sublinear operator defined
on L1(Rn)+ L∞(Rn) and taking values in a set of measurable functions. Let 10 ≤
N < ∞, 1 < p < ∞, and 0 < a,M < ∞.
(a) Suppose that

∥

∥T
∥

∥

L1→L1,∞ ≤ C1 Na ,
∥

∥T
∥

∥

Lp,1→Lp,∞ ≤ M,
∥

∥T
∥

∥

L∞→L∞ ≤ 1 .

Show that
∥

∥T
∥

∥

Lp→Lp,∞ ≤C(a, p,C1)M (logN)
1
p′ .

(b) Suppose that
∥

∥T
∥

∥

L1→L1,∞ ≤ C1 Na ,
∥

∥T
∥

∥

Lp→Lp,∞ ≤ M,
∥

∥T
∥

∥

L∞→L∞ ≤ 1 .

Show that
∥

∥T
∥

∥

Lp→Lp ≤C′(a, p,C1)M(logN)
1
p .

[

Hint: Part (a): Split f = f1 + f2 + f3, where f3 = f χ| f |≤ λ4
, f2 = f χλ

4 <| f |≤Lλ , and

f1 = f χ| f |>Lλ , where Lp−1 = Na. Use the weak type (1,1) estimate for f1 and the
restricted weak type (p, p) estimate for f2 and note that the measure of the set
{|T ( f3)| > λ/3} is zero. One needs the auxiliary result

∥

∥ f χa≤| f |≤b

∥

∥

Lp,1 ≤C(p)(1 + log b
a )

1
p′
∥

∥ f
∥

∥

Lp ,

which can be proved as follows. First use the identity of Proposition 1.4.9. Then
note that the distribution function d f χa≤| f |≤b

(s) is equal to d f (a) for s < a, to d f (s)
for a ≤ s < b, and vanishes for s ≥ b. It follows that

∥

∥ f χa≤| f |≤b

∥

∥

Lp,1 ≤ ad f (a)
1
p +

∫ b

a
d f (t)

1
p dt ≤ 2

∫ a

a
2

d f (t)
1
p dt +

∫ b

a
d f (t)

1
p dt ,
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from which the claimed estimate follows by Hölder’s inequality and Proposition
1.1.4. Part (b): Use the same splitting and the method employed in the proof of
Theorem 10.3.5.

]

10.3.9. Suppose that T is a linear operator defined on a subspace of measurable
functions on Rn with the property that whenever f is supported in a cube Q of side
length s, then T ( f ) is supported in aQ for some a > 1. Prove the following:
(a) If T is defined on Lp(Rn) for some 0 < p < ∞ and

∥

∥T ( f )
∥

∥

Lp ≤ B
∥

∥ f
∥

∥

Lp

for all f supported in a cube of side length s, then the same estimate holds (with a
larger constant) for all functions in Lp(Rn).
(b) If T satisfies for some 0 < p < ∞,

∥

∥T (χA)
∥

∥

Lp,∞ ≤ B|A|
1
p

for all measurable sets A contained in a cube of side length s, then the same estimate
holds (with a larger constant) for all measurable sets A in Rn.

10.4 Fourier Transform Restriction and Bochner–Riesz Means

If g is a continuous function on Rn, its restriction to a hypersurface S ⊆ Rn is a well
defined function. By a hypersurface we mean a submanifold of Rn of dimension
n−1. So, if f is an integrable function on Rn, its Fourier transform ̂f is continuous
and hence its restriction ̂f

∣

∣

S on S is well defined.

Definition 10.4.1. Let 1 ≤ p,q ≤ ∞. We say that a compact hypersurface S in Rn

satisfies a (p,q) restriction theorem if the restriction operator

f → ̂f
∣

∣

S ,

which is initially defined on L1(Rn)∩Lp(Rn), has an extension that maps Lp(Rn)
boundedly into Lq(S). The norm of this extension may depend on p,q,n, and S. If S
satisfies a (p,q) restriction theorem, we write that property Rp→q(S) holds. We say
that property Rp→q(S) holds with constant C if for all f ∈ L1(Rn)∩Lp(Rn) we have

∥

∥̂f
∥

∥

Lq(S) ≤C
∥

∥ f
∥

∥

Lp(Rn) .

Example 10.4.2. Property R1→∞(S) holds for any compact hypersurface S.

We denote by R( f ) = ̂f
∣

∣

Sn−1 the restriction of the Fourier transform on a hy-
persurface S. Let dσ be the canonically induced surface measure on S. Then for a
function ϕ defined on S we have
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∫

Sn−1
̂f ϕ dσ =

∫

Rn
̂f (̂ϕ dσ)∨ dξ =

∫

Rn
f ̂ϕ dσ dx ,

which says that the transpose of the linear operator R is the linear operator

Rt(ϕ) = ̂ϕ dσ . (10.4.1)

By duality, we easily see that a (p,q) restriction theorem for a compact hypersurface
S is equivalent to the following (q′, p′) extension theorem for S:

Rt : Lq′(S) → Lp′(Rn) .

Our objective is to determine all pairs of indices (p,q) for which the sphere Sn−1

satisfies a (p,q) restriction theorem. It becomes apparent in this section that this
problem is relevant in the understanding of the norm convergence of the Bochner–
Riesz means.

10.4.1 Necessary Conditions for Rp→q(Sn−1) to Hold

We look at basic examples that impose restrictions on the indices p,q in order
for Rp→q(Sn−1) to hold. We first make an observation. If Rp→q(Sn−1) holds, then
Rp→s(Sn−1) for any s ≤ q.

Example 10.4.3. Let dσ be surface measure on the unit sphere Sn−1. In view of the
identity in Appendix B.4, we have

̂dσ(ξ ) =
2π

|ξ | n−2
2

Jn−2
2

(2π |ξ |) .

Using the asymptotics in Appendix B.8, the last expression is equal to

2
√

2π
|ξ | n−1

2

cos(2π |ξ |− π(n−1)
4 )+ O(|ξ |− n+1

2 )

as |ξ | → ∞. It follows that Rt(1)(ξ ) = ̂dσ(ξ ) does not lie in Lp′(Rn) if n−1
2 p′ ≤ n

and n+1
2 p′ > n. Thus Rp→q(Sn−1) fails when 2n

n+1 ≤ p < 2n
n−1 . Since R1→q(Sn−1)

holds for all q ∈ [1,∞], by interpolation we deduce that Rp→q(Sn−1) fails when
p ≥ 2n

n+1 . We conclude that a necessary condition for Rp→q(Sn−1) to hold is that

1 ≤ p <
2n

n + 1
. (10.4.2)

In addition to this condition, there is another necessary condition for Rp→q(Sn−1)
to hold. This is a consequence of the following revealing example.
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Example 10.4.4. Let ϕ be a Schwartz function on Rn such that ϕ̂ ≥ 0 and ϕ̂(ξ )≥ 1
for all ξ in the closed ball |ξ | ≤ 2. For N ≥ 1 define functions

fN(x1,x2, . . . ,xn−1,xn) = ϕ
(x1

N
,

x2

N
, . . . ,

xn−1

N
,

xn

N2

)

.

To test property Rp→q(Sn−1), instead of working with Sn−1, we may work with the
translated sphere S = Sn−1 +(0,0, . . . ,0,1) in Rn (cf. Exercise 10.4.2(a)). We have

̂fN(ξ ) = Nn+1ϕ̂(Nξ1,Nξ2, . . . ,Nξn−1,N
2ξn) .

We note that for all ξ = (ξ1, . . . ,ξn) in the spherical cap

S′ = S∩{ξ ∈ Rn : ξ 2
1 + · · ·+ ξ 2

n−1 ≤ N−2 and ξn < 1} , (10.4.3)

we have ξn ≤ 1− (1− 1
N2 )

1
2 ≤ 1

N2 and therefore

|(Nξ1,Nξ2, . . . ,Nξn−1,N
2ξn)| ≤ 2 .

This implies that for all ξ in S′ we have ̂fN(ξ ) ≥ Nn+1. But the spherical cap S′ in
(10.4.3) has surface measure c(N−1)n−1. We obtain

∥

∥̂fN
∥

∥

Lq(S) ≥
∥

∥̂fN
∥

∥

Lq(S′) ≥ c
1
q Nn+1N

1−n
q .

On the other hand,
∥

∥ fN
∥

∥

Lp(Rn) =
∥

∥ϕ
∥

∥

Lp(Rn)N
n+1

p . Therefore, if Rp→q(Sn−1) holds,
we must have

∥

∥ϕ
∥

∥

Lp(Rn)N
n+1

p ≥Cc
1
q Nn+1N

1−n
q ,

and letting N → ∞, we obtain the following necessary condition on p and q for
Rp→q(Sn−1) to hold:

1
q
≥ n + 1

n−1
1
p′

. (10.4.4)

We have seen that the restriction property Rp→q(Sn−1) fails in the shaded region
of Figure 10.10 but obviously holds on the closed line segment CD. It remains to
investigate the validity of property Rp→q(Sn−1) for ( 1

p , 1
q) in the unshaded region of

Figure 10.10.
It is a natural question to ask whether the restriction property Rp→q(Sn−1) holds

on the line segment BD minus the point B in Figure 10.10, i.e., the set

{

(p,q) :
1
q

=
n + 1
n−1

1
p′

1 ≤ p <
2n

n + 1

}

. (10.4.5)

If property Rp→q(Sn−1) holds for all points in this set, then it will also hold in the
closure of the quadrilateral ABDC minus the closed segment AB.
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Fig. 10.10 The restriction
property Rp→q(Sn−1) fails
in the shaded region and on
the closed line segment AB
but holds on the closed line
segment CD and could hold
on the open line segment
BD and inside the unshaded
region.

1
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1

2n

2

n+1

2n
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p
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2(n+1)

n+3
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10.4.2 A Restriction Theorem for the Fourier Transform

In this subsection we establish the following restriction theorem for the Fourier
transform.

Theorem 10.4.5. Property Rp→q(Sn−1) holds for the set

{

(p,q) :
1
q

=
n + 1
n−1

1
p′

, 1 ≤ p ≤ 2(n + 1)
n + 3

}

(10.4.6)

and therefore for the closure of the quadrilateral with vertices E, G, D, and C in
Figure 10.10.

Proof. The case p = 1 and q =∞ is trivial. Therefore, we need to establish only the
case p = 2(n+1)

n+3 and q = 2, since the remaining cases follow by interpolation.
Using Plancherel’s identity and Hölder’s inequality, we obtain

∥

∥̂f
∥

∥

2
L2(Sn−1) =

∫

Sn−1
̂f (ξ ) ̂f (ξ )dσ(ξ )

=
∫

Rn
f (x) ( f ∗ dσ∨)(x)dx

≤
∥

∥ f
∥

∥

Lp(Rn)

∥

∥ f ∗ dσ∨∥
∥

Lp′ (Rn) .

To establish the required conclusion it is enough to show that

∥

∥ f ∗ dσ∨∥
∥

Lp′ (Rn) ≤Cn
∥

∥ f
∥

∥

Lp(Rn) when p =
2(n + 1)

n + 3
. (10.4.7)
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To obtain this estimate we need to split the sphere into pieces. Each hyperplane
ξk = 0 cuts the sphere Sn−1 into two hemispheres, which we denote by H1

k and H2
k .

