
Chapter 8
Singular Integrals of Nonconvolution Type

Up to this point we have studied singular integrals given by convolution with cer-
tain tempered distributions. These operators commute with translations. We are now
ready to broaden our perspective and study a class of more general singular integrals
that are not necessarily translation invariant. Such operators appear in many places
in harmonic analysis and partial differential equations. For instance, a large class of
pseudodifferential operators falls under the scope of this theory.

This broader point of view does not necessarily bring additional complications
in the development of the subject except at one point, the study of L2 boundedness,
where Fourier transform techniques are lacking. The L2 boundedness of convolution
operators is easily understood via a careful examination of the Fourier transform of
the kernel, but for nonconvolution operators different tools are required in this study.
The main result of this chapter is the derivation of a set of necessary and sufficient
conditions for nonconvolution singular integrals to be L2 bounded. This result is
referred to as the T (1) theorem and owes its name to a condition expressed in terms
of the action of the operator T on the function 1.

An extension of the T (1) theorem, called the T (b) theorem, is obtained in Section
8.6 and is used to deduce the L2 boundedness of the Cauchy integral along Lipschitz
curves. A variant of the T (b) theorem is also used in the boundedness of the square
root of a divergence form elliptic operator discussed in Section 8.7.

8.1 General Background and the Role of BMO

We begin by recalling the notion of the adjoint and transpose operator. One may
choose to work with either a real or a complex inner product on pairs of functions.
For f ,g complex-valued functions with integrable product, we denote the real inner
product by

〈

f ,g
〉

=
∫

Rn
f (x)g(x)dx .
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170 8 Singular Integrals of Nonconvolution Type

This notation is suitable when we think of f as a distribution acting on a test function
g. We also have the complex inner product

〈

f |g
〉

=
∫

Rn
f (x)g(x)dx ,

which is an appropriate notation when we think of f and g as elements of a Hilbert
space over the complex numbers. Now suppose that T is a linear operator bounded
on Lp. Then the adjoint operator T ∗ of T is uniquely defined via the identity

〈

T ( f ) |g
〉

=
〈

f |T ∗(g)
〉

for all f in Lp and g in Lp′ . The transpose operator Tt of T is uniquely defined via
the identity

〈

T ( f ),g
〉

=
〈

f ,Tt(g)
〉

=
〈

Tt(g), f
〉

for all functions f in Lp and g in Lp′ . The name transpose comes from matrix theory,
where if At denotes the transpose of a complex n× n matrix A, then we have the
identity

〈

Ax,y
〉

=
n

∑
j=1

(Ax) j y j = Ax · y = x ·Aty =
n

∑
j=1

x j (Aty) j =
〈

x,Aty
〉

for all column vectors x = (x1, . . . ,xn), y = (y1, . . . ,yn) in Cn. We may easily check
the following intimate relationship between the transpose and the adjoint of a linear
operator T :

T ∗( f ) = Tt( f ) ,

indicating that they have almost interchangeable use. However, in many cases, it is
convenient to avoid complex conjugates and work with the transpose operator for
simplicity. Observe that if a linear operator T has kernel K(x,y), that is,

T ( f )(x) =
∫

K(x,y) f (y)dy ,

then the kernel of Tt is Kt(x,y) = K(y,x) and that of T ∗ is K∗(x,y) = K(y,x).
An operator is called self-adjoint if T = T ∗ and self-transpose if T = Tt . For

example, the operator iH, where H is the Hilbert transform, is self-adjoint but not
self-transpose, and the operator with kernel i(x+ y)−1 is self-transpose but not self-
adjoint.

8.1.1 Standard Kernels

The singular integrals we study in this chapter have kernels that satisfy size and
regularity properties similar to those encountered in Chapter 4 for convolution-type
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Calderón–Zygmund operators. Let us be specific and introduce the relevant back-
ground. We consider functions K(x,y) defined on Rn ×Rn \ {(x,x) : x ∈ Rn} that
satisfy for some A > 0 the size condition

|K(x,y)| ≤ A
|x− y|n (8.1.1)

and for some δ > 0 the regularity conditions

|K(x,y)−K(x′,y)| ≤ A |x− x′|δ
(|x− y|+ |x′ − y|)n+δ , (8.1.2)

whenever |x− x′| ≤ 1
2 max

(

|x− y|, |x′ − y|
)

and

|K(x,y)−K(x,y′)| ≤ A |y− y′|δ
(|x− y|+ |x− y′|)n+δ , (8.1.3)

whenever |y− y′| ≤ 1
2 max

(

|x− y|, |x− y′|
)

.

Remark 8.1.1. Observe that if

|x− x′| ≤ 1
2

max
(

|x− y|, |x′ − y|
)

,

then
max

(

|x− y|, |x′ − y|
)

≤ 2 min
(

|x− y|, |x′ − y|
)

,

implying that the numbers |x− y| and |x′ − y| are comparable. This fact is useful in
specific calculations.

Another important observation is that if (8.1.1) holds and we have

|∇xK(x,y)|+ |∇yK(x,y)| ≤ A
|x− y|n+1

for all x �= y, then K is in SK(1,4n+1A).

Definition 8.1.2. Functions on Rn × Rn \ {(x,x) : x ∈ Rn} that satisfy (8.1.1),
(8.1.2), and (8.1.3) are called standard kernels with constants δ ,A. The class of all
standard kernels with constants δ ,A is denoted by SK(δ ,A). Given a kernel K(x,y)
in SK(δ ,A), we observe that the functions K(y,x) and K(y,x) are also in SK(δ ,A).
These functions have special names. The function

Kt(x,y) = K(y,x)

is called the transpose kernel of K, and the function

K∗(x,y) = K(y,x)

is called the adjoint kernel of K.
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Example 8.1.3. The function K(x,y) = |x− y|−n defined away from the diagonal of
Rn ×Rn is in SK(1,n4n+1). Indeed, for

|x− x′| ≤ 1
2

max
(

|x− y|, |x′ − y|
)

the mean value theorem gives

∣

∣ |x− y|−n−|x′ − y|−n
∣

∣≤ n|x− x′|
|θ − y|n+1

for some θ that lies on the line segment joining x and x′. But then we have |θ −y| ≥
1
2 max

(

|x− y|, |x′ − y|
)

, which gives (8.1.2) with A = n4n+1.

Remark 8.1.4. The previous example can be modified to give that if K(x,y) satisfies

|∇xK(x,y)| ≤ A′|x− y|−n−1

for all x �= y in Rn, then K(x,y) also satisfies (8.1.2) with δ = 1 and A controlled by
a constant multiple of A′. Likewise, if

|∇yK(x,y)| ≤ A′|x− y|−n−1

for all x �= y in Rn, then K(x,y) satisfies (8.1.3) with with δ = 1 and A bounded by
a multiple of A′.

We are interested in standard kernels K that can be extended to tempered distribu-
tions on Rn ×Rn. We begin by observing that given a standard kernel K(x,y), there
may not exist a tempered distribution W on Rn ×Rn that coincides with the given
K(x,y) on Rn ×Rn \{(x,x) : x ∈ Rn}. For example, the function K(x,y) = |x−y|−n

does not admit such an extension; see Exercise 8.1.2.
We are concerned with kernels K(x,y) in SK(δ ,A) for which there are tempered

distributions W on Rn×Rn that coincide with K on Rn×Rn\{(x,x) : x ∈ Rn}. This
means that the convergent integral representation

〈

W,F
〉

=
∫

Rn

∫

Rn
K(x,y)F(x,y)dxdy (8.1.4)

is valid whenever the Schwartz function F on Rn ×Rn is supported away from the
diagonal {(x,x) : x ∈ Rn}. Note that the integral in (8.1.4) is well defined and ab-
solutely convergent whenever F is a Schwartz function that vanishes in a neighbor-
hood of the set {(x,x) : x∈Rn}. Also observe that there may be several distributions
W coinciding with a fixed function K(x,y). In fact, if W is such a distribution, then
so is W +δx=y, where δx=y denotes Lebesgue measure on the diagonal of R2n. (This
is some sort of a Dirac distribution.)

We now consider continuous linear operators

T : S (Rn) → S ′(Rn)
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from the space of Schwartz functions S (Rn) to the space of all tempered distribu-
tions S ′(Rn). By the Schwartz kernel theorem (see Hörmander [168, p. 129]), for
such an operator T there is a distribution W in S ′(R2n) that satisfies

〈

T ( f ),ϕ
〉

=
〈

W, f ⊗ϕ
〉

when f ,ϕ ∈ S (Rn) , (8.1.5)

where ( f ⊗ϕ)(x,y) = f (x)ϕ(y). Furthermore, as a consequence of the same theo-
rem, there exist constants C,N,M such that for all f ,g ∈ S (Rn) we have

|
〈

T ( f ),g
〉

| = |
〈

W, f ⊗g
〉

| ≤C

[

∑
|α |,|β |≤N

ρα ,β ( f )
][

∑
|α |,|β |≤M

ρα ,β (g)
]

, (8.1.6)

where ρα ,β (ϕ) = supx∈Rn |∂αx (xβϕ)(x)| is the set of seminorms for the topology in
S . A distribution W that satisfies (8.1.5) and (8.1.6) is called a Schwartz kernel.

We study continuous linear operators T : S (Rn) → S ′(Rn) whose Schwartz
kernels coincide with standard kernels K(x,y) on Rn ×Rn \ {(x,x) : x ∈ Rn}. This
means that (8.1.5) admits the absolutely convergent integral representation

〈

T ( f ),ϕ
〉

=
∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dxdy (8.1.7)

whenever f and ϕ are Schwartz functions whose supports do not intersect.
We make some remarks concerning duality in this context. Given a continuous

linear operator T : S (Rn) → S ′(Rn) with a Schwartz kernel W , we can define
another distribution Wt as follows:

〈

Wt ,F
〉

=
〈

W,Ft〉,

where Ft(x,y) = F(y,x). This means that for all f ,ϕ ∈ S (Rn) we have
〈

W, f ⊗ϕ
〉

=
〈

Wt ,ϕ⊗ f
〉

.

It is a simple fact that the transpose operator Tt of T , which satisfies
〈

T (ϕ), f
〉

=
〈

Tt( f ),ϕ
〉

(8.1.8)

for all f ,ϕ in S (Rn), is the unique continuous linear operator from S (Rn) to
S ′(Rn) whose Schwartz kernel is the distribution Wt , that is, we have

〈

Tt( f ),ϕ
〉

=
〈

T (ϕ), f
〉

=
〈

W,ϕ⊗ f
〉

=
〈

Wt , f ⊗ϕ
〉

. (8.1.9)

We now observe that a large class of standard kernels admits extensions to tem-
pered distributions W on R2n.

Example 8.1.5. Suppose that K(x,y) satisfies (8.1.1) and (8.1.2) and is antisymmet-
ric, in the sense that

K(x,y) = −K(y,x)
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for all x �= y in Rn. Then K also satisfies (8.1.3), and moreover, there is a distribution
W on R2n that extends K on Rn ×Rn.

Indeed, define

〈

W,F
〉

= lim
ε→0

∫∫

|x−y|>ε

K(x,y)F(x,y)dydx (8.1.10)

for all F in the Schwartz class of R2n. In view of antisymmetry, we may write

∫∫

|x−y|>ε

K(x,y)F(x,y)dydx =
1
2

∫∫

|x−y|>ε

K(x,y)
(

F(x,y)−F(y,x)
)

dydx .

Using (8.1.1), the observation that

|F(x,y)−F(y,x)| ≤ 2 |x− y|
(1 + |x|2 + |y|2)n+1 sup

(x,y)∈R2n

∣

∣

∣∇x,y

(

(1+ |x|2 + |y|2)n+1F(x,y)
)∣

∣

∣ ,

and the fact that the preceding supremum is controlled by a finite sum of Schwartz
seminorms of F , it follows that the limit in (8.1.10) exists and gives a tempered
distribution on R2n. We can therefore define an operator T : S (Rn) → S ′(Rn)
with kernel W as follows:

〈

T ( f ),ϕ
〉

= lim
ε→0

∫∫

|x−y|>ε

K(x,y) f (x)ϕ(y)dydx.

Example 8.1.6. Let A be a Lipschitz function on R. This means that it satisfies the
estimate |A(x)−A(y)| ≤ L|x−y| for some L <∞ and all x,y ∈ R. For x,y ∈ R, x �= y,
we let

K(x,y) =
1

x− y + i(A(x)−A(y))
(8.1.11)

and we observe that K(x,y) is a standard kernel in SK(1,4+4L). The details are left
to the reader. Note that the kernel K defined in (8.1.11) is antisymmetric.

Example 8.1.7. Let the function A be as in the previous example. For each integer
m ≥ 1 we set

Km(x,y) =
(

A(x)−A(y)
x− y

)m 1
x− y

, x,y ∈ R . (8.1.12)

Clearly, Km is an antisymmetric function. To see that each Km is a standard kernel,
we use the simple fact that

max
(

|∇xKm(x,y)|, |∇yKm(x,y)|
)

≤ (2m+ 1)Lm

|x− y|2
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and the observation made in Remark 8.1.1. It follows that Km lies in SK(δ ,C) with
δ = 1 and C = 16(2m + 1)Lm. The linear operator with kernel (π i)−1Km is called
the mth Calderón commutator.

8.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators
associated with them.

Definition 8.1.8. Let 0 < δ ,A < ∞ and K in SK(δ ,A). A continuous linear operator
T from S (Rn) to S ′(Rn) is said to be associated with K if it satisfies

T ( f )(x) =
∫

Rn
K(x,y) f (y)dy (8.1.13)

for all f ∈ C ∞0 and x not in the support of f . If T is associated with K, then the
Schwartz kernel W of T coincides with K on Rn ×Rn \ {(x,x) : x ∈ Rn}.

If T is associated with K and admits a bounded extension on L2(Rn), that is, it
satisfies

∥

∥T ( f )
∥

∥

L2 ≤ B
∥

∥ f
∥

∥

L2 (8.1.14)

for all f ∈ S (Rn), then T is called a Calderón–Zygmund operator associated with
the standard kernel K. In this case we use the same notation for the L2 extension.

In the sequel we denote by CZO(δ ,A,B) the class of all Calderón–Zygmund
operators associated with standard kernels in SK(δ ,A) that admit L2 bounded ex-
tensions with norm at most B.

We make the point that there may be several Calderón–Zygmund operators as-
sociated with a given standard kernel K. For instance, we may check that the zero
operator and the identity operator have the same kernel K(x,y) = 0. We investigate
connections between any two such operators in Proposition 8.1.11. Next we discuss
the important fact that once an operator T admits an extension that is L2 bounded,
then (8.1.13 ) holds for all f that are bounded and compactly supported whenever x
does not lie in its support.

Proposition 8.1.9. Let T be an element of CZO(δ ,A,B) associated with a standard
kernel K. Then for all f in L∞ with compact support and every x /∈ supp f we have
the absolutely convergent integral representation

T ( f )(x) =
∫

Rn
K(x,y) f (y)dy . (8.1.15)

Proof. Identity (8.1.15) can be deduced from the fact that whenever f and ϕ are
bounded and compactly supported functions that satisfy

dist (suppϕ ,supp f ) > 0, (8.1.16)
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then we have the integral representation
∫

Rn
T ( f )(x)ϕ(x)dx =

∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dydx. (8.1.17)

To see this, given f and ϕ as previously, select f j,ϕ j ∈ C ∞0 such that ϕ j are uni-
formly bounded and supported in a small neighborhood of the support of ϕ , ϕ j → ϕ
in L2 and almost everywhere, f j → f in L2 and almost everywhere, and

dist (suppϕ j,supp f j) ≥
1
2

dist (suppϕ ,supp f ) > 0

for all j. Because of (8.1.7), identity (8.1.17) is valid for the functions f j and ϕ j in
place of f and ϕ . By the boundedness of T , it follows that T ( f j) converges to T ( f )
in L2 and thus

∫

Rn
T ( f j)(x)ϕ j(x)dx →

∫

Rn
T ( f )(x)ϕ(x)dx.

Now write f jϕ j − fϕ = ( f j − f )ϕ j + f (ϕ j −ϕ) and observe that

∫

Rn

∫

Rn
K(x,y) f (y)(ϕ j(x)−ϕ(x))dydx → 0 ,

since it is controlled by a multiple of
∥

∥T ( f )
∥

∥

L2

∥

∥ϕ j −ϕ
∥

∥

L2 , while

∫

Rn

∫

Rn
K(x,y)( f j(y)− f (y))ϕ j(x)dydx → 0 ,

since it is controlled by a multiple of sup j

∥

∥Tt(ϕ j)
∥

∥

L2

∥

∥ f j − f
∥

∥

L2 . This gives that

∫

Rn

∫

Rn
K(x,y) f j(y)ϕ j(x)dydx →

∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dydx

as j → ∞, which proves the validity of (8.1.17). �

We now define truncated kernels and operators.

Definition 8.1.10. Given a kernel K in SK(δ ,A) and ε > 0, we define the truncated
kernel

K(ε)(x,y) = K(x,y)χ|x−y|>ε .

Given a continuous linear operator T from S (Rn) to S ′(Rn) and ε > 0, we define
the truncated operator T (ε) by

T (ε)( f )(x) =
∫

Rn
K(ε)(x,y) f (y)dy

and the maximal singular operator associated with T as follows:

T (∗)( f )(x) = sup
ε>0

∣

∣T (ε)( f )(x)
∣

∣ .
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Note that both T (ε) and T (∗) are well defined for f in
⋃

1≤p<∞Lp(Rn).

We investigate a certain connection between the boundedness of T and the
boundedness of the family {T (ε)}ε>0 uniformly in ε > 0.

Proposition 8.1.11. Let K be a kernel in SK(δ ,A) and let T in CZO(δ ,A,B) be
associated with K. For ε > 0, let T (ε) be the truncated operators obtained from T.
Assume that there exists a constant B′ < ∞ such that

sup
ε>0

∥

∥T (ε)∥
∥

L2→L2 ≤ B′. (8.1.18)

Then there exists a linear operator T0 defined on L2(Rn) such that

(1) The Schwartz kernel of T0 coincides with K on

Rn ×Rn \ {(x,x) : x ∈ Rn}.

(2) For some subsequence ε j ↓ 0, we have

∫

Rn
T (ε j)( f )(x)g(x)dx →

∫

Rn
(T0 f )(x)g(x)dx

as j → ∞ for all f ,g in L2(Rn) .
(3) T0 is bounded on L2(Rn) with norm

∥

∥T0
∥

∥

L2→L2 ≤ B′.

(4) There exists a measurable function b on Rn with
∥

∥b
∥

∥

L∞ ≤ B + B′ such that

T ( f )−T0( f ) = b f ,

for all f ∈ L2(Rn).

Proof. Consider the Banach space X = B(L2,L2) of all bounded linear operators
from L2(Rn) to itself. Then X is isomorphic to B((L2)∗,(L2)∗)∗, which is a dual
space. Since the unit ball of a dual space is weak∗ compact, and the operators T (ε)

lie in a multiple of this unit ball, the Banach–Alaoglu theorem gives the existence
of a sequence ε j ↓ 0 such that T (ε j) converges to some T0 in the weak∗ topology of
B(L2,L2) as j → ∞. This means that

∫

Rn
T (ε j)( f )(x)g(x)dx →

∫

Rn
T0( f )(x)g(x)dx (8.1.19)

for all f ,g in L2(Rn) as j → ∞. This proves (2). The L2 boundedness of T0 is a
consequence of (8.1.19), hypothesis (8.1.18), and duality, since

∥

∥T0( f )
∥

∥

L2 ≤ sup
‖g‖L2≤1

limsup
j→∞

∣

∣

∣

∣

∫

Rn
T (ε j)( f )(x)g(x)dx

∣

∣

∣

∣

≤ B′∥
∥ f
∥

∥

L2 .
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This proves (3). Finally, (1) is a consequence of the integral representation
∫

Rn
T (ε j)( f )(x)g(x)dx =

∫

Rn

∫

Rn
K(ε j)(x,y) f (y)dyg(x)dx,

whenever f , g are Schwartz functions with disjoint supports, by letting j → ∞.
We finally prove (4). We first observe that if g is a bounded function with compact

support and Q is an open cube in Rn, we have

(T (ε) −T)(gχQ)(x) = χQ(x)(T (ε) −T)(g)(x) , (8.1.20)

whenever x /∈ ∂Q and ε is small enough. Indeed, take first x /∈ Q; then x is not in the
support of gχQ. Note that since gχQ is bounded and has compact support, we can use
the integral representation formula (8.1.15) obtained in Proposition 8.1.9. Then we
have that for ε < dist (x,supp gχQ), the left-hand side in (8.1.20) is zero. Moreover,
for x ∈ Q, we have that x does not lie in the support of gχQc , and again because of
(8.1.15) we obtain (T (ε) −T )(gχQc)(x) = 0 whenever ε < dist (x,supp gχQc). This
proves (8.1.20) for all x not in the boundary ∂Q of Q. Taking weak limits in (8.1.20)
as ε → 0, we obtain that

(T0 −T )(gχQ) = χQ (T0 −T)(g) a.e. (8.1.21)

for all open cubes Q in Rn. By linearity we extend (8.1.21) to simple functions.
Using the fact that T0 −T is L2 bounded and a simple density argument, we obtain

(T0 −T)(g f ) = f (T0 −T )(g) a.e. (8.1.22)

whenever f is in L2 and g is bounded and has compact support. If B(0, j) is the open
ball with center 0 and radius j on Rn, when j ≤ j′ we have

(T0 −T)(χB(0, j)) = (T0 −T )(χB(0, j)χB(0, j′)) = χB(0, j) (T0 −T)(χB(0, j′)) .

Therefore, the sequence of functions (T0 − T )(χB(0, j)) satisfies the “consistency”
property

(T0 −T)(χB(0, j)) = (T0 −T)(χB(0, j′)) in B(0, j)

when j ≤ j′. It follows that there exists a well defined function b such that

b = (T0 −T )(χB(0, j)) a.e. in B(0, j) .

Applying (8.1.22) with f supported in B(0, j) and g = χB(0, j), we obtain

(T0 −T )( f ) = (T0 −T )( f χB(0, j)) = f (T0 −T )(χB(0, j)) = f b a.e.,

from which it follows that (T0−T )( f ) = b f for all f ∈ L2. Since the norm of T −T0

on L2 is at most B + B′, it follows that the norm of the linear map f �→ b f from L2

to itself is at most B + B′. From this we obtain that
∥

∥b
∥

∥

L∞ ≤ B + B′. �
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Remark 8.1.12. We show in the next section (cf. Corollary 8.2.4) that if a Calderón–
Zygmund operator maps L2 to L2, then so do all of its truncations T (ε) uniformly in
ε > 0. By Proposition 8.1.11, there exists a linear operator T0 that has the form

T0( f )(x) = lim
j→∞

∫

|x−y|>ε j

K(x,y) f (y)dy ,

where the limit is taken in the weak topology of L2, so that T is equal to T0 plus a
bounded function times the identity operator.

We give a special name to operators of this form.

Definition 8.1.13. Suppose that for a given T in CZO(δ ,A,B) there is a sequence
ε j of positive numbers that tends to zero as j → ∞ such that for all f ∈ L2(Rn),

T (ε j)( f ) → T ( f )

weakly in L2. Then T is called a Calderón–Zygmund singular integral operator.
Thus Calderón–Zygmund singular integral operators are special kinds of Calderón–
Zygmund operators. The subclass of CZO(δ ,A,B) consisting of all Calderón–
Zygmund singular integral operators is denoted by CZSIO(δ ,A,B).

In view of Proposition 8.1.11 and Remark 8.1.12, a Calderón–Zygmund operator
is equal to a Calderón–Zygmund singular integral operator plus a bounded function
times the identity operator. For this reason, the study of Calderón–Zygmund oper-
ators is equivalent to the study of Calderón–Zygmund singular integral operators,
and in almost all situations it suffices to restrict attention to the latter.

8.1.3 Calderón–Zygmund Operators Acting on Bounded Functions

We are now interested in defining the action of a Calderón–Zygmund operator T on
bounded and smooth functions. To achieve this we first need to define the space of
special test functions D0.

Definition 8.1.14. Recall the space D(Rn) = C ∞0 (Rn) of all smooth functions with
compact support on Rn. We define D0(Rn) to be the space of all smooth functions
with compact support and integral zero. We equip D0(Rn) with the same topology
as the space D(Rn) (cf. Definition 2.3.1). The dual space of D0(Rn) under this
topology is denoted by D ′

0(R
n). This is a space of distributions larger than D ′(Rn).

Example 8.1.15. BMO functions are examples of elements of D ′
0(R

n). Indeed,
given b ∈ BMO(Rn), for any compact set K there is a constant CK =

∥

∥b
∥

∥

L1(K) such
that

∣

∣

∣

∣

∫

Rn
b(x)ϕ(x)dx

∣

∣

∣

∣

≤CK
∥

∥ϕ
∥

∥

L∞
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for any ϕ ∈ D0(Rn). Moreover, observe that the preceding integral remains un-
changed if the BMO function b is replaced by b + c, where c is a constant.

Definition 8.1.16. Let T be a continuous linear operator from S (Rn) to S ′(Rn)
that satisfies (8.1.5) for some distribution W that coincides with a standard kernel
K(x,y) satisfying (8.1.1), (8.1.2), and (8.1.3). Given f bounded and smooth, we
define an element T ( f ) of D ′

0(R
n) as follows: For a given ϕ in D0(Rn), select η in

C ∞0 with 0 ≤ η ≤ 1 and equal to 1 in a neighborhood of the support of ϕ . Since T
maps S to S ′, the expression T ( fη) is a tempered distribution, and its action on
ϕ is well defined. We define the action of T ( f ) on ϕ via

〈

T ( f ),ϕ
〉

=
〈

T ( fη),ϕ
〉

+
∫

Rn

[
∫

Rn
K(x,y)ϕ(x)dx

]

f (y)(1−η(y))dy , (8.1.23)

provided we make sense of the double integral as an absolutely convergent integral.
To do this, we pick x0 in the support of ϕ and we split the y-integral in (8.1.23)
into the sum of integrals over the regions I0 = {y ∈ Rn : |x− x0| > 1

2 |x0 − y|} and
I∞ = {y ∈ Rn : |x− x0| ≤ 1

2 |x0 − y|}. By the choice of η we must necessarily have
dist (supp η ,supp ϕ) > 0, and hence the part of the double integral in (8.1.23) when
y is restricted to I0 is absolutely convergent in view of (8.1.1). For y ∈ I∞ we use
the mean value property of ϕ to write the expression inside the square brackets in
(8.1.23) as

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx .

With the aid of (8.1.2) we deduce the absolute convergence of the double integral in
(8.1.23) as follows:
∫∫

|y−x0|≥2|x−x0|
|K(x,y)−K(x0,y)| |ϕ(x)|(1−η(y)) | f (y)|dxdy

≤
∫

Rn
A|x− x0|δ

∫

|y−x0|≥2|x−x0|
|x0 − y|−n−δ | f (y)|dy |ϕ(x)|dx

≤ A
ωn−1

δ 2δ
∥

∥ϕ
∥

∥

L1

∥

∥ f
∥

∥

L∞ < ∞ .

This completes the definition of T ( f ) as an element of D ′
0 when f ∈ C ∞ ∩L∞

but leaves two points open. We need to show that this definition is independent of η
and secondly that whenever f is a Schwartz function, the distribution T ( f ) defined
in (8.1.23) coincides with the original element of S ′(Rn) given in Definition 8.1.8.

Remark 8.1.17. We show that the definition of T ( f ) is independent of the choice
of the function η . Indeed, if ζ is another function satisfying 0 ≤ ζ ≤ 1 that is also
equal to 1 in a neighborhood of the support of ϕ , then f (η−ζ ) and ϕ have disjoint
supports, and by (8.1.7) we have the absolutely convergent integral realization

〈

T ( f (η − ζ )),ϕ
〉

=
∫

Rn

∫

Rn
K(x,y) f (y)(η − ζ )(y)dyϕ(x)dx .
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It follows that the expression in (8.1.23) coincides with the corresponding expres-
sion obtained when η is replaced by ζ .

Next, if f is a Schwartz function, then both η f and (1−η) f are Schwartz func-
tions; by the linearity of T one has

〈

T ( f ),ϕ
〉

=
〈

T (η f ),ϕ
〉

+
〈

T ((1−η) f ),ϕ
〉

,
and by (8.1.7) the second expression can be written as the double absolutely con-
vergent integral in (8.1.23), since ϕ and (1−η) f have disjoint supports. Thus the
distribution T ( f ) defined in (8.1.23) coincides with the original element of S ′(Rn)
given in Definition 8.1.8.

Remark 8.1.18. When T has a bounded extension that maps L2 to itself, we may
define T ( f ) for all f ∈ L∞(Rn), not necessarily smooth. Simply observe that under
this assumption, the expression T ( fη) is a well defined L2 function and thus

〈

T ( fη),ϕ
〉

=
∫

Rn
T ( fη)(x)ϕ(x)dx

is given by an absolutely convergent integral for all ϕ ∈ D0.
Finally, observe that although

〈

T ( f ),ϕ
〉

is defined for f in L∞ and ϕ in D0, this
definition is valid for all square integrable functions ϕ with compact support and
integral zero; indeed, the smoothness of ϕ was never an issue in the definition of
〈

T ( f ),ϕ
〉

.

In summary, if T is a Calderón–Zygmund operator and f lies in L∞(Rn), then
T ( f ) has a well defined action

〈

T ( f ),ϕ
〉

on square integrable functions ϕ with
compact support and integral zero. This action satisfies

∣

∣

〈

T ( f ),ϕ
〉∣

∣≤
∥

∥T ( fη)
∥

∥

L2

∥

∥ϕ‖L2 +Cn,δ A
∥

∥ϕ
∥

∥

L1

∥

∥ f
∥

∥

L∞ < ∞ . (8.1.24)

In the next section we show that in this case, T ( f ) is in fact an element of BMO.

Exercises

8.1.1. Suppose that K is a function defined away from the diagonal on Rn ×Rn that
satisfies for some δ > 0 the condition

|K(x,y)−K(x′,y)| ≤ A′ |x− x′|δ
|x− y|n+δ

whenever |x − x′| ≤ 1
2 |x − y|. Prove that K satisfies (8.1.2) with constant A =

( 5
2 )n+δA′. Obtain an analogous statement for condition (8.1.3).

8.1.2. Prove that there does not exist a tempered distribution W on R2n that extends
the function |x− y|−n defined on R2n \ {(x,x) : x ∈ Rn}.
[

Hint: Apply such a distribution to a positive smooth bump that does not vanish at
the origin.

]
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8.1.3. Let ϕ(x) be a smooth radial function that is equal to 1 when |x| ≥ 1 and van-
ishes when |x| ≤ 1

2 . Prove that if K lies in SK(δ ,A), then all the smooth truncations

K(ε)
ϕ (x,y) = K(x,y)ϕ( x−y

ε ) lie in SK(δ ,cA) for some c > 0 independent of ε > 0.

8.1.4. Suppose that A is a Lipschitz map from Rn to Rm. This means that there
exists a constant L such that |A(x)−A(y)| ≤ L|x− y| for all x,y ∈ Rn. Suppose that
F is a C ∞ odd function defined on Rm. Show that the kernel

K(x,y) =
1

|x− y|n F

(

A(x)−A(y)
|x− y|

)

is in SK(1,C) for some C > 0.

8.1.5. Extend the result of Proposition 8.1.11 to the case that the space L2 is re-
placed by Lq for some 1 < q < ∞.

8.1.6. Observe that for an operator T as in Definition 8.1.16, the condition T (1) = 0
is equivalent to the statement that for all ϕ smooth with compact support and integral
zero we have

∫

Rn T t(ϕ)(x)dx = 0. A similar statement holds for Tt .

8.1.7. Suppose that K(x,y) is continuous, bounded, and nonnegative on Rn ×Rn

and satisfies
∫

Rn K(x,y)dy = 1 for all x ∈ Rn. Define a linear operator T by setting
T ( f )(x) =

∫

Rn K(x,y) f (y)dy for f ∈ L1(Rn).
(a) Suppose that h is a continuous and integrable function on Rn that has a global
minimum [i.e., there exists x0 ∈ Rn such that h(x0)≤ h(x) for all x ∈ Rn]. If we have

T (h)(x) = h(x)

for all x ∈ Rn, prove that h is a constant function.
(b) Show that T preserves the set of integrable functions that are bounded below by
a fixed constant.
(c) Suppose that T (T ( f )) = f for some everywhere positive and continuous function
f on Rn. Show that T ( f ) = f .
[

Hint: Part (c): Let L(x,y) be the kernel of T ◦T . Show that

∫

Rn
L(x,y)

f (y)
f (x)

T ( f )(y)
f (y)

dy =
T ( f )(x)

f (x)

and conclude by part (a) that T ( f )(y)
f (y) is a constant.

]

8.2 Consequences of L2 Boundedness

Calderón–Zygmund singular integral operators admit L2 bounded extensions. As in
the case of convolution operators, L2 boundedness has several consequences. In this



8.2 Consequences of L2 Boundedness 183

section we are concerned with consequences of the L2 boundedness of Calderón–
Zygmund singular integral operators. Throughout the entire discussion, we assume
that K(x,y) is a kernel defined away from the diagonal in R2n that satisfies the
standard size and regularity conditions (8.1.1), (8.1.2), and (8.1.3). These conditions
may be relaxed; see the exercises at the end of this section.

8.2.1 Weak Type (1,1) and Lp Boundedness of Singular Integrals

We begin by proving that operators in CZO(δ ,A,B) are bounded from L1 to weak
L1. This result is completely analogous to that in Theorem 4.3.3.

Theorem 8.2.1. Assume that K(x,y) is in SK(δ ,A) and let T be an element of
CZO(δ ,A,B) associated with the kernel K. Then T has a bounded extension that
maps L1(Rn) to L1,∞(Rn) with norm

∥

∥T
∥

∥

L1→L1,∞ ≤Cn(A + B),

and also maps Lp(Rn) to itself for 1 < p < ∞ with norm
∥

∥T
∥

∥

Lp→Lp ≤Cn max(p,(p−1)−1)(A + B),

where Cn is a dimensional constant.

