
Chapter 6
Smoothness and Function Spaces

In this chapter we study differentiability and smoothness of functions. There are
several ways to interpret smoothness and numerous ways to describe it and quantify
it. A fundamental fact is that smoothness can be measured and fine-tuned using
the Fourier transform, and this point of view is of great importance. In fact, the
investigation of the subject is based on this point. It is not surprising, therefore, that
Littlewood–Paley theory plays a crucial and deep role in this study.

Certain spaces of functions are introduced to serve the purpose of measuring
smoothness. The main function spaces we study are Lipschitz, Sobolev, and Hardy
spaces, although the latter measure smoothness within the realm of rough distri-
butions. Hardy spaces also serve as a substitute for Lp when p < 1. We also take
a quick look at Besov–Lipschitz and Triebel–Lizorkin spaces, which provide an
appropriate framework that unifies the scope and breadth of the subject. One of
the main achievements of this chapter is the characterization of these spaces us-
ing Littlewood–Paley theory. Another major accomplishment of this chapter is
the atomic characterization of these function spaces. This is obtained from the
Littlewood–Paley characterization of these spaces in a single way for all of them.

Before one embarks on a study of function spaces, it is important to under-
stand differentiability and smoothness in terms of the Fourier transform. This can
be achieved using the Laplacian and the potential operators and is discussed in the
first section.

6.1 Riesz Potentials, Bessel Potentials, and Fractional Integrals

Recall the Laplacian operator

Δ = ∂ 2
1 + · · ·+ ∂ 2

n ,

which may act on functions or tempered distributions. The Fourier transform of
a Schwartz function (or even a tempered distribution f ) satisfies the following
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2 6 Smoothness and Function Spaces

identity:

−̂Δ( f )(ξ ) = 4π2|ξ |2 ̂f (ξ ) .

Motivated by this identity, we replace the exponent 2 by a complex exponent z and
we define (−Δ)z/2 as the operator given by the multiplication with the function
(2π |ξ |)z on the Fourier transform. More precisely, for z ∈ C and Schwartz functions
f we define

(−Δ)z/2( f )(x) = ((2π |ξ |)z
̂f (ξ ))∨(x) . (6.1.1)

Roughly speaking, the operator (−Δ)z/2 is acting as a derivative of order z if z is
a positive integer. If z is a complex number with real part less than −n, then the
function |ξ |z is not locally integrable on Rn and so (6.1.1) may not be well defined.
For this reason, whenever we write (6.1.1), we assume that either Re z > −n or
Re z ≤ −n and that ̂f vanishes to sufficiently high order at the origin so that the
expression |ξ |z ̂f (ξ ) is locally integrable. Note that the family of operators (−Δ)z

satisfies the semigroup property

(−Δ)z(−Δ)w = (−Δ)z+w , for all z,w ∈ C,

when acting on spaces of suitable functions.
The operator (−Δ)z/2 is given by convolution with the inverse Fourier transform

of (2π)z|ξ |z. Theorem 2.4.6 gives that this inverse Fourier transform is equal to

(2π)z(|ξ |z)∨(x) = (2π)z π−
z
2

π
z+n

2

Γ ( n+z
2 )

Γ (−z
2 )

|x|−z−n . (6.1.2)

The expression in (6.1.2) is in L1
loc(R

n) only when −Rez− n > −n, that is when
Re z < 0. In general, (6.1.2) is a distribution. Thus only in the range −n < Re z < 0
are both the function |ξ |z and its inverse Fourier transform locally integrable
functions.

6.1.1 Riesz Potentials

When z is a negative real number, the operation f �→ (−Δ)z/2( f ) is not really “dif-
ferentiating” f , but “integrating” it instead. For this reason, we introduce a slightly
different notation in this case by replacing z by −s.

Definition 6.1.1. Let s be a complex number with Re s > 0. The Riesz potential of
order s is the operator

Is = (−Δ)−s/2.

Using identity (6.1.2), we see that Is is actually given in the form

Is( f )(x) = 2−sπ−
n
2
Γ ( n−s

2 )
Γ ( s

2 )

∫

Rn
f (x− y)|y|−n+s dy ,
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and the integral is convergent if f is a function in the Schwartz class.

We begin with a simple, yet interesting, remark concerning the homogeneity of
the operator Is.

Remark 6.1.2. Suppose that for s real we had an estimate
∥

∥Is f
∥

∥

Lq(Rn) ≤C(p,q,n,s)
∥

∥ f
∥

∥

Lp(Rn) (6.1.3)

for some positive indices p,q and all f ∈ Lp(Rn). Then p and q must be related by

1
p
− 1

q
=

s
n

. (6.1.4)

This follows by applying (6.1.3) to the dilation δ a( f )(x) = f (ax) of the function
f , a > 0, in lieu of f , for some fixed f , say f (x) = e−|x|2 . Indeed, replacing f by
δ a( f ) in (6.1.3) and carrying out some algebraic manipulations using the identity
Is(δ a( f )) = a−sδ a(Is( f )), we obtain

a−
n
q−s∥
∥Is( f )

∥

∥

Lq(Rn) ≤C(p,q,n,s)a−
n
p
∥

∥ f
∥

∥

Lp(Rn) . (6.1.5)

Suppose now that 1
p > 1

q + s
n . Then we can write (6.1.5) as

∥

∥Is( f )
∥

∥

Lq(Rn) ≤C(p,q,n,s)a
n
q−

n
p +s∥
∥ f
∥

∥

Lp(Rn) (6.1.6)

and let a → ∞ to obtain that Is( f ) = 0, a contradiction. Similarly, if 1
p < 1

q + s
n , we

could write (6.1.5) as

a−
n
q + n

p−s∥
∥Is( f )

∥

∥

Lq(Rn) ≤C(p,q,n,s)
∥

∥ f
∥

∥

Lp(Rn) (6.1.7)

and let a → 0 to obtain that
∥

∥ f
∥

∥

Lp =∞, again a contradiction. It follows that (6.1.4)
must necessarily hold.

We conclude that the homogeneity (or dilation structure) of an operator dictates
a relationship on the indices p and q for which it (may) map Lp to Lq.

As we saw in Remark 6.1.2, if the Riesz potentials map Lp to Lq for some p,q,
then we must have q > p. Such operators that improve the integrability of a function
are called smoothing. The importance of the Riesz potentials lies in the fact that
they are indeed smoothing operators. This is the essence of the Hardy–Littlewood–
Sobolev theorem on fractional integration, which we now formulate and prove.

Theorem 6.1.3. Let s be a real number with 0 < s < n and let 1 ≤ p < q <∞ satisfy
(6.1.4). Then there exist constants C(n,s, p) < ∞ such that for all f in Lp(Rn) we
have

∥

∥Is( f )
∥

∥

Lq ≤C(n,s, p)
∥

∥ f
∥

∥

Lp

when p > 1, and also
∥

∥Is( f )
∥

∥

Lq,∞ ≤C(n,s)
∥

∥ f
∥

∥

L1 when p = 1.
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We note that the Lp → Lq,∞ estimate in Theorem 6.1.3 is a consequence of The-
orem 1.2.13, for the kernel |x|−n+s of Is lies in the space Lr,∞ when r = n

n−s , and
(1.2.15) is satisfied for this r. Applying Theorem 1.4.19, we obtain the required
conclusion. Nevertheless, for the sake of the exposition, we choose to give another
self-contained proof of Theorem 6.1.3.

Proof. We begin by observing that the function Is( f ) is well defined whenever f
is bounded and has some decay at infinity. This makes the operator Is well defined
on a dense subclass of all the Lp spaces with p < ∞. Second, we may assume that
f ≥ 0, since |Is( f )| ≤ Is(| f |).

Under these assumptions we write the convolution
∫

Rn
f (x− y)|y|s−n dy = J1( f )(x)+ J2( f )(x),

where, in the spirit of interpolation, J1 and J2 are defined by

J1( f )(x) =
∫

|y|<R
f (x− y)|y|s−n dy,

J2( f )(x) =
∫

|y|≥R
f (x− y)|y|s−n dy,

for some R to be determined later. Observe that J1 is given by convolution with the
function |y|−n+sχ|y|<R(y), which is radial, integrable, and symmetrically decreasing
about the origin. It follows from Theorem 2.1.10 that

J1( f )(x) ≤ M( f )(x)
∫

|y|<R
|y|−n+s dy =

ωn−1

s
RsM( f )(x), (6.1.8)

where M is the Hardy–Littlewood maximal function. Now Hölder’s inequality gives
that

|J2( f )(x)| ≤
(
∫

|y|≥R
(|y|−n+s)p′ dy

) 1
p′ ∥
∥ f
∥

∥

Lp(Rn)

=
(

qωn−1

p′n

) 1
p′

R− n
q
∥

∥ f
∥

∥

Lp(Rn),

(6.1.9)

and note that this estimate is also valid when p = 1 (in which case q = n
n−s ), provided

the Lp′ norm is interpreted as the L∞ norm and the constant
( qωn−1

p′n

) 1
p′ is replaced

by 1. Combining (6.1.8) and (6.1.9), we obtain that

Is( f )(x) ≤C′
n,s,p

(

RsM( f )(x)+ R− n
q
∥

∥ f
∥

∥

Lp

)

(6.1.10)

for all R > 0. A constant multiple of the quantity

R =
∥

∥ f
∥

∥

p
n
Lp

(

M( f )(x)
)− p

n
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minimizes the expression on the right in (6.1.10). This choice of R yields the esti-
mate

Is( f )(x) ≤Cn,s,p M( f )(x)
p
q
∥

∥ f
∥

∥

1− p
q

Lp . (6.1.11)

The required inequality for p > 1 follows by raising to the power q, integrating over
Rn, and using the boundedness of the Hardy–Littlewood maximal operator M on
Lp(Rn). The case p = 1, q = n

n−s also follows from (6.1.11) by the weak type (1,1)
property of M. Indeed,

∣

∣{Cn,s,1M( f )
n−s

n
∥

∥ f
∥

∥

s
n
L1 > λ}

∣

∣ =
∣

∣

∣

{

M( f ) >

(

λ

Cn,s,1
∥

∥ f
∥

∥

s
n
L1

) n
n−s}∣

∣

∣

≤ 3n
(

Cn,s,1
∥

∥ f
∥

∥

s
n
L1

λ

) n
n−s∥
∥ f
∥

∥

L1

= C(n,s)
(
∥

∥ f
∥

∥

L1

λ

) n
n−s

.

We now give an alternative proof of the case p = 1 that corresponds to q = n
n−s .

Without loss of generality we may assume that f ≥ 0 has L1 norm 1. Once this case
is proved, the general case follows by scaling. Observe that

∫

Rn
f (x− y)|y|s−n dy ≤ ∑

j∈Z
2( j−1)(s−n)

∫

|y|≤2 j
f (x− y)dy . (6.1.12)

Let Eλ = {x : Is( f )(x) > λ}. Then

|Eλ | ≤
1
λ

∫

Eλ
Is( f )(x)dx

=
1
λ

∫

Eλ

∫

Rn
|y|s−n f (x− y)dydx

≤ 1
λ

∫

Eλ
∑
j∈Z

2( j−1)(s−n)
∫

|y|≤2 j
f (x− y)dydx

=
1
λ ∑j∈Z

2( j−1)(s−n)
∫

Eλ

∫

|y|≤2 j
f (x− y)dydx

≤ 1
λ ∑j∈Z

2( j−1)(s−n) min(|Eλ |,vn2 jn)

=
1
λ ∑

2 j>|Eλ |
1
n

2( j−1)(s−n)|Eλ |+
vn

λ ∑
2 j≤|Eλ |

1
n

2( j−1)(s−n)2 jn

≤ C
λ
(

|Eλ |
s−n

n |Eλ |+ |Eλ |
s
n
)

=
2C
λ

|Eλ |
s
n .

(6.1.13)
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It follows that |Eλ |
n−s

n ≤ 2C
λ , which implies the weak type (1, n

n−s) estimate for Is.
Here C is a constant that depends on n and s. �

6.1.2 Bessel Potentials

While the behavior of the kernels |x|−n+s as |x| → 0 is well suited to their smooth-
ing properties, their decay as |x| → ∞ gets worse as s increases. We can slightly
adjust the Riesz potentials so that we maintain their essential behavior near zero but
achieve exponential decay at infinity. The simplest way to achieve this is by replac-
ing the “nonnegative” operator −Δ by the “strictly positive” operator I −Δ . Here
the terms nonnegative and strictly positive, as one may have surmised, refer to the
Fourier multipliers of these operators.

Definition 6.1.4. Let s be a complex number with 0 < Res <∞. The Bessel potential
of order s is the operator

Js = (I −Δ)−s/2,

whose action on functions is given by

Js( f ) =
(

̂f ̂Gs
)∨ = f ∗Gs ,

where
Gs(x) =

(

(1 + 4π2|ξ |2)−s/2)∨(x) .

Let us see why this adjustment yields exponential decay for Gs at infinity.

Proposition 6.1.5. Let s > 0. Then Gs is a smooth function on Rn \ {0} that sat-
isfies Gs(x) > 0 for all x ∈ Rn. Moreover, there exist positive finite constants
C(s,n),c(s,n),Cs,n such that

Gs(x) ≤C(s,n)e−
|x|
2 , when |x| ≥ 2, (6.1.14)

and such that

1
c(s,n)

≤ Gs(x)
Hs(x)

≤ c(s,n) , when |x| ≤ 2,

where Hs is equal to

Hs(x) =

⎧

⎪

⎨

⎪

⎩

|x|s−n + 1 + O(|x|s−n+2) for 0 < s < n,

log 2
|x| + 1 + O(|x|2) for s = n,

1 + O(|x|s−n) for s > n,

and O(t) is a function with the property |O(t)| ≤Cs,n|t| for 0 ≤ t ≤ 4.
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Proof. For A,s > 0 we have the gamma function identity

A− s
2 =

1
Γ ( s

2 )

∫ ∞

0
e−tAt

s
2

dt
t

,

which we use to obtain

(1 + 4π2|ξ |2)− s
2 =

1
Γ ( s

2 )

∫ ∞

0
e−t e−π |2

√
πt ξ |2 t

s
2

dt
t

.

Note that the previous integral converges at both ends. Now take the inverse Fourier
transform in ξ and use the fact that the function e−π |ξ |

2
is equal to its Fourier trans-

form (Example 2.2.9) to obtain

Gs(x) =
(2
√
π )−n

Γ ( s
2)

∫ ∞

0
e−te−

|x|2
4t t

s−n
2

dt
t

.

This proves that Gs(x) > 0 for all x ∈ Rn and that Gs is smooth on Rn \ {0}. Now

suppose |x| ≥ 2. Then t + |x|2
4t ≥ t + 1

t and also t + |x|2
4t ≥ |x|. This implies that

−t − |x|2
4t

≤− t
2
− 1

2t
− |x|

2
,

from which it follows that when |x| ≥ 2,

|Gs(x)| ≤
(2
√
π )−n

Γ ( s
2 )

(
∫ ∞

0
e−

t
2 e−

1
2t t

s−n
2

dt
t

)

e−
|x|
2 = Cs,ne−

|x|
2 .

This proves (6.1.14).
Suppose now that |x| ≤ 2. Write Gs(x) = G1

s (x)+ G2
s (x)+ G3

s (x), where

G1
s (x) =

(2
√
π )−n

Γ ( s
2 )

∫ |x|2

0
e−t′e−

|x|2
4t′ (t ′)

s−n
2

dt ′

t ′

= |x|s−n (2
√
π )−n

Γ ( s
2)

∫ 1

0
e−t|x|2 e−

1
4t t

s−n
2

dt
t

,

G2
s (x) =

(2
√
π )−n

Γ ( s
2 )

∫ 4

|x|2
e−te−

|x|2
4t t

s−n
2

dt
t

,

G3
s (x) =

(2
√
π )−n

Γ ( s
2 )

∫ ∞

4
e−t e−

|x|2
4t t

s−n
2

dt
t

.

In G1
s we have e−t|x|2 = 1 + O(t|x|2), since t|x|2 ≤ 4; thus we can write

G1
s (x) = |x|s−n (2

√
π )−n

Γ ( s
2 )

∫ 1

0
e−

1
4t t

s−n
2

dt
t

+
O(|x|s−n+2)
Γ ( s

2 )

∫ 1

0
e−

1
4t t

s−n
2 dt

= c1
s,n|x|s−n + O(|x|s−n+2) as |x| → 0.
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Since 0 ≤ |x|2
4t ≤ 1

4 and 0 ≤ t ≤ 4 in G2
s , we have e−

17
4 ≤ e−t− |x|2

4t ≤ 1; thus as |x| → 0
we obtain

G2
s (x) ≈

∫ 4

|x|2
t

s−n
2

dt
t

=

⎧

⎪

⎨

⎪

⎩

2
n−s |x|s−n − 2s−n+1

n−s for s < n,

2 log 2
|x| for s = n,

1
s−n 2s−n+1 − 2

s−n |x|s−n for s > n.

Finally, we have e−
1
4 ≤ e−

|x|2
4t ≤ 1 in G3

s , which yields that G3
s (x) is bounded above

and below by fixed positive constants. Combining the estimates for G1
s (x), G2

s (x),
and G3

s (x), we obtain the required conclusion. �

We end this section with a result analogous to that of Theorem 6.1.3 for the
operator Js.

Corollary 6.1.6. (a) For all 0 < s < ∞, the operator Js maps Lr(Rn) to itself with
norm 1 for all 1 ≤ r ≤ ∞.
(b) Let 0 < s < n and 1 ≤ p < q < ∞ satisfy (6.1.4). Then there exist constants
Cp,q,n,s < ∞ such that for all f in Lp(Rn) with p > 1 we have

∥

∥Js( f )
∥

∥

Lq ≤Cp,q,n,s
∥

∥ f
∥

∥

Lp

and also
∥

∥Js( f )
∥

∥

Lq,∞ ≤C1,q,n,s
∥

∥ f
∥

∥

L1 when p = 1.

Proof. (a) Since ̂Gs(0) = 1 and Gs > 0, it follows that Gs has L1 norm 1. The oper-
ator Js is given by convolution with the positive function Gs, which has L1 norm
1; thus it maps Lr(Rn) to itself with norm 1 for all 1 ≤ r ≤ ∞ (see Exercise 1.2.9).
(b) In the special case 0 < s < n we have that the kernel Gs of Js satisfies

Gs(x) ≈
{

|x|−n+s when |x| ≤ 2,

e−
|x|
2 when |x| ≥ 2.

Then we can write

Js( f )(x) ≤ Cn,s

[
∫

|y|≤2
| f (x− y)| |y|−n+s dy +

∫

|y|≥2
| f (x− y)|e−

|y|
2 dy

]

≤ Cn,s

[

Is(| f |)(x)+
∫

Rn
| f (x− y)|e−

|y|
2 dy

]

.

We now use that the function y �→ e−|y|/2 is in Lr for all r < ∞, Theorem 1.2.12
(Young’s inequality), and Theorem 6.1.3 to complete the proof of the corollary. �
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Exercises

6.1.1. (a) Let 0 < s,t < ∞ be such that s+ t < n. Show that IsIt = Is+t .
(b) Prove the operator identities

Is(−Δ)z = (−Δ)zIs = Is−2z = (−Δ)z− s
2

whenever Res > 2Rez.
(c) Prove that for all z ∈ C we have

〈

(−Δ)z( f ) |(−Δ)−z(g)
〉

=
〈

f |g
〉

whenever the Fourier transforms of f and g vanish to sufficiently high order at the
origin.
(d) Given Re s > 0, find an α ∈ C such that the identity

〈

Is( f ) | f
〉

=
∥

∥(−Δ)α( f )
∥

∥

2
L2

is valid for all functions f as in part (c).

6.1.2. Use Exercise 2.2.14 to prove that for −∞< α < n/2 < β < ∞ we have

∥

∥ f
∥

∥

L∞(Rn) ≤C
∥

∥Δα/2( f )
∥

∥

β−n/2
β−α

L2(Rn)

∥

∥Δβ/2( f )
∥

∥

n/2−α
β−α

L2(Rn) ,

where C depends only on α,n,β .

6.1.3. Show that when 0 < s < n we have

sup
‖ f‖L1(Rn)=1

∥

∥Is( f )
∥

∥

L
n

n−s (Rn)
= sup

‖ f‖L1(Rn)=1

∥

∥Js( f )
∥

∥

L
n

n−s (Rn)
= ∞ .

Thus Is and Js are not of strong type (1, n
n−s).

[

Hint: Consider an approximate identity.
]

6.1.4. Let 0 < s < n. Consider the function h(x)= |x|−s(log 1
|x| )

− s
n (1+δ ) for |x| ≤ 1/e

and zero otherwise. Prove that when 0 < δ < n−s
s we have h ∈ L

n
s (Rn) but that

limx→0 Is(h)(x) = ∞. Conclude that Is does not map L
n
s (Rn) to L∞(Rn).

6.1.5. For 1 ≤ p ≤ ∞ and 0 < s < ∞ define the Bessel potential space L p
s (Rn) as

the space of all functions f ∈ Lp(Rn) for which there exists another function f0 in
Lp(Rn) such that Js( f0) = f . Define a norm on these spaces by setting

∥

∥ f
∥

∥

L
p

s
=

∥

∥ f0
∥

∥

Lp . Prove the following properties of these spaces:
(a)
∥

∥ f
∥

∥

Lp ≤
∥

∥ f
∥

∥

L p
s

; hence L p
s (Rn) is a subspace of Lp(Rn).

(b) For all 0 < t,s < ∞ we have Gs ∗Gt = Gs+t and thus

L p
s (Rn)∗L q

t (Rn) ⊆ L r
s+t(R

n) ,



10 6 Smoothness and Function Spaces

where 1 ≤ p,q,r ≤ ∞ and 1
p + 1

q = 1
r + 1.

(c) The sequence of norms
∥

∥ f
∥

∥

L p
s

increases, and therefore the spaces L p
s (Rn) de-

crease as s increases.
(d) The map It is an isomorphism from the space L p

s (Rn) onto L p
s+t(R

n).
[

Note: Note that the Bessel potential space L p
s (Rn) coincides with the Sobolev

space Lp
s (Rn), introduced in Section 6.2.

]

6.1.6. For 0 ≤ s < n define the fractional maximal function

Ms( f )(x) = sup
t>0

1

(vntn)
n−s

n

∫

|y|≤t
| f (x− y)|dy ,

where vn is the volume of the unit ball in Rn.
(a) Show that for some constant C we have

Ms( f ) ≤C Is( f )

for all f ≥ 0 and conclude that Ms maps Lp to Lq whenever Is does.
(b) (Adams [1] ) Let s > 0, 1 < p < n

s , 1 ≤ q ≤∞ be such that 1
r = 1

p −
s
n + sp

nq . Show
that there is a constant C > 0 (depending on the previous parameters) such that for
all positive functions f we have

∥

∥Is( f )
∥

∥

Lr ≤C
∥

∥Mn/p( f )
∥

∥

sp
n

Lq

∥

∥ f
∥

∥

1− sp
n

Lp .

[

Hint: For f �= 0, write Is( f ) = I1 + I2, where

I1 =
∫

|x−y|≤δ
f (y) |y|s−n dy , I2 =

∫

|x−y|>δ
f (y) |y|s−n dy .

Show that I1 ≤Cδ sM0( f ) and that I2( f ) ≤Cδ s− n
p Mn/p( f ). Optimize over δ > 0 to

obtain
Is( f ) ≤CMn/p( f )

sp
n M0( f )1− sp

n ,

from which the required conclusion follows easily.
]

6.1.7. Suppose that a function K defined on Rn satisfies |K(y)| ≤C(1+ |y|)−s+n−ε,
where 0 < s < n and 0 < C,ε < ∞. Prove that the maximal operator

sup
t>0

t−n+s

∣

∣

∣

∣

∫

Rn
f (x− y)K(y/t)dy

∣

∣

∣

∣

maps Lp(Rn) to Lq(Rn) whenever Is maps Lp(Rn) to Lq(Rn).
[

Hint: Control this operator by the maximal function Ms of Exercise 6.1.6.
]

6.1.8. Let 0 < s < n. Use the following steps to obtain a simpler proof of Theorem
6.1.3 based on more delicate interpolation.
(a) Prove that

∥

∥Is(χE)
∥

∥

L∞ ≤ |E| s
n for any set E of finite measure.

(b) For any two sets E and F of finite measure show that
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∫

F
|Is(χE)(x)|dx ≤ |E| |F | s

n .

(c) Use Exercise 1.1.12 to obtain that
∥

∥Is(χE)
∥

∥

L
n

n−s ,∞ ≤Cns|E| .

(d) Use parts (a), (c), and Theorem 1.4.19 to obtain another proof of Theorem 6.1.3.
[

Hint: Parts (a) and (b): Use that when λ > 0, the integral
∫

E |y|−λ dy becomes
largest when E is a ball centered at the origin equimeasurable to E .

]

6.1.9. (Welland [329] ) Let 0 < α < n and suppose 0 < ε < min(α,n−α). Show
that there exists a constant depending only on α,ε , and n such that for all compactly
supported bounded functions f we have

|Iα( f )| ≤C
√

Mα−ε ( f )Mα+ε ( f ) ,

where Mβ ( f ) is the fractional maximal function of Exercise 6.1.6.
[

Hint: Write

|Iα( f )| ≤
∫

|x−y|<s

| f (y)|dy
|x− y|n−α +

∫

|x−y|≥s

| f (y)|dy
|x− y|n−α

and split each integral into a sum of integrals over annuli centered at x to obtain the
estimate

|Iα( f )| ≤C
(

sεMα−ε( f )+ s−εMα+ε ( f )
)

.

Then optimize over s.
]

6.1.10. Show that the discrete fractional integral operator

{a j} j∈Zn →
{

∑
k∈Zn

ak

(| j− k|+ 1)n−α

}

j∈Zn

maps �s(Zn) to �t(Zn) when 0 < α < n, 1 < s < t, and

1
s
− 1

t
=
α
n

.

6.1.11. Show that the bilinear operator

Bα( f ,g)(x) =
∫

Rn

∫

Rn
f (y)g(z)(|x− y|+ |x− z|)−2n+α dydz

maps Lp(Rn)×Lq(Rn) to Lr(Rn) when 1 < p,q < ∞ and

1
p

+
1
q

=
α
n

+
1
r

.

[

Hint: Control Bα( f ,g) by the product of two fractional integrals.
]
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6.1.12. (Grafakos and Kalton [148]/Kenig and Stein [189] ) (a) Prove that the bi-
linear operator

S( f ,g)(x) =
∫

|t|≤1
| f (x + t)g(x− t)|dt

maps L1(Rn)×L1(Rn) to L
1
2 (Rn).

(b) For 0 < α < n prove that the bilinear fractional integral operator

Iα( f ,g)(x) =
∫

Rn
f (x + t)g(x− t)|t|−n+α dt

maps L1(Rn)×L1(Rn) to L
n

2n−α ,∞(Rn).
[

Hint: Part (a): Write f =∑k∈Zn fk, where each fk is supported in the cube k+[0,1]n

and similarly for g. Observe that the resulting double sum reduces to a single sum

and use that (∑ j a j)1/2 ≤ ∑ j a1/2
j for a j ≥ 0. Part (b): Use part (a) and adjust the

argument in (6.1.13) to a bilinear setting.
]

6.2 Sobolev Spaces

In this section we study a quantitative way of measuring smoothness of functions.
Sobolev spaces serve exactly this purpose. They measure the smoothness of a given
function in terms of the integrability of its derivatives. We begin with the classical
definition of Sobolev spaces.

Definition 6.2.1. Let k be a nonnegative integer and let 1 < p < ∞. The Sobolev
space Lp

k (Rn) is defined as the space of functions f in Lp(Rn) all of whose distribu-
tional derivatives ∂α f are also in Lp(Rn) for all multi-indices α that satisfy |α| ≤ k.
This space is normed by the expression

∥

∥ f
∥

∥

Lp
k
= ∑

|α |≤k

∥

∥∂α f
∥

∥

Lp , (6.2.1)

where ∂ (0,...,0) f = f .

Sobolev spaces measure smoothness of functions. The index k indicates the “de-
gree” of smoothness of a given function in Lp

k . As k increases the functions become
smoother. Equivalently, these spaces form a decreasing sequence

Lp ⊃ Lp
1 ⊃ Lp

2 ⊃ Lp
3 ⊃ ·· · ,

meaning that each Lp
k+1(R

n) is a subspace of Lp
k (Rn). This property, which coincides

with our intuition of smoothness, is a consequence of the definition of the Sobolev
norms.

We next observe that the space Lp
k (Rn) is complete. Indeed, if f j is a Cauchy

sequence in the norm given by (6.2.1), then {∂α f j} j are Cauchy sequences for all
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|α| ≤ k. By the completeness of Lp, there exist functions fα such that ∂α f j → fα in
Lp. This implies that for all ϕ in the Schwartz class we have

(−1)|α |
∫

Rn
f j (∂αϕ)dx =

∫

Rn
(∂α f j)ϕ dx →

∫

Rn
fα ϕ dx.

Since the first expression converges to

(−1)|α |
∫

Rn
f0 (∂αϕ)dx ,

it follows that the distributional derivative ∂α f0 is fα . This implies that f j → f0 in
Lp

k (Rn) and proves the completeness of this space.
Our goal in this section is to investigate relations between these spaces and

the Riesz and Bessel potentials discussed in the previous section and to obtain a
Littlewood–Paley characterization of them. Before we embark on this study, we
note that we can extend the definition of Sobolev spaces to the case in which the
index k is not necessarily an integer. In fact, we extend the definition of the spaces
Lp

k (Rn) to the case in which the number k is real.

6.2.1 Definition and Basic Properties of General Sobolev Spaces

Definition 6.2.2. Let s be a real number and let 1 < p < ∞. The inhomogeneous
Sobolev space Lp

s (Rn) is defined as the space of all tempered distributions u in
S ′(Rn) with the property that

((1 + |ξ |2) s
2 û)∨ (6.2.2)

is an element of Lp(Rn). For such distributions u we define

∥

∥u
∥

∥

Lp
s
=
∥

∥((1 + | · |2) s
2 û)∨

∥

∥

Lp(Rn) .

Note that the function (1 + |ξ |2) s
2 is C ∞ and has at most polynomial growth at

infinity. Since û ∈ S ′(Rn), the product in (6.2.2) is well defined.

Several observations are in order. First, we note that when s = 0, Lp
s = Lp. It is

natural to ask whether elements of Lp
s are always Lp functions. We show that this is

the case when s ≥ 0 but not when s < 0. We also show that the space Lp
s coincides

with the space Lp
k given in Definition 6.2.1 when s = k and k is an integer.

To prove that elements of Lp
s are indeed Lp functions when s ≥ 0, we simply note

that if fs = ((1 + |ξ |2)s/2
̂f )∨, then

f =
(

̂fs(ξ )̂Gs(ξ/2π)
)∨ = fs ∗ (2π)n Gs(2π(·)) ,
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where Gs is given in Definition 6.1.4. Thus a certain dilation of f can be expressed
as the Bessel potential of itself; hence Corollary 6.1.6 yields that

c−1
∥

∥ f
∥

∥

Lp ≤
∥

∥ fs
∥

∥

Lp =
∥

∥ f
∥

∥

Lp
s
,

for some constant c.
We now prove that if s = k is a nonnegative integer and 1 < p <∞, then the norm

of the space Lp
k as given in Definition 6.2.1 is comparable to that in Definition 6.2.2.

Suppose that f ∈ Lp
k according to Definition 6.2.2. Then for all |α| ≤ k we have

∂α f = cα(̂f (ξ )ξα)∨ = cα

(

̂f (ξ )(1 + |ξ |2) k
2

ξα

(1 + |ξ |2) k
2

)∨
. (6.2.3)

Theorem 5.2.7 gives that the function

ξα

(1 + |ξ |2)k/2

is an Lp multiplier. Since by assumption
(

̂f (ξ )(1+ |ξ |2) k
2
)∨

is in Lp(Rn), it follows
from (6.2.3) that ∂α f is in Lp and also that

∑
|α |≤k

∥

∥∂α f
∥

∥

Lp ≤Cp,n,k
∥

∥((1 + | · |2) k
2 ̂f )∨

∥

∥

Lp .

Conversely, suppose that f ∈ Lp
k according to Definition 6.2.1; then

(1 + ξ 2
1 + · · ·+ ξ 2

n )
k
2 = ∑

|α |≤k

k!
α1! · · ·αn!(k−|α|)! ξ

α ξα

(1 + |ξ |2) k
2

.

As we have already observed, the functions mα(ξ ) = ξα(1 + |ξ |2)− k
2 are Lp multi-

pliers whenever |α| ≤ k. Since

(

(1 + |ξ |2) k
2 ̂f
)∨ = ∑

|α |≤k

cα ,k
(

mα(ξ )ξα ̂f
)∨ = ∑

|α |≤k

c′α ,k

(

mα(ξ )̂∂α f
)∨

,

it follows that
∥

∥(̂f (ξ )(1 + |ξ |2) k
2 )∨
∥

∥

Lp ≤Cp,n,k ∑
|γ|≤k

∥

∥(̂f (ξ )ξ γ)∨
∥

∥

Lp .

Example 6.2.3. Every Schwartz function lies in Lp
s (Rn) for s real. Sobolev spaces

with negative indices s can indeed contain tempered distributions that are not lo-
cally integrable functions. For example, Dirac mass at the origin δ0 is an element of
Lp
−s(R

n) for all s > n/p′. Indeed, when 0 < s < n, Proposition 6.1.5 gives that Gs

[i.e., the inverse Fourier transform of (1 + |ξ |2)− s
2 ] is integrable to the power p as
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long as (s−n)p > −n (i.e., s > n/p′). When s ≥ n, Gs is integrable to any positive
power.

We now continue with the Sobolev embedding theorem.

Theorem 6.2.4. (a) Let 0 < s < n
p and 1 < p < ∞. Then the Sobolev space Lp

s (Rn)
continuously embeds in Lq(Rn) when

1
p
− 1

q
=

s
n

.

(b) Let 0 < s = n
p and 1 < p < ∞. Then Lp

s (Rn) continuously embeds in Lq(Rn) for
any n

s < q < ∞.
(c) Let n

p < s < ∞ and 1 < p < ∞. Then every element of Lp
s (Rn) can be modified

on a set of measure zero so that the resulting function is bounded and uniformly
continuous.

Proof. (a) If f ∈ Lp
s , then fs(x) = ((1 + |ξ |2) s

2 ̂f )∨(x) is in Lp(Rn). Thus

f (x) = ((1 + |ξ |2)− s
2 ̂fs )∨(x) ;

hence f = Gs ∗ fs. Since s < n, Proposition 6.1.5 gives that

|Gs(x)| ≤Cs,n|x|s−n

for all x ∈ Rn. This implies that | f | = |Gs ∗ fs| ≤ Cs,nIs(| fs|). Theorem 6.1.3 now
yields the required conclusion

∥

∥ f
∥

∥

Lq ≤C′
s,n

∥

∥Is(| fs|)
∥

∥

Lq ≤C′′
s,n

∥

∥ f
∥

∥

Lp
s
.

(b) Given any n
s < q < ∞ we can find t > 1 such that

1 +
1
q

=
s
n

+
1
t

=
1
p

+
1
t

.

Then 1 < s
n + 1

t , which implies that (−n+s)t >−n. Thus the function |x|−n+sχ|x|≤2
is integrable to the tth power, which implies that Gs is in Lt . Since f = Gs ∗ fs,
Young’s inequality gives that

∥

∥ f
∥

∥

Lq(Rn) ≤
∥

∥ fs
∥

∥

Lp(Rn)

∥

∥Gs
∥

∥

Lt(Rn) = Cn,s
∥

∥ f
∥

∥

Lp
n/p

.

(c) As before, f = Gs ∗ fs. If s ≥ n, then Proposition 6.1.5 gives that the function
Gs is in Lp′(Rn). Now if n > s, then Gs(x) looks like |x|−n+s near zero. This function
is integrable to the power p′ near the origin if and only if s > n/p, which is what
we are assuming. Thus f is given as the convolution of an Lp function and an Lp′

function, and hence it is bounded and can be identified with a uniformly continuous
function (cf. Exercise 1.2.3). �
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We now introduce the homogeneous Sobolev spaces L̇p
s . The main difference

with the inhomogeneous spaces Lp
s is that elements of L̇p

s may not themselves be
elements of Lp. Another difference is that elements of homogeneous Sobolev spaces
are not tempered distributions but equivalence classes of tempered distributions.

We would expect the homogeneous Sobolev space L̇p
s to be the space of all dis-

tributions u in S ′(Rn) for which the expression

(|ξ |sû)∨ (6.2.4)

is an Lp function. Since the function |ξ |s is not (always) smooth at the origin, some
care is needed in defining the product in (6.2.4). The idea is that when u lies in
S ′/P , then the value of û at the origin is irrelevant, since we may add to û a
distribution supported at the origin and obtain another element of the equivalence
class of u (Proposition 2.4.1). It is because of this irrelevance that we are allowed
to multiply û by a function that may be nonsmooth at the origin (and which has
polynomial growth at infinity).

