Chapter 8
Singular Integrals of Nonconvolution Type

Up to this point we have studied singular integrals given by convolution with cer-
tain tempered distributions. These operators commute with translations. We are now
ready to broaden our perspective and study a class of more general singular integrals
that are not necessarily translation invariant. Such operators appear in many places
in harmonic analysis and partial differential equations. For instance, a large class of
pseudodifferential operators falls under the scope of this theory.

This broader point of view does not necessarily bring additional complications
in the development of the subject except at one point, the study of L boundedness,
where Fourier transform techniques are lacking. The L? boundedness of convolution
operators is easily understood via a careful examination of the Fourier transform of
the kernel, but for nonconvolution operators different tools are required in this study.
The main result of this chapter is the derivation of a set of necessary and sufficient
conditions for nonconvolution singular integrals to be L? bounded. This result is
referred to as the 7'(1) theorem and owes its name to a condition expressed in terms
of the action of the operator T on the function 1.

An extension of the T'(1) theorem, called the T'(b) theorem, is obtained in Section
8.6 and is used to deduce the L? boundedness of the Cauchy integral along Lipschitz
curves. A variant of the T'(b) theorem is also used in the boundedness of the square
root of a divergence form elliptic operator discussed in Section 8.7.

8.1 General Background and the Role of BMO

We begin by recalling the notion of the adjoint and transpose operator. One may
choose to work with either a real or a complex inner product on pairs of functions.
For f, g complex-valued functions with integrable product, we denote the real inner
product by

(f,g)= - fx)g(x)dx.
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170 8 Singular Integrals of Nonconvolution Type

This notation is suitable when we think of f as a distribution acting on a test function
g. We also have the complex inner product

(f18) = [ s0ex)ax,
which is an appropriate notation when we think of f and g as elements of a Hilbert
space over the complex numbers. Now suppose that T is a linear operator bounded
on L?. Then the adjoint operator T* of T is uniquely defined via the identity

(T(Hleg)=(fIT"(g))

for all fin L” and g in L” . The transpose operator T* of T is uniquely defined via
the identity

<T(f)7g> = <f7Tt(g)> = <Tt(g)7f>

for all functions f in L? and g in L” . The name transpose comes from matrix theory,
where if A" denotes the transpose of a complex n x n matrix A, then we have the
identity

n n
(Ax,y) = Y (Ax);y; =Ax-y=x-Aly= ZIX./' (A'y); = (x,Ay)
=1 =

for all column vectors x = (x1,...,%,), ¥y = (¥1,...,ys) in C". We may easily check
the following intimate relationship between the transpose and the adjoint of a linear
operator T

() =T(f),

indicating that they have almost interchangeable use. However, in many cases, it is
convenient to avoid complex conjugates and work with the transpose operator for
simplicity. Observe that if a linear operator T has kernel K (x,y), that is,

1)@ = [ K sy,

then the kernel of 7" is K’ (x,y) = K(y,x) and that of 7* is K*(x,y) = K(y,x).

An operator is called self-adjoint if T = T* and self-transpose if T = T'. For
example, the operator iH, where H is the Hilbert transform, is self-adjoint but not
self-transpose, and the operator with kernel i(x +y) ™! is self-transpose but not self-
adjoint.

8.1.1 Standard Kernels

The singular integrals we study in this chapter have kernels that satisfy size and
regularity properties similar to those encountered in Chapter 4 for convolution-type
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Calderén—Zygmund operators. Let us be specific and introduce the relevant back-
ground. We consider functions K(x,y) defined on R" x R\ {(x,x) : x € R"} that
satisfy for some A > O the size condition

K(x,y)| < (8.1.1)
K< O
and for some 6 > 0 the regularity conditions
Alx—x)°
K (x,y) —K(x',y)| < , (8.1.2)
(e = y[ + | = y[)=+2
whenever |[x — x| < } max (|x—y|,|x'—y|) and
A o+ 1)
K (x,y) — K (x,y')| < b=yl (8.1.3)

(b =yl + e —y)m+e’
whenever [y —y/| < ) max (|x—y|,|x—/|).
Remark 8.1.1. Observe that if
/ l /
b= < max (jx—yl, ) = 1),
then
max (|x — y|,|¥' = y[) < 2 min (]x—y|,|x' = y[),

implying that the numbers |x — y| and |x’ — y| are comparable. This fact is useful in
specific calculations.
Another important observation is that if (8.1.1) holds and we have

V.K(x, VK (x,y)| <
VK (x,9)| + |VyK (x, )] oy

for all x # y, then K is in SK(1,4"71A).

Definition 8.1.2. Functions on R” x R"\ {(x,x) : x € R"} that satisfy (8.1.1),
(8.1.2), and (8.1.3) are called standard kernels with constants 6,A. The class of all
standard kernels with constants §,A is denoted by SK(6,A). Given a kernel K (x,y)
in SK(8,A), we observe that the functions K(y,x) and K (y,x) are also in SK(J,A).
These functions have special names. The function

K'(x,y) = K(y,x)

is called the transpose kernel of K, and the function

K*(xvy) = K(yvx)

is called the adjoint kernel of K.
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Example 8.1.3. The function K(x,y) = |x — y| ™" defined away from the diagonal of
R" x R" is in SK(1,n4"1). Indeed, for

1
=] < max (jx— ], ¥~ )

the mean value theorem gives

/
cn g yen < =X
[pe=y[ ™" =¥ =y 7" < 6y
for some 6 that lies on the line segment joining x and x’. But then we have |6 — y| >
3 max (|x —y|,|x' —y[), which gives (8.1.2) with A = n4"+1.

Remark 8.1.4. The previous example can be modified to give that if K(x,y) satisfies
ViK (x,y) < A'le—y| 7"

for all x # y in R”, then K(x,y) also satisfies (8.1.2) with 6 = 1 and A controlled by
a constant multiple of A’. Likewise, if

VoK ()| S A'pe—y| 7"

for all x # y in R”, then K(x,y) satisfies (8.1.3) with with 6 = 1 and A bounded by
a multiple of A’

We are interested in standard kernels K that can be extended to tempered distribu-
tions on R” x R". We begin by observing that given a standard kernel K (x,y), there
may not exist a tempered distribution W on R” x R” that coincides with the given
K(x,y) on R" x R"\ {(x,x) : x € R"}. For example, the function K(x,y) = [x—y|™"
does not admit such an extension; see Exercise 8.1.2.

We are concerned with kernels K (x,y) in SK(8,A) for which there are tempered
distributions W on R” x R” that coincide with K on R" x R"\ {(x,x) : x € R"}. This
means that the convergent integral representation

<W,F> :/n/l;n K(x,y)F(x,y)dxdy (8.1.4)

is valid whenever the Schwartz function F on R"” x R" is supported away from the
diagonal {(x,x) : x € R"}. Note that the integral in (8.1.4) is well defined and ab-
solutely convergent whenever F is a Schwartz function that vanishes in a neighbor-
hood of the set { (x,x) : x € R"}. Also observe that there may be several distributions
W coinciding with a fixed function K (x,y). In fact, if W is such a distribution, then
50 is W + 8,—,, where §,—, denotes Lebesgue measure on the diagonal of R?". (This
is some sort of a Dirac distribution.)
We now consider continuous linear operators

T:.7(R") — & (R")
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from the space of Schwartz functions . (R") to the space of all tempered distribu-
tions ./ (R"). By the Schwartz kernel theorem (see Hormander [168, p. 129]), for
such an operator T there is a distribution W in ./ (R") that satisfies

(T(f),0)=(W,fR0) when f,¢ € .7(R"), (8.1.5)

where (f ® ¢)(x,y) = f(x)@(y). Furthermore, as a consequence of the same theo-
rem, there exist constants C, N, M such that for all f,g € ./ (R") we have

KNﬁ@N=KWJ®@Vx{ v mwuﬂ[ y mw@ﬂ, (8.1.6)

ol |BI<N ol | Bl<M

where py g (@) = sup,cgn [0 (xB @) (x)| is the set of seminorms for the topology in
<. A distribution W that satisfies (8.1.5) and (8.1.6) is called a Schwartz kernel.

We study continuous linear operators 7' : . (R") — .’/(R") whose Schwartz
kernels coincide with standard kernels K(x,y) on R” x R”\ {(x,x) : x € R"}. This
means that (8.1.5) admits the absolutely convergent integral representation

(1(9).0) = [, [ KGnf6)o)drdy (817

whenever f and ¢ are Schwartz functions whose supports do not intersect.

We make some remarks concerning duality in this context. Given a continuous
linear operator T : . (R") — .%/(R") with a Schwartz kernel W, we can define
another distribution W’ as follows:

(W' F)y=(W,F"),
where F'(x,y) = F(y,x). This means that for all f,p € . (R") we have
(W, foe)y=(W.,p f).
It is a simple fact that the transpose operator 7* of T, which satisfies

(T(9).f)=(T"(f),9) (8.1.8)

for all f,¢ in Z(R"), is the unique continuous linear operator from .(R") to
' (R") whose Schwartz kernel is the distribution W', that is, we have

(T'(f) @) =(T(). f) =W,0a f) =(W'.f2 ). (8.1.9)

We now observe that a large class of standard kernels admits extensions to tem-
pered distributions W on R?".

Example 8.1.5. Suppose that K(x, y) satisfies (8.1.1) and (8.1.2) and is antisymmet-
ric, in the sense that

K(-xvy) = _K(yvx)
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for all x # y in R”. Then K also satisfies (8.1.3), and moreover, there is a distribution
W on R?" that extends K on R" x R".
Indeed, define

) = lim // K(x,y)F (x,y) dydx (8.1.10)
\x y|>€
for all F in the Schwartz class of R?". In view of antisymmetry, we may write
' 1
J| KGyFeydydr= || K (Fen) = Fo0) dyds.
[x—y|>€e [x—y|>¢e
Using (8.1.1), the observation that

2[x—yl sup
(1 + |)C|2 + |y|2)”+1 (x,y)€R21

|F(-x7y)_F(y7x)| <

Voo (LI 4P P ()

and the fact that the preceding supremum is controlled by a finite sum of Schwartz
seminorms of F, it follows that the limit in (8.1.10) exists and gives a tempered
distribution on R?". We can therefore define an operator T : . (R") — .#/(R")
with kernel W as follows:

(T(f) —hm // K(x,y)f(x)o(y)dydx.

\x y|>e

Example 8.1.6. Let A be a Lipschitz function on R. This means that it satisfies the
estimate |A(x) —A(y)| < L|x—y| forsome L < e and all x,y € R. Forx,y € R, x # y,

we let
1

x—y+i(A(x) —A(y))
and we observe that K (x,y) is a standard kernel in SK (1,44 4L). The details are left
to the reader. Note that the kernel K defined in (8.1.11) is antisymmetric.

K(x,y): (8111)

Example 8.1.7. Let the function A be as in the previous example. For each integer
m > 1 we set

A(x) = A(y)
x—y

Kn(x,y) = ( ) ! , x,y€R. (8.1.12)

x=y

Clearly, K;, is an antisymmetric function. To see that each K, is a standard kernel,
we use the simple fact that

(2m+1)L"

maX(|Vme(-x7y)|7|vyKM(x’y)|) S |X—y|2
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and the observation made in Remark 8.1.1. It follows that K,, lies in SK(8,C) with
8 =1and C = 16(2m+ 1)L™. The linear operator with kernel (i) 'K, is called
the mth Caldercn commutator.

8.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators
associated with them.

Definition 8.1.8. Let 0 < §,A < e and K in SK(J,A). A continuous linear operator
T from .7 (R") to ./ (R") is said to be associated with K if it satisfies

TN = | Koy f(v)dy (8.1.13)
for all f € 4;° and x not in the support of f. If T is associated with K, then the
Schwartz kernel W of T coincides with K on R” x R"\ {(x,x) : x € R"}.

If T is associated with K and admits a bounded extension on L?(R"), that is, it
satisfies

17(H)|,2 < B||f]l 2 (8.1.14)

for all f € Z(R"), then T is called a Calderén—Zygmund operator associated with
the standard kernel K. In this case we use the same notation for the L? extension.

In the sequel we denote by CZO(J,A,B) the class of all Calderén—Zygmund
operators associated with standard kernels in SK(8,A) that admit L?> bounded ex-
tensions with norm at most B.

We make the point that there may be several Calder6n—Zygmund operators as-
sociated with a given standard kernel K. For instance, we may check that the zero
operator and the identity operator have the same kernel K (x,y) = 0. We investigate
connections between any two such operators in Proposition 8.1.11. Next we discuss
the important fact that once an operator 7 admits an extension that is L? bounded,
then (8.1.13 ) holds for all f that are bounded and compactly supported whenever x
does not lie in its support.

Proposition 8.1.9. Let T be an element of CZO(8,A, B) associated with a standard
kernel K. Then for all f in L™ with compact support and every x ¢ supp f we have
the absolutely convergent integral representation

T = [ K)o)dy. (8.1.15)

Proof. Identity (8.1.15) can be deduced from the fact that whenever f and ¢ are
bounded and compactly supported functions that satisfy

dist (supp ¢@,supp f) > 0, (8.1.16)



176 8 Singular Integrals of Nonconvolution Type

then we have the integral representation

[ T emdr= [ [ Kexynft)ewdyds. (8.1.17)

To see this, given f and @ as previously, select f;,@; € €;° such that @; are uni-
formly bounded and supported in a small neighborhood of the support of @, @; — ¢
in L2 and almost everywhere, f; — fin [? and almost everywhere, and

1
dist (supp ¢;,supp f;) =, dist (supp ¢, supp f) > 0

for all j. Because of (8.1.7), identity (8.1.17) is valid for the functions f; and ¢; in
place of f and ¢. By the boundedness of T, it follows that T'( f;) converges to T'(f)
in L? and thus

L T0@e@di— [ T(Hx)ewdx.

Now write fj@; — f¢ = (fj —f)(pj +f((Pj — @) and observe that
L | K000 — o) dvax o,

since it is controlled by a multiple of | 7(f)|| 2|/ @; — ¢|| ;2. while

L[ K0 - 167,00 dvex o,

since it is controlled by a multiple of sup; HTt((pj)HLz Hf, - f||L2. This gives that

L [ Kens0edvdx— [ | Kixn)s6)odyax
as j — oo, which proves the validity of (8.1.17). O
We now define truncated kernels and operators.

Definition 8.1.10. Given a kernel K in SK(5,A) and € > 0, we define the truncated
kernel

K(S)(xay) = K(xvy)x\x—ybs .

Given a continuous linear operator 7' from .7 (R") to .#/(R") and € > 0, we define
the truncated operator T'€) by

T (f)(x) = - K© (x,y) f(v)dy

and the maximal singular operator associated with T as follows:

T (f)(x) = sup [T (f) (x)] .

>0
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Note that both 7(¢) and T**) are well defined for f in Ui<p<eL?(R").

We investigate a certain connection between the boundedness of T and the
boundedness of the family {7(€)}.¢ uniformly in & > 0.

Proposition 8.1.11. Let K be a kernel in SK(8,A) and let T in CZO(5,A,B) be
associated with K. For € > 0, let T'¢) be the truncated operators obtained from T.
Assume that there exists a constant B' < oo such that

sup |7 ,_,» <B. (8.1.18)
e>0

Then there exists a linear operator Ty defined on L*(R™) such that

(1) The Schwartz kernel of Ty coincides with K on
R" xR"\ {(x,x): xe R"}.
(2) For some subsequence €; | 0, we have
[ T Wswdr— [ (TNE)s)ds
as j— oo forall f,g in L>(R") .
(3) Ty is bounded on L*(R") with norm
||TOHL2HL2 <B.

(4) There exists a measurable function b on R" with HbHL‘” < B+ B’ such that

T(f)=To(f) =0bf,
forall f € L*(R").

Proof. Consider the Banach space X = %(L? L?) of all bounded linear operators
from L?(R") to itself. Then X is isomorphic to Z((L?)*,(L?)*)*, which is a dual
space. Since the unit ball of a dual space is weak® compact, and the operators T(€)
lie in a multiple of this unit ball, the Banach—Alaoglu theorem gives the existence
of a sequence &; | 0 such that T(€) converges to some Ty in the weak* topology of
HB(L?,1?) as j — oo. This means that

" T(Sf)(f)(x)g(x) dx — - To(f)(x)g(x)dx (8.1.19)

for all f,g in L?(R") as j — 0. This proves (2). The L? boundedness of Tj is a
consequence of (8.1.19), hypothesis (8.1.18), and duality, since

|To(f)||,2 < sup limsup
lgll 2 <1 j—e=

| T () wsx)dx
Rl‘l

<B|f].2-
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This proves (3). Finally, (1) is a consequence of the integral representation

TEEsdr= [ [ KD ) f)dvale)ar
R" n JRn

whenever f, g are Schwartz functions with disjoint supports, by letting j — oo.
We finally prove (4). We first observe that if g is a bounded function with compact
support and Q is an open cube in R”, we have

(1€~ 1) (gx0)(x) = 20() (T~ T) () ¥), (8.1.20)

whenever x ¢ dQ and € is small enough. Indeed, take first x ¢ Q; then x is not in the
support of gx . Note that since gy is bounded and has compact support, we can use
the integral representation formula (8.1.15) obtained in Proposition 8.1.9. Then we
have that for € < dist (x,supp gxp), the left-hand side in (8.1.20) is zero. Moreover,
for x € Q, we have that x does not lie in the support of gyoc, and again because of
(8.1.15) we obtain (T€) —T)(gxo¢)(x) = 0 whenever & < dist (x,supp gxo). This
proves (8.1.20) for all x not in the boundary dQ of Q. Taking weak limits in (8.1.20)
as € — 0, we obtain that

(To—T)(820) = x0(To = T)(8) a.e. (8.1.21)

for all open cubes Q in R”. By linearity we extend (8.1.21) to simple functions.
Using the fact that Ty — T is L? bounded and a simple density argument, we obtain

(To—=T)(gf) =f(To—T)(g) a.e. (8.1.22)

whenever f is in L? and g is bounded and has compact support. If B(0, j) is the open
ball with center 0 and radius j on R”, when j < j' we have

(To —T)(x8(0,j)) = (To — T)(Xp(0.j) XB(0,j")) = XB(0.j) (To — T)(XB(0,j%)) -

Therefore, the sequence of functions (To — T')(¥p(o,j)) satisfies the “consistency”
property
(To —T)(x80,j)) = (To — T)(Xm(0,75)) in B(0, )

when j < j. It follows that there exists a well defined function b such that
b= (T() — T) (%B(OJ)) a.e. in B(O,]) .

Applying (8.1.22) with f supported in B(0, j) and g = x(9 j)» We obtain
(To=T)(f) = (To = T)(fxs(0,5) = f (To—T)(xp0,5)) = f b ae.,

from which it follows that (Ty — T)(f) = b f for all f € L?. Since the norm of T — T
on L? is at most B+ B/, it follows that the norm of the linear map f + b f from L?
to itself is at most B + B’. From this we obtain that HbHL‘*’ <B+B. O
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Remark 8.1.12. We show in the next section (cf. Corollary 8.2.4) that if a Calderén—
Zygmund operator maps L? to L?, then so do all of its truncations T(®) uniformly in
€ > 0. By Proposition 8.1.11, there exists a linear operator 7p that has the form

To(f)(x) = lim K(x,y)f(v)dy,

J=e Jx—y|>¢€;

where the limit is taken in the weak topology of L2, so that T is equal to Ty plus a
bounded function times the identity operator.

We give a special name to operators of this form.

Definition 8.1.13. Suppose that for a given T in CZO(8,A,B) there is a sequence
&; of positive numbers that tends to zero as j — oo such that for all f € L*(R"),

TE)(f) = T(f)

weakly in L?. Then T is called a Calderén—Zygmund singular integral operator.
Thus Calderén—Zygmund singular integral operators are special kinds of Calderén—
Zygmund operators. The subclass of CZO(0,A,B) consisting of all Calderén—
Zygmund singular integral operators is denoted by CZSIO(J,A, B).

In view of Proposition 8.1.11 and Remark 8.1.12, a Calder6n—Zygmund operator
is equal to a Calderén—Zygmund singular integral operator plus a bounded function
times the identity operator. For this reason, the study of Calderén—Zygmund oper-
ators is equivalent to the study of Calderén—Zygmund singular integral operators,
and in almost all situations it suffices to restrict attention to the latter.

8.1.3 Calderon-Zygmund Operators Acting on Bounded Functions

We are now interested in defining the action of a Calderén—Zygmund operator 7 on
bounded and smooth functions. To achieve this we first need to define the space of
special test functions %.

Definition 8.1.14. Recall the space Z(R") = %;°(R") of all smooth functions with
compact support on R”. We define Z(R") to be the space of all smooth functions
with compact support and integral zero. We equip Zp(R") with the same topology
as the space Z(R") (cf. Definition 2.3.1). The dual space of Z,(R") under this
topology is denoted by Z)(R"). This is a space of distributions larger than 2'(R").

Example 8.1.15. BMO functions are examples of elements of Zj(R"). Indeed,
given b € BMO(R"), for any compact set K there is a constant Cx = HbHLl ®) such
that

b0 p(x) dx

< cxllol-
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for any @ € Zp(R"). Moreover, observe that the preceding integral remains un-
changed if the BM O function b is replaced by b + c, where c is a constant.

Definition 8.1.16. Let T be a continuous linear operator from . (R") to .%’(R")
that satisfies (8.1.5) for some distribution W that coincides with a standard kernel
K(x,y) satisfying (8.1.1), (8.1.2), and (8.1.3). Given f bounded and smooth, we
define an element 7'(f) of Z)(R") as follows: For a given ¢ in Zy(R"), select 1] in
%, with 0 <71 <1 and equal to 1 in a neighborhood of the support of ¢. Since T
maps . to ., the expression T(fn) is a tempered distribution, and its action on
@ is well defined. We define the action of 7'(f) on ¢ via

((.0) = (1m0 + [ | [, Keey)otas| o)1 -no)ay, 5129

provided we make sense of the double integral as an absolutely convergent integral.
To do this, we pick xp in the support of ¢ and we split the y-integral in (8.1.23)
into the sum of integrals over the regions Iy = {y € R" : |x—xo| > ;|xo —y|} and
L.={y € R": |x—xo| < ;|x0 — y|}. By the choice of 1 we must necessarily have
dist (supp 1, supp @) > 0, and hence the part of the double integral in (8.1.23) when
y is restricted to Ip is absolutely convergent in view of (8.1.1). For y € I, we use
the mean value property of ¢ to write the expression inside the square brackets in
(8.1.23) as

/ (K(x,y) —K(x0,y)) @(x) dx.

With the aid of (8.1.2) we deduce the absolute convergence of the double integral in
(8.1.23) as follows:

I JKC) = K00l 90 (1= n(9) )
S —n—34
< / Al [ ) avlgoa

wnl

A% ol 1] <o

This completes the definition of 7'(f) as an element of 7 when f € €~ NL”
but leaves two points open. We need to show that this definition is independent of N
and secondly that whenever f is a Schwartz function, the distribution 7'(f) defined
in (8.1.23) coincides with the original element of ./ (R") given in Definition 8.1.8.

Remark 8.1.17. We show that the definition of 7'(f) is independent of the choice
of the function 7. Indeed, if { is another function satisfying 0 < { < 1 that is also
equal to 1 in a neighborhood of the support of @, then f(n — {) and ¢ have disjoint
supports, and by (8.1.7) we have the absolutely convergent integral realization

(T =E0.0) = [ [ K@y f0)(n=0)0)dve(x)ds
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It follows that the expression in (8.1.23) coincides with the corresponding expres-
sion obtained when 1) is replaced by .

Next, if f is a Schwartz function, then both 1 f and (1 — 1) f are Schwartz func-
tions; by the linearity of 7 one has (T(f),@) = (T(nf), @)+ (T((1—n)f),¢).
and by (8.1.7) the second expression can be written as the double absolutely con-
vergent integral in (8.1.23), since ¢ and (1 — 1) f have disjoint supports. Thus the
distribution 7' (f) defined in (8.1.23) coincides with the original element of .’ (R")
given in Definition 8.1.8.

Remark 8.1.18. When T has a bounded extension that maps L? to itself, we may
define T(f) for all f € L”(R"), not necessarily smooth. Simply observe that under
this assumption, the expression T'(fn) is a well defined L? function and thus

(T(rm.0) = [ T @) dx

is given by an absolutely convergent integral for all ¢ € %.

Finally, observe that although (T(f), ¢) is defined for f in L™ and ¢ in %, this
definition is valid for all square integrable functions ¢ with compact support and
integral zero; indeed, the smoothness of ¢ was never an issue in the definition of

(T(f), ).

In summary, if 7' is a Calderén—Zygmund operator and f lies in L”(R"), then
T(f) has a well defined action {T(f),¢) on square integrable functions ¢ with
compact support and integral zero. This action satisfies

[T <TG 2ll0le + Cusalloll /]l <o @B124)

In the next section we show that in this case, 7'(f) is in fact an element of BMO.

Exercises

8.1.1. Suppose that K is a function defined away from the diagonal on R” x R”" that
satisfies for some 6 > 0 the condition

w2

K(x,y)—KX,y)| <A
Ko~k <4 0L

whenever |x — x| < é|x—y|. Prove that K satisfies (8.1.2) with constant A =
(3)"*+9A’. Obtain an analogous statement for condition (8.1.3).

8.1.2. Prove that there does not exist a tempered distribution W on R?" that extends
the function |x — y| ™" defined on R*"\ {(x,x) : x € R"}.

[Hint: Apply such a distribution to a positive smooth bump that does not vanish at
the origin.}
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8.1.3. Let ¢(x) be a smooth radial function that is equal to 1 when |x| > 1 and van-
ishes when |x| < . Prove that if K lies in SK(§,A), then all the smooth truncations

Ké,e) (x,y) =K(x,y)o(*.”) lie in SK(8,cA) for some ¢ > 0 independent of & > 0.

8.1.4. Suppose that A is a Lipschitz map from R” to R™. This means that there
exists a constant L such that |A(x) — A(y)| < L|x—y| for all x,y € R". Suppose that
F is a ¢ odd function defined on R™. Show that the kernel

K(ry) = | F<A@%ﬂﬂw>

el -y
is in SK(1,C) for some C > 0.

8.1.5. Extend the result of Proposition 8.1.11 to the case that the space L? is re-
placed by L7 for some 1 < g < oe.

8.1.6. Observe that for an operator T as in Definition 8.1.16, the condition T (1) =0
is equivalent to the statement that for all ¢ smooth with compact support and integral
zero we have [p. T'(¢)(x) dx = 0. A similar statement holds for 7".