Proof. The proof of this theorem is a reprise of the argument of the proof of Theo-
rem (4.3.3). Fix α > 0 and let f be in L1(Rn). Since T ( f ) may not be defined when
f is a general integrable function, we take f to be a Schwartz class function. Once
we obtain a weak type (1,1) estimate for Schwartz functions, it is only a matter of
density to extend it to all f in L1.

We apply the Calderón–Zygmund decomposition to f at height γα , where γ is a
positive constant to be chosen later. Write f = g+b, where b =∑ j b j and conditions
(1)–(6) of Theorem 4.3.1 are satisfied with the constant α replaced by γα . Since we
are assuming that f is Schwartz function, it follows that each bad function b j is
bounded and compactly supported. Thus T (b j) is an L2 function, and when x is not
in the support of b j we have the integral representation

T (b j)(x) =
∫

Qj

b j(y)K(x,y)dy

in view of Proposition 8.1.9.
As usual, we denote by �(Q) the side length of a cube Q. Let Q∗

j be the unique
cube with sides parallel to the axes having the same center as Q j and having side
length

�(Q∗
j) = 2

√
n�(Q j) .

We have
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|{x ∈ Rn : |T ( f )(x)| > α}|

≤
∣

∣

∣

{

x ∈ Rn : |T (g)(x)| > α
2

}∣

∣

∣+
∣

∣

∣

{

x ∈ Rn : |T (b)(x)| > α
2

}∣

∣

∣

≤ 22

α2

∥

∥T (g)
∥

∥

2
L2 +

∣

∣

∣

⋃

j

Q∗
j

∣

∣

∣+
∣

∣

∣

{

x /∈
⋃

j

Q∗
j : |T (b)(x)| > α

2

}∣

∣

∣

≤ 22

α2 B2
∥

∥g
∥

∥

2
L2 +∑

j

|Q∗
j |+

2
α

∫

(
⋃

j Q∗
j )

c
|T (b)(x)|dx

≤ 22

α2 2nB2(γα)
∥

∥ f
∥

∥

L1 +(2
√

n)n

∥

∥ f
∥

∥

L1

γα
+

2
α ∑j

∫

(Q∗
j )

c
|T (b j)(x)|dx

≤
(

(2n+1Bγ)2

2nγ
+

(2
√

n)n

γ

)
∥

∥ f
∥

∥

L1

α
+

2
α ∑j

∫

(Q∗
j )

c
|T (b j)(x)|dx .

It suffices to show that the last sum is bounded by some constant multiple of
∥

∥ f
∥

∥

L1 .
Let y j be the center of the cube Q j. For x ∈ (Q∗

j)
c, we have |x− y j| ≥ 1

2�(Q∗
j) =√

n�(Q j). But if y ∈ Q j we have |y− y j| ≤
√

n�(Q j)/2; thus |y− y j| ≤ 1
2 |x− y j|,

since the diameter of a cube is equal to
√

n times its side length. We now estimate
the last displayed sum as follows:

∑
j

∫

(Q∗
j )

c
|T (b j)(x)|dx = ∑

j

∫

(Q∗
j )

c

∣

∣

∣

∣

∫

Qj

b j(y)K(x,y)dy

∣

∣

∣

∣

dx

= ∑
j

∫

(Q∗
j )

c

∣

∣

∣

∣

∫

Qj

b j(y)
(

K(x,y)−K(x,y j)
)

dy

∣

∣

∣

∣

dx

≤ ∑
j

∫

Qj

|b j(y)|
∫

(Q∗
j )

c
|K(x,y)−K(x,y j)|dxdy

≤ ∑
j

∫

Qj

|b j(y)|
∫

|x−y j |≥2|y−y j |
|K(x,y)−K(x,y j)|dxdy

≤ A2∑
j

∫

Qj

|b j(y)|dy

= A2∑
j

∥

∥b j
∥

∥

L1

≤ A22n+1
∥

∥ f
∥

∥

L1 .

Combining the facts proved and choosing γ = B−1, we deduce a weak type (1,1)
estimate for T ( f ) when f is in the Schwartz class. We obtain that T has a bounded
extension from L1 to L1,∞ with bound at most Cn(A+B). The Lp result for 1 < p < 2
follows by interpolation and Exercise 1.3.2. The result for 2 < p < ∞ follows by
duality; one uses here that the dual operator Tt has a kernel Kt(x,y) = K(y,x) that
satisfies the same estimates as K, and by the result just proved, it is also bounded on
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Lp for 1 < p < 2 with norm at most Cn(A + B). Thus T must be bounded on Lp for
2 < p < ∞ with norm at most a constant multiple of A + B. �

Consequently, for operators T in CZO(δ ,A,B) and Lp functions f , 1≤ p <∞, the
expressions T ( f ) make sense as Lp (or L1,∞ when p = 1) functions. The following
result addresses the question whether these functions can be expressed as integrals.

Proposition 8.2.2. Let T be an operator in CZO(δ ,A,B) associated with a kernel
K. Then for g ∈ Lp(Rn), 1 ≤ p < ∞, the following absolutely convergent integral
representation is valid:

T (g)(x) =
∫

Rn
K(x,y)g(y)dy (8.2.1)

for almost all x ∈ Rn \ supp g, provided that supp g � Rn.

Proof. Set gk(x) = g(x)χ|g(x)|≤kχ|x|≤k. These are Lp functions with compact support
that is contained in the support of g. Also, the gk converge to g in Lp as k → ∞. In
view of Proposition 8.1.9, for every k we have

T (gk)(x) =
∫

Rn
K(x,y)gk(y)dy

for all x ∈ Rn \supp g. Since T maps Lp to Lp (or to weak L1 when p = 1), it follows
that T (gk) converges to T (g) in weak Lp and hence in measure. By Proposition
1.1.9, a subsequence of T (gk) converges to T (g) almost everywhere. On the other
hand, for x ∈ Rn \ supp g we have

∫

Rn
K(x,y)gk(y)dy →

∫

Rn
K(x,y)g(y)dy

when k → ∞, since the absolute value of the difference is bounded by B
∥

∥gk −g
∥

∥

Lp ,

which tends to zero. The constant B is the Lp′ norm of the function |x− y|−n−δ on
the support of g; one has |x− y| ≥ c > 0 for all y in the support of g and thus B <∞.
Therefore T (gk)(x) converges a.e. to both sides of the identity (8.2.1) for x not in
the support of g. This concludes the proof of this identity. �

8.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is an analogous boundedness result to Theorem
8.2.1 concerning the maximal singular integral operator T (∗). We note that given
f in Lp(Rn) for some 1 ≤ p < ∞, the expression T (∗)( f )(x) is well defined for all
x ∈ Rn. This is a simple consequence of estimate (8.1.1) and Hölder’s inequality.

Theorem 8.2.3. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Let r ∈ (0,1). Then there is a constant C(n,r) such that



186 8 Singular Integrals of Nonconvolution Type

|T (∗)( f )(x)| ≤C(n,r)
[

M(|T ( f )|r)(x) 1
r +(A + B)M( f )(x)

]

(8.2.2)

is valid for all functions in
⋃

1≤p<∞Lp(Rn). Also, there exist dimensional constants
Cn,C′

n such that

∥

∥T (∗)( f )
∥

∥

L1,∞(Rn) ≤ C′
n(A + B)

∥

∥ f
∥

∥

L1(Rn) , (8.2.3)
∥

∥T (∗)( f )
∥

∥

Lp(Rn) ≤ Cn(A + B)max(p,(p−1)−1)
∥

∥ f
∥

∥

Lp(Rn) , (8.2.4)

for all 1 ≤ p < ∞ and all f in Lp(Rn).

Estimate (8.2.2) is referred to as Cotlar’s inequality.

Proof. We fix r so that 0 < r < 1 and f ∈ Lp(Rn) for some p satisfying 1 ≤ p < ∞.
To prove (8.2.2), we also fix ε > 0 and we set f ε,x0 = f χB(x,ε) and f ε,x∞ = f χB(x,ε)c .
Since x /∈ supp f ε,x∞ whenever |x− y| ≥ ε , using Proposition 8.2.2 we can write

T ( f ε,x∞ )(x) =
∫

Rn
K(x,y) f ε,x∞ (y)dy =

∫

|x−y|≥ε
K(x,y) f (y)dy = T (ε)( f )(x) .

In view of (8.1.2), for z ∈ B(x, ε2 ) we have |z− x| ≤ 1
2 |x− y| whenever |x− y| ≥ ε

and thus

|T ( f ε,x∞ )(x)−T ( f ε,x∞ )(z)| =
∣

∣

∣

∣

∫

|x−y|≥ε

(

K(z,y)−K(x,y)
)

f (y)dy

∣

∣

∣

∣

≤ |z− x|δ
∫

|x−y|≥ε

A | f (y)|
(|x− y|+ |y− z|)n+δ dy

≤
(ε

2

)δ ∫

|x−y|≥ε

A | f (y)|
(|x− y|+ ε/2)n+δ dy

≤ Cn,δ AM( f )(x) ,

where the last estimate is a consequence of Theorem 2.1.10. We conclude that for
all z ∈ B(x, ε2 ) we have

|T (ε)( f )(x)| = |T ( f ε,x∞ )(x)|
≤ |T ( f ε∞)(x)−T ( f ε,x∞ )(z)|+ |T ( f ε,x∞ )(z)|
≤ Cn,δ AM( f )(x)+ |T ( f ε,x0 )(z)|+ |T ( f )(z)| .

(8.2.5)

For 0 < r < 1 it follows from (8.2.5) that for z ∈ B(x, ε2 ) we have

|T (ε)( f )(x)|r ≤Cr
n,δ Ar M( f )(x)r + |T ( f ε,x0 )(z)|r + |T ( f )(z)|r . (8.2.6)

Integrating over z ∈ B(x, ε2 ), dividing by |B(x, ε2 )|, and raising to the power 1
r , we

obtain
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|T (ε)( f )(x)| ≤ 3
1
r

[

Cn,δ AM( f )(x)+
(

1
|B(x, ε2 )|

∫

B(x, ε2 )
|T ( f ε,x0 )(z)|rdz

)1
r

+ M(|T ( f )|r)(x) 1
r

]

.

Using Exercise 2.1.5, we estimate the middle term on the right-hand side of the
preceding equation by

(

1
|B(x, ε2 )|

∥

∥T
∥

∥

r
L1→L1,∞

1− r
|B(x, ε2 )|1−r

∥

∥ f ε,x0

∥

∥

r
L1

)1
r

≤Cn,r (A + B)M( f )(x) .

This proves (8.2.2).
We now use estimate (8.2.2) to show that T is Lp bounded and of weak type

(1,1). To obtain the weak type (1,1) estimate for T (∗) we need to use that the Hardy–
Littlewood maximal operator maps Lp,∞ to Lp,∞ for all 1 < p < ∞. See Exercise
2.1.13. We also use the trivial fact that for all 0 < p,q < ∞ we have

∥

∥| f |q
∥

∥

Lp,∞ =
∥

∥ f
∥

∥

q
Lpq,∞ .

Take any r < 1 in (8.2.2). Then we have

∥

∥M(|T ( f )|r) 1
r
∥

∥

L1,∞ =
∥

∥M(|T ( f )|r)
∥

∥

1
r

L
1
r ,∞

≤ Cn,r
∥

∥|T ( f )|r
∥

∥

1
r

L
1
r ,∞

= Cn,r
∥

∥T ( f )
∥

∥

L1,∞

≤ ˜Cn,r(A + B)
∥

∥ f
∥

∥

L1 ,

where we used the weak type (1,1) bound for T in the last estimate.
To obtain the Lp boundedness of T (∗) for 1 < p < ∞, we use the same argument

as before. We fix r = 1
2 . Recall that the maximal function is bounded on L2p with

norm at most 3
n

2p 2p
2p−1 ≤ 2 ·3 n

2 [see (2.1.5)]. We have

∥

∥M(|T ( f )| 1
2 )2
∥

∥

Lp =
∥

∥M(|T ( f )| 1
2 )
∥

∥

2
L2p

≤
(

3
n

2p 2p
2p−1

)2∥
∥|T ( f )| 1

2
∥

∥

2
L2p

≤ 4 ·3n
∥

∥T ( f )
∥

∥

Lp

≤ Cn max( 1
p−1 , p)(A + B)

∥

∥ f
∥

∥

Lp ,

where we used the Lp boundedness of T in the last estimate. �

We end this section with two corollaries, the first of which confirms a fact men-
tioned in Remark 8.1.12.
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Corollary 8.2.4. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Then there exists a dimensional constant Cn such that

sup
ε>0

∥

∥T (ε)∥
∥

L2→L2 ≤Cn
(

A +
∥

∥T
∥

∥

L2→L2

)

.

Corollary 8.2.5. Let K be in SK(δ ,A) and let T = limε j→0 T (ε j) be an element of
CZSIO(δ ,A,B) associated with K. Then for 1 ≤ p <∞ and all f ∈ Lp(Rn) we have
that

T (ε j)( f ) → T ( f )

almost everywhere.

Proof. Using (8.1.1), (8.1.2), and (8.1.3), we see that the alleged convergence holds
(everywhere) for smooth functions with compact support. The general case follows
from Theorem 8.2.3 and Theorem 2.1.14. �

8.2.3 H1 → L1 and L∞→ BMO Boundedness of Singular Integrals

Theorem 8.2.6. Let T be an element of CZO(δ ,A,B). Then T has an extension that
maps H1(Rn) to L1(Rn). Precisely, there is a constant Cn,δ such that

∥

∥T
∥

∥

H1→L1 ≤Cn,δ
(

A +
∥

∥T
∥

∥

L2→L2

)

.

Proof. The proof is analogous to that of Theorem 6.7.1. Let B =
∥

∥T
∥

∥

L2→L2 . We
start by examining the action of T on L2 atoms for H1. Let f = a be such an atom,
supported in a cube Q. Let cQ be the center of Q and let Q∗ = 2

√
nQ. We write

∫

Rn
|T (a)(x)|dx =

∫

Q∗
|T (a)(x)|dx +

∫

(Q∗)c
|T (a)(x)|dx (8.2.7)

and we estimate each term separately. We have

∫

Q∗
|T (a)(x)|dx ≤ |Q∗| 1

2

(
∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ B|Q∗| 1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ B|Q∗| 1
2 |Q|− 1

2

= CnB ,

where we used property (b) of atoms in Definition 6.6.8. Now observe that if x /∈ Q∗

and y ∈ Q, then

|y− cQ| ≤
1
2
|x− cQ| ;
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hence x− y stays away from zero and T (a)(x) can be expressed as a convergent
integral by Proposition 8.2.2. We have

∫

(Q∗)c
|T (a)(x)|dx =

∫

(Q∗)c

∣

∣

∣

∫

Q
K(x,y)a(y)dy

∣

∣

∣dx

=
∫

(Q∗)c

∣

∣

∣

∫

Q

(

K(x,y)−K(x,cQ)
)

a(y)dy
∣

∣

∣dx

≤
∫

Q

∫

(Q∗)c

∣

∣K(x,y)−K(x,cQ)
∣

∣dx |a(y)|dy

≤
∫

Q

∫

(Q∗)c

A|y− cQ|δ
|x− cQ|n+δ dx |a(y)|dy

≤ C′
n,δ A

∫

Q
|a(y)|dy

≤ C′
n,δ A|Q| 1

2
∥

∥a
∥

∥

L2

≤ C′
n,δA|Q| 1

2 |Q|− 1
2

= C′
n,δA .

Combining this calculation with the previous one and inserting the final conclusions
in (8.2.7), we deduce that L2 atoms for H1 satisfy

∥

∥T (a)
∥

∥

L1 ≤Cn,δ (A + B) . (8.2.8)

To pass to general functions in H1, we use Theorem 6.6.10 to write an f ∈ H1 as

f =
∞

∑
j=1
λ ja j ,

where the series converges in H1, the a j are L2 atoms for H1, and

∥

∥ f
∥

∥

H1 ≈
∞

∑
j=1

|λ j| . (8.2.9)

Since T maps L1 to weak L1 by Theorem 8.2.1, T ( f ) is already a well defined L1,∞

function. We plan to prove that

T ( f ) =
∞

∑
j=1
λ jT (a j) a.e. (8.2.10)

Note that the series in (8.2.10) converges in L1 and defines an integrable function
almost everywhere. Once (8.2.10) is established, the required conclusion (6.7.5)
follows easily by taking L1 norms in (8.2.10) and using (8.2.8) and (8.2.9).

To prove (8.2.10), we use that T is of weak type (1,1). For a given μ > 0 we
have
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∣

∣

{∣

∣T ( f )−
∞

∑
j=1
λ jT (a j)

∣

∣> μ
}∣

∣

≤
∣

∣

{∣

∣T ( f )−
N

∑
j=1
λ jT (a j)

∣

∣> μ/2
}∣

∣+
∣

∣

{∣

∣

∞

∑
j=N+1

λ jT (a j)
∣

∣> μ/2
}∣

∣

≤ 2
μ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

L1
+

2
μ

∥

∥

∥

∞

∑
j=N+1

λ jT (a j)
∥

∥

∥

L1

≤ 2
μ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

H1
+

2
μ

Cn,δ (A + B)
∞

∑
j=N+1

|λ j| .

Since ∑N
j=1λ ja j converges to f in H1 and ∑∞j=1 |λ j| < ∞, both terms in the sum

converge to zero as N → ∞. We conclude that

∣

∣

{∣

∣T ( f )−
∞

∑
j=1

λ jT (a j)
∣

∣> μ
}∣

∣= 0

for all μ > 0, which implies (8.2.10). �

Theorem 8.2.7. Let T be in CZO(δ ,A,B). Then for any bounded function f , the
distribution T ( f ) can be identified with a BMO function that satisfies

∥

∥T ( f )
∥

∥

BMO ≤C′
n,δ (A + B)

∥

∥ f
∥

∥

L∞ , (8.2.11)

where Cn,δ is a constant.

Proof. Let L2
0,c be the space of all square integrable functions with compact support

and integral zero on Rn. This space is contained in H1(Rn) (cf. Exercise 6.4.3) and
contains the set of finite sums of L2 atoms for H1, which is dense in H1 (cf. Exercise
6.6.5); thus L2

0,c is dense in H1. Recall that for f ∈ L∞, T ( f ) has a well defined action
〈

T ( f ),ϕ
〉

on functions ϕ in L2
0,c that satisfies (8.1.24).

Suppose we have proved the identity

〈

T ( f ),ϕ
〉

=
∫

Rn
Tt(ϕ)(x) f (x)dx , (8.2.12)

for all bounded functions f and all ϕ in L2
0,c. Since such a ϕ is in H1, Theorem

8.2.6 yields that Tt(ϕ) is in L1, and consequently, the integral in (8.2.12) converges
absolutely. Assuming (8.2.12) and using Theorem 8.2.6 we obtain that

∣

∣

〈

T ( f ),ϕ
〉∣

∣≤
∥

∥Tt(ϕ)
∥

∥

L1

∥

∥ f
∥

∥

L∞ ≤Cn,δ (A + B)
∥

∥ϕ
∥

∥

H1

∥

∥ f
∥

∥

L∞ .

We conclude that L(ϕ) =
〈

T ( f ),ϕ
〉

is a bounded linear functional on L2
0,c with

norm at most Cn,δ (A+B)
∥

∥ f
∥

∥

L∞ . Obviously, L has a bounded extension on H1 with
the same norm. By Theorem 7.2.2 there exists a BMO function b f that satisfies
∥

∥b f
∥

∥

BMO ≤C′
n

∥

∥L
∥

∥

H1→C such that the linear functional L has the form Lb f (using the
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notation of Theorem 7.2.2). In other words, the distribution T ( f ) can be identified
with a BMO function that satisfies (8.2.11) with Cn,δ = C′

nCn,δ , i.e.,

∥

∥T ( f )
∥

∥

BMO ≤C′
nCn,δ (A + B)

∥

∥ f
∥

∥

L∞ .

We return to the proof of identity (8.2.12). Pick a smooth function with compact
support η that satisfies 0 ≤ η ≤ 1 and is equal to 1 in a neighborhood of the support
of ϕ . We write the right-hand side of (8.2.12) as
∫

Rn
T t(ϕ)η f dx +

∫

Rn
T t(ϕ)(1−η) f dx =

〈

T (η f ),ϕ
〉

+
∫

Rn
Tt(ϕ)(1−η) f dx .

In view of Definition 8.1.16, to prove (8.2.12) it will suffice to show that
∫

Rn
Tt(ϕ)(1−η) f dx =

∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx(1−η(y)) f (y)dy ,

where x0 lies in the support of ϕ . But the inner integral above is absolutely conver-
gent and equal to

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx =
∫

Rn
Kt(y,x)ϕ(x)dx = Tt(ϕ)(y) ,

since y /∈ supp ϕ , by Proposition 8.1.9. Thus (8.2.12) is valid. �

Exercises

8.2.1. Let T : S (Rn) → S ′(Rn) be a continuous linear operator whose Schwartz
kernel coincides with a function K(x,y) on Rn ×Rn minus its diagonal. Suppose
that the function K(x,y) satisfies

sup
R>0

∫

R≤|x−y|≤2R
|K(x,y)|dy ≤ A <∞ .

(a) Show that the previous condition is equivalent to

sup
R>0

1
R

∫

|x−y|≤R
|x− y| |K(x,y)|dy ≤ A′ < ∞

by proving that A′ ≤ A ≤ 2A′.
(b) For ε > 0, let T (ε) be the truncated linear operators with kernels K(ε)(x,y) =
K(x,y)χ|x−y|>ε . Show that T (ε)( f ) is well defined for Schwartz functions.
[

Hint: Consider the annuli ε2 j ≤ |x| ≤ ε2 j+1 for j ≥ 0.
]

8.2.2. Let T be as in Exercise 8.2.1. Prove that the limit T (ε)( f )(x) exists for all f
in the Schwartz class and for almost all x ∈ Rn as ε → 0 if and only if the limit
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lim
ε→0

∫

ε<|x−y|<1
K(x,y)dy

exists for almost all x ∈ Rn.

8.2.3. Let K(x,y) be a function defined away from the diagonal in R2n that satisfies

sup
R>0

∫

R≤|x−y|≤2R
|K(x,y)|dy ≤ A < ∞

and also Hörmander’s condition

sup
y,y′∈Rn

y�=y′

∫

|x−y|≥2|y−y′|
|K(x,y)−K(x,y′)|dx ≤ A′′ < ∞ .

Show that all the truncations K(ε)(x,y) also satisfy Hörmander’s condition uni-
formly in ε > 0 with a constant A + A”.

8.2.4. Let T be as in Exercise 8.2.1 and assume that T maps Lr(Rn) to itself for
some 1 < r ≤ ∞.
(a) Assume that K(x,y) satisfies Hörmander’s condition, Then T has an extension
that maps L1(Rn) to L1,∞(Rn) with norm

∥

∥T
∥

∥

L1→L1,∞ ≤Cn(A + B),

and therefore T maps Lp(Rn) to itself for 1 < p < r with norm
∥

∥T
∥

∥

Lp→Lp ≤Cn(p−1)−1(A + B),

where Cn is a dimensional constant.
(b) Assuming that Kt(x,y)= K(y,x) satisfies Hörmander’s condition, prove that T
maps Lp(Rn) to itself for r < p < ∞ with norm

∥

∥T
∥

∥

Lp→Lp ≤Cn p(A + B),

where Cn is independent of p.

8.2.5. Show that estimate (8.2.2) also holds when r = 1.
[

Hint: Estimate (8.2.6) holds when r = 1. For fixed ε > 0, take 0 < b < |T (ε)( f )(x)|
and define Bε1(x) = B(x, ε2 ) ∩ {|T ( f )| > b

3}, Bε2(x) = B(x, ε2 ) ∩ {|T ( f ε,x0 )| > b
3},

and Bε3(x) = B(x, ε2 ) if Cn,δM( f )(x) > b
3 and empty otherwise. Then |B(x, ε2 )| ≤

|Bε1(x)|+ |Bε2(x)|+ |Bε3(x)|. Use the weak type (1,1) property of T to show that b ≤
C(n)

(

M(|T ( f )|)(x)+M( f )(x)
)

, and take the supremum over all b < |T (ε)( f )(x)|.
]

8.2.6. Prove that if | f | log+ | f | is integrable over a ball, then T (∗)( f ) is integrable
over the same ball.
[

Hint: Use the behavior of the norm of T (∗) on Lp as p → 1 and use Exercise 1.3.7.
]
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8.3 The T (1) Theorem

We now turn to one of the main results of this chapter, the so-called T (1) theorem.
This theorem gives necessary and sufficient conditions for linear operators T with
standard kernels to be bounded on L2(Rn). In this section we obtain several such
equivalent conditions. The name of theorem T (1) is due to the fact that one of the
conditions that we derive is expressed in terms of properties of the distribution T (1),
which was introduced in Definition 8.1.16.

8.3.1 Preliminaries and Statement of the Theorem

We begin with some preliminary facts and definitions.

Definition 8.3.1. A normalized bump is a smooth function ϕ supported in the ball
B(0,10) that satisfies

|(∂αx ϕ)(x)| ≤ 1

for all multi-indices |α| ≤ 2 [ n
2 ]+ 2, where [x] denotes here the integer part of x.

Observe that every smooth function supported inside the ball B(0,10) is a con-
stant multiple of a normalized bump. Also note that if a normalized bump is sup-
ported in a compact subset of B(0,10), then small translations of it are also normal-
ized bumps.

Given a function f on Rn, R > 0, and x0 ∈ Rn, we use the notation fR to denote
the function fR(x) = R−n f (R−1x) and τx0( f ) to denote the function τx0( f )(x) =
f (x− x0). Thus

τx0( fR)(y) = fR(y− x0) = R−n f
(

R−1(y− x0)
)

.

Set N = [ n
2 ]+ 1. Using that all derivatives up to order 2N of normalized bumps are

bounded by 1, we easily deduce that for all x0 ∈ Rn, all R > 0, and all normalized
bumps ϕ we have the estimate

Rn
∫

Rn

∣

∣ ̂τx0(ϕR)(ξ )
∣

∣dξ

=
∫

Rn

∣

∣ϕ̂(ξ )
∣

∣dξ

=
∫

Rn

∣

∣

∣

∣

∫

Rn
ϕ(y)e−2π iy·ξ dy

∣

∣

∣

∣

dξ

=
∫

Rn

∣

∣

∣

∣

∫

Rn
(I−Δ

)N(ϕ)(y)e−2π iy·ξ dy

∣

∣

∣

∣

dξ
(1 + 4π2|ξ |2)N

≤ Cn ,

(8.3.1)

since |(∂αx ϕ)(x)| ≤ 1 for all multi-indices α with |α| ≤ [ n
2 ]+ 1, and Cn is indepen-
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dent of the bump ϕ . Here I−Δ denotes the operator

(I −Δ)(ϕ) = ϕ+
n

∑
j=1

∂ 2ϕ
∂x2

j

.

Definition 8.3.2. We say that a continuous linear operator

T : S (Rn) → S ′(Rn)

satisfies the weak boundedness property (WBP) if there is a constant C such that for
all f and g normalized bumps and for all x0 ∈ Rn and R > 0 we have

|
〈

T (τx0( fR)),τx0(gR)
〉

| ≤CR−n. (8.3.2)

The smallest constant C in (8.3.2) is denoted by
∥

∥T
∥

∥

W B.

Note that
∥

∥τx0( fR)
∥

∥

L2 =
∥

∥ f
∥

∥

L2 R−n/2 and thus if T has a bounded extension from
L2(Rn) to itself, then T satisfies the weak boundedness property with bound

∥

∥T
∥

∥

W B ≤ 10nvn
∥

∥T
∥

∥

L2→L2 ,

where vn is the volume of the unit ball in Rn.
We now state one of the main theorems in this chapter.

Theorem 8.3.3. Let T be a continuous linear operator from S (Rn) to S ′(Rn)
whose Schwartz kernel coincides with a function K on Rn ×Rn \ {(x,x) : x ∈ Rn}
that satisfies (8.1.1), (8.1.2), and (8.1.3) for some 0 < δ ,A < ∞. Let K(ε) and T (ε)

be the usual truncated kernel and operator for ε > 0. Assume that there exists a
sequence ε j ↓ 0 such that for all f ,g ∈ S (Rn) we have

〈

T (ε j)( f ),g
〉

→
〈

T ( f ),g
〉

. (8.3.3)

Consider the assertions:

(i) The following statement is valid:

B1 = sup
B

sup
ε>0

[
∥

∥T (ε)(χB)
∥

∥

L2

|B| 1
2

+

∥

∥(T (ε))t(χB)
∥

∥

L2

|B| 1
2

]

< ∞ ,

where the first supremum is taken over all balls B in Rn.

(ii) The following statement is valid:

B2 = sup
ε,N,x0

[

1
Nn

∫

B(x0,N)

∣

∣

∣

∣

∫

|x−y|<N

K(ε)(x,y)dy

∣

∣

∣

∣

2

dx

+
1

Nn

∫

B(x0,N)

∣

∣

∣

∣

∫

|x−y|<N

K(ε)(y,x)dy

∣

∣

∣

∣

2

dx

]1
2

< ∞ ,
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where the supremum is taken over all 0 < ε < N < ∞ and all x0 ∈ Rn.

(iii) The following statement is valid:

B3 = sup
ϕ

sup
x0∈Rn

sup
R>0

R
n
2

[

∥

∥T (τx0(ϕR))
∥

∥

L2 +
∥

∥Tt(τx0(ϕR))
∥

∥

L2

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ .

(iv) The operator T satisfies the weak boundedness property and the distributions
T (1) and Tt(1) coincide with BMO functions, that is,

B4 =
∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO +
∥

∥T
∥

∥

WB < ∞ .

(v) For every ξ ∈ Rn the distributions T (e2π i(·)·ξ ) and Tt(e2π i(·)·ξ ) coincide with
BMO functions such that

B5 = sup
ξ∈Rn

∥

∥T (e2π i(·)·ξ )
∥

∥

BMO + sup
ξ∈Rn

∥

∥Tt(e2π i(·)·ξ )
∥

∥

BMO < ∞ .

(vi) The following statement is valid:

B6 = sup
ϕ

sup
x0∈Rn

sup
R>0

Rn
[

∥

∥T (τx0(ϕR))
∥

∥

BMO +
∥

∥Tt(τx0(ϕR))
∥

∥

BMO

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ .

Then assertions (i)–(vi) are all equivalent to each other and to the L2 boundedness
of T , and we have the following equivalence of the previous quantities:

cn,δ (A + B j) ≤
∥

∥T
∥

∥

L2→L2 ≤Cn,δ (A + B j),

for all j ∈ {1,2,3,4,5,6}, for some constants cn,δ ,Cn,δ that depend only on the
dimension n and on the parameter δ > 0.

Remark 8.3.4. Condition (8.3.3) says that the operator T is the weak limit of a se-
quence of its truncations. We already know that if T is bounded on L2, then it must be
equal to an operator that satisfies (8.3.3) plus a bounded function times the identity
operator. (See Proposition 8.1.11.) Therefore, it is not a serious restriction to assume
this. See Remark 8.3.6 for a version of Theorem 8.3.3 in which this assumption is
not imposed. However, the reader should always keep in mind the following patho-
logical situation: Let K be a function on Rn ×Rn \ {(x,x) : x ∈ Rn} that satisfies
condition (ii) of the theorem. Then nothing prevents the Schwartz kernel W of T
from having the form

W = K(x,y)+ h(x)δx=y,

where h(x) is an unbounded function and δx=y is Lebesgue measure on the subspace
x = y. In this case, although the T (ε)’s are uniformly bounded on L2, T cannot be L2

bounded, since h is not a bounded function.
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Before we begin the lengthy proof of this theorem, we state a lemma that we
need.

Lemma 8.3.5. Under assumptions (8.1.1), (8.1.2), and (8.1.3), there is a constant
Cn such that for all normalized bumps ϕ we have

sup
x0∈Rn

∫

|x−x0|≥20R

∣

∣

∣

∣

∫

Rn
K(x,y)τx0(ϕR)(y)dy

∣

∣

∣

∣

2

dx ≤ CnA2

Rn . (8.3.4)

Proof. Note that the interior integral in (8.3.4) is absolutely convergent, since
τx0(ϕR) is supported in the ball B(x0,10R) and x lies in the complement of the dou-
ble of this ball. To prove (8.3.4), simply observe that since |K(x,y)| ≤ A|x− y|−n,
we have that

|T (τx0(ϕR))(x)| ≤ CnA
|x− x0|n

whenever |x− x0| ≥ 20R. The estimate follows easily. �

8.3.2 The Proof of Theorem 8.3.3

This subsection is dedicated to the proof of Theorem 8.3.3.

Proof. The proof is based on a series of steps. We begin by showing that condition
(iii) implies condition (iv).

(iii) =⇒ (iv)

Fix a C ∞0 function φ with 0 ≤ φ ≤ 1, supported in the ball B(0,4), and equal to
1 on the ball B(0,2). We consider the functions φ(·/R) that tend to 1 as R → ∞ and
we show that T (1) is the weak limit of the functions T (φ(·/R)). This means that for
all g ∈ D ′

0 (smooth functions with compact support and integral zero) one has

〈

T (φ(·/R)),g
〉

→
〈

T (1),g
〉

(8.3.5)

as R→∞. To prove (8.3.5) we fix a C ∞0 function η that is equal to one on the support
of g. Then we write
〈

T (φ(·/R)),g
〉

=
〈

T (ηφ(·/R)),g
〉

+
〈

T ((1−η)φ(·/R)),g
〉

=
〈

T (ηφ(·/R)),g
〉

+
∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))φ(y/R)dydx ,

where x0 is a point in the support of g. There exists an R0 > 0 such that for R ≥ R0,
φ(·/R) is equal to 1 on the support of η , and moreover the expressions
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∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))φ(y/R)dydx

converge to
∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))dydx

as R → ∞ by the Lebesgue dominated convergence theorem. Using Definition
8.1.16, we obtain the validity of (8.3.5).