To do this, we fix a smooth function η(ξ ) on Rn that is equal to 1 when |ξ | ≥ 2
and vanishes when |ξ | ≤ 1. Then for s ∈ R, u ∈ S ′(Rn)/P , and ϕ ∈ S (Rn) we
define

〈

|ξ |sû,ϕ
〉

= lim
ε→0

〈

û,η( ξε )|ξ |
sϕ(ξ )

〉

,

provided that the last limit exists. Note that this defines |ξ |sû as another element of
S ′/P , and this definition is independent of the function η , as follows easily from
(2.3.23).

Definition 6.2.5. Let s be a real number and let 1 < p < ∞. The homogeneous
Sobolev space L̇p

s (Rn) is defined as the space of all tempered distributions modulo
polynomials u in S ′(Rn)/P for which the expression

(|ξ |sû)∨

exists and is an Lp(Rn) function. For distributions u in L̇p
s (Rn) we define

∥

∥u
∥

∥

L̇p
s

=
∥

∥(| · |sû)∨
∥

∥

Lp(Rn) . (6.2.5)

As noted earlier, to avoid working with equivalence classes of functions, we iden-
tify two distributions in L̇p

s (Rn) whose difference is a polynomial. In view of this
identification, the quantity in (6.2.5) is a norm.

6.2.2 Littlewood–Paley Characterization of Inhomogeneous
Sobolev Spaces

We now present the first main result of this section, the characterization of the inho-
mogeneous Sobolev spaces using Littlewood–Paley theory.
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For the purposes of the next theorem we need the following setup. We fix a radial
Schwartz functionΨ on Rn whose Fourier transform is nonnegative, supported in
the annulus 1− 1

7 ≤ |ξ | ≤ 2, equal to 1 on the smaller annulus 1 ≤ |ξ | ≤ 2− 2
7 , and

satisfies ̂Ψ(ξ )+ ̂Ψ(ξ/2) = 1 on the annulus 1 ≤ |ξ | ≤ 4− 4
7 . This function has the

property

∑
j∈Z

̂Ψ(2− jξ ) = 1 (6.2.6)

for all ξ �= 0. We define the associated Littlewood–Paley operators Δ j given by
multiplication on the Fourier transform side by the function ̂Ψ (2− jξ ), that is,

Δ j( f ) = ΔΨj ( f ) =Ψ2− j ∗ f . (6.2.7)

Notice that the support properties of the Δ j’s yield the simple identity

Δ j =
(

Δ j−1 +Δ j +Δ j+1
)

Δ j

for all j ∈ Z. We also define a Schwartz function Φ so that

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.
(6.2.8)

Note that ̂Φ(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 , vanishes when |ξ | ≥ 2, and satisfies

̂Φ(ξ )+
∞

∑
j=1

̂Ψ (2− jξ ) = 1 (6.2.9)

for all ξ in Rn. We now introduce an operator S0 by setting

S0( f ) =Φ ∗ f . (6.2.10)

Identity (6.2.9) yields the operator identity

S0 +
∞

∑
j=1

Δ j = I ,

in which the series converges in S ′(Rn); see Exercise 2.3.12. (Note that S0( f ) and
Δ j( f ) are well defined functions when f is a tempered distribution.)

Having introduced the relevant background, we are now ready to state and prove
the following result.

Theorem 6.2.6. Let Φ ,Ψ satisfy (6.2.6) and (6.2.8) and let Δ j , S0 be as in (6.2.7)
and (6.2.10). Fix s ∈ R and all 1 < p < ∞. Then there exists a constant C1 that
depends only on n,s, p, Φ , andΨ such that for all f ∈ Lp

s we have

∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
≤C1

∥

∥ f
∥

∥

Lp
s
. (6.2.11)
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Conversely, there exists a constant C2 that depends on the parameters n,s, p,Φ , and
Ψ such that every tempered distribution f that satisfies

∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
< ∞

is an element of the Sobolev space Lp
s with norm

∥

∥ f
∥

∥

Lp
s
≤C2

(

∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp

)

. (6.2.12)

Proof. We denote by C a generic constant that depends on the parameters n,s, p,Φ ,
andΨ and that may vary in different occurrences. For a given tempered distribution
f we define another tempered distribution fs by setting

fs =
(

(1 + | · |2) s
2 ̂f
)∨

,

so that we have
∥

∥ f
∥

∥

Lp
s

=
∥

∥ fs
∥

∥

Lp if f ∈ Lp
s .

We first assume that the expression on the right in (6.2.12) is finite and we show
that the tempered distribution f lies in the space Lp

s by controlling the Lp norm of
fs by a multiple of this expression. We begin by writing

fs =
(

̂Φ ̂fs
)∨ +

(

(1− ̂Φ) ̂fs
)∨

,

and we plan to show that both quantities on the right are in Lp. Pick a smooth
function with compact support η0 that is equal to 1 on the support of ̂Φ . It is a
simple fact that for all s ∈ R the function (1 + |ξ |2) s

2η0(ξ ) is in Mp(Rn) (i.e., it is
an Lp Fourier multiplier). Since

(

̂Φ ̂fs
)∨(x) =

{(

(1 + |ξ |2) s
2η0(ξ )

)

̂S0( f )(ξ )
}∨(x) , (6.2.13)

we have the estimate
∥

∥

(

̂Φ ̂fs
)∨∥
∥

Lp ≤C‖S0( f )‖Lp . (6.2.14)

We now introduce a smooth function η∞ that vanishes in a neighborhood of the
origin and is equal to 1 on the support of 1− ̂Φ . Using Theorem 5.2.7, we can easily
see that the function

(1 + |ξ |2) s
2

|ξ |s η∞(ξ )

is in Mp(Rn) (with constant depending on n, p, η∞, and s). Since

(

(1 + |ξ |2) s
2 (1− ̂Φ(ξ )) ̂f

)∨(x) =
( (1 + |ξ |2) s

2η∞(ξ )
|ξ |s |ξ |s(1− ̂Φ(ξ )) ̂f

)∨
(x) ,

we obtain the estimate
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∥

∥

(

(1− ̂Φ) ̂fs
)∨∥
∥

Lp ≤C
∥

∥ f∞
∥

∥

Lp , (6.2.15)

where f∞ is another tempered distribution defined via

f∞ =
(

|ξ |s(1− ̂Φ(ξ )) ̂f
)∨

.

We are going to show that the quantity
∥

∥ f∞
∥

∥

Lp is finite using Littlewood–Paley

theory. To achieve this, we introduce a smooth bump ̂ζ supported in the annulus
1
2 ≤ |ξ | ≤ 4 and equal to 1 on the support of ̂Ψ . Then we define ̂θ (ξ ) = |ξ |ŝζ (ξ )
and we introduce Littlewood–Paley operators

Δθj (g) = g ∗θ2− j ,

where θ2− j (t) = 2 jnθ (2 jt). Recalling that

1− ̂Φ(ξ ) = ∑
k≥1

̂Ψ(2−kξ ) ,

we obtain that

̂f∞ =
∞

∑
j=1

|ξ |s ̂Ψ(2− jξ )̂ζ (2− jξ )̂f =
∞

∑
j=1

2 js
̂Ψ(2− jξ )̂θ (2− jξ )̂f

and hence

f∞ =
∞

∑
j=1
Δθj (2 jsΔ j( f )) .

Using estimate (5.1.20), we obtain

∥

∥ f∞
∥

∥

Lp ≤C
∥

∥

(

∞

∑
j=1

|2 jsΔ j( f )|2
) 1

2
∥

∥

Lp < ∞ . (6.2.16)

Combining (6.2.14), (6.2.15), and (6.2.16), we deduce the estimate in (6.2.12). (In-
cidentally, this argument shows that f∞ is a function.)

To obtain the converse inequality (6.2.11) we essentially have to reverse our
steps. Here we assume that f ∈ Lp

s and we show the validity of (6.2.11). First, we
have the estimate

∥

∥S0( f )
∥

∥

Lp ≤C
∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

Lp
s
, (6.2.17)

since we can obtain the Fourier transform of S0( f ) =Φ ∗ f by multiplying ̂fs by the
Lp Fourier multiplier (1 + |ξ |2)− s

2 ̂Φ(ξ ). Second, setting σ̂(ξ ) = |ξ |−s
̂Ψ(ξ ) and

letting Δσj be the Littlewood–Paley operator associated with the bump σ̂(2− jξ ), we
have

2 js
̂Ψ(2− jξ )̂f = σ̂(2− jξ )|ξ |s ̂f = σ̂(2− jξ )|ξ |s(1− ̂Φ(ξ ))̂f ,

when j ≥ 2 [since ̂Φ vanishes on the support of σ̂(2− jξ ) when j ≥ 2]. This yields
the operator identity
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2 jsΔ j( f ) = Δσj ( f∞) . (6.2.18)

Using identity (6.2.18) we obtain

∥

∥

∥

( ∞

∑
j=2

|2 jsΔ j( f )|2
) 1

2
∥

∥

∥

Lp
=
∥

∥

∥

( ∞

∑
j=2

|Δσj ( f∞)|2
) 1

2
∥

∥

∥

Lp
≤C

∥

∥ f∞
∥

∥

Lp , (6.2.19)

where the last inequality follows by Theorem 5.1.2. Notice that

f∞ =
(

|ξ |s(1− ̂Φ(ξ )) ̂f
)∨ =

( |ξ |s(1− ̂Φ(ξ ))
(1 + |ξ |2) s

2

̂fs

)∨
,

and since the function |ξ |s(1− ̂Φ(ξ ))(1+ |ξ |2)− s
2 is in Mp(Rn) by Theorem 5.2.7,

it follows that
∥

∥ f∞
∥

∥

Lp ≤C
∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

Lp
s
,

which combined with (6.2.19) yields

∥

∥

∥

( ∞

∑
j=2

|2 jsΔ j( f )|2
) 1

2
∥

∥

∥

Lp
≤C

∥

∥ f
∥

∥

Lp
s
. (6.2.20)

Finally, we have

2sΔ1( f ) = 2s(
̂Ψ( 1

2ξ )(1 + |ξ |2)− s
2 (1 + |ξ |2) s

2 ̂f
)∨ = 2s(

̂Ψ ( 1
2ξ )(1 + |ξ |2)− s

2 ̂fs
)∨

,

and since the function ̂Ψ ( 1
2ξ )(1+ |ξ |2)− s

2 is smooth with compact support and thus
in Mp, it follows that

∥

∥2sΔ1( f )
∥

∥

Lp ≤C
∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

Lp
s
. (6.2.21)

Combining estimates (6.2.17), (6.2.20), and (6.2.21), we conclude the proof of
(6.2.11). �

6.2.3 Littlewood–Paley Characterization of Homogeneous Sobolev
Spaces

We now state and prove the homogeneous version of the previous theorem.

Theorem 6.2.7. Let Ψ satisfy (6.2.6) and let Δ j be the Littlewood–Paley operator
associated withΨ . Let s ∈ R and 1 < p < ∞. Then there exists a constant C1 that
depends only on n,s, p, andΨ such that for all f ∈ L̇p

s (Rn) we have

∥

∥

∥

(

∑
j∈Z

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
≤C1

∥

∥ f
∥

∥

L̇p
s
. (6.2.22)
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Conversely, there exists a constant C2 that depends on the parameters n,s, p, andΨ
such that every element f of S ′(Rn)/P that satisfies

∥

∥

∥

(

∑
j∈Z

(2 js|Δ j( f )|)2
) 1

2
∥

∥

∥

Lp
< ∞

lies in the homogeneous Sobolev space L̇p
s and we have

∥

∥ f
∥

∥

∥

L̇p
s
≤C2

∥

∥

∥

(

∑
j∈Z

(2 js|Δ j( f )|)2)
1
2

∥

∥

∥

Lp
. (6.2.23)

Proof. The proof of the theorem is similar but a bit simpler than that of Theorem
6.2.6. To obtain (6.2.22) we start with f ∈ L̇p

s and we note that

2 jsΔ j( f ) = 2 js(|ξ |s|ξ |−s
̂Ψ(2− jξ ) ̂f

)∨ =
(

σ̂(2− jξ ) ̂fs
)∨ = Δσj ( fs) ,

where σ̂(ξ ) = ̂Ψ(ξ )|ξ |−s and Δσj is the Littlewood–Paley operator given on the

Fourier transform side by multiplication with the function σ̂(2− jξ ). We have

∥

∥

∥

(

∑
j∈Z

|2 jsΔ j( f )|2
) 1

2
∥

∥

∥

Lp
=
∥

∥

∥

(

∑
j∈Z

|Δσj ( fs)|2
) 1

2
∥

∥

∥

Lp
≤C

∥

∥ fs
∥

∥

Lp = C
∥

∥ f
∥

∥

L̇p
s
,

where the last inequality follows from Theorem 5.1.2. This proves (6.2.22).
Next we show that if the expression on the right in (6.2.23) is finite, then the

distribution f in S ′(Rn)/P must lie the in the homogeneous Sobolev space L̇p
s

with norm controlled by a multiple of this expression.
Define Littlewood–Paley operators Δηj given by convolution with η2− j , where η̂

is a smooth bump supported in the annulus 4
5 ≤ |ξ | ≤ 2 that satisfies

∑
k∈Z
η̂(2−kξ ) = 1, ξ �= 0 , (6.2.24)

or, in operator form,

∑
k∈Z
Δηk = I ,

where the convergence is in the sense of S ′/P in view of Exercise 2.3.12. We
introduce another family of Littlewood–Paley operators Δθj given by convolution

with θ2− j , where ̂θ (ξ ) = η̂(ξ )|ξ |s. Given f ∈ S ′(Rn)/P , we set fs =
(

|ξ |s ̂f
)∨

,
which is also an element of S ′(Rn)/P . In view of (6.2.24) we can use the reverse
estimate (5.1.8) in Theorem 5.1.2 to obtain for some polynomial Q,

∥

∥ f
∥

∥

L̇p
s
=
∥

∥ fs −Q
∥

∥

Lp ≤C
∥

∥

∥

(

∑
j∈Z

|Δηj ( fs)|2
) 1

2
∥

∥

∥

Lp
= C

∥

∥

∥

(

∑
j∈Z

|2 jsΔθj ( f )|2
) 1

2
∥

∥

∥

Lp
.
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Recalling the definition of Δ j (see the discussion before the statement of Theorem
6.2.6), we notice that the function

̂Ψ( 1
2ξ )+ ̂Ψ(ξ )+ ̂Ψ(2ξ )

is equal to 1 on the support of ̂θ (which is the same as the support of η). It follows
that

Δθj =
(

Δ j−1 +Δ j +Δ j+1
)

Δθj .

We therefore have the estimate

∥

∥

∥

(

∑
j∈Z

|2 jsΔθj ( f )|2
) 1

2
∥

∥

∥

Lp
≤

1

∑
r=−1

∥

∥

∥

(

∑
j∈Z

|Δθj Δ j+r(2 js f )|2
) 1

2
∥

∥

∥

Lp
,

and applying Proposition 5.1.4, we can control the last expression
(

and thus
∥

∥ f
∥

∥

L̇p
s

)

by a constant multiple of

∥

∥

∥

(

∑
j∈Z

|Δ j(2 js f )|2
) 1

2
∥

∥

∥

Lp
.

This proves that the homogeneous Sobolev norm of f is controlled by a multiple of
the expression in (6.2.23). In particular, the distribution f lies in the homogeneous
Sobolev space L̇p

s . This ends the proof of the converse direction and completes the
proof of the theorem. �

Exercises

6.2.1. Show that the spaces L̇p
s and Lp

s are complete and that the latter are decreasing
as s increases.

6.2.2. (a) Let 1 < p < ∞ and s ∈ Z+. Suppose that f ∈ Lp
s (Rn) and that ϕ is in

S (Rn). Prove that ϕ f is also an element of Lp
s (Rn).

(b) Let v be a function whose Fourier transform is a bounded compactly supported
function. Prove that if f is in L2

s (R
n), then so is v f .

6.2.3. Let s > 0 and α a fixed multi-index. Find the set of p in (1,∞) such that the
distribution ∂αδ0 belongs to Lp

−s.

6.2.4. Let I be the identity operator, I1 the Riesz potential of order 1, and R j the
usual Riesz transform. Prove that

I =
n

∑
j=1

I1R j∂ j ,

and use this identity to obtain Theorem 6.2.4 when s = 1.
[

Hint: Take the Fourier transform.
]
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6.2.5. Let f be in Lp
s for some 1 < p < ∞. Prove that ∂α f is in Lp

s−|α |.

6.2.6. Prove that for all C 1 functions f that are supported in a ball B we have

| f (x)| ≤ 1
ωn−1

∫

B
|∇ f (y)||x− y|−n+1 dy ,

where ωn−1 = |Sn−1|. For such functions obtain the local Sobolev inequality
∥

∥ f
∥

∥

Lq(B) ≤Cq,r,n
∥

∥∇ f
∥

∥

Lp(B) ,

where 1 < p < q < ∞ and 1/p = 1/q + 1/n.
[

Hint: Start from f (x) =
∫ ∞

0 ∇ f (x− tθ ) ·θ dt and integrate over θ ∈ Sn−1.
]

6.2.7. Show that there is a constant C such that for all C 1 functions f that are
supported in a ball B we have

1
|B′|

∫

B′
| f (x)− f (z)|dz ≤C

∫

B
|∇ f (y)||x− y|−n+1 dy

for all B′ balls contained in B and all x ∈ B′.
[

Hint: Start with f (z)− f (x) =
∫ 1

0 ∇ f (x + t(z− x)) · (z− x)dt.
]

6.2.8. Let 1 < p < ∞ and s > 0. Show that

f ∈ Lp
s ⇐⇒ f ∈ Lp and f ∈ L̇p

s .

Conclude that L̇p
s ∩Lp = Lp

s and obtain an estimate for the corresponding norms.
[

Hint: If f is in L̇p
s ∩Lp use Theorem 5.2.7 to obtain that

∥

∥ f
∥

∥

Lp
s

is controlled by a

multiple of the Lp norm of (̂f (ξ )(1 + |ξ |s))∨. Use the same theorem to show that
∥

∥ f
∥

∥

L̇p
s
≤C

∥

∥ f
∥

∥

Lp
s
.
]

6.2.9. (Gagliardo [139]/Nirenberg [249] ) Prove that all Schwartz functions on Rn

satisfy the estimate
∥

∥ f
∥

∥

Lq ≤
n

∏
j=1

∥

∥∂ j f
∥

∥

1/n
L1 ,

where 1/q + 1/n = 1.
[

Hint: Use induction beginning with the case n = 1. Assuming that the inequality is
valid for n−1, set I j(x1)=

∫

Rn−1 |∂ j f (x1,x′)|dx′ for j = 2, . . . ,n, where x =(x1,x′)∈
R×Rn−1 and I1(x′) =

∫

R1 |∂1 f (x1,x′)|dx1. Apply the induction hypothesis to obtain

∥

∥ f (x1, ·)
∥

∥

Lq′ ≤
n

∏
j=2

I j(x1)1/(n−1)

and use that | f |q ≤ I1(x′)1/(n−1)| f | and Hölder’s inequality to calculate
∥

∥ f
∥

∥

Lq .
]
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6.2.10. Let f ∈ L2
1(R

n). Prove that there is a constant cn > 0 such that

∫

Rn

∫

Rn

| f (x + t)+ f (x− t)−2 f (x)|2
|t|n+2 dxdt = cn

∫

Rn

n

∑
j=1

|∂ j f (x)|2 dx.

6.2.11. (Christ [61] ) Let 0 ≤ β < ∞ and let

C0 =
∫

Rn
|ĝ(ξ )|2(1 + |ξ |)n( log(2 + |ξ |)

)−β
dξ .

(a) Prove that there is a constant C(n,β ,C0) such that for every q > 2 we have

∥

∥g
∥

∥

Lq(Rn) ≤C(n,β ,C0)q
β+1

2 .

(b) Conclude that for any compact subset K of Rn we have
∫

K
e|g(x)|γ dx < ∞

whenever γ < 2
β+1 .

[

Hint: Part (a): For q > 2 control
∥

∥g
∥

∥

Lq(Rn) by
∥

∥ĝ
∥

∥

Lq′ (Rn) and apply Hölder’s in-

equality with exponents 2
q′ and 2(q−1)

q−2 . Part (b): Expand the exponential in a Taylor

series.
]

6.2.12. Suppose that m ∈ L2
s (R

n) for some s > n
2 and let λ > 0. Define the operator

Tλ by setting ̂Tλ ( f )(ξ ) = m(λξ )̂f (ξ ). Show that there exists a constant C = C(n,s)
such that for all f and u ≥ 0 and λ > 0 we have

∫

Rn
|Tλ ( f )(x)|2 u(x)dx ≤C

∫

Rn
| f (x)|2 M(u)(x)dx .

6.3 Lipschitz Spaces

The classical definition says that a function f on Rn is Lipschitz (or Hölder) contin-
uous of order γ > 0 if there is constant C < ∞ such that for all x,y ∈ Rn we have

| f (x + y)− f (x)| ≤C|y|γ . (6.3.1)

It turns out that only constant functions satisfy (6.3.1) when γ > 1, and the corre-
sponding definition needs to be suitably adjusted in this case. This is discussed in
this section. The key point is that any function f that satisfies (6.3.1) possesses a
certain amount of smoothness “measured” by the quantity γ . The Lipschitz norm of
a function is introduced to serve this purpose, that is, to precisely quantify and ex-
actly measure this smoothness. In this section we formalize these concepts and we
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explore connections they have with the orthogonality considerations of the previ-
ous chapter. The main achievement of this section is a characterization of Lipschitz
spaces using Littlewood–Paley theory.

6.3.1 Introduction to Lipschitz Spaces

Definition 6.3.1. Let 0 < γ < 1. A function f on Rn is said to be Lipschitz of order
γ if it is bounded and satisfies (6.3.1) for some C < ∞. In this case we let

∥

∥ f
∥

∥

Λγ (Rn) =
∥

∥ f
∥

∥

L∞ + sup
x∈Rn

sup
h∈Rn\{0}

| f (x + h)− f (x)|
|h|γ

and we set

Λγ (Rn) = { f : Rn → C continuous :
∥

∥ f
∥

∥

Λγ (Rn) <∞}.

Note that functions in Λγ (Rn) are automatically continuous when γ < 1, so we did
not need to make this part of the definition. We call Λγ(Rn) the inhomogeneous
Lipschitz space of order γ . For reasons of uniformity we also set

Λ0(Rn) = L∞(Rn)∩C(Rn),

where C(Rn) is the space of all continuous functions on Rn. See Exercise 6.3.2.

Example 6.3.2. The function h(x) = cos(x ·a) for some fixed a ∈ Rn is in Λγ for all
γ < 1. Simply notice that |h(x)−h(y)| ≤ min(2, |a| |x− y|).

We now extend this definition to indices γ ≥ 1.

Definition 6.3.3. For h ∈ Rn define the difference operator Dh by setting

Dh( f )(x) = f (x + h)− f (x)

for a continuous function f : Rn → C. We may check that

D2
h( f )(x) = Dh(Dh f )(x) = f (x + 2h)−2 f (x + h)+ f (x),

D3
h( f )(x) = Dh(D2

h f )(x) = f (x + 3h)−3 f (x + 2h)+ 3 f (x + h)− f (x) ,

and in general, that Dk+1
h ( f ) = Dk

h(Dh( f )) is given by

Dk+1
h ( f )(x) =

k+1

∑
s=0

(−1)k+1−s
(

k + 1
s

)

f (x + sh) (6.3.2)

for a nonnegative integer k. See Exercise 6.3.3. For γ > 0 define
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∥

∥ f
∥

∥

Λγ
=
∥

∥ f
∥

∥

L∞ + sup
x∈Rn

sup
h∈Rn\{0}

|D[γ]+1
h ( f )(x)|

|h|γ ,

where [γ] denotes the integer part of γ , and set

Λγ = { f : Rn → C continuous :
∥

∥ f
∥

∥

Λγ
< ∞} .

We call Λγ (Rn) the inhomogeneous Lipschitz space of order γ ∈ R+.
For a tempered distribution u we also define another distribution Dk

h(u) via the
identity

〈

Dk
h(u),ϕ

〉

=
〈

u,Dk
−h(ϕ)

〉

for all ϕ in the Schwartz class.

We now define the homogeneous Lipschitz spaces. We adhere to the usual con-
vention of using a dot on a space to indicate its homogeneous nature.

Definition 6.3.4. For γ > 0 we define

∥

∥ f
∥

∥

Λ̇γ
= sup

x∈Rn
sup

h∈Rn\{0}

|D[γ]+1
h ( f )(x)|

|h|γ

and we also let Λ̇γ be the space of all continuous functions f on Rn that satisfy
∥

∥ f
∥

∥

Λ̇γ
< ∞. We call Λ̇γ the homogeneous Lipschitz space of order γ . We note that

elements of Λ̇γ have at most polynomial growth at infinity and thus they are elements
of S ′(Rn).

A few observations are in order here. Constant functions f satisfy Dh( f )(x) = 0
for all h,x ∈ Rn, and therefore the homogeneous quantity

∥

∥ ·
∥

∥

Λ̇γ
is insensitive to

constants. Similarly the expressions Dk+1
h ( f ) and

∥

∥ f
∥

∥

Λ̇γ
do not recognize polyno-

mials of degree up to k. Moreover, polynomials are the only continuous functions
with this property; see Exercise 6.3.1. This means that the quantity

∥

∥ f
∥

∥

Λ̇γ
is not a

norm but only a seminorm. To make it a norm, we need to consider functions mod-
ulo polynomials, as we did in the case of homogeneous Sobolev spaces. For this
reason we think of Λ̇γ as a subspace of S ′(Rn)/P .

We make use of the following proposition concerning properties of the difference
operators Dk

h.

Proposition 6.3.5. Let f be a C m function on Rn for some m ∈ Z+. Then for all
h = (h1, . . . ,hn) and x ∈ Rn the following identity holds:

Dh( f )(x) =
∫ 1

0

n

∑
j=1

h j (∂ j f )(x + sh)ds . (6.3.3)

More generally, we have that
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Dm
h ( f )(x) =

∫

[0,1]m
∑

1≤ j�≤n
1≤�≤m

h j1 · · ·h jm(∂ j1 · · ·∂ jm f )(x+(s1+· · ·+sm)h)ds1 · · ·dsm. (6.3.4)

Proof. Identity (6.3.3) is a consequence of the fundamental theorem of calculus
applied to the function t �→ f ((1 − t)x + t(x + h)) on [0,1], while identity (6.3.4)
follows by induction. �

6.3.2 Littlewood–Paley Characterization of Homogeneous
Lipschitz Spaces

We now characterize the homogeneous Lipschitz spaces using the Littlewood–Paley
operators Δ j. As in the previous section, we fix a radial Schwartz functionΨ whose
Fourier transform is nonnegative, supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2, is equal
to one on the annulus 1 ≤ |ξ | ≤ 2− 2

7 , and that satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 (6.3.5)

for all ξ �= 0. The Littlewood–Paley operators Δ j = ΔΨj associated withΨ are given

by multiplication on the Fourier transform side by the smooth bump ̂Ψ(2− jξ ).

Theorem 6.3.6. Let Δ j be as above and γ > 0. Then there is a constant C = C(n,γ)
such that for every f in Λ̇γ we have the estimate

sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λ̇γ
. (6.3.6)

Conversely, every element f of S ′(Rn)/P that satisfies

sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞ < ∞ (6.3.7)

is an element of Λ̇γ with norm

∥

∥ f
∥

∥

Λ̇γ
≤C′ sup

j∈Z
2 jγ∥
∥Δ j( f )

∥

∥

L∞ (6.3.8)

for some constant C′ = C′(n,γ).

Note that condition (6.3.7) remains invariant if a polynomial is added to the func-
tion f ; this is consistent with the analogous property of the mapping f �→

∥

∥ f
∥

∥

Λ̇γ
.

Proof. We begin with the proof of (6.3.8). Let k = [γ] be the integer part of γ .
Let us pick a Schwartz function η on Rn whose Fourier transform is nonnegative,
supported in the annulus 4

5 ≤ |ξ | ≤ 2, and that satisfies



28 6 Smoothness and Function Spaces

∑
j∈Z
η̂(2− jξ )2 = 1 (6.3.9)

for all ξ �= 0. Associated with η , we define the Littlewood–Paley operatorsΔηj given
by multiplication on the Fourier transform side by the smooth bump η̂(2− jξ ). With
Ψ as in (6.2.6) we set

̂Θ(ξ ) = ̂Ψ( 1
2ξ )+ ̂Ψ(ξ )+ ̂Ψ(2ξ ) ,

and we denote by ΔΘj = Δ j−1 +Δ j +Δ j+1 the Littlewood–Paley operator given by

multiplication on the Fourier transform side by the smooth bump ̂Θ(2− jξ ).
The fact that the previous function is equal to 1 on the support of η̂ together with

the functional identity (6.3.9) yields the operator identity

I = ∑
j∈Z

(Δηj )2 = ∑
j∈Z
ΔΘj Δ

η
j Δ

η
j ,

with convergence in the sense of the space S ′(Rn)/P . Since convolution is a linear
operation, we have Dk+1

h (F ∗G) = F ∗Dk+1
h (G), from which we deduce

Dk+1
h ( f ) = ∑

j∈Z
ΔΘj ( f ) ∗ Dk+1

h (η2− j ) ∗ η2− j

= ∑
j∈Z

Dk+1
h (ΔΘj ( f )) ∗ (η ∗η)2− j

(6.3.10)

for all tempered distributions f . The convergence of the series in (6.3.10) is in the
sense of S ′/P in view of Exercise 5.2.2. The convergence of the series in (6.3.10)
in the L∞ norm is a consequence of condition (6.3.7) and is contained in the follow-
ing argument.

Using (6.3.2), we easily obtain the estimate
∥

∥Dk+1
h (ΔΘj ( f ))∗ (η ∗η)2− j

∥

∥

L∞ ≤ 2k+1
∥

∥η ∗η
∥

∥

L1

∥

∥ΔΘj ( f )
∥

∥

L∞ . (6.3.11)

We first integrate over (s1, . . . ,sk+1) ∈ [0,1]k+1 the identity

n

∑
r1=1

· · ·
n

∑
rk+1=1

hr1 · · ·hrk+1(∂r1 · · ·∂rk+1η2− j)(x +(s1 + · · ·+ sk+1)h)

= 2 j(k+1)
n

∑
r1=1

· · ·
n

∑
rk+1=1

hr1 · · ·hrk+1(∂r1 . . .∂rk+1η)2− j (x +(s1 + · · ·+ sk+1)h) .

We then use (6.3.4) with m = k + 1, and we integrate over x ∈ Rn to obtain

∥

∥Dk+1
h (η2− j)

∥

∥

L1 ≤ 2 j(k+1)|h|k+1
n

∑
r1=1

· · ·
n

∑
rk+1=1

∥

∥∂r1 · · ·∂rk+1η
∥

∥

L1 .
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We deduce the validity of the estimate
∥

∥ΔΘj ( f )∗Dk+1
h (η2− j)∗η2− j

∥

∥

L∞

≤
∥

∥ΔΘj ( f )
∥

∥

L∞

∥

∥Dk+1
h (η2− j )∗η2− j

∥

∥

L1

≤
∥

∥ΔΘj ( f )
∥

∥

L∞ |2
jh|k+1ck ∑

|α |≤k+1

∥

∥∂αη
∥

∥

L1

∥

∥η
∥

∥

L1 .

(6.3.12)

Combining (6.3.11) and (6.3.12), we obtain
∥

∥ΔΘj ( f )∗Dk+1
h (η2− j )∗η2− j

∥

∥

L∞

≤Cη,n,k

∥

∥ΔΘj ( f )
∥

∥

L∞ min
(

1, |2 jh|k+1) .
(6.3.13)

We insert estimate (6.3.13) in (6.3.10) to deduce
∥

∥Dk+1
h ( f )

∥

∥

L∞

|h|γ ≤ C′

|h|γ ∑j∈Z
2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ min
(

2− jγ ,2 j(k+1−γ)|h|k+1) ,

from which it follows that

∥

∥ f
∥

∥

Λ̇γ
≤ sup

h∈Rn\{0}

C′

|h|γ ∑j∈Z
2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ min
(

2− jγ ,2 j(k+1−γ)|h|k+1)

≤ C′ sup
j∈Z

2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ sup
h �=0
∑
j∈Z

min
(

|h|−γ2− jγ ,2 j(k+1−γ)|h|k+1−γ)

≤ C′ sup
j∈Z

2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞ ,

since the last numerical series converges (γ < k + 1 = [γ]+ 1). This proves (6.3.8)
with the difference that instead of Δ j we have ΔΘj on the right. The passage to Δ j is

a trivial matter, since ΔΘj = Δ j−1 +Δ j +Δ j+1.
Having established (6.3.8), we now turn to the proof of (6.3.6). We first consider

the case 0 < γ < 1, which is very simple. Since each Δ j is given by convolution with
a function with mean value zero, we may write

Δ j( f )(x) =
∫

Rn
f (x− y)Ψ2− j(y)dy

=
∫

Rn
( f (x− y)− f (x))Ψ2− j(y)dy

= 2− jγ
∫

Rn

D−y( f )(x)
|y|γ |2 jy|γ2 jnΨ(2 jy)dy ,

and the previous expression is easily seen to be controlled by a constant multiple of
2− jγ

∥

∥ f
∥

∥

Λ̇γ
. This proves (6.3.6) when 0 < γ < 1. In the case γ ≥ 1 we have to work

a bit harder.
As before, set k = [γ]. Notice that for Schwartz functions g we have the identity
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Dk+1
h (g) =

(

ĝ(ξ )(e2π iξ ·h −1)k+1)∨ .

To express Δ j(g) in terms of Dk+1
h (g), we need to introduce the function

ξ �→ ̂Ψ (2− jξ )(e2π iξ ·h −1)−(k+1) .

But as the support of ̂Ψ(2− jξ ) may intersect the set of all ξ for which ξ · h is an
integer, the previous function is not well defined. To deal with this problem, we pick
a finite family of unit vectors {ur}r so that the annulus 1

2 ≤ |ξ | ≤ 2 is covered by
the union of sets

Ur =
{

ξ ∈ Rn : 1
2 ≤ |ξ | ≤ 2, 1

4 ≤ |ξ ·ur| ≤ 2
}

.

Then we write ̂Ψ as a finite sum of smooth functions ̂Ψ (r), where each ̂Ψ (r) is
supported in Ur. Setting

hr =
1
8

2− jur ,

we note that

Ψ (r)
2− j ∗ f =

(

̂Ψ (r)(2− jξ )(e2π iξ ·hr −1)−(k+1)(e2π iξ ·hr −1)k+1
̂f (ξ )

)∨

=
(

̂Ψ (r)(2− jξ )(e2π i2− jξ · 1
8 ur −1)−(k+1) ̂Dk+1

hr
( f )(ξ )

)∨
(6.3.14)

and observe that the exponential is never equal to 1, since

2− jξ ∈Ur =⇒ 1
32 ≤ |2− jξ · 1

8 ur| ≤ 1
4 .

Since the function ̂ζ (r) = ̂Ψ (r)(ξ )(e2π iξ · 1
8 ur − 1)−(k+1) is well defined and smooth

with compact support, it follows that

Ψ (r)
2− j ∗ f = (ζ (r))2− j ∗Dk+1

2− j 1
8 ur

( f ) ,

which implies that

∥

∥Ψ (r)
2− j ∗ f

∥

∥

L∞ ≤
∥

∥(ζ (r))2− j

∥

∥

L1

∥

∥Dk+1
2− j 1

8 ur
( f )
∥

∥

L∞

≤
∥

∥ζ (r)∥
∥

L1

∥

∥ f
∥

∥

Λ̇γ
2− jγ .

Summing over the finite number of r, we obtain the estimate
∥

∥Δ j( f )
∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λ̇γ
2− jγ ,

which concludes the proof of the theorem. �
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6.3.3 Littlewood–Paley Characterization of Inhomogeneous
Lipschitz Spaces

We have seen that quantities involving the Littlewood–Paley operators Δ j character-
ize homogeneous Lipschitz spaces. We now address the same question for inhomo-
geneous spaces.

As in the Littlewood–Paley characterization of inhomogeneous Sobolev spaces,
we need to treat the contribution of the frequencies near zero separately. We recall
the Schwartz function Φ introduced in Section 6.2.2:

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.
(6.3.15)

Note that ̂Φ(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. We also

recall the operator S0( f ) = Φ ∗ f . One should not be surprised to find out that a
result analogous to that in Theorem 6.2.6 is valid for Lipschitz spaces as well.