We introduce a partition of unity {ϕ j} j of Rn with the property that for any j there
exist k ∈ {1,2, . . . ,} and l ∈ {1,2} such that

(supportϕ j)∩Sn−1
� Hl

k ;

that is, the support of each ϕ j intersected with the sphere Sn−1 is properly contained
in some hemisphere Hl

k. Then the family of all ϕ j whose support meets Sn−1 forms
a finite partition of unity of the sphere when restricted to it. We therefore write

dσ = ∑
j∈F
ϕ j dσ ,

where F is a finite set. If we obtain (10.4.7) for each measure ϕ jdσ instead of dσ ,
then (10.4.7) follows by summing on j. We fix such a measureϕ j dσ , which, without
loss of generality, we assume is supported in {ξ ∈ Sn−1 : ξn > c} � H1

n for some
c ∈ (0,1). In the sequel we write elements x ∈ Rn as x = (x′,t), where x′ ∈ Rn−1 and
t ∈ R. Then for x ∈ Rn we have

(ϕ j dσ)∨(x) =
∫

Sn−1
ϕ j(ξ )e2π ix·ξ dσ(ξ ) =

∫

ξ ′∈Rn−1

|ξ ′|2≤1−c2

e2π ix·ξ ϕ j
(

ξ ′,
√

1−|ξ ′|2
)

dξ ′
√

1−|ξ ′|2
,

where ξ = (ξ ′,ξn); for the last identity we refer to Appendix D.5. Writing x =
(x′,t) ∈ Rn−1 ×R, we have

(ϕ j dσ)∨(x′, t) =
∫

ξ ′∈Rn−1

|ξ ′|2≤1−c2

e2π ix′·ξ ′ e2π it
√

1−|ξ ′|2 ϕ j
(

ξ ′,
√

1−|ξ ′|2
)

√

1−|ξ ′|2
dξ ′

=
(

e2π it
√

1−|ξ ′|2 ϕ j
(

ξ ′,
√

1−|ξ ′|2
)

√

1−|ξ ′|2

)�
(x′) ,

(10.4.8)

where � indicates the inverse Fourier transform in the ξ ′ variable. For each t ∈ R
we introduce a function on Rn−1 by setting

Kt(x′) = (ϕ j dσ)∨(x′, t) .

We observe that identity (10.4.8) and the fact that 1−|ξ ′|2 ≥ c2 > 0 on the support
of ϕ j imply that

sup
t∈R

sup
ξ ′∈Rn−1

|(Kt )�(ξ ′)| ≤Cn < ∞ , (10.4.9)

where � indicates the Fourier transform on Rn−1. We also have that

Kt (x′) = (ϕ j dσ)∨(x′,t) =
(

ϕ∨
j ∗ dσ∨)(x′, t) .
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Since ϕ∨
j is a Schwartz function on Rn and the function |dσ∨(x′, t)| is bounded by

(1+ |(x′,t)|)− n−1
2 (see Appendices B.4, B.6, and B.7), it follows from Exercise 2.2.4

that
|Kt(x′)| ≤C(1 + |(x′,t)|)− n−1

2 ≤C(1 + |t|)− n−1
2 (10.4.10)

for all x′ ∈ Rn−1. Estimate (10.4.9) says that the operator given by convolution with
Kt maps L2(Rn−1) to itself with norm at most a constant, while (10.4.10) says that
the same operator maps L1(Rn−1) to L∞(Rn−1) with norm at most a constant multi-

ple of (1 + |t|)− n−1
2 . Interpolating between these two estimates yields

∥

∥Kt � g
∥

∥

Lp′ (Rn−1) ≤Cp,n|t|−(n−1)( 1
p−

1
2 )∥
∥g
∥

∥

Lp(Rn−1)

for all 1 ≤ p ≤ 2, where � denotes convolution on Rn−1 (and ∗ convolution on Rn).
We now return to the proof of the required estimate (10.4.7) in which dσ∨ is

replaced by (ϕ j dσ)∨. Let f (x) = f (x′,t) be a function on Rn. We have

∥

∥ f ∗ (ϕ j dσ)∨
∥

∥

Lp′ (Rn) =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∫

R
f ( · ,τ)� Kt−τ dτ

∥

∥

∥

∥

Lp′ (Rn−1)

∥

∥

∥

∥

∥

Lp′ (R)

≤
∥

∥

∥

∥

∥

∫

R

∥

∥

∥ f ( · ,τ)� Kt−τ
∥

∥

∥

Lp′ (Rn−1)
dτ

∥

∥

∥

∥

∥

Lp′ (R)

≤ Cp,n

∥

∥

∥

∥

∥

∫

R

∥

∥ f ( · ,τ)
∥

∥

Lp(Rn−1)

|t − τ|(n−1)( 1
p−

1
2 )

dτ

∥

∥

∥

∥

∥

Lp′ (R)

= Cp,n

∥

∥

∥Iβ
(

∥

∥ f ( · ,t)
∥

∥

Lp(Rn−1)

)∥

∥

∥

Lp′ (R,dt)
,

where β = 1− (n− 1)( 1
p −

1
2) and Iβ is the Riesz potential (or fractional integral)

given in Definition 6.1.1. Using Theorem 6.1.3 with s = β , n = 1, and q = p′, we
obtain that the last displayed equation is bounded by a constant multiple of

∥

∥

∥‖ f ( · ,t)
∥

∥

Lp(Rn−1)

∥

∥

∥

Lp(R,dt)
=
∥

∥ f
∥

∥

Lp(Rn) .

The condition 1
p −

1
q = s

n on the indices p,q,s,n assumed in Theorem 6.1.3 translates
exactly to

1
p
− 1

p′
=
β
1

= 1− n−1
p

− n−1
2

,

which is equivalent to p = 2(n+1)
n+3 . This concludes the proof of estimate (10.4.7)

in which the measure σ∨ is replaced by (ϕ j dσ)∨. Estimates for the remaining
(ϕ j dσ)∨ follow by a similar argument in which the role of the last coordinate is
played by some other coordinate. The final estimate (10.4.7) follows by summing j
over the finite set F . The proof of the theorem is now complete. �
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10.4.3 Applications to Bochner–Riesz Multipliers

We now apply the restriction theorem obtained in the previous subsection to the
Bochner–Riesz problem. In this subsection we prove the following result.

Theorem 10.4.6. For Reλ > n−1
2(n+1) , the Bochner–Riesz operator Bλ is bounded on

Lp(Rn) for p in the optimal range

2n
n + 1 + 2Reλ

< p <
2n

n−1−2Reλ
.

Proof. The proof is based on the following two estimates:

∥

∥Bλ
∥

∥

L1(Rn)→L1(Rn) ≤C1(Reλ ) ec0|Imλ |2 when Reλ > n−1
2 , (10.4.11)

∥

∥Bλ
∥

∥

Lp(Rn)→Lp(Rn) ≤C2(Reλ ) ec0|Imλ |2 when Reλ > n−1
2(n+1) , (10.4.12)

where p = 2(n+1)
n+3 and C1, C2 are constants that depend on n and Reλ , while c0 is an

absolute constant. Once (10.4.11) and (10.4.12) are known, the required conclusion
is a consequence of Theorem 1.3.7. Recall that Bλ is given by convolution with the
kernel Kλ defined in (10.2.1). This kernel satisfies

|Kλ (x)| ≤C3(Reλ )ec0|Imλ |2(1 + |x|)− n+1
2 −Reλ (10.4.13)

in view of the estimates in Appendices B.6 and B.7. Then (10.4.11) follows easily
from (10.4.13) and we focus our attention on (10.4.12).

The key ingredient in the proof of (10.4.12) is a decomposition of the kernel.
But first we isolate the smooth part of the multiplier near the origin and we focus
attention on the part of it near the boundary of the unit disk. Precisely, we start with
a Schwartz function 0 ≤ η ≤ 1 supported in the ball B(0, 3

4 ) that is equal to 1 on the
smaller ball B(0, 1

2 ). Then we write

mλ (ξ ) = (1−|ξ |2)λ+ = (1−|ξ |2)λ+η(ξ )+ (1−|ξ |2)λ+(1−η(ξ )) .

Since the function (1−|ξ |2)λ+η(ξ ) is smooth and compactly supported, it is an Lp

Fourier multiplier for all 1 ≤ p ≤ ∞, with norm that is easily seen to grow poly-
nomially in |λ |. We therefore need to concentrate on the nonsmooth piece of the
multiplier (1−|ξ |2)λ+(1−η(ξ )), which is supported in B(0, 1

2 )c. Let

Kλ (x) =
(

(1−|ξ |2)λ+(1−η(ξ ))
)∨

(x)

be the kernel of the nonsmooth piece of the multiplier.
We pick a smooth radial function ϕ with support inside the ball B(0,2) that is

equal to 1 on the closed unit ball B(0,1). For j = 1,2, . . . we introduce functions

ψ j(x) = ϕ(2− jx)−ϕ(2− j+1x)
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supported in the annuli 2 j−1 ≤ |x| ≤ 2 j+1. Then we write

Kλ ∗ f = T λ0 ( f )+
∞

∑
j=1

T λj ( f ) , (10.4.14)

where T λ0 is given by convolution with ϕKλ and each T λj is given by convolution

with ψ jKλ .
We begin by examining the kernelϕKλ . Introducing a compactly supported func-

tion ζ that is equal to 1 on B(0, 3
2), we write

Kλ =
(

(1−| · |2)λ+(1−η)ζ
)∨

=
(

(1−| · |2)λ+
)∨ ∗

(

(1−η)ζ
)∨

= Kλ ∗
(

(1−η)ζ
)∨

.

Using this and (10.4.13) implies that Kλ is a bounded function, and thus ϕKλ is
bounded and compactly supported. Thus the operator T λ0 is bounded on all the Lp

spaces, 1 ≤ p ≤ ∞, with a bound that grows at most exponentially in |Imλ |2.
Next we study the boundedness of the operators T λj ; here the dependence on the

index j plays a role. Fix p < 2 as in the statement of the theorem. Our goal is to
show that there exist positive constants C,δ (depending only on n and Reλ ) such
that for all functions f in Lp(Rn) we have

∥

∥T λj ( f )
∥

∥

Lp(Rn) ≤C ec0|Imλ |22− jδ∥
∥ f
∥

∥

Lp(Rn) . (10.4.15)

Once (10.4.15) is established, the Lp boundedness of the operator f �→ Kλ ∗ f fol-
lows by summing the series in (10.4.14).

As a consequence of (10.4.13) we obtain that

|Kλj (x)| ≤ C3(Reλ ) ec0|Imλ |2 (1 + |x|)− n+1
2 −Reλ |ψ j(x)|

≤ C′2−( n+1
2 +Reλ ) j ,

(10.4.16)

since ψ j(x) = ψ(2− jx) and ψ is supported in the annulus 1
2 ≤ |x| ≤ 2. From this

point on, the constants containing a prime are assumed to grow at most exponentially
in |Imλ |2. Since Kλj is supported in a ball of radius 2 j+1 and satisfies (10.4.16), we
deduce the estimate

∥

∥

̂Kλj
∥

∥

2
L2 =

∥

∥Kλj
∥

∥

2
L2 ≤C′′2−(n+1+2Reλ ) j2n j = C′′2−(1+2Reλ ) j . (10.4.17)

We need another estimate for ̂Kλj . We claim that for all M ≥ n + 1 there is a
constant CM such that

∫

|ξ |≤ 1
8

|̂Kλj (ξ )|2|ξ |−β dξ ≤CM,n,β 2−2 j(M−n) , β < n. (10.4.18)
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Indeed, since ̂Kλ (ξ ) is supported in |ξ | ≥ 1
2 [recall that the function η was chosen

equal to 1 on B(0, 1
2 )], we have

|̂Kλj (ξ )| = |(̂Kλ ∗ ψ̂ j)(ξ )| ≤ 2 jn
∫

1
2≤|ξ−ω|≤1

(1−|ξ −ω |2)Reλ
+ |ψ̂(2 jω)|dω .

Suppose that |ξ | ≤ 1
8 . Since |ξ −ω | ≥ 1

2 , we must have |ω | ≥ 3
8 . Then

|ψ̂(2 jω)| ≤CM(2 j|ω |)−M ≤ (8/3)MCM2− jM ,

from which it follows easily that

sup
|ξ |≤ 1

8

|̂Kλj (ξ )| ≤C′
M2− j(M−n) . (10.4.19)

Then (10.4.18) is a consequence of (10.4.19) and of the fact that the function |ξ |−β
is integrable near the origin.