Next we observe that the functions φ(·/R) are in L2, since φ(x/R) = R−nφR(x),
and by hypothesis (iii), φR are in L2. We show that

∥

∥T (φ(·/R))
∥

∥

BMO ≤Cn,δ (A + B3) (8.3.6)

uniformly in R > 0. Once (8.3.6) is established, then the sequence {T (φ(·/ j))}∞j=1

lies in a multiple of the unit ball of BMO = (H1)∗, and by the Banach–Alaoglou
theorem, there is a subsequence of the positive integers R j such that T (φ(·/R j))
converges weakly to an element b in BMO. This means that

〈

T (φ(·/R j)),g
〉

→
〈

b,g
〉

(8.3.7)

as j →∞ for all g ∈ D0. Using (8.3.5), we conclude that T (1) can be identified with
the BMO function b, and as a consequence of (8.3.6) it satisfies

∥

∥T (1)
∥

∥

BMO ≤Cn,δ (A + B3) .

In a similar fashion, we identify Tt(1) with a BMO function with norm satisfying
∥

∥Tt(1)
∥

∥

BMO ≤Cn,δ (A + B3) .

We return to the proof of (8.3.6). We fix a ball B = B(x0,r) with radius r > 0
centered at x0 ∈ Rn. If we had a constant cB such that

1
|B|

∫

B
|T (φ(·/R))(x)− cB|dx ≤ cn,δ B3 (8.3.8)

for all R > 0, then property (3) in Proposition 7.1.2 (adapted to balls) would yield
(8.3.6). Obviously, (8.3.8) is a consequence of the two estimates

1
|B|

∫

B
|T
[

φ( ·−x0
r )φ( ·

R )
]

(x)|dx ≤ cn B3 , (8.3.9)

1
|B|

∫

B

∣

∣T
[

(1−φ( ·−x0
r ))φ( ·

R )
]

(x)−T
[

(1−φ( ·−x0
r ))φ( ·

R )
]

(x0)
∣

∣dx ≤ cn

δ
A . (8.3.10)

We bound the double integral in (8.3.10) by

1
|B|

∫

B

∫

|y−x0|≥2r
|K(x,y)−K(x0,y)|φ(y/R)dydx , (8.3.11)
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since 1−φ((y− x0)/r) = 0 when |y− x0| ≤ 2r. Since |x− x0| ≤ r ≤ 1
2 |y− x0|, con-

dition (8.1.2) gives that (8.3.11) holds with cn = ωn−1 = |Sn−1|.
It remains to prove (8.3.9). It is easy to verify that there is a constant C0 =

C0(n,φ) such that for 0 < ε ≤ 1 and for all a ∈ Rn the functions

C−1
0 φ(ε(x + a))φ(x), C−1

0 φ(x)φ(−a + εx) (8.3.12)

are normalized bumps. The important observation is that with a = x0/r we have

φ( x
R )φ( x−x0

r ) = rnτx0

[(

φ
(

r
R(·+ a)

)

φ(·)
)

r

]

(x) (8.3.13)

= Rn
(

φ(·)φ
(

−a + R
r (·)

)

)

R
(x), (8.3.14)

and thus in either case r ≤ R or R ≤ r, one may express the product φ( x
R )φ( x−x0

r ) as
a multiple of a translation of an L1-dilation of a normalized bump.

Let us suppose that r ≤ R. In view of (8.3.13) we write

T
[

φ( ·−x0
r )φ( ·

R )
]

(x) = C0 rnT
[

τx0(ϕr)
]

(x)

for some normalized bump ϕ . Using this fact and the Cauchy–Schwarz inequality,
we estimate the expression on the left in (8.3.9) by

C0 rn/2

|B| 1
2

rn/2
(
∫

B
|T
[

τx0(ϕr)
]

(x)|2 dx

) 1
2

≤ C0 rn/2

|B| 1
2

B3 = cn B3 ,

where the first inequality follows by applying hypothesis (iii).
We now consider the case R ≤ r. In view of (8.3.14) we write

T
[

φ( ·−x0
r )φ( ·

R )
]

(x) = C0 RnT
(

ϕR
)

(x)

for some other normalized bump ϕ . Using this fact and the Cauchy–Schwarz in-
equality, we estimate the expression on the left in (8.3.9) by

C0 Rn/2

|B| 1
2

Rn/2
(
∫

B
|T (ζR)(x)|2 dx

) 1
2

≤ C0 Rn/2

|B| 1
2

B3 ≤ cn B3

by applying hypothesis (iii) and recalling that R ≤ r. This proves (8.3.9).
To finish the proof of (iv), we need to prove that T satisfies the weak boundedness

property. But this is elementary, since for all normalized bumps ϕ and ψ and all
x ∈ Rn and R > 0 we have

∣

∣

〈

T (τx(ψR)),τx(ϕR)
〉∣

∣ ≤
∥

∥T (τx(ψR))
∥

∥

L2

∥

∥τx(ϕR)
∥

∥

L2

≤ B3R− n
2
∥

∥τx(ϕR)
∥

∥

L2

≤CnB3R−n.
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This gives
∥

∥T
∥

∥

W B ≤CnB3, which implies the estimate B4 ≤Cn,δ (A + B3) and con-
cludes the proof of the fact that condition (iii) implies (iv).

(iv) =⇒ (L2 boundedness of T )

We now assume condition (iv) and we present the most important step of the
proof, establishing the fact that T has an extension that maps L2(Rn) to itself. The
assumption that the distributions T (1) and Tt(1) coincide with BMO functions leads
to the construction of Carleson measures that provide the key tool in the bounded-
ness of T .

We pick a smooth radial functionΦ with compact support that is supported in the
ball B(0, 1

2 ) and that satisfies
∫

RnΦ(x)dx = 1. For t > 0 we defineΦt(x) = t−nΦ( x
t ).

Since Φ is a radial function, the operator

Pt( f ) = f ∗Φt (8.3.15)

is self-transpose. The operator Pt is a continuous analogue of S j = ∑k≤ jΔk, where
the Δ j’s are the Littlewood–Paley operators.

We now fix a Schwartz function f whose Fourier transform is supported away
from a neighborhood of the origin. We discuss an integral representation for T ( f ).
We begin with the facts, which can be found in Exercises 8.3.1 and 8.3.2, that

T ( f ) = lim
s→0

P2
s T P2

s ( f ) ,

0 = lim
s→∞

P2
s TP2

s ( f ) ,

where the limits are interpreted in the topology of S ′(Rn). Thus, with the use of
the fundamental theorem of calculus and the product rule, we are able to write

T ( f ) = lim
s→0

P2
s T P2

s ( f )− lim
s→∞

P2
s T P2

s ( f )

= − lim
ε→0

∫ 1
ε

ε
s

d
ds

(

P2
s T P2

s

)

( f )
ds
s

= − lim
ε→0

∫ 1
ε

ε

[

s

(

d
ds

P2
s

)

T P2
s ( f )+ P2

s

(

Ts
d
ds

P2
s

)

( f )
]

ds
s

. (8.3.16)

For a Schwartz function g we have
(

s
d
ds

P2
s (g)

)

̂

(ξ ) = ĝ(ξ )s
d
ds
̂Φ(sξ )2

= ĝ(ξ ) ̂Φ(sξ )
(

2sξ ·∇ ̂Φ(sξ )
)

= ĝ(ξ )
n

∑
k=1

̂Ψk(sξ )̂Θk(sξ )

=
n

∑
k=1

(

˜Qk,sQk,s(g)
)

̂(ξ ) =
n

∑
k=1

(

Qk,s
˜Qk,s(g)

)

̂(ξ ) ,
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where for 1≤ k≤ n,̂Ψk(ξ )= 2ξk
̂Φ(ξ ),̂Θk(ξ )= ∂k

̂Φ(ξ ) and Qk,s, ˜Qk,s are operators
defined by

Qk,s(g) = g ∗ (Ψk)s , ˜Qk,s(g) = g ∗ (Θk)s ;

here (Θk)s(x) = s−nΘk(s−1x) and (Ψk)s are defined similarly. Observe thatΨk and
Θk are smooth odd bumps supported in B(0, 1

2 ) and have integral zero. SinceΨk and

Θk are odd, they are anti-self-transpose, meaning that (Qk,s)t = −Qk,s and ( ˜Qk,s)t =
− ˜Qk,s. We now write the expression in (8.3.16) as

− lim
ε→0

n

∑
k=1

[
∫ 1

ε

ε
˜Qk,sQk,sTPsPs( f )

ds
s

+
∫ 1

ε

ε
PsPsT Qk,s

˜Qk,s( f )
ds
s

]

, (8.3.17)

where the limit converges in S ′(Rn). We set

Tk,s = Qk,sTPs ,

and we observe that the operator PsTQk,s is equal to −((Tt)k,s)t .
Recall the notation τx(h)(z) = h(z− x). In view of identity (2.3.21) and the con-

vergence of the Riemann sums to the integral defining f ∗Φs in the topology of S
(see the proof of Theorem 2.3.20), we deduce that the operator Tk,s has kernel

Kk,s(x,y)=−
〈

T (τy(Φs)),τx((Ψk)s)
〉

=−
〈

Tt(τx((Ψk)s)),τy(Φs)
〉

. (8.3.18)

Likewise, the operator −(Tt)t
k,s has kernel

〈

Tt(τx(Φs)),τy((Ψk)s)
〉

=
〈

T (τy((Ψk)s)),τx(Φs)
〉

.

For 1 ≤ k ≤ n we need the following facts regarding the kernels of these operators:
∣

∣

〈

T (τx((Ψk)s)),τy(Φs)
〉∣

∣ ≤ Cn,δ
(∥

∥T
∥

∥

W B + A
)

ps(x− y) , (8.3.19)
∣

∣

〈

Tt(τx((Ψk)s)),τy(Φs)
〉∣

∣ ≤ Cn,δ
(∥

∥T
∥

∥

W B + A
)

ps(x− y) , (8.3.20)

where

pt(u) =
1
tn

1

(1 + | u
t |)n+δ

is the L1 dilation of the function p(u) = (1 + |u|)−n−δ .
To prove (8.3.20), we consider the following two cases: If |x− y| ≤ 5s, then the

weak boundedness property gives

∣

∣

〈

T (τy(Φs)),τx((Ψk)s)
〉∣

∣=
∣

∣

〈

T (τx((τ
y−x

s (Φ))s)),τx((Ψk)s)
〉∣

∣≤
Cn
∥

∥T
∥

∥

W B

sn ,

since bothΨk and τ
y−x

s (Φ) are multiples of normalized bumps. Notice here that both
of these functions are supported in B(0,10), since 1

s |x−y| ≤ 5. This estimate proves
(8.3.20) when |x− y| ≤ 5s.
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We now turn to the case |x− y| ≥ 5s. Then the functions τy(Φs) and τx((Ψk)s)
have disjoint supports and so we have the integral representation

〈

Tt(τx((Ψk)s)),τy(Φs)
〉

=
∫

Rn

∫

Rn
Φs(v− y)K(u,v)(Ψk)s(u− x)dudv .

Using thatΨk has mean value zero, we can write the previous expression as
∫

Rn

∫

Rn
Φs(v− y)

(

K(u,v)−K(x,v)
)

(Ψk)s(u− x)dudv .

We observe that |u− x| ≤ s and |v− y| ≤ s in the preceding double integral. Since
|x− y| ≥ 5s, this makes |u− v| ≥ |x− y| − 2s ≥ 3s, which implies that |u− x| ≤
1
2 |u− v|. Using (8.1.2), we obtain

|K(u,v)−K(x,v)| ≤ A|x−u|δ
(|u− v|+ |x− v|)n+δ ≤Cn,δA

sδ

|x− y|n+δ ,

where we used the fact that |u− v| ≈ |x− y|. Inserting this estimate in the double
integral, we obtain (8.3.20). Estimate (8.3.19) is proved similarly.

At this point we drop the dependence of Qk,s and ˜Qk,s on the index k, since we
can concentrate on one term of the sum in (8.3.17). We have managed to express
T ( f ) as a finite sum of operators of the form

∫ ∞

0

˜QsTsPs( f )
ds
s

(8.3.21)

and of the form
∫ ∞

0
PsTs ˜Qs( f )

ds
s

, (8.3.22)

where the preceding integrals converge in S ′(Rn) and the Ts’s have kernels Ks(x,y),
which are pointwise dominated by a constant multiple of

(A + B4)ps(x− y) .

It suffices to obtain L2 bounds for an operator of the form (8.3.21) with constant
at most a multiple of A + B4. Then by duality the same estimate also holds for
the operators of the form (8.3.22). We make one more observation. Using (8.3.18)
(recall that we have dropped the indices k), we obtain

Ts(1)(x) =
∫

Rn
Ks(x,y)dy = −

〈

Tt(τx(Ψs)),1
〉

= −(Ψs ∗T (1))(x) , (8.3.23)

where all integrals converge absolutely.
We can therefore concentrate on the L2 boundedness of the operator in (8.3.21).

We pair this operator with a Schwartz function g and we use the convergence of the
integral in S ′ and the property ( ˜Qs)t = − ˜Qs to obtain
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〈
∫ ∞

0

˜QsTsPs( f )
ds
s

,g
〉

=
∫ ∞

0

〈

˜QsTsPs( f ),g
〉 ds

s
= −

∫ ∞

0

〈

TsPs( f ), ˜Qs(g)
〉 ds

s
.

The intuition here is as follows: Ts is an averaging operator at scale s and Ps( f ) is
essentially constant on that scale. Therefore, the expression TsPs( f ) must look like
Ts(1)Ps( f ). To be precise, we introduce this term and try to estimate the error that
occurs. We have

TsPs( f ) = Ts(1)Ps( f )+
[

TsPs( f )−Ts(1)Ps( f )
]

. (8.3.24)

We estimate the terms that arise from this splitting. Recalling (8.3.23), we write
∣

∣

∣

∣

∫ ∞

0

〈

(Ψs ∗T (1))Ps( f ), ˜Qs(g)
〉 ds

s

∣

∣

∣

∣

(8.3.25)

≤
(
∫ ∞

0

∥

∥Ps( f )(Ψs ∗T(1))
∥

∥

2
L2

ds
s

)1
2
(
∫ ∞

0

∥

∥ ˜Qs(g)
∥

∥

2
L2

ds
s

)1
2

=
∥

∥

∥

∥

(
∫ ∞

0

∣

∣Ps( f )(Ψs ∗T (1))
∣

∣

2 ds
s

)1
2
∥

∥

∥

∥

L2

∥

∥

∥

∥

(
∫ ∞

0

∣

∣ ˜Qs(g)
∣

∣

2 ds
s

)1
2
∥

∥

∥

∥

L2
. (8.3.26)

Since T (1) is a BMO function, |(Ψs∗T (1))(x)|2dx ds
s is a Carleson measure on Rn+1

+ .
Using Theorem 7.3.8 and the Littlewood–Paley theorem (Exercise 5.1.4), we obtain
that (8.3.26) is controlled by

Cn
∥

∥T (1)
∥

∥

BMO

∥

∥ f
∥

∥

L2

∥

∥g
∥

∥

L2 ≤CnB4
∥

∥ f
∥

∥

L2

∥

∥g
∥

∥

L2 .

This gives the sought estimate for the first term in (8.3.24). For the second term in
(8.3.24) we have
∣

∣

∣

∣

∫ ∞

0

∫

Rn
˜Qs(g)(x)

[

TsPs( f )−Ts(1)Ps( f )
]

(x)dx
ds
s

∣

∣

∣

∣

≤
(
∫ ∞

0

∫

Rn
| ˜Qs(g)(x)|2 dx

ds
s

)1
2
(
∫ ∞

0

∫

Rn
|(TsPs( f )−Ts(1)Ps( f ))(x)|2 dx

ds
s

)1
2

≤Cn
∥

∥g
∥

∥

L2

(
∫ ∞

0

∫

Rn

∣

∣

∣

∣

∫

Rn
Ks(x,y)[Ps( f )(y)−Ps( f )(x)]dy

∣

∣

∣

∣

2

dx
ds
s

)1
2

≤Cn(A + B4)
∥

∥g
∥

∥

L2

(
∫ ∞

0

∫

Rn

∫

Rn
ps(x− y)

∣

∣Ps( f )(y)−Ps( f )(x)
∣

∣

2
dydx

ds
s

)1
2

,

where in the last estimate we used the fact that the measure pt(x− y)dy is a mul-
tiple of a probability measure. It suffices to estimate the last displayed square root.
Changing variables u = x− y and applying Plancherel’s theorem, we express this
square root as
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(
∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣

∣Ps( f )(y)−Ps( f )(y + u)
∣

∣

2
dudy

ds
s

)1
2

=
(
∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣

∣ ̂Φ(sξ )− ̂Φ(sξ )e2π iu·ξ ∣
∣

2∣
∣ ̂f (ξ )

∣

∣

2
dudξ

ds
s

)1
2

≤
(
∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣

∣ ̂Φ(sξ )
∣

∣

2
4π

δ
2 |u| δ2 |ξ | δ2

∣

∣ ̂f (ξ )
∣

∣

2
dudξ

ds
s

)1
2

= 2π
δ
4

(
∫

Rn

∫ ∞

0

(
∫

Rn
ps(u)

∣

∣
u
s

∣

∣

δ
2 du

)

∣

∣ ̂Φ(sξ )
∣

∣

2|sξ | δ2 ds
s

∣

∣ ̂f (ξ )
∣

∣

2
dξ
)1

2

,

and we claim that this last expression is bounded by Cn,δ
∥

∥ f
∥

∥

L2 . Indeed, we first

bound the quantity
∫

Rn ps(u)
∣

∣
u
s

∣

∣

δ/2
du by a constant, and then we use the estimate

∫ ∞

0

∣

∣ ̂Φ(sξ )
∣

∣

2|sξ | δ2 ds
s

=
∫ ∞

0

∣

∣ ̂Φ(se1)
∣

∣

2
s
δ
2

ds
s

≤C′
n,δ < ∞

and Plancherel’s theorem to obtain the claim. [Here e1 = (1,0, . . . ,0).] Taking g to
be an arbitrary Schwartz function with L2 norm at most 1 and using duality, we
deduce the estimate

∥

∥T ( f )
∥

∥

L2 ≤ Cn,δ (A + B4)
∥

∥ f
∥

∥

L2 for all Schwartz functions f
whose Fourier transform does not contain a neighborhood of the origin. Such func-
tions are dense in L2(Rn) (cf. Exercise 5.2.9) and thus T admits an extension on L2

that satisfies
∥

∥T
∥

∥

L2→L2 ≤Cn,δ (A + B4).

(L2 boundedness of T ) =⇒ (v)

If T has an extension that maps L2 to itself, then by Theorem 8.2.7 we have

B5 ≤Cn,δ
(

A +
∥

∥T
∥

∥

L2→L2

)

< ∞.

Thus the boundedness of T on L2 implies condition (v).

(v) =⇒ (vi)

At a formal level the proof of this fact is clear, since we can write a normalized
bump as the inverse Fourier transform of its Fourier transform and interchange the
integrations with the action of T to obtain

T (τx0(ϕR)) =
∫

Rn

̂τx0(ϕR)(ξ )T (e2π iξ ·( ·))dξ . (8.3.27)

The conclusion follows by taking BMO norms. To make identity (8.3.27) precise
we provide the following argument.

Let us fix a normalized bump ϕ and a smooth and compactly supported function
g with mean value zero. We pick a smooth function η with compact support that is
equal to 1 on the double of a ball containing the support of g and vanishes off the
triple of that ball. Define ηk(ξ ) = η(ξ/k) and note that ηk tends pointwise to 1 as
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k → ∞. Observe that ηkτx0(ϕR) converges to τx0(ϕR) in S (Rn) as k → ∞, and by
the continuity of T we obtain

lim
k→∞

〈

T (ηkτx0(ϕR)),g
〉

=
〈

T (τx0(ϕR)),g
〉

.

The continuity and linearity of T also allow us to write

〈

T (τx0(ϕR)),g
〉

= lim
k→∞

∫

Rn

̂τx0(ϕR)(ξ )
〈

T
(

ηke2π iξ ·( ·)),g
〉

dξ . (8.3.28)

Let W be the Schwartz kernel of T . By (8.1.5) we have
〈

T (ηke2π iξ ·( ·)),g
〉

=
〈

W,g⊗ηke2π iξ ·( ·)〉. (8.3.29)

Using (8.1.6), we obtain that the expression in (8.3.29) is controlled by a finite sum
of L∞ norms of derivatives of the function

g(x)ηk(y)e2π iξ ·y

on some compact set (that depends on g). Then for some M > 0 and some constant
C(g) depending on g, we have that this sum of L∞ norms of derivatives is controlled
by

C(g)(1 + |ξ |)M

uniformly in k ≥ 1. Since ̂τx0(ϕR) is integrable, the Lebesgue dominated conver-
gence theorem allows us to pass the limit inside the integrals in (8.3.28) to obtain

〈

T (τx0(ϕR)),g
〉

=
∫

Rn

̂τx0(ϕR)(ξ )
〈

T
(

e2π iξ ·( ·)),g
〉

dξ .

We now use assumption (v). The distributions T
(

e2π iξ ·( ·)) coincide with BMO func-
tions whose norm is at most B5. It follows that

∣

∣

〈

T (τx0(ϕR)),g
〉∣

∣ ≤
∥

∥ ̂τx0(ϕR)
∥

∥

L1 sup
ξ∈Rn

∥

∥T
(

e2π iξ ·( ·))∥
∥

BMO

∥

∥g
∥

∥

H1

≤ CnB5R−n
∥

∥g
∥

∥

H1 ,

(8.3.30)

where the constant Cn is independent of the normalized bump ϕ in view of (8.3.1).
It follows from (8.3.30) that

g �→
〈

T (τx0(ϕR)),g
〉

is a bounded linear functional on BMO with norm at most a multiple of B5R−n. It
follows from Theorem 7.2.2 that T (τx0(ϕR)) coincides with a BMO function that
satisfies

Rn
∥

∥T (τx0(ϕR))
∥

∥

BMO ≤CnB5.

The same argument is valid for Tt , and this shows that
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B6 ≤Cn,δ (A + B5)

and concludes the proof that (v) implies (vi).

(vi) =⇒ (iii)

We fix x0 ∈ Rn and R > 0. Pick z0 in Rn such that |x0 − z0| = 40R. Then if
|y− x0| ≤ 10R and |x− z0| ≤ 20R we have

10R ≤ |z0−x0|− |x−z0|− |y−x0|
≤ |x−y|
≤ |x−z0|+ |z0−x0|+ |x0−y| ≤ 70R .

From this it follows that when |x− z0| ≤ 20R we have
∣

∣

∣

∣

∫

|y−x0|≤10R
K(x,y)τx0(ϕR)(y)dy

∣

∣

∣

∣

≤
∫

10R≤|x−y|≤70R
|K(x,y)| dy

Rn ≤
Cn,δA

Rn

and thus
∣

∣

∣ Avg
B(z0,20R)

T (τx0(ϕR))
∣

∣

∣≤
Cn,δA

Rn , (8.3.31)

where AvgB g denotes the average of g over B. Because of assumption (vi), the BMO
norm of the function T (τx0(ϕR)) is bounded by a multiple of B6R−n, a fact used in
the following sequence of implications. We have
∥

∥T (τx0(ϕR))
∥

∥

L2(B(x0,20R))

≤
∥

∥

∥T (τx0(ϕR))− Avg
B(x0,20R)

T (τx0(ϕR))
∥

∥

∥

L2(B(x0,20R))

+ v
1
2
n (20R)

n
2

∣

∣

∣ Avg
B(x0,20R)

T (τx0(ϕR))− Avg
B(z0,20R)

T (τx0(ϕR))
∣

∣

∣

+ v
1
2
n (20R)

n
2

∣

∣

∣ Avg
B(z0,20R)

T (τx0(ϕR))
∣

∣

∣

≤ Cn,δ

(

R
n
2
∥

∥T (τx0(ϕR))
∥

∥

BMO + R
n
2
∥

∥T (τx0(ϕR))
∥

∥

BMO + R− n
2 A
)

≤ Cn,δR− n
2
(

B6 + A
)

,

where we used (8.3.31) and Exercise 7.1.6. Now we have that
∥

∥T (τx0(ϕR))
∥

∥

L2(B(x0,20R)c) ≤Cn,δAR− n
2

in view of Lemma 8.3.5. Since the same computations apply to Tt , it follows that

R
n
2
(∥

∥T (τx0(ϕR))
∥

∥

L2 +
∥

∥Tt(τx0(ϕR))
∥

∥

L2

)

≤Cn,δ (A + B6) , (8.3.32)
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which proves that B3 ≤Cn,δ (A+B6) and hence (iii). This concludes the proof of the
fact that (vi) implies (iii)

We have now completed the proof of the following equivalence of statements:
(

L2 boundedness of T
)

⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi). (8.3.33)

(i) ⇐⇒ (ii)

We show that the quantities A + B1 and A + B2 are controlled by constant multi-
ples of each other. Let us set

Iε,N(x) =
∫

ε<|x−y|<N

K(x,y)dy and It
ε,N(x) =

∫

ε<|x−y|<N

Kt(x,y)dy .

We work with a ball B(x0,N). Observe that

Iε,N(x)−T (ε)(χB(x0,N))(x) =
∫

ε<|x−y|<N

K(x,y)dy−
∫

ε<|x−y|
|x0−y|<N

K(x,y)dy

= −
∫

Sε,N(x,x0)
K(x,y)dy,

(8.3.34)

where Sε,N(x,x0) is the set of all y ∈ Rn that satisfy ε < |x− y| and |x0 − y| < N but
do not satisfy ε < |x− y|< N. But observe that when |x0 − x|< N, then

Sε,N(x,x0) ⊆ {y ∈ Rn : N ≤ |x− y|< 2N}. (8.3.35)

Using (8.3.34), (8.3.35), and (8.1.1), we obtain

∣

∣Iε,N(x)−T (ε)(χB(x0,N))(x)
∣

∣≤
∫

N≤|x−y|≤2N

|K(x,y)|dy ≤ (ωn−1 log2)A (8.3.36)

whenever |x0 − x|< N. It follows that

∥

∥Iε,N −T (ε)(χB(x0,N))
∥

∥

L2(B(x0,N)) ≤Cn AN
n
2 ,

and similarly, it follows that
∥

∥It
ε,N − (T (ε))t(χB(x0,N))

∥

∥

L2(B(x0,N)) ≤Cn AN
n
2 .

These two estimates easily imply the equivalence of conditions (i) and (ii).

We now consider the following condition analogous to (iii):
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(iii)′ B′
3 = sup

ϕ
sup

x0∈Rn
sup
ε>0
R>0

R
n
2

[

∥

∥T (ε)(τx0(ϕR))
∥

∥

L2 +
∥

∥(T (ε))t(τx0(ϕR))
∥

∥

L2

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ . We continue by
showing that this condition is a consequence of (ii).

(ii) =⇒ (iii)′

More precisely, we prove that B′
3 ≤Cn,δ (A+B2). To prove (iii)′, fix a normalized

bump ϕ , a point x0 ∈ Rn, and R > 0. Also fix x ∈ Rn with |x− x0| ≤ 20R. Then we
have

T (ε)(τx0(ϕR))(x) =
∫

ε<|x−y|≤30R
K(ε)(x,y)τx0(ϕR)(y)dx = U1(x)+U2(x),

where

U1(x) =
∫

ε<|x−y|≤30R
K(x,y)

(

τx0(ϕR)(y)− τx0(ϕR)(x)
)

dy,

U2(x) = τx0(ϕR)(x)
∫

ε<|x−y|≤30R
K(x,y)dy.

But we have that |τx0(ϕR)(y)− τx0(ϕR)(x)| ≤CnR−1−n|x− y|; thus we obtain

|U1(x)| ≤CnAR−n

on B(x0,20R); hence
∥

∥U1
∥

∥

L2(B(x0,20R)) ≤CnAR− n
2 . Condition (ii) gives that

∥

∥U2
∥

∥

L2(B(x0,20R)) ≤ R−n
∥

∥Iε,30R
∥

∥

L2(B(x0,30R)) ≤ B2(30R)
n
2 R−n .

Combining these two, we obtain
∥

∥T (ε)(τx0(ϕR))
∥

∥

L2(B(x0,20R)) ≤Cn(A + B2)R− n
2 (8.3.37)

and likewise for (T (ε))t . It follows from Lemma 8.3.5 that

∥

∥T (ε)(τx0 (ϕR))
∥

∥

L2(B(x0,20R)c) ≤Cn,δAR− n
2 ,

which combined with (8.3.37) gives condition (iii)′ with constant

B′
3 ≤Cn,δ (A + B2).

This concludes the proof that condition (ii) implies (iii)′.

(iii)′ =⇒ [T (ε) : L2 → L2 uniformly in ε > 0]

For ε > 0 we introduce the smooth truncations T (ε)
ζ of T by setting
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T (ε)
ζ ( f )(x) =

∫

Rn
K(x,y)ζ ( x−y

ε ) f (y)dy ,

where ζ (x) is a smooth function that is equal to 1 for |x| ≥ 1 and vanishes for |x| ≤ 1
2 .

We observe that
∣

∣T (ε)
ζ ( f )−T (ε)( f )

∣

∣≤Cn AM( f ) ; (8.3.38)

thus the uniform boundedness of T (ε) on L2 is equivalent to the uniform bound-

edness of T (ε)
ζ . In view of Exercise 8.1.3, the kernels of the operators T (ε)

ζ lie in

SK(δ ,cA) uniformly in ε > 0 (for some constant c). Moreover, because of (8.3.38),

we see that the operators T (ε)
ζ satisfy (iii)′ with constant CnA + B′

3. The point to be
noted here is that condition (iii) for T (with constant B3) is identical to condition
(iii)′ for the operators T (ε)

ζ uniformly in ε > 0 (with constant CnA + B′
3).

A careful examination of the proof of the implications

(iii) =⇒ (iv) =⇒ (L2 boundedness of T )

reveals that all the estimates obtained depend only on the constants B3, B4, and A,
but not on the specific operator T . Therefore, these estimates are valid for the opera-

tors T (ε)
ζ that satisfy condition (iii)′. This gives the uniform boundedness of the T (ε)

ζ
on L2(Rn) with bounds at most a constant multiple of A+B′

3. The same conclusion
also holds for the operators T (ε).

[T (ε) : L2 → L2 uniformly in ε > 0] =⇒ (i)

This implication holds trivially.

We have now established the following equivalence of statements:

(i) ⇐⇒ (ii) ⇐⇒ (iii)′ ⇐⇒ [T (ε) : L2 → L2 uniformly in ε > 0] (8.3.39)

(iii) ⇐⇒ (iii)′

Finally, we link the sets of equivalent conditions (8.3.33) and (8.3.39). We first
observe that (iii)′ implies (iii). Indeed, using duality and (8.3.3), we obtain

∥

∥T (τx0(ϕR))
∥

∥

L2 = sup
h∈S

‖h‖L2≤1

∣

∣

∣

∣

∫

Rn
T (τx0(ϕR))(x)h(x)dx

∣

∣

∣

∣

≤ sup
h∈S

‖h‖L2≤1

limsup
j→∞

∣

∣

∣

∣

∫

Rn
T (ε j)(τx0(ϕR))(x)h(x)dx

∣

∣

∣

∣

≤ B′
3R− n

2 ,
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which gives B3 ≤B′
3. Thus under assumption (8.3.3), (ii) implies (iii) and as we have

shown, (iii) implies the boundedness of T on L2. But in view of Corollary 8.2.4, the
boundedness of T on L2 implies the boundedness of T (ε) on L2 uniformly in ε > 0,
which implies (iii)′.

This completes the proof of the equivalence of the six statements (i)–(vi) in such
a way that

∥

∥T
∥

∥

L2→L2 ≈ (A + B j)

for all j ∈ {1,2,3,4,5,6}. The proof of the theorem is now complete. �
Remark 8.3.6. Suppose that condition (8.3.3) is removed from the hypothesis of
Theorem 8.3.3. Then the given proof of Theorem 8.3.3 actually shows that (i) and
(ii) are equivalent to each other and to the statement that the T (ε)’s have bounded
extensions on L2(Rn) that satisfy

sup
ε>0

∥

∥T (ε)∥
∥

L2→L2 < ∞ .

Also, without hypothesis (8.3.3), conditions (iii), (iv), (v), and (vi) are equivalent to
each other and to the statement that T has an extension that maps L2(Rn) to L2(Rn).

8.3.3 An Application

We end this section with one application of the T (1) theorem. We begin with the
following observation.

Corollary 8.3.7. Let K be a standard kernel that is antisymmetric, i.e., it satisfies
K(x,y) = −K(y,x) for all x �= y. Then a linear continuous operator T associated
with K is L2 bounded if and only if T (1) is in BMO.

Proof. In view of Exercise 8.3.3, T automatically satisfies the weak boundedness
property. Moreover, Tt =−T . Therefore, the three conditions of Theorem 8.3.3 (iv)
reduce to the single condition T (1) ∈ BMO. �
Example 8.3.8. Let us recall the kernels Km of Example 8.1.7. These arise in the
expansion of the kernel in Example 8.1.6 in geometric series

1
x− y + i(A(x)−A(y))

=
1

x− y

∞

∑
m=0

(

i
A(x)−A(y)

x− y

)m

(8.3.40)

when L = supx�=y
|A(x)−A(y)|

|x−y| < 1. The operator with kernel (iπ)−1Km(x,y), i.e.,

Cm( f )(x) =
1
π i

lim
ε→0

∫

|x−y|>ε

(

A(x)−A(y)
x− y

)m 1
x− y

f (y)dy , (8.3.41)

is called the mth Calderón commutator. We use the T (1) theorem to show that the
operators Cm are L2 bounded.
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We show that there exists a constant R > 0 such that for all m ≥ 0 we have
∥

∥Cm
∥

∥

L2→L2 ≤ RmLm . (8.3.42)

We prove (8.3.42) by induction. We note that (8.3.42) is trivially true when m = 0,
since C0 = −iH, where H is the Hilbert transform.