Theorem 6.3.7. Let Ψ and Δ j be as in the Theorem 6.3.6, Φ as in (6.3.15), and
γ > 0. Then there is a constant C = C(n,γ) such that for every f in Λγ we have the
estimate

∥

∥S0( f )
∥

∥

L∞ + sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λγ
. (6.3.16)

Conversely, every tempered distribution f that satisfies
∥

∥S0( f )
∥

∥

L∞ + sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ < ∞ (6.3.17)

can be identified with an element of Λγ . Moreover, there is a constant C′ = C′(n,γ)
such that for all f that satisfy (6.3.17) we have

∥

∥ f
∥

∥

Λγ
≤C′

(

∥

∥S0( f )
∥

∥

L∞ + sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞

)

. (6.3.18)

Proof. The proof of (6.3.16) is immediate, since we trivially have
∥

∥S0( f )
∥

∥

L∞ =
∥

∥ f ∗Φ
∥

∥

L∞ ≤
∥

∥Φ
∥

∥

L1

∥

∥ f
∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λγ

and also
sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤C
∥

∥ f
∥

∥

Λ̇γ
≤C

∥

∥ f
∥

∥

Λγ

by the previous theorem.
Therefore, the main part of the argument is contained in the proof of the converse

estimate (6.3.18). Here we introduce Schwartz functions ζ ,η so that

̂ζ (ξ )2 +
∞

∑
j=1
η̂(2− jξ )2 = 1
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and such that η̂ is supported in the annulus 4
5 ≤ |ξ | ≤ 2 and ̂ζ is supported in the ball

|ξ | ≤ 1. We associate Littlewood–Paley operators Δηj given by convolution with the

functions η2− j and we also let ΔΘj = Δ j−1 +Δ j +Δ j+1. Note that ̂Φ is equal to one

on the support of ̂ζ . Moreover, ΔΘj Δ
η
j = Δηj ; hence for tempered distributions f we

have the identity

f = ζ ∗ ζ ∗Φ ∗ f +
∞

∑
j=1
η2− j ∗η2− j ∗ΔΘj ( f ) , (6.3.19)

where the series converges in S ′(Rn). With k = [γ] we write

Dk+1
h ( f )
|h|γ = ζ ∗

Dk+1
h (ζ )
|h|γ ∗Φ ∗ f +

∞

∑
j=1

η2− j ∗
Dk+1

h (η2− j)
|h|γ ∗ΔΘj ( f ) , (6.3.20)

and we use Proposition 6.3.5 to estimate the L∞ norm of the term ζ ∗ Dk+1
h (ζ )
|h|γ ∗Φ ∗ f

in the previous sum as follows:

∥

∥ζ ∗ Dk+1
h (ζ )
|h|γ ∗Φ ∗ f

∥

∥

L∞ ≤
∥

∥

Dk+1
h (ζ )
|h|γ

∥

∥

L∞

∥

∥ζ ∗Φ ∗ f
∥

∥

L1

≤ C min
(

1
|h|γ ,

|h|k+1

|h|γ
)∥

∥Φ ∗ f
∥

∥

L∞

≤ C
∥

∥Φ ∗ f
∥

∥

L∞ .

(6.3.21)

The corresponding L∞ estimates for ΔΘj ( f ) ∗η2− j ∗Dk+1
h (η2− j ) have already been

obtained in (6.3.13). Indeed, we obtained
∥

∥Dk+1
h (η2− j)∗η2− j ∗ΔΘj ( f )

∥

∥

L∞ ≤Cη,n,k

∥

∥ΔΘj ( f )
∥

∥

L∞ min
(

1, |2 jh|k+1) ,

from which it follows that

∥

∥

∥

∞

∑
j=1

η2− j ∗
Dk+1

h (η2− j)
|h|γ ∗ΔΘj ( f )

∥

∥

∥

L∞

≤ C
(

sup
j≥1

2 jγ∥
∥ΔΘj ( f )

∥

∥

L∞

) ∞

∑
j=1

2− jγ |h|−γmin
(

1, |2 jh|k+1)

≤ C
(

sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞

) ∞

∑
j=1

min
(

|2 jh|−γ , |2 jh|k+1−γ)

≤ C sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ,

(6.3.22)

where the last series is easily seen to converge uniformly in h ∈ Rn, since k + 1 =
[γ]+ 1 > γ . We now combine identity (6.3.20) with estimates (6.3.21) and (6.3.22)
to obtain that the expression on the right in (6.3.19) has a bounded L∞ norm. This
implies that f can be identified with a bounded function that satisfies (6.3.18). �
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Next, we obtain consequences of the Littlewood–Paley characterization of Lip-
schitz spaces. In the following corollary we identify Λ0 with L∞.

Corollary 6.3.8. For 0 ≤ γ ≤ δ < ∞ there is a constant Cn,γ,δ < ∞ such that for all
f ∈Λδ (Rn) we have

∥

∥ f
∥

∥

Λγ
≤Cn,γ,δ

∥

∥ f
∥

∥

Λδ
.

In other words, the space Λδ (Rn) can be identified with a subspace of Λγ(Rn).

Proof. If 0 < γ ≤ δ and j ≥ 0, then we must have 2 jγ ≤ 2 jδ and thus

sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ ≤ sup
j≥1

2 jδ∥
∥Δ j( f )

∥

∥

L∞ .

Adding
∥

∥S0( f )
∥

∥

L∞ and using Theorem 6.3.7, we obtain the required conclusion.
The case γ = 0 is trivial. �

Remark 6.3.9. We proved estimates (6.3.18) and (6.3.8) using the Littlewood–Paley
operatorsΔ j constructed by a fixed choice of the functionΨ ;Φ also depended onΨ .
It should be noted that the specific choice of the functionsΨ andΦ was unimportant
in those estimates. In particular, if we know (6.3.18) and (6.3.8) for some choice
of Littlewood–Paley operators ˜Δ j and some Schwartz function ˜Φ whose Fourier
transform is supported in a neighborhood of the origin, then (6.3.18) and (6.3.8)
would also hold for our fixed choice of Δ j and Φ . This situation is illustrated in the
next corollary.

Corollary 6.3.10. Let γ > 0 and let α be a multi-index with |α| < γ . If f ∈ Λγ ,
then the distributional derivative ∂α f (of f ) lies in Λγ−|α |. Likewise, if f ∈ Λ̇γ , then
∂α f ∈ Λ̇γ−|α | . Precisely, we have the norm estimates

∥

∥∂α f
∥

∥

Λγ−|α|
≤Cγ,α

∥

∥ f
∥

∥

Λγ
, (6.3.23)

∥

∥∂α f
∥

∥

Λ̇γ−|α|
≤Cγ,α

∥

∥ f
∥

∥

Λ̇γ
. (6.3.24)

In particular, elements of Λγ and Λ̇γ are in C α for all |α| < γ .

Proof. Let α be a multi-index with |α| < γ . We denote by Δ∂αΨj the Littlewood–
Paley operator associated with the bump (∂αΨ)2− j . It is straightforward to check
that the identity

Δ j(∂α f ) = 2 j|α |Δ∂
αΨ

j ( f )

is valid for any tempered distribution f . Using the support properties ofΨ , we obtain

2 j(γ−|α |)Δ j(∂α f ) = 2 jγΔ∂
αΨ

j (Δ j−1 +Δ j +Δ j+1)( f ) , (6.3.25)

and from this it easily follows that

sup
j∈Z

2 j(γ−|α |)∥
∥Δ j(∂α f )

∥

∥

L∞ ≤ (2γ + 2)
∥

∥∂αΨ
∥

∥

L1 sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞
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and also that

sup
j≥1

2 j(γ−|α |)∥
∥Δ j(∂α f )

∥

∥

L∞ ≤ (2γ + 2)
∥

∥∂αΨ
∥

∥

L1 sup
j≥1

2 jγ∥
∥Δ j( f )

∥

∥

L∞ . (6.3.26)

Using Theorem 6.3.6, we deduce that if f ∈ Λ̇γ , then ∂α f ∈ Λ̇γ−|α | , and we also
obtain (6.3.24). To derive the inhomogeneous version, we note that

S0(∂α f ) =Φ ∗ (∂α f ) = (∂αΦ ∗ f ) =
(

∂αΦ ∗ (Φ+Ψ2−1)∗ f
)

,

since the function ̂Φ + ̂Ψ2−1 is equal to 1 on the support of ̂∂αΦ . Taking L∞ norms,
we obtain

∥

∥S0(∂α f )
∥

∥

L∞ ≤
∥

∥∂αΦ
∥

∥

L1

(∥

∥Φ ∗ f
∥

∥

L∞ +
∥

∥Ψ2−1 ∗ f
∥

∥

L∞
)

≤
∥

∥∂αΦ
∥

∥

L1

(

∥

∥S0( f )
∥

∥

∥

L∞
+ sup

j≥1

∥

∥Δ j( f )
∥

∥

L∞

)

,

which, combined with (6.3.26), yields
∥

∥∂α f
∥

∥

Λγ−|α|
≤Cγ,α

∥

∥ f
∥

∥

Λγ
. �

Exercises

6.3.1. Fix k ∈ Z+. Show that
Dk

h( f )(x) = 0

for all x,h in Rn if and only if f is a polynomial of degree at most k−1.
[

Hint: One direction may be proved by direct verification. For the converse direc-

tion, show that ̂f is supported at the origin and use Proposition 2.4.1.
]

6.3.2. (a) Extend Definition 6.3.1 to the case γ = 0 and show that for all continuous
functions f we have

∥

∥ f
∥

∥

L∞ ≤
∥

∥ f
∥

∥

Λ0
≤ 3

∥

∥ f
∥

∥

L∞ ;

hence the space Λ0(Rn) can be identified with L∞(Rn)∩C(Rn).
(b) Given a measurable function f on Rn we define

∥

∥ f
∥

∥

L̇∞ = inf
{∥

∥ f + c
∥

∥

L∞ : c ∈ C
}

.

Let L̇∞(Rn) be the space of equivalent classes of bounded functions whose differ-
ence is a constant, equipped with this norm. Show that for all continuous functions
f on Rn we have

∥

∥ f
∥

∥

L̇∞ ≤ sup
x,h∈Rn

| f (x + h)− f (x)| ≤ 2
∥

∥ f
∥

∥

L̇∞ .

In other words, Λ̇0(Rn) can be identified with L̇∞(Rn)∩C(Rn).
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6.3.3. (a) For a continuous function f prove the identity

Dk+1
h ( f )(x) =

k+1

∑
s=0

(−1)k+1−s
(

k + 1
s

)

f (x + sh)

for all x,h ∈ Rn and k ∈ Z+ ∪{0}.
(b) Prove that Dk

hDl
h = Dk+l

h for all k, l ∈ Z+∪{0}.

6.3.4. For x ∈ R let

f (x) =
∞

∑
k=1

2−ke2π i2kx .

(a) Prove that f ∈Λγ (R) for all 0 < γ < 1.
(b) Prove that there is an A < ∞ such that

sup
x,t �=0

| f (x + t)+ f (x− t)−2 f (x)| |t|−1 ≤ A ;

thus f ∈Λ1(R).
(c) Show, however, that for all x ∈ [0,1] we have

sup
0<|t|<1

| f (x + t)− f (x)| |t|−1 =∞ ;

thus f is nowhere differentiable.
[

Hint: Part (c): Use that f (x) is 1-periodic and thus

∫ 1

0
| f (x + t)− f (x)|2 dx =

∞

∑
k=1

2−2k|e2π i2kt −1|2.

Observe that when 2k|t| ≤ 1
2 we have |e2π i2kt −1| ≥ 2k+2|t|.

]

6.3.5. For 0 < a,b < ∞ and x ∈ R let

gab(x) =
∞

∑
k=1

2−ake2π i2bkx .

Show that gab lies in Λ a
b
(R).

[

Hint: Use the estimate |DL
h(e2π i2bkx)| ≤C min

(

1,(2bk|h|)L
)

with L = [a/b]+1 and
split the sum into two parts.

]

6.3.6. Let γ > 0 and let k = [γ].
(a) Use Exercise 6.3.3(b) to prove that if |Dk

h( f )(x)| ≤ C|h|γ for all x,h ∈ Rn, then
|Dk+l

h ( f )(x)| ≤C2l|h|γ for all l ≥ 1.
(b) Conversely, assuming that for some l ≥ 1 we have

sup
x,h∈Rn

∣

∣Dk+l
h ( f )(x)

∣

∣

|h|γ < ∞ ,
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show that f ∈ Λ̇γ .
[

Hint: Part (b): Use (6.3.14) but replace k + 1 by k + l.
]

6.3.7. Let Ψ and Δ j be as in Theorem 6.3.7. Define a continuous operator Qt by
setting

Qt( f ) = f ∗Ψt , Ψt(x) = t−nΨ (t−1x) .

Show that all tempered distributions f satisfy

sup
t>0

t−γ
∥

∥Qt( f )
∥

∥

L∞ ≈ sup
j∈Z

2 jγ∥
∥Δ j( f )

∥

∥

L∞

with the interpretation that if either term is finite, then it controls the other term by
a constant multiple of itself.
[

Hint: Observe that Qt = Qt(Δ j−2 +Δ j−1 +Δ j +Δ j+1) when 2− j ≤ t ≤ 21− j.
]

6.3.8. (a) Let 0 ≤ γ < 1 and suppose that ∂ j f ∈ Λ̇γ for all 1 ≤ j ≤ n. Show that for
some constant C we have

∥

∥ f
∥

∥

Λ̇γ+1
≤C

n

∑
j=1

∥

∥∂ j f
∥

∥

Λ̇γ

and conclude that f ∈ Λ̇γ+1.
(b) Let γ ≥ 0. If we have ∂α f ∈ Λ̇γ for all multi-indices α with |α| = r, then there
is an estimate

∥

∥ f
∥

∥

Λ̇γ+r
≤Cγ ∑

|α |=r

∥

∥∂α f
∥

∥

Λ̇γ
,

and thus f ∈ Λ̇γ+r.
(c) Use Corollary 6.3.10 to obtain that the estimates in both (a) and (b) can be
reversed.
[

Hint: Part (a): Write

D2
h( f )(x) =

∫ 1

0

n

∑
j=1

[

∂ j f (x + th + 2h)− ∂ j f (x + th + h)
]

h j dt .

Part (b): Use induction.
]

6.3.9. Introduce a difference operator

Dβ ( f )(x) =
[
∫

Rn

|D[β ]+1
y ( f )(x)|2
|y|n+2β dy

] 1
2

,

where β > 0. Show that for some constant c0(n,β ) we have

∥

∥Dβ ( f )
∥

∥

2
L2(Rn) = c0(n,β )

∫

Rn
|̂f (ξ )|2 |ξ |2β dξ

for all functions f ∈ L̇2
β (R

n).
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6.4 Hardy Spaces

Having been able to characterize Lp spaces, Sobolev spaces, and Lipschitz spaces
using Littlewood–Paley theory, it should not come as a surprise that the theory can
be used to characterize other spaces as well. This is the case with the Hardy spaces
H p(Rn), which form a family of spaces with some remarkable properties in which
the integrability index p can go all the way down to zero.

There exists an abundance of equivalent characterizations for Hardy spaces, of
which only a few representative ones are discussed in this section. A reader inter-
ested in going through the material quickly may define the Hardy space H p as the
space of all tempered distributions f modulo polynomials for which

∥

∥ f
∥

∥

H p =
∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
) 1

2
∥

∥

∥

Lp
< ∞ (6.4.1)

whenever 0 < p ≤ 1. An atomic decomposition for Hardy spaces can be obtained
from this definition (see Section 6.6), and once this is in hand, the analysis of these
spaces is significantly simplified. For historical reasons, however, we choose to de-
fine Hardy spaces using a more classical approach, and as a result, we have to go
through a considerable amount of work to obtain the characterization alluded to in
(6.4.1).

6.4.1 Definition of Hardy Spaces

To give the definition of Hardy spaces on Rn, we need some background. We say
that a tempered distribution v is bounded if ϕ ∗v∈ L∞(Rn) wheneverϕ is in S (Rn).
We observe that if v is a bounded tempered distribution and h ∈ L1(Rn), then the
convolution h ∗ v can be defined as a distribution via the convergent integral

〈

h ∗ v,ϕ
〉

=
〈

ϕ̃ ∗ v,˜h
〉

=
∫

Rn
(ϕ̃ ∗ v)(x)˜h(x)dx,

where ϕ is a Schwartz function, and as usual, we set ϕ̃(x) = ϕ(−x).
Let us recall the Poisson kernel P introduced in (2.1.13):

P(x) =
Γ ( n+1

2 )

π
n+1

2

1

(1 + |x|2) n+1
2

. (6.4.2)

For t > 0, let Pt(x) = t−nP(t−1x). If v is a bounded tempered distribution, then Pt ∗v
is a well defined distribution, since Pt is in L1. We claim that Pt ∗ v can be identified
with a well defined bounded function. To see this, write 1 = ϕ̂(ξ )+η(ξ ), where ϕ̂
has compact support and η is a smooth function that vanishes in a neighborhood of
the origin. Then the function ψ defined by ψ̂(ξ ) = e−2π |ξ |η(ξ ) is in the Schwartz
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class, and one has that

̂Pt(ξ ) = e−2πt|ξ | = e−2πt|ξ |ϕ̂(tξ )+ ψ̂(tξ )

is a sum of a compactly supported function and a Schwartz function. Then

Pt ∗ v = Pt ∗ (ϕt ∗ v)+ψt ∗ v,

but ϕt ∗v and ψt ∗v are bounded functions, since ϕt and ψt are in the Schwartz class.
The last identity proves that Pt ∗ v is a bounded function.

Before we define Hardy spaces we introduce some notation.

Definition 6.4.1. Let a,b > 0. LetΦ be a Schwartz function and let f be a tempered
distribution on Rn. We define the smooth maximal function of f with respect to Φ
as

M( f ;Φ)(x) = sup
t>0

|(Φt ∗ f )(x)| .

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Φt ∗ f )(y)| .

We also define the auxiliary maximal function

M∗∗
b ( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f )(x− y)|
(1 + t−1|y|)b ,

and we observe that

M( f ;Φ) ≤ M∗
a ( f ;Φ) ≤ (1 + a)bM∗∗

b ( f ;Φ) (6.4.3)

for all a,b > 0. We note that if Φ is merely integrable, for example, if Φ is the
Poisson kernel, the maximal functions M( f ;Φ), M∗

a ( f ;Φ), and M∗∗
b ( f ;Φ) are well

defined only for bounded tempered distributions f on Rn.
For a fixed positive integer N and a Schwartz function ϕ we define the quantity

NN(ϕ) =
∫

Rn
(1 + |x|)N ∑

|α |≤N+1

|∂αϕ(x)|dx . (6.4.4)

We now define
FN =

{

ϕ ∈ S (Rn) : NN(ϕ) ≤ 1
}

, (6.4.5)

and we also define the grand maximal function of f (with respect to N) as

MN( f )(x) = sup
ϕ∈FN

M∗
1( f ;ϕ)(x) .
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Having introduced a variety of smooth maximal operators useful in the develop-
ment of the theory, we proceed with the definition of Hardy spaces.

Definition 6.4.2. Let f be a bounded tempered distribution on Rn and let 0 < p <∞.
We say that f lies in the Hardy space H p(Rn) if the Poisson maximal function

M( f ;P)(x) = sup
t>0

|(Pt ∗ f )(x)| (6.4.6)

is in Lp(Rn). If this is the case, we set
∥

∥ f
∥

∥

H p =
∥

∥M( f ;P)
∥

∥

Lp .

At this point we don’t know whether these spaces coincide with any other known
spaces for some values of p. In the next theorem we show that this is the case when
1 < p < ∞.

Theorem 6.4.3. (a) Let 1 < p < ∞. Then every bounded tempered distribution f in
H p is an element of Lp. Moreover, there is a constant Cn,p such that for all such f
we have

∥

∥ f
∥

∥

Lp ≤
∥

∥ f
∥

∥

H p ≤Cn,p
∥

∥ f
∥

∥

Lp ,

and therefore H p(Rn) coincides with Lp(Rn).
(b) When p = 1, every element of H1 is an integrable function. In other words,
H1(Rn) ⊆ L1(Rn) and for all f ∈ H1 we have

∥

∥ f
∥

∥

L1 ≤
∥

∥ f
∥

∥

H1 . (6.4.7)

Proof. (a) Let f ∈ H p(Rn). The set {Pt ∗ f : t > 0} lies in a multiple of the unit ball
of Lp. By the Banach–Alaoglu–Bourbaki theorem there exists a sequence t j → 0
such that Ptj ∗ f converges to some Lp function f0 in the weak∗ topology of Lp. On
the other hand, we see that Pt ∗ϕ→ ϕ in S (Rn) as t → 0 for all ϕ in S (Rn). Thus

Pt ∗ f → f in S ′(Rn), (6.4.8)

and it follows that the distribution f coincides with the Lp function f0. Since the
family {Pt}t>0 is an approximate identity, Theorem 1.2.19 gives that

∥

∥Pt ∗ f − f
∥

∥

Lp → 0 as t → 0,

from which it follows that
∥

∥ f
∥

∥

Lp ≤
∥

∥sup
t>0

|Pt ∗ f |
∥

∥

Lp =
∥

∥ f
∥

∥

H p . (6.4.9)

The converse inequality is a consequence of the fact that

sup
t>0

|Pt ∗ f | ≤ M( f ) ,

where M is the Hardy–Littlewood maximal operator. (See Corollary 2.1.12.)
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(b) The case p = 1 requires only a small modification of the case p > 1. Embed-
ding L1 into the space of finite Borel measures M whose unit ball is weak∗ compact,
we can extract a sequence t j → 0 such that Ptj ∗ f converges to some measure μ in
the topology of measures. In view of (6.4.8), it follows that the distribution f can be
identified with the measure μ .

It remains to show that μ is absolutely continuous with respect to Lebesgue mea-
sure, which would imply that it coincides with some L1 function. Let |μ | be the total
variation of μ . We show that μ is absolutely continuous by showing that for all sub-
sets E of Rn we have |E|= 0 =⇒ |μ |(E) = 0. Given an ε > 0, there exists a δ > 0
such that for any measurable subset F of Rn we have

|F| < δ =⇒
∫

F
sup
t>0

|Pt ∗ f |dx < ε .

Given E with |E|= 0, we can find an open set U such that E ⊆U and |U |< δ . Then
for any g continuous function supported in U we have

∣

∣

∣

∣

∫

Rn
gdμ

∣

∣

∣

∣

= lim
j→∞

∣

∣

∣

∣

∫

Rn
g(x)(Ptj ∗ f )(x)dx

∣

∣

∣

∣

≤
∥

∥g
∥

∥

L∞

∫

U
sup
t>0

|Pt ∗ f |dx

< ε
∥

∥g
∥

∥

L∞ .

But we have

|μ(U)| = sup

{∣

∣

∣

∣

∫

Rn
gdμ

∣

∣

∣

∣

: g continuous supported in U with
∥

∥g
∥

∥

L∞ ≤ 1

}

,

which implies that |μ(U)| < ε . Since ε was arbitrary, it follows that |μ |(E) = 0;
hence μ is absolutely continuous with respect to Lebesgue measure. Finally, (6.4.7)
is a consequence of (6.4.9), which is also valid for p = 1. �

We may wonder whether H1 coincides with L1. We show in Theorem 6.7.4 that
elements of H1 have integral zero; thus H1 is a proper subspace of L1.

We now proceed to obtain some characterizations of these spaces.

6.4.2 Quasinorm Equivalence of Several Maximal Functions

It is a fact that all the maximal functions of the preceding subsection have compara-
ble Lp quasinorms for all 0 < p < ∞. This is the essence of the following theorem.

Theorem 6.4.4. Let 0 < p < ∞. Then the following statements are valid:
(a) There exists a Schwartz function Φ with

∫

RnΦ(x)dx �= 0 and a constant C1

(which does not depend on any parameter) such that
∥

∥M( f ;Φ)
∥

∥

Lp ≤C1
∥

∥ f
∥

∥

H p (6.4.10)
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for all bounded f ∈ S ′(Rn).
(b) For every a > 0 andΦ in S (Rn) there exists a constant C2(n, p,a,Φ) such that

∥

∥M∗
a( f ;Φ)

∥

∥

Lp ≤C2(n, p,a,Φ)
∥

∥M( f ;Φ)
∥

∥

Lp (6.4.11)

for all f ∈ S ′(Rn).
(c) For every a > 0, b > n/p, andΦ in S (Rn) there exists a constantC3(n, p,a,b,Φ)
such that

∥

∥M∗∗
b ( f ;Φ)

∥

∥

Lp ≤C3(n, p,a,b,Φ)
∥

∥M∗
a ( f ;Φ)

∥

∥

Lp (6.4.12)

for all f ∈ S ′(Rn).
(d) For every b > 0 and Φ in S (Rn) with

∫

RnΦ(x)dx �= 0 there exists a constant
C4(b,Φ) such that if N = [b]+ 1 we have

∥

∥MN( f )
∥

∥

Lp ≤C4(b,Φ)
∥

∥M∗∗
b ( f ;Φ)

∥

∥

Lp (6.4.13)

for all f ∈ S ′(Rn).
(e) For every positive integer N there exists a constant C5(n,N) such that every
tempered distribution f with

∥

∥MN( f )
∥

∥

Lp <∞ is a bounded distribution and satisfies

∥

∥ f
∥

∥

H p ≤C5(n,N)
∥

∥MN( f )
∥

∥

Lp , (6.4.14)

that is, it lies in the Hardy space H p.

We conclude that for f ∈ H p(Rn), the inequality in (6.4.14) can be reversed, and
therefore for any Schwartz functionΦ with

∫

RnΦ(x)dx �= 0, we have
∥

∥M∗
a ( f ;Φ)

∥

∥

Lp ≤C(a,n, p,Φ)
∥

∥ f
∥

∥

H p .

Consequently, there exists N ∈ Z+ large enough such that for f ∈ S ′(Rn) we have
∥

∥MN( f )
∥

∥

Lp ≈
∥

∥M∗∗
b ( f ;Φ)

∥

∥

Lp ≈
∥

∥M∗
a( f ;Φ)

∥

∥

Lp ≈
∥

∥M( f ;Φ)
∥

∥

Lp ≈
∥

∥ f
∥

∥

H p

for all Schwartz functions Φ with
∫

RnΦ(x)dx �= 0 and constants that depend only
on Φ,a,b,n, p. This furnishes a variety of characterizations for Hardy spaces.

The proof of this theorem is based on the following lemma.

Lemma 6.4.5. Let m ∈ Z+ and let Φ in S (Rn) satisfy
∫

RnΦ(x)dx = 1. Then there
exists a constant C0(Φ,m) such that for any Ψ in S (Rn), there exist Schwartz
functionsΘ (s), 0 ≤ s ≤ 1, with the properties

Ψ(x) =
∫ 1

0
(Θ (s) ∗Φs)(x)ds (6.4.15)

and
∫

Rn
(1 + |x|)m|Θ (s)(x)|dx ≤C0(Φ,m)sm

Nm(Ψ). (6.4.16)

Proof. We start with a smooth function ζ supported in [0,1] that satisfies
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0 ≤ ζ (s) ≤ 2sm

m!
for all 0 ≤ s ≤ 1 ,

ζ (s) =
sm

m!
for all 0 ≤ s ≤ 1

2
,

drζ
dtr (1) = 0 for all 0 ≤ r ≤ m+ 1 .

We define

Θ (s) = Ξ (s)− dm+1ζ (s)
dsm+1

m+1 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs ∗Ψ , (6.4.17)

where

Ξ (s) = (−1)m+1ζ (s)
∂m+1

∂ sm+1

(

m+2 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs

)

∗Ψ ,

and we claim that (6.4.15) holds for this choice ofΘ (s). To verify this assertion, we
apply m+ 1 integration by parts to write

∫ 1

0
Θ (s) ∗Φs ds =

∫ 1

0
Ξ (s) ∗Φs ds+

dmζ (s)
dsm (0) lim

s→0+

(

m+2 terms
︷ ︸︸ ︷

Φ ∗ · · · ∗Φ
)

s ∗Ψ

− (−1)m+1
∫ 1

0
ζ (s)

∂m+1

∂ sm+1

(

m+2 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs

)

∗Ψ ds ,

noting that all the boundary terms vanish except for the one in the first integration
by parts at s = 0. The first and the third terms in the previous expression on the right
add up to zero, while the second term is equal toΨ , since Φ has integral one, which
implies that the family {(Φ ∗ · · · ∗Φ)s}s>0 is an approximate identity as s → 0.
Therefore, (6.4.15) holds.

We now prove estimate (6.4.16). LetΩ be the (m+1)-fold convolution ofΦ . For
the second term on the right in (6.4.17), we note that the (m+1)st derivative of ζ (s)
vanishes on

[

0, 1
2

]

, so that we may write

∫

Rn
(1 + |x|)m

∣

∣

∣

dm+1ζ (s)
dsm+1

∣

∣

∣ |Ωs ∗Ψ(x)|dx

≤ Cm χ[ 1
2 ,1](s)

∫

Rn
(1 + |x|)m

[
∫

Rn

1
sn

∣

∣Ω( x−y
s )
∣

∣ |Ψ(y)|dy

]

dx

≤ Cm χ[ 1
2 ,1](s)

∫

Rn

∫

Rn
(1 + |y + sx|)m|Ω(x)| |Ψ (y)|dydx

≤ Cm χ[ 1
2 ,1](s)

∫

Rn

∫

Rn
(1 + |sx|)m|Ω(x)|(1 + |y|)m|Ψ (y)|dydx

≤ Cm χ[ 1
2 ,1](s)

(
∫

Rn
(1 + |x|)m|Ω(x)|dx

)(
∫

Rn
(1 + |y|)m|Ψ (y)|dy

)

≤ C′
0(Φ,m)sm

Nm(Ψ ) ,
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since χ[ 1
2 ,1](s) ≤ 2msm. To obtain a similar estimate for the first term on the right in

(6.4.17), we argue as follows:

∫

Rn
(1 + |x|)m|ζ (s)|

∣

∣

∣

dm+1(Ωs ∗Ψ)
dsm+1 (x)

∣

∣

∣dx

=
∫

Rn
(1 + |x|)m |ζ (s)|

∣

∣

∣

∣

dm+1

dsm+1

∫

Rn

1
snΩ

(x− y
s

)

Ψ(y)dy

∣

∣

∣

∣

dx

=
∫

Rn
(1 + |x|)m |ζ (s)|

∣

∣

∣

∣

∫

Rn
Ω(y)

dm+1Ψ(x− sy)
dsm+1 dy

∣

∣

∣

∣

dx

≤C′
m

∫

Rn
(1 + |x|)m |ζ (s)|

∫

Rn
|Ω(y)|

[

∑
|α |≤m+1

|∂αΨ(x− sy)| |y||α |
]

dydx

≤C′
m|ζ (s)|

∫

Rn

∫

Rn
(1 + |x + sy|)m|Ω(y)| ∑

|α |≤m+1

|∂αΨ (x)|(1 + |y|)m+1 dydx

≤C′
m|ζ (s)|

∫

Rn
(1 + |y|)m+1 |Ω(y)|(1 + |y|)m dy

∫

Rn
(1 + |x|)m ∑

|α |≤m+1

|∂αΨ(x)|dx

≤C′′
0 (Φ,m)sm

Nm(Ψ ) .

We now set C0(Φ,m) = C′
0(Φ,m)+C′′

0 (Φ,m) to conclude the proof of (6.4.16). �

Next, we discuss the proof of Theorem 6.4.4.

Proof. (a) We pick a continuous and integrable function ψ(s) on the interval [1,∞)
that decays faster than the reciprocal of any polynomial (i.e., |ψ(s)| ≤CNs−N for all
N > 0) such that

∫ ∞

1
skψ(s)ds =

{

1 if k = 0,

0 if k = 1,2,3, . . . .
(6.4.18)

Such a function exists; in fact, we may take

ψ(s) =
e
π

1
s

Im
(

e(
√

2
2 −i

√
2

2 )(s−1)
1
4
)

. (6.4.19)

See Exercise 6.4.4. We now define a function

Φ(x) =
∫ ∞

1
ψ(s)Ps(x)ds , (6.4.20)

where Ps is the Poisson kernel. The Fourier transformΦ is

̂Φ(ξ ) =
∫ ∞

1
ψ(s)̂Ps(ξ )ds =

∫ ∞

1
ψ(s)e−2πs|ξ | ds

(cf. Exercise 2.2.11), which is easily seen to be rapidly decreasing as |ξ | → ∞.
The same is true for all the derivatives of ̂Φ . The function ̂Φ is clearly smooth on
Rn \ {0}. Moreover,
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∂ j ̂Φ(ξ ) =
L−1

∑
k=0

(−2π)k+1 |ξ |k
k!
ξ j

|ξ |

∫ ∞

1
sk+1ψ(s)ds+ O(|ξ |L) = O(|ξ |L)

as |ξ | → 0, which implies that the distributional derivative ∂ j ̂Φ is continuous at the
origin. Since

∂αξ (e−2πs|ξ |) = s|α |pα(ξ )|ξ |−mα e−2πs|ξ |

for some mα ∈ Z+ and some polynomial pα , choosing L sufficiently large gives
that every derivative of ̂Φ is also continuous at the origin. We conclude that the
function ̂Φ is in the Schwartz class, and thus so is Φ . It also follows from (6.4.18)
and (6.4.20) that

∫

Rn
Φ(x)dx = 1 �= 0 .

Finally, we have the estimate

M( f ;Φ)(x) = sup
t>0

|(Φt ∗ f )(x)|

= sup
t>0

∣

∣

∣

∣

∫ ∞

1
ψ(s)( f ∗Pts)(x)ds

∣

∣

∣

∣

≤
∫ ∞

1
|ψ(s)|dsM( f ;P)(x) ,

and the required conclusion follows with C1 =
∫ ∞

1 |ψ(s)|ds. Note that we actually
obtained the stronger pointwise estimate

M( f ;Φ) ≤C1 M( f ;P)

rather than (6.4.10).

(b) The control of the nontagential maximal function M∗
a (· ;Φ) in terms of the

vertical maximal function M( · ;Φ) is the hardest and most technical part of the
proof. For matters of exposition, we present the proof only in the case that a = 1
and we note that the case of general a > 0 presents only notational differences. We
derive (6.4.11) as a consequence of the estimate

(
∫

Rn
M∗

1 ( f ;Φ)ε,N(x)pdx

) 1
p

≤C2(n, p,N,Φ)
∥

∥M( f ;Φ)
∥

∥

Lp , (6.4.21)

where N is a large enough integer depending on f , 0 < ε < 1, and

M∗
1( f ;Φ)ε,N (x) = sup

0<t< 1
ε

sup
|y−x|≤t

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N .

Let us a fix an element f in S ′(Rn) such that M( f ;Φ) ∈ Lp. We first show that
M∗

1 ( f ;Φ)ε,N lies in Lp(Rn)∩L∞(Rn). Indeed, using (2.3.22) (with α = 0), we obtain
the following estimate for some constants Cf , m, and l (depending on f ):
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|(Φt ∗ f )(y)| ≤ Cf ∑
|β |≤l

sup
z∈Rn

(|y|m + |z|m)|(∂β ˜Φt)(z)|

≤ Cf (1 + |y|m) ∑
|β |≤l

sup
z∈Rn

(1 + |z|m)|(∂βΦt)(−z)|

≤ Cf
(1 + |y|m)

min(tn,tn+l) ∑|β |≤l

sup
z∈Rn

(1 + |z|m)|(∂βΦ)(−z/t)|

≤ Cf
(1 + |y|)m

min(tn,tn+l)
(1 + tm) ∑

|β |≤l

sup
z∈Rn

(1 + |z/t|m)|(∂βΦ)(−z/t)|

≤ C( f ,Φ)(1 + ε|y|)mε−m(1 + tm)(t−n + t−n−l) .

Multiplying by ( t
t+ε )

N(1 + ε|y|)−N for some 0 < t < 1
ε and |y− x|< t yields

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N ≤C( f ,Φ)

ε−m(1 + ε−m)(εn−N + εn+l−N)
(1 + ε|y|)N−m ,

and using that 1 + ε|y| ≥ 1
2(1 + ε|x|), we obtain for some C( f ,Φ,ε,n, l,m,N) < ∞,

M∗
1 ( f ;Φ)ε,N (x) ≤ C( f ,Φ,ε,n, l,m,N)

(1 + ε|x|)N−m .

Taking N > (m+ n)/p, we deduce that M∗
1 ( f ;Φ)ε,N lies in Lp(Rn)∩L∞(Rn).

We now introduce a parameter L > 0 and functions

U( f ;Φ)ε,N(x) = sup
0<t< 1

ε

sup
|y−x|<t

t
∣

∣∇(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

and

V ( f ;Φ)ε,N,L(x) = sup
0<t< 1

ε

sup
y∈Rn

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

(

t
t + |x− y|

)L

.