8.1.7. Suppose that K(x,y) is continuous, bounded, and nonnegative on R” x R”"
and satisfies [p. K(x,y)dy =1 for all x € R". Define a linear operator T by setting
T(£)(x) = Jgo K(x,3) f(3)dy for f € L!(R").

(a) Suppose that % is a continuous and integrable function on R” that has a global
minimum [i.e., there exists xo € R” such that i (xp) < h(x) for all x € R"]. If we have

for all x € R”, prove that & is a constant function.

(b) Show that T preserves the set of integrable functions that are bounded below by
a fixed constant.

(c) Suppose that T (T (f)) = f for some everywhere positive and continuous function
f onR". Show that T (f) = f.

[Hint: Part (c): Let L(x,y) be the kernel of 7 o T. Show that

TN, T
o250 )@= g

T(f)(y)

and conclude by part (a) that (f(y)

is a constant. |

8.2 Consequences of > Boundedness

Calderén—Zygmund singular integral operators admit L> bounded extensions. As in
the case of convolution operators, L? boundedness has several consequences. In this
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section we are concerned with consequences of the L? boundedness of Calderén—
Zygmund singular integral operators. Throughout the entire discussion, we assume
that K(x,y) is a kernel defined away from the diagonal in R*" that satisfies the
standard size and regularity conditions (8.1.1), (8.1.2), and (8.1.3). These conditions
may be relaxed; see the exercises at the end of this section.

8.2.1 Weak Type (1,1) and L Boundedness of Singular Integrals
We begin by proving that operators in CZO(8,A, B) are bounded from L' to weak
L'. This result is completely analogous to that in Theorem 4.3.3.

Theorem 8.2.1. Assume that K(x,y) is in SK(8,A) and let T be an element of
CZO0(6,A,B) associated with the kernel K. Then T has a bounded extension that
maps L' (R") to L' (R") with norm

HTHLIHLLM < C”(A+B)a
and also maps LP (R") to itself for 1 < p < oo with norm

7] < Cymax(p,(p—1)"")(A+B),

LP—LP

where C, is a dimensional constant.

Proof. The proof of this theorem is a reprise of the argument of the proof of Theo-
rem (4.3.3). Fix o > 0 and let f be in L' (R"). Since 7'(f) may not be defined when
f is a general integrable function, we take f to be a Schwartz class function. Once
we obtain a weak type (1, 1) estimate for Schwartz functions, it is only a matter of
density to extend it to all £ in L'.

We apply the Calder6n—Zygmund decomposition to f at height yor, where yis a
positive constant to be chosen later. Write f = g+ b, where b =73 ; b; and conditions
(1)—(6) of Theorem 4.3.1 are satisfied with the constant & replaced by yo. Since we
are assuming that f is Schwartz function, it follows that each bad function b; is
bounded and compactly supported. Thus 7'(b;) is an L? function, and when x is not
in the support of b; we have the integral representation

T(bj)(x) = 0 bj(y)K(x,y)dy
J
in view of Proposition 8.1.9.

As usual, we denote by £(Q) the side length of a cube Q. Let Q; be the unique
cube with sides parallel to the axes having the same center as Q; and having side
length

0(Q3) =2vnl(Q)).

We have
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{xeR":|T(f)(x)| > a}

< erR”: IT(g)(x)| > ;‘H+erknz IT(b)(x)| > ‘;}‘
< Il +[{xeUgs: Iy~ 7}
J
< Bz||gHLz+ZIQ |+ /(U oy TOIa
S 22 2"32 (ya Hf”L + (2y/n)" Hfﬂcu n 2/ ) )(x)| dox
n+1 n f |
- ((2 znliy) 2\4 )H I, Z/ (o)l dx.

It suffices to show that the last sum is bounded by some constant multiple of || f]|,,-
Let y; be the center of the cube Q. For x € (Q7)°, we have |[x —y;| > 1é(Q ) =
Vnt(Q)). Butif y € Q; we have |y — v, < V/nf(Q;)/2: thus |y — v, < Lx—
since the diameter of a cube is equal to /n times its side length. We now estimate
the last displayed sum as follows:

Z/* (x)|dx = Z/(Q* (x,y)dy‘dx
= Z/( e Q_bj(y)(K(x,y)—K(x,y,))dy‘ dx
<X, B0 . K G) =Kyl dxdy

= / bi / K(x,y) —K(x,yj)|dxd
; Qj| 1)l \xfyj\ZZ\yfyj\| (x.7) (x,y;)l dxdy
<MY [ 1bi)ldy

j 79
= 422 ||l

J
< A2"|f]| -

Combining the facts proved and choosing y = B~!, we deduce a weak type (1, 1)
estimate for 7'(f) when f is in the Schwartz class. We obtain that 7 has a bounded
extension from L' to L' with bound at most C, (A + B). The L” resultfor 1 < p <2
follows by interpolation and Exercise 1.3.2. The result for 2 < p < o follows by
duality; one uses here that the dual operator 7" has a kernel K’ (x,y) = K(y,x) that
satisfies the same estimates as K, and by the result just proved, it is also bounded on
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L? for 1 < p < 2 with norm at most C,(A + B). Thus T must be bounded on L? for
2 < p < o with norm at most a constant multiple of A + B. 0

Consequently, for operators T in CZO(8,A, B) and L? functions f, 1 < p < e, the
expressions 7'(f) make sense as L” (or L' when p = 1) functions. The following
result addresses the question whether these functions can be expressed as integrals.

Proposition 8.2.2. Let T be an operator in CZO(5,A,B) associated with a kernel
K. Then for g € LP(R"), 1 < p < oo, the following absolutely convergent integral
representation is valid:

T(g)lx) = /R K(xy)g(y)dy (8.2.1)

for almost all x € R"\ supp g, provided that supp g ; R".

Proof. Set gi(x) = g(x) X|g(x)|<kX|x|<k- These are L” functions with compact support
that is contained in the support of g. Also, the g; converge to g in L” as k — oo. In
view of Proposition 8.1.9, for every k we have

T(e)() = [ K(xy) ) dy

for all x € R"\ supp g. Since T maps L” to L” (or to weak L' when p = 1), it follows
that T (g;) converges to T(g) in weak L? and hence in measure. By Proposition
1.1.9, a subsequence of T(g,) converges to T(g) almost everywhere. On the other
hand, for x € R"\ supp g we have

/ K(x,y)gk(y)dy—>/ K(x,y)g(y)dy
R" R"

when k — oo, since the absolute value of the difference is bounded by B || 8k — g|

L’
which tends to zero. The constant B is the L” norm of the function |x — y|’”’5 on
the support of g; one has |x —y| > ¢ > 0 for all y in the support of g and thus B < .
Therefore T(gx)(x) converges a.e. to both sides of the identity (8.2.1) for x not in
the support of g. This concludes the proof of this identity. 0

8.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is an analogous boundedness result to Theorem
8.2.1 concerning the maximal singular integral operator 7). We note that given
f in LP(R") for some 1 < p < oo, the expression T™) (f)(x) is well defined for all
x € R". This is a simple consequence of estimate (8.1.1) and Holder’s inequality.

Theorem 8.2.3. Let K be in SK(6,A) and T in CZO(J,A, B) be associated with K.
Let r € (0,1). Then there is a constant C(n,r) such that
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T ()] < C(n,r) [M(IT(f)I’)(X) "+ (A+B)M(f)(x) (82.2)

is valid for all functions in \J; < ,<.. LP (R"). Also, there exist dimensional constants
C,,,C), such that

IN

T ey
(O]

Jorall1 < p <eoandall fin LP(R").

Co(A+B)[|£]] 1 gy (8.2.3)
Cu(A+B)max(p, (p—1)"")||£]| (8.2.4)

A

Lp(R”> — Lp(R”>’
Estimate (8.2.2) is referred to as Cotlar’s inequality.

Proof. We fix rsothat 0 < r < 1 and f € LP(R") for some p satisfying 1 < p < eo.
To prove (8.2.2), we also fix € > 0 and we set f(f’x = fXB(xe) and [ = S XB(xe)e
Since x ¢ supp f£* whenever |x — y| > €, using Proposition 8.2.2 we can write

T(f2")(x) = /R K(xy) [t (y)dy = K(x,y) f()dy =T (f)(x).

[x—y[>€

In view of (8.1.2), for z € B(x, §) we have |z — x| < é|x—y| whenever |x —y| > €
and thus

T - = | [ (Ko -Ky)ro)ay

Alf)]
—yze (|x—y|+ |y —z|)"t®

2% ALF0)|
< (0 s et e eyayees®
< CaAM()(),

where the last estimate is a consequence of Theorem 2.1.10. We conclude that for
all z € B(x, §) we have

IN

lz—x]°

A

7@ @) = T2 )
< T2 @) =T () @+ 1T (f2) ()] (8.2.5)
< Cus AM() () + T (f5) @1+ T ()]

For 0 < r < 1 it follows from (8.2.5) that for z € B(x, § ) we have

ITE ()] < C s A™MH ) +IT (S )@ +HIT ()] (8.2.6)

1

o

Integrating over z € B(x, § ), dividing by [B(x, §)|, and raising to the power ,, we

obtain
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TN <3 |CaAM N0+ (oo ey [ OGN
FMITONE! |

Using Exercise 2.1.5, we estimate the middle term on the right-hand side of the
preceding equation by

1 T rl_, 1,00 _ r ’
QmLquif B A7 ) < GBI,
This proves (8.2.2).

We now use estimate (8.2.2) to show that T is L” bounded and of weak type
(1,1). To obtain the weak type (1, 1) estimate for 7(*) we need to use that the Hardy—
Littlewood maximal operator maps L”* to LP>* for all 1 < p < e. See Exercise
2.1.13. We also use the trivial fact that for all 0 < p,q < o> we have

AN e = 2
Take any r < 1 in (8.2.2). Then we have

1
r

1
" 1
Lr

[mM(T ()"

L=

()17,
Gl Iy

Cn,rHT(f)HLLM
Cor(A+B)||f]],+

IN

00

IN

where we used the weak type (1, 1) bound for 7 in the last estimate.
To obtain the L” boundedness of T*) for 1 < p < oo, we use the same argument
as before. We fix r = % Recall that the maximal function is bounded on L?” with

norm at most 32 2/%’11 <2-32 [see (2.1.5)]. We have

72 ||M(|T(f)|%)Hi2P

CER [ GOIEI [
4-3"||T(f)||,
Cnmax(pllap)(A‘FB)Hf}

IM(T(f)]2)?]

IN

IN

IN

L

where we used the L? boundedness of T in the last estimate. O

We end this section with two corollaries, the first of which confirms a fact men-
tioned in Remark 8.1.12.
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Corollary 8.2.4. Let K be in SK(8,A) and T in CZO(8,A, B) be associated with K.
Then there exists a dimensional constant C,, such that

sup [T o Ca(A+ T 2o 2) -
>0

Corollary 8.2.5. Let K be in SK(8,A) and let T = limg; o T'&) be an element of
CZSI10(6,A, B) associated with K. Then for 1 < p < eoand all f € L?(R") we have
that

TE)(f) = T(f)

almost everywhere.

Proof. Using (8.1.1), (8.1.2), and (8.1.3), we see that the alleged convergence holds
(everywhere) for smooth functions with compact support. The general case follows
from Theorem 8.2.3 and Theorem 2.1.14. O

8.2.3 H' — L' and L~ — BMO Boundedness of Singular Integrals

Theorem 8.2.6. Let T be an element of CZO(0,A,B). Then T has an extension that
maps H'(R") to L' (R"). Precisely, there is a constant C, 5 such that

HTHH]HLI <GCus (A+ HT||L2~>L2) :

Proof. The proof is analogous to that of Theorem 6.7.1. Let B = HTHLZHLZ' We

start by examining the action of T on L? atoms for H'. Let f = a be such an atom,
supported in a cube Q. Let c¢ be the center of Q and let Q* = 2,/n Q. We write

/ IT(a) (x)| dx = /Q IT(a) (x)| dx + /(Q*V T(@)®)|dx  (82.7)

and we estimate each term separately. We have
- 2
w11
[ @i < 10 [, i@ ra)

sot( [ |a<x>|2dx)é

o L 1
< B|OQ*]2|Q| 2
= C,B,

IN

A

where we used property (b) of atoms in Definition 6.6.8. Now observe that if x ¢ Q*
and y € Q, then

1
ly—col < 2|X_CQ|§
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hence x — y stays away from zero and T (a)(x) can be expressed as a convergent
integral by Proposition 8.2.2. We have

kwmwmw=lw

/éK (x,y)a(y)dy ‘ dx

'w@w K(x.co))a(y)dy|dx
0

Q*

Aly col®
< // |x_CQ|,,+5dxla(y)|dy

qwéwmw

C, 5A1012|a]l 2
< C 5Al0]2 |02
C:l78A

K(x,cq)|dxla(y)|dy

IN

IN

N

Combining this calculation with the previous one and inserting the final conclusions
in (8.2.7), we deduce that L? atoms for H' satisfy

1T(a)||,) <Cus(A+B). (8.2.8)

"

To pass to general functions in H', we use Theorem 6.6.10 to write an f € H' as
f = z A’jaja
j=1
where the series converges in H 1, the a; are [? atoms for H ! and
||fHH, ~ ) (A (8.2.9)
j=1

Since 7 maps L' to weak L' by Theorem 8.2.1, T(f) is already a well defined L'
function. We plan to prove that

T(f) = i AT (a)) a.e. (8.2.10)
Jj=1

Note that the series in (8.2.10) converges in L' and defines an integrable function
almost everywhere. Once (8.2.10) is established, the required conclusion (6.7.5)
follows easily by taking L! norms in (8.2.10) and using (8.2.8) and (8.2.9).

To prove (8.2.10), we use that T is of weak type (1,1). For a given u > 0 we
have
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H\T(f)—il%'T(ajH > )

=

N
<[l - S arte] > w2+ 1 3 ar)|>u/2)

Jj=N+1

2 N 2 oo

< n [ P f_jzlljajHL, + u H]’%Jrl/le(aj)HLl
2 N 2 oo

< MTlop- f—Z%-ajH o Cus(A+B) X (Al
H j=1 HH JoNt1

Since le\’:l Aja; converges to f in H' and 71 |4j| < eo, both terms in the sum
converge to zero as N — co. We conclude that

[T~ 3 AT (ap)] > u}| =0
j=1

for all u > 0, which implies (8.2.10). 0

Theorem 8.2.7. Let T be in CZO(68,A,B). Then for any bounded function f, the
distribution T (f) can be identified with a BMO function that satisfies

1T garo < CrsA+B)|f] - (8.2.11)
where C, 5 is a constant.

Proof. Let L%’C be the space of all square integrable functions with compact support

and integral zero on R”. This space is contained in H'!(R") (cf. Exercise 6.4.3) and
contains the set of finite sums of L? atoms for H'!, which is dense in H' (cf. Exercise
6.6.5); thus L&C is dense in H'. Recall that for f € L™, T(f) has a well defined action

(T(f), @) on functions ¢ in L3 . that satisfies (8.1.24).
Suppose we have proved the identity

(T(5):9) = |, T(9)X)f(x)dx, (8.2.12)
for all bounded functions f and all ¢ in L(Z)’C. Since such a ¢ is in H!, Theorem

8.2.6 yields that T*(¢) is in L', and consequently, the integral in (8.2.12) converges
absolutely. Assuming (8.2.12) and using Theorem 8.2.6 we obtain that

[T o < T @) [/l]- < Cus@A+B)[[ @] 7]

We conclude that L(¢) = (T(f),¢) is a bounded linear functional on L} . with
norm at most C,, 5(A + B) || f|| .- Obviously, L has a bounded extension on H' with
the same norm. By Theorem 7.2.2 there exists a BMO function by that satisfies
HbeBMO <c, ||L||H1 _ ¢ such that the linear functional L has the form Ly, (using the
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notation of Theorem 7.2.2). In other words, the distribution 7'(f) can be identified
with a BMO function that satisfies (8.2.11) with C,, 5 = C;Cnyg, ie.,

HT(f)HBMO <C,Cy5(A+B) HfHL“"

We return to the proof of identity (8.2.12). Pick a smooth function with compact
support 1) that satisfies 0 <71 < 1 and is equal to 1 in a neighborhood of the support
of ¢. We write the right-hand side of (8.2.12) as

[ T sdvt [ T(@)1-n)fdx=(T(nf).0)+ [ T()(1—m)sdx.

In view of Definition 8.1.16, to prove (8.2.12) it will suffice to show that

T(@)1 - fdx= [ [ (K(xy)~K(0.9) o) del1 = n() £3)dy.

R”

where xq lies in the support of ¢. But the inner integral above is absolutely conver-
gent and equal to

[, K =KGom)o@dr= [ K(000(x)dx =T"(9)0),

since y ¢ supp @, by Proposition 8.1.9. Thus (8.2.12) is valid. g

Exercises

8.2.1. Let T : ./(R") — ./(R") be a continuous linear operator whose Schwartz
kernel coincides with a function K(x,y) on R" x R" minus its diagonal. Suppose
that the function K (x,y) satisfies

sup/ 1K (x,y)|dy < A < oo.
R>0/R<|x—y|<2R

(a) Show that the previous condition is equivalent to

sup o [ ey [K(e)dy < A < oo

R>0 It J|x—y|<R

by proving that A’ < A <24’

(b) For € > 0, let T(®) be the truncated linear operators with kernels K (s)(x,y) =
K(X,y)X|x—y|>e- Show that T(&)(f) is well defined for Schwartz functions.

[Hint: Consider the annuli £2/ < |x| < €2/*! for j > 0.]

8.2.2. Let T be as in Exercise 8.2.1. Prove that the limit 7(¢)(f)(x) exists for all f
in the Schwartz class and for almost all x € R" as € — 0 if and only if the limit



192 8 Singular Integrals of Nonconvolution Type

lim K(x,y)dy

=0 Je<|x—y|<1
exists for almost all x € R".

8.2.3. Let K(x,) be a function defined away from the diagonal in R?" that satisfies

sup/ |K(x,y)|dy <A <eo
R>0JR<[x—y|<2R

and also Hormander’s condition

swu/ IK(x,y) — K(x,y/)] dx < A" < oo,
yy R [x—y[22[y—y|

y2£Y

Show that all the truncations K(¢)(x,y) also satisfy Hormander’s condition uni-
formly in € > 0 with a constant A +-A”.

8.2.4.Let T be as in Exercise 8.2.1 and assume that 7 maps L"(R") to itself for
some 1 < r < oo,

(a) Assume that K(x,y) satisfies Hormander’s condition, Then T has an extension
that maps L! (R") to L!(R") with norm

1Tl 1= < CalA+B),
and therefore T maps L”(R") to itself for 1 < p < r with norm

7] <Cu(p—1)""(A+B),

LP—LP

where C, is a dimensional constant.
(b) Assuming that K’ (x,y) = K(y,x) satisfies Hormander’s condition, prove that T
maps L?(R") to itself for » < p < oo with norm

Tl pp < Cap(A+B),

where C, is independent of p.

8.2.5. Show that estimate (8.2.2) also holds when r = 1.

[Hint: Estimate (8.2.6) holds when r = 1. For fixed € > 0, take 0 < b < [T &) (f)(x)|
and define BS(x) = B(x,5) N{|T(f)| > 5}, B5(x) = B(x,5) N {|T(f5™")| > 5}
and B§(x) = B(x,5) if C,sM(f)(x) > % and empty otherwise. Then |B(x,5)| <
|Bf (x)| + |B5(x)| + |B5(x)|. Use the weak type (1, 1) property of 7' to show that b <
C(n)(M(IT(f)|)(x) +M(f)(x)), and take the supremum over all b < |T®)(f)(x)|.]

8.2.6. Prove that if |f|log™ || is integrable over a ball, then T(*)(f) is integrable
over the same ball.
[Hint: Use the behavior of the norm of 7(*) on L? as p — 1 and use Exercise 1.3.7.}
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8.3 The 7(1) Theorem

We now turn to one of the main results of this chapter, the so-called 7' (1) theorem.
This theorem gives necessary and sufficient conditions for linear operators 7 with
standard kernels to be bounded on L?(R™). In this section we obtain several such
equivalent conditions. The name of theorem 7'(1) is due to the fact that one of the
conditions that we derive is expressed in terms of properties of the distribution 7'(1),
which was introduced in Definition 8.1.16.

8.3.1 Preliminaries and Statement of the Theorem

We begin with some preliminary facts and definitions.

Definition 8.3.1. A normalized bump is a smooth function ¢ supported in the ball
B(0,10) that satisfies
[(0Fp) () <1

for all multi-indices |ct| <2[5]+ 2, where [x] denotes here the integer part of x.

Observe that every smooth function supported inside the ball B(0, 10) is a con-
stant multiple of a normalized bump. Also note that if a normalized bump is sup-
ported in a compact subset of B(0, 10), then small translations of it are also normal-
ized bumps.

Given a function f on R”, R > 0, and x¢ € R", we use the notation fg to denote
the function fz(x) = R™"f(R™'x) and 7%(f) to denote the function 7% (f)(x) =
f(x—xp). Thus

T0(fr)(y) = fr(y—x0) =R "f(R™' (y —x0)).

Set N = [5]+ 1. Using that all derivatives up to order 2N of normalized bumps are
bounded by 1, we easily deduce that for all xo € R”, all R > 0, and all normalized
bumps ¢ we have the estimate

R [ 70006 de
= [ la@la
Rn

= o (y)e 205 dy‘ dE (83.1)
Rn Rl‘l

— _ AWV omiy-E dé

< Gy,

since |(d¢@)(x)| < 1 for all multi-indices o with [et| < [7]+ 1, and G, is indepen-
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dent of the bump ¢. Here I — A denotes the operator

n an)
I1—A = .
-a)(0)=p+ %55

Definition 8.3.2. We say that a continuous linear operator
T: . 7R") — .7 (R")

satisfies the weak boundedness property (WBP) if there is a constant C such that for
all f and g normalized bumps and for all xo € R" and R > 0 we have

(T (t%(fr)), T°(gr))| < CR™". (8.3.2)

The smallest constant C in (8.3.2) is denoted by H THW B

Note that H T0(fR) ||L2 = ||fHL2R’"/2 and thus if 7' has a bounded extension from
L?(R") to itself, then T satisfies the weak boundedness property with bound

17l < 10" T[] 22
where v,, is the volume of the unit ball in R”.
We now state one of the main theorems in this chapter.

Theorem 8.3.3. Let T be a continuous linear operator from . (R") to .’ (R")
whose Schwartz kernel coincides with a function K on R* x R"\ {(x,x) : x € R"}
that satisfies (8.1.1), (8.1.2), and (8.1.3) for some 0 < §,A < . Let K'®) and T®)
be the usual truncated kernel and operator for € > 0. Assume that there exists a
sequence €; | 0 such that for all f,g € /(R") we have

(TE(f),8) = (T(f):8)- (8.3.3)

Consider the assertions:

(i) The following statement is valid:

[||T(€>(ZB>||L2+H (e ||Lz} o

B| = supsup )
|B|2 1B|2

B £>0

where the first supremum is taken over all balls B in R".

(ii) The following statement is valid:

Bzzsup[ /} / K xydy
87N7x0

B(xg,N) |x—y|<N

d

1 : 2 12
+ / / K@(y,X)dy‘ dx] < oo,
B(xg.N) ' |x—y|<N
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where the supremum is taken over all 0 < € < N < oo and all xo € R".

(iii) The following statement is valid:

B3 = sup sup supR? [HT(T"O((pR))HLz + ||T’(T"°((pR))||L2} < oo,
® xg€R"R>0

where the first supremum is taken over all normalized bumps .

(iv) The operator T satisfies the weak boundedness property and the distributions
T(1) and T'(1) coincide with BMO functions, that is,

By = ||T(1)HBM0+ HTt(l)HBM0+ HTHWB <o

(v) For every & € R” the distributions T (e2™()¢) and T'(e*™()¢) coincide with
BMO functions such that

2mi(-)-

Bs = sup HT(e >5)HBM0+ Sup ||Tt(ezm(')'é)HBM0 < e
EcRr EeR”

(vi) The following statement is valid:

Bs = sup sup sup B" || T(2(08)| o |7 (2 (98)) [ ) <=
® xpeR"R>0

where the first supremum is taken over all normalized bumps @.

Then assertions (i)—(vi) are all equivalent to each other and to the L* boundedness
of T, and we have the following equivalence of the previous quantities:

ens(A+Bj) <||T| ;2 <Cus(A+B)),

for all j € {1,2,3,4,5,6}, for some constants c, 5,C, 5 that depend only on the
dimension n and on the parameter & > 0.

Remark 8.3.4. Condition (8.3.3) says that the operator T is the weak limit of a se-
quence of its truncations. We already know that if T is bounded on L2, then it must be
equal to an operator that satisfies (8.3.3) plus a bounded function times the identity
operator. (See Proposition 8.1.11.) Therefore, it is not a serious restriction to assume
this. See Remark 8.3.6 for a version of Theorem 8.3.3 in which this assumption is
not imposed. However, the reader should always keep in mind the following patho-
logical situation: Let K be a function on R" x R\ {(x,x) : x € R"} that satisfies
condition (ii) of the theorem. Then nothing prevents the Schwartz kernel W of T
from having the form
W = K(x,y) + h(x) 8-y,

where /(x) is an unbounded function and ,—, is Lebesgue measure on the subspace
x =Y. In this case, although the T()s are uniformly bounded on L%, T cannot be L?
bounded, since # is not a bounded function.
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Before we begin the lengthy proof of this theorem, we state a lemma that we
need.

Lemma 8.3.5. Under assumptions (8.1.1), (8.1.2), and (8.1.3), there is a constant
C,, such that for all normalized bumps ¢ we have

sup /
xpER"

|x—x0|>20R

C,A?

2
| ke nas| drs Tl 634

Proof. Note that the interior integral in (8.3.4) is absolutely convergent, since
70 (@g) is supported in the ball B(xp, lIOR) and x lies in the complement of the dou-
ble of this ball. To prove (8.3.4), simply observe that since |[K(x,y)| < Alx—y|™",
we have that

CA
T(t*
Tl s
whenever |x — x| > 20R. The estimate follows easily. O

8.3.2 The Proof of Theorem 8.3.3

This subsection is dedicated to the proof of Theorem 8.3.3.