Assume that (8.3.42) holds for a certain m. We show its validity for m+1. Recall
that Km is a kernel in SK(1,16(2m+ 1)Lm) by the discussion in Example 8.1.7. We
need the following estimate proved in Theorem 8.2.7:

∥

∥Cm
∥

∥

L∞→BMO ≤C2
[

16(2m+ 1)Lm +
∥

∥Cm
∥

∥

L2→L2

]

, (8.3.43)

which holds for some absolute constant C2.
We start with the following consequence of Theorem 8.3.3:
∥

∥Cm+1
∥

∥

L2→L2 ≤C1
[∥

∥Cm+1(1)
∥

∥

BMO +
∥

∥(Cm+1)t(1)
∥

∥

BMO +
∥

∥Cm+1
∥

∥

WB

]

, (8.3.44)

valid for some absolute constant C1. The key observation is that

Cm+1(1) = Cm(A′) , (8.3.45)

for which we refer to Exercise 8.3.4. Here A′ denotes the derivative of A, which
exists almost everywhere, since Lipschitz functions are differentiable almost every-
where. Note that the kernel of Cm is antisymmetric; consequently, (Cm)t = −Cm

and Exercise 8.3.3 gives that
∥

∥Cm
∥

∥

W B ≤C3 16(2m+ 1)Lm for some other absolute
constant C3. Using all these facts we deduce from (8.3.44) that

∥

∥Cm+1
∥

∥

L2→L2 ≤C1
[

2
∥

∥Cm(A′)
∥

∥

BMO +C3 16(2m+ 3)Lm+1] .

Using (8.3.43) and the fact that
∥

∥A′∥
∥

L∞ ≤ L we obtain that

∥

∥Cm+1
∥

∥

L2→L2 ≤C1

[

2C2 L
{

16(2m+ 1)Lm +
∥

∥Cm
∥

∥

L2→L2

}

+C3 16(2m+ 3)Lm+1
]

.

Combining this estimate with the induction hypothesis (8.3.42), we obtain
∥

∥Cm+1(1)
∥

∥

BMO ≤ Rm+1Lm+1,

provided that R is chosen so that

Rm+1 > 96C1C2(2m+ 1) ,
R > 6C1C2 ,

Rm+1 > 48C1C3(2m+ 3)

for all m ≥ 0. Such an R exists independent of m. This completes the proof of
(8.3.42) by induction.
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Exercises

8.3.1. Let T be a continuous linear operator from S (Rn) to S ′(Rn) and let f be
in S (Rn). Let Pt be as in (8.3.15).
(a) Show that Pt( f ) converges to f in S (Rn) as t → 0.
(b) Conclude that T Pt( f ) → T ( f ) in S ′(Rn) as t → 0.
(c) Conclude that PtTPt( f ) → T ( f ) in S ′(Rn) as t → 0.
(d) Observe that (a)–(c) are also valid if Pt is replaced by P2

t .
[

Hint: Part (a): Use that gk → g in S if and only if ĝk → ĝ in S .
]

8.3.2. Let T and Pt be as in Exercise 8.3.1 and let f be a Schwartz function whose
Fourier transform vanishes in a neighborhood of the origin.
(a) Show that Pt( f ) converges to 0 in S (Rn) as t → ∞.
(b) Conclude that T Pt( f ) → 0 in S ′(Rn) as t → ∞.
(c) Conclude that PtTPt( f ) → 0 in S ′(Rn) as t → ∞.
(d) Observe that (a)–(c) are also valid if Pt is replaced by P2

t .
[

Hint: Part (a): Use the hint in Exercise 8.3.1 and the observation that | ̂Φ(tξ )̂f (ξ )| ≤
C (1 + tc0)−1|̂f (ξ )| if ̂f is supported outside the ball B(0,c0). Part (c): Pair with
a Schwartz function g and use part (a) and the fact that all Schwartz seminorms
of Pt(g) are bounded uniformly in t > 0. To prove the latter you may need that
all Schwartz seminorms of Pt(g) are bounded uniformly in t > 0 if and only if all

Schwartz seminorms of ̂Pt(g) are bounded uniformly in t > 0.
]

8.3.3. (a) Prove that every linear operator T from S (Rn) to S ′(Rn) associated
with an antisymmetric kernel in SK(δ ,A) satisfies the weak boundedness property.
Precisely, for some dimensional constant Cn we have

∥

∥T
∥

∥

W B ≤CnA .

(b) Conclude that for some c < ∞, the Calderón commutators satisfy
∥

∥Cm
∥

∥

WB ≤ c16(2m+ 1)Lm .

[

Hint: Write
〈

T (τx0( fR)),τx0 (gR)
〉

as

1
2

∫

Rn

∫

Rn
K(x,y)

(

τx0( fR)(y)τx0(gR)(x)− τx0( fR)(x)τx0 (gR)(y)
)

dydx

and use the mean value theorem.
]

8.3.4. Prove identity (8.3.45). This identity is obvious by a formal integration by
parts, but to prove it properly, one should interpret things in the sense of distribu-
tions.

8.3.5. Suppose that a standard kernel K(x,y) has the form k(x−y) for some function
k on Rn\{0}. Suppose that k extends to a tempered distribution on Rn whose Fourier
transform is a bounded function. Let T be a continuous linear operator from S (Rn)
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to S ′(Rn) associated with K.
(a) Identify the functions T (e2π iξ ·()) and Tt(e2π iξ ·()) and restrict to ξ = 0 to obtain
T (1) and Tt(1).
(b) Use Theorem 8.3.3 to obtain the L2 boundedness of T .
(c) What are H(1) and Ht(1) equal to when H is the Hilbert transform?

8.3.6. (A. Calderón ) Let A be a Lipschitz function on R. Use expansion (8.3.40)
and estimate (8.3.42) to show that the operator

CA( f )(x) =
1
π i

lim
ε→0

∫

|x−y|>ε

f (y)dy
x− y + i(A(x)−A(y))

is bounded on L2(R) when
∥

∥A′∥
∥

L∞ < R−1, where R satisfies (8.3.43).

8.3.7. Prove that condition (i) of Theorem 8.3.3 is equivalent to the statement that

sup
Q

sup
ε>0

(
∥

∥T (ε)(χQ)
∥

∥

L2

|Q| 1
2

+

∥

∥(T (ε))t(χQ)
∥

∥

L2

|Q| 1
2

)

= B′
1 < ∞ ,

where the first supremum is taken over all cubes Q in Rn.
[

Hint: You may repeat the argument in the equivalence (i) ⇐⇒ (ii) replacing the
ball B(x0,N) by a cube centered at x0 with side length N.

]

8.4 Paraproducts

In this section we study a useful class of operators called paraproducts. Their name
suggests they are related to products; in fact, they are “half products” in some sense
that needs to be made precise. Paraproducts provide interesting examples of non-
convolution operators with standard kernels whose L2 boundedness was discussed
in the Section 8.3. They have found use in many situations, including a proof of the
main implication in Theorem 8.3.3. This proof is discussed in the present section.

8.4.1 Introduction to Paraproducts

Throughout this section we fix a Schwartz radial functionΨ whose Fourier trans-
form is supported in the annulus 1

2 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

̂Ψ (2− jξ ) = 1, when ξ ∈ Rn \ {0}. (8.4.1)

Associated with thisΨ we define the Littlewood–Paley operator Δ j( f ) = f ∗Ψ2− j ,
whereΨt(x) = t−nΨ(t−1x). Using (8.4.1), we easily obtain
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∑
j∈Z
Δ j = I, (8.4.2)

where (8.4.2) is interpreted as an identity on Schwartz functions with mean value
zero. See Exercise 8.4.1. Note that by construction, the functionΨ is radial and thus
even. This makes the operator Δ j equal to its transpose.

We now observe that in view of the properties ofΨ , the function

ξ �→ ∑
j≤0

̂Ψ(2− jξ ) (8.4.3)

is supported in |ξ | ≤ 2, and is equal to 1 when 0 < |ξ | ≤ 1
2 . But ̂Ψ(0) = 0, which

implies that the function in (8.4.3) also vanishes at the origin. We can easily fix
this discontinuity by introducing the Schwartz function whose Fourier transform is
equal to

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.

Definition 8.4.1. We define the partial sum operator S j as

S j = ∑
k≤ j

Δk. (8.4.4)

In view of the preceding discussion, S j is given by convolution with Φ2− j , that is,

S j( f )(x) = ( f ∗Φ2− j)(x), (8.4.5)

and the expression in (8.4.5) is well defined for all f in
⋃

1≤p≤∞Lp(Rn). Since Φ is
a radial function by construction, the operator S j is self-transpose.

Similarly, Δ j(g) is also well defined for all g in
⋃

1≤p≤∞Lp(Rn). Moreover, since
Δ j is given by convolution with a function with mean value zero, it also follows that
Δ j(b) is well defined when b ∈ BMO(Rn). See Exercise 8.4.2 for details.

Definition 8.4.2. Given a function g on Rn, we define the paraproduct operator Pg

as follows:
Pg( f ) = ∑

j∈Z
Δ j(g)S j−3( f ) = ∑

j∈Z
∑

k≤ j−3

Δ j(g)Δk( f ), (8.4.6)

for f in L1
loc(R

n). It is not clear for which functions g and in what sense the series in
(8.4.6) converges even when f is a Schwartz function. One may verify that the series
in (8.4.6) converges absolutely almost everywhere when g is a Schwartz function
with mean value zero; in this case, by Exercise 8.4.1 the series ∑ jΔ j(g) converges
absolutely (everywhere) and S j( f ) is uniformly bounded by the Hardy–Littlewood
maximal function M( f ), which is finite almost everywhere.

One of the main goals of this section is to show that the series in (8.4.6) converges
in L2 when f is in L2(Rn) and g is a BMO function.
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The name paraproduct is derived from the fact that Pg( f ) is essentially “half”
the product of f g. Namely, in view of the identity in (8.4.2) the product f g can be
written as

f g =∑
j
∑
k

Δ j( f )Δk(g) .

Restricting the summation of the indices to k < j defines an operator that corre-
sponds to “half” the product of f g. It is only for minor technical reasons that we
take k ≤ j−3 in (8.4.6).

The main feature of the paraproduct operator Pg is that it is essentially a sum

of orthogonal L2 functions. Indeed, the Fourier transform of the function ̂Δ j(g) is
supported in the set

{ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1} ,

while the Fourier transform of the function ̂S j−3( f ) is supported in the set

⋃

k≤ j−3

{ξ ∈ Rn : 2k−1 ≤ |ξ | ≤ 2k+1} .

This implies that the Fourier transform of the function Δ j(g)S j−3( f ) is supported
in the algebraic sum

{ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1}+{ξ ∈ Rn : |ξ | ≤ 2 j−2} .

But this sum is contained in the set

{ξ ∈ Rn : 2 j−2 ≤ |ξ | ≤ 2 j+2} , (8.4.7)

and the family of sets in (8.4.7) is “almost disjoint” as j varies. This means that
every point in Rn belongs to at most four annuli of the form (8.4.7). Therefore, the
paraproduct Pg( f ) can be written as a sum of functions h j such that the families
{h j : j ∈ 4Z + r} are mutually orthogonal in L2, for all r ∈ {0,1,2,3}. This or-
thogonal decomposition of the paraproduct has as an immediate consequence its L2

boundedness when g is an element of BMO.

8.4.2 L2 Boundedness of Paraproducts

The following theorem is the main result of this subsection.

Theorem 8.4.3. For fixed b ∈ BMO(Rn) and f ∈ L2(Rn) the series

∑
| j|≤M

Δ j(b)S j−3( f )

converges in L2 as M → ∞ to a function that we denote by Pb( f ). The operator Pb

thus defined is bounded on L2(Rn), and there is a dimensional constant Cn such that
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for all b ∈ BMO(Rn) we have
∥

∥Pb

∥

∥

L2→L2 ≤Cn
∥

∥b
∥

∥

BMO.

Proof. The proof of this result follows by putting together some of the powerful
ideas developed in Chapter 7. First we define a measure on Rn+1

+ by setting

dμ(x,t) = ∑
j∈Z

|Δ j(b)(x)|2 dxδ2−( j−3)(t) .

By Theorem 7.3.8 we have that μ is a Carleson measure on Rn+1
+ whose norm is

controlled by a constant multiple of
∥

∥b
∥

∥

2
BMO. Now fix f ∈ L2(Rn) and recall that

Φ(x) = ∑r≤0Ψ2−r(x). We define a function F(x,t) on Rn+1
+ by setting

F(x,t) = (Φt ∗ f )(x) .

Observe that F(x,2−k) = Sk( f )(x) for all k ∈ Z. We estimate the L2 norm of a finite
sum of terms of the form Δ j(b)S j−3( f ). For M,N ∈Z+ with M≥N we have

∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

Δ j(b)(x)S j−3( f )(x)
∣

∣

∣

∣

2

dx

=
∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

∣

∣

2

dξ .

(8.4.8)

It is a simple fact that every ξ ∈ Rn belongs to at most four annuli of the form
(8.4.7). It follows that at most four terms in the last sum in (8.4.8) are nonzero. Thus

∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

∣

∣

2

dξ

≤ 4 ∑
N≤| j|≤M

∫

Rn

∣

∣

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

2
dξ

≤ 4∑
j∈Z

∫

Rn

∣

∣Δ j(b)(x)S j−3( f )(x)
∣

∣

2
dx

= 4
∫

Rn

∣

∣F(x,t)
∣

∣

2
dμ(x,t)

≤ Cn
∥

∥b
∥

∥

2
BMO

∫

Rn
F∗(x)2 dx,

(8.4.9)

where we used Corollary 7.3.6 in the last inequality.
Next we note that the nontangential maximal function F∗ of F is controlled by the

Hardy–Littlewood maximal function of f . Indeed, since Φ is a Schwartz function,
we have
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F∗(x) ≤Cn sup
t>0

sup
|y−x|<t

∫

Rn

1
tn

| f (z)|
(1 + |z−y|

t )n+1
dz . (8.4.10)

Now break the previous integral into parts such that |z− y| ≥ 3t and |z− y| ≤ 3t.
In the first case we have |z− y| ≥ |z− x| − t ≥ 1

2 |z− x|, and the last inequality is
valid, since |z− x| ≥ |z− y| − t ≥ 2t. Using this estimate together with Theorem
2.1.10 we obtain that this part of the integral is controlled by a constant multiple
of M( f )(x). The part of the integral in (8.4.10) where |z− y| ≤ 3t is controlled by
the integral over the larger set |z− x| ≤ 4t, and since the denominator in (8.4.10) is
always bounded by 1, we also obtain that this part of the integral is controlled by a
constant multiple of M( f )(x). We conclude that

∫

Rn
F∗(x)2 dx ≤Cn

∫

Rn
M( f )(x)2 dx ≤Cn

∫

Rn
| f (x)|2 dx. (8.4.11)

Combining (8.4.9) and (8.4.11), we obtain the estimate

4∑
j∈Z

∫

Rn
|
(

Δ j(b)S j−3( f )
)

̂(ξ )|2 dξ ≤Cn
∥

∥b
∥

∥

2
BMO

∥

∥ f
∥

∥

2
L2 < ∞.

This implies that given ε > 0, we can find an N0 > 0 such that

M ≥ N ≥ N0 =⇒ ∑
N≤| j|≤M

∫

Rn

∣

∣

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

2
dξ < ε.

But recall from (8.4.8) and (8.4.9) that

∫

Rn

∣

∣

∣

∣
∑

N≤| j|≤M

Δ j(b)(x)S j−3( f )(x)
∣

∣

∣

∣

2

dx ≤ 4 ∑
N≤| j|≤M

∫

Rn

∣

∣

(

Δ j(b)S j−3( f )
)

̂(ξ )
∣

∣

2
dξ .

We conclude that the sequence
{

∑
| j|≤M

Δ j(b)S j−3( f )
}

M

is Cauchy in L2(Rn), and therefore it converges in L2 to a function Pb( f ). The bound-
edness of Pb on L2 follows from the sequence of inequalities already proved. �

8.4.3 Fundamental Properties of Paraproducts

Having established the L2 boundedness of paraproducts, we turn to some proper-
ties that they possess. First we study their kernels. Paraproducts are not operators
of convolution type but are more general integral operators of the form discussed
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in Section 8.1. We show that the kernel of Pb is a tempered distribution Lb that
coincides with a standard kernel on Rn ×Rn \ {(x,x) : x ∈ Rn}.

First we study the kernel of the operator f �→ Δ j(b)S j−3( f ) for any j ∈ Z. We
have that

Δ j(b)(x)S j−3( f )(x) =
∫

Rn
L j(x,y) f (y)dy,

where Lj is the integrable function

Lj(x,y) = (b ∗Ψ2− j)(x)2( j−3)nΦ(2 j−3(x− y)).

Next we can easily verify the following size and regularity estimates for Lj:

|Lj(x,y)| ≤ Cn
∥

∥b
∥

∥

BMO

2n j

(1 + 2 j|x− y|)n+1 , (8.4.12)

|∂αx ∂βy L j(x,y)| ≤ Cn,α ,β ,N

∥

∥b
∥

∥

BMO

2 j(n+|α |+|β |)

(1 + 2 j|x− y|)n+1+N , (8.4.13)

for all multi-indices α and β and all N ≥ |α|+ |β |.
It follows from (8.4.12) that when x �= y the series

∑
j∈Z

Lj(x,y) (8.4.14)

converges absolutely and is controlled in absolute value by

Cn
∥

∥b
∥

∥

BMO ∑
j∈Z

2n j

(1 + 2 j|x− y|)n+1 ≤
C′

n

∥

∥b
∥

∥

BMO

|x− y|n .

Similarly, by taking N ≥ |α|+ |β |, it can be shown that the series

∑
j∈Z
∂αx ∂

β
y L j(x,y) (8.4.15)

converges absolutely when x �= y and is controlled in absolute value by

Cn,α ,β ,N

∥

∥b
∥

∥

BMO ∑
j∈Z

2 j(n+|α |+|β )

(1 + 2 j|x− y|)n+1+N ≤
C′

n,α ,β
∥

∥b
∥

∥

BMO

|x− y|n+|α |+|β |

for all multi-indices α and β .
The Schwartz kernel of Pb is a distribution Wb on R2n. It follows from the pre-

ceding discussion that the distribution Wb coincides with the function

Lb(x,y) = ∑
j∈Z

Lj(x,y)

on Rn ×Rn \ {(x,x) : x ∈ Rn}, and also that the function Lb satisfies the estimates
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|∂αx ∂βy Lb(x,y)| ≤
C′

n,α ,β
∥

∥b
∥

∥

BMO

|x− y|n+|α |+|β | (8.4.16)

away from the diagonal x = y.
We note that the transpose of the operator Pb is formally given by the identity

Pt
b( f ) = ∑

j∈Z
S j−3( fΔ j(b)).

As remarked in the previous section, the kernel of the operator Pt
b is a distribution

Wt
b that coincides with the function

Lt
b(x,y) = Lb(y,x)

away from the diagonal of R2n. It is trivial to observe that Lt
b satisfies the same size

and regularity estimates (8.4.16) as Lb. Moreover, it follows from Theorem 8.4.3
that the operator Pt

b is bounded on L2(Rn) with norm at most a multiple of the BMO
norm of b.

We now turn to two important properties of paraproducts. In view of Definition
8.1.16, we have a meaning for Pb(1) and Pt

b(1), where Pb is the paraproduct operator.
The first property we prove is that Pb(1) = b. Observe that this statement is trivially
valid at a formal level, since S j(1) = 1 for all j and ∑ jΔ j(b) = b. The second
property is that Pt

b(1) = 0. This is also trivially checked at a formal level, since
S j−3(Δ j(b)) = 0 for all j, as a Fourier transform calculation shows. We make both
of these statements precise in the following proposition.

Proposition 8.4.4. Given b ∈ BMO(Rn), let Pb be the paraproduct operator defined
as in (8.4.6). Then the distributions Pb(1) and Pt

b(1) coincide with elements of BMO.
Precisely, we have

Pb(1) = b and Pt
b(1) = 0. (8.4.17)

Proof. Let ϕ be an element of D0(Rn). Find a uniformly bounded sequence of
smooth functions with compact support {ηN}∞N=1 that converges to the function
1 as N → ∞. Without loss of generality assume that all the functions ηN are equal
to 1 on the ball B(y0,3R), where B(y0,R) is a ball that contains the support of ϕ . As
we observed in Remark 8.1.17, the definition of Pb(1) is independent of the choice
of sequence ηN , so we have the following identity for all N ≥ 1:

〈

Pb(1),ϕ
〉

=
∫

Rn
∑
j∈Z
Δ j(b)(x)S j−3(ηN)(x)ϕ(x)dx

+
∫

Rn

[
∫

Rn
Lb(x,y)ϕ(x)dx

]

(1−ηN(y))dy.

(8.4.18)

Since ϕ has mean value zero, we can subtract the constant Lb(y0,y) from Lb(x,y)
in the integral inside the square brackets in (8.4.18). Then we estimate the absolute
value of the double integral in (8.4.18) by
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∫

|y−y0|≥3R

∫

|x−y0|≤R
A

|y0 − x|
|y0 − y|n+1 |1−ηN(y)| |ϕ(x)|dxdy ,

which tends to zero as N → ∞ by the Lebesgue dominated convergence theorem.
It suffices to prove that the first integral in (8.4.18) tends to

∫

Rn b(x)ϕ(x)dx as
N → ∞. Let us make some preliminary observations. Since the Fourier transform of
the product Δ j(b)S j−3(ηN) is supported in the annulus

{ξ ∈ Rn : 2 j−2 ≤ |ξ | ≤ 2 j+2}, (8.4.19)

we may introduce a smooth and compactly supported function ̂Z(ξ ) such that for
all j ∈ Z the function ̂Z(2− jξ ) is equal to 1 on the annulus (8.4.19) and vanishes
outside the annulus {ξ ∈ Rn : 2 j−3 ≤ |ξ | ≤ 2 j+3}. Let us denote by Q j the operator
given by multiplication on the Fourier transform by the function ̂Z(2− jξ ).

Note that S j(1) is well defined and equal to 1 for all j. This is because Φ has
integral equal to 1. Also, the duality identity

∫

f S j(g)dx =
∫

gS j( f )dx (8.4.20)

holds for all f ∈ L1 and g ∈ L∞. For ϕ in D0(Rn) we have
∫

Rn
∑
j∈Z
Δ j(b)S j−3(ηN)ϕ dx

= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ηN)ϕ dx (series converges in L2 and ϕ ∈ L2)

= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ηN)Q j(ϕ)dx

[

̂Q j(ϕ) = ϕ̂ on the

support of
(

(Δ j(b)S j−3(ηN)
)

̂

]

= ∑
j∈Z

∫

Rn
ηN S j−3

(

Δ j(b)Q j(ϕ)
)

dx (duality)

=
∫

Rn
ηN ∑

j∈Z
S j−3

(

Δ j(b)Q j(ϕ)
)

dx (series converges in L1 and ηN ∈ L∞).

We now explain why the last series of the foregoing converges in L1. Since ϕ is in
D0(Rn), Exercise 8.4.1 gives that the series ∑ j∈Z Q j(ϕ) converges in L1. Since S j

preserves L1 and
sup

j

∥

∥Δ j(b)
∥

∥

L∞ ≤Cn
∥

∥b
∥

∥

BMO

by Exercise 8.4.2, it follows that the series ∑ j∈Z S j−3
(

Δ j(b)Q j(ϕ)
)

also converges
in L1.

We now use the Lebesgue dominated convergence theorem to obtain that the
expression
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∫

Rn
ηN ∑

j∈Z
S j−3

(

Δ j(b)Q j(ϕ)
)

dx

converges as N → ∞ to
∫

Rn
∑
j∈Z

S j−3
(

Δ j(b)Q j(ϕ)
)

dx

= ∑
j∈Z

∫

Rn
S j−3

(

Δ j(b)Q j(ϕ)
)

dx (series converges in L1)

= ∑
j∈Z

∫

Rn
S j−3(1)Δ j(b)Q j(ϕ)dx (in view of (8.4.20))

= ∑
j∈Z

∫

Rn
Δ j(b)Q j(ϕ)dx (since S j−3(1) = 1)

= ∑
j∈Z

∫

Rn
Δ j(b)ϕ dx

(

̂Q j(ϕ) = ϕ̂ on support ̂Δ j(b)
)

= ∑
j∈Z

〈

b,Δ j(ϕ)
〉

(duality)

=
〈

b,∑
j∈Z
Δ j(ϕ)

〉

(series converges in H1, b ∈ BMO)

=
〈

b,ϕ
〉

(Exercise 8.4.1(a)).

Regarding the fact that the series ∑ jΔ j(ϕ) converges in H1, we refer to Exercise
8.4.1. We now obtain that the first integral in (8.4.18) tends to

〈

b,ϕ
〉

as N → ∞. We
have therefore proved that

〈

Pb(1),ϕ
〉

=
〈

b,ϕ
〉

for all ϕ in D0(Rn). In other words, we have now identified Pb(1) as an element of
D ′

0 with the BMO function b.
For the transpose operator Pt

b we observe that we have the identity

〈

Pt
b(1),ϕ

〉

=
∫

Rn
∑
j∈Z

St
j−3

(

Δ j(b)ηN
)

(x)ϕ(x)dx

+
∫

Rn

∫

Rn
Lt

b(x,y)(1−ηN(y))ϕ(x)dydx .

(8.4.21)

As before, we can use the Lebesgue dominated convergence theorem to show that
the double integral in (8.4.21) tends to zero. As for the first integral in (8.4.21), we
have the identity

∫

Rn
Pt

b(ηN)ϕ dx =
∫

Rn
ηN Pb(ϕ)dx .

Since ϕ is a multiple of an L2-atom for H1, Theorem 8.2.6 gives that Pb(ϕ) is an L1

function. The Lebesgue dominated convergence theorem now implies that
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∫

Rn
ηN Pb(ϕ)dx →

∫

Rn
Pb(ϕ) dx =

∫

Rn
∑
j∈Z
Δ j(b)S j−3(ϕ)dx

as N →∞. The required conclusion would follow if we could prove that the function
Pb(ϕ) has integral zero. Since Δ j(b) and S j−3(ϕ) have disjoint Fourier transforms,
it follows that

∫

Rn
Δ j(b)S j−3(ϕ)dx = 0

for all j in Z. But the series

∑
j∈Z
Δ j(b)S j−3(ϕ) (8.4.22)

defining Pb(ϕ) converges in L2 and not necessarily in L1, and for this reason we
need to justify the interchange of the following integrals:

∫

Rn
∑
j∈Z
Δ j(b)S j−3(ϕ)dx = ∑

j∈Z

∫

Rn
Δ j(b)S j−3(ϕ)dx . (8.4.23)

To complete the proof, it suffices to show that when ϕ is in D0(Rn), the series in
(8.4.22) converges in L1. To prove this, pick a ball B(y0,R) that contains the support
of ϕ . The series in (8.4.22) converges in L2(3B) and hence converges in L1(3B). It
remains to prove that it converges in L1((3B)c). For a fixed x ∈ (3B)c and a finite
subset F of Z, we have

∑
j∈F

∫

Rn
L j(x,y)ϕ(y)dy = ∑

j∈F

∫

B

(

Lj(x,y)−Lj(x,y0)
)

ϕ(y)dy . (8.4.24)

Using estimates (8.4.13), we obtain that the expression in (8.4.24) is controlled by
a constant multiple of

∫

B
∑
j∈F

|y− y0|2n j2 j

(1 + 2 j|x− y0|)n+2 |ϕ(y)|dy ≤ c
1

|x− y0|n+1

∫

Rn
|y− y0| |ϕ(y)|dy.

Integrating this estimate with respect to x ∈ (3B)c, we obtain that

∑
j∈F

∥

∥Δ j(b)S j−3(ϕ)
∥

∥

L1((3B)c) ≤Cn
∥

∥ϕ
∥

∥

L1 < ∞

for all finite subsets F of Z. This proves that the series in (8.4.22) converges in L1.
We have now proved that 〈Pt

b(1),ϕ〉 = 0 for all ϕ ∈ D0(Rn). This shows that the
distribution Pt

b(1) is a constant function, which is of course identified with zero if
considered as an element of BMO. �

Remark 8.4.5. The boundedness of Pb on L2 is a consequence of Theorem 8.3.3,
since hypothesis (iv) is satisfied. Indeed, Pb(1) = b, Pt

b(1) = 0 are both BMO func-
tions, and see Exercise 8.4.4 for a sketch of a proof of the estimate

∥

∥Pb
∥

∥

WB ≤
Cn
∥

∥b
∥

∥

BMO. This provides another proof of the fact that
∥

∥Pb
∥

∥

L2→L2 ≤ Cn
∥

∥b
∥

∥

BMO,
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bypassing Theorem 8.3.3. We use this result to obtain a different proof of the main
direction in the T (1) theorem in the next section.

Exercises

8.4.1. Let f ∈ S (Rn) have mean value zero, and consider the series

∑
j∈Z
Δ j( f ) .

(a) Show that this series converges to f absolutely everywhere.
(b) Show that this series converges in L1.
(b) Show that this series converges in H1.
[

Hint: To obtain convergence in L1 for j ≥ 0 use the estimate
∥

∥Δ j( f )
∥

∥

L1 ≤
2− j ∫

Rn
∫

Rn 2 jn|Ψ(2 jy)| |2 jy| |(∇ f )(x− θy)|dydx for some θ in [0,1] and consider
the cases |x| ≥ 2|y| and |x| ≤ 2|y|. When j ≤ 0 use the simple identity f ∗Ψ2− j =
( f2 j ∗Ψ)2− j and reverse the roles of f andΨ . To show convergence in H1, use that
∥

∥Δ j(ϕ)
∥

∥

H1 ≈
∥

∥(∑k |ΔkΔ j(ϕ)|2) 1
2
∥

∥

L1 and that only at most three terms in the square
function are nonzero.

]

8.4.2. Without appealing to the H1-BMO duality theorem, prove that there is a di-
mensional constant Cn such that for all b ∈ BMO(Rn) we have

sup
j∈Z

∥

∥Δ j(b)
∥

∥

L∞ ≤Cn
∥

∥b
∥

∥

BMO.

8.4.3. (a) Show that for all 1 < p,q,r < ∞ with 1
p + 1

q = 1
r there is a constant Cpqr

such that for all Schwartz functions f ,g on Rn we have
∥

∥Pg( f )
∥

∥

Lr ≤Cpqr
∥

∥ f
∥

∥

Lp

∥

∥g
∥

∥

Lq .

(b) Obtain the same conclusion for the bilinear operator

˜Pg( f ) =∑
j
∑
k≤ j

Δ j(g)Δk( f ) .

[

Hint: Part (a): Estimate the Lr norm using duality. Part (b): Use part (a).
]

8.4.4. (a) Let f be a normalized bump (see Definition 8.3.1). Prove that
∥

∥Δ j( fR)
∥

∥

L∞ ≤C(n,Ψ)min
(

2− jR−(n+1),2n j)

for all R > 0. Then interpolate between L1 and L∞ to obtain

∥

∥Δ j( fR)
∥

∥

L2 ≤C(n,Ψ)min
(

2−
j
2 R− n+1

2 ,2
n j
2

)

.
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(b) Observe that the same result is valid for the operators Q j as defined in Proposi-
tion 8.4.4. Conclude that for some constant Cn we have

∑
j∈Z

∥

∥Q j(gR)
∥

∥

L2 ≤CnR− n
2 .

(c) Show that there is a constant Cn such that for all normalized bumps f and g we
have

∣

∣

〈

Pb(τx0( fR)),τx0 (gR)
〉∣

∣≤CnR−n
∥

∥b
∥

∥

BMO .
[

Hint: Part (a): Use the cancellation of the functions f andΨ . Part (c): Write

〈

Pb(τx0( fR)),τx0(gR)
〉

=∑
j

∫

Rn
S j−3[Δ j(τ−x0(b))Q j(gR)] fR dx .

Apply the Cauchy–Schwarz inequality, and use the boundedness of S j−3 on L2,
Exercise 8.4.2, and part (b).

]

8.4.5. (Continuous paraproducts ) (a) Let Φ and Ψ be Schwartz functions on Rn

with
∫

RnΦ(x)dx = 1 and
∫

RnΨ(x)dx = 0. For t > 0 define operators Pt( f ) =Φt ∗ f
and Qt( f ) =Ψt ∗ f . Let b ∈ BMO(Rn) and f ∈ L2(Rn). Show that the limit

lim
ε→0
N→∞

∫ N

ε
Qt
(

Qt(b)Pt( f )
) dt

t

converges in L2(Rn) and defines an operatorΠb( f ) that satisfies
∥

∥Πb

∥

∥

L2→L2 ≤Cn
∥

∥b
∥

∥

BMO

for some dimensional constant Cn.
(b) Under the additional assumption that

lim
ε→0
N→∞

∫ N

ε
Q2

t
dt
t

= I ,

identify Πb(1) and Πb(b).
[

Hint: Suitably adapt the proofs of Theorem 8.4.3 and Proposition 8.4.4.
]

8.5 An Almost Orthogonality Lemma and Applications

In this section we discuss an important lemma regarding orthogonality of operators
and some of its applications.

It is often the case that a linear operator T is given as an infinite sum of other lin-
ear operators Tj such that the Tj’s are uniformly bounded on L2. This sole condition
is not enough to imply that the sum of the Tj’s is also L2 bounded, although this is
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often the case. Let us consider, for instance, the linear operators {Tj} j∈Z given by
convolution with the smooth functions e2π i jt on the circle T1. Each Tj can be written
as Tj( f ) = (̂f ⊗ δ j)∨, where ̂f is the sequence of Fourier coefficients of f ; here δ j

is the infinite sequence consisting of zeros everywhere except at the jth entry, in
which it has 1, and ⊗ denotes term-by-term multiplication of infinite sequences. It
follows that each operator Tj is bounded on L2(T1) with norm 1. Moreover, the sum
of the Tj’s is the identity operator, which is also L2 bounded with norm 1.