We fix an integer L > n/p. We need the norm estimate
∥

∥V ( f ;Φ)ε,N,L
∥

∥

Lp ≤Cn,p
∥

∥M∗
1 ( f ;Φ)ε,N

∥

∥

Lp (6.4.22)

and the pointwise estimate

U( f ;Φ)ε,N ≤ A(Φ,N,n, p)V ( f ;Φ)ε,N,L , (6.4.23)

where
A(Φ,N,n, p) = 2L C0(∂ jΦ;N + L)NN+L(∂ jΦ) .

To prove (6.4.22) we observe that when z ∈ B(y,t) ⊆ B(x, |x− y|+ t) we have
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∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N ≤ M∗

1( f ;Φ)ε,N (z) ,

from which it follows that for any 0 < q < ∞ and y ∈ Rn,

∣

∣(Φt ∗ f )(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

≤
(

1
|B(y,t)|

∫

B(y,t)
M∗

1 ( f ;Φ)ε,N (z)q dz

) 1
q

≤
(

|x− y|+ t
t

) n
q
(

1
|B(x, |x− y|+ t)|

∫

B(x,|x−y|+t)
M∗

1( f ;Φ)ε,N (z)q dz

) 1
q

≤
(

|x− y|+ t
t

)L

M
(

[

M∗
1 ( f ;Φ)ε,N

]q
) 1

q (x) ,

where we used that L > n/p. We now take 0 < q < p and we use the boundedness
of the Hardy–Littlewood maximal operator M on Lp/q to obtain (6.4.22).

In proving (6.4.23), we may assume that Φ has integral 1; otherwise we can
multiply Φ by a suitable constant to arrange for this to happen. We note that

t
∣

∣∇(Φt ∗ f )
∣

∣=
∣

∣(∇Φ)t ∗ f
∣

∣≤
√

n
n

∑
j=1

|(∂ jΦ)t ∗ f | ,

and it suffices to work with each partial derivative ∂ jΦ of Φ . Using Lemma 6.4.5
we write

∂ jΦ =
∫ 1

0
Θ (s) ∗Φs ds

for suitable Schwartz functionsΘ (s). Fix x ∈ Rn, t > 0, and y with |y−x|< t < 1/ε .
Then we have

∣

∣

(

(∂ jΦ)t ∗ f
)

(y)
∣

∣

( t
t + ε

)N 1
(1 + ε|y|)N

=
( t

t + ε

)N 1
(1 + ε|y|)N

∣

∣

∣

∣

∫ 1

0

(

(Θ (s))t ∗Φst ∗ f
)

(y)ds

∣

∣

∣

∣

≤
( t

t + ε

)N ∫ 1

0

∫

Rn
t−n
∣

∣Θ (s)(t−1z)
∣

∣

∣

∣

(

Φst ∗ f
)

(y− z)
∣

∣

(1 + ε|y|)N dz ds .

(6.4.24)

Inserting the factor 1 written as

(

ts
ts+ |x− (y− z)|

)L( ts
ts+ ε

)N( ts+ |x− (y− z)|
ts

)L( ts+ ε
ts

)N

in the preceding z-integral and using that
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1
(1 + ε|y|)N ≤ (1 + ε|z|)N

(1 + ε|y− z|)N

and the fact that |x− y|< t < 1/ε , we obtain the estimate

( t
t + ε

)N ∫ 1

0

∫

Rn
t−n
∣

∣Θ (s)(t−1z)
∣

∣

∣

∣

(

Φst ∗ f
)

(y− z)
∣

∣

(1 + ε|y|)N dzds

≤ V ( f ;Φ)ε,N,L(x)
∫ 1

0

∫

Rn
(1 + ε|z|)N

(

ts+ |x− (y− z)|
ts

)L

t−n
∣

∣Θ (s)(t−1z)
∣

∣dz
ds
sN

≤ V ( f ;Φ)ε,N,L(x)
∫ 1

0

∫

Rn
s−L−N(1 + εt|z|)N(s+ 1 + |z|)L

∣

∣Θ (s)(z)
∣

∣dzds

≤ 2L C0(∂ jΦ;N + L)NN+L(∂ jΦ)V ( f ;Φ)ε,N,L(x)

in view of conclusion (6.4.16) of Lemma 6.4.5. Combining this estimate with
(6.4.24), we deduce (6.4.23). Having established both (6.4.22) and (6.4.23), we con-
clude that

∥

∥U( f ;Φ)ε,N
∥

∥

Lp ≤Cn,p A(Φ,N,n, p)
∥

∥M∗
1 ( f ;Φ)ε,N

∥

∥

Lp . (6.4.25)

We now set

Eε =
{

x ∈ Rn : U( f ;Φ)ε,N (x) ≤ KM∗
1( f ;Φ)ε,N (x)

}

for some constant K to be determined shortly. With A = A(Φ,N,n, p) we have

∫

(Eε)c

[

M∗
1 ( f ;Φ)ε,N (x)

]p
dx ≤ 1

K p

∫

(Eε)c

[

U( f ;Φ)ε,N (x)
]p

dx

≤ 1
K p

∫

Rn

[

U( f ;Φ)ε,N(x)
]p

dx

≤ Cp
n,p Ap

K p

∫

Rn

[

M∗
1 ( f ;Φ)ε,N (x)

]p
dx

≤ 1
2

∫

Rn

[

M∗
1( f ;Φ)ε,N (x)

]p
dx ,

(6.4.26)

provided we choose K such that K p = 2Cp
n,p Ap. Obviously K = K(Φ,N,n, p), i.e.,

it depends on all these variables, in particular on N, which depends on f .
It remains to estimate the contribution of the integral of

[

M∗
1( f ;Φ)ε,N (x)

]p
over

the set Eε . We claim that the following pointwise estimate is valid:

M∗
1( f ;Φ)ε,N (x) ≤Cn,N,K M

(

M( f ;Φ)r)
1
q (x) (6.4.27)

for any x ∈ Eε and 0 < q < ∞. Note that Cn,N,K depends on K. To prove (6.4.27) we
fix x ∈ Eε and we also fix y such that |y− x|< t.

By the definition of M∗
1( f ;Φ)ε,N (x) there exists a point (y0, t) ∈ Rn+1

+ such that
|x− y0| < t < 1

ε and
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∣

∣(Φt ∗ f )(y0)
∣

∣

( t
t + ε

)N 1
(1 + ε|y0|)N ≥ 1

2
M∗

1( f ;Φ)ε,N (x) . (6.4.28)

Also by the definitions of Eε and U( f ;Φ)ε,N , for any x ∈ Eε we have

t
∣

∣∇(Φt ∗ f )(ξ )
∣

∣

( t
t + ε

)N 1
(1 + ε|ξ |)N ≤ K M∗

1( f ;Φ)ε,N (x) (6.4.29)

for all ξ satisfying |ξ − x|< t < 1
ε . It follows from (6.4.28) and (6.4.29) that

t
∣

∣∇(Φt ∗ f )(ξ )
∣

∣≤ 2K
∣

∣(Φt ∗ f )(y0)
∣

∣

(

1 + ε|ξ |
1 + ε|y0|

)N

(6.4.30)

for all ξ satisfying |ξ − x| < t < 1
ε . We let z be such that |z− x| < t. Applying the

mean value theorem and using (6.4.30), we obtain, for some ξ between y0 and z,
∣

∣(Φt ∗ f )(z)− (Φt ∗ f )(y0)
∣

∣ =
∣

∣∇(Φt ∗ f )(ξ )
∣

∣ |z− y0|

≤ 2K
t

∣

∣(Φt ∗ f )(ξ )
∣

∣

(

1 + ε|ξ |
1 + ε|y0|

)N

|z− y0|

≤ 2N+1K
t

∣

∣(Φt ∗ f )(y0)
∣

∣ |z− y0|

≤ 1
2

∣

∣(Φt ∗ f )(y0)
∣

∣ ,

provided z also satisfies |z− y0| < 2−N−2K−1t in addition to |z− x| < t. Therefore,
for z satisfying |z− y0| < 2−N−2K−1t and |z− x|< t we have

∣

∣(Φt ∗ f )(z)
∣

∣≥ 1
2

∣

∣(Φt ∗ f )(y0)
∣

∣≥ 1
4

M∗
1( f ;Φ)ε,N (x) ,

where the last inequality uses (6.4.28). Thus we have

M
(

M( f ;Φ)q)(x) ≥ 1
|B(x,t)|

∫

B(x,t)

[

M( f ;Φ)(w)
]q

dw

≥ 1
|B(x,t)|

∫

B(x,t)∩B(y0,2−N−2K−1t)

[

M( f ;Φ)(w)
]q

dw

≥ 1
|B(x,t)|

∫

B(x,t)∩B(y0,2−N−2K−1t)

1
4q

[

M∗
1( f ;Φ)ε,N (x)

]q
dw

≥ |B(x,t)∩B(y0,2−N−2K−1t)|
|B(x,t)|

1
4q

[

M∗
1( f ;Φ)ε,N (x)

]r

≥ Cn,N,K4−q[M∗
1( f ;Φ)ε,N (x)

]q
,

where we used the simple geometric fact that if |x− y0| ≤ t and δ > 0, then
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|B(x,t)∩B(y0,δ t)|
|B(x,t)| ≥ cn,δ > 0 ,

the minimum of this constant being obtained when |x− y0| = t. See Figure 6.1.

Fig. 6.1 The ball B(y0,δ t)
captures at least a fixed pro-
portion of the ball B(x, t).

. .t

x
y
0tδ

This proves (6.4.27). Taking r < p and applying the boundedness of the Hardy–
Littlewood maximal operator yields

∫

Eε

[

M∗
1 ( f ;Φ)ε,N(x)

]p
dx ≤C′

Φ ,N,K,n,p

∫

Rn
M( f ;Φ)(x)p dx . (6.4.31)

Combining this estimate with (6.4.26), we obtain

∫

Rn

[

M∗
1 ( f ;Φ)ε,N

]p
dx ≤Cp

Φ ,N,K,n,p

∫

Rn
M( f ;Φ)p dx +

1
2

∫

Rn

[

M∗
1 ( f ;Φ)ε,N

]p
dx ,

and using the fact (obtained earlier)
∥

∥M∗
1( f ;Φ)ε,N

∥

∥

Lp < ∞, we obtain the required
conclusion (6.4.11). This proves the inequality

∥

∥M∗
1( f ;Φ)ε,N

∥

∥

Lp ≤ 21/pCΦ ,N,K,n,p
∥

∥M( f ;Φ)
∥

∥

Lp . (6.4.32)

The previous constant depends on f but is independent of ε . Notice that

M∗
1 ( f ;Φ)ε,N (x) ≥ 2−N

(1 + ε|x|)N sup
0<t<1/ε

( t
t + ε

)N
sup

|y−x|<t

∣

∣(Φt ∗ f )(y)
∣

∣

and that the preceding expression on the right increases to

2−NM∗
1 ( f ;Φ)(x)

as ε ↓ 0. Since the constant in (6.4.32) does not depend on ε , an application of the
Lebesgue monotone convergence theorem yields

∥

∥M∗
1( f ;Φ)

∥

∥

Lp ≤ 2N+ 1
p CΦ ,N,K,n,p

∥

∥M( f ;Φ)
∥

∥

Lp . (6.4.33)

The problem with this estimate is that the finite constant 2NCΦ ,N,K,n,p depends on
N and thus on f . However, we have managed to show that under the assumption
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∥

∥M( f ;Φ)
∥

∥

Lp <∞, one must necessarily have
∥

∥M∗
1( f ;Φ)

∥

∥

Lp <∞ . This is a signifi-
cant observation that allows us now to repeat the preceding argument from the point
where the functions U( f ;φ)ε,N and V ( f ;φ)ε,N,L are introduced, setting ε = N = 0.
Since the resulting constant no longer depends on the tempered distribution f , the
required conclusion follows.

(c) As usual, B(x,R) denotes a ball centered at x with radius R. It follows from
the definition of M∗

a( f ;Φ) that

|(Φt ∗ f )(y)| ≤ M∗
a( f ;Φ)(z) if z ∈ B(y,at) .

But the ball B(y,at) is contained in the ball B(x, |x− y|+ at); hence it follows that

|(Φt ∗ f )(y)| n
b ≤ 1

|B(y,at)|

∫

B(y,at)
M∗

a( f ;Φ)(z)
n
b dz

≤ 1
|B(y,at)|

∫

B(x,|x−y|+at)
M∗

a( f ;Φ)(z)
n
b dz

≤
(

|x− y|+ at
at

)n

M
(

M∗
a( f ;Φ)

n
b
)

(x)

≤ max(1,a−n)
(

|x− y|
t

+ 1

)n

M
(

M∗
a ( f ;Φ)

n
b
)

(x) ,

from which we conclude that for all x ∈ Rn we have

M∗∗
b ( f ;Φ)(x) ≤ max(1,a−n)

{

M
(

M∗
a( f ;Φ)

n
b
)

(x)
} b

n
.

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy–Littlewood maximal operator M on Lpb/n, we obtain the required conclusion
(6.4.12).

(d) In proving (d) we may replace b by the integer b0 = [b] + 1. Let Φ be a
Schwartz function with nonvanishing integral. MultiplyingΦ by a constant, we can
assume thatΦ has integral equal to 1. Applying Lemma 6.4.5 with m = b0, we write
any function ϕ in FN as

ϕ(y) =
∫ 1

0
(Θ (s) ∗Φs)(y)ds

for some choice of Schwartz functionsΘ (s). Then we have

ϕt(y) =
∫ 1

0
((Θ (s))t ∗Φts)(y)ds

for all t > 0. Fix x ∈ Rn. Then for y in B(x,t) we have
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|(ϕt ∗ f )(y)| ≤
∫ 1

0

∫

Rn
|(Θ (s))t(z)| |(Φts ∗ f )(y− z)|dz ds

≤
∫ 1

0

∫

Rn
|(Θ (s))t(z)|M∗∗

b0
( f ;Φ)(x)

(

|x− (y− z)|
st

+ 1

)b0

dz ds

≤
∫ 1

0
s−b0

∫

Rn
|(Θ (s))t(z)|M∗∗

b0
( f ;Φ)(x)

(

|x− y|
t

+
|z|
t

+ 1

)b0

dz ds

≤ 2b0M∗∗
b0

( f ;Φ)(x)
∫ 1

0
s−b0

∫

Rn
|Θ (s)(w)|

(

|w|+ 1
)b0 dw ds

≤ 2b0M∗∗
b0

( f ;Φ)(x)
∫ 1

0
s−b0C0(Φ,b0)sb0 Nb0(ϕ)ds ,

where we applied conclusion (6.4.16) of Lemma 6.4.5. Setting N = b0 = [b]+1, we
obtain for y in B(x,t) and ϕ ∈ FN ,

|(ϕt ∗ f )(y)| ≤ 2b0C0(Φ,b0)M∗∗
b0

( f ;Φ)(x) .

Taking the supremum over all y in B(x,t), over all t > 0, and over all ϕ in FN , we
obtain the pointwise estimate

MN( f )(x) ≤ 2b0C0(Φ,b0)M∗∗
b0

( f ;Φ)(x) , x ∈ Rn,

where N = b0 + 1. This clearly yields (6.4.13) if we set C4 = 2b0C0(Φ,b0).

(e) We fix an f ∈ S ′(Rn) that satisfies
∥

∥MN( f )
∥

∥

Lp < ∞ for some fixed positive
integer N. To show that f is a bounded distribution, we fix a Schwartz function ϕ
and we observe that for some positive constant c = cϕ , we have that cϕ is an element
of FN and thus M∗

1( f ;cϕ) ≤ MN( f ). Then

cp |(ϕ ∗ f )(x)|p ≤ inf
|y−x|≤1

sup
|z−y|≤1

|(cϕ ∗ f )(z)|p

≤ inf
|y−x|≤1

M∗
1( f ;cϕ)(y)p

≤ 1
vn

∫

|y−x|≤1
M∗

1( f ;cϕ)(y)p dy

≤ 1
vn

∫

Rn
M∗

1( f ;cϕ)(y)p dy

≤ 1
vn

∫

Rn
MN( f )(y)p dy < ∞ ,

which implies that ϕ ∗ f is a bounded function. We conclude that f is a bounded
distribution. We now proceed to show that f is an element of H p. We fix a smooth
function with compact support θ such that

θ (x) =

{

1 if |x| < 1,

0 if |x| > 2.
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We observe that the identity

P(x) = P(x)θ (x)+
∞

∑
k=1

(

θ (2−kx)P(x)−θ (2−(k−1)x)P(x)
)

= P(x)θ (x)+
Γ ( n+1

2 )

π
n+1

2

∞

∑
k=1

2−k
(

θ ( ·)−θ (2( ·))
(2−2k + | · |2) n+1

2

)

2k
(x)

is valid for all x ∈ Rn. Setting

Φ(k)(x) =
(

θ (x)−θ (2x)
) 1

(2−2k + |x|2) n+1
2

,

we note that for some fixed constant c0 = c0(n,N), the functions c0 θ P and c0Φ(k)

lie in FN uniformly in k = 1,2,3, . . . . Combining this observation with the identity
for P(x) obtained earlier, we conclude that

sup
t>0

|Pt ∗ f | ≤ sup
t>0

|(θP)t ∗ f |+ 1
c0

Γ ( n+1
2 )

π
n+1

2

sup
t>0

∞

∑
k=1

2−k
∣

∣(c0Φ(k))2kt ∗ f
∣

∣

≤ C5(n,N)MN( f ) ,

which proves the required conclusion (6.4.14).
We observe that the last estimate also yields the stronger estimate

M∗
1( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Pt ∗ f )(y)| ≤C5(n,N)MN( f )(x) . (6.4.34)

It follows that the quasinorm
∥

∥M∗
1( f ;P)

∥

∥

Lp(Rn) is also equivalent to
∥

∥ f
∥

∥

H p . This
fact is very useful. �

Remark 6.4.6. To simplify the understanding of the equivalences just proved, a
first-time reader may wish to define the H p quasinorm of a distribution f as

∥

∥ f
∥

∥

H p =
∥

∥M∗
1( f ;P)

∥

∥

Lp

and then study only the implications (a) =⇒ (c), (c) =⇒ (d), (d) =⇒ (e), and
(e) =⇒ (a) in the proof of Theorem 6.4.4. In this way one avoids passing through
the statement in part (b). For many applications, the identification of

∥

∥ f
∥

∥

H p with
∥

∥M∗
1 ( f ;Φ)

∥

∥

Lp for some Schwartz functionΦ (with nonvanishing integral) suffices.
We also remark that the proof of Theorem 6.4.4 yields

∥

∥ f
∥

∥

H p(Rn) ≈
∥

∥MN( f )
∥

∥

Lp(Rn) ,

where N = [ n
p ]+ 1.
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6.4.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 6.4.4. In many appli-
cations we need to be working with dense subspaces of H p. It turns out that both
H p ∩L2 and H p ∩L1 are dense in H p.

Proposition 6.4.7. Let 0 < p ≤ 1 and let r satisfy p ≤ r ≤∞. Then Lr ∩H p is dense
in H p. Hence, H p ∩L2 and H p ∩L1 are dense in H p.

Proof. Let f be a distribution in H p(Rn). Recall the Poisson kernel P(x) and set
N = [ n

p ]+ 1. For any fixed x ∈ Rn and t > 0 we have

|(Pt ∗ f )(x)| ≤ M∗
1 ( f ;P)(y) ≤CMN( f )(y) (6.4.35)

for any |y− x| ≤ t. Indeed, the first estimate in (6.4.35) follows from the definition
of M∗

1( f ;P), and the second estimate by (6.4.34). Raising (6.4.35) to the power p
and averaging over the ball B(x,t), we obtain

|(Pt ∗ f )(x)|p ≤ Cp

vntn

∫

B(x,t)
MN( f )(y)p dy ≤ Cp

1

tn

∥

∥ f‖p
H p .

It follows that the function Pt ∗ f is in L∞(Rn) with norm at most a constant multiple
of t−n/p

∥

∥ f‖H p . Moreover, this function is also in Lp(Rn), since it is controlled by
M( f ;P). Therefore, the functions Pt ∗ f lie in Lr(Rn) for all r ≤ p ≤ ∞. It remains
to show that Pt ∗ f also lie in H p and that Pt ∗ f → f in H p as t → 0.

To see that Pt ∗ f lies in H p, we use the semigroup formula Pt ∗Ps = Pt+s for the
Poisson kernel, which is a consequence of the fact that ̂Pt(ξ ) = e−2πt|ξ | by applying
the Fourier transform. Therefore, for any t > 0 we have

sup
s>0

|Ps ∗Pt ∗ f | = sup
s>0

|Ps+t ∗ f | ≤ sup
s>0

|Ps ∗ f | ,

which implies that
∥

∥Pt ∗ f
∥

∥

H p ≤
∥

∥ f
∥

∥

H p

for all t > 0. We now need to show that Pt ∗ f → f in H p as t → 0. This will be a
consequence of the Lebesgue dominated convergence theorem once we know that

sup
s>0

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| → 0 as t → 0 (6.4.36)

pointwise for all x ∈ Rn and also

sup
s>0

|Ps ∗Pt ∗ f −Ps ∗ f | ≤ 2sup
s>0

|Ps ∗ f | ∈ Lp(Rn) . (6.4.37)

Statement (6.4.37) is a trivial consequence of the Poisson semigroup formula. As
far as (6.4.36) is concerned, we note that for all x ∈ Rn the function

s �→ |(Ps ∗Pt ∗ f )(x)− (Ps ∗ f )(x)| = |(Ps+t ∗ f )(x)− (Ps ∗ f )(x)|
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is bounded by a constant multiple of s−n/p and therefore tends to zero as s → ∞.
Given any ε > 0, there exists an M > 0 such that for all t > 0 we have

sup
s>M

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| < ε
2

. (6.4.38)

Moreover, the function t �→ sup0≤s≤M |(Ps ∗Pt ∗ f −Ps ∗ f )(x)| is continuous in t.
Therefore, there exists a t0 > 0 such that for t < t0 we have

sup
0≤s≤M

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| < ε
2

. (6.4.39)

Combining (6.4.38) and (6.4.39) proves (6.4.36). �

Next we observe the following consequence of Theorem 6.4.4.

Corollary 6.4.8. For any two Schwartz functions Φ andΘ with nonvanishing inte-
gral we have

∥

∥sup
t>0

|Θt ∗ f |
∥

∥

Lp ≈
∥

∥sup
t>0

|Φt ∗ f |
∥

∥

Lp ≈
∥

∥ f
∥

∥

H p

for all f ∈ S ′(Rn), with constants depending only on n, p,Φ , andΘ .

Proof. See the discussion after Theorem 6.4.4. �

Next we define a norm on Schwartz functions relevant in the theory of Hardy
spaces:

NN(ϕ ;x0,R) =
∫

Rn

(

1 +
∣

∣

∣

x− x0

R

∣

∣

∣

)N

∑
|α |≤N+1

R|α ||∂αϕ(x)|dx .

Note that NN(ϕ ;0,1) = NN(ϕ).

Corollary 6.4.9. (a) For any 0 < p ≤ 1, any f ∈ H p(Rn), and any ϕ ∈ S (Rn) we
have

∣

∣

〈

f ,ϕ
〉∣

∣≤ NN(ϕ) inf
|z|≤1

MN( f )(z) , (6.4.40)

where N = [ n
p ]+ 1. More generally, for any x0 ∈ Rn and R > 0 we have

∣

∣

〈

f ,ϕ
〉∣

∣≤ NN(ϕ ;x0,R) inf
|z−x0|≤R

MN( f )(z) . (6.4.41)

(b) Let 0 < p ≤ 1 and p ≤ r ≤ ∞. For any f ∈ H p we have the estimate
∥

∥ϕ ∗ f
∥

∥

Lr ≤C(p,n)NN(ϕ)
∥

∥ f‖H p ,

where N = [n/p]+ 1.

Proof. (a) Set ψ(x) = ϕ(−Rx + x0). It follows directly from Definition 6.4.1 that
for any fixed z with |z− x0| ≤ R we have
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∣

∣

〈

f ,ϕ
〉∣

∣ = Rn|( f ∗ψR)(x0)|
≤ sup

y: |y−z|≤R
Rn|( f ∗ψR)(y)|

≤ Rn
[
∫

Rn
(1 + |w|)N ∑

|α |≤N+1

|∂αψ(w)|dw

]

MN( f )(z) ,

from which the second assertion in the corollary follows easily by the change of
variables x = −Rw + x0. Taking the infimum over all z with |z− x0| ≤ R yields the
required conclusion.

(b) For any fixed x ∈ Rn and t > 0 we have

|(ϕ ∗ f )(x)| ≤ NN(ϕ)M∗
1

(

f ;
ϕ

NN(ϕ)

)

(y) ≤ NN(ϕ)MN( f )(y) (6.4.42)

for all y satisfying |y− x| ≤ 1. Hence

|(ϕ ∗ f )(x)|p ≤ NN(ϕ)p

|B(x,1)|

∫

B(x,1)
MN( f )p(y)dy ≤ NN(ϕ)pCp

p,n

∥

∥ f
∥

∥

p
H p .

This implies that
∥

∥ϕ ∗ f
∥

∥

L∞ ≤ Cp,nNN(ϕ)
∥

∥ f
∥

∥

H p . Choosing y = x in (6.4.42) and
then taking Lp quasinorms yields a similar estimate for

∥

∥ϕ ∗ f
∥

∥

Lp . By interpolation
we deduce

∥

∥ϕ ∗ f
∥

∥

Lr ≤ NN(ϕ)
∥

∥ f
∥

∥

H p . �
Proposition 6.4.10. Let 0 < p ≤ 1. Then the following statements are valid:
(a) Convergence in H p implies convergence in S ′.
(b) H p is a complete quasinormed metrizable space.

Proof. Part (a) says that if a sequence f j tends to f in H p(Rn), then f j → f in
S ′(Rn). But this easily follows from the estimate

∣

∣

〈

f ,ϕ
〉∣

∣≤Cϕ inf
|z|≤1

MN( f )(z) ≤ Cϕ
vn

∫

Rn
MN( f )p dz ≤CϕCn,p

∥

∥ f
∥

∥

p
H p ,

which is a direct consequence of (6.4.40) for all ϕ in S (Rn). As before, here N =
[ n

p ]+ 1.

To obtain the statement in (b), we first observe that the map ( f ,g) �→
∥

∥ f −g
∥

∥

p
H p

is a metric on H p that generates the same topology as the quasinorm f �→
∥

∥ f
∥

∥

H p .
To show that H p is a complete space, it suffices to show that for any sequence of
functions f j that satisfies

∑
j

∫

Rn
MN( f j)p dx < ∞ ,

the series ∑ j f j converges in H p(Rn). The partial sums of this series are Cauchy in
H p(Rn) and therefore are Cauchy in S ′(Rn) by part (a). It follows that the sequence
∑k
−k f j converges to some tempered distribution f in S ′(Rn). Sublinearity gives
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∫

Rn
MN( f )p dx =

∫

Rn
MN

(

∑
j

f j

)p
dx ≤∑

j

∫

Rn
MN( f j)p dx < ∞ ,

which implies that f ∈ H p. Finally,

∫

Rn
MN

(

f −
k

∑
j=−k

f j

)p
dx ≤ ∑

| j|≥k+1

∫

Rn
MN( f j)p dx → 0

as k → ∞; thus the series converges in H p. �

6.4.4 Vector-Valued H p and Its Characterizations

We now obtain a vector-valued analogue of Theorem 6.4.4 crucial in the charac-
terization of Hardy spaces using Littlewood–Paley theory. To state this analogue
we need to extend the definitions of the maximal operators to sequences of distri-
butions. Let a,b > 0 and let Φ be a Schwartz function on Rn. In accordance with
Definition 6.4.1, we give the following sequence of definitions.

Definition 6.4.11. For a sequence �f = { f j} j∈Z of tempered distributions on Rn we
define the smooth maximal function of �f with respect to Φ as

M(�f ;Φ)(x) = sup
t>0

∥

∥{(Φt ∗ f j)(x)} j
∥

∥

�2 .

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a(�f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

∥

∥{(Φt ∗ f j)(y)} j
∥

∥

�2 .

We also define the auxiliary maximal function

M∗∗
b (�f ;Φ)(x) = sup

t>0
sup
y∈Rn

∥

∥{(Φt ∗ f j)(x− y)} j
∥

∥

�2

(1 + t−1|y|)b .

We note that if the function Φ is not assumed to be Schwartz but merely inte-
grable, for example, if Φ is the Poisson kernel, the maximal functions M(�f ;Φ),
M∗

a(�f ;Φ), and M∗∗
b (�f ;Φ) are well defined for sequences �f = { f j} j whose terms

are bounded tempered distributions on Rn.
For a fixed positive integer N we define the grand maximal function of �f (with

respect to N) as
M N(�f ) = sup

ϕ∈FN

M∗
1(�f ;ϕ) , (6.4.43)

where
FN =

{

ϕ ∈ S (Rn) : NN(ϕ) ≤ 1
}
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is as defined in (6.4.5).

We note that as in the scalar case, we have the sequence of simple inequalities

M(�f ;Φ) ≤ M∗
a(�f ;Φ) ≤ (1 + a)bM∗∗

b (�f ;Φ) . (6.4.44)

We now define the vector-valued Hardy space H p(Rn, �2).

Definition 6.4.12. Let �f = { f j} j be a sequence of bounded tempered distributions
on Rn and let 0 < p < ∞. We say that �f lies in the vector-valued Hardy space
H p(Rn, �2) if the Poisson maximal function

M(�f ;P)(x) = sup
t>0

∥

∥{(Pt ∗ f j)(x)} j
∥

∥

�2

lies in Lp(Rn). If this is the case, we set

∥

∥�f
∥

∥

H p(Rn,�2) =
∥

∥M(�f ;P)
∥

∥

Lp(Rn) =
∥

∥

∥sup
ε>0

(

∑
j
| f j ∗Pε |2

)1
2
∥

∥

∥

Lp(Rn)
.

The next theorem provides a vector-valued analogue of Theorem 6.4.4.

Theorem 6.4.13. Let 0 < p < ∞. Then the following statements are valid:
(a) There exists a Schwartz function Φ with

∫

RnΦ(x)dx �= 0 and a constant C1

(which does not depend on any parameters) such that
∥

∥M(�f ;Φ)
∥

∥

Lp(Rn,�2) ≤C1
∥

∥�f
∥

∥

H p(Rn,�2) (6.4.45)

for every sequence �f = { f j} j of tempered distributions.
(b) For every a > 0 andΦ in S (Rn) there exists a constant C2(n, p,a,Φ) such that

∥

∥M∗
a(�f ;Φ)

∥

∥

Lp(Rn,�2) ≤C2(n, p,a,Φ)
∥

∥M(�f ;Φ)
∥

∥

Lp(Rn,�2) (6.4.46)

for every sequence �f = { f j} j of tempered distributions.
(c) For every a > 0, b > n/p, andΦ in S (Rn) there exists a constantC3(n, p,a,b,Φ)
such that

∥

∥M∗∗
b (�f ;Φ)

∥

∥

Lp(Rn,�2) ≤C3(n, p,a,b,Φ)
∥

∥M∗
a(�f ;Φ)

∥

∥

Lp(Rn,�2) (6.4.47)

for every sequence �f = { f j} j of tempered distributions.
(d) For every b > 0 and Φ in S (Rn) with

∫

RnΦ(x)dx �= 0 there exists a constant
C4(b,Φ) such that if N = [ n

p ]+ 1 we have

∥

∥M N(�f )
∥

∥

Lp(Rn,�2) ≤C4(b,Φ)
∥

∥M∗∗
b (�f ;Φ)

∥

∥

Lp(Rn,�2) (6.4.48)

for every sequence �f = { f j} j of tempered distributions.
(e) For every positive integer N there exists a constant C5(n,N) such that every
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sequence �f = { f j} j of tempered distributions that satisfies
∥

∥M N(�f )
∥

∥

Lp(Rn,�2) < ∞
consists of bounded distributions and satisfies

∥

∥�f
∥

∥

H p(Rn,�2) ≤C5(n,N)
∥

∥M N(�f )
∥

∥

Lp(Rn,�2) , (6.4.49)

that is, it lies in the Hardy space H p(Rn, �2).

Proof. The proof of this theorem is obtained via a step-by-step repetition of the
proof of Theorem 6.4.4 in which the scalar absolute values are replaced by �2 norms.
This is small notational change in our point of view but yields a significant improve-
ment of the scalar version of the theorem. Moreover, this perspective provides an
example of the power of Hilbert space techniques. The verification of the details of
this step-by-step repetition of the proof of Theorem 6.4.4 are left to the reader. �

We end this subsection by observing the validity of the following vector-valued
analogue of (6.4.41):

(

∑
j

∣

∣

〈

f j,ϕ
〉∣

∣

2
)1

2 ≤ NN(ϕ ;x0,R) inf
|z−x0|≤R

M N(�f )(z) . (6.4.50)

The proof of (6.4.50) is identical to the corresponding estimate for scalar-valued
functions. Set ψ(x) = ϕ(−Rx + x0). It follows directly from Definition 6.4.11 that
for any fixed z with |z− x0| ≤ R we have

(

∑
j

∣

∣

〈

f j,ϕ
〉∣

∣

2
) 1

2 = Rn
∥

∥{( f j ∗ψR)(x0)} j
∥

∥

�2

≤ sup
y: |y−z|≤R

Rn
∥

∥{( f j ∗ψR)(y)} j
∥

∥

�2

≤ Rn
NN(ψ)M N(�f )(z) ,

which, combined with the observation

Rn
NN(ψ) = NN(ϕ ;x0,R) ,

yields the required conclusion by taking the infimum over all z with |z− x0| ≤ R.

6.4.5 Singular Integrals on Hardy Spaces

To obtain the Littlewood–Paley characterization of Hardy spaces, we need a multi-
plier theorem for vector-valued Hardy spaces.

Suppose that Kj(x) is a family of functions defined on Rn \ {0} that satisfies the
following: There exist constants A,B < ∞ and an integer N such that for all multi-
indices α with |α| ≤ N we have
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∣

∣∑
j∈Z
∂αKj(x)

∣

∣≤ A |x|−n−|α | < ∞ (6.4.51)

and also
sup
ξ∈Rn

∣

∣

∣∑
j∈Z

̂Kj(ξ )
∣

∣

∣≤ B <∞ . (6.4.52)

Theorem 6.4.14. Suppose that a sequence of kernels {Kj} j satisfies (6.4.51) and
(6.4.52) with N = [ n

p ]+1, for some 0 < p ≤ 1. Then there exists a constant Cn,p that
depends only on the dimension n and on p such that for all sequences of tempered
distributions { f j} j we have the estimate

∥

∥

∥∑
j

Kj ∗ f j

∥

∥

∥

H p(Rn)
≤Cn,p(A + B)

∥

∥{ f j} j
∥

∥

H p(Rn,�2) .

Proof. We fix a smooth positive function Φ supported in the unit ball B(0,1) with
∫

RnΦ(x)dx = 1 and we consider the sequence of smooth maximal functions

M
(

∑
j

Kj ∗ f j;Φ
)

= sup
ε>0

∣

∣Φε ∗∑
j

Kj ∗ f j
∣

∣ ,

which will be shown to be an element of Lp(Rn, �2). We work with a fixed sequence
of integrable functions �f = { f j} j, since such functions are dense in Lp(Rn, �2) in
view of Proposition 6.4.7.

We now fix a λ > 0 and we set N = [ n
p ]+ 1. We also fix γ > 0 to be chosen later

and we define the set

Ωλ = {x ∈ Rn : M N(�f )(x) > γ λ} .

The set Ωλ is open, and we may use the Whitney decomposition (Appendix J) to
write it is a union of cubes Qk such that

(a)
⋃

k Qk =Ωλ and the Qk’s have disjoint interiors;

(b)
√

n�(Qk) ≤ dist (Qk,(Ωλ )c) ≤ 4
√

n�(Qk).

We denote by c(Qk) the center of the cube Qk. For each k we set

dk = dist (Qk,(Ωλ )c)+ 2
√

n�(Qk) ≈ �(Qk) ,

so that
B(c(Qk),dk)∩ (Ωλ )c �= /0 .

We now introduce a partition of unity {ϕk}k adapted to the sequence of cubes {Qk}k

such that

(c) χΩλ = ∑kϕk and each ϕk satisfies 0 ≤ ϕk ≤ 1;

(d) each ϕk is supported in 6
5 Qk and satisfies

∫

Rn ϕk dx ≈ dn
k ;
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(e)
∥

∥∂αϕk
∥

∥

L∞ ≤Cαd−|α |
k for all multi-indices α and some constants Cα .

We decompose each f j as
f j = g j +∑

k

b j,k ,

where g j is the good function of the decomposition given by

g j = f jχRn\Ωλ +∑
k

∫

Rn f jϕk dx
∫

Rn ϕk dx
ϕk

and b j = ∑k b j,k is the bad function of the decomposition given by

b j,k =
(

f j −
∫

Rn f jϕk dx
∫

Rn ϕk dx

)

ϕk .