Proof. The proof is based on a series of steps. We begin by showing that condition
(iii) implies condition (iv).

(i) = (iv)

Fix a % function ¢ with 0 < ¢ < 1, supported in the ball B(0,4), and equal to
1 on the ball B(0,2). We consider the functions ¢(-/R) that tend to 1 as R — oo and
we show that 7'(1) is the weak limit of the functions 7(¢(-/R)). This means that for
all g € 2/, (smooth functions with compact support and integral zero) one has

(T(¢(-/R)),g) = (T(1),8) (8.3.5)

as R — oo. To prove (8.3.5) we fix a %;” function 1) that is equal to one on the support
of g. Then we write

(T(0(/R)).g) = (T(MO(/R)).8) +(T((1 = MO(/R)).¢)
= (T(no(-/R)).g)
] (Ky) = K0.)s(0(1 =)o b/R)dydsx,

where x is a point in the support of g. There exists an Ry > 0 such that for R > Ry,
¢(-/R) is equal to 1 on the support of 1, and moreover the expressions
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| [ (K = KGo,)g(0(1 =)0 (3/R) dyd

converge to
// (K(x,y) = K(x0,7))(x)(1 = n(y)) dydx

as R — oo by the Lebesgue dominated convergence theorem. Using Definition
8.1.16, we obtain the validity of (8.3.5).

Next we observe that the functions ¢(-/R) are in L?, since ¢(x/R) = R "¢g(x),
and by hypothesis (iii), ¢ are in L>. We show that

HT /R HBMO <Cn 5(A+B3) (8.3.6)

uniformly in R > 0. Once (8.3.6) is established, then the sequence {T(¢(-/))}7-,

lies in a multiple of the unit ball of BMO = (H')*, and by the Banach-Alaoglou
theorem, there is a subsequence of the positive integers R; such that T(¢(-/R;))
converges weakly to an element b in BMO. This means that

(T(0(-/R})),8) — (b,g) (8.3.7)

as j — oo forall g € %. Using (8.3.5), we conclude that 7'(1) can be identified with
the BM O function b, and as a consequence of (8.3.6) it satisfies

HT(l)HBMO < Cn,5(A+B3)'

In a similar fashion, we identify 77 (1) with a BMO function with norm satisfying

HT[(l)HBMO < Cn-,5(A+B3)'

We return to the proof of (8.3.6). We fix a ball B = B(xg,r) with radius r > 0
centered at xy € R”. If we had a constant cg such that

|119| /B|T(¢('/R))(X)—c3|dx§c,,,533 (8.3.8)

for all R > 0, then property (3) in Proposition 7.1.2 (adapted to balls) would yield
(8.3.6). Obviously, (8.3.8) is a consequence of the two estimates

|B|/|T (5)( )] ()] dx < cu B3, (8.3.9)
|B|/’T (TN ) =T[(1=0(7)9( )] (x0)|dx < CgA. (8.3.10)
We bound the double integral in (8.3.10) by

|113| / /\ X \>zr|K(x’y) K(x0,y)| ¢ (y/R)dydx, (8.3.11)



198 8 Singular Integrals of Nonconvolution Type

since 1 — ¢ ((y —xo)/r) = 0 when |y — xo| < 2r. Since |x —xg| < r < %|y—x0|, con-
dition (8.1.2) gives that (8.3.11) holds with ¢, = @,_1 = |[S"!|.

It remains to prove (8.3.9). It is easy to verify that there is a constant Cy =
Co(n,¢) such that for 0 < € < 1 and for all a € R" the functions

Colo(e(x+a)o(x),  Cylo(x)o(—a+ex) (8.3.12)

are normalized bumps. The important observation is that with @ = xo/r we have

6(3)9( ) =7 [(6(r(+a)9() | ) (83.13)
=R (9()0(—a+%())) (). (8.3.14)

R

and thus in either case » < R or R < r, one may express the product ¢ ()9 (") as
a multiple of a translation of an L'-dilation of a normalized bump.
Let us suppose that » < R. In view of (8.3.13) we write

T[o(7)9(z)](x) = Cor"T [T°(er)] (x)

for some normalized bump ¢. Using this fact and the Cauchy—Schwarz inequality,
we estimate the expression on the left in (8.3.9) by

Cor'/?

1
2
| Vn/2</|T[Tx0((Pr)](x)|2dx> = i Bz=cuBs,
1B B B

where the first inequality follows by applying hypothesis (iii).
We now consider the case R < r. In view of (8.3.14) we write

T[o(7)9(5)](x) = CoR"T (¢r) (x)

for some other normalized bump ¢. Using this fact and the Cauchy—Schwarz in-
equality, we estimate the expression on the left in (8.3.9) by

C Rn/z i C Rn/z
OIRM(ﬂU&WWM)< o By anBs
|B|2 B |B|2

by applying hypothesis (iii) and recalling that R < r. This proves (8.3.9).

To finish the proof of (iv), we need to prove that T satisfies the weak boundedness
property. But this is elementary, since for all normalized bumps ¢ and y and all
x € R" and R > 0 we have

(T (2 (wr) T (or))| < |7 (wr) | 2 |75 (00) | 2
< By (o0
<C,BsR™".
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This gives || THWB < G,B3, which implies the estimate B4 < C, 5(A + B3) and con-
cludes the proof of the fact that condition (iii) implies (iv).

(iv) = (L? boundedness of T)

We now assume condition (iv) and we present the most important step of the
proof, establishing the fact that 7 has an extension that maps L?(R") to itself. The
assumption that the distributions 7'(1) and 7" (1) coincide with BMO functions leads
to the construction of Carleson measures that provide the key tool in the bounded-
ness of T'.

We pick a smooth radial function @ with compact support that is supported in the
ball B(0, é) and that satisfies g, @(x)dx = 1. Fort >0 we define @, (x) =" ®(7).
Since @ is a radial function, the operator

P(f)=f+D (8.3.15)

is self-transpose. The operator F is a continuous analogue of S; = ¥, ; A, where
the A;’s are the Littlewood—Paley operators.

We now fix a Schwartz function f whose Fourier transform is supported away
from a neighborhood of the origin. We discuss an integral representation for T'(f).
We begin with the facts, which can be found in Exercises 8.3.1 and 8.3.2, that

T(f) = imPITPY(f),

0 = lim P'TP}(f),
S—ro00

where the limits are interpreted in the topology of .’/ (R"). Thus, with the use of
the fundamental theorem of calculus and the product rule, we are able to write

T(f) = imPCTRI(f) = lim PPTPY(f)

§—00
.l d
= —lim [ s (P’TP?
lim [ s, (BTR)()

ds

N
1

T [s (jSPS) TP(f)+ P2 (TSjSPf) (f)] SRNCERTY
For a Schwartz function g we have
(s0.P2®) (& = a@)s § Bls2)?
= B(E) D(sE) (25& - VO(sE))
= 2(8) 2 W (s€)Ox(sE)

o~ o~

_ i(kaka ©) €)= 3 (0.0:(0) ().

k=1 k=1
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where for 1 <k <n, q’;(é) = 2§k<13(§), é\k(é) = 8,((5(5) and Q s, Q;w are operators
defined by

Qk,x(g) =g* (s, Qk,s (8) = &*(O)s;

here (6y);(x) = s "6 (s~'x) and (%), are defined similarly. Observe that ¥ and
O are smooth odd bumps supported in B(0, é) and have integral zero. Since ¥ and

O are odd, they are anti-self-transpose, meaning that (Qx ;)’ = —Q s and (ékix)t =
—QOy,s- We now write the expression in (8.3.16) as

1 1
L e ~ ds e ~ ds
—lim [ / Ok sOksTRP(f)  + / PsPsT Qg s Ok s (f) ; (8.3.17)
8—>0k:1 € S € N

where the limit converges in ./ (R"). We set
Tk,s = Qk,sTva

and we observe that the operator P,TQy , is equal to —((T")x)".

Recall the notation 7°(h)(z) = h(z —x). In view of identity (2.3.21) and the con-
vergence of the Riemann sums to the integral defining f * @y in the topology of .
(see the proof of Theorem 2.3.20), we deduce that the operator T ; has kernel

Kis(x,9)=—(T(Z (@), T((F)s)) = —(T" (T ((¥)s)), (D)) . (8.3.18)
Likewise, the operator —(7"); ; has kernel

(T'(2" (@), ' ((F)s)) = (T (T ((H)s)), T (D)) -

For 1 <k < n we need the following facts regarding the kernels of these operators:

(T (T((H)s), T (@)
(T (2 ((#)s)), 7 (@)

Cos(|IT |z +A) ps(x—y), (8.3.19)
Cn,S(HTHWB""A)ps(x_y)a (8320)

IAIA

where
1 1

u)=

is the L' dilation of the function p(u) = (1 + u|)~"~9.
To prove (8.3.20), we consider the following two cases: If [x — y| < 5, then the
weak boundedness property gives

(T2 (@), () = [T (e (@) e < 1w,

S}’l

since both ¥, and s (@) are multiples of normalized bumps. Notice here that both
of these functions are supported in B(0, 10), since { |x —y| < 5. This estimate proves
(8.3.20) when |x —y| < 5.
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We now turn to the case |x —y| > 5s. Then the functions 7 (®;) and t*((‘¥)s)
have disjoint supports and so we have the integral representation

(T (T ((%):). T (D)) = / [ =K ) (s (=) dudy

Using that ¥, has mean value zero, we can write the previous expression as
/n - Ds(v—y) (K (u,v) — K(x,v)) (¥)s(u—x)dudv.

We observe that |u — x| < s and |v — y| < s in the preceding double integral. Since
|x —y| > 5, this makes |u —v| > |x —y| — 25 > 3s, which implies that |u — x| <
5|u—v|. Using (8.1.2), we obtain

Alx—ul® " 59

K(u,v) —K(x,v)| < < )
S RIS s emapes = %oyt

where we used the fact that |u — v| = |x — y|. Inserting this estimate in the double
integral, we obtain (8.3.20). Estimate (8.3.19) is proved similarly.

At this point we drop the dependence of Oy ; and Oy ; on the index k, since we
can concentrate on one term of the sum in (8.3.17). We have managed to express
T(f) as a finite sum of operators of the form

/w o) " (8.3.21)
0 s
and of the form ~ 4
/ PT.0s(f) SS, (8.3.22)
0

where the preceding integrals converge in ./ (R") and the 7’s have kernels K;(x, y),
which are pointwise dominated by a constant multiple of

(A+B4)ps(x_)’)-

It suffices to obtain L? bounds for an operator of the form (8.3.21) with constant
at most a multiple of A 4 B4. Then by duality the same estimate also holds for
the operators of the form (8.3.22). We make one more observation. Using (8.3.18)
(recall that we have dropped the indices k), we obtain

LW = [ Kley)dy= (T ) 1) =~ (BT, 6:323)

where all integrals converge absolutely.

We can therefore concentrate on the L2 boundedness of the operator in (8.3.21).
We pair this operator with a Schwartz function g and we use the convergence of the
integral in .’ and the property (Q;)" = —Qy to obtain
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ds

</Omésm(f> is,g>=/(;w<émﬂ(f),g> ) =—/()m<rqu(f),Qv(g)>ds

S
The intuition here is as follows: 7y is an averaging operator at scale s and P;(f) is
essentially constant on that scale. Therefore, the expression TyP;(f) must look like

T;(1)Ps(f). To be precise, we introduce this term and try to estimate the error that
occurs. We have

TP(f) = T()P(f) + [LP(f) = T(D)P(f)] - (8.3.24)
We estimate the terms that arise from this splitting. Recalling (8.3.23), we write
- ~ d
| (o T(l))Py(f),Qs(g)> ; (83.25)
h 2 ds 2 ds
s(/o oo ([1awin )

1 1

2ds \? 0~ 2ds\?
H( ) (F+T(1)))| S) . (/0 10s(3)| s) B (8.3.26)

Since T'(1) is a BMO function, |(*F;*T(1))(x) |2d)c‘ijY is a Carleson measure on R%"'.
Using Theorem 7.3.8 and the Littlewood—Paley theorem (Exercise 5.1.4), we obtain
that (8.3.26) is controlled by

GlITWlgaso 1712 18], < CuBall ] 2 ls ] -

This gives the sought estimate for the first term in (8.3.24). For the second term in
(8.3.24) we have

" [ G@wEA) - R0 RG] W e

- (/0“’ Rn@“‘( ) Pax? ) (/ / (TP(f) = T(V)P(f ))(x”zdxd;)%
<clelle( [, |

2dxdss)2
cinlells ([, ,1Ps(x—y)|Ps(f)(y)—Pv(f)(x)\zdydxisf,

where in the last estimate we used the fact that the measure p;(x —y)dy is a mul-
tiple of a probability measure. It suffices to estimate the last displayed square root.
Changing variables u = x — y and applying Plancherel’s theorem, we express this
square root as

[ KR~ RO W] dy
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</ / L Ps[P() J’"‘u}dudyd)%
) </°w/  Jo P PGE) = DL F(E)| dud d)

1

= (/ow/n [ o) @(s)|"4m? fuf 5] | ()| dug dsy

_27r4</n/ ( [ v ”\Zdu)|q>sg | |s§|§ds| © déj)

and we claim that this last expression is bounded by C, 5” f H ;2- Indeed, we first

bound the quantity [g. ps(u ‘ ‘ 5/2 du by a constant, and then we use the estimate

d
/‘ s§‘|§|[g S—/ (seq) s2S<C;l’5<°°

and Plancherel’s theorem to obtain the claim. [Here ¢; = (1,0,...,0).] Taking g to
be an arbitrary Schwartz function with L> norm at most 1 and using duality, we
deduce the estimate HT( f )H 12 < Cus(A+By) H f H ;2 for all Schwartz functions f
whose Fourier transform does not contain a neighborhood of the origin. Such func-
tions are dense in L?>(R") (cf. Exercise 5.2.9) and thus 7' admits an extension on L?
that satisfies ||THL2HL2 < C,5(A+By).

(L? boundedness of T) = (V)

If T has an extension that maps L? to itself, then by Theorem 8.2.7 we have
Bs < C,s(A+ HTHL2—>L2) < e
Thus the boundedness of 7' on L? implies condition (v).

V) = (v

At a formal level the proof of this fact is clear, since we can write a normalized
bump as the inverse Fourier transform of its Fourier transform and interchange the
integrations with the action of 7 to obtain

T(e(r) = [ 79 (o) ()T () de, (8.3.27)

The conclusion follows by taking BMO norms. To make identity (8.3.27) precise
we provide the following argument.

Let us fix a normalized bump ¢ and a smooth and compactly supported function
g with mean value zero. We pick a smooth function 11 with compact support that is
equal to 1 on the double of a ball containing the support of g and vanishes off the
triple of that ball. Define 1, (&) = 1n(& /k) and note that 7 tends pointwise to 1 as
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k — 0. Observe that 1,7 (@) converges to 7% (@g) in .7 (R") as k — oo, and by
the continuity of 7 we obtain

Tim (T(meT™(gr)). 8) = (T(T(9x)), 8)-

The continuity and linearity of 7" also allow us to write

—

lim [ 70(qr)(E) (T (me?™0)) g)dE.  (8.3.28)

o k—oo JRI

<T(TX0((pR))7g>
Let W be the Schwartz kernel of 7. By (8.1.5) we have
(T (™™ ), ) = (W, g @ mpe?™ 1)), (8.3.29)

Using (8.1.6), we obtain that the expression in (8.3.29) is controlled by a finite sum
of L™ norms of derivatives of the function

g(x) M (y)e*™=”

on some compact set (that depends on g). Then for some M > 0 and some constant
C(g) depending on g, we have that this sum of L™ norms of derivatives is controlled
by

Clg) (1+]E)Y

uniformly in £ > 1. Since T@) is integrable, the Lebesgue dominated conver-
gence theorem allows us to pass the limit inside the integrals in (8.3.28) to obtain

—

(T(e(gu).8) = [ T0(0r)(E) (T (51)) ) d.

We now use assumption (v). The distributions T (ez’“f'( ’ )) coincide with BMO func-
tions whose norm is at most Bs. It follows that

(7@ (@r)8)] < [To(m)l,r sup 7 O) [ pyollell
EeRr (8.3.30)
< CnB5R7n||g||Hl s

where the constant C,, is independent of the normalized bump ¢ in view of (8.3.1).
It follows from (8.3.30) that

g (T(t°(¢r)),g)

is a bounded linear functional on BMO with norm at most a multiple of BsR™". It
follows from Theorem 7.2.2 that T (7% (¢g)) coincides with a BMO function that
satisfies

R||T (7% (g < C,Bs.

D amo
The same argument is valid for 77, and this shows that
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Bs < C, 5(A+Bs)

and concludes the proof that (v) implies (vi).

(vi) = (iii)

We fix xg € R" and R > 0. Pick zp in R” such that |xg — 79| = 40R. Then if
|y —xo| < 10R and |x — zp| < 20R we have

10R < |z0—2x0| — [x—2z0| — [y—xo|
< x|
< |x—2z0| + |z0—x0| + |x0—y| < TOR.

From this it follows that when |x — z9| < 20R we have

d C.sA
[ K oama < [ Kex) r <
y—xo|<10R 10R<|v—y|<TOR R R
and thus C oA
| Ave T(e0(gr))| < (8:331)
B(z20,20R)

R"

where Avgy g denotes the average of g over B. Because of assumption (vi), the BMO
norm of the function T (7% (@g)) is bounded by a multiple of BsR™", a fact used in
the following sequence of implications. We have

|7 (0 (‘PR))HLZ(B(xO,z()R))
< |7 (o))~ Ave T(e(gr))

B(x0,20R) L?(B(x0,20R))
1 n
i 20R)F| Ave T(T0(gr)— Ave T((gn))|
B(x).20R) B(20,20R)
1 n
+7i (20R)}| Ave T(z(gr)
B(z0,20R)
= C”‘G(Rg T(TXO((”R))HBMO"'Rg T(Txo((pR))||BM0+R_gA)
< C,6R 2 (Bs+A),

where we used (8.3.31) and Exercise 7.1.6. Now we have that
17T (@R[ 123y 20y < Cn.3AR ™2
in view of Lemma 8.3.5. Since the same computations apply to 77, it follows that

R2(

T (T ()| ;2 + || T (T (9r)) | ;2) < Cps5(A+Bs), (8.3.32)
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which proves that B3 < C, 5(A + Bg) and hence (iii). This concludes the proof of the
fact that (vi) implies (iii)

We have now completed the proof of the following equivalence of statements:

(L2 boundedness of T) < (i) <= (iv) <= (V) <= (vi). (8.3.33)

(i) < (i)
We show that the quantities A + B; and A 4 B, are controlled by constant multi-
ples of each other. Let us set
ext)= [ Kaydy ad  fy@= [ Ky,

e<|x—y|<N e<|x—y|<N

We work with a ball B(xp,N). Observe that

en@ =T () = [ Keydy— [ K(uy)dy
e<|x—y|<N e<|x—y|
o—y|<N (8.3.34)

= - / K(xay) dya
S&‘,N(xvxo)

where Se y(x,xp) is the set of all y € R” that satisfy € < |x —y| and |xo — y| < N but
do not satisfy € < |x —y| < N. But observe that when |xo — x| < N, then

Sen(x,x0) C{yeR": N<|x—y| <2N}. (8.3.35)

Using (8.3.34), (8.3.35), and (8.1.1), we obtain

) =T )] < [ KGy)ldy < (@-110g2)A (8336
N<|x—y|<2N

whenever |xg — x| < N. It follows that
[fe.n — T(S)(XB(X03N>)HL2(B()C0,N)) < GAN?,
and similarly, it follows that
HI;N - (T(8>)t(%B(xO,N)) ||L2(B(x0,N)) < G,AN>.
These two estimates easily imply the equivalence of conditions (i) and (ii).

We now consider the following condition analogous to (iii):
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Gy By = sup sup supR? [||7) (2 (ge)[|,2 + [ (T (2 (g))]| 2| <.

¢ xpeR"e>0
0 R>0

where the first supremum is taken over all normalized bumps ¢. We continue by
showing that this condition is a consequence of (ii).

(il) = (iii)’

More precisely, we prove that By < C, 5(A+ By). To prove (iii)’, fix a normalized
bump ¢, a point xg € R”, and R > 0. Also fix x € R” with |x — xy| < 20R. Then we
have

(T (gr)) (x) :/ K () (@) (v) dx = Uy (x) + Ua (),

e<|x—y|<30R

where

0w = [ Ko 0) - T (o) )

V) = ™ (er)(x) | K(x.y)dy

£<|x—y|<30R
But we have that |70 (@g)(y) — 70 (@g)(x)| < C,R~'"|x — y|; thus we obtain
|U; (x)] < C,AR™"

< C,AR 2. Condition (ii) gives that

on B(xo,20R): hence [|U1[| 25y, 20))

HUZHLZ(B(xOJOR)) < Rin||15a30RHL2(B(x0,3OR)) < BZ(30R);R7”'
Combining these two, we obtain

7€) (70 (gr)) 12 550 208)) < Ca(A +By)R 2 (8.3.37)
and likewise for (7®))". It follows from Lemma 8.3.5 that
|7 (2 (¢x)) ||L2(B(x0,zoze)c) <G sARE,
which combined with (8.3.37) gives condition (iii)’ with constant
B; <G, 5(A+By).
This concludes the proof that condition (ii) implies (iii)'.
(i) = [T(®) : L? — L2 uniformly in € > 0]

)

For € > 0 we introduce the smooth truncations Tg(g of T by setting
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10 = [ K@)EC) f0)dy,

where ¢ (x) is a smooth function that is equal to 1 for |x| > 1 and vanishes for |x| < }.
We observe that
70(1) =T (f)] < CaAM(f); (8.3.38)

thus the uniform boundedness of 7(¢) on L2 is equivalent to the uniform bound-

edness of T\°). In view of Exercise 8.1.3, the kernels of the operators TC(S)

lie in
SK(6,cA) uniformly in € > 0 (for some constant ¢). Moreover, because of (8.3.38),
we see that the operators Tg(s) satisfy (iii)’ with constant C,A + B}. The point to be
noted here is that condition (iii) for 7 (with constant B3) is identical to condition
(iii)’ for the operators TC(S) uniformly in & > 0 (with constant C,A + B%).

A careful examination of the proof of the implications
(ili) = (iv) = (L? boundedness of T')

reveals that all the estimates obtained depend only on the constants B3z, B4, and A,

but not on the specific operator T'. Therefore, these estimates are valid for the opera-

tors Tés) that satisfy condition (iii)’. This gives the uniform boundedness of the Tév(g)

on L*(R") with bounds at most a constant multiple of A + B}. The same conclusion
also holds for the operators T,

(T®: 2 > [2 uniformly in € > 0] = (i)
This implication holds trivially.
We have now established the following equivalence of statements:
(i) < (ii) < (i) < [T®: L*> — L% uniformlyin& > 0]  (8.3.39)
(iii) < (iii)’

Finally, we link the sets of equivalent conditions (8.3.33) and (8.3.39). We first
observe that (iii)’ implies (iii). Indeed, using duality and (8.3.3), we obtain

|7 (2 (gr))||,» = sup T (7 (¢r))(x) h(x)dx
he.s R"
o<t
< sup limsup / T(E) (2% (g)) (x) h(x) dx
he. J—eo R”
o<t

/ _n
< BiR 2,
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which gives B3 < B’3. Thus under assumption (8.3.3), (ii) implies (iii) and as we have
shown, (iii) implies the boundedness of 7" on L?. But in view of Corollary 8.2.4, the
boundedness of T on L? implies the boundedness of 7€) on L? uniformly in £ > 0,
which implies (iii)’.
This completes the proof of the equivalence of the six statements (i)—(vi) in such
a way that
1T [|2 e > (A+B))

forall j € {1,2,3,4,5,6}. The proof of the theorem is now complete. O

Remark 8.3.6. Suppose that condition (8.3.3) is removed from the hypothesis of
Theorem 8.3.3. Then the given proof of Theorem 8.3.3 actually shows that (i) and
(ii) are equivalent to each other and to the statement that the T(€)°s have bounded
extensions on L?(R") that satisfy

SUPHT(E)HHHI} < oo
e>0

Also, without hypothesis (8.3.3), conditions (iii), (iv), (v), and (vi) are equivalent to
each other and to the statement that 7 has an extension that maps L?(R") to L>(R").

8.3.3 An Application

We end this section with one application of the 7'(1) theorem. We begin with the
following observation.

Corollary 8.3.7. Let K be a standard kernel that is antisymmetric, i.e., it satisfies
K(x,y) = —K(y,x) for all x # y. Then a linear continuous operator T associated
with K is L* bounded if and only if T (1) is in BMO.

Proof. In view of Exercise 8.3.3, T automatically satisfies the weak boundedness
property. Moreover, T* = —T. Therefore, the three conditions of Theorem 8.3.3 (iv)
reduce to the single condition T'(1) € BMO. O

Example 8.3.8. Let us recall the kernels K, of Example 8.1.7. These arise in the
expansion of the kernel in Example 8.1.6 in geometric series

! S (AW AN
x—y—l—i(A(x)—A(y))_x_yWZtO( . ) (8.3.40)

when L = sup, 4, ‘A(ﬁ:?‘(y < 1. The operator with kernel (ir) ~' K, (x,y), i.e.,
L. 7 Alx)—A(y)\" 1
€ . / dy, 8341
=y [ (TN e, gaan

is called the mth Calderén commutator. We use the T(1) theorem to show that the
operators %, are L> bounded.
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We show that there exists a constant R > 0 such that for all m > 0 we have
1G]] ;2,2 <RL™. (8.3.42)

We prove (8.3.42) by induction. We note that (8.3.42) is trivially true when m = 0,
since 6y = —iH, where H is the Hilbert transform.

Assume that (8.3.42) holds for a certain m. We show its validity for m+ 1. Recall
that K, is a kernel in SK(1,16(2m + 1)L™) by the discussion in Example 8.1.7. We
need the following estimate proved in Theorem 8.2.7:

<G [16(2m+ DL + |Gl 2 (8.3.43)

H%MHL”—»BMO —>L2] )

which holds for some absolute constant C,.
We start with the following consequence of Theorem 8.3.3:

H(gmﬂ HL2~>L2 <G [Hcg”“fl(l)”BMO + H(CMH)I(I)HBMO + HCgmH HWB] ; (8.3.44)

valid for some absolute constant C;. The key observation is that
Gmr1(1) =Cn(A), (8.3.45)

for which we refer to Exercise 8.3.4. Here A’ denotes the derivative of A, which
exists almost everywhere, since Lipschitz functions are differentiable almost every-
where. Note that the kernel of 4, is antisymmetric; consequently, (€)' = —6,
and Exercise 8.3.3 gives that H%m HWB < C316(2m+ 1) L™ for some other absolute
constant C3. Using all these facts we deduce from (8.3.44) that

G122 < CL[2||%m(A +C316(2m+3) L.