It is apparent from the preceding discussion that the crucial property of the Tj’s
that makes their sum bounded is their orthogonality. In the preceding example we
have TjTk = 0 unless j = k. It turns out that this orthogonality condition is a bit too
strong, and it can be weakened significantly.

8.5.1 The Cotlar–Knapp–Stein Almost Orthogonality Lemma

The next result provides a sufficient orthogonality criterion for boundedness of sums
of linear operators on a Hilbert space.

Lemma 8.5.1. Let {Tj} j∈Z be a family of operators mapping a Hilbert space H to
itself. Assume that there is a a function γ : Z → R+ such that

∥

∥T ∗
j Tk
∥

∥

H→H +
∥

∥TjT
∗

k

∥

∥

H→H ≤ γ( j− k) (8.5.1)

for all j,k in Z. Suppose that

A = ∑
j∈Z

√

γ( j) < ∞ .

Then the following three conclusions are valid:

(i) For all finite subsets Λ of Z we have
∥

∥

∥∑
j∈Λ

Tj

∥

∥

∥

H→H
≤ A.

(ii) For all x ∈ H we have

∑
j∈Z

∥

∥Tj(x)
∥

∥

2
H ≤ A2

∥

∥x
∥

∥

2
H .

(iii) For all x ∈ H the sequence ∑| j|≤N Tj(x) converges to some T (x) as N → ∞ in
the norm topology of H. The linear operator T defined in this way is bounded
from H to H with norm

∥

∥T
∥

∥

H→H ≤ A.

Proof. As usual we denote by S∗ the adjoint of a linear operator S. It is a simple fact
that any bounded linear operator S : H → H satisfies

∥

∥S
∥

∥

2
H→H =

∥

∥SS∗
∥

∥

H→H . (8.5.2)
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See Exercise 8.5.1. By taking j = k in (8.5.1) and using (8.5.2), we obtain
∥

∥Tj
∥

∥

H→H ≤
√

γ(0) (8.5.3)

for all j ∈ Z. It also follows from (8.5.2) that if an operator S is self-adjoint, then
∥

∥S
∥

∥

2
H→H =

∥

∥S2
∥

∥

H→H , and more generally,

∥

∥S
∥

∥

m
H→H =

∥

∥Sm
∥

∥

H→H (8.5.4)

for m that are powers of 2. Now observe that the linear operator
(

∑
j∈Λ

Tj

)(

∑
j∈Λ

T ∗
j

)

is self-adjoint. Applying (8.5.2) and (8.5.4) to this operator, we obtain

∥

∥

∥∑
j∈Λ

Tj

∥

∥

∥

2

H→H
=
∥

∥

∥

[(

∑
j∈Λ

Tj

)(

∑
j∈Λ

T ∗
j

)]m∥
∥

∥

1
m

H→H
, (8.5.5)

where m is a power of 2. We now expand the mth power of the expression in (8.5.5).
So we write the right side of the identity in (8.5.5) as

∥

∥

∥ ∑
j1,··· , j2m∈Λ

Tj1T ∗
j2 · · ·Tj2m−1T ∗

j2m

∥

∥

∥

1
m

H→H
, (8.5.6)

which is controlled by

(

∑
j1,··· , j2m∈Λ

∥

∥Tj1T ∗
j2 · · ·Tj2m−1T ∗

j2m

∥

∥

H→H

) 1
m

. (8.5.7)

We estimate the expression inside the sum in (8.5.7) in two different ways. First we
group j1 with j2, j3 with j4, . . . , j2m−1 with j2m and we apply (8.5.3) and (8.5.1) to
control this expression by

γ( j1 − j2)γ( j3 − j4) · · ·γ( j2m−1 − j2m).

Grouping j2 with j3, j4 with j5, . . . , j2m−2 with j2m−1 and leaving j1 and j2m alone,
we also control the expression inside the sum in (8.5.7) by

√

γ(0)γ( j2 − j3)γ( j4 − j5) · · ·γ( j2m−2 − j2m−1)
√

γ(0) .

Taking the geometric mean of these two estimates, we obtain the following bound
for (8.5.7):

(

∑
j1,..., j2m∈Λ

√

γ(0)
√

γ( j1 − j2)
√

γ( j2 − j3) · · ·
√

γ( j2m−1 − j2m)
) 1

m

.
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Summing first over j1, then over j2, and finally over j2m−1, we obtain the estimate

γ(0)
1

2m A
2m−1

m

(

∑
j2m∈Λ

1

) 1
m

for (8.5.7). Using (8.5.5), we conclude that

∥

∥∑
j∈Λ

Tj
∥

∥

2
H→H ≤ γ(0)

1
2m A

2m−1
m |Λ | 1

m ,

and letting m → ∞, we obtain conclusion (i) of the proposition.
To prove (ii) we use the Rademacher functions r j of Appendix C.1. These func-

tions are defined for nonnegative integers j, but we can reindex them so that the
subscript j runs through the integers. The fundamental property of these functions
is their orthogonality, that is,

∫ 1
0 r j(ω)rk(ω)dω = 0 when j �= k. Using the fact that

the norm
∥

∥ ·
∥

∥

H comes from an inner product, for every finite subsetΛ of Z and x in
H we obtain

∫ 1

0

∥

∥

∥∑
j∈Λ

r j(ω)Tj(x)
∥

∥

∥

2

H
dω

= ∑
j∈Λ

∥

∥Tj(x)
∥

∥

2
H +

∫ 1

0
∑

j,k∈Λ
j �=k

r j(ω)rk(ω)
〈

Tj(x),Tk(x)
〉

H dω

= ∑
j∈Λ

∥

∥Tj(x)
∥

∥

2
H .

(8.5.8)

For any fixed ω ∈ [0,1] we now use conclusion (i) of the proposition for the oper-
ators r j(ω)Tj , which also satisfy assumption (8.5.1), since r j(ω) = ±1. We obtain
that

∥

∥

∥∑
j∈Λ

r j(ω)Tj(x)
∥

∥

∥

2

H
≤ A2

∥

∥x
∥

∥

2
H ,

which, combined with (8.5.8), gives conclusion (ii).
We now prove (iii). First we show that given x ∈ H the sequence

{ N

∑
j=−N

Tj(x)
}

N

is Cauchy in H. Suppose that this is not the case. This means that there is some
ε > 0 and a subsequence of integers 1 ≤ N1 < N2 < N3 < · · · such that

∥

∥˜Tk(x)
∥

∥

H ≥ ε , (8.5.9)

where we set
˜Tk(x) = ∑

Nk≤| j|<Nk+1

Tj(x).



8.5 An Almost Orthogonality Lemma and Applications 227

For any fixedω ∈ [0,1], apply conclusion (i) to the operators S j = rk(ω)Tj whenever
Nk ≤ | j| < Nk+1, since these operators clearly satisfy hypothesis (8.5.1). Taking
N1 ≤ | j| ≤ NK+1, we obtain

∥

∥

∥

K

∑
k=1

rk(ω) ∑
Nk≤| j|<Nk+1

Tj(x)
∥

∥

∥

H
=
∥

∥

∥

K

∑
k=1

rk(ω)˜Tk(x)
∥

∥

∥

H
≤ A

∥

∥x
∥

∥

H .

Squaring and integrating this inequality with respect to ω in [0,1], and using (8.5.8)
with ˜Tk in the place of Tk and {1,2, . . . ,K} in the place of Λ , we obtain

K

∑
k=1

∥

∥˜Tk(x)
∥

∥

2
H ≤ A2

∥

∥x
∥

∥

2
H .

But this clearly contradicts (8.5.9) as K → ∞.
We conclude that every sequence

{

∑N
j=−N Tj(x)

}

N is Cauchy in H and thus it
converges to Tx for some linear operator T . In view of conclusion (i), it follows that
T is a bounded operator on H with norm at most A. �
Remark 8.5.2. At first sight, it appears strange that the norm of the operator T is
independent of the norm of every piece Tj and depends only on the quantity A in
(8.5.1). But as observed in the proof, if we take j = k in (8.5.1), we obtain

∥

∥Tj
∥

∥

2
H→H =

∥

∥TjT
∗
j

∥

∥

H→H ≤ γ(0) ≤ A2 ;

thus the norm of each individual Tj is also controlled by the constant A.
We also note that there wasn’t anything special about the role of the index set Z

in Lemma 8.5.1. Indeed, the set Z can be replaced by any countable group, such as
Zk for some k. For instance, see Theorem 8.5.7, in which the index set is Z2n. See
also Exercises 8.5.7 and 8.5.8, in which versions of Lemma 8.5.1 are given with no
group structure on the set of indices.

8.5.2 An Application

We now discuss an application of the almost orthogonality lemma just proved con-
cerning sums of nonconvolution operators on L2(Rn). We begin with the following
version of Theorem 8.3.3, in which it is assumed that T (1) = Tt(1) = 0.

Proposition 8.5.3. Suppose that Kj(x,y) are functions on Rn ×Rn indexed by j ∈ Z
that satisfy

|Kj(x,y)| ≤
A2n j

(1 + 2 j|x− y|)n+δ , (8.5.10)

|Kj(x,y)−Kj(x,y′)| ≤ A2γ j2n j|y− y′|γ , (8.5.11)

|Kj(x,y)−Kj(x′,y)| ≤ A2γ j2n j|x− x′|γ , (8.5.12)
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for some 0 < A,γ,δ < ∞ and all x,y,x′,y′ ∈ Rn. Suppose also that
∫

Rn
Kj(z,y)dz = 0 =

∫

Rn
Kj(x,z)dz , (8.5.13)

for all x,y ∈ Rn and all j ∈ Z. For j ∈ Z define integral operators

Tj( f )(x) =
∫

Rn
Kj(x,y) f (y)dy

for f ∈ L2(Rn). Then the series

∑
j∈Z

Tj( f )

converges in L2 to some T ( f ) for all f ∈ L2(Rn), and the linear operator T defined
in this way is L2 bounded.

Proof. It is a consequence of (8.5.10) that the kernels Kj are in L1(dy) uniformly
in x ∈ Rn and j ∈ Z and hence the operators Tj map L2(Rn) to L2(Rn) uniformly
in j. Our goal is to show that the sum of the Tj’s is also bounded on L2(Rn). We
achieve this using the orthogonality considerations of Lemma 8.5.1. To be able to
use Lemma 8.5.1, we need to prove (8.5.1). Indeed, we show that for all k, j ∈ Z we
have

∥

∥TjT
∗

k

∥

∥

L2→L2 ≤C A2 2−
1
4
δ

n+δ min(γ,δ )| j−k| , (8.5.14)
∥

∥T ∗
j Tk

∥

∥

L2→L2 ≤C A2 2−
1
4
δ

n+δ min(γ,δ )| j−k| , (8.5.15)

for some 0 < C = Cn,γ,δ < ∞. We prove only (8.5.15), since the proof of (8.5.14)
is similar. In fact, since the kernels of Tj and T ∗

j satisfy similar size, regularity,
and cancellation estimates, (8.5.15) is directly obtained from (8.5.14) when Tj are
replaced by T ∗

j .
It suffices to prove (8.5.15) under the extra assumption that k ≤ j. Once (8.5.15)

is established under this assumption, taking j ≤ k yields

∥

∥T ∗
j Tk

∥

∥

L2→L2 =
∥

∥(T ∗
k Tj)∗

∥

∥

L2→L2 =
∥

∥T ∗
k Tj
∥

∥

L2→L2 ≤C A22−
1
2 min(γ,δ )| j−k|,

thus proving (8.5.15) also under the assumption j ≤ k.
We therefore take k ≤ j in the proof of (8.5.15). Note that the kernel of T ∗

j Tk is

Ljk(x,y) =
∫

Rn
Kj(z,x)Kk(z,y)dz.

We prove that

sup
x∈Rn

∫

Rn
|Lk j(x,y)|dy ≤ C A2 2−

1
4
δ

n+δ min(γ,δ )|k− j| , (8.5.16)

sup
y∈Rn

∫

Rn
|Lk j(x,y)|dx ≤ C A2 2−

1
4
δ

n+δ min(γ,δ )|k− j| . (8.5.17)
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Once (8.5.16) and (8.5.17) are established, (8.5.15) follows directly from the classi-
cal Schur lemma in Appendix I.1.

We need to use the following estimate, valid for k ≤ j:

∫

Rn

2n j min(1,(2k|u|)γ)
(1 + 2 j|u|)n+δ du ≤Cn,δ2−

1
2 min(γ,δ )( j−k). (8.5.18)

Indeed, to prove (8.5.18), we observe that by changing variables we may assume
that j = 0 and k ≤ 0. Taking r = k− j ≤ 0, we establish (8.5.18) as follows:

∫

Rn

min(1,(2r|u|)γ )
(1 + |u|)n+δ du ≤

∫

Rn

min
(

1,(2r|u|) 1
2 min(γ,δ ))

(1 + |u|)n+δ du

≤
∫

|u|≤2−r

(2r|u|) 1
2 min(γ,δ )

(1 + |u|)n+δ du +
∫

|u|≥2−r

1

(1 + |u|)n+δ du

≤ 2
1
2 min(γ,δ )r

∫

Rn

1

(1 + |u|)n+ δ
2

du +
∫

|u|≥2−r

1

|u|n+δ du

≤ Cn,δ
[

2
1
2 min(γ,δ )r + 2δ r]

≤ Cn,δ 2−
1
2 min(γ,δ )|r| ,

We now obtain estimates for Ljk in the case k ≤ j. Using (8.5.13), we write

|Ljk(x,y)| =
∣

∣

∣

∣

∫

Rn
Kk(z,y)Kj(z,x)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn

[

Kk(z,y)−Kk(x,y)
]

Kj(z,x)dz

∣

∣

∣

∣

≤ A2
∫

Rn
2nk min(1,(2k|x− z|)γ) 2n j

(1 + 2 j|z− x|)n+δ dz

≤ C A2 2kn 2−
1
2 min(γ,δ )( j−k)

using estimate (8.5.18). Combining this estimate with

|Ljk(x,y)| ≤
∫

Rn
|Kj(z,x)| |Kk(z,y)|dz ≤ C A22kn

(1 + 2k|x− y|)n+δ ,

which follows from (8.5.10) and the result in Appendix K.1 (since k ≤ j), yields

|Ljk(x,y)| ≤Cn,γ,δ A2 2−
1
2
δ/2
n+δ min(γ,δ )( j−k) 2kn

(1 + 2k|x− y|)n+ δ
2

,

which easily implies (8.5.16) and (8.5.17). This concludes the proof of the
proposition. �
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8.5.3 Almost Orthogonality and the T (1) Theorem

We now give an important application of the proposition just proved. We re-prove
the difficult direction of the T (1) theorem proved in Section 8.3. We have the fol-
lowing:

Theorem 8.5.4. Let K be in SK(δ ,A) and let T be a continuous linear operator
from S (Rn) to S ′(Rn) associated with K. Assume that

∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO +
∥

∥T
∥

∥

W B = B4 < ∞ .

Then T extends to bounded linear operator on L2(Rn) with norm at most a constant
multiple of A + B4.

Proof. Consider the paraproduct operators PT(1) and PTt(1) introduced in the previ-
ous section. Then, as we showed in Proposition 8.4.4, we have

PT(1)(1) = T (1), (PT(1))t(1) = 0,
PTt(1)(1) = Tt(1), (PTt(1))t(1) = 0.

Let us define an operator

L = T −PT(1)− (PTt(1))
t .

Using Proposition 8.4.4, we obtain that

L(1) = Lt(1) = 0.

In view of (8.4.16), we have that L is an operator whose kernel satisfies the estimates
(8.1.1), (8.1.2), and (8.1.3) with constants controlled by a dimensional constant mul-
tiple of

A +
∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO .

Both of these numbers are controlled by A + B4. We also have
∥

∥L
∥

∥

W B ≤ Cn
(∥

∥T
∥

∥

W B +
∥

∥PT(1)
∥

∥

L2→L2 +
∥

∥(PTt (1))
t
∥

∥

L2→L2

)

≤ Cn
(∥

∥T
∥

∥

W B +
∥

∥T (1)
∥

∥

BMO +
∥

∥Tt(1)
∥

∥

BMO

)

≤ Cn(A + B4) ,

which is a very useful fact.
Next we introduce operators Δ j and S j; one should be cautious as these are not

the operators Δ j and S j introduced in Section 8.4 but rather discrete analogues of
those introduced in the proof of Theorem 8.3.3. We pick a smooth radial real-valued
function Φ with compact support contained in the unit ball B(0, 1

2 ) that satisfies
∫

RnΦ(x)dx = 1 and we define

Ψ(x) =Φ(x)−2−nΦ( x
2 ). (8.5.19)
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Notice thatΨ has mean value zero. We define

Φ2− j (x) = 2n jΦ(2 jx) and Ψ2− j(x) = 2n jΨ(2 jx)

and we observe that both Φ and Ψ are supported in B(0,1) and are multiples of
normalized bumps. We then define Δ j to be the operator given by convolution with
the functionΨ2− j and S j the operator given by convolution with the function Φ2− j .
In view of identity (8.5.19) we have that Δ j = S j −S j−1. Notice that

S jLS j = S j−1LS j−1 +Δ jLS j + S j−1LΔ j ,

which implies that for all integers N < M we have

SMLSM−SN−1LSN−1 =
M

∑
j=N

(

S jLS j −S j−1LS j−1
)

=
M

∑
j=N

Δ jLS j−
M

∑
j=N

S j−1LΔ j.

(8.5.20)

Until the end of the proof we fix a Schwartz function f whose Fourier trans-
form vanishes in a neighborhood of the origin; such functions are dense in L2; see
Exercise 5.2.9. We would like to use Proposition 8.5.3 to conclude that

sup
M∈Z

sup
N<M

∥

∥SMLSM( f )−SN−1LSN−1( f )
∥

∥

L2 ≤Cn(A2 + B4)
∥

∥ f
∥

∥

L2 (8.5.21)

and that SMLSM( f )−SN−1LSN−1( f ) → ˜L( f ) in L2 as M → ∞ and N →−∞. Once
these statements are proved, we deduce that ˜L( f ) = L( f ). To see this, it suffices to
prove that SMLSM( f )−SN−1LSN−1( f ) converges to L( f ) weakly in L2. Indeed, let
g be another Schwartz function. Then

〈

SMLSM( f )−SN−1LSN−1( f ),g
〉

−
〈

L( f ),g
〉

=
〈

SMLSM( f )−L( f ),g
〉

−
〈

SN−1LSN−1( f ),g
〉

. (8.5.22)

We first prove that the first term in (8.5.22) tends to zero as M → ∞. Indeed,
〈

SMLSM( f )−L( f ),g
〉

=
〈

LSM( f ),SMg
〉

−
〈

L( f ),g
〉

=
〈

L(SM( f )− f ),SM(g)
〉

+
〈

L( f ),SM(g)−g
〉

,

and both terms converge to zero, since SM( f )− f → 0 and SM(g)− g tend to zero
in S , L is continuous from S to S ′, and all Schwartz seminorms of SM(g) are
bounded uniformly in M; see also Exercise 8.3.1.

The second term in (8.5.22) is
〈

SN−1LSN−1( f ),g
〉

=
〈

LSN−1( f ),SN−1(g)
〉

. Since
̂f is supported away from the origin, SN( f ) → 0 in S as N → −∞; see Exer-
cise 8.3.2. By the continuity of L, LSN−1( f ) → 0 in S ′, and since all Schwartz
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seminorms of SN−1(g) are bounded uniformly in N, we conclude that the term
〈

LSN−1( f ),SN−1(g)
〉

tends to zero as N →−∞. We thus deduce that ˜L( f ) = L( f ).
It remains to prove (8.5.21). We now define

Lj = Δ jLS j and L′
j = S j−1LΔ j

for j ∈ Z. In view of identity (2.3.21) and the convergence of the Riemann sums
to the integral defining f ∗Φ2− j in the topology of S (see the proof of Theorem
2.3.20), we have

(

L( f ∗Φ2− j)∗Ψ2− j

)

(x) =
∫

Rn

〈

L(τy(Φ2− j)),τx(Ψ2− j)
〉

f (y)dy,

where τy(g)(u) = g(u− y). Thus the kernel Kj of Lj is

Kj(x,y) =
〈

L(τy(Φ2− j )),τx(Ψ2− j)
〉

and the kernel K′
j of L′

j is

K′
j(x,y) =

〈

L(τy(Ψ2− j)),τx(Φ2−( j−1) )
〉

.

We plan to prove that

|Kj(x,y)|+ 2− j|∇Kj(x,y)| ≤Cn(A + B4)2n j(1 + 2 j|x− y|)−n−δ , (8.5.23)

noting that an analogous estimate holds for K′
j(x,y). Once (8.5.23) is established,

Exercise 8.5.2 and the conditions

Lj(1) = Δ jLS j(1) = Δ jL(1) = 0 , L′
j(1) = S j−1LΔ j(1) = 0 ,

yield the hypotheses of Proposition 8.5.3. Recalling (8.5.20), the conclusion of this
proposition yields (8.5.21).

To prove (8.5.23) we quickly repeat the corresponding argument from the proof
of Theorem 8.3.3. We consider the following two cases: If |x− y| ≤ 5 ·2− j, then the
weak boundedness property gives

∣

∣〈L(τy(Φ2− j )),τx(Ψ2− j)〉
∣

∣ =
∣

∣〈L(τx(τ2 j(y−x)(Φ)2− j )),τx(Ψ2− j)〉
∣

∣

≤ Cn
∥

∥L
∥

∥

WB2 jn,

sinceΨ and τ2 j(y−x)(Φ), whose support is contained in B(0, 1
2)+B(0,5)⊆ B(0,10),

are multiples of normalized bumps. This proves the first of the two estimates in
(8.5.23) when |x− y| ≤ 5 ·2− j.

We now turn to the case |x − y| ≥ 5 · 2− j. Then the functions τy(Φ2− j ) and
τx(Ψ2− j) have disjoint supports, and so we have the integral representation

Kj(x,y) =
∫

Rn

∫

Rn
Φ2− j (v− y)K(u,v)Ψ2− j(u− x)dudv .
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Using thatΨ has mean value zero, we can write the previous expression as
∫

Rn

∫

Rn
Φ2− j(v− y)

(

K(u,v)−K(x,v)
)

Ψ2− j(u− x)dudv .

We observe that |u− x| ≤ 2− j and |v− y| ≤ 2− j in the preceding integral. Since
|x− y| ≥ 5 · 2− j, this makes |u− v| ≥ |x− y|− 2 · 2− j ≥ 2 · 2− j, which implies that
|u− x| ≤ 1

2 |u− v|. Using the regularity condition (8.1.2), we deduce

|K(u,v)−K(x,v)| ≤ A
|x−u|δ
|u− v|n+δ ≤Cn,δA

2− jδ

|x− y|n+δ .

Inserting this estimate in the preceding double integral, we obtain the first estimate
in (8.5.23). The second estimate in (8.5.23) is proved similarly. �

8.5.4 Pseudodifferential Operators

We now turn to another elegant application of Lemma 8.5.1 regarding pseudodiffer-
ential operators. We first introduce pseudodifferential operators.

Definition 8.5.5. Let m ∈ R and 0 < ρ ,δ ≤ 1. A C ∞ function σ(x,ξ ) on Rn ×Rn is
called a symbol of class Sm

ρ ,δ if for all multi-indices α and β there is a constant Bα ,β
such that

|∂αx ∂
β
ξ σ(x,ξ )| ≤ Bα ,β (1 + |ξ |)m−ρ |β |+δ |α | . (8.5.24)

For σ ∈ Sm
ρ ,δ , the linear operator

Tσ ( f )(x) =
∫

Rn
σ(x,ξ )̂f (ξ )e2π ix·ξ dξ

initially defined for f in S (Rn) is called a pseudodifferential operator with symbol
σ(x,ξ ).

Example 8.5.6. The paraproduct Pb introduced in the previous section is a pseudo-
differential operator with symbol

σb(x,ξ ) = ∑
j∈Z
Δ j(b)(x) ̂Ψ (2− jξ ) . (8.5.25)

It is not hard to see that the symbol σb satisfies

|∂αx ∂
β
ξ σb(x,ξ )| ≤ Bα ,β |ξ |−|β |+|α | (8.5.26)

for all multi-indices α and β . Indeed, every differentiation in x produces a factor
of 2 j, while every differentiation in ξ produces a factor of 2− j. But since ̂Ψ is
supported in 1

2 · 2 j ≤ |ξ | ≤ 2 · 2 j, it follows that |ξ | ≈ 2 j, which yields (8.5.26).
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It follows that σb is not in any of the classes Sm
ρ ,δ introduced in Definition 8.5.5.

However, if we restrict the indices of summation in (8.5.25) to j ≥ 0, then |ξ | ≈
1 + |ξ | and we obtain a symbol of class S0

1,1. Note that not all symbols in S0
1,1 give

rise to bounded operators on L2. See Exercise 8.5.6.
An example of a symbol in Sm

0,0 is (1 + |ξ |2) 1
2 (m+it) when m, t ∈ R.

We do not plan to embark on a systematic study of pseudodifferential operators
here, but we would like to study the L2 boundedness of symbols of class S0

0,0.

Theorem 8.5.7. Suppose that a symbol σ belongs to the class S0
0,0. Then the pseu-

dodifferential operator Tσ with symbolσ , initially defined on S (Rn), has a bounded
extension on L2(Rn).

Proof. In view of Plancherel’s theorem, it suffices to obtain the L2 boundedness of
the linear operator

˜Tσ ( f )(x) =
∫

Rn
σ(x,ξ ) f (ξ )e2π ix·ξ dξ . (8.5.27)

We fix a nonnegative smooth function ϕ(ξ ) supported in a small multiple of the unit
cube Q0 = [0,1]n (say in [− 1

9 , 10
9 ]n) that satisfies

∑
j∈Zn

ϕ(x− j) = 1 , x ∈ Rn . (8.5.28)

For j,k ∈ Zn we define symbols

σ j,k(x,ξ ) = ϕ(x− j)σ(x,ξ )ϕ(ξ − k)

and corresponding operators Tj,k given by (8.5.27) in which σ(x,ξ ) is replaced by
σ j,k(x,ξ ). Using (8.5.28), we obtain that

˜Tσ = ∑
j,k∈Zn

Tj,k ,

where the double sum is easily shown to converge in the topology of S (Rn). Our
goal is to show that for all N ∈ Z+ we have

∥

∥T ∗
j,kTj′,k′

∥

∥

L2→L2 ≤CN(1 + | j− j′|+ |k− k′|)−2N , (8.5.29)
∥

∥Tj,kT ∗
j′,k′
∥

∥

L2→L2 ≤CN(1 + | j− j′|+ |k− k′|)−2N , (8.5.30)

where CN depends on N and n but is independent of j, j′,k,k′.
We note that

T ∗
j,kTj′,k′( f )(x) =

∫

Rn
Kj,k, j′,k′(x,y) f (y)dy ,

where
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Kj,k, j′,k′(x,y) =
∫

Rn
σ j,k(z,x)σ j′,k′(z,y)e

2π i(y−x)·z dz . (8.5.31)

We integrate by parts in (8.5.31) using the identity

e2π iz·(y−x) =
(I−Δz)N(e2π iz·(y−x))
(1 + 4π2|x− y|2)N ,

and we obtain the pointwise estimate

ϕ(x− k)ϕ(y− k′)
(1 + 4π2|x− y|2)N

∣

∣(I −Δz)N(ϕ(z− j)σ(z,x)σ(z,y)ϕ(z− j′))
∣

∣

for the integrand in (8.5.31). The support property of ϕ forces | j− j′| ≤ cn for some
dimensional constant cn; indeed, cn = 2

√
n suffices. Moreover, all derivatives of σ

and ϕ are controlled by constants, and ϕ is supported in a cube of finite measure.
We also have 1 + |x− y| ≈ 1 + |k− k′|. It follows that

|Kj,k, j′ ,k′(x,y)| ≤

⎧

⎨

⎩

CNϕ(x− k)ϕ(y− k′)
(1 + |k− k′|)2N when | j− j′| ≤ cn,

0 otherwise.

We can rewrite the preceding estimates in a more compact (and symmetric) form as

|Kj,k, j′,k′(x,y)| ≤
Cn,Nϕ(x− k)ϕ(y− k′)

(1 + | j− j′|+ |k− k′|)2N ,

from which we easily obtain that

sup
x∈Rn

∫

Rn
|Kj,k, j′ ,k′(x,y)|dy ≤ Cn,N

(1 + | j− j′|+ |k− k′|)2N , (8.5.32)

sup
y∈Rn

∫

Rn
|Kj,k, j′,k′(x,y)|dx ≤ Cn,N

(1 + | j− j′|+ |k− k′|)2N . (8.5.33)

Using the classical Schur lemma in Appendix I.1, we obtain that

∥

∥T ∗
j,kTj′,k′

∥

∥

L2→L2 ≤
Cn,N

(1 + | j− j′|+ |k− k′|)2N ,

which proves (8.5.29). Since ρ = δ = 0, the roles of the variables x and ξ are sym-
metric, and (8.5.30) can be proved in exactly the same way as (8.5.29). The almost
orthogonality Lemma 8.5.1 now applies, since

∑
j,k∈Zn

√

1
(1 + | j|+ |k|)2N ≤ ∑

j∈Zn
∑

k∈Zn

1

(1 + | j|)N
2

1

(1 + |k|)N
2

< ∞

for N ≥ 2n + 2, and the boundedness of ˜Tσ on L2 follows. �
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Remark 8.5.8. The reader may want to check that the argument in Theorem 8.5.7
is also valid for symbols of the class S0

ρ ,ρ whenever 0 < ρ < 1.

Exercises

8.5.1. Prove that any bounded linear operator S : H → H satisfies

∥

∥S
∥

∥

2
H→H =

∥

∥SS∗
∥

∥

H→H .

8.5.2. Show that if a family of kernels Kj satisfy (8.5.10) and

|∇xKj(x,y)|+ |∇yKj(x,y)| ≤
A2(n+1) j

(1 + 2 j|x− y|)n+δ

for all x,y ∈ Rn, then conditions (8.5.11) and (8.5.12) hold with γ = 1.

8.5.3. Prove the boundedness of the Hilbert transform using Lemma 8.5.1 and with-
out using the Fourier transform.
[

Hint: Pick a smooth function η supported in [1/2,2] such that ∑ j∈Zη(2− jx) = 1
for x �= 0 and set Kj(x) = x−1η(2− j|x|) and Hj( f ) = f ∗Kj. Note that H∗

j =−Hj. Es-
timate

∥

∥HkHj
∥

∥

L2→L2 by
∥

∥Kk ∗Kj
∥

∥

L1 ≤
∥

∥Kk ∗Kj
∥

∥

L∞ |supp (Kk ∗Kj)|. When j < k, use
the mean value property of Kj and that

∥

∥K′
k

∥

∥

L∞ ≤C2−2k to obtain that
∥

∥Kk ∗Kj
∥

∥

L∞ ≤
C2−2k+ j. Conclude that

∥

∥HkHj
∥

∥

L2→L2 ≤C2−| j−k|.
]

8.5.4. For a symbol σ(x,ξ ) in S0
1,0, let k(x,z) denote the inverse Fourier transform

(evaluated at z) of the function σ(x, ·) with x fixed. Show that for all x ∈ Rn, the
distribution k(x, ·) coincides with a smooth function away from the origin in Rn

that satisfies the estimates

|∂αx ∂βz k(x,z)| ≤Cα ,β |z|−n−|β | ,

and conclude that the kernels K(x,y) = k(x,x−y) are well defined and smooth func-
tions away from the diagonal in R2n that belong to SK(1,A) for some A > 0. Con-
clude that pseudodifferential operators with symbols in S0

1,0 are associated with stan-
dard kernels.
[

Hint: Consider the distribution (∂ γσ(x, ·))∨ = (−2π iz)γk(x, ·). Since ∂ γξ σ(x,ξ )
is integrable in ξ when |γ| ≥ n + 1, it follows that k(x, ·) coincides with a smooth
function on Rn\{0}. Next, set σ j(x,ξ ) =σ(x,ξ ) ̂Ψ (2− jξ ), whereΨ is as in Section
8.4 and k j the inverse Fourier transform of σ j in z. For |γ| = M use that

(−2π iz)γ∂αx ∂
β
ξ k j(x,z) =

∫

Rn
∂ γξ
(

(2π iξ )β∂αx σ j(x,ξ )
)

22π iξ ·z dξ

to obtain |∂αx ∂
β
ξ k j(x,z)| ≤ BM,α ,β2 jn2 j|α |(2 jn|z|)−M and sum over j ∈ Z.

]
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8.5.5. Prove that pseudodifferential operators with symbols in S0
1,0 that have com-

pact support in x are elements of CZO(1,A,B) for some A,B > 0.
[

Hint: Write

Tσ ( f )(x) =
∫

Rn

(
∫

Rn
σ̂(a,ξ )̂f (ξ )e2π ix·ξ dξ

)

e2π ix·a da ,

where σ̂(a,ξ ) denotes the Fourier transform of σ(x,ξ ) in the variable x. Use inte-
gration by parts to obtain supξ |σ̂(a,ξ )| ≤CN(1 + |a|)−N and pass the L2 norm in-
side the integral in a to obtain the required conclusion using the translation-invariant
case.

]

8.5.6. Let η̂(ξ ) be a smooth bump on R that is supported in 2−
1
2 ≤ |ξ | ≤ 2

1
2 and is

equal to 1 on 2−
1
4 ≤ |ξ | ≤ 2

1
4 . Let

σ(x,ξ ) =
∞

∑
k=1

e−2π i2kxη̂(2−kξ ) .