We note that each b j,k has integral zero. We define�g = {g j} j and�b = {b j} j . At this
point we appeal to (6.4.50) and to properties (d) and (e) to obtain

(

∑
j

∣

∣

∣

∫

Rn f jϕk dx
∫

Rn ϕk dx

∣

∣

∣

2)1
2 ≤

NN
(

ϕk;c(Qk),dk
)

∫

Rn ϕk dx
inf

|z−c(Qk)|≤dk

M N(�f )(z) . (6.4.53)

But since

NN
(

ϕk;c(Qk),dk
)

∫

Rn ϕk dx
≤
[
∫

Qk

(

1 +
|x− c(Qk)|

dk

)N

∑
|α |≤N+1

d|α |
k Cαd−|α |

k
∫

Rn ϕk dx
dx

]

≤CN,n ,

it follows that (6.4.53) is at most a constant multiple of λ , since the ball B(c(Qk),dk)
meets the complement of Ωλ . We conclude that

∥

∥�g
∥

∥

L∞(Ωλ ,�2) ≤CN,n γ λ . (6.4.54)

We now turn to estimating M(∑ j Kj ∗ b j,k;Φ). For fixed k and ε > 0 we have

(

Φε ∗∑
j

Kj ∗ b j,k
)

(x)

=
∫

Rn
Φε ∗∑

j
Kj(x− y)

[

f j(y)ϕk(y)−
∫

Rn f jϕk dx
∫

Rn ϕk dx
ϕk(y)

]

dy

=
∫

Rn
∑

j

{

(

Φε ∗Kj
)

(x−z)−
∫

Rn

(

Φε ∗Kj
)

(x−y)
ϕk(y)
∫

Rn ϕk dx
dy

}

ϕk(z) f j(z)dz

=
∫

Rn
∑

j
R j,k(x,z)ϕk(z) f j(z)dz ,

where we set R j,k(x,z) for the expression inside the curly brackets. Using (6.4.41),
we obtain
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∣

∣

∣

∣

∫

Rn
∑

j

R j,k(x,z)ϕk(z) f j(z)dz

∣

∣

∣

∣

≤ ∑
j

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

inf
|z−c(Qk)|≤dk

MN( f j)(z)

≤ ∑
j

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

inf
|z−c(Qk)|≤dk

M N(�f )(z) .

(6.4.55)

Since ϕk(z) is supported in 6
5 Qk, the term (1+ |z−c(Qk)|

dk
)N contributes only a constant

factor in the integral defining NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

, and we obtain

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

≤CN,n

∫

6
5 Qk

∑
|α |≤N+1

d|α |+n
k

∣

∣

∣

∂α

∂ zα
(

R j,k(x,z)ϕk(z)
)

∣

∣

∣dz .
(6.4.56)

For notational convenience we set Kεj =Φε ∗Kj . We observe that the family {Kεj } j

satisfies (6.4.51) and (6.4.52) with constants A′ and B′ that are only multiples of
A and B, respectively, uniformly in ε . We now obtain a pointwise estimate for
NN(R j,k

(

x, ·)ϕk;c(Qk),dk
)

when x ∈ Rn \Ωλ . We have

R j,k(x,z)ϕk(z) =
∫

Rn
ϕk(z)

{

Kεj (x− z)−Kεj (x− y)
} ϕk(y)dy
∫

Rn ϕk dx
,

from which it follows that

∣

∣

∣

∂α

∂ zα
R j,k(x,z)ϕk(z)

∣

∣

∣≤
∫

Rn

∣

∣

∣

∣

∂α

∂ zα

{

ϕk(z)
[

Kεj (x− z)−Kεj (x− y)
]

}∣

∣

∣

∣

ϕk(y)dy
∫

Rn ϕk dx
.

Using hypothesis (6.4.51), we can now easily obtain the estimate

∑
j

∣

∣

∣

∣

∂α

∂ zα

{

ϕk(z)
{

Kεi, j(x−z)−Kεi, j(x−y)
}

}∣

∣

∣

∣

≤CN,nA
dkd−|α |

k

|x− c(Qk)|n+1

for all |α| ≤ N and for x ∈ Rn \Ωλ , since for such x we have |x− c(Qk)| ≥ cn dk. It
follows that

d|α |+n
k ∑

j

∣

∣

∣

∂α

∂ zα
{

R j,k(x,z)ϕk(z)
}

∣

∣

∣≤CN,nAdn
k

(

dk

|x− c(Qk)|n+1

)

.

Inserting this estimate in the summation of (6.4.56) over all j yields

∑
j

NN(R j,k
(

x, ·)ϕk;c(Qk),dk
)

≤CN,nA

(

dn+1
k

|x− c(Qk)|n+1

)

. (6.4.57)

Combining (6.4.57) with (6.4.55) gives for x ∈ Rn \Ωλ ,
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∑
j

∣

∣

∣

∣

∫

Rn
Ri, j,k(x,z)ϕk(z) f j(z)dz

∣

∣

∣

∣

≤
CN,nAdn+1

k

|x− c(Qk)|n+1 inf
|z−c(Qk)|≤dk

M N(�f )(z) .

This provides the estimate

sup
ε>0

∣

∣∑
j
(Kεj ∗ b j,k)(x)

∣

∣≤
CN,nAdn+1

k

|x− c(Qk)|n+1 γ λ

for all x ∈ Rn \Ωλ , since the ball B(c(Qk),dk) intersects (Ωλ )c. Summing over k
results in

M
(

∑
j

Kj ∗ b j;Φ
)

(x) ≤∑
k

CN,nAγ λ dn+1
k

|x− c(Qk)|n+1 ≤∑
k

CN,nAγ λ dn+1
k

(dk + |x− c(Qk)|)n+1

for all x∈ (Ωλ )c. The last sum is known as the Marcinkiewicz function. It is a simple
fact that

∫

Rn
∑
k

dn+1
k

(dk + |x− c(Qk)|)n+1 dx ≤Cn∑
k

|Qk| = Cn |Ωλ |;

see Exercise 4.6.6. We have therefore shown that
∫

Rn
M(�K ∗�b ;Φ)(x)dx ≤CN,n Aγ λ |Ωλ | , (6.4.58)

where we used the notation �K ∗�b = ∑ j Kj ∗ b j .
We now combine the information we have acquired so far. First we have
∣

∣{M(�K ∗ �f ;Φ) > λ}
∣

∣≤
∣

∣{M(�K ∗�g ;Φ) > λ
2 }
∣

∣+
∣

∣{M(�K ∗�b ;Φ) > λ
2 }
∣

∣ .

For the good function�g we have the estimate

∣

∣{M(�K ∗�g ;Φ) > λ
2 }
∣

∣ ≤ 4
λ 2

∫

Rn
M(�K ∗�g ;Φ)(x)2 dx

≤ 4
λ 2∑

j

∫

Rn
M(Kj ∗ g j)(x)2 dx

≤ CnB2

λ 2

∫

Rn
∑

j
|g j(x)|2 dx

≤ CnB2

λ 2

∫

Ωλ
∑

j
|g j(x)|2 dx +

CnB2

λ 2

∫

(Ωλ )c
∑

j
| f j(x)|2 dx

≤ B2CN,nγ2 |Ωλ |+
CnB2

λ 2

∫

(Ωλ )c
M N(�f )(x)2 dx ,
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where we used Corollary 2.1.12, the L2 boundedness of the Hardy–Littlewood max-
imal operator, hypothesis (6.4.52), the fact that f j = g j on (Ωλ )c, estimate (6.4.54),
and the fact that

∥

∥�f
∥

∥

�2 ≤ M N(�f ) in the sequence of estimates.
On the other hand, estimate (6.4.58) and Chebyshev’s inequality gives

∣

∣{M(�K ∗�b ;Φ) > λ
2 }
∣

∣≤CN,nAγ |Ωλ | ,

which, combined with the previously obtained estimate for�g, gives

∣

∣

{

M(�K ∗ �f ;Φ) > λ
}∣

∣≤CN,n(Aγ+ B2 γ2) |Ωλ |+
CnB2

λ 2

∫

(Ωλ )c
M N(�f )(x)2 dx .

Multiplying this estimate by pλ p−1, recalling that Ωλ = {M N(�f ) > γ λ}, and in-
tegrating in λ from 0 to ∞, we can easily obtain
∥

∥M(�K ∗ �f ;Φ)
∥

∥

p
Lp(Rn,�2) ≤CN,n(Aγ1−p + B2γ2−p)

∥

∥M N(�f )
∥

∥

p
Lp(Rn,�2) . (6.4.59)

Choosing γ = (A+B)−1 and recalling that N = [ n
p ]+1 gives the required conclusion

for some constant Cn,p that depends only on n and p.
Finally, use density to extend this estimate to all �f in H p(Rn, �2). �

6.4.6 The Littlewood–Paley Characterization of Hardy Spaces

We discuss an important characterization of Hardy spaces in terms of Littlewood–
Paley square functions. The vector-valued Hardy spaces and the action of singular
integrals on them are crucial tools in obtaining this characterization.

We first set up the notation. We fix a radial Schwartz functionΨ on Rn whose
Fourier transform is nonnegative, supported in the annulus 1

2 + 1
10 ≤ |ξ | ≤ 2− 1

10 ,
and satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 (6.4.60)

for all ξ �= 0. Associated with this bump, we define the Littlewood–Paley operators
Δ j given by multiplication on the Fourier transform side by the function ̂Ψ(2− jξ ),
that is,

Δ j( f ) = ΔΨj ( f ) =Ψ2− j ∗ f . (6.4.61)

We have the following.

Theorem 6.4.15. LetΨ be a radial Schwartz function on Rn whose Fourier trans-
form is nonnegative, supported in 1

2 + 1
10 ≤ |ξ | ≤ 2− 1

10 , and satisfies (6.4.60). Let
Δ j be the Littlewood–Paley operators associated with Ψ and let 0 < p ≤ 1. Then
there exists a constant C = Cn,p,Ψ such that for all f ∈ H p(Rn) we have
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∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
≤C

∥

∥ f
∥

∥

H p . (6.4.62)

Conversely, suppose that a tempered distribution f satisfies

∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
< ∞ . (6.4.63)

Then there exists a unique polynomial Q(x) such that f −Q lies in the Hardy space
H p and satisfies the estimate

1
C

∥

∥ f −Q
∥

∥

H p ≤
∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
. (6.4.64)

Proof. We fix Φ ∈ S (Rn) with integral equal to 1 and we take f ∈ H p ∩L1 and M
in Z+. Let r j be the Rademacher functions, introduced in Appendix C.1, reindexed
so that their index set is the set of all integers (not the set of nonnegative integers).
We begin with the estimate

∣

∣

∣

M

∑
j=−M

rj(ω)Δ j( f )
∣

∣

∣≤ sup
ε>0

∣

∣

∣Φε ∗
M

∑
j=−M

rj(ω)Δ j( f )
∣

∣

∣ ,

which holds since {Φε}ε>0 is an approximate identity. We raise this inequality to the
power p, we integrate over x ∈ Rn and ω ∈ [0,1], and we use the maximal function
characterization of H p [Theorem 6.4.4 (a)] to obtain

∫ 1

0

∫

Rn

∣

∣

∣

M

∑
j=−M

rj(ω)Δ j( f )(x)
∣

∣

∣

p
dxdω ≤Cp

p,n

∫ 1

0

∥

∥

∥

M

∑
j=−M

rj(ω)Δ j( f )
∥

∥

∥

p

H p
dω .

The lower inequality for the Rademacher functions in Appendix C.2 gives

∫

Rn

( M

∑
j=−M

|Δ j( f )(x)|2
)

p
2

dx ≤Cp
pCp

p,n

∫ 1

0

∥

∥

∥

M

∑
j=−M

rj(ω)Δ j( f )
∥

∥

∥

p

H p
dω ,

where the second estimate is a consequence of Theorem 6.4.14 (we need only the
scalar version here), since the kernel

M

∑
k=−M

rk(ω)Ψ2−k(x)

satisfies (6.4.51) and (6.4.52) with constants A and B depending only on n andΨ
(and, in particular, independent of M). We have now proved that

∥

∥

∥

( M

∑
j=−M

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
≤Cn,p,Ψ

∥

∥ f
∥

∥

H p ,
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from which (6.4.62) follows directly by letting M → ∞. We have now established
(6.4.62) for f ∈ H p ∩L1. Using density, we can extend this estimate to all f ∈ H p.

To obtain the converse estimate, for r ∈ {0,1,2} we consider the sets

3Z+ r = {3k + r : k ∈ Z} ,

and we observe that for j,k ∈ 3Z+ r the Fourier transforms of Δ j( f ) and Δk( f ) are
disjoint if j �= k. We fix a Schwartz function η whose Fourier transform is compactly
supported away from the origin so that for all j,k ∈ 3Z we have

Δηj Δk =

{

Δ j when j = k,

0 when j �= k,
(6.4.65)

where Δηj is the Littlewood–Paley operator associated with the bump η , that is,

Δηj ( f ) = f ∗η2− j . It follows from Theorem 6.4.14 that the map

{

f j
}

j∈Z → ∑
j∈3Z

Δηj ( f j)

maps H p(Rn, �2) to H p(Rn). Indeed, we can see easily that
∣

∣

∣ ∑
j∈3Z

η̂(2− jξ )
∣

∣

∣≤ B

and

∑
j∈3Z

∣

∣∂α
(

2 jnη(2 jx)
)∣

∣≤ Aα |x|−n−|α |

for all multi-indices α and for constants depending only on B and Aα . Applying this
estimate with f j = Δ j( f ) and using (6.4.65) yields the estimate

∥

∥

∥ ∑
j∈3Z

Δ j( f )
∥

∥

∥

H p
≤Cn,p,Ψ

∥

∥

∥

(

∑
j∈3Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp

for all distributions f that satisfy (6.4.63). Applying the same idea with 3Z+ 1 and
3Z+ 2 replacing 3Z and summing the corresponding estimates gives

∥

∥

∥∑
j∈Z
Δ j( f )

∥

∥

∥

H p
≤ 3

1
p Cn,p,Ψ

∥

∥

∥

(

∑
j∈Z

|Δ j( f )|2
)1

2
∥

∥

∥

Lp
.

But note that f −∑ jΔ j( f ) is equal to a polynomial Q(x), since its Fourier transform
is supported at the origin. It follows that f −Q lies in H p and satisfies (6.4.64). �

We show in the next section that the square function characterization of H p is
independent of the choice of the underlying functionΨ .
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Exercises

6.4.1. Prove that if v is a bounded tempered distribution and h1,h2 are in S (Rn),
then

(h1 ∗ h2)∗ v = h1 ∗ (h2 ∗ v).

6.4.2. (a) Show that the H1 norm remains invariant under the L1 dilation ft(x) =
t−n f (t−1x).
(b) Show that the H p norm remains invariant under the Lp dilation tn−n/p ft(x) in-
terpreted in the sense of distributions.

6.4.3. (a) Let 1 < q≤∞ and let g in Lq(Rn) be a compactly supported function with
integral zero. Show that g lies in the Hardy space H1(Rn).
(b) Prove the same conclusion when Lq is replaced by L log+ L.
[

Hint: Part (a): Pick a C ∞0 function Φ supported in the unit ball with nonvanishing
integral and suppose that the support of g is contained in the ball B(0,R). For |x| ≤
2R we have that M( f ;Φ)(x) ≤CΦ M(g)(x), and since M(g) lies in Lq, it also lies in
L1(B(0,2R)). For |x| > 2R, write (Φt ∗ g)(x) =

∫

Rn

(

Φt(x− y)−Φt(x)
)

g(y)dy and
use the mean value theorem to estimate this expression by t−n−1

∥

∥∇Φ
∥

∥

L∞

∥

∥g
∥

∥

L1 ≤
|x|−n−1CΦ

∥

∥g
∥

∥

Lq , since t ≥ |x−y| ≥ |x|− |y| ≥ |x|/2 whenever |x| ≥ 2R and |y| ≤ R.
Thus M( f ;Φ) lies in L1(Rn). Part (b): Use Exercise 2.1.4(a) to deduce that M(g) is
integrable over B(0,2R).

]

6.4.4. Show that the function ψ(s) defined in (6.4.19) is continuous and inte-
grable over [1,∞), decays faster than the reciprocal of any polynomial, and satisfies
(6.4.18), that is,

∫ ∞

1
skψ(s)ds =

{

1 if k = 0,

0 if k = 1,2,3, . . . .
[

Hint: Apply Cauchy’s theorem over a suitable contour.
]

6.4.5. Let 0 < a < ∞ be fixed. Show that a bounded tempered distribution f lies in
H p if and only if the nontangential Poisson maximal function

M∗
a ( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Pt ∗ f )(y)|

lies in Lp, and in this case we have
∥

∥ f
∥

∥

H p ≈
∥

∥M∗
a( f ;P)

∥

∥

Lp .
[

Hint: Observe that M( f ;P) can be replaced with M∗
a( f ;P) in the proof of parts (a)

and (e) of Theorem 6.4.4).
]

6.4.6. Show that for every integrable function g with mean value zero and support
inside a ball B, we have M(g;Φ) ∈ Lp((3B)c) for p > n/(n + 1). Here Φ is in S .

6.4.7. Show that the space of all Schwartz functions whose Fourier transform is
supported away from a neighborhood of the origin is dense in H p.
[

Hint: Use the square function characterization of H p.
]
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6.4.8. (a) Suppose that f ∈ H p(Rn) for some 0 < p ≤ 1 and Φ in S (Rn). Then
show that for all t > 0 the functionΦt ∗ f belongs to Lr(Rn) for all p ≤ r ≤∞. Find
an estimate for the Lr norm of Φt ∗ f in terms of

∥

∥ f
∥

∥

H p and t > 0.
(b) Let 0 < p ≤ 1. Show that there exists a constant Cn,p such that for all f in
H p(Rn)∩L1(Rn) we have

|̂f (ξ )| ≤Cn,p |ξ |
n
p−n∥
∥ f
∥

∥

H p .

[

Hint: Obtain that
∥

∥Φt ∗ f
∥

∥

L1 ≤Ct−n/p+n
∥

∥ f
∥

∥

H p ,

using an idea from the proof of Proposition 6.4.7.
]

6.4.9. Show that H p(Rn, �2) = Lp(Rn, �2) whenever 1< p<∞ and that H1(Rn, �2)
is contained in L1(Rn, �2).

6.4.10. For a sequence of tempered distributions �f = { f j} j, define the following
variant of the grand maximal function:

˜M N(�f )(x) = sup
{ϕ j} j∈FN

sup
ε>0

sup
y∈Rn

|y−x|<ε

(

∑
j

∣

∣((ϕ j)ε ∗ f j)(y)
∣

∣

2
) 1

2
,

where N ≥ [ n
p ]+ 1 and

FN =
{

{ϕ j} j ∈ S (Rn) : ∑
j

NN(ϕ j) ≤ 1

}

.

Show that for all sequences of tempered distributions �f = { f j} j we have

∥

∥ ˜M N(�f )
∥

∥

Lp(Rn,�2) ≈
∥

∥M N(�f )
∥

∥

Lp(Rn,�2)

with constants depending only on n and p.
[

Hint: Fix Φ in S (Rn) with integral 1. Using Lemma 6.4.5, write

(ϕ j)t(y) =
∫ 1

0
((Θ (s)

j )t ∗Φts)(y)ds

and apply a vector-valued extension of the proof of part (d) of Theorem 6.4.4 to
obtain the pointwise estimate

˜M N(�f ) ≤Cn,pM∗∗
m (�f ;Φ) ,

where m > n/p.
]
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6.5 Besov–Lipschitz and Triebel–Lizorkin Spaces

The main achievement of the previous sections was the remarkable characteriza-
tion of Sobolev, Lipschitz, and Hardy spaces using the Littlewood–Paley operators
Δ j. These characterizations motivate the introduction of classes of spaces defined
in terms of expressions involving the operators Δ j. These scales furnish a general
framework within which one can launch a study of function spaces from a unified
perspective.

We have encountered two expressions involving the operators Δ j in the charac-
terizations of the function spaces obtained in the previous sections. Some spaces
were characterized by an Lp norm of the Littlewood–Paley square function

(

∑
j
|2 jαΔ j( f )|2

) 1
2
,

and other spaces were characterized by an �q norm of the sequence of quantities
∥

∥2 jαΔ j( f )
∥

∥

Lp . Examples of spaces in the first case are the homogeneous Sobolev
spaces, Hardy spaces, and, naturally, Lp spaces. We have studied only one example
of spaces in the second category, the Lipschitz spaces, in which case p = q = ∞.
These examples motivate the introduction of two fundamental scales of function
spaces, called the Triebel–Lizorkin and Besov–Lipschitz spaces, respectively.

6.5.1 Introduction of Function Spaces

Before we give the pertinent definitions, we recall the setup that we developed in
Section 6.2 and used in Section 6.3. Throughout this section we fix a radial Schwartz
functionΨ on Rn whose Fourier transform is nonnegative, is supported in the an-
nulus 1− 1

7 ≤ |ξ | ≤ 2, is equal to one on the smaller annulus 1 ≤ |ξ | ≤ 2− 2
7 , and

satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 , ξ �= 0 . (6.5.1)

Associated with this bump, we define the Littlewood–Paley operators Δ j = ΔΨj
given by multiplication on the Fourier transform side by the function ̂Ψ (2− jξ ). We
also define a Schwartz functionΦ such that

̂Φ(ξ ) =

{

∑ j≤0
̂Ψ(2− jξ ) when ξ �= 0,

1 when ξ = 0.
(6.5.2)

Note that ̂Φ(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. It follows

from these definitions that

S0 +
∞

∑
j=1

Δ j = I , (6.5.3)



6.5 Besov–Lipschitz and Triebel–Lizorkin Spaces 69

where S0 = SΨ0 is the operator given by convolution with the bump Φ and the con-
vergence of the series in (6.5.3) is in S ′(Rn). Moreover, we also have the identity

∑
j∈Z
Δ j = I , (6.5.4)

where the convergence of the series in (6.5.4) is in the sense of S ′(Rn)/P .

Definition 6.5.1. Let α ∈ R and 0 < p,q ≤∞. For f ∈ S ′(Rn) we set

∥

∥ f
∥

∥

Bα,q
p

=
∥

∥S0( f )
∥

∥

Lp +
( ∞

∑
j=1

(

2 jα∥
∥Δ j( f )

∥

∥

Lp

)q
) 1

q

with the obvious modification when p,q = ∞. When p,q < ∞ we also set

∥

∥ f
∥

∥

Fα,q
p

=
∥

∥S0( f )
∥

∥

Lp +
∥

∥

∥

( ∞

∑
j=1

(

2 jα |Δ j( f )|
)q
) 1

q
∥

∥

∥

Lp
.

The space of all tempered distributions f for which the quantity
∥

∥ f
∥

∥

Bα,q
p

is finite

is called the (inhomogeneous) Besov–Lipschitz space with indices α, p,q and is
denoted by Bα ,q

p . The space of all tempered distributions f for which the quantity
∥

∥ f
∥

∥

Fα,q
p

is finite is called the (inhomogeneous) Triebel–Lizorkin space with indices

α, p,q and is denoted by Fα ,q
p .

We now define the corresponding homogeneous versions of these spaces. For an
element f of S ′(Rn)/P we let

∥

∥ f
∥

∥

Ḃα,q
p

=
(

∑
j∈Z

(

2 jα∥
∥Δ j( f )

∥

∥

Lp

)q
) 1

q

and
∥

∥ f
∥

∥

Ḟα,q
p

=
∥

∥

∥

(

∑
j∈Z

(

2 jα |Δ j( f )|
)q
) 1

q
∥

∥

∥

Lp
.

The space of all f in S ′(Rn)/P for which the quantity
∥

∥ f
∥

∥

Ḃα,q
p

is finite is called the

(homogeneous) Besov–Lipschitz space with indices α, p,q and is denoted by Ḃα ,q
p .

The space of f in S ′(Rn)/P such that
∥

∥ f
∥

∥

Ḟα,q
p

< ∞ is called the (homogeneous)

Triebel–Lizorkin space with indices α, p,q and is denoted by Ḟα ,q
p .

We now make several observations related to these definitions. First we note that
the expressions

∥

∥ ·
∥

∥

Ḟα,q
p

,
∥

∥ ·
∥

∥

Fα,q
p

,
∥

∥ ·
∥

∥

Ḃα,q
p

, and
∥

∥ ·
∥

∥

Bα,q
p

are built in terms of Lp

quasinorms of �q quasinorms of 2 jαΔ j or �q quasinorms of Lp quasinorms of the
same expressions. As a result, we can see that these quantities satisfy the triangle
inequality with a constant (which may be taken to be 1 when 1 ≤ p,q < ∞). To de-
termine whether these quantities are indeed quasinorms, we need to check whether
the following property holds:
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∥

∥ f
∥

∥

X = 0 =⇒ f = 0 , (6.5.5)

where X is one of the Ḟα ,q
p , Fα ,q

p , Ḃα ,q
p , and Bα ,q

p . Since these are spaces of distribu-
tions, the identity f = 0 in (6.5.5) should be interpreted in the sense of distributions.
If
∥

∥ f
∥

∥

X = 0 for some inhomogeneous space X , then S0( f ) = 0 and Δ j( f ) = 0 for
all j ≥ 1. Using (6.5.3), we conclude that f = 0; thus the quantities

∥

∥ ·
∥

∥

Fα,q
p

and
∥

∥ ·
∥

∥

Bα,q
p

are indeed quasinorms. Let us investigate what happens when
∥

∥ f
∥

∥

X = 0 for

some homogeneous space X . In this case we must have Δ j( f ) = 0, and using (6.5.4)
we conclude that ̂f must be supported at the origin. Proposition 2.4.1 yields that f
must be a polynomial and thus f must be zero (since distributions whose difference
is a polynomial are identified in homogeneous spaces).

Remark 6.5.2. We interpret the previous definition in certain cases. According to
what we have seen so far, we have

Ḟ0,2
p ≈ F0,2

p ≈ Lp , 1 < p < ∞,

Ḟ0,2
p ≈ H p , 0 < p ≤ 1,

Fs,2
p ≈ Lp

s , 1 < p < ∞,

Ḟs,2
p ≈ L̇p

s , 1 < p < ∞,

Bγ,∞∞ ≈ Λγ , γ > 0,

Ḃγ,∞∞ ≈ Λ̇γ , γ > 0 ,

where ≈ indicates that the corresponding norms are equivalent.
Although in this text we restrict attention to the case p < ∞, it is noteworthy

mentioning that when p =∞, Ḟ0,q
∞ can be defined as the space of all f ∈S ′/P that

satisfy

∥

∥ f
∥

∥

Ḟα,q
∞

= sup
Q dyadic cube

∫

Q

1
|Q|

( ∞

∑
j=− log2 �(Q)

(2 jα |Δ j( f )|)q
)1

q

< ∞ .

In the particular case q = 2 and α = 0, the space obtained in this way is called BMO
and coincides with the space introduced and studied in Chapter 7; this space serves
as a substitute for L∞ and plays a fundamental role in analysis. It should now be
clear that several important spaces in analysis can be thought of as elements of the
scale of Triebel–Lizorkin spaces.

It would have been more natural to denote Besov–Lipschitz and Triebel–Lizorkin
spaces by Bp

α ,q and F p
α ,q to maintain the upper and lower placements of the corre-

sponding indices analogous to those in the previously defined Lebesgue, Sobolev,
Lipschitz, and Hardy spaces. However, the notation in Definition 6.5.1 is more or
less prevalent in the field of function spaces, and we adhere to it.
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6.5.2 Equivalence of Definitions

It is not clear from the definitions whether the finiteness of the quasinorms defining
the spaces Bα ,q

p , Fα ,q
p ,Ḃα ,q

p , and Ḟα ,q
p depends on the choice of the functionΨ (recall

that Φ is determined by Ψ ). We show that if Ω is another function that satisfies
(6.5.1) and Θ is defined in terms of Ω in the same way that Φ is defined in terms
of Ψ , [i.e., via (6.5.2)], then the norms defined in Definition 6.5.1 with respect to
the pairs (Φ,Ψ ) and (Θ ,Ω) are comparable. To prove this we need the following
lemma.

Lemma 6.5.3. Let 0 < c0 < ∞ and 0 < r < ∞. Then there exist constants C1 and C2

(which depend only on n, c0, and r) such that for all t > 0 and for all C 1 functions
u on Rn whose Fourier transform is supported in the ball |ξ | ≤ c0t and that satisfy
|u(z)| ≤ B(1 + |z|) n

r for some B > 0 we have the estimate

sup
z∈Rn

1
t
|∇u(x− z)|
(1 + t|z|) n

r
≤C1 sup

z∈Rn

|u(x− z)|
(1 + t|z|) n

r
≤C2 M(|u|r)(x) 1

r , (6.5.6)

where M denotes the Hardy–Littlewood maximal operator. (The constants C1 and
C2 are independent of B.)

Proof. Select a Schwartz function ψ whose Fourier transform is supported in the
ball |ξ | ≤ 2c0 and is equal to 1 on the smaller ball |ξ | ≤ c0. Then ψ̂( ξt ) is equal to
1 on the support of û and we can write

u(x− z) =
∫

Rn
tnψ(t(x− z− y))u(y)dy .

Taking partial derivatives and using that ψ is a Schwartz function, we obtain

|∇u(x− z)| ≤CN

∫

Rn
tn+1(1 + t|x− z− y|)−N|u(y)|dy ,

where N is arbitrarily large. Using that for all x,y,z ∈ Rn we have

1 ≤ (1 + t|x− z− y|) n
r

(1 + t|z|) n
r

(1 + t|x− y|) n
r

,

we obtain

1
t
|∇u(x− z)|
(1 + t|z|) n

r
≤CN

∫

Rn
tn(1 + t|x− z− y|) n

r −N |u(y)|
(1 + t|x− y|) n

r
dy ,

from which the first estimate in (6.5.6) follows easily.
Let |y| ≤ δ for some δ > 0 to be chosen later. We now use the mean value theorem

to write
u(x− z) = (∇u)(x− z− ξy) · y + u(x− z− y)

for some ξy satisfying |ξy| ≤ |y| ≤ δ . This implies that
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|u(x− z)| ≤ sup
|w|≤|z|+δ

|(∇u)(x−w)|δ + |u(x− z− y)|.

Raising to the power r, averaging over the ball |y| ≤ δ , and then raising to the power
1
r yields

|u(x− z)| ≤ cr

[

sup
|w|≤|z|+δ

|(∇u)(x−w)|δ +
(

1
vnδ n

∫

|y|≤δ
|u(x− z− y)|r dy

) 1
r
]

with cr = max(21/r,2r). Here vn is the volume of the unit ball in Rn. Then

|u(x− z)|
(1 + t|z|) n

r
≤ cr

[

sup
|w|≤|z|+δ

|(∇u)(x−w)|
(1 + t|z|) n

r
δ

(

1
vnδ n

∫

|y|≤δ+|z|
|u(x− y)|r dy

) 1
r

(1 + t|z|) n
r

]

.

We now set δ = ε/t for some ε ≤ 1. Then we have

|w| ≤ |z|+ ε
t

=⇒ 1
1 + t|z| ≤

2
1 + t|w| ,

and we can use this to obtain the estimate

|u(x− z)|
(1 + t|z|) n

r
≤ cr,n

[

sup
w∈Rn

1
t
|(∇u)(x−w)|
(1 + t|w|) n

r
ε

(

tn

vnεn

∫

|y|≤ 1
t +|z|

|u(x− y)|r dy

) 1
r

(1 + t|z|) n
r

]

with cr,n = max(21/r,2r)2n/r. It follows that

sup
z∈Rn

|u(x− z)|
(1 + t|z|) n

r
≤ cr,n

[

sup
w∈Rn

1
t
|(∇u)(x−w)|
(1 + t|w|) n

r
ε+ ε−

n
r M(|u|r)(x) 1

r

]

.

Taking ε = 1
2 (cr,n C1)−1, where C1 is the constant in (6.5.6), we obtain the second

estimate in (6.5.6) with C2 = 2ε−n/r. At this step we used the hypothesis that

sup
z∈Rn

|u(x− z)|
(1 + t|z|) n

r
≤ sup

z∈Rn

B(1 + |x|+ |z|) n
r

(1 + t|z|) n
r

< ∞ .

This concludes the proof of the lemma. �

Remark 6.5.4. The reader is reminded that û in Lemma 6.5.3 may not be a function;
for example, this is the case when u is a polynomial (say of degree [n/r]). If û
were an integrable function, then u would be a bounded function, and condition
|u(x)| ≤ B(1 + |x|) n

r would not be needed.

We now return to a point alluded to earlier, that changingΨ by another bump
Ω that satisfies similar properties yields equivalent norms for the function spaces
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given in Definition 6.5.1. Suppose that Ω is another bump whose Fourier transform
is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2 and that satisfies (6.5.1). The support
properties ofΨ and Ω imply the identity

ΔΩj = ΔΩj (ΔΨj−1 +ΔΨj +ΔΨj+1) . (6.5.7)

Let 0 < p < ∞ and pick r < p and N > n
r + n. Then we have

∣

∣ΔΩj Δ
Ψ
j ( f )(x)

∣

∣ ≤ CN,Ω

∫

Rn

∣

∣ΔΨj ( f )(x− z)
∣

∣

(1 + 2 j|z|) n
r

2 jndz

(1 + 2 j|z|)N− n
r

≤ CN,Ω sup
z∈Rn

∣

∣ΔΨj ( f )(x− z)
∣

∣

(1 + 2 j|z|) n
r

∫

Rn

2 jndz

(1 + 2 j|z|)N− n
r

≤ CN,r,Ω (M(|ΔΨj ( f )|r)(x) 1
r

(6.5.8)

where we applied Lemma 6.5.3. The same estimate is also valid for ΔΩj ΔΨj±1( f )
and thus for ΔΩj ( f ), in view of identity (6.5.7). Armed with this observation and
recalling that r < p, the boundedness of the Hardy–Littlewood maximal operator
on Lp/r yields that the homogeneous Besov–Lipschitz norm defined in terms of the
bump Ω is controlled by a constant multiple of the corresponding Besov–Lipschitz
norm defined in terms of Ψ . A similar argument applies for the inhomogeneous
Besov–Lipschitz norms. The equivalence constants depend onΨ ,Ω ,n, p,q, and α .

The corresponding equivalence of norms for Triebel–Lizorkin spaces is more
difficult to obtain, and it is a consequence of the characterization of these spaces
proved later.

Definition 6.5.5. For b > 0 and j ∈ R we introduce the notation

M∗∗
b, j( f ;Ψ )(x) = sup

y∈Rn

|(Ψ2− j ∗ f )(x− y)|
(1 + 2 j|y|)b ,

so that we have
M∗∗

b ( f ;Ψ ) = sup
t>0

M∗∗
b,t( f ;Ψ ) ,

in accordance with the notation in the previous section. The function M∗∗
b ( f ;Ψ ) is

called the Peetre maximal function of f (with respect toΨ ).

We clearly have
|ΔΨj ( f )| ≤ M∗∗

b, j( f ;Ψ ) ,

but the next result shows that a certain converse is also valid.

Theorem 6.5.6. Let b > n(min(p,q))−1 and 0 < p,q <∞. LetΨ andΩ be Schwartz
functions whose Fourier transforms are supported in the annulus 1

2 ≤ |ξ | ≤ 2 and
satisfy (6.5.1). Then we have
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∥

∥

∥

(

∑
j∈Z

∣

∣2 jαM∗∗
b, j( f ;Ω)

∣

∣

q
) 1

q
∥

∥

∥

Lp
≤C

∥

∥

∥

(

∑
j∈Z

∣

∣2 jαΔΨj ( f )
∣

∣

q
) 1

q
∥

∥

∥

Lp
(6.5.9)

for all f ∈ S ′(Rn), where C = Cα ,p,q,n,b,Ψ ,Ω .

Proof. We start with a Schwartz functionΘ whose Fourier transform is nonnegative,
supported in the annulus 1− 2

7 ≤ |ξ | ≤ 2, and satisfies

∑
j∈Z

̂Θ(2− jξ )2 = 1, ξ ∈ Rn \ {0} . (6.5.10)

Using (6.5.10), we have

Ω2−k ∗ f = ∑
j∈Z

(Ω2−k ∗Θ2− j)∗ (Θ2− j ∗ f ) .