/)HBMO

Using (8.3.43) and the fact that HA/ < L we obtain that

-
|Gl o <1 2OL{I6 @mt DL+ [ oo } +C316(2m+3) 71
Combining this estimate with the induction hypothesis (8.3.42), we obtain

Hcgmﬂ (1) ||BMO <RI,
provided that R is chosen so that

R™ > 96C,C,(2m+1),
R > 6CiC,
R™ > 48C,C3(2m +3)

for all m > 0. Such an R exists independent of m. This completes the proof of
(8.3.42) by induction.
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Exercises

8.3.1. Let T be a continuous linear operator from .(R") to .#/(R") and let f be
in Z(R"). Let P, be as in (8.3.15).

(a) Show that P;(f) converges to f in #(R") ast — 0.

(b) Conclude that TE(f) — T(f) in #'(R") as t — 0.

(c) Conclude that BTPR,(f) — T(f) in #/(R") as t — 0.

(d) Observe that (a)—(c) are also valid if P, is replaced by Pf.

[Hint: Part (a): Use that g, — g in . if and only if g — gin Y}

8.3.2. Let T and P, be as in Exercise 8.3.1 and let f be a Schwartz function whose
Fourier transform vanishes in a neighborhood of the origin.

(a) Show that B (f) converges to 0 in .(R") as t — co.

(b) Conclude that TP (f) — 0 in #/(R") as t — oo,

(c) Conclude that TP,(f) — 0in .#'(R") ast — oo.

(d) Observe that (a)—(c) are also valid if P; is replaced by P,z.

[Hint: Part (a): Use the hint in Exercise 8.3.1 and the observation that |®(¢& ) f(£)| <
C(1+41co) " |f(€)] if f is supported outside the ball B(0,co). Part (c): Pair with
a Schwartz function g and use part (a) and the fact that all Schwartz seminorms
of P(g) are bounded uniformly in ¢ > 0. To prove the latter you may need that
all Schwartz seminorms of P,(g) are bounded uniformly in ¢ > 0 if and only if all

Schwartz seminorms of 7, (g) are bounded uniformly in ¢ > 0.]

8.3.3. (a) Prove that every linear operator T from . (R") to .#/(R") associated
with an antisymmetric kernel in SK(0,A) satisfies the weak boundedness property.
Precisely, for some dimensional constant C, we have

Tl < CoA
(b) Conclude that for some ¢ < oo, the Calderén commutators satisfy
|G|y < c16(2m+1)L".

[Hint: Write (T (T (fz)), 7(gr)) as

2 e L KGn) (E0)0)7 (60) )~ 79 ) ) ) 0)) s

and use the mean value theorem. |

8.3.4. Prove identity (8.3.45). This identity is obvious by a formal integration by
parts, but to prove it properly, one should interpret things in the sense of distribu-
tions.

8.3.5. Suppose that a standard kernel K (x, y) has the form k(x —y) for some function
konR"\ {0}. Suppose that k extends to a tempered distribution on R” whose Fourier
transform is a bounded function. Let 7' be a continuous linear operator from . (R")
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to ./ (R") associated with K.

(a) Identify the functions T (¢>%0)) and T* (***0)) and restrict to & = 0 to obtain
T(1)and T'(1).

(b) Use Theorem 8.3.3 to obtain the L? boundedness of 7.

(c) What are H(1) and H'(1) equal to when H is the Hilbert transform?

8.3.6. (A. Calderon) Let A be a Lipschitz function on R. Use expansion (8.3.40)
and estimate (8.3.42) to show that the operator

1 f(y)dy
G()x) = lim yfoe X— Y+ i(A(x) —A(y))

is bounded on L*(R) when ||A’||,.. < R™!, where R satisfies (8.3.43).

I

8.3.7. Prove that condition (i) of Theorem 8.3.3 is equivalent to the statement that

7€) T (&)

(ool Ny
02 02

where the first supremum is taken over all cubes Q in R”.

[Hint: You may repeat the argument in the equivalence (i) <= (ii) replacing the
ball B(x,N) by a cube centered at x with side length N.]

sup sup
Q0 &>0

8.4 Paraproducts

In this section we study a useful class of operators called paraproducts. Their name
suggests they are related to products; in fact, they are “half products” in some sense
that needs to be made precise. Paraproducts provide interesting examples of non-
convolution operators with standard kernels whose L? boundedness was discussed
in the Section 8.3. They have found use in many situations, including a proof of the
main implication in Theorem 8.3.3. This proof is discussed in the present section.

8.4.1 Introduction to Paraproducts

Throughout this section we fix a Schwartz radial function ¥ whose Fourier trans-
form is supported in the annulus é < |€] < 2 and that satisfies

S¥27E) =1, when &eR"\{0}. (8.4.1)
jez

Associated with this ¥ we define the Littlewood—Paley operator A;(f) = f ¥,
where ¥ (x) =t "¥(t~'x). Using (8.4.1), we easily obtain
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S A=1, (8.4.2)

where (8.4.2) is interpreted as an identity on Schwartz functions with mean value
zero. See Exercise 8.4.1. Note that by construction, the function ¥ is radial and thus
even. This makes the operator A; equal to its transpose.

We now observe that in view of the properties of ‘¥, the function

£ Y P(277E) (8.4.3)

J<0

is supported in || < 2, and is equal to 1 when 0 < |&| < }. But ¥(0) = 0, which
implies that the function in (8.4.3) also vanishes at the origin. We can easily fix
this discontinuity by introducing the Schwartz function whose Fourier transform is
equal to
B(E) = {ngo'fl(z_jg) when & #0,
1 when & = 0.

Definition 8.4.1. We define the partial sum operator S; as

Si=3 A (8.4.4)

k<j

In view of the preceding discussion, S; is given by convolution with @,—;, that is,

Si(f)(x) = (f * @yj) (x), (8.4.5)

and the expression in (8.4.5) is well defined for all f in J; < <., L”(R"). Since @ is
a radial function by construction, the operator §; is self-transpose.

Similarly, A;(g) is also well defined for all g in |J; < ,<..L”(R"). Moreover, since
A; is given by convolution with a function with mean value zero, it also follows that
Aj(b) is well defined when b € BMO(R"). See Exercise 8.4.2 for details.

Definition 8.4.2. Given a function g on R", we define the paraproduct operator P,

as follows:
P(f) = Ai()Si3(H) =Y, > Ai(e)Alf), (8.4.6)

jez JEZK<j-3

for f in LlloC (R™). It is not clear for which functions g and in what sense the series in
(8.4.6) converges even when f is a Schwartz function. One may verify that the series
in (8.4.6) converges absolutely almost everywhere when g is a Schwartz function
with mean value zero; in this case, by Exercise 8.4.1 the series Y, j Aj (g) converges
absolutely (everywhere) and S;(f) is uniformly bounded by the Hardy—Littlewood

maximal function M(f), which is finite almost everywhere.

One of the main goals of this section is to show that the series in (8.4.6) converges
in L? when f is in L?(R") and g is a BMO function.
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The name paraproduct is derived from the fact that Py(f) is essentially “half”
the product of fg. Namely, in view of the identity in (8.4.2) the product fg can be

written as
fe=22A;()M(g).
j ok

Restricting the summation of the indices to k < j defines an operator that corre-
sponds to “half” the product of fg. It is only for minor technical reasons that we
take k < j— 3 in (8.4.6).

The main feature of the paraproduct operator P, is that it is essentially a sum

—

of orthogonal L? functions. Indeed, the Fourier transform of the function Aj(g) is
supported in the set . .
{er: 27 <[ <27},

—

while the Fourier transform of the function S;_3(f) is supported in the set

U {g ER": 2k71 < |§| S2k+l}-
k<j-3

This implies that the Fourier transform of the function A;(g)S;_3(f) is supported
in the algebraic sum

[EeR: 2 < g <24 {EER": g <27,
But this sum is contained in the set
{EeR": 2772 < g <277}, (8.4.7)

and the family of sets in (8.4.7) is “almost disjoint” as j varies. This means that
every point in R” belongs to at most four annuli of the form (8.4.7). Therefore, the
paraproduct P,(f) can be written as a sum of functions %; such that the families
{hj: j € 4Z+r} are mutually orthogonal in L, for all » € {0,1,2,3}. This or-
thogonal decomposition of the paraproduct has as an immediate consequence its L?
boundedness when g is an element of BMO.

8.4.2 [? Boundedness of Paraproducts

The following theorem is the main result of this subsection.

Theorem 8.4.3. For fixed b € BMO(R") and f € L>(R") the series

2, Ai(b)Sj-3(f)

ljl<M

converges in L> as M — oo to a function that we denote by P,(f). The operator P,
thus defined is bounded on L*(R"), and there is a dimensional constant C,, such that
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for all b € BMUO(R") we have

HPbHL2—>L2 = C"HbHBMO'

Proof. The proof of this result follows by putting together some of the powerful
ideas developed in Chapter 7. First we define a measure on R"J:rl by setting

dp(x,1) = % A (b)(X)? dx 8,3 (7).
j€

By Theorem 7.3.8 we have that u is a Carleson measure on R’jjl whose norm is

controlled by a constant multiple of ||b||129M0. Now fix f € L*(R") and recall that
D (x) = ,<0 W (x). We define a function F(x,r) on R by setting

F(x,t) = (D * f)(x).

Observe that F(x,27%) = S;(f)(x) for all k € Z. We estimate the L? norm of a finite
sum of terms of the form A;(b)S;_3(f). For M,N € Z* with M > N we have

: 2

[ 3 a0)ws; 0w

N<[jI<M

) (8.4.8)

dE |

~

(4;(b)S;-3(f)) (&)

It is a simple fact that every & € R" belongs to at most four annuli of the form
(8.4.7). It follows that at most four terms in the last sum in (8.4.8) are nonzero. Thus

Je

2

(4;(b)S;-3(f) (&) dé&

N<|jl<M
4y /

N<|jl<M

42/,1

jez
4/ |F(e,) 2 dp(x,0)
Rn

C"HbH123M0 R F*(x)?dx,

(4,(b)S;-3(F)) (&) d&

IN

(8.4.9)

IN

Aj(b)(X)S;3(F) ()| dx

IN

where we used Corollary 7.3.6 in the last inequality.

Next we note that the nontangential maximal function F* of F' is controlled by the
Hardy-Littlewood maximal function of f. Indeed, since @ is a Schwartz function,
we have
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/(@)

8.4.10
1+ \Z;y\ Yt ( )

1
F*(x) < Cysup sup /
R

>0 |y—x|<t

Now break the previous integral into parts such that |z —y| > 3¢ and |z —y| < 3r.
In the first case we have [z —y| > |z —x| —t > )|z —x], and the last inequality is
valid, since |z — x| > |z —y| —¢ > 2¢. Using this estimate together with Theorem
2.1.10 we obtain that this part of the integral is controlled by a constant multiple
of M(f)(x). The part of the integral in (8.4.10) where |z —y| < 3t is controlled by
the integral over the larger set |z — x| < 4¢, and since the denominator in (8.4.10) is
always bounded by 1, we also obtain that this part of the integral is controlled by a
constant multiple of M(f)(x). We conclude that

Frx)2dx<C, | M(f)(x)dx<C, / ()2 dx. 8.4.11)
R” R” R”

Combining (8.4.9) and (8.4.11), we obtain the estimate

43 [ 108,010 ©)PAE < Collb o712 < =

jez

This implies that given € > 0, we can find an Ny > 0 such that

M=N=No = ¥ [ [(3,0)850)E)f g <e.
N<ljl<m R

But recall from (8.4.8) and (8.4.9) that

/1{11

We conclude that the sequence

{ 3 awsa0}

ljl<m

2
av<a ¥ [ (a)s00) @) de.

N<|jl<M

> Aib)(x)S;3(f)(x)

N<[jI<M

is Cauchy in L?>(R"), and therefore it converges in L? to a function P, ( f). The bound-
edness of P, on L? follows from the sequence of inequalities already proved. O

8.4.3 Fundamental Properties of Paraproducts

Having established the L? boundedness of paraproducts, we turn to some proper-
ties that they possess. First we study their kernels. Paraproducts are not operators
of convolution type but are more general integral operators of the form discussed
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in Section 8.1. We show that the kernel of P, is a tempered distribution L; that
coincides with a standard kernel on R” x R"\ {(x,x) : x € R"}.

First we study the kernel of the operator f +— A;(b)S;_3(f) for any j € Z. We
have that

A0S 2N = [ Linf )y
where L; is the integrable function
Lj(x,y) = (b ¥-) (0)2V (2 (x—y)).
Next we can easily verify the following size and regularity estimates for L;:

21
C"HbHBMO(1+2j|x_y|)n+l’
2J(n+|o]+|B])
Cn7oc,l37N||b||BM0(l+2j|x_y|)n+l+N’

IN

|Lj(x,y)] (8.4.12)

0%9PL;(x,y)| < (8.4.13)

for all multi-indices & and 8 and all N > ||+ |B].
It follows from (8.4.12) that when x # y the series

Y Lj(x,y) (8.4.14)
JEZ

converges absolutely and is controlled in absolute value by

21 CullPl| 310
C,||b ) <
"H "BMOJE%(1+2./|X_y|)n+I — |x_y|n

Similarly, by taking N > || + | 3], it can be shown that the series

> 0%9PL;(x,y) (8.4.15)
jez

converges absolutely when x # y and is controlled in absolute value by

24 (n+lel+|B) C;;,a,ﬂHbHBMO
Cn,a,ﬁ,NHbHBMogi (1427 |x —y|)nt1+N = |x — y|nrlel+IB]

for all multi-indices o and .
The Schwartz kernel of P, is a distribution W;, on R?". It follows from the pre-
ceding discussion that the distribution W}, coincides with the function

Lb(xvy) = Z Lj(xvy)

JEZ

on R” x R"\ {(x,x) : x € R"}, and also that the function L, satisfies the estimates
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c b
|a;xa)ﬁLb(x7y)| < n,(x,ﬂ” ||BMO

< el (8.4.16)

away from the diagonal x = y.
We note that the transpose of the operator P, is formally given by the identity

Py(f) = 2. Sj-3(f4;(b)).

jez

As remarked in the previous section, the kernel of the operator P} is a distribution
W/ that coincides with the function

Ly (x,y) = Ly(y,x)

away from the diagonal of R, It is trivial to observe that L}, satisfies the same size
and regularity estimates (8.4.16) as L;. Moreover, it follows from Theorem 8.4.3
that the operator P; is bounded on L?(R") with norm at most a multiple of the BMO
norm of b.

We now turn to two important properties of paraproducts. In view of Definition
8.1.16, we have a meaning for P, (1) and P; (1), where P, is the paraproduct operator.
The first property we prove is that P,(1) = b. Observe that this statement is trivially
valid at a formal level, since S;(1) =1 for all j and ¥ ;A;(b) = b. The second
property is that P{(1) = 0. This is also trivially checked at a formal level, since
S;j—3(A;j(b)) = 0 for all j, as a Fourier transform calculation shows. We make both
of these statements precise in the following proposition.

Proposition 8.4.4. Given b € BMO(R"), let P, be the paraproduct operator defined
as in (8.4.6). Then the distributions P,(1) and P} (1) coincide with elements of BMO.
Precisely, we have

P(1)=b and  Pi(1)=0. (8.4.17)

Proof. Let ¢ be an element of %)(R"). Find a uniformly bounded sequence of
smooth functions with compact support {ny}%_, that converges to the function
1 as N — oo. Without loss of generality assume that all the functions 1y are equal
to 1 on the ball B(yg,3R), where B(yg,R) is a ball that contains the support of @. As
we observed in Remark 8.1.17, the definition of P, (1) is independent of the choice
of sequence 1My, so we have the following identity for all N > 1:

(P(1).0) = [ 3 A0)®)S;-2(m) () 9 dx
=/
(8.4.18)

+ | b oea a-monas

Since ¢ has mean value zero, we can subtract the constant Ly (yg,y) from Ly (x,y)
in the integral inside the square brackets in (8.4.18). Then we estimate the absolute
value of the double integral in (8.4.18) by
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[yo — x|
A I x)|dxdy,
\/‘},,y0‘23R\/“,67y0‘§R |y0_y|n+l| nN(y)H(p( )| y

which tends to zero as N — oo by the Lebesgue dominated convergence theorem.

It suffices to prove that the first integral in (8.4.18) tends to [p. b(x)®(x)dx as
N — oo. Let us make some preliminary observations. Since the Fourier transform of
the product A;(b)S;_3(nw) is supported in the annulus

{EeR": 22 <[] <2/, (8.4.19)

we may introduce a smooth and compactly supported function Z(é) such that for
all j € Z the function Z(27/&) is equal to 1 on the annulus (8.4.19) and vanishes
outside the annulus {& € R : 2/73 < || < 2/73}. Let us denote by Q; the operator
given by multiplication on the Fourier transform by the function Z (277&).

Note that S;(1) is well defined and equal to 1 for all j. This is because @ has
integral equal to 1. Also, the duality identity

[rSit@)1dx= [ gs(r)ax (8.4.20)

holds for all f € L' and g € L™. For ¢ in Zy(R") we have

/ D Aj(b)S;_3(ny) @dx

JEZL
= 2 Si3(ny) pdx (series converges in L? and (XS Lz)
jez Rn
- 2 R” j 3(nN)Qj( ) [Qj(¢)=g30nthe
JEZL
support of ((4;(b)S;3(ny)) "]
=% [ v sia(aee)ds (it
JEZL
= / ny z Si- 3 (go)) dx (series converges in L' and ny € L™).

JEZL

We now explain why the last series of the foregoing converges in L'. Since ¢ is in
Z0(R"), Exercise 8.4.1 gives that the series ¥,z Q;j(¢) converges in L!. Since S;
preserves L' and

sup ||Aj(b)HL°°
j

< Gal|Bl[ g0
by Exercise 8.4.2, it follows that the series ¥ jczS;-3(4;(0)Q;(¢)) also converges
inL'.

We now use the Lebesgue dominated convergence theorem to obtain that the
expression
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/R N ZSJ 3(4;(0)Q;(9)) dx

JjeZ

converges as N — oo to

/ > 83 Q0j(p)) dx

JEZL

=Y | S;-3(4;(6)0j(9))dx (series converges in L')
jez’'R"

-y / S;-3(1) A;(b) Qj(¢) dx (in view of (8.4.20))
jez’R"

=Y | Aj(b)Q;(¢)dx (since S;_3(1) =1)
iz R

=Y | Aj(b)pdx (Q/j(\(p):(ﬁonsupportAT\(b))
jez’R"

=Y (b,A;(9)) (duality)
jez

= (b, Aj(9)) (series converges in H', b € BMO)

JEZ
= <b, (p> (Exercise 8.4.1(a)).

Regarding the fact that the series ¥;A;(¢) converges in H !, we refer to Exercise
8.4.1. We now obtain that the first integral in (8.4.18) tends to (b, @) as N — co. We
have therefore proved that

(Py(1),0) = (b, 0)

for all ¢ in Zy(R"). In other words, we have now identified P,(1) as an element of
2, with the BMO function b.
For the transpose operator P} we observe that we have the identity

0)= [ 35} 5(4(6) ) () o)

B (8.4.21)
+/Rn/RnL?’("vY>(1—nN(y>> o(x)dydsx.

As before, we can use the Lebesgue dominated convergence theorem to show that
the double integral in (8.4.21) tends to zero. As for the first integral in (8.4.21), we
have the identity

/P}Z(nN)(de:/ Ny Py (@) dx.
R” R

Since ¢ is a multiple of an Z?-atom for H', Theorem 8.2.6 gives that P,(¢) is an L!
function. The Lebesgue dominated convergence theorem now implies that
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/nNP,, dx—>/ Py(o dx—/ )S;_3(p)dx

jEZ

as N — oo, The required conclusion would follow if we could prove that the function
P, (@) has integral zero. Since A;(b) and S;_3(¢) have disjoint Fourier transforms,
it follows that
[ 4(6)5,-a(p)dx =0

for all j in Z. But the series

>, Ai(b)Sj-3(9) (8.4.22)

J€Z
defining P,(¢) converges in L?> and not necessarily in L', and for this reason we
need to justify the interchange of the following integrals:

/ o)dx=3 (9 dx. (8.4.23)

jEZ JjeZ Rn

To complete the proof, it suffices to show that when ¢ is in Z(R"), the series in
(8.4.22) converges in L'. To prove this, pick a ball B(yo, R) that contains the support
of @. The series in (8.4.22) converges in L?(3B) and hence converges in L' (3B). It
remains to prove that it converges in L' ((3B)). For a fixed x € (3B)¢ and a finite
subset F of Z, we have

/ Li(x,y)o(y)dy = Z/ Li(x,y0)) @ (y)dy. (8.4.24)

JEF JEF

Using estimates (8.4.13), we obtain that the expression in (8.4.24) is controlled by
a constant multiple of

/ |y — o[22/

L
dy < — dy.
e o0y <e o vl o0y

jEF

Integrating this estimate with respect to x € (3B)“, we obtain that

Z}F HAJ(b)Sj%(‘P)HLI((33)C) <Gillolly <
je

for all finite subsets F of Z. This proves that the series in (8.4.22) converges in L!.
We have now proved that (P;(1),¢) = 0 for all ¢ € Z,(R"). This shows that the

distribution Pj(1) is a constant function, which is of course identified with zero if

considered as an element of BMO. O

Remark 8.4.5. The boundedness of P, on L? is a consequence of Theorem 8.3.3,
since hypothesis (iv) is satisfied. Indeed, P,(1) = b, P;(1) = 0 are both BMO func-
tions, and see Exercise 8.4.4 for a sketch of a proof of the estimate HPbHWB <

Cu||B|| 50 This provides another proof of the fact that ||Py||,> ;> < Gul|b| gys0-
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bypassing Theorem 8.3.3. We use this result to obtain a different proof of the main
direction in the 7'(1) theorem in the next section.

Exercises

8.4.1. Let f € .(R") have mean value zero, and consider the series

> Ai(f)-

jez

(a) Show that this series converges to f absolutely everywhere.
(b) Show that this series convergesin L!.
(b) Show that this series converges in H I
[Hint: To obtain convergence in L' for j > 0 use the estimate ||A i f)|| o <

27 [on Jrn 27" (279)|1279] | (V) (x — Oy)| dydx for some 6 in [0, 1] and consider
the cases |x| > 2|y| and |x| < 2|y|. When j < 0 use the simple identity [« ¥, ; =

(foj *¥),-; and reverse the roles of f and V. To show convergence in H', use that
14,(0) |1 ~ || (Zk44;(9)[2)2 | .1 and that only at most three terms in the square
function are nonzero.]

8.4.2. Without appealing to the H'-BMO duality theorem, prove that there is a di-
mensional constant C, such that for all > € BMO(R") we have

SUP||Aj(b)"Lw < C”HbHBMO'
JEZL

8.4.3. (a) Show that for all 1 < p,q,r < e with 11, + ; = i there is a constant Cpg,
such that for all Schwartz functions f,g on R"” we have

1P ()] < Cparll |

(b) Obtain the same conclusion for the bilinear operator

Po(f) =Y > Aj(g) Ac(f).

J k<)

L gHL‘i'

[Hint: Part (a): Estimate the L” norm using duality. Part (b): Use part (a).|

8.4.4. (a) Let f be a normalized bump (see Definition 8.3.1). Prove that
14;(fr)] = < C(n,¥)min (277R=("F1) 2n7)

for all R > 0. Then interpolate between L! and L* to obtain

14;(fe) |2 < COn,¥ymin (272875 2%)
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(b) Observe that the same result is valid for the operators Q; as defined in Proposi-
tion 8.4.4. Conclude that for some constant C,, we have

3 |0i(gr)|| 2 <CuR 2.
JEZ

(c) Show that there is a constant C,, such that for all normalized bumps f and g we
have

[(Po(T0(f2)), T (gR))| < CuR ||| pysor-

[Hint: Part (a): Use the cancellation of the functions f and V. Part (c): Write
(5 (), 70(e0) =3 [ 204500, el

Apply the Cauchy—Schwarz inequality, and use the boundedness of S;_3 on L2,
Exercise 8.4.2, and part (b).]

8.4.5. (Continuous paraproducts) (a) Let @ and ¥ be Schwartz functions on R”
with [pe @(x)dx =1 and [z, ¥(x)dx = 0. For t > 0 define operators P, (f) = @, * f
and Q,(f) =¥+ f. Let b € BMO(R") and f € L*(R"). Show that the limit

dt
t

N
lim Or (Qt(b)Pt(f))

et
converges in L?(R") and defines an operator IT,(f) that satisfies

1361l 212 < Callbllparo

for some dimensional constant C,,.
(b) Under the additional assumption that

lim / Q2 dl

SHO

identify IT,(1) and I, (D).
[Hint: Suitably adapt the proofs of Theorem 8.4.3 and Proposition 8.4.4.]

8.5 An Almost Orthogonality Lemma and Applications

In this section we discuss an important lemma regarding orthogonality of operators
and some of its applications.

It is often the case that a linear operator 7 is given as an infinite sum of other lin-
ear operators 7; such that the 7;’s are uniformly bounded on L?. This sole condition
is not enough to imply that the sum of the T}’s is also L? bounded, although this is
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often the case. Let us consider, for instance, the linear operators {7} jcz given by
convolution with the smooth functions ¢*™/ on the circle T'. Each T; can be written
as Ti(f) = (fos i)Y, where f is the sequence of Fourier coefficients of f; here 0;
is the infinite sequence consisting of zeros everywhere except at the jth entry, in
which it has 1, and ® denotes term-by-term multiplication of infinite sequences. It
follows that each operator 7} is bounded on L?(T") with norm 1. Moreover, the sum
of the T;’s is the identity operator, which is also L? bounded with norm 1.

It is apparent from the preceding discussion that the crucial property of the 7;’s
that makes their sum bounded is their orthogonality. In the preceding example we
have T;T; = 0 unless j = k. It turns out that this orthogonality condition is a bit too
strong, and it can be weakened significantly.