We now return to estimate (10.4.15). A localization argument (Exercise 10.4.4)
allows us to reduce estimate (10.4.15) to functions f that are supported in a cube of
side length 2 j. Let us therefore assume that f is supported in some cube Q of side
length 2 j. Then Tλj ( f ) is supported in 5Q and we have for 1 ≤ p < 2 by Hölder’s
inequality

∥

∥T λj ( f )
∥

∥

2
Lp(5Q) ≤ |5Q|2( 1

p−
1
2 )∥
∥T λj ( f )

∥

∥

2
L2(5Q)

≤ Cn2( 1
p−

1
2 )2n j∥

∥

̂Kλj ̂f
∥

∥

2
L2 .

(10.4.20)

Having returned to L2, we are able to use the Lp → L2 restriction theorem obtained
in the previous subsection. To this end we use polar coordinates and the fact that Kλj
is a radial function to write

∥

∥

̂Kλj ̂f
∥

∥

2
L2 =

∫ ∞

0
|̂Kλj (re1)|2

(
∫

Sn−1
|̂f (rθ )|2 dθ

)

rn−1dr , (10.4.21)

where e1 = (1,0, . . . ,0) ∈ Sn−1. Since the restriction of the function x �→ r−n f (x/r)
on the sphere Sn−1 is ̂f (rθ ), we have

∫

Sn−1
|̂f (rθ )|2 dθ ≤C2

p,n

[
∫

Rn
r−np| f (x/r)|p dx

] 2
p

= C2
p,n r

− 2n
p′
∥

∥ f
∥

∥

2
Lp , (10.4.22)

where Cp,n is the constant in Theorem 10.4.5 that holds whenever p ≤ 2(n+1)
n+3 . So

assuming p ≤ 2(n+1)
n+3 and inserting estimate (10.4.22) in (10.4.21) yields
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∥

∥

̂Kλj ̂f
∥

∥

2
L2 ≤ C2

p,n

∥

∥ f
∥

∥

2
Lp

∫ ∞

0
|̂Kλj (re1)|2r

n−1− 2n
p′ dr

≤
C2

p,n

ωn−1

∥

∥ f
∥

∥

2
Lp

∫

Rn
|̂Kλj (ξ )|2|ξ |−

2n
p′ dξ ,

(10.4.23)

where ωn−1 = |Sn−1|. Appealing to estimate (10.4.18) for |ξ | ≤ 1
8 with β = 2n

p′ < n

(since p < 2) and to estimate (10.4.17) for |ξ | ≥ 1
8 , we obtain

∥

∥

̂Kλj ̂f
∥

∥

2
L2 ≤C′′′ 2−(1+2Reλ ) j

∥

∥ f
∥

∥

2
Lp .

Combining this inequality with the one previously obtained in (10.4.20) yields
(10.4.15) with

δ =
n + 1

2
+ Reλ − n

p
.

This number is positive exactly when 2n
n+1+2Reλ < p. This was the condition as-

sumed by the theorem when p < 2. The other condition Reλ > n−1
2(n+1) is naturally

imposed by the restriction p ≤ 2(n+1)
n+3 . Finally, the analogous result in the range

p > 2 follows by duality. �

10.4.4 The Full Restriction Theorem on R2

In this section we prove the validity of the restriction condition Rp→q(S1) in dimen-
sion n = 2, for the full range of exponents suggested by Figure 10.10.

To achieve this goal, we “fatten” the circle by a small amount 2δ . Then we obtain
a restriction theorem for the “fattened circle” and then obtain the required estimate
by taking the limit as δ → 0. Precisely, we use the fact

∫

S1
|̂f (ω)|q dω = lim

δ→0

1
2δ

∫ 1+δ

1−δ

∫

S1
|̂f (rθ )|q dθ r dr (10.4.24)

to recover the restriction theorem for the circle from a restriction theorem for annuli
of width 2δ .

Throughout this subsection, δ is a number satisfying 0 < δ < 1
1000 , and for sim-

plicity we use the notation

χδ (ξ ) = χ(1−δ ,1+δ )(|ξ |) , ξ ∈ R2 .

We note that in view of identity (10.4.24), the restriction property Rp→q(S1) is a
trivial consequence of the estimate

1
2δ

∫ ∞

0

∫

S1
|χδ (rθ )̂f (rθ )|q dθ r dr ≤Cq

∥

∥ f
∥

∥

q
Lp , (10.4.25)
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or, equivalently, of
∥

∥χδ ̂f
∥

∥

Lq(R2) ≤ (2δ )
1
q C
∥

∥ f
∥

∥

Lp(R2) . (10.4.26)

We have the following result.

Theorem 10.4.7. (a) Given 1 ≤ p < 4
3 , set q = p′

3 . Then there is a constant Cp such
that for all Lp functions f on R2 and all small positive δ we have

∥

∥χδ ̂f
∥

∥

Lq(R2) ≤Cpδ
1
q
∥

∥ f
∥

∥

Lp(R2) . (10.4.27)

(b) When p = q = 4/3, there is a constant C such that for all L4/3 functions f on R2

and all small δ > 0 we have
∥

∥χδ ̂f
∥

∥

L
4
3 (R2)

≤Cδ
3
4 (log 1

δ )
1
4
∥

∥ f
∥

∥

L
4
3 (R2)

. (10.4.28)

Proof. To prove this theorem, we work with the extension operator

Eδ (g) = ̂χδg = ̂χδ ∗ ĝ ,

which is dual (i.e., transpose) to f �→ χδ ̂f , and we need to show that

∥

∥Eδ ( f )
∥

∥

Lp′ (R2) ≤Cδ
1
q (log 1

δ )β
∥

∥ f
∥

∥

Lq′ (R2) , (10.4.29)

where β = 1
4 when p = 4

3 and β = 0 when p < 4
3 .

We employ a splitting similar to that used in Theorem 10.2.4, with the only dif-
ference that the present partition of unity is nonsmooth and hence simpler. We define
functions

χδ� (ξ ) = χδ (ξ )χ2π�δ 1/2≤Arg ξ<2π(�+1)δ 1/2

for � ∈ {0,1, . . . , [δ−1/2]}. We suitably adjust the support of the function χδ
[δ−1/2]

so

that the sum of all these functions equals χδ . We now split the indices that appear
in the set {0,1, . . . , [δ−1/2]} into nine different subsets so that the supports of the
functions indexed by them are properly contained in some sector centered at the ori-
gin of amplitude π/4. We therefore write Eδ as a sum of nine pieces, each properly
supported in a sector of amplitude π/4. Let I be the set of indices that correspond
to one of these nine sectors and let

EδI ( f ) =∑
�∈I

̂χδ� f .

It suffices therefore to obtain (10.4.29) for each EδI in lieu of Eδ . Let us fix such an
index set I and without loss of generality we assume that

I = {0,1, . . . , [ 1
8δ

−1/2]} .
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Since the theorem is trivial when p = 1, to prove part (a) we fix a number p with
1 < p < 4

3 . We set
r = (p′/2)′

and we observe that this r satisfies 1
r = 1

p′ +
1
q′ . We note that 1 < r < 2 and we apply

the Hausdorff–Young inequality
∥

∥h
∥

∥

Lr′ ≤
∥

∥h∨
∥

∥

Lr . We have

∥

∥EδI ( f )
∥

∥

p′

Lp′ (R2)
=
∫

R2
|EδI ( f )2|r′ dx

≤
(
∫

R2
|(EδI ( f )2)∨|r dx

) r′
r

=
(
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(χδ� f )∗ (χδ�′ f )
∣

∣

∣

r
dx

) r′
r

.

(10.4.30)

We obtain the estimate

(
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(χδ� f )∗ (χδ�′ f )
∣

∣

∣

r
dx

) r′
r

≤Cδ
p′
q
∥

∥ f
∥

∥

p′

Lq′ (R2)
, (10.4.31)

which suffices to prove the theorem.
Denote by Sδ ,�,�′ the support of χδ� + χδ�′ . Then we write the left-hand side of

(10.4.31) as
(
∫

R2

∣

∣

∣∑
�∈I
∑
�′∈I

(

(χδ� f )∗ (χδ�′ f )
)

χSδ ,�,�′

∣

∣

∣

r
dx

) r′
r

, (10.4.32)

which, via Hölder’s inequality, is controlled by

(
∫

R2

(

∑
�∈I
∑
�′∈I

∣

∣(χδ� f )∗ (χδ�′ f )
∣

∣

r
) r

r
(

∑
�∈I
∑
�′∈I

∣

∣χSδ ,�,�′

∣

∣

r′
) r

r′ dx

) r′
r

. (10.4.33)

We now recall Lemma 10.2.5, in which the curvature of the circle was crucial. In
view of that lemma, the second factor of the integrand in (10.4.33) is bounded by a
constant independent of δ . We have therefore obtained the estimate

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤C

(

∑
�∈I
∑
�′∈I

∫

R2

∣

∣(χδ� f )∗ (χδ�′ f )
∣

∣

r
dx

) r′
r

. (10.4.34)

We prove at the end of this section the following auxiliary result.

Lemma 10.4.8. With the same notation as in the proof of Theorem 10.4.7, for any
1 < r < ∞, there is a constant C (independent of δ and f ) such that

∥

∥(χδ� f )∗ (χδ�′ f )
∥

∥

Lr ≤C

(

δ 3
2

|�− �′|+ 1

) 1
r′ ∥
∥χδ� f

∥

∥

Lr

∥

∥χδ�′ f
∥

∥

Lr (10.4.35)
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for all �,�′ ∈ I = {0,1, . . . , [ 1
8δ

−1/2]} .

Assuming Lemma 10.4.8 and using (10.4.34), we write

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

r
Lr

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

r
Lr

(|�− �′|+ 1)
r
r′

)] r′
r

≤Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] r′
rs
[

∑
�∈I

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

r
Lr

(|�− �′|+ 1)
r
r′

)s′] r′
rs′

,

(10.4.36)

where we used Hölder’s inequality for some 1 < s < ∞. We now recall the discrete
fractional integral operator

{a j} j �→
{

∑
j′

a j′

(| j− j′|+ 1)1−α

}

j
,

which maps �s(Z) to �s′(Z) (see Exercise 6.1.10) when

1
s
− 1

s′
= α , 0 < α < 1 . (10.4.37)

When 1 < p < 4
3 , we have 1 < r < 2, and choosing α = 2− r = 1− r

r′ , we obtain
from (10.4.36) that

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤ C′δ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] r′
rs
[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] r′
rs

= C′δ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

rs
Lr

] 2r′
rs

. (10.4.38)

The unique s that solves equation (10.4.37) is seen easily to be s = q′/r. Moreover,
since q = p′/3, we have 1 < s < 2. We use again Hölder’s inequality to pass from
∥

∥χδ� f
∥

∥

Lr to
∥

∥χδ� f
∥

∥

Lq′ . Indeed, recalling that the support of χδ� has measure ≈ δ 3
2 ,

we have
∥

∥χδ� f
∥

∥

Lr ≤C(δ
3
2 )

1
r −

1
q′
∥

∥χδ� f
∥

∥

Lq′ .

Inserting this in (10.4.38) yields

∥

∥EδI ( f )
∥

∥

p′

Lp′ ≤ Cδ
3
2

[

∑
�∈I

(

C(δ
3
2 )

1
r −

1
q′
∥

∥χδ� f
∥

∥

Lq′

)rs
] 2r′

rs

= C′δ
3
2 (δ

3
2 )2r′( 1

r −
1
q′ )
[

∑
�∈I

∥

∥χδ� f
∥

∥

q′

Lq′

] 2r′
q′

≤ Cδ 3
∥

∥ f
∥

∥

p′

Lq′

= Cδ
p′
q
∥

∥ f
∥

∥

p′

Lq′ ,
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which is the required estimate since 1
r = 1

p′ +
1
q′ and p′ = 2r′. In the last inequality

we used the fact that the supports of the functions χδ� are disjoint and that these add
up to a function that is at most 1.

To prove part (b) of the theorem, we need to adjust the previous argument to
obtain the case p = 4

3 . Here we repeat part of the preceding argument taking r =
r′ = s = s′ = 2.

Using (10.4.34) with p = 4
3 (which forces r to be equal to 2) and Lemma 10.4.8

with r = 2 we write

∥

∥EI( f )
∥

∥

4
L4(R2) ≤ Cδ

3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

2
L2

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

2
L2

|�− �′|+ 1

)]

≤ Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

] 1
2
[

∑
�∈I

(

∑
�′∈I

∥

∥χδ�′ f
∥

∥

2
L2

|�− �′|+ 1

)2 ] 1
2

≤ Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

] 1
2
[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

] 1
2
[

∑
�∈I

1
|�|+ 1

]

≤ Cδ
3
2

[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L2

]

log(δ−
1
2 )

≤ Cδ
3
2 (δ

3
2 )(

1
2−

1
4 )4
[

∑
�∈I

∥

∥χδ� f
∥

∥

4
L4

]

log 1
δ

≤ Cδ 3( log 1
δ
)∥

∥ f
∥

∥

4
L4 .

�

We now prove Lemma 10.4.8, which we had left open.