It follows that

2kα |(Ω2−k ∗ f )(x− z)|
(1 + 2k|z|)b

≤ ∑
j∈Z

2kα
∫

Rn
|(Ω2−k ∗Θ2− j)(y)|

|(Θ2− j ∗ f )(x− z− y)|
(1 + 2k|z|)b dy

= ∑
j∈Z

2kα
∫

Rn
2kn|(Ω ∗Θ2−( j−k))(2ky)| (1 + 2 j|y + z|)b

(1 + 2k|z|)b

|(Θ2− j ∗ f )(x−z−y)|
(1 + 2 j|y + z|)b dy

≤ ∑
j∈Z

2kα
∫

Rn
|(Ω ∗Θ2−( j−k))(y)|

(1 + 2 j|2−ky + z|)b

(1 + 2k|z|)b

|(Θ2− j ∗ f )(x−z−y)|
(1 + 2 j|y + z|)b

dy

≤ ∑
j∈Z

2(k− j)α
∫

Rn
|(Ω ∗Θ2−( j−k))(y)|

(1 + 2 j−k|y|+ 2 j|z|)b

(1 + 2k|z|)b dy2 jαM∗∗
b, j( f ;Θ)(x)

≤ ∑
j∈Z

2(k− j)α
∫

Rn
|(Ω ∗Θ2−( j−k))(y)|(1+2 j−k)b(1+2 j−k|y|)bdy2 jαM∗∗

b, j( f ;Θ)(x) .

We conclude that

2kαM∗∗
b,k( f ;Ω)(x) ≤ ∑

j∈Z
Vk− j 2 jαM∗∗

b, j( f ;Θ)(x) , (6.5.11)

where
Vj = 2− jα(1 + 2 j)b

∫

Rn
|(Ω ∗Θ2− j)(y)|(1 + 2 j|y|)b dy .

We now use the facts that both Ω andΘ have vanishing moments of all orders and
the result in Appendix K.2 to obtain

|(Ω ∗Θ2− j)(y)| ≤CL,N,n,Θ ,Ω
2−| j|L

(1 + 2min(0, j)|y|)N
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for all L,N > 0. We deduce the estimate

|Vj| ≤CL,M,n,Θ ,Ω2−| j|M

for all M sufficiently large, which, in turn, yields the estimate

∑
j∈Z

|Vj|min(1,q) < ∞ .

We deduce from (6.5.11) that for all x ∈ Rn we have
∥

∥{2kαM∗∗
b,k( f ;Ω)(x)}k

∥

∥

�q ≤Cα ,p,q,n,Ψ ,Ω
∥

∥{2kαM∗∗
b,k( f ;Θ)(x)}k

∥

∥

�q .

We now appeal to Lemma 6.5.3, which gives

2kαM∗∗
b,k( f ;Θ) ≤C2kαM(|ΔΘk ( f )|r) 1

r = CM(|2kαΔΘk ( f )|r) 1
r

with b = n/r. We choose r < min(p,q). We use the Lp/r(Rn, �q/r) to Lp/r(Rn, �q/r)
boundedness of the Hardy–Littlewood maximal operator, Theorem 4.6.6, to com-
plete the proof of (6.5.9) with the exception that the functionΨ on the right-hand
side of (6.5.9) is replaced byΘ . The passage toΨ is a simple matter (at least when
p ≥ 1), since

ΔΨj = ΔΨj
(

ΔΘj−1 +ΔΘj +ΔΘj+1

)

.

For general 0 < p < ∞ the conclusion follows with the use of (6.5.8). �
We obtain as a corollary that a different choice of bumps gives equivalent

Triebel–Lizorkin norms.

Corollary 6.5.7. LetΨ ,Ω be Schwartz functions whose Fourier transforms are sup-
ported in the annulus 1− 1

7 ≤ |ξ | ≤ 2 and satisfy (6.5.1). Let Φ be as in (6.5.2) and
let

̂Θ(ξ ) =

{

∑ j≤0
̂Ω (2− jξ ) when ξ �= 0,

1 when ξ = 0.

Then the Triebel–Lizorkin quasinorms defined with respect to the pairs (Ψ ,Φ) and
(Ω ,Θ) are equivalent.

Proof. We note that the quantity on the left in (6.5.9) is greater than or equal to

∥

∥

∥

(

∑
j∈Z

∣

∣2 jαΔΩj ( f )
∣

∣

q
) 1

q
∥

∥

∥

Lp

for all f ∈ S ′(Rn). This shows that the homogeneous Triebel–Lizorkin norm de-
fined usingΩ is bounded by a constant multiple of that defined usingΨ . This proves
the equivalence of norms in the homogeneous case.

In the case of the inhomogeneous spaces, we let SΨ0 and SΩ0 be the operators
given by convolution with the bumps Φ and Θ , respectively (recall that these are
defined in terms ofΨ and Ω ). Then for f ∈ S ′(Rn) we have
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Θ ∗ f =Θ ∗ (Φ ∗ f )+Θ ∗ (Ψ2−1 ∗ f ) , (6.5.12)

since the Fourier transform of the functionΦ+Ψ2−1 is equal to 1 on the support of
̂Θ . Applying Lemma 6.5.3 (with t = 1), we obtain that

|Θ ∗ (Φ ∗ f )| ≤Cr M(|Φ ∗ f |r) 1
r

and also
|Θ ∗ (Ψ2−1 ∗ f )| ≤Cr M(|Ψ2−1 ∗ f |r) 1

r

for any 0 < r < ∞. Picking r < p, we obtain that
∥

∥Θ ∗ (Φ ∗ f )
∥

∥

Lp ≤C
∥

∥SΨ0 ( f )
∥

∥

Lp

and also
∥

∥Θ ∗ (Ψ2−1 ∗ f )
∥

∥

Lp ≤C
∥

∥ΔΨ1 ( f )
∥

∥

Lp .

Combining the last two estimates with (6.5.12), we obtain that
∥

∥SΩ0 ( f )
∥

∥

Lp is con-
trolled by a multiple of the Triebel–Lizorkin norm of f defined usingΨ . This gives
the equivalence of norms in the inhomogeneous case. �

Several other properties of these spaces are discussed in the exercises that follow.

Exercises

6.5.1. Let 0 < q0 ≤ q1 < ∞, 0 < p < ∞, ε > 0, and α ∈ R. Prove the embeddings

Bα ,q0
p ⊆ Bα ,q1

p ,

Fα ,q0
p ⊆ Fα ,q1

p ,

Bα+ε,q0
p ⊆ Bα ,q1

p ,

Fα+ε,q0
p ⊆ Fα ,q1

p ,

where p and q1 are allowed to be infinite in the case of Besov spaces.

6.5.2. Let 0 < q < ∞, 0 < p < ∞, and α ∈ R. Show that

Bα ,min(p,q)
p ⊆ Fα ,q

p ⊆ Bα ,max(p,q)
p .

[

Hint: Consider the cases p ≥ q and p < q and use the triangle inequality in the
spaces Lp/q and �q/p, respectively.

]

6.5.3. (a) Let 0 < p,q ≤∞ and α ∈ R. Show that S (Rn) is continuously embedded
in Bα ,q

p (Rn) and that the latter is continuously embedded in S ′(Rn).
(b) Obtain the same conclusion for Fα ,q

p (Rn) when p,q < ∞.
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6.5.4. 0 < p,q < ∞ and α ∈ R. Show that the Schwartz functions are dense in all
the spaces Bα ,q

p (Rn) and Fα ,q
p (Rn).

[

Hint: Every Cauchy sequence { fk}k in Bα ,q
p is also Cauchy in S ′(Rn) and hence

converges to some f in S ′(Rn). Then Δ j( fk)→Δ j( f ) in S ′(Rn). But Δ j( fk) is also
Cauchy in Lp and therefore converges to Δ j( f ) in Lp. Argue similarly for Fα ,q

p (Rn).
]

6.5.5. Let α ∈ R, let 0 < p,q < ∞, and let N = [ n
2 + n

min(p,q) ]+ 1. Assume that m is

a C N function on Rn \ {0} that satisfies

|∂ γm(ξ )| ≤Cγ |ξ |−|γ|

for all |γ| ≤ N. Show that there exists a constant C such that for all f ∈ S ′(Rn) we
have

∥

∥(m ̂f )∨
∥

∥

Ḃα,q
p

≤C
∥

∥ f
∥

∥

Ḃα,q
p

.

[

Hint: Pick r < min(p,q) such that N > n
2 + n

r . Write m = ∑ j m j, where m̂ j(ξ ) =
̂Θ(2− jξ )m(ξ ) and ̂Θ(2− jξ ) is supported in an annulus 2 j ≤ |ξ | ≤ 2 j+1. Obtain the
estimate

sup
z∈Rn

∣

∣

(

m j
̂Δ j( f )

)∨(x− z)
∣

∣

(1 + 2 j|z|) n
r

≤C sup
z∈Rn

∣

∣Δ j( f )(x− z)
∣

∣

(1 + 2 j|z|) n
r

∫

Rn
|m∨

j (y)|(1 + 2 j|y|) n
r dy

≤C′
(
∫

Rn
|m j(2 j( ·))∨(y)|2(1 + |y|)2N dy

) 1
2

.

Then use the hypothesis on m and apply Lemma 6.5.3.
]

6.5.6. (Peetre [258] ) Let m be as in Exercise 6.5.5. Show that there exists a constant
C such that for all f ∈ S ′(Rn) we have

∥

∥(m ̂f )∨
∥

∥

Ḟα,q
p

≤C
∥

∥ f
∥

∥

Ḟα,q
p

.

[

Hint: Use the hint of Exercise 6.5.5 and Theorem 4.6.6.
]

6.5.7. (a) Suppose that Bα0,q0
p0 = Bα1,q1

p1 with equivalent norms. Prove that α0 = α1

and p0 = p1. Prove the same result for the scale of F spaces.
(b) Suppose that Bα0,q0

p0 = Bα1,q1
p1 with equivalent norms. Prove that q0 = q1. Argue

similarly with the scale of F spaces.
[

Hint: Part (a): Test the corresponding norms on the functionΨ(2 jx), whereΨ is
chosen so that its Fourier transform is supported in 1

2 ≤ |ξ | ≤ 2. Part (b): Try a func-

tion f of the form ̂f (ξ ) =∑N
j=1 a jϕ̂(ξ1−2 j,ξ2, . . . ,ξn), where ϕ is a Schwartz func-

tion whose Fourier transform is supported in a small neighborhood of the origin.
]
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6.6 Atomic Decomposition

In this section we focus attention on the homogeneous Triebel–Lizorkin spaces
Ḟα ,q

p , which include the Hardy spaces discussed in Section 6.4. Most results dis-
cussed in this section are also valid for the inhomogeneous Triebel–Lizorkin spaces
and for the Besov–Lipschitz via a similar or simpler analysis. We refer the interested
reader to the relevant literature on the subject at the end of this chapter.

6.6.1 The Space of Sequences ḟ α,q
p

To provide further intuition in the understanding of the homogeneous Triebel–
Lizorkin spaces we introduce a related space consisting of sequences of scalars.
This space is denoted by ḟ α ,q

p and is related to Ḟα ,q
p in a way similar to that in which

�2(Z) is related to L2([0,1]).

Definition 6.6.1. Let 0 < q ≤ ∞ and α ∈ R. Let D be the set of all dyadic cubes in
Rn. We consider the set of all sequences {sQ}Q∈D such that the function

gα ,q({sQ}Q) =
(

∑
Q∈D

(|Q|− αn − 1
2 |sQ|χQ)q

) 1
q

(6.6.1)

is in Lp(Rn). For such sequences s = {sQ}Q we set
∥

∥s
∥

∥

ḟα,q
p

=
∥

∥gα ,q(s)
∥

∥

Lp(Rn) .

6.6.2 The Smooth Atomic Decomposition of Ḟα,q
p

Next, we discuss the smooth atomic decomposition of these spaces. We begin with
the definition of smooth atoms on Rn.

Definition 6.6.2. Let Q be a dyadic cube and let L be a nonnegative integer. A C ∞

function aQ on Rn is called a smooth L-atom for Q if it satisfies

(a) aQ is supported in 3Q (the cube concentric with Q having three times its side
length);

(b)
∫

Rn
xγaQ(x)dx = 0 for all multi-indices |γ| ≤ L;

(c) |∂ γaQ| ≤ |Q|−
|γ|
n − 1

2 for all multi-indices γ satisfying |γ| ≤ L+ n + 1.

The value of the constant L + n + 1 in (c) may vary in the literature. Any suffi-
ciently large constant depending on L will serve the purposes of the definition.
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We now prove a theorem stating that elements of Ḟα ,q
p can be decomposed as

sums of smooth atoms.

Theorem 6.6.3. Let 0 < p,q < ∞, α ∈ R, and let L be a nonnegative integer
satisfying L≥ [nmax(1, 1

p , 1
q )−n−α]. Then there is a constant Cn,p,q,α such that for

every sequence of smooth L-atoms {aQ}Q∈D and every sequence of complex scalars
{sQ}Q∈D we have

∥

∥

∥ ∑
Q∈D

sQaQ

∥

∥

∥

Ḟα,q
p

≤Cn,p,q,α
∥

∥{sQ}Q
∥

∥

ḟα,q
p

. (6.6.2)

Conversely, there is a constant C′
n,p,q,α such that given any distribution f in Ḟα ,q

p

and any L ≥ 0, there exist a sequence of smooth L-atoms {aQ}Q∈D and a sequence
of complex scalars {sQ}Q∈D such that

f = ∑
Q∈D

sQaQ ,

where the sum converges in S ′/P and moreover,
∥

∥{sQ}Q
∥

∥

ḟα,q
p

≤C′
n,p,q,α

∥

∥ f
∥

∥

Ḟα,q
p

. (6.6.3)

Proof. We begin with the first claim of the theorem. We let ΔΨj be the Littlewood–
Paley operator associated with a Schwartz functionΨ whose Fourier transform is
compactly supported away from the origin in Rn. Let aQ be a smooth L-atom sup-
ported in a cube 3Q with center CQ and let the side length be �(Q) = 2−μ . It follows
trivially from Definition 6.6.2 that aQ satisfies

|∂ γy aQ(y)| ≤CN,n2−
μn
2

2μ|γ|+μn

(1 + 2μ|y− cQ|)N (6.6.4)

for all N > 0 and for all multi-indices γ satisfying |γ| ≤ L + n + 1. Moreover, the
function y �→Ψ2− j(y− x) satisfies

|∂δyΨ2− j(y− x)| ≤CN,n,δ
2 j|δ |+ jn

(1 + 2 j|y− x|)N (6.6.5)

for all N > 0 and for all multi-indices δ . Using first the facts that aQ has vanishing
moments of all orders up to and including L = (L + 1)− 1 and that the function
y �→Ψ2− j(y− x) satisfies (6.6.5) for all multi-indices δ with |δ | = L, secondly the
facts that the function y �→Ψ2− j(y−x) has vanishing moments of all orders up to and
including L+n = (L+n+1)−1 and that aQ satisfies (6.6.4) for all multi-indices γ
satisfying |γ| = L+ n + 1, and the result in Appendix K.2, we deduce the following
estimate for all N > 0:

∣

∣ΔΨj (aQ)(x)
∣

∣≤CN,n,L′ 2−
μn
2

2min( j,μ)n−|μ− j|L′

(1 + 2min( j,μ)|x− cQ|)N
, (6.6.6)
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where

L′ =

{

L+ 1 when j < μ ,

L+ n when μ ≤ j.

Now fix 0 < b < min(1, p,q) so that

L+ 1 > n
b −n−α . (6.6.7)

This can be achieved by taking b close enough to min(1, p,q), since our assumption
L ≥

[

nmax
(

1, 1
p , 1

q

)

−n−α
]

implies L+ 1 > nmax
(

1, 1
p , 1

q

)

−n−α .
Using Exercise 6.6.6, we obtain

∑
Q∈D

�(Q)=2−μ

|sQ|
(1 + 2min( j,μ)|x− cQ|)N

≤ c2max(μ− j,0) n
b

{

M
(

∑
Q∈D

�(Q)=2−μ

|sQ|bχQ

)

(x)
}1

b

whenever N > n/b, where M is the Hardy–Littlewood maximal operator. It follows
from the preceding estimate and (6.6.6) that

2 jα ∑
μ∈Z

∑
Q∈D

�(Q)=2−μ

|sQ|
∣

∣ΔΨj (aQ)(x)
∣

∣≤C ∑
μ∈Z

2min( j,μ)n2−| j−μ|L′2−μn2( j−μ)α

×2max(μ− j,0) n
b

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)

(x)
} 1

b

.

Raise the preceding inequality to the power q and sum over j ∈ Z; then raise to the
power 1/q and take

∥

∥ ·
∥

∥

Lp norms in x. We obtain

∥

∥ f
∥

∥

Ḟα,q
p

≤
∥

∥

∥

∥

{

∑
j∈Z

[

∑
μ∈Z

d( j− μ)
{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)} 1
b
]q} 1

q
∥

∥

∥

∥

Lp
,

where f = ∑Q∈D sQaQ and

d( j− μ) = C 2min( j−μ,0)(n− n
b )+( j−μ)α−| j−μ|L′ .

We now estimate the expression inside the last Lp norm by

{

∑
j∈Z

d( j)min(1,q)
} 1

min(1,q)
{

∑
μ∈Z

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)}
q
b
} 1

q

,

and we note that the first term is a constant in view of (6.6.7). We conclude that



6.6 Atomic Decomposition 81

∥

∥

∥ ∑
Q∈D

sQaQ

∥

∥

∥

Ḟα,q
p

≤ C

∥

∥

∥

∥

{

∑
μ∈Z

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)}
q
b
} 1

q
∥

∥

∥

∥

Lp

= C

∥

∥

∥

∥

{

∑
μ∈Z

{

M
(

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

)}
q
b
} b

q
∥

∥

∥

∥

1
b

L
p
b

≤ C′
∥

∥

∥

∥

{

∑
μ∈Z

{

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)bχQ

}
q
b
} b

q
∥

∥

∥

∥

1
b

L
p
b

= C′
∥

∥

∥

∥

{

∑
μ∈Z

∑
Q∈D

�(Q)=2−μ

(

|sQ| |Q|− 1
2−

α
n
)qχQ

} 1
q
∥

∥

∥

∥

Lp

= C′∥
∥{sQ}Q

∥

∥

ḟα,q
p

,

where in the last inequality we used Theorem 4.6.6, which is valid under the as-
sumption 1 < p

b , q
b < ∞. This proves (6.6.2).

We now turn to the converse statement of the theorem. It is not difficult to see that
there exist Schwartz functionsΨ (unrelated to the previous one) andΘ such that ̂Ψ
is supported in the annulus 1

2 ≤ |ξ | ≤ 2, ̂Ψ is at least c > 0 in the smaller annulus
3
5 ≤ |ξ | ≤ 5

3 , and Θ is supported in the ball |x| ≤ 1 and satisfies
∫

Rn xγΘ(x)dx = 0
for all |γ| ≤ L, such that the identity

∑
j∈Z

̂Ψ(2− jξ )̂Θ(2− jξ ) = 1 (6.6.8)

holds for all ξ ∈ Rn \ {0}. (See Exercise 6.6.1.)
Using identity (6.6.8), we can write

f = ∑
j∈Z
Ψ2− j ∗Θ2− j ∗ f .

Setting D j = {Q ∈ D : �(Q) = 2− j}, we now have

f = ∑
j∈Z
∑

Q∈D j

∫

Q
Θ2− j(x− y)(Ψ2− j ∗ f )(y)dy = ∑

j∈Z
∑

Q∈D j

sQaQ ,

where we also set

sQ = |Q| 1
2 sup

y∈Q
|(Ψ2− j ∗ f )(y)| sup

|γ|≤L

∥

∥∂ γΘ
∥

∥

L1

for Q in D j and
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aQ(x) =
1
sQ

∫

Q
Θ2− j(x− y)(Ψ2− j ∗ f )(y)dy .

It is straightforward to verify that aQ is supported in 3Q and that it has vanishing
moments up to and including order L. Moreover, we have

|∂ γaQ| ≤
1
sQ

∥

∥∂ γΘ
∥

∥

L12 j(n+|γ|) sup
Q

|Ψ2− j ∗ f | ≤ |Q|− 1
2−

|γ|
n ,

which makes the function aQ a smooth L-atom. Now note that

∑
�(Q)=2− j

(

|Q|− αn − 1
2 sQχQ(x)

)q

= C ∑
�(Q)=2− j

(

2 jα sup
y∈Q

|(Ψ2− j ∗ f )(y)|χQ(x)
)q

≤ C sup
|z|≤

√
n2− j

(

2 jα(1 + 2 j|z|)−b|(Ψ2− j ∗ f )(x− z)|
)q(1 + 2 j|z|)bq

≤ C
(

2 jαM∗∗
b, j( f ,Ψ )(x)

)q
,

where we used the fact that in the first inequality there is only one nonzero term in
the sum because of the appearance of the characteristic function. Summing over all
j ∈ Zn, raising to the power 1/q, and taking Lp norms yields the estimate

∥

∥{sQ}Q
∥

∥

ḟα,q
p

≤C
∥

∥

∥

(

∑
j∈Z

∣

∣2 jαM∗∗
b, j( f ;Ψ )

∣

∣

q
) 1

q
∥

∥

∥

Lp
≤C

∥

∥ f
∥

∥

Ḟα,q
p

,

where the last inequality follows from Theorem 6.5.6. This proves (6.6.3). �

6.6.3 The Nonsmooth Atomic Decomposition of Ḟα,q
p

We now discuss the main theorem of this section, the nonsmooth atomic decomposi-
tion of the homogeneous Triebel–Lizorkin spaces Ḟα ,q

p , which in particular includes
that of the Hardy spaces H p. We begin this task with a definition.

Definition 6.6.4. Let 0 < p ≤ 1 and 1 ≤ q ≤ ∞. A sequence of complex numbers
r = {rQ}Q∈D is called an ∞-atom for ḟ α ,q

p if there exists a dyadic cube Q0 such that

(a) rQ = 0 if Q � Q0;

(b)
∥

∥gα ,q(r)
∥

∥

L∞ ≤ |Q0|−
1
p .

We observe that every ∞-atom r = {rQ} for ḟ α ,q
p satisfies

∥

∥r
∥

∥

ḟα,q
p

≤ 1. Indeed,

∥

∥r
∥

∥

p
ḟα,q
p

=
∫

Q0

|gα ,q(r)|p dx ≤ |Q0|−1|Q0| = 1 .
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The following theorem concerns the atomic decomposition of the spaces ḟ α ,q
p .

Theorem 6.6.5. Suppose α ∈ R, 0 < q < ∞, 0 < p < ∞, and s = {sQ}Q is in ḟ α ,q
p .

Then there exist Cn,p,q > 0, a sequence of scalars λ j, and a sequence of ∞-atoms
r j = {r j,Q}Q for ḟ α ,q

p such that

s = {sQ}Q =
∞

∑
j=1

λ j{r j,Q}Q =
∞

∑
j=1

λ jr j

and such that
( ∞

∑
j=1

|λ j|p
) 1

p ≤Cn,p,q
∥

∥s
∥

∥

ḟα,q
p

. (6.6.9)

Proof. We fix α, p,q, and a sequence s = {sQ}Q as in the statement of the theorem.
For a dyadic cube R in D we define the function

gα ,q
R (s)(x) =

(

∑
Q∈D
R⊆Q

(

|Q| αn − 1
2 |sQ|χQ(x)

)q
) 1

q

and we observe that this function is constant on R. We also note that for dyadic
cubes R1 and R2 with R1 ⊆ R2 we have

gα ,q
R2

(s) ≤ gα ,q
R1

(s) .

Finally, we observe that

lim
�(R)→∞

x∈R

gα ,q
R (s)(x) = 0

lim
�(R)→0

x∈R

gα ,q
R (s)(x) = gα ,q(s)(x) ,

where gα ,q(s) is the function defined in (6.6.1).
For k ∈ Z we set

Ak =
{

R ∈ D : gα ,q
R (s)(x) > 2k for all x ∈ R

}

.

We note that Ak+1 ⊆ Ak for all k in Z and that

{x ∈ Rn : gα ,q(s)(x) > 2k} =
⋃

R∈Ak

R . (6.6.10)

Moreover, we have for all k ∈ Z,

(

∑
Q∈D\Ak

(

|Q|− αn − 1
2 |sQ|χQ(x)

)q
) 1

q ≤ 2k , for all x ∈ Rn. (6.6.11)
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To prove (6.6.11) we assume that gα ,q(s)(x) > 2k; otherwise, the conclusion is triv-
ial. Then there exists a maximal dyadic cube Rmax in Ak such that x ∈ Rmax. Letting
R0 be the unique dyadic cube that contains Rmax and has twice its side length, we
have that the left-hand side of (6.6.11) is equal to gα ,q

R0
(s)(x), which is at most 2k,

since R0 is not contained in Ak.
Since gα ,q(s) ∈ Lp(Rn), by our assumption, and gα ,q(s) > 2k for all x ∈ Q if

Q ∈ Ak, the cubes in Ak must have size bounded above by some constant. We set

Bk =
{

Q ∈ D : Q is a maximal dyadic cube in Ak \Ak+1
}

.

For J in Bk we define a sequence t(k,J) = {t(k,J)Q}Q∈D by setting

t(k,J)Q =

{

sQ if Q ⊆ J and Q ∈ Ak \Ak+1,

0 otherwise.

We can see that if
Q /∈

⋃

k∈Z

Ak , then sQ = 0 ,

and the identity
s = ∑

k∈Z
∑

J∈Bk

t(k,J) (6.6.12)

is valid. For all x ∈ Rn we have

∣

∣gα ,q(t(k,J))(x)
∣

∣ =
(

∑
Q⊆J

Q∈Ak\Ak+1

(

|Q|− αn − 1
2 |sQ|χQ(x)

)q
) 1

q

≤
(

∑
Q⊆J

Q∈D\Ak+1

(

|Q|− αn − 1
2 |sQ|χQ(x)

)q
) 1

q

≤ 2k+1 ,

(6.6.13)

where we used (6.6.11) in the last estimate. We define atoms r(k,J) = {r(k,J)Q}Q∈D

by setting

r(k,J)Q = 2−k−1|J|−
1
p t(k,J)Q , (6.6.14)

and we also define scalars
λk,J = 2k+1|J|

1
p .

To see that each r(k,J) is an ∞-atom for ḟ α ,q
p , we observe that r(k,J)Q = 0 if Q � J

and that
∣

∣gα ,q(t(k,J))(x)
∣

∣≤ |J|−
1
p , for all x ∈ Rn,

in view of (6.6.13). Also using (6.6.12) and (6.6.14), we obtain that

s = ∑
k∈Z
∑

J∈Bk

λk,J r(k,J) ,
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which says that s can be written as a linear combination of atoms. Finally, we esti-
mate the sum of the pth power of the coefficients λk,J . We have

∑
k∈Z
∑

J∈Bk

|λk,J|p = ∑
k∈Z

2(k+1)p ∑
J∈Bk

|J|

≤ 2p∑
k∈Z

2kp

∣

∣

∣

∣

⋃

Q∈Ak

Q

∣

∣

∣

∣

= 2p∑
k∈Z

2k(p−1)2k|{x ∈ Rn : gα ,q(s)(x) > 2k}|

≤ 2p∑
k∈Z

∫ 2k+1

2k
2k(p−1)|{x ∈ Rn : gα ,q(s)(x) > λ

2 }|dλ

≤ 2p∑
k∈Z

∫ 2k+1

2k
λ p−1|{x ∈ Rn : gα ,q(s)(x) > λ

2 }|dλ

=
22p

p

∥

∥gα ,q(s)
∥

∥

p
Lp

=
22p

p

∥

∥s
∥

∥

p
ḟα,q
p

.

Taking the pth root yields (6.6.9). The proof of the theorem is now complete. �

We now deduce a corollary regarding a new characterization of the space ḟ α ,q
p .

Corollary 6.6.6. Suppose α ∈ R, 0 < p ≤ 1, and p ≤ q ≤ ∞. Then we have

∥

∥s
∥

∥

ḟα,q
p

≈ inf

{

( ∞

∑
j=1

|λ j|p
) 1

p
: s =

∞

∑
j=1
λ jr j , r j is an ∞-atom for ḟ α ,q

p

}

.

Proof. One direction in the previous estimate is a direct consequence of (6.6.9). The
other direction uses the observation made after Definition 6.6.4 that every ∞-atom r
for ḟ α ,q

p satisfies
∥

∥r
∥

∥

ḟα,q
p

≤ 1 and that for p ≤ 1 and p ≤ q the quantity s →
∥

∥s
∥

∥

p
ḟα,q
p

is

subadditive; see Exercise 6.6.2. Then each s = ∑∞j=1λ jr j (with r j ∞-atoms for ḟ α ,q
p

and ∑∞j=1 |λ j|p < ∞) must be an element of ḟ α ,q
p , since

∥

∥

∥

∞

∑
j=1

λ jr j

∥

∥

∥

p

ḟα,q
p

≤
∞

∑
j=1

|λ j|p
∥

∥r j
∥

∥

p
ḟα,q
p

≤
∞

∑
j=1

|λ j|p < ∞ .

This concludes the proof of the corollary. �

The theorem we just proved allows us to obtain an atomic decomposition for the
space Ḟα ,q

p as well. Indeed, we have the following result:

Corollary 6.6.7. Let α ∈ R, 0 < p ≤ 1, L ≥ [ n
p −n−α] and let q satisfy p ≤ q <∞.

Then we have the following representation:
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∥

∥ f
∥

∥

Ḟα,q
p

≈ inf
{( ∞

∑
j=1

|λ j|p
) 1

p
: f =

∞

∑
j=1

λ jA j, A j = ∑
Q∈D

rQaQ , aQ are

smooth L-atoms for Ḟα ,q
p and {rQ}Q is an ∞-atom for ḟ α ,q

p

}

.

Proof. Let f = ∑∞j=1λ jA j as described previously. Using Exercise 6.6.2, we have

∥

∥ f
∥

∥

p
Ḟα,q

p
≤

∞

∑
j=1

|λ j|p
∥

∥A j
∥

∥

p
Ḟα,q

p
≤ cn,p

∞

∑
j=1

|λ j|p
∥

∥r
∥

∥

p
ḟα,q
p

,

where in the last estimate we used Theorem 6.6.3. Using the fact that every ∞-atom
r = {rQ} for ḟ α ,q

p satisfies
∥

∥r
∥

∥

ḟα,q
p

≤ 1, we conclude that every element f in S ′(Rn)

that has the form ∑∞j=1λ jA j lies in the homogeneous Triebel–Lizorkin space Ḟα ,q
p

[and has norm controlled by a constant multiple of
(

∑∞j=1 |λ j|p
) 1

p ].
Conversely, Theorem 6.6.3 gives that every element of Ḟα ,q

p has a smooth atomic
decomposition. Then we can write

f = ∑
Q∈D

sQaQ ,

where each aQ is a smooth L-atom for the cube Q. Using Theorem 6.6.5 we can now
write s = {sQ}Q as a sum of ∞-atoms for ḟ α ,q

p , that is,

s =
∞

∑
j=1

λ jr j ,

where
(

∞

∑
j=1

|λ j|p
) 1

p ≤ c
∥

∥s
∥

∥

ḟα,q
p

≤ c
∥

∥ f
∥

∥

Ḟα,q
p

,

where the last step uses Theorem 6.6.3 again. It is simple to see that

f = ∑
Q∈D

∞

∑
j=1
λ jr j,QaQ =

∞

∑
j=1
λ j

(

∑
Q∈D

r j,QaQ

)

,

and we set the expression inside the parentheses equal to A j. �

6.6.4 Atomic Decomposition of Hardy Spaces

We now pass to one of the main theorems of this chapter, the atomic decomposition
of H p(Rn) for 0 < p ≤ 1. We begin by defining atoms for H p.

Definition 6.6.8. Let 1 < q ≤ ∞. A function A is called an Lq-atom for H p(Rn) if
there exists a cube Q such that
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(a) A is supported in Q;

(b)
∥

∥A
∥

∥

Lq ≤ |Q|
1
q−

1
p ;

(c)
∫

xγA(x)dx = 0 for all multi-indices γ with |γ| ≤ [ n
p −n].

Notice that any Lr-atom for H p is also an Lq-atom for H p whenever 0 < p ≤ 1
and 1 < q < r ≤ ∞. It is also simple to verify that an Lq-atom A for H p is in fact in
H p. We prove this result in the next theorem for q = 2, and we refer the reader to
Exercise 6.6.4 for the case of a general q.

Theorem 6.6.9. Let 0 < p≤ 1. There is a constant Cn,p <∞ such that every L2-atom
A for H p(Rn) satisfies

∥

∥A
∥

∥

H p ≤Cn,p .

Proof. We could prove this theorem either by showing that the smooth maximal

function M(A;Φ) is in Lp or by showing that the square function
(

∑ j |Δ j(A)|2
)1/2

is in Lp. The operators Δ j here are as in Theorem 5.1.2. Both proofs are similar; we
present the second, and we refer to Exercise 6.6.3 for the first.

Let A(x) be an atom that we assume is supported in a cube Q centered at the
origin [otherwise apply the argument to the atom A(x− cQ), where cQ is the center

of Q]. We control the Lp quasinorm of
(

∑ j |Δ j(A)|2
)1/2 by estimating it over the

cube Q∗ and over (Q∗)c, where Q∗ = 2
√

nQ. We have

(
∫

Q∗

(

∑
j

|Δ j(A)|2
)

p
2 dx

) 1
p

≤
(
∫

Q∗∑
j

|Δ j(A)|2 dx

) 1
2

|Q∗|
1

p(2/p)′ .

Using that the square function f �→
(

∑ j |Δ j( f )|2
) 1

2 is L2 bounded, we obtain

(
∫

Q∗

(

∑
j
|Δ j(A)|2

)
p
2 dx

) 1
p

≤ Cn
∥

∥A
∥

∥

L2 |Q∗|
1

p(2/p)′

≤ Cn(2
√

n)
n
p−

n
2 |Q|

1
2−

1
p |Q|

1
p−

1
2

= C′
n .

(6.6.15)

To estimate the contribution of the square function outside Q∗, we use the cancella-
tion of the atoms. Let k = [ n

p −n]+ 1. We have

Δ j(A)(x) =
∫

Q
A(y)Ψ2− j(x− y)dy

= 2 jn
∫

Q
A(y)

[

Ψ(2 jx−2 jy)− ∑
|β |≤k−1

(∂βΨ)(2 jx)
(−2 jy)β

β !

]

dy

= 2 jn
∫

Q
A(y)

[

∑
|β |=k

(∂βΨ )(2 jx−2 jθy)
(−2 jy)β

β !

]

dy ,
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where 0 ≤ θ ≤ 1. Taking absolute values, using the fact that ∂βΨ are Schwartz
functions, and that |x−θy| ≥ |x|− |y| ≥ 1

2 |x| whenever y ∈ Q and x /∈ Q∗, we obtain
the estimate

|Δ j(A)(x)| ≤ 2 jn
∫

Q
|A(y)| ∑

|β |=k

CN

(1 + 2 j 1
2 |x|)N

|2 jy|k
β !

dy

≤ CN,p,n2 j(k+n)

(1 + 2 j|x|)N

(
∫

Q
|A(y)|2 dy

) 1
2
(
∫

Q
|y|2k dy

) 1
2

≤
C′

N,p,n2 j(k+n)

(1 + 2 j|x|)N |Q|
1
2−

1
p |Q| k

n + 1
2

=
CN,p,n2 j(k+n)

(1 + 2 j|x|)N |Q|1+ k
n−

1
p

for x ∈ (Q∗)c. For such x we now have

(

∑
j∈Z

|Δ j(A)(x)|2
) 1

2

≤CN,p,n|Q|1+ k
n−

1
p

(

∑
j∈Z

22 j(k+n)

(1 + 2 j|x|)2N

) 1
2

. (6.6.16)

It is a simple fact that the series in (6.6.16) converges. Indeed, considering the cases
2 j ≤ 1/|x| and 2 j > 1/|x| we see that both terms in the second series in (6.6.16) con-
tribute at most a fixed multiple of |x|−2k−2n. It remains to estimate the Lp quasinorm
of the square root of the second series in (6.6.16) raised over (Q∗)c. This is bounded
by a constant multiple of

(
∫

(Q∗)c

1

|x|p(k+n) dx

) 1
p

≤Cn,p

(
∫ ∞

c|Q|
1
n

r−p(k+n)+n−1 dr

) 1
p

,

for some constant c, and the latter is easily seen to be bounded above by a constant

multiple of |Q|−1− k
n + 1

p . Here we use the fact that p(k + n) > n or, equivalently,
k > n

p −n, which is certainly true, since k was chosen to be [ n
p −n]+ 1. Combining

this estimate with that in (6.6.15), we conclude the proof of the theorem. �

We now know that Lq-atoms for H p are indeed elements of H p. The main result
of this section is to obtain the converse (i.e., every element of H p can be decomposed
as a sum of L2-atoms for H p).

Applying the same idea as in Corollary 6.6.7 to H p, we obtain the following
result.

Theorem 6.6.10. Let 0 < p ≤ 1. Given a distribution f ∈ H p(Rn), there exists a
sequence of L2-atoms for H p, {A j}∞j=1, and a sequence of scalars {λ j}∞j=1 such that

N

∑
j=1
λ jA j → f in H p.
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Moreover, we have

∥

∥ f
∥

∥

H p ≈ inf
{

(

∞

∑
j=1

|λ j|p
) 1

p : f = lim
N→∞

N

∑
j=1
λ jA j,

A j are L2-atoms for H p and the limit is taken in H p
}

.