8.5.1 The Cotlar—-Knapp—Stein Almost Orthogonality Lemma

The next result provides a sufficient orthogonality criterion for boundedness of sums
of linear operators on a Hilbert space.

Lemma 8.5.1. Let {T}} jcz be a family of operators mapping a Hilbert space H to
itself. Assume that there is a a function y: Z — R such that

HT/'*HHHHH"_HTJ'TI(HHHH v(j—k) 8.5.1)

forall j,kin Z. Suppose that

A=Y /1)) <

JEZ
Then the following three conclusions are valid:

(i) For all finite subsets A of Z. we have

;ZIITJ-(x)Hi < A7l

(iii) For all x € H the sequence Y, <y Tj(x) converges to some T (x) as N — o in
the norm topology of H. The linear operator T defined in this way is bounded
from H to H with norm

3 7 H <A
jE/\ H—H

(ii) For all x € H we have

17l <4

Proof. Asusual we denote by S* the adjoint of a linear operator S. It is a simple fact
that any bounded linear operator S : H — H satisfies

=||s5* (8.5.2)

HSHH—>H HH—>H'
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See Exercise 8.5.1. By taking j = k in (8.5.1) and using (8.5.2), we obtain

Tl ey < V/7(0) (8.5.3)

for all j € Z. It also follows from (8.5.2) that if an operator S is self-adjoint, then

HSHHHH = ||SZHHHH, and more generally,

IS1[zz—r = 15"l (8.54)
for m that are powers of 2. Now observe that the linear operator
( 2 T.i) ( 2 Tj*)
JEA JEA
is self-adjoint. Applying (8.5.2) and (8.5.4) to this operator, we obtain
2 m
|20l = CED(Em) e @59
jea H—H jeA jeA ’ H—H

where m is a power of 2. We now expand the mth power of the expression in (8.5.5).
So we write the right side of the identity in (8.5.5) as

1
m

, (8.5.6)
H—H

* *
H Z Ty T;, - Ty, 15,
J1s s jom€A

which is controlled by

( z H 1T Ty ]2m||H~>H) . (8.5.7)

J1s s jam€A

We estimate the expression inside the sum in (8.5.7) in two different ways. First we
group ji with jo, j3 with ja, ..., jo,—1 With jp,, and we apply (8.5.3) and (8.5.1) to
control this expression by

YUt = j2)Y(s = ja) -+ Y(jam—1 — Jom)-
Grouping j, with jz, js with js, ..., jou—2 with jo,,—1 and leaving j; and j,,, alone,

we also control the expression inside the sum in (8.5.7) by

VYO)Y(j2 = j3)Y(ja = js) -+ Y(jam—2 = jam—1)v/7(0)
Taking the geometric mean of these two estimates, we obtain the following bound

for (8.5.7):

( S VO = )V Y= 53) Yot — sz)m.
Jis

< J2mEA
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Summing first over jj, then over j,, and finally over j,,,—1, we obtain the estimate

1

roa (3 1)

Jom€A

for (8.5.7). Using (8.5.5), we conclude that

IS 717 < 7(0)mA ™ [A]m,
JEA

and letting m — oo, we obtain conclusion (i) of the proposition.

To prove (ii) we use the Rademacher functions r; of Appendix C.1. These func-
tions are defined for nonnegative integers j, but we can reindex them so that the
subscript j runs through the integers. The fundamental property of these functions
is their orthogonality, that is, jol ri(@)ri(@)dw = 0 when j # k. Using the fact that
the norm H . H  comes from an inner product, for every finite subset A of Z and x in
H we obtain

1 2
f | Zreme], e
=2 ||T./'(JC)Hi+/O1 Y, ri(@)n(0)(Ti(x), L) do  (g5s3)
e M
AL
JEA

For any fixed @ € [0,1] we now use conclusion (i) of the proposition for the oper-
ators rj(@)T;, which also satisfy assumption (8.5.1), since rj(@) = £1. We obtain
that

2
3 @), <47
JjE

which, combined with (8.5.8), gives conclusion (ii).
We now prove (iii). First we show that given x € H the sequence

N

{ 2 pw},
is Cauchy in H. Suppose that this is not the case. This means that there is some
€ > 0 and a subsequence of integers 1 < N; < N, < N3 < --- such that

1T)|, > e. (8.5.9)
where we set

L= T

N <|jI<Ngt1
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For any fixed o € [0, 1], apply conclusion (i) to the operators S; = ry(®)T; whenever
Ni < |j] < Ngy1, since these operators clearly satisfy hypothesis (8.5.1). Taking
Ni <|j| € Nk41, we obtain

|Zn@ 3 5], | S n@ie], <ald,

Np<|jI<Niy1

Squaring and integrating this inequality with respect to @ in [0, 1], and using (8.5.8)
with T} in the place of T} and {1,2,...,K} in the place of A, we obtain

K ~
> 11700} 77 < A%l
k=1

But this clearly contradicts (8.5.9) as K — oo.

We conclude that every sequence {21}’:_1\, Ti(x)} y is Cauchy in H and thus it
converges to Tx for some linear operator 7. In view of conclusion (i), it follows that
T is a bounded operator on H with norm at most A. g

Remark 8.5.2. At first sight, it appears strange that the norm of the operator 7 is
independent of the norm of every piece 7; and depends only on the quantity A in
(8.5.1). But as observed in the proof, if we take j = k in (8.5.1), we obtain

T3l = T |y < 7(0) < A%

thus the norm of each individual 7} is also controlled by the constant A.

We also note that there wasn’t anything special about the role of the index set Z
in Lemma 8.5.1. Indeed, the set Z can be replaced by any countable group, such as
ZF¥ for some k. For instance, see Theorem 8.5.7, in which the index set is Z2". See
also Exercises 8.5.7 and 8.5.8, in which versions of Lemma 8.5.1 are given with no
group structure on the set of indices.

8.5.2 An Application

We now discuss an application of the almost orthogonality lemma just proved con-
cerning sums of nonconvolution operators on L*(R"). We begin with the following
version of Theorem 8.3.3, in which it is assumed that 7(1) = T*(1) = 0.

Proposition 8.5.3. Suppose that K(x,y) are functions on R" x R" indexed by j € Z

that satisfy
A2M
Ki(x,y)| < . , 8.5.10
K;(x,y) — Kj(x,)')| < A2Y2" |y —y/|7, (8.5.11)
J J

IK(x,y) — K;j(x',y)] §A27’-"2"j|)c—)c’|7’7 (8.5.12)
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for some 0 < A,y,6 < o and all x,y,x',y' € R". Suppose also that

/I{Kj(z,y)dz:O:/RK,-(x,z)dz, (8.5.13)

forallx,y € R" and all j € Z. For j € Z define integral operators
T = [, K 0)dy

for f € L>(R"). Then the series

2 Ti(0)

JEZL
converges in L* to some T (f) for all f € L>(R"), and the linear operator T defined
in this way is L* bounded.

Proof. 1t is a consequence of (8.5.10) that the kernels K; are in L' (dy) uniformly
in x € R" and j € Z and hence the operators T; map L?(R") to L?(R") uniformly
in j. Our goal is to show that the sum of the 7;’s is also bounded on L*(R"). We
achieve this using the orthogonality considerations of Lemma 8.5.1. To be able to
use Lemma 8.5.1, we need to prove (8.5.1). Indeed, we show that for all k, j € Z we
have

T7T || o e < CA22™ 4uls min(r )ik (8.5.14)
T Ti| oo < CAZ2™ 4als minrOH] (8.5.15)

for some 0 < C = C, 5 < e. We prove only (8.5.15), since the proof of (8.5.14)
is similar. In fact, since the kernels of T; and Tj* satisfy similar size, regularity,
and cancellation estimates, (8.5.15) is directly obtained from (8.5.14) when 7} are
replaced by 77"

It suffices to prove (8.5.15) under the extra assumption that k£ < j. Once (8.5.15)
is established under this assumption, taking j < k yields

||Tj*Tk||L2—>L2 = H(Tk*Tj)*HLL.LZ = HTk*TJ'HLZ_.L2 = CAZT%min(%S)‘jik"

thus proving (8.5.15) also under the assumption j < k.
We therefore take k£ < j in the proof of (8.5.15). Note that the kernel of 7}* Ty is

Li(x) = [ Kj(en)Kilzy)dz
We prove that

CA22~ 4 S5 min(.8) k=i ’ (8.5.16)

IN

sup | |Lgj(x,y)|dy
xeR" JR"

CA22~ 4 nls min(v.8)k—jl (8.5.17)

IN

sup |Lj(x,y)|dx
yeR” R
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Once (8.5.16) and (8.5.17) are established, (8.5.15) follows directly from the classi-
cal Schur lemma in Appendix I.1.
We need to use the following estimate, valid for k < j:

njmi k
/ 20min(l, 2D)T) 4 ¢ s dmintra) 0 (8.5.18)
v (1 2[uf)+d

Indeed, to prove (8.5.18), we observe that by changing variables we may assume
that j = 0 and k < 0. Taking r = k— j < 0, we establish (8.5.18) as follows:

min(1, (2"u])) .~ _ min (1, (2 ]u[)2™in(%:5))

u du
R (14 [uf)rto TR (1+ [u[)+9
r 'min(}/ﬁ)
[ @i, / L
- (1+|u|)”+‘S (1+ [uf)+9
lu|<2—r [u]>2~
< 22m1n(%8)/ du+ /
- n+5
<1+|u| e
S Cn,5 [22 mln(% ) 28r]

IN

1 .
G522 min(y,8)[r|

We now obtain estimates for L in the case k < j. Using (8.5.13), we write

Lo = | [, Kelens (et

} /Rn [Kk(z,y) - Kk(x,y)]Kj(z,x) dz

2 J
(1 427z —x|)r+8

IN

A2/ 2" min(1, (2Fx — z|)?)
< CA2 ko= min(1,8)(j—k)

using estimate (8.5.18). Combining this estimate with

L; X, K; Z,X K Z, dZ )
Tk Y R" J k Y ( 2k|x y|)n 8

which follows from (8.5.10) and the result in Appendix K.1 (since k < j), yields

52 . ) 2kn
ILj(x6,3)] < Cpy6 A2 2= uls min(1,8)(j—k) .
(14 2¥x —y|)" 2

which easily implies (8.5.16) and (8.5.17). This concludes the proof of the
proposition. 0
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8.5.3 Almost Orthogonality and the T (1) Theorem

We now give an important application of the proposition just proved. We re-prove
the difficult direction of the T'(1) theorem proved in Section 8.3. We have the fol-
lowing:

Theorem 8.5.4. Let K be in SK(8,A) and let T be a continuous linear operator
from & (R") to /' (R") associated with K. Assume that

HT(I)HBM0+ HTt(I)HBM0+ HTHWB =By <o

Then T extends to bounded linear operator on L*(R™) with norm at most a constant
multiple of A+ By.

Proof. Consider the paraproduct operators Pr () and Pr:(1) introduced in the previ-
ous section. Then, as we showed in Proposition 8.4.4, we have

Pray(1) =T(1), (Pray)'(1) =0,
Priy(1) = T'(1), (Pre(iy) (1) = 0.

Let us define an operator

L=T —Pruy— (Ppr(yy)
Using Proposition 8.4.4, we obtain that
L(1)=L'(1)=0.

In view of (8.4.16), we have that L is an operator whose kernel satisfies the estimates
(8.1.1),(8.1.2), and (8.1.3) with constants controlled by a dimensional constant mul-
tiple of

A+ T W) gaso + 1T D)o -
Both of these numbers are controlled by A + B4. We also have

Lt

IN

C”(||THWB+ HPT(I)HLZHLz + ||(PTt(1))t||L2~>L2)
Ca([IT [l + 1T W ago + [T ()| o)
< Cn(A+B4)7

IN

which is a very useful fact.

Next we introduce operators A; and S;; one should be cautious as these are not
the operators A; and S; introduced in Section 8.4 but rather discrete analogues of
those introduced in the proof of Theorem 8.3.3. We pick a smooth radial real-valued
function @ with compact support contained in the unit ball B(0, %) that satisfies
Jre @(x)dx =1 and we define

W(x) = D(x) —2"D(3). (8.5.19)
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Notice that ¥ has mean value zero. We define
D, ;(x) =2 D (2/x) and W, j(x) =2 (27x)

and we observe that both @ and ¥ are supported in B(0,1) and are multiples of
normalized bumps. We then define A; to be the operator given by convolution with
the function ¥,-; and §; the operator given by convolution with the function @,-;.
In view of identity (8.5.19) we have that A; = §; —§;_;. Notice that

S;LS;=8; 1LS; 1 +A;LS; +S; 1LA;,

which implies that for all integers N < M we have

M
SuLSy—Sy—1LSy—1 = Y, (S;LS; —S;j—1LSj-1)
Jj=N
” ” (8.5.20)
= Y ALS;— Y S;_1LA;.
Jj=N Jj=N

Until the end of the proof we fix a Schwartz function f whose Fourier trans-
form vanishes in a neighborhood of the origin; such functions are dense in Lz; see
Exercise 5.2.9. We would like to use Proposition 8.5.3 to conclude that

sup sup ||SyLSw (f)—Sn—1LSn—1(f)]| ;2 < Cu(A2+Ba) || f]| 2 (8.5.21)
MEZN<M

and that Sy LSy (f)—Sy_1LSy_1(f) — L(f) in L? as M — o0 and N — —oo. Once

these statements are proved, we deduce that L(f) = L(f). To see this, it suffices to
prove that Sy LSy (f) — Sy_1LSy_1(f) converges to L(f) weakly in L?. Indeed, let
g be another Schwartz function. Then

(SMLSM(f)~Sn—1LSn—1(f),g) — (L(f).&)
= (SuLSu(f) = L(f):&) — (Snv—1LSn-1(f),8)- (8.5.22)

We first prove that the first term in (8.5.22) tends to zero as M — oo. Indeed,

(SMLSu(f) —L(f).8) = (LSm(f).Smg) — (L(f),8)
= (L(Sm(f) = £):Sm()) + (L(f),Sm(g) — &)

and both terms converge to zero, since Sy(f) — f — 0 and Sy (g) — g tend to zero
in ., L is continuous from . to .¥’, and all Schwartz seminorms of Sy(g) are
bounded uniformly in M; see also Exercise 8.3.1.

The second term in (8.5.22) is (Sy—1LSy—1(f).8) = (LSny—1(f),Sn—1(g) ). Since
fis supported away from the origin, Sy(f) — 0 in . as N — —oo; see Exer-
cise 8.3.2. By the continuity of L, LSy_;(f) — 0 in .%’, and since all Schwartz
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seminorms of Sy_1(g) are bounded uniformly in N, we conclude that the term
(LSn—1(f),Sn—1(g)) tends to zero as N — —co. We thus deduce that L(f) = L(f).
It remains to prove (8.5.21). We now define

Lj = AjLSj and L; = Sj_lLAj

for j € Z. In view of identity (2.3.21) and the convergence of the Riemann sums
to the integral defining f * @,-; in the topology of .# (see the proof of Theorem
2.3.20), we have

(L @y ) ) () = [ (L2 (@s). 75 (H5) S ()

n

where 77(g)(u) = g(u—y). Thus the kernel K; of L; is
Kj(x,y) = (L(7'(Pr-1)), T"(¥5-i))

and the kernel K’ j’ of L;. is

Kj(x,y) = (L(' (#5-)), T (P 1)) -
We plan to prove that
K (e, 3)|+277| VK (x,y)] < Ca(A+Ba)2" (1427 x—y)) ™%, (85.23)

noting that an analogous estimate holds for K; (x,y). Once (8.5.23) is established,
Exercise 8.5.2 and the conditions
Lj(1)=A;LS;(1) = A;L(1) =0, Lj(1) =S;-1L4;(1) =0,

yield the hypotheses of Proposition 8.5.3. Recalling (8.5.20), the conclusion of this
proposition yields (8.5.21).

To prove (8.5.23) we quickly repeat the corresponding argument from the proof
of Theorem 8.3.3. We consider the following two cases: If [x —y| <5- 2-J. then the
weak boundedness property gives

(L2 (@), T (H-))] = [T (0 (@)5), T (%)
CollE a2

IN

since ¥ and 7' =9 (@), whose support is contained in B(0, ) +B(0,5) C B(0, 10),
are multiples of normalized bumps. This proves the first of the two estimates in
(8.5.23) when |x —y| <5-27/.

We now turn to the case |x —y| > 5-27/. Then the functions 7%(®,-,) and
(¥, ;) have disjoint supports, and so we have the integral representation

K;(x,y) :/n - Dy j(v—y)K(u,v)¥p-j(u—x)dudv.
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Using that ¥ has mean value zero, we can write the previous expression as
/ @, ;(v—y)(K(u,v) — K(x,v)) ¥y (u—x)dudv.
n R"l

We observe that |u —x| < 27/ and |v —y| < 27/ in the preceding integral. Since
|x—y| >5-27/, this makes |u —v| > |[x—y| —2-27/ > 227/, which implies that
|u— x| < ) |u—v|. Using the regularity condition (8.1.2), we deduce

lx — ul® 2-J8

< Cn’(gA |x—y|”+6 .

K(u,v) —K(x,v)| <A <

Inserting this estimate in the preceding double integral, we obtain the first estimate
in (8.5.23). The second estimate in (8.5.23) is proved similarly. O

8.5.4 Pseudodifferential Operators

We now turn to another elegant application of Lemma 8.5.1 regarding pseudodiffer-
ential operators. We first introduce pseudodifferential operators.

Definition 8.5.5. Letm € Rand 0 < p, 6 < 1. A € function o(x,£) on R” x R" is
called a symbol of class S’ s if for all multi-indices o and 3 there is a constant By, g
P, )
such that
9792 (3. )| < Ba(1+[E))" POl (8.5.24)

m .
ForoeS§ 0.5 the linear operator

To(N) = [ ox.E)F @) g

n

initially defined for f in . (R") is called a pseudodifferential operator with symbol

o(x,8).

Example 8.5.6. The paraproduct P, introduced in the previous section is a pseudo-
differential operator with symbol

op(x,E) = Y, A;(b)(x)P(27E). (8.5.25)

JEZL

It is not hard to see that the symbol o}, satisfies
1020F 0y (x,&)| < B p|E[ 1P+ (8.5.26)

for all multi-indices o and f3. Indeed, every differentiation in x produces a factor

of 2/, while every differentiation in & produces a factor of 27/, But since ¥ is
supported in ) -2/ < |§| < 2-2/, it follows that |§| ~ 2/, which yields (8.5.26).
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It follows that o), is not in any of the classes S”)”‘ 5 introduced in Definition 8.5.5.

However, if we restrict the indices of summation in (8.5.25) to j > 0, then || &~
1+ |&| and we obtain a symbol of class S{ . Note that not all symbols in S? | give

rise to bounded operators on L. See Exercise 8.5.6.
An example of a symbol in S, is (1 +|&?) 2(m+i) when m,t € R.

We do not plan to embark on a systematic study of pseudodifferential operators
here, but we would like to study the L? boundedness of symbols of class 5870'

Theorem 8.5.7. Suppose that a symbol o belongs to the class 58‘0. Then the pseu-
dodifferential operator Ty with symbol o, initially defined on .#(R"), has a bounded
extension on L*(R").

Proof. In view of Plancherel’s theorem, it suffices to obtain the L? boundedness of
the linear operator

To(F)@) = [ ol E)f(E)e™ e, (8527)

We fix a nonnegative smooth function ¢ (&) supported in a small multiple of the unit
cube Qp = [0,1]" (say in [—é, 190]") that satisfies

Y o(x—j)=1, xeR" (8.5.28)

JEZ"

For j,k € Z" we define symbols

Ojk(x,6) = @(x—j)o(x,§)p(§ —k)

and corresponding operators 7j; given by (8.5.27) in which o(x,&) is replaced by
0;k(x,&). Using (8.5.28), we obtain that

To= Y Tk,
jkezr

where the double sum is easily shown to converge in the topology of . (R"). Our
goal is to show that for all N € Z* we have

5T w2y S OV L=+ k=K ]) 72N, (8.5.29)

T35 a2 < O (11 = S+ k=K7Y, (8.5.30)

where Cy depends on N and 7 but is independent of j, j/, k, k.
We note that

T Tpp(f)(xX) = | Kjrjwxy)f(y)dy,
R”

where
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K jr e (x,y) = /R 0 1(2,%) 0 (2,y)e*™ 09 dz. (8.5.31)
We integrate by parts in (8.5.31) using the identity

(I _ AZ)N (ezmz-(yfx) )

ezmz-(yfx) _
(1+4m2x—y2)N ~’

and we obtain the pointwise estimate

P(x—k)o(y—K) N , ’
I-A —Jj)o(z,x)o(z, —

(1 —|—47r2|x—y|2)N ( Z) ((P(Z ]) (Z )C) (Z y)(P(Z J ))‘

for the integrand in (8.5.31). The support property of ¢ forces |j— j'| < ¢, for some

dimensional constant ¢,; indeed, ¢, = 2+/n suffices. Moreover, all derivatives of ¢

and ¢ are controlled by constants, and ¢ is supported in a cube of finite measure.

We also have 1 + |x—y| ~ 1+ |k — K/|. Tt follows that

Cvo(x—k)o(y—K)
Kk jr ke (x,9)] < (1+ |k —K[)2N
0 otherwise.

when |j — j/| < cn,

We can rewrite the preceding estimates in a more compact (and symmetric) form as

Cun@(x—k)o(y—K)

Ko (x, < .. )
| ik, j ,k( )l (1+|]—]’|+|k—k/|)2N

from which we easily obtain that

CnN
su K i (x,y)|dy < o , 8.5.32
xeRR’ R”| Jok,J -,k( y)| Yy (1+|j—j/|+|k—k/|)2N ( )
. Cn,N
Sup | K. jr e (x,3) [dx < ' (8.5.33)

yeR? (L [j =+ [k=K])2N

Using the classical Schur lemma in Appendix I.1, we obtain that
% Cn,N
HTi,kTJ’7k’HL2—»L2 S (14 |j— j/| + [k—K|)2N

which proves (8.5.29). Since p = & = 0, the roles of the variables x and & are sym-
metric, and (8.5.30) can be proved in exactly the same way as (8.5.29). The almost
orthogonality Lemma 8.5.1 now applies, since

1 1 1

> <>y < oo

sz (LT KDN = G0 &G (1414 (1+ k)2

for N > 2n+ 2, and the boundedness of TG on L? follows. O
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Remark 8.5.8. The reader may want to check that the argument in Theorem 8.5.7
is also valid for symbols of the class Sg’p whenever 0 < p < 1.

Exercises

8.5.1. Prove that any bounded linear operator S : H — H satisfies

81— = 155l

8.5.2. Show that if a family of kernels K satisfy (8.5.10) and

A2(n+1)j

VxK' ) VVK ? S j
VK (x,y) [+ VK (x, )| (1427]x —y[)n+o

for all x,y € R", then conditions (8.5.11) and (8.5.12) hold with y = 1.

8.5.3. Prove the boundedness of the Hilbert transform using Lemma 8.5.1 and with-
out using the Fourier transform.

[Hint: Pick a smooth function 1 supported in [1/2,2] such that ¥ ez n(2/x) = 1
for x # 0 and set K (x) = x~'1(277|x|) and H;(f) = f * K;. Note that H; = —H. Es-
timate ||HeHj |2 2 by ||Ki# K|, < ||Ki* K|, |supp (K % K;)|. When j < k, use
the mean value property of K and that || K |,.. <2 to obtain that || Ky + K |,.. <
C272%J._ Conclude that || HiHj|,,_,» < C27 VK ]

8.5.4. For a symbol o(x, &) in S(l),O’ let k(x,z) denote the inverse Fourier transform
(evaluated at z) of the function o (x, -) with x fixed. Show that for all x € R”, the
distribution k(x, -) coincides with a smooth function away from the origin in R”
that satisfies the estimates

|07 0P k(x,2)| < Co 1l 1P,

and conclude that the kernels K (x,y) = k(x,x —y) are well defined and smooth func-
tions away from the diagonal in R?" that belong to SK(1,A) for some A > 0. Con-
clude that pseudodifferential operators with symbols in S?‘O are associated with stan-
dard kernels. '

[Hint: Consider the distribution (d7o(x, -))Y = (—2miz)?k(x, -). Since ago(x,g)
is integrable in & when |y| > n+ 1, it follows that k(x, -) coincides with a smooth
function on R"\ {0}. Next, set 0;(x,&) = o(x, 5)@(2’-’&), where W is as in Section
8.4 and k; the inverse Fourier transform of o in z. For |y| = M use that

(~2mie) 0ol ky(x,2) = [ 91 ((2miE)P a0 (x.£))22 < d

to obtain |8x“8?kj(x,z)| < By 0,522/ (27nz[) ™™ and sum over j € Z.]
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8.5.5. Prove that pseudodifferential operators with symbols in S(l) o that have com-
pact support in x are elements of CZO(1,A, B) for some A, B > 0.
[Hint: Write

a0 = [, ( [, Sl 87@0 g e da

where G(a, ) denotes the Fourier transform of o(x, &) in the variable x. Use inte-
gration by parts to obtain supg |6(a,&)| < Cn(1+ la])~N and pass the L? norm in-
side the integral in a to obtain the required conclusion using the translation-invariant
case. |

8.5.6. Let 7)(&) be a smooth bump on R that is supported in 272 < €] < 22 and is
equal to 1 on 275 < €] < 24, Let

o(xg) =Y e tE).
k=1
Show that ¢ is an element of S(l) , on the line but the corresponding pseudodifferen-

tial operator Ty is not L bounded.
[Hint: To see the latter statement, consider the sequence of functions fy(x) =

P 1 22t *h(x), where h(x) is a Schwartz function whose Fourier transform
is supported in the set || < }. Show that ||fNHL2 < C||h||L2 but ||To’(fN)||L2 >
clogNHhHL2 for some positive constants c, C.]