Proof. The proof is based on interpolation. For fixed �,�′ ∈ I we define the bilinear
operator

T�,�′(g,h) = (gχδ� )∗ (hχδ�′) .

As we have previously observed, it is a simple geometric fact that the support of χδ�
is contained in a rectangle of side length ≈ δ in the direction e2π iδ 1/2� and of side

length ≈ δ 1
2 in the direction ie2π iδ 1/2�. Any two rectangles with these dimensions

in the aforementioned directions have an intersection that depends on the angle be-
tween them. Indeed, if � �= �′ this intersection is contained in a parallelogram of
sides δ and δ/sin(2πδ 1

2 |�− �′|), and hence the measure of the intersection is seen
easily to be at most a constant multiple of

δ · δ
sin(2πδ 1

2 |�− �′|)
.

As for �,�′ in the index set I we have 2πδ
1
2 |�− �′| < π/4, the sine is comparable to

its argument, and we conclude that the measure of the intersection is at most
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Cδ
3
2 (1 + |�− �′|)−1 .

It follows that

∥

∥χδ� ∗ χδ�′
∥

∥

L∞ = sup
z∈R2

|(z− supp (χδ� ))∩ supp (χδ�′)| ≤
Cδ

3
2

1 + |�− �′| ,

which implies the estimate

∥

∥T�,�′(g,h)
∥

∥

L∞ ≤
∥

∥χδ� ∗ χδ�′
∥

∥

L∞

∥

∥g
∥

∥

L∞

∥

∥h
∥

∥

L∞

≤ Cδ
3
2

1 + |�− �′|
∥

∥g
∥

∥

L∞

∥

∥h
∥

∥

L∞ .
(10.4.39)

Also, the estimate
∥

∥T�,�′(g,h)
∥

∥

L1 ≤
∥

∥gχδ�
∥

∥

L1

∥

∥hχδ�′
∥

∥

L1

≤
∥

∥g
∥

∥

L1

∥

∥h
∥

∥

L1

(10.4.40)

holds trivially. Interpolating between (10.4.39) and (10.4.40) yields the required
estimate (10.4.35). Here we used bilinear interpolation (Exercise 1.4.17). �

Example 10.4.9. The presence of the logarithmic factor in estimate (10.4.28) is nec-
essary. In fact, this estimate is sharp. We prove this by showing that the correspond-
ing estimate for the “dual” extension operator Eδ is sharp. Let I be the set of indices
we worked with in Theorem 10.4.7 (i.e., I = {0,1, . . . , [ 1

8δ
−1/2]}.) Let

f δ =∑
�∈I

χδ� .

Then
∥

∥ f δ
∥

∥

L4 ≈ δ
1
4 .

However,

Eδ ( f δ ) =∑
�∈I

̂χδ� ,

and we have

∥

∥Eδ ( f δ )
∥

∥

L4 =
(
∫

R2

∣

∣∑
�∈I
∑
�′∈I

̂χδ�
̂χδ�′
∣

∣

2
dξ
)1

4

=
(
∫

R2

∣

∣∑
�∈I
∑
�′∈I

χδ� ∗ χδ�′
∣

∣

2
dx

)1
4

≥
(

∑
�∈I
∑
�′∈I

∫

R2

∣

∣χδ� ∗ χδ�′
∣

∣

2
dx

)1
4

.
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At this point observe that the function χδ� ∗ χδ�′ is at least a constant multiple of

δ
3
2 (|�−�′|+1)−1 on a set of measure cδ

3
2 (|�−�′|+1). (See Exercise 10.4.5.) Using

this fact and the previous estimates, we deduce easily that

∥

∥Eδ ( f δ )
∥

∥

L4 ≥ c
(

∑
�∈I
∑
�′∈I

δ 3

(|�− �′|+ 1)2δ
3
2 (|�− �′|+ 1)

) 1
4 ≈ δ (log 1

δ )
1
4 ,

since |I| ≈ δ− 1
2 . It follows that

∥

∥Eδ ( f δ )
∥

∥

L4
∥

∥ f δ
∥

∥

L4

≥ cδ
3
4 (log 1

δ )
1
4 ,

which justifies the sharpness of estimate (10.4.28).

Exercises

10.4.1. Let S be a compact hypersurface in Rn and let dσ be surface measure on it.
Suppose that for some 0 < b < n we have

|̂dσ(ξ )| ≤C (1 + |ξ |)−b

for all ξ ∈ Rn. Prove that Rp→q(S) does not hold for any 1 ≤ q ≤ ∞ when p ≥ n
n−b .

10.4.2. Let S be a compact hypersurface and let 1 ≤ p,q ≤ ∞.
(a) Suppose that Rp→q(S) holds for S. Show that Rp→q(τ+S) holds for the translated
hypersurface τ+ S.
(b) Suppose that the hypersurface S is compact and its interior contains the origin.
For r > 0 let rS = {rξ : ξ ∈ S}. Suppose that Rp→q(Sn−1) holds with constant Cpqn.

Show that Rp→q(rSn−1) holds with constant Cpqnr
n−1

q − n
p′ .

10.4.3. Obtain a different proof of estimate (10.4.7) (and hence of Theorem 10.4.5)
by following the sequence of steps outlined here:
(a) Consider the analytic family of functions

(Kz)∨(ξ ) = 2π1−z
Jn−2

2 +z(2π |ξ |)

|ξ | n−2
2 +z

and observe that in view of the identity in Appendix B.4, (Kz)∨(ξ ) reduces to
dσ∨(ξ ) when z = 0, where dσ is surface measure on Sn−1.
(b) Use for free that the Bessel function J− 1

2 +iθ , θ ∈ R, satisfies

|J− 1
2 +iθ (x)| ≤Cθ |x|−

1
2 ,
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where Cθ grows at most exponentially in |θ |, to obtain that the family of operators
given by convolution with (Kz)∨ map L1(Rn) to L∞(Rn) when z = − n−1

2 + iθ .
(c) Appeal to the result in Appendix B.5 to obtain that for z not equal to 0,−1,−2, . . .
we have

Kz(x) =
2
Γ (z)

(1−|x|2)z−1 .

Use this identity to deduce that for z = 1 + iθ the family of operators given by
convolution with (Kz)∨ map L2(Rn) to itself with constants that grow at most expo-
nentially in |θ |. (Appendix A.6 contains a useful lower estimate for |Γ (1 + iθ )|.)
(d) Use Exercise 1.3.4 to obtain that for z = 0 the operator given by convolution
with dσ∨ maps Lp(Rn) to Lp′(Rn) when p = 2(n+1)

n+3 .

10.4.4. Suppose that T is a linear operator given by convolution with a kernel K
that is supported in the ball B(0,2R). Assume that there is a constant C such that for
all functions f supported in a cube of side length R we have

∥

∥T ( f )
∥

∥

Lp ≤ B
∥

∥ f
∥

∥

Lp

for some 1 ≤ p < ∞. Show that this estimate also holds for all Lp functions f with
constant 5nB.
[

Hint: Write f = ∑ j f χQj , where each cube Q j has side length R.
]

10.4.5. Using the notation of Theorem 10.4.7, show that there exist constants c,c′

such that the function χδ� ∗ χδ�′ is at least c′δ
3
2 (|�− �′|+ 1)−1 on a set of measure

cδ
3
2 (|�− �′|+ 1).

[

Hint: Prove the required conclusion for characteristic functions of rectangles with
the same orientation and comparable dimensions. Then use that the support of each
χδ� contains such a rectangle.

]

10.5 Almost Everywhere Convergence of Bochner–Riesz Means

We recall the Bochner–Riesz means BλR of complex order λ given in Definition
10.2.1. In this section we study the problem of almost everywhere convergence of
BλR( f ) → f as R → ∞. There is an intimate relationship between the almost ev-
erywhere convergence of a family of operators and boundedness properties of the
associated maximal family (cf. Theorem 2.1.14).1

For f ∈ Lp(Rn), the maximal Bochner–Riesz operator or order λ is defined by

Bλ∗ ( f ) = sup
R>0

∣

∣BλR( f )
∣

∣ .

1 In certain cases, Theorem 2.1.14 can essentially be reversed. Given a 1 ≤ p ≤ 2 and a family of
distributions u j with the mild continuity property that u j ∗ fk → u j ∗ f in measure whenever fk → f
in Lp(Rn) such that the maximal operator M ( f ) = sup j | f ∗ u j| < ∞ whenever f ∈ Lp(Rn), then
M maps Lp(Rn) to Lp,∞(K) for any compact subset K of Rn. See Stein [289], [292].
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10.5.1 A Counterexample for the Maximal Bochner–Riesz
Operator

We have the following result.

Theorem 10.5.1. Let n ≥ 2, λ > 0, and let 1 < p < 2 be such that

λ <
2n−1

2p
− n

2
.

Then Bλ∗ does not map Lp(Rn) to weak Lp(Rn).

Proof. Figure 10.11 shows the region in which Bλ∗ is known to be unbounded; this
region contains the set of points (1/p,λ ) strictly below the line that joins the points
(1,(n−1)/2) and (n/(2n−1),0).

Fig. 10.11 The operators Bλ∗
are unbounded on Lp(Rn)
when (1/p,λ ) lies in the
interior of the shaded region.

1
2

2n
n+1

2

10

p
1

2n

λ

n-1

n-1
2n-1

n

2

n-1

. ..

We denote points x in Rn by x =(x′,xn), where x′ ∈Rn−1, and we fix M ≥ 100 and
ε < 1/100. We let ψ(y) = χ|y′|≤1(y′)ζ (yn), where ζ is a smooth bump supported
in the interval [−1,1] that is equal to 1 on [−1/2,1/2] and satisfies 0 ≤ ζ ≤ 1. We
define

ψε,M(y) = ψ(ε−1y′,ε−1M− 1
2 yn) = χ|y′|≤ε(y′)ζ (ε−1M− 1

2 yn)

and we note that ψε,M(y) is supported in the set of y’s that satisfy |y′| ≤ ε and

|yn| ≤ εM
1
2 . We also define

fM(y) = e2π iynψε,M(y)

and
SM = {(x′,xn) : M ≤ |x′| ≤ 2M , M ≤ |xn| ≤ 2M}.



10.5 Almost Everywhere Convergence of Bochner–Riesz Means 405

Then
∥

∥ fM
∥

∥

Lp ≈ M
1

2p ε
n
p and |SM| ≈ Mn . (10.5.1)

Every point x ∈ SM must satisfy M ≤ |x| ≤ 3M. We fix x ∈ SM and we estimate
Bλ∗ ( fM)(x) = supR>0 |BλR( fM)(x)| from below by picking R = Rx = |x|/xn. Then
1/2 ≤ Rx ≤ 3 and we have

Bλ∗ ( fM)(x) ≥ Γ (λ + 1)
πλ

∣

∣

∣

∣

∫

Rn

Jn
2 +λ (2πRx|x− y|)
(Rx|x− y|) n

2 +λ e2π iynψε,M(y)dy

∣

∣

∣

∣

.

We make some observations. First |x′ − y′| ≥ 1
2 |x′|, since |x′| ≥ M and |y′| ≤ ε .

Second, |xn −yn| ≥ |xn|− |yn| ≥ 1
2 |xn|, since |xn| ≥ M and |yn| ≤ εM1/2. These facts

imply that |x− y| ≥ 1
2 |x|; thus |x− y| is comparable to |x|, which is of the order of

M. Since 2πRx|x− y| is large, we use the asymptotics for the Bessel function Jn
2 +λ

in Appendix B.8 to write

Jn
2 +λ (2πRx|x− y|)
(Rx|x− y|) n

2 +λ =
Cλ e2π iRx|x−y|eiϕ

(Rx|x− y|) n+1
2 +λ

+
Cλ e−2π iRx|x−y|e−iϕ

(Rx|x− y|) n+1
2 +λ

+Vn,λ (Rx|x− y|) ,

where ϕ = − π
2 ( n

2 +λ )− π
4 and

|Vn,λ (Rx|x− y|)| ≤
Cn,λ

(Rx|x− y|) n+3
2 +λ

≤
C′

n,λ

M
n+3

2 +λ
, (10.5.2)

since Rx = |x|
xn

≈ 1 and |x− y| ≥ 1
2 M. Using the preceding expression for the Bessel

function, we write

Bλ∗ ( fM)(x) ≥ C′
λ

∣

∣

∣

∣

∫

Rn

e2π iRx|x|eiϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

−C′
λ

∣

∣

∣

∣

∫

Rn

(e2π i(Rx|x−y|+yn)− e2π iRx|x|)eiϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

−C′
λ

∣

∣

∣

∣

∫

Rn

e2π i(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

−
∣

∣

∣

∣

∫

Rn
Vn,λ (Rx|x− y|)e2π iynψε,M(y) dy

∣

∣

∣

∣

.