Show that σ is an element of S0
1,1 on the line but the corresponding pseudodifferen-

tial operator Tσ is not L2 bounded.
[

Hint: To see the latter statement, consider the sequence of functions fN(x) =

∑N
k=5

1
k e2π i2kxh(x), where h(x) is a Schwartz function whose Fourier transform

is supported in the set |ξ | ≤ 1
4 . Show that

∥

∥ fN
∥

∥

L2 ≤ C
∥

∥h
∥

∥

L2 but
∥

∥Tσ ( fN)
∥

∥

L2 ≥
c logN

∥

∥h
∥

∥

L2 for some positive constants c,C.
]

8.5.7. Prove conclusions (i) and (ii) of Lemma 8.5.1 if hypothesis (8.5.1) is replaced
by

∥

∥T ∗
j Tk
∥

∥

H→H +
∥

∥TjT
∗

k

∥

∥

H→H ≤ Γ ( j,k) ,

where Γ is a nonnegative function on Z×Z such that

sup
j
∑
k∈Z

√

Γ ( j,k) = A < ∞ .

8.5.8. Let {Tt}t∈R+ be a family of operators mapping a Hilbert space H to itself.
Assume that there is a function γ : R+×R+ → R+∪{0} satisfying

Aγ = sup
t>0

∫ ∞

0

√

γ(t,s)
ds
s

< ∞

such that
∥

∥T ∗
t Ts
∥

∥

H→H +
∥

∥TtT
∗

s

∥

∥

H→H ≤ γ(t,s)

for all t,s in R+. [An example of a function with Aγ < ∞ is γ(t,s) = min
(

s
t ,

t
s

)ε
for

some ε > 0.] Then prove that for all 0 < ε < N we have

∥

∥

∥

∫ N

ε
Tt

dt
t

∥

∥

∥

H→H
≤ Aγ .
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8.6 The Cauchy Integral of Calderón and the T (b) Theorem

The Cauchy integral is almost as old as complex analysis itself. In the classical
theory of complex analysis, if Γ is a curve in C and f is a function on the curve, the
Cauchy integral of f is given by

1
2π i

∫

Γ

f (ζ )
ζ − z

dζ .

One situation in which this operator appears is the following: If Γ is a closed simple
curve (i.e., a Jordan curve), Ω+ is the interior connected component of C \Γ , Ω−
is the exterior connected component of C\Γ , and f is a smooth complex function
on Γ , is it possible to find analytic functions F+ on Ω+ and F− on Ω−, respectively,
that have continuous extensions on Γ such that their difference is equal to the given
f on Γ ? It turns out that a solution of this problem is given by

F+(w) =
1

2π i

∫

Γ

f (ζ )
ζ −w

dζ , w ∈Ω+ ,

and

F−(w) =
1

2π i

∫

Γ

f (ζ )
ζ −w

dζ , w ∈Ω− .

We are would like to study the case in which the Jordan curve Γ passes through
infinity, in particular, when it is the graph of a Lipschitz function on R. In this case
we compute the boundary limits of F+ and F− and we see that they give rise to a
very interesting operator on the curve Γ . To fix notation we let

A : R → R

be a Lipschitz function. This means that there is a constant L > 0 such that for all
x,y ∈ R we have |A(x)−A(y)| ≤ L|x− y|. We define a curve

γ : R → C

by setting
γ(x) = x + iA(x)

and we denote by
Γ = {γ(x) : x ∈ R} (8.6.1)

the graph of γ . Given a smooth function f on Γ we set

F(w) =
1

2π i

∫

Γ

f (ζ )
ζ −w

dζ , w ∈ C\Γ . (8.6.2)

We now show that for z ∈ Γ , both F(z+ iδ ) and F(z− iδ ) have limits as δ ↓ 0,
and these limits give rise to an operator on the curve Γ that we would like to study.
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8.6.1 Introduction of the Cauchy Integral Operator along a
Lipschitz Curve

For a smooth function f on the curve Γ and z ∈ Γ we define the Cauchy integral of
f at z as

CΓ ( f )(z) = lim
ε→0+

1
π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ , (8.6.3)

assuming that f (ζ ) has some decay as |ζ | → ∞. The latter assumption makes the
integral in (8.6.3) converge when |Reζ −Rez| ≥ 1. The fact that the limit in (8.6.3)
exists as ε → 0 for almost all z ∈ Γ is shown in the next proposition.

Proposition 8.6.1. Let Γ be as in (8.6.1). Let f (ζ ) be a smooth function on Γ that
has decay as |ζ | → ∞. Given f , we define a function F as in (8.6.2) related to f .
Then the limit in (8.6.3) exists as ε→ 0 for almost all z ∈ Γ and gives rise to a well
defined operator CΓ ( f ) acting on such functions f . Moreover, for almost all z ∈ Γ
we have that

lim
δ↓0

F(z+ iδ ) =
1
2

CΓ ( f )(z)− 1
2

f (z) , (8.6.4)

lim
δ↓0

F(z− iδ ) =
1
2

CΓ ( f )(z)+
1
2

f (z) . (8.6.5)

Proof. We show first that the limit in (8.6.3) exists as ε→ 0. For z∈Γ and 0 < ε < 1
we write

1
π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )dζ
ζ − z

=
1
π i

∫

ζ∈Γ
|Reζ−Rez|>1

f (ζ )dζ
ζ − z

+
1
π i

∫

ζ∈Γ
ε≤|Reζ−Rez|≤1

( f (ζ )− f (z))dζ
ζ − z

+
f (z)
π i

∫

ζ∈Γ
ε≤|Reζ−Rez|≤1

dζ
ζ − z

.

(8.6.6)

By the smoothness of f , the middle term of the sum in (8.6.6) has a limit as ε → 0.
We therefore study the third (last) term of this sum.

We consider two branches of the complex logarithm: first logupper(z) defined for
z in C\ {0} minus the negative imaginary axis normalized so that logupper(1) = 0;
this logarithm satisfies logupper(i) = π i

2 and logupper(−1) = π i. Second, loglower(z)
defined for z in C \ {0} minus the positive imaginary axis normalized so that
loglower(1) = 0; this logarithm satisfies loglower(−i)=− π i

2 and loglower(−1)=−π i.
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Let τ = Re z and t = Reζ ; then z = γ(τ) = τ+ iA(τ) and ζ = γ(t). The function
A is Lipschitz and thus differentiable almost everywhere; consequently, the function
γ(τ) = τ + iA(τ) is differentiable a.e. in τ ∈ R. Moreover, γ ′(τ) = 1 + iA′(τ) �= 0
whenever γ is differentiable at τ . Fix a τ = Rez at which γ is differentiable.

We rewrite the last term in the sum in (8.6.6) as

∫ 1

ε

γ ′(t)
γ(t + τ)− γ(τ) dt +

∫ −ε

−1

γ ′(t)
γ(t + τ)− γ(τ) dt . (8.6.7)

The curve t �→ γ(t +τ)− γ(τ) = t + i(A(t +τ)−A(τ)) lies in the complex plane mi-
nus a small angle centered at the origin that does not contain the negative imaginary
axis. Using the upper branch of the logarithm, we evaluate (8.6.7) as

f (z)
π i

[

logupper

(

γ(1 + τ)− γ(τ)
)

− logupper

(

γ(ε+ τ)− γ(τ)
)

− logupper

(

γ(−1 + τ)− γ(τ)
)

+ logupper

(

γ(−ε+ τ)− γ(τ)
)

]

= logupper

(

γ(τ − ε)− γ(τ)
)

− logupper

(

γ(ε + τ)− γ(τ)
)

= logupper

γ(τ− ε)− γ(τ)
ε

γ(ε+ τ)− γ(τ)
ε

.

This expression converges to logupper

(

− γ ′(τ)
γ ′(τ)

)

= logupper(−1) = iπ as ε→ 0. Thus
the limit in (8.6.6), and hence in (8.6.3), exists as ε→ 0 for almost all z on the curve.
Hence CΓ ( f ) is a well defined operator whenever f is a smooth function with decay
at infinity.

We proceed with the proof of (8.6.4). For fixed δ > 0 and 0 < ε < 1 we write

F(z+ iδ ) =
1

2π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z− iδ

dζ

+
1

2π i

∫

ζ∈Γ
|Reζ−Rez|≤ε

f (ζ )− f (z)
ζ − z− iδ

dζ

+ f (z)
1

2π i

∫

ζ∈Γ
|Reζ−Rez|≤ε

1
ζ − z− iδ

dζ .

(8.6.8)

With τ = Rez, the last term in the sum in (8.6.8) is equal to

∫ 1

ε

γ ′(t)
γ(t + τ)− (γ(τ)+ iδ )

dt +
∫ −ε

−1

γ ′(t)
γ(t + τ)− (γ(τ)+ iδ )

dt . (8.6.9)



8.6 The Cauchy Integral of Calderón and the T (b) Theorem 241

Since δ > 0, the curve γ(t +τ)−(γ(τ)+ iδ ) lies below the curve t �→ γ(t +τ)−γ(τ)
and therefore outside a small angle centered at the origin that does not contain the
positive imaginary axis. In this region, loglower is an analytic branch of the loga-
rithm. Evaluation of (8.6.9) yields

f (z)
2π i

loglower
γ(ε+ τ)− γ(τ)− iδ
γ(−ε+ τ)− γ(τ)− iδ

.

So, taking limits as δ ↓ 0 in (8.6.8), we obtain that

lim
δ↓0

F(z+ iδ ) =
1

2π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ

+
1

2π i

∫

ζ∈Γ
|Reζ−Rez|≤ε

f (ζ )− f (z)
ζ − z

dζ +
f (z)
2π i

loglower
γ(τ+ ε)− γ(τ)
γ(τ− ε)− γ(τ) ,

(8.6.10)

in which z = γ(τ) = τ+ iA(τ) and both integrals converge absolutely.
Up until this point, ε ∈ (0,1) was arbitrary and we may let it tend to zero. In doing

so we first observe that the middle integral in (8.6.10) tends to zero because of the
smoothness of f . But for almost all τ ∈ R, the limit as ε → 0 of the logarithm in

(8.6.10) is equal to loglower(−
γ ′(τ)
γ ′(τ) ) = loglower(−1) = −π i. From this we conclude

that for almost all z ∈ Γ we have

lim
δ↓0

F(z+ iδ ) = lim
ε→0

1
2π i

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ + f (z)
1

2π i
(−π i) , (8.6.11)

which proves (8.6.4).
The only difference in the proof of (8.6.5) is that logupper is replaced by loglower,

and for this reason (−π i) should be replaced by π i in (8.6.11). �

Remark 8.6.2. If we let F+ be the restriction of F on the region above the graph Γ
and let F− be the restriction of F on the region below the graph Γ , we have that F+
and F− have continuous extensions on Γ , and moreover,

F+−F− = − f ,

where f is the given smooth function on the curve. We also note that the argument
given in Proposition 8.6.1 does not require f to be smoother than C 1.
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8.6.2 Resolution of the Cauchy Integral and Reduction of Its L2

Boundedness to a Quadratic Estimate

Having introduced the Cauchy integral CΓ as an operator defined on smooth func-
tions on the graph Γ of a Lipschitz function A, we turn to some of its properties. We
are mostly interested in obtaining an a priori L2 estimate for CΓ . Before we achieve
this goal, we make some observations. First we can write CΓ as

CΓ (H)(x + iA(x)) = lim
ε→0

1
π i

∫

|x−y|>ε

H(y + iA(y))(1 + iA′(y))
y + iA(y)− x− iA(x)

dy , (8.6.12)

where the integral is over the real line and H is a function on the curve Γ . (Recall
that Lipschitz functions are differentiable almost everywhere.) To any function H
on Γ we can associate a function h on the line R by setting

h(y) = H(y + iA(y)) .

We have that
∫

Γ
|H(y)|2 dy =

∫

R
|h(y)|2(1 + |A′(y)|2) 1

2 dy ≈
∫

R
|h(y)|2 dy

for some constants that depend on the Lipschitz constant L of A. Therefore, the
boundedness of the operator in (8.6.12) is equivalent to that of the operator

CΓ (h)(x) = lim
ε→0

1
π i

∫

|x−y|>ε

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))

dy (8.6.13)

acting on Schwartz functions h on the line. It is this operator that we concentrate on
in the remainder of this section. We recall that (see Example 8.1.6) the function

1
y− x + i(A(y)−A(x))

defined on R×R\{(x,x) : x ∈ R} is a standard kernel in SK(1,cL) for some c > 0.
We note that this is not the case with the kernel

1 + iA′(y)
y− x + i(A(y)−A(x))

, (8.6.14)

for conditions (8.1.2) and (8.1.3) fail for this kernel, since the function 1 + iA′ does
not possess any smoothness. [Condition (8.1.1) trivially holds for the function in
(8.6.14).] We note, however, that the Lp boundedness of the operator in (8.6.13) is
equivalent to that of
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˜CΓ (h)(x) = lim
ε→0

1
π i

∫

|x−y|>ε

h(y)
y− x + i(A(y)−A(x))

dy , (8.6.15)

since the function 1 + iA′ is bounded above and below and can be absorbed in h.
Therefore, the L2 boundedness of CΓ is equivalent to that of ˜CΓ , which has a kernel
that satisfies standard estimates. This equivalence, however, is not as useful in the
approach we take in the sequel. We choose to work with the operator CΓ , in which
the appearance of the term 1 + iA′(y) plays a crucial cancellation role.

In the proof of Theorem 8.3.3 we used a resolution of an operator T with standard
kernel of the form

∫ ∞

0
PsTsQs

ds
s

,

where Ps and Qs are nice averaging operators that approximate the identity and
the zero operator, respectively. Our goal is to achieve a similar resolution for the
operator CΓ defined in (8.6.13). To achieve this, for every s > 0 we introduce the
auxiliary operator

CΓ (h)(x;s) =
1
π i

∫

R

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))+ is

dy (8.6.16)

defined for Schwartz functions h on the line. We make two preliminary observations
regarding this operator: For almost all x ∈ R we have

lim
s→∞

CΓ (h)(x;s) = 0 , (8.6.17)

lim
s→0

CΓ (h)(x;s) = CΓ (h)(x)+ h(x) . (8.6.18)

Identity (8.6.17) is trivial. To obtain (8.6.18), for a fixed ε > 0 we write

CΓ (h)(x;s) =
1
π i

∫

|x−y|>ε

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))+ is

dy

+
1
π i

∫

|x−y|≤ε

(h(y)−h(x))(1 + iA′(y))
y− x + i(A(y)−A(x))+ is

dy

+ h(x)
1
π i

logupper
ε+ i(A(x + ε)−A(x))+ is
−ε+ i(A(x− ε)−A(x))+ is

,

(8.6.19)

where logupper denotes the analytic branch of the complex logarithm defined in the
proof of Proposition 8.6.1. We used this branch of the logarithm, since for s > 0,
the graph of the function y �→ y + i(A(y + x)−A(x))+ is lies outside a small angle
centered at the origin that contains the negative imaginary axis.

We now take successive limits first as s → 0 and then as ε → 0 in (8.6.19). We
obtain that
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lim
s→0

CΓ (h)(x;s) = lim
ε→0

1
π i

∫

|x−y|>ε

h(y)(1 + iA′(y))
y− x + i(A(y)−A(x))

dy

+ h(x) lim
ε→0

1
π i

logupper
ε+ i(A(x + ε)−A(x))
−ε+ i(A(x− ε)−A(x))

.

Since this expression inside the logarithm tends to −1 as ε→ 0, this logarithm tends
to π i, and this concludes the proof of (8.6.18).

We now consider the second derivative in s of the auxiliary operator CΓ (h)(x;s).

∫ ∞

0
s2 d2

ds2 CΓ (h)(x;s)
ds
s

=
∫ ∞

0
s

d2

ds2 CΓ (h)(x;s)ds

= lim
s→∞

s
d
ds

CΓ (h)(x;s)− lim
s→0

s
d
ds

CΓ (h)(x;s)−
∫ ∞

0

d
ds

CΓ (h)(x;s)ds

= 0−0 + lim
s→0

CΓ (h)(x;s)− lim
s→∞

CΓ (h)(x;s)

= CΓ (h)(x)+ h(x) ,

where we used integration by parts, the fact that for almost all x ∈ R we have

lim
s→∞

s
d
ds

CΓ (h)(x;s) = lim
s→0

s
d
ds

CΓ (h)(x;s) = 0 , (8.6.20)

and identities (8.6.17) and (8.6.18) whenever h is a Schwartz function. One may
consult Exercise 8.6.2 for a proof of the identities in (8.6.20). So we have succeeded
in writing the operator CΓ (h)+h as an average of smoother operators. Precisely, we
have shown that for h ∈ S (R) we have

CΓ (h)(x)+ h(x) =
∫ ∞

0
s2 d2

ds2 CΓ (h)(x;s)
ds
s

, (8.6.21)

and it remains to understand what the operator

d2

ds2 CΓ (h)(x;s) = CΓ (h)′′(x;s)

really is. Differentiating (8.6.16) twice, we obtain

CΓ (h)(x)+ h(x) =
∫ ∞

0
s2CΓ (h)′′(x;s)

ds
s

= 4
∫ ∞

0
s2CΓ (h)′′(x;2s)

ds
s

= − 8
π i

∫ ∞

0

∫

R

s2h(y)(1 + iA′(y))
(y− x + i(A(y)−A(x))+ 2is)3 dy

ds
s

= − 8
π i

∫ ∞

0

∫

Γ

s2H(ζ )
(ζ − z+ 2is)3 dζ

ds
s

,
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where in the last step we set z = x + iA(x), H(z) = h(x), and we switched to com-
plex integration over the curve Γ . We now use the following identity from complex
analysis. For ζ ,z ∈ Γ we have

1
(ζ − z+ 2is)3 = − 1

4π i

∫

Γ

1
(ζ −w+ is)2

1
(w− z+ is)2 dw , (8.6.22)

for which we refer to Exercise 8.6.3. Inserting this identity in the preceding expres-
sion for CΓ (h)(x)+ h(x), we obtain

CΓ (h)(x)+ h(x) = − 2
π2

∫ ∞

0

[
∫

Γ

s
(w− z+ is)2

(
∫

Γ

s H(ζ )
(ζ −w+ is)2 dζ

)

dw

]

ds
s

,

recalling that z = x + iA(x). Introducing the linear operator

Θs(h)(x) =
∫

R
θs(x,y)h(y)dy , (8.6.23)

where
θs(x,y) =

s
(y− x + i(A(y)−A(x))+ is)2 , (8.6.24)

we may therefore write

CΓ (h)(x)+ h(x) = − 2
π2

∫ ∞

0
Θs
(

(1 + iA′)Θs
(

(1 + iA′)h
))

(x)
ds
s

. (8.6.25)

We also introduce the multiplication operator

Mb(h) = bh,

which enables us to write (8.6.25) in a more compact form as

CΓ (h) = −h− 2
π2

∫ ∞

0
ΘsM1+iA′ΘsM1+iA′(h)

ds
s

. (8.6.26)

This gives us the desired resolution of the operator CΓ . It suffices to obtain an L2

estimate for the integral expression in (8.6.26). Using duality, we write

〈
∫ ∞

0
ΘsM1+iA′ΘsM1+iA′(h)

ds
s

,g
〉

=
∫ ∞

0

〈

M1+iA′ΘsM1+iA′(h),Θ t
s(g)

〉 ds
s

,

which is easily bounded by

√

1 + L2
∫ ∞

0

∥

∥ΘsM1+iA′(h)
∥

∥

L2

∥

∥Θ t
s(g)

∥

∥

L2

ds
s

≤
√

1 + L2

(
∫ ∞

0

∥

∥ΘsM1+iA′(h)
∥

∥

2
L2

ds
s

)1
2
(
∫ ∞

0

∥

∥Θs(g)
∥

∥

2
L2

ds
s

)1
2

.

We have now reduced matters to the following estimate:
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(
∫ ∞

0

∥

∥Θs(h)
∥

∥

2
L2

ds
s

)1
2

≤C
∥

∥h
∥

∥

L2 . (8.6.27)

We derive (8.6.27) as a consequence of Theorem 8.6.6 discussed in Section 8.6.4.

8.6.3 A Quadratic T (1) Type Theorem

We review what we have achieved so far and we introduce definitions that place
matters into a new framework.

For the purposes of the subsequent exposition we can switch to Rn, since there
are no differences from the one-dimensional argument. Suppose that for all s > 0,
there is a family of functions θs defined on Rn ×Rn such that

|θs(x,y)| ≤
1
sn

A
(

1 + |x−y|
s

)n+δ (8.6.28)

and

|θs(x,y)−θs(x,y′)| ≤
A
sn

|y− y′|γ
sγ

(8.6.29)

for all x,y,y′ ∈ Rn and some 0 < γ,δ ,A < ∞. LetΘs be the operator with kernel θs,
that is,

Θs(h)(x) =
∫

Rn
θs(x,y)h(y)dy , (8.6.30)

which is well defined for all h in
⋃

1≤p≤∞Lp(Rn) in view of (8.6.28).
At this point we observe that both (8.6.28) and (8.6.29) hold for the θs defined

in (8.6.24) with γ = δ = 1 and A a constant multiple of L. We leave the details of
this calculation to the reader but we note that (8.6.29) can be obtained quickly using
the mean value theorem. Our goal is to figure out under what additional conditions
on Θs the quadratic estimate (8.6.27) holds. If we can find such a condition that is
easily verifiable for the Θs associated with the Cauchy integral, this will conclude
the proof of its L2 boundedness.

We first consider a simple condition that implies the quadratic estimate (8.6.27).

Theorem 8.6.3. For s > 0, let θs be a family of kernels satisfying (8.6.28) and
(8.6.29) and let Θs be the linear operator whose kernel is θs. Suppose that for all
s > 0 we have

Θs(1) = 0 . (8.6.31)

Then there is a constant Cn,δ such that for all f ∈ L2 we have

(
∫ ∞

0

∥

∥Θs( f )
∥

∥

2
L2

ds
s

)1
2

≤Cn,δA
∥

∥ f
∥

∥

L2 . (8.6.32)
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We note that condition (8.6.31) is not satisfied for the operators Θs associated
with the Cauchy integral as defined in (8.6.23). However, Theorem 8.6.3 gives us
an idea of what we are looking for, something like the action of Θs on a specific
function. We also observe that condition (8.6.31) is “basically” saying thatΘ(1) =
0, where

Θ =
∫ ∞

0
Θs

ds
s

.

Proof. We introduce Littlewood–Paley operators Qs given by convolution with a
smooth functionΨs = 1

snΨ( ·s ) whose Fourier transform is supported in the annulus
s/2 ≤ |ξ | ≤ 2s that satisfies

∫ ∞

0
Q2

s
ds
s

= lim
ε→0
N→∞

∫ N

ε
Q2

s
ds
s

= I , (8.6.33)

where the limit is taken in the sense of distributions and the identity holds in
S ′(Rn)/P . This identity and properties ofΘt imply the operator identity

Θt =Θt

∫ ∞

0
Q2

s
ds
s

=
∫ ∞

0
ΘtQ

2
s

ds
s

.

The key fact is the following estimate:

∥

∥ΘtQs
∥

∥

L2→L2 ≤ ACn,Ψ min
(s

t
,

t
s

)ε
, (8.6.34)

which holds for some ε = ε(γ,δ ,n) > 0. [Recall that A, γ , and δ are as in (8.6.28)
and (8.6.29).] Assuming momentarily estimate (8.6.34), we can quickly prove The-
orem 8.6.3 using duality. Indeed, let us take a function G(x,t) such that

∫ ∞

0

∫

Rn
|G(x,t)|2 dx

dt
t
≤ 1 . (8.6.35)

Then we have
∫ ∞

0

∫

Rn
G(x,t)Θt( f )(x)dx

dt
t

=
∫ ∞

0

∫

Rn
G(x,t)

∫ ∞

0
ΘtQ

2
s ( f )(x)

ds
s

dx
dt
t

=
∫ ∞

0

∫ ∞

0

∫

Rn
G(x,t)ΘtQ

2
s ( f )(x)dx

dt
t

ds
s

≤
(
∫ ∞

0

∫ ∞

0

∫

Rn
|G(x,t)|2dx min

( s
t
,

t
s

)ε dt
t

ds
s

)1
2

×
(
∫ ∞

0

∫ ∞

0

∫

Rn
|ΘtQs(Qs( f ))(x)|2 dx min

( s
t
,

t
s

)−ε dt
t

ds
s

)1
2

.

But we have the estimate
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sup
t>0

∫ ∞

0
min

(s
t
,

t
s

)ε ds
s

≤Cε ,

which, combined with (8.6.35), yields that the first term in the product of the two
preceding square functions is controlled by

√
Cε . Using this fact and (8.6.34), we

write
∫ ∞

0

∫

Rn
G(x,t)Θt( f )(x)dx

dt
t

≤
√

Cε

(
∫ ∞

0

∫ ∞

0

∫

Rn
|ΘtQs(Qs( f ))(x)|2 dx min

(s
t
,

t
s

)−ε dt
t

ds
s

)1
2

≤ A
√

Cε

(
∫ ∞

0

∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx min

(s
t
,

t
s

)2ε
min

( s
t
,

t
s

)−ε dt
t

ds
s

)1
2

≤ A
√

Cε

(
∫ ∞

0

∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx min

(s
t
,

t
s

)ε dt
t

ds
s

)1
2

≤Cε A

(
∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx

ds
s

)1
2

≤ Cn,εA
∥

∥ f
∥

∥

L2 ,

where in the last step we used the continuous version of Theorem 5.1.2 (cf. Exercise
5.1.4). Taking the supremum over all functions G(x, t) that satisfy (8.6.35) yields
estimate (8.6.32).

It remains to prove (8.6.34). What is crucial here is that both Θt and Qs satisfy
the cancellation conditionsΘt(1) = 0 and Qs(1) = 0. The proof of estimate (8.6.34)
is similar to that of estimates (8.5.14) and (8.5.15) in Proposition 8.5.3. Using ideas
from the proof of Proposition 8.5.3, we quickly dispose of the proof of (8.6.34).

The kernel ofΘtQs is seen easily to be

Lt,s(x,y) =
∫

Rn
θt(x,z)Ψs(z− y)dz .

Notice that the function (y,z) �→Ψs(z− y) satisfies (8.6.28) with δ = 1 and A = CΨ
and satisfies

|Ψs(z− y)−Ψs(z′ − y)| ≤ CΨ
sn

|z− z′|
s

for all z,z′,y ∈ Rn for some CΨ < ∞. We prove that

sup
x∈Rn

∫

Rn
|Lt,s(x,y)|dy ≤ CΨ A min

( t
s
,

s
t

) 1
4

min(δ ,1)
n+min(δ ,1) min(γ,δ ,1)

, (8.6.36)

sup
y∈Rn

∫

Rn
|Lt,s(x,y)|dx ≤ CΨ A min

( t
s
,

s
t

) 1
4

min(δ ,1)
n+min(δ ,1) min(γ,δ ,1)

. (8.6.37)
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Once (8.6.36) and (8.6.37) are established, (8.6.34) follows directly from the lemma
in Appendix I.1 with ε = 1

4
min(δ ,1)

n+min(δ ,1) min(γ,δ ,1).
We begin by observing that when s ≤ t we have the estimate

∫

Rn

s−n min(2,(t−1|u|)γ)
(1 + s−1|u|)n+1 du ≤Cn

(s
t

) 1
2 min(γ,1)

. (8.6.38)

Also when t ≤ s we have the analogous estimate

∫

Rn

t−n min(2,s−1|u|)
(1 + t−1|u|)n+δ du ≤Cn

( t
s

) 1
2 min(δ ,1)

. (8.6.39)

Both (8.6.38) and (8.6.39) are trivial reformulations or consequences of (8.5.18).
We now take s ≤ t and we use that Qs(1) = 0 for all s > 0 to obtain

|Lt,s(x,y)| =
∣

∣

∣

∣

∫

Rn
θt(x,z)Ψs(z− y)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn

[

θt(x,z)−θt(x,y)
]

Ψs(z− y)dz

∣

∣

∣

∣

≤ C A
∫

Rn

min(2,(t−1|z− y|)γ)
tn

s−n

(1 + s−1|z− y|)n+1 dz

≤ C′
n A

1
tn

(s
t

) 1
2 min(γ,1)

≤ C′
n A min

(1
t
,

1
s

)n
min

( t
s
,

s
t

) 1
2 min(γ,δ ,1)

using estimate (8.6.38). Similarly, using (8.6.39) and the hypothesis thatΘt(1) = 0
for all t > 0, we obtain for t ≤ s,

|Lt,s(x,y)| =
∣

∣

∣

∣

∫

Rn
θt(x,z)Ψs(z− y)dz

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn
θt(x,z)

[

Ψs(z− y)−Ψs(x− y)
]

dz

∣

∣

∣

∣

≤ xC A
∫

Rn

t−n

(1 + t−1|x− z|)n+δ
min(2,s−1|x− z|)

sn dz

≤ C′
n A

1
sn

( t
s

) 1
2 min(δ ,1)

≤ C′
n A min

(1
t
,

1
s

)n
min

( t
s
,

s
t

) 1
2 min(γ,δ ,1)

.

Combining the estimates for |Lt,s(x,y)| in the preceding cases t ≤ s and s ≤ t with
the estimate
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|Lt,s(x,y)| ≤
∫

Rn
|θt(x,z)| |Ψs(z− y)|dz ≤

C Amin( 1
t ,

1
s )

n

(

1 + min( 1
t ,

1
s )|x− y|

)n+min(δ ,1) ,

which is a consequence of the result in Appendix K.1, gives

|Lt,s(x,y)| ≤
C min( t

s ,
s
t )

1
2 min(γ,δ ,1)(1−β )Amin( 1

t ,
1
s )

n

(

(

1 + min( 1
t ,

1
s )|x− y|

)n+min(δ ,1)
)β

for any 0 < β < 1. Choosing β = (n+ 1
2 min(δ ,1))(n+min(δ ,1))−1 and integrating

over x or y yields (8.6.36) and (8.6.37), respectively, and thus concludes the proof
of estimate (8.6.34). �

We end this subsection with a small generalization of the previous theorem that
follows by an examination of its proof. The simple details are left to the reader.

Corollary 8.6.4. For s > 0 letΘs be linear operators that are uniformly bounded on
L2(Rn) by a constant B. LetΨ be a Schwartz function whose Fourier transform is
supported in the annulus 1/2 ≤ |x| ≤ 2 such that the Littlewood–Paley operator Qs

given by convolution with Ψs(x) = s−nΨ (s−1x) satisfies (8.6.33). Suppose that for
some Cn,Ψ ,A,ε < ∞,

∥

∥ΘtQs
∥

∥

L2→L2 ≤ ACn,Ψ min
(s

t
,

t
s

)ε
(8.6.40)

is satisfied for all t,s > 0. Then there is a constant Cn,Ψ ,ε such that for all f ∈ L2(Rn)
we have

(
∫ ∞

0

∥

∥Θs( f )
∥

∥

2
L2

ds
s

)1
2

≤Cn,Ψ ,ε(A + B)
∥

∥ f
∥

∥

L2 .

8.6.4 A T (b) Theorem and the L2 Boundedness of the Cauchy
Integral

The operators Θs defined in (8.6.23) and (8.6.24) that appear in the resolution of
the Cauchy integral operator CΓ do not satisfy the conditionΘs(1) = 0 of Theorem
8.6.3. It turns out that a certain variant of this theorem is needed for the purposes of
the application we have in mind, the L2 boundedness of the Cauchy integral operator.
This variant is a quadratic type T (b) theorem discussed in this subsection. Before
we state the main theorem, we need a definition.

Definition 8.6.5. A bounded complex-valued function b on Rn is said to be accretive
if there is a constant c0 > 0 such that Reb(x) ≥ c0 for almost all x ∈ Rn.

The following theorem is the main result of this section.
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Theorem 8.6.6. Let θs be a complex-valued function on Rn × Rn that satisfies
(8.6.28) and (8.6.29), and let Θs be the linear operator in (8.6.30) whose kernel
is θs. If there is an accretive function b such that

Θs(b) = 0 (8.6.41)

for all s > 0, then there is a constant Cn(b) such that the estimate

(
∫ ∞

0

∥

∥Θs( f )
∥

∥

2
L2

ds
s

)1
2

≤Cn(b)
∥

∥ f
∥

∥

L2 (8.6.42)

holds for all f ∈ L2.

Corollary 8.6.7. The Cauchy integral operator CΓ maps L2(R) to itself.

The corollary is a consequence of Theorem 8.6.6. Indeed, the crucial and impor-
tant cancellation property

Θs(1 + iA′) = 0 (8.6.43)

is valid for the accretive function 1 + iA′, when Θs and θs are as in (8.6.23) and
(8.6.24). To prove (8.6.43) we simply note that

Θs(1 + iA′)(x) =
∫

R

s(1 + iA′(y))dy
(y− x + i(A(y)−A(x))+ is)2

=
[

−s
y− x + i(A(y)−A(x))+ is

]y=+∞

y=−∞

= 0−0 = 0 .

This condition plays exactly the role of (8.6.31), which may fail in general. The
necessary “internal cancellation” of the family of operators Θs is exactly captured
by the single condition (8.6.43).

It remains to prove Theorem 8.6.6.

Proof. We fix an approximation of the identity operator, such as

Ps( f )(x) =
∫

Rn
Φs(x− y) f (y)dy ,

whereΦs(x) = s−nΦ(s−1x), andΦ is a nonnegative Schwartz function with integral
1. Then Ps is a nice positive averaging operator that satisfies Ps(1) = 1 for all s > 0.
The key idea is to decompose the operatorΘs as

Θs =
(

Θs −MΘs(1)Ps
)

+ MΘs(1)Ps , (8.6.44)

where MΘs(1) is the operator given by multiplication by Θs(1). We begin with the
first term in (8.6.44), which is essentially an error term. We simply observe that

(

Θs −MΘs(1)Ps
)

(1) =Θs(1)−Θs(1)Ps(1) =Θs(1)−Θs(1) = 0 .
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Therefore, Theorem 8.6.3 is applicable once we check that the kernel of the operator
Θs −MΘs(1)Ps satisfies (8.6.28) and (8.6.29). But these are verified easily, since the
kernels of both Θs and Ps satisfy these estimates and Θs(1) is a bounded function
uniformly in s. The latter statement is a consequence of condition (8.6.28).