8.5.7. Prove conclusions (i) and (ii) of Lemma 8.5.1 if hypothesis (8.5.1) is replaced
by
HTJ'*TI‘HHHH + ||T.ka*HHM < F(jak)v

where I' is a nonnegative function on Z X Z such that

sup Y VT (k) =A< oo.
I kez

8.5.8. Let {T; },cr+ be a family of operators mapping a Hilbert space H to itself.
Assume that there is a function y: Rt x R™ — R U {0} satisfying

y—sup/ \/yts P <o
>0 s

such that
1T Tl + BT |y < 7(209)

for all 7,5 in R™. [An example of a function with A, < e is y(z,s) = min (?, ’?)8 for
some £ > 0.] Then prove that for all 0 < € < N we have

dt H

<A,.
H—H 4
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8.6 The Cauchy Integral of Calderon and the 7(») Theorem

The Cauchy integral is almost as old as complex analysis itself. In the classical
theory of complex analysis, if I" is a curve in C and f is a function on the curve, the

Cauchy integral of f is given by
Lo &)
dg.
2mi /r -z 4

One situation in which this operator appears is the following: If I" is a closed simple
curve (i.e., a Jordan curve), Q. is the interior connected component of C\ I", Q_
is the exterior connected component of C\ I', and f is a smooth complex function
on I', is it possible to find analytic functions F; on €2 and F_ on Q_, respectively,
that have continuous extensions on I" such that their difference is equal to the given
f on I'? It turns out that a solution of this problem is given by

= [ 1%t wea,
nd
' F_(w)= ! /f(C) g, weQ
- 2niJr E—w 77 o

We are would like to study the case in which the Jordan curve I" passes through
infinity, in particular, when it is the graph of a Lipschitz function on R. In this case
we compute the boundary limits of . and F_ and we see that they give rise to a
very interesting operator on the curve I". To fix notation we let

A: R—R

be a Lipschitz function. This means that there is a constant L > 0 such that for all
x,y € Rwe have |A(x) —A(y)| < L|x—y|. We define a curve

y: R—C

by setting
Y(x) = x+iA(x)

and we denote by
I'={y(x): xeR} (8.6.1)

the graph of y. Given a smooth function f on I" we set
Lo f©)
F(w) = r. .6.2
(w) zm/rc_wdg, weC\ (8.6.2)

We now show that for z € I', both F(z+i6) and F(z—i6) have limits as 0 | 0,
and these limits give rise to an operator on the curve I" that we would like to study.
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8.6.1 Introduction of the Cauchy Integral Operator along a
Lipschitz Curve

For a smooth function f on the curve I and z € I" we define the Cauchy integral of
fatzas

_ o | f(6)
Cr(f)(z) = slg(l)l+ T /1_ C—de’ (8.6.3)
€
[Re{—Rez|>¢e

assuming that f({) has some decay as |{| — oo. The latter assumption makes the
integral in (8.6.3) converge when |[Re { —Rez| > 1. The fact that the limit in (8.6.3)
exists as € — O for almost all z € I' is shown in the next proposition.

Proposition 8.6.1. Let I be as in (8.6.1). Let f({) be a smooth function on T" that
has decay as || — oo. Given f, we define a function F as in (8.6.2) related to f.
Then the limit in (8.6.3) exists as € — 0 for almost all z € I" and gives rise to a well
defined operator € (f) acting on such functions f. Moreover, for almost all z € T’
we have that

1 1

imF(z+i0) =, €r(f)@) =, f(), (8.6.4)
1 1

ISi?&F(z—iS) =, Cr(f)(z)+ 2f(z). (8.6.5)

Proof. We show first that the limitin (8.6.3) existsas € — 0. Forze I'and0 < e < 1
we write

1 / f(&ag 1 / f(&)dg

i {—z i -z
fer Ler
[Re{—Rez|>¢e [Re{—Rez|>1
1 (f(8) = f(2))d¢
t o / {—z (8.6.6)
ter
e<|Re{—Rez|<1
f(2) d¢
R / -z’
ger

e<|Re{—Rez|<1

By the smoothness of f, the middle term of the sum in (8.6.6) has a limit as € — 0.
We therefore study the third (last) term of this sum.

We consider two branches of the complex logarithm: first log,,,.,.(z) defined for
zin C\ {0} minus the negative imaginary axis normalized so that log,,,,,(1) = 0;
this logarithm satisfies log,,, .., (i) = 7 and 10g,per(—1) = mi. Second, log,,,,,,(2)
defined for z in C\ {0} minus the positive imaginary axis normalized so that
10g),,er (1) = 0; this logarithm satisfies 10g;,,,..(—i) = — 5 and log;,,,.,(—1) = —i.
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Let t=Rezandt =Re(; then z = y(7) = t+iA(7) and § = y(¢). The function
A is Lipschitz and thus differentiable almost everywhere; consequently, the function
y(t) = T+IiA(7) is differentiable a.e. in T € R. Moreover, ¥ (1) = 1 +iA’(1) #0
whenever 7 is differentiable at 7. Fix a T = Rez at which v is differentiable.

We rewrite the last term in the sum in (8.6.6) as

! V(t) —€ )/(l‘)
/e Yt +1)—7(7) dr+/_1 y(t+ 1) — (1) dr. (8.6.7)

The curve t — y(t+ 1) — y(1) =t +i(A(t + ) — A(7)) lies in the complex plane mi-
nus a small angle centered at the origin that does not contain the negative imaginary
axis. Using the upper branch of the logarithm, we evaluate (8.6.7) as

ffé) {10g,,ppe, (Y(1+7) = Y(7)) —10g,per (¥(+T) — 1(7))

- 10gupper (}/(_1 + T) - Y(T)) + 10gupper (}/(_8 + T) - }/(T)):|
= logupper (Y(T - 8) - Y(T)) - logupper (}/(8 + T) - ’}/(T))

Y(z—&)— (1)
= %uper e 1) y(e)
€

(1)

This expression converges to log,, ., (— y,(r)) =108, per(—1) = i as € — 0. Thus
the limit in (8.6.6), and hence in (8.6.3), exists as € — 0 for almost all z on the curve.
Hence € (f) is a well defined operator whenever f is a smooth function with decay
at infinity.

We proceed with the proof of (8.6.4). For fixed 6 > 0 and 0 < € < 1 we write

rerio) = [T a

27 §—2z—1id
ter
[Re{—Rez|>¢e
1 (&) =12
d
+27ri / §—z—1id ¢ (8.6.8)
fer
[Re{—Rez|<e
@, [ s
o C—z—i8"7
ter
[Re{—Rez|<e

With 7 = Rez, the last term in the sum in (8.6.8) is equal to

Y () ¢ Y1)

1
/s Yt+1) - (o) +ie) " /_1 Y +7)— (r() +i6) " (8.6.9)
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Since 6 > 0, the curve ¥(¢t + 1) — (y(7) +i0) lies below the curver — y(r+ 1) — (1)
and therefore outside a small angle centered at the origin that does not contain the
positive imaginary axis. In this region, log,,,,., 1S an analytic branch of the loga-
rithm. Evaluation of (8.6.9) yields

f(2) v(e+1)—y(1)—ib
@i SO y(—g 4 T) —y(1) —id

So, taking limits as 0 | 0 in (8.6.8), we obtain that

. o 9
lim P (:+i8) =, / o
ter
[Re{—Rez|>¢e (8.6.10)
T B L GO IO (i s T
2mi -z 27i g"’w”y(r—s)—y(r)’
ter
[Re{—Rez|<e

in which z = y(7) = 7+ iA(7) and both integrals converge absolutely.

Up until this point, € € (0, 1) was arbitrary and we may let it tend to zero. In doing
so we first observe that the middle integral in (8.6.10) tends to zero because of the
smoothness of f. But for almost all 7 € R, the limit as € — 0 of the logarithm in
(8.6.10) is equal to log;,, ., (— 3,/,8) =10g;,,,.r(—1) = —mi. From this we conclude

that for almost all z € I" we have
/‘ f(6)
{—z
fer
[Re{—Rez|>¢e

: o1 Lo
lsl?gF(z—I—ﬁ)—hm d¢+f(z) 27[1,( i), (8.6.11)

e—0 27

which proves (8.6.4).
The only difference in the proof of (8.6.5) is that log,,, .., is replaced by 1og;,, .,
and for this reason (— i) should be replaced by 7i in (8.6.11). O

Remark 8.6.2. If we let F; be the restriction of F' on the region above the graph I"
and let F_ be the restriction of F on the region below the graph I', we have that F
and F_ have continuous extensions on I", and moreover,

F,~F.=—f,

where f is the given smooth function on the curve. We also note that the argument
given in Proposition 8.6.1 does not require f to be smoother than %'
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8.6.2 Resolution of the Cauchy Integral and Reduction of Its 1>
Boundedness to a Quadratic Estimate

Having introduced the Cauchy integral € as an operator defined on smooth func-
tions on the graph I" of a Lipschitz function A, we turn to some of its properties. We
are mostly interested in obtaining an a priori L? estimate for €. Before we achieve
this goal, we make some observations. First we can write Cr as

H(y+iA(y))(1+iA'(y))
y+iA(y) —x—iA(x) 4y, (8.6.12)

where the integral is over the real line and H is a function on the curve I'. (Recall
that Lipschitz functions are differentiable almost everywhere.) To any function H
on I' we can associate a function 4 on the line R by setting

h(y) = H(y+iA(y))-

We have that
[ HOPay= [ o)1+ WP dy= [ h)Pdy

for some constants that depend on the Lipschitz constant L of A. Therefore, the
boundedness of the operator in (8.6.12) is equivalent to that of the operator

er(e =tim [ y—hx(iz(iz A_E)i;‘/—():izx))dy (8.6.13)

[x—y|>€

acting on Schwartz functions /4 on the line. It is this operator that we concentrate on
in the remainder of this section. We recall that (see Example 8.1.6) the function

1
y—x+i(A(y) —Ax))

defined on R x R\ {(x,x) : x € R} is a standard kernel in SK(1,cL) for some ¢ > 0.
We note that this is not the case with the kernel

1+iA'(y)

y—x+i(A(y) —A(x))’ (8.6.14)

for conditions (8.1.2) and (8.1.3) fail for this kernel, since the function 1 +iA’ does
not possess any smoothness. [Condition (8.1.1) trivially holds for the function in
(8.6.14).] We note, however, that the L” boundedness of the operator in (8.6.13) is
equivalent to that of
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Cr(h)(x) = lim / y—x+i(hA((yy))—A(x))dy’ (8.6.15)

|x—y|>€

since the function 1+ iA’ is bounded above and below and _can be absorbed in #.
Therefore, the L2 boundedness of Cr is equivalent to that of Cr, which has a kernel
that satisfies standard estimates. This equivalence, however, is not as useful in the
approach we take in the sequel. We choose to work with the operator Cr, in which
the appearance of the term 1+ iA’(y) plays a crucial cancellation role.

In the proof of Theorem 8.3.3 we used a resolution of an operator T with standard

kernel of the form 4
*° s
| pno
0 S

where P; and Qy are nice averaging operators that approximate the identity and
the zero operator, respectively. Our goal is to achieve a similar resolution for the
operator Cr defined in (8.6.13). To achieve this, for every s > 0 we introduce the
auxiliary operator

1 h(y)(1+iA(y))
Cr(h)(x:s) = / , d 8.6.16

r(h)(xs) iy y—x+i(A(y) —A(x)) +is Y ( )
defined for Schwartz functions 4 on the line. We make two preliminary observations
regarding this operator: For almost all x € R we have

lim € (1) (x;5) = 0, (8.6.17)
lir%(i'r(h)(x;s) = Cr(h)(x)+h(x). (8.6.13)

Identity (8.6.17) is trivial. To obtain (8.6.18), for a fixed € > 0 we write

h(y)(1+iA'(y))
y—x+i(A(y) —A(x)) +is

erims) = [

i
[x—y|>¢

! (h(y) — h(x))(1+iA"(y))
i / y—x+i(A(y)_A(x))+isdy (8.6.19)

|x—y[<e

dy

+

1 eti(A(x+¢e)—A(x))+is
Fh0) 2 O8umper g ia(x—g) — A(x)+is”

where log,,, . denotes the analytic branch of the complex logarithm defined in the
proof of Proposition 8.6.1. We used this branch of the logarithm, since for s > 0,
the graph of the function y — y +i(A(y +x) — A(x)) + is lies outside a small angle
centered at the origin that contains the negative imaginary axis.

We now take successive limits first as s — 0 and then as € — 0 in (8.6.19). We
obtain that
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lim € () (x:s) = lim / h(y)(1+iA'(y))

5s—0 e—0 ﬂl‘x_ybe y—x+ Z(A(y) —A(x))
1 e+i(A(x+e)—A(x))
) B i 8w e 4 A e) ~ AG)

Since this expression inside the logarithm tends to —1 as € — 0, this logarithm tends
to mi, and this concludes the proof of (8.6.18).
We now consider the second derivative in s of the auxiliary operator Cr (k) (x;s).

d? ds
2 h .
|2 gatrintes

0o d2
=, sdszer(h)(x,s)ds
— tims ¢ er () (xs) —tims ¢ e (h) (x: - [ Lo () (x:5)d
= lims, Cr(t)(us)—lims , Cr(t)(xs)— |, Crh)(xs)ds
= 0—0+1in})€r(h)(x;s) — lim Cr(h)(x;s)
= Cr(h)(x) +h(x),

where we used integration by parts, the fact that for almost all x € R we have

lim s d Cr(h)(x;s) = lims d Cr(h)(x;s) =0, (8.6.20)
s—eo ds s—0 ds
and identities (8.6.17) and (8.6.18) whenever 4 is a Schwartz function. One may
consult Exercise 8.6.2 for a proof of the identities in (8.6.20). So we have succeeded
in writing the operator Cr- (k) + h as an average of smoother operators. Precisely, we
have shown that for & € .7(R) we have

Cr (1) (x) +h(x) —/ 2L o)) P 8.621)
r - 0 ds ’ s bl b
and it remains to understand what the operator
d2 "
452 Cr (W) (x:5) = Cr(A)"(x:5)

really is. Differentiating (8.6.16) twice, we obtain

er(hW)+ht) = [ e )
= 4/ "(x;25) dSs

_ Sh(y)(1+iA(y)) ds
- _m'/ / (y— x+i(A( )—A(x))+2is)3dy s

ds
= d
m/ / —z+21s 4 s’
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where in the last step we set z = x +iA(x), H(z) = h(x), and we switched to com-
plex integration over the curve I'. We now use the following identity from complex
analysis. For §,z € I" we have

1 1 1 1
(§—z+2is) _47ti/r (& —wtis)? (w—z+is)? dw, (8.6.22)

for which we refer to Exercise 8.6.3. Inserting this identity in the preceding expres-
sion for Cr(h)(x) + h(x), we obtain

Cr () +hlx) =~ 7?2 /: [/r (w— zs +is)2 (/r & S—Ijv(f—)is)z dc) dw} dss ’

recalling that z = x + iA(x). Introducing the linear operator

/ 0s(x,y) h(y)dy, (8.6.23)

where
s

0s5(x,y) = (y—x+i(A(y) —A(x)) +is)?’

(8.6.24)

we may therefore write

Cr (h)(x) +h(x) = — 7?2 /: 0, ((14iA")0,((1+iA")h)) (x) ‘is . (8.6.25)
We also introduce the multiplication operator
My(h) = bh,
which enables us to write (8.6.25) in a more compact form as
Cr(h) = —h— ;2 /0 " OM, i OMy i () ‘is . (8.6.26)

This gives us the desired resolution of the operator Cr. It suffices to obtain an L?
estimate for the integral expression in (8.6.26). Using duality, we write

o ds o ds
</0 OM, s OsM, s (h) s ag>:/0 (My ;0 OM, i (h),0%(g)) i

which is easily bounded by

\/l+L2/0°°H@sM1+iA’(h)HL2||@§(8)HL2dss

d d
< ¢1+L2</ @My i () |7 :) (/ les)]|; :)

We have now reduced matters to the following estimate:
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- I
(/0 X1 ss) <]l (8.6.27)

We derive (8.6.27) as a consequence of Theorem 8.6.6 discussed in Section 8.6.4.

8.6.3 A Quadratic T (1) Type Theorem

We review what we have achieved so far and we introduce definitions that place
matters into a new framework.

For the purposes of the subsequent exposition we can switch to R”, since there
are no differences from the one-dimensional argument. Suppose that for all s > 0,
there is a family of functions 6; defined on R” x R” such that

1 A

10s(x, )| <, ntd (8.6.28)
s (1+ \xsy\)
and Al "
y=y
165 (x,y) — 65(x,y)| < o (8.6.29)

for all x,y,y’ € R" and some 0 < y,8,A < o=. Let O be the operator with kernel 6,
that is,

Os(h)x) = [ Os(x.y)h(y)dy, (8.6.30)

which is well defined for all & in {J; < <. L” (R") in view of (8.6.28).

At this point we observe that both (8.6.28) and (8.6.29) hold for the 6, defined
in (8.6.24) with y= 0 = 1 and A a constant multiple of L. We leave the details of
this calculation to the reader but we note that (8.6.29) can be obtained quickly using
the mean value theorem. Our goal is to figure out under what additional conditions
on O the quadratic estimate (8.6.27) holds. If we can find such a condition that is
easily verifiable for the @, associated with the Cauchy integral, this will conclude
the proof of its L? boundedness.

We first consider a simple condition that implies the quadratic estimate (8.6.27).

Theorem 8.6.3. For s > 0, let 65 be a family of kernels satisfying (8.6.28) and
(8.6.29) and let Oy be the linear operator whose kernel is 0. Suppose that for all

s > 0 we have
O,(1) =0. (8.6.31)

Then there is a constant C, 5 such that for all f € L? we have

- d ]
([ 10l ) <cusalil 8632
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We note that condition (8.6.31) is not satisfied for the operators ©; associated
with the Cauchy integral as defined in (8.6.23). However, Theorem 8.6.3 gives us
an idea of what we are looking for, something like the action of ©; on a specific
function. We also observe that condition (8.6.31) is “basically” saying that © (1) =

0, where
o= / 0, %
0 s

Proof. We introduce Littlewood—Paley operators O, given by convolution with a
smooth function '¥; = Sl,, ¥( ;) whose Fourier transform is supported in the annulus
5/2 < |E| < 25 that satisfies

/:Qf - lm/ des (8.6.33)

£—0

where the limit is taken in the sense of distributions and the identity holds in
' (R")/ 2. This identity and properties of @, imply the operator identity

© ,ds b ds
o-6[ o[ 00
0 s 0 s
The key fact is the following estimate:
. s \€
180,22 <ACywmin (t,s) , (8.6.34)

which holds for some € = £(y,6,n) > 0. [Recall that A, 7, and § are as in (8.6.28)
and (8.6.29).] Assuming momentarily estimate (8.6.34), we can quickly prove The-
orem 8.6.3 using duality. Indeed, let us take a function G(x,) such that

o dt
//|G(x,t)|2dx <1. (8.6.35)
0 JR? t

Then we have

/OW/RH G(x,1) O (f)(x)dx it
[ o [ ocias

_/ / RnG“ )0,0%(f)(x)dx dtds
<Lk |G(x,,)|zdmm(j,§)s "y
(/ / / 1©:0:(0s(f ()|2dxmin(:’i)_eitdss)i.

But we have the estimate
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© /S t\¢ds
sup mln( , ) <Cg,
~0 70 t s Ky

which, combined with (8.6.35), yields that the first term in the product of the two
preceding square functions is controlled by 1/Ce. Using this fact and (8.6.34), we
write

I [ ewnemnwa:
RV!

e [ [ [ i0odmmpamn(5 1) 44
enve [ [ et amn () w4
el [ [ L oimorams(.

<ca( [ [ letnwha )

S Cn,SAHfHL27

where in the last step we used the continuous version of Theorem 5.1.2 (cf. Exercise
5.1.4). Taking the supremum over all functions G(x,¢) that satisfy (8.6.35) yields
estimate (8.6.32).

It remains to prove (8.6.34). What is crucial here is that both ©, and Q; satisfy
the cancellation conditions (1) = 0 and Q;(1) = 0. The proof of estimate (8.6.34)
is similar to that of estimates (8.5.14) and (8.5.15) in Proposition 8.5.3. Using ideas
from the proof of Proposition 8.5.3, we quickly dispose of the proof of (8.6.34).

The kernel of ©;Q; is seen easily to be

Ly s(x,y) = /1.{” 0:(x,2)¥(z—y)dz.

Notice that the function (y,z) — ¥;(z —y) satisfies (8.6.28) with § =1 and A = Cy
and satisfies

Cy |z—7
(e ) (| <

for all z,7/,y € R" for some Cy < oo. We prove that

N

1 min(6,1) .
t n+min mm(}/ﬁ,l)
sup | [Lis(e.y)ldy < cq,Amin( ,s)“ +aio(5.1 , (8.6.36)
xcR” st
t s ‘l*nrrlr‘:l(néw 1) m1n(7/5 1)
sup | |Lis(x,y)|dx < CpA min( , ) . (8.6.37)
yeR” R” ' st
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Once (8.6.36) and (8.6.37) are established, (8.6.34) follows directly from the lemma
. . . in(6,1 .

in Appendix I.1 with € = inf;:i(n(&% min(y,3d,1).

We begin by observing that when s < ¢ we have the estimate

/ s~ min(2, (t~ul)?) (8.6.38)

s)imin(%l)
(1+ s~ Yu|)nt :

duSCn(t

Also when ¢ < s we have the analogous estimate

t~"min(2,s~ " |u|) £ 5 min(8,1)
du<C . 8.6.39
/n (1411 yrtd () (8.6.39)

Both (8.6.38) and (8.6.39) are trivial reformulations or consequences of (8.5.18).
We now take s <t and we use that Q,(1) = 0 for all s > 0 to obtain

[Lis(x,3)] =

/ 6, (x,2)¥(z—y)dz
R

/n 6 (x,2) — 6,(x,y)| Wi (z —y) dz

min(2, (r~"z—y[)?) s
R ™ (I+s7Hz—y[)m*!

1 } min(y,1)
C;A (S)z 1
"\t

, .1 1N\
CnAmm( , ) min
r s

IN

CA dz

IN

IN

)

(t S) ) min(,8,1)

using estimate (8.6.38). Similarly, using (8.6.39) and the hypothesis that ©;(1) =0
for all + > 0, we obtain for ¢ <,

Lses)] = | [ 802 ¥le=y)ds

/R” 6 (x,2) [H(z—y) — W(x—y)] dz

t" min(2,s~x —z|)
< xCA dz
- R" (1_|_t71|x_z|)n+5 s
< C;A 1 (t)émin(&l)

s \s

1 1\n t s\ 2min(7,8.1)
C;Amin( , ) min( ,s)2 )
t s st

IN

Combining the estimates for |L; s(x,y)| in the preceding cases ¢ < s and s < ¢ with
the estimate
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o1
CAmin(,, )"

(H—min(1 Dx—y

t’s

L) < [ 18102)] ¥ele )] dz < g

which is a consequence of the result in Appendix K.1, gives

Cmin(’,$)2min(8D1-B)A min( 1, Ly

st t’s

Lste)| < e
((l +m1n(; 7 i)|x_y|)n+m1n(5,l))

forany 0 < 8 < 1. Choosing 8 = (n+ % min(3,1))(n-+min(8,1))~! and integrating

over x or y yields (8.6.36) and (8.6.37), respectively, and thus concludes the proof
of estimate (8.6.34). O

We end this subsection with a small generalization of the previous theorem that
follows by an examination of its proof. The simple details are left to the reader.

Corollary 8.6.4. For s > 0 let Oy be linear operators that are uniformly bounded on
L*(R™) by a constant B. Let ¥ be a Schwartz function whose Fourier transform is
supported in the annulus 1/2 < |x| < 2 such that the Littlewood—Paley operator Qg
given by convolution with W(x) = s "W (s~ 'x) satisfies (8.6.33). Suppose that for
some Cpyp,A, € < oo,

10,042, <AC,ymin (j ;) (8.6.40)

is satisfied for all t,s > 0. Then there is a constant Cy, y ¢ such that for all f € L? (R")
we have

(/OwH@v(f)Hiz isf <Cowe(A+B)|f]|,2-

8.6.4 A T (b) Theorem and the L> Boundedness of the Cauchy
Integral

The operators O, defined in (8.6.23) and (8.6.24) that appear in the resolution of
the Cauchy integral operator Cr do not satisfy the condition ©;(1) = 0 of Theorem
8.6.3. It turns out that a certain variant of this theorem is needed for the purposes of
the application we have in mind, the L? boundedness of the Cauchy integral operator.
This variant is a quadratic type T (b) theorem discussed in this subsection. Before
we state the main theorem, we need a definition.

Definition 8.6.5. A bounded complex-valued function b on R” is said to be accretive
if there is a constant ¢y > 0 such that Reb(x) > ¢ for almost all x € R".

The following theorem is the main result of this section.
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Theorem 8.6.6. Let 6; be a complex-valued function on R" x R" that satisfies
(8.6.28) and (8.6.29), and let Oy be the linear operator in (8.6.30) whose kernel
is 6. If there is an accretive function b such that

O,(h) =0 (8.6.41)

for all s > 0, then there is a constant C,(b) such that the estimate

. N
(/0 e :) <G| £],2 (8.6.42)

holds for all f € L.
Corollary 8.6.7. The Cauchy integral operator Cr maps L*(R) to itself

The corollary is a consequence of Theorem 8.6.6. Indeed, the crucial and impor-
tant cancellation property
O,(1+iA")=0 (8.6.43)

is valid for the accretive function 1+ iA’, when @, and 6 are as in (8.6.23) and
(8.6.24). To prove (8.6.43) we simply note that

N s(1+iA'(y))dy
Os(1+iA)(x) = /R (v —x+i(AQY) — A(x)) +is)?
_s y=rteo
N [y—x+i<A<y>—A(x>>+is

=0-0=0.

This condition plays exactly the role of (8.6.31), which may fail in general. The
necessary “internal cancellation” of the family of operators ©; is exactly captured
by the single condition (8.6.43).

It remains to prove Theorem 8.6.6.

Proof. We fix an approximation of the identity operator, such as
RUNE) = [ lx=3) )y,

where @ (x) = s "® (s 'x), and @ is a nonnegative Schwartz function with integral
1. Then P is a nice positive averaging operator that satisfies P;(1) = 1 for all s > 0.
The key idea is to decompose the operator O as

O, = (6, — Mg, (1\Py) + Mo, (1)Ps , (8.6.44)

where Mg,(1) is the operator given by multiplication by ©;(1). We begin with the
first term in (8.6.44), which is essentially an error term. We simply observe that

(@s_M@S(l)Ps)(l) = @s(l) _@s(l)Ps(l) = @s(l) _@s(l) =0.
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Therefore, Theorem 8.6.3 is applicable once we check that the kernel of the operator
O — Mg, (1)P; satisfies (8.6.28) and (8.6.29). But these are verified easily, since the
kernels of both ©; and P; satisfy these estimates and ©;(1) is a bounded function
uniformly in s. The latter statement is a consequence of condition (8.6.28).