The positive term is the main term and is bounded from below by

C′
λ (6M)−

n+1
2 −λ

∫

Rn
ψε,M(y)dy =

c1 εnM
1
2

M
n+1

2 +λ
. (10.5.3)

The three terms with the minus signs are errors and are bounded in absolute value
by smaller expressions. We notice that
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∣

∣Rx|x− y|+ yn−Rx|x|
∣

∣=
|x|
xn

∣

∣|x− y|+ xnyn

|x| − |x|
∣

∣=
|x|
xn

∣

∣Fx(y)−Fx(0)
∣

∣ ,

where Fx(y) = |x− y|+ |x|−1xnyn. Taylor’s expansion yields

Fx(y)−Fx(0) = ∇yFx(0) · y + O
(

|y|2 sup
j,k

|∂ j∂kFx(y)|
)

,

and a calculation gives ∇yFx(0) = (−|x|−1x′,0), while |∂ j∂kFx(y)| ≤ C |x− y|−1. It
follows that

|x|
xn

∣

∣Fx(y)−Fx(0)
∣

∣≤ 3

[

|x′ · y′|
|x| +C′ |y|2

|x− y|

]

≤C′′
[

ε+
(εM1/2)2

M

]

≤ 2C′′ε .

Using this fact and the support properties of ψ , we obtain

C′
λ

∣

∣

∣

∣

∫

Rn

(e2π i(Rx|x−y|+yn) − e2π iRx|x|)eiϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

≤ c2 ε(εnM
1
2 )

M
n+1

2 +λ
. (10.5.4)

Next we examine the phase Rx|x− y|+ yn as a function of yn. Its derivative with
respect to yn is

∂
∂yn

(

Rx|x− y|+ yn
)

= Rx
xn − yn

|x− y| + 1 ≥ 1 ,

since xn ≥ M and |yn| ≤ εM1/2, which implies that xn − yn > 0. Also note that

∣

∣

∣

∣

∂
∂yn

(

Rx
xn − yn

|x− y| + 1

)−1∣
∣

∣

∣

≤ C′′′

M

and that
∣

∣

∣

∣

∂
∂yn

1

|x− y| n+1
2 +λ

∣

∣

∣

∣

≤ C′′′

M
n+3

2 +λ
,

while the derivative of ζ (ε−1M− 1
2 yn) with respect to yn gives only a factor of

ε−1M− 1
2 . We integrate by parts one time with respect to yn in the integral

∫

Rn−1

∫

R

e2π i(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dyn dy′

to obtain an additional factor of ε−1M− 1
2 . Thus

∣

∣

∣

∣

∫

Rn

e2π i(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε,M(y)dy

∣

∣

∣

∣

≤ c3 εnM
1
2 (ε−1M− 1

2 )

M
n+1

2 +λ
. (10.5.5)

Finally, using (10.5.2) we obtain that



10.5 Almost Everywhere Convergence of Bochner–Riesz Means 407

∣

∣

∣

∣

∫

Rn
Vn,λ (Rx|x− y|)e2π iynψε,M(y) dy

∣

∣

∣

∣

≤ c4 εn M
1
2

M
n+3

2 +λ
. (10.5.6)

We combine (10.5.3), (10.5.4), (10.5.5), and (10.5.6) to deduce for x ∈ SM ,

Bλ∗ ( fM)(x) ≥ c1 εn

M
n
2 +λ − c2 εn+1

M
n
2 +λ − c3 εn−1

M
n+1

2 +λ
− c4 εn

M
n+2

2 +λ
.

We pick ε sufficiently small, say ε ≤ c1/(2c2), and M0 sufficiently large (depending
on the constants c1,c2,c3,c4) that

x ∈ SM =⇒ Bλ∗ ( fM)(x) > c0
1

M
n
2 +λ

whenever M ≥ M0. This fact together with (10.5.1) gives

∥

∥Bλ∗ ( fM)
∥

∥

Lp,∞
∥

∥ fM
∥

∥

Lp

≥ c0 M− n
2−λ |SM|

1
p

c′ M
1

2p

= cM
2n−1

2p − n
2−λ ,

and the required conclusion follows by letting M → ∞. �

10.5.2 Almost Everywhere Summability of the Bochner–Riesz
Means

We now focus attention on the case p ≥ 2 and we investigate whether the Bochner–
Riesz means converge almost everywhere outside the range in which they are known
to be unbounded on Lp. Our goal is to prove the following result.

Theorem 10.5.2. Let λ > 0 and n≥ 2. Then for all f in Lp(Rn) with 2≤ p < 2n
n−1−2λ

we have
lim

R→∞
BλR( f )(x) = f (x)

for almost all x ∈ Rn.

Since the almost everywhere convergence is obvious for functions in the Schwartz
class, to be able to use Theorem 2.1.14 to derive almost everywhere convergence for
general Lp functions, it suffices to know a weak type (p, p) estimate for Bλ∗ . How-
ever, instead of proving a weak type (p, p) estimate, we prove an L2 and a weighted
L2 estimate for Bλ∗ . Precisely, we prove the following result.

Proposition 10.5.3. Let λ > 0 and 0 ≤ α < 1 + 2λ ≤ n. Then there is a constant
C = C(α,λ ,n) such that

∫

Rn
|Bλ∗ ( f )(x)|2|x|−α dx ≤C

∫

Rn
| f (x)|2|x|−α dx
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for all functions f ∈ L2(Rn, |x|−αdx).

Assuming the result of Proposition 10.5.3, given p such that

2 ≤ p < pλ =
2n

n−1−2λ
,

choose α satisfying

0 ≤ n

(

1− 2
p

)

< α < 1 + 2λ = n

(

1− 2
pλ

)

.

Then the maximal operator Bλ∗ is bounded on L2 and also on L2(|x|−αdx). Hence
the almost everywhere convergence of the family {BλR( f )}R holds on L2 and also on
L2(|x|−αdx). Since 0 ≤ α < n, we have

Lp � L2 + L2(|x|−α) ,

and thus BλR( f ) converges almost everywhere for functions f ∈ Lp(Rn). See Exer-
cise 10.5.1 for this inclusion.

To prove Proposition 10.5.3, we decompose the multiplier (1− |ξ |2)λ+ as an in-
finite sum of smooth bumps supported in small concentric annuli in the interior of
the sphere |ξ | = 1 as we did in the proof of Theorem 10.2.4.

We pick a smooth function ϕ supported in [− 1
2 , 1

2 ] and a smooth function ψ
supported in [ 1

8 , 5
8 ] and with values in [0,1] that satisfy

ϕ(t)+
∞

∑
k=0

ψ
(1− t

2−k

)

= 1

for all t ∈ [0,1). We decompose the multiplier (1−|ξ |2)λ+ as

(1−|ξ |2)λ+ = m00(ξ )+
∞

∑
k=0

2−kλmk(ξ ) , (10.5.7)

where m00(ξ ) = ϕ(|ξ |)(1−|ξ |2)λ , and for k ≥ 1, mk is defined by

mk(ξ ) =
(1−|ξ |

2−k

)λ
ψ
(1−|ξ |

2−k

)

(1 + |ξ |)λ .

Then we define maximal operators associated with the multipliers m00 and mk,

Smk∗ ( f )(x) = sup
R>0

|
(

̂f (ξ )mk(ξ/R)
)∨(x)| ,

for k ≥ 0, and analogously we define Sm00∗ . Using (10.5.7) we have

Bλ∗ ( f ) ≤ Sm00∗ ( f )+
∞

∑
k=0

2−kλSmk∗ ( f ) . (10.5.8)
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Since Sm00∗ , Sm0∗ , Sm1∗ and any finite number of them are pointwise controlled by the
Hardy–Littlewood maximal operator, which is bounded on L2(|x|α) whenever−n <
α < n (cf. Theorem 9.1.9 and Example 9.1.7), we focus attention on the remaining
terms.

We make a small change of notation. Thinking of 2−k as roughly being δ (pre-
cisely δ = 2−k−3), for δ < 1/10 we let mδ (t) be a smooth function supported in the
interval [1−5δ ,1− δ ] and taking values in the interval [0,1] that satisfies

sup
1≤t≤2

∣

∣

∣

d�

dt�
mδ (t)

∣

∣

∣≤C�δ−� (10.5.9)

for all � ∈ Z+ ∪{0}. We define a related function

m̃δ (t) = δ t
d
dt

mδ (t) ,

which obviously satisfies estimates (10.5.9) with another constant ˜C� in place of C�.
Next we introduce the multiplier operators

Sδt ( f )(x) =
(

̂f (ξ )mδ (t|ξ |)
)∨(x) , ˜Sδt ( f )(x) =

(

̂f (ξ )m̃δ (t|ξ |)
)∨(x) ,

and the L2(|x|−α)-bounded maximal multiplier operator

Sδ∗ ( f ) = sup
t>0

|Sδt ( f )| ,

as well as the continuous square functions

Gδ ( f )(x) =
(
∫ ∞

0
|Sδt ( f )(x)|2 dt

t

)1
2

, Gδ ( f )(x) =
(
∫ ∞

0
|˜Sδt ( f )(x)|2 dt

t

)1
2

.

The operators Sδt and ˜Sδt are related. For f ∈ L2(|x|−α) and t > 0 we have

d
dt

Sδt ( f ) =
1
δ t
˜Sδt ( f ) .

Indeed, this operator identity is obvious for Schwartz functions f by the Lebesgue
dominated convergence theorem, and thus it holds for f ∈ L2(|x|−α ) by density.

The quadratic operators Gδ and ˜Gδ make their appearance in the application of
the fundamental theorem of calculus in the following context:

|Sδt ( f )(x)|2 = 2Re
∫ t

0
Sδu ( f )(x)

d
du

Sδu ( f )(x)du =
2
δ

Re
∫ t

0
Sδu ( f )(x) ˜Sδu ( f )(x)

du
u

,

which is valid for all functions f in L2(|x|−α) and almost all x ∈ Rn. This identity
uses the fact that for almost all x ∈ Rn we have
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lim
t→0

Sδt ( f )(x) = 0 (10.5.10)

when f ∈ L2(|x|−α). To see this, we observe that for Schwartz functions, (10.5.10)
is trivial by the Lebesgue dominated convergence theorem, while for general f in
L2(|x|−α) it is a consequence of Theorem 2.1.14, since Sδ∗ ( f ) ≤Cδ M( f ), where M
is the Hardy–Littlewood maximal operator. Consequently,

|Sδt ( f )(x)|2 ≤ 2
δ

∫ t

0
|Sδu ( f )(x)| |˜Sδu ( f )(x)| du

u
≤ 2
δ
|Gδ ( f )(x)| | ˜Gδ ( f )(x)|

for all t > 0, for f ∈ L2(|x|−α ) and for almost all x ∈ Rn. It follows that

∥

∥Sδ∗ ( f )
∥

∥

2
L2(|x|−a) ≤

2
δ
∥

∥Gδ ( f )
∥

∥

L2(|x|−a)

∥

∥ ˜Gδ ( f )
∥

∥

L2(|x|−a) , (10.5.11)

and the asserted boundedness of Sδ∗ reduces to that of the continuous square func-
tions Gδ and ˜Gδ on weighted L2 spaces with suitable constants depending on δ .

The boundedness of Gδ on L2(|x|−α) is a consequence of the following lemma.

Lemma 10.5.4. For 0 < δ < 1/10 and 0 ≤ α < n we have

∫

Rn

∫ 2

1
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤Cn,αAα(δ )

∫

Rn
| f (x)|2 dx

|x|α (10.5.12)

for all functions f in L2(|x|−α), where for ε > 0, Aα(ε) is defined by

Aα(ε) =

⎧

⎪

⎨

⎪

⎩

ε2−α when 1 < α < n,

ε (| logε|+ 1) when α = 1,

ε when 0 ≤ α < 1.