We now need to obtain the required quadratic estimate for the term MΘs(1)Ps.
With the use of Theorem 7.3.7, this follows once we prove that the measure

∣

∣Θs(1)(x)
∣

∣

2 dxds
s

is Carleson. It is here that we use condition (8.6.41). SinceΘs(b) = 0 we have

Ps(b)Θs(1) =
(

Ps(b)Θs(1)−ΘsPs(b)
)

+
(

ΘsPs(b)−Θs(b)
)

. (8.6.45)

Suppose we could show that the measures

∣

∣Θs(b)(x)−ΘsPs(b)(x)
∣

∣

2 dxds
s

, (8.6.46)

∣

∣ΘsPs(b)(x)−Ps(b)(x)Θs(1)(x)
∣

∣

2 dxds
s

, (8.6.47)

are Carleson. Then it would follow from (8.6.45) that the measure

∣

∣Ps(b)(x)Θs(1)(x)
∣

∣

2 dxds
s

is also Carleson. Using the accretivity condition on b and the positivity of Ps we
obtain

∣

∣Ps(b)
∣

∣≥ RePs(b) = Ps(Reb) ≥ Ps(c0) = c0,

from which it follows that |Θs(1)(x)|2 ≤ c−2
0 |Ps(b)(x)Θs(1)(x)|2. Thus the measure

|Θs(1)(x)|2dxds/s must be Carleson.
Therefore, the proof will be complete if we can show that both measures (8.6.46)

and (8.6.47) are Carleson. Theorem 7.3.8 plays a key role here.
We begin with the measure in (8.6.46). First we observe that the kernel

Ls(x,y) =
∫

Rn
θs(x,z)Φs(z− y)dz

of ΘsPs satisfies (8.6.28) and (8.6.29). The verification of (8.6.28) is a straightfor-
ward consequence of the estimate in Appendix K.1, while (8.6.29) follows easily
from the mean value theorem. It follows that the kernel of

Rs =Θs −ΘsPs

satisfies the same estimates. Moreover, it is easy to see that Rs(1) = 0 and thus
the quadratic estimate (8.6.32) holds for Rs in view of Theorem 8.6.3. Therefore,
the hypotheses of Theorem 7.3.8(c) are satisfied, and this gives that the measure in
(8.6.46) is Carleson.
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We now continue with the measure in (8.6.47). Here we set

Ts( f )(x) =ΘsPs( f )(x)−Ps( f )(x)Θs(1)(x) .

The kernel of Ts is Ls(x,y)−Θs(1)(x)Φs(x − y), which clearly satisfies (8.6.28)
and (8.6.29), sinceΘs(1)(x) is a bounded function uniformly in s > 0. We also ob-
serve that Ts(1) = 0. Using Theorem 8.6.3, we conclude that the quadratic estimate
(8.6.32) holds for Ts. Therefore, the hypotheses of Theorem 7.3.8(c) are satisfied;
hence the measure in (8.6.46) is Carleson. �

We conclude by observing that if we attempt to replace Θs with ˜Θs =ΘsM1+iA′

in the resolution identity (8.6.26), then ˜Θs(1) = 0 would hold, but the kernel of ˜Θs

would not satisfy the regularity estimate (8.6.29). The whole purpose of Theorem
8.6.6 was to find a certain balance between regularity and cancellation.

Exercises

8.6.1. Given a function H on a Lipschitz graph Γ , we associate a function h on the
line by setting h(t) = H(t + iA(t)) . Prove that for all 0 < p <∞ we have

∥

∥h
∥

∥

p
Lp(R) ≤

∥

∥H
∥

∥

p
Lp(Γ ) ≤

√

1 + L2
∥

∥h
∥

∥

p
Lp(R) ,

where L is the Lipschitz constant of the defining function A of the graph Γ .

8.6.2. Let A : R →R satisfy |A(x)−A(y)| ≤ L|x−y| for all x,y ∈ R for some L > 0.
Also, let h be a Schwartz function on R.
(a) Show that for all s > 0 and x,y ∈ R we have

s2 + |x− y|2
|x− y|2 + |A(x)−A(y)+ s|2 ≤ 4L2 + 2 .

(b) Use the Lebesgue dominated convergence theorem to prove that

∫

|x−y|>
√

s

s(1 + iA′(y))h(y)
(y− x + i(A(y)−A(x))+ is)2 dy → 0

as s → 0.
(c) Integrate directly to show that as s → 0,

∫

|x−y|≤
√

s

s(1 + iA′(y))
(y− x + i(A(y)−A(x))+ is)2 dy → 0

for every point x at which A is differentiable.
(d) Use part (a) and the Lebesgue dominated convergence theorem to show that as
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s → 0,
∫

|x−y|≤
√

s

s(1 + iA′(y))(h(y)−h(x))
(y− x + i(A(y)−A(x))+ is)2 dy → 0 .

(e) Use part (a) and the Lebesgue dominated convergence theorem to show that as
s → ∞,

∫

R

s(1 + iA′(y))h(y)
(y− x + i(A(y)−A(x))+ is)2 dy → 0 .

Conclude the validity of the statements in (8.6.20) for almost all x ∈ R.

8.6.3. Prove identity (8.6.22).
[

Hint: Write the identity in (8.6.22) as

−2
((ζ + is)− (z− is))3 =

1
2π i

∫

Γ

1
(w−(z−is))2

(w− (ζ + is))2 dw

and interpret it as Cauchy’s integral formula for the derivative of the analytic func-
tion w �→ (w− (z− is))−2 defined on the region above Γ . If Γ were a closed curve
containing ζ + is but not z− is, then the previous assertion would be immediate. In
general, consider a circle of radius R centered at the point ζ + is and the region UR

inside this circle and above Γ . See Figure 8.1. Integrate over the boundary of UR

and let R → ∞.
]

.

.
.
.

Fig. 8.1 The region UR inside the circle and above the curve.

8.6.4. Given an accretive function b, define a pseudo-inner product

〈

f ,g
〉

b =
∫

Rn
f (x)g(x)b(x)dx
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on L2. For an interval I, set bI =
∫

I b(x)dx. Let IL denote the left half of a dyadic

interval I and let IR denote its right half. For a complex number z, let z
1
2 = e

1
2 logright z,

where logright is the branch of the logarithm defined on the complex plane minus the
negative real axis normalized so that logright 1 = 0 [and logright(±i) = ± π

2 i]. Show
that the family of functions

hI =
−1

b(I)
1
2

(

b(IR)
1
2

b(IL)
1
2

χIL −
b(IL)

1
2

b(IR)
1
2

χIR

)

,

where I runs over all dyadic intervals, is an orthonormal family on L2(R) with re-
spect to the preceding inner product. (This family of functions is called a pseudo-
Haar basis associated with b.)

8.6.5. Let I = (a,b) be a dyadic interval and let 3I be its triple. For a given x ∈ R,
let

dI(x) = min
(

|x−a|, |x−b|, |x− a+b
2 |
)

.

Show that there exists a constant C such that

∣

∣CΓ (hI)(x)
∣

∣≤C |I|− 1
2 log

10|I|
|x−dI(x)|

whenever x ∈ 3I and also

∣

∣CΓ (hI)(x)
∣

∣≤ C |I| 3
2

|x−dI(x)|2

for x /∈ 3I. In the latter case, dI(x) can be any of a,b, a+b
2 .

8.6.6. (Semmes [281] ) We say that a bounded function b is para-accretive if for all
s > 0 there is a linear operator Rs with kernel satisfying (8.6.28) and (8.6.29) such
that |Rs(b)| ≥ c0 for all s > 0. LetΘs and Ps be as in Theorem 8.6.6.
(a) Prove that

∣

∣Rs(b)(x)−Rs(1)(x)Ps(b)(x)
∣

∣

2 dxds
s

is a Carleson measure.
(b) Use the result in part (a) and the fact that sups>0 |Rs(1)| ≤ C to obtain that
χΩ (x,s)dxds/s is a Carleson measure, where

Ω =
{

(x,s) : |Ps(b)(x)| ≤ c0

2

(

sup
s>0

|Rs(1)|)−1
}

.

(c) Conclude that the measure
∣

∣Θs(1)(x)
∣

∣

2
dxds/s is Carleson, thus obtaining a gen-

eralization of Theorem 8.6.6 for para-accretive functions.

8.6.7. Using the operator ˜Cγ defined in (8.6.15), obtain that CΓ is of weak type
(1,1) and bounded on Lp(R) for all 1 < p < ∞.
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8.7 Square Roots of Elliptic Operators

In this section we prove an L2 estimate for the square root of a divergence form
second-order elliptic operator on Rn. This estimate is based on an approach in the
spirit of the T (b) theorem discussed in the previous section. However, matters here
are significantly more complicated for two main reasons: the roughness of the vari-
able coefficients of the aforementioned elliptic operator and the higher-dimensional
nature of the problem.

8.7.1 Preliminaries and Statement of the Main Result

For ξ = (ξ1, . . . ,ξn) ∈ Cn we denote its complex conjugate (ξ1, . . . ,ξn) by ξ . More-
over, for ξ ,ζ ∈ Cn we use the inner product notation

ξ ·ζ =
n

∑
k=1

ξk ζk .

Throughout this section, A = A(x) is an n×n matrix of complex-valued L∞ func-
tions, defined on Rn, that satisfies the ellipticity (or accretivity) conditions for some
0 < λ ≤Λ < ∞, that

λ |ξ |2 ≤ Re (A(x)ξ ·ξ ) ,
|A(x)ξ ·ζ | ≤ Λ |ξ | |ζ | ,

(8.7.1)

for all x ∈ Rn and ξ ,ζ ∈ Cn. We interpret an element ξ of Cn as a column vector in
Cn when the matrix A acts on it.

Associated with such a matrix A, we define a second-order divergence form op-
erator

L( f ) = −div(A∇ f ) =
n

∑
j=1
∂ j
(

(A∇ f ) j
)

, (8.7.2)

which we interpret in the weak sense whenever f is a distribution.
The accretivity condition (8.7.1) enables us to define a square root operator

L1/2 =
√

L so that the operator identity L =
√

L
√

L holds. The square root oper-
ator can be written in several ways, one of which is

√
L( f ) =

16
π

∫ +∞

0
(I + t2L)−3t3L2( f )

dt
t

. (8.7.3)

We refer the reader to Exercise 8.7.3 for the existence of the square root operator
and the validity of identity (8.7.3).

An important problem in the subject is to determine whether the estimate
∥

∥

√
L( f )

∥

∥

L2 ≤Cn,λ ,Λ
∥

∥∇ f
∥

∥

L2 (8.7.4)
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holds for functions f in a dense subspace of the homogeneous Sobolev space
L̇2

1(R
n), where Cn,λ ,Λ is a constant depending only on n, λ , and Λ . Once (8.7.4)

is known for a dense subspace of L̇2
1(R

n), then it can be extended to the entire space
by density. The main purpose of this section is to discuss a detailed proof of the
following result.

Theorem 8.7.1. Let L be as in (8.7.2). Then there is a constant Cn,λ ,Λ such that for
all smooth functions f with compact support, estimate (8.7.4) is valid.

The proof of this theorem requires certain estimates concerning elliptic operators.
These are presented in the next subsection, while the proof of the theorem follows
in the remaining four subsections.

8.7.2 Estimates for Elliptic Operators on Rn

The following lemma provides a quantitative expression for the mean decay of the
resolvent kernel.

Lemma 8.7.2. Let E and F be two closed sets of Rn and set

d = dist (E,F) ,

the distance between E and F. Then for all complex-valued functions f supported
in E and all vector-valued functions �f supported in E, we have

∫

F
|(I + t2L)−1( f )(x)|2 dx ≤ Ce−c d

t

∫

E
| f (x)|2 dx , (8.7.5)

∫

F
|t∇(I + t2L)−1( f )(x)|2 dx ≤ Ce−c d

t

∫

E
| f (x)|2 dx , (8.7.6)

∫

F
|(I + t2L)−1(t div�f )(x)|2 dx ≤ Ce−c d

t

∫

E
|�f (x)|2 dx , (8.7.7)

where c = c(λ ,Λ), C = C(n,λ ,Λ) are finite constants.

Proof. It suffices to obtain these inequalities whenever d ≥ t > 0. Let us set ut =
(I + t2L)−1( f ). For all v ∈ L2

1(R
n) we have

∫

Rn
utvdx + t2

∫

Rn
A∇ut ·∇vdx =

∫

Rn
f vdx .

Let η be a nonnegative smooth function with compact support that does not meet E
and that satisfies ‖η‖L∞ = 1. Taking v = ut η2 and using that f is supported in E ,
we obtain

∫

Rn
|ut |2η2 dx + t2

∫

Rn
A∇ut ·∇ut η2 dx = −2t2

∫

Rn
A(η∇ut) ·ut∇η dx .
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Using (8.7.1) and the inequality 2ab ≤ ε|a|2 + ε−1|b|2, we obtain for all ε > 0,
∫

Rn
|ut |2η2 dx +λ t2

∫

Rn
|∇ut |2 η2 dx

≤ Λεt2
∫

Rn
|∇ut |2 η2 dx +Λε−1t2

∫

Rn
|ut |2|∇η |2 dx ,

and this reduces to

∫

Rn
|ut |2|η |2 dx ≤ Λ

2t2

λ

∫

Rn
|ut |2|∇η |2 dx (8.7.8)

by choosing ε = λ
Λ . Replacing η by ekη −1 in (8.7.8), where

k =

√
λ

2Λ t‖∇η‖L∞
,

yields
∫

Rn
|ut |2|ekη −1|2 dx ≤ 1

4

∫

Rn
|ut |2|ekη |2 dx . (8.7.9)

Using that |ekη −1|2 ≥ 1
2 |ekη |2 −1, we obtain

∫

Rn
|ut |2|ekη |2 dx ≤ 4

∫

Rn
|ut |2 dx ≤ 4C

∫

E
| f |2 dx ,

where in the last estimate we use the uniform boundedness of (I + t2L)−1 on L2(Rn)
(Exercise 8.7.2). If, in addition, we have η = 1 on F , then

|ek|2
∫

F
|ut |2 dx ≤

∫

Rn
|ut |2|ekη |2 dx ,

and picking η so that ‖∇η‖L∞ ≈ 1/d, we conclude (8.7.5).
Next, choose ε = λ/2Λ and η as before to obtain

∫

F
|t∇ut |2 dx ≤

∫

Rn
|t∇ut |2η2 dx

≤ 2Λ2t2

λ

∫

Rn
|ut |2|∇η |2 dx

≤ Ct2d−2e−c d
t

∫

E
| f |2 dx ,

which gives (8.7.6). Finally, (8.7.7) is obtained by duality from (8.7.6) applied to
L∗ = −div(A∗∇) when the roles of E and F are interchanged. �

Lemma 8.7.3. Let Mf be the operator given by multiplication by a Lipschitz func-
tion f . Then there is a constant C that depends only on n, λ , and Λ such that

∥

∥

[

(I + t2L)−1,Mf
]∥

∥

L2→L2 ≤Ct
∥

∥∇ f
∥

∥

L∞ (8.7.10)
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and
∥

∥∇
[

(I + t2L)−1,Mf
]∥

∥

L2→L2 ≤C
∥

∥∇ f
∥

∥

L∞ (8.7.11)

for all t > 0. Here [T,S] = TS−ST is the commutator of the operators T and S.

Proof. Set �b = A∇ f , �d = At∇ f and note that the operators given by pointwise
multiplication by these vectors are L2 bounded with norms at most a multiple of
C
∥

∥∇ f
∥

∥

L∞ . Write

[

(I + t2L)−1,Mf
]

= −(I + t2L)−1[(I + t2L),Mf
]

(I + t2L)−1

= −(I + t2L)−1t2(div�b+ �d ·∇)(1 + t2L)−1 .

The uniform L2 boundedness of (I + t2L)−1 t∇(I + t2L)−1 and (I + t2L)−1t div on
L2 (see Exercise 8.7.2) implies (8.7.10). Finally, using the L2 boundedness of the
operator t2∇(I + t2L)−1div yields (8.7.11). �

Next we have a technical lemma concerning the mean square deviation of f from
(I + t2L)−1.

Lemma 8.7.4. There exists a constant C depending only on n, λ , andΛ such that for
all Q cubes in Rn with sides parallel to the axes, for all t ≤ �(Q), and all Lipschitz
functions f on Rn we have

1
|Q|

∫

Q
|(I + t2L)−1( f )− f |2 dx ≤ Ct2

∥

∥∇ f
∥

∥

2
L∞ , (8.7.12)

1
|Q|

∫

Q
|∇((I + t2L)−1( f )− f )|2 dxx ≤ C

∥

∥∇ f
∥

∥

2
L∞ . (8.7.13)

Proof. We begin by proving (8.7.12), while we omit the proof of (8.7.13), since it is
similar. By a simple rescaling, we may assume that �(Q) = 1 and that ‖∇ f‖L∞ = 1.
Set Q0 = 2Q (i.e., the cube with the same center as Q with twice its side length) and
write Rn as a union of cubes Qk of side length 2 with disjoint interiors and sides
parallel to the axes. Lemma 8.7.2 implies that

(I + t2L)−1(1) = 1

in the sense that
lim

R→∞
(I + t2L)−1(ηR) = 1

in L2
loc(R

n), where ηR(x) = η(x/R) and η is a smooth bump function with η ≡ 1
near 0. Hence, we may write

(I + t2L)−1( f )(x)− f (x) = ∑
k∈Zn

(I + t2L)−1(( f − f (x))χQk )(x) = ∑
k∈Zn

gk(x) .

The term for k = 0 in the sum is [(I + t2L)−1,Mf ](χQ0)(x). Hence, its L2(Q) norm
is controlled by Ct

∥

∥χQ0

∥

∥

L2 by (8.7.10). The terms for k �= 0 are dealt with using the
further decomposition
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gk(x) = (I + t2L)−1(( f − f (xk))χQk)(x)+ ( f (xk)− f (x))(I + t2L)−1(χQk)(x) ,

where xk is the center of Qk. Applying Lemma 8.7.2 for (I + t2L)−1 on the sets
E = Qk and F = Q and using that f is a Lipschitz function, we obtain

∫

Q
|gk|2 dx ≤Ct2e−c

|xk |
t
∥

∥χQk

∥

∥

2
L2 = Ct2e−c

|xk|
t 2n|Q| .

The desired bound on the L2(Q) norm of (I + t2L)−1( f )− f follows from these
estimates, Minkowski’s inequality, and the fact that t ≤ 1 = �(Q). �

8.7.3 Reduction to a Quadratic Estimate

We are given a divergence form elliptic operator as in (8.7.2) with ellipticity con-
stants λ and Λ in (8.7.1). Our goal is to obtain the a priori estimate (8.7.4) for
functions f in some dense subspace of L̇2

1(R
n).

To obtain this estimate we need to resolve the operator
√

L as an average of
simpler operators that are uniformly bounded from L̇2

1(R
n) to L2(Rn). In the sequel

we use the following resolution of the square root:

√
L( f ) =

16
π

∫ ∞

0
(I + t2L)−3t3L2( f )

dt
t

,

in which the integral converges in L2(Rn) for f ∈ C ∞0 (Rn). Take g ∈ C ∞0 (Rn) with
‖g‖L2 = 1. Using duality and the Cauchy–Schwarz inequality, we can control the

quantity
∣

∣

〈√
L( f ) |g

〉∣

∣

2
by

256
π2

(
∫ ∞

0

∥

∥(I + t2L)−1tL( f )
∥

∥

2
2

dt
t

)(
∫ ∞

0

∥

∥Vt(g)
∥

∥

2
L2

dt
t

)

, (8.7.14)

where we set
Vt = t2L∗(I + t2L∗)−2 .

Here L∗ is the adjoint operator to L and note that the matrix corresponding to L∗

is the conjugate-transpose matrix A∗ of A (i.e., the transpose of the matrix whose
entries are the complex conjugates of the matrix A). We explain why the estimate

∫ ∞

0

∥

∥Vt(g)
∥

∥

2
L2

dt
t
≤C

∥

∥g
∥

∥

2
L2 (8.7.15)

is valid. Fix a real-valued functionΨ ∈ C ∞0 (Rn) with mean value zero normalized
so that

∫ ∞

0
| ̂Ψ(sξ )|2 ds

s
= 1
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for all ξ ∈ Rn and define Ψs(x) = 1
snΨ ( x

s ). Throughout the proof, Qs denotes the
operator

Qs(h) = h ∗Ψs . (8.7.16)

Obviously we have
∫ ∞

0

∥

∥Qs(g)
∥

∥

2
L2

ds
s

=
∥

∥g
∥

∥

2
L2

for all L2 functions g.
We obtain estimate (8.7.15) as a consequence of Corollary 8.6.4 applied to the

operators Vt that have uniform (in t) bounded extensions on L2(Rn). To apply Corol-
lary 8.6.4, we need to check that condition (8.6.40) holds forΘt = Vt . Since

VtQs = −(I + t2L∗)−2t2divA∗∇Qs ,

we have

∥

∥VtQs
∥

∥

L2→L2 ≤
∥

∥(I + t2L∗)−2t2divA∗∥
∥

L2→L2

∥

∥∇Qs
∥

∥

L2→L2 ≤ c
t
s
, (8.7.17)

with C depending only on n, λ , and Λ . ChooseΨ = Δϕ with ϕ ∈ C ∞0 (Rn) radial so
that in particular,Ψ = div�h. This yields Qs = sdiv�Rs with �Rs uniformly bounded;
hence

∥

∥VtQs
∥

∥

L2→L2 ≤
∥

∥t2L∗(I + t2L∗)−2div
∥

∥

L2→L2

∥

∥s�Rs
∥

∥

L2→L2 ≤ c
s
t
, (8.7.18)

with C depending only on n, λ , and Λ .
Combining (8.7.17) and (8.7.18) proves (8.6.40) with Θt = Vt . Hence Corollary

8.6.4 is applicable and (8.7.15) follows.
Therefore, the second integral on the right-hand side of (8.7.14) is bounded, and

estimate (8.7.4) is reduced to proving

∫ ∞

0

∥

∥(I + t2L)−1tL( f )
∥

∥

2
2

dt
t
≤C

∫

Rn
|∇ f |2 dx (8.7.19)

for all f ∈ C ∞0 (Rn).

8.7.4 Reduction to a Carleson Measure Estimate

Our next goal is to reduce matters to a Carleson measure estimate. We first intro-
duce some notation to be used throughout. For Cn-valued functions �f = ( f1, . . . , fn)
define

Zt (�f ) = −
n

∑
k=1

n

∑
j=1

(I + t2L)−1t∂ j(a j,k fk) .
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In short, we write Zt = −(I + t2L)−1t divA. With this notation, we reformulate
(8.7.19) as

∫ ∞

0

∥

∥Zt(∇ f )
∥

∥

2
2

dt
t
≤C

∫

Rn
|∇ f |2 dx . (8.7.20)

Also, define

γt(x) = Zt(1)(x) =
(

−
n

∑
j=1

(I + t2L)−1t ∂ j(a j,k)(x)
)

1≤k≤n
,

where 1 is the n×n identity matrix and the action of Zt on 1 is columnwise.
The reduction to a Carleson measure estimate and to a T (b) argument requires

the following inequality:

∫

Rn

∫ ∞

0
|γt(x) ·P2

t (∇g)(x)−Zt(∇g)(x)|2 dxdt
t

≤C
∫

Rn
|∇g|2 dx, (8.7.21)

where C depends only on n, λ , and Λ . Here, Pt denotes the operator

Pt(h) = h ∗ pt , (8.7.22)

where pt(x) = t−n p(t−1x) and p denotes a nonnegative smooth function supported
in the unit ball of Rn with integral equal to 1. To prove this, we need to handle
Littlewood–Paley theory in a setting a bit more general than the one encountered in
the previous section.

Lemma 8.7.5. For t > 0, let Ut be integral operators defined on L2(Rn) with mea-
surable kernels Lt(x,y). Suppose that for some m > n and for all y ∈ Rn and t > 0
we have

∫

Rn

(

1 +
|x− y|

t

)2m

|Lt(x,y)|2 dx ≤ t−n. (8.7.23)

Assume that for any ball B(y,t), Ut has a bounded extension from L∞(Rn) to
L2(B(y, t)) such that for all f in L∞(Rn) and y ∈ Rn we have

1
tn

∫

B(y,t)
|Ut( f )(x)|2 dx ≤

∥

∥ f
∥

∥

2
L∞ . (8.7.24)

Finally, assume that Ut(1) = 0 in the sense that

Ut(χB(0,R)) → 0 in L2(B(y,t)) (8.7.25)

as R → ∞ for all y ∈ Rn and t > 0.
Let Qs and Pt be as in (8.7.16) and (8.7.22), respectively. Then for some α > 0

and C depending on n and m we have

∥

∥UtPtQs
∥

∥

L2→L2 ≤C min
( t

s
,

s
t

)α
(8.7.26)

and also
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∥

∥UtQs
∥

∥

L2→L2 ≤C
( t

s

)α
, t ≤ s . (8.7.27)

Proof. We begin by observing that U∗
t Ut has a kernel Kt(x,y) given by

Kt(x,y) =
∫

Rn
Lt(z,x)Lt(z,y)dz .

The simple inequality (1 + a + b) ≤ (1 + a)(1 + b) for a,b > 0 combined with

the Cauchy–Schwarz inequality and (8.7.23) yield that
(

1 + |x−y|
t

)m
|Kt(x,y)| is

bounded by

∫

Rn

(

1 +
|x− z|

t

)m

|Lt(z,x)| |Lt (z,y)|
(

1 +
|z− y|

t

)m

dy ≤ t−n .

We conclude that

|Kt(x,y)| ≤
1
tn

(

1 +
|x− y|

t

)−m

. (8.7.28)

Hence U∗
t Ut is bounded on all Lp, 1 ≤ p ≤ +∞, and in particular, for p = 2. Since

L2 is a Hilbert space, it follows that Ut is bounded on L2(Rn) uniformly in t > 0.
For s ≤ t we use that

∥

∥Ut
∥

∥

L2→L2 ≤ B < ∞ and basic estimates to deduce that

∥

∥UtPtQs
∥

∥

L2→L2 ≤ B
∥

∥PtQs
∥

∥

L2→L2 ≤C B
( s

t

)α
.

Next, we consider the case t ≤ s. Since Pt has an integrable kernel, and the kernel
of U∗

t Ut satisfies (8.7.28), it follows that Wt = U∗
t UtPt has a kernel that satisfies a

similar estimate. If we prove that Wt(1) = 0, then we can deduce from standard
arguments that when t ≤ s we have

∥

∥WtQs
∥

∥

L2→L2 ≤C
( t

s

)2α
(8.7.29)

for 0 < α < m−n. This would imply the required estimate (8.7.26), since

∥

∥UtPtQs
∥

∥

2
L2→L2 =

∥

∥Q∗
s PtU

∗
t UtPtQs

∥

∥

L2→L2 ≤C
∥

∥U∗
t UtPtQs

∥

∥

L2→L2 .

We have that Wt(1) =U∗
t Ut(1). Suppose that a function ϕ in L2(Rn) is compactly

supported. Then ϕ is integrable over Rn and we have
〈

U∗
t Ut(1) |ϕ

〉

= lim
R→∞

〈

U∗
t Ut(χB(0,R)) |ϕ

〉

= lim
R→∞

〈

Ut(χB(0,R)) |Ut (ϕ)
〉

.

We have

〈

Ut(χB(0,R)) |Ut(ϕ)
〉

=
∫

Rn

∫

Rn
Ut(χB(0,R))(x)Ut(x,y)ϕ(y)dydx ,

and this is in absolute value at most a constant multiple of
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(

t−n
∫

Rn

∫

Rn

(

1 +
|x− y|

t

)−2m

|Ut(χB(0,R))(x)|2|ϕ(y)|dydx

)1
2
∥

∥ϕ
∥

∥

1
2
L1

by (8.7.23) and the Cauchy–Schwarz inequality for the measure |ϕ(y)|dydx. Using
a covering in the x variable by a family of balls B(y + ckt,t), k ∈ Zn, we deduce
easily that the last displayed expression is at most

Cϕ

(

∑
k∈Zn

∫

Rn
(1 + |k|)−2mcR(y,k)|ϕ(y)|dy

)1
2

,

where Cϕ is a constant that depends on ϕ and

cR(y,k) = t−n
∫

B(y+ckt,t)
|Ut(χB(0,R))(x)|2 dx .

Applying the dominated convergence theorem and invoking (8.7.24) and (8.7.25) as
R → ∞, we conclude that

〈

U∗
t Ut(1) |ϕ

〉

= 0. The latter implies that U∗
t Ut(1) = 0.

The same conclusion follows for Wt , since Pt(1) = 1.
To prove (8.7.27) when t ≤ s we repeat the previous argument with Wt = U∗

t Ut .
Since Wt(1) = 0 and Wt has a nice kernel, it follows that (8.7.29) holds. Thus

∥

∥UtQs
∥

∥

2
L2→L2 =

∥

∥Q∗
sU∗

t UtQs
∥

∥

L2→L2 ≤C
∥

∥U∗
t UtQs

∥

∥

L2→L2 ≤C
( t

s

)2α
.

This concludes the proof of the lemma. �

Lemma 8.7.6. Let Pt be as in Lemma 8.7.5. Then the operator Ut defined by
Ut(�f )(x) = γt(x) ·Pt(�f )(x)−ZtPt(�f )(x) satisfies

∫ ∞

0

∥

∥UtPt (�f )
∥

∥

2
L2

dt
t
≤C

∥

∥�f
∥

∥

2
L2 ,

where C depends only on n, λ , andΛ . Here the action of Pt on �f is componentwise.

Proof. By the off-diagonal estimates of Lemma 8.7.2 for Zt and the fact that p has
support in the unit ball, it is simple to show that there is a constant C depending on
n, λ , and Λ such that for all y ∈ Rn,

1
tn

∫

B(y,t)
|γt(x)|2 dx ≤C (8.7.30)

and that the kernel of C−1Ut satisfies the hypotheses in Lemma 8.7.5. The conclu-
sion follows from Corollary 8.6.4 applied to UtPt . �

We now return to (8.7.21). We begin by writing

γt(x) ·P2
t (∇g)(x)−Zt(∇g)(x) = UtPt(∇g)(x)+ Zt(P2

t − I)(∇g)(x) ,
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and we prove (8.7.21) for each term that appears on the right. For the first term we
apply Lemma 8.7.6. Since Pt commutes with partial derivatives, we may use that

∥

∥Zt∇
∥

∥

L2→L2 =
∥

∥(I + t2L)−1t L
∥

∥

L2→L2 ≤Ct−1 ,

and therefore we obtain for the second term
∫

Rn

∫ ∞

0
|Zt(P2

t − I)(∇g)(x)|2 dxdt
t

≤ C2
∫

Rn

∫ ∞

0
|(P2

t − I)(g)(x)|2 dt
t3 dx

≤ C2c(p)
∥

∥∇g
∥

∥

2
2

by Plancherel’s theorem, where C depends only on n, λ , and Λ . This concludes the
proof of (8.7.21).

Lemma 8.7.7. The required estimate (8.7.4) follows from the Carleson measure es-
timate

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x)|2

dxdt
t

< ∞ , (8.7.31)

where the supremum is taken over all cubes in Rn with sides parallel to the axes.

Proof. Indeed, (8.7.31) and Theorem 7.3.7 imply

∫

Rn

∫ ∞

0
|P2

t (∇g)(x) · γt(x)|2
dxdt

t
≤C

∫

Rn
|∇g|2 dx,

and together with (8.7.21) we deduce that (8.7.20) holds. �

Next we introduce an auxiliary averaging operator. We define a dyadic averaging
operator SQ

t as follows:

SQ
t (�f )(x) =

(

1
|Q′

x|

∫

Q′
x

�f (y)dy

)

χQ′
x
(x) ,

where Q′
x is the unique dyadic cube contained in Q that contains x and satisfies

1
2�(Q′

x) < t ≤ �(Q′
x). Notice that SQ

t is a projection, i.e., it satisfies SQ
t SQ

t = SQ
t . We

have the following technical lemma concerning SQ
t .

Lemma 8.7.8. For some C depending only on n, λ , and Λ , we have

∫

Q

∫ �(Q)

0
|γt(x) · (SQ

t −P2
t )(�f )(x)|2 dxdt

t
≤C

∫

Rn
|�f |2 dx . (8.7.32)

Proof. We actually obtain a stronger version of (8.7.32) in which the t-integration
on the left is taken over (0,+∞). Let Qs be as in (8.7.16). Set Θt = γt · (SQ

t −P2
t ).

The proof of (8.7.32) is based on Corollary 8.6.4 provided we show that for some
α > 0,

∥

∥ΘtQs
∥

∥

L2→L2 ≤C min
( t

s
,

s
t

)α
.
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Suppose first that t ≤ s. Notice thatΘt(1) = 0, and thus (8.7.25) holds. With the
aid of (8.7.30), we observe thatΘt satisfies the hypotheses (8.7.23) and (8.7.24) of
Lemma 8.7.5. Conclusion (8.7.27) of this lemma yields that for some α > 0 we have

∥

∥ΘtQs
∥

∥

L2→L2 ≤C
( t

s

)α
.

We now turn to the case s ≤ t. Since the kernel of Pt is bounded by ct−nχ|x−y|≤t ,
condition (8.7.30) yields that γtPt is uniformly bounded on L2 and thus

∥

∥γtP2
t Qs

∥

∥

L2→L2 ≤C
∥

∥PtQs
∥

∥

L2→L2 ≤C′ s
t
.