(6.6.17)

Proof. Let A j be L2-atoms for H p and ∑∞j=1 |λ j|p < ∞. It follows from Theorem
6.6.9 that

∥

∥

∥

N

∑
j=1

λ jA j

∥

∥

∥

p

H p
≤Cp

n,p

N

∑
j=1

|λ j|p .

Thus if the sequence ∑N
j=1λ jA j converges to f in H p, then

∥

∥ f
∥

∥

H p ≤Cn,p

( ∞

∑
j=1

|λ j|p
) 1

p
,

which proves the direction ≤ in (6.6.17). The gist of the theorem is contained in the
converse statement.

Using Theorem 6.6.3 (with L = [ n
p −n]), we can write every element f in Ḟ0,2

p =
H p as a sum of the form f =∑Q∈D sQaQ, where each aQ is a smooth L-atom for the

cube Q and s = {sQ}Q∈D is a sequence in ḟ 0,2
p . We now use Theorem 6.6.5 to write

the sequence s = {sQ}Q as

s =
∞

∑
j=1

λ jr j ,

i.e., as a sum of ∞-atoms r j for ḟ 0,2
p , such that

(

∞

∑
j=1

|λ j|p
) 1

p ≤C
∥

∥s
∥

∥

ḟ 0,2
p

≤C
∥

∥ f
∥

∥

H p . (6.6.18)

Then we have

f = ∑
Q∈D

sQaQ = ∑
Q∈D

∞

∑
j=1

λ j r j,Q aQ =
∞

∑
j=1

λ jA j , (6.6.19)

where we set
A j = ∑

Q∈D

r j,Q aQ (6.6.20)

and the series in (6.6.19) converges in S ′(Rn). Next we show that each A j is a fixed
multiple of an L2-atom for H p. Let us fix an index j. By the definition of the∞-atom
for ḟ 0,2

p , there exists a dyadic cube Q j
0 such that r j,Q = 0 for all dyadic cubes Q not

contained in Q j
0. Then the support of each aQ that appears in (6.6.20) is contained in

3Q, hence in 3Q j
0. This implies that the function A j is supported in 3Q j

0. The same
is true for the function g0,2(r j) defined in (6.6.1). Using this fact, we have
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∥

∥A j
∥

∥

L2 ≈
∥

∥A j
∥

∥

Ḟ0,2
2

≤ c
∥

∥r j
∥

∥

ḟ 0,2
2

= c
∥

∥g0,2(r j)
∥

∥

L2

≤ c
∥

∥g0,2(r j)
∥

∥

L∞ |3Q j
0|

1
2

≤ c |3Q j
0|
− 1

p + 1
2 .

Since the series (6.6.20) defining A j converges in L2 and A j is supported in some
cube, this series also converges in L1. It follows that the vanishing moment condi-
tions of A j are inherited from those of each aQ. We conclude that each A j is a fixed
multiple of an L2-atom for H p.

Finally, we need to show that the series in (6.6.19) converges in H p(Rn). But

∥

∥

M

∑
j=N
λ jA j

∥

∥

H p ≤Cn,p

( M

∑
j=N

|λ j|p
) 1

p → 0

as M,N → ∞ in view of the convergence of the series in (6.6.18). This implies that
the series ∑∞j=1λ jA j is Cauchy in H p, and since it converges to f in S ′(Rn), it must
converge to f in H p. Combining this fact with (6.6.18) yields the direction ≥ in
(6.6.17). �

Remark 6.6.11. Property (c) in Definition 6.6.8 can be replaced by
∫

xγA(x)dx = 0 for all multi-indices γ with |γ| ≤ L,

for any L ≥ [ n
p −n], and the atomic decomposition of H p holds unchanged. In fact,

in the proof of Theorem 6.6.10 we may take L ≥ [ n
p −n] instead of L = [ n

p −n] and
then apply Theorem 6.6.3 for this L. Observe that Theorem 6.6.3 was valid for all
L ≥ [ n

p −n].
This observation can be very useful in certain applications.

Exercises

6.6.1. (a) Prove that there exists a Schwartz function Θ supported in the unit ball
|x| ≤ 1 such that

∫

Rn xγΘ(x)dx = 0 for all multi-indices γ with |γ| ≤ N and such that
| ̂Θ | ≥ 1

2 on the annulus 1
2 ≤ |ξ | ≤ 2.

(b) Prove there exists a Schwartz functionΨ whose Fourier transform is supported
in the annulus 1

2 ≤ |ξ | ≤ 2 and is at least c > 0 in the smaller annulus 3
5 ≤ |ξ | ≤ 5

3
such that we have

∑
j∈Z

̂Ψ(2− jξ )̂Θ(2− jξ ) = 1
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for all ξ ∈ Rn \ {0}.
[

Hint: Part (a): Let θ be a real-valued Schwartz function supported in the ball

|x| ≤ 1 and such that ̂θ (0) = 1. Then for some ε > 0 we have ̂θ (ξ ) ≥ 1
2 for

all ξ satisfying |ξ | < 2ε < 1. Set Θ = (−Δ)N(θε ). Part (b): Define the function
̂Ψ (ξ ) = η̂(ξ )

(

∑ j∈Z η̂(2− jξ )̂Θ(2− jξ )
)−1

for a suitable η .
]

6.6.2. Let α ∈ R, 0 < p ≤ 1, p ≤ q ≤ +∞.
(a) For all f ,g in S ′(Rn) show that

∥

∥ f + g
∥

∥

p
Ḟα,q

p
≤
∥

∥ f
∥

∥

p
Ḟα,q

p
+
∥

∥g
∥

∥

p
Ḟα,q

p
.

(b) For all sequences {sQ}Q∈D and {tQ}Q∈D show that
∥

∥{sQ}Q +{tQ}Q
∥

∥

p
ḟα,q
p

≤
∥

∥{sQ}Q
∥

∥

p
ḟα,q
p

+
∥

∥{tQ}Q
∥

∥

p
ḟα,q
p

.

[

Hint: Use |a + b|p ≤ |a|p + |b|p and apply Minkowski’s inequality on Lq/p (or on
�q/p).

]

6.6.3. Let Φ be a smooth function supported in the unit ball of Rn. Use the same
idea as in Theorem 6.6.9 to show directly (without appealing to any other theorem)
that the smooth maximal function M(·,Φ) of an L2-atom for H p lies in Lp when
p < 1. Recall that M( f ,Φ) = supt>0 |Φt ∗ f |.

6.6.4. Extend Theorem 6.6.9 to the case 1 < q ≤ ∞. Precisely, prove that there is a
constant Cn,p,q such that every Lq-atom A for H p satisfies

∥

∥A
∥

∥

H p ≤Cn,p,q .

[

Hint: If 1 < q < 2, use the boundedness of the square function on Lq, and for
2 ≤ q ≤ ∞, its boundedness on L2.

]

6.6.5. Show that the space H p
F of all finite linear combinations of L2-atoms for H p

is dense in H p.
[

Hint: Use Theorem 6.6.10.
]

6.6.6. Show that for all μ , j ∈ Z, all N,b > 0 satisfying N > n/b and b < 1, all
scalars sQ (indexed by dyadic cubes Q with centers cQ), and all x ∈ Rn we have

∑
Q∈D

�(Q)=2−μ

|sQ|
(1 + 2min( j,μ)|x− cQ|)N

≤ c(n,N,b)2max(μ− j,0) n
b

{

M
(

∑
Q∈D

�(Q)=2−μ

|sQ|b χQ

)

(x)
} 1

b

,
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where M is the Hardy–Littlewood maximal operator and c(n,N,b) is a constant.
[

Hint: Define F0 =
{

Q ∈ D : �(Q) = 2−μ , |cQ − x|2min( j,μ) ≤ 1
}

and for k ≥ 1 de-
fine Fk =

{

Q ∈D : �(Q) = 2−μ , 2k−1 < |cQ−x|2min( j,μ) ≤ 2k
}

. Break up the sum

on the left as a sum over the families Fk and use that∑Q∈Fk
|sQ| ≤

(

∑Q∈Fk
|sQ|b

)1/b

and the fact that
∣

∣

⋃

Q∈Fk
Q
∣

∣≤ cn2−min( j,μ)n+kn.
]

6.6.7. Let A be an L2-atom for H p(Rn) for some 0 < p < 1. Show that there is a
constant C such that for all multi-indices α with |α| ≤ k = [ n

p −n] we have

sup
ξ∈Rn

|ξ ||α |−k−1
∣

∣(∂α ̂A)(ξ )
∣

∣≤C
∥

∥A
∥

∥

− 2p
2−p ( k+1

n + 1
2 )−1

L2(Rn) .

[Hint: Subtract the Taylor polynomial of degree k − |α| at 0 of the function x �→
e−2π ix·ξ .

]

6.6.8. Let A be an L2-atom for H p(Rn) for some 0 < p < 1. Show that for all multi-
indices α and all 1 ≤ r ≤ ∞ there is a constant C such that

∥

∥ |∂α ̂A|2
∥

∥

Lr′ (Rn) ≤C
∥

∥A
∥

∥

− 2p
2−p ( 2|α|

n + 1
r )+2

L2(Rn) .

[

Hint: In the case r = 1 use the L1 → L∞ boundedness of the Fourier transform and
in the case r = ∞ use Plancherel’s theorem. For general r use interpolation.

]

6.6.9. Let f be in H p(Rn) for some 0 < p ≤ 1. Then the Fourier transform of f ,
originally defined as a tempered distribution, is a continuous function that satisfies

|̂f (ξ )| ≤Cn,p
∥

∥ f
∥

∥

H p(Rn)|ξ |
n
p−n

for some constant Cn,p independent of f .
[

Hint: If f is an L2-atom for H p, combine the estimates of Exercises 6.6.7 and 6.6.8
with α = 0 (and r = 1). In general, apply Theorem 6.6.10.

]

6.6.10. Let A be an L∞-atom for H p(Rn) for some 0 < p < 1 and let α = n
p − n.

Show that there is a constant Cn,p such that for all g in Λ̇α(Rn) we have

∣

∣

∣

∣

∫

Rn
A(x)g(x)dx

∣

∣

∣

∣

≤Cn,p
∥

∥g
∥

∥

Λ̇α (Rn) .

[

Hint: Suppose that A is supported in a cube Q of side length 2−ν and center cQ.
Write the previous integrand as ∑ jΔ j(A)Δ j(g) for a suitable Littlewood–Paley op-
erator Δ j and apply the result of Appendix K.2 to obtain the estimate

∣

∣Δ j(A)(x)
∣

∣≤CN |Q|−
1
p +1 2min( j,ν)n2−| j−ν|D

(

1 + 2min( j,ν)|x− cQ|
)N ,

where D = [α]+ 1 when ν ≥ j and D = 0 when ν < j. Use Theorem 6.3.6.
]
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6.7 Singular Integrals on Function Spaces

Our final task in this chapter is to investigate the action of singular integrals on
function spaces. The emphasis of our study focuses on Hardy spaces, although with
no additional effort the action of singular integrals on other function spaces can also
be obtained.

6.7.1 Singular Integrals on the Hardy Space H1

Before we discuss the main results in this topic, we review some background on
singular integrals from Chapter 4.

Let K(x) be a function defined away from the origin on Rn that satisfies the size
estimate

sup
0<R<∞

1
R

∫

|x|≤R
|K(x)| |x|dx ≤ A1 , (6.7.1)

the smoothness estimate, expressed in terms of Hörmander’s condition,

sup
y∈Rn\{0}

∫

|x|≥2|y|

|K(x− y)−K(x)|dx ≤ A2 , (6.7.2)

and the cancellation condition

sup
0<R1<R2<∞

∣

∣

∣

∣

∫

R1<|x|<R2

K(x)dx

∣

∣

∣

∣

≤ A3 , (6.7.3)

for some A1,A2,A3 <∞. Condition (6.7.3) implies that there exists a sequence ε j ↓ 0
as j → ∞ such that the following limit exists:

lim
j→∞

∫

ε j≤|x|≤1
K(x)dx = L0.

This gives that for a smooth and compactly supported function f on Rn, the limit

lim
j→∞

∫

|x−y|>ε j

K(x− y) f (y)dy = T ( f )(x) (6.7.4)

exists and defines a linear operator T . This operator T is given by convolution with
a tempered distribution W that coincides with the function K on Rn \ {0}.

By the results of Chapter 4 we know that such a T , initially defined on C ∞0 (Rn),
admits an extension that is Lp bounded for all 1 < p < ∞ and is also of weak type
(1,1). All these norms are bounded above by dimensional constant multiples of the
quantity A1 + A2 + A3 (cf. Theorem 4.4.1). Therefore, such a T is well defined on
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L1(Rn) and in particular on H1(Rn), which is contained in L1(Rn). We begin with
the following result.

Theorem 6.7.1. Let K satisfy (6.7.1), (6.7.2), and (6.7.3), and let T be defined as in
(6.7.4). Then there is a constant Cn such that for all f in H1(Rn) we have

∥

∥T ( f )
∥

∥

L1 ≤Cn(A1 + A2 + A3)
∥

∥ f
∥

∥

H1 . (6.7.5)

Proof. To prove this theorem we have a powerful tool at our disposal, the atomic
decomposition of H1(Rn). It is therefore natural to start by checking the validity of
(6.7.5) whenever f is an L2-atom for H1.

Since T is a convolution operator (i.e., it commutes with translations), it suffices
to take the atom f supported in a cube Q centered at the origin. Let f = a be such
an atom, supported in Q, and let Q∗ = 2

√
nQ. We write

∫

Rn
|T (a)(x)|dx =

∫

Q∗
|T (a)(x)|dx +

∫

(Q∗)c
|T (a)(x)|dx (6.7.6)

and we estimate each term separately. We have

∫

Q∗
|T (a)(x)|dx ≤ |Q∗| 1

2

(
∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤Cn(A1 + A2 + A3)|Q∗| 1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤Cn(A1 + A2 + A3)|Q∗| 1
2 |Q| 1

2−
1
1 = C′

n(A1 + A2 + A3) ,

where we used property (b) of atoms in Definition 6.6.8. Now note that if x /∈ Q∗

and y ∈ Q, then |x| ≥ 2|y| and x− y stays away from zero; thus K(x− y) is well
defined. Moreover, in this case T (a)(x) can be expressed as a convergent integral of
a(y) against K(x− y). We have

∫

(Q∗)c
|T (a)(x)|dx =

∫

(Q∗)c

∣

∣

∣

∫

Q
K(x− y)a(y)dy

∣

∣

∣dx

=
∫

(Q∗)c

∣

∣

∣

∫

Q

(

K(x− y)−K(x)
)

a(y)dy
∣

∣

∣dx

≤
∫

Q

∫

(Q∗)c

∣

∣K(x− y)−K(x)
∣

∣dx |a(y)|dy

≤
∫

Q

∫

|x|≥2|y|

∣

∣K(x− y)−K(x)
∣

∣dx |a(y)|dy

≤ A2

∫

Q
|a(x)|dx

≤ A2|Q| 1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ A2|Q| 1
2 |Q| 1

2−
1
1 = A2 .
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Combining this calculation with the previous one and inserting the final conclusions
in (6.7.6) we deduce that L2-atoms a for H1 satisfy

∥

∥T (a)
∥

∥

L1 ≤ (C′
n + 1)(A1 + A2 + A3) . (6.7.7)

We now pass to general functions in H1. In view of Theorem 6.6.10 we can write
an f ∈ H1 as

f =
∞

∑
j=1

λ ja j ,

where the series converges in H1, the a j are L2-atoms for H1, and

∥

∥ f
∥

∥

H1 ≈
∞

∑
j=1

|λ j| . (6.7.8)

Since T maps L1 to weak L1 (Theorem 4.3.3), T ( f ) is already a well defined L1,∞

function. We plan to prove that

T ( f ) =
∞

∑
j=1
λ jT (a j) a.e. (6.7.9)

We observe that the series in (6.7.9) converges in L1. Once (6.7.9) is established, the
required conclusion (6.7.5) follows easily by taking L1 norms in (6.7.9) and using
(6.7.7) and (6.7.8).

To prove (6.7.9), we show that T is of weak type (1,1). For a given δ > 0 we
have

∣

∣

{∣

∣T ( f )−
∞

∑
j=1
λ jT (a j)

∣

∣> δ
}∣

∣

≤
∣

∣

{∣

∣T ( f )−
N

∑
j=1

λ jT (a j)
∣

∣> δ/2
}∣

∣+
∣

∣

{∣

∣

∞

∑
j=N+1

λ jT (a j)
∣

∣> δ/2
}∣

∣

≤ 2
δ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

L1
+

2
δ

∥

∥

∥

∞

∑
j=N+1

λ jT (a j)
∥

∥

∥

L1

≤ 2
δ
∥

∥T
∥

∥

L1→L1,∞

∥

∥

∥ f −
N

∑
j=1

λ ja j

∥

∥

∥

H1
+

2
δ

(C′
n + 1)(A1 + A2 + A3)

∞

∑
j=N+1

|λ j| .

Since ∑N
j=1λ ja j converges to f in H1 and ∑∞j=1 |λ j| < ∞, both terms in the sum

converge to zero as N → ∞. We conclude that

∣

∣

{∣

∣T ( f )−
∞

∑
j=1

λ jT (a j)
∣

∣> δ
}∣

∣= 0

for all δ > 0, which implies (6.7.9). �
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6.7.2 Singular Integrals on Besov–Lipschitz Spaces

We continue with a corollary concerning Besov–Lipschitz spaces.

Corollary 6.7.2. Let K satisfy (6.7.1), (6.7.2), and (6.7.3), and let T be defined as
in (6.7.4). Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and α ∈ R. Then there is a constant Cn,p,q,α
such that for all f in S (Rn) we have

∥

∥T ( f )
∥

∥

Ḃα,q
p

≤Cn(A1 + A2 + A3)
∥

∥ f
∥

∥

Ḃα,q
p

. (6.7.10)

Therefore, T admits a bounded extension on all homogeneous Besov–Lipschitz
spaces Ḃα ,q

p with p ≥ 1, in particular, on all homogeneous Lipschitz spaces.

Proof. LetΨ be a Schwartz function whose Fourier transform is supported in the
annulus 1− 1

7 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

̂Ψ(2− jξ ) = 1 , ξ �= 0 .

Pick a Schwartz function ζ whose Fourier transform ̂ζ is supported in the annulus
1
4 < |ξ | < 8 and that is equal to one on the support of ̂Ψ . Let W be the tempered
distribution that coincides with K on Rn \ {0} so that T ( f ) = f ∗W . Then we have
ζ2− j ∗Ψ2− j =Ψ2− j for all j and hence

∥

∥Δ j(T ( f ))
∥

∥

Lp =
∥

∥ζ2− j ∗Ψ2− j ∗W ∗ f
∥

∥

Lp

≤
∥

∥ζ2− j ∗W
∥

∥

L1

∥

∥Δ j( f )
∥

∥

Lp ,
(6.7.11)

since 1 ≤ p ≤ ∞. It is not hard to check that the function ζ2− j is in H1 with norm
independent of j. Therefore, ζ2− j is in H1. Using Theorem 6.7.1, we conclude that

∥

∥T (ζ2− j )
∥

∥

L1 =
∥

∥ζ2− j ∗W
∥

∥

L1 ≤C
∥

∥ζ2− j

∥

∥

H1 = C′ .

Inserting this in (6.7.11), multiplying by 2 jα , and taking �q norms, we obtain the
required conclusion. �

6.7.3 Singular Integrals on H p(Rn)

We are now interested in extending Theorem 6.7.1 to other H p spaces for p < 1. It
turns out that this is possible, provided some additional smoothness assumptions on
K are imposed.

For the purposes of this subsection, we fix a function K(x) on Rn \{0} that satis-
fies |K(x)| ≤A|x|−n for x �= 0 and we assume that there is a distributionW in S ′(Rn)
that coincides with K on Rn \{0}. We make two assumptions about the distribution
W : first, that its Fourier transform ̂W is a bounded function, i.e., it satisfies
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| ̂W (ξ )| ≤ B , ξ ∈ Rn, (6.7.12)

for some B < ∞; secondly, that W is obtained from the function K as a limit of
its smooth truncations. This allows us to properly define the convolution of this
distribution with elements of H p. So we fix a nonnegative smooth function η that
vanishes in the unit ball of Rn and is equal to one outside the ball B(0,2). We assume
that for some sequence ε j ∈ (0,1) with ε j ↓ 0 the distribution W has the form

〈

W,ϕ
〉

= lim
j→∞

∫

Rn
K(y)η(y/ε j)ϕ(y)dy (6.7.13)

for all ϕ ∈ S (Rn). Then we define the smoothly truncated singular integral associ-
ated with K and η by

T (ε)
η ( f )(x) =

∫

Rn
η(y/ε)K(y) f (x− y)dy

for Schwartz functions f [actually the integral is absolutely convergent for every
f ∈ Lp and any p ∈ [1,∞)]. We also define an operator T given by convolution with
W by

T ( f ) = lim
j→∞

T (ε j)( f ) = f ∗W . (6.7.14)

This provides a representation of the operator T . If the function K satisfies condi-
tion (4.4.3), this representation is also valid pointwise almost everywhere for func-
tions f ∈ L2, i.e., lim j→∞T (ε j)( f )(x) = T ( f )(x) for almost all x ∈ Rn. This follows
from Theorem 4.4.5, Exercise 4.3.10, and Theorem 2.1.14 (since the convergence
holds for Schwartz functions).

Next we define T ( f ) for f ∈ H p. One can write W = W0 +K∞, where W0 =ΦW
and K∞ = (1−Φ)K, where Φ is a smooth function equal to one on the ball B(0,1)
and vanishing off the ball B(0,2). Then for f in H p(Rn), 0 < p ≤ 1, we may define
a tempered distribution T ( f ) = W ∗ f by setting

〈

T ( f ),φ
〉

=
〈

f ,φ ∗˜W0
〉

+
〈

˜φ ∗ f ,˜K∞
〉

(6.7.15)

for φ in S (Rn). The function φ ∗˜W0 is in S , so the action of f on it is well defined.
Also ˜φ ∗ f is in L1 (see Proposition 6.4.9), while ˜K∞ is in L∞; hence the second
term on the right above represents an absolutely convergent integral. Moreover, in
view of Theorem 2.3.20 and Corollary 6.4.9, both terms on the right in (6.7.15) are
controlled by a finite sum of seminorms ρα ,β (φ) (cf. Definition 2.2.1). This defines
T ( f ) as a tempered distribution.

The following is an extension of Theorem 6.7.1 for p < 1.

Theorem 6.7.3. Let 0 < p ≤ 1 and N = [ n
p − n] + 1. Let K be a C N function on

Rn \ {0} that satisfies
|∂βK(x)| ≤ A |x|−n−|β | (6.7.16)
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for all multi-indices |β | ≤ N and all x �= 0. Let W be a tempered distribution that
coincides with K on Rn \ {0} and satisfies (6.7.12) and (6.7.13). Then there is a
constant Cn,p such that the operator T defined in (6.7.15) satisfies, for all f ∈ H p,

∥

∥T ( f )
∥

∥

Lp ≤Cn,p(A + B)
∥

∥ f
∥

∥

H p .

Proof. The proof of this theorem is based on the atomic decomposition of H p.
We first take f = a to be an L2-atom for H p, and without loss of generality we

may assume that a is supported in a cube Q centered at the origin. We let Q∗ be the
cube with side length 2

√
n�(Q), where �(Q) is the side length of Q. We have

(
∫

Q∗
|T (a)(x)|p dx

) 1
p

≤ C|Q∗|
1
p−

1
2

(
∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ C′′B|Q|
1
p−

1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ CnB|Q|
1
p−

1
2 |Q|

1
2−

1
p

= CnB .

For x /∈ Q∗ and y ∈ Q, we have |x| ≥ 2|y|, and thus x− y stays away from zero
and K(x− y) is well defined. We have

T (a)(x) =
∫

Q
K(t)(x− y)a(y)dy .

Recall that N = [ n
p −n]+ 1. Using the cancellation of atoms for H p, we deduce

T (a)(x) =
∫

Q
a(y)K(x− y)dy

=
∫

Q
a(y)

[

K(x− y)− ∑
|β |≤N−1

(∂βK(x)
(y)β

β !

]

dy

=
∫

Q
a(y)

[

∑
|β |=N

(∂βK(x−θyy)
(y)β

β !

]

dy

for some 0 ≤ θy ≤ 1. Using that |x| ≥ 2|y| and (6.7.23), we obtain the estimate

|T (a)(x)| ≤ cn,N
A

|x|N+n

∫

Q
|a(y)| |y||β |dy ,

from which it follows that for x /∈ Q∗ we have

|T (a)(x)| ≤ cn,p
A

|x|N+n |Q|1+ N
n −

1
p
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via a calculation using properties of atoms (see the proof of Theorem 6.6.9). Inte-
grating over (Q∗)c, we obtain that

(
∫

(Q∗)c
|T (a)(x)|pdx

) 1
p

≤ cn,p A |Q|1+ N
n −

1
p

(
∫

(Q∗)c

1

|x|p(N+n) dx

) 1
p

≤ c′n,p A .

We have now shown that there exists a constant Cn,p such that
∥

∥T (a)
∥

∥

Lp ≤Cn,p (A + B) (6.7.17)

whenever a is an L2-atom for H p. We need to extend this estimate to infinite sums
of atoms. To achieve this, it convenient to use operators with more regular kernels
and then approximate T by such operators.

Recall the smooth function η that vanishes when |x| ≤ 1 and is equal to 1 when
|x| ≥ 2. We fix a smooth function θ with support in the unit ball having integral
equal to 1. We define θδ (x) = δ−nθ (x/δ ),

Kε,μ(x) = K(x)
(

η(x/ε)−η(μx)
)

and
Kδ ,ε,μ = θδ ∗Kε,μ

for 0 < 10δ < ε < (10μ)−1. We make the following observations: first Kδ ,ε,μ is C ∞;
second, it has rapid decay at infinity, and hence it is a Schwartz function; third, it
satisfies (6.7.16) for all |β | ≤ N with constant a multiple of A, that is, independent

of δ , ε , μ . Let Tδ ,ε,μ be the operator given by convolution with Kδ ,ε,μ and let T (∗)
η

be the maximal smoothly truncated singular integral associated with the bump η .
Then for h ∈ L2 we have
∥

∥Tδ ,ε,μ(h)
∥

∥

L2 ≤ 2
∥

∥T (∗)
η (θδ ∗ h)

∥

∥

L2 ≤Cn (A + B)
∥

∥θδ ∗ h
∥

∥

L2 ≤Cn (A + B)
∥

∥h
∥

∥

L2 ;

hence Tδ ,ε,μ maps L2 to L2 with norm a fixed multiple of A+B. The proof of (6.7.17)
thus yields for any L2-atom a for H p the estimate

∥

∥Tδ ,ε,μ(a)
∥

∥

Lp ≤C′
n,p (A + B) (6.7.18)

with a constant C′
n,p that is independent of δ ,ε,μ .

Let f be in L2 ∩H p, which is a dense subspace of H p, and suppose that f =
∑ j λ ja j, where a j are L2-atoms for H p, the series converges in H p, and we have

∑
j
|λ j|p ≤Cp

p

∥

∥ f
∥

∥

p
H p(Rn) . (6.7.19)

We set fM =∑M
j=1λ ja j. Then fM , f are in L2 but fM → f in H p; hence by Proposition

6.4.10, fM → f in S ′. Acting on the Schwartz functions Kδ ,ε,μ(x−·), we obtain that

Tδ ,ε,μ( fM)(x) → Tδ ,ε,μ( f )(x) as M → ∞ for all x ∈ Rn . (6.7.20)
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Recall the discussion in the introduction of this section defining T = lim j→∞T (ε j)

in an appropriate sense. Let h ∈ L2(Rn). Since h ∗Kδ ,ε,μ is a continuous function,
Theorem 1.2.19 (b) gives that

Tδ ,ε j ,μ(h) → T
(ε j)
η (h)−T (1/μ)

η (h) (6.7.21)

pointwise as δ → 0, where T (ε)
η is the smoothly truncated singular integral associ-

ated with the bump η (cf. Exercise 4.3.10). The expressions on the right in (6.7.21)

are obviously pointwise bounded by 2T (∗)
η (h). Since T (∗)

η is an L2 bounded opera-

tor, and T
(ε j)
η (ψ)−T (1/μ)

η (ψ) → T (ψ) for every ψ ∈ S (Rn), it follows from The-

orem 2.1.14 that T
(ε j)
η (h)− T (1/μ)

η (h) → T (h) pointwise a.e. as ε j,μ → 0. Thus
Tδ ,ε j ,μ(h) → T (h) pointwise a.e. as δ → 0, μ → 0, and ε j → 0 in this order. Using

this fact, (6.7.20), and Fatou’s lemma, we deduce for the given f , fM ∈ L2 ∩H p that
∥

∥T ( f )
∥

∥

p
Lp ≤ liminf

δ ,μ,ε j→0

∥

∥Tδ ,ε j ,μ( f )
∥

∥

p
Lp ≤ liminf

δ ,μ,ε j→0
liminf
M→∞

∥

∥Tδ ,ε j ,μ( fM)
∥

∥

p
Lp .

The last displayed expression is at most (CpC′
n,p)p(A + B)p

∥

∥ f
∥

∥

p
H p using the sublin-

earity of the pth power of the Lp norm, (6.7.18), and (6.7.19).
This proves the required assertion for f ∈ H p ∩L2. The case of general f ∈ H p

follows by density and the fact that T ( f ) is well defined for all f ∈ H p, as observed
at the beginning of this subsection. �

We discuss another version of the previous theorem in which the target space is
H p.

Theorem 6.7.4. Under the hypotheses of Theorem 6.7.3, we have the following con-
clusion: there is a constant Cn,p such that the operator T satisfies, for all f ∈ H p,

∥

∥T ( f )
∥

∥

H p ≤Cn,p(A + B)
∥

∥ f
∥

∥

H p .

Proof. The proof of this theorem provides another classical application of the
atomic decomposition of H p. However, we use the atomic decomposition only for
the domain Hardy space, while it is more convenient to use the maximal (or square
function) characterization of H p for the target H p space.

We fix a smooth function Φ supported in the unit ball B(0,1) in Rn whose mean
value is not equal to zero. For t > 0 we define the smooth functions

W (t) =Φt ∗W

and we observe that they satisfy

sup
t>0

∣

∣
̂W (t)(ξ )

∣

∣≤
∥

∥ ̂Φ
∥

∥

L∞B (6.7.22)

and that
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sup
t>0

|∂βW (t)(x)| ≤CΦA |x|−n−|β | (6.7.23)

for all |β | ≤ N, where

CΦ = sup
|γ|≤N

∫

Rn
|ξ ||γ|| ̂Φ(ξ )|dξ .

Indeed, assertion (6.7.22) is easily verified, while assertion (6.7.23) follows from
the identity

W (t)(x) =
(

(Φt ∗W )̂
)∨(x) =

∫

Rn
e2π ix·ξ

̂W (ξ ) ̂Φ(tξ )dξ

whenever |x| ≤ 2t and from (6.7.16) and the fact that for |x| ≥ 2t we have the integral
representation

∂βW (t)(x) =
∫

|y|≤t
∂βK(x− y)Φt(y)dy .

We now take f = a to be an L2-atom for H p, and without loss of generality we
may assume that a is supported in a cube Q centered at the origin. We let Q∗ be
the cube with side length 2

√
n�(Q), where �(Q) is the side length of Q. Recall the

smooth maximal function M( f ;Φ) from Section 6.4. Then M(T (a);Φ) is pointwise
controlled by the Hardy–Littlewood maximal function of T (a). Using an argument
similar to that in Theorem 6.7.1, we have

(
∫

Q∗
|M(T (a);Φ)(x)|p dx

) 1
p

≤
∥

∥Φ
∥

∥

L1

(
∫

Q∗
|M(T (a))(x)|p dx

) 1
p

≤ C|Q∗|
1
p−

1
2

(
∫

Q∗
|M(T (a))(x)|2 dx

) 1
2

≤ C′|Q|
1
p−

1
2

(
∫

Rn
|T (a)(x)|2 dx

) 1
2

≤ C′′B|Q|
1
p−

1
2

(
∫

Q
|a(x)|2 dx

) 1
2

≤ CnB|Q|
1
p−

1
2 |Q|

1
2−

1
p

= CnB .

It therefore remains to estimate the contribution of M(T (a);Φ) on the complement
of Q∗.

If x /∈ Q∗ and y ∈ Q, then |x| ≥ 2|y| and hence x− y �= 0. Thus K(x− y) is well
defined as an integral. We have

(T (a)∗Φt)(x) = (a ∗W (t))(x) =
∫

Q
K(t)(x− y)a(y)dy .
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Recall that N = [ n
p −n]+ 1. Using the cancellation of atoms for H p we deduce

(T (a)∗Φt)(x) =
∫

Q
a(y)

[

K(t)(x− y)− ∑
|β |≤N−1

(∂βK(t))(x)
(y)β

β !

]

dy

=
∫

Q
a(y)

[

∑
|β |=N

(∂βK(t))(x−θyy)
(y)β

β !

]

dy

for some 0 ≤ θy ≤ 1. Using that |x| ≥ 2|y| and (6.7.23), we obtain the estimate

|(T (a)∗Φt)(x)| ≤ cn,N
A

|x|N+n

∫

Q
|a(y)| |y||β | dy ,

from which it follows that for x /∈ Q∗ we have

|(T (a)∗Φt)(x)| ≤ cn,p
A

|x|N+n |Q|1+ N
n −

1
p

via a calculation using properties of atoms (see the proof of Theorem 6.6.9). Taking
the supremum over all t > 0 and integrating over (Q∗)c, we obtain that

(
∫

(Q∗)c
sup
t>0

|(T (a)∗Φt)(x)|pdx

) 1
p

≤ cn,p A |Q|1+ N
n −

1
p

(
∫

(Q∗)c

1

|x|p(N+n) dx

) 1
p

,

and the latter is easily seen to be finite and controlled by a constant multiple of
A. Combining this estimate with the previously obtained estimate for the integral
of M(T (a);Φ) = supt>0 |(T (a) ∗Φt | over Q∗ yields the conclusion of the theorem
when f = a is an atom.

We have now shown that there exists a constant Cn,p such that
∥

∥T (a)
∥

∥

H p ≤Cn,p(A + B) (6.7.24)

whenever a is an L2-atom for H p. We need to extend this estimate to infinite sums
of atoms.

Let f be L2 ∩H p which is a dense subspace of H p, and suppose that f =∑ j λ ja j

for some L2-atoms a j for H p, where the series converges in H p and we have

∑
j

|λ j|p ≤Cp
p

∥

∥ f
∥

∥

p
H p(Rn) . (6.7.25)

We let fM =∑M
j=1λ ja j and we recall the smooth truncations Tδ ,ε j ,μ of T . As fM → f

in H p, Proposition 6.4.10 gives that fM → f in S ′, and since the functions Kδ ,ε j ,μ
are smooth with compact support, it follows that for all δ ,ε j,μ ,

Tδ ,ε j ,μ( fM) → Tδ ,ε j ,μ( f ) in S ′ as M → ∞. (6.7.26)
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We show that this convergence is also valid for T . Given ε > 0 and a Schwartz
function ϕ , we find δ0,ε j0 ,μ0 such that
∣

∣

〈

T ( fM),ϕ
〉

−
〈

Tδ0,ε j0
,μ0

( fM),ϕ
〉∣

∣< εCp
∥

∥ f
∥

∥

H p for all M = 1,2, . . . . (6.7.27)

To find such δ0,ε j0 ,μ0, we write

∣

∣

〈

T ( fM),ϕ
〉

−
〈

Tδ0,ε j0 ,μ0
( fM),ϕ

〉∣

∣ ≤
∣

∣

∣

M

∑
j=1

λ j
〈

(Kδ0,ε j0 ,μ0
−W)∗ a j,ϕ

〉

∣

∣

∣

≤
( M

∑
j=1

|λ j|p
∣

∣

〈

a j,(˜Kδ0,ε j0 ,μ0
− ˜W)∗ϕ

〉∣

∣

p
) 1

p

≤
( M

∑
j=1

|λ j|p
∥

∥a j
∥

∥

p
L2

∥

∥(˜Kδ0,ε j0 ,μ0
− ˜W)∗ϕ

∥

∥

p
L2

) 1
p

≤ Cp
∥

∥ f
∥

∥

H p

∥

∥(Kδ0,ε j0
,μ0

−W)∗ ϕ̃
∥

∥

L2 .

Now pick δ0,ε j0 ,μ0 such that

∥

∥(Kδ0,ε j0 ,μ0
−W)∗ ϕ̃

∥

∥

L2 =
∥

∥((Kδ0,ε j0 ,μ0
)̂− ̂W)̂ϕ̃

∥

∥

L2 < ε .