(10.5.13)

Assuming the statement of the lemma, we conclude the proof of Proposition
10.5.3 as follows. We take a Schwartz function ψ such that ψ̂ vanishes in a
neighborhood of the origin with ψ̂(ξ ) = 1 whenever 1/2 ≤ |ξ | ≤ 2 and we let
ψ2k(x) = 2−knψ(2−kx). We make the observation that if 1−5δ ≤ t|ξ | ≤ 1− δ and
2k−1 ≤ t ≤ 2k, then 1/2 ≤ 2k|ξ | ≤ 2, since δ < 1/10. This implies that ψ̂(2kξ ) = 1
on the support of the function ξ �→ mδ (t|ξ |). Hence

Sδt ( f ) = Sδt (ψ2k ∗ f )

whenever 2k−1 ≤ t ≤ 2k, and Lemma 10.5.4 (in conjunction with Exercise 10.5.2)
yields

∫

Rn

∫ 2k

2k−1
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤Cn,αAα(δ )

∫

Rn
|ψ2k ∗ f (x)|2 dx

|x|α .

Summing over k ∈ Z we obtain
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∥

∥Gδ ( f )
∥

∥

2
L2(|x|−α ) ≤Cn,αAα(δ )

∥

∥

∥

(

∑
k∈Z

|ψ2k ∗ f |2
) 1

2
∥

∥

∥

2

L2(|x|−α )
.

A randomization argument relates the weighted L2 norm of the square function to
the L2 norm of a linear expression involving the Rademacher functions as in

∥

∥

∥

(

∑
k∈Z

|ψ2k ∗ f |2
) 1

2
∥

∥

∥

2

L2(|x|−α )
=
∫ 1

0

∥

∥

∥∑
k∈Z

rk(t)(ψ2k ∗ f )
∥

∥

∥

2

L2(|x|−α )
dt ,

where rk denotes a renumbering of the Rademacher functions (Appendix C.1) in-
dexed by the entire set of integers. For each t ∈ [0,1] the operator

Mt( f ) = ∑
k∈Z

rk(t)(ψ2k ∗ f )

is associated with a multiplier that satisfies Mihlin’s condition (5.2.10) uniformly in
t. It follows that Mt is a singular integral operator bounded on all the Lp spaces for
1 < p < ∞, and in view of Corollary 9.4.7, it is also bounded on L2(w) whenever
w ∈ A2. Since the weight |x|−α is in A2 whenever −n < α < n, it follows that Mt is
bounded on L2(|x|−α) with a bound independent of t > 0. We deduce that

∥

∥Gδ ( f )
∥

∥

L2(|x|−α ) +
∥

∥ ˜Gδ ( f )
∥

∥

L2(|x|−α ) ≤C′
n,α
(

Aα(δ )
) 1

2
∥

∥ f
∥

∥

L2(|x|−α ) .

We now recall estimate (10.5.11) to obtain

∥

∥Sδ∗ ( f )
∥

∥

L2(|x|−α ) ≤C′(n,α)
(

δ−1Aα(δ )
)1/2∥

∥ f
∥

∥

L2(|x|−α ) .

Taking δ = 2−k−3, recalling the value of Aα(δ ) from Lemma 10.5.4, and inserting
this estimate in (10.5.8), we deduce Proposition 10.5.3. We note that the condition
α < 1 + 2λ is needed to make the series in (10.5.8) converge when 1 < α < n.

10.5.3 Estimates for Radial Multipliers

It remains to prove Lemma 10.5.4. Since all subsequent estimates concern linear
operators on weighted L2 spaces, in the sequel we will be working with functions in
the Schwartz class, unless it is otherwise specified.

We reduce estimate (10.5.12) to an estimate for a single t with the bound
Aα(δ )/δ , which is worse than Aα(δ ). The reduction to a single t is achieved via
duality. Estimate (10.5.12) says that the operator f �→ {Sδt ( f )}1≤t≤2 is bounded
from L2(Rn, |x|−αdx) to L2(L2( dt

t ), |x|−αdx). The dual statement of this fact is that
the operator

{gt}1≤t≤2 �→
∫ 2

1
Sδt (gt)

dt
t
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maps L2(L2( dt
t ), |x|αdx) to L2(Rn, |x|αdx). Here we use the fact that the operators St

are self-transpose and self-adjoint, since they have real and radial multipliers. Thus
estimate (10.5.12) is equivalent to

∫

Rn

∣

∣

∣

∣

∫ 2

1
Sδt (gt)(x)

dt
t

∣

∣

∣

∣

2

|x|α dx ≤Cn,α Aα(δ )
∫

Rn

∫ 2

1

∣

∣gt(x)
∣

∣

2 dt
t
|x|α dx , (10.5.14)

which by Plancherel’s theorem is also equivalent to

∫

Rn

∣

∣

∣

∣

D
α
2

(
∫ 2

1
mδ (t| · |)ĝt(·)

dt
t

)

(ξ )
∣

∣

∣

∣

2

dξ ≤Cn,αAα(δ )
∫

Rn

∫ 2

1

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2 dt
t

dξ .

Here

Dβ (h)(x) =
[
∫

Rn

|D[β ]+1
y (h)(x)|2
|y|n+2β dy

] 1
2

,

where Dy( f )(x) = f (x+ y)− f (x) is the difference operator encountered in Section
6.3 and Dk

y = Dy◦· · ·◦Dy (k times). The operator Dβ obeys the identity (see Exercise
6.3.9)

∥

∥Dβ (̂h)
∥

∥

2
L2 = c0(n,β )

∫

Rn
|h(x)|2 |x|2β dx .

Using the definition of Dα/2 we write

∣

∣

∣

∣

D
α
2

(
∫ 2

1
mδ (t| · |)ĝt(·)

dt
t

)

(ξ )
∣

∣

∣

∣

2

=
∫

Rn

∣

∣

∣

∣

∫ 2

1
D

[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
dt
t

∣

∣

∣

∣

2 dη
|η |n+α .

If the inner integrand on the right is nonzero, expressing Dk+1
y as in (6.3.2) and using

the support properties of mδ , we obtain that 1− 5δ ≤ t|ξ + sη | ≤ 1− δ for some
s ∈ {0,1, . . . , [α/2] + 1}; thus for each such s, t belongs to an interval of length
4δ |ξ + sη |−1 ≤ 4δ t(1−5δ )−1. Since t ≤ 2 and δ ≤ 1/10, it follows that t lies in a
set of measure at most 2([α/2]+ 2)δ . The Cauchy–Schwarz inequality then yields

∣

∣

∣

∣

D
α
2

(
∫ 2

1
mδ (t| · |)ĝt(·)

dt
t

)

(ξ )
∣

∣

∣

∣

2

≤ cα δ
∫

Rn

∫ 2

1

∣

∣

∣

∣

D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2 dt
t

dη
|η |n+α .

In view of the preceding reduction, we deduce that (10.5.14) is a consequence of

∫

Rn

∫

Rn

∫ 2

1

∣

∣

∣

∣

D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2 dt
t

dη
|η |n+α dξ

≤Cn,α
Aα(δ )
cα δ

∫

Rn

∫ 2

1

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2 dt
t

dξ

which can also be written as
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∫

Rn

∫ 2

1

∣

∣

∣

∣

D
α
2
(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2 dt
t

dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∫ 2

1

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2 dt
t

dξ .

This estimate is a consequence of

∫

Rn

∣

∣

∣

∣

D
α
2
(

mδ (t| · |)ĝt(·)
)

(ξ )
∣

∣

∣

∣

2

dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣

∣D
α
2 (ĝt)(ξ )

∣

∣

2
dξ (10.5.15)

for all t ∈ [1,2]. A simple dilation argument reduces (10.5.15) to the single estimate

∫

Rn

∣

∣

∣

∣

D
α
2
(

mδ (| · |)ĝ(·)
)

(ξ )
∣

∣

∣

∣

2

dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣

∣D
α
2 (ĝ)(ξ )

∣

∣

2
dξ , (10.5.16)

which is equivalent to

∫

Rn

∣

∣Sδ1 (g)(x)
∣

∣

2 |x|α dx ≤ Cn,α
cα

Aα(δ )
δ

∫

Rn

∣

∣g(x)
∣

∣

2 |x|α dx

and also equivalent to

∫

Rn

∣

∣Sδ1 ( f )(x)
∣

∣

2 dx
|x|α ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣

∣ f (x)
∣

∣

2 dx
|x|α (10.5.17)

by duality. We have now reduced estimate (10.5.12) to (10.5.17).
We denote by Kδ (x) the kernel of the operator Sδ1 , i.e., the inverse Fourier trans-

form of the multiplier mδ (|ξ |). Certainly Kδ is a radial kernel on Rn, and it is con-
venient to decompose it radially as

Kδ = Kδ0 +
∞

∑
j=1

Kδj ,

where Kδ0 (x) = Kδ (x)φ(δx) and Kδj (x) = Kδ (x)
(

φ(2− jδx)−φ(21− jδx)
)

, for some
radial smooth function φ supported in the ball B(0,2) and equal to one on B(0,1).

To prove estimate (10.5.17) we make use of the subsequent lemmas.

Lemma 10.5.5. For all M ≥ 2n there is a constant CM = CM(n,φ) such that for all
j = 0,1,2, . . . we have

sup
ξ∈Rn

|̂Kδj (ξ )| ≤CM 2− jM (10.5.18)

and also
|̂Kδj (ξ )| ≤CM 2−( j+k)M (10.5.19)

whenever | |ξ |−1| ≥ 2kδ and k ≥ 4. Also

|̂Kδj (ξ )| ≤CM 2− jM δM(1 + |ξ |)−M (10.5.20)

whenever |ξ | ≤ 1/8 or |ξ | ≥ 15/8.
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Lemma 10.5.6. Let 0 ≤ α < n. Then there is a constant C(n,α) such that for all
Schwartz functions f and all ε > 0 we have

∫

| |ξ |−1|≤ε
|̂f (ξ )|2 dξ ≤C(n,α)εα−1Aα(ε)

∫

Rn
| f (x)|2 |x|αdx (10.5.21)

and also for M ≥ 2n there is a constant CM(n,α) such that

∫

Rn
|̂f (ξ )|2 1

(1 + |ξ |)M dξ ≤CM(n,α)
∫

Rn
| f (x)|2 |x|αdx . (10.5.22)

Assuming Lemmas 10.5.5 and 10.5.6 we prove estimate (10.5.17) as follows.
Using Plancherel’s theorem we write

∫

Rn
|(Kδj ∗ f )(x)|2 dx =

∫

Rn
|̂Kδj (ξ )|2|̂f (ξ )|2 dξ ≤ I + II + III ,

where

I =
∫

|ξ |≤ 1
8 ,|ξ |≥ 15

8

|̂Kδj (ξ )|2|̂f (ξ )|2 dξ ,

II =
[log2

7
16 δ

−1]+1

∑
k=4

∫

2kδ≤||ξ |−1|≤2k+1δ
|̂Kδj (ξ )|2|̂f (ξ )|2 dξ ,

III =
∫

| |ξ |−1|≤16δ
|̂Kδj (ξ )|2|̂f (ξ )|2 dξ .

Using (10.5.20) and (10.5.22) we obtain that

I ≤C′
M(n,α)2− jMδM

∫

Rn
| f (x)|2 |x|αdx .

In view of (10.5.19) and (10.5.21) we have

II ≤
[log2 δ−1]+1

∑
k=4

C(n,α)(2k+1δ )α−1Aα(2k+1δ )2− jM2−kM
∫

Rn
| f (x)|2 |x|αdx

≤ C′
M(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .

Finally, (10.5.18) and (10.5.21) yield

III ≤C′
M(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .

Summing the estimates for I, II, and III we deduce
∫

Rn
|(Kδj ∗ f )(x)|2 dx ≤CM(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .
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By duality, this estimate can be written as

∫

Rn
|(Kδj ∗ f )(x)|2 dx

|x|α ≤CM(n,α)2− jMδα−1Aα(δ )
∫

Rn
| f (x)|2 dx . (10.5.23)

Given a Schwartz function f , we write f0 = f χQ0 , where Q0 is a cube centered at
the origin of side length C 2 j/δ for some C to be chosen. Then for x ∈ Q0 we have
|x| ≤C

√
n2 j/δ , hence

∫

Rn
|(Kδj ∗ f0)(x)|2

dx
|x|α ≤ C′

M(n,α)δα−1Aα(δ )
2 jM

(

C
√

n
2 j

δ

)α ∫

Q0

| f0(x)|2
dx
|x|α

= C′′
M(n,α)2 j(α−M) Aα(δ )

δ

∫

Q0

| f0(x)|2
dx
|x|α . (10.5.24)

Now write Rn \Q0 as a mesh of cubes Qi, indexed by i ∈ Z \ {0}, of side lengths
2 j+2/δ and centers cQi . Since Kδj is supported in a ball of radius 2 j+1/δ , if fi is

supported in Qi, then fi ∗Kδj is supported in the cube 2
√

nQi. If the constant C is
large enough, say C ≥ 1000n, then for x ∈ Qi and x′ ∈ 2

√
nQi we have

|x| ≈ |cQi | ≈ |x′| ,

which says that the moduli of x and x′ are comparable in the following inequality:

∫

2
√

nQi

|(Kδj ∗ fi)(x′)|2
dx′

|x′|α ≤C′
M 2− jM

∫

Qi

| fi(x)|2
dx
|x|α . (10.5.25)

Thus (10.5.25) is a consequence of
∫

2
√

nQi

|(Kδj ∗ fi)(x′)|2 dx′ ≤CM 2− jM
∫

Qi

| fi(x)|2 dx , (10.5.26)

which is certainly satisfied, as seen by applying Plancherel’s theorem and using
(10.5.18). Since for δ < 1/10 we have Aα(δ )/δ ≥ 1, it follows that

∫

Rn
|(Kδj ∗ fi)(x)|2

dx
|x|α ≤CM 2− jM Aα(δ )

δ

∫

Rn
| fi(x)|2

dx
|x|α (10.5.27)

whenever fi is supported in Qi. We now pick M = 2n and we recall that α < n. We
have now proved that

∫

Rn
|(Kδj ∗ fi)(x)|2

dx
|x|α ≤C′′(n,α)2− jn Aα(δ )

δ

∫

Qi

| fi(x)|2
dx
|x|α

for functions fi supported in Qi.
Given a general f in the Schwartz class, write

f =∑
i∈Z

fi , where fi = f χQi .
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Then
∥

∥Kδj ∗ f
∥

∥

2
L2(|x|−α ) ≤ 2

∥

∥Kδj ∗ f0
∥

∥

2
L2(|x|−α ) + 2

∥

∥∑
i�=0

Kδj ∗ fi
∥

∥

2
L2(|x|−α )

≤ 2
∥

∥Kδj ∗ f0
∥

∥

2
L2(|x|−α ) + 2Cn∑

i�=0

∥

∥Kδj ∗ fi
∥

∥

2
L2(|x|−α )

≤ C′′′(n,α)2− jn Aα(δ )
δ

[

∥

∥ f0
∥

∥

2
L2(|x|−α ) +∑

i�=0

∥

∥ fi
∥

∥

2
L2(|x|−α )

]

= C′′′(n,α)2− jn Aα(δ )
δ

∥

∥ f
∥

∥

2
L2(|x|−α ) ,

where we used the bounded overlap of the family {Kj ∗ fi}i�=0 in the second dis-
played inequality (cf. Exercise 10.4.4). Taking square roots and summing over
j = 0,1,2, . . . , we deduce (10.5.17).

We now address the proof of Lemma 10.5.5, which was left open.

Proof. For the purposes of this proof we set ψ(x) = φ(x)−φ(2x). Then the inverse
Fourier transform of the function x �→ψ(2− jδx) is ξ �→ 2 jnδ−nψ̂(2 jξ/δ ). Convolv-

ing the latter with the function ξ �→ mδ (|ξ |), we obtain ̂Kδj (ξ ). We may therefore
write for j ≥ 1,

̂Kδj (ξ ) =
∫

Rn
mδ (|ξ −2− jδη |)ψ̂(η)dη , (10.5.28)

while for j = 0 an analogous formula holds with φ in place of ψ . Since |mδ | ≤
1, (10.5.18) follows easily when j = 0. For j ≥ 1 we expand the function ξ �→
mδ (|ξ −2− jδη |) in a Taylor series and we make use of the fact that ψ̂ has vanishing
moments of all orders to obtain

|̂Kδj (ξ )| ≤
∫

Rn
∑

|γ|=M

1
γ!
∥

∥∂ γmδ (| · |)
∥

∥

L∞ |2
− jδη |M|ψ̂(η)|dη

≤ C(M)δ−MδM2− jM
∫

Rn
|η |M|ψ̂(η)|dη .

This proves (10.5.18).
We turn now to the proof of (10.5.19). Suppose that | |ξ |− 1| ≥ 2kδ and k ≥ 4.

Then for |ξ | ≤ 1, recalling that mδ is supported in [1−5δ ,1− δ ], we write

|2− jδη | ≥ |ξ −2− jδη |− |ξ | ≥ (1−5δ )− (1−2kδ ) ≥ 2k−1δ ,

since k ≥ 4. For |ξ | ≥ 1 we have

|2− jδη | ≥ |ξ |− |ξ −2− jδη | ≥ (1 + 2kδ )− (1− δ )≥ 2kδ .

In either case we conclude that |η | ≥ 2k+ j−1, and using (10.5.28) we deduce

|̂Kδj (ξ )| ≤
∫

|η|≥2k+ j−1
|ψ̂(η)|dη ≤CM2−( j+k)M .
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The proof of (10.5.20) is similar. Since |ξ−2− jδη | ≥ 1−5δ ≥ 1/2, if |ξ | ≤ 1/8,
it follows that |2− jδη | ≥ 1/4. Likewise, if |ξ | ≥ 15/8, then |2− jδη | ≥ |ξ | − 1 ≥
|ξ |/4. These estimates imply

|2− jδη | ≥ 1
8
(1 + |ξ |) =⇒ |η | ≥ 2 j 1

8δ
(1 + |ξ |)

in the support of the integral in (10.5.28). It follows that

|̂Kδj (ξ )| ≤
∫

|η|≥2 j−3(1+|ξ |)/δ
|ψ̂(η)|dη ≤CM2− jMδM(1 + |ξ |)−M

whenever |ξ | ≤ 1/8 or |ξ | ≥ 15/8. �

We finish with the proof of Lemma 10.5.6, which had been left open.

Proof. We reduce estimate (10.5.21) by duality to

∫

Rn
|ĝ(ξ )|2 dξ

|ξ |α ≤C(n,α)εα−1Aα(ε)
∫

| |x|−1|≤ε
|g(x)|2 dx

for functions g supported in the annulus | |x| − 1| ≤ ε . Using that (|ξ |−α )̂ (x) =
cn,α |x|α−n (cf. Theorem 2.4.6), we write

∫

Rn
|ĝ(ξ )|2 dξ

|ξ |α =
∫

Rn
ĝ(ξ ) ĝ(ξ )

1
|ξ |α dξ

=
∫

Rn

(

ĝ ĝ
)∨(x)

cn,α

|x|n−α dx

=
∫

Rn
(g ∗˜g)(x) dx

|x|n−α

=
∫

| |y|−1|≤ε

∫

| |x|−1|≤ε
g(x)˜g(y)

cn,α

|x− y|n−α dxdy

≤ B(n,α)
∥

∥g
∥

∥

2
L2 ,

where g̃(x) = g(−x) and

B(n,α) = sup
| |x|−1|≤ε

∫

| |y|−1|≤ε

cn,α
|y− x|n−α dy .

The last inequality is proved by interpolating between the L1 → L1 and L∞ → L∞

estimates with bound B(n,α) for the linear operator

L(g)(x) =
∫

Rn
g(y)

cn,α
|x− y|n−α dy .

It remains to establish that

B(n,α) ≤C(n,α)εα−1Aα(ε) .
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Applying a rotation and a change of variables, matters reduce to proving that

sup
| |x|−1|≤ε

∫

| |y−|x|e1|−1|≤ε

cn,α

|y|n−α dy ≤C(n,α)εα−1Aα(ε) ,

where e1 = (1,0, . . . ,0). This, in turn, is a consequence of
∫

| |y−e1|−1|≤2ε

cn,α
|y|n−α dy ≤C(n,α)εα−1Aα(ε) , (10.5.29)

since | |y− e1|x| | − 1| ≤ ε and | |x| − 1| ≤ ε imply | |y− e1| − 1| ≤ 2ε . In proving
(10.5.29), it suffices to assume that ε < 1/100; otherwise, the left-hand side of
(10.5.29) is bounded from above by a constant, and the right-hand side of (10.5.29)
is bounded from below by another constant. The region of integration in (10.5.29)
is a ring centered at e1 and width 4ε . We estimate the integral in (10.5.29) by the
sum of the integrals of the function cn,α |y|α−n over the sets

S0 = {y ∈ Rn : |y| ≤ ε, | |y− e1|−1| ≤ 2ε} ,

S� = {y ∈ Rn : �ε ≤ |y| ≤ (�+ 1)ε, | |y− e1|−1| ≤ 2ε} ,

S∗ = {y ∈ Rn : |y| ≥ 1, | |y− e1|−1| ≤ 2ε} ,

where � = 1, . . . , [ 1
ε ]+ 1. The volume of each S� is comparable to

ε
[

((�+ 1)ε)n−1− (�ε)n−1]≈ εn�n−2 .

Consequently,
∫

S0

dy
|y|n−α ≤ ωn−1

∫ ε

0

rn−1

rn−α dr =
ωn−1

α
εα ,

whereas
[ 1
ε ]+1

∑
�=1

∫

S�

dy
|y|n−α ≤C′

n,α

2/ε

∑
�=1

εn�n−2

(�ε)n−α ≤C′
n,α ε

α
2/ε

∑
�=1

1
�2−α .

Finally, the volume of S∞ is about ε; hence

∫

S∞

dy
|y|n−α ≤ |S∞| ≤C′′

n,α ε .

Combining these estimates, we obtain

∫

| |y−e1|−1|≤2ε

cn,α

|y|n−α dy ≤Cn,α

[

εα + εα
2/ε

∑
�=1

1
�2−α + ε

]

,

and it is an easy matter to check that the expression inside the square brackets is at
most a constant multiple of εα−1Aα(ε).

We now turn attention to (10.5.22). Switching the roles of f and ̂f , we rewrite
(10.5.22) as



10.5 Almost Everywhere Convergence of Bochner–Riesz Means 419

∫

Rn

| f (x)|2
(1 + |x|)M dx ≤ C′

M(n,α)
∫

Rn
| ̂(−Δ)

α
4 ( f )(ξ )|2 dξ

= C′
M(n,α)

∫

Rn
|(−Δ)

α
4 ( f )(x)|2 dx ,

recalling the Laplacian introduced in (6.1.1). This estimate can also be restated in
terms of the Riesz potential operator Iα/2 = (−Δ)−α/4 as follows:

∫

Rn

|Iα/2(g)(x)|2

(1 + |x|)M dx ≤C′
M(n,α)

∫

Rn
|g(x)|2 dx . (10.5.30)

To show this, we use Hölder’s inequality with exponents q/2 and n/α , where q > 2
satisfies

1
2
− 1

q
=
α
2n

.

Then we have

∫

Rn

|Iα/2(g)(x)|2

(1 + |x|)M dx ≤
(
∫

Rn

dx

(1 + |x|)Mn/α

) n
α ∥
∥Iα/2(g)

∥

∥

2
Lq(Rn)

≤ C′
M(n,α)

∥

∥g
∥

∥

2
L2(Rn)

in view of Theorem 6.1.3 and since M > n and α < n. This finishes the proof of the
lemma. �

Exercises

10.5.1. Let 0 < r < p <∞ and n(1− r
p) < β < n. Show that Lp(Rn) is contained in

Lr(Rn)+ Lr(Rn, |x|−β ).
[

Hint: Write f = f1 + f2, where f1 = f χ| f |>1 and f2 = f χ| f |≤1.
]

10.5.2. (a) With the notation of Lemma 10.5.4, use dilations to show that the esti-
mate

∫

Rn

∫ 2

1
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤C0

∫

Rn
| f (x)|2 dx

|x|α

implies
∫

Rn

∫ 2a

a
|Sδt ( f )(x)|2 dt

t
dx
|x|α ≤C0

∫

Rn
| f (x)|2 dx

|x|α

for any a > 0 and f in the Schwartz class.
(b) Using dilations also show that (10.5.16) implies (10.5.15).