We now need to obtain the required quadratic estimate for the term Mg, (1)Fs.
With the use of Theorem 7.3.7, this follows once we prove that the measure

‘zdxds
s

|65(1)(x)
is Carleson. It is here that we use condition (8.6.41). Since O;(b) = 0 we have
Py(b)B5(1) = (Py(b) O5(1) — OsPy(b)) + (O5P;(b) — B4(b)) - (8.6.45)

Suppose we could show that the measures

O3(6)(x) ~ OB () ) (8.6.46)
0P, (b)(x) ~ A(B) W) 0,10 (8.6.47)

are Carleson. Then it would follow from (8.6.45) that the measure

2dxds
s

[B(6)(x) ©,(1) ()

is also Carleson. Using the accretivity condition on b and the positivity of P, we
obtain
|Ps(b)| Z RePS(b) = Ps(Reb) 2 PS(CO) = Cg,

from which it follows that |©;(1)(x)|> < cg 2|Ps(b)(x) ©5(1)(x)[?. Thus the measure
|©4(1)(x)|>dxds/s must be Carleson.

Therefore, the proof will be complete if we can show that both measures (8.6.46)
and (8.6.47) are Carleson. Theorem 7.3.8 plays a key role here.

We begin with the measure in (8.6.46). First we observe that the kernel

Lixy) = [ 60 -y)d:

of O,P; satisfies (8.6.28) and (8.6.29). The verification of (8.6.28) is a straightfor-
ward consequence of the estimate in Appendix K.1, while (8.6.29) follows easily
from the mean value theorem. It follows that the kernel of

Ry = O — O,P;

satisfies the same estimates. Moreover, it is easy to see that Ry(1) = 0 and thus
the quadratic estimate (8.6.32) holds for R in view of Theorem 8.6.3. Therefore,
the hypotheses of Theorem 7.3.8(c) are satisfied, and this gives that the measure in
(8.6.46) is Carleson.
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We now continue with the measure in (8.6.47). Here we set

T(f)(x) = O5L5(f) (x) = P(f) (x)O5 (1) (x) .

The kernel of Ty is Ls(x,y) — O5(1)(x)Ds(x — y), which clearly satisfies (8.6.28)
and (8.6.29), since O,(1)(x) is a bounded function uniformly in s > 0. We also ob-
serve that T;(1) = 0. Using Theorem 8.6.3, we conclude that the quadratic estimate
(8.6.32) holds for T;. Therefore, the hypotheses of Theorem 7.3.8(c) are satisfied;
hence the measure in (8.6.46) is Carleson. O

We conclude by observing that if we attempt to replace ©, with 0, = OM 1A’
in the resolution identity (8.6.26), then O4(1) = 0 would hold, but the kernel of O
would not satisfy the regularity estimate (8.6.29). The whole purpose of Theorem
8.6.6 was to find a certain balance between regularity and cancellation.

Exercises

8.6.1. Given a function H on a Lipschitz graph I, we associate a function % on the
line by setting h(z) = H(t +iA(t)) . Prove that for all 0 < p < e we have

1]

) < 14|

ip(r) < V1422

P
LP(R)’
where L is the Lipschitz constant of the defining function A of the graph I'.

8.6.2. Let A: R — Rusatisfy |A(x) —A(y)| < L|x—y| forall x,y € R for some L > 0.
Also, let & be a Schwartz function on R.
(a) Show that for all s > 0 and x,y € R we have

s?+ =yl

<41>42.
I —y[2+]A(x) —A(y) +52 —

(b) Use the Lebesgue dominated convergence theorem to prove that

Al
/ SAHAGYRO)
(= x+i(A(y) —A(x)) +is)?
e=y[>/s
as s — 0.
(c) Integrate directly to show that as s — 0,
s(1+iA’(y))
d 0
/ (y—x+i(A(y) —A@) +is2 @
le—yl<v/s

for every point x at which A is differentiable.
(d) Use part (a) and the Lebesgue dominated convergence theorem to show that as
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s—0,

y—0.

/ s(L4+iA'()) (k) = h(x)
L o rriam Ay i

(e) Use part (a) and the Lebesgue dominated convergence theorem to show that as

T s(1+iA'(y))h(y) -
/R()’—x+i(A(y)_A(x))+is)2dy 0.

Conclude the validity of the statements in (8.6.20) for almost all x € R.

8.6.3. Prove identity (8.6.22).
[Hint: Write the identity in (8.6.22) as

1
—2 1 (we(eis)?
(& +is) — (z—is))3 27ri/r (w— (L +is))? d

and interpret it as Cauchy’s integral formula for the derivative of the analytic func-
tion w — (w — (z —is)) 2 defined on the region above I'. If I" were a closed curve
containing { + is but not z — is, then the previous assertion would be immediate. In
general, consider a circle of radius R centered at the point { + is and the region Ug
inside this circle and above I'. See Figure 8.1. Integrate over the boundary of Ug
and let R — oo

Fig. 8.1 The region Uy inside the circle and above the curve.

8.6.4. Given an accretive function b, define a pseudo-inner product

(1:8)= [, 708l b)dx



8.6 The Cauchy Integral of Calder6n and the T'(b) Theorem 255

on L2, For an interval I, set b; = J;b(x)dx. Let I denote the left half of a dyadic

interval I and let I denote its right half. For a complex number z, let = ¢2 1°%rigi 2
where log,;,, is the branch of the logarithm defined on the complex plane minus the
negative real axis normalized so that log, ., 1 = 0 [and log, ., (i) = 7 i]. Show
that the family of functions

_ -l (bR b1
hy = b([)% <b([L)é X b(IR)é X1R> )

where I runs over all dyadic intervals, is an orthonormal family on L?(R) with re-
spect to the preceding inner product. (This family of functions is called a pseudo-
Haar basis associated with b.)

8.6.5. Let I = (a,b) be a dyadic interval and let 37 be its triple. For a given x € R,
let
di(x) = min (|Jx—al, [x — b|,|x — “erb|) .

Show that there exists a constant C such that

_1 10|1]
Cr(hpx)| <Cl|II"210
er(n)eo] <ClilHog
whenever x € 31 and also
3
Cl|I|2
h <
OIS gy oy

for x ¢ 31I. In the latter case, d;(x) can be any of a, b, “;b.

8.6.6. (Semmes [281]) We say that a bounded function b is para-accretive if for all
s > 0 there is a linear operator R; with kernel satisfying (8.6.28) and (8.6.29) such
that |Rs(b)| > ¢o for all s > 0. Let ©; and P; be as in Theorem 8.6.6.

(a) Prove that

2 dxds
|Rs(b)(x) = Rs(1) (x) Ps(b) (%) | s
is a Carleson measure.

(b) Use the result in part (a) and the fact that sup,.|Rs(1)| < C to obtain that

X0 (x,s)dxds/s is a Carleson measure, where

Q={@s): RE))| < (suplRy())'}.

s>0

(c) Conclude that the measure |O;(1)(x) |2 dxds/s is Carleson, thus obtaining a gen-
eralization of Theorem 8.6.6 for para-accretive functions.

8.6.7. Using the operator éy defined in (8.6.15), obtain that Cr is of weak type
(1,1) and bounded on LP(R) forall 1 < p < eo.
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8.7 Square Roots of Elliptic Operators

In this section we prove an L? estimate for the square root of a divergence form
second-order elliptic operator on R”. This estimate is based on an approach in the
spirit of the T'(b) theorem discussed in the previous section. However, matters here
are significantly more complicated for two main reasons: the roughness of the vari-
able coefficients of the aforementioned elliptic operator and the higher-dimensional
nature of the problem.

8.7.1 Preliminaries and Statement of the Main Result

For & = (&4,...,&,) € C" we denote its complex conjugate (&;,...,&,) by . More-
over, for £, € C" we use the inner product notation

£0=3 &6,

k=1

Throughout this section, A = A(x) is an n X n matrix of complex-valued L™ func-
tions, defined on R”, that satisfies the ellipticity (or accretivity) conditions for some
0 <A <A <oo, that

AEPP < Re(A()&-8),
[Ax) S -Cl < AlS]IS],

forall x e R" and &, { € C". We interpret an element & of C" as a column vector in
C" when the matrix A acts on it.

Associated with such a matrix A, we define a second-order divergence form op-
erator

IN

(8.7.1)

L(f) = —div(AVf) = 2 9;((AVY))), (8.7.2)
j=1

which we interpret in the weak sense whenever f is a distribution.

The accretivity condition (8.7.1) enables us to define a square root operator
L'/2 = \/L so that the operator identity L = /Ly/L holds. The square root oper-
ator can be written in several ways, one of which is

dt

_16 /Oer(I+t2L)’3t3L2(f) . (8.7.3)

T

VL(f)

We refer the reader to Exercise 8.7.3 for the existence of the square root operator
and the validity of identity (8.7.3).
An important problem in the subject is to determine whether the estimate

VL) 2 < Cuan V1 2 (8.7.4)
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holds for functions f in a dense subspace of the homogeneous Sobolev space
L3(R"), where G, ; 4 is a constant depending only on n, A, and A. Once (8.7.4)
is known for a dense subspace of L% (R"), then it can be extended to the entire space
by density. The main purpose of this section is to discuss a detailed proof of the
following result.

Theorem 8.7.1. Let L be as in (8.7.2). Then there is a constant C, ), 5 such that for
all smooth functions f with compact support, estimate (8.7.4) is valid.

The proof of this theorem requires certain estimates concerning elliptic operators.
These are presented in the next subsection, while the proof of the theorem follows
in the remaining four subsections.

8.7.2 Estimates for Elliptic Operators on R"

The following lemma provides a quantitative expression for the mean decay of the
resolvent kernel.

Lemma 8.7.2. Let E and F be two closed sets of R" and set
d =dist(E,F),

the distance between E and F. Then for all complex-valued functions f supported
in E and all vector-valued functions f supported in E, we have

[la+rny (WP ar < et [ 7@Pax, (8.7.5)
F E
[Wvurny  (NwPas < et [ I, (8.7.6)
F E
/F|(I+t2L)_1(tdivf)(x)|2dx < Ce—c?l/E|f(x)|2dx, (8.7.7)

where ¢ = ¢(A,A), C =C(n,A,A) are finite constants.

Proof. Tt suffices to obtain these inequalities whenever d >t > 0. Let us set u; =
(I+1>L)~'(f). Forall v € L}(R") we have

/ uvdx+1> | AVu, -Vvdx = fvdx.
n RV! Rﬂ
Let 1 be a nonnegative smooth function with compact support that does not meet E

and that satisfies ||n||z~ = 1. Taking v = u, 7 and using that f is supported in E,
we obtain

/ |ut|2n2dx—|—t2/ AVu, -Vu, nzdx=—2t2/ A(MVu)-u,Vndx.
Rl‘l Rn Rl‘l
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Using (8.7.1) and the inequality 2ab < g|a|? + £~ '|b|?, we obtain for all £ > 0,

/ |ut|2n2dx+7tt2/ Vi, 2 1 dx
R” R”

§A£t2/ |Vut|2n2dx+A£’1t2/ g 2|V P dx,
R” R”

and this reduces to
A%?
[ taPmPar< ™" [ uPvnPax
R" R"

by choosing € = /){ . Replacing 1 by ¢k — 1 in (8.7.8), where

o VA
2A1[|Vn =

yields
n 1 n
/R” g |1 — 12 dx < 4 /R” |ug |51 [ dx.

Using that |7 — 1]? > %|ek” |> — 1, we obtain

/ |u,|2|ek"|2dx§4/ |ut|2dx§4C/|f|2dx,
R" R" E

(8.7.8)

(8.7.9)

where in the last estimate we use the uniform boundedness of (I+¢2L)~! on L?(R")

(Exercise 8.7.2). If, in addition, we have 1 = 1 on F, then
P [P dr< [Pl P,
F Rl‘l

and picking 1 so that ||V1 |1~ ~ 1/d, we conclude (8.7.5).
Next, choose € = A /2A and 7 as before to obtain

/|tVut|2dx g/ |tVu,|*n? dx
F Rl'l

2472
ol vnPax

a
Crd2e <" / f2dx,
E

IN

IN

which gives (8.7.6). Finally, (8.7.7) is obtained by duality from (8.7.6) applied to

L* = —div(A*V) when the roles of E and F are interchanged.

O

Lemma 8.7.3. Let My be the operator given by multiplication by a Lipschitz func-
tion f. Then there is a constant C that depends only on n, A, and A such that

1+~ My [l < C[[ V1]

(8.7.10)
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and

IVIU+2L) ™ Mp] || o < CI[VS e (8.7.11)
forallt > 0. Here [T,S] = TS — ST is the commutator of the operators T and S.

Proof. Set b = AV f, d=AV f and note that the operators given by pointwise
multiplication by these vectors are L?> bounded with norms at most a multiple of
C||Vf|| - Write

[(I+2L)"" M| = —(I+L)" ' [(I+2L), My ] (I +12L)""
= —(I+2L) " (divhb+d-V)(1+7°L)"!
The uniform L? boundedness of (I +#2L)~' tV(I+¢*L)~" and (I +¢2L)"'tdiv on

L? (see Exercise 8.7.2) implies (8.7.10). Finally, using the L?> boundedness of the
operator 12V (I + L)~ 'div yields (8.7.11). O

Next we have a technical lemma concerning the mean square deviation of f from

(I+*L)~!

Lemma 8.7.4. There exists a constant C depending only onn, A, and A such that for
all Q cubes in R" with sides parallel to the axes, for all t < £(Q), and all Lipschitz
functions f on R" we have

IN

1
|Q|/|(I+t2L)’1(f)—f|2dx c||ve|s., (8.7.12)

IN

/|V ((I+22L)7'(f) — f)Pdxx < C||Vr|.. (8.7.13)

¢
Proof. We begin by proving (8.7.12), while we omit the proof of (8.7.13), since it is
similar. By a simple rescaling, we may assume that ¢(Q) = 1 and that |V f||;~ = 1.
Set Qg =20 (i.e., the cube with the same center as Q with twice its side length) and
write R” as a union of cubes Oy of side length 2 with disjoint interiors and sides
parallel to the axes. Lemma 8.7.2 implies that

(I+70L)7 (1) =1

in the sense that

lim (I+12L)"Y(mgr) =1
in L2 (R"), where 1g(x) = 1(x/R) and 7 is a smooth bump function with n = 1
near 0. Hence, we may write

I+2L) " (@) = f0) = X T+2L) 7 ((f = FO)xe) () = Y, elx

keZ! keZn

The term for k = 0 in the sum is [(7+#*L) ', M¢](xo,)(x). Hence, its L?(Q) norm
is controlled by Ct|| g, ||, by (8.7.10). The terms for k # 0 are dealt with using the
further decomposition
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ge(x) = (1+2L) 1 ((f = f(u))xo) (0) + (f (w) = )T +2°L) " (x0,) (x).

where x; is the center of Q. Applying Lemma 8.7.2 for (I +1*L)~! on the sets
E = Oy and F = Q and using that f is a Lipschitz function, we obtain

P <cre? o oot i,

The desired bound on the L2(Q) norm of (I 4 ¢*L)~'(f) — f follows from these
estimates, Minkowski’s inequality, and the fact that r < 1 = £(Q). O

8.7.3 Reduction to a Quadratic Estimate

We are given a divergence form elliptic operator as in (8.7.2) with ellipticity con-
stants A and A in (8.7.1). Our goal is to obtain the a priori estimate (8.7.4) for
functions f in some dense subspace of L2(R").

To obtain this estimate we need to resolve the operator \/L as an average of
simpler operators that are uniformly bounded from L2 (R") to L*(R"). In the sequel
we use the following resolution of the square root:

vin =20 [Caven ez

0 t

in which the integral converges in L*(R") for f € ;°(R"). Take g € ;" (R") with
llgll;2 = 1. Using duality and the Cauchy—Schwarz inequality, we can control the

quantity |<\/L(f) |g> ‘2 by

256 [ [= PN "
2 (/0 l+220) ()3 )(/0 Vi(o)]l7- ) (8.7.14)

where we set
V, =L (1 +1°L%) 72

Here L* is the adjoint operator to L and note that the matrix corresponding to L*
is the conjugate-transpose matrix A* of A (i.e., the transpose of the matrix whose
entries are the complex conjugates of the matrix A). We explain why the estimate

= d
/OHVr )72 t<CHgHiz (8.7.15)

is valid. Fix a real-valued function ¥ € %;°(R") with mean value zero normalized

so that i
2~ s

JAECI
0 s
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for all & € R" and define ¥;(x) = Sl,, ¥ (7). Throughout the proof, Oy denotes the
operator
Os(h) = hx*¥;. (8.7.16)

oo ds
| les@l: S = el

Obviously we have

for all L? functions g.

We obtain estimate (8.7.15) as a consequence of Corollary 8.6.4 applied to the
operators V; that have uniform (in ¢) bounded extensions on L2 (R"). To apply Corol-
lary 8.6.4, we need to check that condition (8.6.40) holds for &, = V;. Since

V,Qs = —(I+12L") 22 divA*V Qy,
we have
HVzQsHLzﬂLz < H(I+IZL*)72t2diVA*HL2HL2 HVQSHLZHL2 < c; , (8.7.17)

with C depending only on 1, 4, and A. Choose ¥ = A¢ with ¢ € ¢;°(R") radial so
that in particular, ¥ = div /. This yields Q; = sdiv R, with R, uniformly bounded;
hence

* *\—2 12 = S
HVIQSHLZ—LZ < thL (1+1°L") 2d1VHL2—>L2HSRSHL2—>L2 = € (8.7.18)
with C depending only on n, A, and A.
Combining (8.7.17) and (8.7.18) proves (8.6.40) with ©; = V;. Hence Corollary
8.6.4 is applicable and (8.7.15) follows.

Therefore, the second integral on the right-hand side of (8.7.14) is bounded, and
estimate (8.7.4) is reduced to proving

[ la+en a3 <c [ viras (87.19)

for all f € 65°(R").

8.7.4 Reduction to a Carleson Measure Estimate

Our next goal is to reduce matters to a Carleson measure estimate. We first intro-
duce some notation to be used throughout. For C"-valued functions f = (f1,..., f)
define

k=1j

I+l2L (ajJ(fk) .

M:

1
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In short, we write Z, = —(I +¢>L)"'tdivA. With this notation, we reformulate
(8.7.19) as
*° 2 dt 2
/O lz5 gc/Rn V£ dx. (8.7.20)
Also, define

10 =200 = (= XU+ 10(a00)

1<k<n

where 1 is the n X n identity matrix and the action of Z; on 1 is columnwise.
The reduction to a Carleson measure estimate and to a 7 (b) argument requires
the following inequality:

2 dxdt
t

L] -2V -z wP © " <c [ VePar, @120
I‘lo Rn

where C depends only on n, A, and A. Here, P; denotes the operator
P(h) =hxpy, (8.7.22)

where p,(x) =t "p(t~'x) and p denotes a nonnegative smooth function supported
in the unit ball of R"” with integral equal to 1. To prove this, we need to handle
Littlewood—Paley theory in a setting a bit more general than the one encountered in
the previous section.

Lemma 8.7.5. For t > 0, let U, be integral operators defined on L*(R") with mea-
surable kernels L,(x,y). Suppose that for some m > n and for all y € R" and t > 0
we have

. _ 2m
/ (1 4+ t y') L (xy) P dx < 17", (8.7.23)
RV!

Assume that for any ball B(y,t), U, has a bounded extension from L*(R") to
L?(B(y,t)) such that for all f in L*(R") and y € R" we have

o o, @R A < 1] (8.7.24)
Finally, assume that U;(1) = 0 in the sense that

U(xsor) —0  in  L*(B(y,1)) (8.7.25)
asR— oo forally e R" andt > 0.

Let Qs and P; be as in (8.7.16) and (8.7.22), respectively. Then for some o > 0
and C depending on n and m we have

o
|URO|,>,> < Cmin (Z :) (8.7.26)

and also
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o
HUzQsHLLLZSC(Z) . t<s. (8.7.27)

Proof. We begin by observing that U;*U; has a kernel K; (x,y) given by

Ki(x,y) = /Rn Li(z,x)Ls(z,y)dz.

The simple inequality (1 +a+b) < (1+a)(1+b) for a,b > 0 combined with
m

the Cauchy-Schwarz inequality and (8.7.23) yield that (1+"1)" K, (xy) is

bounded by

m m
Lo (T o (1457 ay <o

We conclude that o
1 x =yl
Kyl <, (147 : (8.7.28)

Hence U;*U; is bounded on all L”, 1 < p < 4o, and in particular, for p = 2. Since
L? is a Hilbert space, it follows that U, is bounded on L?(R") uniformly in ¢ > 0.

For s <t we use that ||U; | 122 < B < eoand basic estimates to deduce that

Ky o
[0R0 2 < BlIPQ 2 <CB(])
Next, we consider the case r < s. Since P, has an integrable kernel, and the kernel
of U/U; satisfies (8.7.28), it follows that W; = U;*U, P, has a kernel that satisfies a

similar estimate. If we prove that W;(1) = 0, then we can deduce from standard
arguments that when ¢ < s we have

r\2a
W02, <C (s) (8.7.29)
for 0 < oo < m —n. This would imply the required estimate (8.7.26), since
|UPO|[2 s = | QU UPO| oo < ClIUFUROS |5 po -

We have that W, (1) = U U, (1). Suppose that a function ¢ in L?(R") is compactly
supported. Then ¢ is integrable over R” and we have

(U1 ] o) = lim (U Ui(xgor) @) = 1%2130<Ut (XBo.R) Ui (@)
We have
(Utom)|Ui9)) = [ [ UGtaom) U )00) dydx,

and this is in absolute value at most a constant multiple of
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—2m é 1
(,n L] <1+ 'x?y') |u,<xB(O,R>><x>|2|<p<y>|dydx) loll;,

by (8.7.23) and the Cauchy—Schwarz inequality for the measure |@(y)|dydx. Using
a covering in the x variable by a family of balls B(y + ckt,t), k € Z", we deduce
easily that the last displayed expression is at most

Cy (kzz J 0+ |k|>—2'"cR<y,k)|<p<y>|dy> ,

where Cy, is a constant that depends on ¢ and

erd) =1 [ (U mor) WP dx.
B(y+ckt t)

Applying the dominated convergence theorem and invoking (8.7.24) and (8.7.25) as
R — oo, we conclude that (U;U;(1)| @) = 0. The latter implies that U;*U; (1) = 0.
The same conclusion follows for W, since P (1) = 1.

To prove (8.7.27) when ¢ < s we repeat the previous argument with W, = U;*U;,.
Since W;(1) = 0 and W, has a nice kernel, it follows that (8.7.29) holds. Thus

200
[Vl = UV < U e <€ ()

This concludes the proof of the lemma. O

Lerllma 8.7.6. Let P, ﬂbe as in Lemma 8.7.5. Then the operator U; defined by
Ui(f)(x) = 0(x)- B (f)(x) = ZP(f)(x) satisfies

it = dt -
| e @ <l

where C depends only on n, A, and A. Here the action of P, on f is componentwise.

Proof. By the off-diagonal estimates of Lemma 8.7.2 for Z; and the fact that p has
support in the unit ball, it is simple to show that there is a constant C depending on
n, A, and A such that for all y € R”,

1

/ % (x)[Pdx<C (8.7.30)
" JB(y1)

and that the kernel of C~'U; satisfies the hypotheses in Lemma 8.7.5. The conclu-
sion follows from Corollary 8.6.4 applied to U;F,. O

We now return to (8.7.21). We begin by writing

1) - P2 (Ve)(x) = Z(Vg) (x) = UP(Vg) (x) + Z (P} —T)(Ve) (%),
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and we prove (8.7.21) for each term that appears on the right. For the first term we
apply Lemma 8.7.6. Since P, commutes with partial derivatives, we may use that

|2V ]|pope = U+ 2D 2L o s C

and therefore we obtain for the second term

Jo e =R < @ [ [T D@ a
2 (P)HVgH;

by Plancherel’s theorem, where C depends only on n, A, and A. This concludes the
proof of (8.7.21).

IN

IN

Lemma 8.7.7. The required estimate (8.7.4) follows from the Carleson measure es-

timate
dxdt
sup|Q|// WP <o, (8.7.31)

where the supremum is taken over all cubes in R" with sides parallel to the axes.

Proof. Indeed, (8.7.31) and Theorem 7.3.7 imply

* dxdt
L[ e wwr ST <c [ vePar

and together with (8.7.21) we deduce that (8.7.20) holds. O

Next we introduce an auxiliary averaging operator. We define a dyadic averaging
operator StQ as follows:

S0 = (g [, 7000 )20,

where Q) is the unique dyadic cube contained in Q that contains x and satisfies
10(QL) <t < £(Q)). Notice that S is a projection, i.e., it satisfies S2S2 = S2. We
have the following technical lemma concerning S,Q .

Lemma 8.7.8. For some C depending only on n, A, and A, we have

Q) - -
L[ e @2 fwp Y < [ 17pas @132
0J0 t R"

Proof. We actually obtain a stronger version of (8.7.32) in which the 7-integration
on the left is taken over (0,4-). Let Q; be as in (8.7.16). Set €, = ¥ - (S¢ — P2).
The proof of (8.7.32) is based on Corollary 8.6.4 provided we show that for some
o >0,

|22 < cmin((7)"
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Suppose first that ¢ < s. Notice that @,(1) = 0, and thus (8.7.25) holds. With the
aid of (8.7.30), we observe that ©; satisfies the hypotheses (8.7.23) and (8.7.24) of
Lemma 8.7.5. Conclusion (8.7.27) of this lemma yields that for some & > 0 we have

leell<c(})"

We now turn to the case s <. Since the kernel of £ is bounded by ¢7™" x|x_ </
condition (8.7.30) yields that %P, is uniformly bounded on L? and thus

(5Bl <ClPQ 2 <€

It remains to consider the case s < ¢ for the operator U; = -S,Q. We begin by
observing that U; is L? bounded uniformly in ¢ > 0; this follows from a standard
U;*U; argument using condition (8.7.23). Secondly, as already observed, StQ is an
orthogonal projection. Therefore, we have

10r-5200s 2z < (10 SP)SEQs oo

IN

< 18Pl 2
< ISPl oz 10l iz 2
< Cs%t™ %,

The last inequality follows from the facts that for any o in (0, ;), O, maps the
homogeneous Sobolev space L%( to L? with norm at most a multiple of Cs* and
that the dyadic averaging operator S2 maps L*(R") to L%(R") with norm Ct~%.
The former of these statements is trivially verified by taking the Fourier transform,
while the latter statement requires some explanation.