This is possible, since this expression tends to zero when δ0,ε j0 ,μ0 → 0 by the
Lebesgue dominated convergence theorem; indeed, the functions (Kδ0,ε j0

,μ0
)̂− ̂W

are uniformly bounded and converge pointwise to zero as δ0,ε j0 ,μ0 → 0, while ̂ϕ̃
is square integrable. This proves (6.7.27).

Next we show that for this choice of δ0,ε j0 ,μ0 we also have
∣

∣

〈

Tδ0,ε j0
,μ0

( f ),ϕ
〉

−
〈

T ( f ),ϕ
〉∣

∣< ε
∥

∥ f
∥

∥

L2 . (6.7.28)

This is a consequence of the Cauchy–Schwarz inequality, since

∣

∣

〈

Tδ0,ε j0
,μ0

( f ),ϕ
〉

−
〈

T ( f ),ϕ
〉∣

∣≤
∥

∥((Kδ0,ε j0
,μ0

)̂− ̂W)̂ϕ̃
∥

∥

L2

∥

∥ f
∥

∥

L2 .

Using (6.7.26) we can find an M0 such that for M ≥ M0 we have
∣

∣

〈

Tδ0,ε j0
,μ0

( fM),ϕ
〉

−
〈

Tδ0,ε j0
,μ0

( f ),ϕ
〉∣

∣< ε . (6.7.29)

Combining (6.7.27), (6.7.28), and (6.7.29) for M ≥ M0, we obtain
∣

∣

〈

T ( fM),ϕ
〉

−
〈

T ( f ),ϕ
〉∣

∣< ε
(

1 +Cp
∥

∥ f
∥

∥

H p +
∥

∥ f
∥

∥

L2

)

,

and this implies that T ( fM) converges to T ( f ) in S ′(Rn).
Using the inequality,
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∥

∥T ( fM)−T ( fM′)
∥

∥

p
H p ≤Cp

n,p(A + B)p ∑
M< j≤M′

|λ j|p ,

one easily shows that the sequence {T ( fM)}M is Cauchy in H p. Thus T ( fM) con-
verges in H p to some element G ∈ H p as M → ∞. By Proposition 6.4.10, T ( fM)
converges to G in S ′. But as we saw, T ( fM) converges to T ( f ) in S ′ as M → ∞.
Hence T ( f ) = G and we conclude that T ( fM) converges to T ( f ) in H p, i.e., the
series ∑ j λ jT (a j) converges to T ( f ) in H p. This allows us to estimate the H p quasi-
norm of T ( f ) as follows:

∥

∥T ( f )
∥

∥

p
H p(Rn) =

∥

∥∑
j
λ jT (a j)

∥

∥

p
H p(Rn)

≤∑
j

|λ j|p
∥

∥T (a j)
∥

∥

p
H p(Rn)

≤ (C′
n,p)

p(A + B)p∑
j
|λ j|p

≤ (C′
n,pCp)p(A + B)p

∥

∥ f
∥

∥

p
H p(Rn) .

This concludes the proof for f ∈ H p ∩L2. The extension to general f ∈ H p follows
by density and the fact that T ( f ) is well defined for all f ∈ H p, as observed at the
beginning of this subsection. �

6.7.4 A Singular Integral Characterization of H1(Rn)

We showed in Section 6.7.1 that singular integrals map H1 to L1. In particular, the
Riesz transforms have this property. In this subsection we obtain a converse to this
statement. We show that if R j( f ) are integrable functions for some f ∈ L1 and all
j = 1, . . . ,n, then f must be an element of the Hardy space H1. This provides a
characterization of H1(Rn) in terms of the Riesz transforms.

Theorem 6.7.5. For n ≥ 2, there exists a constant Cn such that for f in L1(Rn) we
have

Cn
∥

∥ f
∥

∥

H1 ≤
∥

∥ f
∥

∥

L1 +
n

∑
k=1

∥

∥Rk( f )
∥

∥

L1 . (6.7.30)

When n = 1 the corresponding statement is

C1
∥

∥ f
∥

∥

H1 ≤
∥

∥ f
∥

∥

L1 +
∥

∥H( f )
∥

∥

L1 (6.7.31)

for all f ∈ L1(R). Naturally, these statements are interesting when the expressions
on the right in (6.7.30) and (6.7.31) are finite.

Before we prove this theorem we discuss two corollaries.
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Corollary 6.7.6. An integrable function on the line lies in the Hardy space H1(R)
if and only if its Hilbert transform is integrable. For n ≥ 2, an integrable function
on Rn lies in the Hardy space H1(Rn) if and only its Riesz transforms are also in
L1(Rn).

Proof. The corollary follows by combining Theorems 6.7.1 and 6.7.5. �

Corollary 6.7.7. Functions in H1(Rn), n ≥ 1, have integral zero.

Proof. Indeed, if f ∈ H1(Rn), we must have R1( f ) ∈ L1(Rn); thus ̂R1( f ) is uni-
formly continuous. But since

̂R1( f )(ξ ) = −îf (ξ )
ξ1

|ξ | ,

it follows that ̂R1( f ) is continuous at zero if and only if ̂f (ξ ) = 0. But this happens
exactly when f has integral zero. �

We now discuss the proof of Theorem 6.7.5.

Proof. We consider the case n ≥ 2, although the argument below also works in
the case n = 1 with a suitable change of notation. Let Pt be the Poisson kernel.
In the proof we may assume that f is real-valued, since it can be written as f =
f1 + i f2, where fk are real-valued and R j( fk) are also integrable. Given a real-valued
function f ∈ L1(Rn) such that R j( f ) are integrable over Rn for every j = 1, . . . ,n,
we associate with it the n + 1 functions

u1(x,t) = (Pt ∗R1( f ))(x) ,
. . . = . . . ,

un(x,t) = (Pt ∗Rn( f ))(x) ,
un+1(x,t) = (Pt ∗ f )(x) ,

which are harmonic on the space Rn+1
+ (see Example 2.1.13). It is convenient to

denote the last variable t by xn+1. One may check using the Fourier transform that
these harmonic functions satisfy the following system:

n+1

∑
j=1

∂u j

∂x j
= 0 ,

∂u j

∂xk
− ∂uk

∂x j
= 0 , k, j ∈ {1, . . . ,n + 1}, k �= j.

(6.7.32)

This system of equations may also be expressed as div F = 0 and curl F =�0, where
F = (u1, . . . ,un+1) is a vector field in Rn+1

+ . Note that when n = 1, the equations
in (6.7.32) are the usual Cauchy–Riemann equations, which assert that the function
F = (u1,u2) = u1 + iu2 is holomorphic in the upper half-space. For this reason, when
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n ≥ 2 the equations in (6.7.32) are often referred to as the system of generalized
Cauchy–Riemann equations.

The function |F | enjoys a crucial property in the study of this problem.

Lemma 6.7.8. Let u j be real-valued harmonic functions on Rn+1 satisfying the sys-
tem of equations (6.7.32) and let F = (u1, . . . ,un+1). Then the function

|F|q =
(n+1

∑
j=1

|u j|2
)q/2

is subharmonic when q ≥ (n−1)/n, i.e., it satisfies Δ(|F |q) ≥ 0, on Rn+1
+ .

Lemma 6.7.9. Let 0 < q < p < ∞. Suppose that the function |F(x, t)|q defined on
Rn+1

+ is subharmonic and satisfies

sup
t>0

(
∫

Rn
|F(x,t)|p dx

)1/p

≤ A < ∞ . (6.7.33)

Then there is a constant Cn,p,q < ∞ such that the nontangential maximal function
|F |∗(x) = supt>0 sup|y−x|<t |F(y,t)|, x ∈ Rn, (cf. Definition 7.3.1) satisfies

∥

∥|F |∗
∥

∥

Lp(Rn) ≤Cn,p,q A .

Assuming these lemmas, whose proofs are postponed until the end of this section,
we return to the proof of the theorem.

Since the Poisson kernel is an approximate identity, the function x �→ un+1(x, t)
converges to f (x) in L1 as t → 0. To show that f ∈ H1(Rn), it suffices to show that
the Poisson maximal function

M( f ;P)(x) = sup
t>0

|(Pt ∗ f )(x)| = sup
t>0

|un+1(x, t)|

is integrable. But this maximal function is pointwise controlled by

sup
t>0

|F(x,t)| ≤ sup
t>0

[

|(Pt ∗ f )(x)|+
n

∑
j=1

|(Pt ∗R j( f ))(x)|
]

,

and certainly it satisfies

sup
t>0

∫

Rn
|F(x,t)|dx ≤ A f , (6.7.34)

where

A f =
∥

∥ f
∥

∥

L1 +
n

∑
k=1

∥

∥Rk( f )
∥

∥

L1 .

We now have

M( f ;P)(x) ≤ sup
t>0

|un+1(x,t)| ≤ sup
t>0

|F(x, t)| ≤ |F|∗(x) , (6.7.35)
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and using Lemma 6.7.8 with q = n−1
n and Lemma 6.7.9 with p = 1 we obtain that

∥

∥|F|∗
∥

∥

L1(Rn) ≤CnA f . (6.7.36)

Combining (6.7.34), (6.7.35), and (6.7.36), one deduces that

∥

∥M( f ;P)(x)
∥

∥

L1(Rn) ≤Cn

(

∥

∥ f
∥

∥

L1 +
n

∑
k=1

∥

∥Rk( f )
∥

∥

L1

)

,

from which (6.7.30) follows. This proof is also valid when n = 1, provided one
replaces the Riesz transforms with the Hilbert transform; hence the proof of (6.7.31)
is subsumed in that of (6.7.30). �

See Exercise 6.7.1 for an extension of this result to H p for n−1
n < p < 1. We now

give a proof of Lemma 6.7.8

Proof. Denoting the variable t by xn+1, we have

∂
∂x j

|F|q = q|F|q−2
(

F · ∂F
∂x j

)

and also

∂ 2

∂x2
j

|F |q = q |F |q−2
[

F · ∂
2F

∂x2
j

+
∂F
∂x j

· ∂F
∂x j

]

+ q(q−2)|F|q−4
(

F · ∂F
∂x j

)2

for all j = 1,2, . . . ,n + 1. Summing over all these j’s, we obtain

Δ(|F |q) = q |F |q−4
[

|F|2
n+1

∑
j=1

∣

∣

∣

∂F
∂x j

∣

∣

∣

2
+(q−2)

n+1

∑
j=1

∣

∣

∣F · ∂F
∂x j

∣

∣

∣

2
]

, (6.7.37)

since the term containing F · Δ(F) = ∑n+1
j=1 u jΔ(u j) vanishes because each u j is

harmonic. The only term that could be negative in (6.7.37) is that containing the
factor q− 2 and naturally, if q ≥ 2, the conclusion is obvious. Let us assume that
n−1

n ≤ q < 2. Since q ≥ n−1
n , we must have that 2−q ≤ n+1

n . Thus (6.7.37) is non-
negative if

n+1

∑
j=1

∣

∣

∣F · ∂F
∂x j

∣

∣

∣

2
≤ n

n + 1
|F |2

n+1

∑
j=1

∣

∣

∣

∂F
∂x j

∣

∣

∣

2
. (6.7.38)

This is certainly valid for points (x,t) such that F(x, t) = 0. To prove (6.7.38) for
points (x, t) with F(x,t) �= 0, it suffices to show that for every vector v ∈ Rn+1 with
Euclidean norm |v| = 1, we have

n+1

∑
j=1

∣

∣

∣v ·
∂F
∂x j

∣

∣

∣

2
≤ n

n + 1

n+1

∑
j=1

∣

∣

∣

∂F
∂x j

∣

∣

∣

2
. (6.7.39)
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Denoting by A the (n + 1)× (n + 1) matrix whose entries are a j,k = ∂uk/∂x j, we
rewrite (6.7.39) as

∣

∣Av
∣

∣

2 ≤ n
n + 1

∥

∥A
∥

∥

2
, (6.7.40)

where
∥

∥A
∥

∥

2 =
n+1

∑
j=1

n+1

∑
k=1

|a j,k|2 .

By assumption, the functions u j are real-valued and thus the numbers a j,k are real.
In view of identities (6.7.32), the matrix A is real symmetric and has zero trace (i.e.,
∑n+1

j=1 a j, j = 0). A real symmetric matrix A can be written as A = PDPt , where P
is an orthogonal matrix and D is a real diagonal matrix. Since orthogonal matrices
preserve the Euclidean distance, estimate (6.7.40) follows from the corresponding
one for a diagonal matrix D. If A = PDPt , then the traces of A and D are equal;
hence ∑n+1

j=1 λ j = 0, where λ j are entries on the diagonal of D. Notice that estimate
(6.7.40) with the matrix D in the place of A is equivalent to

n+1

∑
j=1

|λ j|2|v j|2 ≤
n

n + 1

(

n+1

∑
j=1

|λ j|2
)

, (6.7.41)

where we set v = (v1, . . . ,vn+1) and we are assuming that |v|2 = ∑n+1
j=1 |v j|2 = 1.

Estimate (6.7.41) is certainly a consequence of

sup
1≤ j≤n+1

|λ j|2 ≤
n

n + 1

(

n+1

∑
j=1

|λ j|2
)

. (6.7.42)

But this is easy to prove. Let |λ j0 | = max1≤ j≤n+1 |λ j|. Then

|λ j0 |2 =
∣

∣− ∑
j �= j0

λ j
∣

∣

2 ≤
(

∑
j �= j0

|λ j|
)2 ≤ n ∑

j �= j0

|λ j|2 . (6.7.43)

Adding n|λ j0 |2 to both sides of (6.7.43), we deduce (6.7.42) and thus (6.7.38). �

We now give the proof of Lemma 6.7.9.

Proof. A consequence of the subharmonicity of |F|q is that

|F(x,t + ε)|q ≤ (|F(·,ε)|q ∗Pt)(x) (6.7.44)

for all x ∈ Rn and t,ε > 0. To prove (6.7.44), fix ε > 0 and consider the functions

U(x,t) = |F(x,t + ε)|q , V (x,t) = (|F(·,ε)|q ∗Pt)(x) .

Given η > 0, we find a half-ball

BR0 = {(x,t) ∈ Rn+1
+ : |x|2 + t2 < R2

0}
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such that for (x, t) ∈ Rn+1
+ \BR0 we have

U(x,t)−V(x,t) ≤ η . (6.7.45)

Suppose that this is possible. Since U(x,0) =V (x,0), then (6.7.45) actually holds on
the entire boundary of BR0 . The function V is harmonic and U is subharmonic; thus
U −V is subharmonic. The maximum principle for subharmonic functions implies
that (6.7.45) holds in the interior of BR0 , and since it also holds on the exterior, it
must be valid for all (x,t) with x ∈ Rn and t ≥ 0. Since η was arbitrary, letting
η → 0+ implies (6.7.44).

We now prove that R0 exists such that (6.7.45) is possible for (x,t) ∈ Rn+1
+ \BR0.

Let B((x, t), t/2) be the (n+1)-dimensional ball of radius t/2 centered at (x, t). The
subharmonicity of |F|q is reflected in the inequality

|F(x,t)|q ≤ 1
|B((x,t), t/2)|

∫

B((x,t),t/2)
|F(y,s)|q dyds ,

which by Hölder’s inequality and the fact p > q gives

|F(x,t)|q ≤
(

1
|B((x,t), t/2)|

∫

B((x,t),t/2)
|F(y,s)|p dyds

)
q
p

.

From this we deduce that

|F(x, t + ε)|q ≤
[

2n+1/vn+1

(t + ε)n+1

∫ 3
2 (t+ε)

1
2 (t+ε)

∫

|y|≥|x|− 1
2 (t+ε)

|F(y,s)|p dyds

]
q
p

. (6.7.46)

If t + ε ≥ |x|, using (6.7.33), we see that the expression on the right in (6.7.46) is
bounded by c′ε−nAqt−nq/p, and thus it can be made smaller than η/2 by taking
t ≥ R1, for some R1 > ε large enough. Since R1 > ε , we must have 2t ≥ t + ε ≥ |x|,
which implies that t ≥ |x|/2, and thus with R′

0 =
√

5R1, if |(x, t)| > R′
0 then t ≥ R1.

Hence, the expression in (6.7.46) can be made smaller than η/2 for |(x,t)| > R′
0.

If t + ε < |x| we estimate the expression on the right in (6.7.46) by

(

2n+1

vn+1

1
(t + ε)n+1

∫ 3
2 (t+ε)

1
2 (t+ε)

[
∫

|y|≥ 1
2 |x|

|F(y,s)|p dy

]

ds

)
q
p

,

and we notice that the preceding expression is bounded by

(

3n+1

vn+1

∫ ∞

1
2 ε

[
∫

|y|≥ 1
2 |x|

|F(y,s)|p dy

]

ds
sn+1

)
q
p

. (6.7.47)

Let G|x|(s) be the function inside the square brackets in (6.7.47). Then G|x|(s) →
0 as |x| → ∞ for all s. The hypothesis (6.7.33) implies that G|x| is bounded by a
constant and it is therefore integrable over the interval

[ 1
2ε,∞

)

with respect to the
measure s−n−1ds. By the Lebesgue dominated convergence theorem we deduce that
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the expression in (6.7.47) converges to zero as |x| → ∞ and thus it can be made
smaller that η/2 for |x| ≥ R2, for some constant R2. Then with R′′

0 =
√

2R2 we have
that if |(x,t)| ≥ R′′

0 then (6.7.47) is at most η/2. Since U −V ≤ U , we deduce the
validity of (6.7.45) for |(x,t)| > R0 = max(R′

0,R
′′
0).

Let r = p/q > 1. Assumption (6.7.33) implies that the functions x �→ |F(x,ε)|q
are in Lr uniformly in t. Since any closed ball of Lr is weak∗ compact, there is a
sequence εk → 0 such that |F(x,εk)|q → h weakly in Lr as k → ∞ to some function
h ∈ Lr. Since Pt ∈ Lr′ , this implies that

(|F(·,εk)|q ∗Pt)(x) → (h ∗Pt)(x)

for all x ∈ Rn. Using (6.7.44) we obtain

|F(x,t)|q = limsup
k→∞

|F(x,t + εk)|p ≤ limsup
k→∞

(

|F(x,εk)|q ∗Pt
)

(x) = (h ∗Pt)(x) ,

which gives for all x ∈ Rn,

|F |∗(x) ≤
[

sup
t>0

sup
|y−x|<t

(|h| ∗Pt)(x)
]1/q ≤C′

nM(h)(x)1/q . (6.7.48)

Let g ∈ Lr′(Rn) with Lr′ norm at most one. The weak convergence yields
∫

Rn
|F(x,εk)|qg(x)dx →

∫

Rn
h(x)g(x)dx

as k → ∞, and consequently we have

∣

∣

∣

∣

∫

Rn
h(x)g(x)dx

∣

∣

∣

∣

≤ sup
k

∫

Rn
|F(x,εk)|q|g(x)|dx ≤

∥

∥g
∥

∥

Lr′ sup
t>0

(
∫

Rn
|F(x, t)|p dx

) 1
r

.

Since g is arbitrary with Lr′ norm at most one, this implies that

∥

∥h
∥

∥

Lr ≤ sup
t>0

(
∫

Rn
|F(x,t)|p dx

) 1
r

. (6.7.49)

Putting things together, we have
∥

∥|F|∗
∥

∥

Lp ≤ C′
n

∥

∥M(h)1/q
∥

∥

Lp

= C′
n

∥

∥M(h)
∥

∥

1/q
Lr

= Cn,p,q
∥

∥h
∥

∥

1/q
Lr

= Cn,p,q sup
t>0

(
∫

Rn
|F(x,t)|p dx

)1/qr

≤ Cn,p,q A ,
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where we have used (6.7.48) and (6.7.49) in the last two displayed inequalities. �

Exercises

6.7.1. Prove the following generalization of Theorem 6.7.4. Let ϕ be a nonnegative
Schwartz function with integral one on Rn and let n−1

n < p < 1. Prove that there
are constants c1,cn,C1,Cn such that for bounded tempered distributions f on Rn (cf.
Section 6.4.1) we have

cn
∥

∥ f
∥

∥

H p ≤ sup
δ>0

[

∥

∥ϕδ ∗ f
∥

∥

Lp +
n

∑
k=1

∥

∥ϕδ ∗Rk( f )
∥

∥

Lp

]

≤Cn
∥

∥ f
∥

∥

H p

when n ≥ 2 and

c1
∥

∥ f
∥

∥

H p ≤ sup
δ>0

[

∥

∥ϕδ ∗ f
∥

∥

Lp +
∥

∥ϕδ ∗H( f )
∥

∥

Lp

]

≤C1
∥

∥ f
∥

∥

H p

when n = 1.
[

Hint: One direction is a consequence of Theorem 6.7.4. For the other direction, de-
fine Fδ = (u1 ∗ϕδ , . . . ,un+1 ∗ϕδ ), where u j(x,t) = (Pt ∗R j( f ))(x), j = 1, . . . ,n, and
un+1(x,t) = (Pt ∗ f )(x). Each u j ∗ϕδ is a harmonic function on Rn+1

+ and continu-
ous up to the boundary. The subharmonicity of |Fδ (x,t)|p has as a consequence that
|Fδ (x, t + ε)|p ≤ |(Fδ (·,ε)|p ∗Pt)(x) in view of (6.7.44). Letting ε → 0 implies that
|Fδ (x, t)|p ≤ |(Fδ (·,0)|p ∗Pt)(x), by the continuity of Fδ up to the boundary. Since
Fδ (x,0) = (R1( f )∗ϕδ , . . . ,Rn( f )∗ϕδ , f ∗ϕδ ), the hypothesis that f ∗ϕδ ,R j( f )∗ϕδ
are in Lp uniformly in δ > 0 gives that supt,δ>0

∫

Rn |Fδ (x, t)|p dx <∞. Fatou’s lemma
yields (6.7.33) for F(x,t) = (u1, . . . ,un+1). Then Lemma 6.7.9 implies the required
conclusion.

]

6.7.2. (a) Let h be a function on R such that h(x) and xh(x) are in L2(R). Show that
h is integrable over R and satisfies

∥

∥h
∥

∥

2
L1 ≤ 8

∥

∥h
∥

∥

L2

∥

∥xh(x)
∥

∥

L2 .

(b) Suppose that g is an integrable function on R with vanishing integral and g(x)
and xg(x) are in L2(R). Show that g lies in H1(R) and that for some constant C we
have

∥

∥g
∥

∥

2
H1 ≤C

∥

∥g
∥

∥

L2

∥

∥xg(x)
∥

∥

L2 .
[

Hint: Part (a): split the integral of |h(x)| over the regions |x| ≤ R and |x| > R and
pick a suitable R. Part (b): Show that both H(g) and H(yg(y)) lie in L2. But since g
has vanishing integral, we have xH(g)(x) = H(yg(y))(x).

]

6.7.3. (a) Let H be the Hilbert transform. Prove the identity

H( f g−H( f )H(g)) = f H(g)+ gH( f )
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for all f ,g in
⋃

1≤p<∞Lp(R).
(b) Show that the bilinear operators

( f ,g) �→ f H(g)+ H( f )g ,

( f ,g) �→ f g−H( f )H(g) ,

map Lp(R)×Lp′(R) → H1(R) whenever 1 < p < ∞.
[

Hint: Part (a): Consider the boundary values of the product of the analytic exten-
sions of f + iH( f ) and g+ iH(g) on the upper half-space. Part (b): Use part (a) and
Theorem 6.7.5.

]

6.7.4. Follow the steps given to prove the following interpolation result. Let 1 <
p1 ≤ ∞ and let T be a subadditive operator that maps H1(Rn)+ Lp1(Rn) into mea-
surable functions on Rn. Suppose that there is A0 < ∞ such that for all f ∈ H1(Rn)
we have

sup
λ>0
λ
∣

∣

{

x ∈ Rn : |T ( f )(x)| > λ
}∣

∣≤ A0
∥

∥ f
∥

∥

H1

and that it also maps Lp1(Rn) to Lp1,∞(Rn) with norm at most A1. Show that for any
1 < p < p1, T maps Lp(Rn) to itself with norm at most

C A

1
p − 1

p1
1− 1

p1
0 A

1− 1
p

1− 1
p1

1 ,

where C = C(n, p, p1).
(a) Fix 1 < q < p < p1 < ∞ and f and let Q j be the family of all maximal
dyadic cubes such that λ q < |Q j|−1 ∫

Qj
| f |q dx . Write Eλ =

⋃

Q j and note that

Eλ ⊆
{

M(| f |q)
1
q > λ

}

and that | f | ≤ λ a.e. on (Eλ )c. Write f as the sum of the
good function

gλ = f χ(Eλ )c +∑
j

(Avg
Qj

f )χQj

and the bad function

bλ =∑
j

b j
λ , where b j

λ =
(

f −Avg
Qj

f
)

χQj .

(b) Show that gλ lies in Lp1(Rn)∩L∞(Rn),
∥

∥gλ
∥

∥

L∞ ≤ 2
n
q λ , and that

∥

∥gλ
∥

∥

p1
Lp1 ≤

∫

| f |≤λ
| f (x)|p1 dx + 2

np1
q λ p1 |Eλ | < ∞ .

(c) Show that for c = 2
n
q +1, each c−1λ−1|Q j|−1b j

λ is an Lq-atom for H1. Conclude
that bλ lies in H1(Rn) and satisfies

∥

∥bλ
∥

∥

H1 ≤ cλ∑
j
|Q j| ≤ cλ |Eλ | < ∞ .
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(d) Start with

∥

∥T ( f )
∥

∥

p
Lp ≤ pγ p

∫ ∞

0
λ p−1

∣

∣

{

T (gλ )| > 1
2 γλ

}∣

∣dλ

+ pγ p
∫ ∞

0
λ p−1

∣

∣

{

T (bλ )| > 1
2 γλ

}∣

∣dλ

and use the results in parts (b) and (c) to obtain that the preceding expression is

at most C(n, p,q, p1)max(A1γ p−p1 ,γ p−1A0). Select γ = A
p1

p1−1

1 A
− 1

p1−1

0 to obtain the
required conclusion.
(e) In the case p1 = ∞ we have |T (gλ )| ≤ A12

n
q λ and pick γ > 2A12

n
q to make the

integral involving gλ vanishing.

6.7.5. Let f be an integrable function on the line whose Fourier transform is also
integrable and vanishes on the negative half-line. Show that f lies in H1(R).

HISTORICAL NOTES

The strong type Lp → Lq estimates in Theorem 6.1.3 were obtained by Hardy and Littlewood
[157] (see also [158]) when n = 1 and by Sobolev [285] for general n. The weak type estimate L1 →
L

n
n−s ,∞ first appeared in Zygmund [339]. The proof of Theorem 6.1.3 using estimate (6.1.11) is

taken from Hedberg [161]. The best constants in this theorem when p = 2n
n+s , q = 2n

n−s , and 0 < s < n
were precisely evaluated by Lieb [213]. A generalization of Theorem 6.1.3 for nonconvolution
operators was obtained by Folland and Stein [132].

The Riesz potentials were systematically studied by Riesz [270] on Rn although their one-
dimensional version appeared in earlier work of Weyl [330]. The Bessel potentials were introduced
by Aronszajn and Smith [7] and also by Calderón [41], who was the first to observe that the
potential space L p

s (i.e., the Sobolev space Lp
s ) coincides with the space Lp

k given in the classical
Definition 6.2.1 when s = k is an integer. Theorem 6.2.4 is due to Sobolev [285] when s is a positive
integer. The case p = 1 of Sobolev’s theorem (Exercise 6.2.9) was later obtained independently by
Gagliardo [139] and Nirenberg [249]. We refer to the books of Adams [2], Lieb and Loss [214],
and Maz’ya [229] for a more systematic study of Sobolev spaces and their use in analysis.

An early characterization of Lipschitz spaces using Littlewood–Paley type operators (built from
the Poisson kernel) appears in the work of Hardy and Littlewood [160]. These and other charac-
terizations were obtained and extensively studied in higher dimensions by Taibleson [300], [301],
[302] in his extensive study. Lipschitz spaces can also be characterized via mean oscillation over
cubes. This idea originated in the simultaneous but independent work of Campanato [39], [40] and
Meyers [234] and led to duality theorems for these spaces. Incidentally, the predual of the space
Λ̇α is the Hardy space H p with p = n

n+α , as shown by Duren, Romberg, and Shields [118] for the
unit circle and by Walsh [327] for higher-dimensional spaces; see also Fefferman and Stein [130].
We refer to the book of Garcı́a-Cuerva and Rubio de Francia [141] for a nice exposition of these
results. An excellent expository reference on Lipschitz spaces is the article of Krantz [199].

Taibleson in his aforementioned work also studied the generalized Lipschitz spaces Λ p,q
α called

today Besov spaces. These spaces were named after Besov, who obtained a trace theorem and em-
beddings for them [24], [25]. The spaces Bα,q

p , as defined in Section 6.5, were introduced by Peetre
[255], although the case p = q = 2 was earlier considered by Hörmander [166]. The connection
of Besov spaces with modern Littlewood–Paley theory was brought to the surface by Peetre [255].
The extension of the definition of Besov spaces to the case p < 1 is also due to Peetre [256],
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but there was a forerunner by Flett [131]. The spaces Fα,q
p with 1 < p,q < ∞ were introduced by

Triebel [316] and independently by Lizorkin [218]. The extension of the spaces Fα,q
p to the case

0 < p < ∞ and 0 < q ≤ ∞ first appeared in Peetre [258], who also obtained a maximal character-
ization for all of these spaces. Lemma 6.5.3 originated in Peetre [258]; the version given in the
text is based on a refinement of Triebel [317]. The article of Lions, Lizorkin, and Nikol’skij [216]
presents an account of the treatment of the spaces Fα,q

p introduced by Triebel and Lizorkin as well
as the equivalent characterizations obtained by Lions, using interpolation between Banach spaces,
and by Nikol’skij, using best approximation.

The theory of Hardy spaces is vast and complicated. In classical complex analysis, the
Hardy spaces H p were spaces of analytic functions and were introduced to characterize bound-
ary values of analytic functions on the unit disk. Precisely, the space H p(D) was introduced
by Hardy [156] to consist of all analytic functions F on the unit disk D with the property that
sup0<r<1

∫ 1
0 |F(re2πiθ )|p dθ < ∞, 0 < p < ∞. When 1 < p < ∞, this space coincides with the

space of analytic functions whose real parts are Poisson integrals of functions in Lp(T1). But for
0 < p ≤ 1 this characterization fails and for several years a satisfactory characterization was miss-
ing. For a systematic treatment of these spaces we refer to the books of Duren [117] and Koosis
[195].

With the illuminating work of Stein and Weiss [293] on systems of conjugate harmonic func-
tions the road opened to higher-dimensional extensions of Hardy spaces. Burkholder, Gundy, and
Silverstein [38] proved the fundamental theorem that an analytic function F lies in H p(R2

+) [i.e.,
supy>0

∫

R |F(x + iy)|p dx < ∞] if and only if the nontangential maximal function of its real part
lies in Lp(R). This result was proved using Brownian motion, but later Koosis [194] obtained an-
other proof using complex analysis. This theorem spurred the development of the modern theory
of Hardy spaces by providing the first characterization without the notion of conjugacy and indi-
cating that Hardy spaces are intrinsically defined. The pioneering article of Fefferman and Stein
[130] furnished three new characterizations of Hardy spaces: using a maximal function associ-
ated with a general approximate identity, using the grand maximal function, and using the area
function of Luzin. From this point on, the role of the Poisson kernel faded into the background,
when it turned out that it was not essential in the study of Hardy spaces. A previous character-
ization of Hardy spaces using the g-function, a radial analogue of the Luzin area function, was
obtained by Calderón [42]. Two alternative characterizations of Hardy spaces were obtained by
Uchiyama in terms of the generalized Littlewood–Paley g-function [319] and in terms of Fourier
multipliers [320]. Necessary and sufficient conditions for systems of singular integral operators
to characterize H1(Rn) were also obtained by Uchiyama [318]. The characterization of H p using
Littlewood–Paley theory was observed by Peetre [257]. The case p = 1 was later independently
obtained by Rubio de Francia, Ruiz, and Torrea [276].

The one-dimensional atomic decomposition of Hardy spaces is due to Coifman [72] and its
higher-dimensional extension to Latter [206]. A simplification of some of the technical details in
Latter’s proof was subsequently obtained by Latter and Uchiyama [207]. Using the atomic de-
composition Coifman and Weiss [86] extended the definition of Hardy spaces to more general
structures. The idea of obtaining the atomic decomposition from the reproducing formula (6.6.8)
goes back to Calderón [44]. Another simple proof of the L2-atomic decomposition for H p (starting
from the nontangential Poisson maximal function) was obtained by Wilson [332]. With only a little
work, one can show that Lq-atoms for H p can be written as sums of L∞-atoms for H p. We refer
to the book of Garcı́a-Cuerva and Rubio de Francia [141] for a proof of this fact. Although finite
sums of atoms are dense in H1, an example due to Y. Meyer (contained in [233]) shows that the
H1 norm of a function may not be comparable to inf∑N

j=1 |λ j|, where the infimum is taken over all

representations of the function as finite linear combinations ∑N
j=1 λ ja j with the a j being L∞-atoms

for H1. Based on this idea, Bownik [34] constructed an example of a linear functional on a dense
subspace of H1 that is uniformly bounded on L∞-atoms for H1 but does not extend to a bounded
linear functional on the whole H1. However, if a Banach-valued linear operator is bounded uni-
formly on all Lq-atoms for H p with 1 < q < ∞ and 0 < p ≤ 1, then it is bounded on the entire H p

as shown by Meda, Sjögren, and Vallarino [230]. This fact is also valid for quasi-Banach-valued
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linear operators, and when q = 2 it was obtained independently by Yang and Zhou [338]. A re-
lated general result says that a sublinear operator maps the Triebel–Lizorkin space Ḟs

p,q(Rn) to a
quasi-Banach space if and only if it is uniformly bounded on certain infinitely differentiable atoms
of the space; see Liu and Yang [217]. Atomic decompositions of general function spaces were
obtained in the fundamental work of Frazier and Jawerth [135], [136]. The exposition in Section
6.6 is based on the article of Frazier and Jawerth [137]. The work of these authors provides a solid
manifestation that atomic decompositions are intrinsically related to Littlewood–Paley theory and
not wedded to a particular space. Littlewood–Paley theory therefore provides a comprehensive and
unifying perspective on function spaces.

Main references on H p spaces and their properties are the books of Baernstein and Sawyer [12],
Folland and Stein [133] in the context of homogeneous groups, Lu [219] (on which the proofs of
Lemma 6.4.5 and Theorem 6.4.4 are based), Strömberg and Torchinsky [298] (on weighted Hardy
spaces), and Uchiyama [321]. The articles of Calderón and Torchinsky [45], [46] develop and
extend the theory of Hardy spaces to the nonisotropic setting. Hardy spaces can also be defined in
terms of nonstandard convolutions, such as the “twisted convolution” on R2n. Characterizations of
the space H1 in this context have been obtained by Mauceri, Picardello, and Ricci [226]

The localized Hardy spaces hp, 0 < p ≤ 1, were introduced by Goldberg [146] as spaces of
distributions for which the maximal operator sup0<t<1 |Φt ∗ f | lies in Lp(Rn) (here Φ is a Schwartz
function with nonvanishing integral). These spaces can be characterized in ways analogous to those
of the homogeneous Hardy spaces H p; in particular, they admit an atomic decomposition. It was
shown by Bui [37] that the space hp coincides with the Triebel–Lizorkin space F0,2

p (Rn); see also
Meyer [232]. For the local theory of Hardy spaces one may consult the articles of Dafni [100] and
Chang, Krantz, and Stein [59].

Interpolation of operators between Hardy spaces was originally based on complex function
theory; see the articles of Calderón and Zygmund [48] and Weiss [328]. The real-interpolation
approach discussed in Exercise 6.7.4 can be traced in the article of Igari [174]. Interpolation be-
tween Hardy spaces was further studied and extended by Riviere and Sagher [271] and Fefferman,
Riviere, and Sagher [128].

The action of singular integrals on periodic spaces was studied by Calderón and Zygmund [47].
The preservation of Lipschitz spaces under singular integral operators is due to Taibleson [299].
The case 0 < α < 1 was earlier considered by Privalov [268] for the conjugate function on the
circle. Fefferman and Stein [130] were the first to show that singular integrals map Hardy spaces to
themselves. The boundedness of fractional integrals on H p was obtained by Krantz [198]. The case
p = 1 was earlier considered by Stein and Weiss [293]. The action of multilinear singular integrals
on Hardy spaces was studied by Coifman and Grafakos [75] and Grafakos and Kalton [149]. An
exposition on the subject of function spaces and the action of singular integrals on them was written
by Frazier, Jawerth, and Weiss [138]. For a careful study of the action of singular integrals on
function spaces, we refer to the book of Torres [315]. The study of anisotropic function spaces and
the action of singular integrals on them has been studied by Bownik [33]. Weighted anisotropic
Hardy spaces have been studied by Bownik, Li, Yang, and Zhou [35].