10.5.3. Let h be a Schwartz function on Rn. Prove that

1
ε

∫

| |x|−1|≤ε
h(x)dx → 2|Sn−1|

∫

Sn−1
h(θ )dθ
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as ε → 0. Use Lemma 10.5.6 to show that for 1 < α < n we have
∫

Sn−1
|̂f (θ )|dθ ≤C(n,α)

∫

Rn
| f (x)|2|x|α dx .

10.5.4. Let w ∈ A2. Assume that the ball multiplier operator B0( f ) = (̂f χB(0,1))∨

satisfies
∫

Rn
|B0( f )(x)|2 w(x)dx ≤Cn,α

∫

Rn
| f (x)|2 w(x)dx

for all f ∈ L2(w). Prove the same estimate for B( f ) = supk∈Z |B0
2k( f )|.

[

Hint: Argue as in the proof of Theorem 5.3.1. Pick a smooth function with

compact support ̂Φ equal to one on B(0,1) and vanishing in B(0,2) and define
̂Ψ (ξ ) = ̂Φ(ξ )− ̂Φ(2ξ ). Then χB(0,1)

(

̂Φ(ξ )− ̂Φ(2ξ )
)

= χB(0,1)− ̂Φ(2ξ ); hence

B( f ) ≤ sup
k
|Φ2−k ∗ f |+

(

∑
k∈Z

|B0
2k( f )−Φ2−(k−1) ∗ f |2

) 1
2

≤ CΦ M( f )+
(

∑
k∈Z

|B0
2k( f ∗Ψ2−k)|2

) 1
2

and show that each term is bounded on L2(w).
]

10.5.5. Show that the Bochner–Riesz operator Bλ does not map Lp(Rn) to Lp,∞(Rn)
when λ = n−1

2 − n
p and 2 < p < ∞. Derive the same conclusion for Bλ∗ .

[

Hint: Suppose the contrary. Then by duality it would follow that Bλ maps Lp,1(Rn)
to Lp(Rn) when 1 < p < 2 and λ = n

p −
n+1

2 . To contradict this statement test the
operator on a Schwartz function whose Fourier transform is equal to 1 on the unit
ball and argue as in Proposition 10.2.3.

]

HISTORICAL NOTES

The geometric construction in Section 10.1 is based on ideas of Besicovitch, who used a similar
construction to answer the following question posed in 1917 by the Japanese mathematician S.
Kakeya: What is the smallest possible area of the trace of ink left on a piece of paper by an
ink-covered needle of unit length when the positions of its two ends are reversed? This problem
puzzled mathematicians for several decades until Besicovitch [22] showed that for any ε > 0 there
is a way to move the needle so that the total area of the blot of ink left on the paper is smaller than
ε . Fefferman [125] borrowed ideas from the construction of Besicovitch to provide the negative
answer to the multiplier problem to the ball for p �= 2 (Theorem 10.1.5). Prior to Fefferman’s
work, the fact that the characteristic function of the unit ball is not a multiplier on Lp(Rn) for
| 1

p −
1
2 | ≥

1
2n was pointed out by Herz [163], who also showed that this limitation is not necessary

when this operator is restricted to radial Lp functions. The crucial Lemma 10.1.4 in Fefferman’s
proof is due to Y. Meyer.

The study of Bochner–Riesz means originated in the article of Bochner [27], who obtained
their Lp boundedness for λ > n−1

2 . Stein [287] improved this result to λ > n−1
2 | 1

p − 1
2 | using
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interpolation for analytic families of operators. Theorem 10.2.4 was first proved by Carleson and
Sjölin [58]. A second proof of this theorem was given by Fefferman [127]. A third proof was
given by Hörmander [167]. The proof of Theorem 10.2.4 given in the text is due Córdoba [90].
This proof elaborated the use of the Kakeya maximal function in the study of spherical summation
multipliers, which was implicitly pioneered in Fefferman [127]. The boundedness of the Kakeya
maximal function KN on L2(R2) with norm C(log N)2 was first obtained by Córdoba [89]. The
sharp estimate C logN was later obtained by Strömberg [296]. The proof of Theorem 10.3.5 is
taken from this article of Strömberg. Another proof of the boundedness of the Kakeya maximal
function without dilations on L2(R2) was obtained by Müller [240]. Barrionuevo [17] showed that
for any subset Σ of S1 with N elements the maximal operator MΣ maps L2(R2) to itself with

norm CN2(log N)−1/2
for some absolute constant C. Note that this bound is O(Nε ) for any ε > 0.

Katz [183] improved this bound to C logN for some absolute constant C; see also Katz [184]. The
latter is a sharp bound, as indicated in Proposition 10.3.4. Katz [182] also showed that the maximal
operator MK associated with a set of unit vectors pointing along a Cantor set K of directions is
unbounded on L2(R2). If Σ is an infinite set of vectors in S1 pointing in lacunary directions, then
MΣ was studied by Strömberg [295], Córdoba and Fefferman [93], and Nagel, Stein, and Wainger
[244]. The last authors obtained its Lp boundedness for all 1 < p < ∞. Theorem 10.2.7 was first
proved by Carleson [56]. For a short account on extensions of this theorem, the reader may consult
the historical notes at the end of Chapter 5.

The idea of restriction theorems for the Fourier transform originated in the work of E. M. Stein
around 1967. Stein’s original restriction result was published in the article of Fefferman [123],
which was the first to point out connections between restriction theorems and boundedness of the
Bochner–Riesz means. The full restriction theorem for the circle (Theorem 10.4.7 for p < 4

3 ) is due
to Fefferman and Stein and was published in the aforementioned article of Fefferman [123]. See
also the related article of Zygmund [340]. The present proof of Theorem 10.4.7 is based in that of
Córdoba [91]. This proof was further elaborated by Tomas [314], who pointed out the logarithmic
blowup when p = 4

3 for the corresponding restriction problem for annuli. The result in Example
10.4.4 is also due to Fefferman and Stein and was initially proved using arguments from spherical
harmonics. The simple proof presented here was observed by A. W. Knapp. The restriction property
in Theorem 10.4.5 for p < 2(n+1)

n+3 is due to Tomas [313], while the case p = 2(n+1)
n+3 is due to Stein

[291]. Theorem 10.4.6 was first proved by Fefferman [123] for the smaller range of λ > n−1
4 using

the restriction property Rp→2(Sn−1) for p < 4n
3n+1 . The fact that the Rp→2(Sn−1) restriction property

(for p < 2) implies the boundedness of the Bochner–Riesz operator Bλ on Lp(Rn) is contained in
the work of Fefferman [123]. A simpler proof of this fact, obtained later by E. M. Stein, appeared in
the subsequent article of Fefferman [127]. This proof is given in Theorem 10.4.6, incorporating the
Tomas–Stein restriction property Rp→2(Sn−1) for p ≤ 2(n+1)

n+3 . It should be noted that the case n = 3
of this theorem was first obtained in unpublished work of Sjölin. For a short exposition and history
of this material consult the book of Davis and Chang [106]. Much of the material in Sections 10.2,
10.3, and 10.4 is based on the notes of Vargas [322].

There is an extensive literature on restriction theorems for submanifolds of Rn. It is noteworthy
to mention (in chronological order) the results of Strichartz [294], Prestini [267], Greenleaf [155],
Christ [62], Drury [112], Barceló [15], [16], Drury and Marshall [114], [115], Beckner, Carbery,
Semmes, and Soria [18], Drury and Guo [113], De Carli and Iosevich [107], [108], Sjölin and Soria
[284], Oberlin [250], Wolff [337], and Tao [306].

The boundedness of the Bochner–Riesz operators on the range excluded by Proposition 10.2.3
implies that the restriction property Rp→q(Sn−1) is valid when 1

q = n+1
n−1

1
p′ and 1 ≤ p < 2n

n+1 , as
shown by Tao [305]; in this article a hierarchy of conjectures in harmonic analysis and interrela-
tions among them is discussed. In particular, the aforementioned restriction property would imply
estimate (10.3.33) for the Kakeya maximal operator KN on Rn, which would in turn imply that
Besicovitch sets have Minkowski dimension n. (A Besicovitch set is defined as a subset of Rn that
contains a unit line segment in every direction.) Katz, Laba, and Tao [185] have obtained good
estimates on the Minkowski dimension of such sets in R3.
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A general sieve argument obtained by Córdoba [89] reduces the boundedness of the Kakeya
maximal operator KN to the one without dilations K a

N . For applications to the Bochner–Riesz
multiplier problem, only the latter is needed. Carbery, Hernández, and Soria [51] have proved
estimate (10.3.31) for radial functions in all dimensions. Igari [175] proved estimate (10.3.32) for
products of one-variable functions of each coordinate. The norm estimates in Corollary 10.3.7
can be reversed, as shown by Keich [187] for p > 2. The corresponding estimate for 1 < p < 2

in the same corollary can be improved to N
2
p −1. Córdoba [90] proved the partial case p ≤ 2 of

Theorem 10.3.10 on Rn. This range was extended by Drury [111] to p ≤ n+1
n−1 using estimates

for the x-ray transform. Theorem 10.3.10 (i.e., the further extension to p ≤ n+1
2 ) is due to Christ,

Duoandikoetxea, and Rubio de Francia [68], and its original proof also used estimates for the x-ray
transform; the proof of Theorem 10.3.10 given in the text is derived from that in Bourgain [29].
This article brought a breakthrough in many of the previous topics. In particular, Bourgain [29]
showed that the Kakeya maximal operator KN maps Lp(Rn) to itself with bound CεN

n
p −1+ε for

all ε > 0 and some pn > n+1
2 . He also showed that the range of p’s in Theorem 10.4.5 is not sharp,

since there exist indices p = p(n) > 2(n+1)
n+3 for which property Rp→q(Sn−1) holds, and that Theorem

10.4.6 is not sharp, since there exist indices λn < n−1
2(n+1) for which the Bochner–Riesz operators are

bounded on Lp(Rn) in the optimal range of p’s when λ ≥ λn. Improvements on these indices were
subsequently obtained by Bourgain [30], [31]. Some of Bourgain’s results in R3 were re-proved
by Schlag [279] using different geometric methods. Wolff [335] showed that the Kakeya maximal
operator KN maps Lp(Rn) to itself with bound CεN

n
p −1+ε for any ε > 0 whenever p ≤ n+2

2 . In
higher dimensions, this range of p’s was later extended by Bourgain [32] to p ≤ (1+ε) n

2 for some
dimension-free positive constant ε . When n = 3, further improvements on the restriction and the
Kakeya conjectures were obtained by Tao, Vargas, and Vega [308]. For further historical advances
in the subject the reader is referred to the survey articles of Wolff [336] and Katz and Tao [186].

Regarding the almost everywhere convergence of the Bochner–Riesz means, Carbery [50] has
shown that the maximal operator Bλ∗ ( f ) = supR>0 |BλR( f )| is bounded on Lp(R2) when λ > 0 and
2≤ p < 4

1−2λ , obtaining the convergence BλR( f )→ f almost everywhere for f ∈ Lp(R2). For n≥ 3,

2≤ p < 2n
n−1−2λ , and λ ≥ n−1

2(n+1) the same result was obtained by Christ [63]. Theorem 10.5.2 is due
to Carbery, Rubio de Francia, and Vega [52]. Theorem 10.5.1 is contained in Tao [304]. Tao [307]
also obtained boundedness for the maximal Bochner–Riesz operators Bλ∗ on Lp(R2) whenever
1 < p < 2 for an open range of pairs ( 1

p ,λ ) that lie below the line λ = 1
2 ( 1

p −
1
2 ).

On the critical line λ = n
p −

n+1
2 , boundedness into weak Lp for the Bochner–Riesz operators

is possible in the range 1 ≤ p ≤ 2n
n+1 . Christ [65], [64] first obtained such results for 1 ≤ p < 2(n+1)

n+3

in all dimensions. The point p = 2(n+1)
n+3 was later included by Tao [303]. In two dimensions, weak

boundedness for the full range of indices was shown by Seeger [280]; in all dimensions the same
conclusion was obtained by Colzani, Travaglini, and Vignati [87] for radial functions. Tao [304]
has obtained a general argument that yields weak endpoint bounds for Bλ whenever strong type
bounds are known above the critical line.