Fixan o € (0, }) and take /1, g € L*(R"). Also fix j € Zsuchthat 2/~ <t <27/,
We then have

(S2-a)i.g) = T ((~4)F (), () (Avee))

TikSQ ik

where J;j x = T10_ 277k, 27/ (k. + 1)) and k = (ki,...,k,). It follows that

(SP-2)i.8) = 3 (n(Avee) (-4)2 (0,)()
JixC0 ik
= (h, ¥ 2%(Aveg) (~4)% (o) (2() k) ).
JikE0 ik

Set yo = (—A)2 ( X[o,1))- We estimate the L? norm of the preceding sum. We have
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Je

Y 2%(Avgg) xa(2/x—k)| dx
JixE0 Jjk
xS0 ik

— 22(1]*”]\/

o . 2

=it [ ]S e (ave ) [ 7a(E)Pa
R 170 Ik

o . 2 o~
Spwn | ]S e[ 3 T ofae

Jj,ng Jj’k lez
) . . 2 —~
< 22in / Y e (Aveg)| de sup Y [FalE+D)P
[0,1]” Jj}ng Jj,k 56[0,1]”1€Zn
— p20j-nj z }Avgg|2C(n,OC)2,
kezr Jjk

‘ 2

2
‘dx

Y, (Avgg) xalx—k)

where we used Plancherel’s identity on the torus (Proposition 3.1.16) and we set

Cln,a)> = sup Y |xa(§+1)
&elo,1] jezn

Since ‘
no1_ efzm?jr

G© =TT e

it follows that C(n, &) < e when 0 < @ < }. In this case we conclude that

1
(S2(=2) 2 (h),g)| < Clm,)|[h]p27(27 Y |Aveg|’)
kezn  Jik
< Clall 2t lgll 2
and this implies that HS,Q || il < Ct~* and hence the required conclusion. O

8.7.5 The T (b) Argument

To obtain (8.7.31), we adapt the T(b) theorem of the previous section for square
roots of divergence form elliptic operators. We fix a cube Q with center cg, an
€ €(0,1), and a unit vector w in C". We define a scalar-valued function

fow = (14 (e£(Q))’L) " (Pg - w), (8.7.33)

where
Dp(x) =x—cp.
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We begin by observing that the following estimates are consequences of Lemma
8.7.4:

/ |~ @ wPdx < Cie2(Q)10) (8.7.34)
50 ’

and _
| V(g — @0 wPdr < Calel, (8739)
50 ’

where C1,C, depend on n, A, A and not on €, Q, and w. It is important to observe
that the constants Cy,C; are independent of €.

The proof of (8.7.31) follows by combining the next two lemmas. The rest of this
section is devoted to their proofs.

Lemma 8.7.9. There exists an € > 0 depending on n, A, A, and a finite set F of
unit vectors in C" whose cardinality depends on € and n, such that

sup / / )2 dxdt
0|
2 dxdt

chS“P|Q|// @) (SPVLE WP T

weF Q

where C depends only on €, n, A, and A. The suprema are taken over all cubes Q in
R” with sides parallel to the axes.

Lemma 8.7.10. For C depending only on n, A, A, and € > 0, we have

dxd
// 1) 52V 15,00 “ <clol (8.7.36)

We begin with the proof of Lemma 8.7.10, which is the easiest of the two.

Proof of Lemma 8.7.10. Pick a smooth bump function 2y localized on 4Q
and equal to 1 on 20 with || 2p ||, +£(Q)||V20|,~ < ca. By Lemma 8.7.5 and
estimate (8.7.21), the left-hand side of (8.7.36) is bounded by

2 dxdt
t

c [ v %QfQW|dx+2// %) - PRV (2015,,) ()]

> dxdt
.

<c [ [V(Zosg) dx+4// V(Zof5.,)) )

It remains to control the last displayed expression by C|Q|.
First, it follows easily from (8.7.34) and (8.7.35) that

[ V(Zof5, )P <clol.

where C is independent of Q and w (but it may depend on €). Next, we write
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ZV(ZofGu) =W + W2+ W7,
where
W! = (I1+2L)7"t (2oL(f5,0))
W2 = —(I+°L) "t (div(Af5,,V 20)),
WP = —(I+L) AV, -V 2p).,

and we use different arguments to treat each term W,j .
To handle W,!, observe that

e\ Jow—Pow
L(fQ,w) = ngé(Q)z )

and therefore it follows from (8.7.34) that

/Rn |'%QL(f5,w)|2 < C|Q|(g,€(Q))—2 7

where C is independent of Q and w. Using the (uniform in #) boundedness of the
operator (I +t*L)~! on L?(R"), we obtain

(0) dxdt Q) c|o|? dt _ C|Q|
1 2
< <
Lh Pt s [ ot S e

which establishes the required quadratic estimate for W,!.

To obtain a similar quadratic estimate for W?, we apply Lemma 8.7.2 for the
operator (I +°L)~'tdiv with sets F = Q and E = supp (f§,,,V Zp) C 40\ 20. We
obtain that

€(Q) Q) ¢
L[ weep ®<e [T g vagPa.
2Jo ! 0 I J40\20 ’

The first integral on the right provides at most a constant factor, while we handle the
second integral by writing

fé,w = (fé’w_(DQ'W)—F(DQ'W.

Using (8.7.34) and the facts that HV‘%QHL‘*’ < ¢,0(Q)~" and that |®p| < ¢,£(Q) on
the support of 2y, we obtain that

O AfE, V2uldr < O],
Lgiag A6V ZeP dx < Clel

where C depends only on 1, A, and A. This yields the required result for W2
To obtain a similar estimate for W,3, we use the (uniform in 7) boundedness of
(I+1*L)~! on L?(R") (Exercise 8.7.2) to obtain that
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) Q)
// |W,3(x)|2dx‘”gc/ = ‘”/ AV £S5, -V 25| dx.
0Jo t 0 I J40\20 '

But the last integral is shown easily to be bounded by C|Q| by writing fé‘w, as in
the previous case, and using (8.7.35) and the properties of 2y and @p. Note that C
here depends only on n, A, and A. This concludes the proof of Lemma 8.7.10. [

8.7.6 The Proof of Lemma 8.7.9

It remains to prove Lemma 8.7.9. The main ingredient in the proof of Lemma 8.7.9
is the following proposition, which we state and prove first.

Proposition 8.7.11. There exists an € > 0 depending on n, A, and A, and N =
n(&) > 0 such that for each unit vector w in C" and each cube Q with sides parallel
to the axes, there exists a collection %, = {Q'} of nonoverlapping dyadic subcubes

of Q such that
U ¢

e,

<(I-mlQl, (8.7.37)

and moreover, if ) is the collection of all dyadic subcubes of Q not contained in
any Q' € 7], then for any Q" € 7)) we have

1 3
Re (Vf5 -w)dy > 8.7.38
|Q//| o e( me/(y) W) y_4 ( )
and 1 s
o Q,,lVfé,w(y>|2dy§(4e>‘2. (8.7.39)
Proof. We begin by proving the following crucial estimate:
}/Q(I—Vféw(x)-w)dx <ce2|Q), (8.7.40)

where C depends on 11, A, and A, but not on €, Q, and w. Indeed, we observe that
V(®g-w)(x)-w=[w]*=1,
so that
I Vfé,w('x) W= vgaw('x) "W,
where we set
gSQ,w('x) = (I)Q('x) W= f(iw(x) .

Next we state another useful lemma, whose proof is postponed until the end of
this subsection.
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Lemma 8.7.12. There exists a constant C = C,, such that for all h € I;% we have

‘/QVh(x)dx <cr)" (/Q|h(x)|2dx>i (/Q|Vh(x)|2dx>}‘.

Applying Lemma 8.7.12 to the function gaw, we deduce (8.7.40) as a conse-
quence of (8.7.34) and (8.7.35).

We now proceed with the proof of Proposition 8.7.11. First we deduce from
(8.7.40) that

1 r . .
10| /QRe(va,w(x)'W)de g

provided that € is small enough. We also observe that as a consequence of (8.7.35)
we have

1
o /Q IV£5,, (0P dx < Cs,

where Cj is independent of €. Now we perform a stopping-time decomposition to
select a collection ., of dyadic subcubes of Q that are maximal with respect to
either one of the following conditions:

IN

1 t
o /Q/ Re (V£5,,(x)-w)dx, (8.7.41)

1
o1 o VI Pax

Y

(4e)72. (8.7.42)

This is achieved by subdividing Q dyadically and by selecting those cubes Q' for
which either (8.7.41) or (8.7.42) holds, subdividing all the nonselected cubes, and
repeating the procedure. The validity of (8.7.38) and (8.7.39) now follows from the
construction and (8.7.41) and (8.7.42).

It remains to establish (8.7.37). Let B; be the union of the cubes in ., for which
(8.7.41) holds. Also, let B, be the union of those cubes in ., for which (8.7.42)
holds. We then have

U 2| <iBil+18al.
Q'es

The fact that the cubes in ., do not overlap yields
B2l < (4e)” | V15,0 dx < (4e)°Colel

Setting b3, (x) = 1 —Re(Vf§,(x) -w), we also have
|Bl|§42/ be‘wdx:4/ b, dx—4 £ L dx, (8.7.43)
o o 0\B;

where the sum is taken over all cubes Q' that comprise By. The first term on the right
in (8.7.43) is bounded above by Ce? |Q| in view of (8.7.40). The second term on the
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right in (8.7.43) is controlled in absolute value by
410\ Bi|+410\ Bi|* (C3101)? <40\ By| +4Cse|0] +&72[Q\ Bil.
Since |Q \ Bi| = |Q| — |B1|, we obtain
(5+&2)|Bi| < (4+Ce2 +e2)0|,
which yields |B;| < (1—£2 +o(g2))|Q| if € is small enough. Hence
Bl < (1-n(e))|Ql

with n(€) ~ €2 for small £. This concludes the proof of Proposition 8.7.11. O
Next, we need the following simple geometric fact.

Lemma 8.7.13. Let w,u,v be in C" such that |w| = 1 and let 0 < € < 1 be such that

lu—(u-ww| < glu-wl, (8.7.44)
Re(v-w) > i, (8.7.45)
| < (4e)7"'. (8.7.46)

Then we have |u| < 4|u-v|.

Proof. Tt follows from (8.7.45) that
i lu-w| <|(u-w)(v-w)|. (8.7.47)
Moreover, (8.7.44) and the triangle inequality imply that
lul < (1 4¢e)|u-w| <2u-w|. (8.7.43)
Also, as a consequence of (8.7.44) and (8.7.46), we obtain
[(u— (u-w)w) v < }u-w|. (8.7.49)

Finally, using (8.7.47) and (8.7.49) together with the triangle inequality, we deduce
that

v > (- w) (v w)| = (= (- w)w) v > (= ) |- wl > g [ul,

where in the last inequality we used (8.7.48). O

We now proceed with the proof of Lemma 8.7.9. We fix an € > 0 to be chosen
later and we choose a finite number of cones %, indexed by a finite set .% of unit
vectors w in C" defined by

Go={ueC": [u—(u-ww| <elu-wl}, (8.7.50)
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so that

=%

weF

Note that the size of the set .# can be chosen to depend only on € and the dimension
n.

It suffices to show that for each fixed w € .% we have a Carleson measure estimate
for % (%) = x4, (% (x)) % (x), where y¢, denotes the characteristic function of 4.
To achieve this we define

() dxdt
A, = sup / / o (P 8.7.51)
o 10l JoJo t

where the supremum is taken over all cubes Q in R” with sides parallel to the axes.
By truncating ¥ ,,(x) for ¢ small and ¢ large, we may assume that this quantity is
finite. Once an a priori bound independent of these truncations is obtained, we can
pass to the limit by monotone convergence to deduce the same bound for 7 ,, (x).

We now fix a cube Q and let ., be as in Proposition 8.7.11. We pick Q" in .7}/
and we set

1 /
V= Vs, (y)dyeC".
|Q//| o .fQ7 (y) Yy

It is obvious that statements (8.7.38) and (8.7.39) in Proposition 8.7.11 yield condi-
tions (8.7.45) and (8.7.46) of Lemma 8.7.13. Set u = ¥ ,,(x) and note that if x € Q"

and }£(Q") <t < £(Q"), then v = SZ(Vf§ ) (x); hence
[ ()] < 430 (%) -SE(V S, ) )] <40 (0)-SP(VfE,)W)|  (8.7.52)

from Lemma 8.7.13 and the definition of ¥ ,,(x).

We partition the Carleson region Q x (0, £(Q)] as a union of boxes Q' x (0,£(Q’)]
for Q' in ., and Whitney rectangles Q" x (3£(Q"),£(Q")] for Q" in .. This
allows us to write

- Q) dxdt - UQ) dxdt
2 _ 2

Q" % dxdt
/ / %0 ()]
Q”E B /(Q”

First observe that

o) dxdt
L0 me@P ST < 3 adoian-miol
gesy,

o'esy

Second, using (8.7.52), we obtain
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dxdt
<1 // . 9005209 75, ) (P t
Q"Ey” Q

<16 [ [ 152 sger .

Altogether, we obtain the bound

(Q) dxdt
// Y ()2
0Jo t

{(9) dxd
Au=mlel+16 [ [ )-S5, P T

We divide by |Q|, we take the supremum over all cubes Q with sides parallel to
the axes, and we use the definition and the finiteness of A,, to obtain the required
estimate

_ 1 [ HQ dxdt
Av<tontsup o [ (o) SOV G ) @)
o 10l JoJo f
thus concluding the proof of the lemma. 0
We end by verifying the validity of Lemma 8.7.12 used earlier.

Proof of Lemma 8.7.12. For simplicity we may take Q to be the cube [—1,1]".
Once this case is established, the case of a general cube follows by translation and

rescaling. Set
1 1
2 2
- (/ |h(x)|2dx> . M= (/ |Vh(x)|2dx)
0 0

If M > M’, there is nothing to prove, so we may assume that M < M’. Take t € (0,1)
and @ € 65°(Q) with @(x) =1 when dist (x,dQ) >rand 0 < ¢ < 1, ||Vo||;~ <C/1,
C = C(n); here the distance is taken in the L norm of R”. Then

/QVh(x)dx: /Q (1= o(x))VA(x)dx— /Q h(x) Vo (x) dx

and the Cauchy—Schwarz inequality yields

‘4wmw

Choosing t = M /M’, we conclude the proof of the lemma. 0

gC(M’t5+Mt*§).

The proof of Theorem 8.7.1 is now complete. O
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Exercises

8.7.1. Let A and L be as in the statement of Theorem 8.7.1.
(a) Consider the generalized heat equation

du .
o div(AVu) =0

on RTI with initial condition #(0,x) = ug. Assume a uniqueness theorem for solu-
tions of these equations to obtain that the solution of the equation in part (a) is

u(t,x) = e " (up).
(b) Take up = 1 to deduce the identity
e (1) =1

for all > 0. Conclude that the family of {¢~"*},~ ¢ is an approximate identity, in the
sense that

lime ™t =1.
t—0

8.7.2. Let L be as in (8.7.2). Show that the operators

Ly = (I+L)",
Ly, = tV(I+’L)7",
Ly = (I+°L) "tdiv

are bounded on L?(R") uniformly in # with bounds depending only on 7, A, and A.
[Hint: The L? boundedness of L3 follows from that of L, via duality and integra-
tion by parts. To prove the L? boundedness of L; and Ly, let u, = (I +*L) ' (f).
Then u; +t*L(u;) = f, which implies Jrn |u|? dx + 1 Jre e L(u ) dx = [gouy f dx.
The definition of L and integration by parts yield [gn |u;|* dx + 1> [gu AVity Vi, dx =
Jrn tt f dx. Apply the ellipticity condition to bound the left side of this identity from
below by [ga |ue|>dx+ A Jgu [tVus|* dx. Also [guu fdx is at most €~ [pu | f]? dx +
€ [gn |ur|* dx by the Cauchy—Schwarz inequality. Choose & small enough to com-
plete the proof when ||u,|| ;2 <o In the case H“fH ;2 = o, multiply the identity
u; +1°L(u;) = f by ung, where ng is a suitable cutoff localized in a ball B(0,R),
and use the idea of Lemma 8.7.2. Then let R — oo.]

8.7.3. Let L be as in the proof of Theorem 8.7.1.
(a) Show that for all # > 0 we have

(I+217) 72 = / e gy
0

by checking the identities
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/M(I—I— IZL)zefl’(I”zL)udu = /w e uHL) (I+1°L)*udu=1.
0 0

(b) Prove that the operator
4 =
T — / LU +L)2dt
TJo

satisfies TT = L.
(c) Conclude that the operator

16 [+
s 16 / P+
T Jo t

satisfies SS = L, that is, S is the square root of L. Moreover, all the integrals converge
in L*(R") when restricted to functions in f € ¢5°(R").

[Hint: Part (a): Write (I +12L)euIHL) = -4 (e~#+L)) | apply integration by
parts twice, and use Exercise 8.7.1. Part (b): Write the integrand as in part (a) and
use the identity

/ / ef(utervsz)LLZdtdS: n(uv)fé/ g*rzLLZZrdr.
o Jo 4 0

Setp =r?and use e PLL = d‘; (e~PL). Part (c): Show that T = S using an integration
by parts starting with the identity L= ¢ (¢L).]

8.7.4. Suppose that U is a measure on R’jfl. For a cube Q in R” we define the tent
T(Q) of Q as the set O x (0,4(Q)). Suppose that there exist two positive constants

o < 1 and B such that for all cubes Q in R” there exist subcubes Q; of Q with
disjoint interiors such that

L|e\ue > alal.
2. 1(T(@\U;T(0)) < Bl

Then u is a Carleson measure with constant

B

lufl, < B

[Hint: We have

IN

u(r(@) < n(T(@\UT(@))+Xu(r(e))

Blol+ ull, Slo)l.
J

IN



8.7 Square Roots of Elliptic Operators 277

and the last expression is at most (8 + (1 — )| u +)|0|. Assuming that |u v <
oo, we obtain the required conclusion. In general, approximate the measure by a
sequence of truncated measures.}

HISTORICAL NOTES

Most of the material in Sections 8.1 and 8.2 has been in the literature since the early develop-
ment of the subject. Theorem 8.2.7 was independently obtained by Peetre [254], Spanne [286], and
Stein [290].

The original proof of the 7'(1) theorem obtained by David and Journé [103] stated that if 7'(1),
T'(1) are in BMO and T satisfies the weak boundedness property, then 7 is L> bounded. This proof
is based on the boundedness of paraproducts and is given in Theorem 8.5.4. Paraproducts were first
exploited by Bony [28] and Coifman and Meyer [81]. The proof of L? boundedness using condition
(iv) given in the proof of Theorem 8.3.3 was later obtained by Coifman and Meyer [82]. The
equivalent conditions (ii), (iii), and (vi) first appeared in Stein [292], while condition (iv) is also due
to David and Journé [103]. Condition (i) appears in the article of Nazarov, Volberg, and Treil [245]
in the context of nondoubling measures. The same authors [246] obtained a proof of Theorems
8.2.1 and 8.2.3 for Calder6n—Zygmund operators on nonhomogeneous spaces. Multilinear versions
of the T(1) theorem were obtained by Christ and Journé [70], Grafakos and Torres [154], and
Bényi, Demeter, Nahmod, Thiele, Torres, and Villaroya [20]. The article [70] also contains a proof
of the quadratic T (1) type Theorem 8.6.3. Smooth paraproducts viewed as bilinear operators have
been studied by Bényi, Maldonado, Nahmod, and Torres [21] and Dini-continuous versions of
them by Maldonado and Naibo [225].

The orthogonality Lemma 8.5.1 was first proved by Cotlar [94] for self-adjoint and mutually
commuting operators 7}. The case of general noncommuting operators was obtained by Knapp and
Stein [190]. Theorem 8.5.7 is due to Calderdn and Vaillancourt [49] and is also valid for symbols
of class Sg’p when 0 < p < 1. For additional topics on pseudodifferential operators we refer to
the books of Coifman and Meyer [81], Journé [180], Stein [292], Taylor [309], Torres [315], and
the references therein. The last reference presents a careful study of the action of linear operators
with standard kernels on general function spaces. The continuous version of the orthogonality
Lemma 8.5.1 given in Exercise 8.5.8 is due to Calderdén and Vaillancourt [49]. Conclusion (iii) in
the orthogonality Lemma 8.5.1 follows from a general principle saying that if 3 x; is a series in a
Hilbert space such that || ¥ jc x;|| < M for all finite sets F, then the series ¥ x; converges in norm.
This is a consequence of the Orlicz—Pettis theorem, which states that in any Banach space, if 3.x,;
converges weakly for every subsequence of integers n;, then ¥ x; converges in norm.

A nice exposition on the Cauchy integral that presents several historical aspects of its study is
the book of Muskhelishvili [243]. See also the book of Journé [180]. Proposition 8.6.1 is due to
Plemelj [265] when I is a closed Jordan curve. The L? boundedness of the first commutator %}
in Example 8.3.8 is due to Calderén [42]. The L? boundedness of the remaining commutators %,
m > 2, is due to Coifman and Meyer [80], but with bounds of order m! HA’ ||'an These bounds are
not as good as those obtained in Example 8.3.8 and do not suffice in obtaining the boundedness
of the Cauchy integral by summing the series of commutators. The L boundedness of the Cauchy
integral when ||A’ is small enough is due to Calderdn [43]. The first proof of the boundedness
was obtained by Coifman, M°Intosh, and Meyer [79].
[Gnll 212 < Com* A"
The quantity m* was improved by Christ and Journé [70] to m'*® for any & > 0; it is announced
in Verdera [326] that Mateu and Verdera have improved this result by taking & = 0. Another proof
of the L? boundedness of the Cauchy integral was given by David [102] by employing the fol-
lowing bootstrapping argument: If the Cauchy integral is L> bounded whenever ||A’ H 1~ < €, then

[

of the Cauchy integral with arbitrary HA/H I

This proof is based on an improved operator norm for the commutators
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it is also L bounded whenever ||A’ H = < 190 €. A refinement of this bootstrapping technique was
independently obtained by Murai [241], who was also able to obtain the best possible bound for

the operator norm ||ér||L2—>L2 < C(l + ||A’HL,,) "2 in terms of HA’HLW. Here Cr is the operator
defined in (8.6.15). Note that the corresponding estimate for Cr involves the power 3/2 instead of
1/2. See the book of Murai [242] for this result and a variety of topics related to the commutators
and the Cauchy integral. Two elementary proofs of the L? boundedness of the Cauchy integral
were given by Coifman, Jones, and Semmes [77]. The first of these proofs uses complex variables
and the second a pseudo-Haar basis of L? adapted to the accretive function 1+ iA’. A geometric
proof was given by Melnikov and Verdera [231]. Other proofs were obtained by Verdera [326]
and Tchamitchian [310]. The proof of boundedness of the Cauchy integral given in Section 8.6 is
taken from Semmes [281]. The book of Christ [67] contains an insightful exposition of many of
the preceding results and discusses connections between the Cauchy integral and analytic capacity.
The book of David and Semmes [105] presents several extensions of the results in this chapter to
singular integrals along higher-dimensional surfaces.

The T(1) theorem is applicable to many problems only after a considerable amount of work;
see, for instance, Christ [67] for the case of the Cauchy integral. A more direct approach to many
problems was given by M¢Intosh and Meyer [224], who replaced the function 1 by an accretive
function b and showed that any operator 7 with standard kernel that satisfies 7'(b) = T*(b) =0
and HM,, TM;,HW p < comust be L? bounded. (M, here is the operator given by multiplication by b.)
This theorem easily implies the boundedness of the Cauchy integral. David, Journé, and Semmes
[104] generalized this theorem even further as follows: If b; and b, are para-accretive functions
such that T maps b1 65> — (b2%°)’ and is associated with a standard kernel, then 7 is L? bounded
if and only if T(b) € BMO, T'(by) € BMO, and ||My, TMy, ||, < e=. This is called the T (b)
theorem. The article of Semmes [281] contains a different proof of this theorem in the special case
T(b) =0and T'(1) = 0 (Exercise 8.6.6). Our proof of Theorem 8.6.6 is based on ideas from [281].
An alternative proof of the 7'(b) theorem was given by Fabes, Mitrea, and Mitrea [121] based on a
lemma due to Krein [200]. Another version of the 7'(b) theorem that is applicable to spaces with
no Euclidean structure was obtained by Christ [66].

Theorem 8.7.1 was posed as a problem by Kato [181] for maximal accretive operators and re-
formulated by M¢Intosh [222], [223] for square roots of elliptic operators. The reformulation was
motivated by counterexamples found to Kato’s original abstract formulation, first by Lions [215]
for maximal accretive operators, and later by M¢Intosh [220] for regularly accretive ones. The
one-dimensional Kato problem and the boundeness of the Cauchy integral along Lipschitz curves
are equivalent problems as shown by Kenig and Meyer [188]. See also Auscher, MIntosh, and
Nahmod [8]. Coifman, Deng, and Meyer [73] and independently Fabes, Jerison, and Kenig [119],
[120] solved the square root problem for small peturbations of the identity matrix. This method
used multilinear expansions and can be extended to operators with smooth coefficients. M¢Intosh
[221] considered coefficients in Sobolev spaces, Escauriaza in VMO (unpublished), and Alexopou-
los [3] real Holder coefficients using homogenization techniques. Peturbations of real symmetric
matrices with L™ coefficients were treated in Auscher, Hofmann, Lewis, and Tchamitchian [10].
The solution of the two-dimensional Kato problem was obtained by Hofmann and M¢Intosh [164]
using a previously derived T (b) type reduction due to Auscher and Tchamitchian [9]. Hofmann,
Lacey, and M“Intosh [165] extended this theorem to the case in which the heat kernel of e 'L sat-
isfies Gaussian bounds. Theorem 8.7.1 was obtained by Auscher, Hofmann, Lacey, M€Intosh, and
Tchamitchian [11]; the exposition in the text is based on this reference. Combining Theorem 8.7.1
with a theorem of Lions [215], it follows that the domain of v/L is L%(R”) and that for functions f
in this space the equivalence of norms H VL(f) H 2~ ||V f H 72 is valid.