It remains to consider the case s ≤ t for the operator Ut = γt · SQ
t . We begin by

observing that Ut is L2 bounded uniformly in t > 0; this follows from a standard
U∗

t Ut argument using condition (8.7.23). Secondly, as already observed, SQ
t is an

orthogonal projection. Therefore, we have
∥

∥(γt ·SQ
t )Qs

∥

∥

L2→L2 ≤
∥

∥(γt ·SQ
t )SQ

t Qs
∥

∥

L2→L2

≤
∥

∥SQ
t Qs

∥

∥

L2→L2

≤
∥

∥SQ
t

∥

∥

L2→L̇2
α

∥

∥Qs
∥

∥

L̇2
α→L2

≤ C sα t−α .

The last inequality follows from the facts that for any α in (0, 1
2 ), Qs maps the

homogeneous Sobolev space L̇2
α to L2 with norm at most a multiple of C sα and

that the dyadic averaging operator SQ
t maps L2(Rn) to L̇2

α(Rn) with norm Ct−α .
The former of these statements is trivially verified by taking the Fourier transform,
while the latter statement requires some explanation.

Fix anα ∈ (0, 1
2) and take h,g∈L2(Rn). Also fix j ∈Z such that 2− j−1 ≤ t < 2− j.

We then have

〈

SQ
t (−Δ)

α
2 (h),g

〉

= ∑
Jj,k�Q

〈

(−Δ)
α
2 (h),χJj,k (x)(Avg

Jj,k

g)
〉

,

where Jj,k =∏n
r=1[2

− jkr,2− j(kr + 1)) and k = (k1, . . . ,kn). It follows that

〈

SQ
t (−Δ)

α
2 (h),g

〉

= ∑
Jj,k�Q

〈

h,
(

Avg
Jj,k

g
)

(−Δ)
α
2 (χJj,k )(x)

〉

=
〈

h , ∑
Jj,k�Q

2α j(Avg
Jj,k

g
)

(−Δ)
α
2 (χ[0,1)n)(2 j(·)− k)

〉

.

Set χα = (−Δ)
α
2 (χ[0,1)n). We estimate the L2 norm of the preceding sum. We have
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∫

Rn

∣

∣

∣ ∑
Jj,k�Q

2α j(Avg
Jj,k

g
)

χα(2 jx− k)
∣

∣

∣

2
dx

= 22α j−n j
∫

Rn

∣

∣

∣ ∑
Jj,k�Q

(

Avg
Jj,k

g
)

χα(x− k)
∣

∣

∣

2
dx

= 22α j−n j
∫

Rn

∣

∣

∣ ∑
Jj,k�Q

e−2π ik·ξ(Avg
Jj,k

g
)

∣

∣

∣

2
|χ̂α(ξ )|2 dξ

= 22α j−n j
∫

[0,1]n

∣

∣

∣ ∑
Jj,k�Q

e−2π ik·ξ(Avg
Jj,k

g
)

∣

∣

∣

2

∑
l∈Zn

|χ̂α(ξ + l)|2 dξ

≤ 22α j−n j
∫

[0,1]n

∣

∣

∣ ∑
Jj,k�Q

e−2π ik·ξ(Avg
Jj,k

g
)

∣

∣

∣

2
dξ sup

ξ∈[0,1]n
∑

l∈Zn

|χ̂α(ξ + l)|2

= 22α j−n j ∑
k∈Zn

∣

∣Avg
Jj,k

g
∣

∣

2
C(n,α)2 ,

where we used Plancherel’s identity on the torus (Proposition 3.1.16) and we set

C(n,α)2 = sup
ξ∈[0,1]n

∑
l∈Zn

|χ̂α(ξ + l)|2 .

Since

χ̂α(ξ ) = |ξ |α
n

∏
r=1

1− e−2π iξr

2π iξr
,

it follows that C(n,α) < ∞ when 0 < α < 1
2 . In this case we conclude that

∣

∣

〈

SQ
t (−Δ)

α
2 (h),g

〉∣

∣ ≤ C(n,α)
∥

∥h
∥

∥

L22 jα
(

2−n j ∑
k∈Zn

∣

∣Avg
Jj,k

g
∣

∣

2
) 1

2

≤ C′∥
∥h
∥

∥

L2 t−α
∥

∥g
∥

∥

L2 ,

and this implies that
∥

∥SQ
t

∥

∥

L2→L̇2
α
≤Ct−α and hence the required conclusion. �

8.7.5 The T (b) Argument

To obtain (8.7.31), we adapt the T (b) theorem of the previous section for square
roots of divergence form elliptic operators. We fix a cube Q with center cQ, an
ε ∈ (0,1), and a unit vector w in Cn. We define a scalar-valued function

f εQ,w = (1 +(ε�(Q))2L)−1(ΦQ ·w) , (8.7.33)

where
ΦQ(x) = x− cQ .
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We begin by observing that the following estimates are consequences of Lemma
8.7.4:

∫

5Q
| f εQ,w −ΦQ ·w|2 dx ≤C1ε2�(Q)2|Q| (8.7.34)

and
∫

5Q
|∇( f εQ,w −ΦQ ·w)|2 dx ≤C2|Q| , (8.7.35)

where C1,C2 depend on n, λ , Λ and not on ε , Q, and w. It is important to observe
that the constants C1,C2 are independent of ε .

The proof of (8.7.31) follows by combining the next two lemmas. The rest of this
section is devoted to their proofs.

Lemma 8.7.9. There exists an ε > 0 depending on n, λ , Λ , and a finite set F of
unit vectors in Cn whose cardinality depends on ε and n, such that

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x)|2

dxdt
t

≤C ∑
w∈F

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x) · (SQ

t ∇ f εQ,w)(x)|2 dxdt
t

,

where C depends only on ε , n, λ , andΛ . The suprema are taken over all cubes Q in
Rn with sides parallel to the axes.

Lemma 8.7.10. For C depending only on n, λ , Λ , and ε > 0, we have

∫

Q

∫ �(Q)

0

∣

∣γt(x) · (SQ
t ∇ f εQ,w)(x)

∣

∣

2 dxdt
t

≤C|Q|. (8.7.36)

We begin with the proof of Lemma 8.7.10, which is the easiest of the two.

Proof of Lemma 8.7.10. Pick a smooth bump function XQ localized on 4Q
and equal to 1 on 2Q with

∥

∥XQ
∥

∥

L∞ + �(Q)
∥

∥∇XQ
∥

∥

L∞ ≤ cn. By Lemma 8.7.5 and
estimate (8.7.21), the left-hand side of (8.7.36) is bounded by

C
∫

Rn

∣

∣∇(XQ f εQ,w)
∣

∣

2
dx + 2

∫

Q

∫ �(Q)

0

∣

∣γt(x) · (P2
t ∇(XQ f εQ,w))(x)

∣

∣

2 dxdt
t

≤C
∫

Rn

∣

∣∇(XQ f εQ,w)
∣

∣

2
dx + 4

∫

Q

∫ �(Q)

0

∣

∣(Zt∇(XQ f εQ,w))(x)
∣

∣

2 dxdt
t

.

It remains to control the last displayed expression by C|Q|.
First, it follows easily from (8.7.34) and (8.7.35) that

∫

Rn
|∇(XQ f εQ,w)|2 dx ≤C|Q| ,

where C is independent of Q and w (but it may depend on ε). Next, we write
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Zt∇(XQ f εQ,w) = W 1
t +W2

t +W3
t ,

where

W 1
t = (I + t2L)−1t

(

XQL( f εQ,w)
)

,

W 2
t = −(I + t2L)−1t

(

div(A f εQ,w∇XQ)
)

,

W 3
t = −(I + t2L)−1t

(

A∇ f εQ,w ·∇XQ
)

,

and we use different arguments to treat each term W j
t .

To handle W 1
t , observe that

L( f εQ,w) =
f εQ,w −ΦQ ·w
ε2�(Q)2 ,

and therefore it follows from (8.7.34) that
∫

Rn
|XQL( f εQ,w)|2 ≤C|Q|(ε�(Q))−2 ,

where C is independent of Q and w. Using the (uniform in t) boundedness of the
operator (I + t2L)−1 on L2(Rn), we obtain

∫

Q

∫ �(Q)

0

∣

∣W 1
t (x)

∣

∣

2 dxdt
t

≤
∫ �(Q)

0

C|Q| t2

(ε�(Q))2

dt
t
≤ C|Q|
ε2 ,

which establishes the required quadratic estimate for W 1
t .

To obtain a similar quadratic estimate for W 2
t , we apply Lemma 8.7.2 for the

operator (I + t2L)−1t div with sets F = Q and E = supp( f εQ,w∇XQ) ⊆ 4Q\2Q. We
obtain that

∫

Q

∫ �(Q)

0
|W 2

t (x)|2 dxdt
t

≤C
∫ �(Q)

0
e−

�(Q)
ct

dt
t

∫

4Q\2Q
|A f εQ,w∇XQ|2 dx .

The first integral on the right provides at most a constant factor, while we handle the
second integral by writing

f εQ,w = ( f εQ,w −ΦQ ·w)+ΦQ ·w .

Using (8.7.34) and the facts that
∥

∥∇XQ
∥

∥

L∞ ≤ cn�(Q)−1 and that |ΦQ| ≤ cn�(Q) on
the support of XQ, we obtain that

∫

4Q\2Q
|A f εQ,w∇XQ|2 dx ≤C |Q| ,

where C depends only on n, λ , and Λ . This yields the required result for W 2
t .

To obtain a similar estimate for W 3
t , we use the (uniform in t) boundedness of

(I + t2L)−1 on L2(Rn) (Exercise 8.7.2) to obtain that
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∫

Q

∫ �(Q)

0
|W 3

t (x)|2 dxdt
t

≤C
∫ �(Q)

0
t2 dt

t

∫

4Q\2Q
|A∇ f εQ,w ·∇XQ|2 dx .

But the last integral is shown easily to be bounded by C|Q| by writing f εQ,w, as in
the previous case, and using (8.7.35) and the properties of XQ and ΦQ. Note that C
here depends only on n, λ , and Λ . This concludes the proof of Lemma 8.7.10. �

8.7.6 The Proof of Lemma 8.7.9

It remains to prove Lemma 8.7.9. The main ingredient in the proof of Lemma 8.7.9
is the following proposition, which we state and prove first.

Proposition 8.7.11. There exists an ε > 0 depending on n, λ , and Λ , and η =
η(ε) > 0 such that for each unit vector w in Cn and each cube Q with sides parallel
to the axes, there exists a collection S ′

w = {Q′} of nonoverlapping dyadic subcubes
of Q such that

∣

∣

∣

⋃

Q′∈S ′
w

Q′
∣

∣

∣≤ (1−η)|Q| , (8.7.37)

and moreover, if S ′′
w is the collection of all dyadic subcubes of Q not contained in

any Q′ ∈ S ′
w, then for any Q′′ ∈ S ′′

w we have

1
|Q′′|

∫

Q′′
Re(∇ f εQ,w(y) ·w)dy ≥ 3

4
(8.7.38)

and
1

|Q′′|

∫

Q′′
|∇ f εQ,w(y)|2 dy ≤ (4ε)−2. (8.7.39)

Proof. We begin by proving the following crucial estimate:
∣

∣

∣

∣

∫

Q
(1−∇ f εQ,w(x) ·w)dx

∣

∣

∣

∣

≤Cε
1
2 |Q|, (8.7.40)

where C depends on n, λ , and Λ , but not on ε , Q, and w. Indeed, we observe that

∇(ΦQ ·w)(x) ·w = |w|2 = 1 ,

so that
1−∇ f εQ,w(x) ·w =∇gεQ,w(x) ·w ,

where we set
gεQ,w(x) =ΦQ(x) ·w− f εQ,w(x) .

Next we state another useful lemma, whose proof is postponed until the end of
this subsection.
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Lemma 8.7.12. There exists a constant C = Cn such that for all h ∈ L̇2
1 we have

∣

∣

∣

∣

∫

Q
∇h(x)dx

∣

∣

∣

∣

≤C�(Q)
n−1

2

(
∫

Q
|h(x)|2 dx

) 1
4
(
∫

Q
|∇h(x)|2 dx

) 1
4

.

Applying Lemma 8.7.12 to the function gεQ,w, we deduce (8.7.40) as a conse-
quence of (8.7.34) and (8.7.35).

We now proceed with the proof of Proposition 8.7.11. First we deduce from
(8.7.40) that

1
|Q|

∫

Q
Re(∇ f εQ,w(x) ·w)dx ≥ 7

8
,

provided that ε is small enough. We also observe that as a consequence of (8.7.35)
we have

1
|Q|

∫

Q
|∇ f εQ,w(x)|2 dx ≤C3 ,

where C3 is independent of ε . Now we perform a stopping-time decomposition to
select a collection S ′

w of dyadic subcubes of Q that are maximal with respect to
either one of the following conditions:

1
|Q′|

∫

Q′
Re (∇ f εQ,w(x) ·w)dx , ≤ 3

4
(8.7.41)

1
|Q′|

∫

Q′
|∇ f εQ,w(x)|2 dx ≥ (4ε)−2 . (8.7.42)

This is achieved by subdividing Q dyadically and by selecting those cubes Q′ for
which either (8.7.41) or (8.7.42) holds, subdividing all the nonselected cubes, and
repeating the procedure. The validity of (8.7.38) and (8.7.39) now follows from the
construction and (8.7.41) and (8.7.42).

It remains to establish (8.7.37). Let B1 be the union of the cubes in S ′
w for which

(8.7.41) holds. Also, let B2 be the union of those cubes in S ′
w for which (8.7.42)

holds. We then have ∣

∣

∣

⋃

Q′∈S ′
w

Q′
∣

∣

∣≤ |B1|+ |B2| .

The fact that the cubes in S ′
w do not overlap yields

|B2| ≤ (4ε)2
∫

Q
|∇ f εQ,w(x)|2 dx ≤ (4ε)2C3|Q|.

Setting bεQ,w(x) = 1−Re(∇ f εQ,w(x) ·w), we also have

|B1| ≤ 4∑
∫

Q′
bεQ,w dx = 4

∫

Q
bεQ,w dx−4

∫

Q\B1

bεQ,w dx , (8.7.43)

where the sum is taken over all cubes Q′ that comprise B1. The first term on the right
in (8.7.43) is bounded above by Cε

1
2 |Q| in view of (8.7.40). The second term on the
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right in (8.7.43) is controlled in absolute value by

4|Q\B1|+ 4|Q\B1|
1
2 (C3|Q|) 1

2 ≤ 4|Q\B1|+ 4C3ε
1
2 |Q|+ ε− 1

2 |Q\B1| .

Since |Q\B1| = |Q|− |B1|, we obtain

(5 + ε−
1
2 )|B1| ≤ (4 +Cε

1
2 + ε−

1
2 )|Q| ,

which yields |B1| ≤ (1− ε 1
2 + o(ε

1
2 ))|Q| if ε is small enough. Hence

|B| ≤ (1−η(ε))|Q|

with η(ε) ≈ ε 1
2 for small ε . This concludes the proof of Proposition 8.7.11. �

Next, we need the following simple geometric fact.

Lemma 8.7.13. Let w,u,v be in Cn such that |w| = 1 and let 0 < ε ≤ 1 be such that

|u− (u ·w)w| ≤ ε |u ·w| , (8.7.44)

Re(v ·w) ≥ 3
4

, (8.7.45)

|v| ≤ (4ε)−1 . (8.7.46)

Then we have |u| ≤ 4 |u · v|.

Proof. It follows from (8.7.45) that

3
4 |u ·w| ≤ |(u ·w)(v ·w)| . (8.7.47)

Moreover, (8.7.44) and the triangle inequality imply that

|u| ≤ (1 + ε)|u ·w| ≤ 2 |u ·w| . (8.7.48)

Also, as a consequence of (8.7.44) and (8.7.46), we obtain

|(u− (u ·w)w) · v| ≤ 1
4 |u ·w| . (8.7.49)

Finally, using (8.7.47) and (8.7.49) together with the triangle inequality, we deduce
that

|u · v| ≥ |(u ·w)(v ·w)|− |(u− (u ·w)w) · v| ≥ ( 3
4 −

1
4 ) |u ·w| ≥ 1

4 |u| ,

where in the last inequality we used (8.7.48). �

We now proceed with the proof of Lemma 8.7.9. We fix an ε > 0 to be chosen
later and we choose a finite number of cones Cw indexed by a finite set F of unit
vectors w in Cn defined by

Cw =
{

u ∈ Cn : |u− (u ·w)w| ≤ ε |u ·w|
}

, (8.7.50)
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so that
Cn =

⋃

w∈F

Cw .

Note that the size of the set F can be chosen to depend only on ε and the dimension
n.

It suffices to show that for each fixed w∈F we have a Carleson measure estimate
for γt,w(x) ≡ χCw(γt(x))γt (x), where χCw denotes the characteristic function of Cw.
To achieve this we define

Aw ≡ sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdt

t
, (8.7.51)

where the supremum is taken over all cubes Q in Rn with sides parallel to the axes.
By truncating γt,w(x) for t small and t large, we may assume that this quantity is
finite. Once an a priori bound independent of these truncations is obtained, we can
pass to the limit by monotone convergence to deduce the same bound for γt,w(x).

We now fix a cube Q and let S ′′
w be as in Proposition 8.7.11. We pick Q′′ in S ′′

w
and we set

v =
1

|Q′′|

∫

Q′′
∇ f εQ,w(y)dy ∈ Cn.

It is obvious that statements (8.7.38) and (8.7.39) in Proposition 8.7.11 yield condi-
tions (8.7.45) and (8.7.46) of Lemma 8.7.13. Set u = γt,w(x) and note that if x ∈ Q′′

and 1
2�(Q′′) < t ≤ �(Q′′), then v = SQ

t (∇ f εQ,w)(x); hence

∣

∣γt,w(x)
∣

∣≤ 4
∣

∣γt,w(x) ·SQ
t (∇ f εQ,w)(x)

∣

∣≤ 4
∣

∣γt(x) ·SQ
t (∇ f εQ,w)(x)

∣

∣ (8.7.52)

from Lemma 8.7.13 and the definition of γt,w(x).
We partition the Carleson region Q× (0, �(Q)] as a union of boxes Q′ × (0, �(Q′)]

for Q′ in S ′
w and Whitney rectangles Q′′ × ( 1

2�(Q′′), �(Q′′)] for Q′′ in S ′′
w . This

allows us to write

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdt

t
= ∑

Q′∈S ′
w

∫

Q′

∫ �(Q′)

0
|γt,w(x)|2 dxdt

t

+ ∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q′′)

|γt,w(x)|2 dxdt
t

.

First observe that

∑
Q′∈S ′

w

∫

Q′

∫ �(Q′)

0
|γt,w(x)|2 dxdt

t
≤ ∑

Q′∈S ′
w

Aw|Q′|Aw(1−η)|Q| .

Second, using (8.7.52), we obtain
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∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q′′)

|γt,w(x)|2 dxdt
t

≤ 16 ∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q′′)

|γt(x) ·SQ
t (∇ f εQ,w)(x)|2 dxdt

t

≤ 16
∫

Q

∫ �(Q)

0
|γt(x) ·SQ

t (∇ f εQ,w)(x)|2 dxdt
t

.

Altogether, we obtain the bound

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdt

t

≤ Aw(1−η)|Q|+ 16
∫

Q

∫ �(Q)

0
|γt(x) ·SQ

t (∇ f εQ,w)(x)|2 dxdt
t

.

We divide by |Q|, we take the supremum over all cubes Q with sides parallel to
the axes, and we use the definition and the finiteness of Aw to obtain the required
estimate

Aw ≤ 16η−1 sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x) ·SQ

t (∇ f εQ,w)(x)|2 dxdt
t

,

thus concluding the proof of the lemma. �

We end by verifying the validity of Lemma 8.7.12 used earlier.

Proof of Lemma 8.7.12. For simplicity we may take Q to be the cube [−1,1]n.
Once this case is established, the case of a general cube follows by translation and
rescaling. Set

M =
(
∫

Q
|h(x)|2 dx

)1
2

, M′ =
(
∫

Q
|∇h(x)|2 dx

)1
2

.

If M ≥ M′, there is nothing to prove, so we may assume that M < M′. Take t ∈ (0,1)
and ϕ ∈ C ∞0 (Q) with ϕ(x) = 1 when dist (x,∂Q)≥ t and 0 ≤ ϕ ≤ 1, ‖∇ϕ‖L∞ ≤C/t,
C = C(n); here the distance is taken in the L∞ norm of Rn. Then

∫

Q
∇h(x)dx =

∫

Q
(1−ϕ(x))∇h(x)dx−

∫

Q
h(x)∇ϕ(x)dx ,

and the Cauchy–Schwarz inequality yields
∣

∣

∣

∣

∫

Q
∇h(x)dx

∣

∣

∣

∣

≤C(M′ t
1
2 + Mt−

1
2 ) .

Choosing t = M/M′, we conclude the proof of the lemma. �
The proof of Theorem 8.7.1 is now complete. �
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Exercises

8.7.1. Let A and L be as in the statement of Theorem 8.7.1.
(a) Consider the generalized heat equation

∂u
∂ t

−div(A∇u) = 0

on Rn+1
+ with initial condition u(0,x) = u0. Assume a uniqueness theorem for solu-

tions of these equations to obtain that the solution of the equation in part (a) is

u(t,x) = e−tL(u0).

(b) Take u0 = 1 to deduce the identity

e−tL(1) = 1

for all t > 0. Conclude that the family of {e−tL}t>0 is an approximate identity, in the
sense that

lim
t→0

e−tL = I.

8.7.2. Let L be as in (8.7.2). Show that the operators

L1 = (I + t2L)−1 ,

L2 = t∇(I + t2L)−1 ,

L3 = (I + t2L)−1t div

are bounded on L2(Rn) uniformly in t with bounds depending only on n, λ , and Λ .
[

Hint: The L2 boundedness of L3 follows from that of L2 via duality and integra-
tion by parts. To prove the L2 boundedness of L1 and L2, let ut = (I + t2L)−1( f ).
Then ut + t2L(ut) = f , which implies

∫

Rn |ut |2 dx + t2 ∫

Rn ut L(ut)dx =
∫

Rn ut f dx.
The definition of L and integration by parts yield

∫

Rn |ut |2 dx + t2 ∫

Rn A∇ut∇ut dx =
∫

Rn ut f dx. Apply the ellipticity condition to bound the left side of this identity from
below by

∫

Rn |ut |2 dx +λ
∫

Rn |t∇ut |2 dx. Also
∫

Rn ut f dx is at most ε−1 ∫

Rn | f |2 dx +
ε
∫

Rn |ut |2 dx by the Cauchy–Schwarz inequality. Choose ε small enough to com-
plete the proof when

∥

∥ut
∥

∥

L2 < ∞. In the case
∥

∥ut
∥

∥

L2 = ∞, multiply the identity
ut + t2L(ut) = f by utηR, where ηR is a suitable cutoff localized in a ball B(0,R),
and use the idea of Lemma 8.7.2. Then let R → ∞.

]

8.7.3. Let L be as in the proof of Theorem 8.7.1.
(a) Show that for all t > 0 we have

(I + t2L2)−2 =
∫ ∞

0
e−u(I+t2L)udu

by checking the identities
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∫ ∞

0
(I + t2L)2e−u(I+t2L)udu =

∫ ∞

0
e−u(I+t2L)(I + t2L)2udu = I .

(b) Prove that the operator

T =
4
π

∫ ∞

0
L(I + t2L)−2 dt

satisfies T T = L.
(c) Conclude that the operator

S =
16
π

∫ +∞

0
t3L2(I + t2L)−3 dt

t

satisfies SS = L, that is, S is the square root of L. Moreover, all the integrals converge
in L2(Rn) when restricted to functions in f ∈ C ∞0 (Rn).
[

Hint: Part (a): Write (I + t2L)e−u(I+t2L) = − d
du(e−u(I+t2L)), apply integration by

parts twice, and use Exercise 8.7.1. Part (b): Write the integrand as in part (a) and
use the identity

∫ ∞

0

∫ ∞

0
e−(ut2+vs2)LL2 dt ds =

π
4

(uv)−
1
2

∫ ∞

0
e−r2LL2 2r dr.

Set ρ = r2 and use e−ρLL = d
dρ (e−ρL). Part (c): Show that T = S using an integration

by parts starting with the identity L = d
dt (tL).

]

8.7.4. Suppose that μ is a measure on Rn+1
+ . For a cube Q in Rn we define the tent

T (Q) of Q as the set Q× (0, �(Q)). Suppose that there exist two positive constants
α < 1 and β such that for all cubes Q in Rn there exist subcubes Q j of Q with
disjoint interiors such that

1.
∣

∣

∣Q\⋃ j Q j

∣

∣

∣> α |Q|,

2. μ
(

T (Q)\⋃ j T (Q j)
)

≤ β |Q|.

Then μ is a Carleson measure with constant

∥

∥μ
∥

∥

C
≤ β
α

.

[

Hint: We have

μ(T (Q)) ≤ μ
(

T (Q)\
⋃

j

T (Q j)
)

+∑
j

μ(T (Q j))

≤ β |Q|+
∥

∥μ
∥

∥

C∑
j

|Q j| ,
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and the last expression is at most (β +(1−α)
∥

∥μ
∥

∥

C
)|Q|. Assuming that

∥

∥μ
∥

∥

C
<

∞, we obtain the required conclusion. In general, approximate the measure by a
sequence of truncated measures.

]

HISTORICAL NOTES

Most of the material in Sections 8.1 and 8.2 has been in the literature since the early develop-
ment of the subject. Theorem 8.2.7 was independently obtained by Peetre [254], Spanne [286], and
Stein [290].

The original proof of the T (1) theorem obtained by David and Journé [103] stated that if T (1),
T t(1) are in BMO and T satisfies the weak boundedness property, then T is L2 bounded. This proof
is based on the boundedness of paraproducts and is given in Theorem 8.5.4. Paraproducts were first
exploited by Bony [28] and Coifman and Meyer [81]. The proof of L2 boundedness using condition
(iv) given in the proof of Theorem 8.3.3 was later obtained by Coifman and Meyer [82]. The
equivalent conditions (ii), (iii), and (vi) first appeared in Stein [292], while condition (iv) is also due
to David and Journé [103]. Condition (i) appears in the article of Nazarov, Volberg, and Treil [245]
in the context of nondoubling measures. The same authors [246] obtained a proof of Theorems
8.2.1 and 8.2.3 for Calderón–Zygmund operators on nonhomogeneous spaces. Multilinear versions
of the T (1) theorem were obtained by Christ and Journé [70], Grafakos and Torres [154], and
Bényi, Demeter, Nahmod, Thiele, Torres, and Villaroya [20]. The article [70] also contains a proof
of the quadratic T (1) type Theorem 8.6.3. Smooth paraproducts viewed as bilinear operators have
been studied by Bényi, Maldonado, Nahmod, and Torres [21] and Dini-continuous versions of
them by Maldonado and Naibo [225].

The orthogonality Lemma 8.5.1 was first proved by Cotlar [94] for self-adjoint and mutually
commuting operators Tj . The case of general noncommuting operators was obtained by Knapp and
Stein [190]. Theorem 8.5.7 is due to Calderón and Vaillancourt [49] and is also valid for symbols
of class S0

ρ,ρ when 0 ≤ ρ < 1. For additional topics on pseudodifferential operators we refer to
the books of Coifman and Meyer [81], Journé [180], Stein [292], Taylor [309], Torres [315], and
the references therein. The last reference presents a careful study of the action of linear operators
with standard kernels on general function spaces. The continuous version of the orthogonality
Lemma 8.5.1 given in Exercise 8.5.8 is due to Calderón and Vaillancourt [49]. Conclusion (iii) in
the orthogonality Lemma 8.5.1 follows from a general principle saying that if ∑x j is a series in a
Hilbert space such that ‖∑ j∈F x j‖ ≤ M for all finite sets F , then the series ∑x j converges in norm.
This is a consequence of the Orlicz–Pettis theorem, which states that in any Banach space, if ∑xnj

converges weakly for every subsequence of integers n j , then ∑x j converges in norm.
A nice exposition on the Cauchy integral that presents several historical aspects of its study is

the book of Muskhelishvili [243]. See also the book of Journé [180]. Proposition 8.6.1 is due to
Plemelj [265] when Γ is a closed Jordan curve. The L2 boundedness of the first commutator C1
in Example 8.3.8 is due to Calderón [42]. The L2 boundedness of the remaining commutators Cm,
m ≥ 2, is due to Coifman and Meyer [80], but with bounds of order m!

∥

∥A′∥
∥

m
L∞ . These bounds are

not as good as those obtained in Example 8.3.8 and do not suffice in obtaining the boundedness
of the Cauchy integral by summing the series of commutators. The L2 boundedness of the Cauchy
integral when

∥

∥A′∥
∥

L∞ is small enough is due to Calderón [43]. The first proof of the boundedness
of the Cauchy integral with arbitrary

∥

∥A′∥
∥

L∞ was obtained by Coifman, McIntosh, and Meyer [79].
This proof is based on an improved operator norm for the commutators

∥

∥Cm
∥

∥

L2→L2 ≤C0m4
∥

∥A′∥
∥

m
L∞ .

The quantity m4 was improved by Christ and Journé [70] to m1+δ for any δ > 0; it is announced
in Verdera [326] that Mateu and Verdera have improved this result by taking δ = 0. Another proof
of the L2 boundedness of the Cauchy integral was given by David [102] by employing the fol-
lowing bootstrapping argument: If the Cauchy integral is L2 bounded whenever

∥

∥A′∥
∥

L∞ ≤ ε , then
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it is also L2 bounded whenever
∥

∥A′∥
∥

L∞ ≤ 10
9 ε . A refinement of this bootstrapping technique was

independently obtained by Murai [241], who was also able to obtain the best possible bound for

the operator norm
∥

∥˜CΓ
∥

∥

L2→L2 ≤ C
(

1 +
∥

∥A′∥
∥

L∞
)1/2

in terms of
∥

∥A′∥
∥

L∞ . Here ˜CΓ is the operator
defined in (8.6.15). Note that the corresponding estimate for CΓ involves the power 3/2 instead of
1/2. See the book of Murai [242] for this result and a variety of topics related to the commutators
and the Cauchy integral. Two elementary proofs of the L2 boundedness of the Cauchy integral
were given by Coifman, Jones, and Semmes [77]. The first of these proofs uses complex variables
and the second a pseudo-Haar basis of L2 adapted to the accretive function 1 + iA′. A geometric
proof was given by Melnikov and Verdera [231]. Other proofs were obtained by Verdera [326]
and Tchamitchian [310]. The proof of boundedness of the Cauchy integral given in Section 8.6 is
taken from Semmes [281]. The book of Christ [67] contains an insightful exposition of many of
the preceding results and discusses connections between the Cauchy integral and analytic capacity.
The book of David and Semmes [105] presents several extensions of the results in this chapter to
singular integrals along higher-dimensional surfaces.

The T (1) theorem is applicable to many problems only after a considerable amount of work;
see, for instance, Christ [67] for the case of the Cauchy integral. A more direct approach to many
problems was given by McIntosh and Meyer [224], who replaced the function 1 by an accretive
function b and showed that any operator T with standard kernel that satisfies T (b) = T t(b) = 0
and

∥

∥MbTMb

∥

∥

W B <∞ must be L2 bounded. (Mb here is the operator given by multiplication by b.)
This theorem easily implies the boundedness of the Cauchy integral. David, Journé, and Semmes
[104] generalized this theorem even further as follows: If b1 and b2 are para-accretive functions
such that T maps b1C

∞
0 → (b2C

∞
0 )′ and is associated with a standard kernel, then T is L2 bounded

if and only if T (b1) ∈ BMO, T t(b2) ∈ BMO, and
∥

∥Mb1 TMb2

∥

∥

WB < ∞. This is called the T (b)
theorem. The article of Semmes [281] contains a different proof of this theorem in the special case
T (b) = 0 and T t(1) = 0 (Exercise 8.6.6). Our proof of Theorem 8.6.6 is based on ideas from [281].
An alternative proof of the T (b) theorem was given by Fabes, Mitrea, and Mitrea [121] based on a
lemma due to Krein [200]. Another version of the T (b) theorem that is applicable to spaces with
no Euclidean structure was obtained by Christ [66].

Theorem 8.7.1 was posed as a problem by Kato [181] for maximal accretive operators and re-
formulated by McIntosh [222], [223] for square roots of elliptic operators. The reformulation was
motivated by counterexamples found to Kato’s original abstract formulation, first by Lions [215]
for maximal accretive operators, and later by McIntosh [220] for regularly accretive ones. The
one-dimensional Kato problem and the boundeness of the Cauchy integral along Lipschitz curves
are equivalent problems as shown by Kenig and Meyer [188]. See also Auscher, McIntosh, and
Nahmod [8]. Coifman, Deng, and Meyer [73] and independently Fabes, Jerison, and Kenig [119],
[120] solved the square root problem for small peturbations of the identity matrix. This method
used multilinear expansions and can be extended to operators with smooth coefficients. McIntosh
[221] considered coefficients in Sobolev spaces, Escauriaza in VMO (unpublished), and Alexopou-
los [3] real Hölder coefficients using homogenization techniques. Peturbations of real symmetric
matrices with L∞ coefficients were treated in Auscher, Hofmann, Lewis, and Tchamitchian [10].
The solution of the two-dimensional Kato problem was obtained by Hofmann and McIntosh [164]
using a previously derived T (b) type reduction due to Auscher and Tchamitchian [9]. Hofmann,
Lacey, and McIntosh [165] extended this theorem to the case in which the heat kernel of e−tL sat-
isfies Gaussian bounds. Theorem 8.7.1 was obtained by Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian [11]; the exposition in the text is based on this reference. Combining Theorem 8.7.1
with a theorem of Lions [215], it follows that the domain of

√
L is L̇2

1(R
n) and that for functions f

in this space the equivalence of norms
∥

∥

√
L( f )

∥

∥

L2 ≈
∥

∥∇ f
∥

∥

L2 is valid.




